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ABSTRACT

This thesis explores parameters that govern microvascular occlusion secondary to
embolic phenomenon. Bulk and individual properties of microembolic particles were
characterized using light microscopy, SEM and optically-based particle analysis.
Particulate probability distributions were created from imaging data using Matlab. Size
distribution, volume, morphology and chemical properties were quantified using in-vivo
and model flow systems to correlate particulate characteristics and occlusive efficacy.
This study focused on novel expandable/deformable Polyacrylic acid microspheres
(PAA-MS) for use as catheter-deliverable therapeutic emboli. These emboli expand in
aqueous media such as blood and remain unexpanded in custom delivery media. The
techniques developed to investigate therapeutic microemboli were applied to the analysis
of clot dissolution byproducts.

PAA-MS expand volumetrically in seconds when placed in aqueous environments.
PAA-MS were modified to resist fragmentation based upon failure analysis. Degradation
testing demonstrated PAA-MS chemical stability. Charge characteristics inherent to the
PAA-MS acid matrix were leveraged to develop low-viscosity media that prevent
expansion. Cationic dyes were found that bind the charged matrix within PAA-MS to
enhance visualization. Unexpanded PAA-MS were delivered through standard catheters
and microcatheters at concentrations that induce durable occlusions. Non-expandable
microspheres could not be delivered through microcatheters. PAA-MS required less
embolic mass to occlude in-vitro flow systems at significantly higher pressures than non-
expandable microspheres. Preliminary biocompatibility tests demonstrated safety and
PAA-MS were able to occlude both porcine renal and coronary vasculature in-vivo. An
ultrasonic clot dissolution device generated microemboli from synthetic acellular fibrin-
only clots and whole blood clots. The average particle size for whole blood clots was
less than 100 microns and acellular clots produced larger average emboli than whole
blood clots, indicating that cellular components may limit thromboembolic size.

The expandable/deformable properties of PAA-MS allow them to traverse
microcatheters when unexpanded. Once in blood, PAA-MS expand 140-fold to create a
space-filling, pressure resistant occlusion. These results have implications for
intravascular embolization procedures where smaller catheters minimize vasospasm and
allow more precise targeting while stronger occlusions resist occlusive breakdown and
associated distal embolization. These embolic improvements could reduce procedural
complications while increasing efficacy. Future work will solidify correlations between
microembolic properties, microvascular occlusion and tissue infarction.

Thesis Supervisor: Elazer R. Edelman
Title: Thomas D. and Virginia W. Cabot Professor of Health Sciences and
Technology .,.....
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Chapter 1: Introduction

1.1 Background

1.1.1 What are Microemboli?
Any abnormal mass traveling within the blood stream can be defined as an

embolus[1]. However, the fate of that mass, and consequently of the patient, is not fully

defined. Many factors contribute to the evolution and destiny of an embolus including

but not limited to the size of the mass, its chemical composition, morphology, origin,

vascular bed and the activity and vascular health of the patient. Yet, none of these factors

alone definitively predict the severity of the response. Large emboli can be catastrophic

and of immediate consequences, such as the case of large saddle pulmonary emboli or fat

emboli after bone trauma. At the same time, large venous thromboemboli that pass into

the redundant network of the lung can remain silent. Microemboli can be similarly silent,

even in vascular beds such as the brain and heart that are extremely sensitive to ischaemia.

Although detrimental effects may not be instantaneously catastrophic, these microemboli

can be an insidious source of destruction[2].

Microemboli by definition are emboli that fall between 1 and 1000 microns and

are usually not visible by conventional imaging techniques such as angiography, CT and

MRI. The smallest microemboli can infarct tissue if the emboli are thrombogenic or have

the capacity to aggregate. Larger microemboli can obstruct critical microcirculatory

branches or affect tissues that have heightened sensitivity to ischaemia. In this regard, if

the destructive power of microemboli can be understood, controlled and manipulated it

could be harnessed for therapeutic applications in areas where blood flow is not desired

such as hyper-vascular tumors and arterio-venous malformations. A greater

understanding of microembolism could also help prevent complications of embolic

procedures and other vascular interventions.

1.1.1 From Thromboembolism to Therapeutic Embolism
For the initial investigations into microcirculatory dysfunction, researchers

injected synthetic microemboli into coronary vasculature to recapitulate heart-failure

secondary to microembolic events[3]. In a study by Hori et al, 1987, injection of 15-

micron spheres mimicked exertional angina with decreased coronary flow reserve while
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slightly larger 25 micron spheres caused patchy necrosis, but no decrease in long-term

coronary flow reserve. Studies such as these revealed that the size of the particulate has a

significant impact on the clinical outcome.

As knowledge of embolization pathophysiology burgeoned, view of these data

shifted toward considering microemboli as a potential therapeutic option[4], for example,

synthetic microemboli for controlled vascular occlusion. Therapeutic embolization was

initially viewed with skepticism because of the potential dangers of injecting an

unpredictable foreign material into the blood stream. Prototypical therapeutic emboli

were particulate of irregular sizes and shapes made primarily from PVA (poly-vinyl

alcohol) [5]. Although PVA achieved some success as an embolic agent for several

indications, there are problems associated with the material. Many of the problems are

related to the irregular shape of PVA particulate as well as the inability to accurately

control size distribution of the particulate[6-11]. Because of these properties, PVA

particulate tend to aggregate and occlude delivery catheters[12]. PVA particulate also

result in spatially unpredictable vascular occlusion because the particulate can occlude

larger arteries if they aggregate or smaller arteries if they do not[13]. Furthermore, PVA

particulate occlusions can be temporally unpredictable because the occlusion often

depends upon thrombosis around particulate aggregates which may recanalize, causing

the occlusion to dissipate[ 14].

To address some of the problems with PVA particulate, researchers developed

microspheres for use in embolization procedures[15]. Spheres had an advantage over

PVA in that they did not tend to aggregate. Recanalization of occlusions created with

microspheres are less prevalent than with PVA particulate[ 14]. There are several

different types of microspheres that have been used for embolization procedures. The

most common are PVA microspheres and tris-acryl gelatin microspheres[11, 16-18].

Another type are Super-Absorbent Polymer (SAP) microspheres[14, 19-21]. These are

similar to the tris-acryl spheres except that they expand when introduced into aqueous

media. Preliminary studies show that the SAP microspheres perform similarly to tris-

acryl microspheres but demonstrate more space-filling within the vasculature, and

presumably less thrombosis around the occlusion with less likelihood of recanalization
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[21]. However, no quantitative in-vitro tests of these embolic materials have been

performed to date.

1.1.2 Uterine Artery Embolization (UAE)
One of the primary indications for therapeutic embolism is uterine artery

embolization (UAE) for the treatment of uterine fibroids (also called uterine leiomyoma

or uterine myomata)[22]. UAE emerged as an alternative to surgery for the treatment of

uterine fibroids in 1995[23]. UAE is minimally invasive and hence far less intrusive than

myomectomy or hysterectomy, requires less post-operative care, and retains uterine

viability. A growing body of literature reports symptomatic improvement and significant

uterine and fibroid shrinkage in approximately 80% of procedures[11]. UAE entails the

introduction of a delivery catheter (a long thin polymer tube) into the uterine arteries by

way of the large femoral arteries in the legs[24]. Usually the procedure is performed

bilaterally to ensure sufficient fibroid vascular occlusion. The interventionalist visualizes

the uterine vasculature via x-ray angiography and attempts to embolize as close as

possible to the tumor.

Although UAE has favorable results when compared to surgery, there are still

complications that must be addressed[12, 25-40]. Frequent complications include: post-

embolic fever, non-target embolization, under-embolization, ovarian failure, uterine

infarction, relapse of the fibroid tumor, recanalization of occlusion, infection and

sometimes even death, [10, 13, 22, 35, 41]. Most of these problems are related to a

general lack of occlusive control and/or stability. For example, a major concern is the

unintentional embolization of ovarian anastomoses or cervicovaginal branches of the

uterine arteries, which can cause ovarian failure or sexual dysfunction respectively.

Unfortunately, solutions geared to address one problem can create another. For UAE

embolic diameter is recommended to be larger than 500 micron because that is the upper

bound of the diameter of ovarian anastomoses[22, 42], thus obligating the use of larger

catheters. Larger catheters induce vasospasm in larger vessels and hence prevent close

approximation of the delivery catheter to the tumor[12, 13]. Because of this the embolic

must be injected more proximally, increasing the chance of unintentionally embolizing

proximal branches such as the cervicovaginal. Limitations in the current technology

preclude the solution of one problem without creating another.
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Identifying procedure endpoint plagues UAE because of complicating factors like

vasospasm, thrombosis and the inherent low resolution of angiography. To ensure

adequate occlusion, an interventionalist may top-off the uterine circulation with emboli,

which can cause over-embolization. Over-embolization of the uterine artery increases

collateral damage to healthy tissue and the likelihood of unintended particle migration,

especially to the ovarian arteries [ 11]. On the other end of the spectrum, vasospasm or

thrombosis can cause premature end-point determination, resulting in under-embolization,

and subsequent survival and persistence of symptomatic fibroids and the need for

additional therapy. The procedure endpoint has been described as either flow stasis or

markedly reduced flow in the targeted uterine artery[l 1, 12]. If embolic could be

precisely localized and titrated for optimal tumor infarction, many of the complications

could be attenuated. Current research is generally empiric, lacking in rational

optimization of size, quantity, and morphological characteristics of embolic material.

There is no identifiable strategy for providing adequate ischaemia while limiting adverse

sequelae such as uncontrolled distal embolization, vasospasm during the procedure or

over-embolization leading to healthy tissue destruction.

1.1.3 Embolic Materials
The two most common embolic agents for UAE procedures are non-spherical

polyvinyl alcohol (PVA) particulate and tris-acryl gelatin calibrated microspheres

(Embosphere®, Biosphere Medical, Rockland, MA)[11, 43]. PVA particulate has the

longest history for UAE but is far from an ideal embolic agent, with shortcomings

stemming from the irregular particle shape distribution and tendency to aggregate. Tris-

acryl gelatin microspheres have consistent shape and size, have lower tendency to

aggregate, and allow for more selective pruning of target vasculature[12, 17].

As an incremental improvement to standard microspheres, the DuPont-MIT

alliance has developed highly expandable and deformable microspheres principally

composed of polyacrylic acid (Expandable/Deformable PAA Microspheres, DuPont,

Wilmington, DE). Although there have been some reports of absorbent and expandable

microspheres[14, 20, 21, 44-48] and recently Biosphere Medical has announced an

expandable product, none have the material properties (up to 140 fold volumetric

expansion in seconds) and composition (Poly Acrylic Acid) of the
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expandable/deformable PAA microspheres (PAA-MS). Furthermore, there is no

evidence in the literature of the in-depth engineering analysis of embolic microspheres.

A major goal of this study is to investigate the properties of PAA-MS and

compare it to currently available technology. By quantifying microembolic properties,

the key parameters that govern occlusion can be isolated and hopefully manipulated.

With this knowledge, optimal occlusion protocols can be designed and embolic

protection protocols can be developed to prevent the damage that can be caused from

uncontrolled microembolism.

1.2 Theory

1.2.1 Theoretical Benefits of Embolic ExpansionlDeformation
There are many aspects of human vasculature that work to prevent infarction and

remove any occlusions that may form[49, 50]. This is essential because most organs are

extremely sensitive to ischaemia and if the body's efforts to maintain circulation are

thwarted, tissue often will die rapidly. Tumors are especially adept at maintaining and

adapting their own blood supply[48]. Some biological methods for ensuring tissue

perfusion include redundant collateral circulation, innate clot dissolution enzymes, and

neo-vascularization. Any method to infarct tissue must overcome these barriers.

There are several reasons why therapeutic embolism, specifically UAE, can fail,

but they all relate to uncontrolled embolism[51, 52]. PVA fails often, sometimes even

before entering the body, because of aggregation problems and uncontrolled occlusion of

vessels and catheters. Tris-acryl gelatin microspheres were developed to address many of

the problems with PVA. The tris-acryl gelatin microspheres are smooth and round,

enabling ease of delivery and resisting aggregation. A theoretical problem with a

material that traverses catheters easily is that it will not produce as strong an occlusion in

the body. Smooth microspheres can roll over each other in a rolling without slipping

motion[53] and will not form an occlusion until they are deep enough within the

vasculature to fill the vasculature from the microcirculation proximally. Microspheres at

the more proximal end of such occlusions are resting on top of the more downstream

microspheres and can theoretically migrate away from the site of occlusion because there

is no force holding them in place.
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Occlusive stability is a critical factor for long-term safety and efficacy of embolic

therapy. Expandable/deformable microspheres could theoretically create a much more

stable occlusion than spheres designed solely for ease of delivery. By expanding within

the elastic environment of the target artery the PAA microspheres will exert a normal

force on the arterial wall and other surrounding microspheres, resulting in a tightly

packed occlusive mass. The resultant recoil force from the arterial wall will pin the

microspheres in place by inducing significant frictional forces normal to the vessel

surface and between the surfaces of the deformed microspheres[54, 55]. In addition, the

recoil pressure forces the packed microspheres into irregular, non-spherical morphologies,

maximizing surface interactions and therefore increasing the stability of the occlusion.

Deformable microspheres will theoretically assume a nearly rhombic dodecahedron

three-dimensional geometry (actual number of faces will approach an average of 13.7 as

interstitial space approaches zero) and achieve a much higher packing density! (close to

1). (Figure 1-1, Left)

Figure 1-1: Left- Expandable/Deformable PAA-MS in blood deform when juxtaposed and maximize
interfacial contact (lines drawn in to highlight surface contact). Right- when microspheres are rigid they
interact at small areas which can act as pivots for rolling

In comparison, rigid spheres can assume body centered or hexagonal closed pack

geometry at best, which yields a packing density of .74048, and for random packing the

density is even less at near .6 [56]. Given roughly the same order of magnitude for

frictional coefficients for most hydrogels, the fact that deformable/expandable hydrogels

1 Packing density is defined as the total volume over the volume of particulate and it approaches one as the
volume of the interstitial spaces approaches zero
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will have orders of magnitude more surface area contact as well as greater normal forces

due to expansion will result in far more stable occlusion[57]. The most efficient way for

rigid spheres to translocate is to rotate around each other without the need for slipping by

forming pivot points at small areas of contact. Deformation will obliterate the rolling

without slipping condition which only applies to rigid spheres[53] (Figure 1-1, Right).

The space-filling properties of deformable/expandable microspheres will prevent any

possibility of recanalization, will prevent rolling of spheres around each other, will

increase both frictional forces and surface tension (Van-Der-Waals forces) between

spheres and hence should theoretically result in more stable occlusions.

1.2.2 Theory of PAA Microsphere Expansion
Polyacrylic acid is a well known pH-sensitive hydrogel[58-60]. The fixed charge

on the hydrogel responds to ionic concentrations in which it is bathed. When spherically

encapsulated, the fixed charge can be isolated from the surrounding media. When PAA

microspheres are placed in low-pH solutions, the carboxylic acid residues become

saturated with hydrogen and assume neutral charge[61 ]. The lack of charge supplants the

thermodynamic drive to isolate charged moieties from one another with an opposite Van-

Der-Waals force that brings residues together, resulting in a contracted state for the

hydrogel. Uncharged polyacrylic acid residues are less hydrophilic and tend to exclude

water and bind to other uncharged residues via Van-Der-Waals forces induced by

instantaneous dipoles. When the pH rises above the pKa for the carboxylic acid residues,

the acid residues become charged and large coulombic forces drive the residues apart,

forcing the hydrogel to expand[62]. In the process, water floods into the polymer to

hydrate the exposed charges, shielding them from one another via hydrogen bonding.

Organic solvents such as DMSO, ethiodol (poppy seed oil), propylene glycol etc. cannot

readily form strong enough dipoles to hydrate exposed charges in polyacrylic acid so

PAA microspheres placed in these media do not readily expand. In addition, sodium

counter-ions on the polyacrylic acid residues are not readily soluble in the organic

solvents and remain associated with the acid when in organic solvents, facilitating

neutrality within the contracted hydrogel. High salt solutions prevent expansion by a

slightly different mechanism. Dissociated cations in solution prevent expansion of PAA

microspheres by forcing the equilibrium constant for the dissociation of the polyacrylic
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acid from its counter-ion toward remaining associated. Excess sodium in aqueous

solution promotes the formation of the sodium salt of the polyacrylic acid, hindering the

coulombic expansion of the hydrogel.

1.3 Thesis Statement
Microembolism and subsequent microvascular occlusion can be a powerful tool to

treat tumors and arterio-venous malformations, but can also be dangerous and destructive

to healthy tissue. The combination of location, material, size, volume and morphological

characteristics of microemboli that induce significant tissue infarction remain enigmatic.

The motivation of this work is to elucidate the fundamental characteristics of

microemboli that can be life threatening when uncontrolled, or therapeutic when targeted.

Using this information, rationale can be established for implementing anti-embolic

protocols including intelligently designed embolic protection devices. Furthermore this

knowledge can be exploited to design embolic therapies directed toward tumor therapy,

arterio-venous malformations and any other application that necessitates controlled

occlusion. Theoretically, there exists a minimum embolic load that induces controlled

infarction in vascular beds with minimal risk of distal embolization and/or life-

threatening necrosis. Expandable/deformable PAA microspheres have theoretical

advantages for providing more controlled and stable occlusions with less invasive

introduction catheters. In developing a system to study these novel embolic devices, we

will also learn more about thromboembolic processes. This research should help expand

the knowledge of therapeutic and pathological microembolism in microvascular networks.
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Chapter 2: Particulate Analysis System and Probability
Distribution Construction

Abstract
Although standard assays such as light microscopy and scanning electron

microscopy reveal detailed information about individual micro-particles, generalizing this
information to group behavior is not readily possible given inter-specimen heterogeneity
and synergy between particulate. To investigate group properties of micro-particulate we
chose to use the Beckman-CoulterTM RapidVUE@ particle analysis system. We
prioritized this system over other particle analysis systems that rely on Doppler shift or
impedance differentials because the RapidVUE® system can characterize shape as well
as particulate counts and volumes and it can be calibrated to recognize varying particle
geometries.

The RapidVUE® system is an optically based micro-particulate analysis system
that can analyze 75ml particulate suspension samples with a dynamic range of 20 to 2500
microns. The procedures for cleaning, calibrating and operating the RapidVUE® are
outlined in this document along with the theory, specifications, and limitations of the
system. We used Microsoft Excel and Mathworks Matlab software for data analysis to
create probability distribution models with microembolic population statistics.
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2.1 Beckman-CoulterTM RapidVUE® Particle Analysis
System

Introduction
Most analyses of microembolic particulate have been qualitative and anecdotal.

A more quantitative and rigorous analysis of micro-particulate is needed to establish

stronger correlations and causal relationships between micro-particulate properties and

in-vivo function. Although standard methods such as light microscopy and scanning

electron microscopy reveal a wealth of information about particulate, these methods are

limited in that they can only reveal information about a small number of particles at a

time. It is imperative to determine the population characteristics of micro-particulate

because in-vitro and in-vivo function depends directly on bulk properties rather than the

properties of individual particles. To quantify bulk properties of micro-particulate, we

chose to implement the Beckman-CoulterTM RapidVUE® particle analysis system. This

section describes the specifications, theory, and operation of the RapidVUE® particle

analysis system. The choice of this machine for this project is justified and the pertinent

features are expounded upon.

Much of the RapidVUE® machine-specific information contained within this

section is adapted from the RapidVUE® User's Reference[63], Beckman-CoulterTM part

# 8321490B and the RapidVUE® Fluid Sample Module Reference Manual[64],

Beckman-CoulterTM part # 8321519. In addition to machine-specific information, this

section also outlines general programming and usage of the system as implemented for

this thesis work.

Background
The Beckman-CoulterTM RapidVUE® is a commercially available Particle Shape

and Size Image Analyzer that can output bulk particulate data to Windows based-PC

software for analysis. For this thesis we used version 2.06 of the RapidVUE® software.

The RapidVUE® system is available from Beckman-CoulterTM 1950 West 8 th Ave,

Hialieah, Florida 33010-9015. Technical support for the machine can be accessed by

calling 1-800-523-3713.
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The RapidVUE® is designed to characterize various shaped particulate, including

fibers, rods, and spheres, by capturing images of a flow chamber at a rate of 30 frames

per second and analyzing the images in real-time. The user can visualize the shape and

size of the material frame by frame as it is being analyzed. In contrast, all other particle

analysis systems such as laser-Doppler and standard impedance based Coulter counters

do not allow visualization of particles directly and are insensitive to shape. Calibration

of the RapidVUE® is therefore more accurate than the calibration of other devices

because there is a visual check and corroboration to ensure that the software is counting

properly. The machine can be calibrated to digitally filter out particles of the wrong

shape type and background image noise. The ability of the RapidVUE® to quantify

shape is a unique feature that allows the machine to track sphere integrity and fiber length

while increasing count accuracy.

Custom Windows-based software included with the RapidVUE® provides

detailed population analysis of the particulate and can be programmed and calibrated to

recognize each type of particulate. Detailed information about each particle and statistics

regarding the entire run are readily accessible (Figure 2-1). All information gathered can

be exported to Microsoft Excel, Matlab or any other data manipulation software.
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Figure 2-1: Screen shot from the RapidVUE@ particle analysis software

Demonstrates how each frame can be analyzed and the particle count analysis is shown at right. By
modifying parameters in the software and visually inspecting the analysis, calibration can be optimized.

2.1.1 Specifications
The RapidVUE@ has a wide dynamic range, from 20 to 2500 microns, that is

much larger than most other particle analysis systems. It is comprised of a fluid sample

module and an optical bench. The system has manual controls on the unit and is also

interfaced with a Microsoft Windows-based machine. The RapidVUE@ system is

composed of two main pieces: the optical bench and the sample module.

Optical Bench
The optical bench contains a 0.5 microsecond strobe that projects light through a

narrow flow chamber in the sample module to create silhouettes of flowing particles onto

a high resolution charge coupled device (640X480 pixels) camera that captures images at

up to 30 frames per second. The rate of capture is somewhat dependent on particle
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concentration and CPU speed because some of the image processing is performed in real-

time and the next image is not taken until basic image processing has been performed on

the previous image. The images analyzed contain cross-sections of the actual particles.

Because the system is high-resolution and optically based, it can recognize and quantify

irregularly shaped particles. The optics and CCD (charge-coupled device) camera

interface are designed to analyze particles from 20 micron smallest dimension to 2500

microns in the largest dimension. The lower limit is constrained by the optical

magnification settings and the limits of the CCD pixel dimensions. The upper limit is

constrained by the field size which is limited by the number of pixels captured at the

factory-set optical magnification.

The CCD camera digitizes the projection from the strobe into a 640X480 8-bit

grey-scale image by sampling and quantization. Sampling is carried out in space by the

layout of the CCD such that 640X480 pixel intensities are captured. Each intensity value

is quantized into an 8-bit value between 0 and 255, which correspond to grey-scale

intensity. The software then thresholds the image at a user-defined setting between 0 and

256 whereby all pixels lower than the threshold value (darker) are considered to be within

a particle. The image is raster scanned from top to bottom, identifying dark segments on

each line, and associating them with the segments on the previous line. The segmentation

algorithm considers any adjacent particle to be connected within the same particle. This

introduces a problem in that overlapping particles can be considered as one large particle.

To get around this limitation, filters can be established during calibration to ignore

particles that are not of the right shape or that are not in focus. The border is checked for

continuity before the particle is considered complete.

The software on the PC conveys threshold, focus, and other rejection criterion to

the RapidVUE® before data acquisition begins so that the machine can perform much of

the initial calculations for thresholding and segmentation. For each particle, the pixel

area, perimeter, halo area around the particle and x-y Cartesian coordinates for the left,

right, top, and bottom extremes are all calculated. Using this data, other information can

be calculated by the PC software such as focus rejection, sphericity, equivalent circular

area diameter or least bounding box. These calculations will be discussed below.
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Fluid Sample Module
The fluid sample module is a chemically-resistant one-piece integrated system.

The reservoir in the module accepts 75ml samples. A centrifugal pump circulates the

fluid through the imaging chamber in a closed loop system at variable speeds between 1

and 20L/minute. The computer is able to estimate the total volume of particulate within

the sample by using the speed of the pump and the known fixed volume of the flow

chamber to calculate the turn-over rate of the sample. The system is designed for

solutions of less than five centipoise in viscosity. This is required because for fluids of

greater than five centipoise viscosity, the calculation of flow rate based upon pump speed

becomes unreliable.

The fluid chamber can accept many fluids and the materials that the fluid comes

into contact with include 316 stainless steel, glass, Teflon hoses and Teflon sample vessel,

Kalrez® O-rings, and Parylene coating- providing an inert and durable environment for

most solvents including organic solvents. The suspension fluid sample may be top-

loaded from the input orifice or it may be pumped into the inlet valve. The suspension

fluid drain outlet is controlled by a handle on the side of the machine. The controls for

the pump speed are in percent of maximum flow. For all of our experiments the flow

speed was set at 30%. This was determined to be an optimal speed in previous studies[65,

66] that allowed for timely analysis of the sample without creating bubbles that could

cause artifacts in the analysis. The concentrations of the suspensions are determined by

visual inspection such that particles are dispersed enough to minimize overlap and allow

adequate luminosity while providing sufficient particulate for a reasonable data rate.

2.1.2 Operation
The following procedure was used for all samples run through the particle

analyzer. Turn on the power switch on the right side of the RapidVUE® particle analyzer.

If the attached PC computer is not already operational, turn on the computer and load the

RapidVUE® software. The default configuration will automatically be loaded. Load in

the appropriate configuration for the particulate and suspension to be analyzed. See

Calibration and Programming section for information regarding how to configure the

software. Adjust the speed of the machine to 30 by pressing the - - - button on the

controls on the front of the machine. Empty the reservoir by turning the drain lever on the
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right side of the RapidVUE® particle analyzer to the open position. Turn the drain lever

to the closed position- the system is now ready to be rinsed as follows.

Rinsing Operation
To rinse the system, approximately 300ml of diluent is flushed through the system

by filling the system with 75ml of diluent per run, turning the pump on for approximately

20 seconds, stopping the pump, draining and then repeating three more times. While the

system is running, the background particulate count can be monitored on the PC

computer to ensure a background of less than 0.4 particles per frame. This number is

around the general background noise of most solutions and has been used by other

authors[65, 66]. Solutions with higher background noise may require a higher particle

per frame value. The rinsing procedure should be repeating until the count is less than .4

particles per frame after 30 seconds of running the machine. Whenever a new suspension

fluid is to be used the system should be pre-rinsed as above with the new suspension

solution and the background noise should be assessed. If the new suspension solution

and the old are immiscible, an intermediate solution in which both new and old

suspension solutions are miscible should be used to prevent an emulsion from forming.

Before turning the machine off it should be rinsed and cleaned with Coulter-Clenz

(available from Beckman-Coulter) and it can be left filled with Coulter-Clenz or distilled

water when not in use.

Once the machine has been rinsed thoroughly, the sample suspension can be

loaded into the fluid chamber. After the 75ml suspension has been loaded and the top of

the fluid chamber has been closed, the machine can be turned on at a speed of 30. The

machine should be run for approximately 30 seconds to ensure proper mixing of the

suspension and to eliminate bubbles that may have been introduced while loading the

sample. While the system is priming, the PC can be used to monitor for bubbles by

pressing the preliminary run button in the software and clearing the data after each run.

If bubbles are negligible, the sample is ready for analysis. By pressing the Run button in

the RapidVUE® software, three successive runs will be performed of 100 seconds each.

This is the default run time and can be changed if desired. Depending upon the frame

rate during the run, between 2000 and 3000 images will be analyzed. The files will be

named sequentially based upon the root name input into the file-name box. This name
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must be specified before pressing run, or alternatively the default file name can be used

and the files can be renamed afterwards. After a run has been completed, the machine

should be rinsed again as in part 5 above. After rinsing, the system is ready for another

sample or to be shut down.

2.1.3 Calibration and Programming
The RapidVUE® system is calibrated at the factory to ensure accurate results.

The micron/pixel ration, the micron distance that a linear pixel represents, the

magnification and the total image size are all determined and input to machine so that

accurate correlations can be drawn between image size and actual particle size. The

RapidVUE® particle analyzer is periodically serviced and re-calibrated by Beckman-

Coulter. The technician uses pre-measured, precision mono-sized microspheres and

reticles to make sure that the calibration settings are valid.

In addition to calibration by Beckman-Coulter, we performed our own calibration

procedures for each type of sample run in order to tailor the software settings for the

specific task. Some of the adjustable values include the threshold value, focus rejection

settings, shape rejection settings, border rejection settings, fiber overlap rejection and

background intensity rejection.

Threshold Value Determination
The threshold value can have a significant effect on the results, especially if the

contrast between particles and background is not sharp. The threshold should be

optimized to maximally eliminate background noise without eroding or removing particle

data. This can sometimes be difficult to achieve and a compromise may have to be made

to optimize signal to noise. For example, if the threshold is set too low, the area of the

particles may be underestimated because the borders that are out of focus due to

curvature and diffraction will be eliminated from the area calculation while if the

threshold is set too high, artifacts or shading in the background may erroneously be

counted as particulate.

An absolute threshold value between 0 and 256 can be specified in the software.

Alternatively, an adaptive threshold can be specified. The adaptive threshold is a

threshold that is a percentage of the background. This method reduces errors associated
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with varying levels of luminosity that can be caused by different solvents or higher

concentrations of particles. In all of our experiments we used an adaptive threshold value

of 56% which has been used by others[65, 66] and produced good results during manual

calibration. During manual calibration the threshold value can be adjusted and single

frames can be monitored to see how the particle counts are changed.

Experimental Settings
The basic configuration settings for analyzing microspheres were based upon

those used by other others[65, 66] for micro-particulate, but were tailored for use with

microspheres by manually setting the rejections based upon single image analysis(Table

2-1).

Table 2-1: Standard configuration settings for analyzing microspheres in the RapidVUE® particle analyzer

PARAMETERS
* Focus rejection
* Border rejection

Edge correction
* Repetition rejection

Fiber overlap rejection
* Shape rejection

Background intensity rejection
Background subtraction
Area correction

Shape rejection criteria
Focus parameter
Minimum particle area
Micron/pixel ratio
Maximum particle area
Threshold
Magnification
Image size (microns)

On
On
Off
On
Off
On
Off
Off
Off
Sphericity < 0.90
500
4
7.292
5000000
Adaptive: 56
2.74
4521 x 3354

Focus rejection was turned on so that out of focus particles would not be counted

erroneously. Out of focus particles would give inaccurate size measurements for the

particles. The default setting of 500 was seen to be adequate by single-frame manual

calibration. Border rejection was turned on so that particles that were interrupted by the

border would not be counted. Repetition rejection was turned on to prevent artifacts

within the camera or optical system from being counted every frame. One of the most
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important rejection criteria for microspheres is the shape rejection setting. Shape

rejection was set to reject objects with less than 90% sphericity. This eliminates small

debris particles that may be in the background and it also eliminates overlapping spheres.

Note: when non-spherical particulate are to be analyzed this setting will often be reversed

such that extremely spherical objects are rejected in order to prevent air bubbles from

being counted. Other rejection criteria that were not turned on were determined by

manual calibration. The minimum and maximum particle sizes used were system

defaults used to rule out outliers. These were not adjusted in order to maintain maximum

dynamic range. The micron/pixel ratio, the magnification and the image size are all

invariants set by factory calibration.

Calibration Experiment
The single frame manual calibration is used to make sure the software is

recognizing and measuring particles correctly. In order to further verify the calibration,

66 microspheres were individual counted and suspended in water after dying them with

Acridine orange (see material properties chapter for dying protocol) (Table 2-2).

Table 2-2: Calibration counts for 66 individually counted microspheres

Run # Final Count Actual Count Percent Error
Run1 71 66 7.5
Run2 72 66 9.1
Run3 64 66 3

The results show that the percent error is less than 10% for all three runs and the error

falls on both sides of the true value. Given that the particle analyzer is not designed to be

accurate when measuring small numbers of microspheres, these results are adequate.

Although the total volume of particulate is not the most important attribute for

microspheres, it is an important value for other types of particulate such as

thromboemboli.

2.1.4 Output
The RapidVUE® software provides text output of all measures and settings for

each run (Appendix A). This output can be imported into Microsoft Excel or Matlab for

analysis. The RapidVUE® software also has analysis capabilities and visual output of
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probability distributions and basic statistics in real-time as the particulate are counted.

Statistical information such as means, variance, counts, volume and number percentiles,

sphericity, probability distributions and performance data are all available as output from

the software.

The output gives several different means which are useful for characterizing

particle samples with a single number. These means are referred to as the Dpq means

where p = 1 to 4 and q = 0 to 4. The standard Dpq definitions apply only to spherical

particles.

Dpq = [DiP / iq](l/(P - q))

where i ranges for all particles in the sample and Di is the ith diameter

For this definition, q is always smaller than p.

The pth power geometric mean, Dpp, is defined as:

log(Dpp) = (Di log Di) / Di

Setting q equal to p in the Dpq dialog box of the RapidVUE® software will generate the

Dpp mean. Several values of Dpq can be reported in the output files. The Dpq mean with

p=l, q=0 is the standard arithmetic mean of the distribution of the diameters. The surface

mean is when p=2 and q=0 and the volume mean is when p=3 and q=0. Dpq with

p=3,q=2 relates to the mean of the volume to surface ratio of the particulate and is called

the Sauter mean. It is the diameter of the particle whose ratio of volume to surface area is

the same as the complete sample.

The spread of the sample can be calculated in several ways. The software

automatically outputs the percentiles by number, area and volume. Using the volume

percentiles, upper and lower bounds, and the total number of particles the geometric

volume standard deviation is estimated by the software using the following formula:
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[[Dvo.5 - (Dklb + Dkub) ]/ 2 ]Nk
Geometric Standard Deviation = NkDvo.5

k

klb = lower bound of bin k
kub = upper bound of bin k
Dvo.5= Median (50 th percentile) diameter
Nk = number of particles in each bin
Note: all of the values necessary for these calculations are in the text output files

produced by the software program.

The Relative Span is a measure that relates to the width of the distribution with larger

values indicating greater width of a distribution. It is calculated using the following

formula:

Dvo.9 - Dvo. 1
Relative Span =

Dvo.5
Dv0.9= 9 0th percentile diameter
Dvo.0 = 10th percentile diameter
Dvo.5= Median (5 0th percentile) diameter

2.1.5 Particle Size and Shape Characterization
For spherical particles such as microspheres the strobe projection will be spherical.

The RapidVUE® software has several built-in methods for calculating the area of a

particle that is assumed a priori to be roughly spherical. The software can calculate the

Equivalent Circular Area Diameter, Da, which is equivalent to the diameter of a circle

whose area is the same as that of the particle silhouette. The Equivalent Circular

Perimeter Diameter, Dp, is the diameter of a circle with the same perimeter as the

silhouette of the measured particle. Finally, the Least Bounding Circle Diameter, LBC, is

the diameter of the smallest circle that can enclose the entire silhouette. For any shape,

Dp is greater than or equal to Da. One definition of a circle is that is has the smallest area

for a given perimeter possible, making Da = Dp for perfect circles.

The linear sphericity is calculated by taking the ratio of the diameter of a circle

that would generate the area of the particle measured over the diameter of the circle that
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would have the same perimeter of the particle measured and is given by the following

formula:

(4A/;f)
Linear Sphericity = = Da / D,

(P / )

A=Area of measured particle
P=Perimeter of measured particle
The linear sphericity generated by the RapidVUE® software. Another method of

calculating sphericity is the area-based sphericity which is calculated with the following

formula:

Area-based sphericity = 4i4 / P 2

The volume of each sphere is estimated from the following formula:

Volume = 0D3 / 6

For rectangular or fiber-like particles the least bounding rectangle properties are

calculated rather than a circle. The least bounding rectangle is defined as the rectangle of

the smallest area that encloses the silhouette. The software finds this rectangle by

rotating a test rectangle based upon the extreme values of the particle by 7.5 degree

increments until the smallest orientation is determined. The volume of such a particle is

estimated by the estimating the depth of the particle as the average of the dimensions of

width and length that encompass the particle as in the following formula:

Approximate Volume = A* (L + W)/2

A = Area of shape as measured from the image
L = Length of enclosing rectangle
W = Width of enclosing rectangle

If a fiber model is assumed, the software is programmed to assume either a cylindrical

shape or a flat shape for the fiber. The length and width of fibers is calculated by using
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the perimeter and area of the fiber silhouette to estimate an equivalent length and width

of a rectangle of the same area and perimeter according to the following formulae:

Area = A = L*W

Perimeter = P = 2 * (L + W)

Length= L= P / 4 + 0.5* (P2  4-4A)

Width = W = A/ L
Note: Area and Perimeter are measured from the image and the Length and width are
then calculated from these values using the equations above. T = Thickness and is
specified by the user in the software settings

For the cylindrical fiber model the volume is:

V = (r* W 2 / 4 ) * L

For the flat fiber model the volume is:

V =L*W*T

2.1.6 Accuracy Considerations
Although the particle analyzer is an accurate and quantitative tool for analyzing

particulate distributions, there are some potential sources for error inherent to the system,

even after proper calibration.

Single particle accuracy can be limited by several factors. The resolution

limitation of the CCD limits the size range of the particles. However, the discretization

error is most apparent for particulate less than 30 pixels in diameter (roughly 220 micron

diameter). For these small particles the software can overestimate the size of the particles

by roughening the edges. Small particles can also be affected by diffraction effects as

light from the strobe passes around the edges of the particle, causing blurring of the edges

resulting in further over-sizing of small particles. If a particle becomes out of focus the

reported size can start to vary from the true value. The default settings for focus rejection

effectively minimize error related to problems with out of focus particulate. The volume

of a single particle is also an estimate because the depth of the particle is averaged from

the other two dimensions of the particle. For spherical particles this system works well,
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but for other particles it can cause some error. Another issue with volume calculations is

that rejection criteria intended to increase the fidelity of population statistics related to

size and distribution can reduce the total volume calculated. If volume is of primary

concern this must be calibrated or another particle analysis system should be used in

conjunction such as an impedance differential based system.

The particle analyzer is designed to determine population characteristics of

particulate suspension. A wide range of concentrations is acceptable although

suspensions that are too dense will cause light extinction while suspension which are

sparse will have low n values and hence larger standard errors of measurement for

estimated means and standard deviations. For statistically relevant analysis, the

manufacturer recommends a sample size of at lease 5000 particles. The RapidVUE®

lens has a dynamic range between 20 and 2500 microns; however, the best accuracy

reported by the manufacturer is for measurements above 25 microns and below 1500

microns.

Focus Discrimination
Because the flow chamber that passes in front of the camera and strobe has a

finite thickness, some particles may become out of focus if the are either too close or too

far from the lens. These particles are not counted because their area will be inaccurate.

The RapidVUE® software uses focus discrimination to quantify the sharpness of the

particles edges in order to determine whether or not the particle should be rejected. The

scan algorithm does this by measuring the magnitude of the intensity gradient across the

border of the particle. If there is a large gradient over a short space, the particle is in

focus, while if there is a small gradient over a longer space the object will be considered

out of focus. To calculate the gradient, a second threshold is established that is at a lower

value (i.e. darker) than the general threshold applied to the entire image. Two concentric

around the center of the particle are established based upon the threshold levels. Because

out of focus particles are darker in the center and become progressively lighter toward

their borders, the outer circular diameter will be determined by the higher, general

threshold while the inner concentric circle will be determined by the lower, secondary

threshold. The difference in threshold values, divided by the pixel distance between

these two circles is the gradient calculated by the software. Beckman-Coulter has
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determined that the transition slope is linearly proportional to the particles distance from

the focal plane and the at the proportionality is independent of particle size for circular

shapes[63]. The program creates a well-defined region called the depth of focus that can

be adjusted by adjusting the size of the gray level differential between the thresholds.

The default focus discrimination parameters were used for all of our studies and showed

decent data rates with low percent focus rejection.

A = particle area in pixels
P = particle perimeter in pixels
F = Focus parameter (set by user, default is 500)
T 1 = primary threshold set by user
T2 = secondary threshold set by software
Ah = halo area in pixels
Wh = halo width in pixels = Ah / P
G = edge gradient of a particle

G= (T1 - T2) / Wh = (T1 - T2) P / Ah

The value of G relates to how focused the particle appears. If G > F the particle is

accepted, otherwise the particle is rejected. Since grey-scale intensities change linearly

with respect to location the focus test will be independent of the specific values of T and

T2 because the area of the halo is proportional to T -T2. The edge gradient calculation is

a way of quantifying how fast the threshold changes over a pixel distance. For our

studies we used the default focus parameter of 500, which resulted in a low amount of

focus rejection with adequate data rates.

2.2 Statistics and Probability Distribution Construction

2.2.1 RapidVUE® output
The RapidVUE@ software output the probability distribution in terms of% total

volume. The volume is calculated using the shape model input into the settings file. The

program also outputs exact data on counts of different diameters. This data can be input

into Matlab for manipulation.
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2.2.2 Matlab Analysis
Matlab software version 7.1 by Mathworks contains a Statistics toolbox with a

distribution fitting tool. This tool was used to construct probability density functions for

particulate analyzed by the RapidVUE® system. The distribution fitting tool also

calculates the least-mean-square fit of various distributions to the input data and outputs

the log-likelihood of the distribution fit. Different distributions can be selected to best fit

the given particulate distribution. The distribution statistics can be output to a text file or

graph. The calculations involved for probability distribution binning, mean

determination, standard deviation and log likelihood can be found in standard probability

and statistics texts[67].

2.3 Discussion/Conclusion
Beckman-CoulterTM RapidVUE® particle analysis system gives accurate and

quantitative population statistics for a variety of particulate of varying shapes, sizes

and distributions. The precision of the system and the flexibility of calibration make it

adaptable to many experimental conditions. Although the system has some limitations,

careful calibration can maximize the accuracy of this system. Other particulate

analysis systems lake the dynamic range and accuracy that this optically-based system

provides, which makes it well suited for microspheres and thromboembolic analysis.
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Chapter 3: Material Properties of PAA Microspheres

Abstract
Expandable/deformable Poly-Acrylic Acid microspheres were synthesized with

varied formulations (Table 3-1). Most of the formulations were designed to be
expandable in aqueous media. PAA microspheres expand close to their maximal size in a
matter of seconds. Some of the spheres were specifically designed not to expand, while
others have properties such as pigmentation, smoothness, or specific filtered size ranges.
Methods were established to characterize the material properties of these formulations in
order to further understand how material properties might correlate with clinical
applications such as endovascular occlusion.

A staining technique using the cationic dye Acridine orange was established to
help visualize the microspheres under light microscopy and for particle analysis. The
volumetric expansion coefficient from dry to fully hydrated for the PAA microspheres
varied between approximately 80 and 140 fold. Several solutions were identified that
inhibit expansion. DMSO, DMSO:contrast 7:3, and Propylene Glycol prevented
expansion completely while MD-76R contrast and low-pH solutions allowed a small
amount of expansion. Based upon these studies, MD-76R contrast may be the most
suitable delivery medium because it provides some expansion which allows more
deformability, is already approved for endovascular injection, does not adversely affect
microsphere properties, and provides intra-procedural visualization.
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3.1 Material Formulations
Several variant microsphere formulations were provided by DuPont (Table 3-1).

N,N-methylenebisacrylamide (MBA) is a crosslinking agent used in the Microspheres.

Divinylbenzene (DvB) is another crosslinking agent. The initial formulations of the

microspheres had rough surfaces. After observing that these microspheres fragmented

readily, smooth, continuous surface microspheres were developed (see chapter on Quality

Control). Microspheres with a reported size range were filtered at DuPont to fall within

the indicated range.

Table 3-1: Poly Acrylic Acid microsphere Formulations

Microsphere types-
Number Material Crosslinking Size range Description
E108302-12-1 PAA MBA
E108302-12-5 PAA MBA & DvB
E109317-27 PAA MBA smooth surface
E109317-129 PAA MBA smooth surface
E109572-25 PAA MBA 70 gram lot, smooth surface
E109317-45F PAA MBA 250-500um smooth surface

E109572-3 PAA MBA 250-500um non-expandable, smooth surface
E105050-75 PAA MBA 50-150um smooth surface
E109572-51 PAA MBA dyed blue

3.2 Microsphere Visualization & Staining
Unexpanded PAA microspheres are opaque under both light microscopy and to

the naked eye. When placed in a medium that does not promote expansion, such as

propylene glycol, the spheres remain opaque and visible. However, when PAA

microspheres expand in neutral aqueous media, they become translucent and difficult to

image by light microscopy. Furthermore, the particle analysis system used to generate

statistical size and shape distribution data requires sphere contrast with the flow medium,

thus unstained microspheres cannot be analyzed well in pure water. Gross visualization o

of expanded microspheres would be an advantage during procedures and for histology.

For these reasons a staining method was developed for PAA microspheres.

It was determined that the cationic dye, Acridine orange (AO), sufficiently

adheres to the fixed negative charge within the microspheres when they are expanded in
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an aqueous medium with an AO concentration of 3 mg/ml. The stain has no effect on

swelling properties (as evidenced by light microscopy) Figure 3-1 (A, B).

A

r

4
B

Figure 3-1 A-B: Light microscopic images of unstained (A) and Acridine orange stained (8) microspheres
immersed in water (scale bar 500 micron).

Staining Procedure
To stain E108302-12-1 (MBA crosslinked) PAA Microspheres, first mix 5ml

water with 15 mg of Acridine Orange to make a 3mg/ml concentrate. Then add 5mg

microspheres and mix well. Capture the microspheres from mixture with a micro-mesh

(approx 250 micron pore size) specimen bag and then reconstitute microspheres in 5 ml

water.

DuPont provided pre-dyed microspheres E109572-51 that were dyed blue at

DuPont in an attempt to incorporate staining into the manufacturing process of the

microspheres. There was not enough dye to provide adequate contrast once the

microspheres expanded. A higher concentration of dye may provide better results.

3.3 Volumetric Expansion
The primary method used to calculate the volumetric expansion coefficient of

PAA microspheres was by comparing a series of light microscopy images of single

microspheres prior to and following hydration. This method is useful to determine the

expansion of microspheres without the need to include dye for contrast as a confounding

agent. This method was corroborated by a using the Beckman Coulter RapidVUE@

particle analysis system. This system counts and analyzes large numbers of
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microspheres in a flow loop and constructs a probability distribution of the particulate

sample. Using this system, population characteristics can be analyzed for a large number

of microspheres. This method requires that the microspheres be stained for the machine

to be calibrated to recognize microspheres.

DuPont synthesized microspheres with a range of volumetric expansion

coefficients (Q) that were media dependent. PAA-MS expanded 140 fold in water. PAA-

MS did not appreciable expand in DMSO, Propylene Glycol or DMOS/Contrast(7:3) but

they did expand slightly in Acidic solution and to a lesser degree in MD-76R contrast

(Table 3-2).

Table 3-2: Calculation of Expansion Coefficient Q for smooth surface PAA-MS

6 samples
MS E109572-25 per Medium

Avg Dry Avg Wet Avg Dry Avg wet
Diameter Diameter Vol Vol

Medium (um) (uM) (um^3) (umA3) Avg Q St Dev
Water 190 980 3.59E+06 4.93E+08 139 22
DMSO 212 214 4.99E+06 5.13E+06 1 0.1
MD-76RContrast 181 291 3.10E+06 1.29E+07 4 0.8
DMSO/Contrast (7:3) 187 194 3.42E+06 3.82E+06 1 0.2
Propylene Glycol 198 200 4.06E+06 4.19E+06 1 0.1
Acidic Aqueous (pH=1.5) 177 361 2.90E+06 2.46E+07 9 4

Microspheres from batch E109572-25 were separated into six samples per medium type on glass slides.
The Q values represent the average of the six manual measurements per medium made by light microscopy.

3.4 Optimization of Delivery Solution Properties
Expansion studies have shown that PAA microspheres do not expand in the

organic solvent propylene glycol (CH3CHOHCH20H). However, further experiments

revealed that propylene glycol (viscosity 60 cps at 250 Celsius) cannot deliver

microspheres through small bore needles and catheters (26 gauge and smaller). To

address this dilemma, several candidate solutions were tested to determine a suitable

solution for microsphere (MS) suspension that suppresses MS expansion while providing

a low-viscosity medium for small-bore catheter or needle based delivery[68]. Adverse

biological effects must also be considered when judging the suitability of each carrier

solution.
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We investigated several systems for preventing microsphere expansion. We

chose to test the organic polar solvent dimethyl sulfoxide (DMSO) because it is far less

viscous (2.14 cps) than propylene glycol (60cps) but still has similar qualities as an

organic solvent.

Figure 3-2: Chemical Structure of dimethyl sulfoxide (DMSO)

This organic solvent is polar and displaces water readily. Because it does not form

hydrogen bonds like water and is larger than water we posited that it would not form a

stable lattice adjacent to the fixed charge within the microspheres and subsequently

would not be drawn into the microspheres. This solution should work similar to ETOH

dehydration of microspheres, but DMSO may be less destructive to vascular tissue and/or

drugs that may be within the spheres than ETOH.

Another possible method for preventing microsphere expansion would be to

shield the charge within the sphere such that water will not be favored within the sphere.

One method of doing this would be to use a low pH solution. We hypothesized that a

low pH solution would neutralize the fixed negative charges within the microsphere,

thereby preventing expansion. Solution pH has been used in previous work to modulate

the hydrophilic properties of PAA hydrogels[69]. Due to the robust buffer system in the

body along with the renal/respiratory handling of acid/base, an acidic delivery system

may be preferable because the acid can be neutralized and eliminated from the body

rapidly whereas an organic solvent or ETOH may reach locally toxic concentrations and

may take much longer to eliminate from the blood stream.
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Materials

DMSOstudy
Type E108302-12-1 expandable/deformable PAA microspheres were stained with

Acridine orange. DMSO and Milli-Q distilled, deionized water were used to make

solutions.

pH study

Expandable/deformable PAA microspheres types E108302-12-1, E 109317-27

were stained with Acridine orange. Acid solutions were made with milli-Q distilled

deionized water and hydrochloric acid and basic solution used milli-Q distilled deionized

water and Sodium Hydroxide.

Procedure

DMSOstudy

Nine solutions of increasing water content with DMSO were prepared in 0.5 ml

Eppendorf 1.5ml test tubes (Table 3-3).

Table 3-3: % Water Solutions prepared to test expansion in DMSO & Water

DMSO Water %

Solution (ul) (uI) Water
. ~ . ~ "

1 100 0 0%
2 100 20 17%
3 100 60 38%
4 100 100 50%
5 100 150 60%
6 100 200 67%
7 100 300 75%
8 100 400 80%
9 0 400 100%
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Five mg of PAA-MS were added to each solution. The Eppendorf 1.5ml tubes were

shaken to submerge all microspheres and then the tubes were allowed three minutes for

complete expansion before imaging each solution at five times magnification under light

microscopy. The images were qualitatively assessed for level of expansion in each

solution.

Particle Analysis of DMSO-treated Hydrated Microspheres
First 20mg PAA-MS were submerged in 10 ml DMSO for 1 hour. The

microspheres were then removed from the DMSO and resuspended in an aqueous

solution of the cationic dye Acridine orange at a concentration of 3mg/ml in deionized

water. After waiting three minutes to allow for complete expansion and absorption, the

stained PAA-MS were filtered out using micro-mesh and resuspended in 75 ml deionized

water. This sample was then loaded into the RapidVUE® for particle analysis.

pH study

Volumetric Expansion Coefficient
Three solutions of pH 2, 7.1 and 10.2 were prepared by adding HC1 or NaOH to

water and titrating to desired pH with the aid of a pH-meter. Individual microspheres of

type E100317-27 were isolated on cover slides in the dry unexpanded state and images

were taken at 20 times magnification. The diameter was recorded. Then a drop of each

solution (enough to saturate the microsphere) was added to separate microspheres on

individual slides and the imaging was repeated at 5 times magnification and the diameter

of the expanded PAA-MS was recorded. The volumetric expansion coefficient was then

calculated using the diameters from before and after contact with solution. This

procedure was repeated five times for each know pH solution for a total of fifteen trials.

Particle Analysis
Six solutions of pH 2.0, 2.5, 3.5, 4.3, 7.1, and 10.2 were prepared by adding HC1

or NaOH to water and titrating to the appropriate pH with the aid of a pH-meter. A 10 mg

sample of microspheres (E108302-12-1) was submerged in 5 ml of an Acridine orange

solution at 3 mg/ml concentration in water of a known pH. The pH values reported do

not take into account any change in pH caused by the cationic dye. Three minutes were

allowed for complete expansion before the microspheres were removed, filtered with

micromesh and resuspended in a 75ml aqueous solution of the same pH. These samples
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were then analyzed in the RapidVUE® particle analyzer. This procedure was carried out

for all pH solutions.

Results

DMSO study

Serial Dilution ofDMSO-Microsphere Imaging
Microspheres did not expand in DMSO-water solutions until the percent water

exceeded 50% (Figure 3-3). This qualitative comparison demonstrates that solutions of

high DMSO concentration effectively suppress microsphere expansion (solutions 1, 2, 3).

Solution 4 at 50% DMSO is the critical concentration at which microsphere expansion

begins. Solutions 5-9 feature an increasing percentage of water; however, the

microspheres do not increase in diameter with increasing water percentage indicating that

expansion is likely an all or nothing phenomenon.

Particle Analysis ofDMSO-treated Hydrated Microspheres
Particle analysis was used to quantify the expansion of microspheres in a pure

aqueous solution following a 24 hour pretreatment with DMSO. This is intended to

simulate the use of DMSO as a delivery medium for microsphere applications (Figure 3-4,

Figure 3-5, and Figure 3-6).

Non-pretreated microsphere populations tend to have more noise near the low-end

of diametrical spectrum (Figure 3-4). This is likely caused by microsphere aggregation in

DMSO and subsequent adherence of extremely small microspheres to the larger

microspheres via static charge interactions. Methods to sieve out these small

microspheres are discussed in the Quality Control chapter. It is important to note that

when looking at graphs that calculate the PDF based upon percent of total particles rather

than percent of total volume, the effect of many small particles may appear exaggerated.

When corrected for percent of total volume, small particles are a much smaller proportion

of the total volume than their numbers may insinuate. When the particles less than 250

micron are excluded from the estimate of the probability mass function the distributions

for the DMSO treated and non-treated virtually overlap (Figure 3-4, Figure 3-5 and

Figure 3-6).
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Probability density functions comparing pretreated and non-pretreated PAA-MS

indicate that pretreatment has no effect on expansion in an aqueous medium (Figure 3-5

and Figure 3-6). The average diameters of the microspheres were calculated for six runs

with DMSO-treated and untreated micro spheres (Table 3-4).

Table 3-4: Average MS Diameters per Run

Avera

Although there was a slight difference in the average of the averages, because the

standard deviation for the underlying distributions is roughly 250 microns, there is no

statistically significant difference between DMSO-pretreated and untreated distributions

(Figure 3-4). These results suggest that DMSO can be used to deliver microspheres

without adversely affecting their expansion properties in an aqueous medium.
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Figure 3-3: Microsphere expansion within serial dilutions ofDMSO with water. Field of view: 1.7 x 2.0

mm per image, solutions have increasing percentage water

Chapter 3, Page 44 of 136



oo
N

o
8 Vi"..... c:e

v

I
'-
2
Q)

E
lU00

OQ)
00 '-

Q)
.s::::.a.
Ulev
~

c
o.""a:l

!
Q;~
a:l
U'l~
Q)

.s::::.a.
(Jl
o
b
~
U
Qlm
Ql
.b
(l)

a.
C:oz
uc
a:l
U

fJ
(l)
.b
Qla.
o
(f)
::Eo
'0
U'l

LLoa..

I

I
I

o

o
o
<D

o
o
~

oo
N

oo
(&)

o
o
q-

Figure 3-4: PDFs of DMSO pretreated microspheres and non-pretreated microspheres after hydration
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Figure 3-5: Microsphere count versus Diameter for a DMSO treated sample.

MS Count vs Diameter (no DMSO
treatment)

Figure 3-6: Microsphere count versus Diameter for an untreated sample.

pH study

Volumetric Expansion Coefficient

The volumetric expansion coefficients of microspheres in aqueous

mediums were measured for different pH solutions. There was a marked reduction in
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microsphere expansion in an acidic pH when compared to neutral or basic (error bars

denote standard deviation between microspheres within the same media composition)

(Figure 3-7, Table 3-5).

MS Volumetric Expansion Coefficient

120

C ....
OC

800- Q)",0-
(.)Co-ns::::

Q.Q) 40><0WO
0

pH

r.Acidic(pH=2.0) • Basic(pH~1 0.2) 0 Neutral(pH=7.1) I

Figure 3-7: Volumetric Expansion of micro spheres in various pH solutions.

Table 3-5: Volumetric Expansion Coefficients of Microspheres in various pH solutions

Acidic Neutral Basic
Average Q(n=5) 1.2 85.9 73.9
Standard Deviation 0.1 21.0 23.8

Particle Analysis
A particle analysis study of microspheres in aqueous solutions of varying pH also

showed reduced diameter in acidic solutions (Figure 3-8).
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Figure 3-8: Microsphere Diameter in solutions of various pH. (error bars denote standard deviation
between particle analysis runs)

Discussion
Most embolies in use are delivered in physiologic saline[22]. PAA-MS expand

substantially in saline and thus need a solution oflow viscosity that limits expansion.

The restrictive viscosity of propylene glycol precludes its use as a delivery medium

because it cannot be passed through high-resistance catheters. The results of these studies

demonstrate that both DMSO and acidic aqueous solutions have potential to deliver

microspheres in the unexpanded or minimally expanded state. By diluting these solutions

with water, the level of pre-expansion can be tailored for a given application. In some

cases, pre-expansion may be preferred because partially expanded microspheres are

highly deformable and may be easier to deliver.

Both low-pH and DMSO based delivery media have low viscosity in addition to

causing minimal expansion, allowing for the potential use of small-bore devices such as

catheters and needles. Further studies must be conducted to determine the toxicity of

each delivery medium in vivo. Intuitively, low pH appears to be a promising medium

because the blood buffer should be able to neutralize the medium after insertion, although

DMSO acts as a slightly better solution for limiting expansion. Preliminary data

indicates that high-salt solutions can also be used to inhibit expansion of microspheres.

High salt concentration is the most likely basis for how MD-76R contrast inhibits

expansion, which is discussed in the next section.
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3.4.1 Contrast Agent MD-76R as a Delivery Medium

Background
Radiopaque contrast agents are used for angiographic visualization of

endovascular procedures. Contrast agents typically include chemically bound iodide that

distinguishes target tissue from its surroundings under x-ray visualization. Contrast

agents are provided as sterile aqueous solutions. Because of the high solute and salt

concentration of most contrast agents, it is feasible that they could limit expansion of

PAA microspheres. By mixing contrast agents with an agent such as DMSO that

prevents expansion, a cocktail may be formed that provides limited expansion while

allowing for intra-procedural visualization.

Purpose
Determine if PAA microspheres expand upon suspension in contrast solutions. If

expansion does not occur in contrast, determine if microspheres will swell in water when

pretreated with a contrast medium. Determine the concentrations of microsphere

solutions that can pass through 6 gauge catheters when injected in a contrast solution.

Hypothesis
Due to the salt content of contrast medium MD-76R, PAA microspheres

suspended in these solutions will not fully expand. Following contrast pretreatment,

microspheres will fully expand in water, as observed following suspension in other

restrictive media (high salinity aqueous solutions, low pH aqueous solutions, organic

solutions). The low viscosity of MD-76R will allow for homogeneous passage of highly

concentrated microsphere solutions through a 6 French catheter.

Materials
Contrast Medium
The contrast medium used in this study is MD-76R, a Diatrizoate Meglumine and

Diatrizoate Sodium aqueous solution, supplied by Tyco (Figure 3-9).
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Figure 3-9: Schematics of Diatrizoate Meglumine (top) and Diatrizoate Sodium (bottom)

(Diagram courtesy of Malkinckrodt industries MD-76R package insert available online
at: http://imaging.mallinckrodt.com/Product.asp?ProductID=74)

The contrast is buffered with monobasic sodium and is supplied with the pH adjusted to

6.5 - 7.7. The contrast features organically bound iodide, which provides the basis for

radiological visualization. The viscosity of the solution is 16.4 cps at room temperature.

MD-76R is clinically approved for intravascular arteriography.

Microspheres
The microspheres used in this study are PAA expandable/deformable

microspheres. The volumetric expansion and particle analysis studies are conducted with

microspheres E109317-129. The catheter passage study incorporates both E109317-129

and E105050-75 microspheres.

Catheters
The catheters used in this study are size 6 French (Z2 guiding catheters) with an

internal diameter of 1.78 mm and a length of 100 cm.
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Procedure
Volumetric Expansion
A single, dry microsphere was imaged at 10X magnification with light

microscopy-record the diameter. Approximately 0.25 ml contrast medium was then

added directly to the slide, suspending the microsphere. Three minutes were allowed for

microsphere/contrast contact. The microsphere suspended in contrast was imaged at 5X

magnification with light microscopy and the diameter was recorded. The volumetric

expansion of the microsphere following suspension in contrast was computed from the

diameter measurements. This procedure was repeated six times. The entire process was

repeated using water instead of contrast to determine the volumetric expansion following

suspension in water and the expansion coefficients in contrast and water were then

compared.

Particle Analysis to assess the effect of contrast pretreatment
Five ml of MD-76R contrast and 25 mg microspheres were mixed for 3 minutes

with vortex touch mixer at speed 10 for contrast pretreatment. The microspheres were

then filtered with a micromesh specimen bag. The microspheres were reconstituted in a

homogeneous solution of 10 ml water and 30 mg Acridine Orange (cationic dye) and

mixed for 3 minutes with vortex touch mixer at speed 10 for staining. The microspheres

were filtered again and resuspended to 75ml water for particle analysis. The procedure

was repeated without the contrast pretreatment as a control.

Passage through 6F Catheter
Contrast and microsphere solutions were prepared with a vortex touch mixer at

speed ten for three minutes (Table 3-6). Using a 12 ml syringe, an attempt was made to

inject each solution through a 6F catheter. Microscopic imaging was used to determine if

passed mixtures resulted in microsphere fragmentation.
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Table 3-6: Mixtures used for catheter passage experiment

Microsphere
T
E109317-129
E109317-129
E109317-129
E105050-75

Microsphere
Mass .m

500
750
1000
1500

100
150
200
300

Results
Volumetric Expansion
The results of the volumetric expansion studies of PAA microspheres E109317-

129 in contrast and water show that the average expansion coefficient of microspheres in

contrast and water are 4.9 and 117.5, respectively (Table 3-7 and Table 3-8).

Table 3-7: Volumetric expansion ofPAA microspheres in contrast

DryD Contrast D Dry Vol Contrast Vol VolExp

Sample (mm) (mm) (micron 1\3) (micron1\3) Coeff

1 0.17 0.26 2.57E+06 9.20E+06 3.6

2 0.18 0.35 3.05E+06 2.24E+07 7.4

3 0.1 0.16 5.24E+05 2.14E+06 4.1

4 0.16 0.28 2. 14E+06 1.15E+07 5.4

5 0.18 0.29 3.05E+06 1.28E+07 4.2

6 0.14 0.24 1.44E+06 7.24E+06 5.0

Table 3-8: Volumetric expansion ofPAA microspheres in water

DryD Hydrated D Dry Vol Expanded Vol VolExp

Sample (mm) (mm) (micron1\3) (micron 1\3) Coeff

1 0.18 0.80 3.05E+06 2.68E+08 88
2 0.15 0.67 1.77E+06 1.57E+08 89
3 0.16 0.79 2.14E+06 2.58E+08 120
4 0.17 0.85 2.57E+06 3.22E+08 125
5 0.19 0.98 3.59E+06 4.93E+08 137
6 0.19 1.00 3.59E+06 5.24E+08 146
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Particle Analysis
Particle analysis of PAA microspheres with contrast pretreatment suggests that

contrast has no significant effect on subsequent microsphere expansion in a pure aqueous

medium. The PDFs for the contrast pretreated and no contrast pretreatment groups

overlap considerably (Figure 3-10). This result shows that contrast can be used to deliver

PAA microspheres without diminishing expansion properties. Particle analysis of filtered

microspheres in contrast versus water corroborates the data found on light microscopy

(Figure 3-10).
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Figure 3-10: PDFs of Contrast Pretreated and Non-treated PAA microspheres
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Passage through a 6 French catheter
PAA microspheres were injected with a syringe through a 6 French catheter with

contrast medium. The larger (0.15-0.2 mm dry diameter) and variably-sized microspheres

(EI09317-129) were able to pass through the catheter at a maximal concentration of 150

mg microsphere/ml contrast. The smaller (0.05-0.15 mm dry diameter) microspheres

(EI05050-75) were sieved and separated according to size and were able to pass at a

concentration of 300 mg microsphere/ml contrast. In all cases, no evidence of

microsphere fracture following passage was observed with light microscopy (Table 3-9).

Table 3-9: Summary of catheter passage study~~~;l~"~~~1~J~~~,~--.:-~~""\ II:'" " ' ";'1" ........ ...;.:.; ".~~~ '''l 'I ~j ;,:I,)~~, I, I ,,~:~1f1. .' ~I11.,,_.,0, 1 ,~,~; 11,'~rd,.,:.,.\,.:,;.'i','»,j'_A~~,,,,;..,..rtl',, ~.Jl,;.::.J ..J'~~f1',"': :.,,~,>~,",; ',0:" ",
I :--'y"""'" , ~t£:tD.t'-"";;>io{i' I ~ " 'U:illJ~ f > <. ~~:b~~:-~f.~Wj~ I...!..U~)~~ ~ ~ ".~

E109317-129 500 5 100 y N
E109317-129 750 5 150 Y N
E109317-129 1000 5 200 N N/A
E105050-75 1500 5 300 y N

Conclusion
The results of this study support the use of MD76R contrast as a potential delivery

medium for PAA microspheres. Delivering sufficiently concentrated PAA microspheres

in contrast would support a readily visible (through angiographic means), sterile and

biocompatible catheterization procedure.

Based upon these studies, the MD-76R contrast may be the most suitable delivery

medium because it limits expansion, is already approved for endovascular injection, does

not adversely affect microsphere properties, and provides intra-procedural visualization.

Furthermore, the slight expansion afforded by the MD-76R contrast media may be

beneficial for delivery through some catheters because the slight expansion can allow for

deformability within the catheter. This expansion can be eliminated if desired by adding

DMSO to MD-76R contrast in a 7:3 ratio ofMD-76R contrast to DMSO.
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3.5 Discussion/Conclusion
This chapter has outlined the material characterization of expandable/deformable

PAA microspheres. A staining technique that takes advantage of fixed negative charge

in the material by binding cationic dye Acridine orange was established to help visualize

the microspheres. The determination of volumetric expansion coefficient to be roughly

100 times and varied between approximately 80 and 140 fold indicates the bounds of

expandable technology that will be critical to in-vitro and in-vivo function. One of the

crucial discoveries of this chapter was the identification of candidate delivery media

including DMSO, DMSO:contrast 7:3, Propylene Glycol, MD-76R contrast and low-pH

solutions. MD-76R contrast may be the ideal delivery medium because it provides some

expansion and deformability to allow for easier passage through small-bore catheters. It

is also approved for endovascular injection, does not adversely affect microsphere

properties, and provides intra-procedural visualization. Future work in this area will

further explore material properties of PAA-MS including frictional coefficients and

radio-opaque treatments in addition to exploring the toxic and biological effects of the

candidate delivery solutions.
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Chapter 4: Quality Control

Abstract
Embolic microspheres are intended to reproducibly and effectively occlude target

vasculature. To ensure that microspheres are able to perform in a consistent manner,
quality control measures during and after synthesis must be implemented. The size
distribution of the microsphere lots, the expansion properties, the range of size, the
sphericity of the microspheres, and the physical integrity of the microspheres should all
be monitored and controlled for reproducibly optimal results. The following chapter
discusses techniques to monitor and improve upon the quality of microsphere batches.

Sieving methods have been implemented that allow for more precise control over
the size range of PAA microspheres. The standard deviation of the PAA microspheres
can be reduced significantly by sieving and can be narrowed further than the current
standard deviations found in commercially available PVA particulate or tris-acryl gelatin
microspheres. Microspheres were tested for degradation in several candidate solutions
including air, propylene glycol, saline and water. Degradation was not observed in any of
the solutions after four weeks. Light microscopy and SEM (Scanning Electron
Microscopy) were conducted to characterize the surface properties of the microspheres.
The original batches of microspheres were rough, porous and tended to result in
microspheres that were prone to fragment. Modified batches have a smoother,
continuous surface and resist fragmentation when exposed to shear stresses commonly
encountered in small bore catheters and needles. Resistance to fragmentation allows the
use of smaller-bore catheters for a given embolic load, which could potentially result in
less invasive procedures and more stable occlusions.

This chapter also describes the preliminary sterilization procedures and
cytotoxicity studies used to establish biocompatibility. The PAA microsphere
manufacturing process includes a final ethanol wash, which ensures a low initial
bioburden. UV sterilization has been shown to not affect microsphere expansion
performance or ultra-structure. Microspheres were shown to expand in whole blood to
the same degree and just as rapidly as in saline, and therefore will be able to expand
within the vasculature. Both a live/dead and an LDL uptake assay indicated that neither
intact nor fragmented microspheres are cytotoxic to bovine aortic endothelial cells.
These data show that PAA microspheres have passed preliminary biocompatibility and
in-vitro functionality tests and are ready to be tested with more detailed methods and
within long term animal models.
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4.1 Sieving
Representative data plots of the size distribution of a 20mg sample of stained

microspheres analyzed in water both before and after filtering show that filtering narrows

the standard deviation of the distribution considerably (Figure 4-1). There exists

evidence of significant size variation among the initial batches of PAA microspheres that

are unfiltered when compared to the sieved batch. Such variation can be potentially

dangerous during embolic occlusion as it may lead to incomplete occlusion,

recanalization or even unintended microsphere migration throughout the circulatory

system. Microspheres that are too small pose a danger as they may cause distal

embolization to non-targeted vascular beds while microspheres that are too large may be

difficult to deliver or may occlude proximal to the desired target vessel diameter.

Unpredictable size distribution within microsphere batches can result in unpredictable

occlusions. Because of this, sieving methods have been developed to narrow the size

range of the microspheres.

Sieving microspheres with certified sieves can significantly reduce the standard

deviation of the microspheres while simultaneously focusing the mean toward a desired

range (Figure 4-1). In this case, the range from 125 to 250 microns was chosen because

when expanded, these spheres will be large enough that they will be far less likely to

embolize down ovarian anastomoses that measure at roughly 500 micron.
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Figure 4-1 Probability density functions for filtered and unfiltered expandable/defonnable PAA
microspheres in their unexpanded state (while in DMSO).

Filtered sample was filtered using certified sieves between 125 and 250 micron. Variance is significantly
smaller when filtered, while the mean is shifted toward a larger, more appropriate diameter for uterine
artery embolization.

Commercially available non-expandable tris-acryl gelatin microspheres have a

larger standard deviation and a less Gaussian distribution, which may result in more

unpredictable performance from the microspheres (Figure 4-2). Furthermore, the tris-

acryl gelatin microspheres show a large number of particles appearing toward the smaller

size ranges, which are more likely to distally embolize.
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Figure 4-2: Probability density function for tris-acryl gelatin microspheres.

The distribution has a larger standard deviation and is less Gaussian than the PAA expandable/deformable
microspheres.

The distribution of PVA particulate, which has the least Gaussian distribution and

by far the largest standard deviation of all particulate examined (Figure 4-3), correlates

with its reputation as an unpredictable embolic material( 5-11, 18, 70, 71].

Chapter 4 Page 60 of 136



--pva200
-- PVA200 Normal

Distribution: Normal
Log likelihood: -107508
Domain: -Inf < y < Inf
Mean: 399.404
Variance: 25939.2

1200

Parameter Estimate Std. Err.
mu 399.404 1.25238
sigma 161.056 0.885607

400 600 800 1000
PVA particulate Equivalent Circular Area Diameter

200

X 10.3

9

8

7

6

.~ 5
Ul
c::
Q)

0
4

3

2

Figure 4-3: Probability density function for PVA particulate

The particulate has a much larger standard deviation and the distribution is non-Gaussian. The normal
above was fit by excluding the large amount of particulate in the low diameter region. Diameter is
measured in microns.

Procedure for Wet-Sieving Microspheres
One cubic centimeter of Microspheres was suspended in 5 ml DMSO. A sifting

stack consisting ofVWR U.S.A. Standard testing sieves A.S.T.M E-ll specification was

assembled. The number 60 sieve (250 micrometer openings) was placed on top of a No.

120 sieve (125 micrometer openings) followed by a collection container at the bottom of

the stack. The solutions were then poured into the top of the stack and followed by

rinsing generously with DMSO (approximately 30ml). The samples were collected from

the collection container and diluted to 75ml for particle analysis.
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Results
The 125 micron to 250 micron filtered samples appeared to be well separated with

minimal inclusion of smaller particles. However, smaller particles may be electro-

statically bound to larger microspheres and may not be detectable using particle analysis

in DMSO. Another limitation of the particle analysis occurs when aggregated

microspheres are not reflected in the count due to their low sphericity. Aggregates of

smaller particles may be visible after microsphere expansion. The yield of the sieving

procedure is also reduced because aggregates of large microspheres are excluded by the

larger filter. Finding a solution that promotes aggregation separation may help solve these

sieving problems. Possible solutions include deionized water, acidified water, and

propylene glycol. Nevertheless, sieving provides a much narrower range of microspheres

and a more controlled population than un-sieved microspheres or un-sieved PVA

particulate.

4.2 Degradation in various solutions
A four week study was conducted to rate the apparent degradation of the

microspheres in four mediums: air, propylene glycol, phosphate buffered saline and

deionized water. The samples were maintained at room temperature under static

conditions. In all cases, no microsphere degradation was visible with up to 10 time

magnification under light microscopy.

4.3 Sphericity
The sphericity of microspheres is an important property to ensure their ease of

delivery and limited aggregation when compared to PVA particulate. This is due to the

property of spherical objects to roll without slipping along surfaces. Movement by

rolling is purely limited by the rotational inertia of the particle and not by frictional

interactions, and hence is a faster mode of transport. Both unexpanded and expanded

PAA microspheres appear to be spherical (Figure 3-3). To test this on a bulk scale, a

20mg sample of PAA microspheres was suspended in 75ml of water and run through the

particle analyzer. A 50mg sample of PAA microspheres was suspended in 75ml of

DMSO and run through the particle analyzer. The particle analyzer was configured
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identically in both circumstances. The configuration used was our standard for

measuring microspheres as given in the chapter on the Particle Analysis System.

The RapidVUE@ software can be programmed to report many measures of the

particles. For microsphere analysis, the configuration file is set to report Least Bounding

Circular Diameter, Equivalent Circular Area Diameter and Sphericity. The calculation of

these attributes is described in the section on the function of the RapidVUE@ Particle

analysis system.

Both expanded and unexpanded PAA microspheres are close to spherical with a

sphericity centered near 95% (Figure 4-4). The distributions are not statistically different,

demonstrating that expansion is even and does not by itself cause deformation of the

microspheres. In this study particulate of less than 90% sphericity was rejected. This is

necessary so that background debris and overlapping spheres are not counted as spheres.

The value of 90% was determined during calibration of the particle analyzer for

microsphere analysis.

Sphericity 01 PM Microspheres In DMSO and H2O

25

20

10

In DMSO In H2O
Mean 0.94 0.95
Sigma 0.02 0.02

- Sphertdtf in DMSO
- Sphertdtf in H2O

0.91 0.92 0.93 0.94 0.95 0.96
Spher1city

0.97 0.98

Figure 4-4: Sphericity ofPAA micro spheres in DMSO and H20.

The distributions of sphericity are not appreciably different and the distributions are centered near 95%
sphericity with a standard deviation of .02
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4.4 Fragmentation under SEM and Light microscopy
A scanning electron microscope (SEM) study of the PAA microspheres in the dry

state was used to analyze the surface integrity and porosity of the material surface. The

images collected in this study revealed that the microsphere surfaces are discontinuous

and feature numerous irregular pores (Figure 4-5 A, B). Material friability is a concern as

microspheres have been shown to fragment when injected through small diameter needles

in aqueous solutions (Figure 4-5 C, D). Microsphere fragmentation could lead to adverse

sequelae in the body including but not limited to embolism downstream of target,

unwanted inflammatory response, exacerbation of clotting cascade, release of high

concentration of drug, and loss of therapeutic occlusion. For these reasons, spheres were

designed that are more resistant to fracture. In order to strengthen the microspheres,

recommendations were made to increase surface smoothness and/or outer layer thickness

by a combination of altering the manufacturing process, increasing cross-linking density,

and/or increasing PAA content.

A B

c D

Figure 4-5: A-D: SEM images of dry PAA microspheres (A,B) and light microscopic images (scale bar I
mm) of expanded PAA microspheres following injection through 21 gauge (C) and 26 gauge (D) needles.
Porous surfaces and abundant fragmentation are evident.
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4.5 Microsphere Fragmentation due to Injection Shear

Background
A potential advantage of PAA expandable/deformable microspheres is delivery

through small bore needles and catheters in the unexpanded or partially expanded state. A

clinical concern related to catheter based embolic procedures is fragmentation of the

microspheres as they pass through small, non-compliant channels. If fragmented, the

occluding capability of the microspheres will be reduced. Furthermore, small particle

fragments in the bloodstream may lead to undesirable inflammatory sequelae or

unpredictable downstream emboli.

Purpose
Previous experiments using SEM and light microscopy demonstrated that

microspheres were fragmenting when passed through small bore needles, but the degree

of fragmentation was not quantified. The purpose of this study was to quantify the

degree of microsphere fragmentation after injection through small bore needles in both

the unexpanded and expanded states. Two different formulations of microspheres were

analyzed: the original, porous formulation and an augmented iteration with greater

surface smoothness and continuity.

Hypothesis
Microspheres that are passed through small diameter needles in the unexpanded

state should not fragment due to their small size (smaller than needle bore) and structural

rigidity in the unexpanded state. Unexpanded microspheres should resist shear and

compression more than expanded spheres due to the added strength afforded by internal

Van-Der-Waals interactions within the polymer matrix. Microspheres that are passed in

the hydrated, expanded state will fragment due partly to their large size (larger than

needle bore) and partly to the reduction in shear strength associated with hydration and

dissociation of internal weak molecular forces. When microspheres expand the polymer

matrix is stretched and is the likely mechanism that limits the final expanded size of the

microspheres. This places the material in a tension whereby an increase in tension due

to shearing may result in rupture of the capsule. Furthermore, the microsphere surface
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has holes in it that likely increase in size as the surface area of the spheres increases.

This likely decreases the integrity of the capsule further. We posit that a marked

reduction in fragmentation will be observed for the smoother and more continuous

microspheres when compared to the samples featuring rough and discontinuous surfaces.

Materials and Methods
Two microsphere formations were analyzed in this study. PAA microspheres type

E108302-12-1 feature very rough and discontinuous surfaces. The surfaces of these

microspheres are highly porous and discontinuous even in the unexpanded state (Figure

4-6). The second formulation of PAA microspheres, type E109317 -27, features much

smoother surfaces that are virtually continuous and solid (Figure 4-7).

An acidic aqueous solution (pH of 2.1) was used as a low viscosity medium to

inject the microspheres in the unexpanded state. This solution was formed by diluting

concentrated hydrochloric acid with deionized water and titrating to pH 2.1. Deionized

and distilled water (pH of 7.0) was used to deliver the microspheres in the fully hydrated,

expanded state.

Figure 4-6: SEM images of rough surface microspheres in the unexpanded state (PAA microspheres
E 108302-12-1).
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Figure 4-7: SEM images of smooth surface microspheres in the unexpanded state (PAA microspheres
EI09317-27).

Needle Injection Procedure

EI08302-12-1 (rough surface) microspheres and EI09317-27 (smooth surface)

microspheres were injected though small bore needles and fragmentation was assessed.

For both types of micro spheres, identical procedures were followed. Two 500 ml

samples of deionized water: one at acidic-pH 2.1 and the other neutral-pH 7.00 were

prepared by titrating deionized water with HCL ofNaOH and validating with a pH meter.

10 ml samples of each solution with 30 mg Acridine orange (cationic dye used to stain

microspheres) were prepared and 60 mg of each type of microsphere was added to

separate falcon tubes of each solution sample. The microspheres were filtered out with

micromesh particulate specimen bags and resuspended in 10 ml of solution with same pH

as initially expanded. The solutions were mixed well with a vortex touch mixer. Two ml

samples of aforementioned microsphere solutions were injected through 20 and 21 gauge

needles (approximately .6mm and .5mm internal diameter respectively) using enough

pressure to cause steady flow though the needle. The samples were collected injected in

Eppendorfmicro tubes. The solutions were diluted to 75ml in the same solutions in

which they were originally suspended and then analyzed with the RapidVUE@ particle

analysis system.

Results
The results of this study demonstrate that the all PAA microspheres undergo a

very low level of fragmentation when passed through small diameter needles in the

unexpanded state because the means of the distributions before and after injection are not
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statistically different. The smoother and more continuous microsphere formulation

(E109317-27) undergoes a much lower level of fragmentation when injected in the

expanded state relative to the rough/discontinuous microspheres (E108302-12-1).,

Microspheres E103302-12-1 showed no signs of fragmentation when injected using

acidic media that keeps the microspheres unexpanded (Figure 4-8 and Table 4-1). In the

expanded state, there was approximately a 40% reduction in average microsphere

particulate diameter following injection through small diameter needles, most likely

reflective of significant fragmentation.

Smooth microspheres of type E109317-27 showed some reduction in particulate

size when injected in the unexpanded state (Figure 4-9 and Table 4-2). However, the

reduction in size of the smooth microspheres (less than 10%) following injection in the

expanded state is far less than the reduction in average size of the rough/discontinuous

microspheres and is not statistically significant. Given that the standard deviation for the

underlying distributions being compared is roughly 50 microns (about 10% of the mean),

a less than 10% reduction is within one standard deviation so the means from the

distributions are not statistically different according to the t-test. On the other hand, the

means between neutral PAA microspheres and acidic PAA microspheres of all types are

more than six standard deviations apart, which is well under a p value of .05 to show that

the means do not come from similar distributions. Furthermore, the means from the

neutral rough type E108302-12-1 microspheres passed through 21 and 20 gauge needles

are not statistically different than the means of the microspheres in acidic delivery media,

but they are roughly four standard deviations away from the neutral microsphere control

that was not passed through a needle. This shows that from a statistical standpoint, the

means of rough type E108302-12-1 PAA microsphere distributions change when passed

through 21 and 20 gauge needles while the means of smooth type E109317-27 PAA

microspheres do not change when passed though small bore 21 and 20 gauge needles.
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Table 4-1: Average of means of rough-type microsphere diameters following passage through small bore
needles in acidic and neutral aqueous solutions (PAA microspheres type E I08302-12-1) as determined by
bulk particle analysis.

Delivery Solution Acid (pH=2.10) Neutral pH
Needle Size no needle 20G 21G no needle 20G 21G~ ~

252 258 298 623 367 403

Run Mean Diameter 238 252 269 632 371 422

(microns) 226 252 256 644 384 425

Group Average Diameter 239 254 274 633 374 417

Group Standard Deviation 13 4 22 11 9 12

Microsphere Size vs Delivery Parameters
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Figure 4-8: Average of mean values of rough-type microsphere diameters following passage through small
bore needles in acidic and neutral aqueous solutions (PAA microspheres E 108302-12-1) as determined by
bulk particle analysis.
Error bars on the graph represent the standard deviations of the means of the samples. The Neutral control
that was not passed through a needle is the only distribution significantly different from the others in this
graph. The standard deviation for distributions underlying the mean values shown above is roughly 50
microns (Figure 4-1)
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Table 4-2: Average of mean values of smooth-type microsphere diameters following passage through
small bore needles in acidic and neutral aqueous solutions (PAA microspheres E109317-27) as determined
by bulk particleanalysis.

Delivery Solution Acid(pH=2.I0) Neutral pH !II

Needle Size no needle 20G 2IG no needle 20G 2IG
257 240 235 618 569 545

Run Mean Diameter 251 236 223 627 582 549
(microns) 239 225 212 628 586 562

Group Average Diameter 249 234 224 624 579 552
Group Standard Deviation 10 8 11 5 9 9
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Figure 4-9:A verage of mean values of smooth-type microsphere diameters following passage through
small bore needles in acidic and neutral aqueous solutions (PAA microspheres E 109317-27) as determined
by bulk particleanalysis.
Error bars on the graph represent the standard deviations of the means of the samples. In this case, the
distributions in Neutral solution are not statisticallydifferent by t-test,but they are statisticallydifferent
from the acidic solution distributions.The standard deviation for distributions underlying the mean values
shown above isroughly 50 microns (Figure 4-1)
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Conclusion
Expandable/deformable microspheres have a benefit over traditional microspheres

in that they have potential for delivery through smaller diameter needles and catheters for

a given effective embolic load. From a clinical perspective this can facilitate less

invasive procedures. The expansion capabilities also may result in more robust occlusion

because the spheres can exert radial expansion pressure on vessel walls. However, if the

physical integrity of the microspheres is compromised during delivery, the clinical

benefit will likely be reduced. The results of this study indicate that smoothness and

continuity of the microspheres are significantly influential in determining incidental

fragmentation, particularly in the expanded state. For embolic applications, the clinical

efficacy will likely increase (mechanical stability will lead to more effective occlusion)

and the risk will decrease (minimization of distal embolic formation and/or inflammatory

response due to microsphere fragments) with the use of smooth and continuous

microspheres.

4.6 Biocompatibility
Assessing biocompatibility of PAA microspheres is an essential step before

considering them for long-term intravascular procedures. Biocompatibility must be

assessed on biochemical, cellular and whole organism levels. Biocompatibility has been

defined as: "biocompatibility is the ability of a material to perform with an appropriate

host response in a specific application"[59]. This section will outline the initial

investigation into both the host response to PAA microspheres as well as the ability of the

material to perform under in-vivo conditions.

4.6.1 Sterilization
Sterilization of implantable materials is essential before implementation within

the human body. This is especially important when materials will be used endovascularly,

where infection can spread rapidly to distal sites and immune reactions can be systemic.

Because of the porous nature and high water content of hydrogel materials, it is

imperative that the sterilization procedure prevent seeding by fungal, bacterial or viral

pathogens.
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Fortunately, the manufacturing process of PAA microspheres includes several

steps that preclude the establishment of pathogenic seeding. The final ethanol rinse used

to contract the microspheres is an inherent antimicrobial step in the manufacturing

process. By extending the ethanol rinse overnight and manufacturing the microspheres in

a clean room the initial bioburden within the microspheres can be minimized.

For human use it is imperative that sterility assurance level 2 remains below 10^-6

so that no appreciable pathogens or residual toxins remain in the microspheres. To

ensure adequate sterilization, the microspheres should be further sterilized using UV light

or ethylene oxide treatment[59]. A concern when using these treatments is the potential

for cross-linking or modifying the polymer and adversely affecting material properties of

the microspheres.

To assess the effect of UV light on microsphere properties, PAA microspheres

were exposed to 260 nm ultraviolet light for a period of 30 minutes in the dry state.

Following exposure, approximately half the microspheres were swollen in sterilized

water. Both the dry and water-immersed UV sterilized microspheres were observed under

light microscopy at 10X magnification, and compared to untreated microsphere samples.

In both instances, no difference was observed. Once manufacturing processes for the

PAA microspheres have been finalized, UV sterilization will be a good candidate to

incorporate as a final step before sterile packaging. If further sterilization is needed as

determined by sterility assurance level cultures, ethylene oxide would be the next logical

sterilization method to investigate.

4.6.2 Expansion of PAA Microspheres in Whole Blood

Background
PAA microspheres have been shown to expand upon contact with an aqueous

medium. Whole blood contains approximately 50% water which is partially saturated

with varying concentrations of both inorganic and organic molecules. If expandable PAA

microspheres are to induce vascular occlusion, expansion will have to occur in whole

2 The Sterility Assurance level (SAL) is defined as the probability that a product will remain non-sterile
after exposure to a specified sterilization process. It is often determined by culturing samples of sterilized
material after varying degrees of intensity regarding the sterilization procedure.
59. Ratner, B., et al., Biomaterials Science. Second ed. 2004, San Diego, CA: Elsevier Academic
Press. P.755
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blood. It is important to asses the functionality of PAA microspheres in blood to ensure

that they will perform well under in-situ conditions.

Purpose
Qualitatively assess expansion properties of PAA microspheres in whole blood.

Hypothesis
Due to the high water content, neutral pH and low salinity (.9%) of whole blood,

PAA microspheres will expand fully and immediately upon immersion in this medium.

Materials and Methods
Microspheres
The microspheres used in this study were expandable PAA microspheres

E109317-129. The microspheres were submerged in whole blood in the dry, contracted

state.

Blood
Whole blood was extracted from a white New-Zealand male rabbit and stored in a

15 ml polypropylene tube (Falcon tube). The microspheres were suspended in the blood

approximately 30 minutes after it was taken from the rabbit. At this time, some minimal

amount of clotting was already visible in the blood sample. A small allotment of

microspheres (approximately 10 mg) were suspended in a 5 ml blood sample for 3

minutes and then observed with light microscopy.

Results
The results of this study demonstrate that PAA microspheres expand upon

suspension in whole blood (Figure 4-10). Similar images of dry microspheres, (Figure

4-11), and microspheres submerged in pure water, (Figure 4-12), demonstrate that

microspheres suspended in whole blood have a qualitatively similar expansion response

to those in pure water solutions. Furthermore, the time-course of expansion was roughly

the same; the spheres expanded fully in seconds. Expanded microspheres were deformed

and space between microspheres was filled even with no pressure acting on the spheres.
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Figure 4-10: PAA microspheres following suspension in whole blood. Note space filling properties

Figure 4-11: Dry PAA microspheres

Figure 4-12: PAA microspheres following suspension in pure water. Note space filling properties
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Conclusion
This study empirically demonstrates that PAA microspheres expand upon contact

with whole blood. This result is in accordance with the PAA microsphere expansion

observed during in-vivo testing. This result shows that the water-content of blood is

sufficient to allow hydration of PAA microspheres. The microspheres also maintain their

deformability in blood.

4.6.3 In-Vitro Cytotoxicity Testing of Bovine Aortic Endothelial
Cells in Culture with PAA Microspheres and PAA Microsphere
Fragments

Purpose
Assess the in-vitro response of bovine aortic endothelial cells (BAEC) cultured

with both whole and fragmented PAA microspheres. Analyze cell cultures for signs of

cell death or diminished functionality due to presence of PAA microspheres or

microsphere fragments.

Hypothesis
PAA microspheres and/or fragments will have no effect on BAEC viability or

functionality. Previous work has shown that PAA is a biocompatible material and has no

observable effect on a variety of cell types[72, 73], including endothelial cells.

Materials
Bovine aortic endothelial cells (BAEC) were acquired at 4th passage and were

used as the biological testing cells. They were cultured with standard media (low glucose

DMEM + 5% calf serum + 1% PSG). PAA microspheres of type E109572-25 were used

in these experiments. A DiI-Ac-LDL uptake assay (BT-902), supplied by Biomedical

Technologies Inc. was used to test cell function. A Live/Dead Viability/Cytotoxicity

assay (L-3224), supplied by Molecular Probes was used to test cell viability.

Procedure
One vial of P4 BAEC was plated onto a P100 cell culture dish. The media was

changed every two days. The plate was monitored daily for confluence. Once confluent,
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the cells were passaged using trypsin to a stage of P5 (fifth passage) into five 6-well

plates (30 total wells). The media was continually changed very two days.

200 mg of PAA microspheres in phosphate buffered saline (PBS) were

fragmented by passing them through a 23 gauge needle. Another 200 mg of whole PAA

microspheres were left whole and suspended in PBS. Whole and fragmented PAA

microsphere samples were then filtered to remove PBS. The whole and fragmented PAA

microspheres were then sterilized with exposure to UV light for 2 hours. When BAEC

cells reached roughly 70-80% confluence, 20 mg of PAA microspheres were added per

well to 10 wells and 20 mg PAA microsphere fragments per well were added to 10 other

wells. The BAEC cells were then co-cultured with PAA microspheres and fragments for

48 hours. Concurrently, 10 wells of BAEC cells were cultured as control samples.

Following 48 hour of co-culture, the PAA microspheres and fragments were

removed from all wells. The following assays were conducted on the cells. A Coulter

Counter was used to count the cells from the control wells of BAEC only (n=3), the

BAEC co-culture cells with whole PAA microspheres (n=3), and the BAEC co-culture

cells with fragmented PAA microspheres (n=3). An LDL uptake assay was performed on

the control wells of BAEC cells only (n=4), the BAEC co-culture cells with whole PAA

microspheres (n=4), and the BAEC co-culture cells with fragmented PAA microspheres

(n=4). Live/Dead assays were performed on the control wells of BAEC cells only (n=3),

the BAEC co-culture cells with whole PAA microspheres (n=3), and the BAEC co-

culture cells with fragmented PAA microspheres (n=3).

Analyze results of assays from each of the three culture types and note any difference

between co-cultures and control wells.

Results
No significant difference was noted in the number of cells per well for each of the

three culture conditions. The average and standard deviation of the cell counts for each

culture condition overlapped and showed no statistical difference (Figure 4-13).
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Cell Counts for Various Culture Conditions
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Figure 4-13: Cell counts for each of the three culture conditions.
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LDL Uptake Assay: For all three culture conditions, there was indication of

extensive LDL uptake for all wells when observed with fluorescence microscopy. BAEC

in all culture fluoresced bright green, indicating that the cells were functioning bovine

aortic endothelium. There was no observable difference in the samples between the

various culture conditions.

LivelDead Assay: For all three culture conditions, there was a similar profile in

the percentages oflive and dead cells. In all cases, the general health of the cultures was

excellent, with> 90% survivability noted for all wells. There was no observable

difference in the samples from the various culture conditions.

Conclusion
The results of this study indicate that both whole PAA microspheres and

microsphere fragments have no observed detrimental effect on BAEC viability or

functionality in-vitro. These findings suggest that PAA microspheres should not cause a

cytotoxic reaction when in contact with the endothelium during endovascular

embolization.

Chapter 4 Page 77 of 136



4.7 Discussion/Conclusion
This chapter outlined the techniques developed to monitor and improve upon the

quality of microsphere batches. Sieving methods allowed for more precise control over

the size range of PAA microspheres and tighter standard deviations. Light microscopy

and SEM were performed to track fragmentation rates and to characterize the surface

properties of the microspheres before and after injections or treatments. Microspheres

were also shown to be resistant to degradation and fragmentation after they were

modified to be smoother. Resistance to fragmentation will allow for the use of smaller-

bore catheters and hence less invasive procedures while maintaining stable occlusions.

This chapter also describes the preliminary biocompatibility studies necessary to

permit animal work and eventual clinical trials. Preliminary in-vivo functionality tests in

blood were also demonstrated. These data show that PAA microspheres have passed

preliminary biocompatibility and in-vitro functionality tests and are ready to be tested

with more detailed methods and within long term animal models. Future work in this

area will involve further precise molding of microsphere distributions to eliminate

fragments and outliers as well as more stringent sterilization procedures such as Gamma

radiation and/or Ethylene Oxide.

Chapter 4 Page 78 of 136



Chapter 5: Occlusive Efficacy

Abstract
PAA microspheres have been shown to expand roughly from 80 to 140 fold

volumetrically when exposed to aqueous media. It had been hypothesized that this
expansion will allow for greater occlusive efficacy while providing ease of delivery.
However, expansion may also result in catheter occlusion. The upper-limit of
concentrations that can go through various catheters must be determined to avoid catheter
blockage. Initially, three different sized catheters (5 French, 6 French, and 7 French)
were tested with different concentrations of PAA microspheres in their unexpanded state
within DMSO. 250mg/mL concentrations could pass through 6F and 7F catheters with
no fragmentation. 400mg/ml was over the saturation limit of DMSO. Mixtures up to
150mg/ml of PAA microspheres with average size of 250 micron were able to pass
through 5 French catheters when MD-76R contrast was used as a delivery media for the
microspheres. Microsphere concentrations of 200mg/mL saturated the MD-76R contrast
(a high salt solution). It is important to note that the microspheres expand slightly (about
4X volumetrically) in contrast, which allows for some deformability and hence easier
passage through small catheters at high concentrations. Small microspheres filtered
within a range between 50 and 150 micron were able to pass through the 5 French
catheters at 300mg/mL in MD-76R contrast.

After demonstrating the maximum concentrations that could pass through large-
bore catheters, micro-catheters were studied. Expandable/deformable PAA microspheres
suspended in their unexpanded state within high salinity (.3g sodium chloride per ml
water) solution or DMSO were able to be delivered through a Boston Scientific 533
micron internal diameter three French hydrophobic-lined Renegade® microcatheter at
concentrations previously shown to be sufficient to occlude 1.5mm internal diameter
Tygon® tubing up to pressures beyond 1000mmHg. Furthermore, commercially
available suspensions of PVA particulate and tris-acryl gelatin microspheres in saline
were unable to pass through the microcatheter at concentrations recommended by the
manufacturer for embolotherapy.

PAA microspheres have been able to selectively occlude both porcine renal and
coronary vasculature. The results are reproducible and the occlusions are complete as
observed under angiography. Using MD-76R contrast in the delivery media allows for
visualization during the procedure. On histological examination, PAA microspheres
were found to occlude the vasculature completely and were fully expanded. PAA
expandable/deformable microspheres have been shown to perform better than non-
expandable microspheres in flow loops by resisting much greater pressures once
occlusion forms and requiring much less embolic mass to occlude the model flow system.
Tris-acryl gelatin microspheres were not able to occlude the model flow system. More
work must be done to conclusively demonstrate superiority in-vivo.
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5.1 Quantification of Pressure Required to Dislodge
Occlusions

Background and Purpose
Previous experiments have demonstrated that PAA microspheres can occlude

tubing under static pressure and occlude flow in a constant pressure, single path flow

loop. In order to more closely approximate the clinical implementation of microspheres

for embolic procedures, a divergent flow loop was designed. The flow loop was designed

to demonstrate that catheterization and microsphere injection upstream of a flow

bifurcation can allow for selective tube occlusion.

A second study was conducted in order to quantify the pressure required to

dislodge a given volume of both expandable and non-expandable microspheres from 1.5

mm internal diameter tubing. The purpose of this second study was to determine if

expandable microspheres form a more robust and stable occlusion, which would suggest

superiority for embolic applications.

Hypotheses
Divergent Flow Loop
The insertion of a 5F catheter beyond the primary bifurcation in a divergent flow

loop will allow for selective tube occlusion. No significant backflow should occur due to

the upstream applied pressure head, resulting in controlled microsphere placement. Flow

in collateral tubes will persist following the occlusion of a targeted tube.

Dislodging Pressure
The pressure required to dislodge expandable microspheres from small diameter

tubing will be much greater then for non-expandable microspheres. A smaller mass of

expandable microspheres will be required for occlusion as compared to non expandable

microspheres.
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Materials and Methods
Divergent Flow Loop
A diverging flow loop

was designed to provide

constant pressure

(approximately 147 mmHg

static pressure head) flow to

four symmetric Tygon@ tubes 200 em

(1.5 mm internal diameter, the

lowest tubes in the diagram at

right) with a cumulative flow

rate of 560 mVmin (Figure 5-1).

This flow rate is approximately

10% of the total flow rate of an

Catheter ~o~
Port

2° Bifurcation

Water Sink

Figure 5-1: Schematic of Divergent Flow Loop System
adult male and is approximately

the amount of flow delivered to

a single kidney[74]. A catheter port located upstream of the initial tube bifurcation

allowed for selective catheterization of one half of the flow system (2 of the 4 tubes).

Expandable microspheres (E109572-25) and tris-acryl gelatin microspheres (500-

700micron) were introduced into the flow system via 5F catheter in various delivery

mediums. The injectable level of each prepared solution was qualitatively rated according

to the following scale: O-not injectable, I-injection requires moderate force, 2-easily

injectable with respect to how difficult the solution was to inject into the delivery catheter.

Following microsphere delivery, all four terminal branching tubes were monitored for

occlusion.

A second study was performed similar to the first study except that the pressure

head was dropped until the flow rate reached about 140mVmin. This is about 1/4th the

flow rate of the rate at the renal artery and would approximate what the flow rate might

be like at the second bifurcation level off of the renal artery where the anatomy of the

vessels approaches l.5mm in diameter.
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Dislodging Pressure
A linear tube system was used to apply internal pressure to a detachable Tygon@

tube (1.5mm internal diameter) (Figure 5-2). The Tygon@ tube was detached from the

system and filled with a 2.5 ml aqueous suspension containing either expandable

(E I09572-25) or non expandable (E 109573-3, 250-500 micron) PAA microspheres in

water. A syringe was used to gradually impart internal pressure to the Tygon@ tube. The

pressure needed to dislodge the microspheres from the Tygon@ tubing was recorded from

a clinical grade pressure transducer (Harvard Apparatus). The experiment was repeated

for various concentrations of expandable and non expandable microspheres. For the

highest mass, 500mg, of non-expandable microspheres used in the experiment, 10mi of

water was used to load the detachable occlusion tube because the concentration was too

high to inject when 2.5ml of water was used.

55 em

Syringe
Pressure
Transducer Detachable Occlusion

•

Tube. _.----
40 em 40 em-------Applied Pressure

Figure 5-2: Schematic of Dislodging Pressure Flow System

Results
Divergent Flow Loop
The results of this experiment confirmed all three hypotheses: (i) selective tube

occlusion was demonstrated with a 5F catheter (ii) no backflow of microspheres into

untargeted tubing was observed and (iii) flow persisted in collateral tubing following

microsphere introduction (Table 5-1). In all cases of noted occlusion, only one of the two

tubes of the secondary bifurcation (on the side of the catheterized primary bifurcation)

became occluded, with all other collateral flow persisting. The lower flow system was

easier to occlude for most PAA microsphere suspensions. The tris-acryl gelatin

microspheres were not able to occlude the flow system at the given dosage at either flow

rate.
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Table 5-1: Results of Divergent Flow Loop Occlusion Study (N/A means that either the solution did not

inject properly or there was a difficulty with the injection that negated the data)

EXDandable Q=560

~

PAAMS ml/min ml/min
n,"~':_:"3'.'j,'~ ." ~~ I? :~~,~.~

Mt IJ: iOlu ~"':' .. "~Dj8q(Oa .~i
Ii'~, T ''''.' .T-~;~

1:~:i:"'I~},~;:ii\~;~l~;~. [;of. ,1'- • d.u~ -,:

.
.L" m' ,ijmij:;"~1 ;;1i1J'"'MS1mll' Ratina Occlusion ~

5% Saline 5 0.5 0.10 1 N Y

9% Saline 5 0.25 0.05 2 N N/A
9% Saline 5 0.35 0.07 2 N Y
9% Saline 5 0.5 0.10 1 N Y
9% Saline 5 1 0.20 0 N/A N/A

13% Saline 5 0.5 0.10 2 N Y
13% Saline 5 1 0.20 0 N/A y

17% Saline 5 0.75 0.15 2 N Y

3ml
Contrast+2

ml 9% Saline . 5 1 0.20 2 y y
2.5ml

Contrast +
2.5 m19%

Saline 5 1 0.20 2 N Y

Contrast 5 0.1 0.02 2 N N
Contrast 5 0.2 0.04 2 N N
Contrast 5 0.3 0.06 2 N N
Contrast 5 0.4 0.08 2 N Y
Contrast 5 0.5 0.10 2 N Y
Contrast 5 1 0.20 2 y y

PSS 5 0.2 0.04 2 N N
PSS 5 0.3 0.06 0 N/A N/A
PSS 10 0.3 0.03 2 y y

EmbosDhel8
~500-100

itS
0.9% Saline 6 1 0.17 2 N N
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Dislodging Pressure
Both hypotheses of the dislodging pressure study were confirmed; (i) a much

greater force was required to dislodge expandable microspheres as compared to non

expandable microspheres and (ii) a significantly smaller mass of expandable

microspheres was required to induce tube occlusion (Table 5-2). It is important to note

that these microspheres were introduced into the detachable occlusion tube in an aqueous

medium, meaning the expandable microspheres were pre-expanded. We hypothesize that

the occlusion formed by microspheres expanding within the tubing will be even more

robust due to the effect of maximal packing and expansion within an elastic tube. This

type of packing and expansion will induce maximal interfacial contact with deformable

spheres while increasing normal recoil force by expanding the vessel walls radially

outward.

Table 5-2: Results of Dislodging Pressure Study. Pressure given is pressure required to dislodge occlusion.

All MS mixed with 2.5 ml water prior to introduction into occlusion tube

ndable MS
DtyMSMass

m
15

18

20

Run
1
2
3

100 1
2
3

500 1
2
3
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Conclusion
Divergent Flow Loop
The results of the divergent flow loop study demonstrate that expandable PAA

microspheres are capable of occluding high flow, low resistance systems. It is important

to note that this system features a much lower level of resistance and much larger gauge

terminal vessels than most physiologic arterial networks, and hence is much more

difficult to occlude. This system most closely models the most difficult scenario to

occlude, arterio-venous malformations, although flow-rate matching was used to

approximate the shear forces experienced at the renal opening to compensate for the

difference in resistance within the bed. The theory behind matching flow rates is that the

shear forces from the flow are more important than absolute pressures and vascular

resistances. The flow rate will be directly proportional to microsphere velocity and is a

combination of several factors including viscosity of the delivery media, resistance in the

flow bed, and the pressure gradient[68]. The flow rate is an easily controlled and

quantifiable measure to approximate physiological systems.

Another important difference between this system and many physiological beds,

such as hyper-vascular tumors, vessel diameter is constantly reduced in the target tissue,

which virtually guarantees occlusion at some level in the vascular tree. In-vivo studies

with PAA microspheres have shown that when injected into porcine renal vasculature the

microspheres are capable of deep vessel penetration prior to occlusion due to high

deformability. The deep penetration also leads to much greater packing of microspheres

within the vessels as compared to non expandable microspheres, leading to more robust

occlusions.

The results of this study also show that to achieve occlusion at high flow rates, the

PAA microspheres had to be delivered at high concentration in a medium that allows

some level of pre-expansion (either contrast or PBS). When attempts were made with a

delivery medium that allows for minimal pre-expansion (high salinity aqueous solutions),

no occlusion was realized. This is probably due to the high flow rate of the flow system

not allowing sufficient time for microsphere expansion, which is typically complete in 3-

5 seconds. At a lower flow rate, the expandable PAA microspheres were able to occlude

at most concentrations delivered. These slower flow rates are more clinically applicable

because the flow rate in the larger arteriole beds where microspheres are likely to occlude
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is relatively slow. Furthermore, arteriole networks continue to bifurcate into sequentially

smaller diameter vessels so occlusion by large microspheres is guaranteed once vessels

on the order of magnitude of the sphere diameter are reached.

The concentrations used in this study were given in dry volume of microspheres

(ml) per total wet volume of suspension. The density of PAA microspheres is between 5

and 10mg dry volume (depending upon packing density) to 1 ml wet volume in water.

The significance of this is that although some of the dry volumes delivered were less than

the dry volume of the non-expandable tris-acryl gelatin microspheres, the PAA

microspheres were still able to occlude because a greater embolic load, i.e. greater

expanded volume was delivered at the same or sometimes lower injection difficulty

through the catheter.

Dislodging Pressure
The results of the dislodging pressure studies confirmed the previous qualitative

assessment of the tighter packing of expandable microspheres forming a more robust

occlusion. The robustness of the occlusion was quantified by identifying the pressure at

which the occlusion would breakdown. In order to evaluate the dislodging pressure

required for expandable microspheres that have expanded within the tubing (as opposed

to the pre-expanded method used in this study), future studies will employ an aqueous

flow loop and expandable microspheres delivered in an expansion-restrictive medium

such as DMSO. A detachable occlusion tube will then be removed from the flow system

and evaluated for dislodging pressure in a similar manner as used in this study.

5.2 Passage of PAA Microspheres through Catheters

Background
Delivery of expandable PAA microspheres through a catheter represents a

minimally invasive technique to induce embolization and targeted occlusions. The

delivery medium used in this study is dimethyl sulfoxide (DMSO), which has previously

been shown to deliver microspheres in the unexpanded state. A critical factor for a

catheter-based microsphere delivery procedure will be the concentration of microspheres

injected through the catheter; high concentrations may occlude catheters while low

concentrations may not effectively occlude the targeted vessel diameter.
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Purpose
The purpose of this study was to determine the highest concentration of PAA

microspheres that can pass through various sized catheters when PAA microspheres are

suspended in DMSO. Catheters of size 5F, 6F, and 7F were tested.

Hypothesis
As catheter size is increased, denser concentrations of microspheres may pass

without occluding the lumen. In all size catheters, an upper limit of microsphere

concentration will be observed whereby further increase in concentration will occlude the

catheter lumen.

Materials
Catheters

Three different catheters were used in this study: the Cordis PTA dilation catheter,

Opta 5 - 5F catheter, the Medtronic AVE Z2 guiding catheter - 6F catheter, and the

Cordis Vistabritetip, guiding catheter - 7F catheter.

DMSO/Microsphere Solutions
The delivery medium used in this study was dimethyl sulfoxide (DMSO),

supplied by VWR. Two different types of expandable PAA microspheres were tested,

referenced as batches E108302-12-1 and E108302-12-5. The size distributions of these

microspheres in the unexpanded state are similar, with average unexpanded diameters of

approximately 250 microns.

Procedure
Create various concentrations of DMSO/microsphere solutions by adding dry,

unexpanded PAA microspheres to DMSO. Make five solutions of different

concentrations with two types of microspheres. Mix the microspheres and DMSO in a 60

ml Falcon Tube for three minutes with a Vortex Touch Mixer at speed ten (Table 5-3).

Attempt to inject the solutions through various sized catheters using a 10 ml syringe

(Table 5-4). Collect samples of the PAA microspheres that passed through the smallest

size catheter and observe under light microscopy. Search entire sample field for evidence

of microsphere fragmentation. Capture representative frames with microscopic imaging

software.
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Table 5-3: DMSO/microsphere solutions for catheter passage experimentation

Volume Mass Concentration
Microsphere DMSO Microspheres in DMSO

Solution Type (ml) (mg) (maim I)
A E108302-12-1 5 1000 200
B E108302-12-1 10 1000 100
C E108302-12-1 20 1000 50
0 E108302-12-5 5 2000 400
E E108302-12-5 8 2000 250

Table 5-4: Description of trials for catheter passage experimentation

Microsphere Volume Catheter Concentration in
Trial type Injected Size (F) DMSO (mg!ml)
1 E108302-12-1 2.5mL 5 200
2 E108302-12-1 2.5mL 5 100
3 E108302-12-1 2.5mL 5 50
4 E108302-12-5 2.5mL 6 250
5 E108302-12-5 2.5mL 6 400
6 E108302-12-5 2.5mL 7 250
7 E108302-12-5 2.5mL 7 400

Results
The results of this study demonstrate that of the examined PAA microsphere

solutions, some can pass through 6F and 7F catheters, but none could pass through a 5F

catheter (Table 5-5). The lumen of the 5F catheter was too small to allow passage of

solutions with a concentration as low as 50 mg microsphere/ml DMSO. When any of the

solutions were injected into the 5F catheter, the microspheres aggregated around the entry

point of the lumen. No microspheres were carried by the DMSO as the fluid was passed

through the 5F catheter. For both the 6F and 7F catheters, solutions with concentrations

of 250 mg/ml could easily pass when injected with the 10 ml syringe. The most

concentrated solution, solution D, could not pass through these catheters due to an over

saturation of microspheres in DMSO, not to a luminal size limitation of the catheters. In

other words, solution D could not even maintain homogeneity when injected from the 10
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ml syringe with no associated catheter. This represents an upper limit of concentration for
the micro spheres that cannot be exceeded regardless of catheter dimensions.

Table 5-5: Summary of DMSO/microsphere solutions passage through various catheters

Microsphere Volume Catheter Concentration in Successful
Trial type Injected Size (F) DMSO (mg/ml) passaae

1 E108302-12-1 2.5mL 5 200 No
2 E108302-12-1 2.5mL 5 100 No
3 E108302-12-1 2.5mL 5 50 No
4 E108302-12-5 2.5mL 6 250 Yes
5 E108302-12-5 2.5mL 6 400 No
6 E 108302-12-5 2.5mL 7 250 Yes
7 E 108302-12-5 2.5mL 7 400 No

The microspheres that were passed through the 6F catheter at a concentration of
250mg/mL were collected and observed under lightmicroscopy (Figure 5-3). At 10 times
magnification, no difference in the level of fragmentation was observed for passed
microspheres when compared to controls. Overall, the level of fragmentation was low
throughout the entire fieldand passage through the catheter had no apparent adverse
effects on the microspheres.

Figure 5-3: Left- Control (no attempted passage) Right- PAA-MS afterpassage through a 6 French
catheter.No fragmentation was observed.
(Image scale 0.8 x 0.9 mm)
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5.3 Candidate clinical suspension: MD76-R media, lower
concentrations and a 5F catheter
A series of additional studies were conducted with 5F catheters to follow up on

the initial findings described above. The purpose of these studies was to investigate the

effect of different delivery media as well as more clinically relevant microsphere

concentrations (the concentrations initially tested were determined to be much too high

for in-vivo embolic applications). This study tests the hypothesis that (1) smaller

microspheres can pass through 5F catheters at higher concentrations and (2) some

expansion of microspheres actually allows for easier passage through 5F catheters (due to

high deformability within rigid-walled catheters). Note: Microspheres undergo roughly

4X volumetric expansion when delivered in pure MD76-R contrast.

Procedure
Using contrast (MD76-R) as a delivery medium, determine the maximal mass of

microspheres that can pass through a 5F catheter. Two different varieties of PAA

microspheres were tested: E109317-129 (random size distribution, average dry diameter

near 250 microns) and E105050-75 (50-150 micron dry diameter).

Results:
Both hypotheses were confirmed with this study (Table 5-6). The results suggest

that it may be advantageous to deliver partially expanded microspheres to take advantage

of deformability. Partially expanded microspheres can be delivered in pure contrast, a

range of saline solutions, a cocktail of contrast and DMSO, or a cocktail of saline and

contrast. Preliminary work (not shown) shows that fully hydrated microspheres are more

readily passed through 5F catheters at high concentrations when compared to DMSO

delivered microspheres because of their high deformability.
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Table 5-6: Passage-ability of different microsphere concentrations in MD-76R contrast through a 5F
catheter.

Fra mentation Notes

E109317-129 500 5 Y N

E109317-129 750 5 Y N Eas Passa e
Does not go into solution
(not injectable through

E109317-129 1000 5 N N/A S rin e

Easy Passage (small MS;
E105050-75 1500 5 Y N 50<D<150um

Conclusion
The delivery of expandable PAA microspheres through small bore catheters has

great potential as a minimally invasive and highly effective procedure for embolic

applications. The results of this study demonstrate that high concentrations of PAA

microspheres suspended in DMSO can pass through catheters as small as 6F. Lower

concentrations of micro spheres in DMSO would likely pass through even smaller

catheters. The ideal concentration will depend on the size of catheter needed for a given

vascular bed as well as the amount of microspheres required to occlude. By allowing the

microspheres to slightly expand in media such as MD-76R contrast, passage through SF

catheters is achievable at concentrations up to 150mg/ml. Smaller microspheres (50-150

micron) are able to pass through SF catheters in even higher concentrations (300mg/ml)

when suspended in MD-76R contrast. However, smaller microspheres have been shown

to expand less when placed in water and hence may not be able to occlude as well in-vivo.

Future Work
In-vitro and in-vivo model systems will be used to determine the concentrations

and catheter sizes required for given applications. If catheters smaller than SF are

indicated, lower concentrations may be used. We will determine the maximum passable

microsphere concentrations and the most suitable delivery medium for use with these

microcatheters. We suspect that fully hydrated microspheres may fracture with attempted

passage through such a constricted catheter bore. It may be optimal to use partially
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expanded microspheres in a low viscosity solution, i.e. contrast or a DMSO/contrast

mixture. Delivery capabilities will be compared to various sizes of tris-acryl gelatin

microspheres and PVA particulate.

5.4 Microcatheter passage of various microemboli

Background
For many embolic applications, it is preferential if not essential to use as small a

catheter as possible to deliver enough embolic load to cease flow. There are several

common scenarios that justify the use of microcatheters. Whenever vasospasm is an

issue, a smaller catheter will result in less propensity for vascular irritation and hence less

vasospasm. This is especially important for uterine artery embolization where vasospasm

can be severe[22]. The vasospasm can cause erroneous endpoint determination by

causing vascular beds to appear occluded when viewed via angiography, only to reopen

after the spasm relaxes. Vasospasm can be so severe at times that further advancement of

the catheter becomes impossible. A microcatheter is necessary when attempting to inject

the embolic as close to the tumor as possible. If there are any anastomoses to other

vascular beds, such as the ovarian artery or the cervicovaginal branch, there is a concern

for unintentional embolization to the wrong site. By approximating the catheter tip as

close as possible to the tumor's vascular bed, aberrant embolization can in be minimized.

Another reason to use a microcatheter is that it will potentially allow for more controlled

pruning of the tumor vasculature. Microcatheters allow for precise tailoring of the

amount of devascularization in order to prevent overembolization and minimize any

embolization to normal tissue. Serious complications of uterine fibroid embolization

such as the post-embolic flu-like syndrome may be attenuated by precisely

devascularizing the tumor bed no more than necessary to induce tumor regression. The

following experiments investigate the use of small diameter catheters to deliver PAA

microspheres in both expanded and unexpanded states as compared to delivery of

commercially available concentrations of tris-acryl gelatin microspheres and PVA

particulate suspensions.
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Hypothesis
When suspended in highly ionic media or organic solvents, PAA microspheres

remain unexpanded and are roughly 100 times smaller (roughly 200 micron average

diameter) volumetrically than when suspended in water or other dilute solutions (roughly

1000 micron average diameter). Media such as low pH water, high salinity water,

DMSO, MD-76R contrast or propylene glycol have all been shown to inhibit expansion

of PAA microspheres, but to varying degrees (Table 3-2). We hypothesized that

unexpanded microspheres (roughly 200 micron average diameter) in low viscosity media

may be able to traverse small-bore microcatheters (533 micron inner diameter) in

concentrations high enough to cause significant occlusion once the microspheres have

expanded after leaving the catheter. Theoretically, some expansion may actually help

microspheres pass through the microcatheter by allowing microspheres to deform slightly

so they can assume smaller cross-sectional area. Because of this, both high-salt (which

allows slight expansion similar to MD-76R contrast) and DMSO (which allows no

expansion) were tested.

Expanded PAA microspheres, Non-expandable 500-700 micron diameter tris-

acryl gelatin microspheres and 500 micron PVA particulate of standard diameters and

concentrations for occlusion should not be able to traverse small bore (533 micron inner

diameter) catheters due to size limitations.

Materials and Methods

Microcatheters
The microcatheters used in this experiment were 3-French Renegade® Fiber

braided microcatheters from Boston Scientific. Lot # 7704153

The Renegade® design is most notable for its large .021 inch (533 micron) PTFE lined

inner lumen, designed specifically for embolic applications.

Microembolic Suspensions
Ten different suspensions were injected into separate Renegade® microcatheters

and the tips of the microcatheters were placed into collection beakers to monitor for any

effluent. For all injections, the syringe was constantly agitated to promote adequate

mixing of the slurry.
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The following suspensions were prepared. The first suspension used 500-700

micron diameter tris-acryl Gelatin microspheres by Embosphere® Ref 5610GH, Lot

032BBS from Biosphere medical. One cubic centimeter of the Embospheres® comes

prepackaged in a syringe diluted to 6ml total suspension volume with physiologic saline.

The next suspension used PVA particulate, 500 micron average size diameter by Cook,

lot 1485391. Ice dry volume was diluted to 6ml with saline within a 6cc syringe. The

particulate swelled to roughly 2cc when placed in saline. The rest of the suspensions

were all made using Expandable/deformable PAA microspheres type E109572-25. The

first of these suspension used cc wet volume (corresponds roughly to 10mg dry mass)

diluted to 6ml with phosphate buffered saline within a 6cc syringe. The next used the

same 10mg dry mass suspended in high salinity medium made to a concentration

of .3g/ml sodium chloride in water to a total volume of 6ml within a 6cc syringe. At this

concentration of sodium chloride, PAA microspheres do not appreciably expand.

Suspensions of increasing PAA-MS concentration were made including: 30mg dry mass

diluted to 6ml in .3g/ml high salinity solution within a 6cc syringe, 60mg dry mass

diluted to 6ml in .3g/ml high salinity solution within a 6cc syringe, and 120mg dry mass

diluted to 6ml in .3g/ml high salinity solution within a 6cc syringe. Using the same PAA-

MS, three more suspensions were made with concentrations of: 10mg dry mass diluted to

6ml in DMSO within a 6cc syringe, 30mg dry mass diluted to 6ml in DMSO within a 6cc

syringe, and 60mg dry mass diluted to 6ml in DMSO within a 6cc syringe. All of these

solutions were injected through separate microcatheters as described above.

Results
500-700 micron diameter tris-acryl gelatin microspheres in saline fully occluded

the Renegade® catheter. Saline was able to filter through the occlusion at high pressure,

but greater than 99% of the microspheres remained within the syringe.

PVA 500 particulate in saline occluded the Renegade® catheter. Saline was able

to filter through the occlusion at high pressure, but greater than 99% of the particulate

remained within the syringe.

10mg PAA microspheres expanded in water occluded the microcatheter. Some

microspheres passed through the Renegade® microcatheter, but the vast majority, greater

than 95%, remained within the syringe. This experiment was repeated and the on the
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second attempt the catheter was completely occluded after only a small amount of the

suspension passed through the catheter.

The suspensions containing 10mg, 30mg, and 60mg of PAA micro spheres

within .3glml sodium chloride in water were all able to pass through the Renegade@

microcatheter with very little injection pressure applied.

Although some of the suspension of 120mg PAA microspheres within .3g1ml

sodium chloride in water passed through the Renegade@ microcatheter, after

approximately 3ml of suspension had been delivered the microspheres aggregated and

occluded the microcatheter.

The suspensions containing 10mg and 30mg of PAA microspheres in DMSO

passed through the Renegade@ microcatheter with little injection pressure applied.

Microspheres were clearly visible in the collection beaker and expanded after water was

introduced into the beaker. Some microspheres remained in the sYringe, however, due to

static adherence to surfaces.

The suspension of 60mg PAA microspheres in DMSO did not pass though the

microcatheter. After only about 1ml of fluid and few microspheres passed, the

microcatheter became occluded such that no more fluid would pass.

Table 5-7: Passage of various suspensions through the Renegade@ 533 micron internal diameter
microcatheter

1ml 500-700um tris-acryl gelatin
micros heres siluted to 6ml Saline No
1ml PVA Particulate diluted to 6ml Saline No
10m PAA-MS diluted to 6ml Water No

.3g/ml NaCI in
10m PAA-MS diluted to 6ml water Yes

.3g/ml NaCI in
30m PAA-MS diluted to 6ml water Yes

.3g/ml NaCI in
60m PAA-MS diluted to 6ml water Yes

.3g/ml NaCI in
120m PAA-MS diluted to 6ml water No
10m PAA-MS diluted to 6ml DMSO Yes
30m PAA-MS diluted to 6ml DMSO Yes
60m PAA-MS diluted to 6ml DMSO No
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Discussion/Conclusion
This experiment demonstrated that up to 60mg of expandable PAA microspheres

can be delivered at a concentration of 10mg/ml through a three French Renegade@

microcatheter when the diluent is .3g/ml high sodium chloride solution. When DMSO

was used as the diluent, only 30mg was deliverable. This may be evidence that the slight

expansion observed in high salt solutions may aid delivery by allowing greater

deformations.

The experiment also indicated that expanded PAA microspheres could not be

passed through the three-French Renegade@ catheter at the low concentration of 10mg in

6ml saline. Furthermore, 500-700 micron tris-acryl gelatin microspheres could not be

delivered through the Renegade® microcatheter at the prepackaged concentrations of Icc

in 6ml saline. PVA particulate at a concentration of Icc dry volume per 6ml saline could

not be delivered through the Renegade microcatheter.

These results are in accordance with the hypothesis that unexpanded PAA

microspheres that have an average diameter near 200 microns will pass through the 533

micron bore of the Renegade® catheter while when in their expanded state where their

average diameter can approach 1000 microns, they will not be able to pass. It is not

surprising that neither the 500 to 700 micron tris-acryl gelatin Embospheres® nor the

PVA 500 micron average diameter particulate are able to pass through the 533 micron

inner diameter of the Renegade@ microcatheter. It was somewhat surprising that the

PAA microsphere suspended in DMSO occluded the catheter at 10mg/ml concentration,

but this result is in accordance with the theory that some deformability of the

microspheres aids transport through small bore catheters by allowing facial diameter to

contract.

Previous experiments have shown that PAA microspheres can occlude 1.5mm

inner diameter Tygon tubing up to pressures of greater than 1000mmHg with as little as

20mg of PAA microspheres. Non-expandable PAA microspheres of up to 500mg loaded

into a 1.5mm tube could not withstand nearly the same pressure in previous experiments.

These experiments demonstrate that a significant occlusive load of expandable PAA

microspheres can be delivered through the three French Boston Scientific Renegade®

microcatheter when suspended in .3g sodium chloride per ml water or DMSO. This has
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important implications for embolization procedures because a microcatheter on the order

of the 500 micron ovarian anastomoses can be used to deliver an embolic close to the

target site, beyond cervicovaginal branches, and the expansion after delivery should

prevent the particulate from regurgitation or embolization to distal sites.

5.5 In-vivo Occlusion of Porcine Vasculature with PAA
Microspheres

Background
Expandable PAA microspheres are potential intravascular embolic agents. The

porcine renal and coronary vasculature will serve as model systems for investigating

intravascular occlusion using PAA microspheres.

Purpose
Demonstrate the ability of PAA microspheres to occlude renal and coronary

vasculature in-vivo. Identify effective concentrations of microsphere/DMSO solutions for

realizing complete occlusion, as indicated by angiographic observation. Compare the

occlusive capabilities of expandable and non-expandable PAA microspheres. Attempt to

deliver microspheres in a DMSO:contrast cocktail prepared in a 7:3 ratio. Determine if

this cocktail allows for angiographic visualization of the microspheres forming an in vivo

occlusion.

Hypothesis
Highly concentrated solutions of PAA microspheres in DMSO will be effective at

occluding both the renal and coronary vasculature in a porcine study. The DMSO will

serve as a convenient medium for microsphere delivery due to its low viscosity and

organic composition (PAA microspheres remain unexpanded prior to blood contact).

Expandable microspheres will form more robust occlusion as compared to non

expandable microspheres due to their high deformability and the resulting stabilizing

pressure exerted on the vessel wall. Delivery of microspheres in a DMSO:contrast

cocktail will provide visualization of the procedure but should not decrease inject-ability

(partial expansion will not affect microsphere passage thru the catheter lumen due to the

accompanied increase in deformability).
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Materials and Methods
A variety of 5ml DMSO/microsphere and DMSO:contrast/microsphere solutions

were made prior to the experiments (Table 5-8). All solutions were made by adding the

indicated mass of PAA microspheres to 5 ml of the described solution in a 15 ml Falcon

tube. All solutions were made 48 hours before administration. Porcine studies were

conducted on three separate days.

Table 5-8: DMSO/microsphere solutions prepared for porcine in-vivo study

Solution # MS # Mass MS (mg) Solvent Vol. Solvent (ml)

1 E108302-12-1 500 DMSO 5

2 E108302-12-1 1000 DMSO 5

3 E108302-12-5 200 DMSO 5

4 E108302-12-5 2000 DMSO 5

5 E108302-12-5 1000 DMSO 5

Adult male pigs were used for all occlusion studies with PAA microsphere solutions. A

12 ml syringe was used to inject the prepared solutions through a 6F catheter. Prior to

each attempted injection, the catheter was angiographically guided to the target location.

The first 2 injections were delivered as prepared; the third was diluted with 3ml DMSO

(Table 5-9).

Table 5-9: Summary of in-vivo porcine occlusion experiment. All injections resulted in total occlusion of
the target vessel

Volume

Injection Solution # Dilution Delivered Vessel/Organ Chase(10ml)

1 3 none 4.5cc R. Kidney/Renal artery DMSO

L. Kidney/Superior

2 1 none 5.0cc branch of Renal Artery DMSO:saline.9:1

3ml Heart/Right Coronary

3 5 DMSO 6.0cc Artery DMSO:saline.9:1

Results
The targeted vasculature was easily located in all attempted injections. The low

viscosity of the delivery mediums (DMSO or DMSO:contrast) facilitated easy passage

through the catheter by the technician in all attempts. One problem noted with DMSO is

the tendency to degrade the plastic syringes and stopcocks used in catheterization.
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Fracture of stopcock valve by DMSO may be due to DMSO freezing at lower room temp

(freezing point ofDMSO - 18°Celsius). To prevent this, DMSO/contrast combinations

can be used to lower the freezing temperature of the DMSO. Following the injection of

microspheres, contrast medium was injected to angiographically determine if the target

vessel had been occluded (diversion of contrast indicated vessel occlusion). PAA

microspheres selectively occluded the left superior renal artery bifurcation (Figure 5-4).

Gross histological sections show fully expanded PAA microspheres occluding the renal

vasculature (Figure 5-5).

Figure 5-4: Left- Still image of patent left superior branch of the renal artery before embolization. Right-
Still image of left superior branch of the renal artery after it has been successfully occluded by PAA
microspheres

Chapter 5, Page 99 of 136



Figure 5-5: Superior Branch of L Kidney Renal Artery. Numerous microspheres are visible indicating that
vessel was completely occluded (3/2/05).

Conclusion
ExpandablelDeformable PAA microspheres can successfully occlude porcine

renal vasculature. More work must be performed to optimize the concentrations and

volumes of microspheres required for occlusion while limiting excess embolic delivery

which may result in over-infarction or distal embolization.

5.6 Discussion/Conclusion
PAA microspheres can be injected in custom media that prevents expansion

thereby allowing passage through both standard and micro-catheters without occluding

the catheters. When the PAA microspheres enter the aqueous media within the blood

stream, the 80 to 140 fold volumetric expansion can induce durable and lasting

occlusions that will be less prone to disintegration, migration or recanalization than other

occlusive technologies. The ability for PAA microspheres to traverse small-bore

catheters that PVA particulate and tris-acryl gelatin microspheres cannot pass through is a

significant advantage. The fact that these microspheres can also form occlusions that

resist much greater pressures while requiring less embolic mass than other technologies is
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even more impressive. This chapter also demonstrated proof of principle that PAA

microspheres can selectively occlude both porcine renal and coronary vasculature in-vivo.

Future work in this area will attempt to establish strong correlations between microsphere

population statistics and occlusive properties both in-vitro and in-vivo.
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Chapter 6: Thromboembolism

Abstract

Thromboembolism is the process where a blood clot dislodges from its site of
origin and travels downstream where it eventually occludes a distal blood vessel. Clots
that form thromboemboli can be large as in the case of deep venous thrombosis or they
can be extremely small, such as the microemboli that form from during removal of large
clots during interventional procedures. Previous investigators have used microspheres
and microparticulate to simulate thromboembolism[3, 75]. Particle analysis of
thromboembolism can give insight into relationship between thromboembolism and
occlusive properties by correlating bulk and individual particulate properties with vessel
occlusion. Model systems of microembolism can help determine what level of occlusion
causes infarction and how anastomoses play a role. Studying synthetic
thromboembolism may elucidate how the constituents of a thrombus contribute to
distribution and occlusive properties.

The motivating hypothesis behind this work is that the constituents of a clot affect
the size and shape distribution of particulate evolved during clot dissolution, the
distribution and total volume directly relates to occlusive level within the vasculature, the
occlusive level determines the amount of tissue infarction and the severity of tissue
infarction and location of infarction determine patient outcome. This study begins the
investigation of this process by modifying the system designed to study therapeutic
embolism to study thromboembolism. A novel, ultrasonic clot dissolution device was
used to break up both ex-vivo whole blood clots and synthetic fibrin only clots into clot
dissolution byproducts that are analyzed in the RapidVUE® particle analysis system.
Initial results show the average particle size for whole blood clots is less than 100
microns and synthetic clots produce significantly larger average emboli than whole blood
clots, indicating that cellular components in the clot likely play an important role in
limiting thromboembolic size.
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6.1 Introduction

6.1.1 Background & Motivation
Vascular disease is the leading cause of mortality in the developing world [76].

Vessel stenosis and occlusion are often the culprits in life-threatening clinical syndromes

such as angina, myocardial infarction, and pulmonary embolism among others. To treat

the conditions the offending bolus is often removed either by surgical, mechanical or

pharmacological means. However, over 80% of patients in a recent trial exhibit

abnormal myocardial perfusion even when the offending occlusion appears to have been

fully removed[77]. This situation has been dubbed the no-reflow phenomenon. One of

the primary pathophysiological mechanisms of no-reflow is due to the presence of

microembolic washout after interventional procedures[78].

Some of the interventional procedures designed to heal a patient often have

embolic events with adverse and debilitating sequelae[79]. Procedures that remove clot

burden from an occluded site can result in microembolic washout that can cause tissue

damage even when macrovasculature appears patent on angiography[80]. For example,

although microemboli can initially decrease flow through the coronary arteries of the

heart, reactive hyperemia due to adenosine release from infarcted myocardium causes

vasodilation of neighboring local vessels, resulting in normal or even elevated coronary

blood flow[81]. Even though the superficial coronary flow is preserved, tolerance to

ischaemia and regional contractile function decrease after microembolism[82, 83].

Almost any intravascular procedure will cause some microembolic evolution[84],

but the impact of the microemboli depends crucially on several factors including but not

limited to the type of vascular bed, the chemical compositions of the emboli, the size

distribution of the emboli, the morphology of the emboli in addition to the total volume

of emboli. For example, during deep vein thrombosis clot dissolution, large volumes of

particulate may be produced because the size of the originating clot is rather large

(several cubic centimeters), but the concern for microembolic damage is minor because

emboli travel to the pulmonary vasculature where there is ample circulatory reserve to

handle microvascular occlusion. On the other hand, even minute volumes of

microemboli evolved from carotid or coronary stenting procedures could result in stroke
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or myocardial infarction respectively. Some even theorize that microemboli can form

spontaneously due to inflammatory processes and may be the causative agent in some

forms of chronic heart failure[85, 86].

Microemboli can have many sources including air, fat, bone, necrotic debris and

thrombus. Thromboemboli are likely the most prevalent form that cause disease and can

be the most insidious of emboli because their source is from within the blood itself and

emboli can be as small as a single nidus of activated thrombin to as large as saddle

emboli or disseminated intravascular coagulation[2]. To understand the vascular

complications caused by these microemboli, the nature of their composition and

evolution must first be addressed.

Microemboli in the body are usually derived from breakdown of previously

formed thrombus or formation of micro-thrombi within circulation. According to

Virchow's triad, stasis, vascular injury and hypercoagulability are the three primary

sources for thrombus formation in the body[l]. The unifying theme of this well know

triad is that all three seemingly independent causes result in an imbalance between

activation of thrombin and the subsequent polymerization of fibrin and the inactivation of

thrombin and breakdown of fibrin polymer by natural thrombolytic mechanisms[87].

In the coronary circulation, the aforementioned no-reflow phenomenon has

become of increasing interest as coronary stenting procedures become more common.

Several flow scales and methodologies have been developed to quantify and characterize

the amount of perfusion in the microvasculature following interventional procedures.

The thrombolysis in myocardial infarction (TIMI) frame rate and Myocardial blush grade

are two systems designed to gauge occlusion within the microvasculature[78]. These

systems rely on the clearance of contrast from the tissue to measure the amount of

occlusion in the microvasculature. Post-mortem histology has verified evidence of

microembolic occlusion that correlates well with poor TIMI frame counts and poor

Myocardial blush grades[78, 88].

Several treatments for microembolization have been attempted over the years with

varying levels of success. Pharmacological dissolution of clot using drugs such as tissue

plasminogen activator, works in some cases but not in others. When medical treatment

alone does not work or is contraindicated because of hemorrhage risk, mechanical clot
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dissolution has been used with some success[89]. These means are limited because

microemboli penetrate deep into tissue where mechanical access is impossible and flow is

limited such that pharmacological measures cannot convect to the sight of occlusion.

Embolic protection devices were introduced as a possible solution for preventing

microemboli from traveling downstream[90]. However, these devices remain

controversial and have not been definitively shown to demonstrate a benefit to the

patient[91 ]. Although embolic protection devices exist that demonstrate capture of

microembolic material[65, 66, 92], most have significant design loop-holes that allow

potentially harmful emboli to escape capture.

Because the evidence to date has been inconclusive, cardiologists have been

reluctant to adopt the technology[78]. This presents a problem for the medical

community that has not been properly addressed- over 80% of patients have flow

abnormalities after coronary interventions yet there has been no preventative measure

that works consistently, nor is there an understanding of which lesions are likely to result

in microembolism and which ones will be in the small fraction that do not. Scant

knowledge exists regarding the size, morphology, occlusive ability, and amount of

embolic material evolved during various intravascular procedures. Furthermore, the

precise amount of occlusion that can be tolerated by various vascular beds such as the

heart, brain or ovaries remains elusive.

The system developed in this thesis to study the material properties, in-vitro

function and in-vivo impact of therapeutic micro-emboli is ideally suited for studying

aberrant natural microemboli that often result in tissue infarction and even death. This

system can be used to study microemboli collected in-vivo or microemboli created ex-

vivo. By applying the same rigorous and quantitative approach used to characterize

therapeutic micro-emboli, a significant amount of new information can be discovered

about harmful microemboli. Using a system designed to study synthetic micro-emboli

for characterizing biological microemboli represents a complementary approach to the

origins of synthetic microembolic research as a model for thromboembolism[3, 75]- in

effect, the research as returned full circle to close the loop of investigation between

synthetic and natural microemboli.
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6.2 Objectives

The primary objective of these experiments was to design an in-vitro system for

creating microemboli secondary to clot dissolution and to adapt the techniques developed

to study therapeutic microembolism to the study of pathological microembolism. A

secondary objective of these studies was to investigate the effects of clot constituents on

clot dissolution embolic properties and distributions.

6.3 Theory & Hypothesis

The Clotting Cascade
The blood clotting cascade is an essential biological process that is necessary to

prevent exsanguination after even the smallest trauma. The components of the clotting

cascade are all found within the blood and many of them are produced by the liver. The

clotting cascade can be activated by several different mechanisms as discussed previously,

but the common end result is that the inactivated clotting factor prothrombin is converted

to the active serine protease, thrombin. Thrombin is the primary enzymatic determinant

and rate-limiting enzyme of the clotting cascade. It converts the blood plasma zymogen 3

fibrinogen into fibrin I and fibrin II monomers which rapidly and spontaneously

polymerize to form a thrombus[87]. Thrombin also acts to activate another plasma

protein, Factor XIII, which when activated acts as a cross-linking agent for the fibrin

polymer. Factor XIII greatly increases the stability and strength of the forming thrombus.

While thrombus is forming, cellular components within the blood such as red

blood cells, white blood cells and platelets become trapped within the fibrin polymer

matrix as it is forming. Platelets can strengthen the thrombus because they bind to each

other strongly. However, red blood cells and white blood cells do not enhance the

strength of the thrombus and may actually be a vulnerability of its ultra-structure because

the cellular components are fragile relative to the strong and stable fibrous quality of the

fibrin polymer backbone in the thrombus.

A zymogen is an inactivated precursor form of an enzymatic protein that can be activated by an enzymatic
reaction or conformational change induced by another enzyme or some other environmental process
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Clot dissolution
The blood system has natural methods to breakdown clots that form within

circulation. The primary enzyme that breaks down fibrin clot is called plasmin and it is

formed from the inactive zymogen, plasminogen. Tissue plasminogen activator and

Urokinase are natural activators of plasminogen that are released within the body and act

to keep the circulation free of thrombus. Anti-plasmin is a natural inhibitor of plasmin

that rapidly degrades plasmin almost as soon as it is created from plasminogen. Because

of this, plasmin activity is localized. It is competition between plasmin activity and

thrombin activity that mediates whether fibrin will form a thrombus or not.

Most of the time a thrombus is formed as a protective measure and is beneficial;

however, some thrombus formation is pathological. When a pathologic thrombus forms

and the body is unable to break it down using natural means, intervention by a clinician

may be the only way to prevent the thrombus from causing further damage and possibly

even death. There are two primary classes of clot dissolution: pharmacological, and

interventional. As mentioned in the introduction, pharmacological treatment with

plasminogen activators may not always work and sometimes it is contraindicated because

it can induce hemorrhage. In these cases interventions such as mechanical dissolution or

surgery may be the only remaining options. Because surgery can be life threatening,

especially in the older population, interest in mechanical dissolution by interventional

means has grown into a burgeoning field. However, mechanical clot dissolution can

create a wide range of particulate sizes depending upon method and conditions. Little is

known about the total amount of emboli generated, the size distributions or the shapes of

the emboli generated from mechanical dissolution. Furthermore, it is not known what

impact the constituents of the clot have on dissolution.

In these experiments we used a novel device developed by Omnisonics TM

Corporation to generate clot dissolution byproducts. The OmnisonicsTM Resolution@

device is thin titanium wire that has a low-amplitude, ultrasonic frequency (20kHz)

standing wave pattern generated along its length. The tip of the wire is loaded with

tantalum and acts as a node of the standing wave. The theory behind the activity of the

device is that shock-waves generated in the fluid around the anti-nodes of the wire,

possibly from cavitation due to the high velocity of the wire, induce a high-frequency
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impulsive force on rigid structures within the clot, causing them to disintegrate. The

system is liquid cooled by the blood that surrounds the wire and a saline pump ensures

that the interior of the introduction catheter for the wire remains lubricated.

Hypothesis
The ultrasonic waves generated on the Resolution® clot dissolution wire are low

amplitude which limits the strains that can be developed when using such a device. Only

relatively brittle materials that fail at low strains or under fatigue will be susceptible to

such a device[93]. We posited that clots of different constituents would respond to

ultrasonic clot dissolution differently depending upon the constituents. Our hypothesis

was that cellular components such as red blood cells, white blood cells, and platelets

would make in-vivo clots more susceptible to failure than the cross-linked fibrin polymer.

The theory behind this postulate is that cellular components, with fragile cell walls, can

rupture under high frequency, high impulse shock waves while fibrin polymer would be

resistant to failure because it is a tough, well-hydrated, fibrous polymer with crosslinking.

However, if the fibrin polymer were to fail it would likely fail at specific areas of weak

crosslinking or at geometrically susceptible areas. The interstitial areas left after cellular

components ruptured would result in geometrically weak areas with high stress

concentrations within thrombus and therefore, the remaining fibrin matrix of a whole

blood clot would disintegrate more readily than a solid fibrin clot and into smaller

fragments due to the isolated islands of fibrin polymer between cellular components.

6.4 Materials and Methods

Two formulations of clots were studied, whole blood clots created from animal

blood draws and synthetic clots synthesized from isolated and recombinant blood

products. Whole blood clots were used to simulate clots that form in-situ, while the

synthetic clots were utilized to investigate the dissolution of clots with no cellular

components- i.e. pure crosslinked fibrin polymer. The clots were exposed to the active

OmnisonicsTM device and the particulate was analyzed in the RapidVUE® particle

analyzer.
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Clot construction
Ex- Vivo Whole blood clots
Blood was collected from adult male pigs. The pigs were not treated with heparin

or any other anti-coagulants prior to phlebotomy. The blood was stored in sterile,

untreated 15ml falcon tubes at room temperature for approximately 30 days to allow for

curing of the fibrin polymer and hardening of the clot to simulate long-term indwelling

clots such as those found in deep venous thrombosis. Because these clots were made

from whole blood, they contain fibrinogen, thrombin, Factor XIII, plasminogen, all other

plasma proteins, platelets, red blood cells, white blood cells, calcium,, antibodies, buffers,

sodium, etc.

Synthetic blood clots
One ml synthetic clots were made using a protocol established previously in the

literature.[94] The final concentrations of the constituents of each clot were as follows: 3

mg/ml fibrinogen, human plasma, plasminogen depleted (Calbiochem part # 341578) 6

Units/ml thrombin, citrate free, human plasma (Calbiochem part # 605206) 0.27

Units/ml Coagulation Factor XIII (Calbiochem part # 233501) and 40 mM CaC12.

The materials are all pre-warmed in an incubator at 370 C for 15minutes prior to

use and for 30 minutes after all materials were combined. Because fibrin polymerization

is Calcium dependent, the initial fibrinogen was reconstituted in deionized water. Factor

XIII was also reconstituted with the water and fibrinogen because Factor XIII has no

effect on fibrinogen, nor can it have any effect on fibrin until it is activated by Thrombin.

Thrombin was reconstituted with Calcium Chloride because Calcium has no effect on

Thrombin by itself. Solutions were combined using a Duoflow dual syringe system

(Hemaedics, Inc) designed to ensure equal mixing of both solutions. The Duoflow

system was setup to deliver the materials in to a falcon tube identical to the tubes used to

store the ex-vivo clots made from pig blood.
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Figure 6-1: The images on the left shows a porcine clot before lysis, images at right show a clot after
using the Omnisonics Resolution@ system after six minutes.

Debris and liquid was poured out of the tube and analyzed. There was very little clot left in the tube and
only a residue remained adherent to the walls of the tube. Because the tip of the Omnisonics device is not
active some clot invariably remains in the location where the tip was located.

Chapter 6, Page III of 136



Figure 6-2: Modified system for total collection of debris and elimination of the problem associated with
the inactive tip.

Clots for this configuration were made inverted so that no area of the clot was in the inactive region of the
wire. The catheter port at the top of the device was used to introduce the catheter into the tube and the tube
coming out the side allows for drainage of overflow from the water pumped through the catheter to cool the
titanium wire.
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Particle Analysis
Particulate was collected and diluted to 75ml samples from each clot and analyzed

using the Beckman-CoulterTM RapidVUE® System. The settings specific for thrombus

particulate were taken from the literature[65, 66] (Table 6-1). Unlike the settings for

microsphere analysis, spherical objects are set for rejection so that bubbles are not

counted. The output from the RapidVUE® software gives a table of least bound

rectangular lengths for each particle detected. (Appendix A has a sample output file from

an analysis of microspheres. See the Particle Analyzer chapter for a detailed description

of the Beckman-Coulter TM RapidVUE®.)

Table 6-1: System settings for analyzing thromboembolic particulate

* Focus rejection
* Border rejection

Edge correction
* Repetition rejection

Fiber overlap rejection
* Shape rejection

Background intensity rejection
Background subtraction
Area correction

Shape rejection criteria
Focus parameter
Minimum particle area
Micron/pixel ratio
Maximum particle area
Threshold
Magnification
Image size (microns)

Maximum edge correction factor
Shape model

On
On
Off
On
Off
On
Off
Off
Off
Sphericity > 0.90
2256
4
7.292
5000000
Adaptive: 56
2.74
4521 x 3354
1.2
Cylindrical

6.5 Results
Three different clots from the same animal were all exposed to the Omnisonics

device for the same amount of time and the same procedure was followed for analyzing

all three samples. The results show that there is no statistical difference between the

means of each distribution and the distributions overlap considerably indicating that the

system was reproducible (Figure 6-3 and Table 6-2). A logistic curve was used to model
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these distributions instead of a Normal distribution based upon log-likelihood

calculations in Matlab. The deviation from Normal distribution results from the fact that

particulate cannot be smaller than zero in size so outliers are truncated on the negative

direction from the mean. The machine is also less accurate at the lower end of the size

spectrum and tends to pick up more noise from the background. There may be an

additional spike at the lower end of the spectrum due to debris created by lysis of cells

and platelets that generates many small particles. The right skew of the distribution may

be from particulate aggregation and outliers introduced by gross manipulation of the

catheter. The underlying particulate distribution may approach a Gaussian based upon

the central limit theorem which states that the sum of independent identically distributed

random variables approaches a Gaussian distribution[67].

The clot debris collected off of filtered samples from the clot dissolution

experiments are all approximately the same total volume and total particulate count

(Table 6-3). The maximum particle size indicates the outliers present. Although not

identical, the order of magnitude is reasonable considering all of the variables in a

biological system. The maximum particle size range for particulate from synthetic clots

is significantly higher than that of whole blood clots( Table 6-4). The control experiment

with no power shows that the large maximum particulate sizes are related to the power

delivery of the device and not to introduction of the catheter into the clot alone. Repeat

experiments demonstrated the same pattern.

Results from whole blood clot dissolution versus a synthetic blood clot

dissolution after exposure to the Omnisonics Resolution@ System under identical

treatments show that the distributions were both right skewed and most closely resembled

Gamma distributions (Figure 6-4). As mentioned before, the rightward skew is partially

due to aggregation of particles and is also due to the fact that particles cannot be less than

zero diameter. The data clearly indicate that the synthetic clot distribution has a higher

mean, a greater standard deviation and has much larger maximum sizes for particulate.

Chapter 6, Page 114 of 136



roo
q
o

(0
o
q
o

C'\I
o
q
o

0
0
L[)

0
L[)
"<;J'"

0
0
"<;J'"

0
L[)
C")

0
0
C")

(0

0 .......
(0

L[) 0N

0
0
N

0
L[)

0
0..-

0
L[)

0

Figure 6-3: Particle counts from three different clots from the same animal that were all
exposed to the Omnisonics device.
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29A1 Length Std. Error

mean 83.0um 0.4

sigma 25.0um 0.2

29B1 Std. Error

mean 84.7um 0.5

sigma 29.5um 0.3

29C1 Std. Error

mean 89.8um 0.6

igma 37.5um 0.3

Table 6-2: Averages and standard deviations for three clots from the same animal that were all treated
identically with the Omnisonics ultrasonic clot dissolution device.

Total
Total Volume ax. particle size

Name Count (cu mm) range (um)

Filtered
Clot 30A 182110 4.4 301-350

Filtered
Clot 30B 182976 4.3 551-600

Filtered
Clot 30C 175806 4.3 301-350

Table 6-3: Statistics for 36 Day old Porcine Blood clots in Falcon tubing

SYNTHETIC ax Particle
CLOTS Clot type size range
Filtered Clot
E Synthetic 1301-1350

Synthetic, Tubing,. Filter Paper
Filtered Clot F put on bottom of tubing 1000-1050
Filtered Clot Synthetic, Control as in no
CONTROL G power 401-450

Table 6-4: Table of Synthetic clot dissolution data
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Figure 6-4: Whole blood Clot vs. Synthetic Clot probability Density curves with Gamma fits
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6.6 Discussion/Conclusion
These preliminary studies of clot dissolution byproducts indicate that the system

developed can generate reproducible results. The particulate generated from use of the

Resolution® system on whole clots tends to average slightly less than 100 microns in

least bounded rectangular length with a standard deviation around 30%. The

distributions tend to be right skewed with outliers ranging on the order of between 300

and 600 microns in least bounded rectangular length. The significance of these numbers

is not understood at this time[65, 66]. It has not been determined what is more

detrimental: many particles that are small in diameter or fewer particles that have larger

dimensions.

Synthetic clots treated with the Omnisonics device tended to generate

distributions with higher means near 250 microns and larger standard deviations. The

distributions for synthetic clots were most notable to be even further right skewed, with

outliers far in excess of 1mm in least bounded length. This result is in agreement with

the hypothesis posited previously. This means that clots with higher fibrin content are

likely to generate larger particulate they are treated with this device. Clots that are found

in arterial beds with lines of Zahn from platelet deposition have less red blood cell

content than stasis clots formed in venous circulation[ l] and would likely respond

differently to the Omnisonics device. Studies must be performed with platelet only clots

to see how a lack of red blood cells may affect clot dissolution.

It may seem intuitive to prefer smaller clot dissolution particulate; this is not

necessarily valid in all circumstances. Large particulate can become lodged in vascular

beds at locations where there is ample collateral circulation from neighboring arteries and

little effect on the terminal vascular bed will occur. However, if that same volume of

particulate were minced into smaller pieces and embolized downstream, the

microcirculation could be cut off beyond where collateral circulation can supply a backup

blood supply[95]. Future experiments correlating in-vivo results with particulate

distributions and total volumes will be needed.
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Chapter 7: Conclusion and Future Work

7.1 Thesis Summary and Accomplishments
This thesis work has established a comprehensive system for quantitatively

analyzing the form and function of microembolic particulate. The experiments outlined

in this document have established methods for testing the functionality of PAA

microspheres both in-vitro and in-vivo. Advanced techniques including optical particle

analysis, imaging, material characterization, size and morphological characterization,

sieving, biocompatibility testing, custom flow systems and functional occlusion testing

have been adapted and calibrated to reveal a wealth of information regarding

microembolic particles.

The characteristics of novel expandable/deformable PAA microspheres were a

focal point of the work. Based on results from this study, PAA microspheres may be able

to produce more controlled occlusions in-vivo than have been previously attainable. The

have been many notable results from the PAA investigation. Surface properties of PAA-

MS were modified to prevent fragmentation. Microspheres were stained with cationic

Acridine Orange to enable visualization. Microspheres were sieved into predictable

probability distributions and analytical characterized into probability distributions. The

expansion properties of PAA microspheres were quantified in various media including

blood. Basic biocompatibility and chemical stability of PAA microspheres was

demonstrated. Suitable delivery media of low viscosity and that prevent expansion were

identified in addition to concentrations appropriate to deliver through large and small

bore catheters. Substantial occlusive resistance to pressure with PAA microspheres when

compared to other embolic materials was demonstrated. Finally, in-vivo occlusion of

renal vasculature using PAA microspheres was demonstrated.

The techniques used to study therapeutic embolism were extended to investigate

thromboembolism. The particulate size distributions of both whole blood clot dissolution

byproducts and synthesized pure fibrin clot dissolution byproducts were compared and it

was found that the cellular components of whole blood clots may contribute to smaller

embolic size distributions. This result has implications for the use of mechanical clot
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dissolution in arterial versus venous beds as the different cellular content of the clots will

likely result in different particulate distributions.

7.2 Discussion
Whenever a clinician introduces microembolic particles into the body for

therapeutic purposes, there is a finite probability that the emboli may track to an

unintended location, possibly inducing infarction in a vital organ. The study of how

thromboemobli infarct tissue has direct implications to the study of therapeutic embolism

as well. These two areas of study are naturally associated and the techniques to

investigate one process are equally applicable to the other. Previous to this work there

was no systematic and quantitative approach to investigate microembolic phenomenon.

Most studies were simple trial and error in large animal models or even human clinical

trials. This work has established a system to study microembolic phenomenon in a

quantitative and reproducible fashion. By furthering the investigation of how to make

therapeutic embolism more effective at infracting tumor and causing microvascular

occlusion, a wealth of knowledge can be learned about how to deal with

thromboembolism. Similarly, investigations that show how thromboembolism impacts

microvascular beds will help further the study of controlled therapeutic embolism.

7.3 Future Work

7.3.1 Further in-vitro characterization
Although much has been learned from the experiments presented in this work,

with every answer many more questions have arisen. Experiments that precisely identify

the correlations between distributions and occlusion must be developed. More

microembolic materials variations must be studied. The following subsections identify

some possible improvements upon microembolic technology.

7.3.2 Material-based improvements of PAA embolics

Further increase the continuity of the microsphere surface
Hypothesis: by increasing the continuity of the microsphere surface, the

microspheres should be able to resist shear stress better so that fragmentation can be
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completely avoided. This is important because fragmentation reduces embolic potential

and could result in adverse biological events.

Foreseen undesirable side-effects: increasing the continuity of the capsule may

strengthen the microsphere too much. It also may limit the ability for water to hydrate

the spheres. These factors may result in spheres that do not expand as much as the

original iterations. We would like to reduce fragmentation as much as possible without

sacrificing the expandability of the spheres.

Proposed initial experiments: retest the new spheres for fragmentation and

expansion. Test for occlusion ability and dye adherence. If they are superior to previous

spheres use them in animal studies of occlusion

Increase the size of microspheres
Hypothesis: Larger microspheres will be able to occlude larger vessel beds and

should be able to encapsulate more drug for drug delivery applications.

Foreseen undesirable side-effects: Large microspheres may be difficult to deliver

and may lose physical integrity.

Proposed initial experiments: Repeat in-vitro material characterization on large

spheres. Test their occlusion capabilities in tubing within static and under flow

conditions. Test the larger spheres in-vivo.

Colored microspheres to improve imaging and particle analysis
Hypothesis: Currently we dye the spheres with cationic dye. The dye may

interfere with charged drugs or adsorbed proteins. If the spheres could have color built-in

it would decrease possible artifact due to the cationic dying process

Foreseen undesirable side-effects: built-in dye may alter polymer structure and

could affect hydrogel performance

Proposed initial experiments: validate that microsphere properties are not altered

and that dye is sufficient for particle analysis

Microspheres featuring an additional surface coating to promote delayed
expansion
Hypothesis: Dayed expansion could allow for a more robust occlusion to form

because microspheres that are loosely aggregated in small vessels will expand and
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provide radial force on the occluded artery. The delay will also allow the spheres to

travel downstream to smaller vessel beds prior to expansion and subsequent occlusion. It

would be preferable if the delay could be modulated for different applications. A soluble

coating such as a polysaccharide that could have varying thickness may allow for

modulated delay of expansion.

Foreseen undesirable side-effects: Coating process may alter microsphere

integrity

Proposed initial experiments: correlate coating thickness to delay amount.

Characterize occlusion strength of new spheres vs. old spheres.

7.3.3 Biologically-inspired PAA Microsphere augmentation

Encapsulate FITC labeled dextrans and albumin for drug delivery studies
Hypothesis: PAA microspheres may be able to encapsulate drugs. Because of the

porous nature of the capsule, diffusion should occur through the capsule. When the

microspheres expand and the capsule is stretched the size of the pores should increase

and allow for greater transport. There are many factors that must be explored regarding

encapsulation of various species within microspheres: Does charge affect retention- i.e.

positively charged dextrans may be retained more than negatively charged dextrans

within the negatively charged microsphere interior. Hydrophilic drugs may be

encapsulated easily, hydrophobic drugs may not be retained well within microspheres and

may elute into delivery medium. How does molecular weight affect transport- large

molecules may retain better in unexpanded spheres vs. expanded while small molecules

may not differ in transport.

Foreseen undesirable side-effects: There may not be enough space within the

microsphere to accommodate therapeutic doses of candidate drugs. Manufacturing

process may denature proteins or damage dextrans.

Proposed initial experiments: First create microspheres with varying species

encapsulated. Test for transport in expanded state and quantify delivered dose.

Dextrans/albumin may not stay within spheres when suspended within delivery

medium so tests should be designed for elution in delivery medium. Delivery
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medium may alter dextrans/albumin so tests for molecular stability must be

performed

Spheres coated with active biologicals: L.e. fibrinogen
Hypothesis: Microsphere efficacy may be increased by coating with biologically

active substances. For example, coating with fibrinogen will promote platelet adhesion

and will enhance clot formation around the occlusion formed by the microspheres.

Platelet to platelet binding via GP IIIa/IIb may act to promote microsphere aggregation

and inhibition of GP IIIa/IIb should lessen this enhanced effect.

Foreseen undesirable side-effects: Proteins may not adsorb well to smooth

microsphere surface. Fibrinogen may promote too much clotting.

Proposed initial experiments: Perform an in-vivo study of clot formation with and

without fibrinogen coating. Repeat previous studies on modified spheres. Inhibit

GPIIIa/IIb in whole blood and rate microsphere aggregation.

Anti-Occlusion Pro-Occlusion Anti-Tumor

TPA/Urokinase/StreptoKinase/Tenecteplase Theophylline Paclitaxol

Plasmin/Plasminogen Thrombin Rapamycin

GP IIB/IIIA inhibitors Fibrinogen
Verapamil/nicorandil/Nitroglycerin ADP/PAF

Heparin

Coumadin

Adenosine

Table 7-1 Table of drugs and proteins that will be used to modify microparticulate.

Anti-occlusion drugs/proteins are used to mitigate the effect of micro-particulate washout after
interventions while pro-occlusion drugs/proteins are used synergistically to increase the efficacy of embolic
therapy. Anti-tumor drugs may also be implemented in conjunction with vessel occlusion to further
enhance tumor destruction.

7.3.4 In-vivo experiments and correlation
The most important subsequent step to in-vitro characterization is to bridge the

gap to in-vivo relevancy. Although proof of principle has been demonstrated in-vivo;

safety, efficacy, and superiority of PAA microspheres must be shown in long-term animal

models. By studying the precise histopathological effects of microvascular occlusion,

much can be learned about the nature of infarction caused my microemboli of all types.
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This knowledge can be extended into modifying and directing therapies designed to

prevent unwanted microembolism secondary to intravascular treatments.

7.3.5 Computer modeling of microvascular networks
A theoretical model of microvascular occlusion would allow repeated

experiments on an identical, virtual vascular bed. This would be the ideal "gedanken" or

thought experiment model system because it would eliminate the vast noise and

heterogeneity inherent to in-vivo systems. This section outlines the construction of a

computer model based upon a combination of results from this thesis and detailed

microvascular anatomy data available in the literature. This model could potentially shed

light upon many questions that would be much more difficult if not impossible to answer

using in-vivo tests.

Using morphometric data obtained from the investigation of microparticulate and

occlusion correlates, combined with vascular tree models from the literature[96-104], a

lumped parameter model of microvasculature tailored to study microembolic occlusions

will be constructed. The model will include tissue elements that will emulate diffusion

and partitioning of oxygen and other nutrients. Tissue oxygen tension will be calculated

as a percentage of initial oxygen tension determined from the pre-embolism state. Tissue

infarction will be correlated with in-vivo models of controlled microembolization in the

porcine heart to calibrate the oxygen tension percentage threshold for infarction. The

model will monitor oxygen tension and will simulate reactive hyperemia by reducing

resistance in nearby vessels once oxygen tension drops below an experimentally

validated threshold. Vessels closest to the infarction will dilate most with transport

limited dilation of more distal vessels. Flow, pressure and oxygen tensions will then be

recalculated and hence a feedback loop will be established between tissue perfusion

alterations and flow alterations. Once flow reaches levels in accordance with the reactive

hyperemia condition[49] or neighboring vessels become maximally dilated within

physiologic limits the feedback loop will be halted and steady state will ensue.

Emboli will be modeled by removing resistors from the connectivity matrix of the

model at the vascular tree level that correlate with where that type of embolic load

appears in histological specimens after in-vivo embolization. Total embolic volume will

be matched to in-vitro and in-vivo data that indicate volumes required for occlusion.
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Occlusions will be positioned stochastically and will be more likely to occur where more

flow has been delivered. Pressures will be calculated throughout the network and

occlusion will not be allowed to occur if pressure drops are too high based on in-vitro

data of occlusion. Once the model has been calibrated using physiological parameters,

flow alterations can be studied to determine optimum occlusion levels for tissue death as

well as maximum allowable occlusion level for adequate tissue survival. Mittal et

al.[104], outlines the explanation of major assumptions regarding linear resistive

modeling of the vasculature. The model will be based on the Mittal & Kassab model and

will add in the assumption of Fick's law of oxygen diffusion into tissue elements while

interstitial oxygen concentration will be ignored. As the model is constructed more

assumptions will be incorporated and justified. Matlab and C++ will be used for

implementation of this model. The development of a computer model based upon

microembolic data will allow a reproducible, high-throughput method for analyzing the

impact of microembolism on vascular beds as well as providing a theoretical framework

for assessing embolic protection/prevention strategies.

By implementing in-vitro, in-vivo, and computational model systems with cross-

validation, a framework for elucidating the intricacies of microembolic mechanics will be

established. Results of this study should contribute to the design and implementation of

improved embolic protection devices as well as optimal protocols for therapeutic

embolism.
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7.4 Thesis Web

The Thesis web (Figure 7-1) outlines the interconnection of the work presented in

this thesis with work in the literature and planned future work. The central theme of this

research is the understanding of intravascular occlusion at the microvascular level.

Figure 7-1: Thesis web and flow matrix of research and future work

Key: Green- Central focus of research is on microembolism and how it relates to intravascular occlusion.

Orangc- Biologic emboli generation IIIIII- Synthetic polymer emboli generation. Gray- relation to

work done in the literature and elsewhere. Cyan- future work will develop theory of microvascular

occlusion using in-vitro and in-vivo data to develop computer simulations and model systems of

microvascular occlusion and infarction. Purple- purpose of this work is to help understand the source and

consequences of microemboli so that preventative measures can be intelligently engineered.
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Appendices

Appendix A: RapidVUE® Output file
Below is an example of a text output from the RapidVUE® software a produced from
one of the three runs of an analysis of one sample of microspheres in suspension.

SIXTY1
RapidVUE@ 2.03
C:\PROGRAM FILES\RAPIDVUE®\DATA\SIXTY1. DAT

18 Jan 2005 11:55 AM

EQUIVALENT ICIRCULAR AREA DIAMETER
S"Count",

"Maximum",l l31.4

"Dl, 0", 660.4
it I I wi

f
"Dl O",660.4"D3,2",784.7
"D4,3",824.3
"Geometric volume std. dev.",0.205
Number percentiles:
"10%",442.2

"25%", 528.5
"50%", 680.3
"75%", 827.2
"90%", 941.9
Area percentiles:
"10%", 560.6
"25%", 671.1
"50%", 797.4
"75%", 928.2
"90%",1003.5
Volume percentiles:
"10%", 585.3
"25%", 724.3
"50%", 849.4
"75%", 947.3
"90%", 1044.9
"Total volume (cu mm)",1.56E+01
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SPHERICITY
"Count",76
"Minimum",0.93
"Maximum",1.00
Number percentiles:
"10%", 0.94
"25%", 0.95
"50%", 0.96
"75%", 0.98
"90%", 0.98

PERFORMANCE SUMMARY
"In-focus count",76
"Video frames",2768
"Run time (sec)",101
"Focus reject %",1.4
"Shape reject %",44.7
"Border reject",144
"Fiber overlap reject %",0.0
"Contrast",0.00
"Background intensity",144
"Micron/pixel ratio",7.292
"Magnification",2.74
"Image size (microns)","4521 x 3354"

PARAMETERS
* Focus rejection
* Border rejection

Edge correction
* Repetition rejection

Fiber overlap rejection
* Shape rejection

Background intensity rejection
Background subtraction
Area correction

"Horizontal indents","10, 10"
"Shape rejection criteria","Sphericity < 0.90"
"Vertical indents","10, 10"
"Focus parameter",500
"Minimum particle area",4
"Micron/pixel ratio",7.292
"Maximum particle area",5000000
"Background rejection limits","180, 255"
"Threshold","Adaptive: 56"
"Maximum edge correction factor",l.2
"Shape model","Cylindrical"

EQUIVALENT CIRCULAR AREA DIAMETER TABLE

DIAMETER,,COUNT,% NUMBER,% AREA,% VOLUME,CUM % VOLUME
80.2, 83.3, 1, 1.32, 0.02, 0.00, 0.0018,
83.3, 86.5, 1, 1.32, 0.02, 0.00, 0.0038,
86.5, 89.8, 1, 1.32, 0.02, 0.00, 0.0060,
89.8, 93.3, 1, 1.32, 0.02, 0.00, 0.0085,
93.3, 96.9, 0, 0.00, 0.00, 0.00, 0.0085,
96.9, 100.6, 0, 0.00, 0.00, 0.00, 0.0085,
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100.6,
104.5,
108.5,
112.7,
117.0,
121.6,
126.2,
131.1,
136.2,
141.4,
146.9,
152.5,
158.4,
164.5,
170.9,
177.5,
184.3,
191.4,
198.8,
206.5,
214.4,
222.7,
231.3,
240.2,
249. 5,
259.1,
269.1,
279.5,
290.3,
301.5,
313.1,
325.2,
337.7,
350.7,
364.3,
378.3,
392.9,
408.1,
423.8,
440.1,
457.1,
474.8,
493.1,
512.1,
531.8,
552.3,
573.6,
595.8,
618.8,
642.6,
667.4,
693.1,
719.9,
747.6,
776.5,
806.4,
837.5,

104.5,
108.5,
112.7,
117.0,
121.6,
126.2,
131.1,
136.2,
141.4,
146.9,
152.5,
158.4,
164.5,
170.9,
177.5,
184.3,
191.4,
198.8,
206.5,
214.4,
222.7,
231.3,
240.2,
249.5,
259.1,
269.1,
279.5,
290.3,
301.5,
313.1,
325.2,
337.7,
350.7,
364.3,
378.3,
392.9,
408.1,
423.8,
440.1,
457.1,
474.8,
493.1,
512.1,
531.8,
552.3,
573.6,
595.8,
618.8,
642.6,
667.4,
693.1,
719.9,
747.6,
776.5,
806.4,
837.5,
869.8,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
1.32,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
2.63,
0.00,
0.00,
6.58,
2.63,
0.00,
0.00,
7.89,
0.00,
2.63,

11.84,
3.95,
2.63,
0.00,
5.26,
2.63,
9.21,
3.95,
3.95,
3.95,
3.95,
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0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.15,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.85,
0.00,
0.00,
2.71,
1.19,
0.00,
0.00,
4.39,
0.00,
1.64,
8.22,
2.89,
2.16,
0.00,
4.97,
2.70,
9.90,
4.71,
4.91,
5.33,
5.90,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.05,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.43,
0.00,
0.00,
1.54,
0.71,
0.00,
0.00,
2.91,
0.00,
1.15,
6.09,
2.19,
1.74,
0.00,
4.30,
2.43,
9.13,
4.58,
4.87,
5.51,
6.41,

0.0085,
0.0085,
0.0085,
0.0085,
0.0085,
0.0085,
0.0085,
0.0085,
0.0085,
0.0085,
0.0085,
0.0085,
0.0085,
0.0085,
0.0085,
0.0085,
0.0085,
0.0085,
0.0085,
0.0085,
0.0085,
0.0085,
0.0538,
0.0538,
0.0538,
0.0538,
0.0538,
0.0538,
0.0538,
0.0538,
0.0538,
0.0538,
0.0538,
0.0538,
0.0538,
0.0538,
0.4856,
0.4856,
0.4856,
2.0296,
2.7385,
2.7385,
2.7385,
5.6494,
5.6494,
6.8042,
12.8904,
15.0851,
16.8290,
16.8290,
21.1252,
23.5530,
32.6847,
37.2628,
42.1303,
47.6415,
54.0515,



869.8, 903.4, 2, 2.63, 4.26, 4.81, 58.8635,
903.4, 938.2, 5, 6.58, 11.30, 13.17, 72.0295,
938.2, 974.4, 4, 5.26, 9.79, 11.87, 83.8946,
974.4, 1012.0, 1, 1.32, 2.53, 3.12, 87.0110,

1012.0, 1051.0, 1, 1.32, 2.76, 3.55, 90.5568,
1051.0, 1091.6, 0, 0.00, 0.00, 0.00, 90.5568,
1091.6, 1133.7, 2, 2.63, 6.67, 9.44, 100.0000,

SPHERICITY TABLE

SPHERICITY,,COUNT,% NUMBER
0.93, 0.93, 2, 2.63,
0.93, 0.93, 1, 1.32,
0.93, 0.94, 4, 5.26,
0.94, 0.94, 1, 1.32,
0.94, 0.94, 2, 2.63,
0.94, 0.95, 5, 6.58,
0.95, 0.95, 6, 7.89,
0.95, 0.95, 5, 6.58,
0.95, 0.95, 3, 3.95,
0.95, 0.96, 2, 2.63,
0.96, 0.96, 4, 5.26,
0.96, 0.96, 9, 11.84,
0.96, 0.97, 4, 5.26,
0.97, 0.97, 3, 3.95,
0.97, 0.97, 4, 5.26,
0.97, 0.98, 3, 3.95,
0.98, 0.98, 6, 7.89,
0.98, 0.98, 3, 3.95,
0.98, 0.99, 2, 2.63,
0.99, 0.99, 2, 2.63,
0.99, 0.99, 0, 0.00,
0.99, 0.99, 0, 0.00,
0.99, 1.00, 0, 0.00,
1.00, 1.00, 5, 6.58,
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