
CONTINUOUS-SPIN ISING FERROMAGNETS

by

GARRETT SMITH SYLVESTER':

B. S. E., Princeton University
1971

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF
PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF
TECHNOLOGY

February, 1976

Signature of Author . ...... ••...
,- Department c( Matheatics

Certified by .- . ....... e .......

.']hesi§ Sup soAsol, ,

Accepted by....................
Chairman, Departmental Committee

" Supported in part by the National Science Foundation under Grants
MPS 75-20638 and MPS 75-21212.

Archives

MAR 9 1976
JuRAS!t

. .*



2

ABSTRACT

of

CONTINUOUS-SPIN ISING FERROMAGNETS

by

GARRETT SMITH SYLVESTER

Submitted to the Department of Mathematics on January 14, 1976
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

We define and analyze the Gibbs measures of continuous-spin

ferromagnetic Ising models. We obtain many inequalities inter-

relating the moments (spin expectations) of these measures. We

investigate the dependence on temperature and magnetic field

parameters, and find that at low temperature the first moment

of the Gibbs measure (the magnetization) is discontinuous in the

magnetic field parameter for all nontrivial models in two or more

dimensions. Thus the appearance of a phase transition is generic:

all nontrivial continuous-spin ferromagnets in at least two dimen-

sions become spontaneously magnetized at sufficiently low temperature.

Thesis Supervisor: Arthur M. Jaffe

Title: Professor of Physics
Harvard University



TABLE OF CONTENTS

page

Chapter I: Introduction 5

Chapter II: Inequalities 12

II.1: Introduction 12

11.2: Inequalities by Duplicate Variables 14

11.3: Discussion 24

11.4: Change of Single-Spin Measure 31

Chapter III: Gaussian Inequalities 37

III.1: Introduction 37

111.2: Proof of Gaussian Inequality 39

Chapter IV: Ursell Functions 44

IV.1: Introduction 44

IV.2: Representations of Ursell Functions 48

IV.3: Signs of Ursell Functions for Ising Ferromagnets 51

IV.4: Miscellaneous Results 59

Technical Appendix: Proof of Lemma IV.3.2 67

Chapter V: Infinite Ising Models 72

V.1: Introduction 72

V.2: The Infinite-Volume Limit 75

V.3: Clustering, Correlation Length, and Long-Range Order 89

V.4: Spontaneous Magnetization 111

V.5: Phase Separation and Breakdown of Translation Symmetry 119

V.6: Applications to Quantum Field Theory 126



TABLE OF CONTENTS (cont'd)

page

Chapter VI: Unsolved Problems and Concluding Remarks 130

Acknowledgements 136

Appendix A: Extensions of Theorem 11.2.6 137

Appendix B: Computational Algorithms for Ursell Functions 144

Appendix C: Transfer Matrices 156

References 171



Chapter I: Introduction

In this thesis we investigate continuous-spin ferromagnetic Ising

models, with principal emphasis on the inequalities they obey and

the remarkable low-temperature phenomena they exhibit. Mathematically,

the study of these models amounts to the analysis of a physically-

motivated class of probability measures, called Gibbs measures, carried

on finite or infinite-dimensional product spaces i.he models we

consider, which are rigorously defined at the close of the introduction,

generalize the original notion of Ising and Lenz [1I] in two ways:

the spin variables 0r may assume any real values with some a priori

probability measure-V instead of. merely assuming the values

+1, and the energy of a configuration of spins may include many-body

terms instead of only two-body terms. Physically, continuous-spin

ferromagnets are of interest not so much because they resemble real

crystals - with our degree of generality this resemblance is tenuous - but

rather because they accurately approximate Euclidean scalar quantum fields

[431 and so provide a simpler structure for developing conjectures and proving

theorems that carry over in the limit to the more difficult models of

quantum field theory. Mathematically, continuous-spin ferromagnets are of

greatest interest for the striking dependence of the moments of the Gibbs

measure on certain parameters representing physical variables such as

temperature and magnetic field strength. One generally expects that the limit

of a naturally-arising convergent sequence of continuous functions is

continuous. By contrast, one of the main theorems in this thesis is a proof

of precisely the opposite: certain moments of the Gibbs measure, which are

defined as limits of sequences of continuous (in fact, real analytic) functions,



are necessarily discontinuous.

We now give a synopsis of our results. Chapters II-IV deal with inequalities

for finite Ising ferromagnets, whose Gibbs measures are defined on finite

products TiR. In Chapter II we introduce the convenient method of

duplicate variables, and use it to give a simple, unified derivation

for continuous-spin ferromagnets of inequalities proved by other methods

in various special cases by Griffiths [17], Griffiths, Hurst, and Sherman [Ih],

Ginibre [1Z], Lebowitz [ZB] Percus (39•, and Ellis and Monroe C8 ]. With

a different technique, we derive an inequality for change of single-spin

measure which will be very useful in our subsequent analysis of low-temperature

phenomena. While some inequalities of this chapter hold for all continuous-

spin Ising ferromagnets, others are restricted in their domain of validity.

Chapter III invokes combinatoric techniques to give a new simplified

proof of a Gaussian-type inequality discovered in its present form by

Newman (36j. In Chapter IV, we combine the method of duplicate variables

with additional combinatoric techniques to investigate the signs of the

Ursell functions un ( generalized cumulants of the Gibbs measure) of spin-½

finite ferromagnetic Ising models. We represent these cumulants as moments

of a measure on a larger space, and use this representation to prove

complete results through order n=6. A reduction formula then gives partial

results for higher orders. We present formulas for the Maclaurin coefficients

of (functions closely related to) the Ursell functions when n<8. Our methods

yield additional inequalities, though we have no application for them

at present. In a related appendix (Appendix B) we describe a computational

algorithm for the evaluation of (functions closely related to) Ursell



functions of all orders, and the results of a computer study using it.

Chapters II-IV include, with one exception, proofs of all major inequalities

for finite ferromagnetic Ising models of which the author is aware. This

exception is the F.K.G. inequality [ 11 ], which we shall only use at one

point in Chapter V. Although our interest lies in models with real-valued

spins, in some cases our results extend to models with vector-valued

spins, and where possible we try to point this out.

With the inequalities of Chapters II-IV serving as the primary investigative

tools, we turn in Chapter V to the study of infinite continuous-spin

Ising ferromagnets. After making some preliminary definitions, we construct

the infinite-volume limit Gibbs measure for a very large class of models

by using C*-algebraic techniques, and we give an easy proof that it has

finite moments in many cases of interest. With these fundamental results

established, we undertake an analysis of three closely-related low-temperature

cooperative phenomena: long-range order, spontaneous magnetization, and

phase separation. We begin with a discussion of the decay of spin correlations

when the separation of two clusters of spins becomes large. For many models,

we show that these correlations must decay to zero for almost all values

of a parameter h representing the influence of an external magnetic field,

and in some instances this set of potential exceptional points actually

reduces further to the single point h=O. In fact, as we next prove, if

h=O and the parameter representing temperature is sufficiently low, then

(nontrivial nearest-neighbor ) models in two or more dimensions do

have all their correlations bounded away from zero: they are long-range

ordered. This is one of our main theorems. To coordinate our results

on the decay of correlations we define the infinite-volume transfer matrix



(for nearest-neighbor models), and characterize the cluster properties

of an Ising ferromagnet in terms of spectral properties of its transfer

matrix. We next consider the phenomenon of spontaneous magnetization

(discontinuity of the moments of the Gibbs measure in the external field

h), and show that it is a consequence of the long-range order previously

established at low temperature. For certain models we combine inequalities

of the previous chapter with an explicit computation by Onsager 1[3) to

estimate the critical temperature; that is, the temperature for the onset

of spontaneous magnetization. We establish the third cooperative phenomenon,

phase separation, as a consequence (in three or more dimensions) of spontaneous

magnetization. The final section of Chapter V treats some of the many

applications to quantum field theory of the inequalities derived in

Chapters II-IV.

In Chapter VI we present some unsolved problems, and make concluding

remarks.

Let us now give some definitions of terms used in the remainder of this

thesis, and some physical motivation for them. A finite continuous-spin

ferromagnetic Ising model is a triple (A.,H,), where:

(1) The set of sites- is a finite set. We associate with each site

iGS a spin variable cEje, and the product WIR is called the

configuration space.

(2) The Hamiltonian H is a polynomial on the configuration space

with negative coefficients. We write

H (Y-)= - (1)

where the numbers JK are called couplings (or bonds), 4(A) is the

set of finite families ("sets" with repeated elements) in.A , and



qK-is by definition the product orK=IT 0o

(The distinction between sets and families is not important for

our purposes, and we shall largely ignore it.)

(3) The single-spin measure 7 is an even Borel probability measure

onjR which decays sufficiently rapidly that if d is the degree

of the polynomial H, then

p(alddp(c co V aQGR. (2)

The linear term -2: q in H is usually thought of as describing the effect

of an external magnetic field, while higher-order terms are considered

to arise from the mutual interaction of the spins. We usually recognize

this distinction by writing ~ in the Hamiltonian instead of -i Ji .

A pair interaction is a Hamiltonian of degree two. In connection with the

decay condition (2) on the single-spin measure we define for d,0

114 Even loreI d pe'o661 vIe -7 1Xý(jlj)diV()<cax. VteJ1R3 (3)

and set

nl 174 (4)

A model (.,H,-v)is called connected if any pair of sites i,jGjA is connected

by a finite chain K , K2 ,''',K ef) with JK '",* ,J'4 0, iEKI, jEK,, and V

The Gibbs measure I of ( ,H,-) is the measure on the configuration

space tk=jT1 defined by

S=E e1(_M))1T A(  EclR measurable; (5)

here i•s •o) is a parameter representing inverse temperature. Note that
this measure favors lower values of H. The normalization factor in (5)

is called the partition function and traditionally denoted by Z:



s1 4expIN( iV0" .(6)

We indicate (thermal) expectations with respect to the Gibbs measure at

inverse temperature P by angular brackets < Hy,)P> , omitting the descriptive

arguments H,) when they are clear from context:

<j;Hv13>z <f>4i = (7)

Physically, the sites . may be thought of as atoms in a crystal, and

the spin variable oj at each site 16A as a classical version of the quantum-

mechanical spin each atom possesses. The single-spin measure describes

the spin probability distribution of a completely isolated atom. A point

0' in the configuration space corresponds to a state of the system,

and H(0') is the energy of that state. Note that the ferromagnetic condition

JK0O causes configurations in which all spins 0j have the same sign to

have generally lower (more negative) energies. If we allow the crystal

to exchange energy (but not mass) with a large heat bath at temperature - ,

it will reach eventual equilibrium. According to the principles of statistical

mechanics, the probability of finding the equilibrium system in some subset

Ec¢] A'- of the configuration space is given by the Gibbs measure (E).

We conclude the introduction by describing our notational conventions.

Chapters are given Roman numerals I, II, etc., while sections within a

chapter have Arabic numerals 1,2, etc. We use the standard decimal notation

to show in which chapter a section appears. Thus, Section 11.3 is the

third section of the second chapter. Important formulas are enumerated

sequentially within a section, the numbering beginning again

when a new section starts. As before, we use the standard decimal convention,

so that formula (IV.2.12) is the twelfth enumerated formula of the second

section in the fourth chapter. Lemmas, propositions, theorems, and corollaries

are similarly numbered within a section. If descriptive arguments of a
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section, formula, lemma, proposition, etc. are omitted in some reference,

by convention they are taken to be the values in effect at the point of

the reference. Thus, if in Section IV.4 we see a reference to Theorem 3.1,

this means Theorem IV.3.1. References to the numbered bibliography are

indicated by square brackets C ].



Chapter II: Inequalities

Section 1: Introduction

In this chapter, taken largely from[ 6 ] , we exploit the method of

duplicate variables to give a simple unified derivation of continuous-

spin Ising ferromagnet inequalities established in various special cases

by Griffiths 11•, Griffiths, Hurst, and Sherman [ V1 1, Ginibre [ IZ 1,

Lebowitz I[ 83, Percus [ 3 1, and Ellis and Monroe 1 8 1, obtaining them for

a large class of single-spin measures. The single-spin measure and the

Hamiltonian for which the inequalities may be proved become more restricted

as the inequality becomes more complex. However, all inequalities hold

for a model with ferromagnetic pair interactions, positive (nonuniform)

external field, and single-spin measure either - 4+2 40, (spin-)

or exp(-P(-r))dc , where P is an even polynomial all of whose coefficients

must be positive except the quadratic, which is arbitrary. (Recent work

by Ellis and Newman[ 1] elegantly relaxes this condition on P: it need

only be an even continuously differentiable function whose derivative

is convex on Od) .) The Percus inequality is akin to the Fortuin-Kasteleyn-

Ginibre inequality [111 in that it holds for arbitrary external field,

though the Hamiltonian is restricted to pair interactions. We exhibit

interrelationships among these inequalities, deriving the Lebowitz correlation

inequality from the Ellis-Monroe inequality in the same way the second

Griffiths inequality may be derived from the Ginibre inequality. The

G.H.S. inequality for concavity of magnetization is a corollary of the

Lebowitz correlation inequality, as is an inequality which at zero external

field shows the fourth Ursell function u4 is negative. These basic results

are all proved in Section 2. In Section 3 we comment on the restrictions



in the hypotheses of the theorems proved in Section 2 and mention various

generalizations. The final section is devoted to an inequality for change

of single-spin measure, which will be useful in our later analysis of

low-temperature cooperative phenomena. Combining this inequality with

a result of Griffiths [\81, we compare the spin expectations of a

continuous-spin ferromagnet whose single-spin measure is absolutely

continuous near zero with those of a related model having the same Hamiltonian,

whose single-spin measure is concentrated at just two points.

Applications of the inequalities proved in this chapter are given

in Chapter V.



Section 11.2: Inequalities by Duplicate Variables

We now state and prove the inequalities for ferromagnetic Ising models

mentioned in Section 1. The proofs employ the method of duplicate variables.

Consider a finite ferromagnetic Ising model (AI,H,V ). (See the final

part of Chapter 1 for notation and definitions.) It is convenient to take

2= 1>)..., N3
so that the spin variables are y, 2I,"',.-N . Construct the doubled system

(LVA,HH,v ), where AVJ~ is the disjoint union of two copies of J ,

the 2N spin variables are O1),i,. I -N,2 , ) i ... )N , and the Hamiltonian

HeH is H(oi,OQz>, O N) + H('r1T2>;,r). Thus, the doubled system consists

of two copies of the original system that don't interact with each other.

Define the transformed variables

Construct also a redoubled system (H V.Y.VAV, H H$H( H, 7 ) consisting

of four non-interacting copies of the original, with spins IO>, . N ,

/" It* ) / / ',1 , , and Hamiltonian H(j) , , 0 ) +

H(TZ,, 'N ) + H(dj•,e, ) + H(t',,)"14). As before, define

Now set

Note the reversal of primes between 0(, and ,6

With this notation we have the following theorems:



Theorem 1: (First Griffiths Inequality) Let A G'o.)be a family of sites

in a finite ferromagnetic Ising model (A ,H,'v) with Hamiltonian

[=-Z 7- J( JTo

and arbitrary (symmetric) single-spin measure TA.Then

<01 O. (4)

Theorem 2: (Ginibre Inequality) Let A,BCo 0(l)be families of sites

in a finite ferromagnetic Ising model with Hamiltonian

and arbitrary (symmetric) single-spin measureVE fJ. Then

Corollary 3: (Second Griffiths Inequality) Let A,BES(.k) be families

of sites in the model of Theorem 2. Then

Theorem 4: (Percus Inequality) Let AE o0 () be a family of sites in a

finite ferromagnetic Ising model (.• ,,'1V) with pair Hamiltonian

- -T - i C i 0 and h. arbitrary,

and arbitrary (symmetric) single-spin measure 7VEI. Then



Corollary 5: Let i,j be sites in the model of Theorem 4. Then

Theorem 6: (Ellis-Monroe Inequality) Let A,B,C,DG Vo(.) be families

of sites in a finite ferromagnetic Ising model (A,H,-7) with pair

Hamiltonian

and single-spin measure either discrete and of the form

(spin ), or continuous and of the form

d (9)

where P is an even polynomial whose leading coefficient is positive, whose

quadratic and constant coefficients are arbitrary, and whose remaining

coefficients are nonnegative. (Situations where coefficients of P other

than the quadratic may be negative are discussed in Appendix A.) Then

Corollary 7: (Lebowitz Correlation Inequality) Let A,BECV o() be families

of sites in the model of Theorem 6. Then

-'A "--I <"B> (11a)



Corollary 8: (Griffiths-Hurst-Sherman Inequality) Let i,j,k be sites in

the model of Theorem 6. Then

Corollary 9: Let i,j,k,l be sites in the model of Theorem 6. Then

<(7ic· O, O<9~> -LT"j0><Q0> - <i a _k , + Z, (13)

The proofs of Theorems 1,2, and 6 all proceed similarly, by reduction

to the case of a model with a single site and zero external field. The

inverse temperature P is inessential and we set it to one. We must show
that a thermal expectation

<f>, Se RTJ/dv /S e TdV
is nonnegative. The normalization factor (partition function) in the

denominator is positive, so we ignore it. We first verify that in the trans-

formed variables the Hamiltonian is a polynomial with nonpositive coefficients.

Expanding exp(-H) in its Taylor series, we obtain a sum with nonnegative

coefficients of integrals of products of the transformed variables against

the product of the single-spin measures. Since each integral factors over

the sites, it suffices to show that for a single site the integral of any

product of the transformed variables is nonnegative; that is, that the

theorem holds for one-site models with zero external field. This is what

we do. In the proof of Theorem 4 the reduction cannot proceed quite as

far, but essentially the same method prevails. This reduction procedure

makes it clear that in all the results of this section we could allow

a different single-spin measure at each site, though such models are



not commonly studied. Corollary 7 follows from Theorem 6 just as Corollary 3

follows from Theorem 2. Corollary 5 and Corollaries 8,9 are important

special cases of Theorem 4 and Corollary 7.

Proofs:

Theorem 1 (Prf):

We want to show

A K A)JK) K ld (a)dao0 (14)

By expanding the exponential in its Taylor series and factoring the integrals

over the sites as described in the previous paragraph, we reduce the

problem to showing

S J-V (a-) 0 V . (15)

By the symmetry of V this vanishes when n is odd, and when n is even

the integrand is nonnegative.

QED
Theorem 2 (Prf):

In terms of the transformed variables q and t the Hamiltonian H( ) + H(T)

is

JK )K + ( ) (16)

This is a polynomial in the t's and q's with nonpositive coefficients,

because when we expand the product TK(tk-k )  any negative term which

appears is cancelled by the corresponding term from the expansion of

(t•+c . Now by expanding the exponential and factoring the integrals

over the sites we reduce the problem to showing



d(17)

This vanishes by symmetry unless m and n are both even, in which case

the integrand is nonnegative.
QED

Theorem 4 (Prf):

The transformation (1) is orthogonal, so in terms of the transformed

variables q and t the Hamiltonian H(Oy) + H(r) is

We want to show

C% exj ('.qZeZ g(\JItit. 4- i t) FZdvh(2)'dv(6ir,)t (19)

By expanding the first exponential exp(( i •( q.) we see it suffices to

show

> t 0 (20)

for all possible exponents nk. But this integral vanishes by symmetry

unless all the nk are even, in which case the integrand is positive.

Theorem 6(Prf):

The transformation (3) is orthogonal, so in terms of the transformed

variables B,(V the Hamiltonian H(6) + H(')) + H(0') + H(Z') is

Since this is a polynomial with nonpositive coefficients, by expanding(21)

Since this is a polynomial with nonpositive coefficients, by expanding



the exponential and factoring the integrals over the sites we reduce the

problem to showing

d- ir(S ndvd o)d0 k)IAIA. (22)

By symmetry this vanishes unless k, ,m,n all have the same parity.

When this parity is even the integrand is nonnegative, so we restrict

our further attention to the case of odd parity. At this point we distinguish

between discrete and continuous spins.

In the discrete case it suffices to consider spin ½ spins,

-dv(&L)= t((o i) .-(0--)) d( b) (23)

for since our transformation of variables is linear the Griffiths "analog

system" method [118] may be applied to generate the higher-spin results

from the spin ½ case. (The analog system method represents a higher spin

by a sum of spin ½ spins in a suitably enlarged model.) Because the exponents

k, ,m,n are all odd we may factor out b :

0( S = %flc j b . (24)

The first factor is nonnegative since it has even exponents. The second

factor is also nonnegative; since Z -=2 =C2 = - for spin ½ spins we

find

In the continuous case our problem is to show

oi•c " eX(- ) -)-PW -) P C)) d o- dt 'j' > 0 (26)

VR'



for odd k,i ,m,n. We claim that when P(cy) +*..+P(PV) is expressed in

terms of odP3,) it has the special form

P(, Q) (z, V 0)) (27)

where Q and R are polynomials with nonnegative coefficients, except

possibly for the coefficients of 20(2 ) ) , in Q. Temporarily accepting

this claim, and recalling that transformation (3) is orthogonal, the

integral (26) becomes

- '  [ S'RA" s} - ( "s•)] A (28)

Replacing o( by-o( and averaging gives

k i 91 Yin-I'1nj [cO '8 siný (4?/ R(o(m..)b9)p( 1 [@]Q(0 )6))Jd(2IS4 8, (29)

The first factor in (29) is nonnegative since it has even exponents; the

second is nonnegative because R(o( ,,, , ))) 0; the third is obviously

nonnegative.

It remains to verify claim (27). We need only consider the case of a

monomial P(X) = X2p. Expanding with the multinomial theorem gives

4c' 1 ) (04 8 Y (-a) + 4 4C]s Q b

(30)

The coefficient of d9 g d vanishes unless a,b,c,d all have the same

parity; it is positive when this parity is even; and, it is negative

when the parity is odd. This observation immediately yields claim (27).

QED



Corollary 3 (Prf):

We want to show

Using the doubled system we have

CA <BA >< ><6B-ý> = <CoAO- Oh Bet8>

4 r(31)

This is the expectation of a polynomial in the q's and t's which may be

shown to have nonnegative coefficients just as (16) was shown to have non-

positive coefficients. By Theorem 2 this expectation is nonnegative.

QED

Corollary 5 (Prf):

Corollary 5 is a special case of Theorem 4:

0 <(rim, (32)

Corollary 7 (Prf):

We want to show

<Ui tAetB eKav 0

<tAXI <tA >0.
Using the redoubled system we have

<fA'Sý-<'Aý\19/ \(AfB MB) A - - C'• • (33a)



)z/-K )[ - (33b)

OX113ý-<tA113ý:<tA g BtA16)=< (! A- (33c)

In each case the right-hand side is the expectation of a polynomial in oN) 6

with nonnegative coefficients. By Theorem 6, these expectations are nonnegative.

QED

Corollary 8 (Prf):

As noted by Lebowitz, Corollary 8 is a special case of Corollary 71281:

QED
Corollary 9 (Prf):

Corollary 9 is obtained by symmetrizing the special case

(tt'>-<t1YK~ (35)

of Corollary 7.



Section 11.3: Discussion

In this section we discuss the range of validity of the theorems of

Section 2. We indicate generalizations where we can, and illustrate by

example the role played by various restrictive hypotheses.

Theorem 2.1 states that for any family of sites A in a suitable model,

(<CA) o>, O. (1)

The same proof shows that the spins in the product 0 may be replaced

by more general functions. Let i:IR-)J ~l be a set of (measurable)

functions such that ,([OP0))c[O)cD) and F.i has definite parity (is

either even or odd). Define

F, = IT
Then

KFA )O . (2)

Also, note that Theorem 2.1 generalizes easily to ferromagnetic models

with vector spins taking values in In , provided that the single-spin

measure V is invariant under the n coordinate reflections.

Theorem 2.2 states that for any families of sites A,B in a suitable

model,

KAt8»0. (3)

As remarked by Nelson 1351, the spins in the product q t may be replaced
Ay more general functions. Let B

by more general functions. Let Fi be a set of functions



satisfying the restrictions of the preceding paragraph ( invariance of

[0)~C) ; definite parity) and the additional restriction of monotone increase

on 1[0 ) . Define

F , iE• (4)

and if Ke# (A) set

Then

AF<QATý> z , (5)

which has the immediate corollary

We state this as a proposition:

Proposition 1 (Nelson): Let (A.,H,-v) be an Ising ferromagnet with Hamiltonian

and arbitrary (symmetric) single-spin measure V. Let i:A-I1)Eit ,
•.R-~ ,i be (exponentially bounded measurable) functions such that
each Fi,Gi has definite parity, leaves the interval [0) o) invariant,

and is monotone increasing there. Then

A ()JG,(,0 <T )C))<I :(o,> f(7)



This extension of the second Griffiths inequality will be useful in the

construction in Chapter V of the infinite-volume limit by virtue of its

monotonicity corollary,

Corollary 2: Let (Jt,H,-v) be an Ising ferromagnet with Hamiltonian

_j 'Z :1 K (rK (8)

let .Ack, and let (~iJr t) be the Ising ferromagnet with Hamiltonian

Hk (9)

(same JK as in (8); the sum is just restricted to families in(A~f~ ). If

fFi,:•R-ATRi/J is a set of functions obeying the hypothesis of Proposition 1,

then

K F(o<); ,ij> F< 7F'.)H> (10)

In particular,

allA Ae A') (11)

Proof:

By Proposition 1,

< F<1 hF('T<Fo.1 -) o v $E rj().

Thus, if we increase from zero to their final values all coupling constants

JK appearing in (8) but not (9), (•,,•qr)i \ must increase to( Ei)* H>).

Theorem 2.2 and Corollary 2.3 only have been generalized to vector spin

models having spins in two (plane rotor It1] ) and three (Heisenberg ferromagnet



[26]) dimensions.

Theorem 2.4 and Corollary 2.5 generalize to products of functions of

the type for which Theorem 2.2 and Corollary 2.3 are valid. The hypotheses

of Theorem 2.4 and Corollary 2.5 are somewhat unusual in that the single-

spin measure is arbitrary while the Hamiltonian is restricted to pair

interactions. To see that this restriction is valid, note that Corollary

2.5 fails for a spin ½ model with three sites 1i,2,3ý and Hamiltonian

S0-)0 o0- , + o. (12)

(We find

< oQ= Zcr)> (13)

but

<•),:-i,,ct. ia•<) . (14)

Theorem 2.6 states that if A,B,C,D are families of sites in a suitable

model, then

<1A PS' ,(15)

In contrast to the previous results, the same method of proof does not

seem to admit a more general class of functions in the product. (For

example, it is easy to see that if F:--ýR is any C2 function such that

[F(x,1-F(x2)- F(Y3) + F(X4)].[x,-x1 -x3+ x4]' 0 V (xt..,X4~

which is a key inequality in the proof of Theorem 2.6, then

ýOo= QX Q>O -



that is, F must be of the form already considered.)

The hypothesis of Theorem 2.6 contains restrictions on both the Hamiltonian

and the single-spin measure. Example 7.3 of 13 ] shows that the restriction

of the Hamiltonian to pair interactions is needed. However, the constraint

on the single-spin measure is more severe than necessary. A certain

polynomial R(o(, .,, ,9 ) arises naturally from the single-spin polynomial

P, and for the method of proof to work R(c(2, ,,0 ,9 ) must be nonnegative.

The hypothesis we made ensured this by causing R to have positive coefficients.

Clearly, negative coefficients in P, and hence R, are permitted provided

the positive coefficients are large enough to ensure R(o(2, *#, t ) 0.

Restrictions on the coefficients of P were studied from this viewpoint

in the appendix of [46], reproduced here for convenience as Appendix A.

After this work was done, an elegant criterion was obtained by Ellis and

Newman [ J. They show that Theorem 2.6 and its corollaries hold provided

P is an even continuously differentiable function whose first derivative

is convex on 10,0)). Theorem 2.6 is also valid for single-spin measures

obtained by limiting procedures from those explicitly permitted. For

example, Lebesgue measure on the interval E-bb6 may be obtained as

the limit

Zu /Ubi (6-)d86-= IOM earHSAr . (16)

(Here of course is the characteristic function of the intervalEbb.)

However, some constraint on the single-spin measure is necessary. For example,

Corollary 2.9 fails for a one-site model with zero external field having



single-spin measure

S+ o<a< (17)

since

<o-4> _3KP2z? Q (LL-4i) (18)

It also fails for a one-site model having single-spin measure exp(-P(a-))da;

where

+P~-8" Z2 1) 4 c ), ac<4 (19)

and q is sufficiently large, because as %->o this distribution converges

to the preceding one.

Finally, we remark that Theorem 2.6 may be reinterpreted as a theorem

about plane rotors. Specifically, we find

Proposition 3: Let A,B,C,DE (J1) be families of sites in a ferromagnetic

plane rotor (A ,H, 7 )with Hamiltonian

=-Z K I+J(, J ,3 J o (20)

of degree d and single-spin measureV7 on R2 which is invariant under

the two coordinate reflections and is either

(i) concentrated on the unit circle, or

(ii) of the form

d j(ax,..)= .. d•() N )( 21)



where P is a polynomial all of whose coefficients are nonnegative, except

for those of (x )2  , ( Y)2  , which are arbitrary. Construct a duplicate

system using primed variables, and define

yi 1 (22)

Then

<O9 vsA 8, (23)

Corollary 4: Let A,B,C,D be families of sites in the plane rotor of

Theorem 3. Then

<' -• -<-> /<(r 0 (24a)

<(Y -\ _<Y xq> - > (24b)

<0"0 -<0 ><" o. (24c)

Related inequalities for vector spin models are given in [ Z1 ,[l 4 .



Section 11.4: Change of Single-Spin Measure

This section, taken mainly from (Z ], is devoted to an inequality

for change of single-spin measure. We may view this inequality as a

mathematical rendering of the physical notion that the moments of the

Gibbs measure (<) decrease when the single-spin measure V7 becomes

more concentrated near the origin. By combining the inequality with

a result of Griffiths C181, we compare spin expectations of a continuous-

spin ferromagnet whose single-spin measure is absolutely continuous

near zero with those of a related model whose single-spin measure is

concentrated at just two points.Chapter V contains an application of

the inequality to the study of phase transitions.

Theorem 1: Let (-A,H,V ) be a finite ferromagnetic Ising model, let f

be a nonnegative even function monotonically decreasing on [COO) which

is identically 1 on [-CCI) > C 0, and let AIV be an even measure supported

in [-C,C] which is normalized such that

c= v+ .v (1)

is a probability measure:

(aeý + --7) 1T. (2)

Then the moments of the Gibbs measure decrease when V is replaced by C :

Proof:

We show that in an Ising model generalized so that the single-spin



measures are permitted to be different at different sites, the replacement

of V by -c at a single site causes the spin expectations <A) to decrease.

The theorem then follows by successively applying this result to each

site in the model.

Consider a ferromagnet on A with Hamiltonian H and single-spin

measure 'V at each site iEA. Select a distinguished site lEA, at which

we assume the single-spin measure is-V . We want to show

7c e hl)) • O e-v )T ,) (4)

where of course Zc and Z are the partition functions

We rewrite the expectations in (4) to display the dependence on (5)

We rewrite the expectations in (4) to display the dependence on YV,-V

KOAL;V>'S< do)

where <S7~> er and PC are defined by

-z I T, Ir,=s H() T J-v (c))
igS- 01:+S

et-1 iZ 0=s

dp-11-'t~~d ~ ts) 5= j T(S) - -1 V

(6)

(7)

(8)

(9)

D) S(s)

clpj 7 .(s)= jdy-(5) - (o0) (s )
(10)

The functions Z(s),( < S  and the measures P ,p have simple interpretations:

Z(s) and <() s are the partition function and expectation of 0 in



the model where the measure -V, at site 1 is [("45)+ . (-S3 , and

p, pc are the density measures of the random variable OI in the

models where the single-spin measures at site 1 are V , 7C respectively.

Note that by the Griffiths inequalities (Theorem 2.1 and Corollary 2.3),

in the region of integration O[XOM) we consider in (6) and (7), both

Z(s) and <T are nonnegative increasing functions of s.

Let fl , )LZ be finite measures on [0)cO) of equal total mass, and let

ICO [0o) be a finite interval containing 0 (either open or closed at the

right endpoint). Suppose the inequalities

I(E)< (E) V measurable EcI (11)

E measurable EcY =[0,co)-I (12)

hold. Then if F:[Oc)--4[0oo0) is a nonnegative monotone increasing function,

F(s)dA(s), F(s)dd,(s), (13)
Lo.o) Oo')

because

0 . (14)

From (13) we conclude immediately that

z7 I1(5s)dj-(s) '> I tý)dyfs ) = ) (15)

[Dim) [ope)
A A A A

since by (1) and (10), 17 on [0,CJ and YŽ on (Co) .

Let I be the interval

1= Ise0op3):1(s)> > /Z , (16)



which contains COf] since by (15) Zc/Z l. We claim that Pcp on I

and ~P~ on I. This is easily verified: if Ec I then

by (16), while if Ec I then

P (E>A (ES

A (S ) (18)

again by (16). If we now apply (13) to the integral i 0>d(S)p)

we find

100) [0o'0

QED

Loosely speaking, Theorem 1 says that if we cut off the single-spin

measure by multiplying it by an even nonnegative function which is one

on some interval [-C)C] and monotone decreasing on the right half-line,

then redistributing the probability mass eliminated by the cutoff in

any (symmetric) way in [-CC] causes the expectations (<•~ to decrease.

As a special case, suppose the single-spin measure V of (it,H,,V) is

absolutely continuous with respect to Lebesgue measure in some interval

[-dd) ,d>0, and that its Radon-Nikodym derivative has finite essential

supremum there. Then, as we see in Figure 1, by cutting off 'V completely

outside some sufficiently small interval [-TT7 c [-j )J, and properly
redistributing the eliminated probability mass inside [-T)T1 , we may



reshape 'T7 into Lebesgue measure (Or [--TTJ
IT

restricted to L-T) T].

HatcAed area= CrosshatcWd area

Figure 1

The largest possible T is given by

T= sitJ)Idd : A. C5 S

For tel? let bt be the two-point measure

A result of Griffiths t 18 shows that if (A,$, ,d-[-T)T7 )

(20)

(21)

is a ferro-

magnet with arbitrary polynomial Hamiltonian and Lebesgue single-spin

measure, then

)Ac .(it). (22)
Thus, with our choice (20) of T,

Thus, with our choice (20) of T,

<o; I~bT/Z>•K:O-Ajy7> A 6 ý. A).(23)

We state this inequality as a proposition:

Proposition 2: Let (4,H,-V) be a finite Ising ferromagnet such that

the single-spin measure -Y is absolutely continuous with respect to



Lebesgue measure on some interval [-dd1 , d>O, and has essentially

bounded Radon-Nikodym derivative there. Let T = s.Vt [4d]:zt-e]•0r I 14 B
and let bt be the two-point measure defined by (21). Then for all

families A E()(A),

<a,- ; H. )f3>( <A 4> (24)

Finally, we remark that Theorem 1 also holds in the case where the spins

in the product 0 are replaced by more general functions of the type

considered in Proposition 3.1. In addition, the proof of Theorem 1 goes

through with minor modifications to give an analogous result for

plane rotors.



Chapter III: Gaussian Inequalities

Section 1: Introduction

In this short chapter, taken largely from [4E , we use combinatoric

methods to prove an inequality bounding expectations of products of many

spins by sums of products of simpler expectations. As a special case of

a more general result, we show that the higher moments of the Gibbs measure

of a finite Ising ferromagnet (A.,H,b) with spin ½ spins (b=~-S(÷`l( ~- •]) ),

a pair Hamiltonian, and zero external field are bounded in terms of the

covariance of L :

Here G is the set of all partitions 9 of A into pairs £k,k' .
Inequality (1) is called a Gaussian inequality because the right-hand side

"-TI < O > is the expectation of T0 with respect to a Gaussian

measure on A having mean zero and the same covariance 3o'CN, N~bH)
as the Gibbs measure of (J,H,b). It is closely related to Corollary 11.2.7,

and may indeed follow from Theorem 11.2.6, though this is not presently

known. The Griffiths "analog system" method [ 18 (described in Section 11.2)

shows that in addition to spin ½ models,(1) holds for ferromagnets (A ,H,v)

whose single-spin measure V may be approximated by spin ½ models, including

h= T 4-TJTJ ([18 ]i LeLesue Meaoure on E-T)TD) (2b)

vM·op-a~b)(aoS~~xpa4~b s)J-/jp(= s)s ) cto ([431) (2c)
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Inequality (1) was discovered in its present form by Newman [3O, though

a special case was established much earlier by Khintchine [ 4]. The proof

given here is similar in spirit to that of Newman, but conceptually and

technically simpler.

In Section 2 we prove the Gaussian (or Khintchine) inequality, comment

on the roles played by various hypotheses in it, and mention possible

improvements.



Section 2: Proof of Gaussian Inequality

We derive the Gaussian inequality from a more general result. Let us

first define admissibility. Fix a finite family A of even cardinality, and

use to denote complementation in A. A collectionv of even subfamilies

of A is called admissible if and only if every partition ofA into pairs

is a refinement of some two-element partition B,B with BEt . For

example, an admissible partition of A = 1,2,3,41 is = 1 t,2, 41,33,

Theorem l:Let A be an even family of sites in a finite ferromagnetic

Ising model (AJ,H,17) with pair Hamiltonian

and single-spin measure-V of the form

ii i •(P+d+" 
(la)

Lr(0 = -T T (1b)

Y• vo)exp(-aU1 bO-)/Sex -¾bsg)s • > (ic)

If a collection- of subfamilies of A is admissible, then

Ko r> • Z <~>(2)

Proof:

By the "analog system" method [ 18 ]it suffices to prove Theorem 1 for

the simplest measure of the form (1), namely



Furthermore, the "ghost spin" method of Griffiths I [1], which creates the

effect of an external field by coupling to an extra "ghost" spin, permits

us to assume the magnetic field hi is zero. As a final simplification,

we reduce to the case when the family A is a set (all members distinct).

If kl=k2 are members of A, let

in abusive notation. We may assume without loss of generality that kl ,k2'

always lies in B, not B. With this assumption, define

Then ) is admissible with respect to I=A-Jkl,k2 . Since >=(r and

A 

A

this reduction procedure allows us to suppose that all members of A are distinct.

With these simplifications in hand, we turn to the body of the proof.

We claim that all derivatives with respect to coupling constants J..

of Z2(<~0r - '~O ) >) are nonpositive when evaluated at zero coupling,
and hence throughout the ferromagnetic region J. i 0. It is convenient

to represent a differential operator in the coupling

constants by a graph P . The vertices of 1 are sites in the model, and

for each derivative --. appearing in D we place an edge between vertices

(sites) i and j. Sites with no incident edges are then suppressed. For

example, the differential operator a would be represented



by the graph

1

Figure 1.

To simplify the notation, given a family of sites K we write (K] for

Ke•J I ) and 1'P[K] for the action of the derivative associated with

the graph T on JOe-d•bH(&). Finally, define the (z reduced) boundary

a of a graph I to be the set of all vertices of ' having an odd number

of incident edges.

With this notation our claim becomes

T' 3 0 (6)

for all derivative graphs P , and is a consequence of the following three

statements.

(1) T*•(•RA)L and T* ([]BI[N) I  both vanish unless aT=A
(2) If a*=A then there exists a subgraph G of and a set Ba~with G=B .

(3) G'(1 ]lA -[ '])]=0 soT'( }[A]-IBB 1)
Since the remaining terms on the left of inequality (6) are manifestly

negative, this cancellation verifies the claim.

Statement (1) is obvious, since we are dealing with spin ½ spins.

Statement (2) is a straightforward induction. Since ~T'A , given a site

kE A there exists a site k't A connected with k by some path g in' .



Upon removing k and k' from A and I from _ , we see that by repeating

the argument we may produce a partition of A into pacirs lk,k'v connected

inm by edge-disjoint paths I . Since $ is admissible there exists BE•

which is a union of some of these pairs; for G we just take the paths

connecting them.

Statement (3) is a simple calculation. Using A for symmetric difference

we find

since t--Iz

Corollary 2: Let A be

of Theorem 1, and let

=
an ( [A]i)=A- (&G. []) (AG.

and (-c) G, ) A t 0
(7)

QED

a family of sites with even cardinality in the model

be the set of all partitions of A into pairs. Then

, E TT I<0 (8)

Proof:

This corollary is immediate from successive applications of Theorem 1.

Note that for a family of jointly Gaussian random variables with mean

zero, Corollary 2 is an equality. In this sense, it is a best-possible

result. However, Corollary 11.2.9, which states that

<ai 0' K < ( r > 4'- <0 G- +<Coi- 0ýoo<a - Z <ojýý

Adý, (A))



makes it clear that Corollary 2 may be improved for nonzero external field.

Unfortunately, the proofs of Corollary 11.2.9 and Corollary 2 are dissimilar.

The former uses duplicate variables, while the latter is combinatoric

in nature. A combinatoric proof of Corollary 11.2.9 might be valuable,

and could lead to a new family of correlation inequalities.

Finally, we remark that some restriction on the Hamiltonian in Theorem 1

is necessary, because Corollary 2 fails for the four-site model (*,H,b),

where

(9)

This is because the corollary demands that

but computing explicitly we find

<C;u1Xo o-7* 0 <o4o-> +0$Y3o $o(c41o (11)

and

in contradiction to (10).

Applications of Theorem 1 and Corollary 2 are given in Chapter V.



Chapter IV: Ursell Functions

Section 1: Introduction

In this chapter, taken largely from [411, we use the method of duplicate

variables already exploited in Chapter II to study the Ursell functions

of finite ferromagnetic Ising models with spin 1 spins and pair interactions.

Let us recall the definition of Ursell functions. The Ursell function

un(O ,n..,0) of a family ai3 of n random variables may be defined by

means of a generating function as

Ion (..(eP[f .oi1) (1)

Here is the expectation integral; we assume the necessary expectations

are finite. The Ursell function may be defined recursively by

IT '11PI FO.) (2)

Here U.L(jI I) is the set of partitions of 1,' ,,n?. A set P in a partition

Oe1 * j" ) has elements pa'pb, etc., and IeP denotes the cardinality

of P. Finally, u(• ,n ,n) may be defined explicitly by

Combinatorially, the Ursell functions are related to expectations in the

same way that cumulants are related to moments and connected Green's functions

(truncated vacuum expectation values) are related to Green's functions

(vacuum expectation values). As examples, we have

UJ.,(o = e(03 ) (4a)



Also, if the family CT qC~ 4 has even symmetry (that is, the

expectation of the product of an odd number of '>5 is zero), we have

U 0l( ,) - a-) (4d)

In Section 2 we describe and investigate representations involving

duplicate variables for the Ursell function of a general family of random

variables Jj( . Let 03 , cE O,1, .',n-1- , be a collection of n independent

but identically distributed copies of the family •(ji , let W0 be a

primitive nt root of unity, and define

n-I0
o(oO

We shall find that

(6)

a result previously obtained in another way by Cartier [4 . Thus we

represent an Ursell function as an expectation. In the event that the

family Qi30 has even symmetry and n is even we can cut the number of

copies in half.(Of course, if lori has even symmetry and n is odd, un(~j,... )op)

vanishes.) Defining

tiL- OI , (7)

•--0

(5)

we find the simplified representation

U'67. ", -) = i E Rt.n
) j tU)

(8)

(The variable t introduced here has no relation to the variable t introduced

u,$n S ~j~s·s,



in transformation (11.2.1)) We conclude the section by demonstrating a

method to produce additional representations.

In Section 3 we use the general results of Section 2 to study the

even Ursell functions of finite ferromagnetic Ising models with spin ½

spins, pair interactions, and zero external field. It has been conjectured

that these Ursell functions obey the inequality

We have seen that this conjecture is correct for n=2 and n=4

(Theorem 11.2.1; Corollaries 11.2.9, 111.2.2). In a few very simple models

it is known for all n [40,421, essentially by explicit calculation. Using

the representation (8) we prove here that in addition to n=2,4 inequality (9)

holds for n=6. (We actually establish the stronger result that all the

coefficients (-i B • Z tn(ik)...jk) of the Maclaurin

expansion of Z un in the couplings Jij are nonnegative for n=2,4,and 6.)

Other independent proofs that (9) is valid for n=6 recently have been

given by Percus [313 and Cartier (unpublished). We use combinatoric methods

to derive a reduction formula for Ursell functions with repeated arguments.

This allows us to conclude that conjecture (9) holds for arbitrary n

provided the spin arguments of the Ursell function are selected from

at most seven distinct sites. We finish Section 3 by noting some additional

inequalities which follow from the methods we have developed. Although

our results are derived explicitly for models with spin ½ spins, by the

"analog system" method of C183 they extend immediately to the more general

single-spin measures (I1.1.2) of the preceding chapter.



Section 4 investigates in more detail the results of Section 3. We

establish a graphical notation for the derivatives of U lLtn with respect

to couplings, and give formulas for the evaluation of these graphs when

n=4,6,and 8. The formulas make clear why our method of proof works for

n=2,4,6 but is inadequate for higher n. We present partial results showing

that derivatives of Ut, which are sufficiently simple in a graphical

sense have the anticipated sign. We conclude with the asymptotic result

that if all couplings Jij are nonzero and the inverse temperature P is

sufficiently small or sufficiently large, then the conjectured inequalities

hold. This result, however, is not uniform in the order n or the system

size.

In Appendix B we describe algorithms for calculating the derivatives

of n/ Un . We tabulate the results of a computer study using these

algorithms on derivatives not controlled by the methods of Sections 3

and 4; they all have the expected sign. The study, however, is indicative

but not exhaustive. This is because the long running time for the evaluation

of even a moderately complex derivative - on the order of an hour - made

a thorough study impractical.



Section IV.2: Representations of Ursell Functions

We describe and analyze representations for the Ursell function of

a family of random variables aiO , ) lt,nn . These representations

employ independent but identically distributed copies of the original

family. Let C , 0(E ý0,1,..,c3 , be (c+l) such independent copies of

the family ¶73@ , each copy having the same joint distributions as 01 .

Given a set of coefficients S eC we may define a new family of random
C

variables Isi3 i . by s i = s ic( . We shall see that up to

a simple factor the family JsiJ has the same Ursell function as the

original family JCT3 . By judicious choice of the transformation coefficients

Sia we may cause all but the leading term in the Ursell function of the

family Jsi} to vanish, thereby transforming an Ursell function into an

expectation. In the event that the family 0O} has an even symmetry the

representation simplifies, the number of copies employed being halved.

To exhibit the proportionality between the Ursell functions of os

and sSi we recall that if a family of random variables may be split into

two mutually independent subfamilies, its Ursell function vanishes. ( This

is immediate from definition (1.1) because the expectation factors.) Thus,

since only those terms for which ,=2= o '" = survive.

Next we give a specific choice for the transformation coefficients

Si( such that u (S, ,.'S n) = (S,S 2 .. Sn). Take n copies of the original

family , and for choose , being a primitive nthoot of

unity. Thus we have



n-1

SjZ• Co"( C  (2)
o(=0

We claim that E (S, .Sk) = 0 unless k o mod(n). In establishing this

it is convenient to regard the superscripts o( as running through the

elements of N. Notice that E •o~ ' .. Cl k) is unaltered if we subtract

(in Zn) the same constant P n from each o( . Thus,

(3)

n-1
unless 6_0 M6od(), since 7ok= 0 unless W0 w1odln) .with this

o=0
choice of variables we have

n •(SS "Si.) (4)

It may happen that the family 0~\3 has even symmetry; that is, the

expectation of any product of an odd number of CT s is zero. In this case

a simpler representation involving only 1 copies of the family 0?Z

is possible. (We take n even since for n odd by symmetry un(O , >'')o)=0.)

Let

= T_ , (5)
CO:0



where again CO is a primitive nth root of unity. To apply the preceding

argument to show (ti t2"'tk) vanishes unless k 0 od(h' we note that

the superscripts q essentially may be regarded as elements of jI/ because

the ambiguity in the definition of W(0 '"'+ k  is obviated by the even

symmetry of the family l* . Thus with even symmetry we find

Finally, we remark that if one chooses Si,= W TF , 6iE4 , only those

terms i ~ (T)~ ~~ in the definition (1.3) of un(S1,.. ,Sn) survive which

satisfy the condition O •i 0 Mod(nP V Pe~. By varying the f., different

representations for un(O , n ,' ) may be obtained. For example, the rep-

resentations above have f. = 1 V i, and only the leading term survives.

On the other hand, with even symmetry by choosing 1- I==0 and ;3= 4= 2

two terms survive,and we recover the transformation (11.2.1) and the

representation (11.2.35) of Chapter II.



Section IV.3: Signs of Ursell Functions for Ising Ferromagnets

We employ the representation (2.6) to analyze the Ursell functions

un of a finite ferromagnetic Ising model (A,H,b) having spin ½ spins

and pair Hamiltonian

with zero external field. Construct for each even n the enlarged model

(V•. A, H ,b) consisting of I non-interacting copies of the original

model (A,H,b): the set of sites V, JL is just the disjoint union of n/z

copies ofA , and if we denote the spin at site i in the C- copy by 0

n/
the Hamiltonian eN is

Extend the definition (2.5) of the variables t. by setting

1 n-1

Thus what we called t. in (2.5) is t i here. Note that (n)* c-
1 1 t -

For o(E6)3,5),5 b and 3E6O(I) "-(1 the matrix l'W 1 is unitary.

Thus,

1 in th t 5i (2)

and in the t-variables the representation (2.6) becomes

Lt J Tr i (3)
n 17f ~··t~ ct~t id ' A 'd



where we follow customary usage and write Tr(*) for (.)db. The

derivative of (3) with respect to coupling constants ,J, 1 is

In order to show that all these derivatives have a certain sign when evaluated

at arbitrary J, ,> 0 it suffices to show they all have this sign when the

couplings J.. are set to zero, and this is what we do for n=2,4, and 6.

Theorem 1: Let u be the Ursell function of a finite Ising ferromagnet

(J. ,H,b) with

Let Z denote the partition function e-Odb of (.A.,H,b).Then for

n=2,4, and 6

Moreover, if (J ,H,b) is connected, the inequality (5) is strict.

Remark: These inequalities, which as they stand involve factors of Z,

may be converted to inequalities involving the spins alone by dividing

by Z /

Proof:

We give the proof only for the case n=6. The case n=4 may be done in



a similar way, and the case n=2 is trivial.

We want to show that the sum 2:Z i'4 tiim • ) arising

from the evaluation of (4) at J=0 is nonnegative. It is actually true that

an individual term is nonnegative: Tr( * t ))O. Since this

trace factors over sites, we break it up into a product of traces of

the form Tr( I' .I * ), with the common site subscript suppressed.

By an argument given in Section 2 in connection with the representations

(2.2) and (2.6), this trace vanishes unless I,+ "4•4%=0 YON40 . Assume

this condition is satisfied at all sites. We claim that the function +V1"f'

obeys the inequality

(1' f*i4.go. >(6)

To see this is true, we note that since (tl)* = t5 and (t3)* = t 3 , pairing

tl s with t5 s and t3s with one another reduces the problem to showing

that (tl)6 > 0 and (t1)3 t 3 < 0. This may be done by explicit verification

of cases. It now follows immediately that the product over the sites of

the terms 1,,'1b is nonnegative and so has nonnegative trace, because

the total number of VIS appearing with value 3 is even.

The strict positivity may be seen in several ways. One simple one is

to resurrect P= /kTV , which we have set to one to this point.

Note that if a finite ferromagnetic Ising model with spin ½ spins is

connected (see Chapter I for definition), then for any function of the

spins F( , )

,< F> R [F(-I,- +. F0.a--n'co



Thus in such a model, I1~ 2- Z 3M . But since3 i 4 c ou pin g s

all the coefficients in the Maclaurin expansion of Z u6 in the couplings

are nonnegative, if the above derivative were zero for P=1 it would

remain so for all and, when normalized by Z , could not converge to

3m ' 1 6 as P-ic.

We remark that by using the "ghost spin" method of Griffiths C R I

described in Section 111.2, we may extend Theorem 1 to the case of positive

(nonuniform) external field, provided that the Ursell functions for nonzero

field are modified by dropping all terms involving the expectation of

an odd number of spins.(Such terms of course vanish by symmetry when

there is no field.) Also, as we noted in Section 1, the "analog system"

method permits the extension of Theorem 1 to models with single-spin

measure 7 of the form

-,7 ( 2i 8__ (-P+Zý (8a)

2T: t E-T TI (Loee r uieasure restrictd i[-T7111) (8b)

(8c)

Next we state a corollary of this theorem. The corollary extends the

theorem to Ursell functions of arbitrary order, provided that at most

seven distinct spin sites appear among the arguments, by means of a reduction

formula. The reduction formula provides the necessary combinatorics for

expressing Ursell functions with repeated arguments in terms of simpler

Ursell functions.To state it we need some notation. Let ial lc n3



be a family of n random variables, and let 6, be partitions of 1,...,n.

Define

00% IQ 106) (9)

where qaqb,etc. are the elements of Q. Define the family I •PE of
random variables by

CY * (10)

Let PV& denote the finest partition coarser than both 9 and & , and

let . be the one-element partition 1i,,,,,n@j. A simple combinatoric

calculation with M6bius functions gives the following lemma.

Lemma 2: Let l be a family of n random variables. Then, with the

above notation,

To avoid interrupting the main flow of argument, we defer the proof

of this lemma to the technical appendix following this chapter.

As a special case of Lemma 2 we have

where and the complement •?P= ,,"31 . If aa-Z, is

independent of the remaining random variables, as is the case when O0

and O7 are spins from the same site, the left-hand side of (12) is zero

and we obtain the reduction

1, 7 Lt k rt



We use this reduction to prove

Corollary 3: Let un( , '", k; ) be an Ursell function of the model

of Theorem 1. If the n spins used as arguments are selected from at most

seven different sites, then

Moreover, if the model is connected the inequality is strict.

Proof:

We use induction on n. By the theorem, (14) is obviously true if n, 6.

If n>6, two spins must be selected from the same site, say kl=k2 0.

By reduction (13)

utf 01) t2#1:I' (a- )I > Fr rk 1 I
and so

with notation as above. From (15) the corollary is i

with notation as above. From (15) the corollary is immediate.

(15)

QED

As with Theorem 1, the "ghost spin" method allows immediate extension

of Corollary 3 to the case of positive external field provided the Ursell

functions are modified by dropping all terms involving the expectation

of an odd number of spins.

To conclude this section, we state a general inequality which follows

from the methods we have developed here. It includes Theorem 1 as a



special case.

Theorem 4: Let kl,"',k~E m be sites in a finite Ising ferromagnet (A ,H,v)

with Hamiltonian

and single-spin measure 17 of the form

Define the transformed variables IR by (1); then for n=2,4, and 6

I)T -0 (16)

As a corollary, we restate this inequality in terms of the original

spin variables Cr when all the superscripts O( are one. First we make

some preliminary definitions. If A4 is a set whose cardinality is a multiple

of four, let LL (A4) be the set of all partitions of A4 into at most

two subsets, each of which must have even cardinality. Define F: e (A4)--I

by

F(P (k (17)

where P is any element of P . If A6 is a set whose cardinality is a

multiple of six, let lie (A6) be the set of all partitions of A6 into

at most three subsets, each of which must have even cardinality. Define

S: J (A6 )-~R by



z, IjPIz & rjI(rfcI Y) (A)

where Pl,P2 are any two distinct elements of P . With this notation, we have

Corollary 5: Let A4 ,A6  be families of sites in the model of Theorem 4

with IA410 ~od(4) and IAI-0= mo() .Then, defining F and S by (17) and (18),

4V4 eZF ( 9 < (19a)

As ua t g m) o O (19b)

CA ull n (A y beu

As usual, the "ghost spin" method may be used to extend these inequalities

to the case of positive external field.



Section IV.4: Miscellaneous Results

In this section we describe a graphical notation for the derivatives

of Ursell functions in Ising models (k,H,b) with spin ½ spins, pair

interactions, and zero external field. We give formulas for the evaluation

of these graphs when n=4,6,8. Turning from explicit calculations, we

inductively combine Theorem 3.1 with reduction (3.13) to show that derivatives

(1) whose graphs are sufficiently simple topologically have the conjectured

sign H) . As a consequence, we obtain the asymptotic result that 0I Un>O

if the inverse temperature P is sufficiently small or sufficiently

large.

The graphical notation we use for derivatives (1) is a refinement of

that introduced in Chapter III. We regard the sites of our Ising model

as vertices of a linear graph, and for each appearing in the derivative

we put an edge between sites i and j. This specifies the differential

operator. To specify the arguments O'k. of un, introduce n dummy vertices -

one for each ka - and put an edge between each site ka and its associated

dummy vertex. Finally, suppress all vertices not touched by an edge.

The resulting graph G is called the graph of the derivative, and the derivative

the value [G] of the graph. ( This use of square brackets ['] is not

related with the notation of Chapter III employing the same brackets.)

As an example, the graph of

(2)'3 '
Os - U l 0'



Arqument e4dqe
is

verti ce verti ce

Figure 1

Derivaive edle

and has value -4.

Recall that (3.4) represents each derivative as a sum:

OG;.,o4i (3)

We may identify each term

R , , f" t. i" - (4)

in the sum with a network of odd 7n-valued currents on the graph of the

associated derivative. The current carried by an edge into a vertex is

the superscript of the associated t-variable, and the dummy vertices are

regarded as unit sources. For example, the term Tr( ,t t2  1t z )

appearing in the derivative (2) is represented by the network

Figure 2

,CS-Current on edge

and has value -16. (Subsequently, as in this example, we shall always

use the word "network" to mean a graph with currents.) We saw in the



proof of Theorem 3.1 that for a term (4) to be nonzero the associated

network must obey the Kirchoff current law in Z.: the sum of the currents

at a vertex vanishes. Networks obeying this law will be called nontrivial.

Any graph admitting a nontrivial network must have all argument edges

in the same connected component and an even number of edges incident

at every vertex (except the dummies, which have one each). Such graphs

will be called nontrivial. Once a nontrivial graph has been selected,

all nontrivial networks on it may be readily generated by means of the

well-known method of loop currents. In this method, the currents on the

edges of the complement in the graph of a spanning tree are assigned

independently, and the remaining currents are calculated from them by

applying the Kirchoff current law at each vertex. Thus, the value of a

nontrivial graph with X independent loops is the sum of its (j) nontrivial

networks, reduced by a factor of (L)

We turn now to explicit formulas for the evaluation of networks when

n=4,6,8.(The case n=2 is trivial and we omit it.) The trace factors over

the vertices of the network (sites of the model), so we need only consider

a single vertex Tr( f' ,.. ta' ), the common site subscript being suppressed.

If each such vertex had the sign sgn( 1[ E J) - roughly, if we
V% -r if1 wt e

could somehow factor out 2 •0• ' from tli OPi-i - then the

whole network would have the conjectured sign 1) . This is because

each derivative edge engenders a complex conjugate pair of factors in the

product over the vertices, while the argument edges give rise to an overall

factor with sign soi 4M= 60 )T fl . In the following formulas

we shall tabulate Tr(v +4i )/sgn( [ZT Z: "i] ); thus, negative values
will be suspect.

will be suspect.



For n=4, we find that

t" Stj e4.

(5)

where f: X (Ci--) 0 takes for its values the four fourth roots of unity.
0&O

(Here we have emphasized with parentheses the distinction between the

superscripts appearing on the left of (5) and the power appearing on

the right.) If A+3Ba0 mod(4) (to satisfy the Kirchoff current law)

then it follows from (5) that

Aii (AA -B-N A (AS)

Te [0 () (6)

This formula is simple enough so that we may perform the sum over all net-

works of any nontrivial fourth-order graph G to find

[G]~ =I

where h is the cyclomatic number of G (number of independent loops).

If n=6 there are g,h: X i-tI.-- dL such that

(3I1

t- =

(7)

(8)

The function g runs through the six sixth roots of unity on six of the
2

eight points of -X •-t and vanishes on the remaining two. The function

h takes the values +1 on these two points and vanishes on the first six.

If A+3B+5C 0O mod(6) it follows from (8) that

ho 3 V__ 3 0 (9)
SY _________ 1 AV'1 

owý4rw# 
4



3
When n=8 we find functions u)V: X1-1,i8--- such that0

The functions u and v are supported on complementary halves of X-i ,

and each runs through the eight eighth roots of unity on its support. If

A+3B+5C+7D 0 mod(8), then it follows from (10) that

When B+C is odd and B+C> A+D, the right-hand side of (11) is negative.

This contrasts with (6) and (9), which were always positive. The source

of the trouble in (11) is the minus signs in (10). With formula (11)

as a guide, we may easily devise positive eighth-order networks. An

example is

> 0.

Figure 3

Nevertheless, it is known by other reasoning that the derivative from which

ai r\-17lVtt=



this network is derived is negative, as one conjectures it should be.

Algorithms for calculating graphs and networks of arbitrary order are

presented in Appendix B, together with the results of a computer study

making use of them.

We conclude with some partial results showing that derivatives whose

graphs are sufficiently simple have the expected sign. We begin by interpreting

the reduction (3.13) graphically. Differentiating this identity with

respect to couplings, we find that if two argument edges el,e 2 in a

graph G share a common vertex then

1H, = [R- (12)
SlnHYG

By this notation we mean that H1 and H2 are the elements of a partition

of G into two subgraphs, with edge ei in subgraph Hi; the sum extends

over all such partitions. Making use of this interpretation, we may now

prove

Proposition 1: In a spin ½ Ising ferromagnet (A H,b) with pair Hamiltonian
m n

and zero external field, if the graph of the derivative ZI Un- (1.. ."

is nontrivial and has at most four independent loops in the component

of the argument edges (cyclomatic number at most four), then

ar ,k Ik Lo " o

Proof:

We use induction on the total number of edges. Since the trace factors

over sites, connected components without argument edges merely contribute



positive factors to the value, so it suffices to prove the theorem for

connected graphs. By Theorem 3.1 we may assume at least 8 argument edges.

If any two argument edges share a common vertex, we may use the reduction

(12). Also, if any argument edge is incident on a vertex with only one

other incident edge, we may simply erase the argument edge and call the

other edge an argument edge without changing the value of the graph.

There remains only the case in which each argument edge shares a vertex

with at least three other edges, all of which must be derivative edges.

We claim that in this situation with at most four independent loops

there can be at most six argument edges. We restrict our attention to

the subgraph G' of G which contains only the derivative edges; let it

have E' edges and V' vertices. The number of independent loops X is

hL = E' - V' + 1. Of course, this number is the same for G and G'. With

the restrictions in the case at hand, we see easily that

£E' [3n + z(V'-n)] n+ V' (13)

consequently

z z (14)

which verifies the claim.

QED

Combining this proposition with Corollary 3.3, we may say that derivatives

of ~2LU have the conjectured sign provided either they are simple in

not having argument edges at too many vertices in the associated graph,

or in not having graphs which are too connected.

With a little more work, one may show that the inequality in Proposition 1



is actually strict. Thus we have the asymptotic result

Corollary 2: Let un( k,> ,•> kn ) be an Ursell function of a finite

ferromagnetic Ising model (.A,H,b) with spin ½ spins, a pair Hamiltonian

with zero external field, and all couplings Jij nonzero. Then, if the

inverse temperature P is sufficiently small or sufficiently large,

Proof:

For small , expand Zun (k,, n ) as a power series in Jij . We

may use the reduction (3.13) to assume the sites k1,''',kn are distinct.

For distinct sites, the lowest order nonzero graphs are trees, which

by Proposition 1 have the claimed sign.

For large P we use (3.7) to conclude that u (, ' n )-  log cosh

as -+0oo. This derivative has the asserted sign.



Technical Appendix: Proof of Lemma IV.3,2

In this appendix we use the properties of MSbius functions to prove

Lemma 3.2. To set the notation and review the ideas involved, we begin

with a brief summary of this method.

Let X be a finite partially ordered set, whose order relation ( is

reflexive, antisymmetric, and transitive. Let 1X be the finite-dimensional

vector space consisting of all real-valued functions on X. Define the

indefinite sum linear transformation :7--114 by

( )(1)

The kernel (matrix) of the linear map is given by

(X)= (2)
/) 0 o' $herwise

We claim that Z has determinant one. To see this, note that if we enumerate

the elements of X as xl, x2,... in such a way that xi is minimal in X : $1

then ý(xi,xj) is a lower triangular matrix with l's along the diagonal.

The inverse A of ; is a generalization of the difference operator.

The Mbbius function of X is the matrix )/(x,y) of A . Since the inverse

of a lower triangular matrix with 1's along the diagonal is of the same

form, we find

)tunless YYx . (3)

The remaining values of L may be computed recursively by either of the

formulas

,,a (x)y " (X,) (4a)

/V - -57 LL(. (4b)
i ,) y'- =,a-r d

/ L~ ~- LI) Pj



which follow from the definition of A as the matrix of V-4 and its
lower triangularity. Note that for fixed x,yE X, Jt(x,y) is completely

determined by the structure of the interval Ix,y].

We now concentrate on a particular partially ordered set. To enhance

clarity, we give very explicit definitions. If F is a finite set, a par-

tition P of F is a set of disjoint nonempty subsets of F whose union

is F. The collection of all partitions of F is denoted by jL(F). We

partially order J1(F) by refinement: ?E-QCQ0.E :?CQ. That is,

ISt if and only if P refines . With this ordering UJ(F) becomes a lattice:

any pair 1?&-_(F) has a least upper bound P~V and a greatest lower

bound •^a . We denote the least element Mi3 :iEF3 of 11(F) by 0 and

the greatest element JF3 by 1 .

The Mobius function of .J(F) has reduction and factorization properties

which will be useful in the forthcoming proof. Given PECl(F) and 6&[ ],

for each QE & define the partition O(PE I(Q) to be

~TYPjcQPS . (5)

Thus 9PQ is just the restriction of the refinement > of $ to the

set QE& . Further, define the partition & ~J(- ) to be

-(6)

Roughly, T is the partition of 6 obtained from & by reducing the

sets PG T to points in the sets QEe containing them. The interval

is naturally isomorphic with H(O ) under the correspondence

. Recalling that 1k(x,y) is completely determined by the structure



of the interval [x,y], we find that for &,)e [IT)1 I

(7)

Here by a common abuse of notation we use the same letter A for the

Mbbius functions of two different partially ordered sets (in this case

l(F) and jI( P)), relying on the function arguments to make the set in-
volved clear. This is the reduction mentioned above. Important special

cases are

(9)

To obtain the factorization, we note that by induction on formula (4)

we may prove

-(T T [ (10)

Here as usual the i which appears in the factor a(l ,6 ) is the greatest

element of the lattice 1U(Q), in which Q lies. (We shall not actually

need to compute M ( , 9), which by our reductions is now determined once

h(i,0) is known for sets F of arbitrary cardinality. As an aside, we

remark that for the lattice 11(F), A3(t,0) = (-1)IF I-I (IFI - 1)1 .) This

concludes our preparatory remarks on M6bius functions. More detail and

further references may be found in [5 1. We turn now to Lemma 3.2. With

notation as in Section 3 we have

Lemma IV.3.2: Let oi? be a family of n random variables. Then

(ýCr' 0 = :ý i U



Proof:

With the machinery established above, the proof is a straightforward

calculation. Given a family of random variables J 3F indexed by a

finite set F, for any partition ~CRE (F) define

,(Z 7=u ( rRz) , (12)

where is the expectation integral and as usual Re TT , .Using this

notation, it follows from definition (1.2) that

Recalling that ( (P) is naturally isomorphic with ['] c Ji( [2• "•3~) l

we rewrite this as

BEZ[1ý (14)

Tracing through the definitions we find (I), and by (9)

we have • • l~(). Thus (14) becomes

= 21111 )\}3L)~) S(~P) es (jIs ) (15)

where we have inserted the factor ,Oj ) and allowed 3 to range over

all 6Ul"i\(B , ). It follows from the factorization property (10) of

that

SEl I;*3h ) *( i(16)

Using this in (15), we find

U $ap



since

(18)

we have

$ ul (IM)

(19)

as desired.

S s ja)

A(.,)S)(Sjo~·ca>

ý (S P)ý PýI)

u 191 (ýCý3) =
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Chapter V: Infinite Ising Models

Section 1: Introduction

In the Ising models we have dealt with so far, the set of sites

has been finite. These models are mathematically very regular: the

thermal expectations of products of spins (moments of the Gibbs

measure) are real analytic in the parameters of the Hamiltonian. They

exhibit none of the interesting physical properties, such as phase

transitions, which are observed in nature. To create a structure which

is mathematically more interesting and physically more realistic, we

introduce and analyze in this chapter models with an infinite set of

sites. The inequalities proved in the preceding chapters are important

tools in the construction and investigation of these infinite models.

In Section 2 we present the basic definitions of infinite Ising ferro-

magnets. We construct the infinite-volume Gibbs measure (with the free

boundary condition) for extremely general models, realizing it as a measure

on the spectrum of a certain naturally-arising commutative C -algebra.

Unfortunately, a price must be paid for this generality: the spectrum

of the algebra is slightly larger than the configuration space on which

we would like to have the measure. (The configuration space is a dense

5 in the spectrum.) However, if the (second) 
moments of the Gibbs measure

are finite, as we show they are in most models of interest, the Gibbs

measure is actually carried by the configuration space. We conclude with

a brief discussion of the equilibrium equations, which give intrinsic

meaning to the notion that a measure is an equilibrium state of a model

at a specified temperature, and a short description of boundary conditions



other than the free boundary condition.

Section 3 concerns the decay of spin expectations <(Y in trans-

lation-invariant models when the distance between the two families of

sites A,B becomes large. We define the correlation length ) and, after

remarking that it is controlled by the decay of the two-point function,

point out that it is monotone decreasing in the external field h when

the G.H.S. inequality (Corollary 11.2.8) holds. We show that the moments

of the Gibbs measure are jointly CO in any finite set of field parameters

hi at sites i. We prove that the two-point function must cluster except

possibly for a set of values of the external field h of measure 0, and

that this set of exceptional points is reduced to the single point h=0

when the G.H.S. inequality is satisfied. In fact, as we next establish,

any connected nearest-neighbor ferromagnet in two or more dimensions

with zero external field pair Hamiltonian whose single-spin measure

is not is long-range ordered at sufficiently low temperature. This

is one of our main results. We finish by giving an elementary definition

of the infinite-volume transfer matrix a, and characterizing the cluster

properties of an Ising model in terms of spectral properties of its

transfer matrix. The definition we give of J permits the simple derivation

of many interesting results. This definition is well-known in quantum

field theory [38 ]but appears to be less familiar in statistical mechanics.

In Section 4 we study spontaneous magnetization. We find that a model

which is long-range ordered is necessarily spontaneously magnetized.

Proposition 11.4.2 may be used to compare the critical temperature of a

model whose single-spin measure is absolutely continuous near zero with



the critical temperature of a two-dimensional Ising model with spin ½

spins (which is known by explicit calculation [34 ). As a corollary

of our main result, we prove that ferromagnetic anisotropic plane rotors

on a lattice of dimension at least two are spontaneously magnetized

by a method of KunZ [ Z53.

The fifth section treats non-translation-invariant equilibrium states

of translation-invariant models. We show that any isotropic nearest-

neighbor ferromagnet on a lattice of dimension at least three with

single-spin measure V ý 6 has at sufficiently low temperature an equilibrium

state with a sharp phase interface. In particular, the equilibrium state

is not translation-invariant.

The final section deals with applications of correlation inequalities

in models of scalar quantum fields. Guerra, Rosen, and Simon have shown

20] that Euclidean P ( )I models are well-approximated by ferromagnetic

nearest-neighbor Ising models with continuous spins (lattice approximation).

Thus, inequalities known for Ising models may be carried over directly

to give inequalities for Euclidean scalrar quantum fields. These inequalities

in field theory serve many of the same purposes as the corresponding

inequalities for spin systems (construction of the infinite-volume limit,

domination of the n-point function by sums of products of two-point

functions, control of the mass by the two-point function and monotonicity

of the mass in the external field), and have also been applied to problems

unmotivated by statistical mechanics (absence of bound states, absolute

bounds on couplings and vertices).



Section 2: The Infinite-Volume Limit

In this section we construct Gibbs measures for Ising models with infinite

sets of sites. We also introduce the Dobrushin-Lanford-Ruelle [ý24]

equilibrium equation, which gives a non-constructive criterion for a

measure to be a Gibbs equilibrium state of an infinite Ising model. The

Hamiltonian for an infinite model is a formal power series in the spins

which makes sense as a function only when restricted in some way to a

finite set of sites. An expectation in the infinite model is defined by

restricting to a finite set of sites A , calculating the expectation in

the restricted model, and using the monotonicity property Corollary 11.3.2

to take the limit as A becomes arbitrarily large. Using this limiting

procedure we may construct the Gibbs measure of the infinite model in

quite general circumstances.

We introduce some definitions and notation pertinent to infinite models,

generalizing the definitions given at the end of Chapter I for finite

models. An infinite ferromagnetic Ising model is a triple (I ,H,7) where:

(1) The set of sites k is an infinite set, which for measure-

theoretic reasons we take to be denumerable. We associate with

each site i,6 a spin variable Geli?, and the product 1R E= 1R

is called the configuration space.

(2) The Hamiltonian H is a formal power series in the spins of locally

finite degree:

=-T o(1)
K

n 0Itd~) I'
"K ""I



where the couplings JK obey the restriction that for all finite JIc

KEO W: JK 0 I< o . (2)

The degree d of H is

(3) The single-spin measure _V is an even Borel probability measure

onl' which decays sufficiently rapidly that if d is the degree

of H then

s ep (a ld) • o-r) 00oo Va eJ; (4)

that is, VEPJd.

As with finite models, the linear term -L (o in H is usually thought

of as an external magnetic field -2~i Ti. The model is called connected

if any pair of sites i,je is connected by a finite chain Kl,K2,...,K n

of families with JK ,... JKný , iG KI , jE Kn, and for all 2 K iK

It has bounded couplings if

sVO JK <00 (5)

Recall that the collection 6%() of finite subsets of £ is directed

by containment: A1 n(J, ilcjZ. We say that a real-valued net Xk indexed

by PU() converges to x as J->c0 if V)0 3 Ao such that AJ0 A 4 xI-n•I<



The restriction of the Hamiltonian H to a Hamiltonian H. for a finite

region Jc4 is performed by just keeping the terms in (1) involving

only spins in A :

H =-Z "KO~( * (6)

By (2) this expression is a polynomial, and so is well defined as a function

on the restricted space R of configurations. Definition (6) of Hj

amounts to setting all spins not in . to zero. This choice of spins in

X is called the free boundary condition. Other boundary conditions

are briefly discussed in connection with the equilibrium equation at

the close of this section. Denote by pt the Gibbs measure of the finite

model (J,HA ,V). We often use subscripted brackets < k> to indicate

expectations with respect to A. , though sometimes the more explicit

notation < ;HA, ,-7 is convenient:

The infinite Ising ferromagnets we have defined have as yet no geometric

structure. In contrast, the models of principal physical and mathematical

interest are those in which the set of sites L is an n-dimensional

lattice n and the Hamiltonian has properties somehow connected with

the geometrical nature of n . (When we refer to n as a lattice we

mean a lattice in the physical sense of a regularly spaced grid of points.

The mathematical connotation is unintended, though of course is a



lattice in this sense also.) We describe some typical geometrical properties

of the Hamiltonian. A Hamiltonian H = -- , L on a lattice is

called translation-invariant if

J= VK&4(K), JVE (8

where of course if K = then K + i = k, The range of H is

ran S I) l K (9)

(The diameter of a set K in a metric space with metric d is diam K = Sv

in (9) we employ the usual Euclidean metric on n .) A finite-range

interaction has ran(H)< 00 . A nearest-neighbor Hamiltonian is one with

range 1 and degree 2 in which no quadratic self-interaction terms Ji;.•2

appear. Often nearest-neighbor interactions are assumed to be translation-

invariant as well. Thus a (translation-invariant) nearest-neighbor Hamiltonian

on Z4 has the form

H .- f,- 0:-- °i. Z or- (10)

Armed with these definitions, we turn to the construction of the infinite-

volume Gibbs measure. Let us first suppose that the single-spin measure 17

has compact support S. Then we may take the configuration space of the

infinite model to be S , which is compact in the product topology. If

P(C') is a polynomial in the spins with positive coefficients, by the

monotonicity property (11.3.11) the expectations <P(")4n form an



increasing net on o ). This net is bounded above by I? I0 0= ?SLI-(a
and so has a unique limit, the infinite-volume expectation <P( )> = lim<P(@)> c

Invoking the Stone-Weierstrass Theorem to show density of the polynomials

in C(Sz ), we extend the infinite-volume expectation to a state on C(St )

by linearity and continuity. By the Riesz Representation Theorem this state

is given by integration against a unique Baire probability measure / ,

which we call the (infinite-volume) Gibbs measure of the model (c ,H,7)

(with free boundary conditions).

If we try to duplicate the construction of the previous paragraph for

general single-spin measures 17 we meet two problems: the polynomials P(Oa)

on the configuration space 1R are not bounded functions, so that the

increasing net <P(a)\ need not be bounded above, and 1 is not

compact. We partially overcome both these difficulties by replacing the

polynomials P(cr) with polynomials P(F ,(O), Fb(j ),...) with positive

coefficients in bounded continuous functions Fa, Fb,... of the spins

which are of definite parity, nonnegative on 10,C0), and increasing there.

Applying the extended monotonicity result (11.3.10), we find

<P() b • F exists for such polynomials, and we

may extend this infinite-volume thermal expectation by linearity and

continuity to a state on the C*-algebra Ct (trivial involution, sup norm)

these polynomials generate. The C*-algebra on IR generated by the bounded

continuous functions F:[R--,R of definite parity which are nonnegative



,80

on [0,o>) and increasing there is C(1R ) , the space of bounded continuous

functions on 1R with limits at t00 . ( 00 is the two-point compactification

of 1R obtained by including the two endpoints ±00 .) Thus the algebra CO

on which we have defined the infinite-volume thermal expectation < )

is the tensor product =T , and by the Riesz Representation

Theorem this state is given as a measure on the spectrum spec ( G C( ~))=T1.

We identify this measure as the infinite-volume Gibbs measure (with

the free boundary condition).

Ideally we would like the Gibbs measure /j to be a measure on the con-

figuration space TR , but instead we have it on the slightly larger

space ~1R in which T71R is a dense . We may hope that in

reasonable situations the Gibbs measure • is carried by 1S . Theorem 1

below, which summarizes our arguments to this point, shows when combined

with Proposition 2 that this is so.

Theorem 1: Let (U,H,7) be an infinite Ising model. Then there exists a

unique state < ;H,Y, > on the C*-algebra C(JR ) , and a unique

Baire probability measure A on the spectrum 71TR of C(R ) ,

such that V finite J/c V , EV 0·1E(C )

The configuration space "1~I is a dense S in TE . If V iEL

3 Fie C(Ml) which is even, monotone increasing and nonnegative on [0o,O),

and which tends to 00 at + 00 , such that the net <Fij( );HJA , V7)J



is bounded above, then ) is carried on I : ,(R 1

Proof:

The only part of Theorem 1 we have not yet established is the sufficient

condition for p to be carried on IR . For iE , define Ei = E : XiE1R3

where xi is the ith component of xE ffR. It suffices to show that l(Ei)=1,

because R= , and the intersection of a countable family of sets

of measure 1 in a probability space again has measure 1. For nEZ+ define

Fin by

F (f)= I tn
inn r (12)

and set Ein= x•-T IR-R: X 1R•• xi~1l•. If the expectations <Fi( )ý

are bounded above by c, so are the expectations <Fin(O)\ . Taking Jt-00)

As n-+>O, c/Fi(n)-->O so that O'>(Ei) and L(Ei)=1 as desired.

QED

Of course, when properly formulated all the inequalities proved in

Chapters II - IV for finite Ising models also hold in the infinite-volume

limit, and so may be used in the analysis of infinite models.

The example we have in mind for the functions Fi in Theorem 1 is Fi( a ) = 0-i
Z,

so that roughly speaking the infinite-volume Gibbs measure f is carried

by the configuration space I if its second moments are finite. Under

reasonable geometric assumptions, we show that this is the case by following

an idea in [301. If the single-spin measure is such that Corollary 11.2.7



or Corollary 111.2.2 holds, finiteness of the second moments implies

finiteness of all moments.

Proposition 2: Let (~ ,H,V) be an Ising ferromagnet with bounded couplings

whose Hamiltonian H is finite-range and of finite degree d. Then the second

moments of the infinite-volume Gibbs measure are finite:

<o(-..Ny~3> =I<O ý t1 , P) < (13)
P A-,>w #7

Moreover, if H is a pair interaction and the single-spin measure 'V is

such that Corollary 11.2.7 or Corollary 111.2.2 holds, all moments (4A ;H,'7.,

are finite.

Proof:

To show <~6)(<O o we need only consider the case i=j. We invoke the

technical device of periodic boundary conditions. LetA, be a large cube

J=TT ým-m1,-m+1,.*. , which we identify with the group ;I -2m . If

H = - JKOK , define

Sup, K (A) (14)

H'=-n K
(15)

where the translation K + j is performed with respect to the group action

in •- I 2m+l Notice that H' is translation-invariant with respect

to this group. By translation-invariance and the second Griffiths inequality



(Corollary II.2.3),

<~;2SJ~I <~~(.yH~I L. A , A L1AI pCA l]'
Now by the Jensen inequality,

e~p B
so that

(18)

Since H is finite-range and has bounded couplings, there are. -independent

constants J,A E[0,00) such that

(19)

Using this estimate in (18), we find

S(20)

I l +A) jVto

Since T76 the right-hand side is a finite constant independent ofJ .

Any finite region lies in some large cube , so by monotonicity the first

part of the proposition is true.

If Corollary 111.2.2 holds, then a bound <O 0"a: immediately

gives a bound on the even moments, and hence on all of them. As shown

(16)

(17)

<o-izýHA <" III

<0;2 .HI)\S~~~ $rcd

IH~,(~-)lZ(J i4-A)~JL. p



in[ I3 3 Corollary 11.2.7 may be used in the same way.

QED

We remark that if we require the interaction to be translation-invariant

and of finite degree, the same proof shows that long-range forces may be

allowed in Proposition 2 provided the couplings JK obey

Z: ý)K < 0 (21)

for some (and hence all) i.

Although Proposition 2 is adequate for our present purposes, one expects

that much better results hold. In particular, with the hypotheses we

have made one hopes that all moments are finite regardless of any special

properties of 17 beyond its decay rate. This can be shown if the Hamiltonian

is a pair interaction (degree 2) by transcribing to lattice models results

of Ruelle derived for systems of classical particles interacting by super-

stable pair potentials[ I 4 . These results probably generalize to Hamil-

tonians of degree higher than two, but the technical estimates involved

are formidable and a general proof does not seem to be available. Various

special cases are amenable to simpler techniques. In Appendix C we use

the method of transfer matrices to prove finiteness of the moments if the

Hamiltonian is nearest-neighbor. Also, for certain single-spin measures

Theorem 11.4.1 may be used to compare the moments of a model with single-

spin measure ]7 with those of a model having the same Hamiltonian and a

Gaussian single-spin measure. For pair interactions (the only kind that



make sense with a Gaussian single-spin measure) these moments are

explicitly computable. As an example, if d~T=ep(-?(C))d0 , where

P is an even polynomial bounded from below, then by sufficiently increasing

the dispersion of the Gaussian 4d, = •e1p(- I')/cW1]d we may

arrange matters as in Figure 1 below:

Figure 1 T1

& Oa21

In this situation the measure 7V may be obtained from GV by multiplying

by an even function monotonically decreasing outside the interval t-c,c]

and redistributing the lost probability mass inside [-c,c] . Theorem 11.4.1

tells us this procedure decreases the moments. Of course, this comparison

is of little value at low temperature since even in a finite volume the

Gibbs measure of a low-temperature model with Gaussian single-spin

measure is ill-defined.

In Theorem 1 we constructed the infinite-volume Gibbs measure with

the free boundary condition as a state on the C*-algebra C(Tti).

By its very construction, < ;H,V,4 > should be called an equilibrium

state of the infinite model (U ,H,V ) at inverse temperature P . We now



briefly discuss how to decide independently of any constructive procedure

whether a state on C(T IR ) is an equilibrium state of a model (4,H,17).

We restrict our attention to finite range Hamiltonians on a lattice .

Consider two finite regions Jl/ c n, where X is much larger than ..

Denote spins in _J by ",CrV... and spins in JL-A by T4~,T)... Since

H is finite range, if J is sufficiently larger than A (dist( , )A)> ran(H))

then H may be written in the form

X-jI)+ \() (22)

where because of the large size of the interaction W- ( ,T) between

A and I is independent of . Consequently, the conditional expec-

tation with respect to the Gibbs measure ýý of H of a function f(o-)

of the spins ao inI , conditioned on the spins Z in A - , is

~ - ý ( R'r(H &a)+V i) - (23)

Observe that the right-hand side, which may be thought of as the thermal

expectation of f(a) in the region A with Hamiltonian HA and boundary

conditions WA (T~, is independent of the regionX . Any equilibrium state

of the model (Z',H,v) should certainly satisfy this equation for condi-

tional expectations, and we take it as the definition of an equilibrium



state. Translating into the language of C*-algebras, we find that a

state T of C(TIT[n ) is an equilibrium state of (F,H,v) at inverse

temperature ? if V finite J'Lc n , V f~c(TI[pl ), V GGc(T GCiR )

k(e-•[o)cW• ]T[ ]'• ) -F= 0 , (24)

This equation for an equilibrium state is called the equilibrium, or

D.L.R. equation [~7)]. There are several technicalities associated

with its interpretation, but we shall not discuss them here.

It is clear from the definitions that the infinite-volume Gibbs

measure with the free boundary condition is a solution of the equilibrium

equation (24). In general this solution is not unique, the lack of

uniqueness being closely connected with the presence of multiple phases

in the model. We now mention other ways of taking the infinite-volume

limit which sometimes give rise to different equilibrium states. For

each G (S let E1R be a configuration of spins outside A

The energy H, (O*) of a configuration of spins 61RA surrounded by

spins inm fixed at values given by • is

,(' --(.) +"W (0 1) + C (25)

where as before H (a-) represents the mutual interaction of spins inL ,

W( (0,/ ) represents the interaction between the spins c- in A and the
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fixed spins V in ~ , and C is an infinite constant arising from the

mutual interactions of the fixed spins in A . We drop C, and call

HA (-= HAT) t' WlA(O-•J) the Hamiltonian of the region k with

boundary condition • . The free boundary condition is N =0.

Let JII: be a region large enough so that dist (A,~DA )> ran(H)..

Then the conditional expectation with respect to the Gibbs measure in

of HX with boundary condition N, ini. of a function f(r) of the

spins 0 inJ , conditioned on the spins 1 in - s , is

- A + W (T))JTk+ R o ((26)]I

Here as before the interaction Wk (r,T ) between the spins 6 in A

and the spins % in k-j. is independent of the region X/ because of

its large size, and the interaction Wet (t, ) between the spins in .A

and the fixed spins I, outside . involves only the spins C in .-A

for the same reason. We see from (26) that if we can control the infinite-

volume limit of the Gibbs measure associated with the Hamiltonians H

having boundary condition 4 , then the resulting state - the Gibbs

measure with boundary condition 7 - will be an equilibrium state.

This state is not necessarily the same as the state with the free boundary

condition, and in Section 4 we shall see a specific example when it is not.



Section 3: Clustering, Correlation Length, and Long-Range Order

In this section we concentrate our attention on ferromagnetic Ising

models (ZH,17) on a lattice which have translation-invariant connected

finite-range pair Hamiltonians H. Explicitly, H must be of the form

6-4) 1v A o~Ei21

Sometimes we require further that H be nearest-neighbor:

Hl.-Z ZJ h'-o JQ bh:0 a ere ,O ; 2)

As we mentioned in Section 2, all moments 0<0Aý P>of the Gibbs
measure with free boundary condition of a model having translation-invar-

iant finite range pair Hamiltonian (1) are finite. Here we are primarily

concerned with the dependence of the infinite-volume Gibbs state on inverse

temperature and external field parameters P ,h; for this reason we often

use the notation < ;h in place of i H,, •)

Let A,B(~"() )  be families of sites. Since the Hamiltonian (1) is

finite-range, it is reasonable that if B is translated by some iX n,

then the random variables O,07i become asymptotically independent as

i)->00

M (<%o4I - >) < T (<A Cý4j (3)
Ijijj--> A OD



If (3) holds for all families of sites A,B we say the state < ý HNP>

clusters.

The decay of (<(cOag -+> <)(0A i is often exponential in the separ-

ation, for example at low inverse temperature or large external field

h [22]. For this reason we define the correlation length in the

1-direction by

where il = (i0,O,O*)En . The argument of the logarithm lies in 1,00]

because 0 ( <(0 Ai -< %>A)c ' <(r >11 •\> , where the site subscript

on 0- is unnecessary because a translation-invariant model has translation-

invariant spin expectations. Loosely speaking, \/y~ is the smallest

asymptotic rate of exponential decay of any correlation (•Bij,-(( B "

It is the least number such that V A,BE•j"0  ) j V 0)

for large i. We emphasize that an infinite correlation length does not

necessarily mean that the model fails to cluster, but only that it fails

to cluster exponentially. If ("n,H,V ) has bounded spins (supp'Y compact),

one may apply the F.K.G. inequality in the manner of [29] to show that

an arbitrary correlation 0-(-') is bounded by sums of two-



point correlations <)-< )< > ,so that the infimum in (4) over
families of sites A,B 4So(") may be replaced by an infimum over pairs

of sites k,JG" :

It follows from (6) that XI is monotone decreasing in the external field

h for those models (1 ,H,V ) whose single-spin measure '7 is such that

Corollary 11.2.8, the G.H.S. inequality, is satisfied. This is because

the G.H.S. inequality says that <• -(<j < is decreasing in h. If

the spins are not bounded, the situation is substantially the same [431.

We now investigate in greater detail the clustering properties of the

two-point function. We first show that if we fix the inverse temperature

P and couplings Jk in (1) while regarding the external field h as an

adjustable parameter, then the two-point function clusters except possibly

for a set of values of h of (Lebesgue) measure 0:

lil- o(7)

except for a set of h's of measure 0. If the G.H.S. inequality holds,

this set of measure 0 decreases to the single point h=0. Next we show

that at sufficiently low temperature - , if the single-spin measure

is not the delta-function 8 clustering must fail for zero external field.



Indeed, there is a constant L> 0 such that

In this case the model is said to exhibit long-range order. In the following

section we shall show long-range order implies spontaneous magnetization.

The remainder of this section deals with the infinite-volume transfer

matrix I . We define ý via the Osterwalder-Schrader reconstruction

technique, and state a theorem proved in Appendix C relating the cluster

properties of an Ising model with the spectral properties of its transfer

matrix.

Lemma 1: Let (ZH,V) be an Ising ferromagnet with bounded couplings

having finite-range pair Hamiltonian with (nonuniforu bounded external

field:

ý I I I h .! - (9)

Then for any family of sites A6 F0  ) and any j G <n, jtA ) is differ-

entiable with respect to h. and

Q PA(10)
Thus the Gibbs state has moments jointly Co in any finite collection of

external fields h..
J



Proof:

Notationally we suppress all fields but h., so that

Then

-TA k` <'W =<a- j4

in h.. Therefore the integrand of (11) is continuous in t, so we may

differentiate to obtain (10).

QED
We remark that Lemma 1 holds in much more general models.

Proposition 2: Let (P",H,'V) be an Ising ferromagnet with bounded couplings

having the finite-range pair Hamiltonian

with uniform external field h, and leetAE ( o) If m ia is differen-
tiable at h (which it must be except on a set of measure 0 since it



increases in h) then

Consequently,

Mi* (<-<C0oA (14)

except possibly for a set of values of h of measure 0.

Proof:

By monotonicity in the external field,

A<oh jc;i-z ,- (hh)ý» <oAi-- ZCzi (15)

for any finite regionn.. But by Lemma 1 this means

'ýEA3 kz (<o-K H - (16)

Each term in the sum on the right is nonnegative by Corollary 11.2.3

so sending JK-o00 the proposition follows.

QED
Like Lemma 1, Proposition 2 holds in more general circumstances. Taking

the special case when the family A is a single site, we obtain clustering

of the two-point function except possibly for some set of values h of

measure 0. If the single-spin measure 7V is such that Corollary 11.2.8,



the G.H.S. inequality, is obeyed, then the set of measure 0 of values

of h where clustering may break down reduces to the single point h=0.

Corollary 3: Let ( H,-V) be a ferromagnet with Hamiltonian (12) whose

single-spin measure 17 is such that the G.H.S. inequality (Corollary 11.2.8)

holds. Then the two-point function clusters except possibly at h=0:

IM 'y, ký _-(Ti <0i - ý ý (17)

except possibly at h=0.

Proof:

The G.H.S. inequality implies that (4 >)- (O) decreases in h.

Thus if clustering fails at some h> 0 it fails in the entire interval

[0,h3. This interval of no clustering, which has positive measure, violates

Proposition 2.

QED

We have seen that the two-point function of a nearest-neighbor ferro-

magnet must cluster except possibly at a set of values of the external

field of measure 0, and if the G.H.S. inequality holds it must cluster

except possibly at h=0. We now show that if the temperature -I is suffici-

ently low and the single-spin measure 'V is not the delta-function 8 ,

then clustering must indeed fail at h=0. In fact, the model is long-range

ordered. The proof proceeds in several steps. First we use the second



Griffiths inequality (Corollary 11.2.3) to reduce the problem to a nearest-

neighbor interaction on Z2. We next establish long-range order in models

on 27 for a restricted class of single-spin measures by extending an

argument of Bortz and GriffithsE 3 1, which in turn generalizes an idea

of Peierls. The general result follows by applying Theorem 11.4.1 to

conclude that the two-point function 00> decreases when the single-

spin measure is altered to bring it into the class covered by the Bortz-

Griffiths method.

As a preliminary, we define an isotropic nearest-neighbor Ising ferromagnet

to be one all of whose (nonzero) couplings are equal: Ja = J>O ••.

In proving long-range order it is sufficient to consider isotropic models,

because by decreasing some couplings J. - which decreases the moments

of the Gibbs measure - we may make any model isotropic.

Lemma 4: Let (B,Hn(J,h),V) be the isotropic nearest-neighbor Ising

ferromagnet on • with coupling J, external field h, and single-spin

measure 17 . If 3 L> 0 such that

"a-,heno; ;o7( a(18)

then for any n)>2

H,) v



Proof:

We use induction, and show that if (<~i is bounded below by L,

so is o3 . Let i,jEF . By translation-invariance and isotropy

we may assume i=0 and j = (jl,j 2,0',jn0 1 ) with jj1) 0, j'>,,O0. Define

and let V = V1 V2 U V3 . If we reduce to 0 all couplings not between two

sites in Vwhich decreases < > , V becomes a sublattice disconnected

from the remainder of R that is isomorphic with (7 ,Hn(J,h),1). In

the case n=2 the set V is illustrated in Figure 1.

z

5~ r~~ 1
I I J2 J.=lL. I



Lemma 5: Let (2 ,H,V ) be a nearest-neighbor Ising ferromagnet with

Hamiltonian

If there exists a constant cE (0,00) such that suppVTcl-c,c], and if there

exists 1>0 such that for all measurable E c E- S

y(E+3c)>,1jtE) [ (22)

and if T CC 0,then for sufficiently low temperature there exists

L>O such that V i,jE3Z

(23)

(The infinite-volume limit is taken with the free boundary condition.)

Proof:

As much of this proof follows standard reasoning, we shall give the

details in a condensed manner. We may assume without loss of generality

that c=1 and [<1. Let jh be the characteristic function of the interval

(24)

D=3: [-I,- ]



and estimate o(7i) using these characteristic functions:

Dinm n rn/n

We show that by choosing P sufficiently large (independently of i,j)

the two negative terms in (25) may be made as close to zero as desired,

so that the first must approach 2/9 and thus give the lower bound.

The term <•,p It) 2(q)) is easily disposed of. By Proposition

11.3.1, <(•2(0) increases when any coupling between two sites is decreased.

Thus if we consider a model with just two sites i, i' at inverse temperature

p with coupling J and single-spin measure ,

where the prime on the right indicates the expectation in the two-site

system. But the condition that-4 )1 >0 in the hypothesis assures

m 2(00=0' , so that -2( )(/20~)(~2••/•2(U)9 approaches zero as

is increased in the original model.

The term T n/Mio)/ n(O)> is controlled by an extension of the ideas

of Bortz and Griffiths 13 1, who considered in a somewhat different context

the case when V7 was Lebesgue measure restricted to £-1,1i. By the spin-

reversal symmetry of the Gibbs measure it suffices to show that

(Ik0I 3 I) becomes small for largeg . To accomplish this,¥ 'w"' P1 -- -
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we shall prove that if J3 i,j is sufficiently large,then (O 0 3 E inde-

pendent of i,j,k such that

K~X- (~~C~c~,ar ) 4/3(6)1> K ( (27)

Regard • as a subset of a , and associate with each iEif a closed

unit square A.1 TR centered at i. IfAt. Z , define 4c~1 2by A=, i .

Given a configuration CECE-1,1• , we call the spin at site kEi. plus

(+) if 0E-,IA and minus (-) if O'kER-) . Break up- into + and-

connected components by saying that two squares A \p are in the same

+ (-) connected component if their spins are both + (-) and they are

connected by a chain of nearest-neighbor squares with all + (-) spins.

A border B associated with the configuration T is defined as a connected

component of the boundary taken in the interior of i of a + connected

component. Note that a border must either be a closed polygon or have

both ends on . Thus B separates - into two connected components.

A site k is called a circumference site if its unit square l has a

side in B. If b is the length of B there are at most b circumference

sites in each component. The circumference sites in one of the connected

components must be either all + or all - , and in the other all - or all +

We call the + (-) component the one in which all sites are + (-). An example

is shown in Figure 2.
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This example shows +hree + components
(tht hatched /it) and three -
components. There are four borders,
drawr with hePvy bck lines -.

Figure 2

Let JCZ be a square containing i,j which is so large that the

inequality

dist(li,4 aJ)>, - +li-j2l (28)

is satisfied by the corresponding square 7C1 . We shall show that

if B is a border in J and C - is the set of all configurations

0 which have B as a border, then the Gibbs measure PB = ZISeTI1dv

of decays exponentially in the length b of the border B:

P < 4 ( A) e 6/7 (29)

I
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Let us see why this estimate gives long-range order.

If 0i is + and CZ is - in some configuration, then one of the borders

B bounding the + connected component containing i must separate i from j

in4 . Thus, if B(i,j) is the set of all borders separating i from j

in A , we have the inequality

I73, ý, . ((30)

A border may separate i from j in one of three ways: it may be a closed

polygon with i in its interior and j in its exterior, it may be a closed

polygon with j in its interior and i in its exterior, or it may have

both endpoints on 4A and pass between i and j. The number of borders

of length b enclosing either i or j is at most b3b. Also, since the

number of borders of length b containing a particular side of a particular

square Ak is bounded by b3b, and since any border separating i from j

must pass through one of the lil-jll + li 2-j 21 intervening sides pointed

out in Figure 3, the number of borders of length b separating i from j

with endpoints on aj is at most (1il-jl I + 1i2-j21 )b 3b.
0I-#1

I ~

I

·dv

Figure 3

Any border sepcrat n iAd s jass through
one of fhe jagged W sidesA

ii· i 5 1 S
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However, if the border B is long enough to separate i,j and to extend

to ýa , then by (28) we must have

S0 (i~)a1) 3A)Ž) 1W +(31)

Combining these estimates, we find that the number #(b) of borders of

length b separating i from j is at most

(b 2 3b  (32)

It now follows from (29),(30), and (32) that

(33)

Since the right-hand side of (33) becomes arbitrarily small for large i

independent of i,j, andiL , we will have long-range order once the expo-

nential decay of PB in b is established.

We shall say that the spin To at site k is in class n, n=1,2,3, if

fl3z3 (34)I)
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Fix a particular border B. It separates i into two components

Let 6C [-1i,1 3  be the set of all configurations in which B appears

as a border and is the - component. Let CB be the set of circumference

sites of B in , let nE TT • 233 be a multi-index, and let n

be the set of configurations for which the spin at site kG CB is in class

nk. Define the transformation A1 -- i by

0- ik i in +he - compotent X

_u + *(35)

cr o erwise

Define the transformation Z2: n-  II by

(TT)k or sfel 3 (36)

Note that both t, and 'z factor:

I,Z , (37)

where 1t:-l-Il[-4-,l] is determined from definitions (35), (36).

Also, they are both injective, so we may define the measures X• on by

E( V)E)= T) ) E n, 2 (38)
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We claim that

0(E C dI (39)

It suffices to verify this for rectangles E =TTf(Ek), EkC[-1,1 . If

k .l ,  .:Ek = Ek so Y(t(kEk) = f (Ek). If keX but is not a circumference

site of class 2, gtaEk = ±Ek; by the evenness of 7 , 17( %kEk) ='-(Ek).

If k is a circumference site of class 2 inm. , 'tkEk = 2/3 tEk; by the

hypothesis of the lemma V (I•_ Ek) >1v(±E-) =Y(Ek). Since there are

at most b circumference sites int , inequality (39) must hold as

claimed.

We finish the argument by following [3 in estimating ,eI. da .

They show that either

H (i HAra) -Z 6 h(40a)
or

SH () (40b)

Let~~ n C be the set of all configurations in n such that (40a) holds,

and let =18n- n. Then

owe-:==1,). e, l• ('- •
(41)
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But

S F '"(42)

since

P-H(5 )' d~(TO)(T) /16 e e (43)

Using estimate (42) in (41) and summing over o and n we find

e_) z. e (44)

If we take into account the fact that when the border B appears either

of the components ,A ,, may be the -component then we obtain estimate

(29) for P .
B

QED

Theorem 6: Let ('~,H,V) be a nearest-neighbor Ising ferromagnet on a

lattice of dimension n) 2 with Hamiltonian

whose single-spin measure -7 is not the delta-function: 7 . If the

temperature is sufficiently low, there exists L> 0 such that

<0rv I>. LP (46)V
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where the infinite-volume limit is taken with the free boundary condition.

Thus the model is long-range ordered at zero external field and low tem-

perature.

Proof:

By Lemma 4 and the remarks preceding it, it is sufficient to consider

isotropic two-dimensional models. Since the single-spin measure 17 is not

entirely concentrated at zero, there exists c>0 such that O•Y7-CC]<1.

If -V(-  ) =0 define the measure 7V to be

A ( ([-c•] -) c] Y + _V-( -C)C]) ),(47)

where is the characteristic function of the interval [-c,cI and

S±C is the delta-function at +c. If -, 0 define the measure A7V by

(48)
Formula (4$) shifts a small multiple of the measure in the central third

to the left and right thirds and adds delta-functions at :c.

Set 13=/[ c 1• 7V. By Theorem II.4.1,replacing ~ by 17 causes the

moments (dO) to decrease. But V obeys the hypothesis of Lemma 5, so by

its conclusion at low temperature <(O, . ,L V The rest of the theorem

follows by repeated use of the second Griffiths inequality, Corollary 11.2.3.

QED
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If the single-spin measure 7=s, there is obviously no long-range order

because all nontrivial moments of the Gibbs measure are zero. Also, we

show in Appendix C that one-dimensional nearest-neighbor models always

cluster exponentially (have finite correlation length). Thus, our qualita-

tive information on long-range order in nearest-neighbor ferromagnets

is fairly complete.

We conclude this section with a short discussion of the infinite-volume

transfer matrixý of a nearest-neighbor ferromagnet ( nH,-V). (The

external field h need not be zero.) We define this operator using a method

of Osterwalder and Schrader 138 ]devised in the study of quantum field

theory. Other definitions of J of a more probabilistic [34] or algebraic

[4B nature have been given, but we feel that the approach followed here

is the simplest one currently available. We end our remarks on the trans-

fer matrix by stating a theorem that characterizes the cluster properties

of (2 ,H,v-) in terms of spectral properties ofj.

The transfer matrix is associated with the decay properties of a model

in a definite direction, which we assume to be the 1-direction. Let nn

be the half-space ( = ;.l , )e0•:kz•5 . Associate with each iEZ a

commutative indeterminate si, and let S be the vector space of formal

polynomials P(Si,)S; ,).. ) with real coefficients in these commuting indeter-

minates. Define the bilinear form on S÷ by
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Here & reverses the first component of kEfn:if k = (kl,*. ,kn) then

0(k) = (-klk 2 ,"',kn). In Appendix C we show that ( , )

is a positive semidefinite scalar product. Define $: •• 1 by

( 1-)(s, ss3 F(%Sij4 i,).'.j g), (50)

where as usual 11E nis (1,0,*-",0). Note that the polynomial 1 is an

eigenvector of j with eigenvalue 1; we call this eigenvector the ground

state of J. By translation-invariance, I is symmetric with respect to

()•.: (~PQ(= m• •). We show in Appendix C that for all PoE

In particular, Z annihilates the null-space j = ~QE5 :(OQ•)I=O and so

extends by continuity to a nonnegative self-adjoint contraction on the

Hilbert space completion of the quotient 5/ . This contraction, which

we also denote by Z, is the transfer matrix at inverse temperature P

of the model (2tH,V). As the following theorem shows, cluster proper-

ties of (",H,V) in the 1-direction may be characterized in terms of

the behavior of the spectrum of 3 near 1. We recall that the geometric

multiplicity of an eigenvalue ýk of an operator I is dim 0: J=X .

Theorem 7: Let j be the infinite-volume transfer matrix in the 1-direction

of the nearest-neighbor ferromagnet (JEH,Y) at inverse temperature .
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Then:

(1) The model is long-range ordered<=*the geometric multiplicity

of 1 espec(O ) is greater than 1.

(2) The model clusters in the 1-direction=?>the geometric multiplicity

of le spec(ZJ) is 1.

(3) The model clusters exponentially in the 1-direction:l>1 is an

isolated eigenvalue of j. Let spec • ) be SupE E(pPS): SIc

Then the correlation length in the 1-direction X)< is given by the

formula

Y~- I(52)

The proof of this result is given in Appendix C. Note that by the first

equivalence, Theorem 7 may be reinterpreted to say that the ground state

of the infinite-volume transfer matrix is degenerate at low temperatures.

The transfer matrix of nearest-neighbor models with spin ½ spins is

analyzed in detail in [34].
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Section 4: Spontaneous Magnetization

Let (J ,H,-V) be an Ising ferromagnet such that at inverse temperature P

all moments of the infinite-volume Gibbs measure with the free boundary

condition remain finite in the presence of an arbitrary additional

uniform external field h:

The moments <(A;h> = h ;H - hf ,a ,•> all increase in hE [0I,0),

and so are continuous functions of h except possibly for a countable

set of points. Moreover, <(O;h> is always continuous from the left

(in [0,00)) by a monotonicity argument: if hnt h then

ýTA <qj~r snP~oh K = SUnj Ap;h4 =
(2)

The magnetization at site i of (1 ,H,V ) with inverse temperature is

by definition the first moment (<i;H,,P) . If ,4 ;h) is discontinuous

from the right at h=O we say (Z ,H,v ) is spontaneously magnetized at

site i, and we define the spontaneous magnetization at i to be

Suppose that the single-spin measure 17 is such that the G.H.S. inequality

(Corollary 11.2.8) holds, and that the external field of the Hamiltonian

H is uniformly bounded below:

H=-z JKOkl - 2: 6(r o<h,,h. V (4)
1 K I,> Z j d
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Then H(-j f-h i extends to a monotone increasing function of h on

the enlarged interval [-h,,oo) which by the G.H.S. inequality is concave,

and in particular continuous on (-h,,00). Thus if the G.H.S. inequality

holds and the external field of H is bounded away from zero, there can

be no spontaneous magnetization.

If the Hamiltonian H = -jJKOK is invariant under simultaneous reversal

of all spins, so that JK = 0 unless IKI is even, then all odd moments

<Tcr H> must vanish. In this case the appearance of spontaneous

magnetization may be viewed as a spontaneous breaking of the spin reversal

symmetry. We note that by the second Griffiths inequality (Corollary 11.2.3))

if all sites are spontaneously magnetized then the discontinuity in the

magnetization shows up in the higher odd moments:

Bi$fl-ro: 7T- sh) >0. (5)

Also by the second Griffiths inequality the spontaneous magnetization

m s(i) for a Hamiltonian invariant under spin-reversal symmetry increases

in the couplings JK and the inverse temperature P .
We restrict our further analysis to Ising ferromagnets (gn,H,V) with

connected translation-invariant finite-range pair interactions, which

for simplicity we call translation-invariant ferromagnets in this section.

We show that if a translation-invariant model is long-range ordered in

some direction, then it is spontaneously magnetized. Since we have shown

in Section 3 that the nearest-neighbor ferromagnets in at least two



113

dimensions with zero external field are long-range ordered at low temperature,

we conclude that they are also spontaneously magnetized. By a small geo-

metric argument we may eliminate the nearest-neighbor restriction and obtain

spontaneous magnetization for all translation-invariant models. It is also

possible to modify the proof of Theorem 3.6 and obtain this result directly.

We finish the section by deriving spontaneous magnetization of anisotropic

plane rotators on lattices of dimension at least two as a corollary of

our main result.

Proposition 1: Let (ZnH,17) be a translation-invariant ferromagnet.

If 3 L> 0 such that

- L (6)

then (jnH,V7) is spontaneously magnetized, and

t~o
(7)

Proof:

Let h be the uniform external field added to the field already present

in H, and for AE ( set •G -it)-v = OA-h) . By Proposition 3,2

the two-point function of (In:-• •7 ) must cluster except for a

countable set of h's, so we may find a decreasing sequence h 1 0 such

that <0; hm -;hm • •)( hm as li-jVl-00 m . By the long-range

order (6) and the second Griffiths inequality,

( h' >,( oo + L (8)

Taking first li-jl-->00 and then hmJ 0 gives the desired result.
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With Proposition 1 in hand, it follows from Theorem 3.6 that trans-

lation-invariant models in dimension at least two are spontaneously

magnetized. We generalize this slightly to obtain

Theorem 2: Let (ZH,YV) be an Ising ferromagnet on a lattice of dimen-

sion n)2 with the connected translation-invariant pair interaction

jH-Z CJ0- U0a V1ft
(9)

whose (even) single-spin measure is not the delta-function S. If

the temperature V-I is sufficiently low the model is spontaneously
magnetized:

m, zo i~v, ,(10)

Proof:

Take i=O. By connectedness and translation invariance 3 k,~ nlinearly

independent such that Jk'•J 0. Let V = iOalb9:d~abE . Reducing to zero

all couplings in H except for Jk' J makes V a sublattice disconnected from

the rest of in isomorphic to a nearest-neighbor model on ~2. The theorem

now follows from Theorem 3.6 and Proposition 1. QED

This theorem may also be proved directly. Indeed, the proof of Theorem 3.6

may be modified to show that putting an arbitrarily small (volume-inde-

pendent) external field on the boundary of a sequence of regions growing to

infinity causes a spontaneous magnetization. In the language of equilibrium

states (see equations (2.23, 2.24) and the accompanying discussion), we say

that the equilibrium state < of ( H,7) with boundary condition
rhr heeqilbrumsffe(;;VBI h a
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b> 0 V&fo("), V iEAL (n
is spontaneously magnetized: <Cr4,1 7 >O0 . For spin ½ models, the

state < J j )7 is independent of h for h>O:

<K ;v, =<' ),v4> V h>o. 301 (12)

One expects (12) is true for any single-spin measure, but this is not

presently known. By taking the negative boundary condition -h< 0 one may

also construct the equilibrium state <( [-y1'•h , which differs from

<( only in the sign of the expectation of an odd number of

spins by virtue of the spin-reversal transformation O-+-CT. The average

thus has vanishing odd moments like the state ; H;, with the free

boundary condition. By the second Griffiths inequality (Corollary 11.2.3)

and the spontaneous magnetization of < , the average state is long-

range ordered:

<a6I(<I>-<A ±K[O><&) > 0 (14)

If we could show

for connected models ((15) need not hold for disconnected models), then
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taking into account Proposition 1 we could conclude that spontaneous

magnetization and long-range order are simply different manifestations

of the same basic phenomenon. Unfortunately, we cannot prove (15) at

present.

The critical (inverse) temperature c for spontaneous magnetization

is the largest inverse temperature for which spontaneous magnetization

does not appear:

Ph=uo: 1 )-h2ovP> (16)

For the two-dimensional spin ½ nearest-neighbor Ising model with

Hamiltonian

pc is well-known b1 and references therein] to be given by

sihb(2,.), s.n h• )-, (18)

when J 1 =J 2=J this yields

PCO (19)

If we combine (19) with Proposition 11.4.2 we obtain upper bounds on the

critical (inverse) temperatures of models whose single-spin measures are

absolutely continuous near zero. For example, in the model (2,,H,,Y)

with Hamiltonian (17), J1=J2=J , and single-spin measure
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(20)

T = sui-p tE1:u t sup is given by

T-- (4), (21)

so that the critical temperature R of this model has the upper bound

PC < (, Z (, + )). (22)

A more interesting single-spin measure to which this method applies

is o x(V= (eX- i r-40)d(- !• 4+ s, though we have not worked

out the details.

We conclude with a corollary exhibiting spontaneous magnetization for

anisotropic plane rotors by a comparison with Ising ferromagnets.

Corollary 3: Let (Z ,H, dp(r)dO) be an anisotropic ferromagnet plane rotor

on a lattice of dimension n)2 whose Hamiltonian H is a connected trans-

lation-invariant pair interaction of the form

Jý ý >,, 0 (2 3)H=-Z cr-40-1)WEY~l
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If the radial measuref is not the delta-function 8 , then for suffi-

ciently low temperature .-! the model is spontaneously magnetized in the

x-direction.

Proof:

An argument of H. Kunz [25] employing the Ginibre inequality for plane

rotors 11Z] shows that the spontaneous magnetization mRot in the x-direc-

tion of the model ( ,H,(r)dO ) is bounded below by the spontaneous

magnetization msing of the Ising ferromagnet ( ,Hising ,V), where

H 2=-- (J v - (24)

and ~7 is defined by

70rEdI (25)

Since p is not the delta-function 6 , neither is- V, so by Theorem 2

<OmIsin < mRot  for sufficiently low temperature.

QED

We emphasize that this is a result about anisotropic rotors. It is

known that isotropic plane rotors (V =I) on a lattice Aof dimension

n 2 are not spontaneously magnetized [333 . The likelihood that isotropic

plane rotors are magnetized on a lattice of dimension at least three

is a subject of considerable current interest.
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Section 5: Phase Separation and Breakdown of Translational Symmetry

In this section we investigate the breaking of translational symmetry

at low temperature. It is clear from the construction of Section 2 that

if a ferromagnet (,H,-V) has a translation-invariant Hamiltonian then

the infinite-volume Gibbs state with the free boundary condition is trans-

lation-invariant:

<{(o. -k 4(0t a," V iIG2 ) Vl@'BC(R).(l)

However, as with the spin-reversal symmetry discussed in the previous

section, we shall find that at low temperature a model may have non-trans-

lationally-invariant equilibrium states. For certain models with discon-

nected Hamiltonians this is readily apparent. As an example, consider

a model on with spin measure Vi and a pure second-neighbor Hamil-

tonian:

The lattice has four (non-interacting) components connected with respect

to H, each of which is equivalent to a two-dimensional nearest-neighbor

interaction. Apply a uniform external field h to the sites of one of the

components, which for specificity we take to be the even component

S(i<~~')•6~: i" are evens . Upon decreasing h to zero we are left in an

equilibrium state < > of (~,H,V) which at sufficiently low temperature
NTI
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-I breaks translational symmetry because

So if ii are both ev (3)

An example of a connected model with non-translation-invariant equilibrium

states was given by Slawny[ 44 1 . The following theorem shows that the

appearance at low temperature of equilibrium states which are not trans-

lation-invariant is a fairly general phenomen6n.

Theorem 1: Let (;F,H,y) be the nearest-neighbor Ising ferromagnet in

dimension n)3 with Hamiltonian

o(

H -3- i • J"Zo _ -o,..;o,l, Z (a 4
\-JŽ

and Y76. Let ms be the spontaneous magnetization of the nearest-

neighbor ferromagnet (Z'H',7V) in dimension n-1 with the same single-

spin measure 7 and coupling J:

1H=-J q/ (5)

Then for any inverse temperature there exists an equilibrium state

< >NTI of ( ,H,ve ) such that

NTNT (. ,
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Since for low enough temperature the spontaneous magnetization ms> O,

the state < NTI is not translation-invariant.

Remark: The phenomenon elucidated by this theorem - an equilibrium state

where one half of the model is positively magnetized and the other

half negatively magnetized - is called phase separation or sharp phase

interface. Other work on phase separation has been done by Dobrushin [6]

Proof:

The proof, taken largely from [I4], generalizes to arbitrary single-

spin measures an argument given by van Beijeren 1I1 for spin 1 spins.

Let AM - be the square (in,)' n i4 I•4 VkI and let

Atcy" be the box - i) >hN Ik I N/.
Define

0 = J03 (7b)

M E (7c)

Add a uniform external field h to all spins in N U .M, a field

-h to all spins in h•, and a field h to the spins in Ji MCZ

Figure 1 aids in visualizing the situation.
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*1h)

XM,, (f ied +h) .A, (f1Ald

Figure 1

4h)

This alters the Hamiltonians HM and H' obtained from ( HH,7 ) and

(rn' ,H',V ) to

1 -' I 4[ +

(8b)
where by site -i we mean the reflection (-il,i2,"*,in) of i throughJL X N

and square brackets [ij] indicate nearest neighbors. We claim that

M0-kh ,i "H'( VOae AMP•,,(9)

where if a = (O,a2 ,'..,an) then

the square AM in the box m,N

ization. To verify (9), regard

a' = (a 2 ,.',a,). This says that by burying

as we have done we increase the magnet-

the two non-interacting systems ('nH,)17

I

J
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( -',H' ,7 ) as a single combined system, and introduce the sum and

difference variables (II.2.1):

(10a)

(10b)

The total Hamiltonian in the transformed variables H(C ) + H' (ar) is

Since this is a polynomial in the q's and t's with negative coefficients,

by the method of proof of Theorem 11.2.2 we find that for any families

of sites A,BE (j

(< q1 0* (12)

In particular, for any aGj=

0> <co-,> >, T I (13)

as claimed.

Now let N- 0 , so that the box nM N  increases to a boxJMcX which

is infinite in one direction. Using the transfer matrix method described

in Appendix C we can control this limit to obtain a state < ; h)

M}O~
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on C(Tk i ) such that o
H' N 

0

Moreover for any iE MA if we define i' = (i2, ,in ) to be the pro-

jection on Jnt then

<0 U ŽO j{( (15)
MJO M

This is because by increasing to +h all fields on spins -jE 1- such that

ijl1 1 ii  we bring the spin (0 ,i2, ,in ) to the position previously

occupied by spin i. But by Corollary II.2.5, which holds for arbitrary

external field, increasing the field can only increase the magnetization.

Each state < j; (h on C(Q ) may be extended to a state on

CI jI), for which we use the same notation, by abstract considerations.

This gives a sequence of states on C(TT iAR) indexed by the size M of AM;

since the set of states is compact in the weak* topology some subnet

of this sequence converges and the limit ;< ()• • is an equil-

ibrium state of the (non-ferromagnetic) model (f",H(h),V) with the

property that

L>NTI >" V 0 (16a)

TI" ,-<o$1I4'd0)h)V V)-jo. r16b)
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If we let h -+ 0 and again use the method of compactness and subnets we

obtain an equilibrium state K< ojfyNTlof the ferromagnet (i",H,n7)

with

(•;H >p) m , >,o (17a)

<'q " ,P J.-/0 (17b)
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Section 6: Applications to Quantum Field Theory

In this section we comment on applications of correlation inequalities

in quantum field theory. Since an adequate description of the formalism

of quantum field theory is lengthy, and since the connection between

statistical mechanics and field theory is discussed in detail elsewhere

(e.g.~201[43,and further references therein), we shall only make very brief

remarks and avoid technical details.

There is a strong similarity between the formal expression [431

hmOP[1RI 2 : ~(x) (-rm2) H) P(I(X)) :.4eJ

for the Schwinger functions of a Euclidean P(# )2 quantum field theory

and the formal expression

(2)

for the moments of the Gibbs measure of an Ising model ( 2 ,H,17). If

we approximate the plane TRZ by a lattice 22 with grid spacing ( in

formula (1) we find

<0, ; " --(i'
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OR) UR (Z

where il,.-. ,i n are the closest lattice points to x1 ,,*. ,x n and [ij]

as usual indicates nearest-neighbors in .2 . This is the formula for the

moments of the Gibbs measure of ferromagnetic Ising model with nearest-

neighbor Hamiltonian

(T Y (4)

and single-spin measure

dv • ([-•t* (lm1)' :](-{) . Jdo-l (5)

Observe that the (off-diagonal part of the) free quantum Hamiltonian

gives rise to the Ising Hamiltonian coupling the spins at different sites,

while the interaction part, and on-diagonal free part, of the quantum

Hamiltonian appear only in the single-spin measure of the Ising model.

In [101, Guerra, Rosen, and Simon show by means of a special ultraviolet

cutoff that the heuristic approximation (3), known as the lattice approxi-

mation, in fact converges rigorously as the grid spacing C---O. This

is the primary physical motivation for the study of continuous-spin Ising
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models.

By means of the lattice approximation, inequalities for Ising models

may be taken over directly to give inequalities for Euclidean P( )2

models. Theorems II.2.1, II.2.2, II.2.4 and the F.K.G. inequality I11] ,

which hold for Ising models with arbitrary single-spin measures, are

also valid for all P( )2 models. Theorems II.2.6, 111.2.1, and IV.3.1,

which hold for Ising models with a restricted class of single-spin measures,

are known to be valid only for 4 models. (Of course, these are the

models of principal interest in four dimensions.) Also, certain objects

we have dealt with in Ising models have direct counterparts in field

theories. For example, the inverse correlation length in a spin system

corresponds with the mass in a field theory, and the transfer matrix j

with the exponential of the Hamiltonian e- H .

Many of the applications of correlation inequalities in field theory

are motivated by similar applications in spin systems. For example, the

second Griffiths inequality (Corollary 11.2.3) is used to control the

infinite-volume limit [43]. The F.K.G. inequality (which we have not yet

described) shows that the mass is determined by the decay of the two-

point function. The G.H.S. inequality (Corollary 11.2.8) yields monotonicity

of the mass in the external field, and either the Lebowitz or the Gaussian

inequalities (Corollary 11.2.7; Corollary 111.2.2) prove that the n-point

function is bounded above by sums of products of two-point functions.
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The results we have presented on long-range order and spontaneous

magnetization also have analogs in field theory, though the methods

are more complex. Glimm, Jaffe, and Spencer show in [16 ] that the

model is long-range ordered for large dimensionless coupling constant.

Finally, correlation inequalities have been used in some field theory

problems with no immediate antecedents in statistical mechanics. For

example, Spencer [45] (see Feldman [O1 ) employs the Lebowitz inequalities

to show weakly coupled 4 theories have no even two-particle bound states,

and Glimm and Jaffe [14] invoke the Griffiths, Lebowitz, and u6

inequalities to prove absolute bounds on vertices and couplings.

Correlation inequalities, and the Euclidean methods on which they are

predicated, are of major importance in the recent progress of the con-

structive program in quantum field theory.
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Chapter VI: Unsolved Problems and Concluding Remarks

In this final chapter we present four unsolved problems, and make some

concluding remarks. The problems we shall comment on are: the conjectured

P inequality, long-range order and spontaneous magnetization for plane

rotors on lattices of dimension at least three, Griffiths inequalities

for vector spin models, and the conjectured un inequality.

Let (j,H,)7) be a translation-invariant nearest-neighbor ferromagnet

with zero external field and single-spin measure of the form d-Y()=eyf(-a4 iQo )d"

Let C be the covariance matrix

and let C-1 be its formal inverse. Given sites il,.' ,i 6 ,'2 we define

(2)
where u4, u6 are Ursell functions and the sum , is over

all ten partitions of 1,," ,6 into two disjoint sets a,b,c• , d,e,f .

The conjecture to be proved (or disproved), at least for the minimal class

of models indicated above, is that

A proof of (3) would have many important consequences in quantum field

theory [151 . For spin ½ spins on a one-dimensional lattice (3) has been

established by explicit calculation (J. Rosen: private communication),
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but in the continuous-spin case little seems to be known. Actually,

knowledge of the special case

.Ttý 6 i A), (4)

would be very useful. This inequality has been established numerically

(in a computer study) for the anharmonic oscillator 132 , which is a

continuum limit of our one-dimensional lattice theory. Also, for spin ½

spins a straightforward computation yields

essentially independently of any geometric restrictions on the Hamiltonian.

But again, for continuous spins on a lattice of dimension at least two,

very little is known.

Let us turn now to the question of spontaneous magnetization for plane

rotors. In Chapter V we proved that in two or more dimensions a wide

class of Ising ferromagnets is spontaneously magnetized at low temperature.

This magnetization may be viewed as a spontaneous breakdown of the discrete

internal symmetry group 4Z associated with spin reversal. If we replace

the linear spin OC1R by a vector spin 'E S1 and consider plane rotors,

the internal symmetry group becomes the continuous group 0(2). As shown

in [33], this larger internal symmetry group precludes any spontaneous

magnetization in two or fewer dimensions, though if we break the 0(2)

symmetry by making the Hamiltonian anisotropic a magnetization appears
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(Corollary V.4.3). Thus, the natural problem is to determine whether plane

rotors on three-dimensional lattices are spontaneously magnetized. Indications

are that this is so, but it has not yet been proved. One approach might

be to replace the circle S1 on which the spin is distributed by the set

of nth roots of unity, show there is a magnetization in this simpler case,

and control the limit as n->CO . We note that once one has spontaneous

magnetization for this classical plane rotor (single-spin measure the

uniform distribution on S1 ), the rotor analog of Theorem 11.4.1 and

other techniques permit the extension of this result to a much larger

class of single-spin measures.

Continuing our discussion of vector spin models, let us now consider

the problem of Griffiths inequalities. As we easily show in Chapter II,

the first Griffiths inequality (Theorem 11.2.1) holds for all O(n)-symmetric

vector spin models with spin T6R n . (Indeed, it holds even more generally.)

Unfortunately, for models with the usual 6i. interactions, our infor-

mation about the second Griffiths inequality is much more limited: it is

only proved for n=1,2 'll , or, very recently, n=3 [~6] . A general result

in this direction (or knowledge that there is no such result) would be

valuable in the construction and understanding of vector spin models.

We finish our remarks on unsolved problems with a reformulation of the

conjecture

(CI) Il> 0 ri even (6)
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on the signs of the Ursell functions of spin ½ Ising ferromagnets with

pair interactions and zero external field. Chapter IV was devoted to a

study of this problem. Our method, which we could only carry through for

n=2,4, and 6, was to expand Z n as a Maclaurin series in the couplings

Jij and show that each Maclaurin coefficient Z •uo.

had sign (-1)z . In Appendix B we transform this problem about

derivatives into an abstract combinatoric question about the topological

nature of certain linear graphs. We now give a brief description of this

reformulation; for greater detail see the Appendix.

For Ursell functions of order n, call a graph G a nontrivial graph

of order n if it is connected, if exactly n vertices ("dummy vertices")

have a single incident edge (called "argument edges"), and if all other

vertices have an even number of incident edges. An even partition

of G is a graph which is formed by partitioning the edges incident at

each non-dummy vertex into sets of even cardinality, and tying together

the edges of each set in the partition at a newly-created vertex. For example,

taking n=4, if G is the nontrivial graph

Figure 1
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and we partition the edges at non-dummy vertices 1 and 2 as in Figure 2,

Figure 2

Vertex zL

the resulting even partition4 of G is the (disconnected) graph

Figure 3

Let Ile(G) be the set of even partitions of G, and partially order Le(G)

by refinement: - <ý4 refines I . Then ILe(G) has no least element,

so we adjoin to Ie(G) a least element 0 and call the enlarged set *e(G).

For I *e (G) set

-00 0f =0 oL Ic Artument ed es are toi in same co"nectej compnent 01

cootIJi SarTK com1)onert
vioe less hAn number o connected cnomnto i J orunent es in Sam )ompbi

(7)

Thus for the even partition of Figure 3, co() = -00 . IfE _U e(G)

we define u(ý ) recursively by

=\;t/ Z tL~. (8)

ft
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inn
Then, as shown in Appendix B, all derivatives • _ •1

have sign (-1)Z• if and only if

u(0) >.'0 (9)

for all nontrivial graphs G of order n. Proposition IV.4.1 implies this

inequality if the cyclomatic number of G is at most four. The general

case is not known. This completes our discussion of unsolved problems.

In this thesis we have given new proofs, extended prior results, and

derived entirely new theorems, of which the most elegant are probably

Theorem V.3.6 and Theorem V.4.2. These theorems show that at low temperature

ferromagnetic Ising models in two or more dimensions are long-range

ordered and spontaneously magnetized for arbitrary single-spin measure

Y 6. Thus in mathematics as in nature, phase transitions are not

pathological but ubiquitous.
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Appendix A: Extensions of Theorem 11.2.6

In this appendix we weaken the hypotheses of Theorem 11.2.6 and its

corollaries, the Lebowitz correlation inequality and the G.H.S. inequality.

In Section 11.2 we proved this theorem for continuous single-spin distri-

butions of the form

where P is an even polynomial with arbitrary quadratic (and constant)

and nonnegative higher coefficients:

Here we show it holds for arbitrary c2 ,c0 when just c4 ,C2p > 0, provided

c6,,c8,. ,c2p-2 are not too negative. Recent results of a similar nature

may be found in [C9 . We prove additionally that one may even have

c4 < 0, provided it is not too negative, though in this case the range

of c2 must be restricted.

The proof in Section 11.2 reduced to showing

for k,Q,m,n all odd. Here Q and R are polynomials related to P by
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They are given explicitly by

Q(w,x,)ý,z-)= 4- ' c Qi(W)X,),(z)
i=0 (5a)R(WX, 1) = i4 -• c (W) • XY,7), (5b)

Qi and R. being the symmetric homogeneous polynomials of degree i

with positive coefficients defined by

(Zd)M Wa X 'Y y
Ri (W )X- ( 21+''4 (JA (6b)

(20i4) ..W 1OLyc !

(Note that c2 and co do not appear in R. This is the reason that Theorem

11.2.6 holds for arbitrary c2,co.)

As the exponents k,j,m,n in (3) are all odd, the integrand has the

same sign as R( 2,,. ,s ). Thus, if R(R2 ," , 8 Z) is nonnegative, (3)

will hold, and Theorem II.2.6 will be valid. We state this as a propo-

sition:

Proposition 1: Let A,B,C,D be families of sites in a ferromagnetic

Ising model with Hamiltonian

H-*- .0,h o (7)

and single-spin distribution (1). If the polynomial R(0(2, ,S2 ) defined

by (5b), (6b) is nonnegative, then

<OA P5c 5 &> )O. (8)
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From (5b) and (6b) it is clear that a sufficient condition for R to

be nonnegative is that employed in Theorem 11.2.6, namely, that all

coefficients of P higher than the quadratic be nonnegative. However, this

condition is not necessary: only the trailing and leading coefficients

of R, which control the behavior at zero and infinity, must be positive;

intervening coefficients may be negative, provided they are not too large.

Unfortunately, the author as yet has been unable to locate or determine

necessary and sufficient conditions on the coefficients of an even

symmetric polynomial in f6ur variables which will make it nonnegative;

indeed, he has been unable to find useful such conditions for polynomials

in just one variable,though sufficient conditions stronger than nonnega-

tivity of all coefficients are not difficult to manufacture in this

simpler instance. The one-variable case is of interest because we may

decouple the four variables in R, reducing it to a sum of four polyno-

mials in a single variable each, thereby allowing one-variable criteria

to be applied. Information is lost in process, however.

Proposition 2: Assume that the coefficients c4,c2p in (2) are positive,

while all remaining coefficients are arbitrary. Let

I = p U i 3,4,,. ,p-1: c2i 0  , I = i 3,4,' 3 ,p4 : c2i 0
+ 2 i 2i

Define the polynomial

(4i-1-1 )
T(X) = (2i)(2i-1)(2i-2)4-i++ c2i-2 +-- c (9)

1+ iEI 2 2
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Then

•R(c• #• s)) T(o•) ±T( 7) 4T ()±T(•?), (10)

so that the hypothesis of Proposition 1 will be satisfied if T(X)> 0

for X> 0.

Proof:

To obtain (10) from the definition (5b) of R, we must give a lower

bound on those Ri associated with positive coefficients and an upper

bound on those associated with negative coefficients.

The lower bound is immediate: just drop all cross-terms in definition

(6b) to conclude

R.(W,X,Y,Z) ~ (2i+4)(2i+3)(2i+2)(Wi +Xi  i + Zi), W,X,Y,Z0. (11)

The upper bound requires a little more effort. Exploiting the inequality

WaxbycZd _•W i + bi + X + -. yi + -•-Zi i=a+b+c+d , (12)
i i 1 i

which holds whenever all quantities involved are nonnegative, we find

R. (W,X,Y,Z) ( R.(l,l,l,l)(W + Xi + Y + z )/4, W,X,Y,Z > 0. (13)

We evaluate R.(1,1,1,1), finding

R.(1,1,1,1) = 2 '(42i+2 - i+1), (14)
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so that (13) becomes

R.(W,X,Y,Z) ½(42 i +2 - 4i+l)( ( + *.. + Zi), W,X,Y,Z > 0, (15)

From (11) and (15) the proposition is immediate.

QED
Thus far we have proved (8), the Ellis-Monroe inequality, when

R(C( 2 Z3, Z, ) ) 0, obtaining results valid for all quadratic coeffi-

cients c . One may also allow R to become slightly negative and still
2

show that inequality (3), and hence inequality (8), is valid. However,

the range of allowed negative coefficients must depend on c2, because

as c2-->00, the integrand in (3) becomes concentrated at zero, with

C,-2 c C'. ] converging to b)S in somewhat

unfortunate notation. In particular, if the trailing coefficient of R

is negative, inequality (3) will always be violated for sufficiently

large c2 , even though it holds in the limit because the S-function forces

the integral to zero. This is because the contribution to the integral

where R 0 decays like an inverse power of c2, while the remainder of the

integral decays exponentially in c2.

We indicate one set of constraints on the coefficients under which

the Ellis-Monroe inequality (8) may be proved.

Proposition 3: Let A,B,C,D be families of sites in a ferromagnetic Ising

model with single-spin distribution (1) and Hamiltonian (7). Let the
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leading coefficient c 2p> 0 of P be specified. For all M >0, there

exists -(<O, depending only on c2p and M, such that if

Nc2 M and -(<c2i<M, 2<iCp-1 (16)

then

Proof:

The first part of the proof proceeds as in Section 11.2, and we reduce

the proposition to proving inequality (3) for all odd k,2,m,n. Denote

by B((,M) the compact region [-M,M]X ( P1 M• ) in which the coeffi-

cients c2i' 1,i<p-1, are allowed to vary. Inequality (3) is strict

when( =0, because the integrand is a nonnegative continuous function

not identically zero. Since B(0,M) is compact, we see that by taking (

small enough (3) may be guaranteed by a continuity argument for any

finite set of exponents k,Q,m,n. The proof will be complete if we can

also show there exist -( <0 and exponents ko,  ,mo ,no such that if the

coefficients c2i lie in B((,M), then (3) holds for all k>/ko, ,. ,n> no .

For this purpose we need the following lemma, which is proved by the

method of Proposition 2.

Lemma 4: There exist c,(>0 such that if the coefficients c2i lie in

B((,M) then R(do, " , 2)> c for (d, , ,s) outside the cube

K = -1,11X [- -11] Y -11 X -1,1.
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Take c,( from Lemma 4. Since Sh , ))e

is uniformly bounded above by some constant C as (a,P,Y,S) varies over

K and the coefficients c2i vary over B((,M), we have

K

On the other hand, as the coefficients c2i vary over B((,M), exp(-Q(o2) ,.)*))

is bounded below by some positive function e(~o(0h,"6 ). Also, by the

lemma, R(a ',S 2 ),)c for (o,P,,S)4K; thus,

~, (d( ,(c k  18)

for (d,c,A,6) K. Consequently,

5,. e 0  , ,;)I(

SL \>'e,.l >.. (19)

>[J I e(0-," )d•d·'" ¢]Z k+m+n

Taken together, (17) and (19) show that indeed (3) holds for large

k,S,m,n uniformly as the coefficients c2i lie in B((,M).
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Appendix B: Computational Algorithms for Ursell Functions

In this appendix we give algorithms to evaluate the networks and graphs

of arbitrary order introduced in Section IV.4. We point out an interesting

combinatoric interpretation of the algorithm for graphs. Finally, we

present the results of a computer study of graphs whose signs were not

determined by the methods of Chapter IV. In every calculated example.

the sign was (-1)•  as conjectured.

In evaluating networks and graphs, the trace factors over the sites

of the model, so our primary problem is to compute Tr(CV I ..- v). Recall

that the superscripts ýi are copy indices with the superscript vector

/ eX •Q "- ; the site subscript common to all the C's is omitted.

We may suppose v is even, for if it is odd the trace vanishes. Let

le(f;)V•D) be the collection of all even partitions of fl, V3 ; that

is, all partitions (P of "'rV- each of whose elements PEP has even
-4

cardinality. Given a vector 6E 0~0ji·", -1 of superscripts, the partition

1()of I", IV3 is defined by the equivalence relation G_ < i .

With this notation we find

0 o herwise

We next express equation (1) in a way convenient for calculation.

Given 6 d z'",V define ••: jO'"*-l-> - oQ by
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00 Aotherwise (2)

Partially order the set Je(i(,"KVv) by refinement: & if and only if

?refines&. Define the numbers /p ~ e( '" , by recursion:

(3)

It may be shown that

) iT 7 tan (4)

With these definitions, the formula

is apparent. This is our fundamental identity.

Let us exploit formula (5) to evaluate networks. By the factorization

of the trace, we need only evaluate a single vertex Tr( f .' ~* v). Now

Tv ( W Ty (a "'•0 (6)

ýGxjo,3)
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But

ZO''flOMd0Y)V#PNP

0 otherwise (7)

Call a partition of the incident edges at a vertex matched if the sum

over each set of edges in the partition of the incoming currents is zero

in . Equation (7) says that the value of a vertex is the sum over

all matched partitions of4P() l  . We state this formally:

Algorithm 1: With notation as above, the value of a nontrivial network

of order n is the product of the values of its vertices. The value of

a vertex is the sum over all matched partitions P of the incident edges

of •(~ tn•_l . The value of a graph may be found

by summing over its nontrivial networks.

To illustrate the evaluation of networks, consider the example shown

in Figure IV.4.2 reproduced below for convenience.

(Figure IV.4.2)

·
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At vertex 1, there is a single matched partition, the one-element partition

X Vertex 1 therefore has the value 21.(-2) = -4. At vertex 2

there are three matched partitions: , , and

3>P3 ( " Vertex 2 therefore has the value 22.1 + 22.1 + 21(-2) = 4.

Multiplying, we find the entire network has value -16.

We may also use formula (5) to evaluate graphs directly, without the

necessity of summing over networks. To explain the algorithm we must

make a preliminary definition. Let G be a graph which is nontrivial in

the sense of Section IV.4. A partition , of G is a graph formed by

partitioning in some way the incident edges at each vertex and tying together

the edges of each set in the partition at a newly created vertex. For

example, if G is the graph

z Figure 1

and we partition the edges at vertices 1 and 2 as in Figure 2,

Figure 2
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the resulting partition) of G is the (disconnected) graph

Figure 3

A partition of G is called even if the partition at each (non-dummy)

vertex is even, and we denote by -Ie(G) the set of all even partitions

of G. The graph in Figure 3 is an even partition of the graph in

Figure 1.

Let us now focus our attention on the derivative

SG1- "" Zm u •° o-.-,,,.

with graph G and (non-dummy) vertices "V(). Using (5) to evaluate
the trace in (8), we find

(9)

where the number of edges incident on a vertex vE•lkF) is Iv. We may

identify in a natural way each choice of an even partition at every
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vertex v with an even partition• of G, and regard the outer sum

as a sum over Je(G) instead. For fixed Le-(G~)
and •0"-••E the innermost sum • ••_ may be performed

explicitly. Define the partition of the index set tl,.,n3 to have

as elements the sets C composed of all indices whose argument edges lie

in the same connected component of the partitionA . a is an even partition,

because the number of odd vertices in a connected graph is even. Let

Co(N ) be the number of connected components of) without argument edges.

Then C M

V(10)

With this formula in hand, the sum over 0( now may be performed:

0 hel•rwise.
Thus the term in the sum (9) associated with the even partition

vanishes unless all argument edges lie in the same connected component

ofA . Let IeAc(G) denote the set of even partitions of G having all

argument edges in a single connected component. Then we have

Algorithm 2: With notation as above, the derivative (8) has value



150

J e(G) V a h) (12)

It is immediate from this formula that if G is a tree (and hence e11 , (

has only one element) then

I I \

(13)

As another illustration, consider the graph G of- Figure IV.4.1, repro-

duced below for convenience.

(Figure IV.1)

The five elements of Ce,(G) , and their contributions to [G], are

shown in Figure 4.

Figure 4

~II
43

II
-Z

-z,

Summing, we find [G]= -4.

-Z

CIA~ -T·T·

/G ET (GI I il=O0
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Algorithm 2 has an interesting combinatoric interpretation. Fix a

nontrivial graph G. The partially ordered set ile(c) has no least

element, so we adjoin to .ie(G) a least element 0 and call the enlarged

set I(E) . From the definition (3) and explicit formula (4) for/l ,

we see that for E () ,

d I I fkA), (14)

whereAk is the M6bius function of i . (The definition and some

elementary properties of M6bius functions are given in the Technical

Appendix to Chapter IV.) Let us alter slightly the definition of Co() .

For eI e (&) set

00 if A=0 or allwmet 'ear 6d +0 lt in sar' conne1d com¶orent ot

the number 4 connct~d componeisA dAeo.id 4 arumeti e•ds o0chrs•e
1(15)

Using (14) and (15), the formula (12) of Algorithm 2 takes the more

perspicuous form

S, (16)

We may invert this to obtain an expression for [G] strongly analogous

to the definition (IV.1.2) of un. If , (G) , define u(t ) recursively

by

-cEjL1) u.(le) (17)
le 2-
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By the M6bius inversion formula,

M =U() ,(18)

and in this language the conjecture that all derivatives with respect

to couplings of ZI h have sign (-1)i becomes

u(o 0 (19)

for all nontrivial graphs G. Thus we have transformed our conjecture

about Ising models into an entirely abstract question about the topological

nature of certain linear graphs.

We close with a table of the values of graphs calculated in a computer

study. To make the programming problem more tractable, the graphs were

evaluated by summing over their nontrivial networks. Networks for graphs

1,2,3,8,and 9 were evaluated in the integer mode with Algorithm 1. Net-

works for graphs 4-7 were evaluated by using equation (IV.4.11) in the

floating point mode. Comparison of identical graphs calculated by the

differing methods suggests the error from employing floating point

arithmetic was a few parts in 105. The primary factor inhibiting a more

complete investigation was execution time; Graph 2 ran for 18.2 minutes

and Graph 7 for 42.5 minutes.
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Derivatives of Z un: Evaluated Graphsn

Graph 1: n=8

8 vertices, 6 loops

Value: -18,880

Graph 2: n=8

8 vertices, 7 loops

Value: -63,312

Graph 3: n=8

9 vertices, 6 loops

Value: -10,640
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Graph 4: n=8

9 vertices, 8 loops

Value: -239,955

Graph 5: n=8

8 vertices, 8 loops

Value: -223,834

Graph 6: n=8

10 vertices, 9 loops

Value: -461,069
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Graph 7: n=8

12 vertices, 9 loops

Value: -184,317

Graph 8: n=10

10 vertices, 6 loops

Value: 30,400

Graph 9: n=10

10 vertices, 6 loops

Value: 66,976
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Appendix C: Transfer Matrices

In this appendix we define transfer matrices for nearest-neighbor

ferromagnets, describe some of their elementary properties, and derive

the results alluded to in Chapter V. Although we shall make no use of it,

we point out that there is an intimate connection between the theory of

transfer matrices and the Markov property of nearest-neighbor Ising models.

If the model is not nearest-neighbor one may still write down a transfer

matrix, but as it need not be self-adjoint the analysis is more

complicated.

We begin by introducing some notation. We analyze ferromagnetic

nearest-neighbor models (A.,H,v7), where:

(1) The index vector gC6 has positive components, and

With each site itEJ we associate a spin OaER.
(2) The Hamiltonian H is

H- Ja . Zh oJh>o. (2)

Here we use square brackets (ij] to indicate nearest-neighbor

pairs.

(3) The single-spin measure - is an even Borel probability measure

onIR which decays sufficiently rapidly that
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exp ( ) d IRV (3)

We absorb the inverse temperature P into J and h.

If we drop the 0( - component of ge , we denote the vector in

formed from the remaining components by 4. Thus, for example, if

g = (g1 ,"'.gn), then ~(= (g "'n), and A^ is the cross-section of

k orthogonal to the 1-direction. To ease the notation we often write

A for J and JAt for . Since we frequently encounter configurations

of all spins ejER with aE}j, we group them into a vector: OE17,R

has components O6pE

The unnormalized transfer matrix T (in the 1-direction) of the model

(AL,H,V) is the linear map T: L2 (')- -*L2( ; 7) defined by

where we write L2()7) for L2 ,(T.R ,T•T, ). (We use real Hilbert spaces.)

The following proposition collects some elementary mathematical facts

about transfer matrices.

Proposition 1: The (unnormalized) transfer matrix T of a nearest-neighbor

ferromagnet (J%,H,7y) is a Hilbert-Schmidt self-adjoint nonnegative

operator. The largest eigenvalue kme• has multiplicity 1, and the associated

eigenvector Ae L2 (4), which we take to have norm 1, is a continuous

function which may be chosen strictly positive. T has a unique "extension"
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to a bounded linear map T: Lp ( ) - - L~ (4) for any pE (1,01, p'l [l,CO),

and with p-1 + q-1 = 1,

(5)
Proof:

The kernel of T is obviously symmetric, and since

In 'o+b-•, A,
I Zst,

5xP

SL7

- -- I

nJc 4 k TAv(o~-).

(6)

I- 2L d)I
LC td]'k, CZ)] ~dv (&) d~v :

)7. ul
(7)

I

which is finite by (3). Thus T is Hilbert-Schmidt and symmetric. Also,
-4

(IkTf)+ I iI Ca thIDobcln.T~,; ,j~IRA, x 11XI'jE
00

m=o

rn o

F() .Re) JJM" i .

CcdcA, J

) F(R)dv dv ()

Re) ao-.ý --i~jiP

(8)

so T>O.

we have

(S· e

-.16 & B I Z_: T

a,-"O',m E-•

1RA, x FKA,
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Since T is Hilbert-Schmidt it has a complete set of eigenvectors; let

MOx be the largest eigenvalue andR be any eigenvector with eigenvalue

ýmu . Note that since the integral kernel of T is strictly positive,

if f O and f>,O then Tf>0 almost everywhere. By positivity of the

kernel of T,

(IniTinl) >, (nTn)= 1. (Inil) , (9)

so is also an eigenvector with eigenvalue mX . We claimf is

either strictly positive or strictly negative. Since one of

cannot be identically zero, one of Tr(IIifi))If(S must be strictly

positive so that a=k_ as claimed. Let . Since every eigen-

vector with eigenvalue max must be of definite sign, no two can be orthogonal,

so is unique. (This argument is taken from [43• , though the result

also follows from the Perron-Frobenius Theorem.) Continuity of f is

a straightforward application of the Lebesgue dominated convergence

theorem.

The estimate for IITIIF,r follows in the same way as (7):

x ' I -c.

(10)
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Notice that since the image im(T)cn (I and is an eigenvector,
we have R•" •nE () .P<ro

We next relate T to statistical quantities of the model (A,H,V).

The partition function Z is given by the equation

Z= (E, T 1' E) ) (11)

where EGn Lr( is the positive function

+0 /A\ .T) (12)?.Laqbjc)

If f (O)... Vy are functions f of the spins 0

coordinate E -L,--,L , then formally

having first

L (T3L E T T. - fTI-L
/NL 44

~2:L'~ ~ 7 =(E)T 30,14
(13)

where the f• act on L (7) by multiplication. If the functions f decay

sufficiently rapidly that the thermal expectation <7 >) is finite, e.g.

SEnI(V) V , then (13) is rigorously correct. This condition is

satisfied by all polynomials in the spins, and also by the more rapidly

diverging functions exp( •).

Define the normalized transfer matrix

J= T/IITII

In the following proposition we take the gl-+-0 limit.

(14)
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Proposition 2: Let ff L( ) -L L. Then i4 17)
_____n L._Then R <TT (U6).-

exists and is given by the formula

L
AM<1Tf > (Q<- ffi) (15)

Proof:

This is just a calculation:

7 (16)-L E , 1)E)
Since J is a self-adjoint nonnegative operator with norm 1, 19' converges

strongly to the projection onto ker(Z - 1); by Proposition 1 this

projection is just a 3 M ) . The denominator of (16) tends to (~ ,, E
which is nonzero since R' is strictly positive. If we note that for

fEf I() , Of is a bounded operator, then we may take the limit in

the numerator to obtain a similar formula; (15) follows upon cancelling

the common factor (A, ,E) 2

QED

Formula (15), which controls the infinite-volume limit without the use

of correlation inequalities, obviously still holds if we allow the two

faces of the box to move out to infinity in the 1-direction independently.

Sending them simultaneously as we have done is merely a notational convenience.

Since the spectrum of I is discrete and the largest eigenvalue 1 is

nondegenerate, exponential clustering follows from (15).



162

In Section V.5 we needed to control the infinite-volume limit in the

1-direction of a model having field -h on sites with negative 1-component

and +h on sites with nonnegative 1-component. This may be done in exactly

the same manner, by introducing two transfer matrices+: ZIP)--> CL(),

one for each half:

e rC - W L ( jj4Y~)dr ) (17)

For a finite model with field -h on sites with negative 1-component

and +h on sites with nonnegative 1-component, if f e. LH() we have

<I 0- E_ Ae E1)41 ý) (19)

Taking the limit gl--0 in the denominator yields "

which is again nonzero since it is strictly positive. If we take the

limit in the numerator as well and cancel common factors, we find

As with formula (15), we arrive at the same limit if we send the two

faces of the box i to infinity independently.

We next establish the results alluded to in Section V.3 during our

discussion of the infinite-volume transfer matrix. We conclude the

appendix with a proof that all moments of a nearest-neighbor ferro-

magnet are bounded above. We begin by constructing a transfer matrix

for the region X.XA 1  in the manner of Section V.3 and identifying it

with the operator 3 we have already defined.
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Let -- J(k,-;-kn)•"' ki O , associate with each iE4: a (real)

indeterminate si, and let + be the vector space of formal polynomials

P(S )Si,,.. ), i iE , in these indeterminates. It is convenient

to group together the indeterminates whose site has first component 9 4

n-I
into a vector S with components sQL , aG , . If we introduce multi-

index exponents mfIE1 + , then the monomials S T (S• are

a basis for . Define the map u: •--.PL2() on basis elements by

UM L"" (21)

We claim the image of u is dense in L (17). To see this, note first that

any product

T -C T, a 0ly0omoi. C 0 (22)

lies in the closure im(u) because the exponential may be expanded in a

convergent Taylor series. By the Stone-Weierstrass Theorem, the linear

span of the functions P(a)exp(- C(2 )Z) is uniformly dense in C0 (I ').

Since TV is finite and I strictly positive and continuous, this

implies im(u)D C, (10'). As a finite Baire measure is regular, we now

conclude that

2Jim(u) = L (7) (23)

as claimed.

Define the bilinear form ( , ) on .S by



164

where as usual e reverses the sign of the first component of i.

We find immediately from (21) and (24) that

s1-r, - -, Q s,.- =s, M) (U(?) U (Q))( * (25)

Consequently ( , )+ is a positive semidefinite scalar product, and it

remains so in the limit A-- n- . Define /: • • on basis elements

by L -L5
o .o 11 (26)

and extend by linearity. (This is the construction of Section V.3) Then

. (27)

In particular,

T) U10) < p(28)

Again, this holds in the limit.

It follows from (25) that the kernel of u is the null space V in

of ( , )+; as we have already shown, the image of u is dense in

L2 (). Thus, u is well defined on the quotient S /% and extends
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by continuity to a unitary U from the Hilbert space completion k of

S/' to L2 ( V). By (27) we have

U3'/U-1= j (29)

identifying 0 with / . We remark that the analysis we have performed

on the transfer matrix of a nearest-neighbor model with real spins

extends easily to nearest-neighbor models with vector spins. Propositions

1 and 2 go through in straightforward fashion.

It remains to prove Theorem V.3.7, which we restate here for ease

of reference.

Theorem V.3.7: Let be the infinite-volume transfer matrix (in the

1-direction) of the nearest-neighbor ferromagnet (2n,H,-V) at inverse

temperature P . Then:

(1) The model is long-range ordered<= the geometric multiplicity of 1

in the spectgum of 0 is greater than 1.

(2) The model clusters in the l-direction<= the geometric multiplicity

of le spec(j ) is 1.



166

(3) The model clusters exponentially 1 I is an isolated eigenvalue

of J . Let XGspecb) be supXSec(_): X< 13. Then the correlation

length 'X, in the 1-direction is given by the formula

~ I(30)

Proof:

As the ideas involved in this theorem are fairly standard, we give

the proof in a condensed manner.

(1): The •. direction follows from the observation that if P is the

projection onto the geometric eigensubspace ': '~L~ then P = S- im3m
r-,)oo

Write R for the element of X corresponding to 1ES+ and % for the

projection onto a . Then

m.i (<0o-<>oa >) im (SjT"O -<f( iM ()s
m->c--

If the model is long-range ordered then this limit is nonzero, so P Pa

and 1 is a degenerate eigenvalue.

Conversely, suppose Pj P. Then 3E~ such that Pi13ý;since the

linear span of the monomials 1=1T is dense inI , we may suppose that
o a

IM.: (m(<O(tM)••1f 0•1- )>O . (32)
I->Co

~For cE(0,O0), define C l,, , and let M. be the monomial obtained
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from M by replacing all spins aoby their cut-off approximation. We may

apply the Lebesgue dominated convergence theorem to conclude I•MMC14--•

as c-NO . Now by using the F.K.G. inequality I117 one may show ¶43] that

(/NL()ýjmC>--<M )decays to 0 if the two-point correlation does. But

since II11MI14gO, the two-point function cannot decay to zero because

this would contradict (32). Thus the model must be long-range ordered.

(2): The =? direction follows from part (1) above, and the converse

from (31).

(3): This is just a calculation with the spectral theorem.

QED

It remains only to prove that the moments of the infinite-volume Gibbs

measure are finite. We can do even better: exp('ZQ;( 2) has finite thermal

expectation for a finite sum ZQ;0~ . This is reasonable because

17EIY. The proof we give is the translation to lattice models of a

standard argument in field theory 143].

Proposition 3: Let (,$'H,$) be a nearest-neighbor Ising ferromagnet

with Hamiltonian

l-Zzc-`L i od h~I . (33)

Then given any finite sum ZOIi 2 there exists a constant Cco such that

Thus, if y is the infinite-volume Gibbs measure of (7 nHV),

exP L(ý ,oo (35)P<00
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Proof:

It suffices to consider a single term 92 QE[0,00), in the sum ~Zi ;

for convenience we suppose i=O. If n=1, then since exp( •Z) 0< P •

by our explicit formula (15) the result is immediate. We now suppose n'> 2.

Let a be a rectangle; for technical convenience we suppose all com-

ponents of ge ÷ are odd. For o( 1-,...n3 define the function : 10 -

by I()=TI F•a (0), where

a olhflwise 
36)

In particular Fl(a) = exp(QCO). Note that F. depends only on the spins

in A , so we may regard it as a function on R .We shall make frequent

use of the fact that if A is a nonnegative self-adjoint bounded operator

on some Hilbert space ' whose largest spectral value ýmtX has geometric

multiplicity 1, then ifS1 is the eigenvector associated with Xma, and

E'$ is not orthogonal toi ,

11~lA11li m (tA~ (37)

As a preliminary application, we note that if Tn is the (unnormalized)

transfer matrix for it in the n-direction, then

whe11 = cPm  (E. sT E)L = (. (38)

where of course
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By the method of Proposition 1, we estimate

L T ex nJ h7 dTr (39)

so that

iT, I(., . Ii _.,, I ndop•nl. . (40)

More generally, we shall apply formula (37) to estimate F j II
where I is the normalized transfer matrix in the o-direction and we

regard F (rQ) as a multiplication operator. Note that although F.(CQ)

is unbounded, the composition ' t is a compact nonnegative self-

adjoint operator with positive integral kernel. Thus, the largest eigenvalue

is nondegenerate and has a strictly positive eigenvector, which necessarily

is not orthogonal to E .We need to estimate the norm 1Tn I WII"

and we do this as in Proposition 1 to obtain

Tn PllT.jlec.. o T"'1 T>o ine. of A3' , (41,)
Combining this with (40), we conclude

In1I inde .of As. (42)

We want to show

C inWepr ient 4
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Now

(E,, S' E,)(E1 i-' E(E,% u"31 )

and by the second Griffiths inequality we may send gl-,00 on the right

to eliminate the second factor, so it suffices to bound Il'I F j 1Il

independently ofAS . Apply formula (38):

I (E ' J
Iii I 4

(44)

(45)

since the denominator goes to IIJ1 II = 1 . But looking from the 2-direction,

this is just

(46)24(Ez O; (F$J rim 
" ( E, 2I OD (E2) 123E

where we have estimated as in (45). Continuing this process we find

1 1 %-008,~b
(47)

By our estimate (42), this yields

1). A -D ltril/1"In-
<ext (a a, , ý ý< (48)

with C independent of it.

I
3

Y ~··

CPim 113,F~~1114'
%~?00
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