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Chapter I: Introduction

In this thesis we investigate continuous-spin ferromagnetic Ising
models, with principal emphasis on the inequalities they obey and
the remarkable low-temperature phenomena they exhibit. Mathematically,
the study of these models amounts to the analysis of a physically-
motivated class of probability measures, called Gibbs measures, carried
on finite or infinite-dimensional product spaces;ggk.fme models we
consider, which are rigorously defined at the close of the introduction,
generalize the original notion of Ising and Lenz [2!] in two ways:
the spin variables 6; may assume any real values with some a priori
probability measure™V instead of merely assuming the values
*1, and the energy of a configuration of spins may include many-body
terms instead of only two-body terms. Physically, continuous-spin
ferromagnets are of interest not so much because they resemble real
crystals - with our degree of generality this resemblance is tenuous - but
rather because they accurately approximate Euclidean scalar quantum fields
[431 and so provide a simpler structure for developing conjectures and proving
theorems that carry over in the limit to the more difficult models of
quantum field theory. Mathematically, continuous-spin ferromagnets are of
greatest interest for the striking dependence of the moments of the Gibbs
measure on certain parameters representing physical variables such as
temperature and magnetic field strength. One generally expects that the limit
of a naturally-arising convergent sequence of continuous functions is
continuous. By contrast, one of the main theorems in this thesis is a proof
of precisely the opposite: certain moments of the Gibbs measure, which are

defined as limits of sequences of continuous (in fact, real analytic) functions,



are necessarily discontinuous.

We now give a synopsis of our results. Chapters II-IV deal with inequalities
for finite Ising ferromagnets, whose Gibbs measures are defined on finite
products 1{3{. In Chapter II we introduce the convenient method of
duplicate variables, and use it to give a simple, unified derivation
for continuous-spin ferromagnets of inequalities proved by other methods
in various special cases by Griffiths [|¥], Griffiths, Hurst, and Sherman [19],
Ginibre [12], Lebowitz [R8], Percus [39], and Ellis and Monroe [8]. With
a different technique, we derive an inequality for change of single-spin
measure which will be very useful in our subsequent analysis of low-temperature
phenomena. While some inequalities of this chapter hold for all continuous-
spin Ising ferromagnets, others are restricted in their domain of validity.
Chapter III invokes combinatoric techniques to give a new simplified
proof of a Gaussian-type inequality discovered in its present form by
Newman {36]. In Chapter IV, we combine the method of duplicate variables
with additional combinatoric techniques to investigate the signs of the
Ursell functions u, ( generalized cumulants of the Gibbs measure) of spin-%
finite ferromagnetic Ising models. We represent these cumulants as moments
of a measure on a larger space, and use this representation to prove
complete results through order n=6. A reduction formula then gives partial
results for higher orders. We present formulas for the Maclaurin coefficients
of (functions closely related to) the Ursell functions when n<8. Our methods
yield additional inequalities, though we have no application for them
at present. In a related appendix (Appendix B) we describe a computational

algorithm for the evaluation of (functions closely related to) Ursell



functions of all orders, and the results of a computer study using it.
Chapters II-IV include, with one exception, proofs of all major inequalities
for finite ferromagnetic Ising models of which the author is aware. This
exception is the F.K.G. inequality [ 11 ], which we shall only use at one
point in Chapter V. Although our interest lies in models with real-valued
spins, in some cases our results extend to models with vector-valued
spins, and where possible we try to point this out.

With the inequalities of Chapters II-IV serving as the primary investigative
tools, we turn in Chapter V to the study of infinite continuous-spin
Ising ferromagnets., After making some preliminary definitions, we construct
the infinite-volume limit Gibbs measure for a very large class of models
by using C*-algebraic techniques, and we give an easy proof that it has
finite moments in many cases of interest, With these fundamental results
established, we undertake an analysis of three closely-related low-temperature
cooperative phenomena: long-range order, spontaneous magnetization, and
phase separation. We begin with a discussion of the decay of spin correlations
when the separation of two clusters of spins becomes large. For many models,
we show that these correlations must decay to zero for almost all values
of a parameter h representing the influence of an external magnetic field,
and in some instances this set of potential exceptional points actually
reduces further to the single point h=0. In fact, as we next prove, if
h=0 and the parameter representing temperature is sufficiently low, then
(nontrivial nearast-neighbor ) models in two or more dimensions do
have all their correlations bounded away from zero: they are long-range
ordered. This is one of our main theorems. To coordinate our results

on the decay of correlations we define the infinite-volume transfer matrix



(for nearest-neighbor models), and characterize the cluster properties

of an Ising ferromagnet in terms of spectral properties of its transfer
matrix. We next consider the phenomenon of spontaneous magnetization
(discontinuity of the moments of the Gibbs measure in the external field

h), and show that it is a consequence of the long-range order previously
established at low temperature. For certain models we combine inequalities
of the previous chapter with an explicit computation by Onsager [37] to
estimate the critical temperature; that is, the temperature for the omnset

of spontaneous magnetization. We establish the third cooperative phenomenon,
phase separation, as a consequence (in three or more dimensions) of spontaneous
magnetization. The final section of Chapter V treats some of the many
applications to quantum field theory of the inequalities derived in
Chapters II-IV.

In Chapter VI we present some unsolved problems, and make concluding
remarks.

Let us now give some definitions of terms used in the remainder of this
thesis, and some physical motivation for them. A finite continuous-spin
ferromagnetic Ising model is a triple (A,H;V), where:

(1) The set of sites A is a finite set. We associate with each site
"€ A a spin variable Oiae’ﬁf, and the product EATR is called the
configuration space.

(2) The Hamiltonian H is a polynomial on the configuration space

with negative coefficients. We write

H(G’): —Kggﬂ.l\) JK Ok

where the numbers Jg are called couplings (or bonds),@%(ﬂ) is the

) JK)O ) (1)

set of finite families ("sets'" with repeated elements) inJ\ , and



is by definition the product o, =1 0 ,
% K jek
(The distinction between sets and families is not important for
our purposes, and we shall largely ignore it.)
(3) The single-spin measure "V is an even Borel probability measure
onTR which decays sufficiently rapidly that if d is the degree
of the polynomial H, then
Xkexp(alﬂd) dv(e)< Y aeR, (2)
The linear term '233“30:1 in H is usually thought of as describing the effect
€
of an external magnetic field, while higher-order terms are considered
to arise from the mutual interaction of the spins. We usually recognize
this distinction by writing ~¥ h.: in the Hamiltonian instead of -3 Jiq .
S '1 Q
1€)AL €A
A pair interaction is a Hamiltonian of degree two. In connection with the
decay condition (2) on the single-spin measure we define for dz0
12‘3: fEVen Borel Proha\:ilﬁy measvres 'V‘XRQ"?(QIU‘J)A"’(V)<°° Vaemg (3)

and set

=,

Q[o,ao)n d (4)

A model (A,H,v)is called connected if any pair of sites i,j6 [ is connected
by a finite chain Kl’ Kz,"‘,Kneeio(A_) with JK1 g oo ’JK“¢0, i€K,, jeK,, and Vﬂ
KK, # 4.

The Gibbs measure /L of (A,H,‘v) is the measure on the configuration
space TKJ'=TIATR defined by

()= SE exr(—ﬁ"(c));];&d’v(ﬁ,)

)
XIR Aexf(ﬁ H(a'));l;rld*v (©;)

Ec]RJl measurable; (5)

here (3€ [O)fD) is a parameter representing inverse temperature. Note that
this measure favors lower values of H. The normalization factor in (5)

is called the partition function and traditionally denoted by Z:
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Z= | oplpla]T dv(e) . )

We indicate (thermal) expectations with respect to the Gibbs measure at
inverse temperature ﬁ by angular brackets < 3H55P> , omitting the descriptive
arguments H;V,F when they are clear from context:
b= P> =foubdy < Z4] 4Pl )

Physically, the sites.A_ may be thought of as atoms in a crystal, and
the spin variable 0; at each site 1€l as a classical version of the quantum~
mechanical spin each atom possesses. The single-spin measure describes
the spin probability distribution of a completely isolated atom. A point
0" in the configuration space ﬁV& corresponds to a state of the systenm,
and H(0) is the energy of that state. Note that the ferromagnetic condition
JK?O causes configurations in which all spins 0§ have the same sign to
have generally lower (more negative) energies. If we allow the crystal
to exchange energy (but not mass) with a large heat bath at temperature ﬁﬂ R
it will reach eventual equilibrium. According to the principles of statistical
mechanics, the probability of finding the equilibrium system in some subset
Ecﬂyt of the configuration space is given by the Gibbs measure/L(E).

We conclude the introduction by describing our notational conventions.
Chapters are given Roman numerals I, II, etc., while sections within a
chapter have Arabic numerals 1,2, etc. We use the standard decimal notation
to show in which chapter a section appears. Thus, Section II.3 is the
third section of the second chapter. Important formulas are enumerated
sequentially within a section, the numbering beginning again
when a new section starts. As before, we use the standard decimal convention,
so that formula (IV.2.12) is the twelfth enumerated formula of the second
section in the fourth chapter. Lemmas, propositions, theorems, and corollaries

are similarly numbered within a section. If descriptive arguments of a
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section, formula, lemma, proposition, etc. are omitted in some reference,
by convention they are taken to be the values in effect at the point of
the reference. Thus, if in Section IV.4 we see a reference to Theorem 3.1,
this means Theorem IV.3.1l. References to the numbered bibliography are

indicated by square brackets [ J.
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Chapter II: Inequalities
Section 1: Introduction
In this chapter, taken largely from [ A6 1, we exploit the method of
duplicate variables to give a simple unified derivation of continuous-
spin Ising ferromagnet inequalities established in various special cases
by Griffiths [l7], Griffiths, Hurst, and Sherman.[\q], Ginibre [IZ l
Lebowitz [ 28], Percus [39], and Ellis and Monroe [ 8 ], obtaining them for
a large class of single-spin measures. The single-spin measure and the
Hamiltonian for which the inequalities may be proved become more restricted
as the inequality becomes more complex. However, all inequalities hold

for a model with ferromagnetic pair interactions, positive (nonuniform)

%6(-%23“7) spind )

1
L+t {0

or exp(-P(¢))ds , where P is an even polynomial all of whose coefficients

external field, and single-spin measure either

must be positive except the quadratic, which is arbitrary. (Recent work

by Ellis and Newman [ 9] elegantly relaxes this condition on P: it need

only be an even continuously differentiable function whose derivative

is convex on [Oﬁ”).) The Percus inequality is akin to the Fortuin-Kasteleyn-
Ginibre inequality [11] in that it holds for arbitrary external field,

though the Hamiltonian is restricted to pair interactions. We exhibit
interrelationships among these inequalities, deriving the Lebowitz correlation
inequality from the Ellis-Monroe inequality in the same way the second
Griffiths inequality may be derived from the Ginibre inequality. The

G.H.S. inequality for concavity of magnetization is a corollary of the
Lebowitz correlation inequality, as is an inequality which at zero external
field shows the fourth Ursell function u, is negative. These basic results

are all proved in Section 2. In Section 3 we comment on the restrictions
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in the hypotheses of the theorems proved in Section 2 and mention various
generalizations. The final section is devoted to an inequality for change
of single-spin measure, which will be useful in our later analysis of
low-temperature cooperative phenomena. Combining this inequality with
a result of Griffiths [\83, we compare the spin expectations of a
continuous-spin ferromagnet whose single-spin measure is absolutely
continuous near zero with those of a related model having the same Hamiltonian,
whose single-spin measure is concentrated at just two points.

Applications of the inequalities proved in this chapter are given

in Chapter V.
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Section II.2: Inequalities by Duplicate Variables

We now state and prove the inequalities for ferromagnetic Ising models
mentioned in Section 1. The proofs employ the method of duplicate variables.
Consider a finite ferromagnetic Ising model (.A_,H,'V). (See the final
part of Chapter 1 for notation and definitions.) It is convenient to take

A= él)z)“') Ng

so that the spin variables are G},Gi;-;ﬁ& . Construct the doubled system
(.A_V.A_,HQH,'V ), where .A.V,A, is the disjoint union of two copies of .A-
the 2N spin variables are (j,07, "')%J’ri)tz)"‘,'tu , and the Hamiltonian
H& H is H(°1.°if‘3°k) + H(Y“Tafnﬂ%). Thus, the doubled system consists
of two copies of the original system that don't interact with each other.

Define the transformed variables

s B :
cplen) g, ek w
Construct also a redoubled system (JNVJ\VJKKA_,Iieiielleli,wy ) consisting
of four non-interacting copies of the original, with spins 01,~- -’ON .
/ /
Ty ;T N 013 "My N )‘t e 'tN , and Hamiltonian H(Oj , -.)o& ) +

H(Ti,"')Th) + H(Gi,“',5h ) + H(Tﬂ"')Tﬂ). As before, define
1= %—2" (63475) %‘i’ "{% (0', =T
tg @) =g kel @

Now set

L (t) et
1/,:3-17:(1@10 85‘\]‘7:(‘{5*10 ,iei, (3)

Note the reversal of primes between o(,ﬁ and ‘LI,S) .

With this notation we have the following theorems:
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Theorem 1: (First Griffiths Inequality) Let Aégo(ﬂ)be a family of sites

in a finite ferromagnetic Ising model (.A.,H,'V) with Hamiltonian

- -2 Juoy Ju >0
H IO LA

and arbitrary (symmetric) single-spin measure ’Vem Then

(oD >0, (%)

Theorem 2: (Ginibre Inequality) Let A,BGQO(JL) be families of sites

in a finite ferromagnetic Ising model with Hamiltonian

H“ "Z JKO—K JKZO

Ke¥ (L) ) J

and arbitrary (symmetric) single-spin measure Ve ﬂ J . Then

<‘V\TB> 20. (5)

Corollary 3: (Second Griffiths Inequality) Let A,Beg;ou.) be families

of sites in the model of Theorem 2. Then
93< > < O%> <GA><¢B> (6)

Theorem 4: (Percus Inequality) Let Aégou.) be a family of sites in a

finite ferromagnetic Ising model (./1. sH, V) with pair Hamiltonian
H"“Z\I U'U' zk i, J >O and h, arbitrary,

and arbitrary (symmetric) single-spin measure ’V’Eﬂl. Then

<<@> 20 @
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Corollary 5: Let i,j be sites in the model of Theorem 4. Then

%,f@ =<0~ 2.0, ®)

Theorem 6: (Ellis-Monroe Inequality) Let A,B,C,D€ go(lt) be families

of sites in a finite ferromagnetic Ising model (_A.,H,'V) with pair

Hamiltonian

HI“ZJ}SW%‘ZK’O} ) J‘P") ]n;ZO
\sé L

and single-spin measure either discrete and of the form
L = 5({yzjo)
)= 7 Z of-fn2jto
241 §70
(spin % ), or continuous and of the form

dv(r)=ep (P6)s, / &Rar(-ﬂs))ds ) ©)

where P is an even polynomial whose leading coefficient is positive, whose
quadratic and constant coefficients are arbitrary, and whose remaining
coefficients are nonnegative. (Situations where coefficients of P other

than the quadratic may be negative are discussed in Appendix A.) Then
4 Bs ¥ 8y 20. 10)

Corollary 7: (Lebowitz Correlation Inequality) Let A,BG@O(.A) be families

of sites in the model of Theorem 6. Then

Hytey - S<te>20 (118)
<‘tA %B> "'{(LA> <‘LB> ?O (11b)
<"’A ‘LB> - <ﬁ><‘{)3\> <0. (11c)
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Corollary 8: (Griffiths-Hurst-Sherman Inequality) Let i,j,k be sites in

the model of Theorem 6, Then

h oy=<0; o'q) =046, 1% <<r><0; g% - <o“}<0'<r‘> 46 ><(§><0;> Y
(12)

aha

Corollary 9: Let i,j,k,l be sites in the model of Theorem 6. Then

<0306,9 -G EL> =T - <HGITRIEXEHOPS0. A9

The proofs of Theorems 1,2, and 6 all proceed similarly, by reduction
to the case of a model with a single site and zero external field. The
inverse temperature ﬁ is inessential and we set it to one. We must show

that a thermal expectation

O S\ch Tdv /je‘H Trdv

is nonnegative. The normalization factor (partition function) in the
denominator is positive, so we ignore it. We first verify that in the trans-
formed variables the Hamiltonian is a polynomial with nonpositive coefficients.
Expanding exp(-H) in its Taylor series, we obtain a sum with nonnegative
coefficients of integrals of products of the transformed variables against
the product of the single-spin measures. Since each integral factors over
the sites, it suffices to show that for a single site the integral of any
product of the transformed variables is nonnegative; that is, that the
theorem holds for one-site models with zero external field. This is what
we do. In the proof of Theorem 4 the reduction cannot proceed quite as
far, but essentially the same method prevails. This reduction procedure
makes it clear that in all the results of this section we could allow

a different single-spin measure at each site, though such models are
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not commonly studied. Corollary 7 follows from Theorem 6 just as Corollary 3
follows from Theorem 2. Corollary 5 and Corollaries 8,9 are important

special cases of Theorem 4 and Corollary 7.

Proofs:
Theorem 1 (Prf):

We want to show
Smn 03 3P (Fowy oy Tk AV 0)- - d9(5) 7 0. (14)

By expanding the exponential in its Taylor series and factoring the integrals
over the sites as described in the previous paragraph, we reduce the

problem to showing
S ¢" dv@)z0 V. (15)
R

By the symmetry of V this vanishes when n is odd, and when n is even

the integrand is nonnegative.

QED
Theorem 2 (Prf):

In terms of the transformed variables q and t the Hamiltonian H(&¢ ) + H(T)

JK[(%%)K + (%%)K] ' (16)

This is a polynomial in the t's and q's with nonpositive coefficients,

G

because when we expand the product gg‘tn‘if) any negative term which
appears is cancelled by the corresponding term from the expansion of
Egk(*t*ik) - Now by expanding the exponential and factoring the integrals

over the sites we reduce the problem to showing
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Kw O¢ b0 k) 30 Y.

17)

This vanishes by symmetry unless m and n are both even, in which case

the integrand is nonnegative.

QED
Theorem 4 (Prf):
The transformation (1) is orthogonal, so in terms of the transformed

variables q and t the Hamiltonian H(g ) + H(T) is

Jiilgq 4t 1) - \FZH (18)
KA (Hk\ v

We want to show
XR“ 9 ({é\ Iﬂ;\%t&) 611)(% TTA +FZ b)) dv(e)d i) dvie B0, (19)

By expanding the first exponential exp(ZS&t C‘A) we see it suffices to

1<A

show

S UT B@ ) (Z 5tz 77 hE) &) dvly) > 0, (20)
'\(A

for all possible exponents nk. But this integral vanishes by symmetry

unless all the nk are even, in which case the integrand is positive.

QED

Theorem 6(Prf):
The transformation (3) is orthogonal, so in terms of the transformed

variables of F 7/ § the Hamiltonian H(6¢ ) + H(Y) + H(¢’) + H(T') is

ZJ.‘ (‘X“-\*F Fé’rz/ +8\8) ZZH 14y (21)
\<$

Since this is a polynomial with nonpositive coefficients, by expanding
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the exponential and factoring the integrals over the sites we reduce the

problem to showing

Sm* dkpw"s" OV )dve) 3 0 Ykimn o

By symmetry this vanishes unless k, { ,m,n all have the same parity.

When this parity is even the integrand is nonnegative, so we restrict

our further attention to the case of odd parity. At this point we distinguish
between discrete and continuous spins.

In the discrete case it suffices to consider spin % spins,
dvlo)= L (5(cn1) +8(r-1) dor (23)

for since our transformation of variables is linear the Griffiths "analog
system" method [ |8] may be applied to generate the higher-spin results

from the spin % case. (The analog system method represents a higher spin

by a sum of spin % spins in a suitably enlarged model.) Because the exponents

k,d ,m,n are all odd we may factor outtiﬁys :
ket 0t -
dkﬁ!?,im%n: [0( 'ﬁplyM|6n-’]o(ﬁ2/6 ) (26)

The first factor is nonnegative since it has even exponents. The second
. . . . 2 _ lrz s _ /2 . 1 .
factor is also nonnegative; since 0*=T"=0"" =7 for spin % spins we

find

2
-1 et
9= (0T o) >0. 25)

In the continuous case our problem is to show

X 4o<“ﬁ02/'”8“ exp(-Plo) - P)-Ple) -Pt) do dvderdv » 0 (26)
R
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for odd k,ﬁ ,m,n. We claim that when P(g ) ++'-+P(%’) is expressed in

terms of d)F)VJS it has the special form
PV +Ple) = QU 7, 72 82) ~tp¥S REEEH, ) 27)

where Q and R are polynomials with nonnegative coefficients, except

. . . 2 pla? g2, . .
possibly for the coefficients of & )F) /) 8 in Q. Temporarily accepting
this claim, and recalling that transformation (3) is orthogonal, the

integral (26) becomes

Sm“ k.. 6" ep[oaBYE R, +, %) ~ Qe+, 8) T dardBd¥ds (28)
Replacing o by -of and averaging gives

XIK‘ [k p"" y™igh ] [o(f%% sinh (4896 RER ., 89)] [exp@Q("‘f"-,Sz»)&md 5. 9

The first factor in (29) is nonnegative since it has even exponents; the
second is nonnegative because R(dz‘,uc, 82)2 0; the third is obviously
nonnegative.

It remains to verify claim (27). We need only consider the case of a
monomial P(X) = XZP. Expanding with the multinomial theorem gives

oM 41t 67y TP = (0(4é1,_21-3>2[’ (0(+j3 -2/+6)2P (d_gﬁqg)zp (""E‘%E )2P

(30)

<
The coefficient of o t% ¥"9 vanishes unless a,b,c,d all have the same
parity; it is positive when this parity is even; and, it is negative

when the parity is odd. This observation immediately yields claim (27).

QED
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Corollary 3 (Prf):

We want to show
{5,057 =<0 2 0.
Using the doubled system we have
< 0> =< <G> = <03 0~ 4 ¥
- <) (59 (59>

This is the expectation of a polynomial in the q's and t's which may be

(31

shown to have nonnegative coefficients just as (16) was shown to have non-

positive coefficients. By Theorem 2 this expectation is nonnegative.

Corollary 5 (Prf):

Corollary 5 is a special case of Theorem 4:

0 {ir= o< (32)

Corollary 7 (Prf):

We want to show

ity -Cidle)y 20
- <1A><1B>2 0
<fﬁ0<&#>“‘<ﬁh1ﬁ;yzo‘

Using the redoubled system we have

<*A7Lz>’<*g> <JVB>= <+ATB"TA1';3> = <(?i$ )A[ (%%&)B- (%@)B] > (33a)
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Wie < =-pp= <)), - ()1 (33
<+A><%B\> <TA IB> <JVA(()B TA‘LB> <( ) ZAS (2/ 6) ]> (33c)

In each case the right-hand side is the expectation of a polynomial in d)ﬁﬂGS
with nonnegative coefficients. By Theorem 6, these expectations are nonnegative.
QED

Corollary 8 (Prf):
As noted by Lebowitz, Corollary 8 is a special case of Corollary 7{28]:

02(‘1;&;&}—(‘1:@(1”0: “\3‘%‘ 5?‘;'3’;\1( <oy . (34)

QED
Corollary 9 (Prf):

Corollary 9 is obtained by symmetrizing the special case

<tt\ %k19> - <+|13> <(1k ip <0 (35)

of Corollary 7.



24

Section II.3: Discussion
In this section we discuss the range of wvalidity of the theorems of
Section 2. We indicate generalizations where we can, and illustrate by
example the role played by various restrictive hypotheses.

Theorem 2.1 states that for any family of sites A in a suitable model,

{3 0. (1)

The same proof shows that the spins in the product OA may be replaced
by more general functions. Let fﬁ:ﬂ%ﬂﬂR)ﬁéJLz be a set of (measurable)
functions such that E([Qﬁﬁ)C[OfD) and Fi has definite parity (is

either even or odd). Define
F=TUR
A aeh *
Then

<Fp>? 0, (2)

Also, note that Theorem 2.1 generalizes easily to ferromagnetic models
with vector spins taking values in'ﬁfl , provided that the single-spin
measure V 1is invariant under the n coordinate reflections,

Theorem 2.2 states that for any families of sites A,B in a suitable

model,
{4ated » 0. (3)

As remarked by Nelson [35], the spins in the product thB may be replaced

by more general functioms. Let iﬁ:ﬂbsimvieJLg be a set of functions
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satisfying the restrictions of the preceding paragraph ( invariance of
[Dla)) ; definite parity) and the additional restriction of monotone increase

on [0)00> . Define

F

T = gl E] ) QrglE®-FR] ied, @

and if K€ @0(./\.) set

F .
Ty = -JGTKTF ) Q;:EKQk ) el

Then
@ T )20, )
which has the immediate corollary
<ﬁ Fg>‘<ﬁ><%\> 20, (6)
We state this as a proposition:

Proposition 1 (Nelson): Let (.A. »H, V) be an Ising ferromagnet with Hamiltonian

= - 3 >/O
H K??SJA)JKO-K 3 K

and arbitrary (symmetric) single-spin measure V. Let §E:'}R->>TR)"1€_A_E ,
gﬁi:RﬁRJie_A} be (exponentially bounded measurable) functions such that
each F ,G has definite parity, leaves the interval [0}00) invariant,

1 i
and is monotone increasing there. Then

<TTHE) 6o - STREDCIT 66D 20, ™
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This extension of the second Griffiths inequality will be useful in the
construction in Chapter V of the infinite-volume limit by virtue of its

monotonicity corollary,

Corollary 2: Let (JL,H,ﬁV) be an Ising ferromagnet with Hamiltonian

H=- J,q Jy>0
@amm ) S9K20, 6)

let_AfCJk, and let (ﬁ;fix;v) be the Ising ferromagnet with Hamiltonian

L S e )
(same JK as in (8); the sum is just restricted to families in%%ﬂf». If

{Eﬂkﬂmﬁéﬂfziﬁ a set of functions obeying the hypothesis of Proposition 1,

then
<1[ Fe)s Wy < <TJEE-(U,-)5H> . (10)
In particular,

<%3HA’> <<GAJH> Y Aed().

Proof:

By Proposition 1,
& <TRE=GTR -G AR 30 ¥ B,

Thus, if we increase from zero to their final values all coupling constants

JK appearing in (8) but not (9), <3@E@35Hm> must increase to<jLFHQ)5H>.

QED

Theorem 2.2 and Corollary 2.3 only have been generalized to vector spin

models having spins in two (plane rotor [12]) and three (Heisenberg ferromagnet
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[26]) dimensions.

Theorem 2.4 and Corollary 2.5 generalize to products of functions of
the type for which Theorem 2.2 and Corollary 2.3 are valid. The hypotheses
of Theorem 2.4 and Corollary 2.5 are somewhat unusual in that the single-
spin measure is arbitrary while the Hamiltonian is restricted to pair
interactions. To see that this restriction is valid, note that Corollary

2.5 fails for a spin % model with three sites i1,2,3§ and Hamiltonian
Hz-0 0,0, +hg | h> o, 12)
(We find
&y=<o=0 (13)

but

<O'{C§>::}dh"(ﬁ- Tan%(h) < O ) (14)

Theorem 2.6 states that if A,B,C,D are families of sites in a suitable

model, then

{4y Bg % &2 %0 , (15)

In contrast to the previous results, the same method of proof does not
seem to admit a more general class of functions in the product. (For

2
example, it is easy to see that if F: R=RK is any C function such that

4

[F(XJ“F(M)‘ Fla)+ F(’@] '[Xq‘xrxs +X4] 20 ) &.,"',X,;\)GTP\ 5

which is a key inequality in the proof of Theorem 2.6, then

Fi)=ax, a30;
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that is, F must be of the form already considered.)

The hypothesis of Theorem 2.6 contains restrictions on both the Hamiltonian
and the single-spin measure. Example 7.3 of [ 23 ] shows that the restriction
of the Hamiltonian to pair interactions is needed. However, the constraint
on the single-spin measure is more severe than necessary. A certain
polynomial R(o%, v ,§) arises naturally from the single-spin polynomial
P, and for the method of proof to work R(&*,:+ ’gz) must be nonnegative.

The hypothesis we made ensured this by causing R to have positive coefficients.
Clearly, negative coefficients in P, and hence R, are permitted provided
the positive coefficients are large enough to ensure R(dl,'-',Sz)z 0.
Restrictions on the coefficients of P were studied from this viewpoint
in the appendix of [46], reproduced here for convenience as Appendix A.
After this work was done, an elegant criterion was obtained by Ellis and
Newman [9]. They show that Theorem 2.6 and its corollaries hold provided
P is an even continuously differentiable function whose first derivative
is convex on [O}D). Theorem 2.6 is also valid for single-spin measures
obtained by limiting procedures from those explicitly permitted. For
example, Lebesgue measure on the interval Eb)b] may be obtained as

3 @b Jin, (ogl- ()" 1o/ XRQF[’(%)NMS ). ao

(Here of course }[—b b] is the characteristic function of the interval [—b)b].)
|
However, some constraint on the single-spin measure is necessary. For example,

Corollary 2.9 fails for a one-site model with zero external field having
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single-spin measure

a5 + (10 60) +able-1) | o<a<y - an

<64> =30 2>2 =20 (L-GQ) . (18)

It also fails for a one-site model having single-spin measure exp(-P(¢ ))dg,

where
Pe)=gos(eafof + o7 lhiD) i), cact

and q is sufficiently large, because as %;900 this distribution converges
to the preceding one.
Finally, we remark that Theorem 2.6 may be reinterpreted as a theorem

about plane rotors. Specifically, we find

Proposition 3: Let A,B,C;DEQ%(J&) be families of sites in a ferromagnetic

plane rotor (JL,H,Y’)With Hamiltonian
[ K K K"K ) ) 1

2
of degree d and single-spin measureV on.ﬂ% which is invariant under
the two coordinate reflections and is either
(i) concentrated on the unit circle, or

(ii) of the form

koo )= _egl o 0 v dnig)
| exP[? ([ (1) ], e e

% )Vyﬂl; 42D
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where P is a polynomial all of whose coefficients are nonnegative, except
for those of (0"‘)2 ,(6)Y)* , which are arbitrary. Construct a duplicate

system using primed variables, and define

Az lofra)  BrgE-)
Y = (Y : (22)
7/1':’\;1‘{(03 v)) S E@-a) el
Then
A 6030, (23)
Corollary 4: Let A,B,C,D be families of sites in the plame rotor of
Theorem 3. Then
(o ogy~<oy><og> 30 (243)
<oy 05> =< XY > 20 (24b)

opod>- X< ><0. (24c)

Related inequalities for vector spin models are given in [\Z],[Zb].
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Section II.4: Change of Single-Spin Measure

This section, taken mainly from [ Z ], is devoted to an inequality
for change of single-spin measure. We may view this inequality as a
mathematical rendering of the physical notion that the moments of the
Gibbs measure (GA) decrease when the single-spin measure 'V becomes
more concentrated near the origin. By combining the inequality with
a result of Griffiths[!Bl we compare spin expectations of a continuous-
spin ferromagnet whose single-spin measure is absolutely continuous
near zero with those of a related model whose single-spin measure is
concentrated at just two points.Chapter V contains an application of

the inequality to the study of phase tramsitions.

Theorem 1l: Let (JK,H,\7) be a finite ferromagnetic Ising model, let £
be a nonnegative even function monotonically decreasing on [Q}b) which
is identically 1 on E{)C]) €20, and let Av be an even measure supported

in [-C,C] which is normalized such that
V= Av + fv w
is a probability measure:

(av+dv)R)=v(R)=1. 2

Then the moments of the Gibbs measure decrease when "V is replaced by'\% :

<6A;Hﬂ%,ﬁ>< <o:hv (3) v Aed,

Proof:

We show that in an Ising model generalized so that the single-spin
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measures are permitted to be different at different sites, the replacement
of YV by "V, at a single site causes the spin expectations <0‘A> to decrease.
The theorem then follows by successively applying this result to each
site in the model.

Consider a ferromagnet on.A. with Hamiltonian H and single-spin
measure 'V1 at each site 'ie_/L Select a distinguished site 1e_A, at which

we assume the single-spin measure is 'V . We want to show
Z SR,FA P04y ) Taola)< 7| K PO, e
where of course Z_ and Z are the partition functions
2= M@ 5 2 I " i) e,
We rewrite the expectations in (4) to display the dependence on V, W :
CHAE 3@4\) clf(s) 6)
<°Z;V>‘-S <, dpls) 7

[0,00)
where <6A>s , (J , and [) are defined by
AT w0
G20 ) 12, % ®
-BH()
Z(s)= SR‘{_, 1L,.8 P Tl dwle) 9)
dp=Z" Z()49 d9(5)= dv(e) -} v({og) 5(5)
(10)

dp= 7 AN, &.6)= dv(s)-13 (03) 6(5)

The functions Z(s),(ﬂi)s and the measurest ’PC have simple interpretations:

Z(s) and <O‘A>$ are the partition function and expectation of OK in
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the model where the measure V, at site 1 is %[8(64»5\)4»8@'.5)] » and
P s PC are the density measures of the random variable lO‘li in the
models where the single-spin measures at site 1 are V , '\7c respectively.
Note that by the Griffiths inequalities (Theorem 2.1 and Corollary 2.3),
in the region of integration [0)w> we consider in (6) and (7), both
Z(s) and <GZ>S are nonnegative increasing functions of s.

Let /1,1 , )11 be finite measures on [O)GJ) of equal total mass, and let
Ic [ij) be a finite interval containing 0 (either open or closed at the

right endpoint). Suppose the inequalities
/ll(E) S/JI(E) ¥ measurable EcI (1D

ﬂl(E)ﬁﬂ,(E) YV measurable EcT =fop)-1 (12)

hold. Then if F:[O,w)—q[o)oo) is a nonnegative monotone increasing function,

S F(S) A/A‘(S) 2 X Fs) C)/uz(S), (13)
Lo,w) Bbq%

because

Fdup) = jIFCl () +Xf Fdlu- )

> [s%r F&)] -[(/u.y;z)(DJ +sw F(S)]'[()’F/‘z)ﬁ)]
0 (14)

Xlom)

From (13) we conclude immediately that

7=| 26)d46) > X 2(60d9.6) = 2
[o00) fop0)
since by (1) and (10), 'ﬁs% on [O)C_] and ’3\72‘{\7‘ on (C/OD) .

) (15)

Let I be the interval

1= §selo,0: )3 2/7¢ , (16)
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which contains [O,C] since by (15) ZC/ZS 1. We claim that Pe ;f) on I

and P;/oc on . This is easily verified: if E<¢ I then

p(E)=| ZOZ [OH6) +69)]

> | 207" 46 =ple) o
E
by (16), while if E<T then
p.(E)= SEz@ Z16)d9 )
(18)

s&ﬁz@z"ﬁ@ =plE)

again by (16). If we now apply (13) to the integral SE <0A>§ C'/.)(S) s
)

we find

Gy = ! <o dps) > S o, dofs) = <opsved (19)
Loo) [0,00)

QED

Loosely speaking, Theorem 1 says that if we cut off the single-spin
measure by multiplying it by an even nonnegative function which is one
on some interval [-C /C] and monotone decreasing on the right half-line,
then redistributing the probability mass eliminated by the cutoff in
any (symmetric) way in [}C)C] causes the expectations <GA> to decrease.
As a special case, suppose the single-spin measure V of (JL,H,v) is
absolutely continuous with respect to Lebesgue measure in some interval
[-d)(]] ,d)O, and that its Radon-Nikodym derivative has finite essential
supremum there. Then, as we see in Figure 1, by cutting off "V completely

outside some sufficiently small interval [-T,T]C[‘cj)d] » and properly

redistributing the eliminated probability mass inside [—T)TJ s, We may
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reshape 7V into Lebesgue measure dg'rET;T] restricted to L:FJT] .
aw

[y

Hatched area= Crosshalched area

Figure 1

N
-T

The largest possible T is given by
dv
T= el-d d]: 1T esss < 1§.
= svpitel-d,d] T“[_{?][a&k (20)
For téﬂR let bt be the two-point measure

b*z -"2—[8(0'#) + 8], (21)

A result of Griffiths | l8]shows that if (A ,H, dg‘r[-T)T]) is a ferro-
2T
magnet with arbitrary polynomial Hamiltonian and Lebesgue single-spin

measure, then
CHATOISCH i__qr”-T,TDS YL A ), (22
Thus, with our choice (20) of T,
Gslby <oy he, (D), 23
We state this inequality as a proposition:

Proposition 2: Let (A ,H,V) be a finite Ising ferromagnet such that

the single-spin measure "V is absolutely continuous with respect to
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Lebesgue measure on some interval Ld)d] ,&>O, and has essentially
—V
bounded Radon-Nikodym derivative [%.g] there, Let T = svr{‘l’e{-d}d]:lfes[sts?]b[%.]s 1}
=)
and let bt be the two-point measure defined by (21). Then for all

families A €%, (M),

CHAW A (24)

Finally, we remark that Theorem 1 also holds in the case where the spins
in the product GA are replaced by more general functions of the type
considered in Proposition 3.1. In addition, the proof of Theorem 1 goes
through with minor modifications to give an analogous result for

plane rotors.
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Chapter III: Gaussian Inequalities
Section 1: Introduction
In this short chapter, taken largely from[:4?], we use combinatoric
methods to prove an inequality bounding expectations of products of many
spins by sums of products of simpler expectations. As a special case of
a more general result, we show that the higher moments of the Gibbs measure
}L of a finite Ising ferromagnet (.A.,H,b) with spin % spins (b= z[B(O"H)-&-S(O’-I)]),
a pair Hamiltonian, and zero external field are bounded in terms of the
covariance of /L

AP

. ;T'IWGG(G]({O Ae3,(A), (»
Here C . 1s the set of all partitions ® of A into pairs {k,k'}
Inequality (1) is called a Gaussian inequality because the right-hand side
Pet ikk}é@< k V> is the expectation of G'A with respect to a Gaussian
measure on K having mean zero and the same covariance <37 H b ﬁ£>

as the Gibbs measure of (JL,H,b). It is closely related to Corollary II.2.7,
and may indeed follow from Theorem II.2.6, though this is not presently
known. The Griffiths "analog system" method [ |8 ] (described in Section II.2)

shows that in addition to spin % models,(l) holds for ferromagnets (JL,H;V)

whose single-spin measure "V may be approximated by spin % models, including
V(e)=T51 9+1 % &(Luzj+v) (18], spin L) (2a)

'V(O')‘ ”TT} ([18 ], Lehesgve Measure on [-T,TD (2b)
V(G):exfséac" +boDde/ j l;xp(‘asﬁbs’)ds , 020 ([#]), @
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Inequality (1) was discovered in its present form by Newman [3(], though
a special case was established much earlier by Khintchine [24]. The proof
given here is similar in spirit to that of Newman, but conceptually and
technically simpler.

In Section 2 we prove the Gaussian (or Khintchine) inequality, comment
on the roles played by various hypotheses in it, and mention possible

improvements.
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Section 2: Proof of Gaussian Inequality
We derive the Gaussian inequality from a more general result. Let us
first define admissibility. Fix a finite family A of even cardinality, and
use © to denote complementation in A. A collection‘B of even subfamilies
of A is called admissible if and only if every partition of A into pairs
is a refinement of some two-element partition %B,ﬁg with BGYB . For

example, an admissible partition of A = 51,2,3,42 is IB =§ il,Z} s {1 ,3},

2.4 3.

Theorem l:Let A be an even family of sites in a finite ferromagnetic

Ising model (J[,H,“V) with pair Hamiltonian

H=-23, {9 - -Z hey Jii,h20

)

and single-spin measureﬁ? of the form
(la)

V()= 12+ 7§ Z o(- QJ'Z(S“T)
v(o—)_ f [-T T] (1b)

V(o*):exP(-ao"hbcz)/xikex])(-asﬁbsz)ds , a0, (10)

If a collection?B of subfamilies of A is admissible, then

g z YN @

Proof:
By the "analog system" method [ |8 Jit suffices to prove Theorem 1 for

the simplest measure of the form (1), namely

v=b= 1[6(+ D) + §(0-1)]
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Furthermore, the ''ghost spin" method of Griffiths [H’], which creates the
effect of an external field by coupling to an extra "ghost" spin, permits
us to assume the magnetic field h is zero. As a final simplification,

i

we reduce to the case when the family A is a set (all members distinct).

1f kl=k2 are members of A, let

@1: %BG@ : '{k.)kZECB or%k}(,}cgg ) (3)

in abusive notation. We may assume without loss of generality that ikl,kzg

always lies in B, not B. With this assumption, define

§= 8-t k3 BB

Then % is admissible with respect to K=A—§kl,k2%. Since <OR>:<0:&> and
2 KXo = 5 <o y<m) < T DG )
feg 0 8 gg, B % B§B &%) )

this reduction procedure allows us to suppose that all members of A are distinct.
With these simplifications in hand, we turn to the body of the proof.

We claim that all derivatives with respect to coupling constants Jij
of zz(<02‘> _%«yBXQ;B)) are nonpositive when evaluated at zero coupling,

and hence throughout the ferromagnetic region Ji‘> 0. It is convenient
mi]
9

931@ v -3y, m

constants by a graph T . The vertices of || are sites in the model, and

to represent a differential operator D: in the coupling

2
for each derivative 5-3:'\ appearing in D we place an edge between vertices

(sites) i and j. Sites with no incident edges are then suppressed. For
4
=)
J,2J, T al.

373

example, the differential operator

would be represented
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by the graph

Figure 1,

To simplify the notation, given a family of sites K we write [K] for
.jO'KéﬁHdl)(U) and T‘[K] for the action of the derivative associated with
the graphT’ on fo;(e'ﬁ”db(o'). Finally, define the (ZZ reduced) boundary

ST' of a graph T to be the set of all vertices ofT' having an odd number
of incident edges.

With this notation our claim becomes
T ([¢J[A]-Z[B][EDB <0 ®
B =0

for all derivative graphs T.' » and is a consequence of the following three

statements.
both vanish unless aTI=A .

@ T-UAD[ wne T(BIED|,,

(2) 1f a]‘:A then there exists a subgraph G of || and a set BeB with 9G=B .

3 G ([BIA-[BIED=0 so T-(IAI-[B]ED=0.

Since the remaining terms on the left of inequality (6) are manifestly

negative, this cancellation verifies the claim.
Statement (1) is obvious, since we are dealing with spin % spins.
Statement (2) is a straightforward induction. Since BT':A > given a site

ke A there exists a site k'€ A connected with k by some path 7 inT' .



42

Upon removing k and k' from A and Y fromT1 , we see that by repeating
the argument we may produce a partition of A into padszs %k,k'g connected
in ' by edge-disjoint paths q . Since'@ is admissible there exists BEQ
which is a union of some of these pairs; for G we just take the paths 7
connecting them.

Statement (3) is a simple calculation. Using A for symmetric difference

we find

G ([gIIAD == et (6, -[dD(6,TAD)
= 2 [06,]1(36,)AA]
Z [(36,)48][(36)4E]
- (IBJIE]D (7)

since 36=(36)AB ana (36)aA=(36)AE

1

H

QED
Corollary 2: Let A be a family of sites with even cardinality in the model
of Theorem 1, and let @ be the set of all partitions of A into pairs. Then
{op> € {0 At ()
AT c ikk’} ® '

This corollary is immediate from successive applications of Theorem 1.
(i)

Note that for a family of jointly Gaussian random variables with mean
zero, Corollary 2 is an equality. In this sense, it is a best-possible

result. However, Corollary II.2.9, which states that

Ci0R> < AIPGL + @R KA G - 2<EXEXR G
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makes it clear that Corollary 2 may be improved for nonzero external field.
Unfortunately, the proofs of Corollary I1I1.2.9 and Corollary 2 are dissimilar.
The former uses duplicate variables, while the latter is combinatoric
in nature. A combinatoric proof of Corollary II1.2.9 might be valuable,
and could lead to a new family of correlation inequalities.

Finally, we remark that some restriction on the Hamiltonian in Theorem 1
is necessary, because Corollary 2 fails for the four-site model (JL,H,b),

where

A=31,2,34¢
H= -Jo0,0; -hoy J h2o0

b= (86+1)+56-1)] .
9)

This is because the corollary demands that

060> { OEXEE +@mME +GWGR>, (10
but computing explicitly we find

:0X0505> +<6;035<6,64 > +<0,04 > 5,0 > =0 (11)

and

6,0,65 53 >="Tanh (3 Tanh(h), (12)

in contradiction to (10),

Applications of Theorem 1 and Corollary 2 are given in Chapter V.
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Chapter IV: Ursell Functions
Section 1: Introduction
In this chapter, taken largely from [4qu we use the method of duplicate
variables already exploited in Chapter II to study the Ursell functions
of finite ferromagnetic Ising models with spin % spins and pair interactionms.
Let us recall the definition of Ursell functions. The Ursell function
un(°},‘“’°%) of a family %Cﬁg of n random variables may be defined by

means of a generating function as
W { ,)n. O;D" az ”.azn ‘(g 8(&1?[% )\"0-\]) (1)

Here e is the expectation integral; we assume the necessary expectations

are finite. The Ursell function may be defined recursively by

Eaoy ‘7>'u> T r@)Tge@ U Gy )

Here .LL(%B‘”,QE) is the set of partitions of il,\”,ng. A set P in a partition
CPeJl(fU'yng) has elements P,>Py» etc., and |Pl denotes the cardinality
of P. Finally, un(G;,n',ca) may be defined explicitly by
@l
U (0o 0=, Z 6] (@101 TT_E(TT, Uf) , 3)
Pe 1L(§,,nd) Pe ﬁp

Combinatorially, the Ursell functions are related to expectations in the
same way that cumulants are related to moments and connected Green's functions

(truncated vacuum expectation values) are related to Green's functionms

(vacuum expectation values). As examples, we have
u,(6)= 8(0;) (4a)
Uy 6,02)= &(6,0,)- &) () (4b)

13(0, 6 8)= Eo6:6)-E 0 ) - £ e ) - R Eleyy)+ 4
RE(UDS(UDE(UB) .
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Also, if the family iG,/ﬁz)%)%g has even symmetry (that is, the

expectation of the product of an odd number of % is zero), we have

4o 0) = (O0n0e)-E0n)E6a) -Eoa)tnn) - Ea)iks), wa

l))

In Section 2 we describe and investigate representations involving
duplicate variables for the Ursell function of a general family of random
variables {(ng . Let %Gf'g , deEO,l,'--,n-lg, be a collection of n independent

but identically distributed copies of the family %0’:& , let W0 be a

primitive nt"‘ root of unity, and define
n-1 o« et
Si= L W0y, (5)
o«=0
We shall find that
n (0,00 = E(55pm8,) (6)

a result previously obtained in another way by Cartier [4] Thus we
represent an Ursell function as an expectation. In the event that the

family {G‘i} has even symmetry and n is even we can cut the number of

copies in half.(Of course, if %0“} has even symmetry and n is odd, u, (0, ,O;')
vanishes.) Defining

L]
L= we ™

=0

we find the simplified representation

Un(G, 6)= EE(THH) )

E]

(The variable t introduced here has no relation to the variable t introduced
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in transformation (II.2.1)) We conclude the section by demonstrating a
method to produce additional representations.

In Section 3 we use the general results of Section 2 to study the
even Ursell functions of finite ferromagnetic Ising models with spin %

spins, pair interactions, and zero external field. It has been conjectured

that these Ursell functions obey the inequality
L4
z
O unloy 5 ) 20, 9)

We have seen that this conjecture is correct for n=2 and n=4

(Theorem II.2.1; Corollaries II.2.9, III.2.2). In a few very simple models

it is known for all n [4Qﬁzl essentially by explicit calculation. Using

the representation (8) we prove here that in addition to n=2,4 inequality (9)

holds for n=6. (We actually establish the stronger result that all the

m n
3 v 23
S G 1 SPRCIS
/2\%‘ g
" u, in the couplings Jij are nonnegative for n=2,4,and 6.)

coefficients J0 of the Maclaurin
expansion of Z
Other independent proofs that (9) is valid for n=6 recently have been

given by Percus(:3?] and Cartier (unpublished). We use combinatoric methods
to derive a reduction formula for Ursell functions with repeated arguments.
This allows us to conclude that conjecture (9) holds for arbitrary n
provided the spin arguments of the Ursell function are selected from

at most seven distinct sites. We finish Section 3 by noting some additional
inequalities which follow from the methods we have developed. Although

our results are derived explicitly for models with spin % spins, by the

"analog system' method of [l8:]they extend immediately to the more general

single-spin measures (IIIL.1.2) of the preceding chapter.



47

Section 4 investigates in more detail the results of Section 3. We
establish a graphical notation for the derivatives of Z"/zu,. with respect
to couplings, and give formulas for the evaluation of these graphs when
n=4,6,and 8. The formulas make clear why our method of proof works for
n=2,4,6 but is inadequate for higher n. We present partial results showing
that derivatives of }thu" which are sufficiently simple in a graphical
sense have the anticipated sign. We conclude with the asymptotic result

that if all couplings Jj.

3 are nonzero and the inverse temperature p is

sufficiently small or sufficiently large, then the conjectured inequalities
hold. This result, however, is not uniform in the order n or the system
size.

In Appendix B we describe algorithms for calculating the derivatives
of Zn&lh,. We tabulate the results of a computer study using these
algorithms on derivatives not controlled by the methods of Sections 3
and 4; they all have the expected sign. The study, however, is indicative
but not exhaustive. This is because the long running time for the evaluation
of even a moderately complex derivative - on the order of an hour - made

a thorough study impractical.
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Section IV.2: Representations of Ursell Functions

We describe and analyze representations for the Ursell function of

a family of random variables %0};1651)“. e These representations
)

employ independent but identically distributed copies of the original
family. Let %0;«3 s, X€E %0,1,“‘,c}, be (c+l) such independent copies of
the family %0"} , each copy having the same joint distributions as iqi .
Given a set of coefficients Si“ed: we may define a new family of random
variables isiz i€ fln} by s; = O%Sida{" . We shall see that up to
a simple factor the family fsi} has the same Ursell function as the
original family fq} . By judicious choice of the transformation coefficients
Sw we may cause all but the leading term in the Ursell function of the
family isig to vanish, thereby transforming an Ursell function into an
expectation. In the event that the family 56;.? has an even symmetry the
representation simplifies, the number of copies employed being halved.

To exhibit the proportionality between the Ursell functions of %O’iz
and gs]} we recall that if a family of random variables may be split into
two mutually independent subfamilies, its Ursell function vanishes. ( This

is immediate from definition (l.l1) because the expectation factors.) Thus,

Un(S,;+,50= 2 Sy ady Uy 00 g

&y oty
:io(:o Slo(” ‘Snex g U.h(O',Ju ‘ /U"))

since only those terms for which ®,=dy= ... =of, survive.

(1)

Next we give a specific choice for the transformation coefficients

Sp) =€(S,$2~' '+ S$,). Take n copies of the original

Sio( such that un(s." N

famil 0;f , and for S choose (O“, W being a primitive nth root of
¥y 3

ol

unity. Thus we have



49

n-1
S;= Z de:f( . (2)
(=0
We claim that 8(3, . ~Sk) = 0 unless k=0 MOA(Q). In establishing this
it is convenient to regard the superscripts & as running through the
elements of Zn . Notice that 8 (c“d' 6":‘") is unaltered if we subtract

(in Zn) the same constant IQGZ from each &, . Thus,
o<+ e, o
8(3 Sk) Sy kez ‘ E(G Y )

=°‘§,‘(ka“ w"(ﬁ"-' teo), E(OIO("#. o'kdk"ﬁ)
> ek g )

ot 0,0 €Z,

k
'rl? AR P E(G;d'm(fljk)

e, BEE,

"

=0
(3)

n-1
unless k=0 mod(n), since BZ ka: 0 unless ’(EO MOd(n) With this
=0

choice of variables we have

Un(0, 50) = 5 € (s.5,+50) (4)

It may happen that the family %0‘-1} has even symmetry; that is, the
expectation of any product of an odd number of 0’ is zero. In this case
a simpler representation involving only % copies of the family %0’3

is possible. (We take n even since for n odd by symmetry un(O‘,) ves )0;')=0.)

Let

[
= 2 wioy (5)
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where again W is a primitive nth root of unity. To apply the preceding
argument to show E(T‘Tl...‘tk) vanishes unless I(EO Mod(h) we note that
the superscripts @ essentially may be regarded as elements of Z,,/z because

N‘+"‘+dk

the ambiguity in the definition of is obviated by the even

symmetry of the family §O]} . Thus with even symmetry we find
byl6 )= & E (1) ©

Finally, we remark that if one chooses Si“;‘ wﬁot ’ ﬁeZn s only those
terms ;l;f@g(;gp Si) in the definition (1.3) of un(sl,---,sn) survive which
satisfy the condition EP{} =0 wod(m V Pe®, By varying the fi’ different
representations for un(O“l ,-‘-)G;,) may be obtained. For example, the rep-
resentations above have fi =1 Vi » and only the leading term survives.
On the other hand, with even symmetry by choosing ‘Fl’: {'120 and *?3: {:4= 2
two terms survive,and we recover the transformation (II.2.1) and the

representation (II.2.35) of Chapter II.
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Section IV.3: Signs of Ursell Functions for Ising Ferromagnets
We employ the representation (2.6) to analyze the Ursell functions

u, of a finite ferromagnetic Ising model (f\,H,b) having spin % spins
= L[6+1) +$(-1]

and pair Hamiltonian

H= ZCY oy J; 20

with zero external field. Construct for each even n the enlarged model
(\C@J& H ,b) consisting of g non-interacting copies of the original

model (JL,H,b) the set of sites \|| Jk is just the disjoint union of "

ozl

t o
copies of A , and if we denote the spin at site i in the O(‘b copy by G

the Hamiltonian %? H is
n/2 n/
B He H ) +H e o+t K™, ),
Extend the definition (2.5) of the variables ti by setting
o 2-1 oB P
t=Z wfa’ | aefizsanat,
=0

1 « N-o
Thus what we called ti in (2.5) is t here. Note that (f} )k = t .

For 0(6%“3)'5)-«-)?)-1} and @ 50! e ——I§ the matrix \f%_'wdﬁ is unitary.

Thus,

%H‘ZJGPP ZZJ‘TT% 2)
L g d

and in the t-variables the representation (2.6) becomes

2ty o, 0,0 = ETllL A, exP[ZZI IEED, @
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where we follow customary usage and write Tr(s) for S(-)db. The

derivative of (3) with respect to coupling constants Ji';')”"‘lmém is
cl 2 _
aJ‘] . aJ‘ ' Z u.n((y '_)‘ ,O—kn) —
s(\a mém »
2\l 1oy ot L, Z AT a )
G Bl S e T o

Ay ) om

In order to show that all these derivatives have a certain sign when evaluated
at arbitrary Jijz 0 it suffices to show they all have this sign when the

couplings Jij are set to zero, and this is what we do for n=2,4, and 6.

Theorem 1l: Let u be the Ursell function of a finite Ising ferromagnet
(A ,H,b) with

b= L[8(e+1) +8o-1)]

oo
Let Z denote the partition function e Clb of (.A_ ,H,b).Then for

B}

"3

n=2,4, and 6
o O 20050 Vg,
;. ], kK ke’ 7 L’A"W'1"”4"")](')")!("(5)

"’At ‘mém
Moreover, if (./L,H,b) is comnected, the inequality (5) is strict.
Remark: These inequalities, which as they stand involve factors of Z,
may be converted to inequalities involving the spins alone by dividing
by Zn/z.

We give the proof only for the case n=6. The case n=4 may be done in
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a similar way, and the case n=2 is trivial.

- oy 4 b=,
We want to show that the sum Z TR“L"'-\]:‘ T;“T'. d."‘T;mM T‘M m) arising
o("...“,(m

from the evaluation of (4) at J=0 is nonnegative. It is actually true that

i G‘dm
an individual term is nonnegative: Tr("‘k oo .Em )> 0. Since this

\
trace factors over sites, we break it up into a product of traces of

¥,

the form Tr(f% “oe f“), with the common site subscript suppressed.
By an argument given in Section 2 in connection with the representations
(2.2) and (2.6), this trace vanishes unless 2/,-{» Y =0 mOd(‘) . Assume
/9

L/
this condition is satisfied at all sites. We claim that the function +"f

obeys the inequality

lfifz/i:3§' h
(1) Fute o, (6)

5

3
To see this is true, we note that since (tl)* =t~ and (t7)* = t3, pairing

5's and t3'

tl's with t s with one another reduces the problem to showing
NG 1.3 3 . - . s .
that (t*) 2 0 and (t7)” t°< 0. This may be done by explicit verification
of cases. It now follows immediately that the product over the sites of
4}% -f%. . . .
the terms Y is nonnegative and so has nonnegative trace, because
)
the total number of ¥'s appearing with value 3 is even.
The strict positivity may be seen in several ways. One simple one is
to resurrect B:’/LT , which we have set to one to this point.
Note that if a finite ferromagnetic Ising model with spin % spins is

connected (see Chapter I for definition), then for any function of the

spins F(G, 0Oy )

Jém SFY= L[Fey D+ Fl,0], @
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. -3 P 3 m
Thus in such a model, JYM Z —"“—"——Z U=23. }6 . But since
g-—va) 33::.8 e B'Iimém o 3
all the coefficients in the Maclaurin expansion of Z ue in the couplings
are nonnegative, if the above derivative were zero for ﬁ:l it would
3

remain so for all ﬁ and, when normalized by Z , could not converge to
3™.16 as ﬁc—)Q) .

QED

We remark that by using the ''ghost spin' method of Griffiths (3]
described in Section IIT.2, we may extend Theorem 1 to the case of positive
(nonuniform) external field, provided that the Ursell functions for nonzero
field are modified by dropping all terms involving the expectation of
an odd number of spins.(Such terms of course vanish by symmetry when
there is no field.) Also, as we noted in Section 1, the "analog system"
method permits the extension of Theorem 1 to models with single-spin

measure V of the form
g
V()= AZ_:O —!5'17 6(-9+24'+G) (spin 2 (8a)
V(o) = %‘5 M-TT] (L"b‘%"e messure sestrided Yo [TT]). (g

V()= expl-a0*+bo?)do/ jﬁe@(msﬁbs")ds y @>0. (8c)

Next we state a corollary of this theorem. The corollary extends the
theorem to Ursell functions of arbitrary order, provided that at most
seven distinct spin sites appear among the arguments, by means of a reduction
formula. The reduction formula provides the necessary combinatorics for
expressing Ursell functions with repeated arguments in terms of simpler

Ursell functions.To state it we need some notation. Let fG}Ziei' n}
¥’
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be a family of n random variables, and let @) & be partitions of gl,\--,n

Define
Uy (0, 0) = ulQl o O ), (9

where qa,qb,etc. are the elements of Q. Define the family %%}PGP of

random variables by

Oi’ \eP ’ (10)

Let (PV& denote the finest partition coarser than both (P and & , and
let 1 be the one-element partition i{l,-u,q}}. A simple combinatoric

calculation with Mébius functions gives the following lemma.

Lemma 2: Let id}} be a family of n random variables. Then, with the

above notation,
U(H (%GP@‘:&{%V(P_]IUQ(%“',%). (11)

To avoid interrupting the main flow of argument, we defer the proof
of this lemma to the technical appendix following this chapter.

As a special case of Lemma 2 we have

Un-((ﬁ'U )03, 0’n> un Uy )U)+ C‘Z'?},t:g ( .)', Tk U % Oia)

(12)
where T 5?" ?13 and the complement P i%., *%Oz If GG, is
independent of the remaining random variables, as is the case when g

and 05 are spins from the same site, the left-hand side of (12) is zero

and we obtain the reduction

Uy (0, )= = Z Uy (05, )uﬂ( ). (13)

P< §i,- ,n}, 1€P .’ 1!1
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We use this reduction to prove

Gorollary 3: Let un( Oy, O ) be an Ursell function of the model
t n
of Theorem 1. If the n spins used as arguments are selected from at most

seven different sites, then

i (_l)'%n Z!;:u (5 .0 )30 Vi”} ...im(jm k. k, . 14
aJ‘-i‘maIimjm n Ok Y%,/ 7 DR LN (14)
Moreover, if the model is connected the inequality is strict.

Proof:
We use induction on n. By the theorem, (14) is obviously true if ng6.

If n>6, two spins must be selected from the same site, say kl=k2.

By reduction (13)

U_n(G‘k "")Ukn) ) —ZP: u‘((cl-’.f")c—{’)uf(%f"oi)

and so

n
2

n kp ok S oL
(Y Z 7y, Z [0 ZEJlen™ 221 (15)

with notation as above. From (15) the corollary is immediate.

QED

As with Theorem 1, the "ghost spin'" method allows immediate extension
of Corollary 3 to the case of positive external field provided the Ursell
functions are modified by dropping all terms involving the expectation
of an odd number of spins.

To conclude this section, we state a general inequality which follows

from the methods we have developed here. It includes Theorem 1 as a
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special case.

Theorem 4: Let kl;'BkmeL be sites in a finite Ising ferromagnet (J\,H,ﬂ?)
with Hamiltonian

s - O 20
H %3,56.03 \i

and single-spin measure 17 of the form

V(o) = ﬁu Z &(-4 +2J+0')

V)= zTr[ ]
V() = exp 00'4+60'2>/5 exP -Q$ +Bsz)ds, a>o,

Define the transformed variables +k by (1); then for n=2,4, and 6
n
Mmoo 2! ,
e 8 o)) so
=) ki ﬁ’-o g *

As a corollary, we restate this inequality in terms of the original
spin variables O when all the superscripts %X; are one. First we make
some preliminary definitions. If A, is a set whose cardinality is a multiple
of four, let li; (A4) be the set of all partitions of A4 into at most

two subsets, each of which must have even cardinality. Define F:Jiz(A4)-+1K

f@-a Belli(Ay,

by
(17)

where P is any element of P. s A6 is a set whose cardinality is a
multiple of six, let ll;(A6) be the set of all partitions of A, into
at most three subsets, each of which must have even cardinality. Define

s: [15(ag-R by
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1 IPl=1
SO)= 32, 10132 & Ri=/Bl wedl) /) Pell[(A)
-1 132 & [TIZ(B] md(® (18)

where Pl,P2 are any two distinct elements of ® . With this notation, we have

Corollary 5: Let A4’A6 be families of sites in the model of Theorem 4

with ”‘UEO Modm and lAJ =0 WIOJ(@ .Then, defining F and S by (17) and (18),

<-\) F(®) ;‘1@@ >0 (192)

(P )TT < (19b)

eom

®e 113(A)

As usual, the 'ghost spin" method may be used to extend these inequalities

to the case of positive external field.
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Section IV.4: Miscellaneous Results

In this section we describe a graphical notation for the derivatives

m

R £ S

g2 RRCERE & W
of Ursell functions in Ising models (jL,H,b) with spin % spins, pair
interactions, and zero external field. We give formulas for the evaluation
of these graphs when n=4,6,8. Turning from explicit calculations, we

inductively combine Theorem 3.1 with reduction (3.13) to show that derivatives

(1) whose graphs are sufficiently simple topologically have the conjectured

Ly LY
% . As a consequence, we obtain the asymptotic result that GWZ un20

sign ()
if the inverse temperature:f? is sufficiently small or sufficiently
large.

The graphical notation we use for derivatives (1) is a refinement of

that introduced in Chapter III. We regard the sites of our Ising model

as vertices of a linear graph, and for each 33} appearing in the derivative
we put an edge between sites i and j. This specifies the differential

operator. To specify the arguments Uka of us introduce n dummy vertices -

one for each ka ~ and put an edge between each site ka and its associated

dummy vertex. Finally, suppress all vertices not touched by an edge.

The resulting graph G is called the graph of the derivative, and the derivative
the value [G] of the graph. ( This use of square brackets ['1 is not

related with the notation of Chapter III employing the same brackets.)

As an example, the graph of

9 2
g (2)
(33]1)7” z U (0-‘)0-'10-2)0—1) T-0
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ﬂrﬁumen‘\" edge

])umm }

‘ 1 ? Dumm
verTice’s

vertice

\'\ f Figure 1

Derivalive ee\ﬁe

and has value -4.

Recall that (3.4) represents each derivative as a sum:

" Ll ' _ Z_m“ U)o nes,  %m Rty
33"'8""33"“3'”21un(dl‘\)” )0"(“) J=0 - (h) o(%;,d;rﬂ(t‘”'nnh TA; '“Tim Tém ). (3

We may identify each term
) i o2 n-ol Am Nty
Tn(fh---fkn fi o . ij ) )
in the sum with a network of odd Zn-valued currents on the graph of the
associated derivative. The current carried by an edge into a vertex is
the superscript of the associated t-variable, and the dummy vertices are
regarded as unit sources. For example, the term Tr( 1': tl 't; T;\ U‘: 1‘:]2 )

appearing in the derivative (2) is represented by the network

l

Figure 2

I*S"Currenf on edje

and has value -16. (Subsequently, as in this example, we shall always

use the word "network" to mean a graph with currents.) We saw in the
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proof of Theorem 3.1 that for a term (4) to be nonzero the associated
network must obey the Kirchoff current law in Zn: the sum of the currents
at a vertex vanishes. Networks obeying this law will be called nontrivial.
Any graph admitting a nontrivial network must have all argument edges

in the same connected component and an even number of edges incident

at every vertex (except the dummies, which have one each). Such graphs
will be called nontrivial. Once a nontrivial graph has been selected,

all nontrivial networks on it may be readily generated by means of the
well-known method of loap currents. In this method, the currents on the
edges of the complement in the graph of a spanning tree are assigned
independently, and the remaining currents are calculated from them by
applying the Kirchoff current law at each vertex. Thus, the value of a
nontrivial graph with A independent loops is the sum of its (%)7£ nontrivial
networks, reduced by a factor of (%%;“+‘ .

We turn now to explicit formulas for the evaluation of networks when
n=4,6,8.(The case n=2 is trivial and we omit it.) The trace factors over
the vertices of the network (sites of the model), so we need only consider
a single vertex Tr(fd'-- tdv), the common site subscript being suppressed.

If each such vertex had tEf sign sgn(WT.[E: (uﬁ ]) - roughly, if we

B=0
could somehow factor out ﬁio wp from t%i= ?Z: wﬁ 'O'P - then the
whole network would have the conjectured sign GDE" . This is because

each derivative edge engenders a complex conjugate pair of factors in the
product over the vertlces while the argument edges give rise to an overall
factor with sign sgn{(?iftup _] €1)2+‘ . In the following formulas

we shall tabulate Tr('ﬂ‘-}-“\ )/sgn(TT[Z: wﬁ“ ] )3 thus, negative values

will be suspect.
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For n=4, we find that

(5)
where f: 3&%\,‘3"‘3 C takes for its values the four fourth roots of unity.
(Here we h.ave emphasized with parentheses the distinction between the
superscripts appearing on the left of (5) and the power appearing on
the right.) If A+3B=0 mod(4) (to satisfy the Kirchoff current law)
then it follows from (5) that

T80 _ A0 e 225 0
N O

This formula is simple enough so that we may perform the sum over all net-

(6)

works of any mnontrivial fourth-order graph G to find

[Glz‘lm Q)

where ). is the cyclomatic number of G (number of independent loops).

If n=6 there are g,h: xg { I} - ¢ such that

{.m =2 e
1 q) + 3-h
19, 265, (gﬁ 8)

The function g runs through the six sixth roots of unity on six of the
eight points of )ég-]l l} and vanishes on the remaining two. The function
h takes the values %l on these two points and vanishes on the first six.

If A+3B+5C =20 mod(6) it follows from (8) that

2B )ys 3 (3 (= .
TR[G‘)AG )BG )CJ )} y (H3A ) , A C=0 50 w:e,z'_g:. ©
3 )
4

= +C
sﬁn[(lww‘)A 13( l—w’-“-w)cl e otherwise
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When n=8 we find functions U,V: X% I I}-—»(]: such that
AT
O 27a'® (u cos-lT + V. sml)
1 ST
(3) 2%e ( 'ufsm '\)‘) Cos )

ax (10)
“"lzi 8 ( sinl - (7 cos)
3 4g
=27 ¥ (( u)cos8+(v) smg)

The functions u and v are supported on complementary halves of )§§~|}|§ ,
and each runs through the eight eighth roots of unity on its support. If
A+3B+5C+7D= 0 mod(8), then it follows from (10) that
L) () () ()]
TR EAET]
21(A+‘6+C+’D) ' o n) (Sm'rr) [, ) (fon)

When B+C is odd and B+C > A+D, the right-hand side of (l1) is negative.

D~ (B+0) J

= . (11)
This contrasts with (6) and (9), which were always positive. The source
of the trouble in (11) is the minus signs in (10). With formula (11)

as a guide, we may easily devise positive eighth-order networks. An

example is

TRATOELT)-

Figure 3

Nevertheless, it is known by other reasoning that the derivative from which
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this network is derived is negative, as one conjectures it should be.

Algorithms for calculating graphs and networks of arbitrary order are
presented in Appendix B, together with the results of a computer study
making use of them.

We conclude with some partial results showing that derivatives whose
graphs are sufficiently simple have the expected sign. We begin by interpreting
the reduction (3.13) graphically. Differentiating this identity with
respect to couplings, we find that if two argument edges ej,e, in a
graph G share a common vertex then

[G] = —Z [Ht][Hz]

H nH1 ¢
e; el
By this notation we mean that H1 and H

(12)

, are the elements of a partition

of G into two subgraphs, with edge e, in subgraph Hi; the sum extends

over all such partitions. Making use of this interpretation, we may now

prove

1

Proposition 1: In a spin % Ising ferromagnet CA.H b) with palr Hamlltonlan

and zero external field, if the graph of the derivative §G1;~§3;§; R“BqQLFO

is nontrivial and has at most four independent loops in the component

of the argument edges (cyclomatic number at most four), then

A 2 ZFu (o) | O

33“ ‘W‘J I:O .
Proof:

We use induction on the total number of edges. Since the trace factors

over sites, connected components without argument edges merely contribute
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positive factors to the value, so it suffices to prove the theorem for
connected graphs. By Theorem 3.1 we may assume at least 8 argument edges.
If any two argument edges share a common vertex, we may use the reduction
(12). Also, if any argument edge is incident on a vertex with only one
other incident edge, we may simply erase the argument edge and call the
other edge an argument edge without changing the value of the graph.
There remains only the case in which each argument edge shares a vertex
with at least three other edges, all of which must be derivative edges.
We claim that in this situation with at most four independent loops
there can be at most six argument edges. We restrict our attention to
the subgraph G' of G which contains only the derivative edges; let it
have E' edges and V' vertices. The number of independent loops }f is
X =E' -V + 1. of course, this number is the same for G and G'. With

the restrictions in the case at hand, we see easily that

B> Sn+a(V-n]=2+V" ; 13)

consequently

™=

X3z Z+1 (14)

which verifies the claim.

QED
Combining this proposition with Corollary 3.3, we may say that derivatives
n
of ?Z=un have the conjectured sign provided either they are simple in
not having argument edges at too many vertices in the associated graph,
or in not having graphs which are too connected.

With a little more work, one may show that the inequality in Proposition 1
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is actually strict. Thus we have the asymptotic result

Corollary 2: Let un( UL )--‘)01 )} be an Ursell function of a finite

' n
ferromagnetic Ising model (A.,H,b) with spin % spins, a pair Hamiltonian
with zero external field, and all couplings Jij nonzero. Then, if the

inverse temperaturefg is sufficiently small or sufficiently large,

LY
D 1,5 20

Proof:
n
2 [ 3 7 .
For smallﬁ , expand 7_ un( Gk,’ )O”kn ) as a power series in inj We

may use the reduction (3.13) to assume the sites k --',kn are distinct.

l’
For distinct sites, the lowest order nonzero graphs are trees, which
by Proposition 1 have the claimed sign.

n
For large ﬁ we use (3.7) to conclude that un(ox.,m =W%)‘*j%w1°8 cosh A 220

as ﬁ—boo. This derivative has the asserted sign.
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Technical Appendix: Proof of Lemma IV.3.2
In this appendix we use the properties of Mébius functions to prove
Lemma 3.2. To set the notation and review the ideas involved, we begin
with a brief summary of this method.

£ is

Let X be a finite partially ordered set, whose order relation ¢

reflexive, antisymmetric, and transitive. Let TRX be the finite-dimensional
vector space consisting of all real-valued functions on X. Define the

indefinite sum linear transformation ZRX—?RX by

(Z‘g) (x)= yzéf()/) ) (1)

The kernel (matrix) § of the linear map 2 is given by

§(x)7)= %1’ N . (2)

0 otherwise

We claim that z has determinant one. To see this, note that if we enumerate
the elements of X as Xps X9, in such a way that x:,L is minimal in {XJJZﬁ
then §(Xi,xj) is a lower triangular matrix with 1's along the diagonal.

The inverse A of Z is a generalization of the difference operator.

The Mobius function of X is the matrix /A.(x,y) of A . Since the inverse

of a lower triangular matrix with 1's along the diagonal is of the same
form, we find

/u(X,x)z 1 VxeX

Jlp)=0 unless  y<X (3)

The remaining values of M may be computed recursively by either of the

formulas

M (x)y)z -2 : lx2) (4a)

Z€ (y,x

o= -Z b

(4b)
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which follow from the definition of A as the matrix of Z-I and its
lower triangularity. Note that for fixed x,y€ X, /u(x,y) is completely
determined by the structure of the interval [x,y].

We now concentrate on a particular partially ordered set. To enhance
clarity, we give very explicit definitions. If F is a finite set, a par-
tition ® of F is a set of disjoint nonempty subsets of F whose union
is F. The collection of all partitions of F is denoted by |J(F). We
partially order }| (F) by refinement: @SQ@)VPGPBQG& :PQ. That is,

@S& if and only if P refines & . With this ordering )J1(F) becomes a lattice:
any pair GD)&G_L\_(F) has a least upper bound PV& and a greatest lower
bound PAQ . We denote the least element %{1; :“lGF} of II(F) by 0 and

the greatest element ng by 1.

The Mobius function of JlI(F) has reduction and factorization properties
which will be useful in the forthcoming proof. Given ®e (| (F) and Qe [(P, ]ﬂ,

for each Qe& define the partition (PQG 11(Q) to be

= SPeP:P<Qd . )

Thus G)Q is just the restriction of the refinement ® of & to the

set Qe& . Further, define the partition % € _U_(@) to be

%: %(PQQG&E . (6)

Roughly, (P& is the partition of ® obtained from & by reducing the
sets P€ P to points in the sets Q€ d containing them. The interval
[GD) 11] is naturally isomorphic with ]| ((P) under the correspondence

&4—‘5% . Recalling that /u,(x,y) is completely determined by the structure
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of the interval [x,y], we find that for &)&ze [(P) 1] ,

}1(&)&92}1(%' )%Q . N

Here by a common abuse of notation we use the same letter M for the
Mobius functions of two different partially ordered sets (in this case
L (F) and |}](P)), relying on the function arguments to make the set in-
volved clear. This is the reduction mentioned above. Important special

cases are

1(@,P)=u(G,0 (®
ﬂ(ﬂ.,&)Z/U, (]I.)G)&) .

To obtain the factorization, we note that by induction on formula (4)

(9)

we may prove
}L(&%GD} = gg&/‘-(l)@a) . (10)

Here as usual the I which appears in the factor }L(ﬁ ’@Q ) is the greatest
element of the lattice }|(Q), in which @Q lies. (We shall not actually
need to compute /u(@ ,@), which by our reductions is now determined once
M (1,0) is known for sets F of arbitrary cardinality. As an aside, we
remark that for the lattice J|(F), )1(1,0) = (-l)h:,_I (IF] - 1)! .) This
concludes our preparatory remarks on Mobius functions. More detail and
further references may be found in [5 ]. we turn now to Lemma 3.2. With
notation as in Section 3 we have

Lemma IV.3.2: Let {Uig be a family of n random variables. Then

U, (§o.8)= 2 u,(56:2) | (11)
LN &:SZV(P=1& '
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Proof:
With the machinery established above, the proof is a straightforward
calculation. Given a family of random variables §T¢§¥GF indexed by a

finite set F, for any partition ®e ||(F) define
Eplid)= g@ﬁ(r@ , (12

where 8 is the expectation integral and as usual ’L’RngR%:I . -Using this
: €

notation, it follows from definition (1.2) that

oy Li3)= azen(@) p,R) Ep(io3) 1

Recalling that L (®P) is naturally isomorphic with UP, 11] Cﬂ(%‘ﬂ,"',ﬂ?)’

we rewrite this as
1)=& LR CalimD) aw

Tracing through the definitions we find 8(%65?5): gSGOZ}), and by (9)

we have }L(IL)(P)-:/).(][)S) . Thus (14) becomes
wolied =2 o w9 SEP)Es (i) | as)

where we have inserted the factor §(SJ(P) and allowed S to range over
all ,U.({\)Z)“‘,ng). It follows from the factorization property (10) of

)u that

Eliod) =2 SEDu,liod)

Qell(§y;,nd) (16)

Using this in (15), we find
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§EPS(EA) = §(S,0v) (18)

we have

)= Z, p.5)86,P-) 1)
= % 81)@\,& u&(&r@)

z ol (§:3)

:&: Pv (19)

as desired.

c
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Chapter V: Infinite Ising Models
Section 1: Introduction

In the Ising models we have dealt with so far, the set of sites
has been finite. These models are mathematically very regular: the
thermal expectations of products of spins (moments of the Gibbs
measure) are real analytic in the parameters of the Hamiltonian. They
exhibit none of the interesting physical properties, such as phase
transitions, which are observed in nature. To create a structure which
is mathematically more interesting and physically more realistic, we
introduce and analyze in this chapter models with an infinite set of
sites. The inequalities proved in the preceding chapters are important
tools in the construction and investigation of these infinite models.

In Section 2 we present the basic definitions of infinite Ising ferro-
magnets. We construct the infinite-volume Gibbs measure (with the free
boundary condition) for extremely general models, realizing it as a measure
on the spectrum of a certain naturally-arising commutative C*-algebra.
Unfortunately, a price must be paid for this generality: the spectrum
of the algebra is slightly larger than the configuration space on which
we would like to have the measure. (The configuration space is a dense
Sis in the spectrum.) However, if the (second) moments of the Gibbs measure
are finite, as we show they are in most models of interest, the Gibbs
measure is actually carried by the configuration space. We conclude with
a brief discussion of the equilibrium equations, which give intrinsic
meaning to the notion that a measure is an equilibrium state of a model

at a specified temperature, and a short description of boundary conditions
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other than the free boundary condition.

Section 3 concerns the decay of spin expectations <&%~G§> in trans-
lation-invariant models when the distance between the two families of
sites A,B becomes large. We define the correlation length X and, after
remarking that it is controlled by the decay of the two-point function,
point out that it is monotone decreasing in the external field h when
the G.H.S. inequality (Corollary II.2.8) holds. We show that the moments
of the Gibbs measure are jointly c® in any finite set of field parameters
hy at sites i. We prove that the two-point function must cluster except
possibly for a set of values of the external field h of measure 0, and
that this set of exceptional points is reduced to the single point h=0
when the G.H.S. inequality is satisfied. In fact, as we next establish,
any connected nearest-neighbor ferromagnet in two or more dimensions
with zero external field pair Hamiltonian whose single-spin measure
is not 8 is long-range ordered at sufficiently low temperature. This
is one of our main results. We finish by giving an elementary definition
of the infinite-volume transfer matrix, and characterizing the cluster
properties of an Ising model in terms of spectral properties of its
transfer matrix. The definition we give of fj permits the simple derivation
of many interesting results. This definition is well-known in quantum
field theory [38:]but appears to be less familiar in statistical mechanics.

In Section 4 we study spontaneous magnetization. We find that a model
which is long-range ordered is necessarily spontaneously magnetized.
Proposition II.4.2 may be used to compare the critical temperature of a

model whose single-spin measure is absolutely continuous near zero with
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the critical temperature of a two-dimensional Ising model with spin %
spins (which is known by explicit calculation [:37]). As a corollary
of our main result, we prove that ferromagnetic anisotropic plane rotors
on a lattice of dimension at least two are spontaneously magnetized
by a method of Kunz.[ZSJ.

The fifth section treats non-translation-invariant equilibrium states
of translation-invariant models. We show that any isotropic nearest-
neighbor ferromagnet on a lattice of dimension at least three with
single-spin measure V # 8 has at sufficiently low temperature an equilibrium
state with a sharp phase interface. In particular, the equilibrium state
is not translation-invariant.

The final section deals with applications of correlation inequalities
in models of scalar quantum fields. Guerra, Rosen, and Simon have shown
[ZOJthat Euclidean P(@j& models are well-approximated by ferromagnetic
nearest-neighbor Ising models with continuous spins (lattice approximation).
Thus, inequalities known for Ising models may be carried over directly
to give inequalities for Euclidean scalar quantum fields. These inequalities
in field theory serve many of the same purposes as the corresponding
inequalities for spin systems (construction of the infinite-volume limit,
domination of the n-point function by sums of products of twe-point
functions, control of the mass by the two-point function and monotonicity
of the mass in the external field), and have also been applied to problems
unmotivated by statistical mechanics (absence of bound states, absolute

bounds on couplings and vertices).
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Section 2: The Infinite-Volume Limit

In this section we construct Gibbs measures for Ising models with infinite
sets of sites. We also introduce the Dobrushin-Lanford-Ruelle [ﬁ2?]
equilibrium equation, which gives a non-constructive criterion for a
measure to be a Gibbs equilibrium state of an infinite Ising model. The
Hamiltonian for an infinite model is a formal power series in the spins
which makes sense as a function only when restricted in some way to a
finite set of sites. An expectation in the infinite model is defined by
restricting to a finite set of sitesJ& ,» calculating the expectation in
the restricted model, and using the monotonicity property Corollary II.3.2
to take the limit as J\ becomes arbitrarily large. Using this limiting
procedure we may construct the Gibbs measure of the infinite model in
quite general circumstances.

We introduce some definitions and notation pertinent to infinite models,
generalizing the definitions given at the end of Chapter I for finite
models. An infinite ferromagnetic Ising model is a triple ({ ,H,V) where:

(1) The set of sites J: is an infinite set, which for measure-
theoretic reasons we take to be denumerable. We associate with
each site iel,a spin variable 6geﬂ?, and the product H?£=_T&JR
is called the configuration space.

(2) The Hamiltonian H is a formal power series in the spins of locally
finite degree:

== J

-
ke, L) K

K JK>OJ W
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where the couplings JK obey the restriction that for all finite .ACL
I%KGQO(JL):JK¢O§| < (2)
The degree d of H is

d=sip 1K1 Ke GBI H#0S (3)

(3) The single-spin measure V is an even Borel probability measure

on R which decays sufficiently rapidly that if d is the degree

of H then

S exp(alol?) dv (o) <0 VaelR; 4)
R
that is, VEﬁJ.

As with finite models, the linear term -—EXI;G; in H is usually thought
of as an external magnetic field -2 k"O’i . The model is called connected
if any pair of sites i,j€c£ is connected by a finite chain KysK50005Ky
of families with JKI ,...,Janéo » 1€K,, jeK,, and fqrval_l* ,Q) K l‘\KQH # ¢

2

It has bounded couplings if

J o
‘%gP%@)K <o, (5)

Recall that the collection G;(«i:) of finite subsets of ot is directed
by containment: _A.lS_AQ@_/LC_AZ. We say that a real-valued net X_A_ indexed

by Gg(&) converges to X as A if V>0 3.A° such that A0<A=> V‘X_U( 6.
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The restriction of the Hamiltonian H to a Hamiltonian HJ\. for a finite
region A<l s performed by just keeping the terms in (1) involving

only spins in A. :
H = -Z IKO—K . (6)

By (2) this expression is a polynomial, and so is well defined as a function
on the restricted space TR‘A of configurations. Definition (6) of Hy
amounts to setting all spins not in,A. to zero. This choice of spins in

I. is called the free boundary condition. Other boundary conditions

are briefly discussed in connection with the equilibrium equation at

the close of this section. Denote by M the Gibbs measure of the finite
model ('A-!HJL »V). We often use subscripted brackets < ?A. to indicate
expectations with respect to I though sometimes the more explicit

notation < R P} is convenient:

- -BH
3 = = -Fd = : le (7)
it pr =<ty =L ggn =2 gy,

The infinite Ising ferromagnets we have defined have as yet no geometric
structure. In contrast, the models of principal physical and mathematical
interest are those in which the set of sites L is an n-dimensional

n
lattice Z and the Hamiltonian has properties somehow comnected with
n n
the geometrical nature of Z . (When we refer to Z as a lattice we

mean a lattice in the physical sense of a regularly spaced grid of points.

n
The mathematical connotation is unintended, though of course Z is a
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lattice in this sense also.) We describe some typical geometrical properties
n
of the Hamiltonian. A Hamiltonian H = =3 CRGR on a lattice Z is

Kel)

called translation-invariant if

. n

Jg = Jyei VKeH (L)  VieZ, @
where of course if K = {kdz then K + i = ik4+i§ . The range of H is
ran (H)= Ve diam K ©)
fhedilZ"): 3, #03
(The diameter of a set K in a metric space with metric d is diam K = SUP J(th)s
n (%] 2€
in (9) we employ the usual Euclidean metric on Z ) a finite-range
interaction has ran(H) < (0 . A nearest-neighbor Hamiltonian is one with
range 1 and degree 2 in which no quadratic self-interaction terms Jgi-&%jz
appear. Often nearest-neighbor interactions are assumed to be translation-

invariant as well. Thus a (translation-invariant) nearest-neighbor Hamiltonian

2
on EZ has the form

H= -hZ 6. o

Y (i.)iQeZy&”iz) O’(.i‘u, ip) -Jz (%-b ez‘%’ ,iz)GZi.,ilﬂ) ez

Armed with these definitions, we turn to the construction of the infinite-
volume Gibbs measure. Let us first suppose that the single-spin measure V
has compact support S. Then we may take the configuration space of the
infinite model to be SL , which is compact in the product topology. If

P(0) is a polynomial in the spins with positive coefficients, by the

monotonicity property (II.3.11) the expectations <P((Y)2A. form an
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increasing net on (Pc,(et,) . This net is bounded above by I,?"w= oS-ZPsi lP(G>‘

and so has a unique limit, the infinite-volume expectation <P( 0’)> = -kjinogP(O')éf
Invoking the Stone-Weierstrass Theorem to show density of the polynomials

in C(S‘c ), we extend the infinite-volume expectation to a state on C(SL)

by linearity and continuity. By the Riesz Representation Theorem this state

is given by integration against a unique Baire probability measure M ,

which we call the (infinite-volume) Gibbs measure of the model ({, L,H, V)

(with free boundary conditions).

If we try to duplicate the construction of the previous paragraph for
general single-spin measures V we meet two problems: the polynomials P(¢g)
on the configuration space TR‘L are not bounded functions, so that the
increasing net <P(0‘)?I,L need not be bounded above, and TR‘Q is not
compact. We partially overcome both these difficulties by replacing the
polynomials P(o ) with polynomials P(F, (Oa), 2§ ( o-b )s...) with positive
coefficients in bounded continuous functions Fps Fpoeoo of the spins
which are of definite parity, nonnegative on j_o,w), and increasing there.
Applying the extended monotonicity result (II.3.10), we find
<'P(E(5&))E(G-b),\)> :-Xj:é?(ﬁ)ﬁ;,)?h exists for such polynomials, and we
may extend this infinite-volume thermal expectation by linearity and
continuity to a state on the C*-algebra 5 (trivial involution, sup norm)
these polynomials generate. The C#*-algebra on TR generated by the bounded

continuous functions F: TR-%TR of definite parity which are monnegative
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on [0,00) and increasing there is C('fé ) , the space of bounded continuous
functions on TR with limits at 00 ( 'ﬂ'{ is the two-point compactification
of TR obtained by including the two endpoints * 00 .) Thus the algebra (X
on which we have defined the infinite-volume thermal expectation < >
is the tensor product @LC(TR)=C(’ETR) » and by the Riesz Representation
Theorem this state is given as a measure on the spectrum spec ( ®.LC(TT2 ))=TE}'R5,
We identify this measure as the infinite-volume Gibbs measure }L (with
the free boundary condition).

Ideally we would like the Gibbs measure M to be a measure on the con-
figuration space —WLTR » but instead we have it on the slightly larger
space W£TR in which TriTR is a dense %S' We may hope that in
reasonable situations the Gibbs measure M is carried by TRA\' . Theorem 1
below, which summarizes our arguments to this point, shows when combined
with Proposition 2 that this is so.
Theorem 1: Let (OY, ,H, V) be an infinite Ising model. Then there exists a
unique state < ;H,’V,P> on the C*-algebra ®£C('I.é ) , and a unique

Baire probability measure on the spectrum TR of & c(RY ,
M s

such that V finite .A./C oYJ s 4 'FE ®.A'/C(Tk)
SHRE J f\éﬁd/“ = &QQGSH S (1)

The configuration space TTS.R is a dense %8 in -ITX/TR . If V ieL
E F. € C(R) which is even, monotone increasing and nonnegative on [0 ,00),

and which tends to &) at + @ , such that the net <Fi(ci) ;HJL ,V)ﬁzt
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is bounded above, then }/L is carried on TR& : }L(]RI’)::[
Proof:

The only part of Theorem 1 we have not yet established is the sufficient
condition for}), to be carried on TRA\’ For ied,, define E:‘=§X€T§&l XiG"R},
where x; is the ith component of xe& I, L It suffices to show that}L (Ey)=1,
because TR QLE] » and the intersection of a countable family of sets

€
of measure 1 in a probability space again has measure 1. For ne Z* define

E, ItHgn

b (t)=
FO, [t>n) 2 o

and set Eip = {XGT[HR’. X;GTR& ,X;I\<n§ . If the expectations <Fi(°'i)>__¢

are bounded above by c, so are the expectations <F1n(o')> . Taking _A,—)OO)

2 Tl b > (B > ME), B TTTR E. .

As n—>00, c/Fi(n)—>0 so that 0> u(E:) and (E;)=1 as desired.
1 /j"' 1 }‘L 1

QED

Of course, when properly formulated all the inequalities proved in
Chapters II - IV for finite Ising models also hold in the infinite-volume
limit, and so may be used in the analysis of infinite models.

The example we have in mind for the functions Fi in Theorem 1 is Fi(o:;)=0'§7‘,
so that roughly speaking the infinite-volume Gibbs measure M is carried
by the configuration space TR™ if its second moments are finite. Under
reasonable geometric assumptions, we show that this is the case by following

an idea in [30] If the single-spin measure is such that Corollary II.2.7
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or Corollary III.2.2 holds, finiteness of the second moments implies
finiteness of all moments,

Proposition 2: Let (zn,H,v) be an Ising ferromagnet with bounded couplings

whose Hamiltonian H is finite-range and of finite degree d. Then the second

moments of the infinite-volume Gibbs measure are finite:
<Go R B =fim Gy, By < o0 VijeZ' as

Moreover, if H is a pair interaction and the single-spin measure V is

such that Corollary II.2.7 or Corollary III.2.2 holds, all moments <OA;H’V’P>
are finite.

Proof:

To show <o"~(5=><oo we need only consider the case i=j. We invoke the

technical device of periodic boundary conditions. Let,A_ be a large cube
n 1]

A =-ﬂ' %—m,-—m—l—l,ﬂ . ,mg > which we identify with the group TT ZII'M-I . If
ol=| o=

H=-% JKo—K , define

3, = ?eﬁj“*;\ , Ked () (14)

W=-= 3(&0"!,\
A KeE W) ) (15)

where the translation K + j is performed with respect to the group action

n
in _A,:T'T szﬂ . Notice that HJ'L is translation—invariant with respect

to this group. By translation-invariance and the second Griffiths inequality
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(Corollary II.2.3),
<07;2.') HA> S <0'513 H:{>_A_ U\.\ Z < H1/1.>_A. . (16)
Now by the Jensen inequality,
exPH ;az)cyﬁ] Sexp(zvl)%t , (17)
so that
G HDA_ g)‘k\& (;032)3}1 < ‘m Pogu e?‘P(% 0?)%1] . (18)

Since H is finite-range and has bounded couplings, there areJA_—independent

constants J,A €[0,00) such that

\HJ'L(@K?A(J@H " 19

Using this estimate in (18), we find

d, 2, A d g2
I & Jlolfateh : he\ﬂo'l 1024 36)| 0,
L < 3 SR St e gy | T[T i),

Since 17611! the right-hand side is a finite constant independent oth .
Any finite region lies in some large cube , so by monotonicity the first
part of the proposition is true.

If Corollary I111.2.2 holds, then a bound <O',GA> (C immediately

gives a bound on the even moments, and hence on all of them. As shown



84

j11[\3 1 Corollary II.2.7 may be used in the same way.

QED
We remark that if we require the interaction to be translation-invariant
and of finite degree, the same proof shows that long-range forces may be

allowed in Proposition 2 provided the couplings Ik obey

Jk <
Sk (Z"):1eK§

(21)
for some (and hence all) i.

Although Proposition 2 is adequate for our present purposes, one expects
that much better results hold. In particular, with the hypotheses we
have made one hopes that all moments are finite regardless of any special
properties of 'V beyond its decay rate. This can be shown if the Hamiltonian
is a pair interaction (degree 2) by transcribing to lattice models results
of Ruelle derived for systems of classical particles interacting by super-
stable pair potentials[_4|]. These results probably generalize to Hamil-
tonians of degree higher than two, but the technical estimates involved
are formidable and a general proof does not seem to be available. Various
special cases are amenable to simpler techniques. In Appendix C we use
the method of transfer matrices to prove finiteness of the moments if the
Hamiltonian is nearest-neighbor. Also, for certain single-spin measures
Theorem II.4.1 may be used to compare the moments of a model with single~
spin measure 'V with those of a model having the same Hamiltonian and a

Gaussian single-spin measure. For pair interactions (the only kind that
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make sense with a Gaussian single-spin measure) these moments are
explicitly computable. As an example, if d'V(G")ZGXP(:F(O'))AO‘ » Where

P is an even polynomial bounded from below, then by sufficiently increasing
the dispersion of the Gaussian C}’VG = [exp(—,%%z)/aﬁr]do' we may

arrange matters as in Figure 1 below:

A

dv(e) = exp (TE))der

Figure 1 e
Cl’V (o ::-'l"‘“e 20}40’
e A

...c C 0‘

In this situation the measure V7 may be obtained from 'VG by multiplying
by an even function monotonically decreasing outside the interval [—c,c]
and redistributing the lost probability mass inside [-c,c] . Theorem II.4.1
tells us this procedure decreases the moments. Of course, this comparison
is of little value at low temperature since even in a finite volume the
Gibbs measure of a low-temperature model with Gaussian single-spin
measure is ill-defined.

In Theorem 1 we constructed the infinite~volume Gibbs measure with
the free boundary condition as a state on the C*-algebra C(TTLIR)
By its very construction, < sHy, v ,F> should be called an equilibrium

state of the infinite model (&, ,H,V ) at inverse temperatureﬁ . We now
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briefly discuss how to decide independently of any constructive procedure
whether a state on C(WTLT}'? ) is an equilibrium state of a model (L GJH, V).

We restrict our attention to finite range Hamiltonians on a lattice 2?:7".
Consider two finite regions J\.c_/t’cz", where .Af is much larger than.A- .
Denote spins in A by cri)os,m and spins in _A./-'.A. by Tfa )Tb) ¢+ . Since

H is finite range, if A is sufficiently larger than ]\. (dist( a_A_’,A)> ran(H))

then HA: may be written in the form

where because of the large size of _A_/ the interaction WJ\‘.’ (0,7 ) between
-A./ I4

.A. and is independent of .A_ . Consequently, the conditional expec-

tation with respect to the Gibbs measure /“.I\f of HM of a function f(&)

of the spins o in A , conditioned on the spins T in _A_/-_A_ , is

He)expl-(H)Wysm) ey, ()T dvie)
N, = T B+ o)+, WIT v (2
S {o)e BLHE) + Wyl Thdvle
= je—ﬁ[u_‘_(v') + WA(‘};tU TT_;‘_dV(O’,)

Observe that the right-hand side, which may be thought of as the thermal

expectation of f£(¢ ) in the region.A. with Hamiltonian Hy and boundary
conditions W.L (’t) s is independent of the region.Af . Any equilibrium state
of the model (Z';H,v) should certainly satisfy this equation for condi-

tional expectations, and we take it as the definition of an equilibrium
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state. Translating into the language of C*-algebras, we find that a
state P of C(TlpolR) is an equilibrium state of (Z",H,‘v) at inverse

temperatureF if V finite _/LCZ", V fe c(TTKﬂ?), Y GSC(WZQAT‘R )

-BLHO+ Wy (o)

$H6) Tdvie) _
?([I(O'\) - je';[&(“)”"!{(o;ﬂ] Tﬁdv(o’i\ ]G(ft)) = O . (24)

This equation for an equilibrium state is called the equilibrium, or
D.L.R. equation ['77)2-}] There are several technicalities associated
with its interpretation, but we shall not discuss them here.

It is clear from the definitions that the infinite-volume Gibbs
measure with the free boundary condition is a solution of the equilibrium
equation (24). In general this solution is not unique, the lack of
uniqueness being closely connected with the presence of multiple phases
in the model. We now mention other ways of taking the infinite-volume
limit which sometimes give rise to different equilibrium states. For
each A€ Q}O(&) let ZIIGTRK be a configuration of spins outside./\. .

The energy Hl,‘f (0°) of a configuration of spins O‘QTRJL surrounded by

spins in X fixed at values given by 711 is
= q
HJ.L}{(O') H(0) +Wy(,¥) +C (25)

where as before HJL (o) represents the mutual interaction of spins in A ,
i

W (0“,7{) represents the interaction between the spins & in .A. and the

A
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~
fixed spins 2& in .A. , and C is an infinite constant arising from the
mutual interactions of the fixed spins in .AA/. . We drop C, and call
H-A.,'ll (0"): HA(G‘) + W.A.(O’J 1{) the Hamiltonian of the region A with
boundary condition 1{]{ . The free boundary condition is -Z/][ =0.

Let A/DA be a region large enough so that dist (.A.,Q.A./ )> ran (H),.
Then the conditional expectation with respect to the Gibbs measure in .A{

~

of HJ(,?J with boundary condition zfx_, in.Af of a function £(& ) of the
spins O in AL , conditioned on the spins T in .A.,‘.A. , is

SOUL, = FHeexpl- BH @)+ Wyle; )4 Hye y 0 + Wy (1) T dv )
£ Jexp - BUHYO) +W, D)+ H, 00+ W ] T )

. i aap[-p 7+ Wyl O Th dvie)
= j exp [-8 (HA(O’) +Wy (s, )] T o)

Here as before the interaction W.A. (@,T) between the spins & in ..A.

(26)

and the spins T in .A./—-_A_ is independent of the region .A./ because of

its large size, and the interaction WM('t,"-l ) between the spins in .A./
and the fixed spins IIJ’(, outside.Af involves only the spins T in .A,"'_A.
for the same reason. We see from (26) that if we can control the infinite-
volume limit of the Gibbs measure associated with the Hamiltonians H.A.,’I
having boundary condition 2& , then the resulting state - the Gibbs
measure with boundary condition 2/ ~ will be an equilibrium state.

This state is not necessarily the same as the state with the free boundary

condition, and in fection 4 we shall see a specific example when it is not.
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Section 3: Clustering, Correlation Length, and Long-Range Order
In this section we concentrate our attention on ferromagnetic Ising
models (EZ:H,17) on a lattice which have translation-invariant connected
finite-range pair Hamiltonians H. Explicitly, H must be of the form
n
o - . =1 > l<€Z

Sometimes we require further that H be nearest-neighbor:

H:"énm 103y, = h?o“ h‘>0 J?O wheee 1,=(0; ,0,,0, ,O)(z)
&2

As we mentioned in Section 2, all moments <(7A,H)'\7,?> of the Glbbs
measure with free boundary condition of a model having translation-invar-
iant finite range pair Hamiltonian (1) are finite. Here we are primarily
concerned with the dependence of the infinite-volume Gibbs state on inverse
temperature and external field parameters Fg,h; for this reason we often
use the notation < ‘;b'P> in place of < 3 H)’V)ﬁ> .

Let A,B€ &(Z") be families of sites. Since the Hamiltonian (1) is
finite-range, it is reasonable that if B is translated by some ieZ",

then the random variables G'A ,0&_;1 become asymptotically independent as

li]l—00:

li’ﬁ_vgg(}((%%& o) = £ iﬂ%"i O <EN=0 &
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If (3) holds for all families of sites A,B we say the state < .‘)H;V,ﬁ>
clusters.

The decay of (<O/10-B+i> -<GA><0—B\>3 is often exponential in the separ-
ation, for example at low inverse temperature ﬁ or large external field
h [22]. For this reason we define the correlation length in the
l-direction by

Vx, = int (ngHiQ nk (<°2\‘78+i> “<‘TA\’<‘TB>Y%'D S

ABeH, @) 7t

n X
where i1 = (i,0,0..) € #Z . The argument of the logarithm lies in Ll,DO]
m\-\—lB\>

because 0Y <6A63+i‘>~<07\><0:8>g z<o- , where the site subscript
on & 1is unnecessary because a translation-invariant model has translation-
invariant spin expectations. Loosely speaking, \/)(\ is the smallest

asymptotic rate of exponential decay of any correlation (G'AO‘B_H‘>-<GA\><GB\>.

It is the least number such that V A,Bego(Zn) ) Y ()O)

- (\/Y| ‘é)l

o Tgas, )~ <G> € const. € (5)

for large i. We emphasize that an infinite correlation length does not
necessarily mean that the model fails to cluster, but only that it fails
to cluster exponentially. If (Zn,H,V) has bounded spins (suppV compact),
one may apply the F.K.G. inequality in the manner of [29:] to show that

an arbitrary correlation <02\0'B> —(ﬂ><%> is bounded by sums of two-
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point correlations <O')‘<Oj>—<%>(%> » 8o that the infimum in (4) over
families of sites A,B G@O(Z") may be replaced by an infimum over pairs
of sites k,IGZn :

o = i U (i (01,5~ 3] 4] o

kfcz" €Z?

It follows from (6) that Xl is monotone decreasing in the external field
h for those models (Z"H,V ) whose single-spin measure "V is such that
Corollary II.2.8, the G.H.S. inequality, is satisfied. This is because
the G.H.S. inequality says that <0|'<0,—0> —-(GI:><OE> is decreasing in h. If
the spins are not bounded, the situation is substantially the same {43 ]

We now investigate in greater detail the clustering properties of the
two-point function. We first show that if we fix the inverse temperature
P and couplings Jk in (1) while regarding the external field h as an
adjustable parameter, then the two-point function clusters except possibly

for a set of values of h of (Lebesgue) measure 0:
. 2
‘gi_v{» >0o(<o[<0,;;h> —hY) =0 7)

except for a set of h's of measure 0. If the G.H.S. inequality holds,

this set of measure 0 decreases to the single point h=0. Next we show
-1

that at sufficiently low temperature P s 1f the single-spin measure

is not the delta-function & clustering must fail for zero external field.
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Indeed, there is a constant L>» 0 such that
<&i5heo, (3>-<O§50,F><0330,ﬁ> = <0§C§30)f352 L Vijezlo

In this case the model is said to exhibit long-range order. In the following
section we shall show long-range order implies spontaneous magnetization.
The remainder of this section deals with the infinite-volume transfer
matrixl.j . We define 3 via the Osterwalder-Schrader reconstruction
technique, and state a theorem proved in Appendix C relating the cluster
properties of an Ising model with the spectral properties of its transfer
matrix.

Lemma 1l: Let (Zn,H,‘V) be an Ising ferromagnet with bounded couplings
having finite-range pair Hamiltonian with (nonuniform) bounded external

field:

K *
H:‘ZJ'ij;-Zhlo: , OSJ‘S(J )OShi\<h . (9)

Then for any family of sites Aeoé'o(Zn) and any jeZ",<0A;H> is differ-

entiable with respect to h, and

%‘3<%H\>: @Ojsm —{%HX({;;PB - (10)

Thus the Gibbs state has moments jointly c® in any finite collection of

external fields hj.
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Proof:

Notationally we suppress all fields but hj’ so that

<05 é> <0 b0} = & ?wn (<o;p e <509,
-fw 1 sy =lom Loty Gyt

5000

XO %X%Qﬁﬁ A %JJ‘})‘H (Monofone COWer&ence )
RV ENTS

It follows from this integral representation that {0;‘)‘1‘& is continuous

i

in h,. Therefore the integrand of (11) is continuous in t, so we may

differentiate to obtain (10).

QED

We remark that Lemma 1 holds in much more general models.

Proposition 2: Let (ZF",H,% ) be an Ising ferromagnet with bounded couplings

having the finite-range pair Hamiltonian
- h:z ;[ ;I*
H--Z J. 00 - 120, 05di € (12)
‘)(\ r; (S
with uniform external field h, and let Aé@o(zh).lf <0’3H> is differen-

tiable at h (which it must be except on a set of measure 0 since it
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increases in h) then
%KUA;D ¥ 4'2612 (<0@355>—<0;h><§; by) . (13)

Consequently,

lin (<5030 ~3h><ep30) =0

dist(j,B)->co0 (1)

except possibly for a set of values of h of measure 0.
Proof:
By monotonicity in the external field,
/
0 ; U= 3 6~ (hash)Ze Y3 <03 H= = 2 Jii06 -h T o - ah T
< )H f,jGZ.Z"‘é i ( A >§h<§>/<AJ i€z A JGZ'& a@_A_a\) (15)
for any finite region.A.. But by Lemma 1 this means

4> z %hf"i"m:%t oW -G e

Each term in the sum on the right is nonnegative by Corollary II.2.3

so sending Jl‘§00 the proposition follows.

QED

Like Lemma 1, Proposition 2 holds in more general circumstances. Taking
the special case when the family A is a single site, we obtain clustering
of the two-point function except possibly for some set of values h of

measure 0. If the single-spin measure "V is such that Corollary II.2.8,
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the G.H.S. inequality, is obeyed, then the set of measure 0 of values
of h where clustering may break down reduces to the single point h=0.
Corollary 3: Let (Z‘:H,'V) be a ferromagnet with Hamiltonian (12) whose
single-spin measure V7 is such that the G.H.S. inequality (Corollary II.2.8)
holds. Then the two-point function clusters except possibly at h=0:
lin (<oshy <o h> 4 h) =0 1
h-(gl-—w
except possibly at h=0.
Proof:

The G.H.S. inequality implies that (<0'.0;\>-<0;\><Oi> ) decreases in h.
Thus if clustering fails at some h> 0 it fails in the entire interval
[O,ﬁ]. This interval of no clustering, which has positive measure, violates
Proposition 2.

)

We have seen that the two-point function of a nearest-neighbor ferro-
magnet must cluster except possibly at a set of values of the external
field of measure 0, and if the G.H.S. inequality holds it must cluster
except possibly at h=0. We now show that if the temperature ﬁ?' is suffici-
ently low and the single-spin measure V is not the delta-function 8 s

then clustering must indeed fail at h=0. In fact, the model is long-range

ordered. The proof proceeds in several steps. First we use the second
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Griffiths inequality (Corollary II.2.3) to reduce the problem to a nearest-
neighbor interaction on Zz. We next establish long-range order in models
on Zz for a restricted class of single-spin measures by extending an
argument of Bortz and Griffiths[ 3 ], which in turn generalizes an idea
of Peierls. The general result follows by applying Theorem 1I.4.1 to
conclude that the two-point function ({7' Oj> decreases when the single-
spin measure is altered to bring it into the class covered by the Bortz-
Griffiths method.

As a preliminary, we define an isotropic nearest-neighbor Ising ferromagnet
to be one all of whose (nonzero) couplings are equal: J, = J>0 VO(,
In proving long-range order it is sufficient to consider isotropic models,
because by decreasing some couplings J, — which decreases the moments
of the Gibbs measure - we may make any model isotropic.
Lemma 4: Let (In,Hn(J,h) »V ) be the isotropic nearest-neighbor Ising
ferromagnet on Zn with coupling J, external field h, and single-spin

measure V . If 3 L>0 such that
<0";(7i 5 HZ(J, h))v,@ 2L v MGZZ (18)

then for any n2 2

<0}<§3 i, Mm(&» L Y i)‘gez". (19)
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Proof:
We use induction, and show that if <G|°§~>Hn> is bounded below by L,
. . s n+ . . . .
so is <O:Ol) Hn+|> . Let i,j€Z " . By translation-invariance and isotropy

we may assume i=0 and j = (jl,jz,“',jnM ) with j;2 0, jpu>0. Define

Vi= i(k;“, kmbezw : l(;s 0d \(""" :OE
V2= % (ktx"')l(mt>ezm: ke0 & o< k“‘“ Sénng (20)
V3= 3 (ke ,tnu\)ezmr kZO& km‘zém‘g )

and let V = VlU VZL)VB. If we reduce to 0 all couplings not between two

sites in V, which decreases <O]03> » V becomes a sublattice disconnected
4 n

from the remainder of Z that is isomorphic with (Z ,Hn(J,h) V). In

the case n=2 the set V is illustrated in Figure 1.

34

Figure 1
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Lemma 5: Let (ZI,H,’V) be a nearest-neighbor Ising ferromagnet with

Hamiltonian

H:’J(E)ezl[%m%,m> FhmTgmad 30

If there exists a constant c € (0,00) such that supp’Vc[-c,cJ, and if there

exists 71)0 such that for all measurable Ec (—% ,%)
V(E+2) 2 Iv(E) (22)

3 -
and if '\7[3 C,C]fo, then for sufficiently low temperature ﬁ ! there exists

2
L> 0 such that v i,jez)

<O;O—A.) H)V) ﬁ> ? L . (23)

(The infinite-volume limit is taken with the free boundary condition.)
Proof:

As much of this proof follows standard reasoning, we shall give the
details in a condensed manner. We may assume without loss of generality

that c=1 and ”l<1. Let 7,, be the characteristic function of the interval
n=l: [3,1]
n=z: (-3>3)
n=3: [-‘J.-é:( ,

(24)



99

and estimate <O';0;1> using these characteristic functions:

@Gop =2 & G Im(O0pa(3)) = ZL0i0 e ol + n%n@ % Pl Yl

(25)
25l Pl +<(E) )@(«gb) -5QRE) -ggmm;n(ﬁ» -

We show that by choosing ﬁ sufficiently large (independently of i,j)
the two negative terms in (25) may be made as close to zero as desired,
so that the first must approach 2/9 and thus give the lower bound.

The term <71(G'1)]{2(02>é<)(2(0’|\)> is easily disposed of. By Proposition
I1.3.1, <7(1(0"\> increases when any coupling between two sites is decreased.
Thus if we consider a model with just two sites i, i' at inverse temperature

ﬁ with coupling J and single-spin measure V ,
/
<)6(0',-)> <L) , (26)

where the prime on the right indicates the expectation in the two-site
system. But the condition that ‘VE,!])O in the hypothesis assures
%31_31000(2(6‘»/:0 , so that 01@\)%1(({0> < @2(0';)>/ approaches zero as ﬁ
is increased in the original model.

The term %no(m(o—c)%n((ﬁ» is controlled by an extension of the ideas
of Bortz and Griffiths [ 3 ], who considered in a somewhat different context
the case when V was Lebesgue measure restricted to [-1,1]. By the spin-

reversal symmetry of the Gibbs measure it suffices to show that

O’(o;)[yl(ac'o +}3(()p]> becomes small for largeF . To accomplish this,
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we shall prove that if .A_B i,j is sufficiently large,then V6>0 3% inde-

pendent of i,j,.A. such that
BB = p@PRED <€ 27)

Regard Zl as a subset of ]RZ » and associate with each iezl a closed
unit square A.iCIRz centered at i. If ./tC Zz, define ,A.C?Rz by 7\4‘: iLGJAA‘i ,
Given a configuration C& [—1,1:|JL , we call the spin at site kel plus
(+) if Oité[-‘;)l] and minus (-) if O'ke [",‘l-_:;) . Break up A into + and -
connected components by saying that two squares Al( )AQ are in the same
+ (=) connected component if their spins are both + (-) and they are
connected by a chain of nearest-neighbor squares with all + (-) spins.

A border B associated with the configuration ¢ is defined as a connected
component of the boundary taken in the interior of A.. of a + connected
component. Note that a border must either be a closed polygon or have

both ends on QA . Thus B separates A. into two connected components.

A site k is called a circumference site if its unit square A“ has a

side in B. If b is the length of B there are at most b circumference

sites in each component. The circumference sites in one of the connected
components must be either all + or all -~ , and in the other all - or all + .

We call the + (-) component the one in which all sites are + (-). An example

is shown in Figure 2.
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This examPle shows +htee + componen*s

(\iﬂhﬂy hatched 777 ) and three -

COmPonenJrs, There are four borders,
drawn with heavy black lines mem—=

. # - i o .
2 ' S
A-H11.371.73 .84
-8 £ 2 . 'y ;.a’ [

S

5"_? .jl -8]-.8(=3 2

Figure 2

2z
Let .A_CZ be a square containing i,j which is so large that the

dist (§i J5, 3> hré.\ u lirjal (28)

vi
is satisfied by the corresponding square j§<:ﬂ? . We shall show that
if B is a border in A and \BC [—l_,'}k is the set of all configurations
. . 41 opH
o which have B as a border, then the Gibbs measure P]3 = Z Be T“Ad’v

of ‘B decays exponentially in the length b of the border B:

b _
<4 ('72{) e b/ : (29)
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Let us see why this estimate gives long-range order.

If 6 is + and <ﬁ is - in some configuration, then one of the borders
B bounding the + connected component containing i must separate i from j
jjl{i . Thus, if B(i,j) is the set of all borders separating i from j

in.l¥ » we have the inequality

HEH < g o (a0)

A border may separate i from j in one of three ways: it may be a closed
polygon with i in its interior and j in its exterior, it may be a closed
polygon with j in its interior and i in its exterior, or it may have

both endpoints on 34& and pass between i and j. The number of borders

of length b enclosing either i or j is at most b3P. Also, since the

number of borders of length b containing a particular side of a particular
square A& is bounded by b3b, and since any border separating i from j
must pass through one of the lil-jll + liz—jz‘ intervening sides pointed
out in Figure 3, the number of borders of length b separating i from j

with endpoints on ail is at most ('il—jll + |iz—j2|)b3b.

)

NAAAN

i § 03 gw rigure 3

Any border sePamtng i,{j must pass Hnroujh
one of the 30.33«34 A sides.,
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However, if the border B is long enough to separate i,j and to extend

to 3!& , then by (28) we must have
b} dlsf(ilﬁ.ﬁja’é)} hrcw ’*’hl"é\l' . 1)

Combining these estimates, we find that the number #(b) of borders of

length b separating i from j is at most

H(b)s2b'3 . (32)
It now follows from (29),(30), and (32) that
b
2 6\°,-BIb/d
GEDAEELD < Z, Wiz e (33)

Since the right-hand side of (33) becomes arbitrarily small for large ﬁ
independent of i,j, andJk s we will have long-range order once the expo-

nential decay of PB in b is established.

We shall say that the spin.oL at site k is in class n, n=1,2,3, if
{
n=| c'ke[3 ]

n=2 : O‘ké(-%,»é‘) (34)
=3 oebl-3l .
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. , A A_’ -A:”
Fix a particular border B. It separates JL into two components y 4L
Let "@’C [—1,1]'A' be the set of all configurations in which B appears
/
as a border andA is the - component. Let CB be the set of circumference
’ t
sites of B in,.A. , let nEETC%Z’BZ be a multi-index, and let @nCB
€ls
be the set of configurations for which the spin at site ke CB is in class

n, . Define the transformation T':BH—%E\)I]A by

, i kisin the + comPonean.A:’

("C.G)l; -crg% if keCB & n=2

’ (35)
= otherwise
Define the transformation Tziﬁn-*[-\)‘]l by
o+l it ke(gd n=2
(to)= | : (36)
O'L O‘H\Qﬂﬂﬁﬁ
Note that both ¥, and T, factor:
(/to(o'>k='r«k(o-l<) ) ®=1,% ) 37

where Atd]:![-ljl]-%[-l)lj is determined from definitions (35), (36).

Also, they are both injective, so we may define the measures T*'V on by
y o2 n

(@ WVE)=vl,E) | E<B, 12 . oo
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We claim that

'E:(V(E\)?/'ZbV(E) ECBMO‘:LZ " (39)

It suffices to verify this for rectangles E = TTLG.A( y, E C[—-l 1]
keA”, ’L’dkEk = E; so V(T«kEk) = Yy (Ek)’ Iif keA but is not a circumference
site of class 2, TaEx =iEk; by the evenness of v , V( ’I;l:Ek) =\7(Ek).
If k is a circumference site of class 2 in _A_/, ’L;&Ek = 2/3;&Ek; by the
hypothesis of the lemma ’V(%iEk) ;"l‘v(iEk) :"ZV{E‘:). Since there are
at most b circumference sites in /-/l-/ , inequality (39) must hold as
claimed,
We finish the argument by following [3] in estimating SBIQ.’FBHJ'V .

They show that either
HJ{'E,O")S HA(G‘) -Jb/? (40a)

or

H A(’tzG) < HA(O')‘J big . (40b)

\
Let@ncmn be the set of all configurations in Q" such that (40a) holds,

and let ®:=Bn-'@:‘. Then

\ o M- = | P %0

«= l,z ﬂe’rrm} &
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But
b ~4db
Sﬁde—f}ﬂ(ﬂd’v(ﬂsoz ba kg z 42)
Z> X e’ﬁ%)&v(s) -.-.K e_?H(t‘o-)d(tf v)(o) ?"Zbepjb/?j@f‘g%)c‘v&).( .
CLE, 6 n
Using estimate (42) in (41) and summing over ol and n we find
b _BIbA
Zv' IC—P%)CIV(G') SZ(%) e ﬁj . (44)

If we take into account the fact that when the border B appears either
/ _A// , .
of the componentsA. »4L may be the -component then we obtain estimate

2 f P .
(29) for B

QED

Theorem 6: Let (Zn,H,V) be a nearest-neighbor Ising ferromagnet on a

lattice of dimension n > 2 with Hamiltonian o

n 3‘ A /\J\/\
HeZy B o, 300 2= 0701020) o

whose single-spin measure Y is not the delta-function: ’V#g If the

-1, . .
temperature F is sufficiently low, there exists L>0 such that

<0'u'.°%1‘""iz,>sHQ§ > IF VipgeZ’,
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where the infinite-volume limit is taken with the free boundary condition.
Thus the model is long-range ordered at zero external field and low tem-
perature.
Proof:

By Lemma 4 and the remarks preceding it, it is sufficient to consider
isotropic two-dimensional models. Since the single-spin measure "V is not
entirely concentrated at zero, there exists c¢> 0 such that O(’V[-CJC]<1,

1f V(—%)%):O define the measure AV to be

=%(\7[-CC] ‘)){[-cc] v 2( -vEecel) %—C o 3 (47)

where 7[[( ¢J is the characteristic function of the interval [-—c,c] and
)
8:(: is the delta-function at tc. If ’V(—%,%);{O define the measure AV by

av(E)= W[‘Cd [ ([Eale-91+%) +v([EnG.)- 2C)] (1-vEc C])S 49,

( 3’3
(48)
Formula (48) shifts a small multiple of the measure in the central third
to the left and right thirds and adds delta-functions at tc.
Set ’\%:7[{ C]"V +AV . By Theorem II.4.1,replacingV by 7V, causes the
)
moments <°:¢\> to decrease. But 7z obeys the hypothesis of Lemma 5, so by

LN n
its conclusion at low temperature <(7.03>>, L V\,JGZ. The rest of the theorem

follows by repeated use of the second Griffiths inequality, Corollary II.2.3.

QED
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If the single-spin measure V=8, there is obviously no long-range order
because all nontrivial moments of the Gibbs measure are zero. Also, we
show in Appendix C that one-dimensional nearest-neighbor models always
cluster exponentially (have finite correlation length). Thus, our qualita-
tive information on long-range order in nearest-neighbor ferromagnets
is fairly complete.

We conclude this section with a short discussion of the infinite-volume
transfer matrix o) of a nearest-neighbor ferromagnet (%",H,’V). (The
external field h need not be zero.) We@efine this operator using a method
of Osterwalder and Schrader[38]devised in the study of quantum field
theory. Other definitions of j of a more probabilistic [34] or algebraic
[48] nature have been given, but we feel that the approach followed here
is the simplest one currently available. We end our remarks on the trans-
fer matrix by stating a theorem that characterizes the cluster properties
of (Z",H,’V) in terms of spectral properties ofJ. |

The transfer matrix is associated with the decay properties of a model
in a definite direction, which we assume to be the l-direction. Let Z:
be the half-space Z:: %(k)-u)kﬁélm L,?OE- Associate with each iGZ::a
commutative indeterminate Si’ and let S+ be the vector space of formal
polynomials P(S;”s;“m ) with real coefficients in these commuting indeter-

minates. Define the bilinear form (,)_‘_ on S,\, by

(—P(Si,\y‘")sia\)) Q(Slu " )%Q)_;. :@{oé(i‘) ) oéﬁa)) : Q(OS';)OB‘})H;V’P} (49)
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Here 6 reverses the first component of kGZ’::if k = (kl,-w,kn) then
6(k) = (-kl,kz,.u,kn). In Appendix C we show that ( s )+

is a positive semidefinite scalar product. Define {ji S;"'S‘, by
(GP)(S‘i')“.) S]a) = P(S‘iﬁi,)“.j S"a‘l 11) I} (50)

n
where as usual 1162 is (1,0,-**,0). Note that the polynomial 1 is an

eigenvector of JJ with eigenvalue 1; we call this eigenvector the ground

state of J. By translation-invariance, f) is symmetric with respect to

())+2 (f]P)Q)_‘: ('P)JQL We show in Appendix C that for all Pes+
o< (PIT) < (rP) P),. (51)

In particular,d annihilates the null-space N =§Q€S+:(Q)Q)f0}‘ and so
extends by continuity to a nonnegative self-adjoint contraction on the
Hilbert space completion of the quotient S+/\M This contraction, which
we also denote by 3, is the transfer matrix at inverse temperature ﬁ

of the model (Z’:H,v). As the following theorem shows, cluster proper-
ties of (Z’:H,’v) in the l-direction may be characterized in terms of

the behavior of the spectrum of J near 1. We recall that the geometric
multiplicity of an eigenvalue A of an operator C] is dimW.‘O‘P:K“Pf.
Theorem 7: Let ) be the infinite-volume transfer matrix in the l-direction

n
of the nearest-neighbor ferromagnet ( #,H,”V) at inverse temperatureig .
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Then:
(1) The model is long-range ordered<=>the geometric multiplicity
of lespec({]) is greater than 1.
(2) The model clusters in the l-direction&>the geometric multiplicity
of le spec()) is 1.
(3) The model clusters exponentially in the l-directioné&>1 is an
isolated eigenvalue of J. Let X‘esPec(t)) be sup § }GSPfC(/J) ' A< 1},

Then the correlation length in the l-direction X, is given by the

formula
= l/@"("x) y (52)

The proof of this result is given in Appendix C. Note that by the first
equivalence, Theorem 7 may be reinterpreted to say that the ground state
of the infinite-volume transfer matrix is degenerate at low temperatures.
The transfer matrix of nearest-neighbor models with spin % spins is

analyzed in detail in [34]
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Section 4: Spontaneous Magnetization
Let ((f, »H,7) be an Ising ferromagnet such that at inverse temperature ﬁ
all moments of the infinite-volume Gibbs measure with the free boundary
condition remain finite in the presence of an arbitrary additicnal

uniform external field h:

CpsH-hZompca Vhela¥ Aeddo)

The moments <O;l ;h> = <c;q sH - h%a;s sV, F> all increase in he [O,oo) s
and so are continuous functions of h except possibly for a countable
set of points. Moreover, <GA;h> is always continuous from the left

(in [0,00)) by a monotonicity argument: if hnT h then

fim {53; > = Sgp<sha> = supsyp < i), = P2t <Gty
={o;hy

(2)

The magnetization at site i of ({ »H,V ) with inverse temperature F is
by definition the first moment <('}‘i ;H,‘V,ﬁ} . If {q ;h> is discontinuous
from the right at h=0 we say ({ ,H,Vv ) is spontaneously magnetized at

site i, and we define the spontaneous magnetization at i to be
m ()= {im<<ﬁ;”~k%%mﬁ> RGO 3
1o

Suppose that the single-spin measure 'V is such that the G.H.S. inequality
(Corollary II.2.8) holds, and that the external field of the Hamiltonian

H is uniformly bounded below:

H= -lKZI)gKG’K ”%hﬂ > < hxg h VA - “
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Then <O‘i) H—h§%> extends to a monotone increasing function of h on
the enlarged interval [—h*,w) which by the G.H.S. inequality is concave,
and in particular continuous on (-h,,00). Thus if the G.H.S. inequality
holds and the external field of H is bounded away from zero, there can
be no spontaneous magnetization.

If the Hamiltonian H = —ZJKO'K is invariant under simultaneous reversal
of all spins, so that Jg = 0 unless [K| is even, then all odd moments

Ny
<” 4 )H> must vanish. In this case the appearance of spontaneous
o.

a={
magnetization may be viewed as a spontaneous breaking of the spin reversal
symmetry. We note that by the second Griffiths inequality (Corollary II.2.3))

if all sites are spontaneously magnetized then the discontinuity in the

magnetization shows up in the higher odd moments:

i 2 2R
limdTT 03 3h> 3 1T fmda, shy >0, )
a=t @ a=t 1o
h}o
Also by the second Griffiths inequality the spontaneous magnetization
m_ (1) for a Hamiltonian invariant under spin-reversal symmetry increases
in the couplings Jy and the inverse temperatureﬁ .
. . . n .
We restrict our further analysis to Ising ferromagnets (% ,H,V) with
connected translation-invariant finite-range pair interactions, which
for simplicity we call translation-invariant ferromagnets in this section.
We show that if a translation-invariant model is long-range ordered in

some direction, then it is spontaneously magnetized. Since we have shown

in Section 3 that the nearest-neighbor ferromagnets in at least two
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dimensions with zero external field are long-range ordered at low temperature,
we conclude that they are also spontaneously magnetized. By a small geo-
metric argument we may eliminate the nearest-neighbor restriction and obtain
spontaneous magnetization for all translation-invariant models. It is also
possible to modify the proof of Theorem 3.6 and obtain this result directly.
We finish the section by deriving spontaneous magnetization of anisotropic
plane rotators on lattices of dimension at least two as a corollary of

our main result.

Proposition 1: Let (Zn,H,'V) be a translation-invariant ferromagnet.

If 3 L>O0 such that
<GB -G, ey 3 L VijeZ,

then (Z':H,V) is spontaneously magnetized, and

m5=£a£no<%l4-hk2€znoz,v,ﬁ>—< s B 2 Lo B - <& Hd>0.

@)

Proof:
Let h be the uniform external field added to the field already present

in H, and for A€ @o(z") set <OK’H-‘?%.°L )’V)B> =<O-A—‘h> . By Proposition 3,2

the two-point function of (ZZ“JH—hE;E)*V ) must cluster except for a

countable set of h's, so we may find a decreasing sequence hm; 0 such

that <0’;oj; hn>->@‘f;hm><01 ;hm> as |i-jl—>00 V. By the long-range

order (6) and the second Griffiths inequality,

<<ﬁojshm»<0?30>z +L . (8)

Taking first li—jl-—»w and then hml 0 gives the desired result.
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With Proposition 1 in hand, it follows from Theorem 3.6 that trans-
lation-invariant models in dimension at least two are spontaneously
magnetized. We generalize this slightly to obtain
Theorem 2: Let (Z,H,V) be an Ising ferromagnet on a lattice of dimen-

sion n}2 with the connected translation-invariant pair interaction

H=-2 J.,&9 Jy=J >0 Y keZ'
ez 3 -k Tk

, (9)

whose (even) single-spin measure V is not the delta—functiong. If

the temperature ﬁ"' is sufficiently low the model is spontaneously

magnetized:

= - H- v >0, (10)
Mg {T())<G“H h%ﬂ;) :F>

Proof:

Take i=0. By connectedness and translation invariance 3 k,QGZ nlinearly
independent such that Jk,t}z# 0. Let V = ga‘(-}bgla)beZ?. Reducing to zero
all couplings in H except for Jk".IQ makes V a sublattice disconnected from
the rest of Zn isomorphic to a nearest-neighbor model on Zz . The theorem
now follows from Theorem 3.6 and Proposition 1. @

This theorem may also be proved directly. Indeed, the proof of Theorem 3.6
may be modified to show that putting an arbitrarily small (volume-inde-
pendent) external field on the boundary of a sequence of regions growing to
infinity causes a spontaneous magnetization. In the language of equilibrium
states (see equations (2.23, 2.24) and the accompanying discussion), we say

that the equilibrium state <)H"\7) F>h of (Z','H,;"V) with boundary condition
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(%)=h>o0 VAR, Vied an

is spontaneously magnetized: <O‘)~ H)‘VJP%)O . For spin % models, the

state < 3H;\7}ﬁ>\‘ is independent of h for h>0:

< ;H,\zﬁ}f( SHvp, ¥ hso. [ a2

One expects (12) is true for any single~spin measure, but this is not
presently known. By taking the negative boundary condition -hg 0 one may
also construct the equilibrium state { 5H’V'ﬁ>-h » which differs from

< _‘)H,’Vﬁk’ only in the sign of the expectation of an odd number of

spins by virtue of the spin-reversal transformation 0~>-0 . The average

<HRY, = %(( >-h +< >h> (13)

thus has vanishing odd moments like the state < 3 H WY, P> with the free
boundary condition. By the second Griffiths inequality (Corollary II.2.3)
and the spontaneous magnetization of < >“‘1 , the average state is long-

range ordered:

0%, ¥ <Y, +@2<E,) >0 as

If we could show

< R HJ'V, {3> = < 3H;7; F)>av ( Corﬂec"'me) (15)

for connected models ((15) need not hold for disconnected models), then
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taking into account Proposition 1 we could conclude that spontaneous
magnetization and long-range order are simply different manifestations
of the same basic phenomenon. Unfortunately, we cannot prove (15) at
present.

The critical (inverse) temperature Fh for spontaneous magnetization
is the largest inverse temperature for which spontaneous magnetization

does not appear:
Pc= Sup EF %im%—:‘ H-hZq v, B> :Oz . (16)

For the two-dimensional spin % nearest-neighbor Ising model with

Hamiltonian

- - O. 8 . ¢ — a" " \ \
| J‘ %)ezm (1.)1)027.“,’113 JZ %EZ’ (,,)11)0'“'),2*0 , 4D

ﬁc is well-known [3] and references therein] to be given by

Sinh(zﬁcl) . sinh(zﬁch):i 3 (18)
when Jy=J,=J this yields

Fc’: 'z‘%]:ﬂ%(“"ri) . (19)

If we combine (19) with Proposition II.4.2 we obtain upper bounds on the
critical (inverse) temperatures of models whose single-spin measures are
absolutely continuous near zero. For example, in the model (Z’Z,H,’V)

with Hamiltonian (17), J1=J2=J , and single-spin measure
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dv(5)= F_@] exP(—o—"f) do

(20)

T = sup iTe]R: 2T» e%stii? {%@]gl} is given by

T=0(%),

so that the critical temperature ﬁc of this model has the upper bound

&g '5))1 poa HZ ) (22)

A more interesting single-spin measure to which this method applies
is d'V(G' )= QXF (-0'4 '\‘l)O" z)dﬁ’ / S1§XP (‘54+1'351)<JS, though we have not worked
out the details.

We conclude with a corollary exhibiting spontaneous magnetization for
anisotropic plane rotors by a comparison with Ising ferromagnets.
Corollary 3: Let (Z'}H, df)(ﬂde) be an anisotropic ferromagnet plane rotor
on a lattice of dimension n) 2 whose Hamiltonian H is a connected trans-

lation-invariant pair interaction of the form

X X
oir], I h20 e

H=-2 ( O‘ ‘o + LA
(1(8\ (A) og?/k=2/_‘<<1 ’

l(\é
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If the radial measuref) is not the delta-function 6 , then for suffi-
ciently low temperature ﬁ" the model is spontaneously magnetized in the
x-direction.

Proof:

An argument of H. Kunz [ 25] employing the Ginibre inequality for plane
rotors [(2] shows that the spontaneous magnetization Moot in the x-direc-
tion of the model (Zn,H, r)Cle ) is bounded below by the spontaneous
V), where

n
magnetization m of the Ising ferromagnet (# ,H

“1sing Ising’

Hxsa.% %ZJM)( G AQ‘T 24

and 7Y is defined by

v (E)= XEXRAPmde , 25

Since /3 is not the delta-function o , neither is V , so by Theorem 2

f ff. .
0< mIsingS mRot or sufficiently low temperature.

QED
We emphasize that this is a result about anisotropic rotors. It is
known that isotropic plane rotors ("(I-_Sfl) on a lattice Zhof dimension
ng 2 are not spontaneously magnetized [33] . The likelihood that isotropic
plane rotors are magnetized on a lattice of dimension at least three

is a subject of considerable current interest.
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Section 5: Phase Separation and Breakdown of Translational Symmetry

In this section we investigate the breaking of tramslational symmetry
at low temperature. It is clear from the construction of Section 2 that
if a ferromagnet (Z’:H,'V) has a translation-invariant Hamiltonian then
the infinite-volume Gibbs state with the free boundary condition is trans-

lation-invariant:
<1f(%,,r*,‘7km3>=<¥(<ka;:“,GLMHD VieZ', V{8 ((R) )

However, as with the spin-reversal symmetry discussed in the previous
section, we shall find that at low temperature a model may have non-trans-
lationally-invariant equilibrium states. For certain models with discon-
nected Hamiltonians this is readily apparent. As an example, consider
2 , . .
a model on Z with spin measure 'V;! S and a pure second-neighbor Hamil-
tonian:
-_J7 lo . o 40 O o] 2
H J(i',il)ezl ("”]1) ('I,-}Z)'}l) (1(’1]) (1.{‘2“’2} . ( )
The lattice has four (non-interacting) components connected with respect
to H, each of which is equivalent to a two-dimensional nearest-neighbor
interaction. Apply a uniform external field h to the sites of one of the
components, which for specificity we take to be the even component
- 2 N . .
(h)h)ez f'},‘"}%are even} . Upon decreasing h to zero we are left in an

equilibrium state < >NTI of (ZI,H,‘V) which at sufficiently low temperature
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@" breaks translational symmetry because

m 40 if 1 are both even
< (6} > = 0 ) (3)

)
: NTI oj(herwise

An example of a connected model with non-translation-invariant equilibrium
states was given by Slawny [44] . The following theorem shows that the
appearance at low temperature of equilibrium states which are not trans-
lation-invariant is a fairly general phenomenén.

Theorem 1: Let (Z';H,'V) be the nearest-neighbor Ising ferromagnet in

dimension n %3 with Hamiltonian
(o4
n \T , (/\A/‘\ )
=~ g O >0 = 0,"',OJ|,O,"',O
H JZ Z " m/

n-o

(4)

and "\7#6 . Let m be the spontaneous magnetization of the nearest-
neighbor ferromagnet (Zh','H',’V) in dimension n-1 with the same single-
spin measure V7 and coupling J:
n-\
h=-T7, B,
Then for any inverse temperature ﬁ there exists an equilibrium state

4 >NTI of (#,H,Vv) such that

. n
o e 7™ v i) 6)

<0-:l NTIS ‘mS v i}-"- (i!)"'in)e z“
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Since for low enough temperature the spontaneous magnetization ms) o,

the state'<'>NTI is not translation-invariant.

Remark: The phenomenon elucidated by this theorem - an equilibrium state
where one half of the model is positively magnetized and the other
half negatively magnetized - is called phase separation or sharp phase
interface. Other work on phase separation has been done by Dobrushin [6] .
Proof:

The proof, taken largely from [46] , generalizes to arbitrary single-
spin measures an argﬁment given by van Beijeren [1] for spin % spins.
Let AMC Zn-‘ be the square {(1.)».',’{,.-.%2"" '-hLKM ng and let
_A.H‘NCZn be the box i‘N)“N“,"',N}XA,M?- 3;(1‘3..)1'n)52'):1i,|sN) hkk M)\(>/23.

Define
-A-+M,N= $1e 31508 (72)
A MN %iejtm, 11205 (7b)
Nyy=redyy 1 1<08 . (7¢)

Add a uniform external field h to all spinms in J«T1N J\ MN’ a field
n-
-h to all spins in J\P\N’ and a field h to the spins in Jk c?

Figure 1 aids in visualizing the situation.
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]
// /
Sy ]
l . Figure 1
Ky G) | Ly Giddeh) i
NH.N (-Flc“&-h) ‘A'H ({‘e ¢
This alters the Hamiltonians H.A. and Hf'ku obtained from (Zn,H,'V) and

(Z",81',7) to

h) J[Z (crmo.v(\\ + 2 66 + Zwei (N(m] B{Z(c-o-)@,-]

i cp° Lia]
[é]cin N A %aekﬂ‘n "N
2. aloy -hZ g (8a)
My (B1=-3 G eV —h el

‘ £8b)
where by site -i we mean the reflection (-i ,12, e ,1 ) of i through ‘/LMN

and square brackets [ij] indicate nearest neighbors. We claim that

<ous i w2 <o 9> Vaeky,, ©

where if a = (O,az,'--,an) then a' = (az,u-,'an). This says that by burying
the square ..A.“ in the box ANN as we have done we increase the magnet-
4

n
ization. To verify (9), regard the two non-interacting systems (Z,H,V)
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(ZM,H',’V) as a single combined system, and introduce the sum and
difference variables (II.2.1):

| . +
hegplie) 4= glo-0) ey
| (10a)

te i Gy 1a=¢‘g(oa~0;¢3 ‘ie/f;«,w ‘

(10b)

The total Hamiltonian in the transformed variables H(o ) + H'(¢’) is
SIS TIDAN ELTAPI E>2 SR

Since this is a polynomial in the q's and t's with negative coefficients,
by the method of proof of Theorem II1.2.2 we find that for any families

of sites A,B€ go ('A';LN U.A.OHIN})

<CLA"'B> >/O . (12)

as claimed.
Now let N—® , so that the box 'A'NN increases to a bOX‘A‘M,m which
1]
is infinite in one direction. Using the transfer matrix method described

in Appendix C we can control this limit to obtain a state < ’”l (h))’V)?>
Mp0
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on C(ﬂln}&) such that
< H.A h)VF>><a'J (r(‘m)v’p> VOGAOM)(D' (14)

Moreover for any ie-A-Mco if we define i' = (4 ,~-',in) to be the pro-
2

2
jection on A", then

<°35“A,(1h£> ?/<0§; 5“,{,(}‘» . (15)

This is because by increasing to +h all fields on spins —je'XH,O) such that

{jll < il we bring the spin (O ,iz, ’in) to the position previously

occupied by spin i. But by Corollary II.2.5, which holds for arbitrary

external field, increasing the field can only increase the magnetization.
Each state < Hﬂ(h)> on CT[ TR) may be extended to a state on

Cm nTR) for which we use the same notation, by abstract considerationms.

This gives a sequence of states on C(TYZJR) indexed by the size M of AH;

since the set of states is compact in the weak* topology some subnet

of this sequence converges and the limit < 5”(}\),'\7,F> is an equil-

ibrium state of the (non-ferromagnetic) model (EN,H(h),‘V) with the

property that

FLOSAYNRRCALIONTIN TR TR
MDDy SO ¥ iico, o
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If we let h—> 0 and again use the method of compactness and subnets we
obtain an equilibrium state < 'SH;V"S\)NTI of the ferromagnet (2" H,v)
with

<0—"3H’V’?>> s y W70 (17a)

@ Hwp-m <o (17b)

Q&



126

Section 6: Applications to Quantum Field Theory
In this section we. comment on applications of correlation inequalities
in quantum field theory. Since an adequate description of the formalism
of quantum field theory is lengthy, and since the connection between
statistical mechanics and field theory is discussed in detail elsewhere
(e.g.DleBland further references therein), we shall only make very brief
remarks and avoid technical details.

There is a strong similarity between the formal expression [ABJ

<ﬂ ) Zﬂxn)" ' %‘nvﬂ> = (1)
Sty 300 Ebopl- | § 80 Carm) 36)+PEN) 3608
S%(ma" ) o F R0 B0+ PE) 3503

"

for the Schwinger functions of a Euclidean P(¢ )2 quantum field theory

and the formal expression

STT,JR) 0y G €XPH5 H&)] TTdv(e;)
- (&)
L peinen

for the moments of the Gibbs measure of an Ising model (EZa}LWV). If

S 2)

2 2
we approximate the plane R by a lattice EZZ with grid spacing 6 in

formula (1) we find
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N, ) B 1

\ @m §(1n)exF[ZZ @ﬁ)%@]w exP[--%(4+(’m‘)@(i)lr‘éth(f(?'))J&(i)

T ®
)
X exr 2 [Z %ﬂ@} Tl'exf[ (@46 §h) :PE6) ]d{ﬁ(l) (3)
GZ‘ é
where il,'n »1, are the closest lattice points to Xysett s¥y and [iJ]

as usual indicates nearest-mneighbors in éz . This is the formula for the
moments of the Gibbs measure of ferromagnetic Ising model with nearest-

neighbor Hamiltonian
H= -2 2.6 )

and single-spin measure
dv =exp (-4 (a6m)o2-€ P6): Jdor (5)

Observe that the (off-diagonal part of the) free quantum Hamiltonian

gives rise to the Ising Hamiltonian coupling the spins at different sites,
while the interaction part, and on-diagonal free part, of the quantum
Hamiltonian appear only in the single-spin measure of the Ising model.

In [ZO], Guerra, Rosen, and Simon show by means of a special ultraviolet
cutoff that the heuristic approximation (3), known as the lattice approxi-
mation, in fact converges rigorously as the grid spacing €->O. This

is the primary physical motivation for the study of continuous-spin Ising
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models.

By means of the lattice approximation, inequalities for Ising models
may be taken over directly to give inequalities for Euclidean P(9§)2
models. Theorems II.2.1, II.2.2, II.2.4 and the F.K.G. inequality [Il] ,
which hold for Ising models with arbitrary single-spin measures, are
also valid for all P(g‘)z models. Theorems II.2.6, IIL.2.1, and IV.3.1,
which hold for Ising models with a restricted class of single-spin measures,
are known to be valid only for ¢4 models. (Of course, these are the
models of principal interest in four dimensions.) Also, certain objects
we have dealt with in Ising models have direct counterparts in field
theories. For example, the inverse correlation length in a spin system
corresponds with the mass in a field theory, and the transfer matrix ﬁ
with the exponential of the Hamiltonian e H,

Many of the applications of correlation inequalities in field theory
are motivated by similar applications in spin systems. For example, the
second Griffiths inequality (Corollary II.2.3) is used to control the
infinite-volume limit [43]. The F.K.G. inequality (which we have not yet
described) shows that the mass is determined by the decay of the two-
point function. The G.H.S. inequality (Corollary II.2.8) yields monotonicity
of the mass in the external field, and either the Lebowitz or the Gaussian
inequalities (Corollary II.2.7; Corollary III.2.2) prove that the n-point

function is bounded above by sums of products of two-point functions.
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The results we have presented on long-range order and spontaneous
magnetization also have analogs in field theory, though the methods
are more complex. Glimm, Jaffe, and Spencer show in [i6 1 that the
model is long-range ordered for large dimensionless coupling constant.
Finally, correlation inequalities have been used in some field theory
problems with no immediate antecedents in statistical mechanics. For
example, Spencer Eﬁi] (see Feldman [10] ) employs the Lebowitz inequalities
to show weakly coupled ¢: theories have no even two-particle bound states,
and Glimm and Jaffe [/4] invoke the Griffiths, Lebowitz, and ug
inequalities to prove absolute bounds on vertices and couplings.
Correlation inequalities, and the Euclidean methods on which they are

predicated, are of major importance in the recent progress of the con-

structive program in quantum field theory.
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Chapter VI: Unsolved Problems and Concluding Remarks

In this final chapter we present four unsolved problems, and make some
concluding remarks. The problems we shall comment on are: the conjectured
U, inequality, long-range order and spontaneous magnetization for plane
rotors on lattices of dimension at least three, Griffiths inequalities
for vector spin models, and the conjectured u inequality.

Let (Z",H,'\?) be a translation-invariant nearest-neighbor ferromagnet
with zero external field and single-spin measure of the form d’V(O‘): eXF(—OAiQO' 2)({0"

Let C be the covariance matrix
Cié =<5 UQ\\) (1)

and let C! be its formal inverse. Given sites i1,,1g ezz we define

. . R . N o D
YZ('IU"‘,.I;):%(‘IU“',]‘) +Z Z 2 u'4 ﬁa;%ﬂgk) [C Jkg u4(9)ld ,’\Q”l‘) ’
fabcSetl 63 kfeZ -
> (2)
where u,, u, are Ursell functions and the sum is over
42 "0 ?“)’:Cgcil:”'l(*}
all ten partitions ofil,"' ,63 into two disjoint sets {a,b,cg s gd,e,fg .
The conjecture to be proved (or disproved), at least for the minimal class

of models indicated above, is that

-{Z(il}'“)’ib) £0. (3)

A proof of (3) would have many important consequences in quantum field
theory [IS] . For spin % spins on a one-dimensional lattice (3) has been

established by explicit calculation (J. Rosen: private communication),
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but in the continuous-spin case little seems to be known. Actually,

knowledge of the special case
n('i,'i,'i)ﬁ,(&,;QSO (4)

would be very useful. This inequality has been established numerically
(in a computer study) for the anharmonic oscillator [32} , which is a
continuum limit of our one-dimensional lattice theory. Also, for spin %

spins a straightforward computation yields
e 3
E(m,é,;,@ :—24@0? <0, )

essentially independently of any geometric restrictions on the Hamiltonian.
But again, for continuous spins on a lattice of dimension at least two,
very little is known.

Let us turn now to the question of spontaneous magnetization for plane
rotors. In Chapter V we proved that in two or more dimensions a wide
class of Ising ferromagnets is spontaneously magnetized at low temperature.
This magnetization may be viewed as a spontaneous breakdown of the discrete
internal symmetry group ;ZZ associated with spin reversal. If we replace
the linear spin ceR by a vector spin € sl and consider plane roters,
the internal symmetry group becomes the continuous group 0(2). As shown
in [33], this larger internal symmetry group precludes any spontaneous

magnetization in two or fewer dimensions, though if we break the 0(2)

symmetry by making the Hamiltonian anisotropic a magnetization appears
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(Corollary V.4.3). Thus, the natural problem is to determine whether plane
rotors on three-dimensional lattices are spontaneously magnetized. Indicatioms
are that this is so, but it has not yet been proved. One approach might
be to replace the circle S1 on which the spin is distributed by the set
of nth roots of unity, show there is a magnetization in this simpler case,
and control the limit as n—» 00 . We note that once one has spontaneous
magnetization for this classical plane rotor (single-spin measure the
uniform distribution on Sl ), the rotor analog of Theorem II.4.l and
other techniques permit the extension of this result to a much larger
class of single-spin measures.

Continuing our discussion of vector spin models, let us now consider
the problem of Griffiths inequalities. As we easily show in Chapter II,
the first Griffiths inequality (Theorem II.2.1) holds for all O(n)-symmetric
vector spin models with spin creﬂ?n . (Indeed, it holds even more generally.)

ad
. e
{

Unfortunately, for models with the usual ¢ ?A

mation about the second Griffiths inequality is much more limited: it is

interactions, our infor-

only proved for n=1,2 [R] s or, very recently, n=3 [26] . A general result
in this direction (or knowledge that there is no such result) would be
valuable in the construction and understanding of vector spin models.

We finish our remarks on unsolved problems with a reformulation of the

conjecture

L
~)*"u, >0 N even (6)
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on the signs of the Ursell functions of spin % Ising ferromagnets with

pair interactions and zero external field. Chapter IV was devoted to a

study of this problem. Our method, which we could only carry through for
n

n=2,4, and 6, was to expand }Zzun as a Maclaurin series in the couplings

2" 13
Jij and show that each Maclaurin coefficient GER;."'lemém‘zzzt“‘ J-0

had sign (—1)%+\ . In Appendix B we transform this problem about
derivatives into an abstract combinatoric question about the topological
nature of certain linear graphs. We now give a brief description of this
reformulation; for greater detail see the Appendix.

For Ursell functions of order n, call a graph G a nontrivial graph
of order n if it is connected, if exactly n vertices (''dummy vertices')
have a single incident edge (called "argument edges'"), and if all other
vertices have an even number of incident edges. An even partition
of G is a graph which is formed by partitioning the edges incident at
each non~dummy vertex into sets of even cardinality, and tying together
the edges of each set in the partition at a newly-created vertex. For example,

taking n=4, if G is the nontrivial graph

Figure 1

<

oo
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and we partition the edges at non-dummy vertices 1 and 2 as in Figure 2,

N N\
T

Figure 2

the resulting even partition)ﬁ of G is the (disconnected) graph

AV
AN

Let .U.e(G) be the set of even partitions of G, and partially order _U_e(G)

g Figure 3

by refinement: )%(% (:))(ﬂ refines% . Then J__Le(G) has no least element,

so we adjoin to _LLe(G) a least element 0 and call the enlarged set _U:(G).

For g GJ_[: (G) set
_o if =0 orall owsumemL edjes are not in same connected comFO!\e“T of N

)

(7)
¥*
Thus for the even partitionﬁ of Figure 3, co(%) =-0. 1f )@G _u_e(G)

we define u(%) recursively by

o)

- ( 1) > ul), (8)

Y Hell6)

Y

one less than number of connecled comPonent i(: ol urﬁumenfedﬂes m same com}wned’ “
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aW\
QJ’iljn e 33‘\“‘4"\

n
z
£,

Then, as shown in Appendix B, all derivatives

n
have sign (—1)2-H if and only if

J=0

LY
(—-\)z+ u)» 0 9)

for all nontrivial graphs G of order n. Proposition IV.4.l1 implies this
inequality if the cyclomatic number of G is at most four. The general
case is not known. This completes our discussion of unsolved problems.

In this thesis we have given new proofs, extended prior results, and
derived entirely new theorems, of which the most elegant are probably
Theorem V.3.6 and Theorem V.4.2. These theorems show that at low temperature
ferromagnetic Ising models in two or more dimensions are long-range
ordered and spontaneously magnetized for arbitrary single-spin measure
*V-,/E& Thus in mathematics as in nature, phase transitions are not

pathological but ubiquitous.
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Appendix A: Extensions of Theorem II.2.6
In this appendix we weaken the hypotheses of Theorem II.2.6 and its
corollaries, the Lebowitz correlation inequality and the G.H.S. inequality.
In Section II.2 we proved this theorem for continuous single-spin distri-

butions of the form

dv(g) =ep (—T‘(O')) clo*/ S IRQXP (—?(53)35 , 0

where P is an even polynomial with arbitrary quadratic (and constant)

and nonnegative higher coefficients:

P(o*):i 00 20 for 122506 orhiﬁarf,(z)

=0
Here we show it holds for arbitrary C9,Cy when just C4’C2P:> 0, provided
CgsCgs *++ 5Cxpp are not too negative. Recent results of a similar nature
may be found in [9] . We prove additionally that one may even have
< < 0, provided it is not too negative, though in this case the range
of ¢, must be restricted.

The proof in Section II.2 reduced to showing
| atgyms sublpys U 8 epl- Q6 8 d6 20,
R

for k,Q,m,n all odd. Here Q and R are polynomials related to P by

PP +Plo”) +P) = Qb ) ~olBIS R, 67) (4
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They are given explicitly by

QWY D=Z 4" s BWLYZ) o
RIWXY2)= 6 en Rea (WX YZ), )

Q; and Ri being the symmetric homogeneous polynomials of degree i

with positive coefficients defined by

QWX Y, D)= % s zmt (zd W X YZ (62)
|\
Ri(w’xl\{'z):a% =1 (mitz)}m()zdu)' W s T Z )

(Note that ¢y and <o

IT1.2.6 holds for arbitrary cz,co.)

do not appear in R. This is the reason that Theorem

As the exponents k,ﬂ,m,n in (3) are all odd, the integrand has the
same sign as RQ}2,~H ,Sz). Thus, if R(uz,'n ,62) is nonnegative, (3)
will hold, and Theorem II.2.6 will be valid. We state this as a propo-
sition:

Proposition 1: Let A,B,C,D be families of sites in a ferromagnetic

Ising model with Hamiltonian
H= ZJ 0"0' Zho‘ l—séojhizo (7)

2
and single-spin distribution (1). If the polynomial R(d2,~", ® ) defined

by (5b), (6b) is nonnegative, then

<°(A FB yc 8D> 20, (8)
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From (5b) and (6b) it is clear that a sufficient condition for R to
be nonnegative is that employed in Theorem II.2.6, namely, that all
coefficients of P higher than the quadratic be nonnegative. However, this
condition is not necessary: only the trailing and leading coefficients
of R, which control the behavior at zero and infinity, must be positive;
intervening coefficients may be negative, provided they are not too large.
Unfortunately, the author as yet has been unable to locate or determine
necessary and sufficient conditions on the coefficients of an even
symmetric polynomial in féur variables which will make it nonnegative;
indeed, he has been unable to find useful such conditions for polynomials
in just one variable,though sufficient conditions stronger than nonnega-
tivity of all coefficients are not difficult to manufacture in this
simpler instance. The one-variable case is of interest because we may
decouple the four variables in R, reducing it to a sum of four polyno-
mials in a single variable each, thereby allowing one-variable criteria

to be applied. Information is lost in process, however.

Proposition 2: Assume that the coefficients CA’CZP in (2) are positive,

while all remaining coefficients are arbitrary. Let

I+ = ipEU %ie 53,4,"- ,p-1§: CZi? OE , I_ = %ie %3,4,"' ,PS ¢ czi< OE.

Define the polynomial )
. @il
T(X) = > (24)(21-1)(2i-2) 47T e, xA72 4
'\GI.} 7'61_ 2

c Xi—2 o c
2i 2

(9
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Then

Re 7,80 TE FTE)ATH) +T(6),

(10)

so that the hypothesis of Proposition 1 will be satisfied if T(X)Z O
for X2 0.
Proof:

To obtain (10) from the definition (5b) of R, we must give a lower
bound on those Ri associated with positive coefficients and an upper
bound on those associated with negative coefficients.

The lower bound is immediate: just drop all cross—terms in definition

(6b) to conclude
R, (W,X,Y,2) 3 (2i+4) (2143) 2i+2) vl + xb + ¥4 + 2D, wx,v,220. (D)
The upper bound requires a little more effort. Exploiting the inequality
wixbyCzd ¢ -?—wi + -‘;—Xi + eyt 4 —fiin ,  di=atbtcHd (12)
which holds whenever all quantities involved are nonnegative, we find
R, (W,X,Y,2) < Ri(l,l,l,l)(wi +xt vt 4 2hys, wx,v,zy 0. (13)
We evaluate Ri(l,l,l,l), finding

R (1,1,1,1) = 2+ (42512 _ 4141y (14)
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so that (13) becomes
2i+2 4 - - 3
R, (W,X,Y,2) < (4 o hyat + oo 2h, wxY,z o, (15)

From (11) and (15) the proposition is immediate.

QED
Thus far we have proved (8), the Ellis-Monroe inequality, when
R(et? ﬁz,‘yz, 81) 2 0, obtaining results valid for all quadratic coeffi-
cients c2. One may also allow R to become slightly negative and still
show that inequality (3), and hence inequality (8), is valid. However,

the range of allowed negative coefficients must depend on c,, because

2’

as c2->00, the integrand in (3) becomes concentrated at zero, with

-2 C; EXP [-CI(O(Z-\-"' -‘-Sl)] converging to 6(0()8(?)6(2)) 6(6) in somewhat

unfortunate notation. In particular, if the trailing coefficient of R
is negative, inequality (3) will always be violated for sufficiently .
large c,, even though it holds in the limit because the S—function forces
the integral to zero. This is because the contribution to the integral
where RS0 decays like an inverse power of Cos while the remainder of the
integral decays exponentially in c2.

We indicate one set of constraints on the coefficients under which
the Ellis-Monroe inequality (8) may be proved.

Proposition 3: Let A,B,C,D be families of sites in a ferromagnetic Ising

model with single-spin distribution (1) and Hamiltonian (7). Let the



142

leading coefficient C2p> 0 of P be specified. For all M >0, there

exists -€< 0, depending only on C2p and M, such that if
‘Czl < M and —(SCZigM, 25ig<p-1 (16)

then

<°(A ?lecgb\) 20,

Proof:
The first part of the proof proceeds as in Section II.2, and we reduce

the proposition to proving inequality (3) for all odd k,Q,m,n. Denote

by B({,M) the compact region [—M,M]X (5-‘22‘ \—:E) M]) in which the coeffi-

cients c 1£igp-1, are allowed to vary. Inequality (3) is strict

2i’
when € =0, because the integrand is a nomnnegative continuous function
not identically zero. Since B(0,M) is compact, we see that by taking ¢

small enough (3) may be guaranteed by a continuity argument for any

finite set of exponents k,f,m,n. The proof will be complete if we can

also show there exist —((0 and exponents kg, .Q),mo »0, such that if the
coefficients CZi lie in B(¢,M), then (3) holds for all k) ky, ' ,n3 n, .
For this purpose we need the following lemma, which is proved by the
method of Proposition 2.

Lemma 4: There exist c,{ >0 such that if the coefficients Coi lie in

B(€,M) then R(o(i, XL ,62)) ¢ for (%P,’/,S) outside the cube

k = [-1,0]xa,a)x e, x[n,q
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Take c,€ from Lemma 4. Since ‘Smh(dﬁzls "R(dzf"igz)) QXF('Q@I)'")?))'

is uniformly bounded above by some constant C as (ol,F,z/,S) varies over

K and the coefficients c,; vary over B(£ ,M), we have

\&Ko(\‘.uénsin‘\(dﬁ’/g'm€1F("Q>d°("'dgk ,écm . (17)

On the other hand, as the coefficients c,, vary over B({,M), exp(—Q(o(2) ~-->Sz))
i
2
is bounded below by some positive function e(dz) "',6 ). Also, by the

lemma, R(o(z,"', 61)); c for (o(,P,"/,S)f-(K; thus,
n+l

. ki)
o S sinh(dF’/S'R(de“‘,gl)) PR (18)

for (d ,?,2/ »9) ¢K Consequently,
Skto(km S“Sm\’\(dFVSR)QXP(-Q)&{AS) SR Cd\m’"6““9(0(3'-')62)(]0('“&8
S E Co(k“--- 8"*‘e(o<j..-,gl)clo(~- dS

/led;z,-u, 12122 (19)

kfimsn
> [léc&e(o(z,"', Sz)do(...c\S} Z
32,0, 18132
Taken together, (17) and (19) show that indeed (3) holds for large

k,y,m,n uniformly as the coefficients oy lie in B({,M).

QED
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Appendix B: Computational Algorithms for Ursell Functions

In this appendix we give algorithms to evaluate the networks and graphs

of arbitrary order introduced in Section IV.4. We point out an interesting

combinatoric interpretation of the algorithm for graphs. Finally, we
present the results of a computer study of graphs whose signs were not
determined by the methods of Chapter IV. In every calculated example.
the sign was (—l)'%'H as conjectured.

In evaluating networks and graphs, the trace factors over the sites
of the model, so our primary problem is to compute Tr (0N ..cW). Recall
that the superscripts 7{; are copy indices with the superscript vector
ZIEX O\, Y7 Z l} ; the site subscript common to all the G 's is omitted.
We may suppose v is even, for if it is odd the trace vanishes. Let
l_l_e(%;--,vi) be the collection of all even partitions of {l)“-JV} 3 that
is, all partitioms ® ot gl)"',\lg each of whose elements P€® has even
cardinality. Given a vector 7765& §0,\,- Y i——lg of superscripts, the partition
G)(i;) of {\,'“,V} is defined by the equivalence relation 1“—:’.;@ 2’;-‘-7{;.

With this notation we find

1 P)ell (s v})

T (0.2/.“, ch) =
0 otherwise )

We next express equation (1) in a way convenient for calculation.

civen Pell (%l, ,V}) define 5 X{Q" --iz —> %0 1} by
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c 0y 1 if VPe® Vel ¥=7
¢ 0 otheruise 2)
Partially order the set JJ&(EL”)Vg) by refinement:qlgéﬁ if and only if
(Prefines@. Define the numbers /UL(P ) CPG U-e(g\,'”,\g), by recursion:
2 M=l (3)
@’s@'u“)

It may be shown that

\?\ \
M=ok Pe® cRm‘Tan A \=0. ®

With these definitions, the formula

o)z 2 5.(3 (5
Ta(oh-0™)= Pell, (f1 V}))L (3 ) )
is apparent. This is our fundamental identity.

Let us exploit formula (5) to evaluate networks. By the factorization

of
of the trace, we need only evaluate a single vertex Tr( '\’d‘ n-'\' V). Now

°‘| oly °‘1, ) 7lv
T 1™) = ’ﬂ’ZXiO, »z'@ Ta(o” ) 6)

%P‘*’ otplT).
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But b
23 S RS
%w O (¥)= E@(kzo‘” &)
IR =omadln) Y
z) hf i%Eo(,..omod n) VPe

‘H'uerw'se
0 o | -

Call a partition of the incident edges at a vertex matched if the sum
over each set of edges in the partition of the incoming currents is zero
in Zn. Equation (7) says that the value of a vertex is the sum over

3]
all matched partitioms GD of/ﬂP(‘) . We state this formally:
Algorithm 1: With notation as above, the value of a nontrivial network

of order n is the product of the values of its vertices. The value of

a vertex is the sum over all matched partitions ® of the incident edges

o @ fanhA

-P (P dl\f“’(

by summing over its nontr1v1al networks.

. The value of a graph may be found

To illustrate the evaluation of networks, consider the example shown

in Figure IV.4.2’reproduced below for convenience.

4

(Figure 1IV.4.2)
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At vertex 1, there is a single matched partition, the one-element partition
1 1

Vertex 1 therefore has the value 2l:(-2) = -4. At vertex 2

: y M 3 1

there are three matched partitiomns: 3 L 3 L and

: 2 . Vertex 2 therefore h;:/:;:\;zzue 22.1 + 22.1 + 21(-2) = 4,
Multiplying, we find the entire network has value -16.

We may also use formula (5) to evaluate graphs directly, without the
necessity of summing over networks. To explain the algorithm we must
make a preliminary definition. Let G be a graph which is nontrivial in
the sense of Section IV.4. A partitionfgi of G is a graph formed by
partitioning in some way the incident edges at each vertex and tying together

the edges of each set in the partition at a newly created vertex. For

example, if G is the graph

% C} Figure 1
1 Ve &

and we partition the edges at vertices 1 and 2 as in Figure 2,

7 h

*7;}( 7;}

VQTTCX 1 \}QT‘tQX Z

Figure 2
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the resulting partition;y of G is the (disconnected) graph

v\
A

A partition of G is called even if the partition at each (non-dummy)

)ﬁ . Figure 3

vertex is even, and we denote by lle(e) the set of all even partitioms
of G. The graph in Figure 3 is an even partition of the graph in

Figure 1.

Let us now focus our attention on the derivative
m

9 2 .
[G] = mém ZZ “"("'k.l ,O'kh)

J=0

(&) B ps Ay, 6P alnale)
wc(\‘\' <+ olp Tn( 6\( O—p‘ Am)

(8)

= “) gex §0,4,243

e x§0, TS

with graph G and (non-dummy) vertices "V (0). Using (5) to evaluate
the trace in (8), we find

(6]= &)=

PRSI -
® elle (1) |})[ (ve’“\f’}l’(P Z((U [g;l;[w E)Q(d,ﬁ)])]

(9)

/,
where the number of edges incident on a vertex ve”V'G§) is lvl. We may

identify in a natural way each choice of an even partition Gs at every
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vertex v with an even partition;g of G, and regard the outer sum
Z as a sum over -ue(G) instead. For fixed )%6 .U.e(G')
® elle(§, -, M3) s N
-— n . n R &P 3
and o(e)fio) )-i-lg the innermost sum ‘.3. 11»1[, V(O()F) may be performed
explicitly. Define the partition C of the index set %l,“',nz to have
as elements the sets C composed of all indices whose argument edges lie
in the same connected component of the partition& . C is an even partition,
because the number of odd vertices in a connected graph is even. Let

c°@) be the number of connected components ofg without argument edges.

Then . Co&) —\

-* ve"\f (10)

With this formula in hand, the sum over O( now may be performed:

= W *““8(0() -ﬂ' Z ICI)

) CeG k-0
, G=380,08 an
0+}\erwise .

Thus the term in the sum (9) associated with the even partition
vanishes unless all argument edges lie in the same connected component
of)ﬁ . Let -U-e,c(G) denote the set of even partitions of G having all
argument edges in a single connected component. Then we have

Algorithm 2: With notation as above, the derivative (8) has value



150

n )Co(g) '

JLV::? Jfanhm\
(6]= é!%m & o 4T X=0.

(12)

It is immediate from this formula that if G is a tree (and hence Jlec(e)
}

has only one element) then

clM-'
[6]= \E‘V’(G) T Jranh(kﬁ‘l___o. (13)

As another illustration, consider the graph G of. Figure IV.4.1, repro-

duced below for convenience.
(} (Figure IV.1)

The five elements of llep(6> , and their contributions to [G], are

shown in Figure 4.

| \ | I\ i\
4 -2 % K 2

Summing, we find [G]= =4,
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Algorithm 2 has an interesting combinatoric interpretation. Fix a
nontrivial graph G. The partially ordered set .U.e(G) has no least
element, so we adjoin to .U.e(G) a least element O and call the enlarged

#*
set lle ((7) . From the definition (3) and explicit formula (4) :‘:'or/u.(P ,

we see that for ge.ll (G')
! ( (“M .WLanh(;D‘ —/u@ 0, (14)

where}L is the Mdbius function of Jle(G) . (The definition and some
elementary properties of Mobius functions are given in the Technical
Appendix to Chapter IV.) Let us alter slightly the definition of Co(%) .

For )‘ﬁe_(fe((}) set | :
- i J=0 or a“orjumenfe&ges fail o lie in same conneced com?oneﬁf o{fﬁ
c,0)=

the number of connected (omPonen*s devoid of orgomenJ( nges dtherwise

(15)

Using (14) and (15), the formula (12) of Algorithm 2 takes the more
perspicuous form
co
6]=-Z Qj (¥0) (%) (16)
JL (G)
We may invert this to obtain an expression for [G] strongly analogous

to the definition (IV.1.2) of u,. If %G_u.: (G’) , define u(%) recursively

by

~(%)Co(\%) _ Z u(%) a7
J<He 1156
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By the Moébius inversion formula,

[6]= u0) (18)

and in this language the conjecture that all derivatives with respect

L ) By
to couplings of Z Up have sign (-1) becomes
L
Z
() uloyz0 (19)

for all nontrivial graphs G. Thus we have transformed our conjecture
about Ising models into an entirely abstract question about the topological
nature of certain linear graphs.

We close with a table of the values of graphs calculated in a computer
study. To make the programming problem more tractable, the graphs were
evaluated by summing over their nontrivial networks. Networks for graphs
1,2,3,8,and 9 were evaluated in the integer mode with Algorithm 1. Net-
works for graphs 4-7 were evaluated by using equation (IV.4.11) in the
floating point mode. Comparison of identical graphs calculated by the
differing methods suggests the error from employing floating point
arithmetic was a few parts in 105. The primary factor inhibiting a more
complete investigation was execution time; Graph 2 ran for 18.2 minutes

and Graph 7 for 42.5 minutes.
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Derivatives of Zhnun: Evaluated Graphs

I x Graph 1: n=8

8 vertices, 6 loops

Value: -18,880

x

Graph 2: n=8

8 vertices, 7 loops

Value: -63,312

X
T I Graph 3: n=8

9 vertices, 6 loops

*

l > Value: -10,640
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Graph 4: n=8

9 vertices, 8 loops

Value: -239,955

Graph 5: n=8

8 vertices, 8 loops

Value: -223,834

A Graph 6: n=8
10 vertices, 9 loops

Value: -461,069

T
<
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Graph 7: n=8

12 vertices, 9 loops

Value: -184,317

Graph 8: n=10

10 vertices, 6 loops

Value: 30,400

Graph 9: n=10

10 vertices, 6 loops

Value: 66,976
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Appendix C: Transfer Matrices

In this appendix we define transfer matrices for nearest-neighbor
ferromagnets, describe some of their elementary properties, and derive
the results alluded to in Chapter V. Although we shall make no use of it,
we point out that there is an intimate connection between the theory of
transfer matrices and the Markov property of nearest-neighbor Ising models.
If the model is not nearest-neighbor one may still write down a transfer
matrix, but as it need not be self-adjoint the analysis is more
complicated.

We begin by introducing some notation. We analyze ferromagnetic
nearest-neighbor models QAQ,H,\7), where:

(1) The index vector geZ" has positive components, and
. noge
.A.3= i(l‘f")ln)ez : hd!< &) olzlJman . (1)

With each site ié.A.g we associate a spin O‘lGIR

(2) The Hamiltonian H is

H=-Z Jeg - Z e Jhz0. ©
Ujledq \€A3
Here we use square brackets ﬁj] to indicate nearest-neighbor
pairs.
(3) The single-spin measure V is an even Borel probability measure

onlR which decays sufficiently rapidly that
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SRQXP (002) dv(e) < o0 YaeR,

We absorb the inverse temperature ﬁ into J and h.

(3)

If we drop the ¥ component of g& Zn, we denote the vector in Z
formed from the remaining components by €,. Thus, for example, if
g = (g1, ,gn), then @l = (g2,~--,gn), and A’g‘ is the cross-section of
J\.g orthogonal to the l-direction. To ease the notation we often write
,_A_ for 'A"3 and _A.l for Ag‘ . Since we frequently encounter configurations
of all spins anIR with ae_A.| ,» we group them into a vector: S’GTRTR
has components O;GTR . '

The unnormalized transfer matrix T (in the l-direction) of the model

(.Ag,H,'V) is the linear map T: Lz('ﬁ)-—»Lz(’{\l) defined by

-

e )+ L. Lc)m ("c)
(T,C)(e) é}g P[ orr+7_[%;-o; + Sﬁ Ta)+ 0'+“c)] v

Y
where we write Lz(‘v) for L?‘(TllTR ,T&‘V). (We use real Hilbert spaces.)
| |
The following proposition collects some elementary mathematical facts
about transfer matrices.

Proposition 1: The (unnormalized) transfer matrix T of a nearest-neighbor

ferromagnet (_A.%,H,V) is a Hilbert-Schmidt self-adjoint nonnegative
operator. The largest eigenvalue Rmax has multiplicity 1, and the associated
eigenvector QS‘G LZ("\;), which we take to have norm 1, is a continuous

function which may be chosen strictly positive. T has a unique "extension"
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A
to a bounded linear map T: Lp(’\;)-——»Lp (%) for any pe (1,], p'e [1,00),

. -1 1.,
dwithp = +q 1 N o-z+ c" ” _Io-z{,gg" >l.A.‘I
2
il Firh ) ERA ) S ( © FRv)
Proof: )
The kernel of T is obviously symmetric, and since
\[%CA Gouc-b‘ Y (n-l) gt (6)
we have N
A = 1 _L i - N A
RJS{ emxﬁ [zJ (5.3+ ,[5-12 f‘a% 2 r:zd: TJGA) +h @Pc)] v(E) dvid) s
h ZLA.J
< (SIR nJo? 4 de{ﬂ) ) o

which is finite by (3). Thus T is Hilbert-Schmidt and symmetric. Also,
-~

<

, R Ty e bR
G Tﬁ X [{(o*) ‘Jg:[EJq %»a}er".‘b’[[(?)e ZJ%:]cf‘ﬁ +3 T]dV(E')Jﬂ)(?)

mZ:O j F8) & 647 F&) dvisldved)

1]

28 ([t i)

m=0 m- a“u-‘am eJ1-|

(8)

so T2 0.
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Since T is Hilbert-Schmidt it has a complete set of eigenvectors; let
lmu be the largest eigenvalue andD. be any eigenvector with eigenvalue.
)mou( . Note that since the integral kernel of T is strictly positive,
if f#.O and f20 then Tf> 0 almost everywhere. By positivity of the

(00 TR0 > (0, T) = A, (101,100 )

80 ‘Ql is also an eigenvector with eigenvalue 7\,,,“ . We claim_Q is

either strictly positive or strictly negative. Since one of IQ,iS],}O

cannot be identically zero, one of X:NT“QI*-'Q)JQ!'!?Q must be strictly
positive so that \Q‘Z'iQ as claimed. Let .\).3.: m.’ . Since every eigen-

vector with eigenvalue )\m“ must be of definite sign, no two can be orthogonal,
so .Qﬁl is unique. (This argument is taken from [4-3] , though the result

also follows from the Perron-Frobenius Theorem.) Continuity of D."l is

a straightforward application of the Lebesgue dominated convergence

theorem.

The estimate for "T“r)r/ follows in the same way as (7):

/

Ty < [é{m( §mh. (Flizas sy Z s @-m])]avmﬁw?

%Jo*’l-%o' %Io"{- _IEU, I.ﬂ.il
< (e Il ).
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Notice that since the image im(T)c () LP_(’?) and ﬂgl is an eigenvector,
P p<eo
we have Q3|€ 0 L(’V)
pece
We next relate T to statistical quantities of the model (.[\.S,H,’V).

The partition function Z is given by the equation

Z=(E,T23' E) , (11)

where E€ ) \E(’\-ﬂ is the positive function

pee -
h 2
E0=enl] 5%+ 19)
If -F.‘(S;O‘A:L(E‘L) are functions f,Q of the spins 5; having first

coordinate Qé %L,m,L} , then formally

L
L (Tg‘-LEJ‘t-LT g_u:r... ﬂ_Tg E)m,)

s = —r ,
- A ) o)

where the fﬂ act on Lz(‘_\;) by multiplication. If the functions fQ decay
sufficiently rapidly that the thermal expectation <'_|il'-&> is finite, e.g.
&eﬂf_ﬁ;‘) Vf , then (13) is rigorously correct. This condition is
sat(istied by all polynomials in the spins, and also by the more rapidly
diverging functions exp(a\'z) .

4

Define the normalized transfer matrix

4= T/ITI (14)

In the following proposition we take the g;—»0 limit.
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L
Proposition 2: Let fﬂepflw\f(’i;) , —Ls[s L. Then g‘i_n;lw<;!—:r’§¢(5p3 H;V?‘\.g
exists and is given by the formula
] .
n(TTEEYD = (0. £ 90 ML (15)
£@w< bg,% (058,94, 3¥Lﬂg)m).
Proof:

This is just a calculation:

(P 9008 W] E)
(3*E, 3E) -

L =Y

<'S.|'1f! ((i)>A = (16)
3

Since J is a self-adjoint nonnegative operator with norm l,:]s' converges
strongly to the projection onto ker(t] - 1); by Proposition 1 this
projection is just 9.3‘(0.3”' ) . The denominator of (16) tends to (ﬂﬁ,)E)z,
which is nonzero since fl@ is strictly positive. If we note that for
fGFQ‘” E("V') s 3f is a bounded operator, then we may take the limit in
the numerator to obtain a similar formula; (15) follows upon cancelling

the common factor (Kla ,E)z.
!

d

QED

Formula (15), which controls the infinite-volume limit without the use
of correlation inequalities, obviously still holds if we allow the two
faces of the box to move out to infinity in the l-direction independently.
Sending them simultaneously as we have done is merely a notational convenience.
Since the spectrum of 3 is discrete and the largest eigenvalue 1 is

nondegenerate, exponential clustering follows from (15).
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In Section V.5 we needed to control the infinite-volume limit in the
l-direction of a model having field ~h on sites with negative l-component
and +h on sites with nonnegative l-component. This may be done in exactly
the same manner, by introducing two transfer matrices J+1 I_z(’V‘)—-) If(’i”),
one for each half:

(Tif @)= j exF[J (6‘-? vz %«f‘q’ + [cZﬂlcfd)

ﬁf _E /“_E" ) (18)

For a finite model with field -h on sites with negative l-component

M:v"L

.(31,?)]1((?) dv(%) (17

and +h on sites with nonnegatlve l-component, if fgeﬂ L(’V) we have

(j_g" SRR N eh i §]+ \[3 EJL(V) (19)
(13'; chg' E )L('V) .

Taking the limit gl—-aw in the denominator yields (_Q_a ’E )( ch"‘fng) Q‘ﬂ E‘,)

< TTLﬁ(cr»

which is again nonzero since Q’S is strictly positive. If we take the
limit in the numerator as well and cancel common factors, we find

i'\)‘a" + - Ra’ +
gpinosﬁ{ !)> ( {_Lﬁ_'"{,fle {,l'“ {LQQ/ (ﬂg € Qg_) . 20
As with formula (15), we arrive at the same limit if we send the two
faces of the box 3 to infinity independently.

We next establish the results alluded to in Section V.3 during our
discussion of the infinite-volume transfer matrix. We conclude the
appendix with a proof that all moments of a nearest-neighbor ferro-
magnet are bounded above. We begin by constructing a transfer matrix ﬂ/
for the region ZX_A_. in the manner of Section V.3 and identifying it

with the operator 3 we have already defined.
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Let Z::g.(k,;u)kn)ézht l(i?O } ., associate with each ieZ; a (real)
indeterminate S5 and let S+ be the vector space of formal polynomials
P(s; 0 Sip ), ijezé‘" in these indeterminates. It is convenient
to group together the indeterminates whose site has first component DGZ.(.
into a vector 51 with components sw Q ann-'. If we introduce multi-
index exponents m GT(A. , then the monomials T\’sm‘ mm ( )M("a)

fz0 T g e, l?a)
a basis for S+ . Define the map u: S ---)LZ('V) on basis elements 'gl by
)

(g™ I3™e 3R 0y,

are

-
We claim the image of u is dense in LZ(’V). To see this, note first that

any product

?(E)GXP(“(%A'CQ{%)Z)&@ , Pa ?o|7nomial , Cz0 (22)

lies in the closure im(u) because the exponential may be expanded in a
convergent Taylor series. By the Stone-Weierstrass Theorem, the linear
span of the functions P(c‘)exp( z C (o-) ) is uniformly dense in Coo (TR'A‘).
Since 'V is finite and .Q.'\ strlctly positive and continuous, this

implies im(u): Cpo ( TR Y. As a finite Baire measure is regular, we now

conclude that

im(u) = L7(V) (23)

as claimed.

Define the bilinear form ( , )y on o4 by

(.P(S‘ h3 (A"' ’ AN\D <_P 9(‘)’ 2 %% em) Q(%’ 2T HV> ’ (24)
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where as usual © reverses the sign of the first component of i.

We find immediately from (21) and (24) that

( (S'q) S\) Q Au " )M> (U.(,P))U(Q))Lz(—_ﬁ) . (25)

Consequently ( , )+ is a positive semidefinite scalar product, and it

n-{ /
remains so in the limit .A.f" Z . Define ’:) X s+—-> S+ on basis elements

> L L
/ 2 ﬁ‘.‘Q _ 2 iﬁl

and extend by linearity. (This is the construction of Section V.3) Then
Lo Lo L@
w (I8 = w32 T3 = 8™ %0, = JulT]3™)

1o}

) .
UJ --'ju.. (27)

In particular,

< (i, IuP)yyyy= (R,

(BJP),= (UP J u?),_h,) <(uP, QP) 23y (’E . (28)

n-
Again, this holds in the MN~>Z = Limit.
It follows from (25) that the kernel of u is the null sp.au:e\N-l in

S+ of ( , )+; as we have already shown, the image of u is dense in

LZ(’?). Thus, u is well defined on the quotient S+/N and extends
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by continuity to a unitary U from the Hilbert space completion'% of

S+/N to L2(:1)7). By (27) we have

U=,

(29)

identifying :) with /:J/ . We remark that the analysis we have performed
on the transfer matrix of a nearest-neighbor model with real spins
extends easily to nearest-neighbor models with vector spins. Propositions
1 and 2 go through in straightforward fashion.

It remains to prove Theorem V.3.7, which we restate here for ease

of reference.

Theorem V.3.7: Let ':_'] be the infinite-volume transfer matrix (in the

l-direction) of the nearest-neighbor ferromagnet (Zn,H,'V) at inverse
temperatureﬁ . Then:
(1) The model is long-range ordered & the geometric multiplicity of 1
in the spectrum ofﬂ is greater than 1.
(2) The model clusters in the l-direction& the geometric multiplicity

of le spec(ﬂ) is 1.
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(3) The model clusters exponentially@l is an isolated eigenvalue
of J . Let R.GSPQC@) be SUFERGSPQC(:I)i A< 1§ . Then the correlation

length X, in the l-direction is given by the formula

X,= \/j}og(—i> . (30)

Proof:
As the ideas involved in this theorem are fairly standard, we give
the proof in a condensed manner.
(1): The = direction follows from the observation that if P is the
projection onto the geometric eigensubspace %‘P /:N':‘PE then P = Sr;\&ngojm'
Write {} for the element of 9@ corresponding to 1e§+ and‘Py,~ for the

projection ontoﬂ. . Then

ﬂ{m (<0; G_m> ‘<%§'> = P‘m (So)gmso)-\. - (30)’%_50)4,

m—00 m—>0

= (So;rP“E.] 3034. ‘ <

If the model is long-range ordered then this limit is nonzero, so P# B
and 1 is a degenerate eigenvalue.
Conversely, suppose P%Pn . Then 3%’3{’, such that P‘l’f’gq), since the
linear span of the monomials NﬂTé? is dense in% ,» We may suppose that
0
m Z)
] M : Pim (<6(M)t] M> "<M> >0 . (32)
m->Q

0, lolsc
For c€(0,00), define U¢=§c’ lc't;cg » and let M, be the monomial obtained
) Vd
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from M by replacing all spins 0" by their cut-off approximation. We may
apply the Lebesgue dominated convergence theorem to conclude “M-Mc lL,—->0
as ¢—>® . Now by using the F.K.G. inequality [H] one may show {43] that
(<6(Mc)jmnc> -<N§) decays to 0 if the two-point correlation does. But
since ll N‘Mcu+"’0, the two-point function cannot decay to zero because
this would contradict (32). Thus the model must be long-range ordered.

(2): The = direction follows from part (1) above, and the converse
from (31).

(3): This is just a calculation with the spectral theorem.

QED
It remains only to prove that the moments of the infinite-volume Gibbs
measure are finite. We can do even better: exp(Za;ogz) has finite thermal
expectation for a finite sum Za;o}z . This is reasonable because
'176772. The proof we give is the translation to lattice models of a
standard argument in field theory {_43] .

Proposition 3: Let (Zh,H,'V) be a nearest-neighbor Ising ferromagnet

with Hamiltonian

H Z ZJU md “hg;,? . (33)

Then given any finite sum ZO,-O'iz there exists a constant €<oo such that

<€'xP(200' SHyv P> Ve REZM),

Thus, if}L is the infinite-volume Gibbs measure of (Zn,H,’V),

ap(Zacden o) (35)

p<eo
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Proof:
It suffices to consider a single term 0.0'.;2,(16 [0,00>) in the sum Zaio"il 3
for convenience we suppose i=0. If n=1, then since CXP(QO'Z)GPQME(V),
by our explicit formula (15) the result is immediate. We now suppose n¥ 2.
Let .A.g be a rectangle; for technical convenience we suppose all com-

ponents of ge Z+ are odd. For O(G{l,u-n} define the function TR‘A‘S-’JR

F;(o“) =Tj€Ti§E‘i(o-i)’ where

ot . : .
ea‘ if {:irs'l' (o(-l) (omf»onen'l's OF 1 even % Ias't (n-om) vamsk
Ei("?)= )

dH"Qr'WiSC (36)

In particular Fl(O’) = exp (ao;z). Note that E, depends only on the spins
L

in ./t’g\d , S0 we may regard it as a function on TR °l. We shall make frequent
use of the fact that if A is a nonnegative self-adjoint bounded operator
on some Hilbert space% whose largest spectral value )mﬁx has geometric

multiplicity 1, then ifD. is the eigenvector associated with Amax and

‘l’e’é(’, is not orthogonal to () y

Ames = 1Al < plm (¥, qu’)é (37)

As a preliminary application, we note that if Tn is the (unnormalized)

transfer matrix for .A.% in the n-direction, then

n /23n
T, |l-flm (En,Tan) 5 ‘plm ( _La)‘ ’8 (38)

where of course
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By the method of Proposition 1, we estimate
Z S\R@(P nIo—2+ hc] dfv(c) (39)
')éAa

so that

|Aq!

T, ” 29 . o indepﬁ{]\& 409

), L@
More generally, we shall apply formula (37) to estimate “ :L E:L”)

where C]d is the normalized transfer matrix in the &-direction and we
regard F&(O') as a multiplication operator. Note that although F, (&)

is unbounded, the composition G,( E([U'):jd is a compact nonnegative self-
adjoint operator with positive integral kernel. Thus, the largest eigenvalue
is nondegenerate and has a strictly positive eigenvector, which necessarily
is not orthogonal to E . We need to estimate the norm “_rl'lFr'l-rn“,

and we do this as in Proposition 1 to obtain

<T Ayl ) T>o0 indep. °€Ag (41)

Mol <

Combining this with (40), we conclude
|l ,
19, E4. <D D0 indep S

We want to show
(6,9 EOFE)
23, ~ ) (43)

(E,3¥E)

C inclePenJenT of .A.g_

{enl05); “A? =
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Now

9.3‘-2
(El ) 3?' E 3?‘ El) . (Ei ) 3| El)
(E‘)g:g‘ E“) < “SIEJ “ (;{)))E(,-vx.) (El ' g'lga E‘l) ,

and by the second Griffiths inequality we may send gl-.oo on the right

(44)

to eliminate the second factor, so it suffices to bound “’j‘ﬁ jl"

independently of.A_g . Apply formula (38):

= lim T (El ){gﬁg‘]ﬁ' E‘) é'
“’J\EJ." SDF”CO\‘ (E”fj?g' E) ]

(45)

2
since the denominator goes to "3.“ =1 . But looking from the 2-direction,

this is just

I
o TESERLTE B g pags1"
(Ez ) 3;31 ED 3 ® )

(46)
3;—)(0

where we have estimated as in (45). Continuing this process we find

/l 3" ' In-t
< lim lim o fim NSWR34 n‘” : (47)

§o® $0 G0

<€XP a6, ) 'H>

By our estimate (42), this yields

Mol/3 4o
Gl <D s L

with C independent of .A.g .
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