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ABSTRACT

Ligand binding to cell surface receptors initiates a cascade of signaling events regulated
by dynamic phosphorylation on a multitude of pathway proteins. Quantitative features,
including intensity, timing, and duration of phosphorylation of particular residues play a
role in determining cellular response. Mass spectrometry has been previously used to
identify and catalog phosphorylation sites or quantify the phosphorylation dynamics of
proteins in cell signaling networks. However, identification of phosphorylation sites
presents little insight on cellular processes and quantification of phosphorylation
dynamics of whole proteins masks the different roles that several phosphorylation sites
within one protein have in the network. We have designed a mass spectrometry
technique allowing site-specific quantification of dynamic phosphorylation in the cell. We
have applied this technique to study signaling events triggered by different members of
the epidermal growth factor receptor (EGFR) family. Self organizing maps (SOMs)
analysis of our data has highlighted potential biological functions for phosphorylation
sites previously unrelated to EGFR signaling and identified network modules regulated
by different combinations of EGFR family members. Partial least square regression
(PLSR) analysis of our data identified combination of signals strongly correlating with
cellular proliferation and migration. Because our method was based on information
dependent acquisition (IDA) the reproducibility of peptides identified across multiple
analyses was low. To improve our methodology to permit both discovery of new
phosphorylation sites and robust quantification of hundreds of nodes within a signaling
network we combined IDA-analysis with multiple reaction monitoring (MRM) of selected
precursor ions. MRM quantification of high resolution temporal profiles of the EGFR
network provided 88% reproducibility across four different samples, as compared to 34%
reproducibility by IDA only.
In summary, we have developed a new robust mass spectrometry technique allowing
site specific identification, quantification and monitoring of dynamic phosphorylation in
the cell with high temporal resolution and under any number of biological conditions.
Because the data obtained with this method is not sparse it is especially well suited to
mathematical and computational analyses. The methodology is also broadly applicable
to multiple signaling networks and to a variety of samples, including quantitative analysis
of signaling networks in clinical samples.
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I INTRODUCTION

Brief Review of the EGFR Family Signaling Network and

Mass Spectrometry Technologies for

Phosphoproteomics





1.1 EPIDERMAL GROWTH FACTOR RECEPTOR FAMILY

Originally named ERBB for its homology to the erythroblastoma viral gene

product v-erbB, the epidermal growth factor receptor (EGFR) family of proteins

comprises four transmembrane receptor tyrosine kinases (RTK)

(EGFR/ERBB1/HER1, ERBB2/HER2/neu, ERBB3/HER3, ERBB4/HER4) and at

least 12 ligands, all of them containing an epidermal growth factor (EGF)

conserved motif (Citri & Yarden, 2006; Yarden & Sliwkowski, 2001).

Since the discovery and isolation of the epidermal growth factor by

S.Cohen (Cohen, 1965; Cohen & Elliott, 1963; Levi-Montalcini & Cohen, 1960),

the detection and cloning EGFR (Cohen & Carpenter, 1975; Cohen et al., 1982;

Xu et al., 1984), the cloning of HER2 in 1985, HER3 in 1989 and HER4 in 1993

(Kraus et al., 1989; Plowman et al., 1993; Semba et al., 1985) and the discovery

of EGFR and HER2 gene amplification and overexpression in human cancer

cells during the 1980s (King et al., 1985; Lacroix et al., 1989; Perez et al., 1984;

Yokota et al., 1986; Zeillinger et al., 1989) research in the EGFR family field has

grown exponentially as scientists try to understand the mechanisms of cell

signaling and find a cure for cancer.

In this section I will introduce the EGFR family members ligands and

receptors, activation mechanisms, signaling cascades, physiological functions

and their role in pathologies, with particular focus on breast cancer.



1.1.1 EGFR Family Members Ligands a Brief Description

The - at least - 12 ligands that bind the EGFR family members can be

divided into three groups. The first group includes epidermal growth factor (EGF),

transforming growth factor-a, amphiregulin (AR) and epigen and binds

exclusively to EGFR (Harris et al., 2003). The second group includes heparin-

binding EGF-like growth factor (HB-EGF), betacellulin (BTC), and epiregulin

(EPR) and can bind both EGFR and HER4 (and in the case of HB-EGF also

HER3) (Beerli & Hynes, 1996; Elenius et al., 1997; Piepkorn et al., 1998). The

third and final group binds only HER3 and HER4 and is comprised by the

neuregulins (NRGs) (or heregulins (HRG)). This group can be further subdivided

in peptides that bind HER3 and HER4: Heregulin (HRG/NRG1) and NRG2 and

peptides that bind only HER4: NRG3, NRG4 and tomoregulin (Falls, 2003;

Normanno et al., 2006).

All EGFR family ligands are polypeptides produced as type I

transmembrane proteins. In order to release mature growth factors that can bind

the receptors (although juxtacrine binding by uncleaved ligands is possible too)

the pro-growth factors are cleaved by proteases at the cell surface.

EGFR family ligands can be distinguished by a consensus sequence,

known as the EGFR motif, in which six spatially conserved cysteine residues

form three disulfide bonds within the peptide (Cl-C3, C2-C4, C5-C6). The EGF

motif - specifically the tertiary structure it generates - is essential for binding

EGFR family members (Harris et al., 2003).



.1.2 EGFR Family Members Structure and Mechanism of Activation

The four EGFR family receptors (EGFR, HER2, HER3 and HER4) share

similar architecture. An extracellular domain, characterized by the presence of

two rigid, cysteine-rich (domains 11 and IV) and two flexible, leucine-rich (domains

I and ll) sub-domains, able to - homo or hetero - dimerize with other family

members (Bouyain et al., 2005; Cho & Leahy, 2002; Cho et al., 2003; Ferguson

et al., 2003; Garrett et al., 2003; Garrett et al., 2002; Ogiso et al., 2002) an

hydrophobic single chain transmembrane domain and a cytosolic section

containing a very conserved kinase domain and the receptor tyrosine auto-

phosphorylation sites at the C-terminal loop (Stamos et al., 2002).

Out of the four HER receptors only EGFR and HER4 have kinase activity

and are capable of ligand binding (Yarden & Sliwkowski, 2001). HER2 is unable

to bind any ligand as confirmed by its crystal structure (Garrett et al., 2003;

Klapper et al., 1999)) and HER3 lacks kinase activity due to amino acid

substitution in critical residues of its catalytic domain; specifically C721, H740

and N815 correspond to A, Q and D in all other known protein tyrosine kinases

(Citri et al., 2003; Garrett et al., 2003; Guy et al., 1994; Sierke et al., 1997).

Despite their "shortcomings" HER2 and HER3 receptors are capable of potent

signaling through heterodimer formation with other EGFR family members and

notably among themselves (Citri et al., 2003; Citri & Yarden, 2006; Yarden &

Sliwkowski, 2001).



Of particular interest for this thesis are the characteristics of the

extracellular structure of these receptors. As model for the whole family I will

focus on the structure of EGFR (ligand binding) and HER2 (non-ligand binding)

ectodomains. For details on the structure of EGFR kinase domain the work by

Stamos et al. (Stamos et al., 2002) is recommended. For details on the HER3

and HER4 ectodomain structure the works by Cho and Leahy and Bouyain et al.

(Bouyain et al., 2005; Cho & Leahy, 2002) are recommended.

EGFR (and also HER3 and HER4) extracellular domain can be found in

two conformations which have been designated as extended/active and

tethered/auto-inhibited respectively. In the active conformation domains I and Ill

bind the ligand (Figure 1.1) while domain 11 and IV protrude parallel to the

hypothetical cell surface. The crystal structure of EGF bound to EGFR reveals

that the signaling complex is formed by 2 receptors and 2 ligands and that

dimerization is receptor mediated through EGFR domain 11 (Burgess et al., 2003;

Ogiso et al., 2002). Although domain IV is not resolved in the structure, it might

participate in dimer formation since peptides mimicking portions of domain IV can

inhibit dimerization (Berezov et al., 2002), nonetheless its role could be only

minimal with a recent study showing that more than 90% of the binding energy

required for dimer formation is accounted by domain 11 interactions (Dawson et

al., 2005).

The EGFR crystallized monomer (Figure 1.2) shows its auto-inhibited

state, where domain II is bound to domain IV and unable to mediate dimer

formation as in Figure 1.1. Interestingly Y246 a key residue for dimerization is



Figure 1.1 - Crystal structure of EGFR-EGF homodimer. Blue, domain 1. Green domain 11.
Yellow/red domain Ill and tail of IV. Domain IV is truncated. Magenta EGF (binding between
domains I and l1l. Orange rods represent di-sulfide bonds.

Figure 1.2 - Crystal structure of auto-inhibited EGFR bound to EGF. Blue, domain I. Green
domain 11. Yellow domain l1l. Red domain IV. Magenta EGF (binding only domain 1). Orange rods
represent di-sulfide bonds.

also at the heart of the auto-inhibition contacts (Ferguson et al., 2003). The

tethered configuration is also characterized by the distance between domains I



and Ill, which makes impossible their simultaneous binding by EGFR ligands

(Ferguson et al., 2003), as occurs in the extended conformation (see Figure 1.1).

Figure 1.3 - Crystal structure of HER2. Blue, domain I. Green domain 11. Yellow domain l1l. Red
domain IV. Orange rods represent di-sulfide bonds. Notice from the space fill structure at the right
that there is no room for ligand binding between domains I and Ill.

The prevalent hypothesis in the field is that EGFR exists on the surface of

the cell in a thermodynamic equilibrium between the tethered and open states,

the first one being highly favored at any given time (more than 90% of the

receptors are present in a tethered conformation at any given time). EGF/ligand

binding is thought to stabilize the open configuration shifting the equilibrium

towards the active state, revealing domain 11 dimerization arm and allowing dimer

formation. Consistent with this hypothesis the crystal structure of HER2 - the

most promiscuous receptor of the family (Citri et al., 2003) - shows its inability to

adopt the tethered configuration and bind ligand. In fact, the crystal structure of

HER2 displays significant contacts between domains I and Ill, leaving no space



for ligand binding and locking the receptor in the open configuration (Figure 1.3)

(Burgess et al., 2003).

Although the crystal structures give great insight into the activation

process of EGFR family members, further studies have shown that disruption of

the tethered configuration is necessary, but not sufficient to activate EGFR

signaling (Mattoon et al., 2004; Walker et al., 2004). It appears that to allow

efficient dimerization ligand binding is necessary to orientate the residues C-

terminal of domain i dimerization arm (Dawson et al., 2005). Preformed dimers

had also been observed in the absence of ligands by fluorescence microscopy

(Gadella & Jovin, 1995), single molecule tracking (Sako et al., 2000),

fluorescence resonant energy transfer (FRET) (Martin-Fernandez et al., 2002)

and cross-linking studies (Yu et al., 2002). In any case these dimers show only

basal phosphorylation states (Yu et al., 2002) suggesting that there might be

active and inactive dimer configurations, with ligand binding still the key step for

activation (Moriki et al., 2001).

Due to the importance of ligand binding for receptor activation many

studies have been conducted to measure the kinetic and equilibrium constants of

EGF EGFR binding. Cell surface titrations of EGF-EGFR binding reveal two

populations of receptors, one with high affinity and other with low affinity for EGF

(Lax et al., 1989). While the high affinity receptors (Kd = 100-300 pM) represent

about 5-10% of the total population, the rest of the receptors bind EGF with Kd =

2-15 nM (Schlessinger, 1988). Early experiments suggested that the observed

high affinity component was due to EGF binding to EGFR dimers (Boni-



Schnetzler & Pilch, 1987; Yarden & Schlessinger, 1987). In fact, models based

on the experimental information were able to produce concave-up Scatchard

plots qualitatively describing the data, but they were unable to fit the data in a

quantitative fashion (Wofsy et al., 1992). Only more refined models taking

account heterogeneity of receptor density on the cell surface (Mayawala et al.,

2005; Wofsy et al., 1992) could fit the data. Further models have been developed

where receptor binding to - a probably not biologically relevant - hypothetical

third site has been used to quantitatively fit the experimental observations

(Holbrook et al., 2000; Klein et al., 2004). Although the fit of these models is

good, it is hard to asses the biological intuition behind the third binding site.

1.1.3 Cell Signaling in the EGFR Family Context

Cell signaling downstream of receptor tyrosine kinases, such as the EGFR

family members, comprises an interconnected network of pathways associated

with various regulatory processes. These pathways involve a number of

components whose interactions are required to carry out regulatory processes

and that are themselves regulated by covalent modifications, including

phosphorylation on tyrosine as well as serine and threonine residues. As seen

above - with the exception of HER2 - in the case of EGFR family members,

ligand binding activates the receptor and dimerization results in

autophosphorylation of selected tyrosine sites in the C-terminal region (Holbro &
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combinations comprise the input layer. Numbers in each ligand block indicate the respective
high-affinity ErbB receptors8. For simplicity, specificities of receptor binding are shown only for
epidermal growth factor (EGF) and neuregulin 4 (NRG4). ErbB2 binds no ligand with high affinity,
and ErbB3 homodimers are catalytically inactive (crossed kinase domains). Trans-regulation by
G-protein coupled receptors (such as those for lysophosphatidic acid (LPA), thrombin and
endothelin (ET)), and cytokine receptors is shown by wide arrows. b I Signaling to the
adaptor/enzyme layer is shown only for two receptor dimers: the weakly mitogenic ErbB1
homodimer, and the relatively potent ErbB2-ErbB3 heterodimer. Only some of the pathways and
transcription factors are represented in this layer. c | How they are translated to specific types of
output is poorly understood at present. (Abl, a proto-oncogenic tyrosine kinase whose targets are
poorly understood; Akt, a serine/threonine kinase that phosphorylates the anti-apoptotic protein
Bad and the ribosomal S6 kinase (S6K); GAP, GTPase activating protein; HB-EGF, heparin-
binding EGF; Jak, janus kinase; PKC, protein kinase C; PLCy, phospholipase Cy; Shp2, Src
homology domain 2-containing protein tyrosine phosphatase 2; Stat, signal transducer and
activator of transcription; RAF-MEK-MAPK and PAK-JNKK-JNK, two cascades of
serine/threonine kinases that regulate the activity of a number of transcription factors.) Reprinted
by permission from Macmillan Publishers Ltd: Nature Reviews Molecular Cell Biology 2: 127-137,
copyright 2001.

Hynes, 2004). Different tyrosine phosphorylation sites in EGFR (i.e. Y1068 and

Y1 086 for Grb2 (Batzer et al., 1994), Y1 148 and Y1a173 for SHC (Okabayashi et

al., 1994)) act as docking sites for a variety of proteins upstream of several

signaling cascades, most prominently mitogen-activated protein kinase (MAPK),



phospholipase C-y (PLC-y), phosphoinositide 3-kinase (P13K) and signal

transducers and activators of transcription (STATs) pathways, leading to

proliferation, differentiation, migration, and anti-apoptotic effects (Buettner et al.,

2002; Navolanic et al., 2003; Schoeberl et al., 2002; Silva, 2004; Wells et al.,

1999). Figure 1.4 (Copyright Nature) shows EGFR canonical signaling pathways

as defined by Yarden and Sliwkowski (Yarden & Sliwkowski, 2001).

1.1.3.1 RAS/MAPK

All EGFR family ligands and receptors are able to activate the MAPK

pathway either directly through Src homology domain 2 (SH2) facilitated

recruitment of growth factor receptor-bound protein 2 (Grb-2) or indirectly by

phospho-tyrosine-binding (PTB) domain mediated recruitment of Grb-2 by the

Src homology domain containing adaptor protein C (SHC). Recruitment of the

son of sevenless protein (SOS) and other guanine nucleotide exchange factors

(GEFs) occurs via the interaction of their Src homology domain 3 (SH3) with

proline rich motifs in Grb-2. SOS induces Ras to exchange GDP for GTP

activating it and active Ras binds and triggers - among other downstream

effectors - the serine/threonine MAPK kinase kinase (MAP3K) Raf. Raf

activation initiates a cascade that entails serine phosphorylation of the MAPK

kinases (MAP2K) MEK1 and MEK2 and subsequent tyrosine and threonine

phosphorylation of the MAPKs at the core of the pathway: the extracellular

regulated kinases (ERK) 1 and 2 respectively (Chen et al., 2001; Marmor et al.,



2004; Prenzel et al., 2001). Although it is well documented that ERK threonine

phosphorylation is due to MEK, the tyrosine kinase acting on ERK is yet to be

identified.

Like other MAPKs, ERK1/2 are proline activated kinases and

phosphorylate serine/threonine residues in the PXS/TP context (Chen et al.,

2001). Among the many substrates of ERK it is possible to find many

cytoplasmic, cytoskeletal, membrane bound and nuclear proteins (among them a

plethora of transcription factors such Elk-1 c-Fos, c-Jun, Sp1 E2F, AP1 and the

estrogen receptor (Chen et al., 1993; Chen et al., 1996; Joel et al., 1998; Marmor

et al., 2004; Pende et al., 1997; Rivera et al., 1993).

Notably ERK phosphorylates several MAPK activated protein kinases

(including RSKp90, RSKp70, MSK and MNK families) which control many key

cellular processes and protein activity states. In fact RSK, which is best

described as a multiple function ERK effector participates with ERK in the

regulation of several proteins, including FOS, GSK3, MITF, ERa, ER81, tuberin,

BAD and DAPK and in a negative feedback loop to downregulate SOS. ERK and

RSK are thought to control through the regulation of these proteins cell cycle

progression, proliferation and cell survival (Hauge & Frodin, 2006). MSK best

characterized function is to mediate ERK or p38-MAPK (p38) (a MAPK also

regulated by HER related activation) regulation of gene expression by

phosphorylation of transcription factors such as the cyclic AMP response binding

protein (CREB) (Wiggin et al., 2002) or chromatin proteins such as Histone H3

(Soloaga et al., 2003). Finally, MNK activation by ERK or p38 results in the



phosphorylation of the eukaryotic translation initiation factor 4E (eIF4E), a key

step in the initiation of protein translation (Raught & Gingras, 1999).

Membrane bound protein substrates of ERK include phospholipase A2

(PLA2) - which participates in lipid metabolism - and a negative feedback loop to

downregulate EGFR (Alvarez et al., 1991; Hirabayashi et al., 2004; Lin et al.,

1993). Cytoplasmic and Cytoskeletal proteins substrates of ERK include the

protein adaptor paxillin, focal adhesion kinase (FAK), calpain and myosin light

chain kinase (MLCK) (Huang et al., 2004). It is through it interactions with this

proteins that ERK participates in the regulation of cell motility processes.

1.1.3.2 PI3KIAKT

The lipid kinase P13K consists of two subunits, the regulatory subunit p85

and the catalytic subunit p110. Activation of the catalytic subunit results in the

phosphorylation of phosphoinositide 2-phosphate (PIP2) to produce the second

messenger phosphoinositide -3,4,5-phosphate (PIP3) (Bjorge et al., 1990). The

effect of phosphoinositides in the cell is mediated by at least two lipid binding

protein domains, namely FYVE domains which bind PIP1 and pleckstrin-

homology (PH) domains which bind PIP2 and PIP3 as those in the 3'-

phosphoinositide-dependent kinase 1 (PDK1) and the ACG serine/threonine

kinase AKT (Blume-Jensen & Hunter, 2001).

While all EGFR family members can directly activate the MAPK pathway

this is not the case for P13K. Activation of P13K by EGFR family members occurs



by direct phosphorylation by the receptors of the p85 regulatory subunit or by

binding GTP-Ras to the p110 catalytic subunit. Since EGFR and HER2 have no

binding site for the SH2- domain of the p85 subunit they need to rely on the

recruitment and phosphorylation of Grb-2 associated binding protein 1 (GAB1) to

trigger P13K (Rodrigues et al., 2000), thus the activation of this kinase is relatively

weak in dimers containing only these two receptors when compared to dimers

containing HER3 and/or HER4 which present six and one binding motifs for the

P13K regulatory subunit respectively (Soltoff et al., 1994).

Generation of PIP2 and PIP3 on the cell membrane by P13K results in the

recruitment of AKT isoforms a, p and y, where it is phosphorylated in its

activation loop (T308 in isoform a) by PDK1 (Blume-Jensen & Hunter, 2001). Full

activation of AKT kinase activity requires phosphorylation of S473 (isoform a) by

the mammalian target of rapamycin (mTOR)/rictor complex (Sarbassov et al.,

2005). AKT recruitment to the cell membrane is regulated by the lipid

phosphatase PTEN which hydrolyzes PIP3 and PIP2 into PIP2 and PIP1

respectively (Lawlor & Alessi, 2001; Prenzel et al., 2001). Prolonged growth

factor stimulation, results in nuclear translocation of AKT, where it activates

several transcription factors (Meier & Hemmings, 1999). Upon its activation AKT

phosphorylates several effector targets most of them within the same motif:

RXRXXS/T (this motif can also be phosphorylated by MSK1) (Blume-Jensen &

Hunter, 2001). It is possible to divide AKT substrates into two main groups:

regulators of apoptosis/survival and regulators of cell cycle and proliferation.



AKT substrates involved in apoptosis include the pro-apoptotic protein

BCL2-antagonist of cell death (BAD), several caspases (including Caspase 9)

and Forkhead transcription factors. HER family mediated AKT phosphorylation of

BAD at Ser 136 has been shown to be a necessary and sufficient step to block

BAD induced apoptosis by dissociating the pro-apoptotic agent from BCL family

members and inhibiting release of cytochrome-c from the mitochondria into the

cytoplasm (Blume-Jensen et al., 1998; Datta et al., 1999; Wang et al., 1999).

Cytochrome-c release into the cytoplasm results in nucleation of a protein

complex known as the apoptosome which redounds in the activation of the

aspartyl directed protease Caspase 9. Caspase 9 cleaves and activates Caspase

3 and Caspase 7 which in turn cleave a plethora of cellular substrates resulting in

the apoptotic phenotype (Cryns & Yuan, 1998). AKT can also induce cell survival

by blocking apoptosis after cytochrome release by phosphorylating Caspase 9 at

S196 (Datta et al., 1999). Forkhead transcription factors activate pro-death

responses by transcription of several apoptosis related genes, most prominently

the activator of apoptosis Fas ligand (FasL). Phosphorylation by AKT sequesters

Forkhead transcription factors in the cytoplasm, essentially shutting it down by

regulating their sub-cellular localization (Biggs et al., 1999; Brunet et al., 1999).

Glycogen synthase kinase-3 (GSK-3), phosphodiesterase-3B, mTOR,

insulin receptor substrate-1 (IRS-1), the Forkhead member FKHR, the cyclin-

dependent kinase inhibitor p21 CIP1/WAF1 and possibly Raf-1 are targets involved in

mediating protein synthesis, glycogen metabolism and cell-cycle regulation

(Blume-Jensen & Hunter, 2001). GSK-3 activity is inhibited by AKT



phosphorylation, leading to the translocation into the nucleus of p-catenin, which

results in the expression of Cyclin D1 (Blume-Jensen & Hunter, 2001). Even

more AKT inactivation of GSK3 results in stabilization of Cyclin D1 at the protein

level by reducing phosphorylation by GSK-3 at a site that promotes Cyclin

proteolysis (Diehl et al., 1998). AKT also induces survival by phosphorylating and

sequestering at the cytoplasm the cyclin dependent kinases inhibitors p21,

p27kipl and p57kip2 where their activities do not have an anti-proliferative effect

(Lawlor & Alessi, 2001). Finally AKT also regulates cell survival by promoting

protein translation through mTOR, elF4E and p70-S6 (Marmor et al., 2004).

1.1.3.3 PLC-y/PKC

PLC-y is recruited to the membrane through SH2 domain mediated

binding to EGFR and HER2 or PH domain binding toPIP2 and PIP3. Subsequent

RTK phosphorylation of tyrosines 771, 783 and 1254 results in PLC-y activation.

Active PLC-y hydrolyzes PIP2 to generate the second messengers inositol

3-phosphtae (IP3) and diacylglycerol (DAG) (Carpenter & Ji, 1999; Marmor et al.,

2004). While phosphorylation of Y771 is dispensable for IP3 generation,

phosphorylation of Y783 is essential and phosphorylation of Y1254 is necessary

to achieve maximal IP3 generation (Kim et al., 1991). Binding of IP3 to its

receptors (IP3R) on the endoplasmic reticulum results in the release of Ca2+ into

the cytoplasm, thus activating a plethora of calcium/calmodulin dependent

protein kinases and phosphatases. Moreover Ca2+ and DAG trigger the activation



of protein kinase C (PKC) catalyzing the phosphorylation of multiple substrates

related to cell survival and motility (Patterson et al., 2005; Wells & Grandis,

2003). Hydrolysis of PIP2 by PLC-y releases actin binding proteins sequestered

by PIP2 such as gelsolin which cleaves current actin filaments and cofilin and

profilin that serve to nucleate new actin filaments. In fact these actin binding

proteins appear to regulate Arp2/3 branching at the leading edge of the cell

(Wells & Grandis, 2003).

Following PIP3 hydrolysis by PLC-y, PKC binds DAG and translocates to

the membrane. Binding to DAG exposes the PKC activation loop that is

phosphorylated by PDK1 at T505. Finally auto-phosphorylation of PKC c-terminal

domain stabilizes it into its active form (Bornancin & Parker, 1997; Edwards &

Newton, 1997). To date many substrates had been identified for PKC including

substrates that interact with C-kinases (STICKs), various cytoskeletal proteins

(such as tubulin or actin), scaffolding proteins (such as caveolin and A-kinase

anchoring proteins (AKAPs)) and receptors for activated C-kinase (RACKs)

(Jaken & Parker, 2000). Current models propose that cells express various

RACKS each with a unique PKC isozime specificity and subcellular localization

thus recruiting the active isozymes to different cell compartments (Mackay &

Mochly-Rosen, 2001). In the cell membrane active PKCs have been shown to

phosphorylate EGFR at T654, decreasing receptor ligand affinity and receptor

kinase activity (Jimenez de Asua & Goin, 1992; Morrison et al., 1993; Oliva et al.,

2005)



Notably PKC-8, a non Ca2 ' binding isozyme, has also been found to be

extensively tyrosine phosphorylated including phosphorylation at tyrosines 512

and 523 in the catalytic domain, tyrosines 52, 155 and 187 in the regulatory

domain and tyrosines 311 and 332 in the hinge region (Steinberg, 2004). Of

particular interest are Y332 and Y31 1. Y332 is flanked by a sequence region that

conforms with the SH2 binding region of SHC and SHC has been shown to

coordinate indirect regulatory interactions between the negative regulator of

AKT, SH2 domain containing inositol phosphatase (SHIP) and PKC-S with

direct effects on cell survival (Leitges et al., 2002). Y311 is flanked by a

sequence region that conforms to a SRC phosphorylation substrate. SRC

phosphorylation has been linked to increased kinase activity and altered PKC-8

trafficking (Blake et al., 1999; Steinberg, 2004). PKC-8 is implicated in cell cycle

arrest by promoting cyclin D and E downregulation and p27ipl upregulation

(Ashton et al., 1999; Fukumoto et al., 1997). It had also been implicated in

transcriptional regulation by phosphorylation of STATs 1 and 3 (Jain et al., 1999;

Uddin et al., 2002) and cytoskeletal reorganization, adhesion turnover and acto-

myosin contractility (Wells & Grandis, 2003).

L.1.3.4 STATs

Receptor phosphorylation of EGFR family members provides SH2 docking

sites and promotes the recruitment of monomeric cytoplasmic signal transduction

and activator of transcription proteins (STATs) (Heim et al., 1995). Receptor



bound STATs are subsequently tyrosine phosphorylated by the receptor intrinsic

RTK activity or by other receptor bound kinases such as janus activated kinase

(JAK) and SRC (Bowman et al., 2000). Once phosphorylated STATs dimerize

via reciprocal SH2 interactions (Darnell, 1997). Within minutes of dimerization

STAT dimers translocate to the nucleus where they interact with various

transcriptional modulators bound to specific promoter sequences and induce

gene expression (Darnell, 1997). STAT activity is ended either by de-

phosphorylation or proteolytic degradation (Buettner et al., 2002; Haspel &

Darnell, 1999). STATs and in particular STAT3 and STAT5 regulate the

expression of many genes involved in cell cycle and survival. Several studies

show that expression of the anti-apoptotic genes BCL-XL and Mcl-1, the

expression of cell cycle control genes including c-Myc and several cyclins

(including cyclin D) and the expression of genes encoding the metallo-proteases

MMP1, MMP2 and MMP10 and the zinc transporter LIV-1 ( all genes needed for

cell motility) are regulated by STAT3 and/or STAT5 (Buettner et al., 2002; Gao &

Bromberg, 2006), thus STAT signaling confers EGFR family members with direct

influence on cell survival, cell cycle progression and cell motility related gene

transcription. Furthermore, non-tyrosine-phosphorylated, non-transcriptional

STAT3 has been shown to be necessary to stabilize microtubule polymerization

by binding Stathmin, a small tubulin-binding protein (Belmont & Mitchison, 1996)

and tyrosine phosphorylated STAT3 was found to localize at pseudopodia of

migrating cell and focal adhesions along p130Cas, FAK and Paxillin (Jia et al.,



2005; Silver et al., 2004)and to be necessary for normal p130Cas

phosphorylation and cell motility in keratinocytes (Kira et al., 2002)

1.1.3.5 Other Pathways

Many other pathways are activated by or exert influence on the EGFR

family. For instance HER family members might control cytoskeletal re-

organization by RAS-GTP activation of the small GTPases Rho, Rac and Cdc42

(Marmor et al., 2004) and are also implicated in signaling events downstream of

other cellular stimuli, including cell adhesion, lymphokines or stress signals

(Carpenter, 1999). Moreover effectors of G-coupled protein receptors might

require EGFR induced signaling to access the MAPK pathway (Gschwind et al.,

2001; Schafer et al., 2004) and transactivation might occur via phosphorylation,

autocrine ligand generation after G-coupled receptor activation, or direct

phosphorylation of HER family members by non-receptor tyrosine kinases such

as JAK, Pyk2, FAK and SRC, which may act downstream or upstream of the

EGFR family (Fischer et al., 2003; Gschwind et al., 2001).

SRC activation upon EGF or HRG stimulation leads to the phosphorylation

of additional residues in HER family members as well as cytoskeletal and focal

adhesion related proteins, most notably FAK (Abram & Courtneidge, 2000;

Belsches-Jablonski et al., 2001; Biscardi et al., 1999; Vadlamudi et al., 2003).

Together with P13K, PKC and ERK, SRC and FAK are the major kinases

involved in cell migration, Y397 is a FAK major autophosphorylation site acting



as docking site for Src and P13K (Cary & Guan, 1999; Eide et al., 1995; Schaller

et al., 1994) and it has been shown to be necessary for both pl30cas and paxillin

phosphorylation in response to FAK expression (Cary & Guan, 1999; Cary et al.,

1998; Schaller & Parsons, 1995; Vuori et al., 1996). In fact previous studies show

that FAK Y397 is necessary for production of an invasive cellular phenotype and

it is mainly through FAK localization to lamellapodia in complex with p130Cas,

Src and Dock 180 that this phenotype arises (Hsia et al., 2003). Upon binding to

FAK Y397 Src phosphorylates FAK Y576 and Y577 in the kinase domains

increasing the enzyme activity (Calalb et al., 1995; Cary & Guan, 1999) along a

number of other tyrosines which act as docking sites for paxillin p130cas and

integrin p among others.

Src Y418 is a major Src autophosphorylation site, whose phosphorylation

results in self-activation (although it can also be phosphorylated by RTKs)

(Roskoski, 2004). Src can mediate FAK related migration by further

phosphorylation of paxillin or p130Cas, which may result in focal adhesion

turnover and/or lamellapodia and filipodia formation via either the RAC, JNK

pathway or the RhoGAP pathway (Hsia et al., 2003; Playford & Schaller, 2004). It

can also phosphorylate ERK directly or by increasing FAK activity, leading to

Calpain activation and again to focal adhesion turnover and migration (Playford &

Schaller, 2004).

EGFR family members can also influence migration by direct or SRC

mediated phosphorylation of catenins. Catenins are known to interact with E-

Cadherin, the main cell-cell adhesion protein in epithelial cells (Davis et al., 2003;



Takeichi, 1995) and regulate its function (Davis et al., 2003 JCB). E-cadherin has

been identified as a tumor suppressor and its down regulation correlates with

tumor cancer progression (Nollet et al., 1999; Yap, 1998). Catenin-S and catenin-

y are members of the p120 catenin family originally identified as Src and RTK

(Anastasiadis & Reynolds, 2000; Davis et al., 2003; Reynolds et al., 1992). In the

absence of E-Cadherin it has been postulated that p120 catenins drive the cells

towards the metastatic phenotype, by deficient regulation of several Rho-GTPase

proteins (Anastasiadis et al., 2000; Anastasiadis & Reynolds, 2001). P120

Catenins had been shown to regulate E-Cadherin turnover, probably by

modulating its internalization and degradation rate (Davis et al., 2003) stabilizing

it on the surface when bound to it. This has direct implication on cancer

metastasis as the absence or cytoplasmic localization of p120 family members

lead to missregulation of Rho-GTPases and faster E-Cadherin turnover by lack of

catenin dependent stabilization. HER2 overexpression in breast carcinomas

inhibits the transcription of E-Cadherin (D'Souza & Taylor-Papadimitriou, 1994; Li

et al., 2003), and it has also been found to destabilize the catenin-cadherin

complex, leading to decreased adhesion (Jawhari et al., 1999; Li et al., 2003).

The majority of Src and RTK dependent phosphorylation sites of 8-catenin

tyrosine phosphorylation are located on a relatively short region of the protein

close to the N-terminus between residues 228 and 302 and EGFR has been

found to directly phosphorylate p120 catenin at Y228 (Mariner et al., 2004).

Moreover, SRC and EGFR phosphorylated p120 was found to localize at

lamellapodia and adheren junctions and a screen of highly invasive tumor cell



lines showed high degree of Y228 phosphorylation (Mariner et al., 2004), leading

to the hypothesis that Y228 phosphorylation of p120 catenin may break cell

adhesion by disruption of catenin-cadherin complexes as EGFR inhibition was

found to promote assembly of cell adhesions (Lorch et al., 2004).

EGFR family members are also regulated by subcellular localization. The

epidermal growth factor receptor pathway 15 (EPS15) directly binds to EGFR

and the clatrhin adaptor protein AP-2, mediating clathrin coated pits receptor

endocytosis (Torrisi et al., 1999) and the E3 ubiquitin ligase Cbl targets EGFR to

the lysosomes by ubiquitination of the receptor (Levkowitz et al., 1998). EGFR,

HER2 and HER4 are also enriched in caveolae (Anderson, 1998; Liu et al., 2002;

Schlegel et al., 2000). Caveolae are a lipid rafts rich in caveolin proteins,

cholesterol and glycosphingolipids. EGFR family members interact with Caveolin-

1 resulting in a decrease in kinase activity (Couet et al., 1997; Engelman et al.,

1998). In fact caveolin expression is inversely correlated to HER2 signaling

(Razani et al., 2001) and has been implicated in non-clathrin-mediated

internalization (Pelkmans & Helenius, 2002). Furthermore, translocation of

EGFR, HER3 and HER4 proteolytic fragments from early endosomes into the

nucleus had been detected and it is expected that they might act directly as

transcription factors adding one more way of action to EGFR family controlled

sub-cellular networks (Wells & Marti, 2002).



1.1.4 Physiological Role of the EGFR Family

1.4.1 Heart

Embryonic lethality of HER2 (Lee et al., 1995) and HER4 (Gassmann et

al., 1995) knockout mice revealed a vital role for EGFR family members in

development. Mice died at post-fertilization day 10 due to abnormal cardiac and

nervous system development. Failure in trabeculae - finger like extensions of the

ventricular myocardium - development resulted in a mutant heart characterized

by an irregular beat and reduced blood flow. HER3 knockout mice show correct

trabeculae structure, but also die during gestation (day 13.5 post fertilization) due

to flaws in valve formation (their artrioventricular valves are dilated and thin

compared to normal mice) (Riethmacher et al., 1997). HER2 is also thought to

regulate heart function in adults (Ozcelik et al., 2002), this acquires particular

importance in light of the adverse cardiac related side effects that have been

reported on Trastuzumab - a monoclonal anti-HER2 antibody - treatment of

breast cancer patients (Slamon et al., 2001).

1.4.2 Nervous System

Heregulins (HRGs) - a class of ligands of that bind HER3 and HER4 -

perform multiple functions in the development of the nervous system. Mutation or

knockout of HER2, HER3 or heregulin (HRG/NRG1) (Garratt et al., 2000; Meyer



et al., 1997; Morris et al., 1999; Riethmacher et al., 1997; Tidcombe et al., 2003;

Wolpowitz et al., 2000), resulted in the failure to form functional neuromuscular

junction. Moreover, abnormal cranial and cerebellum neural architecture has

been demonstrated in HER4 knockout mice (Casalini et al., 2004; Gassmann et

al., 1995)), HER and HRG knockout have resulted in severe hypoplasia of the

primary sympathetic ganglion chain (Britsch et al., 1998; Riethmacher et al.,

1997) and complete absence of Schwan cells in peripheral nerves at late

development stages (Wolpowitz et al., 2000). Finally HER2 has been shown to

be necessary for schwan cell myelination (Garratt et al., 2000) and

oligodendrocyte formation (Casalini et al., 2004; Kim et al., 2003) in vivo.

1.1.4.3 Epithelial development

Although EGFR plays a pivotal role in the development of epithelial cells

its activity is non essential for gestation survival. Genetic knockout of EGFR in

mice can result in death during gestation, birth or no later than 20 days after birth

depending on mouse strain (Miettinen et al., 1995; Sibilia & Wagner, 1995;

Threadgill et al., 1995). Knockout phenotypes exhibit abnormal epithelial cell

proliferation, migration and differentiation in the skin, lungs and intestines, among

other organs. Along with aberrant epithelial cell behavior knockout mice exhibit

brain damage and those that survive birth suffer progressive neurodegeneration

(Sibilia et al., 1998).



L.1.4.4 Mammary Gland

Due to the very important role EGFR family members play on mammary

carcinoma, research on their physiological function in the mammary gland has

been a keen focus of interest. The studies conducted to date show a very

complicated picture in which all receptors of the family and the majority of their

ligands play a role at different stages of development (Casalini et al., 2004). In

fact, RNA amplification based analyses of the HER related ligands during

mammary development show an exquisite temporal pattern of transcriptional

regulation for amphiregulin (AR), betacellulin (BTC), heparin binding EGF (HB-

EGF), epiregulin (EPR), EGF, HRG, and transforming growth factor a during

mammary gland development , maturation and involution (Schroeder & Lee,

1998).

EGFR family members play a role in regulating growth, differentiation,

apoptosis and/or architecture remodeling in the mammary gland. In the virgin

gland EGFR and HER2 co-localize in all major cell types during alveolar

morphogenesis, but localize different in the mature gland. Whereas EGFR and

HER2 localize equally in alveoli and lactating ducts, HER3 and HER4 are

preferentially localized in the alveoli (Schroeder & Lee, 1998).

RNA expression profiles assign an important role for EGFR and HER2

during mammary gland development at puberty and a minimal role during

pregnancy and lactation periods. In contrast HER3 and HER4, appear to have

minimal influence during puberty development of the gland and are found to be



mainly activated during pregnancy and lactation (Sebastian et al., 1998).

Interestingly it has been shown that while formation of alveolar morphogenesis

before pregnancy is activated via a MAPK pathway; formation of branches

tubules, necessary for lactation, depends on a P13K activated pathway (Niemann

et al., 1998).

Assessment of the role of EGFR family members in immature mammary

glands has been hampered by gestation lethality of the RTKs knockout. Studies

in which HER4 knockout mice have been rescued from cardiac lethality

(Tidcombe et al., 2003) or the roles of EGFR, HER2 and HER4 have been

investigated using dominant-negative constructs of the receptors (Jones & Stern,

1999; Jones et al., 1999) show that the animals reach maturity and are fertile, but

their mammary gland differentiation is aberrant and lactation is defective.

Overall, none of the EGFR family members seem to be essential per se

for mammary gland development, in fact it is probable that inhibition of EGFR

family member receptors together with steroid hormone receptors such as

estrogen receptor is necessary for complete ablation of mammary gland

development (Casalini et al., 2004; Stern, 2003).

L.1.5 EGFR Family Members Roles in Cancer

Over-expression, mutation and deregulation of EGFR family members has

been correlated with cancer development and progression (Menard et al., 2004;



Mendelsohn & Baselga, 2003; Rogers et al., 2005; Ross et al., 2004a; Scagliotti

et al., 2004). Moreover, deregulation of many of the signaling pathways

discussed above can result in several transforming phenotypes including

proliferation, migration and angiogenesis. Deregulation of the EGFR family can

occur via receptor over-expression and ligand over-production by the tumor cells

in an autocrine loop, paracrine growth dependent in ligand production by the

surrounding stromal cells (Salomon et al., 1995) and/or constitutive receptor

activation (Lonardo et al., 1990; Mendelsohn & Baselga, 2003; Pedersen et al.,

2001). In this section I will present a brief summary of the EGFR family role in

cancer with an emphasis on breast cancer, which is the most relevant to my

work.

1.1.5.1 Breast Cancer

Over-expression of EGFR and HER2 have been related to breast cancer

and correlated with poor prognosis (Citri et al., 2003; Yarden & Sliwkowski,

2001). In a recent review Ross et al., have shown that of 81 studies including

27,161 patients in 90% of the studies and in 92% of the patients HER2\neu gene

amplification or HER2 protein overexpression predicted breast cancer outcome

(Ross et al., 2003). However a large scale study on HER2 over-expression in

breast cancer showed that only those cases in which HER2 was found to be

phosphorylated predicted poor prognosis (Thor et al., 2000). In particular HER2

strongly co-dimerizes with the kinase dead HER3 (Citri et al., 2003), causing high



and sustained signaling downstream, especially through P13K related pathways

(Neve et al., 2001). In normal cells activation of HER2-HER3 is highly regulated

(Citri et al., 2003) and it is considered to be the most potent signaling dimer of

the EGFR family (Pinkas-Kramarski et al., 1996; Wallasch et al., 1995). HER2

overexpression increases HER3 activation in response to HRG stimulation

(Aguilar et al., 1999; Lewis et al., 1996). Furthermore, various studies show that

HRG activation of HER3 can induce aggressive progression of breast cancer, as

indicated by anti-estrogen resistance, tumor progression, invasion and

metastasis (Atlas et al., 2003; Mazumdar et al., 2001; Meiners et al., 1998; Tang

et al., 1996; Tsai et al., 2000; Tsai et al., 2003; Yao et al., 2001a). The metastatic

phenotype, might be due to any or a combination of the following factors:

Increased cell motility, suppression of genes that keep tumor progression in

check, such as p53 and PTEN, or disregulation of oncogenic genes expression,

such as SRC and AKT, and their protein activity (Stove & Bracke, 2004).

1.5.2 Other Cancers

EGFR overexpression and mutation play a large role in development of

lung, prostate and head and neck cancer (Olapade-Olaopa et al., 2004; Rogers

et al., 2005; Scagliotti et al., 2004). In particular EGFR over-expression is highly

characteristic of gliomas and evidence suggests that ligand dependent activation

of EGFR might play a crucial role in glioma development. In fact many tumors co-

express EGFR and TGF-a or EGF (Rasheed et al., 1999). Moreover an EGFR



mutant (EGFR variant Ill or EGFRvIII) lacking exons 2-7 is constitutively active in

a ligand independent manner (although its activity is lower than wild type (WT))

(Pedersen et al., 2001) and it has been found to localize in breast, ovary and

lung carcinomas (Moscatello et al., 1995; Wong et al., 1992) as well as

glioblastomas. In fact a clinical study shows that EGFRvIII overexpression in the

presence of EGFR amplification is the strongest indicator for poor prognosis in

glioma patients (Shinojima et al., 2003).

HER3 and/or HER4 are overexpressed in most colorectal, ovary, skin

and breast tumors (Bodey et al., 1997; Marmor et al., 2004; Maurer et al., 1998;

Xia et al., 1999) HER3 is related to poor prognosis in bladder and ovarian cancer

as well as hepatocellular carcinomas (Chow et al., 2001; Ito et al., 2001;

Simpson et al., 1995) among others and heterodimerization of this receptors with

HER2 has been involved in oral squamous cell cancer and child

medullobalstoma (Gilbertson et al., 1997; Xia et al., 1999). In fact, because of its

slow rate of endocytosis (Baulida et al., 1996), co-expression of HER2 with

EGFR, HER3 and HER4 potentiates EGFR family related transformation. HER2

has been shown to reduce the internalization and degradation rate of EGFR and

increase its recycling to the cell surface after endocytosis and its ligand affinity,

by stabilizing the receptor in its active state (Karunagaran et al., 1996;

Worthylake et al., 1999).

The high incidence of EGFR family in cancer progression makes the

understanding of its underlying cellular networks a top necessity both to obtain

basic knowledge on cancer and to find new and more effective drug targets.



1.1.6 EGFR Family Related Therapeutics Compounds

A brief mention on the state of EGFR family related therapeutics is

important for completion as well for its relevance to the first chapter of this thesis;

by no means have I planned to be extensive in this section. More extensive

reviews can be found (Fry, 2003; Heymach et al., 2006; Holbro and Hynes, 2004;

Mendelshon & Baselga, 2006)

EGFR family therapeutics can be divided in two groups: one, small

molecules inhibitors / ATP analogs that target the HER family catalytic domain in

order to inhibit the receptors kinase activity and two, monoclonal anti-EGFR

family antibodies that target the HER family members extracellular domain in

order to inhibit receptor activation by blocking ligand binding and/or dimerization.

ATP competitive inhibitors have been developed for clinical applications to

block access of ATP to tyrosine kinases catalytic domain (Mendelsohn &

Baselga, 2003, 2006). All EGFR family effective inhibitors are derivatives of a

generic quinazoline molecule (Fry, 2003) Two EGFR specific ATP analogs have

been approved for the treatment of non-small-cell lung cancer and have shown to

be effective against tumors that express a catalitically overactive EGFR mutant.

These drugs are gefitinib (Iressa, AztraZeneca) and erlotinib (Tarceva,

Genentech) (Lynch et al., 2004; Paez et al., 2004). Still in clinical trials is a group

of drugs that can simultaneously block ATP binding to EGFR and HER2 such as

Carnetib (Cl-1033, Pfizer), EKB-569 (Wyeth-Ayerst Research) - two irreversible

inhibitors - and Lapatinib (GW572016, Glaxo Smith Kline) that binds to the



inactive conformation of EGFR and HER2 kinases domain (Heymach et al.,

2006; Holbro & Hynes, 2004).

The utility of monoclonal antibodies against EGFR and HER2 against

tumor growth was uncovered by Greene and Mendelsohn groups respectively

(Drebin et al., 1984; Sato et al., 1983). Their observation lead to the generation

of several humanized anti-EGFR family antibodies for their therapeutic use.

Currently approved therapeutic antibodies for treatment of colorectal cancer and

neck and squamous carcinoma are cetuximab (Brystol Myers Squibb

(BMS)/ImClone) which blocks ligand binding to EGFR and for breast cancer

trastuzumab (Herceptin, Genentech) which inhibits HER2 activity. Still in clinical

trials are pertuzumab (Omnitarg, Genentech/Roche) that targets HER2

heterodimerization, and a couple of anti-EGFR monoclonal antibodies that

compete with ligand binding among them matuzumab (EMD72000, EMD/Merck

KaGA) and panitumumab (ABX-EGF, Abaenix/Amaen) (Heymach et al., 2006;

Holbro & Hynes, 2004).

Interestingly to the extent of my knowledge no antibodies have been

raised yet that block the EGFR activation by targeting the dimerization arm in

domain II or the putative dimerization sequence in domain IV. This acquires

relevance, especially in autocrine systems where antibodies might not be able to

compete with the local ligand concentration at the cell surface.



1.2 MASS SPECTROMETRY IN PHOSPHOPROTEOMICS

Since 1912, when Joseph John Thomson performed the first ever mass

spectrometry experiment to detect the spectra of 02, N2, CO, CO2 and COC 2

(Thomson, 1913) until the late 1980s mass spectrometry application were

restricted to small, thermostable products, due to the difficulty of gently ionizing

and passing the ionized molecules from liquid to gas phase without excessive

fragmentation (Domon & Aebersold, 2006). The inception at this time of

electrospray ionization (ESI) (Fenn et al., 1989) and matrix assisted laser

desorption ionization (MALDI) (Karas & Hillenkamp, 1988), two techniques

capable of ionizing intact biological molecules - including polypeptides - marks

an outstanding expansion in the potential of mass spectrometry applications and

can be considered the staring point of the proteomics era.

l.2.1 Ion Sources

Although in this thesis work only ESI sources were used an outline of ESI

and MALDI working principles are given below. For a more detailed description I

recommend sections 1.6 and 1.8 of de Hoffmann and Stroobant's book

(Hoffmann & Stroobant, 2001). ESI occurs when a strong electric field is applied

to a liquid slowly flowing through a capillary column at atmospheric pressure.

Charge accumulation is induced by the field presence at the liquid surface exiting



the capillary resulting in the formation of highly charged nano-droplets; finally the

droplets are heated by passing through a curtain of hot inert gas (usually N2) to

remove the remaining solvent molecules. As the droplet charge augments or the

solvent is removed the droplets charge to volume ratio increases, when columbic

repulsion forces balance the cohesion forces on the droplets they break yielding

two smaller droplets of equal charge and similar size, the exponential breakage

of charged droplets into nano-droplets is what defines ESI (Fenn et al., 1989;

Hoffmann & Stroobant, 2001).

In contrast to ESI, MALDI extracts ionized molecules from solid to gas

phase. MALDI can be divided on two steps. First, in a matrix embedding step the

samples are mixed in a solution of small organic molecules with high absorbance

at the laser wavelength. Before analysis the mixture is completely dried, leaving

a crystal where analyte molecules are completely surrounded by the matrix and

isolated from each other. The second step consists in the sublimation of matrix

section by quick and intense pulses of laser. Laser irradiation induces fast

heating of the target zone through the energy accumulation due to the excitation

of the matrix molecules. This fast heating process induces the change of the

matrix phase (and embedded sample) from solid to gas, with little transfer of

internal energy towards the analyte molecules which remain intact. Ionization

might occur at any time during this process, but the causes of MALDI ionization

are still a matter of speculation (Hoffmann & Stroobant, 2001; Karas &

Hillenkamp, 1988; Zenobi & Knochenmuss, 1998)



1.2.2 Mass Spectrometers

The impact of ESI and MALDI was to catalyze the design of new mass

spectrometers specifically designed to tackle questions in the newly born

proteomics field (Domon & Aebersold, 2006). In this section, I will outline the

function of two of these mass spectrometers describing only operation modes

relevant to this thesis. For a more detailed description I recommend chapters 2

and 3 of de Hoffmann and Stroobant's book (Hoffmann & Stroobant, 2001) and

review articles by Chernushevic et al. and Hopfgartner et al. (Chernushevich et

al., 2001; Hopfgartner et al., 2004).

.2.2.1 Quadrupole Time-of-Flight and IDA

Most mass spectrometry based experiments conducted during the

completion of this work were done using a quadrupole time-of-flight (Qq-TOF)

instrument (QSTAR-XL, Applied Biosystems) set for information (data)

dependent acquisition (IDA). From now on I will use Qq-TOF or QSTAR

indistinctively when referring to this type of instrument.

Figure 1.5 shows the schematic of a QSTAR instrument coupled to an ESI

source. The instrument consists of 3 quadrupoles, QO, Q1 and Q2 aligned in

series followed by a reflecting TOF analyzer. While both QO and Q2 are designed

to be used in radio frequency (RF) only mode and at a pressure of several

millitorr, Q1 can be used in RF only mode or radio frequency / direct current
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Figure 1.5 - Schematic of a QSTAR instrument. The red line represents the ions path from the
ESI to the detector. Adapted from (Chemushevich et al., 2001).

(RF/DC) mode and it is always kept at low pressure (order of 0.01 millitorr). The

TOF analyzer is always kept close to vacuum.

In general, QO is used for collisional cooling and focusing the ions coming

from the ESI source into Q1. Q1 can be used in RF only mode or mass filter

(RF/DC) mode. And Q2 can be used as QO or as a collision cell where the ions

transmitted from Q1 are broken into fragment ions by collision activated

dissociation (CAD) - in which the ions are subjected to high energy collisions

with an inert gas (usually Nitrogen or Argon). The resulting ions are collisionaly

cooled and RF focused before entering the detector.

In QO and Q2 the RF field produces a potential well that provides radial

confinement of precursor and/or fragments ion according to their mass to charge



(m/z) ratio while the relative high pressure of operation ensures axial and radial

collisional damping of ion movement. In the case of Q1 combination of RF/DC

voltages and low pressures permits selecting a very narrow m/z window to

transmit only desired ions into Q2 in what is called mass filter mode. After leaving

Q2 ions are re-accelerated and focused into the TOF analyzer ion modulator. At

first the ion modulator is a field free region and the ions continue their movement

inside its space, but as ions get in, a pulsed high frequency (kilo-Hertz order)

electric field is applied across the modulator gap and the ions are thrust

perpendicular to their original direction into the analyzer accelerating column,

where they reach their final kinetic energy before passing into the field free

region where TOF separation occurs - at the same kinetic energy for all ions, the

time it takes an ion to travel the effective length of the TOF analyzer to reach the

detector is proportional to the square root of its m/z value - and ion m/z are

registered by the detector and recorded using a time to digital converter (TDC)

(Chernushevich et al., 2001; Hoffmann & Stroobant, 2001).

When using QSTAR mass spectrometers on IDA mode Q1 is used in

mass filter mode and Q2 as a collision cell. On IDA mode the "n" most abundant

ions (usually n is between 1 and 10) reaching the detector at a given time are

identified for sequential selection in Q1 and fragmentation in Q2. The process of

identifying, selecting and fragmenting, and detecting the ions fragments conforms

an IDA MS cycle. The first identification step is called a full scan mass spectrum

(MS event) and the identified ions are called precursor or parent ions. The

selection, fragmentation and identification of ion fragments is called an MS/MS



(MS2) event. In proteomics in general an IDA MS cycle consists of one MS event

followed by 5 MS/MS events (Aebersold & Mann, 2003; Chernushevich et al.,

2001; Domon & Aebersold, 2006; Hoffmann & Stroobant, 2001; Zhang et al.,

2005c). There are many examples of IDA applications to proteomics. Further

details can be found in the following set of articles and reviews (Aebersold &

Mann, 2003; Blagoev et al., 2003; Blagoev et al., 2004; Brar et al., 2006; Carr et

al., 2005; Gygi & Aebersold, 2000; Gygi et al., 2000; Gygi et al., 1999;

Hernandez et al., 2006; Kim et al., 2005; Kim & White, 2006; Kratchmarova et al.,

2005; Loyet et al., 2005; Moser & White, 2006; Reinders & Sickmann, 2005;

Schmelzle et al., 2006; Schmelzle & White, 2006; Stults & Arnott, 2005; Zhang et

al., 2005c) and MSB.

For proteomics, good ion fragmentation is the key step to unequivocally

identify a peptide and its post-translational modifications (PTMs). Currently most

mass spectrometers use collision associated dissociation (CAD) to achieve

peptide fragmentation and protein sequencing. In this technique - pioneered by

the Hunt lab in the field of proteomics (Hunt et al., 1981; Hunt et al., 1986) - the

ions are subjected to low energy collisions with an inert gas (usually Nitrogen or

Argon) leading to the accumulation of internal energy in the peptide and it

subsequent fragmentation (Hoffmann & Stroobant, 2001). Peptides subjected to

CAD break across their backbone into b and y ions by severing the bond

between carbonyl oxygen and amide nitrogen of two adjacent amino acids

(Figure 1.6) (Roepstorff & Fohlman, 1984). If CAD fragmentation results in the

detection of a heterogeneous population of b and y fragment ions, the
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Figure 1.6 - b and y ions. As a result of CAD peptides are fragmented into b and y ions by
cleavage of the bonds between carbonyl oxygen and the amide nitrogen atoms.

fragmentation information and original precursor ion m/z can be used to infer the

peptide sequence and PTMs. (Aebersold & Mann, 2003; Chemushevich et al.,

2001; Domon & Aebersold, 2006; Hoffmann & Stroobant, 2001; Zhang et al.,

2005c). One drawback of CAD is its ergodic energizing nature. CAD activates a

large number of the peptide vibrational energy levels resulting primarily in the

dissociation of low activation energy bonds (Cooper et al., 2005; Sleno & Volmer,

2004; Zubarev, 2004). Several PTMs, and in particular O-glycosylation, N-

glycosylation and 0-phosphorylation (McLafferty et al., 2001; Sleno & Volmer,

2004; Wysocki et al., 2005; Zubarev, 2004) fall in this category, thus the labile

covalent bond between the modified residue and the modifying group can be

broken by the internal energy transfer during CAD obscuring the identification of

the PTM site and its nature. This issue has been addressed by relatively new

non-ergodic fragmentation mechanisms such as electron transfer dissociation

(ETD) (Syka et al., 2004) and electron capture associated dissociation (ECD)

(Kelleher et al., 1999) in which the lowest activation energy states are not

accessed, the PTM-residue bond is conserved and the peptide is fragmented



along its backbone into c and z ions by cleavage of the N-C, bond (Cooper et al.,

2005; Kelleher et al., 1999; Syka et al., 2004; Wysocki et al., 2005; Zubarev,

2004).

.2.2.2 Triple Quadrupoles and MRM

The second type of mass spectrometer used during the completion of this

thesis was a triple quadrupole linear ion trap (QQQ / QQ-LIT) instrument

(QTRAP 4000, Applied Biosystems) set in multiple reaction monitoring mode

(MRM). Form now on I'll use the terms triple quad or QTRAP indistinctively when

referring to this type of instrument.

Figure 1.7 shows the schematic of a QTRAP instrument. The instrument

consists of 4 quadrupoles, QO, Q1, Q2 and Q3 aligned in series where Q3 can be

used as a quadrupole or as linear ion trap (LIT). Very similar to what we saw on

the QSTAR; in the QTRAP, while both QO and Q2 are used only in radio

frequency (RF) mode and at a pressure of several millitorr, Q1 and Q3 can be

used in RF only or RF/DC mode and they are always kept at low pressure (order

of 0.01 millitorr). Additionally Q3, but not Q1can be used as a LIT.

In LIT mode as opposed to normal RF/DC - mass filter - mode, instead of

the RF/DC potential of the quadrupole being adjusted to allow passage only of

ions of selected m/z, ions with different masses are accepted into Q3 and RF

voltages are adjusted to allow axial ejection of ions in an m/z selective fashion.

Ejected ions are then registered and recorded by the instrument standard



Figure 1.7 - Schematic of a QTRAP instrument. The red line represents the ions path from the
ESI to the detector. Adapted from (Hopfgartner et al., 2004).

detector and analogous to digital converter (ADC). The minimal pressure in Q3 is

enough to allow for collisional cooling of the trapped ions keeping their

trajectories confined inside Q3 to avoid ion losses by collision with the

quadrupole rods before ejection (Hoffmann & Stroobant, 2001; Hopfgartner et al.,

2004).

The function and characteristics of QO, Q1 and Q2 in the QTRAP are the

same as those described for them in the QSTAR, the main difference between

the instruments is the substitution of the TOF analyzer in the QSTAR by Q3 in

the QTRAP. Whereas in the QSTAR all ions are passed at the same time into the

TOF analyzer and m/z values are inferred from the time it takes them to reach

the detector. In the QTRAP only ions that were allowed to pass through Q3 in

mass filter mode or ions that were ejected in LIT mode hit the detector together.

An MS/MS scan can be obtained by sequentially varying the m/z value of ions

allowed through Q3 in mass filter mode or the size of ions ejected form Q3 in LIT

mode (Hoffmann & Stroobant, 2001; Hopfgartner et al., 2004).
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Figure l.8 - SRMIMRM Method Schematic. Multiple ions enter 01, but only one/several are
passed to Q2 for CAD. All ion fragments are passed from 02 to 03. 03 acts as a mass filter and
only sought for ions are passed toward the detector.

When using QTRAP mass spectrometers on select or multiple reaction

monitoring (SRM or MRM) mode Q1 is used in mass filter mode, Q2 as a

collision cell and Q3 in mass filter mode. In this way 01 is used to sequentially

isolate desired precursor ions, 02 as a CAD cell to fragment these ions and 03

is set to let through specific fragment ions of the precursor fragmentation whose

co-detection indicate the presence of a molecule of interest (Figure 1.8). The only

difference between SRM and MRM is that SRM isolates only one precursor ion

and only one of its fragment ions gets detected, while in MRM mode it is possible

to isolate many precursor ions and select several of their fragment ions for

detection. In fact up to 300 fragments ions can be isolated when operating a

QTRAP 4000 in MRM mode (Aebersold & Mann, 2003; Domon & Aebersold,

2006; Hoffmann & Stroobant, 2001; Hopfgartner et al., 2004).

Although not broadly used in proteomic (particularly in

phosphoproteomics) MRM has been used for several small molecule

applications, some examples are the quantification of DNA adducts purified form



tissue (Koc & Swenberg, 2002), the detection in biological fluids of substances

whose consumption is considered doping in sports competition and thus are

banned by the International Olympic Committee and/or the Horse Race

Association such as beta-receptor blocking agents in human urine (Thevis et al.,

2001) and anabolic steroids and other forbidden compounds in human and

horse and plasma (Guan et al., 2005; Ho et al., 2006). MRM had also been used

for the detection of toxic agents such as vegetal derived poisons like the pseudo-

alkaloyd taxine in body fluids (Frommherz et al., 2006), addictive and lethal drugs

in blood for autopsies (Herrin et al., 2005) and the detection of metabolites of

carcinogenic compounds related to the combustion of organic materials - usually

due to smoking, grilling, or urban life - such as polycyclic aromatic hydrocarbons

(PAHs) in human urine (Pigini et al., 2006).

In the proteomics field few studies have used MRM. Notably, MRM has

been used in conjunction to the absolute quantification (AQUA) strategy to

address the problem of absolute quantification of protein levels in biological

samples and cell lysates. In AQUA for each peptide that is to be identified in

MRM an equivalent synthetic, isotopically labeled peptide is added to the

biological sample at a known concentration. MRM methods can detect the

peptide in the biological sample and the known label. By comparing both peaks

elution areas (assuming linearity between peak area and concentration of

peptide) it is possible to back calculate the concentration of the peptide in the

original biological sample (Kirkpatrick et al., 2005).



Other applications of MRM in proteomics has been related to the

biomarkers field where it has been used find protein markers for disease severity

in rheumatoid arthritis (Liao et al., 2004) and to validate a virulence biomarker for

fungal pathogens (Melanson et al., 2006). MRM has also been used for low scale

comparative plant proteomics (Wienkoop & Weckwerth, 2006). Finally a recently

published work by Zappacosta et al.(Zappacosta et al., 2006) has applied MRM

to follow the dynamic of phosphorylation of the yeast transcription factor Pho4 in

response to phosphate starvation.

L.2.2.3 QSTAR v/s QTRAP: Resolution v/s Sensitivity and Dynamic Range
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Figure 1.9 - Resolution.
Resolution is calculated
as R = m/dm. In this case
example R = 12500.

et al., 2001; Hoffmann

If I were to explain it in lay terms, it would be

possible to define mass spectrometry resolution as the

number characterizing how far two peaks need to be in

a given mass spectra to be distinguished from each

other or how sharp each individual peak is. Sharper

peaks make easier to distinguish between two adjacent

peaks and thus translate into better resolution.

Formally speaking, peak resolution is defined as

R = m/&n, where m is the m/z value of the peak in

atomic mass units (a.m.u) and &m is the full peak width

at half maximum (FWHM) (Figure 1.9) (Chernushevich

& Stroobant, 2001). In the case of QSTAR mass



spectrometers FWHM is usually around 10000 and goes as high as 15000

(Chernushevich et al., 2001), meaning it is possible to distinguish between peaks

as close as 0.05 - 0.1 a.m.u. (1000 a.m.u). Resolution in The QTRAP is poorer

with FWHM of 2500 at high resolution and FWHM of 1700 at unit resolution,

meaning it is possible to distinguish between peaks as close as 0.3 - 0.5 a.m.u

at high resolution and 0.5 - 0.7 at unit resolution (Hopfgartner et al., 2004).

The definitions of sensitivity and dynamic range are more intuitive and

need not to be formalized. Sensitivity of an instrument is the minimal amount of

sample it can detect and its dynamic range can be defined as the log of the ratio

of the largest to smallest detectable signal (Hoffmann & Stroobant, 2001) and it is

dependent on both the mass spectrometer's detector and ADC. Defining largest

detectable signal as the number of ion counts that can be handled by the

instrument before saturation of either detector or ADC and smallest detectable

signal as the number of ion counts required to detect an ion above noise level

(number of counts at sensitivity limit); dynamic range can be defined as

loglo(number of ion counts before receptor saturation / minimal number of ion

counts required for detection above noise). In the White lab, QSTAR sensitivities

can be pushed to several hundred attomoles (~100 attomole) range, while

QTRAP sensitivities can be pushed down to the low attomole range (-5

attomole). The dynamic range is also better in QTRAP instrument reaching 4 - 5

logs in comparison to 2-3 log scales in the QSTAR.

The differences in resolution, sensitivity and dynamic range between

QTRAP/MRM and QSTAR are mainly due to the longer scan times of the former



and better detector resolution of the second. Clearly if high speed and sensitivity

is needed a QTRAP is a better instrument, but if high resolution is a must a

QSTAR mass spectrometer is preferred.

.2.3 Proteomics and Phosphoproteomics

Thanks to the steady instrumentation improvement the last decade has

seen a significant increase in the efforts to use mass spectrometry to sequence

the proteome and catalog the location of post-translational modification sites on

proteins (Aebersold & Mann, 2003; Carr et al., 2005; Domon & Aebersold, 2006;

Loyet et al., 2005; Meng et al., 2005; Reinders & Sickmann, 2005). In particular

the detection - and during the last 5 years quantification - of phosphorylation

sites of proteins involved in cell signaling has thrived due to the development of

novel mass spectrometry and sample preparation strategies. In this section I'll

address those developments with particular focus on strategies for sample

separation/purification and quantification for liquid chromatography (LC) coupled

mass spectrometry.

.2.3.1 Liquid chromatography coupled mass spectrometry

Tandem liquid chromatography - electrospray ionization - mass

spectrometry methods (LC-ESI-MS) take advantage of high performance liquid



chromatography (HPLC) ability to deliver a sample of interest to the ESI source

during a prolonged period of time; separating the peptides that elute into the

mass spectrometer over time according to their physicochemical characteristics

before they enter the mass spectrometer for analysis (Aebersold & Mann, 2003;

Domon & Aebersold, 2006; Hoffmann & Stroobant, 2001). LCs can be coupled to

MS by using commercial available auto-samplers or by loading the sample off-

line into a capillary column with an integrated electrospray tip (Davis et al., 1995;

Moore et al., 1998; Zhang et al., 2005c). Many kind of beads with a diverse

arrangement of physical properties can be use to pack the columns. To start the

mass spectrometry analysis a liquid gradient - in which usually ionic strength or

hydrophobicity increase over time - is flown through the column at low rate (less

than a pl/minute). As the solvent passing through the column changes, peptides

with different physicochemical characteristics elute from the column into the ESI-

MS MSB (Hunt et al., 1986; Motoyama et al., 2006; Zhang et al., 2005c).

L.2.3.2 Sample Preparation for Phosphoproteomics: Before Mass Spectrometry

Due to low level and poor ionization when compared to non-

phosphorylated peptides enrichment of phosphopeptides before mass

spectrometry analysis is a key step in phosphoproteomics. The last years have

seen the development of several novel approaches toward this end. In this

section I give a brief outlook of some of these techniques.



1) Immobilized Metal Affinity Chromatography (IMAC). IMAC has been

successfully used for phosphorylated peptides prior to mass spectrometry

analysis (Brill et al., 2004; Ficarro et al., 2002; Salomon et al., 2003). This is an

unbiased method that captures peptides phosphorylated at serine, threonine or

tyrosine residues. IMAC columns are activated by using a metal cation (usually

Fe 3 ) that is retained by the column resin. When a peptide mixture is flown

through an IMAC column the negatively charged phosphorylation sites are

captured by the metal cation, while non-phosphorylated peptides flow through.

When a complex mixture is used methyl esterification of carboxyl groups can

greatly increase IMAC yields by removing non-phosphate related negative

charges form the peptide mixture (Brill et al., 2004; Ficarro et al., 2002; Salomon

et al., 2003).

2) Strong Cation Exchange (SCX). SCX at pH 2.7 has also been used to

enrich for phosphorylated peptides, allowing the detection of more than 2000

phosphorylated peptides in the nucleus of Hela cells. At pH 2.7 most tryptic

peptides have a charge of +2 (positive charge at N terminus and lysine or

arginine side chain), singly phosphorylated peptides in contrast have charge +1,

doubly phosphorylated peptides are neutral, and so on. When loaded into an

SCX column phosphorylated peptides will bound weaker than other peptides and

will elute at low ionic strength, thus capturing early eluting fraction of SCX

phosphorylation enrichment can be achieved (Beausoleil et al., 2004).



3) Biased Approaches for Specific Phosphorylation Sites.

a) Phosphoserine / Phosphothreonine. Phosphorylation in serine and threonine

residues is a labile modification where the phosphate - residue bond can be

easily cleaved or replaced, one strategy for enrichment takes advantage of this to

replace these phosphates by biotinylated moieties that can then be used for

immobilized avidin enrichment of the former phosphor-proteins from complex

mixtures before mass spectrometry analysis (Oda et al., 2001). Other strategies

use the same characteristic to transform phosphoserines and phosphothreonines

in lysine analogs (aminoethylcysteine and P-methylaminoethylcysteine,

respectively) that can be cleaved with a lysine specific protease to identify sites

of phosphorylation (Knight et al., 2003; Rusnak et al., 2002).

b) Phosphotyrosine. There are several good anti-phosphotyrosine antibodies in

the market that are amenable to protein immunoprecipitation (IP). This has

resulted in that most strategies oriented to the identification of tyrosine

phosphorylation sites have been based on protein IP with these antibodies.

Phosphotyrosine IP followed in a more traditional scheme by gel electrophoresis

and in gel proteolytic digestion before MS/MS analysis (Pandey et al., 2000a;

Steen et al., 2001, , 2002) or in solution proteolytic digestion followed by peptide

chemical modification of glutamate and aspartate for negative charge ablation on

non-phosphorylated peptides and IMAC before LC-MS/MS analysis (Brill et al.,

2004; Salomon et al., 2003). A novel method developed in parallel to this thesis

work by Rush et al. uses anti-phosphotyrosine antibodies to IP tryptic peptides



from whole cell lysates (Rush et al., 2004) before LC-MS/MS analysis. This

method advantage is that it purges the sample of most non-tyrosine-

phosphorylated in the sample before mass spectrometry analysis.

1.2.3.3 Detection Strategies for Phosphoproteomics

In addition to IDA and MRM - methods used in this thesis and explained

at length above - several other methods had been used to identify

phosphorylation sites in mass spectrometry based proteomics in this section I

give a short review of two of them.

1) Precursor ion scanning. In this mode the first analyzer (Q1 in either a

Qq-TOF or triple quad) is allowed to let all peptides through for CAD in Q2. The

second analyzer (TOF in Qq-TOF or Q3 in triple quad) are set to transmit only

one specific fragment into the detector, which is usually a sign of a PTM-peptide.

Precursor ions that generate this fragment are then isolated in Q1, fragmented in

Q2 and analyzed in the second analyzer to obtain the peptide complete

sequence and site of PTM (Domon & Aebersold, 2006). This setting has been

used in both negative and positive ion mode to identify tyrosine phosphorylated

peptides (Hinsby et al., 2003; Steen et al., 2003).

2) Neutral loss scanning. In this mode the first and second analyzer are

synchronized so that the m/z difference of ions passing through them is kept



constant all the time. The mass difference corresponds to a neutral loss from the

ion scanned in the first analyzer that was lost during CAD in the collision cell.

When such event occurs the precursor ion is isolated in Q1, fragmented in Q2

and analyzed in the second analyzer to obtain the complete peptide sequence

and site of PTM if applicable (Domon & Aebersold, 2006). This mode had been

use in phosphoproteomics to identify sites of threonine or serine phosphorylation

which present a neutral loss of 98, 49, 33.7, 24.5, etc (z= 1,2,3,4, etc.

respectively) (Bateman et al., 2002; Schlosser et al., 2001)

1.2.3.4 Quantification Methods for Mass Spectrometry

Labeling strategies for mass spectrometry based quantification can be

divided essentially in three groups: metabolic stable isotope labeling, isotope

tagging by chemical reaction and stable isotope incorporation via enzyme

reaction (Aebersold & Mann, 2003). The first group main strategy is stable

isotope labeling with amino acids in cell culture (SILAC) (Ong et al., 2002), but

metabolic labeling has also been achieved using heavy salts in cell culture

(Conrads et al., 2002). The second group is more diverse including chemistries

targeted to label sulphydyl groups (isotope coded affinity tagging - ICAT) (Gygi

et al., 1999; Zhou et al., 2002), phosphate ester groups (Oda et al., 2001; Zhou

et al., 2001), N-linked carbohydrates (Zhang et al., 2003; Zhang et al., 2005a),

serine and cysteine hydrolases active groups (Greenbaum et al., 2000; Liu et al.,

1999) and chemistries targeted to label amine groups (Munchbach et al., 2000)



the main exponent of this group are iTRAQ reagents whose application was first

reported by Ross et al. (Ross et al., 2004b). Finally the third strategy, enzymatic

labeling is achieved by transferring 180 from water to peptides during enzymatic

proteolysis (Mirgorodskaya et al., 2005; Mirgorodskaya et al., 2000; Reynolds et

al., 2002; Yao et al., 2001 b).

In this section I will briefly review and discuss the advantages and

disadvantages of SILAC and iTRAQ labeling techniques for mass spectrometry

quantification. These techniques are the most amenable and widely use

techniques for phosphoproteomics quantification. As a caution note it has to be

said that both techniques are used to measure changes and not absolute levels

of phosphorylation. For absolute phosphorylation measurements the AQUA

method (Kirkpatrick et al., 2005) outlined in the triple quadrupole MRM section is

recommended.

1) SILAC is a technique that relies in the use of cell culture media

containing exclusive combinations of 12C, 13C, 14N and 15N arginine and/or lysine

for quantification in MS to distinguish proteins from cells grown using the different

media. In theory 100% of the proteins in a cell culture could be labeled using this

technique and usually after 5 media changes from normal to SILAC media

protein labeling in a culture is virtually complete. SILAC quantification occurs in

MS mode (Ong et al., 2002).
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Figure 1.10 - iTRAQ Chemistry. (A), diagram showing the components of the multiplexed
isobaric tagging chemistry. The complete molecule consists of a reporter group (based on N-
methylpiperazine), a mass balance group (carbonyl), and a peptide-reactive group (NHS ester).
The overall mass of reporter and balance components of the molecule are kept constant using
differential isotopic enrichment with 13C, 15N, and 180 atoms (B), thus avoiding problems with
chromatographic separation seen with enrichment involving deuterium substitution. The number
and position of enriched centers in the ring has no effect on chromatographic or MS behavior.
The reporter group ranges in mass from m/z 114.1 to 117.1, while the balance group ranges in
mass from 28 to 31 Da, such that the combined mass remains constant (145.1 Da) for each of
the four reagents. (B) when reacted with a peptide, the tag forms an amide linkage to any peptide
amine (N-terminal or _ amino group of lysine). These amide linkages fragment in a similar
fashion to backbone peptide bonds when subjected to CID. Following fragmentation of the tag
amide bond, however, the balance (carbonyl) moiety is lost (neutral loss), while charge is
retained by the reporter group fragment. The numbers in parentheses indicate the number of
enriched centers in each section of the molecule. (C) illustration of the isotopic tagging used to
arrive at four isobaric combinations with four different reporter group masses. A mixture of four
identical peptides each labeled with one member of the multiplex set appears as a single,
unresolved precursor ion in MS (identical m/z). Following CID, the four reporter group ions
appear as distinct masses (114-117 Da). All other sequence-informative fragment ions (b-, y-,
etc.) remain isobaric, and their individual ion current signals (signal intensities) are additive. This
remains the case even for those tryptic peptides that are labeled at both the N terminus and
lysine side chains, and those peptides containing internal lysine residues due to incomplete
cleavage with trypsin. The relative concentration of the peptides is thus deduced from the relative
intensities of the corresponding reporter ions. In contrast to ICAT and similar mass-difference
labeling strategies, quantitation is thus performed at the MS/MS stage rather than in MS.
Reprinted by permission of Figure 1.10 was Reprinted by permission from ASBMB Journals:
Molecular Cellular Proteomics 3: 1154-1169, copyright 2004



2) iTRAQ labeling of whole proteins or tryptic peptides is a chemical

modification to peptides/proteins that uses four amine reactive isobaric tags

capable of covalently binding to a peptide N-terminus and to lysine side chains

and differ only in the positioning of isotopically tagged atoms (Figure 1.10,

Copyright Molecular Cellular Proteomics). iTRAQ labeling is always done after

cell lysis and protein digestion and can be used to quantify up to four samples at

a time. iTRAQ quantification occurs in MS/MS mode by the detection of

distinctive marker ions of m/z 114 - 117 that are released when labeled peptides

are subjected to CAD (Ross et al., 2004b).

While the advantage of SILAC is labeling during cell culture, avoiding

further chemical modification of the sample and allowing the use of as much

sample as needed. iTRAQ labeling gives the possibility of studying both

experimental and clinical samples, such as tumor biopsies. Also, the MS/MS

quantification gives a cleaner mass spectrometry run allowing for easier study of

complex mixtures and it is easily applicable for site specific quantification of

phosphorylation in contrast to SILAC which has been usually used to measure

total protein phosphorylation. With their merits and de-merits SILAC and iTRAQ

had been successfully used to study epidermal growth factor receptor (EGFR)

mediated signaling (Blagoev et al., 2004) and to compare EGFR and platelet

derived growth factor receptor (PDGFR) mediated signaling (Kratchmarova et al.,

2005) (SILAC) and EGFR family mediated signaling (Zhang et al., 2005c) (MSB),

CD3 and CD28 activated pathways (Kim & White, 2006) and insulin related

signaling (Schmelzle et al., 2006) (iTRAQ).



1.3 MOTIVATION

All phosphorylation-mediated cellular signaling cascades are bound by the

same principles. After receptor-ligand stimulation a dynamic relationship between

component proteins in the pathway generates site and time-specific

phosphorylation/dephosphorylation events that propagate down the cascade until

the desired response is elicited. Most proteins have more than one potential

phosphorylation site, and phosphorylation/dephosphorylation of different sites in

the same protein may lead to different responses; i.e. activation events may

involve a particular protein, but specific phosphorylation sites regulate the cellular

activity (Gotoh et al., 1997; Moro et al., 2002). So far, most of the literature deals

with either time dynamics on the activation of a handful of proteins and

phosphorylation sites (Irish et al., 2004; Krutzik et al., 2004) or global

identification of protein phosphorylation sites under static conditions (Beausoleil

et al., 2004; Brill et al., 2004; Ficarro et al., 2002; Salomon et al., 2003).

Our current knowledge about the EGFR-related pathways dynamics and

the phosphorylation sites of their proteins represent the summary of decades of

work by many groups using traditional biochemistry tools to study the activation

of only several proteins at a time. Only recently has mass spectrometry been

used to identify many tyrosine phosphorylation sites in receptor tyrosine kinase

pathways (Hinsby et al., 2003; Pandey et al., 2002; Pandey et al., 2000b; Steen

et al., 2002) and to monitor total phosphotyrosine content in pathway proteins



over time (Blagoev et al., 2004). However, these studies have not provided

information on the dynamic regulation of specific tyrosine phosphorylation sites.

This thesis is divided in two sections. In the first section I will talk of a

proof of principle therapeutic approach developed in collaboration between

professors Lauffenburger and Wittrup laboratories to block EGFR activation

without necessarily blocking ligand binding. This approach has the potential to be

highly useful in EGFR driven cancers, especially in those were intracellular

signaling potentiated by autocrine loops and ligand binding blocking antibodies

seem not to work.

The second section will deal with the development, application to

EGFR/HER2 signal and further refinement of a new highly quantitative and

specific mass spectrometry based technology to study cellular tyrosine

phosphorylation networks with temporal and biological condition resolution that

was developed in collaboration between professors Lauffenburger and White

laboratories. This technology allows the simultaneous discovery, monitoring and

measurement across time and biological condition space of tyrosine

phosphorylation events with high accuracy, expanding our knowledge of cellular

networks and generating high quality data that can be used for pathway

modeling, detection of non-intuitive pathway biomarkers, the generation of new

hypothesis on the role of different proteins within the cellular environment and

their role in cell phenotypic responses and possibly the discovery of new and

more effective drugs targets for cancer.
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Receptor Phosphorylation and Decrease High-Affinity

Binding by Blocking Preformed Dimers
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11.1 SUMMARY

We have generated two rabbit polyclonal antibodies that bind either

EGFR's domain 11 dimerization arm or a domain IV putative dimerization loop.

We have studied the effect of these antibodies on EGF-EGFR binding, EGFR

dimerization and EGFR mediated phosphorylation. We found that both antibodies

abrogate the high affinity component of EGF-EGFR binding, but do not compete

with ligand binding. They also block EGFR homo- and hetero-dimerization and

inhibit EGFR mediated phosphorylation of itself and HER2.

Refined versions of these antibodies as humanized monoclonal antibodies

hold great potential for cancer therapy, especially in tumors driven by EGFR

autocrine loops or constitutively active mutants where ligand-competitive

antibodies efficiency might be low.

Based on our experimental results Ginger Chao developed an equilibrium

model for receptor dimerization and ligand binding. Details on the model will be

part of Ginger's thesis and will also appear in a future publication co-authored by

both of us (Wolf-Yadlin et al, work in progress).
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11.2 MATERIALS AND METHODS

11.2.1 Peptides and antibodies

DII and DIV peptides were synthesized, conjugated to KLH, and used to

raise polyclonal antibodies rabbits by Cell Essentials (Boston, MA). The rabbit

antisera were purified using ammonium sulfate precipitation followed by dialysis.

Monoclonal antibody 225 was secreted from hybridoma cells (American Type

Culture Collection, ATCC) and purified using ammonium sulfate precipitation

followed by protein G purification (Sigma). Anti-EGFR and anti-HER2 rabbit

polyclonal antibodies for Western blots were purchased from Cell Signaling

Technologies and used at 1:1000. Anti-EGFR pY1173 and anti-HER2 pY1248

antibodies were purchased from Santa Cruz Biotechnology and used at 1:100.

Horseradish peroxidase-conjugated donkey anti-rabbit antibody was purchased

from Amersham Biosciences. Phycoerythrin (PE)-labeled goat anti-rabbit

antibody and Alexa488-labeled EGF were purchased from Molecular Probes.

I.2.2 Cell Culture

184A1 human mammary epithelial cells (Stampfer & Bartley, 1985)

(parental HMECs) were a generous gift from Martha Stampfer (Lawrence

Berkeley Laboratory, Berkeley, CA) and were maintained in DFCI-1 medium
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supplemented with 12.5 ng/ml EGF (Peprotech) (Band & Sager, 1989). 184A1

HMECs over-expressing HER2 (HMECs 24H) were a kind gift form Steven Wiley

(Pacific Northwest National Laboratory, Richland, WA) and were maintained in

DFCI-1 medium supplemented with 12.5 ng/ml EGF and 150 pg/ml G418

(Hendriks et al., 2003a).

II.2.3 Cell Treatment

Cells were grown to 80% confluence in 6-well or 10 cm plates. The cells

were washed with phosphate-buffered saline (PBS) and serum starved overnight

in serum-free media (DFCI-1 without sodium bicarbonate, EGF, bovine pituitary

extract, and fetal bovine serum). The cells were then washed with PBS and

incubated for 2 hour at 370C in serum-free media containing various

concentrations of the anti-Dil or anti-DIV antibody. Following, the cells were

again washed with PBS and incubated for 5 minutes at 370C in serum-free media

containing 25 nM EGF. Finally the cells were once more washed with PBS and

lysed with lysis buffer as described in (Janes et al., 2003).
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11.2.4 Protein Quantification

Protein concentration of cell lysates was determined using the micro

bicinchoninic acid assay (micro-BSA - Pierce) according to the manufacturer's

protocol.

11.2.5 Quantitative Western Blot Analysis

40 pg of cell lysates/well were mixed with 4x sample buffer (250 mM Tris-

HCI pH 6.8, 8% SDS, 40% glycerol, 0.04% bromophenol blue, and 400 mM DTT)

and boiled for 5 minutes. Cell lysates were then separated by SDS-PAGE and

transferred onto PDVF membranes. Membranes were blocked with 5% non-fat

milk powder in TBST (20 mM Tris-HCI pH 7.5, 137 mM NaCl, 0.1% Tween-20)

for 1 hour at room temperature and incubated overnight at 40C in primary

antibody, washed 3 times for 5 minutes in TBST and incubated for 1 hour at

room temperature in secondary antibody (1:5000 horseradish peroxidase-

conjugated donkey anti-rabbit in TBS-T, 5% non-fat milk powder) washed again 3

times for 5 minutes with TBS-T. Blots were developed with ECL Advance

western blotting detection kit (Amersham), scanned on a Kodak Image Station

1000 and quantified using Kodak 1D 3.5 software. Relative phosphorylation

intensities were calculated by dividing the phosphorylation sites intensities by the

total receptor intensity measurement and normalizing by the positive control ratio.
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II.2.6 Flow Cytometry

Cells were grown and serum starved as above. The cells were then

washed, detached using a cell scraper, spun down at 2500 rpm, and washed 3

times in PBS. The cells were incubated for 2 hours at room temperature with

200 pl of 200 pg/ml anti-DII or anti-DIV rabbit polyclonal - and 10 fold excess of

immunizing peptide for peptide competition experiments. After primary

incubations, the cells were washed 3 times and incubated for 2 h at 40C with 10

pg/mI PE-labeled anti-rabbit antibody and/or 10 pg/mI Alexa488-labeled EGF for

simultaneous binding experiments. For Scatchard analysis the cells were

incubated with various concentrations of Alexa488-EGF for a period of 7 hours

(to ensure receptor trafficking steady state). Mean fluorescence levels were

measured using a Coulter Epics XL flow cytometer (Beckman-Coulter) and

further analyzed with WinMDI software (J. Trotter, Scripps University).
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11.3 RESULTS

11.3.1 Rabbit polyclonal antisera generation

Two peptides were designed to mimic the EGFR domain II (DII)

dimerization arm and one of domain IV (DIV) loops that is suspected to

participate in receptor dimerization (Figure 11.1). To best mimic their structure

within EGFR, the peptides were synthesized as disulfide-bonded loops with

additional spacer sequences (NH2-KCGLYNPTTYQMDGCG-CONH 2 for Dil and

NH2-CMGENNTC-CONH 2 for DIV). The

peptides were then used to immunize

rabbits, and polyclonal antisera against

these peptides were harvested. Based on

the locations of the immunizing peptides in

the EGFR structure, it was expected that

antibodies binding to these EGFR epitopes

should sterically inhibit receptor

Figure 11.1 - EGFR epitopes dimerization.
selected for peptide mimics and
antibody harvesting. EGFR-EGF Competition binding experiments in
homodimer is shown as blue and red
ribbons (EGFR) and green ribbons the presence of pAbs cognate peptide were
(EGFR). Epitopes from domain 11
dimerization arm (blue and red space-
fill) and a putative dimerization loop in performed to determine the specificity of
domain IV (cyan and magenta space
fill) were selected for peptidomimetics each rabbit polyclonal antibody (pAb). Both
and polyclonal antibody rising.

anti-DII and anti-DIV pAbs showed strong
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binding to the high EGFR expressing HMECs (Figure 11.2). While cognate peptide

competition resulted in reduced binding for both pAbs, the unrelated peptide did

not have any effect in Ab binding. This demonstrates the specificity of the pAbs

for the EGFR peptide epitopes they were raised to act on.

DIV pAb +

A

DII pAb +
DII Deptid<

Mean fluorescence

DII pAb
alone

Mean fluorescence

Figure 11.2 - Specificity of rabbit polyclonal antibodies. The specificity of anti-Dil (A) and anti-
DIV (B) antibodies was tested by competition binding experiments. Antibody binding to EGFR on
the surface of HMECs was tested alone and in the presence of cognate and cross peptides. Anti-
DII antibody binding to EGFR was ablated by DII peptide, but not DIV peptide (A). Anti-DIV
antibody binding to EGFR was ablated by DIV peptide, but not DII peptide (B).

11.3.2 Effect of antisera on receptor activation

In order to determine the effect of the pAbs on EGFR phosphorylation in

HMECs we performed a series of quantitative western blots (Figure 11.3). Upon

treatment with either antibody the cells showed a concentration-dependent

decrease in EGFR tyrosine 1173 phosphorylation. This response was specific to
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Figure 11.3 - Effect of anti-DIl and anti-DIV polyclonal antibodies in EGFR activity measured
as pY 1173 auto-phosphorylation. (A) Exemplary quantitative western blot showing
concentration dependent effect of anti-DiI and anti-DIV on EGFR pY1 173 auto-phosphorylation.
(B) EGF binding mediated phosphorylation of EGFR pY1 173 in the presence of anti-DII (white)
and anti-DIV (black) antibodies normalized to EGF treatment only. At least 3 biological replicates
were used, experiments as in (A). (C) Comparison of the effect on EGFR pY1 173
phosphorylation of treating the cells with 1OOnM of monoclonal antibody 225 or 1.4pM of either
pre-bleed serum, anti-DiI, anti-DIV or an equal combination of anti-DiI and anti-DIV.

antibodies binding to the peptides, as similar treatment with pre-injection antisera

yielded no effect on EGFR phosphorylation (Figure 11.3). The Abs also appear to

act synergistically as a combination treatment of the cells with anti-DII and anti-

DIV at the same total concentration as the Abs alone yielded a further inhibition

of EGFR pY1 173 phosphorylation than either Ab alone. However, ligand-

competitive monoclonal antibody 225 performed better than both polyclonal,

either alone or in combination (Figure 11.3).
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Figure 11.4 - The polyclonal antibodies block homo- and hetero-dimerization. Cells were
pretreated with 1OOnM of monoclonal antibody 225 or 1.4 pM of anti-DII or anti-DIV
antibodies.
(A) EGFR pY1 173 relative phosphorylation was inhibited by both polyclonal antibodies and 225
(B) HER2 pY1248 relative phosphorylation was inhibited by both polyclonal antibodies and 225.
These results indicate the ability of both polyclonal antibodies to block not only EGFR, but also
EGFR mediated HER2 activation. Experiments were performed at least in triplicate.

Physiological levels of HER receptors in HMECs are 2x10 5 EGFR and

2x1 04 HER2 receptors per cell whereas HMECs 24H overexpress HER2 30 fold

(6x1 05 receptors per cell) were used for further experiments to approximate a

malignant state (Hendriks et al., 2003a). In order to asses the ability of our pAbs

to block not only homo-, but also hetero-dimerization additional quantitative

western blots were performed using pAb treatment on HMECs 24H (Figure 11.4).

The results show that both DII and DIV pAbs were able to reduce EGFR tyrosine

1173 and HER2 tyrosine 1248 phosphorylation in cells overexpressing HER2,

implying that the pAbs inhibit both EGFR/EGFR homodimerization and

EGFR/HER2 heterodimerization. Although when compared to monoclonal

antibody (mAb) 225 (Sato et al., 1983) our antibodies show to be less effective in

reducing receptor phosphorylation a direct comparison between the antibodies is

not possible given the undefined affinity and composition of the polyclonal

antisera. These experiments also demonstrated that the pAbs do not activate the
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FIgure 11.5 - Binding of anti-Oil and anti-DIV
antibodies does not affect EGF binding to
EGFR on HMECs. (A) Anti-rabbit Ab alone does
not bind EGFR. (B) EGF binds EGFR. (C) Anti-
DII binds EGFR. (D). Anti-DIV binds EGFR.
(E) and (G) EGF binds EGFR in the presence of
anti-DiI. (F) and (H) EGF binds EGFR in the
presence of anti-DIV.

receptor in the absence of EGF, a

possibility suggested by

preliminary data that was proven to

be just an artifact (data not

shown).

In order to discriminate the

mechanism by which the pAb

inhibited signaling, HMECs were

labeled with the pAbs and a

saturating concentration of

Alexa488-labeled EGF. The cells

were then analyzed by flow

cytometry (Figure 11.5). As shown

in Figure 11.5 the pAbs and EGF

were able to bind cells

simultaneously. Furthermore,

binding of pAb to the cells did not

diminish the EGF binding to them.

This demonstrates that the pAbs

do not block EGF ligand binding

and eliminates the possibility that

the pAbs were inhibiting receptor signaling by simply competing with ligand

binding.
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11.3.3 Effect of antisera on EGF binding
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Figure 11.6 - Equilibrium titration and Scatchard plots show that anti-Dil and anti-DIV
antibodies abrogate the high affinity binding component of EGF-EGFR. (A) Equilibrium
titration of EGF-EGFR binding on the surface of HMECs. * EGF only. E EGF in the presence of
anti-DII. A EGF in the presence of anti-DIV. (B), (C) and (D) Corresponding Scatchard plots.

Although at saturating concentrations of EGF the pAbs did not affect EGF

binding, pretreatment of HMECs with the pAbs resulted in altered EGF

equilibrium titration and Scatchard plots (Figure 11.6). In fact, while untreated cells

titrated with EGF displayed the typical high affinity EGFR population seen

previously in other cell lines (Mattoon et al., 2004; Schlessinger, 1988; Walker et

al., 2004), which results in a concave-up Scatchard plot (Figure 11.6B),

pretreatment of the cells with either of the pAb eliminated this high-affinity
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component, and the EGF titration data resembled a typical sigmoidal curve seen

in single-site binding (Figure ll.6A). Given that the elimination of high affinity EGF

receptors resulted from the binding of either dimerization-blocking antibody we

postulated that the high affinity component is due to the existence of preformed

EGFR dimers. This hypothesis was further tested and computationally

corroborated by Ginger Chao (Wolf Yadlin et al. work in progress)
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11.4 DISCUSSION

In this chapter I have shown the effect of pAbs against EGFR domains 1I

and IV in ligand mediated receptor phosphorylation, dimerization as well as

ligand binding. Both pAbs (directed against domain II and IV) were shown to be

specific for their target peptides and are able to block EGFR homodimerization

and EGFR/HER2 heterodimerization, resulting in a significant decrease of EGFR

and HER2 phosphorylation. Furthermore, inhibition of ligand binding can be ruled

out as a reason for the observed reduced levels of receptor phosphorylation as

both pAbs show no effect on ligand binding at the EGF saturating concentrations

that were use for the phosphorylation assays. Whereas most anti-EGFR

antibodies inhibit EGFR phosphorylation by competing with ligand binding

(Graeven et al., 2006; Heymach et al., 2006; Holbro & Hynes, 2004; Sato et al.,

1983; Yang et al., 2001), the anti-DII and anti-DIV antibodies inhibit EGFR

mediated phosphorylation in a similarly to the way monoclonal antibody 2C4

(pertuzumab) inhibits HER2 mediated phosphorylation, i.e., by sterically blocking

dimer formation (Franklin et al., 2004; Heymach et al., 2006; Holbro & Hynes,

2004).

To the extent of our knowledge this is the first reported case of anti-EGFR

Abs acting through the inhibition of dimerization and independent of ligand

competition. Another Ab, monoclonal antibody 806 has been shown to bind to a

transitional form of EGFR between the tethered and extended monomeric
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conformations (Johns et al., 2004; Walker et al., 2004), and its binding epitope

and predicted structure suggest that binding of 806 should inhibit EGFR

dimerization (Johns et al., 2004; Sivasubramanian et al., 2006). Whereas 806

acts (or doesn't) via inhibition of EGFR dimerization experimental results have

shown that EGF binding can greatly decrease 806 binding to EGFR and hence

its ability to inhibit EGFR activation in a physiological context (Walker et al.,

2004). Therefore not withstanding its mechanism of action 806 competes directly

- by sterically impeding ligand receptor binding - or indirectly - by stabilizing an

alternative receptor conformation that does not favor ligand binding - with EGF

binding.

In the course of this work we have identified two novel EGFR domain |1

and IV epitopes. We raised rabbit polyclonal antibodies against these epitopes

and showed that they inhibit receptor dimerization and activation while

simultaneously allowing ligand binding. Although the pAbs do not inhibit EGF

binding at saturating concentrations of the ligand, Figure 11.6 shows that both

pAbs eliminate the high affinity component of EGFR-EGF binding. This fact lead

us to propose that this component is due to the presence of preformed EGFR

dimers on the cell surface, a hypothesis that was computationally corroborated

by a model developed by Ginger Chao. Furthermore, the model was able to

satisfactorily fit the data without any assumption external to our current biological

knowledge of EGFR biology (Wolf Yadlin et al).

Further refinement of antibodies with the same set of properties as above-

for example humanized monoclonal antibodies against the domain II and domain
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IV epitopes - may have very useful therapeutical applications as blocking agents

of EFGR activated signaling cascades, specially in the treatment of tumors driven

by autocrine EGFR signaling (Sizeland & Burgess, 1992). In this class of tumors

ligand-competitive antibodies efficiency is low due to the high levels of effective

ligand concentration on the surface of the cell, which make antibody blocking of

ligand binding nearly impossible. A second potential target for the anti-DIV

antibody may be EGFRvIII, a truncation mutant, which has lost expression of

most of domain II - including the dimerization arm - and signals independently of

ligand binding (Nishikawa et al., 1994). An anti-DIV Ab might inhibit EGFRvIII

dimerization with itself or with wild type EGFR. Finally, antibodies binding to

these domains I and IV epitopes could also be used in combination with each

other or with other existing EGFR antibody and tyrosine kinase inhibitor

therapies.
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111.1 SUMMARY

Ligand binding to cell surface receptors initiates a cascade of signaling

events regulated by dynamic phosphorylation events on a multitude of pathway

proteins. Quantitative features, including intensity, timing, and duration of

phosphorylation of particular residues, may play a role in determining cellular

response, but experimental data required for analysis of these features have not

been available before this thesis work.

In order to understand the dynamic operation of signaling cascades, we

have developed a methodology enabling the simultaneous quantification of

tyrosine phosphorylation of specific residues on dozens of key proteins in a time-

resolved manner, downstream of EGFR activation. Although we used EGFR

signaling as a proof of principle system, our methodology can be easily extended

for its use in alternative signaling cascades and to compare dynamic and static

phosphorylation states of different biological samples including clinical biopsies.

Cells were stimulated with EGF for 0, 5, 10 and 30 minutes and tryptic

peptides from each stimulation time point were labeled each with one of four

isoforms of the iTRAQ reagent to enable downstream quantification. The labeled

samples were mixed and tyrosine-phosphorylated peptides were

immunoprecipitated with an anti-phosphotyrosine antibody and further enriched

by IMAC prior to LC/MS/MS analysis. We identified and quantified relative time

courses of 78 tyrosine phosphorylation sites on 58 proteins from a single

analysis. Replicate analyses of a separate biological sample provided both
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validation of this first data set and identification of 26 additional tyrosine

phosphorylation sites and 18 additional proteins.

Computational analysis of the quantitative temporal phosphorylation

profiles using self-organizing maps resulted in identification of several groups of

tyrosine residues exhibiting similar temporal phosphorylation profiles. Each group

defined a dynamic module in the EGFR signaling network consistent in many

cases with particular cellular processes and/or potential phosphorylation by a

limited number of related tyrosine kinases. The presence of novel proteins and

associated tyrosine phosphorylation sites within these modules indicates

additional components of the EGFR network and potentially localizes the

topological action of these proteins.

Part of this work has been previously published in molecular cellular

proteomics (MCP) volume 4(9), September 2005, pages 1240-1250 (Zhang et

al., 2005c). MCP does not required copyright permission request for students

wanting to reproduce or republish their work for educational purposes, please

refer to the permission section at the end of this thesis or in its defect please

refer to http://www.mcponline.orq/misc/Copyright Permission.shtml.
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111.2 MATERIALS AND METHODS

111.2.1 Cell Culture, EGF stimulation

184A1 HMECs (parental human mammary epithelial cells (Stampfer &

Bartley, 1985)) were a kind gift from Martha Stampfer (Lawrence Berkeley

Laboratory, Berkeley, CA) and were maintained in DFCI-1 medium

supplemented with 12.5 ng/ml EGF, as in (Hendriks et al., 2003a). Cells were

washed with PBS, and incubated for 12 hours in serum free media (DFCI-1

without EGF, bovine pituitary extract, or fetal bovine serum) after 80% confluence

was reached in 15 cm plates (- 3x107 cells). The synchronized cells were

washed with PBS after removal of media. The cells were then stimulated with 25

nM EGF in serum free media without sodium bicarbonate for 5, 10 or 30 minutes,

or left untreated with serum free media for 5 min as control before lysing.

111.2.2 Protein Quantification

Protein concentration of cell lysates was determined using the micro

bicinchoninic acid assay (micro-BSA - Pierce) according to the manufacturer's

protocol.
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111.2.3 Cell Lysis, Protein Digestion and Peptide Fractionation

After EGF stimulation, cells were lysed on ice with 3 ml of 8 M urea

supplemented with 1 mM Na3VO4. A 10 pl aliquot was taken from each sample to

perform the micro bicinchoninic acid protein concentration assay (Pierce)

according to the manufacturer's protocol. Cell lysates were reduced with 10 mM

DTT for 1hr at 56 *C, alkylated with 55 mM iodoacetamide for 45 min at room

temperature, and diluted to 12 ml with 100 mM ammonium acetate, pH 8.9. 40 pg

trypsin (Promega) was added to each sample (- 100:1 substrate to trypsin ratio)

and the lysates were digested overnight at room temperature. The whole cell

digest solutions were acidified to pH 3 with acetic acid (HOAc), and loaded onto

C18 Sep-Pak Plus Cartridges (Waters). The peptides were desalted (10 mL 0.1%

HOAc) and eluted with 10 mL of a solution comprised of 25% acetonitrile (MeCN)

with 0.1% HOAc. Each sample was divided into ten aliquots and lyophilized

overnight to dryness for storage at -800C.

Ill.2.4 iTRAQ Labeling and peptide Immunoprecipitation

Peptide labeling with iTRAQ reagent (Applied Biosystems) was performed

according to the manufacturer's protocol. Briefly, each aliquot (3 x106 cell

equivalent) was reacted with one tube of iTRAQ reagent (e.g. acquisition of this

data set from the first biological sample required 8 tubes of iTRAQ reagent - 2 x
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iTRAQ-114 (0 min), 2 x iTRAQ-115 (5 min), 2 x iTRAQ-116 (10 min), and 2 x

iTRAQ-1 17 (30 min)) after the sample was dissolved in 30 pl of 0.5 M

triethylammonium bicarbonate (N(Et)3HC03) pH 8.5 and the iTRAQ reagent was

dissolved in 70 pl of ethanol. The mixture was incubated at room temperature for

1 hr and concentrated to ~ 20 pl. Samples labeled with four different isotopic

iTRAQ reagents were combined and concentrated to 10 pl, then dissolved in 200

pl of IP buffer (100 mM Tris, 100 mM NaCl, 1% NP-40, pH 7.4) and 200ul of

water, and pH was adjusted to 7.4. The mixed sample was incubated with 4 pg

immobilized PY99 (Santa Cruz) overnight at 40C. The antibody beads were

spun down for 5 minutes at 7000 rpm and the supernatant was separated and

saved. The antibody-bound beads were washed twice with 200 pl IP buffer for 10

minutes and twice with rinse buffer (100 mM Tris, 100 mM NaCl, pH 7.4) for 5

minutes at room temperature. The phosphotyrosine containing peptides were

eluted from antibody with 50 pl of 100 mM glycine pH 2.5 for 1 hr at room

temperature.

111.2.5 IMAC and Mass Spectrometry Analysis

Phosphopeptide enrichment on IMAC was performed as

described (Ficarro et al., 2002), with the exception that peptides were not

converted to methyl esters. Following antibody elution, peptides were loaded

onto a 10-cm long self-packed IMAC (20MC, Applied Biosystems) capillary
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column (200 pm ID, 360 pm OD), and rinsed with organic rinse solution (25%

MeCN, 1% HOAc, 100 mM NaCl) for 10 min at 10 pL/min. The column was

equilibrated with 0.1% HOAc for 10 min at 10 pL/min and eluted onto a 10-cm

long self-packed C18 capillary precolumn (100 pm ID, 360 pm OD) with 50 pl of

250 mM Na2HPO4, pH 8.0. After 10 min rinse (0.1% HOAc), the precolumn was

connected to a 10-cm long self-packed C18 (YMC-Waters 5 pm ODS-AQ)

analytical capillary column (50 pm ID, 360 pm OD) with an integrated

electrospray tip (-1 pm orifice). Peptides were eluted using a 100 min gradient

with solvent A (H20/HOAc, 99/1 vol/vol) and B (H20/MeCN/HOAc, 29/70/1

vol/vol): 10 min from 0% to 15% B, 75 min from 15% to 40% B, 15 min from 40%

to 70% B. Eluted peptides were directly electrosprayed into a quadrupole time-of-

flight mass spectrometer (QSTAR XL Pro, Applied Biosystems). MS/MS spectra

of five most intense peaks with 2 to 5 charges in the MS scan were automatically

acquired in information-dependent acquisition with previously selected peaks

excluded for 40 seconds.

Ill.2.6 Western Blot Analysis

40 pg protein from each sample was mixed with 4x sample buffer (250 mM Tris-

HCI pH 6.8, 8% SDS, 40% glycerol, 0.04% bromophenol blue and 400 mM DTT)

and boiled for 5 minutes. Proteins were separated by SDS-PAGE and transferred

onto PDVF membranes. After blocking for 1 hour at room temperature
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membranes were incubated overnight at 40C in primary antibody, washed 3

times for 5 min in TBS-T (20 mM Tris-Hcl pH 7.5, 137 mM NaCl, 0.1% Tween-

20), incubated for 1 hr at room temperature in secondary antibody (dilution

1:2500 Horseradish peroxidase conjugated donkey anti-rabbit in TBS-T, 5% non-

fat milk powder) (Amersham Biosciences) and finally washed 3 times for 5 min

with TBS-T. Blots were developed with ECL Advance western blotting detection

kit (Amersham) and scanned on a Kodak Image Station 1000. Primary antibodies

used were anti-EGFR, for loading control; anti-EGFR pY1 148; anti-FAK pY576;

anti-STAT-3 pY705 (all from Cell Signaling Technologies) and anti-Gsk-3-0

pY216 (Upstate Biotechnology).

111.2.7 Phosphopeptide Sequencing, Data Clustering and Analysis

MS/MS spectra were extracted and searched against human protein

database (NCBI) using ProQuant (Applied Biosystems) and MASCOT (Matrix

Science). For ProQuant, an interrogator database was generated by predigesting

the human protein database with trypsin and allowing one miscleavage and up to

six modifications on a single peptide (phosphotyrosine s 2, phosphoserine 1,

phosphothreonine s 1, iTRAQ-lysine 5 4, and iTRAQ-tyrosine s 4). Mass

tolerance was set to 0.15 amu for precursor ions and 0.1 amu for fragment ions.

For MASCOT, data was searched against the human non-redundant protein

database with trypsin specificity, 2 missed cleavages, precursor mass tolerance
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set to 1.5 Da and fragment ion tolerance set to 0.2 Da. Phosphotyrosine-

containing peptides were manually validated and quantified. Peak areas for each

of the four signature peaks (m/z: 114, 115, 116, 117) were obtained and

corrected according to the manufacturer's instructions to account for isotopic

overlap. Data was further corrected with values generated from the peak areas of

non-phosphorylated peptides to account for possible variations in the starting

amounts of sample for each time point. Finally, all the data was normalized by

the 5 minute sample. Mean phosphorylation, standard deviation and p- values to

estimate statistical significance for differential phosphorylation between the

different time points were calculated using Excel. The p-values were calculated

using a paired, two-tailed student test. A self organizing map was generated with

the Spotfire program to cluster phosphorylation sites with self-similar profiles. All

the analyses using Spotfire were done with original built in functions of the

program.
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111.3 RESULTS

111.3.1 Time Resolved Tyrosine Phosphorylation after EGF Stimulation

Measured by Quantitative Mass Spectrometry

III.3.1.1 Methodology

Stable-isotope labeling either during cell culture or after cell lysis provides

a simple and accurate method for quantifying proteins and peptides from different

cell states (Ong et al., 2002; Ross et al., 2004b). Stable-isotope-tagged amine-

reactive reagents (iTRAQ) from Applied Biosystems enable the comparison of up

to four cell states in a single analysis (Ross et al., 2004b). By combining iTRAQ-

based labeling of different cellular samples with immunoprecipitation of tyrosine-

phosphorylated peptides (Rush et al., 2004) we have generated a new method

enabling quantitative analysis of specific tyrosine phosphorylation sites in four

populations of cells. In this study we subjected the cells to EGF stimulation for 0,

5, 10 and 30 minutes. For each time point, a single 15 cm plate of cells was

cultured under the same conditions prior to stimulation and EGF (25 nM) was

added for the appropriate length of time. After cell lysis the proteins from each

sample were digested with trypsin and desalted. Aliquots corresponding to 20%

(-1.5x1 06 cell equivalents / -400pg of peptides) of each one of the resulting four

peptides set were labeled with iTRAQ reagent, mixed together, and

immunoprecipitated with anti-phosphotyrosine antibody (PY99 - Santa Cruz
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Biotechnologies). Following immunoprecipitation the peptides were further

enriched by immobilized metal affinity chromatography (IMAC) prior to LC-

MS/MS analysis (Figure Ill.1A). IMAC enrichment was a necessary to clean the

sample from non-specific binding of peptides to both the antibody and/or the

protein G conjugated agarose beads. Because iTRAQ consist of four isobaric

markers - indistinguishable from each other in MS mode - peptides tagged with

the different forms of the reagent co-elute during the LC gradient and generate a

single peak for each charge state in the MS scan (Ross et al., 2004b). Following

selection of a peak in MS mode, MS/MS fragmentation of the iTRAQ labeled

peptide results in 4 signatures peaks at m/z 114, 115, 116 and 117 respectively

(Figure 111.1B and I111C), while fragmentation along the peptide backbone results

in b- and y-type fragment ions which may be used to identify the peptide

sequence (Figure 111.11B). In order to minimize noise-associated quantification

errors and facilitate comparison of the temporal phosphorylation profiles, each of

the phosphorylation profiles was normalized relative to the 5 minute time point,

as this time point typically provided the greatest signal-to-noise ratio in our

system. To normalize the results taking into account protein level and labeling

efficiency, the supernatant from the anti-pY peptide immunoprecipitation was

analyzed and iTRAQ marker ions from non-phosphorylated peptides were

averaged and used to correct the data (Figure Ill.1C).
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Figure 111.1 - Mass spectrometry-based approach to quantitative analysis of
phosphorylation dynamics on specific tyrosine residues. (A) Four plates of cells were
cultured under normal conditions, serum starved for 12 hours, and stimulated with 25 nM EGF for
0, 5, 10, or 30 minutes. Following cell lysis, proteins were proteolyzed and the resulting peptide
mixture desalted prior to aliquoting into ten equivalent fractions per stimulation time. For each
stimulation time, one aliquot was labeled with one of the four isoforms of the iTRAQ reagent and
then mixed with the labeled aliquots from the other time points. Phosphotyrosine containing
peptides were immunoprecipitated and further enriched by IMAC affinity chromatography prior to
LC/MS/MS analysis. (B) For each MS/MS spectrum, y- and b-type fragment ions (containing the
C- and N-terminus of the peptide, respectively) enable the identification of the peptide sequence
including the specific localization of the phosphorylated residue. (C) Quantitative information is
encoded in the low mass-to-charge ratio portion of the MS/MS spectrum (highlighted in (B), red
oval). The 0 minute time point was labeled with iTRAQ-1 14, the 5 minute time point was labeled
with iTRAQ-1 15, the 10 minute time point was labeled with iTRAQ-1 16, and the 30 minute time
point was labeled with iTRAQ-1 17. Relative peak areas of the 4 marker ions were used to
quantify tyrosine phosphorylation levels. Protein levels and labeling efficiency were normalized
with quantification data generated by analysis of peptides contained in the supematant following
peptide IP. The marker ion region of a representative non-phosphorylated peptide is on the right
side of (C).

By applying this methodology to investigate EGFR signaling in parental

HMEC cells we were able to identify 78 tyrosine phosphorylation sites on 58

proteins in a single analysis. For each phosphorylation site, a quantitative
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Table 111.1 Quantitative Time Course Tyrosine Phosphorylation Profiles.
A subset of protein phosphorylation sites identified from HMEC cells treated with EGF for varying
duration. Results are presented from analysis of two different cell cultures, for the second cell
culture analytical replicates were also performed; the average value is presented in the table. For
each protein, specific phosphorylation site(s) were identified and quantified by comparing relative
peak areas of the iTRAQ marker ions. The 5 minute sample was used to normalize the
phosphorylation profiles. The data is therefore presented as a ratio relative to the 5 minute time
point. Statistical significance was calculated using a paired, two-tailed student test.

10 Qafcaion: Sample 1, ana 1 Sample 2, NagofanAysis1 d 2

Po t Ratio Raio Ratio Ralo Ratio Ratio
0 min:5min 10mininMO 30 mn:5min 0 min5Mnh 10min5m in 30 mn:5in

c-abl Tr-552
Caveoin1 Tfy-14
EGFR Tr1172
EGFR TW-1092
EphB1 Tyr-00
EplhinB2 Ty-304
EPS15 Tyr-849
FAK Ty-576
FRK Ty-497
G|T 1 Ty4-45
GSK-3-P Tyr279
HER2 Tr-1248
p1300as Tfl.27
ACK1 Tfy857
Paiin TF11 e
Plakqhin3 Tf44
PLC-y Tr-775, Tf-763
PTPNR11 Tyr42
PTPR A TF790
Rho GEF 5 Tyr-lO, Tyr-22
SHC Ty-239.240
SHC Tyr-316
SHIP-2 Ty986
STAM-1 Ty481
STAM-2 Tyr-374
STAT3 hofrm 1 Tyr-705
STAT-3 oo2 Tyr-704

0.00 t 0.001"' 0.910 ± 0.015
0.391 ±074 1.034 ±009
0.050 ± 0.031' 000 ± 0901

0.059 0.744
0.56±a090 1.142 ±0.045

0837 1.364
11060 1.409

0.637 t 0.051'" 1424 ±0051*
0.614 1.241

0,575 t 0,057 1.163 ± 0.016'
06 ± 0.014" 1.112 ± O.024'

0.141 0,732
1,128 1.136
0133 0.997

0.528 ±0.131 0.755 ± 0.137
11194 0,778
0.043 0.05

0.945± 0032 1,26±0.02
0A3O± 00' 0,043±0.10
019 0.037 0,844 t 0.052
0147±!.015" 1.10±0.0t3
0.028 0.04 107:020
0.043 a054' 0.801t 0t 0

0.309 2.65
021 2.53

029 ± 0.02'" 003 073'
0.195 094

0.365 ± .005"
0792 ! 0,037
0.505 ± 0.012'

0.429
1.064 ±0.049

1.150
0.862

1.829±0Q038'"
1.340

13 ± 0.040
0.931 ± 0.026

01532
1,442
0.329

092 t 0.164
0.144
035

1,122 ±-0.016
0706±0003*

0.632 t 047
U.02± 0.059

1363 ± 0028"
0.90

0.244 ± 048'"
0.275

028 ± a6"'
0.425 t 0.027"'
0.039 "021*"
0,034 ± 0018"
0733 !036
0.792 0.153
0.043 0.050'
0.589 ± O008"

495!0050'
07 t 0053'
0.908 ± 0115

0.214
2.116 ± 0.130"
0.099 ± 037'
0.728 ± 0.045"*
0.036±007"
000, 018"
1.074 ± 0.157
0.873 ± 0.073'
0,0 t 012"
0.173 t .023'
0.296 092
0.013t 0045"
0,146 0288'
045!0474
0,242 ± 002"

O196 0.197

0.715 0.013" 0.314 ± 0.016'"
1.121 1136 0.804± 0.01'"
0.945 ± 0109 082±0.35*
0689 0.111 ' 0.401±0,095"
1070!009 1.182 ± .003"
0.902±0234 1.072 ±.190
1.412±0.130 0.805 ±0046
0.801 ± 007" 1.78±0.20*"
1.349± 053 0.773±0.037
1212±0276 1074 ±0.326
1.147 t 122 0.980 ±0.082

0.0 0.492
1.418±.053' 1.497 ±0045"
0.561 t 0009 0356 t0.10
0.732 ± Q105" 0.650 ±0.095'
0429 t 0O15 0.2886 0.023'
0287 ! T013" 0.231 tO.001'"
0271 0.142 1.126±0202
0.740 ±0 119' 0813±0103"
0352±0012" 0.246 ±0040
0.995 0.174 0.734±0.198
0878±Q0217 0.908±0.543
OA28 t a10" 0291 t0.160"
4.188 ± 0,724" 1.624 ±0.397
2.515±0.813' 1.306 ±017'"
0.585 39" 0,478 ± 0.134'
0545 t a178 0405 t026

p<0.05; " p 001: "'.p < 0001.

temporal phosphorylation profile was generated by comparing the relative ratios

of peak areas for the iTRAQ marker ions (m/z 114-117) in the MS/MS spectrum.

Table 1 provides a subset of mean values, standard deviations and an estimation
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of the statistical significance of the change in phosphorylation between each time

point relative to the five minutes sample for several biologically interesting

tyrosine phosphorylation sites For example, the EGFR pY1 148

autophosphorylation site increased 20-fold from 0 to 5 minutes, decreased by

10% from 5 to 10 minutes, and decreased by another 40% to 30 minutes.

Because a typical feature of IDA is that many of the peptides are selected for

MS/MS more than once during the chromatographic elution profile, resulting in

multiple independent measurements of the relative iTRAQ marker ion peak areas

ratios in the LC/MS/MS analysis, we can confidently affirm that the difference

between the 0 minute and 5 minute time point and the 30 minute and 5 minute

time point is statistically significant (p<0.05), whereas the difference between the

10 minute and 5 minute time point does not meet this significance criterion for

this particular phosphorylation site. This kind of information is important to

distinguish between real changes and apparent changes between the samples.

111.3.1.2 Protein Phosphorylation Insights

Of the total 58 proteins we identified in this analysis, 52 have been

previously associated with the EGFR signaling network, while the other six

proteins (listed in Table 2) have not been previously identified in either proteomic

or biochemical analyses of EGFR signaling. Representative spectra for two of the

six peptides listed in Table 111.2 are presented in Figure 111.2; the mass range

spanning the iTRAQ marker ion region is highlighted for each peptide. Included
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Table 111.2 Tyrosine-phosphorylated proteins not previously reported in EGFR signaling
Of the 58 proteins identified in the analysis of the first biological sample, six have not been
previously associated with the EGFR signaling network. Protein identification, tyrosine
phosphorylation site, and time course profile data are provided for these six proteins.

Ratio
Protein Sifs 0 min:5 min 10 m1n5 min 30 min5 min

Chromosome 20 ORF 18 (HOL-1) pY288 0.026 0.034" 1.950 ± 0.156" 0.441 ± 0.012"*
Hypohetcal protein FLJ14564 pY413 0.66 ± 0.04 0.956 ± 0.063 0.719 ± 0.023
Hypothetical protein FL3W2 (MARVE.D2) pY23 0.000 0.753 0.534
Rtinoic acid induced 3 pY320 0.725 ±0.117 1.177 ±0.027 0U1 ±0.029
1GM0606 proten pY2060 0.140 0.671 0.413
IAA1217 protein pY393 0.456 1.102 0.952

'p < 0.05; ", p < 0.01: *". p <O01.

in this group of six proteins is KIAA0606, a protein also known as

suprachiasmatic nucleus circadian oscillatory protein (SCOP). Regulation of the

circadian clock in the suprachiasmatic nucleus drives daily rhythms of behavior

and has been associated with EGF receptor signaling in the hypothalamus

(Kramer et al., 2003). Additionally, EGF activated expression of clock genes Per

and Per2 and modulation of the circadian rhythm in cell culture has also been

documented (Balsalobre et al., 2000). Although the mechanism by which signal

is transduced from the EGF receptor to the clock gene promoter region has not

been elucidated, the presence of SCOP in this data set might serve as a starting

point to answer this question. In fact we could hypothesize that the detected

rapid and transient pY2060 SCOP phosphorylation in response to EGF

stimulation that we found in this work might be directly involved in signal

transduction from activated EGF receptor to downstream upregulation of clock

gene expression. In any case the hypothesis remains that and this relationship

needs to be biologically validated. One of the strengths of our method is in
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Figure 111.2 - Representative MS/MS spectra for two phosphorylated peptides from proteins
not previously reported In EGFR signaling. For each spectrum, y- and b-type fragment ions
present in full scan mass spectra enable peptide identification and phosphorylation site
assignment, while peak areas for each of the iTRAQ marker ions (inset for top and bottom)
enable quantification of the temporal phosphorylation profiles.

highlighting this and many other hypotheses that other methodologies would

overlook, but it does not replace experimental confirmation.

Another interesting example of the previously EGFR-unrelated protein

group is KIAA1217, a protein whose function has not been characterized to date.

Notably, the specific peptide and phosphorylation site we have identified on this

protein display surprising homology (12/15 identical residues) to a region of

p130Cas interacting protein (pl40Cap), a protein known to be tyrosine
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Table 111.3 - Tyrosine Phosphorylation Sites not previously reported in the literature.
In addition to the sites listed in Table 2, many additional tyrosine phosphorylation sites which
have not been previously reported in the literature have been identified in this work. A subset of
these sites is presented along with the protein identification and the temporal phosphorylation
profile quantification.

Rati
0min:5 min 10 mi:5min 30 mlrt5 min

Hypothc protein F1Jl69 pY411 0.808 0.841 1.026
Hypdocal protOin FL21610 pY463 0261 1.123 0.088
Chomosom 3 ORF 6 (Ymer) pY145 0.00 0.03"' 1.35 0.024' 0.444 ± 0.W"
Taget of myb1Ike 2 Tyr-160 & Tyr-168 0.059 0.023' 0.640 ± 0.152 0240 0.058

',P 0<.05; "p <0.01; " p <:0.01.

phosphorylated in response to stimulation with exogenous growth factors and

that probably plays a role in cell motility (Di Stefano et al., 2004).

Not only have we identified these 6 novel proteins as potential part of the

EGFR network, we also identified several novel phosphorylation sites on proteins

known to be in the network (a subset of these sites is presented in Table 3). In

this group we can find phosphorylation sites on hypothetical protein FLJ00269,

hypothetical protein FLJ21610, target of myb1-like 2 protein, and chromosome 3

open reading frame 6 (previously named Ymer by Blagoev et al) (Blagoev et al.,

2004). Identification and quantification of temporal phosphorylation profiles at

specific tyrosine sites in these proteins further confirms the involvement of these

proteins in the EGFR signaling cascade. Furthermore, knowledge of the specific

phosphorylation sites on these and other proteins that participate in EGFR

mediated signaling should facilitate their biological manipulation, helping to

characterize their functional role in the EGFR network - for example by doing

Y->F mutation experiments in these particular sites and assessing their

implication in downstream phosphorylation and cell phenotype .
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111.3.1.3 Validation

To validate our methodology and our first data set in particular, a second

set of cells were cultured, stimulated with EGF for the appropriate times, lysed,

processed, and analyzed to quantify temporal tyrosine phosphorylation profiles.

In order to estimate the analytical reproducibility of the method and ensure that

quantification was not biased by any particular isoform of the iTRAQ reagent we

performed two replicate analyses on this set of samples, but we reversed the

iTRAQ labeling scheme. A subset of the results from these replicate analyses is

presented in Table 1. Of the 78 tyrosine phosphorylation sites identified from

analysis of the first set of cells, 65 were detected and quantified in the analyses

of the second set of stimulated cells. The absence of the remaining 13

phosphorylated peptides from the second data set may be due to variation in the

efficiency of the immunoprecipitation, but is more likely due to information-

dependent acquisition (IDA) based selection of peaks for MS/MS analysis. With

this mode of operation, it is not surprising that there is some variation in the

identification of peptides between analytical or biological replicates, since the

peaks selected for MS/MS will vary from analysis to analysis based on slight

shifts in peak selection timing and chromatography. In fact, although 13 tyrosine

phosphorylation sites were missed in the analysis of the second set of cells, an

additional 26 tyrosine phosphorylation sites were identified with corresponding

quantitative temporal phosphorylation profiles
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Figure 111.3 - Comparison of tyrosine phosphorylation dynamics as measured by mass
spectrometry and western blot analysis. Tyrosine phosphorylation profiles determined by
mass spectrometry were recapitulated by western blot analysis, further validating the results
generated by this approach. Gel loading levels were normalized by probing with an anti-EGFR
antibody (bottom).

Because our technology is novel to the biological community we chose to

further validate our phosphorylation results by comparing them with those

generated by semi-quantitative western blot with phospho-specific antibodies - a

methodology widely accepted in biology. To do this comparison we selected four

phosphorylation sites identified by mass spectrometry for which we knew high

quality antibodies were available. Total cell lysate was loaded on the gel, blotted,
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and selected anti-phosphotyrosine antibodies were used to develop the

westerns. As demonstrated in Figure 111.3, semi-quantitative tyrosine

phosphorylation site specific western blots recapitulated the general trend

measured by mass spectrometry.

111.3.1.4 Data Variability

In addition to providing validation for the data set from the first set of

stimulated cells, analysis of a second set of stimulated cells also provided an

estimation of the biological variance between the two sets of cell cultures. Similar

stimulation conditions should produce similar results, and as expected, the

majority of the temporal phosphorylation profiles are quite similar between the

two biological samples. However, some of the profiles show variance in both the

level of stimulation (basal (0 minutes) relative to 5 minutes) and the shape of the

temporal profile, perhaps reflective of signaling pathways that are potentiated

differently between the two sets of cell cultures. Among many possible sources of

variation between the cultures slight changes in the confluence of the cells - a

high percentage of the variability occurs in proteins related to cell-cell interactions

and different cell-cell contacts could activate signaling pathways differently - and

changes in the passage number of the cells - the second set of cells were

cultured and stimulated 1 month after the first set of cells, which might redound

on differential protein expression - might explain the most of differences between

the two biological samples. Given the sources of variation, it is not surprising to
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see slight alteration of the temporal profiles for some of the phosphorylation sites.

Nonetheless, we need to stress the fact that most of the temporal

phosphorylation profiles are very similar between the cell cultures which is

indicative of the biological reproducibility of our methodology and helps to further

validates our results.

111.3.2 Bioinformatic Analysis Reveals Dynamic Modules within the EGFR

Signaling Network

To ascribe potential functionality to proteins and phosphorylation sites not

previously associated with the EGFR signaling network, we attempted to find

similar features in temporal phosphorylation profiles between poorly and well-

characterized protein phosphorylation sites. Manually sorting through the data

tends to introduce bias and proved to be time-intensive and non-productive. So

we resorted to bioinformatic analysis and generated a self-organizing map (SOM)

with the dataset from the first set of cells. SOM is a mathematical technique

designed to identify underlying patterns in complex data sets; SOMs have been

used to analyze gene expression patterns in hematopoietic differentiation,

creating biologically relevant clusters and enabling the generation of interesting

hypotheses (Tamayo et al., 1999).

To cluster self-similar phosphorylation profiles (modules) within the EGFR

signaling network - which might allow us to generate plausible hypotheses on
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the role of several phosphorylation sites in the signaling cascade and possible

understand their regulation within the network - we applied the SOM algorithm to

our quantitative tyrosine phosphorylation profiles. Because, mathematical theory

for SOMs has not been refined yet, parameters such as SOM matrix size and

distance metrics remain data dependent and need to be empirically determined.

We tested several different options for SOM matrix size before settling on a 3 x 3

matrix (Figure ll.4A). Smaller matrixes generated clusters that were too complex

and difficult to interpret, while larger matrixes separated clusters of

phosphorylation sites with similar patterns.

Clustering self-similar phosphorylation profiles revealed interesting

modules in the EGFR signaling network and successfully grouped poorly-

characterized sites with several well-described proteins in the network. For

instance, one of the SOM clusters (Figure ll.4B) has the common profile of a

large increase in phosphorylation level from basal to 5 minutes followed by slow

de-phosphorylation from 5 to 10 and 30 minutes. Included in this cluster is the

EGFR pY1 172 autophosphorylation site, and two tyrosine phosphorylation sites

on SHC, a protein whose PTB (phosphotyrosine-binding) domain binds to EGFR

pY1 172 (Sakaguchi et al., 1998). In fact, almost all of the phosphorylation sites in

this cluster are located on proteins known to interact with EGFR or other receptor

tyrosine kinases. For instance, P13K p85a has been shown to interact (both

directly and indirectly) with both EGFR and PDGFR (Hu et al., 1992). P13K p85a

pY580 has been ascribed to insulin receptor tyrosine kinase activity (Hayashi et

al., 1993), but is most likely due to phosphorylation by EGFR under these
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stimulation conditions. Other proteins in this group include c-Cbl, Rho-GEF 5,

ACK1, BDP1, Erk1 and hypothetical protein FLJ30532, one of the six proteins

not previously associated with the EGFR network. c-Cbl is tyrosine

phosphorylated following EGF stimulation and has recently been shown to

interact with pY1045 of EGFR following EGF stimulation and prior to endocytosis

of the receptor (Grovdal et al., 2004). Tyrosine phosphorylation of activated

CDC42 kinase 1 (ACK1) in response to EGF stimulation has been established

(Satoh et al., 1996). This protein is most likely localized to the receptor through

an interaction with CDC42 and Rho-GEF 5; Rho-GEF proteins have been shown

to interact directly with tyrosine kinase receptors (Taya et al., 2001). BDP1 is a

phosphatase involved in regulation of Gab1, MAPK, and HER2 signaling

following EGF stimulation (Gensler et al., 2004), it is likely that phosphorylation of

this protein stimulates phosphatase activity in a negative feedback mechanism.

The remaining two proteins in this cluster, Erk1 and hypothetical protein

FLJ30532 are not known to associate directly with EGFR or other receptor

tyrosine kinases, but from their profiles and grouping in this cluster, the tyrosine

phosphorylation sites on these proteins seem to be involved in the immediate

early-response to EGF stimulation. In the case of Erki, although the tyrosine site

identified in this study is located in the activation loop, the doubly-

phosphorylated, fully active form of the protein was not detected; most likely this

peptide was not pulled down by the peptide IP or it was present at a lower level

and was below the detection limit of the current approach. The tyrosine kinase

that phosphorylates ERK remains unknown, but our results confine its identity to
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Figure 111.4 - Self-organizing maps (SOMs) facilitate the identification of EGFR signaling
modules. (A) After loading the mass spectrometry data into Spotfire, a 3 x 3 self-organizing map
was generated to facilitate interpretation of the data and to uncover groups of phosphorylation
sites that displayed similar patterns. (B) A single cluster within the SOM contained many
phosphorylation sites involved in the immediate-early response. (C) With the exception of the
doubly phosphorylated peptide from ACK1, HOIL-1, and Ymer, phosphorylation sites contained in
two adjacent clusters are from proteins implicated in regulation of receptor endocytosis and
trafficking. Each of these sites was maximally phosphorylated at 10 minutes of EGF stimulation.
The level of phosphorylation at 10 and 30 minutes relative to 5 minutes separated the
phosphorylation sites into different compartments.
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kinases closely downstream of EGFR activation or possibly the receptor itself

However, we require further temporal resolution to refined this claim and

biological validation to confirm it. Hypothetical protein FLJ30532 is also known as

MARVELD2, named for MARVEL, a recently discovered tetra-spanning

transmembrane domain (Sanchez-Pulido et al., 2002). Interestingly, another

MARVEL-domain containing protein has recently been implicated in mediating

signal transduction from the B-cell receptor to Erk2 (Imamura et al., 2004).

Identification of the tyrosine phosphorylation site on MARVELD2 provides a

handle by which to investigate the role of this protein in EGFR-mediated signal

transduction, while localization to this cluster potentially localizes the topological

action of this protein to the immediate-early response to EGF stimulation.

In addition to the immediate-early response module, SOM analysis of the

data also uncovered an endocytosis and trafficking module in a meta-cluster of

self-similar time-course phosphorylation profiles found in two adjacent

compartments of the SOM (Figure Ill.4C). These phosphorylation sites are all

maximally phosphorylated at 10 minutes following EGF stimulation and have

separated into two SOM compartments based on phosphorylation level at 10

minutes relative to 5 minutes of stimulation. Proteins within this cluster known to

be involved in endocytosis and trafficking included Eps15, STAM1, STAM2, and

Annexin A2. EPS15 is necessary for receptor-mediated endocytosis of EGF, and

tyrosine phosphorylation of Eps15 following EGF stimulation has been shown

(Salcini et al., 1999). Mono-ubiquitination of Eps15 occurs after EGF-induced

internalization of the EGF receptor (van Delft et al., 1997), and may be related to
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c-CbI activity, but a phosphorylation site from an alternate E3 ubiquitin-protein

ligase, chromosome 20 open reading frame 18 (also known as HOIL-1

(Yamanaka et al., 2003)) is localized to this cluster and may be responsible for

further ubiquitination within the endosomes. Involvement of HOIL-1in the EGFR

pathway has not been characterized, but its biological function fits in well with

endocytosis and trafficking. STAM1 and STAM2 phosphorylation sites are also

located in these clusters, these proteins bind to ubiquitinated proteins via their

VHS domains and ubiquitin-interacting motifs (UIM) in early endosomes and are

involved in endosomal trafficking (Mizuno et al., 2003). The N-terminus of

Annexin A2 is tyrosine-phosphorylated following growth factor stimulation and

may play a role in receptor trafficking; recently it has been shown that

phosphorylation is blocked when receptor internalization is inhibited (Biener et

al., 1996). Based on the clustering of these phosphorylation sites, it is possible

that phosphorylation of these sites occurs following EGFR ubiquitination by CbI

and endocytosis via clathrin-coated early endosomes. If so, it may be that Ymer,

a protein recently found to be modulated by EGF stimulation (Blagoev et al.,

2004) and located in these clusters, may be localized to the plasma membrane

and early endosomes. If Ymer follows the role of the other proteins within this

cluster, tyrosine phosphorylation of this protein may regulate endosomal

trafficking of the receptor. Identification of this regulated site will enable further

investigation to determine the functional role of phosphorylation of this protein in

EGFR signaling. Along with this line of argument a recent publication by konishi

et al. (Tashiro et al., 2006) shows that Ymer co-localizes and directly interacts
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with EGFR on the plasma membrane and when over-expressed inhibits receptor

endocytosis, degradation and post-translational modification arguing that Ymer

plays a role in regulating EGFR activity and sub-cellular localization.
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111.4 DISCUSSION

Quantitative, time-resolved analysis of phosphorylated-tyrosine mediated

signaling cascades downstream of activated receptor tyrosine kinases will be

critical in developing a better understanding of cell signaling and the molecular

mechanisms underlying a variety of disease states. To this end, the methodology

that we have developed has enabled the quantification of the temporal

phosphorylation profile of specific tyrosine phosphorylation sites following EGF

stimulation. This methodology is not limited to EGFR signaling, but is applicable

to the investigation of a broad variety of other tyrosine-mediated signal

transduction pathways from cell culture and notably in vivo experiments. In fact,

because stable-isotope labeling of peptides with the iTRAQ reagent occurs after

cell lysis and tryptic digestion but prior to immunoprecipitation, quantification is

not limited to cell culture-derived samples as is SILAC (Ong et al., 2002) and

variations in immunoprecipitation do not affect quantification when comparing

four samples or less. For larger sets as those that will be discussed in chapters

Ill and IV normalization between experiments is required to take into account

variability in immunoprecipitation and LC-MS-MS/MS runs. However, arguably

the highest success of our methodology relies in our mass spectrometry

sensitivity which allows us to use only several hundred micrograms of protein per

sample per analysis, hence this method should be readily amenable to the
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investigation of signal transduction in samples with limited quantities of protein,

such as clinical tumor tissues.

It is worth noting that Blagoev at al. (Blagoev et al., 2004) have published

an alternative method combining SILAC and immunoprecipitation of tyrosine

phosphorylated proteins, thereby enabling the quantification of temporal

involvement in the EGFR signaling network at the protein level. Although the two

methods appear quite similar, there are important advantages and disadvantages

of each that should be noted. Whereas our method provides identification of

specific protein phosphorylation sites and quantitative temporal phosphorylation

profiles for each of these sites; the Blagoev et al. (Blagoev et al., 2004) method

monitors tyrosine phosphorylation (or changes in association with tyrosine

phosphorylated proteins) at the protein level, without site specification. Our

methodology advantage is that it provides site-specific monitoring of protein

phosphorylation and hence more explicit detail regarding the regulation of

proteins within the network, but its disadvantage is that it precludes analysis of

potential other, non-phosphorylated proteins associated (and therefore co-

immunoprecipitated) with tyrosine phosphorylated proteins that might also play a

crucial role in the signaling pathways as could be adaptor proteins or important

members of the MAPK pathway as Grb2 and SOS. Both methods are limited by

the amenability of peptides (and therefore proteins) to be identified by LC/MS/MS

analysis, as many peptides might be immunoprecipitated, but go undetected in

the mass spectrometry runs. This limitation is more severe for peptide-

immunoprecipitation where there are fewer peptides with which to identify each
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protein. Our current method utilizes only a single anti-phosphotyrosine antibody,

such that the results may be constrained by the bias associated with this

particular antibody, a problem that is addressed in chapters III and IV. A second

antibody related problem is quality variability form lot to lot for any given

antibody, which precludes from working with an stable suppliers (we started this

work using anti-phosphotyrosine antibody 4G10 from Upstate Technologies, but

had to change to anti-phosphotyrosine antibody P99 from Santa-Cruz

Biotechnologies) Despite differences between the two methods, there is

significant consistency at the protein level between the Blagoev et al. dataset and

our dataset, with our data providing additional site-specific information.

Differences in the temporal phosphorylation profiles between the two studies are

most likely caused by multiple tyrosine phosphorylation sites on a given protein,

but may also be due to the different quantification methods (SILAC vs. iTRAQ).

Another study utilizing anti-phosphotyrosine protein immunoprecipitation,

stable isotope (ICAT) labeling and mass spectrometry to study EGFR signaling

was recently published (Thelemann et al., 2005). Similar to Blagoev et al.

(Blagoev et al., 2004), Thelemann et al. (Thelemann et al., 2005) monitored

tyrosine phosphorylation (or association with tyrosine phosphorylated proteins) at

the protein level, without site specification, although many phosphorylation sites

were identified without stable-isotope quantification in a separate section of the

manuscript. It is difficult to directly compare our data to that reported by

Thelemann et al. (Thelemann et al., 2005) as the total number of proteins

quantified in the Thelemann et al. (Thelemann et al., 2005) paper was
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significantly fewer than contained in either our dataset or the dataset reported by

Blagoev et al. (Blagoev et al., 2004).

In this chapter I have described a mass spectrometry based technology

which was developed by a collaborative effort within the White lab and which is

the base of chapters III and IV of this thesis. This methodology provides a

reliable analytical method enabling the quantification of time-resolved tyrosine

phosphorylation profiles with site specific resolution and allowing the estimation

of the statistical significance on changes in phosphorylation levels between the

different time points following stimulation.

Data generated by this method and described in this chapter self-

organizes into clusters of phosphorylation sites that recapitulate and extend

biological findings in the literature. Generation of a SOM has enabled the

identification of modules in the EGFR signaling network. Based on the presence

of particular proteins within these modules, we can generate additional

hypotheses aimed at defining the potential function of tyrosine phosphorylation

on several proteins and/or phosphorylation sites not previously implicated in

EGFR signaling.

Subsequent application of this method to other signaling cascades has

already considerably improved our knowledge on TCR and insulin activated

pathways (Kim & White, 2006; Schmelzle et al., 2006) it is been currently use in

the White lab to study aberrant signaling downstream of constitutively active and

over-expressed tyrosine kinases. We expect that these studies may reveal

mechanisms of pathogenesis in these systems, and may provide additional

154



targets for novel therapeutics. In particular chapter III of this thesis will describe

how application of this technique to understand the role of HER2 over-expression

in EGFR family activated signaling pathways relate to cell proliferation and

migration, two phenotypes closely related to cancer progression.
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IV Quantitative Phosphoproteomic Analysis of HER2-

overexpression effects on Cell Signaling Networks

governing proliferation and migration
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IV.1 SUMMARY

Although HER2 over-expression is implicated in tumor progression for a

variety of cancer types, how it disregulates signaling networks governing cell

behavioral functions is poorly understood. In this chapter I will portray the

application of our mass spectrometry technology based technology - described

in chapter III - to address this problem.

In this chapter we extended our technology to analyze 16 different

biological samples. This allowed us to obtain quantitative mass spectrometry

measurements of the dynamic effect of HER2 over-expression on

phosphotyrosine signaling in human mammary epithelial cells (HMECs)

stimulated by EGF or HRG. We further analyzed HMEC proliferation and

migration under the same set of experimental conditions.

We used three different, but complementary computational approaches to

analyze the data. Hierarchical clustering (static) and self-organizing map

(dynamic) analysis of the resulting phosphoproteomic dataset permitted

elucidation of network modules differentially regulated in HER2-overexpressing

cells in comparison with parental cells for EGF and HRG treatment. Partial

least-squares regression analysis of the same dataset identified quantitative

combinations of signals within the networks that strongly correlated with our cell

proliferation and migration measured measurements. Combining these modeling

approaches enabled association of EGFR-family dimerization to activation of
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specific phosphorylation sites which appear to most critically regulate

proliferation and/or migration.

Overall, through the work that I will present in this chapter we were able to

characterize quantitative relationships between ligand stimulation, cell signaling,

and cellular response that explain how HER2 over-expression can alter network

signals and downstream cell behavior.

The work presented in this chapter has been accepted for publication by

Molecular Systems Biology (MSB) and it represents a collaborative effort

between the White lab and Lauffenburger lab. In particular Self Organizing Maps

analysis of the data was done by Sampsa Hautaniemi in the Lauffenburger lab

(currently a Professor in The University of Helsinki). Proliferation, migration and

partial least square regression models were done by Neil Kumar in the

Lauffenburger lab.
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IV.2 Materials and Methods

IV.2.1 Cell Culture and Stimulation

184A1 HMECs (human mammary epithelial cells (Stampfer & Bartley,

1985) (HMEC Parental) were a kind gift from Martha Stampfer (Lawrence

Berkeley Laboratory, Berkeley CA) via Steve Wiley (Pacific Northwest National

Laboratory, Richland WA and were maintained in DFCl-1 medium supplemented

with 12.5 ng/ml EGF, as in (Band & Sager, 1989). 184A1 HMECs clone 24H

(human mammary epithelial cells over-expressing HER2 30 fold (Hendriks et al.,

2003a)) (HMEC 24H) were a kind gift from Steve Wiley (Pacific Northwest

National Laboratories, Richland WA) and were maintained in DFCl-1 medium

supplemented with 12.5 ng/ml EGF and 150 pg/ml of Geneticin. Cells were

washed with PBS and incubated for 12 hours in serum free media (DFCl-1

without EGF, bovine pituitary extract, or fetal bovine serum) after 80% confluence

was reached in 15 cm plates (~107 cells). Synchronized cells were washed with

PBS after removal of media. Cells were then stimulated with 100 ng/ml EGF or

80 ng/ml HRG in serum free media for 5, 10 or 30 minutes, or left untreated with

serum free media for 5 min as control before lysing.
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IV.2.2 Protein Quantification

Protein concentration of cell lysates was determined using the micro

bicinchoninic acid assay (micro-BSA - Pierce) according to the manufacturer's

protocol.

IV.2.3 Cell Lysis, Protein Digestion, Peptide Fractionation and iTRAQ

Labeling

Cells were lysed with 8M urea / 1 mM sodium orthovanadate after EGF or

HRG stimulation. Proteins were digested with trypsin after DTT reduction and

iodoacetamide alkylation. Tryptic peptides were desalted and fractionated on a

C18 Sep-Pak Plus cartridge (Waters), and the 25% MeCN fraction was divided

into 10 equivalent aliquots which were lyophilized to dryness. One aliquot of

sample from each condition was labeled with one tube of iTRAQ reagent

(Applied Biosystems, CA) (following manufacturer's directions). Samples labeled

with four different isoforms of the iTRAQ reagent were combined, dried

completely, and saved at -80*C. This process was repeated to generate five

duplicate sets of samples: four time-course samples (0, 5, 10, 30 min) with 100

ng/ml EGF or 80 ng/ml HRG stimulation in either HMEC or 24H cells, and one 5

min mix sample that consisted of the samples stimulated for 5 min for each of the
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stimulation conditions in the order of HMEC/HRG, HMEC/EGF, 24H/HRG,

24H/EGF.

IV.2.4 Peptide Immunoprecipitation

10 pg of protein G Plus-agarose beads (Calbiochem) were incubated with

3.5 pg of each anti-phosphotyrosine antibody (PY99(Santa Cruz), 4G1O(Upstate)

and pTyr1OO (Cell Signaling Technology)) in 200 pl of IP buffer for 8 hr at 4*C.

The beads were rinsed once with 400 pl of IP buffer at 40C. iTRAQ labeled

sample were dissolved in 150 pl of IP buffer (100 mM Tris, 100 mM NaCl, 1%

NP-40, pH 7.4) and 300ul of water. After pH was adjusted to 7.4 with 0.5 M Tris

buffer pH 8.5, the sample was mixed with protein G Plus-agarose beads, and

was incubated overnight at 40C. The protein G Plus-agarose beads were spun

down for 5 minutes at 6000 rpm and the supematant was separated and saved.

Antibody-bound beads were washed once with 400 pl IP buffer for 10 minutes

and twice with rinse buffer (100 mM Tris, 100 mM NaCl, pH 7.4) for 5 minutes at

40C. Phosphotyrosine containing peptides were eluted from antibody with 60 pl

of 100 mM glycine pH 2.5 for 30 min at room temperature.
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IV.2.5 IMAC and Mass Spectrometry

Phosphopeptide enrichment on IMAC was performed as described (Zhang

et al., 2005c). Peptides retained on the IMAC column were eluted to a C18

capillary precolumn (100 pm ID, 360 pm OD) with 50 pl of 250 mM Na2HPO4, pH

8.0. After 10 min rinse (0.1% HOAc), the precolumn was connected to an

analytical capillary column with an integrated electrospray tip (-1 pm orifice).

Peptides were eluted using a 100 min gradient with solvent A (H20/HOAc, 99/1

vol/vol) and B (H20/MeCN/HOAc, 29/70/1 vol/vol): 10 min from 0% to 15% B, 75

min from 15% to 40% B, 15 min from 40% to 70% B. Eluted peptides were

directly electrosprayed into a quadrupole time-of-flight mass spectrometer

(QSTAR XL Pro, Applied Biosystems). MS/MS spectra of four or five most

intense peaks with 2 to 5 charges in the MS scan were automatically acquired in

information-dependent acquisition with previously selected peaks excluded for 25

seconds.

IV.2.6 Phosphopeptide Sequencing, Data Clustering and Analysis

MS/MS spectra were extracted and searched against human protein

database (NCBI) using ProQuant (Applied Biosystems) as described. An

interrogator database was generated by predigesting the human protein

database with trypsin and allowing one miscleavage and up to six modifications
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on a single peptide (phosphotyrosine s 2, phosphoserine 5 1, phosphothreonine

s 1, iTRAQ-lysine s 4, and iTRAQ-tyrosine 5 4). Mass tolerance was set to 2.3

amu for precursor ions and 0.15 amu for fragment ions and grouping of MS/MS

spectra from different cycles was set to zero. Phosphotyrosine-containing

peptides identified by ProQuant were manually validated. ProQuant

quantification results were corrected by removing contaminant signals near

iTRAQ tag peaks. Data was further corrected with values generated from the

peak areas of non-phosphorylated peptides to account for possible variations in

the starting amounts of sample for each time point. All the data from each

analysis was normalized by the 115 peak area values, which correspond to the 5

min sample in each time-course analysis or HMEC-EGF sample in the four-

condition 5 min mix analysis.

IV.2.7 ELISA protocol for ErbB3 receptor quantification

A black 96-well Nunc MaxiSorp plate was coated with 50 LL of capture

antibody (4gg/mL in PBS) overnight at room temperature and washed three

times with PBS, 0.05%Tween-20 on a Bio-Tek plate washer. The unreacted

surface of the plate was blocked with 300 pL of 2% BSA in PBS for 1 hr at room

temperature. After washing, 50 pL of each sample or the recombinant standard

were added to the appropriate wells. Cell line lysates were mixed 1:1 with 2%

BSA and added to the plate for 2 hr incubation at 4*C. Both standards and
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samples were done in duplicate. After washing, 60 pL of detection antibody (2

mg/mL diluted in 2 %BSA, PBS, 0.1% Tween-20) was added to all the wells and

incubated for 1 hr at room temperature. The plate was washed and 60 pL of

Streptavidin-HRP (diluted 1:200 in 2 %BSA, PBS, 0.1% Tween-20) was added

for 30 min at room temperature. After a final wash, 60 jiL of chemiluminescent

substrate (SuperSignal ELISA Pico from Pierce) was added to all wells and the

plate was read immediately on a Fusion plate reader (Perkin Elmer) with a 1 sec

reading time per well. The data was exported to Excel, replicates were averaged

and the standard dilutions were fit to a linear curve.

IV.2.8 Hierarchical Clustering

After normalization to the 5 minute HMEC-EGF sample, hierarchical

clustering of the four-condition 5min Mix analysis was done using SpotfireTM

using the Euclidean distance and unweighted average settings.

IV.2.9 Self Organizing Maps

The SOM non-linearly transforms high-dimensional input data into a lower

dimensional display that consists of several map units. Each map unit consists of
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a reference vector whose dimension is the same as dimension of the input

pattern (Kohonen, 2001). The clustering is done in two steps. In the training

phase the SOM algorithm sequentially computes distances between each input

pattern and all reference vectors. The map unit consisting of reference vector

most close to the input pattern is declared as the winner map unit and is updated

with maximal strength, while topologically close map units are updated with

gradually decreasing strength. This process is repeated many times, which

eventually leads to self-organization. After the training phase each peptide is

clustered to the map unit whose reference vector is the most similar to the input

pattern.

The parameters for the SOM used in this study were as follows. Topology

of the map was chosen to be sheet, distance measure was correlation and the

number of map units was chosen to be 5 - f, where p is the number of input

vectors as suggested in (Vesanto et al., 2000). We used the batch learning

algorithm and the neighborhood function was chosen to be Gaussian with the

parameters given in (Vesanto et al., 2000). The SOM analysis was performed in

MATLAB with the publicly available SOM Toolbox (Vesanto et al., 2000). We

used the U-matrix (unified distance matrix) method to identify a group of map

units that comprehend a cluster (Ultsch & Siemon, 1989). The U-matrix illustrates

Euclidean distances between the map units with colors. Adjacent map units

colored with blue shades constitute a cluster (valleys) and the clusters are

separated by red and yellow colors that represent high distance between two

map units (mountains). For each cluster we computed statistical significance with
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the permutation test based method given in (Hautaniemi et al., 2003). Briefly, first

we computed the correlation distances between all the peptide profiles in a

cluster. If the profiles correlate, their distance is zero and for a pair of negatively

correlating profiles the distance value is two. Then we computed the mean of

these pair-wise comparisons. This was followed by choosing randomly as many

profiles as there were in the original cluster and computing all the pair-wise

distances, and taking the mean. If the mean distance of a randomly chosen set is

less or equal than the original we added one to counter. For each cluster we

created 5,000 samples and the final p-value is computed by dividing the counter

by 5,000. High values mean that the original cluster may be due to chance.

IV.2.10 Proliferation

Human mammary epithelial cells were plated on 24 well tissue culture

plastic plates (-1 X 104 cells/cm2) and grown for 24 hours to -60-70%

confluence. The medium was then removed and cells were serum-starved as

previously described for 12-16 hours. Starved cells were then treated with new

serum-free media, serum-free media containing EGF (100 ng/ml), or serum-free

media containing HRG (80 ng/ml). The cells were grown for 15 hours at which

time [3H] thymidine (10 pCi/ml) was added. After 10 hours, the cells were washed

with cold PBS and treated with trichloroacetic acid (5% w/v) at 40C. The resulting
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precipitate was dissolved in NaOH (0.5 N) and quantified using liquid scintillation

counting.

IV.2.11 Migration

HMECs were seeded in 96-well tissue culture plastic plates (Packard View

Plate Black, Ref. 6005225) at confluence (-50,000 cells/cm2) and allowed to

adhere for 4-6 hours. Media was then removed and cells were serum starved for

12-16 hours as previously described. Starved cells were treated with 5-

chloromethylfluorescein diacetate (CMFDA, 9 pM in serum-free media) for 30

minutes. CMFDA containing media was removed and cells were then treated

with new serum-free media, serum-free media containing EGF (100 ng/ml), or

serum-free media containing HRG (80 ng/ml). A wound width -700 pm was

scraped in each well and cell movement imaged every 15 minutes for 12 hours

using Cellomics KineticScan. Kinetics of wound closure were quantified using an

in-house analysis software that calculated the wound area at each time point

normalized by the initial wound area. A time averaging algorithm was used to

average wound closure in four wells of equal treatment into a single trajectory at

30 minute intervals. The trajectories shown here have been additionally

normalized to their 2 hour time points for the purpose of comparing treatments.

The wound closure data used in the described PLSR model is the linearly fitted

slope (2 - 5.5 hours) of each trajectory shown.
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Partial Least Squares Regression

Computational analysis was performed using the SIMCA-P 10.0

(Umetrics) software suite as detailed elsewhere (Gaudet et al., 2005; Janes et

al., 2004) The software uses the non-linear iterative partial least-squares

algorithm to perform decompositions and regressions. The model was evaluated

for goodness of fit (R2Y), goodness of prediction (Q2), and was validated against

over-fitting via response permutation (response matrix was randomly permuted

50 times and Q2 values were obtained for each run). All matrices were mean

centered and unit variance scaled (z-score normalized) prior to partial least

squares analysis.

Goodness of prediction (Q2) was evaluated using a leave-one-out cross

validation approach (Eriksson et al., 2001). Briefly, cross validation is performed

by omitting an observation from the model development and then using the

model to predict the Y-block values for the withheld observation. The procedure

is repeated until every observation has been kept out exactly once. The

prediction error sum of squares (PRESS) is then calculated as follows:

PRESS = ymeasured - ypredicted

Q2 is then calculated as:
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A

Q2 = 1.0 - H(PRESS / SS)a
a=1I

(2)

Where a refers to each individual principal component in the model and SS is the

sum of squares explained by principal component a. The variable importance for

projection (VIP) value for each variable (k) was calculated according to the

following formula:

VIPk =

Where KT is the total number of variables and the rest of the variables are as

described above.
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IV.3 RESULTS

IV.3.I Phosphotyrosine mass spectrometry of parental and HER2-

overexpressing HMECs in response to EGF and HRG treatment

We have undertaken a quantitative investigation of the effects of HER2-

overexpression in a human mammary epithelial cell (HMEC) line (184A1

(Stampfer & Bartley, 1985)). We compared the parental line (denoted "P"), which

exhibits approximately 200,000 EGFR per cell, 20,000 HER2 per cell, and 20,000

HER3 per cell, to a stable retrovirally-transduced clone (denoted "24H") that

expresses HER2 at 600,000 per cell while maintaining constant EGFR levels and

increased HER3 levels to about 30,000 per cell. Previously performed combined

experimental and modeling studies on this cell line by Bart Hendriks in the

Lauffenburger lab has enabled quantitative estimation of the various receptor

dimer species under various treatment conditions (Hendriks et al., 2003a;

Hendriks et al., 2005). From that work, we expect that 100 ng/ml EGF treatment

should result in high levels of EGFR homodimers in the P HMECs (-80,000), but

lower numbers of EGFR-HER2 heterodimers (-20,000). By comparison, treating

24H HMECs with this same concentration of EGF should drive a large increase

in heterodimers (to -150,000) and a significant decrease in EGFR homodimers

(-10,000). 80 ng/ml HRG treatment should yield -15,000 HER2-HER3

heterodimers in the P HMECs and in the 24 H HMECs this number should

increase to -25,000. Interestingly, under both ligand treatments, 24H HMECs
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are expected to have large numbers of HER2 homodimers (>~200,000), some of

which may be activated through basal auto-phosphorylation. In this chapter I will

describe our efforts to explore the consequences of these changing dimerization

states on intracellular signaling and the subsequent control of cell proliferation

and migration. We have acquired mass spectrometry data describing the

temporal dynamics (0, 5, 10, and 30 minute stimulation) of tyrosine

phosphorylation in the 184A1 cell system under four conditions: P HMECs

stimulated with EGF, P HMECs stimulated with HRG, 24H cells HMECs

stimulated with EGF, and 24H HMECs stimulated with HRG (see Figure IV.1).

As a result of these analyses, 332 phosphorylated peptides from 175

proteins were identified, including 289 singly (tyrosine) phosphorylated peptides,

42 doubly phosphorylated peptides (21 tyrosine/tyrosine, 18 serine/tyrosine, and

3 threonine/tyrosine), and one triply phosphorylated peptide

(tyrosine/tyrosine/tyrosine). A total of 20 phosphorylation sites were identified on

EGFR, HER2 and HER3, including 9 tyrosine and 2 serine sites on EGFR, 8

tyrosine phosphorylation sites on HER2, and 1 tyrosine phosphorylation site on

HER3 (Figure IV.1, B-D). Of the 20 phosphorylation sites on EGFR family

members, Y1 114 on EGFR and Y1005 and Y1 127 on HER2 represent novel

sites which have not been previously described in the literature, although

synthetic phosphopeptides containing EGFR Y1 114 and HER2 Y1005 have been

shown to bind SHC (Schulze et al., 2005) and mutation of EGFR Y1 114 has

been shown to block SOCS recruitment to the receptor, regulating STAT

activation (Xia et al., 2002). Downstream of the receptors, quantitative data was
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Figure IV.1 - Data acquisition and quantification scheme with example data. (A) 184A1
parental HMEC cells and 24H HMEC cells were stimulated with either EGF or HRG for 0, 5, 10 or
30 minutes. For each stimulation condition, following cell lysis and tryptic digestion, peptides
from each time point were labeled with iTRAQ, mixed, and analyzed by anti-phosphotyrosine
peptide immunoprecipitation and IMAC-LC-MS/MS, producing temporal tyrosine phosphorylation
profiles for hundreds of peptides. To normalize temporal profiles from each condition, tryptic
peptides from the 5 minute stimulation time point for each condition were labeled with iTRAQ,
mixed, and analyzed by anti-phosphotyrosine peptide immunoprecipitation and IMAC-LC-MS/MS.
(B) For each peptide, y- and b-type ions in the MS/MS spectrum provided sequence identification
and site assignment, while the iTRAQ marker ion region (highlighted in the red oval) provided
quantification. (C) iTRAQ marker ion profiles representing temporal phosphorylation profiles for
EGFR pY1148 under all four conditions (top left) as well as the relative amount of
phosphorylation following a 5 minute stimulation for each condition (top right). The final plot of
temporal response under multiple stimulation conditions (bottom) was generated by multiplying
each temporal phosphorylation profile by the value obtained from the 5 minute mix quantification
data for the particular stimulation condition. (D) Multiple tyrosine phosphorylation sites were
identified and quantified from EGFR family member proteins. 4 representative phosphorylation
sites are shown here, with response plots across temporal and conditional space. As can be
seen by comparing HER2 pY877 and pY1248, different sites on a given protein are often
differentially regulated.

obtained for 36 phosphorylation sites on 15 different proteins in the EGFR

canonical signaling pathway (as defined by Yarden et al. (Yarden & Sliwkowski,
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2001)) (Figure 1.4). Coverage of the cell adhesion/migration pathway included

quantitative information on 41 phosphorylation sites distributed along 16 proteins,

including 9 tyrosine phosphorylation sites on S-catenin.

One of the goals in the study presented in this chapter was to provide a

more comprehensive definition of EGFR family signaling networks, including

novel proteins or phosphorylation sites which may regulate differential cellular

response to exogenous stimuli. To enable identification of novel phosphorylation

sites, mass spectrometry analyses were performed in information dependent

acquisition mode (automated selection of the most abundant species in a given

full scan mass spectrum for MS/MS analysis), rather than targeting specific

peptides and known phosphorylation sites for quantification. This data-

dependent mode of operation was successful at identifying novel proteins and

phosphorylation sites, as 122 of the 322 phosphorylation sites have not

previously been described in the literature. Unfortunately, the use of automated

ion selection to discover novel phosphorylation sites often precluded selection of

low-abundance precursor ions for MS/MS fragmentation, and therefore temporal

phosphorylation profiles were not obtained for all conditions for many peptides.

In fact, 234 of the 322 sites in this work were detected and quantified in multiple

analyses, but only 68 were quantified for all 4 stimulation conditions and the 5

minute comparison. This core group of 68 phosphopeptides, which include many

of the key signaling nodes in the network, was then used for further

computational analysis to obtain a mechanistic understanding of the effects of
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HER-2 overexpression on cellular signaling networks and corresponding

biological response to growth factor stimulation.

IV.3.2 Hierarchical Clustering reveals tyrosine phosphorylation sites co-

regulated across conditional space

To identify groups of phosphorylation sites responding similarly across

different cellular stimulations and to help define the role of novel phosphorylation

sites within the EGFR signaling network, phosphorylation sites were clustered

based on level of phosphorylation at a single time point, 5 minutes post-

stimulation, for each cellular condition. Quantitative data for the 206 singly- or

doubly-phosphorylated peptides obtained from replicate analyses of the 5 minute

mix sample were normalized relative to EGF-stimulated P HMECs and

hierarchical clustering was performed (using the Spotfire bioinformatics analysis

program, see Methods), generating the heat map shown in Figure IV.2A.

Although many clusters of phosphorylation sites were generated by this

analysis of the data, here we will discuss selected clusters that demonstrate the

effectiveness of this approach in grouping co-regulated sites and thereby

providing inference for functional categorization of novel sites. At the top of the

map and highlighted in Figure IV.2B, a cluster of phosphorylation sites regulated

primarily by EGFR activation was identified based on very low phosphorylation

under HRG stimulation and high phosphorylation under EGF stimulation,
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Figure IV.2 - Hierarchical Clustering of phosphorylated peptides to identify co-regulated
phosphorylation sites. (A) Hierarchical clustering of the data generated a large heat map, in
which both peptides (rows) and stimulation conditions (columns) were clustered. Note that the
HRG-stimulated parental HMECs cluster with HRG-stimulated 24H cells, indicating that the level
of phosphorylation for most of the sites depends more strongly on stimulation conditions (HRG
vs. EGF) as compared to HER2 expression level. (B) Cluster of phosphorylated peptides
downstream of EGFR activation, as indicated by high phosphorylation levels following EGF
stimulation and low phosphorylation levels following HRG stimulation. (C) Cluster of
phosphorylated peptides from proteins involved in the cell migration signaling network. Note the
close association of multiple phosphorylation sites on p130Cas and BCAR3, two proteins from
the same family. (D) Cluster of phosphorylated peptides primarily associated with high HER2
expression and including phosphorylation sites on HER2, HER3, and PKC-Fi.

irrespective of HER2 expression level. This cluster includes phosphorylated

peptides from proteins associated with the immediate-early response to EGFR

stimulation and phosphorylated peptides from proteins involved in the

internalization of EGFR, clusters which were also detected in the previous
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chapter. Within this cluster the following phosphorylation sites were found:

Y1068 and Y1148 of EGFR, which act as docking sites for GRB2 and SHC

respectively (Batzer et al., 1994; Okabayashi et al., 1994), Y857/Y858 of Ack, a

kinase previously reported to be phosphorylated upon EGFR stimulation (Satoh

et al., 1996; Taya et al., 2001), Y387 of BDPI, a protein phosphatase involved in

the regulation of MAPK, Gab1 and HER2 (Gensler et al., 2004), and Y986 of

SHIP-2, which has been shown to bind to SHC, inhibiting Rac activation and

formation of [Ptdlns(3,4,5)P3] and thus AKT activation downstream of EGFR

stimulation (Coggeshall, 1998; Muraille et al., 1999; Pradhan & Coggeshall,

1997; Taylor et al., 2000). Also contained within this cluster are phosphorylation

sites on two proteins whose role in EGFR signaling has not been characterized,

Y7 of CKS1 and Y23 of Marvel D2. Although CKS1 has been shown to play a

role in the downregulation of the cell-cycle regulatory protein p27Kipl (Ganoth et

al., 2001), and expression levels of CKS1 have been correlated with poor

prognosis in breast cancer (Slotky et al., 2005), regulation of this protein in

response to growth factor stimulation has not previously been characterized.

Marvel D2 was related to EGFR signaling in the previous chapter. Although its

role is not defined, it localizes toward the cell membrane (Sanchez-Pulido et al.,

2002) and appears to be involved in the early response to EGFR activation.

Finally, phosphorylation sites on 3 proteins related to internalization and

ubiquitination of EGFR are also contained within this cluster, including Y177 of

SNX9, which has been shown to be recruited for clathrin coated pit-mediated

endocytosis and co-regulates EGFR degradation with Ack2 (Lin et al., 2002;
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Soulet et al., 2005), Y849 of EPS15, which has been shown to be

phosphorylated upon receptor activation by EGF and to induce receptor

internalization (Salcini et al., 1999), and Y455 and Y552 of c-Cbl, an E3 ubiquitin

ligase that binds EGFR Y1045 in the cytoplasm and endosomes, resulting in the

targeting of EGFR for degradation (Grovdal et al., 2004).

Another cluster of co-regulated phosphorylation sites from the bottom of

the heat map is highlighted in Figure IV.2C. This cluster contains protein

phosphorylation sites which are phosphorylated preferentially by HRG stimulation

of both parental and 24H cells and includes Y234, Y249, Y327 and Y387 in

p130cas (breast cancer anti-estrogen resistance 1 (BCAR1)) and Y267 in

BCAR3 (breast cancer anti-estrogen resistance 3). Interestingly, immediately

contiguous to this cluster and with a similar activation profile are peptides

containing putative Src phosphorylation sites, Y576 in FAK, and Y418 in Src, an

autophosphorylation site (Roskoski, 2004). Both of these proteins have been

shown to upregulate the migratory pathway (Yamboliev et al., 2001; Yang et al.,

2005) and to interact directly with p130cas (Avraham et al., 2003; Riggins et al.,

2003).

Three other small clusters highlighted in Figure IV.2D consist of

phosphorylation sites on HER2, HER3, and two associated proteins. It is

interesting to note that although HER2 sites may be clustered together, the

distance between peptides in the clusters is large (scale has been compressed

3-fold due to space constraints), indicative of differential regulation at different

sites and highlighting the need for site-specific quantification. In fact, HER2 site-
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specific phosphorylation response to EGF or HRG stimulation may be informative

as to the stimulation of specific signaling cascades downstream of activated

heterodimers.

IV.3.3 Self-Organizing Maps define temporal and conditionally related

clusters of phosphorylation sites

In order to identify clusters of tyrosine-phosphorylated peptides exhibiting

similar temporal dynamics, as well as to globally visualize the high-dimensional

information we have obtained, we used the self-organizing map (SOM) algorithm

(Kohonen, 2001)1. The SOM is a versatile clustering algorithm that transforms

high-dimensional data into lower dimensional display, in a non-linear manner.

Here we use the unified-distance matrix (or, U-matrix) approach, which allows

robust identification of clusters, and the component plane representation which

facilitates comparison of peptide phosphorylation response to exogenous stimuli

(Kohonen, 2001; Ultsch & Siemon, 1989). Instead of taking a single map-unit as

one cluster, we use U-matrix to identify groups of map-units that together

comprehend a cluster. The U-matrix illustrates the mean distances between

neighboring map units after the SOM training phase. These distances are color-

coded so that close proximity of two map-units is colored with bluish colors, while

The SOM algorithm used in this chapter is available online as a MATLABTM toolbox
(http://www.cis.hut.fi/projects/somtoolbox/). We choose to use this algorithm in stead of the
Spotfire'm algorithm used in chapter I, because of its more rigorous mathematical construction.
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shades of yellow and red denote dissimilarity. Clusters can be identified as

continuous bluish regions (valleys) surrounded by yellow or red "mountains."

We applied this SOM algorithm to 62 "core" phosphorylated peptides for

which temporal profiles were generated under all conditions (six of the "core"

phosphorylated peptides had minimal response across all conditions and time

points and were removed from this analysis). Data were mean centered and unit

variance scaled (z-score normalized) across all time-points and conditions. From

the U-matrix in Figure IV.3 four clusters are readily identifiable. Statistical

significances for these clusters were computed with a permutation test based

method (Hautaniemi et al., 2003) and the clusters were found to be statistically

significant (p < 0.05). The entire SOM display including the component planes is

shown in Figure IV.4.

By comparing the individual phosphorylation profiles (blue dashed lines) or

average phosphorylation profile (red line) within each cluster (Figure IV.3), it is

clear that the algorithm has clustered peptides whose phosphorylation level is

increased under selected conditions, information which can be used to link

phosphorylation sites within a cluster to activated receptor homo- or

heterodimers. For instance, the first cluster (c1 in Figure IV.3) consists of 18

peptides whose phosphorylation levels, on average, are highest following EGF

stimulation of P or 24H HMECs, conditions which would lead to activation of

EGFR homodimers or EGFR-HER2 heterodimers, respectively. Correspondingly,

most of the proteins in this cluster have been previously associated with

proliferation and early response to EGF stimulation, including EGFR Y1068 and
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Figure IV.3 - Self Organizing Map to cluster phosphorylation sites across conditional and
temporal space. Phosphorylation levels for 62 core phosphorylated peptides, which were
detected and quantified at 4 time points for each of the 4 stimulation conditions and the 5 minute
mix analysis, were normalized and placed into a self-organizing map (SOM). Four statistically
significant clusters were identified in the SOM (circled bluish valleys surrounded by yellow
"mountains"). The components for each of the four clusters are indicated in the Figure along with
the phosphorylation profiles (blue dashed lines) and an average profile for each cluster (red line)
across conditions and time-points (16 dimensions).

Y1 148, STAT-3 Y705 (STAT-3 isoform 1) and Y704 (STAT-3 isoform 2), SHIP-2

Y986, SHC Y239, Y240 and Y317 and early effectors downstream of them,

including MAP kinases ERK2 (phosphorylated at Y187 and at T185 and Y187),

Erk1 Y204, and p38 a Y182.
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Figure IV.4 - Self Organizing Map (SOM) Component planes. Phosphorylation levels for 62
core phosphorylated peptides, which were detected and quantified at 4 time points for each of the
4 stimulation conditions and the 5 minute mix analysis, were normalized and placed into a self-
organizing map (SOM). The component planes show the explicit dynamic phosphorylation pattern
of the peptides clustered in each neuron across the complete battery of biological conditions
(normalized to PEGF(5)). Blue neurons represent low phosphorylation for the peptides at that
time and condition (with respect to P EGF(5)) and red neurons represent high phosphorylation
for the peptides at that time and condition (with respect to PEGF(5)).

In comparison to c1, the three other clusters in the U-matrix (c2-c4)

contain peptides whose phosphorylation appears to be regulated by HER2

activation, as phosphorylation levels on these peptides are highest when HER2

is overexpressed. More specifically, peptides in the second cluster (c2) are

primarily phosphorylated downstream of EGFR-HER2 heterodimers, since the

highest levels of phosphorylation occur in the 24H HMECs stimulated with EGF.

This cluster consists of SHB Y355, SHP-2 Y62, LDL receptor Y845, and three
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EphA2 tyrosine sites, including the activation loop at Tyr 772 (Kinch & Caries-

Kinch, 2003). Of these proteins, only SHP-2 has been previously associated with

EGFR activation (Qu et al., 1999). Interestingly, each of the other proteins has

been associated with the cell migration response to VEGF stimulation (Cheng et

al., 2002; Holmqvist et al., 2003; Prager et al., 2004), a response which requires

EGF autocrine signaling following VEGF stimulation in endothelial cells (Semino

et al., 2006). Our data links these phosphorylation sites to the EGFR family

signaling network, and as demonstrated below, shows strong correlation

between these phosphorylation sites and cell migration in response to EGF

stimulation of 24H HMECs.

The third cluster (c3), contains 3 peptides that are primarily

phosphorylated downstream of activated HER2-HER3 heterodimers, as

implicated by maximal phosphorylation levels following HRG stimulation of 24H

HMECs. This cluster includes phosphorylation of p130Cas at Y327 and Y387,

and phosphorylation of BCAR3 at Y267. Both of these proteins are part of the

same family and have been shown to regulate or be regulated by Src activity in

the cell migration signaling network. Similar to c2 and c3, peptides in the fourth

cluster (c4) are predominantly phosphorylated downstream of HER2, but are

equally phosphorylated downstream of EGFR-HER2 or HER2-HER3

heterodimers or possibly activated through active HER2 homodimers (similar

phosphorylation levels are seen in EGF or HRG stimulated 24H HMECs). This

cluster includes phosphorylation of retinoic acid induced protein 3 (RA13) Y347,

paxillin Y118, GIT1 Y545, FAK Y397 and Y576, receptor protein tyrosine

188



phosphatase alpha (RPTP-a) Y798, P13K Y464, and Insulin-like growth factor

receptor (IGF-1R) Y1161 and Y1165. A complex containing GIT1 and paxillin

has been shown to regulate cell motility, possibly through recruitment of PAK or

PIX to the leading edge (Manabe et al., 2002), although the role of tyrosine

phosphorylation in this process has not been established. Other proteins in this

cluster have also been shown to be co-regulated, as RPTP-a has recently been

shown to regulate integrin signaling through Src activation in a P13K-dependent

manner downstream of insulin activation (Vulin et al., 2005), and Src activation is

known to regulate tyrosine phosphorylation of FAK. It is worth noting that the

phosphorylation sites on IGF-1 R (Y1 161 and Y1 165) occur within a peptide that

is homologous with the Insulin receptor. Although not conclusive, assignment to

IGF-1 R is based on the presence of a phosphorylation site on a peptide specific

for IGF-1 R in the larger data set and greater levels of IGF-1 R as compared to

Insulin receptor on HMEC parental and 24H cells (H.S. Wiley, personal

communication). Activation of IGF-1 R has been found to be correlated with

increased motility in a breast cancer cell line (Zhang et al., 2005b); in our system,

increased phosphorylation is most likely associated with autocrine release and

binding of IGF-1 following stimulation of EGFR family members.

These clusters make clear that analyzing phosphorylation sites across 16

dimensions of temporal and conditional space can reveal co-regulated

phosphorylation sites. Moreover this information can be used to connect

phosphorylation of specific sites to activation of EGFR family member dimers.

Although both clusters 3 and 4 contain phosphorylation sites from proteins known
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to regulate migration, they are statistically distinct clusters whose differential

response to exogenous stimuli may be due to protein sub-cellular localization, as

proteins from cluster 4 are known to be associated with the membrane, while

proteins in cluster 3 are primarily cytosolic. SOM-based data analysis can reveal

interesting hypotheses and connectivity in the data, such as the potential role of

GIT1 Y545 affecting cell migration or the inclusion of PTPR-a, P13K, and IGF-1 R

phosphorylation sites in a single cluster, but it is still necessary to relate

phosphorylation and phenotypic data to solidify these hypotheses; thus we

proceed to measure proliferation and migration in our system.

IV.3.4 Cell proliferation and migration are differentially stimulated via EGFR

and HER2

In order to correlate signaling data with cellular response, we quantified

both cell migration and cell proliferation in the HMEC parental and 24H cell lines.

Measurements were obtained under serum-free, HRG (80 ng/ml), or EGF (100

ng/ml) stimulating conditions.

Cell migration was measured using a wound-closure assay adapted for a

96-well plate format and automated fluorescent imaging. Under all conditions

investigated, the 24H cells moved more rapidly into the induced wound, thereby

reducing the original wound area at a greater rate than the parental cells (Figure

IV.5 A-C). The wound closure trajectories were fit to a line, and the slopes were
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Figure IV.5 - EGF and HRG drive migration and proliferation to varying extents In HMEC
parental and HER2 over-expressing cells. Parental (black) and 24H (red) wound healing data
shown for: (A) serum-free conditions, (B3) treatment with 100 ng/ml EGF, and (C) treatment with
80 ng/ml HRG. (D) Proliferation, as measured by [3H-] thymidine incorporation, for both cell types
under the treatment conditions shown in (A-(C).

the input for partial least squares modeling. Interestingly, the greatest difference

between the two cell lines occurs during EGF treatment. By comparison, HRG

stimulation, while inducing a slightly higher rate of wound closure for 24H HMVEC

relative to P HMEC, does not seem to drive significantly enhanced migration

relative to serum-free conditions.

Cell proliferation was measured by CH] thymidine uptake 25 hours after

ligand stimulation. Figure IV.5 D shows that EGF treatment increased thymidine

uptake to a greater extent than did HRG treatment, but both treatments induced

higher amounts of proliferation than seen in serum-free conditions. In direct
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contrast to the migration phenotype, there was no significant difference (i.e., p >>

0.05 in all cases) between the two cell types measured under any of the

stimulation conditions. Thus, HER2 overexpression did not seem to facilitate

enhanced proliferation in any of the conditions probed.

The fact that HER2 over-expression mediated differences in migration,

particularly under EGF stimulating conditions, but did not do so for proliferation

indicates that some of the signaling molecules differentially regulated by HER2

expression levels play a role in driving higher levels of migration while at the

same time remaining agnostic to cell proliferation. The linear regression modeling

discussed below integrates our quantitative migration, proliferation, and signaling

data to describe, among other things, a set of signaling molecules that is most

relevant for the changes in migration induced by HER2 overexpression.

IV.3.5 Modulation of EGFR signaling network by HER2

To assess the effect of increased HER2 expression levels in the canonical

EGF activated pathway, the phosphorylation level for sites observed in EGF-

stimulated 24H cells was divided by the phosphorylation level for the same site

and stimulation time in EGF-stimulated parental cells, producing a fold change in

phosphorylation level for a given site and time. A subset of the proteins and

phosphorylation sites within the canonical EGFR signaling network are shown in

Figure IV.6. As is evident from this figure, increased HER2 expression affects
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Figure IV.6 - Effect of increased HER2 expression on phosphorylation sites within the
EGFR signaling network. Visualization of the fold change in phosphorylation level between
24H and parental cells stimulated with EGF provides a network view of the mechanistic effects
of HER2 overexpression on the canonical EGFR signaling cascades.

most phosphorylation sites on selected proteins in the EGFR signaling network,

but not all phosphorylation sites on a given protein react equally to this

perturbation. For instance, each of the multiple phosphorylation sites on EGFR

exhibit different regulation at low or high HER2 expression levels, including

increased phosphorylation of Y974 and decreased phosphorylation on Y1045

under HER2 overexpression as compared with basal HER2 expression. Both of

these sites appear to regulate receptor intemnalization and degradation: Y974A or

Y974F mutations have been shown to decrease receptor internalization rates

(Sorkin et al., 1996), and CbI (E3-ubiquitin ligase) binding to EGFR Y1045 is
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Figure IV.7 - Effect of increased HER2 expression on phosphorylation sites within the
EGFR signaling network 2. Visualization of the fold change in phosphorylation level between
24H and parental cells stimulated with EGF provides a network view of the mechanistic effects of
HER2 overexpression on the cell migration associated signaling pathway.

required for lysosomal sorting and receptor degradation (Grovdal et al., 2004).

Decreased phosphorylation at the Y1045 site should lead to decreased

ubiquitination of activated EGFR, thereby providing a mechanism for observed

increase in recycling of activated EGFR in the 24H cell line relative to parental

184A1 HMECs (Hendriks et al., 2003b).

It is also interesting to note the higher basal phosphorylation level for

selected sites in the 24H cell lines relative to parental HMECs. Increased basal

phosphorylation associated with HER2 overexpression could be mediated by

HER2 autophosphorylation, cross-phosphorylation of EGFR in the absence of
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ligands, or even through increased autocrine stimulation of HER2 heterodimers.

For most sites with high levels of basal phosphorylation in the 24H cells,

stimulation with saturating concentrations of EGF typically resulted in a greater

response in parental cells relative to 24H cells, such that after EGF stimulation

for 5 minutes many of the sites had similar levels of phosphorylation in both cell

lines. A specific example of this behavior is provided by phosphorylation of the

ERK2 activation loop (Y185 and T185/Y187). Much higher levels of basal

phosphorylation were detected in the 24H cells relative to parental cells, but only

a slight difference in phosphorylation at these sites remained after 5 minutes of

EGF stimulation. These results are consistent with our proliferation data, in which

no significant difference between 24H and parental cells under EGF stimulation

was observed, in contrast to serum-free 24H cells, which had greater proliferation

than parental HMECs (p < 0.1). These results are also consistent with previous

literature demonstrating ERK2's role as a potent activator of proliferation (Cobb

et al., 1994). In fact, many protein phosphorylation sites associated with

proliferation behave similarly to ERK2 in our system, including STAT-3 Y705

(and Y704 from STAT-3 isoform 2), EGFR Y1 173, and SHC Y239, Y240, and

Y317.

Since HER2 over-expression has been found to affect cell motility in our

study here as well as in previous work (Spencer et al., 2000), the effect on

protein phosphorylation in a subset of the pathways related to cell migration is

shown in Figure IV.7. From this figure, it is clear that there is an overall increase

in phosphorylation of many of these pathway proteins in the presence of HER2
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overexpression. Perhaps most striking is the increase in phosphorylation for all

of the phosphorylation sites detected on catenin-8 and catenin-y. Catenins are

known to interact with E-Cadherin, the main cell-cell adhesion protein in epithelial

cells (Davis et al., 2003). Catenin-8, a member of the p120 catenin family, has

been shown to regulate E-Cadherin turnover by modulating its internalization and

degradation rate (Davis et al., 2003), stabilizing it on the cell surface when bound

to it. HER2 overexpression in breast carcinomas inhibits the transcription of E-

Cadherin (D'Souza & Taylor-Papadimitriou, 1994) and has also been found to

destabilize the catenin-cadherin complex, leading to decreased adhesion

(Jawhari et al., 1999). Also, EGFR has been found to directly phosphorylate

p120 catenin at Y228 (Mariner et al., 2004), and EGFR inhibition was found to

promote assembly of cell adhesions (Lorch et al., 2004). The accumulated

evidence of these reports is consistent with our data as it argues that Src- or

RTK-related phosphorylation of catenin-S leads to separation of the catenin-

cadherin complex, resulting in destabilization of E-Cadherin and an increase in

cell migration. Tyrosine phosphorylation of catenin-y has also been related to

loss of cell-cell adhesions in EGF-stimulated, E-Cadherin positive, cervical

cancer cells (Moon et al., 2001). Our data shows high levels of phosphorylation

of catenin-5 and y in HER2 over-expressing cells under EGF stimulation, directly

contributing to loss of cell adhesion and an increase in cell motility.

Although catenin phosphorylation and loss of E-cadherin-based cell-cell

adhesion may provide part of the migratory response following EGF stimulation

in 24H cells, increased phosphorylation of many additional components of the
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cell migration pathways are also likely to be contributing to increased migration of

these cells relative to parental cells. For instance, FAK, Src, Paxillin and

p130Cas have all been shown to interact with each other, to localize at the focal

adhesions, and to play a fundamental role in the actin cytoskeleton

reorganization and motility pathways (Webb et al., 2004). Phosphorylation of

paxillin (Y31) and (Y1 18) is known to regulate membrane spreading and ruffling

in cell migration and adhesion (Tsubouchi et al., 2002). FAK and Src are two of

the major kinases involved in cell migration. FAK (Y397) is the major

autophosphorylation site and acts as a docking site for Src and P13K (Cary &

Guan, 1999); this site is also necessary for both p130cas and paxillin

phosphorylation in response to FAK expression (Cary & Guan, 1999). Src Y418

is a major Src autophosphorylation site, whose phosphorylation results in self-

activation (Roskoski, 2004). Src can mediate FAK related migration by further

phosphorylation of paxillin or p130Cas, which may result in focal adhesion

turnover and/or lamellapodia and filipodia formation via either the RAC, JNK

pathway or the RhoGAP pathway (Playford & Schaller, 2004). We conclude that

the effect of increased HER-2 expression levels is partly increased interaction of

FAK, Src, P130Cas and paxillin, a small but noticeable increase in ERK2 activity

and the upregulation of catenin phosphorylation and thus E-cadherin turnover, all

combining to drive an increased migratory response in the 24H cell line (as in

Figure IV.5).
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IV.3.6 HRG vs EGF stimulation in the presence of HER2

In addition to investigating the effects of HER2 on these pathways in

Figures IV.6 and IV.7, our data also enabled comparison of signaling

downstream of activated HER2:HER3 vs. EGFR:HER2 heterodimers, resulting

from stimulation of the 24H cells with HRG and EGF, respectively. For this

analysis, the phosphorylation level resulting from HRG stimulation of 24H cells

was divided by the phosphorylation level resulting from EGF stimulation of 24H

cells to produce the fold change ratio for each phosphorylation site in the

canonical signaling pathways (Figure IV.8). As expected, stimulation with HRG

instead of EGF caused a significant increase in HER3 phosphorylation and a

large decrease in EGFR phosphorylation. Perhaps not surprisingly given the

relative receptor expression levels (20,000-30,000 copies/cell for HER3 vs.

200,000 copies/cell for EGFR) and the kinase-dead nature of HER3, stimulation

with saturating concentrations of HRG resulted in decreased phosphorylation of

almost all downstream proteins as compared to stimulation with saturating

concentrations of EGF (Figure IV.8). Specifically, most of the downstream

effectors which lead to proliferation (STAT-3 Y705 (Y704), ERK T202/Y204, all

three phosphorylation sites on SHC) were phosphorylated to a lesser degree

under HRG stimulation, correlating with decreased proliferation in HRG

stimulated 24H cells as compared to EGF stimulated 24H cells (as in Figure

IV.5). Other sites primarily associated with migration (Src, PKC-8, and P13K) do
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Figure IV.8 - Effect of HRG stimulation versus EGF stimulation in high HER2 expressing
cells. Visualization of the fold change in phosphorylation level between HRG-stimulated and
EGF-stimulated 24H cells provides a network view of the mechanistic effects underlying
differential response to distinct growth factor stimuli on the canonical EGFR signaling cascades.

not show the same decrease in phosphorylation when comparing HRG to EGF

stimulation of these cells. In fact, both Src and PKC-S show an increase in

phosphorylation under HRG activation at 5 and 10 minutes respectively which

coupled with our response data indicates that signaling distinct from Src, PKC-8,

and P13K controlled pathways may govern cell migration in our system.

To analyze the effect of HRG stimulation on the cell migration signaling

network, signaling downstream of activated HER2:HER3 vs. EGFR:HER2

heterodimers was also compared for selected proteins within a subset of the

pathways related to cell motility (Figure IV.9). Comparing phosphorylation levels
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for specific sites under different stimulation conditions provides a potential

hypothesis to explain the mechanism underlying the quantitative phenotypic

migration measurements, in which EGF stimulation resulted in a dramatic

increase in migration relative to HRG stimulation of 24H cells (see Figure IV.5).

Given the difference in migration rates between these two cell states, it is not

surprising to note that protein phosphorylation sites on almost all effectors of

migration have decreased phosphorylation levels following HRG stimulation as

compared to EGF stimulation. However, in contrast to most proteins in the

motility network, tyrosine phosphorylation levels on FAK, p130Cas, Src and

paxillin were increased following HRG stimulation compared to EGF stimulation,

indicating that the slight migratory effect of HRG stimulation of 24H cells is

directed primarily through amplified phosphorylation of a very specific pathway

driven through these four proteins.

Taken together, the data from Figures IV.6, IV.7, IV.8 and IV.9

demonstrate that 24H cell migration can be induced by either broad upregulation

of the migratory pathway, including loss of cell adhesions (24H cells under EGF

stimulation) or, to a much lesser extent, by more intense upregulation of a

restricted subset of the migratory pathway (as in 24H cells stimulated with HRG).

By comparison, 24H cell proliferation was induced to a greater extent by EGF

stimulation as determined by phenotypic assay; correspondingly, phosphorylation

levels were higher on almost all proliferation-associated proteins on 24H cells

stimulated with EGF as compared to 24H cells stimulated with HRG. Also

consistent with the phenotypic data, the effect of increasing HER2 expression
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Figure IV.9 - Effect of HRG stimulation versus EGF stimulation in high HER2 expressing
cells 2. Visualization of the fold change in phosphorylation level between HRG-stimulated and
EGF-stimulated 24H cells provides a network view of the mechanistic effects underlying
differential response to distinct growth factor stimuli on the cell migration associated signaling
pathway.

levels was most dramatic for proteins in the cell migration signaling network, as

most proteins displayed a sustained increase in phosphorylation levels, but was

much less dramatic for proteins in the proliferation-associated network, as

increased basal phosphorylation levels in 24H cells were not sustained following

EGF stimulation.
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IV.3.7 PLSR modeling correlates signals with cell functional responses

We have constructed a model using partial least-squares regression

(PLSR), a method we have previously found to be effective in relating cell

signaling data to cell behavioral response data in a quantitative and integrative

manner (Janes et al., 2005). Information obtained through our proteomic studies

was represented in an M x N matrix (the X-block), where M is the number of

conditions investigated, and N is the number of peptide metrics measured. An

entry in the matrix with coordinates (i,j) represents the column j metric (i.e. ERK

Y187 phosphorylation at 5 minutes) measured under the row i condition (i.e.

parental cell line treated with EGF). For each condition, the metrics included in

the model were phosphorylation measurements at 5, 10, and 30 minutes in

addition to the integral of this time course (with integrals being used as a

measurement for the 'net' phosphorylation over the 30 minute time course). Cell

behavior measurements comprised an M x P matrix (the Y-block), where M is

again the number of conditions and P is the number of behavior measurements

obtained. Partial least-squares regression analysis produced a vector of

coefficients indicating the importance of each signaling metric with respect to

cellular behavior. In addition, PLSR provided a reduced-dimension map, with

axes defined as linear combinations of our original signaling metrics (Figure

IV.IOA), on which both signals and cellular behavior can be represented. Figure

IV.10A shows that our original dataset, consisting of 248 dimensions (i.e., 248

phosphorylation signal metrics), has been reduced to 3 dimensions using PLSR,
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Figure IV.1O - Partial least squares regression correlates 248 protein metrics to cell
migration and proliferation. (A) Visual representation of a reduced (3) dimension graph showing
all 248 protein measurements and the cellular outputs with cell migration (green), cell proliferation
(blue), and protein signals (black). (B) List of the top 20 signal-behavior covariates for both
migration and proliferation.

each of which incorporates a quantitative combination of multiple signals. The

projection of an individual signal in the direction of a given cellular behavior in the

PLS space determines how important the phosphorylation signal is to the

behavior. In Figure IV.1OB, we list the top 20 signals that positively correlate

most strongly with each cell behavior. Importantly, even though we can identify

small sets of variables that correlate strongly with each cellular output, 148 out of

the 248 protein metrics had a variable importance for projection (VIP) value of

greater than 1, indicating that these 148 protein metrics play an important role in

our model (see Materials and Methods for VIP calculation). This highlights the
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great advantage of proteome measurements that quantitatively capture dynamic

information flow through a large number of nodes. Our model was validated

through cross-validation and had a goodness of prediction (Q2) of 0.89 (see

Materials and Methods). From the top 20 signal behavior co-variates for

proliferation and migration in our model (Figure IV.10B), HER2 Y1248 appears to

be the main upstream activator of migration while proliferation seems to be

activated by EGFR Y1173 and to a lesser extent EGFR Y1148. This finding

correlates with literature showing that the presence of HER2 Y1248 is necessary

to induce migration of breast cancer cell lines (Dittmar et al., 2002) whereas both

EGFR Y1 148 and Y1 173 are Shc binding sites and thus are able to activate the

ERK signaling pathway, thereby driving proliferation (Okabayashi et al., 1994). In

this model, SHP-2 Y62 and Annexin A2 Y237, among others, also appear to be

highly correlated with migration. Both of these proteins have previously been

implicated in regulating migration, as SHP-2 has been shown to promote

migration in MCF-7 cells by inducing loss of E-Cadherin expression and

production of matrix metalloproteinase 9 (Wang et al., 2005a), while Annexin A2

has been shown to mediate mitogenesis, cell migration and loss of focal

adhesions when activated by tenascin-c (Chung et al., 1996; Liu et al., 2003) and

it has also been identified as a major substrate for EGFR phosphorylation

(Rothhut, 1997). Interestingly, treating cells with withaferin, a novel inhibitor of

Annexin A2, has recently been shown to decrease migration, further validating

the correlation between Annexin A2 and cell migration (Falsey et al., 2006).

204



In addition to EGFR Y1 173 and Y1 148, desmocollin (Dsc3a) Y818, IGF-

1 R Y1 165, and catenin-8 Y228 (among others) are most strongly correlated with

proliferation. IGF-1 R is known to induce cell proliferation and survival through

activation of the MAPK and P13K pathways (Wang et al., 2005b), and has also

been associated with EGFR signaling in Tamoxifen resistant breast cancer cell

lines, potentiating their mitogenic strength (Knowlden et al., 2003). The

correlation of Dsc3a and catenin-8 to cellular proliferation is initially surprising, as

both of these proteins are associated with cell adhesions, leading to the

expectation that they should correlate to migration instead of proliferation.

However, EGFR inhibition has been shown to increase the presence of

desmocollin and desmoglein at cell-cell borders (Lorch et al., 2004), and EGFR

has also been shown to signal to E-cadherin complexes through phosphorylation

of catenin-S Y228 (Mariner et al., 2004). Since the conditional and temporal

profiles for both of these sites (Dsc3a Y818 and catenin-S Y228) display strong

similarity to that observed for EGFR Y1 173, it can be argued that they are either

directly or closely downstream of EGFR and that phosphorylation of these sites

may destabilize cell-cell adhesions, a step needed for both proliferation and

migration. Further biological experiments are clearly needed to more firmly

establish the functional roles of these proteins in regulating cellular proliferation

under these stimulation conditions.

It is worth noting that a large proportion of the phosphorylation events

contained in our regression model influence both migration and proliferation to

some extent. Importantly, the model provides a quantitative metric describing the
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strength of correlation for each phosphorylation site relative to migration or

proliferation; data which can be used to design further experiments to specifically

perturb selected biological outcomes -- i.e., to inhibit migration one might want to

target HER2, SHP-2 and EphA2. This type of data-driven modeling can also

provide insight to the functionality of unknown proteins such as KIAA127; in our

model, phosphorylation of this protein at Y393 correlates strongly to migration.

Interestingly, KIAA1217 is a novel protein highly homologous to p140CAP

(p130Cas-associated protein), which has been shown to be tyrosine

phosphorylated in response to EGF stimulation and to participate in actin

cytoskeleton organization and cell spreading (Mariner et al., 2004).

Combining large-scale quantitative analysis of tyrosine phosphorylation

with quantitative phenotypic measurements has provided the means with which

to understand the relationship between these phosphorylation events and their

relation to cellular responses. The findings we have discovered here illustrate

how HER2 over-expression influences signaling network activities important for

governing cell proliferation and migration behavior, common to and distinct

between EGFR-binding ligand and HER3-binding ligand conditions. This

quantitative information offers unusual opportunity for understanding prospective

drug effects in a network-wide manner, and may offer novel targets for

intervening in biological processes downstream of activated receptor tyrosine

kinases.
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IV.4 DISCUSSION

Through coupling time-resolved proteomic analysis of tyrosine

phosphorylation across four cellular conditions of HER2 expression level and

EGF family ligand treatment, with phenotypic profiling of the cells according to

migration and proliferation levels under the same conditions and applying several

different computational analyses to the experimental results we have quantified

the effect of increased HER2 expression on cellular signaling networks and

cellular response downstream of EGF or HRG stimulation. Furthermore, we have

been able to find strong correlative behavior between the signals and cellular

phenotype.

By performing the phosphorylation analysis in information dependant

acquisition mode (discovery mode), we were able to identify and quantify a large

number of well-characterized and novel phosphorylation sites in the EGFR family

signaling network. However, the price for high network coverage was paid by the

low reproducibility of phosphorylation sites across conditions. Of a total of 332

phosphorylated peptides quantified only 68 (20.8%) were found under all

biological conditions. From this subset we took a core of 62 peptides that show

conditional variation for subsequent computational analysis. Not withstanding the

low reproducibility of peptides across conditional space the core dataset still

remain to our knowledge the most complete overview on the effects of HER2 on

signal transduction networks.

In order to ascribe potential functionality to novel sites in the data set, we

applied both hierarchical clustering and self-organizing maps to identify clusters
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of phosphorylation sites co-regulated across conditional (hierarchical clustering

of all sites found in the 5 minute runs) or temporal and conditional space (SOM

analysis of the 62 phosphorylation sites in the core dataset). Although these

clusters reveal dynamic co-regulated modules within the network, and are helpful

to track which set of EGFR family homo- or heterodimers are driving different

subsets of the observed cellular signaling networks they were not enough to

understand how HER2 expression was driving biological variation in the cells.

To gain insight into the specific effects of HER2 expression in cellular

responses, we generated figures to visualize conditional and temporal changes

in protein phosphorylation levels for proteins associated with selected signaling

pathways. This level of analysis revealed several interesting hypotheses, such

as the potential role of decreased phosphorylation on EGFR Y1045 leading to

reduced receptor endocytosis and recycling rates with increased HER2

expression, the involvement of FAK, Src, p130Cas and paxillin driving migration

downstream of activated HER2-HER3 heterodimers (following HRG stimulation

in 24H cells) or the importance of the catenin network in cell migration

downstream of activated EGFR-HER2 heterodimers (following EGF stimulation

of 24H cells). However interesting, the insights gained were intuitive and lacked

rigorous quantification allowing more definite conclusions on the role of different

phosphorylation sites in the measured cellular phenotypes.

Finally, to quantitatively define the relationship between our core

phosphoproteomic dataset and proliferation and migration we used partial least

square regression analysis. In fact, we were able to construct a predictive model
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that allowed us to find the phosphorylation events correlating the closest to both

migration and proliferation. This approach resulted in the correlation of novel and

expected sites to migration and proliferation.

Overall, the work presented in this chapter accomplished several goals.

We generated what it is to date the largest dynamic and conditional dataset of

signal transduction downstream of EGFR family members activation. Moreover,

by using computational analysis we were able to discriminate the specific dimers

upstream of many of the measured signals and we were also able to correlate

those signals to two cellular outcomes (migration and proliferation). As a

continuation of this project Neil Kumar has deepened his work in the

computational analysis of the core dataset and its relationship to cellular

phenotype with the objective of quantifying the difference between the cellular

systems and finding the most predictive signals in the dataset for cell behavior.

This analysis has been submitted for publication.

A new project emerging from the results of this chapter deals with the

problem of mass spectrometry run reproducibility. In order to obtain large,

quantitative, statistically significant datasets for further mathematical analysis it is

necessary to have at least several measurements for every single

phosphorylation site. As seen in this chapter, this is not possible using

information dependent acquisition. Chapter V in this thesis describes our work in

developing a quantitative and reproducible method in order to generate robust

mass spectrometry data for mathematical modeling and computational analysis.
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V.1 SUMMARY

One basic premise to obtain data amenable to computational analysis and

mathematical modeling is that the data needs to be quantitative, reproducible

and significant from a statistic point of view. The results from the previous

chapter showed that while our mass spectrometry based technology for

phosphoproteomics is highly quantitative, phosphorylation site specific and the

data obtained by it can be used for mathematical modeling and computational

analysis its reproducibility is still very low. This results in the heterogeneous

detection of many phosphorylation sites across many mass spectrometry runs

with small overlap among them, in fact in the previous chapter out of a total of

332 phosphorylated peptides found only 68 (20.4%) were found across all

conditions, not withstanding the copious amount of new insights we gain from the

analysis of just this subset peptides we can not but wonder how much

information and how much deeper insight we could have gained if we had had a

more robust mass spectrometry technology allowing for a significantly higher

peptide detection overlap across all conditions.

In this chapter I will talk about an expansion to our technology that we

have developed to specifically tackle the issue of mass spectrometry run-to-run

reproducibility. To solve this issue we complemented our information dependent

acquisition (IDA) methodology with multiple reaction monitoring (MRM) based

mass spectrometry. MRM has been largely use as a mass spectrometry

technique when it is desired to find a particular chemical in a sample, for instance
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MRM is a preferred tool for doping control in sports competitions and forensic

analysis. However applications of MRM to the field of phosphoproteomics are

few.

To complement our current IDA based technology we have designed,

tested, validated and implemented the MRM methodology for our

phosphoproteomics studies. To construct our MRM methodology we took as

input phosphorylated peptides detected in IDA mode - characterized by their LC

elution profile, parent ion m/z, one b and one y ion fragment and iTRAQ markers.

In MRM mode the mass spectrometer is programmed to search for these

peptides (according to their LC elution order) and a peptide is considered to be

found when both b and y ions originating from a given parent ion are co-detected.

To test the application of MRM to phosphoproteomics and to gain further

dynamic resolution on the activation of the EGFR network we have designed

what is to our knowledge the largest MRM experiment ever done. Out of a search

space of 226 peptides we were able to found 223 by MRM of which 199 (89.2%)

were found in every single mass spectrometry run. In contrast using IDA only 186

peptides were detected of which just 63 (33.8%) were found in every single mass

spectrometry run. This highlights the enormous contribution of MRM to build a

robust and reproducible mass spectrometry based phosphoproteomics

technology.

Finally, the successful completion of our experiment allowed us to

characterize with high temporal resolution (seven time points, spread across 32

minutes) the phosphorylation of 222 phosphopeptides - covering 200
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phosphotyrosine sites (34 novel), 6 phosphoserine sites (1 novel) and 2

phosphothreonine sites in 143 proteins - after EGF stimulation of human

mammary epithelial cells (HMECs) (Stampfer & Bartley, 1985).

The data presented in this chapter details the process of building,

validating and characterizing MRM for phosphoproteomics. We are currently

working on a manuscript to publish this data in a peer reviewed journal.
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V.2 MATERIALS AND METHODS

V.2.1 Cell Culture and Stimulation

184A1 HMECs (human mammary epithelial cells (Stampfer & Bartley,

1985)) were a kind gift from Martha Stampfer (Lawrence Berkeley Laboratory,

Berkeley CA) via Steve Wiley (Pacific Northwest National Laboratory, Richland

WA and were maintained in DFCl-1 medium supplemented with 12.5 ng/ml EGF,

as in (Band & Sager, 1989). Cells were washed with PBS and incubated for 12

hours in serum free media (DFCl-1 without EGF, bovine pituitary extract, or fetal

bovine serum) after 80% confluence was reached in 15 cm plates (~107 cells).

Synchronized cells were then stimulated with 100 ng/ml EGF in serum free

media for 1, 2, 4, 8, 16 or 32 minutes, or left untreated with serum free media for

4 min as control before lysing. Because the 4 minutes time point was used as

time course normalization control 2 plates in stead of 1 were stimulated for 4

minutes in every single time course.

V.2.2 Protein Quantification

Protein concentration of cell lysates was determined using the micro

bicinchoninic acid assay (micro-BSA - Pierce) according to the manufacturer's

protocol.
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V.2.3 Sample Preparation

Cells were lysed with 8M urea / 1mM sodium orthovanadate. After DTT

reduction and iodoacetamide alkylation proteins were digested with trypsin.

Tryptic peptides were desalted and fractionated on a C18 Sep-Pak Plus cartridge

(Waters), and the 25% MeCN fraction was divided into 10 equivalent aliquots

which were Iyophilized to dryness. One aliquot of sample from each condition

was labeled with one tube of iTRAQ reagent (Applied Biosystems, CA) (following

manufacturer's directions). Samples labeled with four different isoforms of the

iTRAQ reagent were combined, dried completely, and saved at -80*C. This

process was repeated to generate two biological and two analytical duplicate

sets of time courses each divided into two samples (sub time courses, 0, 1, 2 and

4 minutes and 4, 8,16, and 32 minutes for labeling with iTRAQ 114, 115, 116 and

117 tags respectively).

V.2.4 Peptide IP

10 pg of protein G Plus-agarose beads (Calbiochem) were incubated with

12 pg of each anti-phosphotyrosine antibody (pTyr100 (Cell Signaling

Technology), PT-66(Sigma)) in 200 pl of IP buffer for 8 hr at 40C. The beads

were rinsed once with 400 pl of IP buffer at 40C. iTRAQ labeled sample were

dissolved in 150 pl of IP buffer (100 mM Tris, 100 mM NaCl, 1% NP-40, pH 7.4)
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and 300ul of water. After pH was adjusted to 7.4 with 0.5 M Tris buffer pH 8.5,

the sample was mixed with the antibody bound protein G Plus-agarose beads,

and was incubated overnight at 40C. The protein G Plus-agarose beads were

spun down for 5 minutes at 6000 rpm and the supernatant was separated and

saved. Antibody-bound beads were washed once with 400 pl IP buffer for 10

minutes and twice with rinse buffer (100 mM Tris, 100 mM NaCl, pH 7.4) for 5

minutes at 40C. Phosphotyrosine containing peptides were eluted from antibody

with 70 pl of 100 mM glycine pH 2.5 for 30 min at room temperature.

V.2.5 IMAC and IDA Mass Spectrometry Analysis

Phosphopeptide enrichment on IMAC was performed as described (Zhang

et al., 2005c). Peptides retained on the IMAC column were eluted to a C18

capillary precolumn (100 pm ID, 360 pm OD) with 50 pl of 250 mM Na2HPO4, pH

8.0. After 10 min rinse (0.1% HOAc), the precolumn was connected to an

analytical capillary column with an integrated electrospray tip (-1 pm orifice).

Peptides were eluted using a 100 min gradient with solvent A (H20/HOAc, 99/1

vol/vol) and B (H20/MeCN/HOAc, 29/70/1 vol/vol): 10 min from 0% to 15% B, 75

min from 15% to 40% B, 15 min from 40% to 70% B. Eluted peptides were

directly electrosprayed into a quadrupole time-of-flight mass spectrometer

(QSTAR XL Pro, Applied Biosystems). MS/MS spectra of four or five most

intense peaks with charges 2 to 5 in the MS scan were automatically acquired in

226



information-dependent acquisition with previously selected peaks excluded for 40

seconds. Electrospray voltage was set to 1800 V and curtain gas at 20 nominal

units. MS/MS/MS experiments were run in the positive mode with MS TOF

masses filter set between 370 to 1500 a.m.u and MS accumulation times of 2.5

seconds. In MS/MS mode accumulation times were set at 3.5 second for the 3

most abundant ions and 4 seconds for the following 2. Q2 transmitions was set to

spend 40% of MS/MS time between 80 and 150 a.m.u for clear iTRAQ

quantification, 15% between 150 and 300 a.m.u for detection of phosphotyrosine

immonium ion, 20% between 300 and 600 a.m.u and 25% between 600 and

1500 a.m.u. to focus on peptide identification. Collision energies (CE) were

calculated as a linear function of m/z, with the slope and offset being empirical

functions of the charge. For b and y fragment ions the parameter used were:

slope = 0.0630, 0.0634, 0.0614 and 0.0518; offset = -5.5, -3, -1 and 1for

precursor ions of charge 2, 3, 4 and 5 respectively.

V.2.6 MRM Mass Spectrometry Analysis

Sample preparation, peptide IP, IMAC, C18 pre-columns, C18 analytical

columns and liquid chromatography gradient were the same as above. Eluted

peptides were directly electrosprayed into a triple quadrupole linear ion trap mass

spectrometer (QTRAP 4000, Applied Biosystems). Electrospray was set at 2000

V and curtain gas at 20 nominal units. Enhanced MS (EMS) and multiple reaction
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monitoring (MRM) were run in the positive mode with QO trapping activated. In

EMS mode masses between 370 and 1500 a.m.u at scan rate of 1000 a.m.u per

cycle were scanned. For MRM mode Q1 resolution was set to high and Q3

resolution was set to unit. Dwelling time for all product ions was set to 35 msec

and CE were calculated as above, with the correction that to ensure

fragmentation at low m/z for iTRAQ quantification CE settings for iTRAQ ions,

were calculated with a 25% slope increase and a 6 units higher offset. CE for b

and y ions was calculated using the same parameters as above. To ensure

fragmentation at low m/z for iTRAQ quantification in the QTRAP CE setting for

iTRAQ ions, were calculated with a 25% slope increase and a 5 units higher

offset.

V.2.7 Phosphopeptide Sequencing, Data Clustering and Analysis

For IDA experiments, MS/MS spectra were extracted and searched

against human protein database (NCBI) using ProQuant (Applied Biosystems) as

described by the manufacturer. An interrogator database was generated by

predigesting the human protein database with trypsin and allowing one

miscleavage and up to six modifications on a single peptide (phosphotyrosine s

2, phosphoserine s 1, phosphothreonine s 1, iTRAQ-Iysine s 4, and iTRAQ-

tyrosine 4). Mass tolerance was set to 2.2 amu for precursor ions and 0.15 amu

for fragment ions. Grouping of MS/MS spectra from different cycles was set to
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zero. Phosphotyrosine-containing peptides identified by ProQuant were manually

validated. ProQuant quantification results were corrected by removing

contaminant signals near iTRAQ tag peaks. Data was further corrected with

values generated from the peak areas of non-phosphorylated peptides to

account for possible variations in the starting amounts of sample for each time

point. All the data from each analysis was normalized by the 4 min peak area

values for integration of sub time courses.

For MRM experiments, peak detection and automatic quantification

methods were built for each method using Analyst 1.4.1 (Applied Biosystems).

Bunching factor and number of smooths, were set to 1. Peak detection was

inspected visually, to ensure correct peak identification (co-elution) and shape

(smoothness). For quantifying peptides eluting at the very beginning or end of

any MRM methods, cases in which only the rising or decreasing section of a

peak was detected the manual quantification option of Analyst 1.4.1 was used.

As an alternative for boundary peak quantification and also used to quantify

peptides with noisy iTRAQ signal, peptides were quantified directly from the

MRM raw data in the original acquisition wiff file. Intensity counts of 3 - 5 iTRAQ

analytical replicates were taken around the peptide b and y ions mean time of co-

elution and averaged for quantification. For peptides with good elution patterns

wiff file quantification closely reproduced the results obtained by automatic

quantification. As in IDA data was corrected using the peak areas of non-

phosphorylated peptides for possible variations in the starting amounts of sample
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for each time point. For consistency normalization runs were also done on the

EMS/MRM mode.

All the data from each analysis, for both IDA and MRM analysis was

normalized by the 4 min peak area values for integration of the sub time courses

into a full time course.
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V.3 RESULTS

V.3.1 A Robust Technology for Mass Spectrometry Based

Phosphoproteomics

The cell signaling discovery and monitoring of phosphorylation (CSDMP)

technology is an extension of our previously developed LCMS/MS technology for

characterization and quantification of tyrosine phosphorylation events in cell

signaling networks (Zhang et al., 2005c) (Figure V.1). Briefly, following cell lysis

after the desired stimulation conditions proteins are denatured alkylated and

digested with trypsin. Phosphorylated peptides are extracted by reverse phase

chromatography and aliquoted. Four aliquots from four different samples are

labeled using each one of four different iTRAQ tags - if there is more than four

samples to be analyzed the samples are divided in sets of four and one of the

samples is included in every single set to allow for direct comparison across

groups -. After labeling, the samples in one set are mixed, immunoprecipitated

using anti-phosphotyrosine antibody and further purified by IMAC enrichment.

The pulled down peptides are analyzed by LC-ESI-MS/MS using a quadrupole -

time of flight mass spectrometer (QSTAR-XL) set in information dependent

acquisition (IDA) mode. Our group has successfully applied this technology to

EGFR family members and T-Cell and insulin mediated signaling (Kim & White,

2006; Schmelzle et al., 2006; Zhang et al., 2005c)MSB.
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Figure V.1 - Schematics of CSDMP Method. Biological duplicates of eight 80 to 90% confluent
plates of parental HMECs were treated with 100 ng/ml EGF for 0, 1, 2, 4 (2x), 8, 16 and 32
minutes respectively after 12 hour serum starvation. Cells were lysed with 8M urea / 1mM sodium
orthovanadate. After DTT reduction and iodoacetamide alkylation proteins were digested with
trypsin. Tryptic peptides were desalted and fractionated on a C18 Sep-Pak Plus cartridge
(Waters), and the 25% MeCN fraction was divided into 10 equivalent aliquots which were
lyophilized to dryness. One aliquot of sample from each condition was labeled with one tube of
iTRAQ reagent (Applied Biosystems, CA) (following manufacturer's directions). Samples labeled
with four different isoforms of the iTRAQ reagent were combined, immunoprecipitated and
analyzed by LC-MS-MS/MS and LC-EMS-MRM respectively. This process was repeated to
generate two biological and two analytical duplicate sets of time courses each divided into two
samples (sub time courses, 0, 1, 2 and 4 minutes and 4, 8,16, and 32 minutes for labeling with
iTRAQ 114, 115, 116 and 117 tags respectively). The MRM method was designed based on
several previous IDA analysis of EGFR mediated phosphorylation in parental HMECs and tool
into account LC-elution profile of the peptides.

The main problem that we have found when applying this technology is

based on the nature of IDA methods - where for each MS scan the top n most

abundant peptides are chosen for MS/MS (with n between 1 and 10) - resulting

in that any change in the sample nature translates into the identification and

quantification of a different set of tyrosine phosphorylated peptides in each
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analysis with only a subset of the peptides being identified in every single run. As

corollary, the percentage of peptides that can be found in biological replicates,

different sections of a time course or across different biological condition to

perform quantitative analysis of statistically significant data decreases as the

number of replicates, time points or biological conditions increase.

To solve the aforementioned issue we had expanded our technology to go

one step further from discovery/IDA mode into monitoring/MRM mode (Figure

V.1). Our CSDMP technology builds on our previous methodology by combining

the results of various QSTAR IDA experiments to generate a multiple reaction

monitoring (MRM) method that can be implemented using a triple quadrupole

mass spectrometer (QTRAP 4000).

To build our MRM method we use four parameters that are readily

obtained from one or multiple IDA experiments: 1) Relative elution time of a

peptide with respect to others, 2) intact peptides (parent ions) charge state (z)

and m/z, 3) characteristic b ion and y ion m/z for a given parent ion and 4)

collision energy required for sequence (b and y ions) and quantification (iTRAQ

markers) related fragmentation. Figure V.2 depicts the process of building and

MRM method for the tryptic peptide containing EGFR pY1173. The peptide

elution profile in all IDA runs that are going to be used to build the method is

characterized and a list of all peptides eluting before and after it is constructed.

This list allows us to determine when in the MRM experiment should we look for

the peptide (the list is not necessary if less than 300 fragments are being

detected). At the same time, parent ion and characteristic b and y ions m/z are
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Figure V.2 - How to construct MRM method from IDA data. Elution time of the peptides is
obtained from total ion chromatogram, parent ion m/z from the corresponding MS scan and b and
y m/z ions from the appropriate MS/MS scan. Peptides are ordered according to their LC elution
profiles and CEs are calculated as a linear function of parent ion charge. To favor marker ion
detection iTRAQ CE is calculated with a 25% increase in slope and an increase of 6 eV in the
baseline with respect to b and y ions. Accumulation times can also be adjusted, but in this work
we use 35 ms for all selected fragments. The table shows the necessary information to detect
EGFR pYl 173 in MRM mode, including its expected relative elution order with respect to other
sought peptides. Elution order is important only when monitoring more than 300 fragment ions
(i.e. 150 peptides without quantification or 50 peptides including quantification).

identified from an IDA obtained MS/MS spectra. b and y ions are selected

according to their signal intensity in MS/MS with the constraints that each of them

should be at least 4 residues long and their added length should be at least 9
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amino acids, unless the peptide is shorter than this length. Because ions with

charge 2 and 3 where found to fly better in the QTRAP than ions with charge 4 or

5 in many cases it was necessary to convert the parent ion m/z values found in

IDA to their equivalent values at charge 2 or 3, with the restriction that all parent

ions m/z should be lower than 1200 a.m.u.

The collision energy both in IDA and MRM methods is a linear function of

the parent ion m/z, with the slope and offset of the equation being an empirical

function of the parent ion charge state. The collision energy for detection is

calculated keeping the parameters that were used in the IDA experiments

whereas to ensure iTRAQ fragmentation the collision energy for quantification is

calculated by increasing the slope of the equation 25% and the offset 6 units.

Finally a table like the one shown at the bottom of Figure V.2 for EGFR pY1 173

can be obtained for every peptide of interest and an MRM method is constructed

by merging these tables together in order from first to last eluting peptide.

It is important to note that the QTRAP can monitor a maximum of 300

reaction fragments per MRM method, taking into consideration that for each

peptide we wanted to detect we needed to tract six fragment ions (b and y ions

plus four iTRAQ markers). Given that we were looking for 226 peptides, including

negative controls, which gave us a total 1356 fragments to look, we clearly

exceeded the capabilities of using a single MRM method. To monitor all these

ions, for a single LC run we needed to run five sequential MRM methods keeping

into consideration the peptide elution order. This is the reason why it is of the

utmost importance to generate a correct list for peptides relative time elution as
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any mistake on the order of this list might redound in looking for a peptide at the

wrong time and hence not finding it.

In summary our CSDMP technology extend on our previous

phosphoproteomic technique by using the IDA generated data to construct an

MRM technique to reproducible monitor for the presence of a list of peptides of

interest across various samples, time points or biological conditions.

V.3.2 QTRAP/CSDMP Data Output

The same software that is used for data acquisition (Analyst TM 1.4.1) was

used to process and quantify the results. We have applied our new CSDMP

technology to identify and quantify 223 peptides, covering 208 phosphorylation

sites (35 novel) in 143 proteins during a 7 time points time course (0, 1, 2, 4, 8,

16, 32 minutes) of EGF (100 ng/ml) stimulated human mammary epithelial cells

(HMECs) (Stampfer & Bartley, 1985). Due to the limitation of iTRAQ labels (it is

only possible to label 4 independent samples at time) we performed four QTRAP

runs in order to obtain biological replicates for our time courses.

The QTRAP data output can be processed to extract the elution profile of

all the peptides that were included in the MRM methods (Figure V.3). Figure

V.3A shows the elution profile of EGFR pY1 173 tryptic peptide. The left column

shows detection of bs and y4 ion and quantification of phosphorylation for the

time course early points, whereas the right column shows detection of b5 and y4
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ions and quantification of phosphorylation for the time course late points in a

second CSDMP experiment. Note that in both columns, b5, y4 and iTRAQ ions

co-elute which is a necessary condition to trust both identification and

quantification. The data in Figure V.3A can be used to construct the time course

shown in Figure V.3C. Co-elution of b and y ions is used to confirm peptide

identification, while the area under the curve of the corresponding iTRAQ tags is

used to quantify phosphorylation at the different time points. To link the 2 MRM

runs covering the early and late section of the time course all time points are

normalized to the overlapping time point, in this case 4 minutes. Error bars are

from biological replicates, requiring 4 CSDMP/MRM runs to obtain 2 time courses

for the same peptide.

Figures V.3B and V.3D are analogous to V.3A and V.3C in that they show

the identification, quantification and time course construction (also from biological

replicates) for N-WASP tryptic peptide containing pY256. In this case b4 and y4

ions were used for peptide identification. Figure V.3B highlights one of the key

advantages of our method: the ability to distinguish between real identification

events and false positives. By requiring co-elution of b ions which are

representative of a peptide N-terminus and y ions which are representative of a

peptide C-terminus we can ensure that the right peptide is identified and

quantified, even in the case that two peptides with similar parent ions share

homology at one of their ends. This is exactly what we see in Figure V.3B where

there are 2 peaks co-eluting in all profiles presented, except for the b4 ion which

only shows one peak co-eluting with the earlier peak of the other fragment ions.
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Figure V.3 - Detecting and quantifying protein phosphorylation by MRM. MRM elution
profiles of EGFR pY1173 (A) and N-WASP pY256 (B) and respective phosphorylation time
courses (C) and (D). Figure 3a left column shows co-elution of the b, y and iTRAQ ions identifying
EGFR pY1 173 and quantifying its phosphorylation after 0, 1, 2 and 4 minutes of EGF stimulation.
The right column shows co-elution of the b, y and iTRAQ ions identifying EGFR pY1 173 and
quantifying its phosphorylation after 4, 8, 16 and 32 minutes of EGF stimulation. Figure 3c shows
EGFR pY1 173 relative phosphorylation time course. The data was normalized to 4 minutes to
couple together both half of the time course. Error bars are from biological replicates. Figures 3b
and 3d are analogous to 3a and 3c, but identify and quantify the time course for N-WASP pY256.
Note that identification of b and y ions is required to ensure correct peptide ID as a false positive
(marked by *) might have been validated if only the y ion would have been used for detection N-
WASP pY256. Co-elution of b and y ion peptides ensures that the peptide detected is correct as it
impose constrains in both the N and C terminus sequence of the peptides.

This allows us to distinguish between the real peptide (first set of co-eluting

peaks) against the false positive (second set of co-eluting peaks - marked by *)

to construct the N-WASP pY256 time course in Figure V.3D.
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The main issue we confronted when trying to process QTRAP data to

obtain nice elution profiles came form the fact that all contaminant peptides in the

sample were also iTRAQ labeled. Whether this wouldn't have been a problem in

a simple sample, in a complex samples such as our originating in whole cell

lysates it gave rise to somewhat high levels of iTRAQ noise over time for many

parent ions. In cases where we were not able to deconvolute the time profile of

iTRAQ peaks co-eluting with a given peptide's characteristic b and y ions we

quantified the peptides directly using the raw data files obtained from the

QTRAP. To do this we found an averaged 3 to 5 unitary quantification events for

each iTRAQ marker centered on the mean time of b and y ions co-elution. We

further confirmed the reliability of this quantification method by comparing its

results to the standard processed data in clean peptides (data not shown). The

same quantification procedure was used for peptides at the very beginning or

end of MRM methods were the software was unable to perform automatic peak

detection.

V.3.3 Quantification Quality

One of the main concerns of using iTRAQ labels for quantification using a

triple quadrupole as opposed to the quadrupole time of flight mass spectrometer

which we had previously used is their difference in sensitivity and resolution. The

in comparison to 3-4 ms in QSTAR) advantages of the first one is longer scan
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times (35 ms per product ion) which translate into higher sensitivity (5 attomole

on column), whereas the second one has lower sensitivity (100 attomole on

column), but its resolution is noticeable higher (-0.06-0.07 a.m.u at 50% of peak

height) while the QTRAP resolution is right below 1 a.m.u at 50% of peak height

- the upper limit to distinguish between iTRAQ peaks - (-0.3-0.5 a.m.u at 50% of

peak height in high resolution mode and -0.5-0.7 a.m.u at 50% of peak height at

unit resolution).

To confirm the quality of quantification we compared the results from

QSTAR quantification selected from 1204 iTRAQ peaks with intensities between

50 and 1500 counts (to avoid including noisy measurements or measurements

where the detector might have been saturated) to the same iTRAQ peaks as

detected by the QTRAP. As all the data is normalized by the 4 minute time point

a total of 903 normalized data points were compared. Figure V.4A shows a very

good correlation between QTRAP and QSTAR quantification with an offset of 0

and a slope of nearly 1, confirming that the quality of QTRAP quantification is

comparable to the best that can be obtained using the QSTAR instrument. In fact

statistically speaking the QSTAR and QTRAP data follow the same distribution

(Kolmogorov-Smirnov test can not reject the hypothesis that the distributions are

different with p-value of 0.5745). Figure V.4B shows the distribution of the ratio

of QTRAP/QSTAR quantification for the same 903 data points. In this case the

data follows a very sharp Laplace distribution with location and scaling

parameters of 1.01, 0.09 with very tight 95% confidence intervals ([1.0061,

1.0130] and [0.0840, 0.0957]) respectively.
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Figure V.4 - Validation of MRM quantification. (A) shows a linear regression comparing
quantification results obtained by MRM/QTRAP and IDA/QSTAR methods. In order to avoid low
signal to noise or detector saturation 1204 iTRAQ peaks with IDA intensities between 50 and
1500 were selected and compared to the same iTRAQ peaks detected using MRM. As all the
data is normalized by the 4 minute time point a total of 903 normalized data points were used for
the regression. Regression parameters show a strong correlation R2 = 0.94. The slope is 1 and
offset is 0 indicating that using MRM does not introduce any bias into the data and that MRM
obtained quantification is as good as the best data from IDA. (B) shows the distribution of the
ratio of QTRAP/QSTAR quantification for the same 903 data points. The data follows a very
sharp Laplace distribution location parameter of 1.01 and scaling parameter of 0.09. Confidence
intervals based on this distribution locate 85% of the QTRAP/QSTAR (MRM/IDA) ratios in the
[0.84, 1.18] interval. This is consistent with the known 15-20% inherent error in measurements
when using iTRAQ. (C) shows overlapping time courses for 6 phosphorylation sites (CbI pY552,
EGFR pY1173, ERK2 pT184/pY186, PLC-g pY1253, N-WASP pY256 and STAT-3 pY705)
measured using QTRAP/MRM (blue) and QSTAR/IDA (red) respectively. Error bars are from
biological replicates.

It is worth to note that of all the data 43 % has a QTRAP/QSTAR ratio of

[0.95 1.05] and 84% has a QTRAP /QSTAR ratio of [0.85 1.15]. Of the remaining

16% where the quantification is off by more than 15% (most likely due to
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sensitivity and resolution differences between the two instruments) only 14% i.e.

only 2% of the total measurements are outliers where the quantification is more

than 45% off. The presence of outliers and higher error peptides is readily

explained by the two kind of mass spectrometer characteristics, while peptides

that show low iTRAQ signal in the QSTAR ( <150 counts), specially at the 0 and

32 minutes time points might be more accurately quantified using the more

sensitive, higher signal to noise QTRAP, peptides that show iTRAQ shoulders,

specially at 0.04 or 0.05 a.m.u lower than the 116.1 a.m.u iTRAQ label benefit

from the QSTAR higher resolution which allows to distinguish between the

shoulder and the actual iTRAQ peak. To address this second source of error we

corrected all QTRAP quantifications by subtracting the average shoulder

contribution to each iTRAQ label in every single peptide. The shoulder

contribution for a given peptide was calculated by measuring both the shoulder

and iTRAQ labels peak area for that peptide using the IDA data and dividing the

shoulder area by the sum of shoulder and iTRAQ label. The average of all IDA

hits of a given peptide was used as the QTRAP shoulder correction factor.

Figure V.4C shows the QTRAP (blue) and QSTAR (red) overlapping time

courses for six different tryptic phosphopeptides from six different proteins. Note

that in agreement to the previous paragraph the only measurements where the

error bars do not overlap happen at 2 minutes time in Cbl pY552 and EGFR

pY1173. This time point was tagged with iTRAQ 116 which is the label most

prone to shoulder contamination. Other than these two measurements were the

error of the mean is 5% for the former and 10% for the later the remaining 40
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time points show a remarkable agreement between QTRAP and QSTAR

quantification.

Overall if we consider that the internal iTRAQ quantification error is -15%

the information in this section strongly highlights the reproducibility between

iTRAQ quantification using a QTRAP or QSTAR instrument.

V.3.4 Reproducibility

The main reason to develop the CSDMP technology and expand on our

previous protocols was the somewhat low run to run reproducibility when using

IDA methods. Adding the QTRAP/MRM methodology to our technology and

using the QTRAP generated data as our final output exceeded our expectations

in this area. Out of a list of 226 peptides previously found in various QSTAR runs

and built into 5 sequential MRM methods 223 (98.6%) were detected using

QTRAP/MRM - all of them were found in at least 2 out of 4 QTRAP runs, 217

(97.3%) were found in at least 3 runs and 199 (89.2%) were found in all the runs

- (Figure V.5A). In contrast only 186 (82.3%) peptides of this list were detected

using QSTAR/IDA - of them 148 (79.5%) were found in at least 2 of the 4

QSTAR runs (a percentage already lower than the QTRAP reproducibility across

the four runs), 104 (55.9%) were found in at least 3 runs and only 63 (33.8%)

(only 28.3% if we consider an universe of 223) of the peptides were found in all

the runs - (Figure V.5B).
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Figure V.5 - Reproducibility. A comparison of run to run reproducibility for 4 QTRAP/MRM and
4 QSTAR/IDA mass spectrometry runs shows that MRM is far superior in this respect. (A) Shows
that of a total of 223 peptides (out of a list of 226 targets) 199 (89.2%) were found in all of the
MRM 4 runs. (B) In contrast shows that of a total of 186 peptides (out of the same 226 list) only
63 (33.8%) were found in all of the IDA runs. (C) Shows that out of the 223 peptides found using
MRM 222 (99.6%) were found such as a complete time course could be built for at least one of
the two biological replicates analyzed, while out of the 186 peptides found using IDA only 118
(63.4%) were found such as a complete time course could be built for at least one of the two
biological replicates analyzed. This number further reduces to only 52.3% when compared to the
223 peptides found by MRM. The high reproducibility of MRM allow for reliable quantification of
phosphorylation and the accumulation of statistical significant data for mathematical modeling.

As mentioned before the four QTRAP and QSTAR runs are both biological

replicates of a seven time point time course of HMEC cells following EGF

stimulation. The data shows that of the 223 peptides detected using the QTRAP

222 (99.6%) were detected in at least two complementary runs (same sample,
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different time points) allowing the construction of a peptide time course. Whereas

of the 186 peptides detected using the QSTAR only 118 (63.4%) were detected

in at least two complementary runs, only 53.1 % of the total number of time

courses acquired by adding the MRM method to our technology (Figure V.5C).

Assuming that all peptides are independent and equally likely to be found

in any given run the probability of finding a desired peptide in any particular run is

described by a binomial distribution. Although these conditions describe an ideal

case and do not hold empirically they allow us to calculate the lower limit of

reproducibility for these experiments. From our data the probability for

successfully finding a desired peptide P is 0.9370 in the QTRAP/MRM case (95%

confidence intervals [0.9193, 0.9518]) and 0.5446 in the QSTAR/IDA case (95%

confidence interval [0.5117, 0.5771]. This means that for our universe of N = 223

peptides we expect to find 209 using QTRAP/MRM and 121 using QSTAR/IDA. If

we now assume independency among runs (a much stronger assumption) the

expectation of finding a peptide in 4 runs is 77.1% in the QTRAP/MRM and only

8.8% in the QSTAR/IDA. Clearly when it comes to reproducibility the

QTRAP/MRM is expected to perform much better than the QSTAR/IDA. The fact

that the expected values are lower than their empirical counterpart (77% v/s 89%

QTRAP and 9% v/s 38% QSTAR) highlights the flaw in assuming that all

peptides have the same chance to be found. In fact in both experiments more

abundant peptides are more likely to be found, but this is really accentuated in

the QSTAR because of the nature of IDA methods.
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Intuitively speaking, by expanding our technology with the use of MRM we

have developed a technique that is analogous to having an extremely, specific,

quantitative, reproducible and high throughput (up to 960 quantifications per

experiment) two dimensional western blot, were only identification with two

exceptionally specific and independent antibodies at the same time (time

resolution is the second dimension) is considered to yield a positive result.

V.3.5 Why 7 time points?

When trying to build predictive signaling models is important to cover as

many conditions and have as good temporal resolution as possible. In chapter 11

we have shown that EGFR pY1 148, ERK1 pY204, c-Cbl pY552 and MARVEL D2

pY23 belong to a group of phosphorylation sites that is activated immediately

after EGF stimulation peaking after 5 minutes and decreasing monotonically until

our last measurement at 30 minutes (also in (Zhang et al., 2005c)).

To normalize our present data at 5 minutes in order to be able to compare

with our previous work on EGFR signaling, we have used MATLAB to fit a cubic

polynomial to our 7 time points data. Figure V.6 shows in red our previous results

and in blue our current time courses. It is clear form the figure that the activation

of this 4 phosphorylation sites happens much more rapidly than our previous

data showed. All of the sites seem to rise rapidly when stimulated reaching at

least 70% of activation after only 2 minutes. In fact c-Cbl pY552 and MARVEL D2
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Figure V.6 - The Need for time resolution. This figures shows the temporal profiles of four
phosphorylation (CbI pY552, EGFR pY1148, Marvel D2 pY23 and ERKI pY204) as quantified
using our current 7 time points data set (blue) and a previous data set (Zhang et al., 2005c) with
only 4 time points (red). It is clear from the profiles that increasing temporal resolution at early
time points permits to distinguish dynamic traits of phosphorylation previously hidden to us (see
CbI pY552 and Marvel D2 pY23 profiles). Also the additional assessment of phosphorylation at 16
minutes allows for a better resolution of the de-phosphorylation kinetics of these four sites). This
higher temporal resolution may allow in future works to build more accurate models of EGFR
mediated phosphorylation dynamics.

pY23 reach maximal activation just ior 2 minutes after EGF stimulation, while

EGFR pY1 148 seems to reach a plateau between 2 and 8 minutes and ERK1

pY204 reach its maximum activity between 4 and 5 minutes.

In this example higher temporal resolution has allowed us to separate 4

phosphorylation sites related to early EGFR activation according to their

dynamics, in fact just based on temporal dynamics we have been able to
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separate c-CbI and MARVEL D2 two proteins involved in degradation and

internalization of EGFR (Grovdal et al., 2004; Sanchez-Pulido et al., 2002) from

the receptor itself and ERK1. Even more c-Cbl and MARVEL D2 and EGFR and

ERK1 can now be distinguished from each other base on their de-

phosphorylation after the 8 minutes time point, arguing for the presence of

different mechanisms of dephosphorylation and/or degradation for these

proteins. We expect that the high temporal resolution data we have generated

here will be useful in future modeling efforts of the EGFR signaling network.
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V.4 DISCUSSION

Although our new CSD technology once designed is very reliable and

straight forward to use, three technical issues, two regarding instruments

differences and the third regarding time profiling of peptides LC elution to adjust

for MRM product ion detection limitations needed to be solved.

V.4.1 Resolution and Sensitivity

The first issue of concern when applying CSDMP is the different

resolution/sensitivity between quadrupole - time of flight and triple quadrupole

mass spectrometers. (While the first one performs at 10 fold higher resolution,

allowing discrimination of peaks at less than 0.1 a.m.u distances triple

quadrupoles allow for detection of 10 fold less material in a sample, detection

being possible even in the low attomole range.) Because of their higher

resolution QqTOF instruments allow for easy discrimination between iTRAQ

labels and their contaminant shoulders. This information not available using triple

quad instruments, must be taken from an ensemble of all correctly identified and

quantified IDA hits for a given peptide precursor ion and used as a correction

factor for MRM quantification when using the QTRAP. On the other hand

because QTRAP instruments are at least 10 fold more sensitive, thus have a

wider dynamic range than QSTAR and acquisition times for product ions in MRM

methods can be tuned individually, peptides that were poorly quantified using
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QSTAR instruments can be readily quantified using QTRAP instruments, solely

by its intrinsic higher sensitivity and wider dynamic range or if needed, by

increasing the accumulation time of product ions of scarce parent ions. It is these

instruments intrinsic differences which generate the largest discrepancies

between QTRAP and QSTAR quantification, but by taking advantage of both

instrument strength highly accurate quantification can be obtained. In general,

QTRAP quantification of peptides in the very low or high end of the QSTAR

dynamic range (about 50 - 1500 iTRAQ counts in MS/MS) yields more accurate

quantification, whereas samples with iTRAQ shoulder contamination are easier

to quantify in the QSTAR.

A restriction to the manipulation of acquisition time of product ions in MRM

mode is the desired duration of MRM cycles. Given that peptides might elute

from an LC system into the mass spectrometer for only 30 seconds or less to

even tens of minutes it is also necessary to take into account the elution time of

all the peptides in the MRM method before defining its cycle time. As a rule of

thumb the cycle time should be at least smaller than the width of the extracted

ion chromatogram (XIC) of all the ions in the method and ideally smaller than

one half or one third of the narrowest XIC to allow the acquisition of analytical

replicates. Although in this paper, we set accumulation times for all product ions

- b and y ions and iTRAQ labels - to 35 ms, amounting to a total cycle time of 12

seconds, in future studies using the same peptides it will be possible to modify

the method time accumulation parameters to spend less time in the very

abundant peptides and obtain even easier identification and quantification
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signature of the scarce ones (by increasing their accumulation time), without

changing the total cycle time more than a second or two.

V.4.2 Parent ion isolation and charge states

The second instrument related issue in expanding our technology by MRM

was parent ion isolation. Preliminary runs comparing parent ion ionization in the

QTRAP v/s the QSTAR showed that while in the second the most abundant

parent ion for a peptide flies with charge between 3 and 5, in the QTRAP the

most abundant parent ion present a charge usually lower than that shown for the

same peptide in the QSTAR, in fact most peptides highest abundant parent ions

presented charge 2 or 3 in the QTRAP. This charge differential was addressed

by setting the MRM method parent ions in all the required cases to their m/z

values at charge 2 or 3 with the restriction that no parent ion would be searched

at m/z higher than 1200.

V.4.3 LC elution and MRM mode limitations

The final concern in expanding our technology towards monitoring mode is

the QTRAP MRM method product ion detection limit which amount to a

maximum of 300 ions per method. Although for traditional uses of MRM such as
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drug detection in bodily fluids and absolute quantification of some of them or

even in small scale proteomics experiments this is more than enough, iTRAQ

based quantitative phosphoproteomics requires the identification of 6 product

ions per peptide, setting the upper limit of using one MRM method to the

identification and quantification of 50 peptides. In our study were more than 200

peptides (over 1200 product ions) were identified and quantified the use of 5

MRM methods in series was required for each analyzed sample. Of outmost

importance to the use of more than one MRM method is to have as good

knowledge as possible of all the peptides of interest relative LC elution time with

respect to each other. In this way each method was programmed to search for

peptides in order of elution, thus the first method looked for the early eluting

peptides, while the fifth method looked for the late eluting ones. As an extra

caution, and because elution order might vary from run to run every method

started with the last 3 peptides (18 product ions) of the previous method. This

overlap allowed us to move on from method to method quickly without fear of

loosing information and it proved to be a good feature as some peptides that

were not found at the end of a method were usually found at the beginning of the

next one.

Conceptually there is one more disadvantage when moving from IDA to

MRM. While MRM is highly reproducible and peptide identification is highly

accurate it still relies in the identification of 2 peptides fragments, one

characteristic of the peptide N-terminus and the second characteristic of the

peptide C terminus, in contrast IDA peptide identification in MS/MS, gives for
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each peptide a comprehensive or at least a quasi-comprehensive list of the

peptide fragmentation pattern, leading to sequence and reconstruction and PTM

pinpointing. Not withstanding this, if large enough b and y ions are chosen for

MRM, their characteristic masses, coupled to parent ion information and the co-

elution condition ensures that the right peptide has been identify. The difference

is that in IDA we have a direct identification and in MRM identification is indirect.

If this was really a concern the MRM method could be complemented with a

confirmation experiment using the QTRAP third quadrupole as a linear trap for

MS/MS identification of all the parent ions after MRM using enhanced product ion

(EPI) mode for identity confirmation (Hopfgartner et al., 2004). The problem with

using MS-MRM-EPI in stead of just MS-MRM would be a large increase cycle

time which would lead to a drop in the number of peptides detected and the

number of analytical replicates for any peptide in a given run.

In this work we have shown the reliability of our expanded CSDMP

technology. We have kept our highly accurate identification and quantification

standards, while increasing our run to run selectivity and reproducibility from

33.8% to 89.2% across 4 experiments and our time resolution from 4 time points

within 30 minutes to 7 time points within 32 - 4 of them in the time course first 4

minutes for early signal resolution.

By following IDA experiments with large scale MRM studies based on the

IDA gathered information we were able to reproducible identify and quantify a

large section of the EGFR activated pathway including novel and reported

phosphorylation sites with high temporal resolution. In fact by coupling in one
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workflow IDA experiments and MRM experiments we have kept the advantages

of discovery mode mass spectrometry, while adding the reproducibility benefits of

monitoring mode mass spectrometry.

By combining IDA and MRM mass spectrometry we have developed a

highly robust and quantitative technology for phosphoproteomics allowing the

detection and monitoring of both novel and previously known phosphorylation

sites in cell signaling networks. The robustness of our technology makes it ideal

for the acquisition of large, consistent and quantitative, statistically significant

protein phosphorylation datasets across many biological and dynamic conditions

apt for rigorous computational analysis and mathematical modeling. Furthermore,

the application of our technology to the study of clinical biopsies would allow the

consistent monitoring of hundreds of signaling nodes in tumor samples, greatly

improving out understanding of the protein biochemistry underlying cancer

biology and facilitating recognition of disregulated pathways and potential protein

therapeutic targets in a patient to patient basis.
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CONCLUSIONS

The work demonstrated on this thesis can be divided in two sections.

Chapter I deals with a proof of principle study for anti-EGFR based antibodies

therapeutics and chapters 11, Ill and IV deal with development, application and

refinement of mass spectrometry based technologies for phosphoproteomics.

Chapter I reveals that it is possible to downregulate EGFR activation using

antibodies that block receptor dimerization without necessarily affecting receptor

ligand binding. Production of such antibodies in a humanized form holds great

potential for cancer therapy, especially for autocrine driven tumors where

traditional ligand-competitive antibodies present low receptor inhibition efficiency.

Chapter Il presents the development of a mass spectrometry based

technology for quantitative phosphoproteomics. The new technology permits

unambiguous identification and quantification of novel tyrosine phosphorylation

sites in any given signaling cascade. In this chapter we applied the technology to

detect and quantify the temporal dynamics of the cell signaling downstream of

EGFR activation and we were able to use computational analysis to gain new

biological insights on the network. Furthermore, the low amount of samples

required make the methodology easily expandable to the study of cell cultures

and in vivo biological samples including clinical biopsies. The study of biopsies
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with this technology can have a profound impact on our understanding of cell

signaling in cancer.

In Chapter III we used our newly developed technology to investigate the

effect of HER2 in over-expression on signaling networks and corresponding cell

behavior under EGFR and HER3 stimulation conditions. To correlate signals with

cell response, proliferation and migration rates were also quantified for the same

set of conditions. In human mammary epithelial cells HER2 over-expression

promotes increased cell migration, but proliferation is mainly activated by EGFR

not withstanding HER2 cellular levels. Computational analysis of the data

revealed clusters of phosphorylation sites that are highly responsive to particular

sets of cellular stimulation conditions, linking specific phosphorylation sites with

activated receptor homo- or hetero-dimers. PLSR analysis of the

phosphoproteomic and phenotypic datasets provided quantitative weighting to

describe the relationship between specific phosphorylation sites and downstream

biological behavior. As expected EGFR pY1173 strongly correlated with

proliferation, while HER2 pY1248 strongly correlated with migration, but the

analysis generated unexpected relationships as for example the correlation of

KIAA1217 pY393 with migration or Dsc3a pY818 with proliferation. Overall the

results of this chapter show - in addition to the new biological insights - the utility

of our mass spectrometry technology for the analysis of multiple samples and the

amenability of the data generated to mathematical modeling and computational
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analysis. However the results also highlight the lack of run to run reproducibility

of information dependent acquisition mass spectrometry.

In chapter IV we attempt to solve the low run to run reproducibility in our

mass spectrometry technology by expanding it to use both information

dependent acquisition (IDA) - which allows to work in discovery mode - and

multiple reaction monitoring (MRM) - which allows to work in monitoring mode

and is expected to enhance the method reproducibility -. We describe how to

build an MRM method based on IDA results and we proceeded to validate the

method by comparing its quantification results to the same results obtained by

IDA. Adding MRM as a final step for our technology increases the reproducibility

of peptides identified among four mass spectrometry runs from 33.8% to 89.2%.

We therefore have improved our technology to be not only site specific and

exquisitely quantitative, but also very reproducible and robust across different

temporal profiles and biological samples. We applied this technology to a high

resolution dynamic study of signaling downstream of EGFR activation and

showed the importance of temporal resolution to distinguish between the

phosphorylation profiles of many tyrosine sites in the network. Future

applications of this technology hold great potential to acquire date amenable to

computational analysis and mathematical modeling. The application of this

technology to the study of clinical biopsies would allow the consistent monitoring

of hundreds of signaling nodes in tumor samples, greatly improving out

understanding of the protein biochemistry underlying cancer biology and
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facilitating recognition of disregulated pathways and potential protein therapeutic

targets in a patient to patient basis.

Overall the work presented in this thesis has produced a couple of

interesting new potential cancer therapeutic agents and a new site specific,

quantitative and robust technology for the study of tyrosine phosphorylation

mediated cell signaling networks. While developing this technique new biological

insights had been uncovered on EGFR family activated networks. Finally, the

potential has been built for detailed quantitative and robust studies of cell

signaling with immediate applications to cancer biology and personalized

therapeutics.
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