
Safety of a Multi-Vehicle System in Mixed Communication
Environments

by

Animesh Chakravarthy

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2007

) Massachusetts Institute of Technology 2007. All rights reserved.

A uthor ........ ... . . . . ........... ........... ..........................
Department of Aeronautics and Astronautics

November 2006

C ertified by .. . ....................... .........................
Eric Feron

Visiting Professor of Aeronautics and Astronautics, MIT
Dutton/D coffe Professor of Aerospace Software Engineering,T Georgia Institute of Technology

Thesis Supervisor

Certified by..

Certified by..

Certified by..

. ' .. " . ". .....................................................
. Jaime Peraire

A Professor of Aeronautics and Astronautics
Thesis Advisor

.......... .... .. ... .......
James D. Paduano

SeniorlResearch Engineer, Aurora Flight Sciences Corporation
Thesis Advisor

Kyungyeol Song
+Pn• Engineer, Mide Technology Corporation

Thesis Advisor

A ccepted by ......... ...... ... .. ... .......................................
Jaime Peraire

Chairman, Department Committee on Graduate Students

ARCHIVES

MASSACHUSE1TS INSTImTE.
OF TECHNOLOGY

MAR 2 8 2007

LIBRARIES



Safety of a Multi-Vehicle System in Mixed Communication

Environments

by

Animesh Chakravarthy

Submitted to the Department of Aeronautics and Astronautics
on November 2006, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Recent news events and statistics demonstrate the frequent occurrence of pile-up crashes
on highways. A predominant reason for the occurrence of such crashes is that cur-
rent vehicles (including those equipped with an Automatic Cruise Control system)
do not provide the driver with advance information of events occurring far ahead of
him/her. The use of inter-vehicular communication to provide advance warnings to
enhance automotive safety is therefore being actively discussed in the research com-
munity. In this thesis, we investigate scenarios wherein only a subset of the vehicles
in a multi-vehicle stream, are equipped with such advance warning capabilities. These
vehicles (equipped with the capability to receive far-ahead information) are arbitrarily
distributed among other unequipped vehicles that are capable of receiving only local,
near-neighbor information. It is seen that there are conditions wherein even a partial
equipment of the system can be beneficial (to both the equipped and the unequipped
vehicles in a mixed vehicle stream). We demonstrate this through both simulations
and a theoretical analysis. Towards this end, two distinct modeling approaches are
adopted: microscopic and macroscopic.

The microscopic modeling approach uses ordinary differential equations to model
each driver-vehicle unit and its interactions with its neighbors. A single-lane model
is employed; and the problem is formulated as a collision avoidance problem. Suf-

ficient conditions on the number of equipped vehicles, as well as their distributions
in a mixed vehicle string are obtained; under these conditions, it is guaranteed that
collisions do not occur. The macroscopic modeling approach, on the other hand, uses
partial differential equations that govern the average behavior of groups of vehicles. In
this approach, a multi-lane formulation is employed. This thesis examines the influ-
ence of partial equipment of the advance warning system on some of the wave effects
that are known to exist in traffic flows, in particular, shocks and large negative veloc-
ity gradient waves that travel unattenuated or get amplified as they pass through the
traffic. We examine the influence of the equipped vehicles in attenuating such waves.
The resulting velocity gradients are parametrized as a function of the percentage of
equipped vehicles. A prototype of an advance warning system was also developed and



road tests were conducted to test the concept. These road tests have demonstrated the
system's performance to be satisfactory, subject to good communication links, for the
class of scenarios tested.

Thesis Supervisor: Eric Feron
Title: Visiting Professor of Aeronautics and Astronautics, MIT
Dutton/Ducoffe Professor of Aerospace Software Engineering,
Georgia Institute of Technology
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Chapter 1

Introduction

1.1 Background and Motivation

Rear end collisions are a major cause of multiple car crashes, especially during bad

weather conditions [1, 2, 3, 4]. According to statistics released by the NHTSA (Na-

tional Highway Transportation Safety Administration) (Figure 1-1) there were over

ten thousand fatalities in each of the years 1999 and 2000 occurring due to vehicular

collisions. Further NTSB (National Transportation Safety Board) statistics reveal

that, in the US there were 1.848 million crashes for the year 1999 alone. In response

to these events, the US Department of Transportation has plans to equip at least

10-25% of all vehicles with an advanced warning system by the year 2010 [81].

The major cause for such crashes is that often each driver gets warned of an

impending slowdown ahead only when the brake-lights of the car/group of cars im-

mediately in front of him/her turn on. This is particularly true during bad weather

conditions, or while driving behind a large vehicle (which obstructs a driver's field

of vision) which is when a driver is unable to look as far ahead, as he/she otherwise

normally would have. This is also true in the context of current highly inhomogenous

vehicle fleets that comprise cars, trucks, SUVs, etc. So, if we consider a platoon of cars

travelling along, and the lead car executes an abrupt deceleration, this information is

propagated from car to car in a staggered fashion (Figure 1-2(a)), as the brake-lights

of each car come on, one after the other. There is an associated delay T for each car
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Figure 1-1: NHTSA Statistics indicating the occurrence of fatalities due to crashes

as the information propagates through the line of cars, (this delay typically comprises

of the time it takes for each driver to realize that the front car's brake-lights are on,

and to react with a corresponding deceleration that turns his/her own brake-lights

on. It is a random variable with a typical value of around 0.5-1 seconds). Thus if

car 1 (i.e. the lead car) poses a hazard by a sudden deceleration that turns on its

brake-lights at time t = 0, then the kth car (k > 2) gets warned of the slowdown

ahead at t = (k - 2)7, and turns on his/her own brake-lights (k - 1)- seconds after

the first generation of the hazard. In this way, the driver's reaction time gets con-

tinuously accumulated as the information propagates through the line of cars. This

illustrates how this mode of transmission of information of a slowdown (from car to

car as in Figure 1-2(a)) can often be too slow, and does not allow the drivers that are

far behind in the platoon, sufficient time to react. Car pile-up crashes are the result.

There exists an important analogy between the occurrence of car pile-up crashes

and the shock waves occurring in compressible flow dynamics. Shock waves in traf-

fic flow dynamics have been discussed in the literature. The earliest known work

0
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Figure 1-2: Schematic showing information propagation in different modes. (a) All ve-
hicles are unequipped. (b) All vehicles are equipped. (c) Some vehicles are equipped.
Equipped vehicles are shown in red.

appeared in [5].

The use of inter-vehicle communication for enhancement of vehicle safety is being

discussed in the literature, e.g., in [6, 12, 13, 7, 9, 10]. Researchers discuss concepts

such as vehicular ad-hoc networks (VANETS) through which information can propa-

gate in a wireless mode. For instance, if we consider a scenario wherein information of

a hazard ahead can be transmitted wirelessly through a multi-vehicle stream; and if

we assume that all the vehicles in the stream are equipped to receive such information,

then this information propagation occurs as in Figure 1-2(b).

In a real-life scenario, however, it would be unrealistic to assume that all the cars

in a platoon will indeed be equipped with inter-vehicular communication capabilities.

In the context of vehicular safety, for example, it is reasonable to envisage scenarios

wherein some vehicles are equipped to receive advance warning information, while

others are not. Indeed, the long lifetime of passenger cars and other road vehicles

guarantees that, at least for a while, not all cars will be equipped with advanced

computation and communication capabilities. In addition, the appearance of such



capabilities is likely to be slower on low-end models than high-end models. It is

pertinent therefore to examine the influence of an advance warning system, when

only a (randomly selected) fraction of the total number of cars in the platoon are

equipped with the system. In this case, information is propagated as in Figure 1-2(c).

Thus if car 1 transmits a warning signal at time t = 0, then since cars 2 and 4 are

equipped with the warning system, both of them receive the warning signal at t = 0

(if we assume infinite communication speeds). Furthermore, the unequipped cars 5

and 6 now receive (indirect) information of the slowdown at 7 and 2T, respectively,

which contributes significantly to safety improvement, as compared to the case in

Figure 1-2(a) when cars 5 and 6 receive the warning information only at t = 3T

and 4T, respectively. Even if we assume finite propagation speeds (of the slowdown

information through the equipped cars), the unequipped vehicles still benefit, because

they receive indirect information of the slowdown ahead, earlier than they otherwise

would have. The effects of this kind of partial deployment are studied in this thesis.

We show that, in many cases, even if only a fraction of the cars are equipped, their

influence on the traffic flow can be sufficient to alleviate the possibility of crashes even

in the unequipped cars.

The goal of this research is to describe how an advance warning system enables

pileup crashes to be averted, even in a mixed sensing environment wherein only a

small number of vehicles are equipped with the warning system. This area of work

can also be related to other more general problems of how a minority of informed

individuals influence group behavior. For instance, biologists have long theorized

that when a flock of birds are migrating from one place to another, it is actually

only a small minority of the birds in the flock who have a clear idea of their final

destination [28]. The other 'uninformed' birds merely follow the 'informed' birds in

a follow-the-leader policy. In this way only a minority of informed birds are able to

influence the overall behavior of the group. Likewise, in a vehicular traffic context,

we examine how only a few equipped vehicles are able to modify the behavior of the

overall multi-vehicle stream.



1.2 Overview of Related Research

The fast growing number of vehicles on networks of roads constantly motivates intense

research activity in the field of traffic flow modeling [54]. Traditionally, there have

been three approaches to describe the dynamics of traffic flow. The first and the

most basic one is the microscopic modeling approach or the car-following modeling

approach, which concerns the dynamic description of individual vehicles [16, 17, 18,

19]. In the microscopic modeling approach, the response of an individual vehicle to its

predecessor is modeled using ordinary differential equations. A typical example is the

follow-the-leader model [16], where the acceleration of each vehicle is assumed to be

proportional to the difference in speeds between itself and its immediate predecessor.

More sophisticated nonlinear models have also been synthesized [19].

The second approach for modeling traffic flow is the macroscopic modeling ap-

proach, which refers to the derivation of evolution equations for various macroscopic

observable quantities of the vehicle flow, based on conservation equations. In macro-

scopic models, one does not look at the dynamics of the individual vehicles compris-

ing the traffic flow. Instead, traffic is described (using partial differential equations -

PDEs) as a compressible fluid formed by a multi-vehicle continuum. Analogs of the

continuity and momentum equations used in fluid dynamics are then used to model

the traffic.

The use of macroscopic models for studying traffic flows has a fairly long history.

The Lighthill-Whitham-Richards (LWR) model [5, 29] represents the earliest use of

macroscopic models to represent traffic flow. The LWR model is basically a first-

order model that is based on a gas-dynamics-like continuity equation (representing

the conservation of cars). Subsequently, second-order models have been developed

by Payne-Whitham [30, 31] and also Phillips [72]. There has been some controversy

in the past about the viability of second order models in general [32], and attempts

have been made to address some of them in [34, 40].

The kinetic modeling approach, which is based on Boltzmann-type kinetic equa-

tions, represents an intermediate step between the microscopic and macroscopic mod-



els. Here, the traffic is treated as a gas of interacting particles. These interactions

are described by an integro-differential dynamic equation in phase space that is the

analogue of the Boltzmann equation in the kinetic theory of gases. Kinetic models in

traffic flows were originally introduced by Prigogine and Herman [50], who proposed

the use of a kinetic term to account for the vehicular interactions. These models have

been further refined by Paveri-Fontana [51]. Based on Paveri-Fontana's equations,

Helbing then derived a (gas dynamic based) third-order macroscopic traffic model

[40] (this model included an equation for the velocity variance), and also a second

order traffic model [41], that is anisotropic in nature. Helbing also derived a two

species traffic model where the two species were cars and trucks [41], as also did

Hoogendoorn and Bovy [43]. There have also been second-order models developed by

Aw and Rascle [34, 35, 36] - these models however, are not based on gas-dynamics

foundations.

The above models have been used extensively for the analysis of multi-vehicle

systems. Using microscopic models, a multi-vehicle system has been treated as a

countably infinite interconnection of nonlinear systems. Concepts of string stability

[8, 20, 61, 62] have been extensively studied and even applied to design controllers for

automatic vehicle-following systems. Similarly, macroscopic models generated using

PDEs have also been studied for kinematic waves [31], shock waves [5] and traffic

propagation stability [63, 64].

The use of inter-vehicle communication for enhancement of vehicle safety is being

actively discussed in the literature. Publications in this regard include [6, 7, 9, 10,

80, 13]. The use of vehicle-to-vehicle networks in a "Cooperative Adaptive Cruise

Control" scheme, which uses communicated information to improve on ordinary cruise

control systems, is discussed in [6, 7]. In [80], the notion of safety of a string when the

lead vehicle undergoes an emergency deceleration is formulated; and necessary and

sufficient conditions for the safety of the string are determined, when the following

vehicles are notified of this deceleration. In [13], safety of automated and manual

highway systems with respect to resulting rear-end collision frequency and severity,

is compared.



There has also been work done on mixed systems in the recent past [14, 15].

These papers study mixed systems comprising of semi-automated and manual ve-

hicles, wherein the semi-automated vehicles are equipped with an ICC (Intelligent

Cruise Control). These mixed systems are analyzed in the contexts of string stability

(for the purposes of pollution emission) and shock waves. The mixed systems studied

in these papers, however, do not assume inter-vehicle communication.

A considerable amount of work remains to be done, on the use of inter-vehicle

communication for enhancement of vehicle safety, in a mixed sensing environment.

Such an environment is comprised of a mixture of vehicles, some of which possess

the capability of inter-vehicle communication, while others do not. Some of the key

questions that need to be addressed involve determining the minimum percentage

(or market penetration) of the equipped vehicles that are required to prevent pileup

crashes and alleviate shock waves. We therefore believe that there is value in the

analysis of mixed systems with partial inter-vehicle communication, involving infor-

mation propagation as in Fig. 1-2(c). This thesis is a step in that direction, and

addresses the specific issues of car pile-up crashes, shock waves and their alleviation.

1.3 Thesis Outline

In this thesis, we discuss a means to alleviate the possibility of car pile-up crashes.

For this, we discuss a slowdown warning concept, whereby cars are equipped with

a slowdown warning system. A car equipped with such a system has the ability

to (i) Automatically transmit a slowdown warning signal whenever it decelerates

abruptly, or its velocity becomes dangerously low for highway driving conditions, and

(ii) Receive a slowdown warning signal, and alert the driver accordingly, if it deems

the signal to be relevant. With such a system, information of a slowdown can be

propagated at a much higher speed to all the cars (compared to when they are all

unequipped) (as in Figure 1-2(b)). This allows sufficient time for the car drivers to

react appropriately to avoid the crash. A schematic representation of our proposed

slowdown warning system concept is shown in Figure 1-3.



The system comprises of a GPS receiver, a wireless transceiver, as well as a lap-

top computer. Using the GPS receiver, a car equipped with the warning system can

determine its position and speed. The computer analyzes this information, and in

the event of any abrupt deceleration or abnormally low speed, it transmits a warning

signal to the other cars through a wireless transceiver. Each recipient car then deter-

mines whether the signal is indeed relevant to it and if so, it issues a warning signal

to the driver, alerting him/her of the impending slowdown. On the other hand, if the

computer deems the warning signal to be irrelevant to the car it resides in, then no

warning is issued to the driver.

GPS satellite

Measure
position & /
speed

Transmit
Determine whether a warning sinal Issue a warning alarm
hazard is expected through to driver

wireless
communication

Figure 1-3: Schematic view

The role of the slowdown warning system in enhancing vehicular safety (in a

scenario wherein only a partial subset of vehicles are equipped with the system) is

studied along two distinct, parallel paths: (a) Using Microscopic models (b) Using

Macroscopic models. In the first part, we use microscopic models to model each driver-

vehicle system. The individual vehicles (and their interconnections) are modeled by

ordinary differential equations (ODEs) and the problem is formulated as a single-lane

problem. The notion of safety is defined as one of collision avoidance. In other words,

we examine the role of the slowdown warning system in alleviating the collisions that

can occur when a car executes an abrupt deceleration. The question that we seek

' '



to address is the determination of the required number of equipped vehicles (in a

mixed vehicle stream) that can guarantee zero collisions. We define multiple modes

of behavior of the driver (Figure 1-4). In particular, we define two modes of driver

behaviour: one before the alerting signal is broadcast, and one after the driver receives

the alerting signal. We define each of these states as a discrete state in the hybrid

control system - associated with each of these states is a different human driver model.

In the recent past, collision detection and resolution schemes for aircraft in Free Flight

have been studied in this framework [22, 23].

r7 ?:I,/I(L_ < Cu ) < n

Normal mode Cautious mode
Dynamics : Dynamics :

S= f l(M,u) X = f2 (x, u)
Invariant : Invariant :
4(x,u)> O (x, u) <o 0

a: Ax, u) > 0

Figure 1-4: Vehicle driving modes

In the macroscopic modeling approach, on the other hand, we examine the average

behavior of groups of vehicles. In this approach, the multi-vehicle system is modeled

by partial differential equations (PDEs) and the problem is formulated as a multi-lane

problem with the objective of alleviating large negative velocity gradients occurring

on the highway. When a car executes an abrupt decleration, it initiates a compression

wave that passes through the line of cars behind it. This compression wave then can

(under some conditions) become stronger and stronger and eventually develop into a

shock wave. As this shock wave passes through the line of cars, successive cars have

to slam on their brakes and this increases the possibility of collisions. The presence

of a few equipped vehicles, however, can help in smoothening the traffic flow, and

v
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reducing the intensity of the shocks/large negative velocity gradients in the traffic.

In this part of the work, we examine the role of the slowdown warning system in

alleviating shocks/large negative velocity gradient waves in the traffic. Some of the

questions that we seek to address include the determination of the required number

of equipped vehicles (in a mixed vehicle stream) that will sufficiently weaken the

negative velocity gradients.

This thesis is organized as follows. Chapter II discusses the microscopic modeling

approach, wherein the safety problem is formulated as a collision avoidance problem,

and the role of the slowdown warning system is to alleviate collisions. The problem

formulation in the microscopic modeling approach assumes a single lane. We see

how the phenomenon of string instability (viz., amplification of intervehicle spacing

errors along a line of cars subsequent to an abrupt deceleration by the lead car) can

lead to pileup crashes. We then see how equipping all the vehicles with a slowdown

warning system can lead to a situation of string stability. We then demonstrate how

equipping a few cars with a slowdown warning system leads to a situation of mixed

string stability, which can still have a beneficial effect on the overall safety of the

interconnected system of vehicles. We demonstrate this through both simulations

and a theoretical analysis.

Chapter III then discusses the macroscopic modeling approach, wherein the safety

problem is formulated as a shock alleviation problem, and the role of the slowdown

warning system is to minimize/eliminate the strength of shocks/large negative velocity

gradient waves on the highway. The problem is formulated as a multi-lane problem

in this approach.

A prototype of the slowdown warning system was built, and we conducted actual

road tests to test the efficacy of the system. These are discussed in Chapter IV, which

discusses the system architecture and some of the communication and algorithmic

issues involved. We also discuss details of related road tests that were performed

after equipping a few cars with such a system. Finally, Chapter V presents the

conclusions.

A brief summary of the main contributions of this thesis are as follows :



* In the microscopic modeling approach (discussed in Chapter II), this thesis

studies the phenomenon of mixed string stability in the context of collision

avoidance; and identifies certain sufficient conditions on the number and dis-

tribution of equipped vehicles, that will guarantee zero collisions in a mixed

vehicle string.

* In the macroscopic modeling approach (discussed in Chapter III), this thesis

arrives at a model for advance information propagation through a mixed vehicle

scenario; studies the phenomenon of shocks in such a scenario; and parametrizes

the shocks/negative velocity gradient waves for prototype initial conditions, as

a function of the extent of equipment and signal transmission range in a mixed

vehicle string.

* In the experimental section (discussed in Chapter IV), this thesis presents a safe

method to test the slowdown warning concept for a specific class of pileup crash

scenarios; and the results obtained using this method. These demonstrate driver

behavior in cars unequipped and equipped with a slowdown warning system.



Chapter 2

Microscopic Modeling Approach

In this chapter, each individual driver-vehicle unit and its interactions with its neigh-

bors is modeled using ordinary differential equations. A single-lane model is assumed.

It is demonstrated how a scenario of all vehicles unequipped could lead to a situation

of string instability; while equipping all vehicles with the slowdown warning system

could lead to a situation of string stability. It is then demonstrated how a scenario

of having some vehicles equipped could lead to a situation of mixed string stability.

Sufficient conditions on the number and distribution of equipped vehicles (within a

mixed vehicle string) are obtained, under which it is guaranteed that zero collisions

occur. A lower bound on the probability of obtaining zero collisions is presented.

2.1 Introduction

In this chapter, we use microscopic models to demonstrate the benefits that accrue

from a slowdown warning system. We formulate the problem as a collision avoidance

problem; in other words, we see how the presence of a slowdown warning system

can help alleviate collisions, that otherwise would have occurred. We first give a brief

description of a finite state model of a human driver with/without a slowdown warning

system, and then present simulation results that demonstrate the beneficial aspects of

a slowdown warning system even in situations of partial equipment. These simulations

demonstrate the possible occurrence of string instability under some initial conditions,



that can lead to pile-up crashes. It is then seen how equipping all the vehicles with

a slowdown warning system can lead to a situation of string stability. We then see

how a situation wherein there is a partial equipment of vehicles with the slowdown

warning system, can lead to a scenario of mixed string stability (which means that

some parts of the vehicular string are string stable, while other parts are not string

stable) whereby as long as the equipped vehicles are present in a sufficient number, and

their distributions lie in a defined set of possible distributions, then collisions will not

occur even in the unequipped vehicles. We then perform a theoretical analysis that

demonstrates certain sufficient conditions under which it is guaranteed that collisions

cannot occur.

2.2 Finite state model of a driver

To account for the change in driver behavior in response to brake lights and/or ad-

vance slowdown warnings, we assumed the driver to be a finite-state system (ref Figure

1), whereby he could be in one of three different modes. Modeling the driver as a

finite state system has been done before, for eg., [18]. Before we go into a discussion

of the modes, we briefly introduce some nomenclature.

There are N vehicles in a platoon, numbered 1, 2, ...., N, with car 1 being the lead

car, and i denoting the ith vehicle. Some of the cars are equipped with the slowdown

warning system, while the others are not. Define :

* E : The set of vehicles that are equipped with the slowdown warning system.

* U : The set of vehicles that are not equipped with the slowdown warning system.

* slrec(i) = A flag indicating whether a vehicle iEE (i.e. an equipped car) is

currently receiving a slowdown warning. A value of 1 indicates that a warning



is being received, while 0 indicates otherwise.

* b_(i) = A flag indicating whether a vehicle i (which may be equipped or un-

equipped) currently has its brake lights on. A value of 1 indicates that its brake

lights are on, while 0 indicates otherwise.

The velocities of the cars are denoted by V1, V2, ... , VN while the inter car sepa-

rations are denoted by s1,2, 82,3, .... , SN-1,N*

At time t = 0, it is assumed that all the n cars are travelling at equal velocities, and

the inter car separations are all equal. The lead car then suddenly decelerates, and

emits a slow-down warning signal that is received by all the equipped cars behind

it. The instant the equipped cars receive this signal, the drivers of these cars go into

an alert mode and smoothly increase the distance between themselves and the car

immediately in front of them. The unequipped cars, on the other hand, receive no

such signal - only when the brake-lights of the car immediately in front of them come

on, do these drivers go into an alert mode. However, they do not have the time to

increase the distance between themselves and the car in front. We assume that the

distance a car maintains to his/her immediate predecessor is equal to the product of

the velocity of the following car and a quantity referred to as the time headway.

Thus, at any given time, the driver of the ith (following) car can be in one of three

modes, viz. ql, q2 or q3 , and he/she transitions from one mode to another, depending

on the flags sl_rec(i) and bl(i - 1). The descriptions of the modes are as follows :

1. Mode qi: This is the initial mode in which all the drivers reside, when both the

flags sl_rec(i) and bl(i - 1) are zero. This mode is characterized by 'normal'

driver dynamics, manifested by 'normal' time delays. We denote the driver

dynamics in this mode by ,k = fi (x, u). A driver can reside in mode ql for

long periods of time. In this mode, he/she tries to maintain a 'normal' distance

between his car and the one immediately ahead of him/her (this distance is

characterized by shorter time headways).



Figure 2-1: Finite state model of a car driver

2. Mode q2 : Only the drivers of the equipped cars can be in this mode. These

drivers transition from mode ql to q2 if and only if they receive a slowdown

warning signal. This mode is characterized by (a) Faster driver dynamics, man-

ifested by shorter time delays compared to ql (it is denoted by the equation

x = f 2(x, u)) and (b) A higher value of reference distance/time headway dref(i),

compared to ql. Mode q2 is a high alert mode, in which a driver resides for only

a short duration, before reverting back to ql.

3. Mode q3: The drivers of both the equipped as well as the unequipped cars can

reside in this mode. The drivers of the unequipped cars transition from ql to q3

. .1. -,



if and only if the brake-lights of the car ahead of them come on, while the drivers

of the equipped cars transition from ql to q3 if and only if the brake-lights of

the car ahead of them come on, and additionally, they are not in receipt of a

slowdown warning. This mode is characterized by the faster driver dynamics,

represented by k = f2 (x, u) and the 'normal' reference distance (with a shorter

time headway). A driver resides in mode q3 only for a short duration of time.

Each of these modes, and the transitions thereof, are schematically represented in

Figure 1, for equipped and unequipped cars. Note that this figure holds for all

following cars.

2.3 Numerical Simulations

Before we theoretically analyze the effect of slowdown warning systems on the safety

of traffic flow, we demonstrate the results of numerical simulations as an introduction

of our proposed concept. Consider a string of cars driving on a single-lane highway.

We assume that at t = 0, they are all driving with equal speeds and equal inter-car

distances. The string of cars is modeled as an inter-connected system, with each car-

driver system forming one element of the inter-connected system. The acceleration

response of the driver of the ith car is modeled by the following equation, presented

in [17], [18]:

dvi(t)dt K . (s-1 ,*(t - T) - Tvi(t - T)) +
dt

K 2 . (vi-(t - 7) - vi (t- 7)) ,
ds= vi-l(t - vi(t) (2.1)

dt

where vi indicates the velocity of the ith car and sjil,i represents the inter-car distance

between the ith and the (i - 1)th cars, with car 1 being the lead car. 7 indicates

the response delay of each car-driver system. K 2 represents the sensitivity of each

driver to the velocity difference between his/her car and the one immediately ahead



while K 1 is the sensitivity to the difference between the desired inter-car distance

and the true inter-car distance. The desired inter-car distance of each driver (to the

car ahead) is proportional to his/her own velocity, with the proportionality constant

being T (the time headway). We work with a simplified model in which we assume

all the drivers to possess identical dynamics.

Consider the following scenario, in which all the cars are initially travelling at

typical highway speeds of about 30 meters/sec, (i.e. 67.5 mph), with the inter-car

distance being 36 meters (i.e. T = 1.2sec). We assume 7 to be a ball-park value of 0.6

seconds, and then determine K 1 and K 2 such that it ensures stable, non-oscillatory

behavior for each two-car system. (These were obtained using guidelines available, for

example, in [21]). At t = 5sec, the lead car begins to execute an abrupt deceleration,

and decelerates continuously for 5 seconds. We now present simulations showing

the effect of the lead car's deceleration (on the cars behind), when information of

this deceleration is transmitted in each of the modes demonstrated in Figure 1-2 of

Chapter 1.

Refer to Figure 2-2, which shows the velocity and inter-car distance profiles of 10

cars, when the information of the lead car's deceleration is transmitted from car to

car, as in Figure 1(a). It can be seen that the values of the minimum car velocity and

minimum inter-car distance keep decreasing with increasing car index, until car 6 is

rear-ended by car 7, and crashes occur for all the cars behind. It can be seen from

the figure that if there were more cars behind car 10, they too would all collide, thus

leading to a pile-up. This is the phenomenon of string instability [20], [14].

String instability refers to the amplification of velocity errors as these errors

travel along a string of vehicles. If we define 1 (t) = V1(t) - V2(t), c2(t) = V2 (t) -

V3(t) ....... , EN- (t) = VN- (t) - VN(t), then a string of vehicles is said to be 1, stable

if :

|Ik6(t)llp • 1162(t)) p • ............... • II EN(t)I p,

where p indicates the pth norm. In the context of pile-up crashes, we are interested

in the amplification (or otherwise) of the oo norm of the velocity errors, i.e. we are

interested in l,, string stability.
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Figure 2-2: All cars unequipped

The occurrence of such a pile-up can be attributed to the following reason : with

all cars maintaining initially shorter time headways, information of the deceleration

of the lead car is transmitted from car to car in a staggered fashion, viz., by the

brake-lights of the successive cars coming on one after the other, and this rate of

information travel is too slow to give the driver sufficient time to react to avoid the

imminent collision. It can also be inferred that the higher the value of T, the smaller

is the car index from which pile-up crashes begin to originate. In general, the shorter

the time headway maintained by a vehicle (to the one ahead of it), the more likely

the onset of string instability; at higher time headways, string instability does not

manifest.

Now, consider a scenario when all the 10 cars are equipped with the slowdown

warning system, and the lead car executes an identical deceleration profile. In this

case, all the cars get informed of the slowdown ahead, near simultaneously, from the

instant the lead car begins to decelerate (i.e. information of the lead car's deceleration

is propagated as in Figure 1-2(b) of Chapter 1). They are therefore able to react much

earlier (car 10, for example, is able to react T seconds after the lead car begins to



decelerate, as opposed to 97r seconds that it would otherwise have taken, if all cars were

unequipped). We make the reasonable assumption that on receipt of the slowdown

warning signal, the driver of each equipped car transitions to a slightly lower value

of 7 than when he was unequipped (in these simulations, we assume 7r = 0.4 sec for

an equipped car - this signifies the increased alertness of the driver on receipt of the

warning signal). Furthermore, the driver of each equipped car attempts to increase

his/her time headway to the car in front of him/her, in anticipation of the imminent

slowdown. The result is shown in Figure 2-3, where, on receipt of the warning signal,

each driver tries to increase the time headway to the car immediately ahead (from the

original T = 1.2sec to T = 1.65sec). The trend of decreasing values of the minimum

car velocity and minimum inter-car distance (with increasing car index) is no longer

seen. This would be true even for any arbitrary number of cars behind car 10, if they

too were equipped.
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equipped. In other words, only some cars possess long distance sensing capabilities,

while other cars possess only local (i.e. near neighbor) sensing capabilities. It turns

out however, that in many cases, even if a fraction of the cars are equipped, this can

still be sufficient to break the trend of decreasing intervehicle spacings as it propagates

down the line of cars, and this can prevent pile-up crashes. This is illustrated in Figure

2-4, where only cars 7 and 9 are equipped. It is seen that after the lead car decelerates,

there is an onset of decreasing intervehicle spacings in cars 2 to 6. However, the fact

that car 7 is equipped breaks this trend, and in fact, the minimum value of V7 (as also

Z6) is higher than V6 (respectively, s5 ). Furthermore, since car 8 is unequipped, it

re-initiates the trend of decreasing intervehicle spacings and therefore the minimum

value of Vs (as also x7 ) is indeed lower than that of V7 (respectively, x6); yet it is higher

than that in the case when car 7 was unequipped (see Figure 2-2). Similarly, since

car 9 is equipped, not only is the minimum value of x8 high enough, but also that of

x9 is higher than what it was when car 9 was unequipped. Consequently, no crashes

occur. This shows that it is possible that even if a fraction of the cars are equipped,

they are able to ensure the safety of not only themselves, but the unequipped cars as

well.

2.4 Pileup crash: Mathematical definition and con-

ditions for Safety

We use the following notation : F and f represent the same signal (or system)

in the frequency and time domain, respectively, i.e., F(s) = L(f) = f(t)e-stdt.
0

The symbol s represents the Laplace variable. If fI. denotes supt>o If , while IIF 1_
denotes supw>o IF(jw)l. Bothilf 1, and IIFII1 denote f If (t)l dt.

0
Consider a string of N vehicles driving on a single-lane with the dynamics of each

vehicle defined by

V(s) = Gi (s) Vi- 1 (s) , (2.2)

for all i E N, where Vi represents the longitudinal velocity of the ith vehicle. Gi (s) is
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the transfer function connecting the velocity response of the ith vehicle to that of the

(i - 1)th vehicle (See Figure 2-5). While the simulation results of Section II (that use
K1 + sK2

Equation 2.1) assume a Gi(s) of the form Gi(s) = 2eT+ s(K + K 2 )+ theS2pe. + s(K1T + K2) + K, '
statements made in this section are true for arbitrary Gi(s). We assume that all the

vehicles in this interconnected system are driving with equal initial speeds and equal

initial intervehicle spacings. The lead vehicle then executes an abrupt deceleration

(possibly in response to some hazard ahead of it) and this induces a chain reaction

that leads to a pileup crash in the system. Our objective in this section is to determine

the conditions under which the pileup crash occurs/can be avoided.

Definition 1 A pile-up crash is said to occur in the interconnected system of vehicles,

if there exists a time t and an index n such that

xz(t) - Xi+i(t) < 0 for n < i < N, (2.3)

where xi is the position of the ith vehicle (xl is the position of the lead vehicle) and xi

are measured in a direction such that xi(0) > x+~1(0)Vi. The condition in Equation

2.3 is equivalent to

IIA (xi -x i+1)jIc > xi(O) - xi+I(0) for n < i < N, (2.4)

where A (xi(t) - xi+1(t)) = (xi(t) - xi+1(t))-(xi(0) - xi+ (0)) represents the fluctua-

tion in the intervehicle spacing between the ith and (i+ 1)th vehicles and xi(0)-xi+1 (0)

represents the corresponding initial intervehicle spacing. The above condition implies

that a crash between two adjacent vehicles occurs when the maximum fluctuation of

the spacing between them exceeds its initial value. On the other hand, there will be

no pileup crash in the interconnected system of vehicles, if

IA (xi - xi+l)l ) < x (0) - xi+l(0) for all i. (2.5)

Lemma 1 For an interconnected system of vehicles in Equation 2.2, the fluctuation



of the intervehicle spacing A (xi - xi+l) can be written as

A (Xi - Xi+l) 1 - Gil

A (X•i- - Xi) - i-G• Gi = . (2.6)

Also, A (xi - xi+l) can be written in terms of the velocity of the lead vehicle V1 as

A (x - x+l) = L-  JGk ( i+ V, (2.7)
k=2

Proof: Equations 2.6 and 2.7 can be easily derived using

AXn = xl(t)- x(O)=L-l{1V , and (2.8)

AXi = GiAX-i_ = GiGi-AXi-2

= ..- = Gk AX 1 .

The condition for a pileup crash can be described in terms of Gi, as shown in the

following theorem.

Theorem 1 Consider an interconnected system of N vehicles governed by Equation

2.2, with all vehicles driving with equal initial speeds and equal initial intervehicle

spacing so. Then, if the lead vehicle executes an abrupt deceleration, it is guaranteed

that there will be no pileup crash if

1. Ii(t)II, < 1 for all i, and

2. IA (xZ - X2) 1. SO

Here, gi represents the impulse response of the transfer function Gi.

Proof: Since A (X, - Xi+1) = GiA (X-_1 - Xi) from Equation 2.6, we have

IIA (X - xi+I)II, _< IIl l IA (Xil - xi)II. •(2.9)

Therefore, if |1 |1 5 1 for all i, we see that IA (xa - xi+l)I, • IA (xi- 1 - xi)ls for

all i, which implies that the maximum fluctuation of intervehicle spacing decreases



with increasing car index. Under this condition, it is evident that if | A (xl - x 2) 110

so, then I A (xi - xi+1) 1• 5 so for all i. This satisfies the condition for no pileup crash

occurrence by Equation 2.5. Therefore, if JIgi(t) l 1  1 for all i, and IIA (x1 - x2)lI •

so, it is guaranteed that there will be no pileup crash in the system.

The condition in Theorem 1 is equivalent to the condition for l, string stability

of the interconnected system [20], [14].

We should note that the condition ig |I, > 1 for some i does not necessar-

ily imply that there will be a pileup crash in the interconnected system, because

|A (xi - xi+l)l , can be smaller than A (xi- 1 - xi) 11., even when I1i 1 > 1. At

the same time however, if |Igi > 1, then in the absence of further knowledge of the

deceleration profile of the lead vehicle, one cannot guarantee the absence of a pile-up

crash. (This statement is particularly true for large deceleration magnitudes of the

lead vehicle). Note however that the system satisfying the condition in Theorem 1

will never have a pileup crash in any event.

2.5 Influence of a slowdown warning system

In this section, we investigate the role of the slowdown warning system in mitigating

the generation of a pileup crash in a mixed sensing environment. In order to describe

the effect of the slowdown warning system, we propose to model the dynamic behavior

of a vehicle using a finite number of operating modes. We assume that all drivers are

initially driving in a 'normal mode', and on receipt of a slowdown warning signal, the

drivers of all the equipped cars transform to a 'cautious mode'. In this context, we

therefore assume that, on receipt of a slowdown warning signal, Gi (s) can be either

U(s) or E(s), i.e.,

U(s)WV_ 1, if ith vehicle is unequipped{ E(s)Vi_l, if ith vehicle is equipped

In general, U(s) is characterized by high values of 7 accompanied by small values

of T; while E(s) is characterized by low values of r accompanied by high values of T.



In other words, a driver in an equipped vehicle, on receipt of the slowdown warning

signal, becomes more alert and increases his/her time headway to the car in front of

him/her. The differences between U(s) and E(s) (for the driver dynamics presented

in Equation 2.1) are clearly seen in Figure 2-6. In this figure, the frequency response

of the vehicle dynamics is plotted for different values of T and T. It can be seen that

for a given value of T, as T increases, it has the effect of increasing the magnitude of

the frequency response. At the same time, for a given T, as T increases, this has the

effect of decreasing the frequency response magnitude.

Using the above guidelines, we assume that U(s) and E(s) have the following

characteristics.

1. IiU(s)lKo > 1 and IU(0) =- 1 (2.11)

2. IIE(s)j|o = IE(0)I = 1, and e(t) > 0 Vt > 0 ,

where e(t) is the impulse response of E(s).

We believe that the models for U(s) and E(s) correctly reflect the behaviors of

drivers of unequipped vs. equipped cars. In particular, the presence of resonant

peaks generated by long reaction delays (when they are accompanied by short time

headways) is such that, for long car streams, avoidance of pile-up crashes cannot

be guaranteed. This can be seen as follows. If all the vehicles are unequipped, i.e.

Gi (s) = U(s) Vi, then Gi (s) = U(s) Vi by Equation 2.6, and therefore, 9|i 1 =

IIu(t) 1j > 1 Vi. By the analysis in Section III, we have seen that this condition on

1I 11, is indicative of the possibility of occurrence of a pileup crash.

On the other hand, the assumption on E(s) in Equation 2.11 is imposed to guar-

antee that there is no pileup crash in the interconnected system when all vehicles

are equipped with the slowdown warning system. That is, when all the vehicles

are equipped, we have f]gjifl = Je(t)IJ, = 1 Vi (- Gi (s) = E(s) Vi), and therefore,

A (xi - xi+1) Io - So for all i, which satisfies the condition for no pileup crash

occurrence.

Figure 2-7(a) shows an example of a velocity profile, wherein a car decelerates
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Figure 2-6: Frequency responses of U(s) and E(s)

sharply from an initial velocity of 30 meteres/sec and comes to a complete stop over

a time span of a little more than one second. The corresponding Fourier Transform

of this signal is shown in Figure 2-7(b), from which it can be seen that there is

substantial magnitude content of the signal at the frequency wo shown in Figure 2-6.

Figure 2-8 shows the impulse responses of U(s) and E(s) for different values of T

and T. Smaller values of T, accompanied by larger values of 7 (that characterise U(s))

lead to oscillatory impulse responses (with the amplitude of oscillation decreasing with

decreasing T). On the other hand, larger values of T, accompanied by smaller values

of T (that characterise E(s)) lead to non-oscillatory responses.

Figures 2-6 and 2-8 indicate that in the case of an equipped vehicle, the larger

the increase in the time headway T that a driver attains (subsequent to the receipt of

a slowdown warning signal), the greater the attenuation that that equipped vehicle

exerts on the errors propagating through the mixed string of vehicles. This fact is

also brought out in the following ten car simulation, in which cars 7,8,9 and 10

are equipped. In this simulation, three different scenarios of headway increase are

considered, viz. T = 1.65, 1.8, 2 seconds. It can be clearly seen that the larger

the headway increase, the higher the higher are the minimum values of velocity and
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inter-car distance (to the car ahead) of the equipped cars.

Figure 2-9: Effect of varying headway increases of an equipped vehicle on receipt of

the slowdown warning signal

We now consider a mixed sensing environment in which only a small number of

vehicles are equipped with the slowdown warning system. The following theorem

provides a sufficient condition that guarantees that a pileup crash does not occur in

the system of vehicles.

Theorem 2 Consider an interconnected system of N vehicles governed by Equation

2.2, with all vehicles driving at equal initial speeds with equal intervehicle spacing so,

and L out of N vehicles are equipped with the slowdown warning system. Assume

that the lead vehicle executes an abrupt deceleration, such that when all vehicles are

unequipped, a pileup crash is initiated at the nth vehicle (i.e., I A (xi - xi+) oo > so

for n < i < N - 1). Then, under the same deceleration profile of the lead vehicle,

there will be no pileup crash if

L > M , (2.12)

where M = N - n + 1 is the number of vehicles that would have crashed if all vehicles

were unequipped.

Proof : First, we consider the nth and (n - 1)th vehicle (note that under the

.........................

..................... ...........

............... .... ... .....

..................................................



assumptions made in this Theorem, there is no collision between these two vehicles).

When all vehicles are unequipped, Equation 2.7 gives

A (Xn-1 - Xn) = L- Un-2 U) (2.13)

and therefore,

IA (Xn_ 1 - Xn) 11 a Iu(t) -2 , (2.14)

where

a= (vi(t) - u(t) * vi(t)) dt . (2.15)

Here, '*' is a convolution integration in the time domain, i.e. (u * vi)(t) = fot u(t -

7)vi(Tr)d-. Now, if we have

a IIu(t)11- 2 < So (2.16)

then from Equations 2.14 and 2.16, we see that

|A (x,_ - x,) 5 I a IIu(t)lln- 2 < So (2.17)

is true. This will ensure that

I A (xn-1 - x,) IK 5 So (2.18)

is true. Equation 2.16 thus guarantees that there will be no collision between the

n - Ith and nth vehicles for any deceleration profile of the lead vehicle (Note that

this is only a sufficient condition for there to be no collision between the n - Ith

and nth vehicles. Due to this assumption, the results presented in this Theorem are

conservative).

Next, we show by induction that

IA (Xn+k- - Xn+k) I a I u(t) I-2 , (2.19)

is true for k = 1, 2, ..., N - n + 1, if there are at least k equipped vehicles among



them, which will prove that there will be no pileup crash among the vehicles for

1< i < (n + k - 1). It is obvious that if L > M, there are at least k equipped vehicles

for 1<i < (n+k-1).

1. For k = 1 (i.e., there is one equipped vehicle among 1< i < n).

In this case, we only need to show that I|A (xn - xn+1) | <- so because we have

assumed that the deceleration of the leading vehicle does not cause any crash

among the vehicles for 1 < i < n - 1. Since

(zX - xn+1) = L 1  G V1)
=i=2 }

=L-1 Un-2E VU) ,

(2.20)

we have,

I1A (xn - Xn+i)11.o < (2.21)OZ jj(t)j n-2 jje(t)ljj

aIjU(t)l n-2

(. Ile(t)lli, = 1)

so (from Equation 2.16).

Therefore, there would be no pileup crash among the vehicles for 1 < i < n, if

there is one equipped vehicle among them.

2. For k = m (i.e., there are m equipped vehicles among 1 < i < n + m - 1).

Now, we assume that the theorem is true for k = m, i.e., that there will be no

pileup crash among the vehicles for 1 < i < (n + m - 1), if there are m equipped

vehicles among them. In other words, we assume

11A (x i - xi+l) II _ so for all 1 < i < n + m - 1 . (2.22)

Under this condition, we will show that the theorem is true for k = m + 1, i.e.,

there will be no pileup crash among the vehicles for 1 < i < (n + m), if there



are m + 1 equipped vehicles among them. Here, we only need to show that

IIA (Xn+m - Xn+m+l ) lo . so because the condition in Equation 2.22 has been

assumed to be true. Since

A (Xn+m - Xn+m+1) (2.23)

=L-1{ G (1 - Gn+m+1) V

= L- 1 Un-2Em+1 U) V ,

we have

I•A (Xn+m - Xn+m+1) IIa a jIu(t)I 1-2 I 1e(t)I1j+1  (2.24)

= IjU(t)AI-2

< so (from Equation 2.16).

Therefore, there would be no pileup crash among the vehicles for 1 < i < n + m,

if there are m + 1 equipped vehicles among them, which proves the theorem for

k = m + 1. If we select k = MAN - n + 1, it is obvious that there would be no

pileup crash among the vehicles for 1 < i < N, if there are M equipped vehicles

among them. U

In the above theorem, it should be noted that there is no constraint on the distri-

bution of the equipped vehicles within the N vehicle system. In other words, as long

as L > N - n + 1, there will be no pileup crash in the entire interconnected system,

for any distribution of the equipped vehicles.

For example, assume that N = 100 and M = 20. That is, consider an intercon-

nected system comprising of 100 vehicles driving with equal initial speeds and equal

initial intervehicle spacings. Assume that, when all vehicles are unequipped, the lead

vehicle decelerates so as to induce a chain reaction that causes a pileup crash from the

81st vehicle onwards (the last 20 vehicles crash). In this case, a pileup crash could be

completely avoided if we arbitrarily equip 20 of the 100 vehicles with the slowdown



warning system.

The theorem in Equation 2.12 is a sufficient condition to avoid a pileup crash.

In other words, there could be situations where the number of equipped vehicles is

smaller than M, but this is still adequate to avoid the pileup crash completely. The

condition for no pileup crash in Theorem 2 is conservative, because we have assumed

that Equation 2.16 needs to be satisfied to guarantee that there is no collision between

the (i - 1)th and the ith vehicles. However, even if Equation 2.16 is violated, it

does not necessarily mean that the (i - 1)th vehicle collides with the ith vehicle.

For the same reason, the condition IlA (Xn+m - Xn+m+1) . :I, < so in Equation 2.24

could be achieved, even when a lu(t)l ~-2 > so. However, Theorem 2 cannot provide

information about what happens when L < M.

In order to investigate the occurrence of a pileup crash for L < M and derive a

condition for no pileup crash that is less conservative condition than Equation 2.12,

we make another assumption on the dynamics of the interconnected vehicle system

and the deceleration profile of the lead vehicle. That is, we assume that Gk(s) and

Vi satisfy the following inequality,

IIA(xi-xi+1)JK•a fJGk (2.25)
k=2 0

Clearly, the condition in Equation 2.25 is not guaranteed in general. However, Equa-

tion 2.25 turns out to be true for the Gk(s) represented by Equation 2.1 and a V1

representing a typical deceleration. Using the assumption in Equation 2.25 allows us

to derive a much less conservative condition (for pileup crash avoidance) than the one

in Equation 2.12.

While a formal proof that demonstrates that Equation 2.25 holds true (in the

scenarios of interest in this paper) is yet to be shown, we believe the following sim-

ulations will convince the reader of its correctness. We first performed the simula-

tions with three unequipped cars. In these simulations, the lead car was assumed

to have a velocity profile of the form shown in Figure 2-10, and simulations were

performed with variable AV and AT, with AV and AT representing the quantities



shown in the figure. For each different (AV, AT) combination, we determine the

value of AIA(x2 - x3) Im It turns out that the condition •A(X2-IX3)1 IIG2 1I1 is al-

ways satisfied for the different (AV, AT) combinations considered (see Fig. 9). Thus,

we numerically verified that Equation 2.25 is satisfied for the case i = 2. We then

further verified (again, numerically) that Equation 2.25 is satisfied for general i. A

typical result supporting this is given in Fig. 10, wherein, for a specific (AV, AT)

combination, plots of A(xi - xi+ 1) i| and a H Gk are shown. This plot is typ-
k=2 00

ically representative of the trend shown by the left and right hand side quantities of

Equation 2.25 (for a lead vehicle decleration profile of the form in Fig. 2-10), and

thus show that Equation 2.25 is satisfied, at least in our context (though it is not

true in general).

The less conservative condition (obtained as a consequence of using 2.25) is given

in the following theorem.

0

.9

ooa.
0
U)

Time

Figure 2-10: Typical velocity profile of lead vehicle

While Figure 2-11 shows the relation between the amplification factor, IIUlI, and

IIUIIO. for a single value of 7 = 0.6 seconds, Figure 2-13 then shows the corresponding

relation for varying values of 7-. The relation for7 -= 0.2, 0.4, 0.8, 1 second are shown

in the figure. It can be seen that with increasing values of 7, the amplification factor
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Figure 2-11: Relation among IU 1 , |U I , and actual amplification factor.
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Figure 2-12: Results of numerical simulations that verify Equation 25
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increases (as was also evidenced from Figures 2-6 and 2-8); yet, at the same time, the

amplification factor remains consistently lower than |lU | .
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Figure 2-13: Effect of varying T on the
amplification factor.

relation among |lUI 1, IU II,, and actual

Theorem 3 Consider the same situation as in Theorem 2, i.e., there are N vehicles

driving with equal initial speeds and equal intervehicle spacing so, L out of N vehicles

are equipped with the slowdown warning system, and the lead vehicle decelerates

abruptly such that (when all cars are unequipped) a pileup crash is initiated at

the nth vehicle, i.e., IA (xi - xi+l) 1l > so for n < i < N - 1. Let Lk be the

number of equipped vehicles between the first and the (n + k - 1)th vehicle (by

definition, LN-n+l = L). Under the same deceleration profile of the lead vehicle and

the assumption in Equation 2.25, there will be no pileup crash in the interconnected

system, if

Lk > LkAJ for l < k < N- n + 1,

ictor
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where

S= og (2.27)
log P - log -

Here, / = I U(s) llo = IU (jwo) > 1, wo is the frequency at which IU (jw) is maxi-
mum, 7 = E (jwo) < 1, and LxJ denotes the smallest integer greater than x. (Figure

2-6 demonstrates 3 and y for a representative choice of U(s) and E(s)). Therefore,

the total number of equipped vehicles L should be greater than LMAJ to guarantee

that there will be no pileup crash, where M = N - n + 1 is the number of vehicles

that would have crashed if all vehicles were unequipped.

Proof : Basically, we follow the same procedure used for the proof in Theorem 2.

When all vehicles are unequipped, Equation 2.7 gives

A(x-1 -X) = L Un-2 (1- U) }(2.28)

and therefore we have from Equation 2.25,

IA (Xn-1 - Xn) oo < aO•n - 2 . (2.29)

As in the previous proof, we assume

a/n- 2 < so , (2.30)

so that the condition (A (xn-I - Xn) ll •5 so is always achieved for any deceleration

of the lead vehicle. Now, we will show that

I A (Xn+k-1 - Xn+k)I < /3n-2, (2.31)

is true for k = 1, 2, ..., N - n + 1, if Equation 2.26 is satisfied (i.e., there are at least

LkAj equipped vehicles among them). This will prove that there will be no pileup

crash among the vehicles for 1< i < (n + k - 1). We will prove this by induction.

1. For k = 1

In this case, there should exist at least one equipped vehicle 1 < i < n because



A is always less than one. Under this condition, we have

(x -lXf+1) =L G] ( Gn+)v (2.32)

= L- Un-2E(1 U) ,

which will yield

1A (xn - Xn+1) hI, oa IIUn- 2El ,from Equation 2.25) (2.33)

_< <)n-2

_ so (from Equation 2.30).

Therefore, there would be no pileup crash among the vehicles for 1 < i < n, if

there is one equipped vehicle among them.

2. For k = m (i.e., there are [mA] equipped vehicles among 1 _ i • n + m - 1).

Now, we assume that the theorem is true for k = m, i.e., that there will be

no pileup crash among the vehicles for 1 < i < (n + m - 1), if there are [mA]

equipped vehicles among them. In other words, we assume

IIA (xi - xZi+i)I, - so for all 1 < i n + m - 1 . (2.34)

Under this condition, we will show that the theorem is true for k = m + 1, i.e.,

there will be no pileup crash among the vehicles for 1 < i < (n + m), if there

are [(m + 1) A] A p equipped vehicles among them. Here, we only need to show

that I A (Xn+m -- Xn+m+1)J I. 5 so because the condition in Equation 2.34 has



been assumed to be true. Since

a (Xn+m - Xn+m+l) (2.35)

= L- 1 1  Gi G+m+1V
SLi=2+m

= L- 1 {n+m-1-PEP(1- U)

we have

|lA (Xn+m - Xn+m+i) I1 •a J IUn+m-1-pEPII0 (2.36)

Since < 1 and (m + 1) A < p, we have

( < +1= -m-1 (2.37)

Using Equation 2.36 and 2.37, we have

|A (Xn+m - Xn+m+l)I11 • ocn+m-- 1 - m - 1  cn-2 (2.38)

5 so (from Equation 2.16)

Therefore, we see that there would be no pileup crash among the vehicles 1< i < n+m,

if there are p equipped vehicles among them, which proves the theorem for k = m + 1.

If we select k = M - N - n + 1, it is obvious that there would be no pileup crash

among the vehicles for 1< i < N, if there are LMAJ equipped vehicles among them.

It should be noted that the new condition L > LMAJ to avoid a pileup crash is

much less conservative than the condition L > M, because A < 1. For example, the

vehicle dynamics used in the simulation in Section 2.3 give / = 1.12 and • = 0.85,



which yields A = 0.41. Therefore, the number of equipped vehicles that will enable

a pileup crash to be averted when N = 100 and M = 20 is [20 x 0.41] = 9. That

is, a pileup crash can be averted if we 'reasonably' distribute 9 equipped vehicles in

the 100 vehicle stream with the slowdown warning system. Here, we use the term

'reasonably', in the context that the distribution of the equipped vehicles should

satisfy the condition in Equation 2.26 of Theorem 3. Theorem 3 implies that when

L < M, then in order to guarantee avoidance of a pileup crash, along with the

condition L > [MA], at least [kAJ equipped vehicles need to be present between the

first and the (n + k - 1)th vehicle for 1 < k < N - n + 1, .

However, it was found that the probability of satisfying the condition in Equation

2.26 (and thus avoiding a pileup crash completely) is quite acceptable in most cases.

The probability of averting the pileup crash as N varies from 10 to 50 and A = 0.5 is

given in Figure 2-14, in which we assume for each N that 20% of vehicles crash when

none are equipped (i.e.,M= [0.2NJ), and we equip L = [MAJ of the N vehicles. For

example, when N = 20, M and L become M = [0.2NJ = 4, and L = [MAJ = 2,

respectively, and the probability of satisfying the condition in Equation 2.26 can be

computed as

Number of combinations of at least one vehicle equipped

between 1-17 and the other one equipped between 1-19

Number of combinations of 2 out of 20 vehicles equipped

(17 x 18) /2(17= 0.8053, (2.39)

where (n) represents the number of combinations of n objects taken k at a time.

Proceeding in the manner outlined in Equation 2.39, we can compute the probability

of averting a pileup crash for general N, M and L. It can be seen from Figure 2-14

that there is a high probability (above 65%) of completely avoiding the pileup crash

if we equip about 10% of the total number of vehicles. Of course, the pileup crash is

guaranteed to be averted if we equip 20% of the vehicles.
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Figure 2-14: Probability to avoid a pileup crash completely for L = L[0.1N.

2.6 A summary of what we have learnt

How are pileup crashes caused ?

While there could be several ways in which pileup crashes could be caused, it seems

intuitive to think that large time delays accompanied by short following distances

could act as a trigger to initiate pileup crashes. We see that large time delays and small

time headways can indeed lead to the phenomenon of string instability - which implies

amplification of velocity and inter-vehicle spacing errors, as these errors propagate

through a line of vehicles. Thus, if a string is large enough, then these errors continue

to amplify till they exceed a certain threshold, and this leads to pileup crashes.

Conversely, short time delays accompanied by large time headways result in string

stability. This phenomenon is brought out in Figures 2-2, 2-3 and 2-6.

What role can partial equipment of an advance warning system play in averting pileup

crashes ?

When a driver receives an advance warning, it is reasonable to assume that he

exhibits shorter time delays when responding to the vehicle ahead. We also make the

reasonable assumption that he attempts to increase his following distance (i.e. time

headway) to the car ahead. These two effects combine to make that portion of the



vehicular string that include him and his predecessor, string stable. If all the vehicles

in a string are equipped, then the entire string is string stable. If only some vehicles

are equipped, then there occurs the phenomenon of mixed string stability. It can be

intuitively seen that even in situations when there are only some equipped vehicles in

a string, then as long as the equipped vehicles are present in a sufficient number, and

are well distributed in the vehicular string, then they can serve to keep the level of

amplification of the velocity/inter-car distance errors below the threshold that would

lead to pileup crashes. This phenomenon is demonstrated in Figure 2-4.

How many equipped vehicles need to be present in a given string, in order to alleviate

a pileup crash completely, i.e. have zero collisions ?

In this thesis, this number is presented as a function of the number of vehicles

that would have crashed, if all vehicles were unequipped. The statement of this re-

sult is given in Theorems 2 and 3. Note however, that this number is a conservative

estimate. Furthermore, while Theorem 2 guarantees zero collisions under any arbi-

trary distribution of equipped vehicles, Theorem 3 guarantees zero collisions if the

distribution of equipped vehicles belongs to a set of defined distributions given in the

Theorem.

Given a string where the equipped vehicles are present in the requisite number stated

by Theorem 3, but are otherwise arbitrarily distributed, what is the probability that

they will lie in the set of requisite distributions (specified by Theorem 3), that will

result in zero collisions ?

This is presented in Figure 2-14. Figure 2-14 thus gives the proability of zero

collisions, as a function of the total number of vehicles. Note however that since this

figure is based on the statement of Theorem 3, and Theorem 3 itself is conservative,

therefore this probability curve represents a lower bound on the probability of zero

collisions.



Chapter 3

Macroscopic Modeling Approach

In this chapter, the average behavior of groups of vehicles is studied using partial dif-

ferential equations. A multi-lane model is assumed. It is demonstrated how scenarios

when all vehicles are unequipped can lead to situations wherein large negative velocity

gradients travel unattenuated or get amplified as they propagate along the highway. It

is then demonstrated how the presence of a few equipped vehicles can attenuate these

velocity gradients. The resulting velocity gradients are then parametrized as a func-

tion of the extent of equipment, in a mixed vehicle string. For a prototype Reimann

Problem, it is demonstrated that about 15% equipment accompanied by a signal trans-

mission range of 500 meters can lead to over 50% reduction in the velocity shock

magnitude, as compared to when all vehicles are unequipped.

3.1 Introduction

In this chapter, we use macroscopic models to demonstrate the benefits that accrue

from a slowdown warning system. Partial Differential Equation (PDE) based models

are used, and a multi-lane scenario is assumed. We examine the influence of par-

tial equipment of the slowdown warning system on some of the wave effects that are

known to exist in traffic flows, in particular, shocks/large negative velocity gradient

waves that travel unattenuated/get amplified as they pass through the traffic. We

formulate the problem as a shock alleviation problem; in other words, we see how



the presence of a slowdown warning system can help alleviate/minimize the pres-

ence of large negative velocity gradients on the highway, that otherwise would have

occurred. Furthermore, in this chapter, we assume a finite speed of propagation of

the slowdown warning communication wave, as it travels through a line of vehicles.

The PDE models used are based on gas dynamics foundations. We first explain the

underlying Boltzmann equation that is used in a single species situation, i.e., when

all vehicles are unequipped, and then illustrate the derivation of the macroscopic

equations by taking moments of the Boltzmann equation. We then use DSMC (Di-

rect Simulation Monte Carlo) methods to explain the link between the underlying

Boltzmann equation (that essentially represents microscopic models of vehicles) and

the macroscopic model. We then explain how the Boltzmann equation gets modified

in a two species situation, when the two species assumed are cars and trucks. We

then illustrate how this two species equation gets further modified when we assume

that one of the species (i.e. the equipped vehicles) receives advance information of

the slowdown ahead/degraded velocity conditions ahead, via a communication wave

propagating with a finite speed through the equipped vehicles. With this model, we

then present results that parametrize the strength of the velocity gradient waves, as

a function of the percentage of equipment for different initial conditions - a Reimann

Problem and initial conditions with negative velocity gradients that grow steeper and

steeper as time evolves (when all vehicles are unequipped).

3.2 Derivation of macroscopic equations for a sin-

gle species - all vehicles unequipped

3.2.1 The underlying Boltzmann Equation

Consider a system of vehicles, indexed by a, with a = 1, 2, ....N, as represented

schematically in Figure 3-1. Let the state of vehicle a at time t be defined by Xa(t) =

[a"(t), v,(t), v0 ~
0(t)], where x,(t), Va(t) and vo0 (t) represent the position, velocity and

desired velocity, respectively of particle a. The dynamics of particle a are governed



by the following state space equations :
dx,dt - vX a (1)

dvo vo (2)-= a + Epo~afa + W(t) (2)
dt To
dvo
dt = 0 (3)
dt

000000000 0 0 0 0 0 0 0

Figure 3-1: Schematic multi-vehicle scenario

While the meaning of equation (1) is obvious, equation (2) indicates that the

acceleration/deceleration behavior of each driver-vehicle unit a is comprised of three

factors :

(a) The desire of the driver to attain his desired velocity v'. It is assumed that he/she

tries to attain this desired velocity at an exponential rate, with time constant T7.

(b) The interaction effects due to the presence of other vehicles. fO, indicates the

interaction effect (i.e. the slowing down effect) of vehicle / on a. It comes into play

when a vehicle 3 is driving ahead of vehicle a, with a velocity v3 < v,, and a is

unable to overtake /3 (by passing). It is explained in more detail further below.

(c) The acceleration noise, represented by ýa(t) for vehicle a. This noise is assumed

to be Gaussian white noise, i.e. it has zero mean with specified co-variance as follows:

< a(t)>=0 V a (4)

< ~a(t)3P(7) >= 2D6a4,6(t - T) (5)

where < h > indicates the expected value of h. Finally, equation (3) indicates

that the desired velocity of each driver is a constant for all time. Note that this does

not necessarily mean that all the drivers have the same desired velocity.



We define f(x, v, v0 , t) as the phase space density - in other words it is a multivari-

able probability density function (in three dimensions) such that p(x, v, vo, t)AxAvAvo

represents the average no. of particles present in the interval [x - Ax/2, x + Ax/2],

with velocity in the interval [v - Av/2, v + Av/2], and desired velocity in the interval

[vO - Av0 /2, vO + Avo/2], at a time t' E [t - At/2, t + At/2].

V 0O

Figure 3-2: Illustration of the phase space

Thus, if An(x, v, vo, t') represents the number of vehicles in the box schematically

shown in Figure 3-2 at some time t', then
, V = 1 t'-At/2 An(x, v, vo, t')dt (6)

Ax, V) VI AXAvAvOAt Jt
t - a t l 2

In order for fi(x, v, vo, t) to indicate a meaningful average, the averaging lengths

Ax, Av and Avo are important. For ,(x, v, v0 , t) to indicate a meaningful average of

a specific single traffic situation, it is necessary that the lengths Ax, Av and Avo be

microscopically large, but macroscopically small. On the other hand, for ý(x, v, v0, t)

to be meaningful in the limit of Ax -- 0, Av --+ 0, Avo --+ 0, it has to be constructed

as an ensemble average of macroscopically identical (but microscopically distinct)

traffic scenarios.
If we define - v

If we define -- - , then one can write the evolution of b(x, v, v o , t) as gov-
T

erned by the continuity equation in phase space density as follows (this has analogies

to the Boltzmann equation in gas dynamics) :



By 8 dx 8 di) _ dvo O 8(7iD)S+ d ) + - d ) + • ) dv ( ) + a(5D (7)at ax dt av dt avo dt at int av2
It can be seen that the terms on the left hand side of the above equation arise

due to the time variation of / as well as the convection of 3 in phase-space. On

the right hand side, (-) represents the instantaneous changes in the phase space
at int

density that occur due to the slowing down interactions between the vehicles. This

is given by the Boltzmann interaction term. The interaction term can be thought of

as comprising two parts :

(a) n i + c+ot (8)

where - represents the effect of an instantaneous increase in ý(-), and

represents the effect of an instantaneous decrease in f(.).

We first consider events that lead to an instantaneous increase in 5(x, v, vo, t).

Consider two distinct velocity classes v and w, where it is to be understood that a

vehicle belonging to velocity class v has its velocity in the range [v - Av/2, v + Av/2];

and a vehicle belonging to velocity class w has its velocity in the range [w - Aw/2, w+

Aw/2]. Assume w > v. Then when a faster vehicle belonging to velocity class w

encounters a slower vehicle belonging to velocity class v and travelling ahead of it,

then either of two events could occur :

a) The faster vehicle overtakes the slower vehicle (by passing). Such an event is

assumed to occur with a probability p; and if it occurs, it occurs instantaneously, and

with no change in the velocities of either of the two vehicles.

b) The faster vehicle does not pass the slower vehicle, but instead adapts its

velocity instantaneously to that of the slower vehicle. Such an event occurs with

probability (1 - p). Occurrence of this event leads to an instantaneous increase in the

number of vehicles of class v, accompanied by an instantaneous decrease in the number

of vehicles of class w. In other words, if we assume for instance that both vehicles

belong to the same desired velocity class vO, then this event leads to an instantaneous

increase in 1 (x, v, vo, t), accompanied by an instantaneous decrease in fi(x, w, v, t).

The rate at which this event occurs is obtained from the following reasoning :

Consider a single stochastic vehicle A, belonging to velocity class v, and desired ve-



locity class vo. Then, we can see that : Number of interactions that vehicle A encoun-

ters with all vehicles belonging to the (slower) velocity class w and desired velocity

class w° in time dt = Number of vehicles belonging to velocity class w and desired ve-

locity class w° that the vehicle A encounters, in time dt = p(x, w, w0 , t)dwdwolv-wjdt.

Therefore, number of interactions that vehicle A encounters with vehicles belong-

ing to all other slower velocity classes, in time dt = f dwo f<v dwf(x, w, wo, t)lIv -

w dt.

Number of interactions of all vehicles of velocity class v and desired velocity class

VO with vehicles belonging to all other slower classes, in time dt = Number of vehicles

of velocity class v and desired velocity class vo at x X Number of interactions that a

single vehicle in velocity class v and desired velocity class vo encounters

= (x, v, vo, t)dxdv f dwo fw<: dwý(x, w, wo, t) v - w dt

= f(x, v, vo, t)dxdvdt f dwo fw,< dwfi(x, w, wo, t) v - WI

Multiplying the above by (1- p) which indicates the probability of not overtaking,

we finally get that , which is actually the number of interactions of vehicles of

velocity class v and desired velocity class vo with vehicles belonging to all other slower

classes computed per unit time, per unit length and per unit velocity is given by :

= (1 - p)(x, v, vO, t) f dw°o fw<,, (x, w, wo, t) Iv - w (9)

In a similar fashion, one can see that if the slower vehicle of velocity class w is

travelling in front of the faster vehicle of velocity class v, (i.e. w < v) (and both

vehicles belong to the desired velocity class vo); then if the faster vehicle adapts its

velocity instantaneously to that of the slower vehicle, it leads to an instantaneous

decrease in n(x, v, vo, t). By an analogous reasoning, one can obtain that :

= -(1 - p) (x, v, vo, t) f dwo f, dw (x, w, w°, t)v - w (10)

After substituting eqns. (1),(2),(3) (9) and (10) into equation (7), we get the

following :
8p 8 8 0q  - v

-+-()+ -(p---- -) = (1-p) adw adw° v-w p(x,w,wOt)(x,v,vO,

(1 -p) dw 0 dwo w - vI(x, w, w', t)f(x, v, vo, t) + a(i D)
We then integrate both sides of the above equation with respect to dvo. Doing so,

and defining f dv0o(x, v, vo, t) = ý(x, v, t), eqn. (11) takes the form :



+ (v) + -( -V (i - p) dwv - wj(x, w, t)(x, v,t) - (1 -
Ot Dx dv T

p) dww - v(x, w, t) (x, v, t) + a (12)
We will revisit the above formula in Section 4 of this Chapter, when we perform

molecular simulations using the DSMC Method.

3.2.2 Method of moments to obtain Macroscopic Equations

Multiplying both sides of Equation (11) by vk (vo) and then integrating with respect to

dvodv, one gets the following two equations for the zeroth and first velocity moments

(and the zeroth desired velocity moment) respectively :
+mo,0  D 1, 0  (13)

Dt Dz
Dmi ,o Dm 2,0  1

+ 5 + -( m l,o - mo,1) = mlomn,o - m2,0r 0,0  (14)

where mk,l is defined as

mk,l = f f dvodvvk(v)U(, 0, v , t) (15)

with m_-1, = 0 by defintion.

It can be inferred from (15) that mo,o represents the average spatial density p(x, t) as

follows :

mo,o = f dvo f dvý(x, v, vo, t) = f dv(x, v, t) = p(x, t) (16)

Similarly, it can be inferred from (15) that ml,o is given by :

mi,o = f dvo f vdv,(x, v, vo, t) (17)

i.e., mi,o = p(x, t)V(x, t)

where V(x, t) represents the average velocity defined by:

V(x, t) =< v >-vdv=(xvv't) (18)
p(x,t)

It can also be inferred from (15) that m 2,0 is given by :

2,0 = fdof v 2dv(dz(x, v, , t) (19)

i.e. m2,0 = p(x, t)(V(x, t)2 + 9(x, t)) (20)

where O(x, t) represents the velocity variance defined as :

O(x, t) =< (V - V(x, t))2 >=f dvf[v - V(xt)]2dv(xvvt) (21)p(x,t)
Substituting for mo,o, rnmi,0 and m2 ,0 in equations (13) and (14), the following macro-

scopic equations are obtained :



ap 8(pV)1P =0 (20)
Ot Dx9
av + V -1 a(pe) Ve - V+- V + -= 9 + (21)
dt D8 p Dz 7

where V,(x, t) represents the average equilibrium velocity and is given by :

Ve(x, t) = Vo - (1 - p)prT (22)

Equations (20), (21) and (22) represent the form of macroscopic equations that

can be derived from the work done by [50], [51], [72]. These equations however do

into take into account two aspects: (a) The assumption that vehicular interactions

are inherently anisotropic, i.e. that a vehicle responds to the traffic situation ahead

of it, and not to the situation behind it; (b) The fact that each vehicle has non-zero

length and that vehicular braking interactions occur when there is still a finite space

between two vehicles.

The above two aspects were treated in [41], and using an Enskog-like approach,

the following Boltzmann equation was arrived at:
a a a .v0 - v ( l-p) " (1 - p) [+ ( v)+ - ) - dwjv-w|a(x, w, t)(x, v, t) dww-Dt Dx Dv T p j p

Vl(x, W, t)p a(X, v, t) + (2 (23)
Dv 2

(The above equation may be compared with Equation 12). This Equation removes

the isotropic nature inherent in Equation (12) by defining a quantity fa (x, v, t), which

is essentially the same as (xa, v, t), where Xa = x + (1 + VT). By defining &a(x, v, t)

in the RHS of the Boltzmann Equation, Equation (23) is modeling the fact that the

average vehicle responds to the traffic situation occurring at a distance I + VT ahead

of it. 1 represents the average vehicle length, and is given by 1 = 1 while T
Pmax

represents the average time headway maintained by a vehicle to the vehicle in front

of it (in the high density limit). pmax represents the maximum possible vehicular

density that occurs, when all vehicles are lined up bumper to bumper.

Equation (23) also incorporates the finite space requirements for vehicular in-

teractions by the insertion of the term 1 that premultiplies the RHS of the original

Boltzmann Equation (12). Since p is inherently a probability-like number, it is always

less than or equal to 1, and consequently Equation (23) leads to an increase in the

number of vehicular interactions (as compared with the gas-dynamic like interaction



term given in Equation (12). By subsequently further defining p as a function of p

(discussed below), Equation (23) also ensures that with increasing vehicular density,

the number of vehicular interactions increase, as well as the probability of overtaking

decreases; both of which make sense from a physical standpoint.

By taking the first and second moments of Equation (23), we again obtain Equa-

tions of the form (20) and (21), but this time, the expression for the equilibrium

velocity Ve turns out to be of the form :

Ve(x, t) = Vo - P(pa)Bpr(6 + Oa)/2. (24)

In the above, pa and Oa represent the density and velocity variance computed

at an interaction point Xa, in other words, Pa = p(xa), ,a = O(Xa). Obtaining an

expression for equilibrium velocity of the form given in Equation (24) required the

assumption of a Gaussian velocity distribution, in other words, it assumes that the

velocity distribution at any x, t is always Gaussian. More precisely, it makes the

assumption that :

j(x, v, t) = p(x, t)e(v-v(,t)) 2/(2 9(xt)) (25)
(1 - p)The pre-factor P = (which takes into account both - the probability of

p
not overtaking, as well as the finite space requirements of vehicles) is given by the

expression :
1 - p(p) VpT2  (26)

P(p)= . (26)P(P) TAmax(1 - (P/Pmax)2 )
The above expression is obtained by assuming that at equilibrium, in the high

density limit, vehicles try to maintain (on the average) a time headway of T to the

vehicle ahead of them. The from of P(p) is graphically depicted in Figure 3-3.

From the above, one can also represent p(p), which represents the probability of

overtaking, as in Figure 3-4. It can be seen that the model inherently assumes that

the probability of overtaking decreases with increasing density of vehicles/km/lane.

The factor B (in Equation 24) that takes into account the anisotropic interaction

effects, is given as

B(6,) = ,e 2 + (1 + ) dy+ e+. (27)

where 6, = (V - Va)/I/ _+0a with Va and 8a representing the average velocity

and velocity variance computed at the interaction point Xa.
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Figure 3-3: Profile of P as a function of p
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One can see that Equations (13) and (14) (as also Equations (20) and (21)) repre-

sent a non-closed system of equations. Equations (13) and (20) governing the average

density (which represents the zeroth velocity moment) depend on the average velocity

(which is the first velocity moment). Equations (14) and (21) governing the average

velocity in turn depend on the velocity variance (which is the second velocity mo-

ment). If we were to write down the PDE governing the evolution of the velocity

variance, we would find that it depends on the skewness of the velocity distribution

(which is the third velocity moment), and so on. In short, one gets a non-closed hier-

archy of equations. An assumption of a Gaussian velocity distribution (as mentioned

above and shown in Equation (25)) is used in conjunction with a closure expression

for the velocity variance, (which is discussed below) to close the system of equations.

Note that while eqn. (20) is already written in its conservative form, eqn. (21) can

also be written in its conservative form as :
8(pV) + (pV2 + p9) Ve - V

Ot+ x (28)0t 89 7
Equations (20) and (28) represent the form in which the continuity and momentum

equations are used for their numerical solution.

3.3 Numerical data assumed

The following values have been assumed for the numerical data (when all vehicles are

unequipped):

* Average desired velocity Vo = 110 km/hour. When all vehicles are unequipped,

it is assumed that this velocity is set by the prevailing speed limit on the high-

way. In other words, it is assumed that all vehicles would like to drive at their

maximum possible velocity, and the reason that they are unable to actually do

so, is the presence of other vehicles on the highway.

* Average relaxation time -= 15 sec. This represents the average time constant

of the exponential rate with which vehicles attain their desired velocity.



* The velocity variance O(x, t) is assumed to be of the form 0 = A(p)V(x,t) 2,

where V(x, t) represents the average velocity. A(p) is a density dependent pre-

factor, that has been experimentally evaluated in [39], and found to be of the

form :

A(p) = Ao + AA(tanh((p - p,)/Ap) + 1)

where Ao = 0.008; AA = 2.5Ao; Pc = 0.27p,max; Ap = 0.05pmax; Amax

A(pmax) = 0.048. This form of the velocity variance pre-factor is shown in

Figure 3-5.

0 20 40 60 80 100
p (Vehicles/km/lane)

120 140 160

Figure 3-5: Variance Pre-factor Profile

* Maximum vehicle density Pmax = 160 vehicles/km. This represents the maxi-

mum possible vehicle density when all the vehicles are at a standstill.

* Average time headway maintained T = 1.5 sec.

Using the above expressions, we get the profile of the average equilibrium velocity

V, as a function of p to be as given in Figure 3-6. Similarly, the velocity variance 0

as a function of p is given in Figure 3-7.
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Figure 3-6: Equilibrium Average Velocity Profile
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Figure 3-7: Velocity variance as a function of density



3.4 Demonstration of the link between the dis-

crete and continuum models through DSMC

The aim of this section is to demonstrate the link between the discrete model adopted

in Equations (1)-(3), along with the Boltzmann Equation, with the continuum model

represented in Equations (20) and (28). In this section, we characterize the evolution

of a set of particles from an arbitrary initial condition to an equilibrium condition.

The equilibrium condition is defined by steady state, homogenous values of average

velocity and velocity variance, for a given density.

Initial Conditions at the Discrete Level:

For the purposes of this section, we assume a circular highway of length 10 km

with two lanes (with vehicles on both the lanes travelling in the same direction). The

assumption of a circular highway allows us to ensure that vehicles exiting the highway

at one point, re-enter the same highway. We do the demonstration for a vehicular

density of p = 20 vehicles/km/lane. We therefor have a total of 400 vehicles on the

10 km length, two lane highway stretch. The initial positions of the vehicles are

randomly determined as follows :

Xlh(nlh) = n1h/20 - 0.01 + 0.02 * rand(l)

Xrh(nrh) = nrh/ 2 0 - 0.01 + 0.02 * rand(l),

where rand(l) indicates a random number uniformly distributed in [0, 11. nh E

[1, 200], nh E [1, 200] indicates a vehicle index number in the left and right lanes

respectively; while zlh(nlh) and Xrh(nrh) indicate the vehicle positions of the corre-

sponding vehicle (in km). The initial velocities of the vehicles are randomly picked

from a Gaussian distribution of specified mean and variance. In this section, we will

consider two different initial conditions - these are as represented in Figure 3-8. Fig-

ure 3-9 shows one such sample of random initial distribution of velocities (these have

been extracted from the second macroscopic intial condition shown in Figure 3-8),

while Figure 3-10 represents one such sample of random initial inter-vehicle positions.

Through the run of the entire simulation, we also assume the presence of a vehicu-

lar acceleration noise. As indicated in Equations (4) and (5), this noise is assumed to
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Figure 3-8: Representation of the two macroscopic initial conditions on velocity from
which microscopic velocity samples are extracted

Initial distribution of velocities chosen from a Gaussian distribution
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Figure 3-9: Initial Distribution of vehicular velocities
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Initial distribution of inter vehicle positions chosen from a
uniform distribution with mean = 50 meters
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Figure 3-10: Initial Distribution of inter vehicular distances

be zero-mean, white noise with specified co-variance. The co-variance 2D of the noise

is itself a function of the vehicular density (in accordance with the experimental data

given in Figure 3-7. We have the relation 8e = C - PprTF/2 + Dr as a representation

for the equilibrium velocity variance. In this relation, C represents the covariance

of the velocity and the desired velocity of all the vehicles, and we can set this to

be zero by setting the desired velocity of all the vehicles to be identical. With the

further assumption of an equilibrium Gaussian velocity distribution, we can obtain

the following figure of D vs. p, as given in Figure 3-11. In the simulations, we convert

this acceleration noise to an equivalent velocity noise. The standard deviation a of

this velocity noise depends on the time step At. Figure 3-12 shows how the standard

deviation of the velocity noise varies as a function of density and time step At. In our

simulations, we use a time step At = 0.05 seconds, and for p = 20 vehicles/km/lane,

this leads to a = 0.57, as can be seen from Figure 3-12. Figure 3-13 then shows the

velocity profile of a single driver driving on an empty stretch of a highway, with an

assumed average velocity of 100 kmph , over a time span of 10000 seconds.

Discussion of the DSMC Method

We use DSMC (Discrete Simulation Monte Carlo) Methods to explain the link

between the discrete vehicular model and the continuum model. The DSMC Method
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Figure 3-11: Variation of D as a function of p

was originally conceived by Bird to simulate molecular dynamics in gas flows. After

the initialization process, the method postulates the following two operations to be

performed, in sequence, in each time step At :
dx dv

1) Update the position and velocity of each vehicle according to di = v; =

+ -(t). This is the 'collisionless' process, wherein vehicular interactions are

not considered.

2) Then, determine the number of vehicular interactions required to take place during

that time step. Randomly, choose the vehicle pairs required to interact using an

acceptance-rejection method (discussed below), so as to eventually process the total

number of interactions required to be processed during that time step. Update the

velocities of those vehicles that have interacted, by changing the velocity of the faster

vehicle to equal that of the slower one, and leaving the velocity of the slower vehicle

unchanged. Carry the left over fraction of unprocessed interactions to the next time

step.

The reason that the process can be split into two steps is now discussed. The

Boltzmann Equation can be written, using a shorthand notation, in the following

form :

0 =- Hfi + Jp (29)



where H is an operator that represents the effects of changes occurring in 3 due to

its convection in phase-space (i.e. the 'collisionless' process), and J is an operator

that represents the effects of changes occurring in 5 due to vehicular interactions (the

'collision' process). Then, we can write:
Sa(x, v,vo , t)t=oAt

(x, v, v 0 , At) = (x, v, v,0) + ot It=oAt

= P(x, v, vo, At) = p(x, v, vo, 0) - H (x, v, vo, 0)At + Jp(x, v, vo, 0)At

= f(x, v, vo, At) = (1 - HAt + JAt)f(x, v, vo, 0).

This in turn can be written as :

f(x, v, vo, At) = (1 - HAt)(1 + JAt)3(x, v, vo, 0) (30)

by ignoring the second order terms in the above equation. The above equation thus

states the principle of uncoupling the collisionless process from the collision process.

In the first step, p5 undergoes a change due to the operator H, and in the second

stage, it undergoes a change due to the operator J.

p

Figure 3-12: Standard deviation of vehicular noise as a function of density for varying
At

In order to visualize the collision (i.e. vehicular interaction) process, we look at

a pair of cells on the space-velocity plane, as shown in Figure 3-14. The number of

collisions taking place between particles in a v cell and particles in a w cell (with

both the velocity cells in the same x cell, and with w < v) during a time step At is

obtained from the interaction terms of the Boltzmann equation (23) as :

0



Velocity profile of a single driver with o = 2.15
130

120 - . .

0 2000 4000 6000
Time (sec)

8000 10000

Figure 3-13: Individual Driver Noise

velocity

Figure 3-14: The space-velocity plane

111

............ ...............



(1 - p (x, t)P(X, w, t)IW - v|AtAxAv (31)
p(p)

where Ax represents the width of an x cell and Av represents the width of a velocity

cell.

The total number of collisions taking place between particles in a v cell and par-

ticles in all the other velocity cells (lying in the same x cell, and with velocities less

than v) during a time step At is then given as :
(1 - ,(x, v, t)(0.5E,,,<(x, w, t)Iw - vl)AtAxAv (32)

p(p)
where the summation sign is indicative of the trapezoidal integration being performed.

Note that in the above collisions, the particles in the v cell represent the impeded

particles, while the particles in all the other velocity cells with velocities less than v

represent the impeding particles.

The total number of collisions taking place in a x cell during a time step At is

then given by :
(1 - p(p)( (0.5E (x, v, t)Av(O.5E,,<,(x, w, t) w - vl))AtAxAv (33)

p(p)
Once we compute the total number of collisions to take place in a time step, it still

remains to choose the particles that should actually collide (i.e. interact). Note that

the probability of a collision between two particles is proportional to their relative

velocity, i.e. a pair of particles with a higher velocity difference, is more probable to

collide than a pair of particles with a lower velocity difference. In other words, given

a pair of particles chosen at random, and given that their velocities are v and w, the

probability of them having a collision is given by

Po,, = Iw - vl/(0.5E, (x, v, t)Av(0.5E,,,Av (x, w, t) w - vl)) (34)

To suitably choose the particles that need to collide, we utilise an acceptance

rejection procedure as follows: Pick two particles at random, and then compute P•ou1

for that pair of particles. Pick a random number uniformly distributed in [0, 1]. If the

number is less than Pcol, then accept the pair as a collision candidate; on the other

hand, if the number is greater than Pol, then reject the pair as a collision candidate.

Continue this process until all the collisions in the cell have been processed.

Results of the Discrete Simulations

Figure 3-15 shows the velocity distribution of all the vehicles at time t = 300
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Figure 3-15: Velocity distribution of all the vehicles at t = 300 seconds
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Figure 3-16: Velocity profile of a single vehicle picked at random
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seconds, after they have evolved from the first initial condition given in Figure 3-8.

Figure 3-16 shows the velocity profile of a randomly chosen vehicle, as a function of

time. This figure clearly brings out all the different aspects of an individual vehicle's

behavior - the desire to attain his chosen velocity vo, the velocity reductions required

to be performed everytime a slower vehicle is present in front that the trailing vehicle

cannot overtake, as well as the velocity noise that is an intrinsic feature of every

driver's behavior.
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Figure 3-17: Relaxation of average velocity to its equilibrium value for 5 different
simulations (i.e. 10 lanes) from different microscopic initial conditions that are derived
from a single macroscopic initial condition

From data such as that given in Figure 3-15, and by evaluating this data at each

time instant, we can compute the average velocity and velocity variance. Figure 3-17

shows the evolution of the average velocity of all the vehicles, as a function of time,

from the first initial condition given in Figure 3-8. The five thin lines represent the

average velocities obtained from five different simulations (with each simulation com-

prising of an average taken over two lanes). It can be seen that in each of the five

simulations, the average velocity converges to an equilibrium value, and this conver-

gence occurs at an exponential rate, and with a time constant of about 15 seconds.

Furthermore, even though the five simulations are from the same macroscopic initial

condition (given in Figure 3-8), they are from different microscopic intial conditions



(as explained earlier). The thick line then shows the average velocity after it has

been further averaged over the five simulations. It can be clearly seen that the final

average velocity very closely approximates the value given in the average equilibrium

velocity vs. density diagram of Figure 3-6 (this figure shows an average velocity of

about 95 kmph for the density of 20 vehicles/km/lane).
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Figure 3-18: Relaxation of velocity variance to its equilibrium value for 5 different
simulations (i.e. 10 lanes) from different microscopic initial conditions that are derived
from a single macroscopic initial condition

From the same initial conditions used to obtain the results of Figure 3-17, we

then look at plots of the evolution of velocity variance as a function of time. These

are shown in Figure 3-18. In the case of velocity variance, the fact that there is

convergence to an equilibrium value is not immediately apparent, when one looks

at just a single simulation run. However, when we obtain the variance from the

five simulation ensemble (as given by the thick line in the figure), one can begin to

see convergence toward some sort of an equilibrium. Again, the relaxation to this

equilibrium occurs exponentially. If we then take the time average of the velocity

variance represented by the thick line, after it has relaxed to equilibrium, we find this

value to very closely approximate the value given in the velocity variance vs. density

diagram of Figure 3-7 (this figure shows a velocity variance of about 71 kmph2 for

the density of 20 vehicles/km/lane).



We then repeat the simulations for a second set of initial conditions, that are

extracted from the second macroscopic initial condition shown in Figure 3-8. Figure

3-19 shows the relaxation of the average velocity to its equilibrium value, while Figure

3-20 shows the relaxation of the velocity variance to its equilibrium value. Again,

while the relaxation of the average velocity to its equilibrium is visually apparent

from a single simulation; the relaxation of velocity variance to an equilibrium becomes

apparent only after extracting the variance from an ensemble of several simulations.

These values are quite commensurate with the values obtained from the first initial

condition. This is also brought out in Figures 3-21 and 3-22.

0

CL

(D

Figure 3-19: Relaxation of average velocity to its equilibrium value for 5 different
simulations (i.e. 10 lanes) from different microscopic initial conditions that are derived
from a single macroscopic initial condition

3.5 Derivation of macroscopic equations for two

species - some vehicles equipped

3.5.1 The underlying Boltzmann Equation

Consider a system of equipped and unequipped vehicles, randomly mixed among each

other, as shown in Figure 3-23. The unequipped vehicles are indexed by a subscript
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Figure 3-20: Relaxation of velocity variance to its equilibrium value for 5 different
simulations (i.e. 10 lanes) from different microscopic initial conditions that are derived
from a single macroscopic initial condition
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Figure 3-21: Relaxation of average velocity to its equilibrium value as obtained from
an ensemble of 5 simulations (i.e. 10 lanes) from two different initial conditions
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Figure 3-22: Relaxation of velocity variance as obtained
ulations (i.e. 10 lanes) to its equilibrium value from two

from an ensemble of 5 sim-
different initial conditions

u, while the equipped vehicles are indexed by a subscripte e. The state space vector

of each unequipped vehicle is defined by X,(t) = [xu(t), v,(t), vou(t)], where xa(t),

v,(t) and vo'(t) represent the position, velocity and desired velocity, respectively of

the unequipped vehicle. Similarly, the state space vector of each equipped vehicle

is defined by Xe(t) = [xe(t), ve(t), voe(t)], where x,(t), v (t) and voe(t) represent the

position, velocity and desired velocity, respectively of the equipped vehicle. The

dynamics of u and e are then given by the following state space equations :

o0 1 1 0 0 1 0 0

Ue

Figure 3-23: Schematic multi-vehicle scenario comprising of unequipped and equipped
vehicles

dxu
dt
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dv Vuo - (6
dt- -+ fu + Efeu + u(t) (36)

dvodv = 0 (37)
dt
dt = ve (38)

dve ve - ve- e + Efue + Efee + ~e(t) (39)
dt Te

V0 0 t < toS= initial,

v o = Vin, t to (40)

where to indicates the time instant at which the slowdown warning signal was received

by that vehicle. Note that the time at which the warning is received, is different for

different vehicles (owing to the finiteness of the signal transmission speed that we will

implement in this formulation - we discuss this later).

In the above, Efu, represents the interaction effects caused to an unequipped vehi-

cle due to the presence of other unequipped vehicles, while Efue represents the inter-

action effects caused to an unequipped vehicle due to the presence of other equipped

vehicles. Similarly, fee, represents the interaction effects caused to an equipped ve-

hicle due to the presence of other equipped vehicles, while Efeu represents the inter-

action effects caused to an equipped vehicle due to the presence of other unequipped

vehicles. T- and Te represent the average relaxation times of the unequipped and

equipped vehicles respectively; while 'u and ýe represent their respective acceleration

noise. The acceleration noise of each vehicle is again assumed to be Gaussian white

noise, with zero mean, and covariances given by Du and De respectively.

We define p~,(x, v, vo, t) and &f(x, v, vo, t) as the phase space density of the un-

equipped and equipped vehicles, respectively.

The Boltzmann equations for the unequipped and equipped vehicles are then given

by an analogous reasoning as in the single species case :
8#_ a dx & d a0 dv" 8p_ o a(fD,)

+ (p ± + -(pO ) + a(pu ) - ( ) Du (41)8t az dt av dt avo dt at int av2
a& a dz a di a dv" age a( 6eDe)

+ (•Pe )+ (P3 e~) + (P-) =, (v
at • dx dt d vo (e dt at ) int Dv2

P+ (v inal, , t) - P (vinitial, x, t)
T (42)

It can be seen that the above two equations are very similar in form to the Boltz-



mann equation for the single species (Equation (7)). The interaction terms however

need to be modified to take care of cross-species interactions. It can be seen that we

have

(d) = (1 - p) Vdw f dwod v - w f5u(x, w, wo, t)f5u(x, v, vo,t)

-(1 - p) fo dw f dw"lw - v Ir5(x,, w, wI, t)p5(x , v, v, t)

+ (1 - p) Sff dw fo dwolv - wPFe(x, , ww, t))i5(x, v, v, t)

- (1 - p) fv dw fo dwolw - vIJe(x, w, wo, t)fu(x, v, vO, t) (43)

and analogously

(e )i = (1-p) f dw O~dwOvw0 - Fe(x,w, O,t)/e(x,v,O, t)

- (1 - p) fo dw dwoIw - vIJ& (x, w, wo, t)e (x, v, vo, t)

+ (1 - p) Sfv dw fo dwolv - w5p~(x, w, w, t)x(x, v, v0 t)

- (1 - p) fo dw fo dwoIw - v1(p(x, w, wo, t)!u(x, v, vo,1 t) (44)

and imposing the anisotropic and finite space requirements (as in the single species

case), the above equations assume the form :

) dw fodwO v wlpa(x,W,WO,t)pu (X,VVO, t)
1p

(1-p) f dw fo dwo w - vI,5(x, w, wo, t)pa(X, v, vo, t)

P vf' dw f dwolv - wlpea(x, w, wt)p,(x, V, vo, t)
(1-p) fv dw f( dwo lw - v pe(x, w, w, t)pUa(X, v, VO, t) (45)

and analogously

(at) _= (=t fdw fodwolv - WIa(x, w, W t), e(,v,vO, t)

(-P) fo dw fdwo0 w - v)ie(x, w, wo, t)pea(x, v, vo, t)

+ fv' dw ff( dwolv - W Pua(X, w, wo, t)P;(x, v, v 0, t)

(l-) fo dw fo dwlow - vl,,(x, w, w0 , t)P,,a(, v, vo, t) (46)

where Pua,(, v, vO, t) p,u(xa, v, vI , t) and pea,(, v, vO, t) - pe(xa, v, vo, t).

3.5.2 Macroscopic Equations and modeling the effects of a

finite communication transmission speed

We define the following macroscopic quantities :

The average spatial densities of the unequipped and equipped vehicles (viz. pu,(x, t)



and Pe (x, t) respectively) are defined as :

p (x, t) = f dvo f dvp~(x, v, vo, t) (47)

Pe(x, t) = f dvO f dvfe(x, v, vO, t) (48)

The average velocities of the unequipped and equipped vehicles (viz. V(x, t) and

Ve(x, t) respectively) are defined as :

V,(x,t) = f dvo f vdv Pf (x, ,v t) (49)
P",(x, t)

Ve(x, t) = f dvo f vdv e (x , , , t) (50)
Pe(x,t)

The velocity variances of the unequipped and equipped vehicles (viz. 0,(x, t) and

0e(x, t) respectively) are defined as :

0,(x, t) = f dvo f[v, - V"(x, t)]2dvP (x7 1t (51)
Pu (X, t)

e(x,,t) = f dvo fie - Ve(x,t)]2 dv fe(x,' v, (52)
Pe(x,t)

Using the method of moments as in the single species case, the following macroscopic

equations are obtained :
ODP +  a =( 0 (53)
dt Dx
5pe a(peVe)

+ = 0 (54)
Dt Dx
av, avu - l a(p ,e,) V - V(55)

t + V - Pu + (55)at 8 X pU 8x 7
DVe DVe -1 a(peOe) Veeq - VeT+ V -  = - (56)

where V Q (x, t) represents the average equilibrium velocity of the unequipped vehicles

and is given by :

Vq(x, t) = V°o - PBuupur(OU + Oua)/2 - PBuePeT(Ou + Oea)/2 (57)

where Veeq(x, t) represents the average equilibrium velocity of the equipped vehicles

and is given by :

Vee(x, t) = Veo - PBeuTpu(Oe + Oua)/2 - PBeeper(Oe + Oee)/2 (58)

In the above, Bue, Bee, Beu, Buu have the same form as Bin Equation (27) except

for the fact that we now have Bue = B(6vue); B,, = B(Svuu); Beu = B(Sveu); Bee =

B(6vee);, where 6vue = (V, - Vea)/I(Ou + Oea); 6veu = (Ve - Vua)/ (Oe + Oua); 6v, =

(Vu - Vua) /lVOu + Oua); 6vee = (Ve - Vea) / (Oe + Oea).
Note that while eqns. (53) and (54) are already written in conservative form, eqns.



(55) and (56) can also be written in its conservative form as :
(pV, (pVV2 + pq) V - V,a(pVu) + (UV + Pu) = Pu (59)

Ot Ox 7
O(peVe) a(peV,2 +Peee) Ve Ve

+ = Pe (60)
at OX T

In the above, we have P = p Pe)T )2) and Va,,g = (pV, + peVe)/(pu +rApma. (1-((Pu+Pe)/Pmax) )

pe). It is assumed that O, = A(p, + pe)V,2 and 0) = A(Pe + p-)Ve2.

Equations (53), (54), (59) and (60) represent the form in which the continuity and

momentum equations are used for their numerical solution.

The above equations are similar to the equations used in [41] when the two species

of vehicles assumed were cars and trucks, and in that context, it was assumed that

the desired velocities of the cars and trucks remained constant for all time. In the

context of this work however, we assume that the equipped vehicles change their

desired velocities instantaneously on receipt of the communication wave - we therefore

define an additional variable 7(x, t) and add in the following additional equations:

Veo = 7(x, t) Veinal + (1 - 7(x, t))Veinitia, (61)

+ a = 0, (62)
at Oz

where y(x, t) is a Heaviside step function defined such that y(x, t) = 0 for that x

(part of the highway that has not received the communication wave by time t), and

y(x, t) = 1 for all other x. Equation (61) thus implies that the moment an equipped

vehicle at x receives the slowdown warning signal at a time t, its desired velocity

changes instantaneously from its initial value Vinitial (which is assumed to be the

same as Vo - the desired velocity of the unequipped vehicles) to a final value of Veofinal

(which is assumed to be approximately equal to the average velocity occurring at the

degraded point far ahead, where a hazard has occurred). Equation (62) is a PDE that

postulates the evolution of y(x, t) and in which a < 0 represents the communication

speed. The boundary condition y(10, t) = 1 is imposed.

We note that alternative formulations are also possible. For instance, if we assume

that information of the location of the hazard is also broadcast to the equipped

vehicles (along with the warning signal), then it is reasonable to assume that the

driver of the equipped vehicle will adapt his desired velocity (as a function of distance

to the hazard) so that he attains his final desired velocity by the time he reaches the



location of the hazard. In this case, we could rewrite Equation (61) as

V0o = y(x, t) [(1 - a(x, t))Výi,,na + a(x, t)V•nitiat] + (1 - Y(x, t))Vinitial (63)

where a(x, t) is a function that evolves according to the PDE
0a + Ve - Ve (64)

t -ax do

with do representing the average distance of an equipped car to the location of

the hazard, when it first received the warning signal, and the initial condition on a is

specified such that a(x, 0) = 1 for all x to the left of the hazard, and a(x, 0) = 0 for

all x to the right of the hazard. The boundary condition on a would be a(0, t) = 1.

3.6 Discussion of the initial conditions used

A good prototype of an initial condition used to test the influence of the slow-

down warning system in a mixed equipment scenario, is the Reimann Problem. The

Reimann Problem represents an initial condition comprising of a left state and a right

state joined by a discontinuity, in each of the dependent variables, with the discon-

tinuity occurring at the same spatial location for both variables. The left states are

denoted by PL and VL, while the right states are denoted by PR and VR respectively.

Schematically, such a condition is represented as shown in Figure 3-24.

In the Reimann Problems that we will consider, we will assume that PL < PR and

VL > VR. It can be seen that a large drop in average velocity, occurring over a short

distance (in other words, a large negative spatial velocity gradient) is indicative of a

potentially unsafe driving situation. We choose PL = 15 vehicles/km/lane and PR =

140 vehicles/km/lane. We assume that p changes from PL to PR over a length of 200

meters, which appears as a shock over a length scale of 10 km. Additionally, we will

assume that the left and right states are both in their respective equilibrium (when all

vehicles are unequipped). From Figure 3-6, it can be seen that this implies that VL =

105.67 kmph and VR = 3.17 kmph. Using the representation for velocity variance

given above, we see that at the microscopic level, (with all vehicles unequipped),

such a condition is indicative of a driver having to perform an instantaneous velocity

change from an initial value that lies in the velocity probability density function P(VL)



to a final value that lies in the velocity probability density function P(VR). P(VL)

and P(VR) are represented in Figure 3-25. We use boundary conditions as follows :

p(O, t) = p(O, 0); V(O, t) = V(O, 0).

P

PL

V
VL

VR

Figure 3-24: Reimann Problem

Velocity (kmph)

Figure 3-25: Initial conditions

A second initial condition of interest is one that is initially continous, but then

propagates with time, in a manner such as to eventually form a shock. In other words,

the initial (decreasing) average velocity profile steepens with time. It is of interest



to see how a partial equipment of the slowdown warning system can help arrest the

wave steepening scenario that can exist (when all vehicles are unequipped), and to

then parametrize this effect as a function of varying equipment.

For this purpose, we invoke an initial condition with identical left and right states

as before, i.e. PL = 15 vehicles/km/lane, PR = 140 vehicles/km/lane and VL = 105.67

kmph, VR = 3.17 kmph; but instead of joining them by a discontinuity, we now join

PL to PR by a gradual transition, so that the average density increases from PL to PR

over a span of 2 km. The average velocity varies from VL to VR in a manner so that

the average velocity is in equilibrium with the average density at each x.

3.7 PDE Solution Method used

The solution method used to solve the system of PDEs is the Lax Method (for the

hyperbolic part) combined with an Implicit Euler Method (for the forcing function

part). Given a system of PDE's of the form
aU OF(U)

-+ =H

where U(x, t), F(U) and H(x, t) are vectors. The above representation assumes that

the equations are written in conservative form, i.e. F(U) represents the flux. Over

each time step At, we first solve the system
+  = 0 (65)at aX

using the Lax Method to obtain U*, and then solve
au

= H (66)

using an Implicit Euler Method to obtain U(x, t + At).

The Lax scheme is of the form

Ui* = U." - •(F+;" - F-_•") (67)

where F+ n = 0.5(Fin + Fi+ln ) - (Ui+1 - Ui") (68)2 2
and Ai = max[i,i~+l (69)

aF
Ai denotes the magnitude of the largest eigenvalue of the Jacobian Matrix -, com-aU
puted over the ith and (i + 1)th cells.

After obtaining U*, the same is then updated by an Implicit Euler Method as follows.



S- = H(U*) (70)
At

3.8 Simulation results

Evolution of Initial Conditions when all vehicles are unequipped:

Figure 3-26 then shows the average density and average velocity profiles (for the

Reimann Problem) as a function of space and time, when all the vehicles are un-

equipped. It can be seen that the initial large negative velocity gradient propagates,

almost unattenuated, backwards along the highway. The wave speed at which it

propagates is found as PLVL-PRV - -9.1kmph. Figure 3-27 shows the average driver
PL-PR

trajectories on a space-time plane. On this figure too, the shock-like behavior is

clearly seen.

The presence of a large negative gradient on an initial velocity condition can also

be seen as a large negative perturbation on -. As can be seen from Figure 3-37, with

all vehicles unequipped, - attenuates in magnitude initially for a short while, only

very slightly, and then propagates along unattenuated. If we define II i- = maxx v

at a given time t, then the time history of IJoLv is shown in Figure 3-38. In the

next section, we will analyze how the same initial condition evolves in a situation of

partial equipment with the slowdown warning system.

Figure 3-28 then shows the average density and average velocity profiles as they

evolve with time, from the second initial condition. It is seen that the top portion of

the velocity wave (and the bottom portion of the density wave) move forward relative

to the highway, i.e. they have positive wave velocity; while the bottom portion of the

velocity wave (as also the high density part of the density wave) move backwards, with

a negative wave velocity. This kind of wave motion (wherein different parts of the

wave have wave velocities of opposite signs), leads to further and further steepening

of the wave, until eventually a shock is formed, that then moves backwards as a

whole. The evolution of - Y| showing the gradual steepening of the wave is given

in Figure 3-44, while Figure 3-43 gives the magnitude of AV, which represents the

velocity change that occurs over the region where the value of is less than -100
axi es hn-0
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Figure 3-28: Average velocity and density profiles (all vehicles unequipped) for a
continous initial condition

kmph/km. It is seen that over a span of approximately 5 minutes, AV increases to

almost 100 kmph, which makes it almost identical to the initial condition of the first

case we explored.

Evolution of First Initial Condition when some vehicles are equipped:

We now intend to test the above two initial conditions in a scenario of mixed equip-

ment, schematically depicted in Figure 3-23. To this end, we assume that at t = 0,

the average velocity of the equipped vehicles is identical to that of the unequipped ve-

hicles. p,(x, t), V,(x, t) are used to represent the average density and average velocity

of the unequipped vehicles, while pe(x, t) and Ve(x, t) represent the average density

and average velocity of the equipped vehicles. To test the effect of varying equipment,

we vary p, and Pe, so that p( e() represents the percentage of equipment at each

x, and we keep p,(x, 0) + pe(x, 0) = a constant which is equal to the density of vehi-

cles when they were all unequipped. In other words, PuL(X, 0) + PeL(X, 0) = PL(X, 0);

PUR(X, O) + PeR(X, 0) = pR(X, 0); VuL(X, 0) = VeL(x, 0); VUR(x, 0) = VeR(x, 0), where

the values for PL, PR, VL and VR correspond to the values when all vehicles were

unequipped (as discussed in the previous section).

For the first initial condition, we assume an average communication speed of 25

kmph, relative to the highway, and moving backwards. Such a communication speed

can be achieved from an initial velocity of about 100 kmph, if the velocity threshold

... . . . . .. . .. . .

t 320 t-= 0
...... ...... ......

100r

.. ... . .. . . .2 ..... 5.6

' ' ' ' ' ' I ' '
8 9 108 9 10



is approximately 25 kmph, coupled with a transmission range of about 500 meters. In

other words, everytime an equipped vehicle (that is travelling at an initial velocity of

around 100 kmph) receives the warning signal and begins to slow down (in anticipation

of the hazard ahead); and then throws the signal back by 500 meters once its velocity

falls below a threshold of 25 kmph; then this will result in a communication wave

travelling backwards at around 25 kmph (on an average), relative to the highway.

Average Velocity Profiles of Equipped and Unequipped Vehicles (5% equipage)

. 100 - .......... .........

t=32se
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Figure 3-29: Average Velocity profiles of Equipped and Unequipped Vehicles (5%
equipment)

Figure 3-29 shows the average velocity profiles of the equipped and unequipped

vehicles respectively (for a 5% equipment scenario), while Figure 3-30 shows the

average density profiles of the same. It can be seen that as the communication wave

propagates through the equipped vehicles, causing them to slow down, the unequipped

vehicles are also forced to slow down earlier than they otherwise would have (they

thus receive indirect information of the hazard ahead). The wave velocity of the top

portion of the average velocity of the unequipped vehicles has now become negative

(it was formerly positive when they had no equipped vehicles among their midst); and

this in turn has led to a lower magnitude of the average velocity shock experienced

by the unequipped vehicles. Figure 3-31 shows the average vehicle trajectories of

the equipped and unequipped vehicles, on a x - t plane. The propagation of the

90
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Figure 3-30: Average Density profiles of Equipped and Unequipped Vehicles (5%
equipment)

communication wave is also seen.

Figure 3-34 then demonstrates the average velocity profiles of the unequipped

vehicles, for varying degrees of equipment, while Figure 3-36 demonstrates the mag-

nitude of the velocity shock as a function of time, for the different equipments. It

is seen from Figure 3-36 that the largest reduction in AVthat can occur with a 5%

increase in equipment, occurs in the 0 - 5% range. With 10% equipment, the ve-

locity shock magnitude in the unequipped vehicles is reduced almost by a factor of

one-half, for equipments above 15%, the magnitude of benefit obtained (as measured

from the reduction in shock strength of the unequipped vehicles per unit increase in

the density of the equipped vehicles), is not significantly increased. This behavior is

also manifested in Figure 3-37 as also Figure 3-38, which demonstrates l00, as a

function of time.

Evolution of Second Initial Condition when some vehicles are equipped:

After our discussion on the Reimann Problem, we now direct our attention to-

wards the second initial condition studied earlier, i.e. a situation wherein an initially

continuous condition, evolved with time, to get progressively steeper and eventually

appear like a discontinuity. In this case, we test two different scenarios : in the first,
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Figure 3-31: Average Vehicle trajectories of Equipped and Unequipped Vehicles on

the x-t plane (5% equipment)
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Figure 3-33: Average Density profiles of Equipped and Unequipped Vehicles (30%
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Figure 3-35: A comparison of the average driver trajectories of the unequipped vehi-
cles on the x-t plane with varying levels of equipment
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Figure 3-40: Spatial frequency content of vu for different percentages of equipment



we assume that information of the existence of a velocity gradient is made available

to the equipped vehicles residing to the left of the point x = 6km, at t = 0; while

in the second, we assume that information of low velocity conditions ahead is made

available to the equipped vehicles residing to the left of the point x = 8km. Again,

in either case, the communication wave is assumed to travel at a constant speed of

25 kmph, in the backward direction; this time originating from x = 6km, at t - 0

(in the first case) and originating from x = 8km, at t = 0 in the second. The reason

that this case is interesting is because it enables us to see if and how varying levels

of equipment can arrest the formation of the discontinuity, before it has developed.

Figure 3-41 shows the average velocity profiles of the equipped and unequipped

vehicles for the first scenario (assuming 30% level of equipment). It is seen that

the top portion of the average velocity (which had positive wave velocity when all

vehicles were unequipped, i.e. it was moving forward relative to the highway), now

immediately begins to move backwards as the communication wave passes through

the equipped vehicles. This arrests the wave steepening effect that was present in

the case of no equipment; and consequently the equipped vehicles do not experience

any abrupt velocity gradient, while the unequipped vehicles experience a significantly

reduced magnitude of negative velocity gradient, than they otherwise would have.
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Figure 3-41: Average velocity profiles of equipped and unequipped Vehicles (30%
equipment) for the continous initial condition (first information propagation scenario)
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varying levels of equipment, while Figure 3-43 shows the time history of the magnitude

of AV for the unequipped vehicles, with AV representing the average velocity change

of the unequipped vehicles over the region where -' is smaller than -100 kmph/km.

It is seen from Figure 3-42 that again a 5% equipment causes greatest reduction in

AV and that above an equipment of 15%, the benefit obtained per unit increase in

percentage equipment, is not significantly greater. The same effect is manifested in

Figure 3-44 that shows I-I a .

25% equipage
10 0 .. .... .  .............

50 t o
t 32 sec

0 2 4 6 8 10

x (km) x (km)

Figure 3-42: Average velocity profiles of unequipped Vehicles for varying levels of
equipment for the continous initial condition(first information propagation scenario)

Figure 3-45 then shows the average velocity profile for the same initial condition,

but for the second scenario, i.e. we now assume that information of the low velocity

originates from x = 8km, and this travels backwards at the communication speed of

25kmph. In this case, it is seen that the wave does steepen for a while - both the

equipped and unequipped vehicles experience increasingly sharper negative velocity

gradients for close to 3 minutes, before the smoothening effect of the slowdown warn-

ing system sets in. The reason that they experience the wave steepening for a while

can be attributed to the fact that the top (high velocity) portion of the velocity wave

continues to move forward for a while, before the communication wave comes upon

it. This effect is also seen in Figures 3-46 and 3-47. This thus demonstrates that for
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this initial condition, a communication speed of 25 kmph is adequate if it originates

from the left end of the velocity gradient (as in the first scenario), but it is inadequate

if it originates from the right end of the velocity gradient (as in the second scenario).
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Figure 3-45: Average velocity profiles of equipped and unequipped Vehicles (30%
equipment) for the continous initial condition(second information propagation sce-
nario)

Results assuming an endogenous communication wave:

The preceding results have all been generated assuming an exogenous communi-

cation wave, i.e. the communication wave travels through the equipped vehicles at

a pre-specified average rate a (which we took to be 25 kmph). In this section, we

investigate the use of an endogenous communication wave in the model. We assume

that whenever the average velocity of the equipped vehicles Ve(x, t) at a point falls

below some pre-specified threshold Veth, then the warning signal is thrown backwards

from that point on through a distance Tlange (Trange thus specifies the transmission

range of the warning signal). We investigate the use of variable values of Trange for a

given Veth, and parametrize the velocity gradients of the unequipped vehicles -v as

a function of both the percentage of the equipped vehicles, as well as Trange. We do

this for the Reimann Problem.

Figure 3-48 shows the average velocity profiles of the equipped and unequipped

vehicles (for a 30% equipment scenario), when we assume an equipped vehicle average

velocity threshold of 25 kmph accompanied with a transmission range of 400 meters.
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Figure 3-46: Average velocity profiles of unequipped Vehicles for varying levels of
equipment for the continous initial condition(second information propagation sce-
nario)
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Figure 3-47: Magnitude of AV,U for varying levels of equipment for the continous
initial condition(second information propagation scenario)
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As can be seen from the figure, while the shock magnitude of the equipped vehicles is

considerably weakened (as compared to the case when all vehicles were unequipped,

see Figure 3-26), it is not weakened as significantly as in Figure 3-32. In the case of

the unequipped vehicles, the shock magnitude is hardly reduced, if at all.
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Figure 3-48: Average velocity profiles of the equipped and unequipped vehicles for
the Reimann Problem for an endogenous communication wave generated using Veth
= 25 kmph and Trange = 400 meters

However, if we increase the transmission range to 500 meters, then (using the same

equipped vehicle average velocity threshold as before), a considerable weakening of

the shock magnitudes of both the equipped and unequipped vehicles is seen. This is

brought out in Figure 3-49, which shows the average velocity profiles for this situation.

Figure 3-50 shows a comparison of AV, for the two different values of T,,,,,ange, while

Figure 3-51 shows a comparison of %u. It can be clearly seen that the benefit obtained

with a transmission range of 400 meters is not significant, whereas that obtained

with a range of 500 meters is. The reason for this is that the larger range of 500

meters (when accompanied by a average velocity threshold of 25 kmph) enables the

communication wave to travel backwards faster than the shock would have propagated

when all vehicles were unequipped. If we use a higher average velocity threshold, then

a smaller tranmission range would have been adequate. A higher average velocity

threshold however, would increase the probability of false alarms.

Figures 3-48, 3-49, 3-50, 3-51 have all been generated for a 30% equipment sce-
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Figure 3-49: Average velocity profiles of
the Reimann Problem for an endogenous
= 25 kmph and Trange = 500 meters
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Figure 3-51: A comparison of '9- for the Reimann Problem assuming 30% equipment
and an endogenous communication wave generated using Veth = 25 kmph
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Figure 3-52: A comparison of 'I v for the Reimann Problem assuming 30% equip-
ment and an endogenous communication wave generated using Veth = 25 kmph
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nario. Since they bring out the fact that the transmission range of 400 meters is

inadequate for the 30% equipment scenario, it is clear that this value of T,,,,,ange would

also be inadequate for lower values of equipment. Figure 3-53 shows the behavior

of the velocity gradient waves for varying percentages of equipment, while assuming

Trange = 500 meters. It demonstrates that a transmission range of 500 meters, with

about 15% equipment appears to be adequate for this prototype Reimann Problem.
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Figure 3-53: A comparison of AV, for the Reimann Problem for varying equipment
assuming an endogenous communication wave generated using Veth = 25 kmph and
Trange = 500 meters

3.9 A summary of what we have learnt

What constitutes an 'unsafe' driving situation, when viewed in a macroscopic (PDE-

based) setting ?

Since macroscopic equations are generated by considering average behaviors of

groups of vehicles, it is difficult to detect actual vehicular collisions in this setting.

Large negative average velocity gradients are unsafe, because they mean that several

vehicles (possibly across several lanes) have all performed a large velocity decrease

over a short distance, and all at the same time. There are several ways in which these

large gradients could arise:

1) An initial condition comprising discontinuities, such that these discontinuities prop-
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agate (almost unchanged) along the highway - a type of Reimann Problem (Figures

3-26 and 3-37). 2) A continous initial condition with a gradual velocity gradient,

that however progressively steepens with time, and eventually forms a discontinuity

(Figures 3-28 and 3-44). The situation in Figure 3-28 is one wherein the high ve-

locity portion of the wave moves forward while the low velocity portion of the wave

moves backwards; till they eventually meet to form a discontinuity. However, other

situations wherein all parts of the velocity wave move forward but at unequal wave

velocities, such that the high velocity portion of the wave moves faster than the low

velocity portion of the wave, can also lead to eventual discontinuities.

What role does partial equipment of an advance warning system play in attenuating

these negative velocity gradient waves ?

We assume that along with the warning signal, the driver also receives information

of the magnitude of the reduced average velocity occurring at the far-ahead location;

and he subsequently attempts to reduce his desired velocity from its original value

to that at the far-ahead location. As the equipped vehicles reduce their velocity, the

unequipped vehicles either slow down or attempt to overtake the equipped vehicles

(by passing). However, if the number of equipped vehicles/lane is large enough,

then these unequipped vehicles that initially pass will still encounter other equipped

vehicles; and eventually be forced to slow down. In this way, the average velocity of

the unequipped vehicles gets reduced before the shock hits them.

What is the appropriate PDE model that represents a mixed communication environ-

ment, wherein far-ahead velocity information is transmitted at a finite communication

speed ?

The relevant equations are Equations (53-58),(61-62). If we assume that informa-

tion of the (closest) location of occurrence of the degraded velocity condition is also

transmitted, then the relevant equations are Equations (53-58),(62-64).

If the advance warning propagates at a finite speed along the highway, what should

be the minimum transmission range ?

The minimum transmission range would be established in conjunction with the

average velocity threshold of the equipped vehicles, needed to trigger the warning
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system. For a velocity threshold of 25 kmph, a transmission range of 400 meters

would be inadequate, while one of 500 meters would be adequate (Figures 3-50, 3-51,

3-52). The value of the pair comprising the threshold and the transmission range,

should be such that they generate a communication speed that propagates at about

twice the value of the wave speed of the velocity wave.

What is the minimum level of equipment required in order to significantly weaken

the velocity gradients ?

For a 50% reduction in the velocity change occurring across a discontinuity (as

compared to when all vehicles were unequipped), about 15% equipment appears to

be adequate (Figures 3-36, 3-38, 3-40, 3-44). Beyond this, the benefit obtained in

terms of shock magnitude reduction per unit rise in density of equipped vehicles, is

not significant.
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Chapter 4

Experimental Results

A prototype system to test the slowdown warning concept was built. In this chapter,

details of road tests that were performed to test a class of pileup crash scenarios,

are discussed. The road tests were performed both before and after equipping a few

cars with the system; and in each case, the driver response is evaluated. These tests

demonstrate the satisfactory working of the slowdown warning concept, at least for

this class of scenarios.

4.1 Prototype System

We have developed a prototype of the slow-down warning system. The system ar-

chitecture is as shown in Figure 4-1, while a schematic is given in Figure 1-3. From

a research standpoint, we wanted to have a low-cost test bed. We have therefore

chosen a system comprising off the shelf components : a GPS receiver, a wireless

transceiver, as well as a laptop computer. Using the GPS receiver, a car equipped

with the warning system can determine its position and speed. (When used in a dif-

ferential/WAAS enhanced mode, the errors in position and velocity are small enough

for our purposes). The computer analyzes this information, and in the event of any

abrupt deceleration or abnormally low speed (assumed to be 20 mph for the road

tests, but is subject to refinement), it transmits a warning signal to the other cars

through a wireless transceiver. Each recipient car then determines whether the sig-
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nal is indeed relevant to it (i.e. whether the slowdown is occurring in the same lane

as the one it is travelling in, how far ahead the slowdown is occurring, etc). If the

computer determines that the warning signal it has received is indeed relevant to the

car it resides in, then it issues a warning signal to the driver, alerting him/her of the

impending slowdown. On the other hand, if the computer deems the warning signal

to be irrelevant to the car it resides in, then no warning is issued to the driver.

Main computer
I

Wireless transceiver

GPS receiver

Figure 4-1: Prototype system

The above situation is illustrated through an example in Figure 4-2, which shows

several cars A, B, C, D, E, F, G, H and J. Assume car A causes a hazard and there-

fore broadcasts a warning signal. Assuming the communication channel in the air

to be homogeneous and isotropic, this signal transmitted by car A travels in an om-

nidirectional fashion, and thus all the cars within the communication range (viz.

cars B, C, D, F, G, H and J) receive the warning signal. However, even though cars

D, F, G, H and J receive the warning signal, the algorithms resident in these cars

should be able to determine that the current received warning is not relevant to

them, and there is therefore no need to broadcast an alert to the driver. For instance,

there is no reason for the driver of car D to be alerted (even though car D has received
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the warning signal) since it is too far away from car A. Similarly, the hazard caused

by car A does not pose a threat to cars F, G and H, because car F is ahead of car

A while car G is not in the same lane as car A. Car J is travelling in a direction

opposite to that of car A, and therefore its driver also should not receive an alerting

signal. If we define the warning zone as the zone in which all equipped cars (upon

receipt of the warning signal), issue an alert to the driver, then this example is an

illustration of the importance of a judicious design of the warning zone (as a subset

of the transmission range). The warning zone should not be ahead of the car that has

broadcast the signal; it should not encroach upon other lanes (if there is no reason

to do so), and even in its own lane, it should be neither too large nor too small. Too

large a warning zone will broadcast unnecessary false alerts to cars far behind, while

too small a warning zone will not provide significantly enhanced safety.

* Car A transmits a warning signal.
* Car B and C receive a warning signal, and issue a warning sign to drivers

because they are in the warning zone.
* Car D, F, H,J, G receive a warning signal, but do not issue a warning sign

to drivers because they are not in the warning zone.
* Car E cannot receive a warning signal because it is far way from Car A.

Figure 4-2: Illustration of the warning zone

We implemented algorithms wherein the warning signal includes information of the

vehicle's past trajectory and speed. In our current prototype, a car that broadcasts

a slowdown warning signal, also broadcasts information of its trajectory and velocity

110



for the past 450 meters of its travel. Consider the schematic scenario represented in

Figure 4-2 wherein vehicle A is transmitting a warning signal, with a transmission

range R. In addition to the warning signal, Vehicle A also transmits its position and

velocity vector information at the GPS update rate (which can be as high as 10Hz),

for the last 450 meters of its travel. If we assume the first transmission of the warning

signal by A to occur at a time t = tl; then the information content transmitted by A

at t = tl, is as follows :

Time East & North Posn. Co-ord. Velocity Vector

on Horizontal Plane

tl EA(tl), iA(tl) ~ A(tl)

(tl - At) EA(tl - At), NA(tl - At) VA(tl - At)

(tl - 2At) EA(tl - 2At), NA(tl - 2At) A(tl - 2At)

(t, - 3At) EA(tl - 3At), NA(tl - 3At) V~(tl - 3At)

(tl - nAt) EA(tl - nat), NA(tl - nAt) VA(t 1 - nAt)
where n is such that

(EA(tl) - EA(tj- nAt)) 2 + (NA(tl) - NA(t - nAt))2)

= 450 meters. VA represents the velocity components of A in the North and East

directions.

At time tl, (when B, H and J receive the warning signal), let their correspond-

ing data be EB(tl), NB(tl)&VB(tl); EH(tl), NH(tl)&1%(tl); Ej(t1 ), Nj(tl)&Vj(tl) re-

spectively.

When J receives the warning signal, it is able to determine that the warning is not

relevant to it as follows : it computes the inner product of its own horizontal velocity

vector TV1 (tl) with that of the transmitting vehicle VH(t 1 ). When it determines that

this inner product is negative, it is able to infer that the warning is not relevant to

it. The one-sigma velocity error of GPS is 5 cm/sec in each axis [68], and this error

is small enough for our purposes.

For vehicles B and H, the procedure to determine the relevance (or otherwise) of

111



the warning signal it receives from A involves the use of relative trajectories : Vehicle

B computes the trajectory of A for the time interval [t, - nAt, t1], relative to B's

position at t1 ; and vehicle H computes the trajectory of A for the same time interval,

relative to H's position at ti. A schematic of these trajectories is given in Figure 4-3.

Figure 4-3 demonstrates that since vehicle B is travelling on the same lane as

vehicle A, therefore, the trajectory of A relative to B passes close to the origin;

on the other hand, since vehicle H is travelling on a different lane, therefore the

trajectory of A relative to H is further away from the origin. By constructing a

circle around the origin (whose radius is equal to the typical width of a lane), and

then determining whether the closest distance of the trajectory from the origin is less

than the radius of this circle, it is possible to determine whether the recepient vehicle

is travelling on the same lane as the transmitting vehicle. The typical width of a

highway lane is 12 feet [65], which is 3.67 meters. The one-sigma relative position

error in a differential GPS system is about 3.0 meters, of which a large contributor is

multi-path reflection (1.4 meters) [66]. It is to be observed that a major contributor

to multi-path reflection errors is the presence of buildings; and since there are not

too many buildings found close to the highways, errors due to multi-path reflection

will be much smaller, and this in turn, would lead to smaller errors in computation

of the relative trajectories discussed above. [67] has reported obtaining centimeter

level relative position accuracies by using a differential carrier phase GPS system

on a highway. Furthermore, [69] reports the use of a Nationwide Differential Global

Positioning System (NDGPS) that currently provides 1-3 m navigation accuracy, and

is developing a future system called High-accuracy NDGPS which will provide 10

centimeter level accuracy or better.

In our currently developed prototype, the area of the warning zone is constant

and equal to 450m. This number was decided as follows. We assumed a nominal

vehicle speed of about 65 miles per hour (which corresponds to a little under 30

meters/sec). If we conservatively assume a GPS update rate of 1 Hz (although GPS

updates at rates as high as 10 Hz are currently available), then that would imply that

a vehicle would have travelled about 30 meters before a fresh update on its position
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and velocity would be available. We took the warning zone to be a little more than

one order of magnitude higher than this number. Eventually however, the warning

zone should be optimally determined in real time depending on various factors, such

as traffic conditions, weather, inter-car distance, actual car velocities, etc., and we

intend to extend our current technical capabilities to address this problem. Since the

amount of information propagating increases with increasing numbers of equipped

cars, and since the capacity of the communication system is limited, it is important

to strike the right balance between transmitting too little information and too much

information. The warning information transmitted by each car should comprise the

minimum possible information that will just enable the recipient vehicles to determine

whether the warning signal is relevant to them or not.

N/ (t•-N. (t) NH(t)-NA(t)
B I1 A\

EH(ti)-EA(t)

Trajectory of A relative Trajectory of A relative
to B's position at tI to H's position at t1

Figure 4-3: Schematic relative trajectories

4.2 Other pile-up crash scenarios

The specific scenario that we have considered in the preceeding simulation and anal-

ysis sections is as represented in Figure 4-4. The schematic shows a string of cars

moving along with equal initial velocities and equal initial inter-car distances when

one of the cars in the string (say car B in the figure) has to execute an abrupt decel-

eration (for whatever reason - say because of a deer crossing the road in front of it);

and this leads to a chain reaction in all the cars driving behind car B - resulting in a

pileup crash.
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A B C D E F G H

Figure 4-4: Multi-vehicle scenario I

It is easy to see that this is not necessarily the only initial condition that could

lead to a pileup crash. For instance, consider the schematic represented in Figure

4-5. In this schematic, A represents a car that has already met with an accident and

has come to a stop. Car B (accompanied by a string of cars behind it) is initially

at a fairly large distance behind car A (say about 500 meters or more); while all the

cars behind B are again driving at equal initial velocities and equal initial inter-car

distances. Then, under poor visibility conditions, it is quite possible that car B may

not see (or anticipate) the stopped car A, until it is too late, i.e. B is almost upon

A, at which time B has to execute a sharp deceleration in order to stop before it hits

A. This may then induce a chain reaction in all the cars driving behind car B; and

this could result in a pileup crash too.

* - 0 0 0 • ............

A B C D E

Figure 4-5: Multi-vehicle scenario II

In each of the above two scenarios, the slowdown warning system could come into

play in a different way. In the first scenario, (assuming car B to be equipped), the

warning system would be triggered owing to the abrupt deceleration of car B (i.e. the

system would be triggered on the basis of a deceleration threshold). In the second

scenario however, (assuming car A to be equipped), the warning system would be

triggered owing to the zero velocity of car A (i.e. the system would be triggered on

the basis of a velocity threshold); and the warning system would actually be warning

the other cars behind so that they do not slam into the stopped car and create a

pile-up. Of course, if car A is unequipped, then the system would again be triggered

on the basis of the abrupt decleration of car B, and the warning triggering scenario

would then become identical to the first one.

While it is the first scenario that has been addressed in Chapter 2 of this thesis,
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it is hard to test this scenario on the road since it is dangerous for a string of cars

to actually do very sharp decelerations on the road. In fact the only possible way

to test this scenario might be on a driving simulator. In an attempt to test the

second scenario, however, we conceived a road test experiment (discussed below). We

then interspersed the road test results with simulations, to demonstrate the effects of

having all unequipped/all equipped/some equipped vehicles when the second scenario

above is encountered.

4.3 Discussion of the road test experiments

After developing ten prototype units of the slow-down warning system, we installed

them in cars and conducted experiments on the highway to test the system. The

drivers for these tests were chosen randomly (on a volunteer basis). They were given

no prior instructions, other than being told to drive normally; and on receipt of the

warning signal, to become more alert. We chose the Route 1 highway (North and

South) since it is very well suited for these experiments. (See Figure 4-6, which shows

the map of Route 1 highway. There are many spaces alongside this route that serve

as good starting and ending points for the experiments).

Two-car road test experiments:

The initial experiment involved two cars, numbered 1 and 2, with car 1 being

the lead car. The experiment was conducted at night to simulate the effect of low

visibility. The experiment would commence with car 1 getting onto the highway, and

car 2 also getting onto the highway a couple of minutes after car 1. Thus car 2 did

not have car 1 in its field of vision, as car 1 had already traveled well ahead. Also,

there were several other cars interspersed between cars 1 and 2. (These interspersed

cars were regular cars driving on the highway and were oblivious of the conduct of

this experiment). The cars were traveling at typical highway speeds.

The first car would then get off the highway at some random point, and park

at some adjoining spot. As soon as it would slow down (in order to get off the

highway), it would begin to emit the warning signal. If car 2 could locate car 1 and
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Figure 4-6: Route 1 highway in MA where the road tests were conducted

park alongside it, it was deemed to have avoided an accident, while if it overshot

the location where car 1 was parked, it was deemed to have had an accident. The

idea behind the experiment was that once car 1 begins to emit the warning signal,

car 2 should receive the signal and get cued to slow down thus enabling it to locate

car 1 and be able to park alongside it. The purpose of the experiment was two fold

: The first was to see how reliably the slowdown warning equipment hardware and

algorithms functioned (in warning the driver early enough), and the second was to

use the driver responses (both with and without the warning system) as inputs to

simulations that would test the second pile-up crash scenario discussed above.

Figure 4-7 shows the results of one such two-car road test. In this figure, the

time history of the car velocities and the absolute position trajectory of the cars (as

obtained from GPS) have been plotted. As can be seen from the figure, car 1 is

initially traveling at about 50 mph, and then gets off the highway at about t = 100

sec, and parks at some adjoining spot. When its speed has reduced below 20 mph,

it begins to emit the warning signal from t = 107 sec onwards. The (GPS obtained)

location of car 1 at the instant it begins to transmit the signal, is also shown in the

figure. Car 2 then begins to receive the signal when it comes to within about 350

meters of car 1 (which happens at about t = 220 sec). The instant car 2 receives
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Figure 4-7: Road test with two cars

the signal, it immediately gets cued to slow down (as can be seen by the drop in its

velocity), and this enables it to locate car 1.

Six-car road test experiments:

After the two-car road test, we conducted a series of six-car road tests, with

varying degrees of equipment of the warning system. Figure 4-8 shows the results of

a six-car road test, when all the cars were unequipped. It is seen from Fig. 4-8(b)

that while car 6 could not locate car 1 at all, cars 2 and 3 actually located car 1 only

after overshooting it. Thus, for the purposes of this experiment, cars 2, 3 and 6 were

deemed to have collided with car 1. Cars 4 and 5, on the other hand, in spite of being

able to locate car 1, had to execute very sharp decelerations the instant they actually

spotted car 1.

The abrupt deceleration of car 4 in the road test is also shown on the phase plane

in Figure 4-9. This plot serves as a good representation of what happens when a car

driving along on the highway (with no other cars in the driver's immediate field of

vision), suddenly comes upon the site of a stopped car. To demonstrate the chain

reaction and the consequent pile-up crash that could be initiated on a string of cars

driving behind it, we resort to simulations (since it is obviously dangerous to test
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Figure 4-8: Road test with no cars equipped

such a scenario on the road). We use the approximation to the road test result of

Figure 4-9 (also shown in the figure), as the velocity profile of the lead car in a 10

car simulation. The following (simulated) cars are all driving along at equal initial

velocities and equal initial inter-car distances.

Figure 4-10 demonstrates what happens to the nine unequipped cars behind (that

are assumed to be driving with an initial time headway of T = 1.3sec). The abrupt

deceleration of the lead car in the simulation (which is akin to car B in Figure 4-5)

initiates a chain reaction in all the following nine cars; and all of them slam into the

lead car with high velocities at impact; and thus generate a pile-up crash.

Reverting this discussion back to the road tests, we then conducted a six-car road

test with all cars equipped. Again, these cars were not driving as a string, i.e. each car

started only a couple of minutes after the preceeding car had left, and therefore did

not have the preceding experimental car in its field of vision. Again, car 1 would get

off the highway at a random point; but this time it would begin to emit the warning

signal (to mimick the event that car A in Figure 4-5 is now equipped). The objective

of this experiment is to see if the slowdown warning equipment functions efficiently
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Figure 4-10: Results of a 10-car simulation (all unequipped) when the lead car sud-
denly comes upon the site of an accident
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enough to warn the drivers of cars 2-6 (each of which independently mimicks car B

in Figure 4-5), once they enter within the transmission range of car 1; and also to

use the typical velocity profile of cars 2-6 to simulate what would happen if there

were actually a string of cars (of varying degrees of equipment) driving behind the

mimicked car B.

Figure 4-11 then shows the results of a road-test experiment with all six cars

equipped. Figure 4-11(a) also shows the time instants when each car began to receive

the warning signal, while Figure 4-11(b) also shows the location of each car at that

time. It can be seen that all the cars began to receive the warning signal sufficiently

early, and that enabled them to slow down well in advance, and locate car 1 success-

fully. Thus in this experiment, all the cars were deemed to have avoided colliding

with car 1.

18
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Figure 4-11: Road test with all cars equipped

The gradual deceleration of car 4 in the road test (when equipped) is shown on a

phase plane in Figure 4-12. It can be seen that due to the early warning it receives, it

begins to slow down earlier (than it otherwise would have, if it were unequipped); and

the consequence is that it executes a far smoother deceleration profile (than when it

was unequipped). From the road test experiments, it was observed that there could
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be either of two typical phase plane plots of an equipped vehicle - one denoted as

Profile A and the other denoted as Profile B. Qualitatively, Profile B constitutes a

continous decrease in velocity by the equipped car till it reaches close to the location

of the accident. Profile A constitutes first a velocity decrease till the car reaches an

intermediate velocity; the car then travels at this velocity for a short distance before

it performs a second velocity reduction that brings it to rest just before the accident

location.

We again use an approximation to the velocity response of this car and use this

approximation as the velocity of the lead car in a 10-car simulation, with all the

following cars equipped. The results of this simulation using Profile A are shown in

Figure 4-13, while that using Profile B are shown in Figure 4-14. All the equipped

cars are able to take anticipative action (by increasing their time headways), and

thereby avoid collisions, as indicated by the fact that their velocities drop smoothly

to zero simultaneously with their inter-car distances dropping to zero.
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Figure 4-12: Typical phase plane plot of equipped car

Figure 4-15 then shows the result of having only the first five cars of the string

equipped and the last five cars of the string unequipped, and with the lead car having

executed a velocity reduction of the form of Profile B, on receipt of the warning
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Figure 4-13: Results of a 10-car simulation (all equipped)
lead car being as in Profile A from the road test

with velocity profile of the
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Figure 4-14: Results of a 10-car simulation (all equipped)
lead car being as in Profile B from the road test

with velocity profile of the
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signal. It can be seen that the presence of the first five equipped cars enables even

the unequipped cars behind to slow down early enough to avoid an accident. Figure 4-

16 again shows the responses corresponding to a different equipment scenario. Figure

4-17 shows the responses when the lead car performs a velocity reduction of the form

of Profile A.

Figure 4-15: Results of a 10-car simulation (some equipped) with velocity profile of
the lead car being as in Profile B

Figures 4-18 and 4-19 then consider the scenario when the car in the pre-existing

accident is unequipped, and therefore does not broadcast a warning signal. The

equipped cars behind the lead car then get warned only on the basis of the sudden

deceleration of the lead car (i.e. on the basis of a deceleration threshold). Figure 4-18

shows the situation when all the cars (with the exception of the car in the pre-exisiting

accident) are equipped, and Figure 4-19 shows the corresponding situation when only

some cars (again, barring the car in the pre-existing accident) are equipped.

The next experiment was conducted to test the effect of partial equipment. Only

cars 1, 2, 4 and 6 were equipped. In this experiment, after car 1 left, car 2 started

after about 50 seconds, and all of cars 3-6 followed behind car 2 almost immediately.

Also, for this experiment, no other highway cars were allowed to come in between cars

2 to 6. The idea behind this was to test if the unequipped cars (viz. cars 3 and 5)

123
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Figure 4-16: Results of a 10-car simulation (some equipped) with velocity profile of
the lead car being taken from the road test : Only cars A, B, C, D, E, H are equipped

Figure 4-17: Results of a 10-car simulation (some equipped) with velocity profile of

the lead car being as in Profile A
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Figure 4-18: Results of a 10-car simulation (all equipped - except for the car in the
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Figure 4-19: Results of a 10-car simulation (some
existing accident is unequipped)

equipped - The car in the pre-
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could get cued into slowing down by the brake-lights of the equipped car immediately

ahead of them (viz. cars 2 and 4, respectively) sufficiently early, to enable them to

locate car 1 successfully.

The results are shown in Figure 4-20, from which it can be seen that this was

indeed the case. Even the unequipped cars could locate car 1 successfully, along with

the equipped cars. Thus, in this experiment too, all cars were deemed to have avoided

colliding with car 1.
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Figure 4-20: Road test with some cars equipped

Figure 4-21 then shows a comparative study of the deceleration behavior of car 4 in

two different experiments, one in which the car was unequipped and one in which the

car was equipped. These are plotted on a phase portrait showing the velocity of car

4 versus the distance to car 1. It is seen that in the case when car 4 was unequipped,

even though it was actually able to locate car 1, it had to decelerate very sharply at

the last possible moment. The same car, when it was equipped however, was able to

execute a more gradual deceleration when it began to receive the warning signal.

Figure 4-22 shows a similar comparative study of car 5 in three different experi-

ments: (a) Car 5 was unequipped and there was no equipped car ahead of it. (b) Car

5 was equipped. (c) Car 5 was unequipped but car 4 (immediately ahead of it) was
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Figure 4-21: Phase Portrait of car 4 for different experiments

equipped. It is seen that in case (a), car 5 overshot the location of car 1 (and was

therefore deemed to have collided with car 1). In case (b), it received the warning

signal early enough to enable it to decelerate gradually and locate car 1. In case

(c), car 5 got cued into slowing down by the brake-lights of car 4 (which itself was

equipped) about 450 meters from car 1, and this enabled it to begin to decelerate

early enough, and again locate car 1.

400 200 0 -200 -400
Distance to Car 1 (meter)

Figure 4-22: Phase Portrait of car 5 for different experiments
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Chapter 5

Summary and Future Work

5.1 Summary and Conclusions

In this thesis, we deal with the problem of safety of an automotive multi-vehicle

system in a mixed communication environment. This mixed environment comprises

of some vehicles specially equipped to receive advance information of a hazardous

situation occurring far ahead on the highway (and beyond the driver's visual range),

randomly mixed amongst other unequipped vehicles that are capable of receiving

only local, near-neighbor information. The specific safety problem that we deal with

concerns the alleviation of pile-up crashes on the highway - with the equipped vehicles

being alerted to the possibility of the occurrence of a pile-up crash, by means of a

slowdown warning system, that informs them of the presence of a hazard ahead. We

use both microscopic and macroscopic models, in which we study the effects of varying

information content communicated to the driver of an equipped vehicle.

In the microscopic modeling approach, the problem is formulated as a single lane

problem, and the notion of safety is defined as one of collision avoidance. It has

been discussed in the literature, that there exist some initial conditions under which

string instability can occur, and the occurrence of string instability is a factor that

can lead to pile-up crashes. It is assumed that besides transmitting the warning of an

impending slowdown ahead, no further information is made available to the driver of

an equipped vehicle. Furthermore, the alerting information is transmitted at a near
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infinite speed. We make the reasonable assumption that in such situations, the driver

of an equipped vehicle, on receipt of a warning, increases his time headway to the

vehicle ahead. If all the vehicles are equipped, then the trend of string instability

can be totally eliminated; whereas if some vehicles are equipped, then there is the

prevalence of mixed string stability - in which scenario, some parts of the vehicular

string are stable, while others are not. It is demonstrated how the presence of a few

equipped vehicles can serve to keep the level of string instability below the threshold

that would lead to pile-up crashes. Furthermore, certain sufficient conditions are

determined, under which it can be guaranteed that pile-up crashes would not occur.

These sufficient conditions govern both - the minimum number of equipped cars

required to be present in the string; as well as the set of precise distributions of

equipped cars required to be present in the string.

In the macroscopic modeling approach, the problem is formulated as a multi-lane

problem, and the notion of safety is defined as one of attenuating large negative

velocity gradients/shocks on the highway, that otherwise pass through unattenu-

ated/amplified (when all vehicles are unequipped). In this approach, we assume

that in addition to the alerting signal, the driver of an equipped vehicle also receives

information of the velocity conditions occurring far ahead. However, the alerting sig-

nal is assumed to be propagate through the equipped cars, at a finite propagation

speed. Different initial conditions, such as a Reimann Problem which comprises of an

initially discontinous condition; and an initially continous condition that propagates

with time to evolve into a discontinuity (when all vehicles are unequipped) are stud-

ied. The evolution of the shock/velocity gradients, for different levels of equipment

are parametrized.

A prototype of a slowdown warning system was built. Road tests to verify the per-

formance of the slowdown warning concept, as well as evaluate the driver response to

an accident scenario, both with and without the system, were conducted. The results

of these road tests, demonstrating satisfactory performance of the slowdown warning

equipment hardware (subject to good communication links) are also presented in this

thesis.
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5.2 Future Work

The results obtained using microscopic models in Chapter II, assume simplified driver-

vehicle models that possess identical dynamics. Future work could include using more

sophisticated models wherein the vehicles in a string do not all have the same dynam-

ics. Furthermore, while the current model assumes that, on receipt of a slowdown

warning signal, only the time delay and time headway of a driver switches to a new

set of values; subsequent work could involve switching the driver gains as well (since

this too could be considered a reasonable modeling assumption). The current model

also assumes deterministic values of the model parameters; establishing theorems that

govern the required number and distribution of equipped vehicles in a string, so as

to result in zero collisions with stochastic model parameters could be explored. An

extension of the microscopic model to a multi-lane scenario can also be explored.

The results obtained using macroscopic models in Chapter III use a separate

continuity and momentum conservation-like equation for each of the equipped and

unequipped vehicles, with a closing expression for the velocity variance. Future work

could include using a dynamic equation for the velocity variance for the equipped

and unequipped vehicles respectively. It could also include removing the assumption

that along with the warning signal, the value of the degraded average velocity at the

far-ahead point is transmitted; this assumption could be replaced by one wherein the

equipped vehicles increase their time headways in response to a warning signal (as

has been done in the microscopic analysis).

The experimental results in Chapter IV test the slowdown warning concept only

for a particular class of pileup crash scenarios. Methods would have to be devised

that enable testing of the warning concept for a larger class of pileup crash scenarios.

On a broader scale, this thesis explores situations wherein some agents that have

access to non-local information are mixed with other agents that have access to only

local information. In this thesis, the motion dynamics of the agents evolve along

one spatial dimension. Attempts could be made to generalize this work to situations

where the agent dynamics evolve in two or even three dimensions.

130



Bibliography

[1] CNN News, "Five seriously hurt in 194-vehicle California pileup," Nov. 3, 2002.

[2] CNN News, "Massive pile-up near Ga.-Tenn. line kills 4," March 14, 2002.

[3] Boston Globe News, "Sixty six vehicle California Pileup," April 2, 2004.

[4] Boston Globe News, "Rains trigger 30 car pileup on 1-93," August 4, 2003.

[5] P. I. Richards, "Shock Waves on the Highway," Operations Research, Vol. 4, No.

42, 1956, pp. 209-229.

[6] J. K. Hedrick, R. Sengupta, Q. Xu, Y. Kang, C. Lee, "Enhanced AHS Safety

Through the Integration of Vehicle Control and Communication," California

PATH Research Report UCB-ITS-PRR-2003-27, September 2003.

[7] X. Y. Lu, J. K. Hedrick, M. Drew, "ACC/CACC - Control Design, Stability and

Robust Performance," Proc. Of the American Control Conference, May 8-10,

2002.

[8] P. Seiler, A. Pant, K. Hedrick, "Disturbance Propagation in Vehicle Strings,"

IEEE Transactions on Automatic Control, Vol. 49, No. 10, October 2004.

[9] A. R. Girard, J. B. de Sousa, J. K. Hedrick, "An Overview of Emerging Results

in Networked Multi-Vehicle Systems," Proc. of the 40th IEEE Conference on

Decision and Control, December 2001.

[10] Q. Xu, K. Hedrick, R. Sengupta, J. VanderWerf, "Effects of Vehicle-

vehicle/roadside-vehicle Communication on Adaptive Cruise Controlled High-



way Systems," Proc. of the 56th IEEE Vehicular Technology Conference, Vol. 2,

September 2002.

[11] S. Kato, S. Tsugawa, K. Tokuda, T. Matsui, H. Fujii, "Vehicle control algorithms

for cooperative driving with automated vehicles and intervehicle communica-

tions," IEEE Transactions on Intelligent Transportation Systems, Vol. 3, No. 3,

September 2002, pp. 155-161.

[12] J. Carbaugh, D. Godbole, R. Sengupta, "Tools for safety-Throughput analysis

of vehicle automation systems," Proc. Of the American Control Conference, Vol.

3, 1997.

[13] J. Carbaugh, D. Godbole, R. Sengupta, "Safety and capacity analysis of auto-

mated and manual highway systems," Transportation Research C (6), 1998.

[14] A. Bose, P. A. Ioannou, "Analysis of Traffic Flow with Mixed Manual and Semi-

automated Vehicles," IEEE Transactions on Intelligent Transportation Systems,

Vol. 4, No. 4, December 2003, pp. 173-188.

[15] A. Bose, P. A Ioannou, "Mixed manual/semi-automated traffic: a macroscopic

analysis," Transportation Research Part C 11 (2003), pp. 439-462.

[16] R. E. Chandler, R. Herman, and E. W. Montroll, "Traffic dynamics: Studies in

car following," Operations Research, Vol. 6, pp. 165-184, 1958.

[17] J. S. Tyler, "The Characteristics of Model Following Systems as Synthesized

by Optimal Control," IEEE Transactions on Automatic Control, Vol. AC-9, pp.

485-498, 1964.

[18] G. O. Burnham, J. Seo and G. A. Bekey, "Identification of Human Driver Models

in Car Following," IEEE Transactions on Automatic Control, Vol. 19, pp. 911-

915, 1974.

L19] D. C. Gazis, R. Herman, and R. Rothery, "Nonlinear follow-the-leader models

of traffic flow," Operations Research, Vol. 9, 1961.

132



[20] D. Swaroop and J. K. Hedrick, "String Stability of Interconnected Systems,"

IEEE Transactions on Automatic Control, pp. 349-357, Vol. 41, No. 3, March

1996.

[21] D.T Mcruer and E.S Krendel, "Mathematical Models of Human Behavior,"

AGARD, AGARD-AG-188, 1974.

[22] Claire Tomlin, George J.Pappas and Shankar Sastry, "Conflict Resolution for Air

Traffic Management : a Study in Multi-Agent Hybrid Systems," IEEE Transac-

tions on Automatic Control, Vol. 43, No. 4, April 1998.

[23] Claire Tomlin, Ian Mitchell and Ronojoy Ghosh, "Safety Verification of Con-

flict Resolution Maneuvers," IEEE Transactions on Intelligent Transportation

Systems, Vol. 2, No. 2, June 2001.

[24] Ching-Yao Chan and Han-Shue Tan, "Feasibility Analysis of Steering Control

as a Driver-Assistance Function in Collision Situations," IEEE Transactions on

Intelligent Transportation Systems, Vol. 2, No. 1, March 2001.

[25] Takeshi Sakaguchi, Atsuya Uno, Shin Kato and Sadayuki Tsugawa, "Cooperative

Driving of Automated Vehicles with Inter-Vehicle Communications," Proc. of the

IEEE Intelligent Vehicles Symposium 2000, pp. 516-521, 2000.

[26] Bishop, "A survey of Intelligent Vehicle Applications World-Wide," Proc. of the

IEEE Intelligent Vehicles Symposium 2000, pp. 25-30, 2000.

[27] Christoph Mertz, Sue McNeil and Charles Thorpe, "Side Collision Warning Sys-

tems for Transit Buses," Proc. of the IEEE Intelligent Vehicles Symposium 2000,

pp. 344-349, 2000.

[28] I.D Couzin, J. Krause, N.R Franks and S.A Levin, "Effective leadership and

decision-making in animal groups on the move," Nature, Vol. 433, February

2005.

133



129] M. H. Lighthill, G. B. Whitham, "On kinematic waves II : A theory of traffic

flow on long, crowded roads," Proc. Of the Royal Society of London Ser. A 229,

pp. 317-345, 1945.

[30] H. J. Payne, "Models of Freeway Traffic and Control, " Simulation Council,

1971.

[31] G. B. Whitham, "Linear and Nonlinear Waves, " Wiley, 1974.

[32] C. Daganzo, "Requiem for second-order fluid approximation to traffic flow,

" Transportation Research Part B 29 (4), 1995, pp. 277-286.

[33] H. M. Zhang, "A Theory of Nonequilibrium Traffic Flow, " Transportation Re-

search B, Vol. 32, No. 7, 1998, pp. 485-498.

[34] A. Aw and M. Rascle, "Resurrection of second order models of traffic flow ?

"SIAM Journal of Applied Math., 60(3), 2000, pp. 916-938.

[35] , M. Rascle, "An Improved Macroscopic Model of Traffic Flow: Derivation and

Links with the Lighthill-Whitham Model, "Mathematical and Computer Mod-

elling 35 (2002), pp. 581-590.

[36] J. M. Greenberg, "Extensions and Amplifications of a Traffic Model of Aw and

Rascle, "SIAM Journal of Applied Math, Vol. 62, No. 3, pp. 729-745.

[37] R. M. Colombo, "A 2 x 2 Hyperbolic Traffic Flow Model, "Mathematical and

Computer Modelling, 35, 2002, pp. 683-688.

[38] D. Helbing, "Improved fluid dynamic model for vehicular traffic, "Physics Review

E 51, pp. 3164-3169, 1995.

[39] D. Helbing, A. Hennecke, V. Shvetsov and M. Treiber, "Micro- and Macro-

Simulation of Freeway Traffic, " Mathematical and Computer Modelling 35, 2002,

pp. 517-54 7.

140] D. Helbing, "Gas-kinetic derivation of Navier-Stokes-like traffic equations, " Phys-

ical Review E 53, March 1996, pp. 2366-2381.

134



41] M. Treiber, A. Hennecke and D. Helbing, "Derivation, properties and simulation

of a gas-kinetic-based, nonlocal traffic model, "Physical Review E 59, January

1999, pp. 239-253.

[42] P. Nelson, "Traveling wave solutions of the diffusively corrected kinematic wave

model, " Math. Comp. Modeling, Special Issue on Traffic Flow Modeling, vol.

35, pp. 561-580, 2002.

[43] S. P. Hoogendoorn and P. H. L. Bovy, "Continuum modeling of multiclass traffic

flow, " Transportation Research, Part B 34, 2000, pp. 123-146.

[44] N. Bellomo and M. Delitala, "On the Mathematical Theory of Vehicular Traf-

fic Flow I. Fluid Dynamic and Kinetic Modelling, "Mathematical Models and

Methods in Applied Sciences, Vol. 12, No. 12, 2002, pp. 1801-1843.

[45] E. Angelis, "Nonlinear hydrodynamic models of traffic flow modeling and math-

ematical problems, "Math. Comp. Modeling, vol. 29, pp. 83-95, 1999.

[46] Bonzani, "Hydrodynamic models of traffic flow: Driver's behavior and nonlinear

diffusion, "Math. Comp. Modeling, vol. 31, pp. 1-8, 2000.

[47] E. N. Holland and A. W. Woods, "A continuum model for the dispersion of traffic

on two-lane roads, " Transportation Research Part B, Vol. 31, No. 6, 1997, pp.

473-485.

[48] C. F. Daganzo, "A continuum theory of traffic dynamics for freeways with special

lanes, " Transportation Research Part B, Vol. 31, No. 2, 1997, pp. 83-102.

[49] A. Klar and R. Wegener, "A hierarchy of models for multilane vehicular traffic

I: Modeling, "SIAM Journal of Applied Mathematics, Vol. 59, No. 3, 1999, pp.

983-1001.

[50] I. Prigogine and R. Herman, "Kinetic theory of vehicular traffic, " Elsevier, 1971.

'51] S. L. Paveri-Fontana, "On Boltzmann like treatments for traffic flow, " Trans-

portation Research Part B, Vol. 9, pp. 225-235, 1975.

135



[52] A. Klar, and R. Wegener, "Enskog-like kinetic models for vehicular traffic, " Jour-

nal of StaSurveys on Mathematics for Industry, vol. 6, pp. 215-239, 1996.

[53] A. Klar, and R. Wegener, "Kinetic derivation of macroscopic anticipation models

for vehicular traffic, "SIAM Journal of Applied Mathematics, vol. 60, pp. 1749-

1766, 2000.

[54] A. Klar, R. D. Kune and R. Wegener, "Mathematical models for vehicular traffic,

" Surveys on Mathematics for Industry, vol. 6, pp. 215-239, 1996.

[55] P. Nelson, "A kinetic model of vehicular traffic and its associated bimodal equi-

librium solution, " Transp. Theory Stat. Phys. , vol. 24, pp. 383-409, 1995.

[56] R. Wegener and A. Klar, "A kinetic model for vehicular traffic derived from a

stochastic microscopic model, " Transp. Theory Stat. Phys., vol. 25, pp 785-798,

1996.

[57] A. Schadschneider, "Statistical physics of traffic flow, " Physica A 285, 101, 2000.

[58] L. Arlotti, N. Bellomo, and E. De Angelis, "Generalized kinetic models: Mathe-

matical structures and applications, "Math. Models Methods Appl. Sci., vol. 12,

pp. 567-592, 2002.

[59] Y. Sone, "Kinetic theory and fluid dynamics, " Birkhauser Boston, 2002.

[60] P. P. J. M. Schram, "Kinetic theory of gases and plasmas, "Kluwer academic

publishers, 1991.

[61] Kai-Chung Chu, "Optimal Decentralized Regulation of a String of Coupled Ve-

hicles, "IEEE Transactions on Automatic Control, June 1974.

[62] X. Liu, A. Goldsmith, S. Sonia Mahal and J. K. Hedrick, "Effects of Commu-

nication Delay on String Stability in Vehicle Platoons, " IEEE Intelligent Trans-

portation Systems Conference Proceedings, August 2001.

[63] Swaroop D. and K. R. Rajagopal, "Intelligent Cruise Control Systems and Traffic

Flow Stability, " Transportation Research Part C, 1999.

136



[64] J. Yi, H. Lin, L. Alvarez and R. Horowitz, "Stability of Macroscopic Traffic

Flow Modeling through Wavefront Expansion, " Transportation Research Part

B, 2003.

[65] R. Shah, C. Nowakowski and P. Green, "U.S Highway Attributes Relevant to

Lane Tracking," University of Michigan, UMTRI Technical Report 98-34, 1998.

[66] "GPS Errors and Estimating Your Receiver's Accuracy," http://www.edu-

observatory. org/gps/gps_accuracy. html

[67] T.M Nguyen, J.W Sinko and R.C Galijan, "Using Differential Carrier Phase GPS

to Control Automated Vehicles," Proceedings of the 40th Midwest Symposium on

Circuits and Systems, Sacramento, CA, August 1997, pp. 493-496

[68] D.M Bevly, J.C Gerdes, C. Wislon and G. Zhang, "The Use of GPS Based

Velocity Measurements for Improved Vehicle State Estimation," Proceedings of

the American Control Conference, Chicago, Illinois, June 2000, pp. 2538-2542.

[69] "Nationwide Differential Global Positioning System Program Fact Sheet,

http://www. tfhrc. gov/its/ndgps/02072.htm

[70] D. Swaroop, "String Stability of Interconnected Systems - An application to

Automated Highway Systems, " Ph.D Dissertation, University of California at

Berkeley, December 1994.

[71] M.T Moreno, D. Jiang and H. Hartenstein, "Broadcast Reception Rates and

Effects of Priority Access in 802.11-Based Vehicular Ad-Hoc Networks, " Pro-

ceedings of VANET 04, October 2004, pp. 10-18.

[72] W.F Phillips, "A kinetic model for traffic flow with continuum implications,

Transportation Planning and Technology, 1979, Vol. 5, pp. 131-138.

[73] F.J Alexander and A.L Garcia, "The Direct Simulation Monte Carlo Method,

"Computers in Physics, Vol. 11, No. 6, Nov/Dec. 1997, pp. 588-593.

137



[74] D. Helbing, "Theoretical foundation of macroscopic traffic models, "Physica A,

Vol. 219, 1995, pp. 375-390.

[75] D. Helbing, "Derivation, properties, and simulation of a gas-kinetic-based, nonlo-

cal traffic model, " Physical Review E, Vol. 59, No. 1, January 1999, pp. 239-253.

[76] Z. Tan and P.L Varghese, "The A - e method for the Boltzmann Equation,

" Journal of Computational Physics, Vol. 110, 1994, pp. 327-340.

[77] H.M Zhang, "Structural properties of solutions arising from a nonequilibrium

traffic flow theory, " Transportation Research B, Vol. 34, 2000, pp. 583-603.

[78] D. Helbing, "Macroscopic dynamics of multilane traffic, " Physical Review E, Vol.

59, June 1999, pp. 6328-6339.

[79] H.M Zhang, "Analyses of the stability and wave properties of a new continuum

traffic theory, " Transportation Research B, Vol. 33, 1999, pp. 399-415.

[80] J. Lygeros and N. Lynch, "Conditions for safe deceleration of strings of vehicles,

" California PATH Research Report UCB-ITS-PRR-2000-2, January 2000.

[81] http://www.ntsb.gov

138


