
Learning object boundary detection from motion data

Michael G. Ross and Leslie Pack Kaelbling
M.I.T. Computer Science and Artificial Intelligence Laboratory

ABSTRACT

This paper describes the initial results of a project to
create a self-supervised algorithm for learning object seg-
mentation from video data. Developmental psychology and
computational experience have demonstrated that the motion
segmentation of objects is a simpler, more primitive process
than the detection of object boundaries by static image cues.
Therefore, motion information provides a plausible supervision
signal for learning the static boundary detection task and for
evaluating performance on a test set. A video camera and
previously developed background subtraction algorithms can
automatically produce a large database of motion-segmented
images for minimal cost. The purpose of this work is to use
the information in such a database to learn how to detect the
object boundaries in novel images using static information,
such as color, texture, and shape.

I. I NTRODUCTION

This work addresses the problem of object segmentation,
a subproblem of the image segmentation problem described
in the computer vision literature. Image segmentation is the
discovery of salient regions in static images, traditionally by
optimizing functions of the image data. Image segmentation
research continues the work of the Gestalt psychologists, who
first described the principles of organization and grouping in
human vision [13]. More recently, segmentation algorithms
have been derived from graph cut metrics [18] and information
criteria [27]. Despite decades of research, it is unclear which
approach is optimal because their definitions of region saliency
are incompatible. Therefore, the algorithms are frequently
judged by qualitative comparisons of their results.

Object segmentation is the process of detecting regions that
correspond to input entities for higher-level intelligent systems.
A robot navigation system, for example, requires information
about walls, doors, and chairs, not the values of millions of
pixels. These useful agglomerations are objects, and dividing
a single static image according to the object boundaries it
contains is the goal of object segmentation.

In order to be useful to external systems, objects must
represent properties that are useful to such systems. While
higher-level visual systems, such as object classifiers, might
be primarily concerned with grouping pixels according to
similarity in color or texture, a robot manipulator requires
objects that will not disintegrate when they are picked up.
In this work, we will consider objects defined by the property
of common motion. A group of elements will be considered
an object if and only if they are undergoing coherent motion

in the world, or if they would undergo coherent motion in
response to typical forces.

Why is this definition generally useful? Consider an agent
in a world without common-motion objects, a Sandworld in
which no particle was attached to its neighbors. Interaction
with this world is difficult, because the motion of every
element must be separately considered. A world with common-
motion objects, on the other hand, groups elements into
motion-dependence clusters that enable much more powerful
modeling. Optical flow measurements, for example, can use
object grouping to overcome the aperture problem. Operating
at the level of objects, rather than the level of particles,
simplifies planning, prediction, and navigation based on visual
input. All of these advantages derive from the common motion
assumption, and that is why it is the basis of our definition of
object.

Apart from this utility argument, there is evidence to
suggest that humans’ notions of image segmentation derive
from predictions of common motion. Psychological studies by
Spelke et al. [19] indicate that infants use motion as a primary
mechanism for grouping visual perceptions into objects. The
ability to detect objects via two-dimensional spatial cues, such
as color, texture, or shape, seems to develop later. Sample
human segmentations in the Martin et al. database [12] suggest
that common-motion boundaries are more commonly selected
by subjects than other textural or color boundaries.

This developmental evidence suggests that humans use their
initial knowledge of motion segmentation to learn image
segmentation. The most obvious problem in applying machine
learning techniques to image segmentation is the need for a
large set of pre-segmented data for training. One approach to
this problem is to produce a large human-labeled segmentation
database [12], but this is inherently expensive, and in many
images the identity of the salient boundaries is unclear, even to
a human. Are the windows of a car separate regions, or parts of
the whole? Does detecting these types of boundaries diminish
a model’s ability to make more important distinctions, such as
separating the car from the road?

Using motion information removes this difficulty. Just as
infants join visual elements together by their common motion,
a video camera and computer can automatically distinguish
between moving objects and their immediate surroundings and
provide a learning algorithm with cheap, unlimited training
data. Furthermore, the training set will only contain object
boundaries, so the model will not waste its explanatory power
on the uncertain subdivision of an object into parts. With
appropriate data, machine learning can capture the necessary
contextual and environmental information for a particular

segmentation task. A learned boundary-detection algorithm
can adapt and optimize its performance for different situations
without the need for extensive manual tuning.

II. RELATED WORK

Image segmentation algorithms are based on a variety of
models. Some methods, such as Felzenszwalb and Hutten-
locher’s algorithm [3], are based on local models of texture
and region size, while Shi and Malik’s normalized cuts method
[18] makes globally optimal divisions based on a matrix of
similarity measures. Most similar to our work is Geman and
Geman’s image restoration algorithm [7], which uses two
linked Markov random fields (MRFs) to denoise images. One
of these fields, the line process, divides images into regions
based on local image gradients and contour properties, such as
edge continuity. Our model is similar to the line process, but
it is learned from data and captures more shape information.
Poggio et al. [15] described the use of MRFs to combine
different image features.

Recent work in learning segmentation and edge detection
include Feng et al.’s work, which combined belief and neural
network techniques [4]. This work is closer to region or texture
modeling than pure segmentation: their goal is to apply a set of
predetermined labels (e.g. sky, vegetation) to images. Konishi
et al. [9] have investigated the statistical optimality of common
local edge detectors and Martin et al. [11] improved on
standard edge detectors by learning detector parameters from
a human-labeled database. These methods rely on manually
segmented training data, requiring a time-consuming process
that may produce subjective results.

Borenstein and Ullman have developed a model of class-
specific segmentation that learns to perform figure-ground
segmentations for a particular class of objects by building
a database of fragments that can be assembled like puzzle
pieces [1]. They hypothesize that motion could be a source of
training data for their algorithm, which combines segmenta-
tion and classification. Hayman and Eklundh learn additional
figure-ground segmentation cues from motion detection and
prediction [8], but they are concerned with improving motion
segmentation performance on video sequences by adding color
and contrast cues, not with learning to perform the static
segmentation task.

Fitzpatrick [5] developed an object-recognition system for
Cog, a humanoid robot, that acquired examples by moving
objects and observing them using background subtraction.
Weber et al. [24] performed unsupervised learning of object
class models by assuming that the class examples are the most
prevalent element in their image set.

Our use of belief propagation to detect and reinforce image
contours is very similar to the work of Shashua and Ullman
[17], which described a hand-built saliency network that
combined incomplete contours to minimize an error function.

III. C URRENT PROGRESS

We have developed an initial learning and segmentation
framework that has some of the properties we desire. The

initial results demonstrate that it is possible to learn a useful
model of object boundaries with a very simple shape and
feature model. Future extensions and modifications of the
current work, combined with a clearer understanding of the
object segmentation problem should lead us toward models
that better capture the problem and its solutions, and therefore
provide improved, and more general, results.

We have created a new object-boundary detection algorithm
that is trained on motion segmentations output by an algorithm
developed by Stauffer and Grimson [20]. The data is used to
construct a probabilistic model that captures information about
the spatial properties of the observed objects. After training,
belief propagation inference [14], [25] can efficiently find
boundaries in novel static images. Our model is based on work
by Freeman et al. [6] on training Markov random field models
for vision problems. This work contributes a solution to the
segmentation database problem, a low-dimensional, discrete
object-edge representation, and the ability to construct high-
resolution object boundaries from noisy, low-resolution data.

A. Object Boundary Model

The object boundary model is inspired by Freeman et al.’s
work on learning super-resolution [6]. The boundary model is
a Markov random field (MRF) with two sets of variables: the
visible “signal” nodes representing image data, and the hidden
“scene” nodes that represent the underlying object edges. In
the following description, the possibility that no edge is present
at a location is included among the set of edge scenes.

Sabove

Sleft
Ebelow

Ei
edge

Si
image
(signal)

Eleft Eright

Eabove

F(si,ei)

Yleft(ei, eleft)

Y ab
ov

e(
e i,

e ab
ov

e)

Yright(ei, eright)

Y bel
ow

(e i,
e bel

ow
)

Sbelow

Sright

Entry

Exit

Inflection

Fig. 1. Each edge node in our Markov random field (left) is attached to a
visible data input node and to the edge nodes for neighboring image locations.
The edge scene values (right) are represented by three parameters. Each edge
enters a scene patch at some border pixel, may change direction at an inflection
point, and exits at another border pixel.

The MRF model (Figure 1) represents the probability dis-
tribution of object boundary edges given visible scene data.
Every edge node,Ei, is connected to an image signal node,Si,
and to it’s left, right, upper, and lower edge node neighbors.
The value of an edge node represents a 5 pixel by 5 pixel
segment of an object boundary (or the absence of a boundary),
and its associated signal node represents the convolution of
several image filters at the corresponding image location. Each
image and edge node pair is responsible for a single 5x5
location in the image, and neighboring nodes are responsible
for adjacent, but non-overlapping areas. The valueei is an

assignment toEi, and a vector̄e is an assignment to every
edge node;si and s̄ are analogously defined for signal nodes.

After training, segmenting new images requires knowledge
of the distributionPr(ē|s̄) = Pr(s̄|ē) Pr(ē)/Pr(s̄). Given an
image,s̄ is fixed, so the desired boundary is theē that maxi-
mizesPr(s̄|ē) Pr(ē) = Pr(ē, s̄). The MRF representsPr(ē, s̄)
with two sets of compatibility functions. Theφi(si, ei) func-
tions represent the compatibility between pairs of signal values
and edge values, andψij(ei, ej) functions represent the com-
patibility between assignments to neighboring edge nodes. If
N is the set of neighboring edge node indices,

Pr(ē, s̄) = Z−1
∏

i

φi(si, ei)
∏

(i,j)∈N

ψij(ei, ej)

where

Z =
∑
s̄′,ē′

∏
i

φi(s′i, e
′
i)

∏
(i,j)∈N

ψij(e′i, e
′
j) .

Z is the partition function, which normalizes the probability,
but its computation is intractable for all but the smallest
examples.

In general, there is no known closed-form solution for
specifying compatibility functions that will produce particular
marginal probabilities in an MRF. Iterative proportional fitting
(IPF) is a gradient descent method that repeatedly adjusts
compatibility functions to match the network’s marginal prob-
abilities to match an empirically observed set. Unfortunately,
IPF requires us to perform inference on the MRF after each
descent, which is prohibitively expensive. Instead, we can
substitute belief propagation for the exact inference step. A
tree reparameterization analysis [22] of this algorithm by
Wainright and Sudderth reveals that it has a simple fixed point
[23]:

φi(si, ei) = Pr(si, ei)

and

ψij(ei, ej) =
Pr(ei, ej)

Pr(ei) Pr(ej)
.

These compatibility settings are intuitively sound because they
give high compatibilities to pairs that co-occur frequently,
and they exactly correspond to Freeman et al.’s conditional
probability message passing algorithm [6]. They also appear
as approximate maximum likelihood parameter estimates in
the tree reparameterization framework [21].

In Section III-B, we will demonstrate that it is easy to
generate training data, so it is a simple matter to estimate any
discrete probability function by frequency counting. Therefore,
we discretize filter responses by counting them in 1000-bin
histograms. The set of potential edges is already discrete, but
it is too large to handle via simple counting. A 5x5 binary
image can take on225 possible values. Even discarding images
that could never represent an edge fragment, such as an all-
white image, noise and natural variability produce tens of
thousands of edge images. Therefore, we have developed a
simple edge parameterization (Figure 1) that reduces the space
to 2717 possible edges and provides excellent coverage of the

examples in our training set. Each edge is represented by the
boundary pixel at which it enters the 5x5 patch, a possible
interior inflection point, and a patch boundary exit point. The
“empty” edge, representing the absence of a boundary, is
included as a special case. During training, each scene’s value
is represented by its best-fit parameterized edge.

B. Training Algorithm

Just as simple neurons can detect motion due to their
tendency to habituate to static input, computer algorithms
can detect motion by background subtraction. By modeling
the values observed at every image location across a video
sequence, areas containing moving objects are highlighted as
outliers. This work used Stauffer and Grimson’s background
subtraction algorithm [20], which models every image pixel
with a small set of Gaussian distributions. This algorithm is
easy to compute and is robust to non-motion changes, such as
lighting variations, that we wish to discard. The background
subtracter works on a stream of images; for each image
it returns a binary image that labels every pixel as either
foreground (moving) or background (static) (Figure 2).

Fig. 2. From left: The background subtraction algorithm learns the back-
ground colors at each pixel and returns a binary image indicating the location
of the moving object. Then, the moving object is cropped out of the image
and the binary image is processed to produce the object edge image.

Motion can only give us data about the object edges
immediately around the moving object. Therefore, we discard
all of the original image and the binary foreground-background
image, except the areas containing the moving object and
its immediate surroundings. Given the cropped foreground-
background image, we scan across all rows and columns
and label every location at which there is a transition from
foreground pixels to background pixels as an edge. The output
is a new binary image of edge and non-edge pixels. Our goal
is to learn a model that will generate an equivalent object edge
image from a novel, static image. Each image and edge image
pair provide a complete set of assignments for an MRF object
boundary model of the image.

The training algorithm constructs representations of theφ
andψ functions by learning three sets of probability distribu-
tion functions, which can be used to compute the compatibility
functions described in Section III-A using Bayes’ rule. The
edge pixels at any location are represented by their best-
fit edge in the parameterized edge model (Figure 1). The
model is translationally invariant, so all theφ functions are
equal, and theψ functions fall into four classes:ψleft(ei, eleft),
ψright(ei, eright), ψabove(ei, eabove), and ψbelow(ei, ebelow).
Learning Pr(ei), Pr(si|ei), and the conditional probability
functions Pr(en|ei) for each neighboring relation (n =

left, right, above,below) will provide the necessary informa-
tion to specify each compatibility function. All the probabil-
ities are discrete, and data is plentiful, so it is possible to
learn them by storing the value frequencies. The nodes in the
model are assumed to be homogeneous, so only one set of
distributions is learned.

The algorithm must combine the data from multiple filters
into a singlePr(si|ei) value. Experience shows that no single
filter will be an adequate edge detector. In some simple
images, local horizontal and vertical image gradients respond
strongly to object boundaries, but in highly textured examples
they might respond more strongly to non-edge regions. One
solution is to probabilistically combine many features. The
underlying signal for each scene is an n-tuple of the values
of a set of filters at a particular location. The model requires
the joint probability distributionPr(s1i , s

2
i , . . . , s

n
i |ei) for each

possible edge. Incorporating more features requires exponen-
tially more data to estimate, and memory to store, the resulting
model. Therefore, we make the naive Bayes assumption that
the features are conditionally independent given the underlying
edge and approximate the joint likelihood as

∏
j Pr(sj

i |ei).
This assumption is clearly incorrect, but the results it gives are
still useful in practice, especially in discriminative applications
[16]. In the future, we hope to employ new representations
that will better approximate the full joint probability of the
features. Konishi et al. [10] have discovered an adaptive his-
togramming algorithm that efficiently combines edge detection
features.

If the training data were noiseless, from a perfect back-
ground subtraction algorithm, the learning algorithm would
only experience closed contours, and for any neighboring
pair of candidate edges whose endpoints did not match the
compatibilityψn(en, ei) would be zero. Unfortunately, this is
not the case, so we encourage the formation of closed con-
tours during inference by setting the compatibilities for non-
matching neighbors to be nearly zero. Setting the compatibil-
ities to exactly zero would violate the MRF definition, which
forbids zero probability states. This produces cleaner contours
and fewer spurious edges, but does not completely rule out
incomplete contours, because our edge parameterization does
not allow multiple contours to combine via T-junctions.

C. Inference Algorithm

There is no known efficient algorithm for exact inference on
a Markov random field, so we employ the belief propagation
algorithm, a speedy approximation that works well in practice.
Once the model is trained, belief propagation can compute an
approximate maximuma posteriori (MAP) estimate of the
object edges present in a static scene [25]. Belief propagation
produces exact MAP estimates in loopless MRFs [14], [26].
Our network has loops, but belief propagation still works well
in practice [6].

As in the super-resolution algorithm described by Freeman
et al., the edge-inference algorithm begins by selecting a set
of locally likely candidate edges at each location. It first visits
each edge nodei and selects the empty edge and theN − 1

edges (where we have experimented with20 < N < 100)
with the largestPr(si, ei). Because the edge candidates at a
node have only been selected based on local information, it is
possible that the node may have no assignments compatible
with some of the potential values of its neighbors. Therefore,
the algorithm visits each node a second time, and adds
additional scenes so that the node can continue any edge that
enters and exits it from its neighbors.

On every iteration of the algorithm, every edge node is
visited and its messages are updated. An edge nodeEi can be
described by the signal associated with it,si, a set of candidate
scenes,Cand(i), a set of neighbors,Neigh(i), and an array of
messages from each neighbor indexed by scene,mi←j with
j ∈ Neigh(i). All messages are initialized to 1. The index
r(i, j) indicates the position ofj relative to i (left, right,
above, below). On every iteration, we simultaneously update
the messages at each node by the following equation:

mi←j(ei ∈ Cand(i)) =

max
ej∈Cand(j)

φ(sj , ej)ψr(i,j)(ej , ei)
∏

k∈{Neigh(j)\i}

mj←k(ej).

Each messagemi←j(ei) represents the compatibility between
nodeEi having assignmentei and the information from its
neighboring nodeEj . The message is updated by maximizing
a function over the neighboring assignments which combines
their fit to the local data atj and their match to information
from the other neighbors ofEj . After sufficient propagation
(convergence is not guaranteed in loopy networks), the ap-
proximate MAP estimate for an MRF node is

MAPEi = arg max
ei∈Cand(i)

φ(si, ei)
∏

j∈Neigh(i)

mi←j(ei)

at each nodeEi. This selects the edgee that is maximally
compatible with local evidence and the information propagated
from the remainder of the graph.

Fig. 3. Top: MAP estimates after 0, 5, and 10 iterations on a sample disc
image. Bottom: MAP estimates after 0, 10 and 20 iterations on a sample robot
image.

D. Results

We trained models on three video sequences: a dark disc
moving against a white background, a toy robot traveling
across a highly textured carpet, and cars driving along a

highway. The first two sequences contained approximately
1200 frames, and the third sequence contained 7000 frames.
In each case the first 200 frames were used to initialize the
background subtraction algorithm and were not included in
the training set. The detection results presented are all drawn
from these discarded video frames or from other non-training
sets.

Different numbers of candidate scenes and iterations were
required for each result, depending on the complexity of the
object and the quality of the underlying data. Because the
algorithm selects an initial set of N possible values at each
edge node, and then augments them with extra possibilities to
allow for contour completion, each node in a particular MRF
may consider a different number of possible edges. Disc results
used N=20 candidates and 10 belief propagation iterations.
The robot results used 100 candidates and 20 iterations, due
to the robot’s irregular shape and the “noise” provided by
the textured carpet. The cars required 40 candidates and
20 iterations. The number of initial candidates and belief
propagation steps were manually selected. Selecting larger
values in each instance should produce equivalent results at
an increased computational cost. In future work, we hope to
determine these parameters automatically from the data and
models.

Although we have experimented with texture-sensitive fil-
ters, such as Gabor functions, all of the results presented here
were computed using four local gradient operators, oriented to
0, 45, 90, and 135 degrees, as the input signals. These filters
were computed on the grayscale image values; color was not
used. We trained a four-neighbor model in which each node
is connected to its first-order (above, below, left, and right)
neighbors.

In a typical run, the initial MAP estimate, made before belief
propagation occurs, contains approximate object edges, which
are improved by enforcing local edge continuity and learned
shape information. Figure 3 demonstrates the progress of belief
propagation on samples from the disc and robot sequences.

Figure 4 displays a sample result from each trained model.
Unsurprisingly, the simple disc case was the most successful,
due to its highly regular shape and the strong spatial derivatives
along its boundaries. The robot was the most difficult, given its
irregular shape and the fact that the carpet produced spurious
image gradients that the model had to learn to ignore. The
car was very successful, especially considering that the car
shadows were included as moving objects during training. The
model segmented the car and its shadow from the road, and
also detected other object and non-object edges in the image.

In both the car and robot examples, non-object edges,
such as the lines on the road and internal color changes
on the robot, were detected. In the robot, these extra edges
apparently prevented some of the robot object contours from
closing properly. Because our edge model only allows one
entry and one exit point in each patch, it is impossible to
represent contour intersections properly. This clearly needs to
be addressed in the future. In the case of the car output, a more
sophisticated model of shape would be necessary to eliminate

the road lines as potential objects, if we desired to do so.
In all three cases, it is important to note that the contours

were detected remarkably well given the sparse, imperfect
information that was available. Next to each image in Figure
4 are the four input signals used to produce the object
edge outputs. Gradients were only computed at the image
locations associated with the center of each edge node’s patch,
so an image of heighth and width w is represented only
by hw

25 inputs in each filtered image, and these filters were
then combined suboptimally by the naive Bayes assumption.
The shape model that inter-relates neighboring edge patterns
provides much of the output accuracy.

Fig. 5. From left to right: boundary detection with our algorithm, with the
default Canny edge detector, and with a hand-tuned Canny edge detector.

Figure 5 compares our performance on the robot image to
the output of the Canny edge detector [2] included in the
Matlab Image Toolbox. Our detector significantly outperforms
the results using the default threshold and smoothing settings,
and approaches the output of the Canny detector with manually
chosen parameters (threshold = 1, sigma = 0.2). Our algorithm
has learned many of the boundary rules that are hand-coded
into the Canny algorithm, and is able to adapt itself to the
requirements of the visual environment without the need for
manual parameter tuning. The Canny algorithm also has the
advantage of higher resolution gradient information than that
available to our algorithm.

Figure 6 demonstrates that the model trained on the car
data sequence can be successfully applied to other similar
situations. The images in this test set come from another
road which was observed in the same wide-angle video as
the training data. The model does a good job at detecting
the car boundaries. The errors arise from extremely low
image gradients at the borders of some of the cars, and the
incompatibilities caused by the intersection of car and road
contours.

Fig. 7. Results of running the robot model on a disc image, and vice-versa.

Although the MRF model is very simple, it is clear that it

Fig. 4. Sample results from three different data sets. Each row shows, from left to right, an image outside the training set, the contrast-enhanced outputs of
the four coarse derivative filters, and the result of using our MRF model and belief propagation to find object edges in the scene.

learns a great deal of contextual information during training.
Figure 7 demonstrates the results of applying the disc-trained
model to a sample from the robot sequence and the robot
model to a disc image. In the first case, the disc model
erroneously detects a number of long contours along the
carpet. In the disc training sequence, nearly all the image
gradients were associated with object edges, so the model does
not know to avoid the weak, random carpet gradients. On the
other hand, the robot model appears to detect the boundaries
of the disc adequately, but it lacks the shape experience to
complete the simple circular contour.

The algorithm is very efficient, completing all the calcu-
lations for 20 iterations of belief propagation on a 150x150
pixel image with 40 candidates at each location in less than
30 seconds on a dual 1.4 GHz Pentium 3 machine in our
Java implementation. This is due to the efficiency of belief
propagation, the preselection of a small set of potential scenes
at each edge node, and the relatively large size of the edge
patches, which allow us to cover the image with only 900
edge nodes.

IV. CURRENT WORK

The current work on this project focuses on incorporating
more information about the interior properties of objects.
Many traditional segmentation algorithms model the seg-
mented regions, rather than their borders, and can capture
properties about interregional and intraregional color differ-
ences. Boundaries that might be probable given edge and
gradient information may be unlikely when regional properties
are taken into account, and vice-versa.

In order to capture these region properties, the Markov
random field model is augmented. Every edge nodeEi is
replaced by a node(Ei, Ri), whereEi still represents the local
edge value andRi represents local pixel information that can
be used to compute region properties as discussed above. In
inference, theE values are hidden, as before, but theR values
are visible, since they come directly from the image data.

As discussed previously, the compatibility estimate is

ψij((ei, ri), (ej , rj)) =
Pr(ei, ri, ej , rj)

Pr(ei, ri) Pr(ej , rj)
.

By applying the definition of conditional probability, this

Fig. 6. These results were inferred by the car model on images drawn from another road’s traffic. The results required 40 candidates per node and 20
iterations of belief propagation. The model does a good job of extracting the car boundaries, except where the car colors blend into the road too much, or
where there is competition between car contours and strong road contours.

factors to

ψij((ei, ri), (ej , rj)) =
Pr(ei, ej) Pr(ri, rj |ei, ej)

Pr(ei) Pr(ej) Pr(ri|ei) Pr(rj |ej)

= ψij(ei, ej)
Pr(ri, rj |ei, ej)

Pr(ri|ei) Pr(rj |ej)
.

So, by learning the probabilities of pixel properties conditioned
on the edge assignments, the model can incorporate regional
compatibility information by multiplying the edge compatibil-
ities with some newly learned probability functions.

ACKNOWLEDGMENTS

This research was supported by the Singapore-MIT Al-
liance, the National Science Foundation, and the Office of
Naval Research.

The authors greatly benefitted from the assistance and
advice of William T. Freeman. Special thanks are awarded
to Yair Weiss, Martin Wainwright, and Erik Sudderth for
theoretical belief propagation assistance, to Kinh Tieu for a
good shape-modeling suggestion, to Chris Stauffer for data
and background subtraction software, and to Kevin Murphy
for reading an earlier draft. Finally, they thank Huizhen Yu,
Erik Miller, John Winn, and John Fisher for many discussions.

REFERENCES

[1] E. Borenstein and S. Ullman. Class-specific, top-down segmentation. In
European Conference on Computer Vision, 2002.

[2] J. Canny. A computational approach to edge detection.IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 8(6), November
1986.

[3] P. Felzenszwalb and D. Huttenlocher. Efficiently computing a good
segmentation. InDARPA Image Understanding Workshop, 1998.

[4] X. Feng, C.K.I. Williams, and S.N. Felderhof. Combining belief net-
works and neural networks for scene segmentation.IEEE Transactions
on Pattern Analysis and Machine Intelligence, 24(4), 2002.

[5] P. Fitzpatrick. From First Contact to Close Encounters: A develop-
mentally deep perceptual system for a humanoid robot.PhD thesis,
Masschusetts Institute of Technology, 2003.

[6] W.T. Freeman, E.C. Pasztor, and O.T. Carmichael. Learning low-level
vision. International Journal of Computer Vision, 40(1), 2000.

[7] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images.IEEE Transactions on Pattern
Analysis and Machine Intelligence, 6(6), November 1984.

[8] E. Hayman and J.-O. Eklundh. Probabilistic and voting approaches to
cue integration for figure-ground segmentation. InEuropean Conference
on Computer Vision, 2002.

[9] S.M. Konishi, J.M. Coughlan, A.L. Yuille, and S.C. Zhu. Fundamental
bounds on edge detection: An information theoretic evaluation of
different edge cues. InComputer Vision and Pattern Recognition, 1999.

[10] S.M. Konishi, A.L. Yuille, J.M. Coughlan, and Song Chun Zhu. Sta-
tistical edge detection: Learning and evaluating edge cues.IEEE
Transactions on Pattern Analysis and Machine Intelligence, 25(1), 2003.

[11] D. Martin, C. Fowlkes, and J. Malik. Learning to detect natural
image boundaries using local brightness, color, and texture cues.IEEE
Transactions on Pattern Analysis and Machine Intelligence, In press,
2003.

[12] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human
segmented natural images and its application to evaluating segmenta-
tion algorithms and measuring ecological statistics. InInternational
Conference on Computer Vision, 2001.

[13] S.E. Palmer. Vision Science: Photons to Phenomenology. The MIT
Press, 1999.

[14] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, 1988.

[15] T. Poggio, E.B. Gamble, and J.J. Little. Parallel integration of vision
modules.Science, 242, 1988.

[16] H. Schneiderman and T. Kanade. A statistical method for 3d object
detection applied to faces and cars. InInternational Conference on
Image Processing, 2000.

[17] A. Shashua and S. Ullman. Structural saliency: The detection of globally
salient structures using a locally connected network. InInternational
Conference on Computer Vision, 1988.

[18] J. Shi and J. Malik. Normalized cuts and image segmentation. In
Computer Vision and Pattern Recognition, June 1997.

[19] E.S. Spelke, P. Vishton, and C. von Hofsten. Object perception, object-
directed action, and physical knowledge in infancy. InThe Cognitive
Neurosciences, pages 165–179. The MIT Press, 1994.

[20] C. Stauffer and W.E.L. Grimson. Adaptive background mixture models
for real-time tracking. InComputer Vision and Pattern Recognition,
1999.

[21] M.J. Wainwrigh, T. Jaakkola, and A.S. Willsky. Tree-reweighted
belief propagation and approximate ML estimation by pseudo-moment
matching. InWorkshop on Artificial Intelligence and Statistics, 2003.

[22] M.J. Wainwright, T. Jaakkola, and A.S. Willsky. Tree-based reparam-
eterization for approximate estimation on loopy graphs. InNeural
Information Processing Systems, 2001.

[23] M.J. Wainwright and E. Sudderth. Personal communication, 2002.
[24] M. Weber, M. Welling, and P. Perona. Unsupervised learning of models

for recognition. InEuropean Conference on Computer Vision, 2000.
[25] Y. Weiss. Belief propagation and revision in networks with loops. Tech-

nical Report 1616, MIT Artificial Intelligence Laboratory, November
1997.

[26] Y. Weiss. Interpreting images by propagating bayesian beliefs. In
Advances in Neural Information Processing Systems, 1997.

[27] S.C. Zhu and A. Yuille. Region competition: Unifying snakes, region
growing, and bayes/mdl for multi-band image segmentation.IEEE
Transactions on Pattern Analysis and Machine Intelligence, 18(9), 1996.

