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ABSTRACT in the world, or if they would undergo coherent motion in
. . I . response to typical forces.
This paper describes the initial results of a project 1o Why is this definition generally useful? Consider an agent

create a self-supgrvised algorithm for learning object S€4h a world without common-motion objects, a Sandworld in
mentation from video data. Developmental psychology ar\}vqwich no particle was attached to its neighbors. Interaction

computational experience have demonstrated that the motio . R .
. . . . - with this world is difficult, because the motion of every
segmentation of objects is a simpler, more primitive proces : .
. . ) o element must be separately considered. A world with common-
than the detection of object boundaries by static image cues, .. : .
S X . X .. motion objects, on the other hand, groups elements into
Therefore, motion information provides a plausible supervision _ .
. ) . . motion-dependence clusters that enable much more powerful
signal for learning the static boundary detection task and for . .
. : mpdeling. Optical flow measurements, for example, can use
evaluating performance on a test set. A video camera and. . .
. . . object grouping to overcome the aperture problem. Operating
previously developed background subtraction algorithms can . .
. . at, the level of objects, rather than the level of particles,
automatically produce a large database of motion-segmented ... . - oo :
. o . ; simplifies planning, prediction, and navigation based on visual
images for minimal cost. The purpose of this work is to use . .
- A input. All of these advantages derive from the common motion
the information in such a database to learn how to detect th

: T . : o . “assumption, and that is why it is the basis of our definition of
object boundaries in novel images using static informatio

such as color, texture, and shape %bjeCt'
' ' pe- Apart from this utility argument, there is evidence to

suggest that humans’ notions of image segmentation derive
from predictions of common motion. Psychological studies by
This work addresses the problem of object segmentati®pelke et al. [19] indicate that infants use motion as a primary
a subproblem of the image segmentation problem describ@dchanism for grouping visual perceptions into objects. The
in the computer vision literature. Image segmentation is thility to detect objects via two-dimensional spatial cues, such
discovery of salient regions in static images, traditionally bys color, texture, or shape, seems to develop later. Sample
optimizing functions of the image data. Image segmentatiBluman segmentations in the Martin et al. database [12] suggest
research continues the work of the Gestalt psychologists, wit@t common-motion boundaries are more commonly selected
first described the principles of organization and grouping sy subjects than other textural or color boundaries.
human vision [13]. More recently, segmentation algorithms This developmental evidence suggests that humans use their
have been derived from graph cut metrics [18] and informatignitial knowledge of motion segmentation to learn image
criteria [27]. Despite decades of research, it is unclear whigegmentation. The most obvious problem in applying machine
approach is optimal because their definitions of region salienigarning techniques to image segmentation is the need for a
are incompatible. Therefore, the algorithms are frequentiyrge set of pre-segmented data for training. One approach to
judged by qualitative comparisons of their results. this problem is to produce a large human-labeled segmentation
Object segmentation is the process of detecting regions thatabase [12], but this is inherently expensive, and in many
correspond to input entities for higher-level intelligent systemnages the identity of the salient boundaries is unclear, even to
A robot navigation system, for example, requires informatiom human. Are the windows of a car separate regions, or parts of
about walls, doors, and chairs, not the values of millions dfie whole? Does detecting these types of boundaries diminish
pixels. These useful agglomerations are objects, and dividiagnodel's ability to make more important distinctions, such as
a single static image according to the object boundariess#parating the car from the road?
contains is the goal of object segmentation. Using motion information removes this difficulty. Just as
In order to be useful to external systems, objects musfants join visual elements together by their common motion,
represent properties that are useful to such systems. Whileideo camera and computer can automatically distinguish
higher-level visual systems, such as object classifiers, midigtween moving objects and their immediate surroundings and
be primarily concerned with grouping pixels according tprovide a learning algorithm with cheap, unlimited training
similarity in color or texture, a robot manipulator requireslata. Furthermore, the training set will only contain object
objects that will not disintegrate when they are picked upoundaries, so the model will not waste its explanatory power
In this work, we will consider objects defined by the propertgn the uncertain subdivision of an object into parts. With
of common motion. A group of elements will be consideredppropriate data, machine learning can capture the necessary
an object if and only if they are undergoing coherent motiozontextual and environmental information for a particular
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segmentation task. A learned boundary-detection algorithinitial results demonstrate that it is possible to learn a useful
can adapt and optimize its performance for different situationsodel of object boundaries with a very simple shape and
without the need for extensive manual tuning. feature model. Future extensions and modifications of the
current work, combined with a clearer understanding of the
object segmentation problem should lead us toward models
Image segmentation algorithms are based on a varietytbét better capture the problem and its solutions, and therefore
models. Some methods, such as Felzenszwalb and Hutterovide improved, and more general, results.
locher’s algorithm [3], are based on local models of texture We have created a new object-boundary detection algorithm
and region size, while Shi and Malik’s normalized cuts metha#lat is trained on motion segmentations output by an algorithm
[18] makes globally optimal divisions based on a matrix adeveloped by Stauffer and Grimson [20]. The data is used to
similarity measures. Most similar to our work is Geman ancbnstruct a probabilistic model that captures information about
Geman’'s image restoration algorithm [7], which uses twie spatial properties of the observed objects. After training,
linked Markov random fields (MRFs) to denoise images. Oriselief propagation inference [14], [25] can efficiently find
of these fields, the line process, divides images into regiobsundaries in novel static images. Our model is based on work
based on local image gradients and contour properties, suchpsreeman et al. [6] on training Markov random field models
edge continuity. Our model is similar to the line process, bétr vision problems. This work contributes a solution to the
it is learned from data and captures more shape informatigegmentation database problem, a low-dimensional, discrete
Poggio et al. [15] described the use of MRFs to combirsbject-edge representation, and the ability to construct high-
different image features. resolution object boundaries from noisy, low-resolution data.
Recent work in learning segmentation and edge detection
include Feng et al.'s work, which combined belief and neur&l. Object Boundary Model

network techniques [4]. This work is closer to region or texture The object boundary model is inspired by Freeman et al’s

modeling than pure segmentation: their goal is to apply a set O(f)rk on leamning super-resolution [6]. The boundary model is
predetermined labels (e.g. sky, vegetation) to images. KOniga%l\/larkov randogr]n fi(Fa)Id (MRF) with tWo sets of varigbIeS' the
et al. [9] have investigated the statistical optimality of common ible “sianal” nodes representing imade data. and the Hidden
local edge detectors and Martin et al. [11] improved o\x/]'S' " 9 h P hg gl B
standard edge detectors by learning detector parameters frsrcT:]ene n'odes t a.t re present t € ‘.’f‘dery'”g ObJeCt. edges. In
a human-labeled database. These methods rely on manuta Réfollow!ng c_iegcnphon, the possibility that no edge is present
segmented training data, requiring a time-consuming procgss location is included among the set of edge scenes.
that may produce subjective results.

Borenstein and Ullman have developed a model of clas
specific segmentation that learns to perform figure-groul
segmentations for a particular class of objects by buildir
a database of fragments that can be assembled like puz-——
pieces [1]. They hypothesize that motion could be a source -~
training data for their algorithm, which combines segment
tion and classification. Hayman and Eklundh learn addition
figure-ground segmentation cues from motion detection a
prediction [8], but they are concerned with improving motiol
segmentation performance on video sequences by adding color

and contrast cues, not with learning to perform the statit. 1. Each edge node in our Markov random field (left) is attached to a
segmentation task visible data input node and to the edge nodes for neighboring image locations.

. . . . The edge scene values (right) are represented by three parameters. Each edge
Fitzpatrick [S] developed an object-recognition system fQiters a scene patch at some border pixel, may change direction at an inflection

Cog, a humanoid robot, that acquired examples by movingint, and exits at another border pixel.

objects and observing them using background subtraction.

Weber et al. [24] performed unsupervised learning of object The MRF model (Figure 1) represents the probability dis-
class models by assuming that the class examples are the niritsition of object boundary edges given visible scene data.
prevalent element in their image set. Every edge nodéey;, is connected to an image signal nodg,

Our use of belief propagation to detect and reinforce imagéd to it's left, right, upper, and lower edge node neighbors.
contours is very similar to the work of Shashua and Ulimafhe value of an edge node represents a 5 pixel by 5 pixel
[17], which described a hand-built saliency network thaegment of an object boundary (or the absence of a boundary),
combined incomplete contours to minimize an error functioand its associated signal node represents the convolution of
several image filters at the corresponding image location. Each
image and edge node pair is responsible for a single 5x5

We have developed an initial learning and segmentatitocation in the image, and neighboring nodes are responsible
framework that has some of the properties we desire. Tfe adjacent, but non-overlapping areas. The valyds an
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assignment taF;, and a vector is an assignment to everyexamples in our training set. Each edge is represented by the

edge nodes; ands are analogously defined for signal nodeshoundary pixel at which it enters the 5x5 patch, a possible
After training, segmenting new images requires knowledgeterior inflection point, and a patch boundary exit point. The

of the distributionPr(e|s) = Pr(s|e) Pr(e)/ Pr(s). Given an “empty” edge, representing the absence of a boundary, is

image, s is fixed, so the desired boundary is theéhat maxi- included as a special case. During training, each scene’s value

mizesPr(s|e) Pr(e) = Pr(e, 5). The MRF representBr(e, 5) is represented by its best-fit parameterized edge.

with two sets of compatibility functions. The;(s;, e;) func-

tions represent the compatibility between pairs of signal valugs Training Algorithm

and edge values, ang;(e;, e;) functions represent the com- ) ] ]

patibility between assignments to neighboring edge nodes. IUSt @s simple neurons can detect motion due to their

N is the set of neighboring edge node indices, tendency to habituate to static input, computer algorithms
can detect motion by background subtraction. By modeling

Pr(e,s) = Z [ di(sies) ] wisleire)) the values observed at every image location across a video

i (i,5)EN sequence, areas containing moving objects are highlighted as
where outliers. This work used Stauffer and Grimson’s background
subtraction algorithm [20], which models every image pixel
Z = ZHqﬁi(s;,e;) H Vijlese) - with a small set of Gaussian distributions. This algorithm is

ECA (4,9)EN easy to compute and is robust to non-motion changes, such as

Z is the partition function, which normalizes the probabilit)),'ggtmg varlatlol?s, that we wish tof d.|scard..Tfhe bacl;gr_ound
but its computation is intractable for all but the smallegjPtracter works on a stream of images; for each image
examples. it returns a blna}ry image that labels every plxel as either
In general, there is no known closed-form solution fofpreground (moving) or background (static) (Figure 2).
specifying compatibility functions that will produce particular

marginal probabilities in an MRF. Iterative proportional fitting
(IPF) is a gradient descent method that repeatedly adju .
compatibility functions to match the network’s marginal prob

abilities to match an empirically observed set. Unfortunately;

IPF requires us to perform inference on the MRF after ea?—‘l%. 2. From left: The background subtraction algorithm learns the back-

descent, which is prohibitively expensive. Instead, we Cakbund colors at each pixel and returns a binary image indicating the location
substitute belief propagation for the exact inference step.oAthe moving object. Then, the moving object is cropped out of the image

tree reparameterization analysis [22] of this algorithm Wd the binary image is processed to produce the object edge image.
Wainright and Sudderth reveals that it has a simple fixed point

.

[23]: Motion can only give us data about the object edges
bi(si,e:) = Pr(s;, e;) immediately around the moving object. Therefore, we discard

all of the original image and the binary foreground-background

and Pr(ci, ;) image, except the areas containing the moving object and
Vij(ei,ej) = %% its immediate surroundings. Given the cropped foreground-

Pr(e;) Pr(e)) background image, we scan across all rows and columns

These compatibility settings are intuitively sound because thegd label every location at which there is a transition from
give high compatibilities to pairs that co-occur frequentlyforeground pixels to background pixels as an edge. The output
and they exactly correspond to Freeman et al’s conditioriala new binary image of edge and non-edge pixels. Our goal
probability message passing algorithm [6]. They also appédarto learn a model that will generate an equivalent object edge
as approximate maximum likelihood parameter estimates iinage from a novel, static image. Each image and edge image
the tree reparameterization framework [21]. pair provide a complete set of assignments for an MRF object
In Section I1I-B, we will demonstrate that it is easy tdoundary model of the image.
generate training data, so it is a simple matter to estimate anylhe training algorithm constructs representations of ¢he
discrete probability function by frequency counting. Thereforend functions by learning three sets of probability distribu-
we discretize filter responses by counting them in 1000-biion functions, which can be used to compute the compatibility
histograms. The set of potential edges is already discrete, hwictions described in Section IlI-A using Bayes’ rule. The
it is too large to handle via simple counting. A 5x5 binargdge pixels at any location are represented by their best-
image can take oR*® possible values. Even discarding imagefit edge in the parameterized edge model (Figure 1). The
that could never represent an edge fragment, such as an mlbdel is translationally invariant, so all the functions are
white image, noise and natural variability produce tens efjual, and the functions fall into four classescs (e;, €lett ),
thousands of edge images. Therefore, we have develope@,au: (€, €right), Vabove(€i, €above), aANA YVhelow (€:, Ebelow)-
simple edge parameterization (Figure 1) that reduces the sphearning Pr(e;), Pr(s;|e;), and the conditional probability
to 2717 possible edges and provides excellent coverage of thiections Pr(e,|e;) for each neighboring relationn( =



left, right, above, below) will provide the necessary informa-edges (where we have experimented with< N < 100)
tion to specify each compatibility function. All the probabil-with the largestPr(s;, ¢;). Because the edge candidates at a
ities are discrete, and data is plentiful, so it is possible twde have only been selected based on local information, it is
learn them by storing the value frequencies. The nodes in thassible that the node may have no assignments compatible
model are assumed to be homogeneous, so only one setwith some of the potential values of its neighbors. Therefore,
distributions is learned. the algorithm visits each node a second time, and adds
The algorithm must combine the data from multiple filteradditional scenes so that the node can continue any edge that
into a singlePr(s;|e;) value. Experience shows that no singlenters and exits it from its neighbors.
filter will be an adequate edge detector. In some simpleOn every iteration of the algorithm, every edge node is
images, local horizontal and vertical image gradients respowdited and its messages are updated. An edge Apd=an be
strongly to object boundaries, but in highly textured exampleescribed by the signal associated withsjt,a set of candidate
they might respond more strongly to non-edge regions. Oseenes{Cand(¢), a set of neighbors\eigh(¢), and an array of
solution is to probabilistically combine many features. Thmessages from each neighbor indexed by scene,; with
underlying signal for each scene is an n-tuple of the valugsc Neigh(i). All messages are initialized to 1. The index
of a set of filters at a particular Iocation. The model requiredi, j) indicates the position ofi relative to: (left, right,
the joint probability distributiorPr (s}, s?,...,s?|e;) for each above, below). On every iteration, we simultaneously update
possible edge. Incorporating more features requires expon#re messages at each node by the following equation:
tially more data to estimate, and memory to store, the resulting
model. Therefore, we make the naive Bayes assumption thatni—;(e; € Cand(i)) =
the features are conditionally independent given the underlying ... B(55, ) r(igy (€5, €1) H
edge and approximate the joint likelihood g, Pr(sjle;).  e;€Cand()
This assumption is clearly incorrect, but the results it gives are
still useful in practice, especially in discriminative applicationEach message:;_;(e;) represents the compatibility between
[16]. In the future, we hope to employ new representatiom®de E; having assignment; and the information from its
that will better approximate the full joint probability of theneighboring nodeE;. The message is updated by maximizing
features. Konishi et al. [10] have discovered an adaptive hifunction over the neighboring assignments which combines
togramming algorithm that efficiently combines edge detectidheir fit to the local data af and their match to information
features. from the other neighbors of’;. After sufficient propagation
If the training data were noiseless, from a perfect backconvergence is not guaranteed in loopy networks), the ap-
ground subtraction algorithm, the learning algorithm woulBroximate MAP estimate for an MRF node is
only experience closed contours, and for any neighboring
pair of candidate edges whose endpoints did not match the MAPg, = ae ergfrﬁ(l) Osires) _ H _
compatibility ¢, (e,,, ;) would be zero. Unfortunately, this is jE€Neigh(i)
not the case, so we encourage the formation of closed cet-each noder;. This selects the edge that is maximally
tours during inference by setting the compatibilities for norcompatible with local evidence and the information propagated
matching neighbors to be nearly zero. Setting the compatilitom the remainder of the graph.
ities to exactly zero would violate the MRF definition, which
forbids zero probability states. This produces cleaner contol
and fewer spurious edges, but does not completely rule (
incomplete contours, because our edge parameterization d
not allow multiple contours to combine via T-junctions.

mj—k(e;).
ke{Neigh(j)\i}

mi—j(e;)

C. Inference Algorithm

There is no known efficient algorithm for exact inference o
a Markov random field, so we employ the belief propagatic
algorithm, a speedy approximation that works well in practic
Once the model is trained, belief propagation can compute
approximate maximuna posteriori (MAP) estimate of the .
object edges present in a static scene [25]. Belief propagatm%ge B
produces exact MAP estimates in loopless MRFs [14], [26}age.
Our network has loops, but belief propagation still works well
in practice [6].

As in the super-resolution algorithm described by Freem&h Results
et al., the edge-inference algorithm begins by selecting a setVe trained models on three video sequences: a dark disc
of locally likely candidate edges at each location. It first visitmoving against a white background, a toy robot traveling
each edge nodé and selects the empty edge and tiie- 1 across a highly textured carpet, and cars driving along a

Top: MAP estimates after 0, 5, and 10 iterations on a sample disc
ottom: MAP estimates after 0, 10 and 20 iterations on a sample robot



highway. The first two sequences contained approximatehe road lines as potential objects, if we desired to do so.
1200 frames, and the third sequence contained 7000 framesn all three cases, it is important to note that the contours
In each case the first 200 frames were used to initialize tivere detected remarkably well given the sparse, imperfect
background subtraction algorithm and were not included information that was available. Next to each image in Figure
the training set. The detection results presented are all dradvrare the four input signals used to produce the object
from these discarded video frames or from other non-trainimgige outputs. Gradients were only computed at the image
sets. locations associated with the center of each edge node’s patch,
Different numbers of candidate scenes and iterations wese an image of height and width w is represented only
required for each result, depending on the complexity of thoy % inputs in each filtered image, and these filters were
object and the quality of the underlying data. Because tllgen combined suboptimally by the naive Bayes assumption.
algorithm selects an initial set of N possible values at eadlihe shape model that inter-relates neighboring edge patterns
edge node, and then augments them with extra possibilitiesptovides much of the output accuracy.
allow for contour completion, each node in a particular MRF
may consider a different number of possible edges. Disc resii
used N=20 candidates and 10 belief propagation iteratio
The robot results used 100 candidates and 20 iterations, f
to the robot’s irregular shape and the “noise” provided K
the textured carpet. The cars required 40 candidates 4
20 iterations. The number of initial candidates and beli
propagation steps were manually selected. Selecting lar$
Va“%es in each InStanC_e should produce equivalent resu“%:ia.t 5. From left to right: boundary detection with our algorithm, with the
an increased computational cost. In future work, we hope default Canny edge detector, and with a hand-tuned Canny edge detector.
determine these parameters automatically from the data and
models. Figure 5 compares our performance on the robot image to
Although we have experimented with texture-sensitive fithe output of the Canny edge detector [2] included in the
ters, such as Gabor functions, all of the results presented hgratlab Image Toolbox. Our detector significantly outperforms
were computed using four local gradient operators, orientedtt@ results using the default threshold and smoothing settings,
0, 45, 90, and 135 degrees, as the input signals. These filtangl approaches the output of the Canny detector with manually
were computed on the grayscale image values; color was sabsen parameters (threshold = 1, sigma = 0.2). Our algorithm
used. We trained a four-neighbor model in which each no#ias learned many of the boundary rules that are hand-coded
is connected to its first-order (above, below, left, and righiito the Canny algorithm, and is able to adapt itself to the
neighbors. requirements of the visual environment without the need for
In a typical run, the initial MAP estimate, made before beliehanual parameter tuning. The Canny algorithm also has the
propagation occurs, contains approximate object edges, whiglvantage of higher resolution gradient information than that
are improved by enforcing local edge continuity and learnegailable to our algorithm.
shape information. Figure 3 demonstrates the progress of belieFigure 6 demonstrates that the model trained on the car
propagation on samples from the disc and robot sequencesata sequence can be successfully applied to other similar
Figure 4 displays a sample result from each trained modsiuations. The images in this test set come from another
Unsurprisingly, the simple disc case was the most successfglad which was observed in the same wide-angle video as
due to its highly regular shape and the strong spatial derivative training data. The model does a good job at detecting
along its boundaries. The robot was the most difficult, given ithe car boundaries. The errors arise from extremely low
irregular shape and the fact that the carpet produced spurigmage gradients at the borders of some of the cars, and the
image gradients that the model had to learn to ignore. Thecompatibilities caused by the intersection of car and road
car was very successful, especially considering that the eantours.
shadows were included as moving objects during training. The
model segmented the car and its shadow from the road, 4
also detected other object and non-object edges in the ima
In both the car and robot examples, non-object edgd
such as the lines on the road and internal color chang
on the robot, were detected. In the robot, these extra edq
apparently prevented some of the robot object contours frg
closing properly. Because our edge model only allows o
entry and one exit point in each patch, it is impossible to
represent contour intersections proper|y_ This C|ear|y needsFig 7. Results of running the robot model on a disc image, and vice-versa.
be addressed in the future. In the case of the car output, a more
sophisticated model of shape would be necessary to eliminatélthough the MRF model is very simple, it is clear that it




Fig. 4. Sample results from three different data sets. Each row shows, from left to right, an image outside the training set, the contrast-enhanced outputs of
the four coarse derivative filters, and the result of using our MRF model and belief propagation to find object edges in the scene.

learns a great deal of contextual information during training. IV. CURRENTWORK

Figure 7 demonstrates the results of applying the disc-trainedro current work on this project focuses on incorporating
model to a sample from the robot sequence and the rolofo jrtormation about the interior properties of objects.
model to a disc image. In the first case, the disc modgl,, traditional segmentation algorithms model the seg-
erroneously detects a number of long contours along heyneq regions, rather than their borders, and can capture
carpet. In the disc training sequence, nearly all the image, o ties ahout interregional and intraregional color differ-
gradients were associated with object edges, so the model d9§sS.<  Boundaries that might be probable given edge and

not know to avoid the weak, random carpet gradients. On the, yient information may be unlikely when regional properties
other hand, the robot model appears to detect the boundalles (-1an into account. and vice-versa

of the disc adequately, but it lacks the shape experience 9 order to capture these region properties, the Markov

complete the simple circular contour. random field model is augmented. Every edge nddeis

replaced by a nod€z;, R;), whereE; still represents the local
The algorithm is very efficient, completing all the calcuedge value and?; represents local pixel information that can

lations for 20 iterations of belief propagation on a 150x150e used to compute region properties as discussed above. In

pixel image with 40 candidates at each location in less th&nference, the? values are hidden, as before, but fRevalues

30 seconds on a dual 1.4 GHz Pentium 3 machine in oare visible, since they come directly from the image data.

Java implementation. This is due to the efficiency of belief As discussed previously, the compatibility estimate is

propagation, the preselection of a small set of potential scenes Pr(es, s, ¢5,75)

at each edge node, and the relatively large size of the edge v ((e;,7:), (ej,75)) = 2l dl

patches, which allow us to cover the image with only 900 Pr(es; ri) Pr(e;, 75)

edge nodes. By applying the definition of conditional probability, this




Fig. 6. These results were inferred by the car model on images drawn from another road’s traffic. The results required 40 candidates per node and 20
iterations of belief propagation. The model does a good job of extracting the car boundaries, except where the car colors blend into the road too much, or
where there is competition between car contours and strong road contours.

factors to [2] J. Canny. A computational approach to edge detectitFEE Trans-
actions on Pattern Analysis and Machine Intelligen8é5), November
Vii((esrs), (e,7)) = Pr(e;, e;) Pr(rs, rjles, e;) 1986.
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