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Abstract— In this paper, a similarity-driven cluster
merging method is proposed for unsupervised fuzzy clus-
tering. The cluster merging method is used to resolve the
problem of cluster validation. Starting with an overspeci-
fied number of clusters in the data, pairs of similar clusters
are merged based on the proposed similarity-driven cluster
merging criterion. The similarity between clusters is calcu-
lated by a fuzzy cluster similarity matrix, while an adaptive
threshold is used for merging. In addition, a modified
generalized objective function is used for prototype-based
fuzzy clustering. The function includes the p-norm distance
measure as well as principal components of the clusters.
The number of the principal components is determined
automatically from the data being clustered. The perfor-
mance of this unsupervised fuzzy clustering algorithm is
evaluated by several experiments of an artificial data set
and a gene expression data set.

Index Terms— Cluster Merging, Unsupervised Fuzzy
Clustering, Cluster Validity, Gene Expression Data

I. INTRODUCTION

In prototype-based fuzzy clustering methods, for
example, the well-known Fuzzy C-Means (FCM)
algorithm[2], several problems are still open for ob-
taining a good performance. These concern the number
of clusters in the data, the uneven distribution of the
data points, the initialization of the clustering algorithm,
the large difference of cluster’s sizes, the shape of the
clusters, etc. Determining the optimal number of clusters
is an importance issue in cluster validation for clustering.
Traditionally, the optimal number of clusters is deter-
mined by evaluating a certain global validity measure
of the c-partition for a range of ¢ values, and then
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picking the value of ¢ that optimizes the validity measure
in some sense[6], [15], [1]. However, it is difficult to
devise a unique measure that takes into account the
variability in cluster shape, density, and size. Moreover,
these procedures are computationally expensive because
they require solving the optimization problem repeatedly
for different values of the number of clusters ¢ over a
pre-specified range [¢min, Cmaz]- IN addition, the validity
measures may not always give the correct number of
clusters ¢ [10]. In order to overcome these problems,
researchers proposed merge-split or progressive cluster-
ing schemes based on the values of validity function.
However, the validity function in turn depends on the
objective function of the fuzzy clustering algorithm[2],
[5], and it is non-convex.

Cluster merging[11] is proposed as a way to select
the number of clusters. The data is clustered with an
overspecified value of c. After the data is partitioned
into ¢ clusters, similar clusters are merged together based
on a given assessment criterion until no more clusters
can be merged. The procedure of cluster validation is
independent of the clustering algorithm, and the number
of clusters is reduced dynamically. Krishnapuram et al.
presented the compatible cluster merging method for
unsupervised clustering[10]. Kaymak et al.[9] also used
the cluster merging method to determine the number of
clusters in an extended FCM algorithm.

In this paper, a similarity-driven cluster merging
method is proposed for unsupervised fuzzy clustering.
The clustering starts with a large number of clusters.
Pairs of similar clusters are repeatedly merged, based on
the proposed similarity-driven cluster merging criterion,
until the correct number of clusters are determined. The
similarity between clusters is calculated by a proposed
fuzzy cluster similarity matrix. The merging thresh-
old can be determined automatically and adaptively. In
addition, a modified generalized objective function is
used for fuzzy clustering. The function includes the p-
norm distance measure and the principal components
of clusters. The number of the principal components is



determined automatically from the data being clustered.

The organization of this chapter is as follows. Section
Il presents the similarity-driven cluster merging method
for solving the fuzzy cluster number problem in unsu-
pervised fuzzy clustering. In section Ill, the modified
generalized objective function based on the fuzzy c-
prototype form is described. Experimental results on an
artificial data set and a gene expression data set are
presented in section V. Finally, conclusion is given in
section VI.

Il. SIMILARITY-DRIVEN CLUSTER MERGING
METHOD

The cluster merging approach offers an automatic and
computationally less expensive way for cluster valida-
tion, but so far, most of the cluster merging methods
heavily depend on the clustering procedure. In other
words, these methods belong to dynamic cluster vali-
dation. They cannot be applied to other clustering algo-
rithms easily. In the process, the intermediate clustering
results are also affected by cluster merging. However, the
static cluster validation method leads to heavy computa-
tion due to repeated clustering. In this section, a cluster
merging method is proposed. It combines the advantages
of dynamic and static cluster validation approaches. The
proposed cluster merging method is based on a new
similarity-driven cluster merging criterion. As a result,
similarity between two clusters can be measured by two
conflicting factors: separation between a pair of clusters
and compactness within each cluster of the pair. Based
on this criterion, similar clusters can be merged together
at a time. As a result, the over-partitioning of the data
can be merged to the optimal fuzzy partitioning in a few
steps.

A. Similarity-Driven Cluster Merging Criterion

Let us consider a collection of data X = {x €
R™}, in which there are ¢ clusters {P,Py,--- ,P.}.
{V, € R"i = 1,2,--- ¢} are the prototypes of the
corresponding clusters. If dp; is the fuzzy dispersion of
the cluster P;, and dv;; denotes the dissimilarity between
two clusters P; and P;, then a fuzzy cluster similarity
matrix FR = {FR;j, (1,7) = 1,2,--- , c} is defined as:

dp; + dp;

FR;; = dvi;

(1)

The fuzzy dispersion dp; can be seen as a measure of
the radius of P;,
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where n; is the number of data points in the cluster
P;, nwi = {pa, -+ ,pn} denotes the i-th row in the
membership matrix U = {u;;}, and m € [0,00) Iis
a fuzziness parameter. dv;; describes the dissimilarity
between P; and P,
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It can be seen that F'R;; reflects the ratio of the sum
of the fuzzy dispersion of two clusters, P; and P, to the
distance between these two clusters. It can be concluded
that F'R;; is nonnegative and symmetric. F'R;; reflects
the similarity between P; and P;. Hence, it can be
used to determine whether two clusters are similar or
not, according to the following defined similarity-driven
cluster merging criterion.

Considering a data set X, there are c clusters {P;,i =
1,2,--- ,c}. In each cluster, for example P;, p; is the
membership vector of all data in X with respect to
P;, and V; denotes the prototype of P,. For a fuzzy
similarity matrix FR = { FR;; } and a given threshold 7,
the similarity-driven cluster merging criterion is defined
as:

If FR;; <,

the cluster P; and the cluster P; are completely separated.

If FR;; > T,

the cluster P; and the cluster P; can be merged

to form a new cluster P, with 1,y = pi; + p; and 'V, = VT?JQFVJ ’
then ¢’ = c— 1, (4

where P, refers to the new cluster after merging, x,» and
V,» denote the membership vector and the prototype of
P, respectively, and ¢ is the number of clusters after
merging. Note that the merging order of pairs of clusters
in an iteration is according to the value of F'R;; (see
Table ).

Furthermore, a corresponding index is defined as:
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TABLE |

THE MERGING ORDER OF CLUSTERS BASED ON THE
SIMILARITY-DRIVEN CLUSTER MERGING CRITERION.

If [i1, 1] = arg max; ;) {FRi; > T},

then the cluster P;, and the cluster P;, are merged first,
If [i2, jo] = arg max(; jyx¢i, ;) {FRi; > T}

then the cluster P;, and the cluster P;, are merged next,

Until there is no FR;; > 7.




where FR; = max;+;{FR;;,(i,j = 1,2,--- ,c)}. Ac-
tually, the minimum DBgg corresponds to the optimal
copt- Because DBrp is similar to the well-known DB
index[14], it is named as the fuzzy DB index.

B. The Determination of the Threshold for Similarity-
Driven Cluster Merging Criterion

In order to define 7, the following definition is given.
For the data set X = {xx,k = 1,---,N}, P =
{P;yi = 1,---,c} is a set of ¢ clusters of X, and
the corresponding prototypes are {V;,i = 1,--- ,c}.
vx; € P;, there is

where D(xy,V;) denotes the distance between x; and
V;, and dp; represents the fuzzy dispersion of P;.

It can be seen that P; C P,. Nonetheless, P; can be
used to represent the cluster P;, i.e. P; ~ P;. Therefore,
the following criteria can be obtained.

it P,nP;=0, ie §P;NP;) =0,
then dp; +dp; < dvi; i.e. FRy <1, @)
it P,NP;#0, ie fP;NP)) >1,
then dp; +dp; > dv;; i.e. FR;; > 1, (8)

where §(P;) stands for the number of data points in the
cluster P;.

The contour of the dispersion of a cluster can be drawn
to represent the cluster as shown in Figure 1. If two
clusters, P; and P;, are far away from each other, i.e.
there is no intersection between two dispersion contours
(refer to equation(7)), it is believed that the two clusters
are well separated from each other. As shown in Figure
1, P, and P4 are two completely separated clusters. If
there is an intersection between the dispersion contours
of two clusters, it can be said that these two clusters are
overlapped clusters and should be merged together (refer
to equation(8)). From Figure 1, it can be considered that
P, and P3, P4 and P5, P5 and Pg are overlapped with
each other. However, if two dispersion contours are at
tangent, i.e. dp; +dp; = dv;; and then F'R;; = 1, it can
be considered that P; and P; are separated. Therefore,
the similarity threshold = can be fixed as 1. 7 can also
be given other values. If 7 > 1, for example 7 = 2, it
means that two clusters can be seen as separating from
each other well even though they overlap much more.
Otherwise, if 7 < 1, for example 7 = 0.5, it means that
two clusters should be merged together even though they
are well separated.

The value of 7 can affect the final solution and
speed of the cluster merging. Thus, the definition of the

Fig. 1. Intersection between pairs of clusters represented by their
dispersion contours.

similarity-driven cluster merging criterion, in equation
(4), can be refined. Consider a data set X with ¢ clusters
{P;,i = 1,2,--- ,c}. In each cluster, for example P;,
u; is the membership vector of all data in X with
respect to P;, and V; denotes the prototype of P,. For
a fuzzy similarity matrix FR = {F'R;;} and two given
thresholds 7, and 7, the refined similarity-driven cluster
merging criterion is defined as:

If FR;; <1,

two clusters, P; and P;, separate from
each other completely.

If 1 < FRij; <o,

an annealing technique is needed to

find the appropriate = for the equation(4).
If FR;; > 19,

two clusters, P; and P;, should be merged
immediately to form a new cluster P,
with 1y = p; + pj and V= YitVs)
then ¢ = ¢ — 1, 9)

where P, refers to the new cluster after merging, u,» and
V- denote the membership vector and the prototype of
P, respectively, and ¢ is the number of clusters after
merging.

Based on the discussion of equations (7) and (8) and
Figure 1, it is seen that 7; can be reasonably set as 1.
Normally, if FR;; > 2, P; and P; will be considered
as the overlapped clusters to be merged with no doubt.



As a result, » is set to 2. If 1 < FR;; < 2, the
appropriate value of the threshold is obtained adaptively
and automatically.

I1l. A MODIFIED GENERALIZED OBJECTIVE
FuNCTION

A modified generalized objective function for the
unsupervised fuzzy clustering algorithm is described in
this section. The function consists of the p-norm distance
measure and principal components of clusters.

Consider a collection of N data {x; € R",k =
1,2,---, N} forming the data set X. There are c clusters
whose prototypes are V.= {V; € R",i = 1,--- ,c}.
The modified generalized objective function based on
[2], [16] is proposed as follows:

N
J{m p} é Z Z (ki)™ Dig,
. =1 k=
=22 i) {{u x;— Vi HP}P+92S (i — )}
o
£ Z Z ™ {Dp(ik) + gDy (ik)} (10)

where p > 1, m € [0,00) is a fuzziness parameter, and
g € [0,1] is a weight. {S;s € R",s = 1,---,r} are
r eigenvectors of the generalized within-cluster scatter
matrix of the cluster P;. U = {u;} is the fuzzy
membership matrix, and 1, should satisfy the following
constraints:

2521 Wik = 1 v k?
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The first term D, (ik), in the objective function
Jimpy (U, V; X), characterizes the distance from a data
point x; to the cluster P;, based on the p-norm dis-
tance measure. The second term D,.(ik) introduces the
principal axes of the cluster P;, which are determined
by the collection of » > 0 linearly independent vectors
{Sis, s =1,2,--- ,1}.

{Si1,S;2, -+ ,Sir} are eigenvectors corresponding to
the first r largest eigenvalues of the generalized within-
cluster scatter matrix E;. E; is given as follows,

= Z (i)™ (. = Vi) (xi, = Vi) (12)
k=

{Sis,s = 1,2,---,r} gives the cohesiveness of the
cluster P;. In fact, {S;s,s = 1,2,---,r} are the r
principal eigenvectors of the cluster P;. They give the

most important directions, along which most of the data
points in the cluster scatter. Through the weighted term
D, (ik), the principal directions of the cluster P, can be
emphasized. In other words, the search for the prototype
V; is only along the principal directions. As a result, the
speed of the search is improved. Especially for a large
number of data points, the appropriate value of » can be
selected to significantly improve the convergence speed
of the fuzzy clustering algorithm.

Choosing a suitable value of r in different applications
is still a problem. For the fuzzy c-elliptotypes and fuzzy
c-variants algorithms, two variations of the FCM[2],
[16], » must be specified a priori based on the assumed
shape of clusters. However, it is difficult to imagine the
shape of clusters if the dimension of the data is larger
than three, i.e. n > 3.

Since the minimum description length (MDL)[7] is
one of the well-known criteria for model order selection,
the MDL is used here to find the optimal value of r. For
N input data {x; € R,k =1,2,--- N}, there is
s An)
7)‘71)
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where Ay > Xy > --- > A, denote the eigenvalues
of E;, and j € [1,2,---,n]. G(-) and A(-) denote
the geometric mean and the arithmetic mean of their
arguments, respectively. Hence, the optimal value of r

can be determined as:

r={j| min MDL(j)}. (14)
Jj=ri,ri+1,-
That is, equation (14) searches for the optimal r from

[r1,-+- ,n —1]. Normally, r; = 1.

Depending on the data set, the involved second term
can also affect the shapes of clusters. Because the r prin-
cipal components of clusters are considered during the
clustering, the shape of the clusters can be changed from,
for example, if p = 2, hyperspherical to hyperellipsoidal.

IV. THE COMPLETE UNSUPERVISED Fuzzy
CLUSTERING ALGORITHM

The unsupervised fuzzy clustering algorithm consists
of a modified generalized objective function for fuzzy
clustering, and a similarity-driven cluster merging crite-
rion for cluster merging, i.e. the GFC-SD algorithm in
short. The complete GFC-SD algorithm is described as
follows:

step 1. Initialization:
Pre-selecting the maximum value for the num-
ber of clusters ¢ = ¢4z, OBVIOUSIY ¢z < N
predefining g, p, r1, m, the tolerance e, the
merging thresholds 71 and 7; setting the initial



membership matrix U subject to constraints in
equation (11).

step 2.Updating:
updating the cluster prototypes V and the
membership matrix U. The updating formulas
can be obtained by differentiating the general-
ized objective function Jy,, ., (U, V;X) with
respect to V and U, respectively.

step 3.The penalty rule:
If the given stopping criterion is satisfied, i.e.
| Upew — U ||< €, go to next step. Else go
back to step 2, replace the old U with the new
partition matrix U,,c.

step 4.Cluster merging:
Merging clusters based on proposed similarity-
driven cluster merging criterion. If ¢ is not
changed, then stop the procedure. Else go back
to the step 2, repeat the whole procedure ac-
cording to the new number of clusters ¢, and
use current corresponding V and U as the
initialization.

V. EXPERIMENTS

In this section, the performance of the GFC-SD algo-
rithm is studied. For comparison, the GFC-SD algorithm
is applied to an artificially generated two-dimensional
data set, which was used in [9]. Moreover, the proposed
GFC-SD algorithm is applied to a gene expression data
set, the serum data set, which is preprocessed in the same
way as in [3], [13] by using the variance normalization.
All experiments are done with a fuzziness parameter
m = 2 and a 2-norm distance measure, i.e. p = 2. The
tolerance for fuzzy clustering e is selected as 0.001. The
merging threshold 7 is determined adaptively according
to equation (9) with - = 1 and » = 2. , All
experimental results are obtained on a 1.72GHz Pentium
IV machine with 256MB memory, running Matlab 5.3
on Windows XP.
A. The Artificial Data Set with Uneven-Distributed
Groups

As mentioned in [9], four groups of data are generated
randomly from normal distributions around four centers

TABLE Il
THE GROUP CENTERS AND NUMBER OF SAMPLES IN EACH GROUP
OF THE ARTIFICIAL DATA SET WITH UNEVEN-DISTRIBUTED
GROUPS.

group 1 2 3 4
origina center (-05,-04) (01,02 (05,07 (06, -0.3)
number of samples 300 30 30 50

(2) FCM-Xie (b) GFC-SD

Fig. 2. (a) The FCM-Xie algorithm fails in determining the four
clusters in the data set. (b) The GFC-SD algorithm automatically
detects the correct number of clusters in the data set. The searched
GFC-SD prototypes are denoted by the black triangle and numbers.

with the standard deviations given in Table Il. The
number of sample points in each group is also indicated.
It can be seen that the number of sample points in group
1, i.e. 300, is much larger than that of other three groups.
That is, the differences in cluster density are quite large.

In this experiment, the goal is to automatically detect
clusters reflecting the underlying structure of the data
set. Here, the well-known FCM method with the popular
Xie’s cluster validity function[15], i.e. FCM-Xie in short,
is used for comparison. The range of values of ¢ is
[2,20]. From Figure 2(a), it can be observed that the
number of clusters is seven referring to the minimum
Szie- Therefore, the conventional approach, FCM-Xie,
fails to determine the correct number of clusters in
the data due to the largely uneven distribution of the
data. The proposed GFC-SD algorithm, however, finds
the four groups present in the data correctly, as shown
in Figure 2(b). As a result, the GFC-SD algorithm is
more robust for largely uneven-distributed data than the
FCM-Xie algorithm, as well as Kaymak’s extended FCM
algorithm([9].

Like the experimental procedure in [9], the influence
of initialization on the GFC-SD algorithm is also studied.
The data set is clustered 1000 times with the FCM and
the GFC-SD algorithms, respectively. At each time, the
randomly initialized fuzzy partitions, U, are input into
the algorithms. The FCM algorithm is set to partition
the data into four clusters, i.e. ¢ = 4, while the GFC-SD
algorithm is started with twenty clusters, i.e. ¢, = 20.
After 1000 experiments, the mean and standard deviation
of obtained cluster prototypes are shown in Table IlI.
Obviously, the cluster prototypes found by the GFC-SD
algorithm are closer to the true centers than those found
by the FCM algorithm. Moreover, the standard deviation
of the GFC-SD found prototypes is much more lower.
In fact, it almost equals to zero. The FCM algorithm
has difficulty with small data groups, whose prototypes
will be attracted by those of large ones. If there are



TABLE Il
MEAN AND STANDARD DEVIATION OF CLUSTER PROTOTY PES
FOUND BY THE FCM AND GFC-SD ALGORITHMS AFTER 1000
EXPERIMENTSWITH RANDOM INITIALIZATION.

FCM prototype
group  origina center mean std. dev.
1 (-05, -0.9) (-0.5942, -0.4191)  (0.0192, 0.0814)
2 (0.1, 0.2 (-0.4073, -0.3904)  (0.0066, 0.1166)
3 (05,0.7) (0.4176, 0.6120)  (0.0067, 0.0095)
4 (0.6, -0.3) (05799, -0.2848)  (0.0032, 0.0038)
GFC-SD prototype
group  origina center mean std. dev.
1 (-0.5, -0.4) (-0.5397, -0.4326) <10713
2 (0.1, 0.2) (0.0469, 0.0578) <10~ 13
3 (05, 0.7) (0.4815, 0.7133) <107 13
4 (0.6, -0.3) (0.6083, -0.3459) <107 13

TABLE IV
AVERAGE COMPUTATIONAL LOAD OVER 1000 TIMES FOR
VARIOUS CLUSTERING ALGORITHM.

FCM FCM-Xie GFC GFC-SD
(c=4) (©=[20,2) (c=4) (cmas =20)
7.9630s 467.4100s 11.1670s 243.0890s

much more data points in the large group than those
in the small group, the later one will be missed when
bad initialization is given. Therefore, its obtained mean
cluster prototype is far away from the true center and
the corresponding standard deviation is very large. It can
be concluded that the GFC-SD algorithm is much more
robust to the initialization.

To compare the computational load of various algo-
rithms, different algorithms have been run 1000 times.
Similarly, the algorithms are initialized randomly at each
time. Table IV gives the results, where the GFC means
the fuzzy clustering algorithm only with generalized ob-
jective function. For ¢ = 4, the computational load of the
GFC algorithm is larger than that of the FCM algorithm
because of the additional calculation of the second term
in the generalized objective function. However, by using
the merging method to find the optimal partitions, i.e.
GFC-SD, the computational load is only half of that
using the conventional FCM-Xie approach (see Table
V).

B. The Gene Expression Data - The Serum Data

The serum data[8] contains expression levels of 8613
human genes by studying the response of human fibrob-
lasts to serum. A subset of 517 genes whose expression
levels changed substantially across samples was analyzed
in [3], [12], [4], [8]. By using the proposed GFC-SD
algorithm, the 517 genes can be partitioned into clusters

(a) FCM-Xie (b) GFC-SD

Fig. 3.  The number of clusters of the serum data is determined
as ten and two, by using the FCM-Xie and the proposed GFC-SD
algorithms, respectively.

whose entities share some measure of similarity in their
expression pattern. Unlike other previously used clus-
tering methods, the GFC-SD provides a “completely”
unsupervised clustering of the gene expression data,
because even the number of serum clusters is determined
automatically.

Figure 3 presents the clustering results from using the
proposed GFC-SD and the FCM-Xie algorithms. The
vertical axis in Figure 3(b) represents the values of the
fuzzy DB index D Brg (seeing equation (10)), while the
horizontal one represents the number of clusters in each
clustering iteration step. Using the GFC-SD, the number
of clusters is determined when there is no more similar
fuzzy clusters to be merged. It can be observed from
Figure 3(b) that, starting with 30 clusters, the number of
clusters is reduced to 25, 22, 20, 17, 15, 13, 11, and
finally 10 in only nine steps, based on the proposed
similarity-driven cluster merging method. As a result,
the number of clusters c is determined as 10, which also
corresponds to the minimal value of DBprpg. For using
the FCM-Xie, the number of clusters can only be found
after the exhausting search from the all possible values
of c. In this case, the range of ¢ is from 30 to 2. After
29 clustering iterations, in Figure 3(a), the number of
clusters is fixed as two referring to the minimum S,;.
In [3], [12], [8], it is consistently agreed that there are
10 clusters in the serum data set with 517 genes. As a
result, the proposed GFC-SD algorithm is efficient for
finding the number of gene clusters automatically and
correctly.

Obviously, repeated clustering leads to a heavy com-
putation, especially for gene expression data which have
high dimensionality and a large number of genes. The
consumed time for running the GFC-SD and FCM-Xie
is 1.1911 x 10% seconds and 3.1029 x 103 seconds,
respectively. It can be seen that running the FCM-Xie
spends almost 30 times longer than running the GFC-SD.
Furthermore, if the given c;,,. is increased, e.g9. ¢z =
40, the time gap between these two algorithms will



TABLE V
THE NUMBER OF CLUSTERS ¢ AND THE NUMBER OF PRINCIPAL
COMPONENTS”r OF THE SERUM CLUSTERSIN EACH CLUSTERING
ITERATION.

iteration | 1 2 3 4 5 6 7 8 9

c 30 25 22 20 17 15 13 11 10
T 8 9 10 10 11 11 12 11 11

be enlarged quickly. Therefore, the computation time is
decreased largely by using the similarity-driven cluster
merging method for unsupervised fuzzy clustering of
gene expression data.

An additional advantage of the proposed GFC-SD
algorithm is that the optimal value of r is set automati-
cally (refer to equation (14)). Therefore, the number of
principal components of each cluster can be adaptively
determined. For the serum data, the values of » and ¢
in each clustering iteration are listed in Table V. It is
observed that there are around ten principal components
constructing the serum clusters. Therefore, the GFC-SD
algorithm can do the feature selection of gene expression
data to some extent.

VI. CONCLUSION

In this paper, a similarity-driven cluster merging
method is proposed for unsupervised fuzzy clustering.
The cluster merging method is used to resolve the prob-
lem of cluster validation. The data is clustered initially
with an overspecified number of clusters. Pairs of similar
clusters are merged based on the proposed similarity-
driven cluster merging criterion. The similarity between
clusters is calculated by a fuzzy cluster similarity ma-
trix, while an adaptive threshold is used for merging.
Therefore, a few iterations are needed to find the optimal
number of clusters ¢, and more precise partitions can be
obtained. Moveover, the dependency of the clustering
results on the random initialization is decreased. For
prototype-based fuzzy clustering, a modified generalized
objective function is used. The function introduces the
principal components of clusters by including an addi-
tional term. Because the data are grouped into different
clusters along the principal directions of the clusters,
the computational precision can be improved while the
computation time can be decreased.

Two data sets are used to evaluate the performance
of the GFC-SD algorithm. It can be concluded from the
experiments that clustering using the GFC-SD algorithm
is far less sensitive to initialization and more reliable
than the compared methods. This is because the GFC-
SD algorithm not only can start with a large number

of small clusters, but also converge towards the optimal
partitions of the data set. Moreover, because the parti-
tions after one merging step are always the initialization
of the next iteration of clustering, the total time of the
fuzzy clustering is reduced. Thus, by using the GFC-
SD algorithm, the optimal number of clusters and the
optimal partitions of the data set can be obtained.
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