

Simple Bivalency Proofs of the Lower Bounds in
Synchronous Consensus Problems

Xianbing Wang, Yong-Meng Teo, and Jiannong Cao

Singapore-MIT Alliance E4-04-10, 4 Engineering Drive 3, Singapore 117576

 Abstract — A fundamental problem of fault-tolerant
distributed computing is for the reliable processes to reach a
consensus. For a synchronous distributed system of n
processes with up to t crash failures and f failures actually
occur, we prove using a straightforward bivalency argument
that the lower bound for reaching uniform consensus is (f +
2)-rounds in the case of 0 < f ≤ t − 2, and a new lower bound
for early-stopping consensus is min (t + 1, f + 2)-rounds where
0 ≤ f ≤ t. Both proofs are simpler and more intuitive than the
traditional methods such as backward induction. Our main
contribution is that we solve the open problem of proving that
bivalency can be applied to show the (f + 2)-rounds lower
bound for synchronous uniform consensus.

Index Terms — consensus, synchronous distributed system,

bivalency, and early-stopping.

I. INTRODUCTION
onsensus is one of the fundamental problems in
distributed computing theory and practice. Assuming

that a distributed system consists of a set of n processes,
{p1, p2, …, pn}, in the consensus problem, each process pi
initially proposes a value vi, and all non-faulty processes
have to decide on one common value v, in relation to the
set of proposed values V= { vi | i = 1, …, n } [9, 12].
Without losing generality, we just consider V = {0, 1}. A
process is faulty during an execution if its behavior
deviates from that prescribed by its algorithm, otherwise it
is correct. More precisely, the consensus problem is
defined by the following three properties:

(1) Termination: Every correct process eventually
decides on a value.

X.B. Wang is with the Department of Computer Science, School of

Computing, 3 Science Drive 2, National University of Singapore,
Singapore 117543, and Singapore-MIT Alliance, 4 Engineering Drive 3,
National University of Singapore, Singapore 117576, and is on leave from
Computer center, School of Computer, Wuhan University, China 430072
(e-mail: wangxb@comp.nus.edu.sg).

Y.M. Teo is with the Department of Computer Science, School of
Computing, 3 Science Drive 2, National University of Singapore,
Singapore 117543, and Singapore-MIT Alliance, 4 Engineering Drive 3,
National University of Singapore, Singapore 117576 (e-mail:
teoym@comp.nus.edu.sg).

J. Cao is with the Department of Computing, the Hong Kong
Polytechnic University (csjcao@comp.polyu.edu.hk).

(2) Validity: If a process decides on v, then v was
proposed by some processes.

(3) Agreement: No two correct processes decide
differently.

The agreement property applies to only correct processes.
Thus it is possible that a process decides on a distinct value
just before crashing. The uniform consensus prevents such
a possibility. It replaces the agreement property with the
following:

(3’) Uniform Agreement: No two processes (correct or
not) decide differently.

Synchronous consensus protocols are based on the
notion of round [1, 4, 10]. In a synchronous distributed
system, every execution of the consensus protocol consists
of a sequence of rounds. While in round r, each process
executes sequentially the following steps:

(1) sends r-round messages to the other processes,
(2) waits for r-round messages from the other

processes, and
(3) executes local computations.
Every process will start and finish the same round

synchronously. Both message delay and relative processes
speed are bounded and these bounds are known. The
underlying communication system is assumed to be failure-
free: there is no creation, alteration, loss or duplication of
message.

Most existing synchronous consensus protocols are
designed to tolerate crash failures [10]. When a process
crashes in a round, it sends a subset of the messages that it
intends to send in that round, and does not execute any
subsequent rounds. If a protocol allows processes to reach
consensus in which at most t (t < n − 1) processes can
crash, the protocol is said to tolerate t faults or to be a t-
resilient consensus protocol. It has been proved in [1, 2, 4,
10] that the lower bound on the number of rounds is t + 1
for any synchronous consensus protocol tolerating up to t
crash failures. If a protocol can achieve consensus and
stops before round t + 1 when there are actually f (f ≤ t)
faults, we call this an early stopping protocol. The well-
known lower bound, min(t + 1, f + 2) rounds, for early
stopping consensus protocols in synchronous distributed
systems has been proved [4]. Instead of considering the
time at which process decide, we call those protocols
which can achieve consensus before round t + 1 when
there are actually f faults as early-deciding protocols. The

C

lower bound, (f + 1)-rounds, for early deciding consensus
protocols in synchronous distributed system has been
proved [3].

Bivalency is a standard technique for showing
impossibility results and lower bounds related to consensus
by forward induction. That is, there exists a state from
which two different executions lead to different decisions.
This was first introduced by [5] and used in [2] to show the
lower bound for consensus. The proof is simpler and more
intuitive than the traditional one; i.e., it uses simpler
forward induction rather than a more complex backward
induction, which in turn requires applying the induction
hypothesis several times. But an open problem is how to
extend this to prove the lower bound for early-deciding
synchronous uniform consensus. As mentioned in [13] it is
not immediately clear how to extend the proof in [2] to the
case of uniform consensus. Keidar and Rajsbaum argue
that the bivalency argument cannot be used to show the (f +
2)-rounds lower bound for the uniform consensus because
in essence it relies on too weak a validity property [7].

Firstly, consider an algorithm for uniform consensus in
the synchronous crash model with up to t failures, we show
by applying the bivalency proof in [2] that for every 0 < f ≤
t − 2, there exists an execution of the algorithm with f
failures in which it takes at least f + 2 rounds for all the
correct processes to decide. For f = 0 and f = t − 1, the
lower bounds to reach uniform consensus are two rounds
[6, 13] and (f + 1)-rounds [3] respectively. These have been
proved and are not considered in this paper.

Secondly, we apply the bivalency proof to present a new
lower bound proof for early-stopping synchronous
consensus protocols. We show that in an execution with f
failures, all correct processes decide and halt requires at
least min (t + 1, f + 2) rounds, for every 0 ≤ f ≤ t, where t <
n − 1.

The rest paper is organized as follows. Section II
describes the related work. Section III presents the
bivalency argument. Based on the bivalency argument, we
proved the uniform consensus lower bound in section IV,
and present a new bivalency proof of early stopping
consensus lower bound in section V. Our concluding
remarks are in section VI.

II. RELATED WORKS

A. On Uniform Consensus
Charron-Bost and Schiper [3] proved that early-deciding

uniform consensus protocols require at least f + 2 rounds
whereas early-deciding consensus protocols require only f
+ 1 rounds if f is less than t − 1. For f = t − 1 or f = t, they
showed that both consensus and uniform consensus require
f + 1 rounds. Keidar and Rajsbaum [6, 7] used a different
way to prove the same lower bound for synchronous early-
deciding uniform consensus protocols and showed that for

1 < t < n, every t-resilient uniform consensus protocol must
perform two rounds in failure-free execution before all
processes decide. In [13], a novel oracle argument is
introduced to prove both lower bounds for synchronous
consensus and uniform consensus. The underlying idea is:
suppose there is a consensus algorithm A that can tolerate f
faults and only executes f rounds of message exchange.
Then another algorithm A’ can be constructed that tolerates
f − 1 faults and uses only f − 1 rounds. A’ does so by
making “oracle calls” to A. Repeating this process, an
algorithm that only needs 0 rounds for 0 faults can be
constructed, which is easily proven impossible.

But the proof in [3] proceeds by backward induction and
therefore is difficult to follow. The oracle-based proof is
fundamentally different from bivalency-based proofs [13].
The proof in [7] uses a new technique called layering [11]
and proceeds by forward induction. Keidar and Rajsbaum
argue that the bivalency argument cannot be applied to
show the (f + 2)-rounds lower bound for uniform
consensus. To support the argument, they changed the
validity property to Bivalent validity1 with respect to
system S where at most one process fails in each round and
defined SBV consensus to be the problem satisfying
agreement, termination, and bivalent validity but not
validity. They presented a counter example for SBV
consensus in which all processes decide after one round in
all failure-free executions but violate the validity property
of consensus when all processes proposed 0.

However, in our opinion, the counter example only can
support that bivalency argument can not prove the (f + 2)-
rounds lower bound for synchronous uniform consensus in
case of f = 0. It cannot show that there exists an algorithm
which can solve the SBV consensus problem within f + 1
rounds, where 0 < f ≤ t − 2. In this paper, we present a
bivalency proof for the (f + 2)-rounds lower bound for
uniform consensus when 0 < f ≤ t − 2.

B. On Early Stopping Consensus
Lamport and Fisher discuss Byzantine general problem

and transaction commit protocols in [8]. They prove a
theorem that for a t-resilient protocol to solve the problem
in a crash failure model, it needs at least t + 1 rounds. At
the end of the paper, they point out that if only f < t
processes crash, no algorithm can avoid sending round f +
2 messages. They claim it can be proved and the proof is
essentially the same as the previous proof of the theorem
but is omitted. However, the proof of the theorem proceeds
by complex backward induction and is difficult to follow.

Dolev, etc. discuss early-stopping in Byzantine
agreement for synchronous distributed system [4]. First,
they prove that there is no early-stopping protocol for
simultaneous Byzantine agreement, which means the lower
bound of simultaneous Byzantine agreement is (t + 1)-

1 Bivalent Validity with respect to S: There is an initial state which is

bivalent with respect to S.

rounds even actually only f crashes occur. Then they prove
that min (t + 1, f + 2)-rounds is the lower bound for early-
stopping eventual Byzantine agreement. A notion of
critical edge is introduced to prove the theorem. An edge e
in round k of history2 H is critical if there is another history
J, such that (a) J’s output is not equivalent to H3; (b) J is
identical to H through round k except for edge e, and (c) J
is the conservative extension of Jk. A history H is said to be
f-serial if it has no more than f faults by round f + 1 and no
process fails in H after round f + 1. The correct edge is
used to construct contradiction with an f-serial history, but
they do not use the bivalency arguments.

Charron-Bost and Schiper [3] prove the lower bound of
early-deciding consensus is (f + 1)-rounds directly
followed that t-resilient consensus protocol needs a least t
+ 1 rounds. They present an early deciding consensus
protocol in which all correct processes can decide by the
end of round f + 1, and point out some processes need send
round f + 2 messages in some executions, where f ≤ t − 2.
But they do not prove why these round f + 2 messages are
needed.

III. THE BIVALENCY ARGUMENT PROOF
Bivalency argument proofs are based on the observation

that a state in which some processes have decided cannot
be bivalent. These proofs are based on a synchronous
round-based system S with n processes and at most t crash
failures such that at most one process crashes in each
round. S is just a subset of executions of a consensus
protocol.

A. Bivalency Argument Proof in [2]
Theorem 1 [2]. Consider a synchronous round-based
system S with n processes and at most t crash failures such
that at most one process crashes in each round. If n > t + 1
then there is no algorithm that solves consensus in t rounds
in S.

To prove the theorem, the following notations are
introduced and used in this paper. A configuration of the
system S is considered at the end of each round. Such a
configuration is just the state of each process. Informally, a
configuration C is 0-valent if starting from C the only
possible decision value that correct processes can make is
0; it is 1-valent if starting from C the only possible decision
value that correct processes can make is 1. C is univalent if
it is either 0-valent or 1-valent; C is bivalent if it is not
univalent. And a k-round partial run rk denotes an
execution of algorithm A up to the end of round k.
Consider the configuration Ck at the end of round k of
partial run rk, we say that rk is 0-valent, 1-valent, univalent,
or bivalent if Ck is 0-valent, 1-valent, univalent, or
bivalent, respectively. We call a process sink in a partial

run rk if it sends no message and crashes at the beginning
of round k.

2 A history is an execution of the protocol.
3 J and H make the different decision.

The proof proceeds by contradiction as follows. Suppose
there is an algorithm A that solves consensus in t rounds in
S. Without loss of generality, assume that A is loquacious,
i.e., at each round, every process is supposed to send a
message to every process. First, Lemma 1 shows that in
any run of A, the configuration at the beginning of round t
must be univalent. Then a contradiction can be obtained by
constructing a run of A that is bivalent at the beginning of
round t in Lemma 3. This run is obtained by starting from a
bivalent initial configuration in Lemma 2 and extending it
one round at a time, while maintaining bivalency. Each
one-round extension may require the killing of a process.
Thus, the proof proceeds by proving three lemmas. The
third Lemma contradicts the first and thus completes the
proof of the theorem.

Lemma 1 [2]. Any (t − 1)-round partial run rt−1 is
univalent.

Lemma 2 [2]. There is a bivalent initial configuration.

Lemma 3 [2]. There is a bivalent (t − 1)-round partial run
rt−1.

B. Extended Lemma
Lemma 4 will be used in the following proof.

Lemma 4. For every bivalent k-round partial run (0 ≤ k ≤ t
− 2), rk, it can be extended by one round into a bivalent (k
+ 1)-round partial run.
Proof. This lemma is proved as the induction step of
Lemma 3. For readability, we present the detailed proof.

Assume, for contradiction, that every one-round
extension of rk is univalent.

Let rk+1
* be the partial run extended from rk by one round

without crash in round k + 1. Then rk+1
* is univalent.

Without loss of generality, assume it is 1-valent. Since rk is
bivalent, and every one-round extension of rk is univalent,
there is at least one one-round extension rk+1

0 of rk that is 0-
valent.

Note that rk+1
* and rk+1

0 must differ in round k + 1. Since
round k + 1 of rk+1

* is failure-free, there must be exactly
one process p that crashes in round k + 1 of rk+1

0 because in
system S, at most one process crashes per round. Since p
crashes in round k + 1 of rk+1

0 it may fail to send a message
to some processes, say to {q1, q2, …, qm}, where 0 ≤ m ≤ n.

Starting from rk+1
0, we now define (k + 1)-round partial

runs rk+1
1, …, rk+1

m as follows. For every j, 1 ≤ j ≤ m, rk+1
j

is identical to rk+1
j−1 except that p sends a message to qj

before it crashes in round k + 1. Note that for every j, 0 ≤ j
≤ m, rk+1

j is univalent. There are two possible cases:
1. For all j, 0 ≤ j ≤ m, rk+1

j is 0-valent. So rk+1
m and rk+1

*
are 0-valent and 1-valent respectively. The only
difference between rk+1

m and rk+1
* is that p crashes at

the end of round k + 1 in rk+1
m, while p is correct up to

and including round k + 1 in rk+1
*. Consider the

following run r extending rk+1
*. Process p sinks at the

beginning of round k + 2. Since rk+1
* is 1-valent, all

correct processes decide 1 in run r. For every process
except p, run r is indistinguishable from the run r’ that
extends rk+1

m such that no process crashes after round k
+ 1. But all correct processes decide 0 in r’ because
rk+1

m is 0-valent — contradiction.
2. There is one j, 1 ≤ j ≤ m, such that rk+1

j−1 is 0-valent
while rk+1

j is 1-valent. Extend rk+1
j−1 and rk+1

j into
partial runs, r and r’, respectively, by crashing process
qj at the beginning of round k + 2. Note that (a) no
process except qj can distinguish between r and r’, and
(b) all correct processes must decide 0 in r and 1 in r’
— contradiction.

IV. BIVALENCY PROOF OF UNIFORM CONSENSUS LOWER
BOUND

Lemma 5. Consider an early-deciding synchronous
uniform consensus protocol, no process (correct or not)
can decide in any bivalent partial run in S.
Proof. Assume, for contradiction, a process pi decides 1 in
a bivalent partial run rk. According to the definition of
bivalent partial run, there is an execution continuing rk, in
which the final decision is 0. This is a violation of the
uniform agreement property of uniform consensus.

Theorem 2. Consider a synchronous round-based system S
with n processes and at most t crash failures that at most
one process crashes in each round. If t < n and 0 < f ≤ t −
2, then there is no early-deciding protocol that solves
uniform consensus in f + 1 rounds in S.
Proof. As in Theorem 1, the proof of Theorem 2 is also by
contradiction. Assume the contrary, there is a protocol A
that solves uniform consensus in f + 1 rounds in S. That is,
in any execution of A with f (0 < f ≤ t − 2) failures, all the
correct processes must decide by the end of round f + 1.
Then, we prove that when f failures actually occur, all (f +
1)-round partial runs extending from a bivalent (f − 1)-
round partial run, rf−1, decide on the same value, it is
contradiction to that rf−1 is bivalent. First, we introduce and
prove Lemma 6, 7, and 8.

Lemma 6. Any partial run rk (k ≤ f + 1) of A without
failure during round k in S is a univalent partial run.
Proof. It is obviously to be true. If not, A cannot solve
uniform consensus with f actual failures by the end of
round f + 1 because then we can construct at least f + 1
consecutive bivalent partial runs by using Lemma 4 as in
the following. When k = f + 1, by Lemma 5, no process can
decide by the end of round f + 1.

Now consider k < f + 1. According to the definition of S,
at most (k − 1) processes crashed before round k. By

Lemma 4, there are bivalent partial runs of A at each round
from round k + 1 to round f + 1 because f ≤ t − 2. Now
there are (f − k + 1) rounds from round k + 1 to f + 1 and
there are f − (k − 1) processes actually crash. Then by
crashing one process in each round to construct a new
bivalent partial run as extensions from rk, the execution
enters into a bivalent (f + 1)-round partial round, in this
case, by Lemma 5 no process can decide by the end of
round f + 1. – Contradiction.
Lemma 7. When extending from a bivalent f-round partial
run, rf, there exists only one type of bivalent partial runs of
A in S, in which a process sank at the beginning of the
round f + 1.
Proof. By Lemma 4, there exist bivalent (f + 1)-round
partial runs extended from rf because f ≤ t − 2. Assume the
contrary, there exists a bivalent (f + 1)-round partial run
extended from rf, rf+1, in which process pi received all
messages in round f + 1. By Lemma 5, pi cannot make
decision in round f + 1 of rf+1. But all correct process
should decide by the end of round f + 1 when actually f
failures occur. According to the definition of S, there is no
failure in round f + 1 of the (f + 1)-round partial run, rf+1

*,
which extended from rf. Then, by Lemma 6, rf+1

* is
univalent. Now pi cannot distinguish that it is in rf+1 or rf+1

*,
then pi cannot make decision in round f + 1 of rf+1

* either.

Lemma 8. When extending from a bivalent f-round partial
run, rf, all univalent (f + 1)-round partial runs make the
same decision.
Proof. From Lemma 7, if at least one process received all
messages in a (f + 1)-round partial run rf+1 which extended
from rf, then rf+1 is univalent. Without losing generality,
assume all correct processes decide 1 in rf+1

* where no
failure occurs during round f + 1. We use rf+1

k to denote
those partial runs that k processes do not received the
message from the crashed process in round f + 1 where 0 ≤
k ≤ n − f − 1.
Basis: Consider rf+1

0, these partial runs are the same to rf+1
*

except one process crashes at the end of round f + 1.
Extend both rf+1

0 and rf+1
* to round f + 2 just by sinking one

process in rf+1
* which already crashed in rf+1

0. Then two
extensions are the same, they are univalent and will decide
the same value definitely. According to the definition of
univalent, all rf+1

0s decide 1.
Hypothesis: Suppose 0 ≤ k < n − f − 1, all rf+1

ks decide 1.
Induction Step: Now consider a univalent partial run,
rf+1

k+1, in which it differs from rf+1
k by only one process, pi,

i.e., pi received the message sent by the crashed process in
round f + 1 of rf+1

k, but not in round f + 1 of rf+1
k+1. Extend

both partial runs to round f + 2 just by sinking pi at the
beginning of round f + 2. Then, two extensions are the
same and also are univalent to decide the same value
definitely. Thus, all univalent rf+1

k+1s decide 1.

By induction, all those univalent (f + 1)-round partial
runs decide 1.

Now, continue the proof of Theorem 2. By assumption,

all correct processes decide by the end of round f + 1 when
f failures actually occur.

By Lemma 2 and Lemma 4, there is a (f − 1)-round
bivalent partial run rf−1. Now extends it to round f.
Consider rf

* without failure occurs in round f, by Lemma 6,
it is univalent. Without losing generality, assume rf

* is 1-
valent. Let rf

k be those partial runs that k processes do not
received the message from the crashed process in round f
where 0 ≤ k ≤ n − f, and rf+1

k* denote extending (f + 1)-
round partial run from rf

k without failures in round f + 1.
By Lemma 6, all those rf+1

k*s are univalent.
Basis: Consider rf

0, those partial runs are the same as rf
*

except that one process crashes at the end of round f.
Extend both runs to round f + 1 just by sinking one process
in rf

* which already crashed in rf
0. Then two extensions

rf+1
0* and rf+1

* are the same, because rf
* is 1-valent, rf+1

* is
univalent and will decide 1. Thus, all rf+1

0*s decide 1.
Hypothesis: Suppose 0 ≤ k < n − f, all rf+1

k*s decide 1.
Induction Step: Consider two partial runs, rf

k and rf
k+1,

where 0 ≤ k < n − f, the partial runs differ by only one
process, pi, because pi received the message sent by the
crashed process in round f of rf

k, but not in round f of rf
k+1.

By Lemma 6, rf+1
k* and rf+1

k+1* are univalent and rf+1
k* is 1-

valent by hypothesis.
Consider extending rf

k and rf
k+1 to rf+1

k’ and rf+1
k+1’

respectively by crashing pi that only pj receives the
message sent from pi in both partial runs. Thus, rf+1

k+1’ is
the same as rf+1

k’ except pj. By Lemma 7, rf+1
k’ and rf+1

k+1’
are univalent because pj received all messages in round f +
1. By Lemma 8, rf+1

k’ is 1-valent because rf+1
k* is 1-valent.

Now extending both rf+1
k’ and rf+1

k+1’ to round f + 2, rf+2
k’

and rf+2
k+1’, by sinking pj at the beginning of round f + 2.

Then, rf+2
k’ and rf+2

k+1’ are the same and also univalent.
Thus, rf+2

k+1’ decide 1 too and then rf+1
k+1’ is 1-valent. By

Lemma 8, rf+1
k+1* must decide 1 too.

By induction, all (f + 1)-round partial runs without
failure in round f + 1 decide 1. Because protocol A is also
an f-resilient consensus protocol and we consider all
possible extensions of rf−1, but all those extensions decide
the same at the end of round f + 1, then rf−1 must be
univalent. – Contradiction.

V. BIVALENCY PROOF OF EARLY STOPPING CONSENSUS
LOWER BOUND

Lemma 9. Consider an early-stopping synchronous
consensus protocol, no correct process can decide and
stop in any bivalent partial run in S.
Proof. Assume, for contradiction, a correct process pi
decides 1 in round k of a bivalent partial run rk and stop at
the end of the round k. According to the definition of

bivalent partial run, firstly, not all correct processes decide
in this round, otherwise rk is univalent; secondly, there is
an execution continuing rk, in which other correct
processes decide 0. This is a violation of the agreement
property of consensus.

Theorem 3. Consider a synchronous round-based system S
with n processes and at most t crash failures that at most
one process crashes in each round. If t < n − 1 and f ≤ t −
1, then there is no early-stopping protocol that solves
consensus in f + 1 rounds in S.
Proof. As in Theorem 1, the proof of Theorem 3 is also by
contradiction. Assume the contrary, there is an early-
stopping consensus protocol B that solves consensus in f +
1 rounds in S. That is, in any execution of B with f (f ≤ t −
1) failures, all the correct processes must decide and stop
by the end of round f + 1. Then, we prove that when f
failures actually occur, all (f + 1)-round partial runs
extending from a bivalent f-round partial run, rf, decide on
the same value, it is contradiction to that rf is bivalent.
First, we introduce and prove Lemma 10.

Lemma 10. Any partial run rk (k ≤ f + 1) of B without
failure during round k in S is a univalent partial run.
Proof. It is obviously to be true. If not, B cannot solve
consensus with f actual failures by the end of round f + 1
because then we can construct at least f + 1 consecutive
bivalent partial runs by using Lemma 4 as in the following.
When k = f + 1, by Lemma 9, no correct process can decide
and stop by the end of round f + 1.

Now consider k < f + 1. According to the definition of S,
at most (k − 1) processes crashed before round k. By
Lemma 4, there are bivalent partial runs of B at each round
from round k + 1 to round f + 1 because f ≤ t − 1. Now
there are (f − k + 1) rounds from round k + 1 to f + 1 and
there are f − (k − 1) processes actually crash. Then by
crashing one process in each round to construct a new
bivalent partial run as extensions from rk, the execution
enters into a bivalent (f + 1)-round partial round, in this
case, by Lemma 9 no process can decide and stop by the
end of round f + 1. – Contradiction.

Now, continue the poof of Theorem 3. By Lemma 2 and

Lemma 4, for every f ≤ t − 1, there is a bivalent f-round
partial run, rf. Because there is at most one process, which
can crash in each round in S and by Lemma 10, there must
be a process crashed in each round of rf, then there are n − f
processes in round f + 1 and one process may crash in the
round. Let rf+1

* be the (f + 1)-round partial run extended
from rf in which no failure occurs in round f + 1; Let rf+1

k
be those partial runs extended from rf that k processes do
not received the message from the crashed process in round
f+1 where 0 ≤ k ≤ n − f − 1.

By Lemma 9, rf+1
* is univalent. According to the

assumption, all correct processes must decide and stop in

rf+1
*. Without losing generality, assume all correct

processes decide 1 in rf+1
*. Then all rf+1

m must be univalent,
where 0 ≤ m ≤ n − f − 2. Otherwise, the processes which
received all messages in both rf+1

* and rf+1
m cannot

distinguish the two partial runs, by Lemma 9, they cannot
decide and stop at the end of round f + 1 of rf+1

m, thus they
cannot decide and stop at the end of round f + 1 of rf+1

*
either (Contradiction to the assumption). Because in every
rf+1

m, those processes received all messages decide the
same as they do in rf+1

*, then every rf+1
m will make the same

decision as rf+1
*. Thus, all correct processes decide 1 in

every rf+1
m.

Now, consider rf+1
n−f−1s. Without losing generality,

assume a rf+1
n−f−1, rf+1, is extended from rf by sinking a

process, q0, at the beginning of round f + 1 and the alive
processes are q1, …, qn−f−1. There are (n − f −1) rf+1

1s partial
runs in which q0 crashes in round f + 1. Let rf+1

1k denote the
partial run in which qk does not receive the message from
q0, where 1 ≤ k ≤ n − f − 1. It is obviously that qk in both
rf+1 and rf+1

1k are same. Because in rf+1
1k only qk remains in

the following rounds, the only decision it can make is 1.
Then, all alive processes in rf+1 can decide 1 at the end of
round f + 1, which means rf+1 is also 1-valent.

Thus, all extensions from rf are 1-valent, it is
contradiction to that rf is bivalent. – Contradiction.

Theorem 4. The lower bound of early-stopping consensus
protocols for synchronous distributed systems is min (t + 1,
f + 2)-rounds, where t < n − 1 and f ≤ t.
Proof. By Theorem 3, for f < t, the lower bound of early-
stopping synchronous consensus protocols is f + 2 rounds.
By theorem 1, for f = t, the lower bound is t + 1 rounds.
Thus for f ≤ t, the lower bound of early-stopping
synchronous consensus protocols is min (t + 1, f + 2)-
rounds.

VI. CONCLUSION
In this paper, we present new proofs of the lower bounds

for both synchronous uniform consensus and early
stopping synchronous consensus with crash failures by
applying the bivalency argument. The proofs are by
applying forward induction and are simple and intuitive
than the traditional ones. Our main contribution is that we
solve the open problem of applying the bivalency argument
to show the (f + 2)-rounds lower bound for synchronous
uniform consensus.

In our future work, we will investigate the properties of
the bivalency argument and try to apply it in other areas of
theoretical distributed computing.

REFERENCES
1. H. Attiya, and J. Welch, "Distributed Computing: Fundamentals,

Simulations and Advanced Topics", McGraw-Hill, 451 pages, 1998.

2. M.K. Aguilera, and S. Toueg, "A Simple Bivalency Proof that t-
Resilient Consensus Requires t + 1 Rounds", Information Processing
Letters, 71(3-4), 1999, 155-158.

3. B. Charron-Bost, and A. Schiper, "Uniform consensus harder than
consensus", Technical Report DSC/2000/028, École Polytechnique
Fédérale de Lausanne, Switzerland, May 2000.

4. D. Dolev, R. Reischuk, and R. Strong, "Early Stopping in Byzantine
Agreement", J. ACM, vol. 37, no. 4, Apr. 1990, 720-741.

5. M. Fischer, N. Lynch, and M. Paterson, "Impossibility of distributed
consensus with one faulty process", J. ACM, vol. 32, no. 2, Apr.
1985, 374–382.

6. I. Keidar and S. Rajsbaum, "On the Cost of Fault-Tolerant
Consensus When There Are No Faults – A Tutorial", MIT Technical
Report MIT-LCS-TR-821, May 24, 2001.

7. I. Keidar and S. Rajsbaum, "A Simple Proof of the Uniform
Consensus Synchronous Lower Bound", Information Processing
Letters, 85(1), 2003, 47-52.

8. L. Lamport, and M. Fischer, "Byzantine Generals and Transaction
Commit Protocols", Technical Report, SRI Int’l, Apr. 1982.

9. L. Lamport, R. Sprocessak, and M. Pease, "The Byzantine Generals
Problem", ACM Transactions on Programming Languages and
Systems, Jul. 1982, 382-401.

10. N. Lynch, "Distributed Algorithms", Morgan Kaufmann, 1996.
11. Y. Moses and S. Rajsbaum, "A layered analysis of consensus",

SIAM J. Comput., vol. 31, no. 4, 2002, 989-1021, Previous version
in PODC 1998.

12. M. Pease, R. Sprocessak, and L. Lamport, "Reaching Agreement in
the Presence of Faults", J. ACM, vol. 27, no. 2, Apr. 1980, 228-234.

13. J. Xu, ''A Unified Proof of Minimum Time Complexity for Reaching
Consensus and Uniform Consensus -- An Oracle-based Approach'',
IEEE 21st Symposium on Reliable Distributed Systems (SRDS 2002),
Osaka, Japan, October 2002.

	INTRODUCTION
	Related Works
	On Uniform Consensus
	On Early Stopping Consensus

	The Bivalency Argument Proof
	Bivalency Argument Proof in [2]
	Extended Lemma

	Bivalency Proof of Uniform Consensus Lower Bound
	Bivalency Proof of Early Stopping Consensus Lower Bound
	Conclusion

