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 Abstract — A fundamental problem of fault-tolerant 
distributed computing is for the reliable processes to reach a 
consensus. For a synchronous distributed system of n 
processes with up to t crash failures and f failures actually 
occur, we prove using a straightforward bivalency argument 
that the lower bound for reaching uniform consensus is (f + 
2)-rounds in the case of 0 < f ≤ t − 2, and a new lower bound 
for early-stopping consensus is min (t + 1, f + 2)-rounds where 
0 ≤ f ≤ t. Both proofs are simpler and more intuitive than the 
traditional methods such as backward induction. Our main 
contribution is that we solve the open problem of proving that 
bivalency can be applied to show the (f + 2)-rounds lower 
bound for synchronous uniform consensus. 

 
Index Terms — consensus, synchronous distributed system, 

bivalency, and early-stopping. 
 

I. INTRODUCTION 
onsensus is one of the fundamental problems in 
distributed computing theory and practice. Assuming 

that a distributed system consists of a set of n processes, 
{p1, p2, …, pn}, in the consensus problem, each process pi 
initially proposes a value vi, and all non-faulty processes 
have to decide on one common value v, in relation to the 
set of proposed values V= { vi | i = 1, …, n } [9, 12]. 
Without losing generality, we just consider V = {0, 1}. A 
process is faulty during an execution if its behavior 
deviates from that prescribed by its algorithm, otherwise it 
is correct. More precisely, the consensus problem is 
defined by the following three properties:  

(1) Termination: Every correct process eventually 
decides on a value.  
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(2) Validity: If a process decides on v, then v was 
proposed by some processes.  

(3) Agreement: No two correct processes decide 
differently.  

The agreement property applies to only correct processes. 
Thus it is possible that a process decides on a distinct value 
just before crashing. The uniform consensus prevents such 
a possibility. It replaces the agreement property with the 
following: 

(3’) Uniform Agreement: No two processes (correct or 
not) decide differently.  

Synchronous consensus protocols are based on the 
notion of round [1, 4, 10]. In a synchronous distributed 
system, every execution of the consensus protocol consists 
of a sequence of rounds. While in round r, each process 
executes sequentially the following steps:  

(1) sends r-round messages to the other processes,  
(2) waits for r-round messages from the other 

processes, and  
(3) executes local computations. 
Every process will start and finish the same round 

synchronously. Both message delay and relative processes 
speed are bounded and these bounds are known. The 
underlying communication system is assumed to be failure-
free: there is no creation, alteration, loss or duplication of 
message. 

Most existing synchronous consensus protocols are 
designed to tolerate crash failures [10]. When a process 
crashes in a round, it sends a subset of the messages that it 
intends to send in that round, and does not execute any 
subsequent rounds. If a protocol allows processes to reach 
consensus in which at most t (t < n − 1) processes can 
crash, the protocol is said to tolerate t faults or to be a t-
resilient consensus protocol. It has been proved in [1, 2, 4, 
10] that the lower bound on the number of rounds is t + 1 
for any synchronous consensus protocol tolerating up to t 
crash failures. If a protocol can achieve consensus and 
stops before round t + 1 when there are actually f (f ≤ t) 
faults, we call this an early stopping protocol. The well-
known lower bound, min(t + 1, f + 2) rounds, for early 
stopping consensus protocols in synchronous distributed 
systems has been proved [4]. Instead of considering the 
time at which process decide, we call those protocols 
which can achieve consensus before round t + 1 when 
there are actually f faults as early-deciding protocols. The 
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lower bound, (f + 1)-rounds, for early deciding consensus 
protocols in synchronous distributed system has been 
proved [3]. 

Bivalency is a standard technique for showing 
impossibility results and lower bounds related to consensus 
by forward induction. That is, there exists a state from 
which two different executions lead to different decisions. 
This was first introduced by [5] and used in [2] to show the 
lower bound for consensus. The proof is simpler and more 
intuitive than the traditional one; i.e., it uses simpler 
forward induction rather than a more complex backward 
induction, which in turn requires applying the induction 
hypothesis several times. But an open problem is how to 
extend this to prove the lower bound for early-deciding 
synchronous uniform consensus. As mentioned in [13] it is 
not immediately clear how to extend the proof in [2] to the 
case of uniform consensus. Keidar and Rajsbaum argue 
that the bivalency argument cannot be used to show the (f + 
2)-rounds lower bound for the uniform consensus because 
in essence it relies on too weak a validity property [7]. 

Firstly, consider an algorithm for uniform consensus in 
the synchronous crash model with up to t failures, we show 
by applying the bivalency proof in [2] that for every 0 < f ≤ 
t − 2, there exists an execution of the algorithm with f 
failures in which it takes at least f + 2 rounds for all the 
correct processes to decide. For f = 0 and f = t − 1, the 
lower bounds to reach uniform consensus are two rounds 
[6, 13] and (f + 1)-rounds [3] respectively. These have been 
proved and are not considered in this paper.  

Secondly, we apply the bivalency proof to present a new 
lower bound proof for early-stopping synchronous 
consensus protocols. We show that in an execution with f 
failures, all correct processes decide and halt requires at 
least min (t + 1, f + 2) rounds, for every 0 ≤ f ≤ t, where t < 
n − 1. 

The rest paper is organized as follows. Section II 
describes the related work. Section III presents the 
bivalency argument. Based on the bivalency argument, we 
proved the uniform consensus lower bound in section IV, 
and present a new bivalency proof of early stopping 
consensus lower bound in section V. Our concluding 
remarks are in section VI. 

 

II. RELATED WORKS 

A. On Uniform Consensus 
Charron-Bost and Schiper [3] proved that early-deciding 

uniform consensus protocols require at least f + 2 rounds 
whereas early-deciding consensus protocols require only f 
+ 1 rounds if f is less than t − 1. For f = t − 1 or f = t, they 
showed that both consensus and uniform consensus require 
f + 1 rounds. Keidar and Rajsbaum [6, 7] used a different 
way to prove the same lower bound for synchronous early-
deciding uniform consensus protocols and showed that for 

1 < t < n, every t-resilient uniform consensus protocol must 
perform two rounds in failure-free execution before all 
processes decide. In [13], a novel oracle argument is 
introduced to prove both lower bounds for synchronous 
consensus and uniform consensus. The underlying idea is: 
suppose there is a consensus algorithm A that can tolerate f 
faults and only executes f rounds of message exchange. 
Then another algorithm A’ can be constructed that tolerates 
f − 1 faults and uses only f − 1 rounds. A’ does so by 
making “oracle calls” to A. Repeating this process, an 
algorithm that only needs 0 rounds for 0 faults can be 
constructed, which is easily proven impossible. 

But the proof in [3] proceeds by backward induction and 
therefore is difficult to follow. The oracle-based proof is 
fundamentally different from bivalency-based proofs [13]. 
The proof in [7] uses a new technique called layering [11] 
and proceeds by forward induction. Keidar and Rajsbaum 
argue that the bivalency argument cannot be applied to 
show the (f + 2)-rounds lower bound for uniform 
consensus. To support the argument, they changed the 
validity property to Bivalent validity1 with respect to 
system S where at most one process fails in each round and 
defined SBV consensus to be the problem satisfying 
agreement, termination, and bivalent validity but not 
validity. They presented a counter example for SBV 
consensus in which all processes decide after one round in 
all failure-free executions but violate the validity property 
of consensus when all processes proposed 0.  

However, in our opinion, the counter example only can 
support that bivalency argument can not prove the (f + 2)-
rounds lower bound for synchronous uniform consensus in 
case of f = 0. It cannot show that there exists an algorithm 
which can solve the SBV consensus problem within f + 1 
rounds, where 0 < f ≤ t − 2. In this paper, we present a 
bivalency proof for the (f + 2)-rounds lower bound for 
uniform consensus when 0 < f ≤ t − 2.  

B. On Early Stopping Consensus 
Lamport and Fisher discuss Byzantine general problem 

and transaction commit protocols in [8]. They prove a 
theorem that for a t-resilient protocol to solve the problem 
in a crash failure model, it needs at least t + 1 rounds. At 
the end of the paper, they point out that if only f < t 
processes crash, no algorithm can avoid sending round f + 
2 messages. They claim it can be proved and the proof is 
essentially the same as the previous proof of the theorem 
but is omitted. However, the proof of the theorem proceeds 
by complex backward induction and is difficult to follow. 

Dolev, etc. discuss early-stopping in Byzantine 
agreement for synchronous distributed system [4]. First, 
they prove that there is no early-stopping protocol for 
simultaneous Byzantine agreement, which means the lower 
bound of simultaneous Byzantine agreement is (t + 1)-

 
1 Bivalent Validity with respect to S: There is an initial state which is 

bivalent with respect to S. 

 



 
 

rounds even actually only f crashes occur. Then they prove 
that min (t + 1, f + 2)-rounds is the lower bound for early-
stopping eventual Byzantine agreement. A notion of 
critical edge is introduced to prove the theorem. An edge e 
in round k of history2 H is critical if there is another history 
J, such that (a) J’s output is not equivalent to H3; (b) J is 
identical to H through round k except for edge e, and (c) J 
is the conservative extension of Jk. A history H is said to be 
f-serial if it has no more than f faults by round f + 1 and no 
process fails in H after round f + 1. The correct edge is 
used to construct contradiction with an f-serial history, but 
they do not use the bivalency arguments. 

Charron-Bost and Schiper [3] prove the lower bound of 
early-deciding consensus is (f + 1)-rounds directly 
followed that t-resilient consensus protocol needs a least t 
+ 1 rounds. They present an early deciding consensus 
protocol in which all correct processes can decide by the 
end of round f + 1, and point out some processes need send 
round f + 2 messages in some executions, where f ≤ t − 2. 
But they do not prove why these round f + 2 messages are 
needed. 

 

III. THE BIVALENCY ARGUMENT PROOF 
Bivalency argument proofs are based on the observation 

that a state in which some processes have decided cannot 
be bivalent. These proofs are based on a synchronous 
round-based system S with n processes and at most t crash 
failures such that at most one process crashes in each 
round. S is just a subset of executions of a consensus 
protocol.  

A. Bivalency Argument Proof in [2] 
Theorem 1 [2]. Consider a synchronous round-based 
system S with n processes and at most t crash failures such 
that at most one process crashes in each round. If n > t + 1 
then there is no algorithm that solves consensus in t rounds 
in S. 

To prove the theorem, the following notations are 
introduced and used in this paper. A configuration of the 
system S is considered at the end of each round. Such a 
configuration is just the state of each process. Informally, a 
configuration C is 0-valent if starting from C the only 
possible decision value that correct processes can make is 
0; it is 1-valent if starting from C the only possible decision 
value that correct processes can make is 1. C is univalent if 
it is either 0-valent or 1-valent; C is bivalent if it is not 
univalent. And a k-round partial run rk denotes an 
execution of algorithm A up to the end of round k. 
Consider the configuration Ck at the end of round k of 
partial run rk, we say that rk is 0-valent, 1-valent, univalent, 
or bivalent if Ck is 0-valent, 1-valent, univalent, or 
bivalent, respectively. We call a process sink in a partial 

run rk if it sends no message and crashes at the beginning 
of round k.  

 
2 A history is an execution of the protocol. 
3 J and H make the different decision. 

The proof proceeds by contradiction as follows. Suppose 
there is an algorithm A that solves consensus in t rounds in 
S. Without loss of generality, assume that A is loquacious, 
i.e., at each round, every process is supposed to send a 
message to every process. First, Lemma 1 shows that in 
any run of A, the configuration at the beginning of round t 
must be univalent. Then a contradiction can be obtained by 
constructing a run of A that is bivalent at the beginning of 
round t in Lemma 3. This run is obtained by starting from a 
bivalent initial configuration in Lemma 2 and extending it 
one round at a time, while maintaining bivalency. Each 
one-round extension may require the killing of a process. 
Thus, the proof proceeds by proving three lemmas. The 
third Lemma contradicts the first and thus completes the 
proof of the theorem. 

 
Lemma 1 [2]. Any (t − 1)-round partial run rt−1 is 
univalent. 
 
Lemma 2 [2].  There is a bivalent initial configuration. 
 
Lemma 3 [2]. There is a bivalent (t − 1)-round partial run 
rt−1. 

B. Extended Lemma 
Lemma 4 will be used in the following proof. 

Lemma 4. For every bivalent k-round partial run (0 ≤ k ≤ t 
− 2), rk, it can be extended by one round into a bivalent (k 
+ 1)-round partial run. 
Proof. This lemma is proved as the induction step of 
Lemma 3. For readability, we present the detailed proof. 

Assume, for contradiction, that every one-round 
extension of rk is univalent.  

Let rk+1
* be the partial run extended from rk by one round 

without crash in round k + 1. Then rk+1
* is univalent. 

Without loss of generality, assume it is 1-valent. Since rk is 
bivalent, and every one-round extension of rk is univalent, 
there is at least one one-round extension rk+1

0 of rk that is 0-
valent. 

Note that rk+1
* and rk+1

0 must differ in round k + 1. Since 
round k + 1 of rk+1

* is failure-free, there must be exactly 
one process p that crashes in round k + 1 of rk+1

0 because in 
system S, at most one process crashes per round. Since p 
crashes in round k + 1 of rk+1

0 it may fail to send a message 
to some processes, say to {q1, q2, …, qm}, where 0 ≤  m ≤ n.  

Starting from rk+1
0, we now define (k + 1)-round partial 

runs rk+1
1, …, rk+1

m  as follows. For every j, 1 ≤ j ≤ m, rk+1
j 

is identical to rk+1
j−1 except that p sends a message to qj 

before it crashes in round k + 1. Note that for every j, 0 ≤ j 
≤ m, rk+1

j is univalent. There are two possible cases: 
1. For all j, 0 ≤ j ≤ m, rk+1

j is 0-valent. So rk+1
m and rk+1

* 
are 0-valent and 1-valent respectively. The only 
difference between rk+1

m and rk+1
* is that p crashes at 

 



 
 

the end of round k + 1 in rk+1
m, while p is correct up to 

and including round k + 1 in rk+1
*. Consider the 

following run r extending rk+1
*. Process p sinks at the 

beginning of round k + 2. Since rk+1
* is 1-valent, all 

correct processes decide 1 in run r. For every process 
except p, run r is indistinguishable from the run r’ that 
extends rk+1

m such that no process crashes after round k 
+ 1. But all correct processes decide 0 in r’ because 
rk+1

m is 0-valent — contradiction. 
2. There is one j, 1 ≤ j ≤ m, such that rk+1

j−1 is 0-valent 
while rk+1

j is 1-valent. Extend rk+1
j−1 and rk+1

j into 
partial runs, r and r’, respectively, by crashing process 
qj at the beginning of round k + 2. Note that (a) no 
process except qj can distinguish between r and r’, and 
(b) all correct processes must decide 0 in r and 1 in r’ 
— contradiction.   

 

IV. BIVALENCY PROOF OF UNIFORM CONSENSUS LOWER 
BOUND 

Lemma 5. Consider an early-deciding synchronous 
uniform consensus protocol, no process (correct or not) 
can decide in any bivalent partial run in S. 
Proof. Assume, for contradiction, a process pi decides 1 in 
a bivalent partial run rk. According to the definition of 
bivalent partial run, there is an execution continuing rk, in 
which the final decision is 0. This is a violation of the 
uniform agreement property of uniform consensus.   
 
Theorem 2. Consider a synchronous round-based system S 
with n processes and at most t crash failures that at most 
one process crashes in each round. If t < n and 0 < f ≤ t − 
2, then there is no early-deciding protocol that solves 
uniform consensus in f + 1 rounds in S. 
Proof. As in Theorem 1, the proof of Theorem 2 is also by 
contradiction. Assume the contrary, there is a protocol A 
that solves uniform consensus in f + 1 rounds in S. That is, 
in any execution of A with f (0 < f ≤ t − 2) failures, all the 
correct processes must decide by the end of round f + 1. 
Then, we prove that when f failures actually occur, all (f + 
1)-round partial runs extending from a bivalent (f − 1)-
round partial run, rf−1, decide on the same value, it is 
contradiction to that rf−1 is bivalent. First, we introduce and 
prove Lemma 6, 7, and 8. 
 
Lemma 6. Any partial run rk (k ≤ f + 1) of A without 
failure during round k in S is a univalent partial run. 
Proof. It is obviously to be true. If not, A cannot solve 
uniform consensus with f actual failures by the end of 
round f + 1 because then we can construct at least f + 1 
consecutive bivalent partial runs by using Lemma 4 as in 
the following. When k = f + 1, by Lemma 5, no process can 
decide by the end of round f + 1.  

Now consider k < f + 1. According to the definition of S, 
at most (k − 1) processes crashed before round k. By 

Lemma 4, there are bivalent partial runs of A at each round 
from round k + 1 to round f + 1 because f ≤ t − 2. Now 
there are (f − k + 1) rounds from round k + 1 to f + 1 and 
there are f − (k − 1) processes actually crash. Then by 
crashing one process in each round to construct a new 
bivalent partial run as extensions from rk, the execution 
enters into a bivalent (f + 1)-round partial round, in this 
case, by Lemma 5 no process can decide by the end of 
round f + 1. – Contradiction.   
Lemma 7. When extending from a bivalent f-round partial 
run, rf, there exists only one type of bivalent partial runs of 
A in S, in which a process sank at the beginning of the 
round f + 1. 
Proof. By Lemma 4, there exist bivalent (f + 1)-round 
partial runs extended from rf because f ≤ t − 2. Assume the 
contrary, there exists a bivalent (f + 1)-round partial run 
extended from rf, rf+1, in which process pi received all 
messages in round f + 1. By Lemma 5, pi cannot make 
decision in round f + 1 of rf+1. But all correct process 
should decide by the end of round f + 1 when actually f 
failures occur. According to the definition of S, there is no 
failure in round f + 1 of the (f + 1)-round partial run, rf+1

*, 
which extended from rf. Then, by Lemma 6, rf+1

* is 
univalent. Now pi cannot distinguish that it is in rf+1 or rf+1

*, 
then pi cannot make decision in round f + 1 of rf+1

* either. 
 

 
Lemma 8. When extending from a bivalent f-round partial 
run, rf, all univalent (f + 1)-round partial runs make the 
same decision. 
Proof. From Lemma 7, if at least one process received all 
messages in a (f + 1)-round partial run rf+1 which extended 
from rf, then rf+1 is univalent. Without losing generality, 
assume all correct processes decide 1 in rf+1

* where no 
failure occurs during round f + 1. We use rf+1

k to denote 
those partial runs that k processes do not received the 
message from the crashed process in round f + 1 where 0 ≤ 
k ≤ n − f − 1.  
Basis: Consider rf+1

0, these partial runs are the same to rf+1
* 

except one process crashes at the end of round f + 1. 
Extend both rf+1

0 and rf+1
* to round f + 2 just by sinking one 

process in rf+1
* which already crashed in rf+1

0. Then two 
extensions are the same, they are univalent and will decide 
the same value definitely. According to the definition of 
univalent, all rf+1

0s decide 1. 
Hypothesis: Suppose 0 ≤ k < n − f − 1, all rf+1

ks decide 1. 
Induction Step: Now consider a univalent partial run, 
rf+1

k+1, in which it differs from rf+1
k by only one process, pi, 

i.e., pi received the message sent by the crashed process in 
round f + 1 of rf+1

k, but not in round f + 1 of rf+1
k+1. Extend 

both partial runs to round f + 2 just by sinking pi at the 
beginning of round f + 2. Then, two extensions are the 
same and also are univalent to decide the same value 
definitely. Thus, all univalent rf+1

k+1s decide 1.  

 



 
 

By induction, all those univalent (f + 1)-round partial 
runs decide 1.   

 
Now, continue the proof of Theorem 2. By assumption, 

all correct processes decide by the end of round f + 1 when 
f failures actually occur.  

By Lemma 2 and Lemma 4, there is a (f − 1)-round 
bivalent partial run rf−1. Now extends it to round f. 
Consider rf

* without failure occurs in round f, by Lemma 6, 
it is univalent. Without losing generality, assume rf

* is 1-
valent. Let rf

k be those partial runs that k processes do not 
received the message from the crashed process  in round f 
where 0 ≤ k ≤ n − f, and rf+1

k* denote extending (f + 1)-
round partial run from rf

k without failures in round f + 1. 
By Lemma 6, all those rf+1

k*s are univalent. 
Basis: Consider rf

0, those partial runs are the same as rf
* 

except that one process crashes at the end of round f. 
Extend both runs to round f + 1 just by sinking one process 
in rf

* which already crashed in rf
0. Then two extensions 

rf+1
0* and rf+1

* are the same, because rf
* is 1-valent, rf+1

* is 
univalent and will decide 1. Thus, all rf+1

0*s decide 1. 
Hypothesis: Suppose 0 ≤ k < n − f, all rf+1

k*s decide 1. 
Induction Step: Consider two partial runs, rf

k and rf
k+1, 

where 0 ≤ k < n − f, the partial runs differ by only one 
process, pi, because pi received the message sent by the 
crashed process in round f of rf

k, but not in round f of rf
k+1. 

By Lemma 6, rf+1
k* and rf+1

k+1* are univalent and rf+1
k* is 1-

valent by hypothesis.  
Consider extending rf

k and rf
k+1 to rf+1

k’ and rf+1
k+1’ 

respectively by crashing pi that only pj receives the 
message sent from pi in both partial runs. Thus, rf+1

k+1’ is 
the same as rf+1

k’ except pj. By Lemma 7, rf+1
k’ and rf+1

k+1’ 
are univalent because pj received all messages in round f + 
1. By Lemma 8, rf+1

k’ is 1-valent because rf+1
k* is 1-valent.  

Now extending both rf+1
k’ and rf+1

k+1’ to round f + 2, rf+2
k’ 

and rf+2
k+1’, by sinking pj at the beginning of round f + 2. 

Then, rf+2
k’ and rf+2

k+1’ are the same and also univalent. 
Thus, rf+2

k+1’ decide 1 too and then rf+1
k+1’ is 1-valent. By 

Lemma 8, rf+1
k+1* must decide 1 too. 

By induction, all (f + 1)-round partial runs without 
failure in round f + 1 decide 1. Because protocol A is also 
an f-resilient consensus protocol and we consider all 
possible extensions of rf−1, but all those extensions decide 
the same at the end of round f + 1, then rf−1 must be 
univalent. – Contradiction.    

 

V. BIVALENCY PROOF OF EARLY STOPPING CONSENSUS 
LOWER BOUND 

Lemma 9. Consider an early-stopping synchronous 
consensus protocol, no correct process can decide and 
stop in any bivalent partial run in S. 
Proof. Assume, for contradiction, a correct process pi 
decides 1 in round k of a bivalent partial run rk and stop at 
the end of the round k. According to the definition of 

bivalent partial run, firstly, not all correct processes decide 
in this round, otherwise rk is univalent; secondly, there is 
an execution continuing rk, in which other correct 
processes decide 0. This is a violation of the agreement 
property of consensus.   
 
Theorem 3. Consider a synchronous round-based system S 
with n processes and at most t crash failures that at most 
one process crashes in each round. If t < n − 1 and f ≤ t − 
1, then there is no early-stopping protocol that solves 
consensus in f + 1 rounds in S. 
Proof. As in Theorem 1, the proof of Theorem 3 is also by 
contradiction. Assume the contrary, there is an early-
stopping consensus protocol B that solves consensus in f + 
1 rounds in S. That is, in any execution of B with f (f ≤ t − 
1) failures, all the correct processes must decide and stop 
by the end of round f + 1. Then, we prove that when f 
failures actually occur, all (f + 1)-round partial runs 
extending from a bivalent f-round partial run, rf, decide on 
the same value, it is contradiction to that rf is bivalent. 
First, we introduce and prove Lemma 10. 
 
Lemma 10. Any partial run rk (k ≤ f + 1) of B without 
failure during round k in S is a univalent partial run. 
Proof. It is obviously to be true. If not, B cannot solve 
consensus with f actual failures by the end of round f + 1 
because then we can construct at least f + 1 consecutive 
bivalent partial runs by using Lemma 4 as in the following. 
When k = f + 1, by Lemma 9, no correct process can decide 
and stop by the end of round f + 1.  

Now consider k < f + 1. According to the definition of S, 
at most (k − 1) processes crashed before round k. By 
Lemma 4, there are bivalent partial runs of B at each round 
from round k + 1 to round f + 1 because f ≤ t − 1. Now 
there are (f − k + 1) rounds from round k + 1 to f + 1 and 
there are f − (k − 1) processes actually crash. Then by 
crashing one process in each round to construct a new 
bivalent partial run as extensions from rk, the execution 
enters into a bivalent (f + 1)-round partial round, in this 
case, by Lemma 9 no process can decide and stop by the 
end of round f + 1. – Contradiction.   

 
Now, continue the poof of Theorem 3. By Lemma 2 and 

Lemma 4, for every f ≤ t − 1, there is a bivalent f-round 
partial run, rf. Because there is at most one process, which 
can crash in each round in S and by Lemma 10, there must 
be a process crashed in each round of rf, then there are n − f 
processes in round f + 1 and one process may crash in the 
round. Let rf+1

* be the (f + 1)-round partial run extended 
from rf in which no failure occurs in round f + 1; Let rf+1

k 
be those partial runs extended from rf that k processes do 
not received the message from the crashed process in round 
f+1 where 0 ≤ k ≤ n − f − 1.  

By Lemma 9, rf+1
* is univalent. According to the 

assumption, all correct processes must decide and stop in 

 



 
 

rf+1
*. Without losing generality, assume all correct 

processes decide 1 in rf+1
*. Then all rf+1

m must be univalent, 
where 0 ≤ m ≤ n − f − 2. Otherwise, the processes which 
received all messages in both rf+1

* and rf+1
m cannot 

distinguish the two partial runs, by Lemma 9, they cannot 
decide and stop at the end of round f + 1 of rf+1

m, thus they 
cannot decide and stop at the end of round f + 1 of rf+1

* 
either (Contradiction to the assumption). Because in every 
rf+1

m, those processes received all messages decide the 
same as they do in rf+1

*, then every rf+1
m will make the same 

decision as rf+1
*. Thus, all correct processes decide 1 in 

every rf+1
m. 

Now, consider rf+1
n−f−1s. Without losing generality, 

assume a rf+1
n−f−1, rf+1, is extended from rf by sinking a 

process, q0, at the beginning of round f + 1 and the alive 
processes are q1, …, qn−f−1. There are (n − f −1) rf+1

1s partial 
runs in which q0 crashes in round f + 1. Let rf+1

1k denote the 
partial run in which qk does not receive the message from 
q0, where 1 ≤ k ≤ n − f − 1. It is obviously that qk in both 
rf+1 and rf+1

1k are same. Because in rf+1
1k only qk remains in 

the following rounds, the only decision it can make is 1. 
Then, all alive processes in rf+1 can decide 1 at the end of 
round f + 1, which means rf+1 is also 1-valent.  

Thus, all extensions from rf are 1-valent, it is 
contradiction to that rf is bivalent. – Contradiction.  

 
Theorem 4. The lower bound of early-stopping consensus 
protocols for synchronous distributed systems is min (t + 1, 
f + 2)-rounds, where t < n − 1 and f ≤ t. 
Proof. By Theorem 3, for f < t, the lower bound of early-
stopping synchronous consensus protocols is f + 2 rounds. 
By theorem 1, for f = t, the lower bound is t + 1 rounds. 
Thus for f ≤ t, the lower bound of early-stopping 
synchronous consensus protocols is min (t + 1, f + 2)-
rounds.  

 

VI. CONCLUSION 
In this paper, we present new proofs of the lower bounds 

for both synchronous uniform consensus and early 
stopping synchronous consensus with crash failures by 
applying the bivalency argument. The proofs are by 
applying forward induction and are simple and intuitive 
than the traditional ones. Our main contribution is that we 
solve the open problem of applying the bivalency argument 
to show the (f + 2)-rounds lower bound for synchronous 
uniform consensus. 

In our future work, we will investigate the properties of 
the bivalency argument and try to apply it in other areas of 
theoretical distributed computing. 
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