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Abstract—The class of POP (Polynomial Optimization Prob- [12] and Parrilo [19], [20], and Kim and Kojima [9] showed
lems) covers a wide rang of optimization problems such a8—1  that their Second-Order-Cone-ProgrammingeOCP) relax-
integer linear and quadratic programs, nonconvex quadratic 40 js a reasonable compromise between the effectiveness of
programs and bilinear matrix inequalities. In this paper, we - .
review some methods on solving the unconstraint case: minimize the SDP rglaxatlon and the low Computatlo_nal .burden of the
a real-valued p0|yn0mia|p(x) :  R"™ — R, as well the constraint |If’[-and—prOjeCt LP relaxation or RLT. We will discuss these
case: minimizep(z) on a semialgebraic setk, i.e., a set defined relaxation methods in Section 3 and will complete the paper
by polynomial equalities and inequalities. We also summarize jn Section 4 by giving some conclusion.
some questions that we are currently considering.

l. INTRODUCTION II. SOLVING POLYNOMIAL EQUATIONS

A polynomial p in z1,---,z, is a finite combination of In this section, we will discuss computational algebraic
monomials: methods for the probler®. These results are based on [19],
[2] and [7]. For solving this problem, one often look at the
p) = caz® = carft-al",  ca€R, first order conditions, which form a system of (nonlinear)
o o equations.
where the sum is over a finite number eftuples a =
(a1,--+,ap), a; iS @ nonnegative integer. In this paper, wé\. Preliminary Notions and Notation
will consider the problen: Throughout the paper, we suppose that n is an integer,
p* = min p(z), cn andR” respect_ive_zly denote the complex and readpace,
zER" andz is the abbreviation ofzy, - - -, z,,). We letR[z] andC[z]

wherep(z) : R™ — R is a real-valued polynomial. That is,denote the ring of polynomials in indeterminates with real
finding the global minimunp* of p(z) and a minimizerz*. and complex coefficients, respectively. We first recall some
We will also consider the constraint cagg : definitions and results regarding the solution set of system of
polynomial equations.
px = minp(z),
rek Definition 1: The setl C C[z] is an ideal if it satisfies:
where K is a semialgebraic set defined by polynomial equali- 1) 0el
ties and meqqalltlegi(@ 2 0, i=1,---,m, which includes 2) If a,bc I, thena + b € I:
many mteresjung applications gnd standard problgms such a8) If ¢ c I andb € ]
0—1 integer linear and quadratic programs as particular cases.
For the problemP, exact algebraic algorithms find all the Definition 2: Given a set of polynomialsy, - - -, ps € R[z],
critical points and then comparing the valuesjofat these define the set
points. We will discuss these methods in Section 2, which

z], thena - b € 1.

include Gbbner bases, resultants, eigenvalues of companigh ="+ Ps) = Ufipit - +fsps : fi € Rlz], i=1,---,s}.
matrices [4], and numerical homotopy methods [16], [31]. !t c@n be easily shown that the s, ---, p;) is an ideal,
A classic approach forPx (also can be used t®) is Known as the ideal generated py, ---, ps.

convex relaxation methods. In recent years, there are varioud N€ Set of all simultaneous solutions @ of a system of
relaxation methods that have been studied intensively af@uations
extensively. For thé — 1 integer program, dift-and-project

linear programming procedure by Bala, Ceria and Céjois {2l pr(2) = p2(@) = -+ =ps(7) = 0}

[1], The reformulation-linearization techniq&LT) by Sher- s called the affine variety defined by, ---, p,, denoted by
ali and Adams [24] and an SDFEBémidefinite Programmifg V(p1, -+, ps). Given a polynomial ideal we let
relaxation method by Ldsz-Schrijver [15] were regarded as

their pioneering works. They have been modified, generalized V(I)={z e C"|f(x) =0, Vf € I}

and extended to various problems and methods. Most recentlg/, ) . . .
. as'the affine variety associated with
some new SDP relaxation methods were proposed by Lassefre



B. Grobner bases and Stetteréifer Method C. Resultants

Obviously, any finite set of polynomials generated a poly- Let ¢ be a new indeterminate and form the d.isciminant of
nomial ideal. Due to the Hilbert's Nullstellensatz, the converd3€ polynomialp(x) — ¢ with respect tzy, -+, 2n!
is also true: any polynomial idedl is generated by a finite 0(t) == Ay(plx) — t)
set of polynomials, which is calledlzasisfor 7. Usually, the and A, is the A — discriminant, defined in [6], whered is

generatgd set Is not unique. F.o.r a given term OF.dmn the . the support ofp together with the origin. From [6] we have
polynomial ring R[z], any nontrivial ideal has a unique monic,

reduced Gobner basig2], [4]. Let G = (g1, s, - - -, g,) be a that the discriminané equals the characteristic polynomial of

Grobner basis for the critical ideal the matrix 4, and
Theorem 3:The optimal valuep* is the smallest real root
= (dp o0 . Op, of 5(t).

Oy 0wy On The method of resultant is to compuiét), and minimal

with respect to<. Then, the elements of the quotient spacgolynomials for the coordinates; of the optimal point, by
Clz]/I have the form{f] = f + I and f € Cl[z] is unique: ~ €limination of variables using matrix formulas for resultants
and discriminants [6].

f=f-(ha+-+frgr), fi€Clz], i=1,---;7  D. Homotopy Methods

P i For the problemP, the critical equations form a squre
and no term off is divisible by any of the leading terms of theSystem withn indeteminates and: equations. For solving

elements ofg. Obviously, the remaindef = 0 if and only g0y 4 square system, mamymerical homotopy continuation

if f € I and polynomials in the same class have the samghodswere introduced, see for example [16], [31]. The
remainder. basic idea of this class methods is to introduce a deformation
parameterr into the system such that the systemrat 0
breaks up into several systems and each of which consists of
binomials. Thus, the system at= 0 is easy to solve and the

Theorem 1:Let I C C[z] be an ideal. The following
conditions are equivalent:

a. The vector spac€’[z]/] is finite dimensional. methods then trace the full solution set (wjttpaths, is the

b. The associate variety (I) is a finite set. Bézout's number) ta- = 1.

c. If G is a Gibner basis for, then for each, 1 <i <r, If the system under consideration is sparse, then we usually
there is ak; > 0 such thatz}" is the leading term of  use polyhedral homotopiesvhich take the Newton polytops
for someg € G. of the given equation into consideration. Under this case, the

numbery is the mixed volumeof the Newton polytopes [4],

A monomial z* = =z ---apr is standardif it is not \yhich is usually smaller than @&out number.
divisible by the leading term of any element in thedGner

basisG. Let B be the set of standard monomials, then, it is a Ill. RELAXATION METHODS
basis for the residue ring'[z]/I. For f € C[xz], an arbitrary  In the above section, we have reviewed some methods for

polynomial, define the endomorphism the unconstrained global polynomial optimization problEm
The three classes of methods share the same feature that their
Ay Clz]/I — Clz]/I, As(lg) = [f9g)- running time is controlled by the numbgrof complex critical

points: In the Stetter-Mller method, we need to solve the
The endomophism is represented in the b#sisy a . x . €igenvalue-eigenvector problem on matrices with gizg; in
matrix A, wherey is the number of elements & The entry the resultants methods, we must solve a univariate polynomial
of A; with row indexz® € B and column index:® € B is Wwith degreey; in the homotopy methods, we must trage
the coefficient ofz” in the normal formz f(x) with respect paths fromr = 0 to 7 = 1. These methods become infeasible
to G. if 1 is large; this is the case even for smallor small total
The Stetter-Mller method [17] (also known as eigenvaluglegree2d of p, sinceu = (2d — 1)", which increases rapidly
method) is to compute symbolically the matrik, and 4,,, With » and2d. For example, whem = 9 and2d = 4, then
i = 1,---,n, then compute numerically its eigenvalus ané = 1953125 (see Table 1 in =[19]). o
corresponding eigenvectors df,. Then, determing* andz* Various convex relaxation methods have been studied in-
according to the following result, which follows from Lemmadensively and extensively in recent years, such as lifre
2.1 and Theorem 4.5 of [4]. and project method for integer programs [1], [15], the
reformulation-linearization techniquef Sherali-Adams [24],
Theorem 2:[19]. The optimal value* is the smallest real [25], Sherali-Tuncbilek [26], [27], the semidefinite program-
eigenvalue of the matrix4,. Any eigenvector of4, with ming relaxation of Lasserre [12], [13] and Pariilo [19], [20],
eigenvaluep* defines an optimal point* = (z%,---,z%) by the second order cone programming relaxation of Kim and
the eigenvector identitied,, -v=p;-vfori=1,--- n. Kojima [8], [9]. In this section, we will review these methods
detailly.



A. Linear Programming Relaxation
Let § > 0 be an integer. In the reformulation-linearization max A, s.t. p(z) — A is sos (6)
technique o_f Sherali and Tuncbilek [26], They first reformulatghere sos is the abbreviation séim of squaresNow, we can
the constraints to the form assume that the degree pfis 2d. Let X denote the column
i vector whose elements are as (5) with degte€he length of
NI SUPT R
i=1 d
@) N = ( ”2; ) .
which contain the bound factor product constrairits<(z; < _
1) as well as the original constraints. Then, introducing a nekgt £, denote the set of all real symmetri¢ x N matrix A
variabley,, for each term in the objective functignand the such thatp(z) = X TAX and letEy, denote the matrix unit
new constraints, we obtain a linear programming, a relaxati#ose only nonzero entry is one on the upper left corner.
of problem P

g1(w)* go(x)*? -+ - gm (x)*™ > 0,

Theorem 5:[19] For any real numbek, the following two
Ps — min{c) y | Asy > bs from (1) for every|a| < §}. (2) are equivalent:
Y 1) The polynomialp(z) — X is a sum of squares iR|[z].

The following results shows the reasonable of the LP 2) There is a matrixA € £ such thatA — A\E;; is positive
relaxation. Here we assume with no loss of generality that the = semidefinite, that is, all eigenvalues df — \E;; are
constant term op(z) is zero, i.e.,p(0) = 0. For the proof, nonnegative reals.
see [14]. From this theorem, we can see that (6) is a semidefinite

Theorem 4:Consider the constraint polynomial Optimiza'programming, which can be solved in polynomial time by
tion pr0b|emPK and the LP I’elaxatiOI)R; in (2) defined from interior point methods [18]’ [30] For fixed or for fixed d,

(1). Let ps be its optimal value: The lengthN of X is polynomial ofn, which, together with
(a) For everyd, ps < p* and the above theorem, means that we can find the largest number
Na o A of (6), denote by*°s, in polynomial time. We always have
p(z) = ps = Z ba(0)g1()*" - gm (), (3) that p*°* < p* and the inequality may be strict. An example
lod<o is Motzkin’s polynomial [23]
for some nonnegative scal&f, (6)}. Letz* be a global
minimizer of Px and let I(z*) be the set of active

constraints at*. If I(z*) = (i.e., z* is in the interior \we can prove thatn(z,y) > —1 but for any real numbeh,
of the constraint sef) or if there is some feasible, m(z,y) — A is not sos, which means that?s = —co.

m(z,y) = xty? + 22y* — 322>

nonoptimal solution: € K with g;(z) = 0, Vi € I(z*),  For the constraint case, we can find the largest number
then ps < p* for all 4, that is, no relaxatiorP; can be sych thatp(z) — A > 0, Vz € K. This condition is then
exact. relaxed to
(b) If all the g; are linear, that is, if< is a convex polytope, m
then (3) holds anghs T p* asé — oco. If I(z*) = 0 for p(x) — X = up(z) + Zuj(x)gj(x)
some global minimizer:*, then in (3) i=1
D ba(6) >0 ass — oco. (4) and
. uj(z)is sos j=0,---,m.

B. Semidefinite Programming Relaxation This also leads to a semidefinite programming relaxation:
The SDP relaxation of POP was inroduced by N.Z. Shor
[29] and was recently further extended by Lasserre [12] and p®°® = max M

Parrilo [20]. Theoretically, it provides a lower bound Bfor m
Px while in practice it frequently agrees with the optimal st p(x) = A =uo(x) + Y u;(x)g;(x)
value. J=1
Let Uug, Ui, ", Up SOS
17 X1, T2, ***yTn, ZC%, T1L2, * ", T1Tn,
a3, woxs, o, @2, e, @l e, 2l (5) From a dual point of view, Lasserre [12] develop another
_ ) SDP relaxation. Replade and Pk with the equivalent prob-
be a basis of a real-valued polynomial of degree at maestd lem
let s(r) be its length. Pt — ma ()l de)
The unconstraint POP is equivalent to Pr= iy | P
max A, st. plx) —A>0, Vo e R". and

This is a very hard problem and we usually relax it to Pr = p" = ,Lg%f?;()/p(m)“(df‘”)’



respectively, wheré(R™) and P(K) are the space of finite for some polynomialsg;(x), t;(z), ¢ =

Borel signed measures di” and K, respectively. Then, the 1,---,r,. For everyN > m, let

criterion to minimize is a linear criteriom "y on the finite
collection of moments{y,}, up to orderm, the degree of
p, of the probability measurg. The problem is then how to

describe the conditions anto be a sequence of moments. For
the history and recent development on the theory of moments,

one is referred to [3], [5], [21] and references therein.
Lasserre [12] then rela® to the following SDP:
Za Pa¥Ya

e { Min(y) = 0 ")
where M., (y) is the moment matrix of dimensias(m) with

inf ,
s.t.

rows and columns labelled by (5). Equivalently, (7) can be
where X, Z are real-valued sysmmetric matrices.

written as
inf ,,
s.t.

> o Pala

ZZ;&O yaBa i BU (8)

|

1’ . e ’7'1’ j p—
infy Za Pa¥Ya
oN st. Mn(y) =0 (10)
My_1(8y) =0

(0(x) = 2 — ||x||?) be the new relaxation. The dual of (10)

-X(1,1) —r2Z(1,1)
(X, Ba) +(Z,Ca) = pa, a#0
X, Z =0,

Supx,z
s.t.

.

(11)

Lasserre [12] proved that

Theorem 8:Letp(z): R™ — R be a2m-degree polynomial

where B, and B, are easily understood from the definition ofyith global minimump* and||z*|| < r for somer > 0 at some

M, (y). The dual program of is

supx (X,—Bo)(=—-X(1,1))
QF — sit.  (X,Ba) =Dpa (©)]
X =0,

whereX is a real-valued sysmmetric matrix and, B) is the
Frobenius inner produce

i,j=1
Lasserre proved that

Theorem 6:Assume thatQ* has a feasible solution. Then
Q* is solvable and there is no duality gap, that is

inf @ = sup Q*.
Under some conditions, the relaxation is exact:

Theorem 7:Letp(z): R™ — R be a2m-degree polynomial

with global minimump*.

1) If the nonnegative polynomigh(z) — p* is a sum of
squares of other polynomials, théhis equivalent to
the semidefinite programming (7). More precisely,
min @ = p* and if * is a global minimizer ofP, then
the vector

y* = (x>1k7 T ’x;kw (3;"{)2,.%"{.7;;, T (x:{)zma T (x»{)zm)
is a minimizer ofQ.

2) Conversely, if @* has a feasible solution, thep =
min Q only if p(z) — p* is a sum of squares.

global minimizerz*. Then

1) As N — oo, we have
oN 1 p~.

Moreover, for N sufficiently large, there is no duality
gap betweer@Y and its dual(QY)*, and the dual is
solvable.

2) min QY = p* if and only if

T2

p(x) —p* = Z%‘(W + (= all?) Yt ()

j=1

for some polynomialsy;(«) of degree at mostv, and

tj(z) of degree at mostN — 1, i = 1,---,1m, j =
1,---,79. In this case, the vector
y* = ('Tika e ,JU:” ($>1k)27x>1kx§7' ) ($T)2Na Ty (xi)ZN)

is a minimizer of (QY). In addition, max (QN)* =
min (QY) and for every optimal solutiofX*, Z*) of
QM)

pla) —p* =Y Nigi(@)® + (= [|2]*) Y vt ()7,
i=1 j=1

where the vectors of coefficients of the polynomials
¢i(x), t;(x) are the eigenvectors ak* and Z* with
respective to eigenvalues, ;.

In a similar way, Lasserre [12] deduced the following SDP

As we have known from [23] and the above discussion theglaxation for Py:
p(z)—p* may not be a sos. Then, suppose we know in advance

that a global minimizer:* of p(z) has norm less than for

somer > 0, then, using the fact [3] that every polynomial o

f(x) >0o0n K, :={z|r?—]z|*> > 0} can be written as

Fa) = 3 @) + 02 = ) 3t @)?

inf ,

— s.t.

Y o Pala
Mny(y) = 0

MN*&i(giy) t07 1= 1a"'7m7

(12)

wherew; := [w;/2] is the smallest integer larger than/2,
the degree ofy; and N > max{[m/2], max; ©;}. Writing



Mn_z,(9:y) = >, Cia¥Ya, the dual program is:

_X(lal) _Zl‘il Zi(lvl)

<X7Ba> +Z£1<Ziycia = Pa;
a0

X, Z;=0,i=1,---,m.

Their method is for solving nonconvex quadratic programs
and the basic idea is simple: they just replaced the semedefinite
condition X > 0 by a necessary condition

(Xj)? < Xp X5

SupX,Zi

In some case, this relaxation is as powerful as the original
condition X > 0, while the computational cost is much less
than SDP.

(13)
Lasserre proved the following convergence result:

Theorem 9:Let p(z): R* — R be am-degree polyno-
mial with global minimumpj. and the compact sek is
archimedean. Then

1) As N — oo, we have
QX 1 -
Moreover, for N sufficiently large, there is no duality
gap betweenQ¥ and its dual (Q¥)* if K has a

nonempty interior.
2) If p(x) — pj; has the representation

D. Tighter Relaxation by Redundant Constraints

By adding redundant constraints, tighter bound for the
original problem can be found. Recently, Kojima, Kim and
Waki [10] gave a general framework for convex relaxation of
polynomial optimization over cones. They summarized that we
can add two classes valid inequalities to the original problem
to enhance the relaxation: Universally valid polynomial con-
straints and deduced valid inequalities. We say that a constraint
is universally valid if it holds for any: € R™.

1) Universally valid polynomial constraintsd et » be a

mapping fromR™ into R™ whosejth component; is
a polynomial inz. Then them x m matrix u(z)u(z)"

p(a) —pic = 3 ai@)? + 0 = ) 3 ty(a)?

for some polynomialsy;(«) of degree at mosiV, and

tj(x) of degree at mosiV — @w;, i = 1,---,r, j =
1,--+,7r9, thenmin OF = p} = max (Q¥)* and the
vector

y* = (LCT, T 7x;k7,7 (;CT)%LCTCL’; ) (LET)QNﬂ ) ($T)2N)

is a minimizer of(QY). In addition, for every optimal
solution (X*, Zf,---, Z%,) of (QX)",

is positive semidefinite for alt € R™. We can add the
constraintu(z)u(z) " € ST to the original problem.
Another universally valid constraint is the second order
cone constraint. Let; and u; be two mappings from
R™ into R™ whosejth component is a polynomial in
x. By the Cauthy-Schwarz inequality, we see that

(w1 () Tuz(2))* < (ur(@) "us (@) (uz(2) "uz(2)),

which can be converted to

uy (2) Tug (2) + (ug(z) Tug(2)
uy () Tuy () — (uz(x) Tug(z)
2uy () Tua ()

T1 m T3
* 2 2
p(x) — Pk = z; Aigi(2)” + zzlgj(x) z;%‘jtz‘j(x) ) € N3,
1= Jj= 1=
where the vectors of coefficients of the polynomials
qi(), tij(z) are the eigenvectors of * and Z;; with
respective to eigenvalues, ~;;.

where Nj denotes the3-dimensional second cone.

) Deduced valid inequalitieswWe can also deduce valid
inequalities from the original constraints. For example,
in the RLT, they added the products of the original in-
equalities. Kojima, Kim and Waki [10] summarize some
technique of this class, including Kronecker products of
positive semidefinite matrix cones, Hadamard products
of p-order conesy > 1), linear transformation of cones,
guadratic convexity and constraints from numerical com-
putation.

C. Second Order Cone Programming Relaxation

Lasserre [14] showed that the RLT of Sherali and Tuncbilek
[26], [27] used implicity the Hausdorff moment conditions.
Comparing with SDP relaxation, the LP relaxation has the
following drawbacks:

1) The binomial coefficients involved in the reformulated
constraints (see (3)), the Hausdorff moment condition
numerically not stable. IV. CONCLUSION

2) In contrast the SDP relaxation, the asymptotic conver- |n this review paper, we have summarized the current
gence of the LP relaxation is not guaranteed in genergkvelopment of the global polynomial optimization problems,

3) Even in the case of a convex polytop€, the LP constrained and unconstrained. There are many methods for
relaxations cannot be exact in general. this class of problems, algebraically and numerically. The

On the other hand, LP software packages can handle vatgebraic methods usually provide good approximation of
large-size problems, while the present status of SDP softwéalne optimal value as well as the global minimizer while the
packages excludes their uses in practice. Recently, Kim armmputation cost is huge. The LP, SDP and SOCP are well-
Kojima [8], [9] showed that their SOCP relaxation is aleveloped and they can be used as convex approximation
reasonable compromise between the effectiveness of the SiRhe original nonconvex problem. Among the three convex
relaxation and the low computation cost of LP relaxation. relaxation methods, the SDP the most attractive but the status



of its software packages exclude it from utilization, LP i§19] P.A. Parrilo and B. SturmfelsMinimizing Polynomial FunctionsDI-
mostly used In practlce for |arge_S|Ze problems and SOCP I[T MACS Series in Discrete Mathmatics and Theoretical Computer Science.
9
C

. . - P.A. Parrilo, Semidefinite Programming Relaxation for Semialgebraic
compromise between the effectiveness of SDP and efficiency popiems mathematical Progra?nmmgﬁ ?2003) 293-320. 9

of LP. [21] M. Putinar,Positive Polynomials on Compact Semialgebraic Seisi-

Sherali and Tuncbilek [26], [28] have combined their LP_ ana University Journal of Mathematié (1993), 969-984.
22] L.Q. Qi and K.L. Teo,Multivariate Polynomial Minimization and Its

relaxation with Oth?r global optimizatior? met_hOdS such d§ Application in Signal Processinglournal of Global Optimizatior26
branch-and-boundSince that SDP relaxation will outperform  (2003), 419-433.

than LP for small-size problem, it is also possible to choo&?! B. Reznick,Some Concrete Aspects of Hilbert's 17th Probl@untem-
SDP h b bl in b h db d hod porary Mathematic253 (2000), 251-272.
as the subproblem in branch an ound methods. %&‘j H.D. Sherali and W.P. Adam#\, Hierarchy of Relaxations Between the
[0}

how to choose a suitabl& to make use the effectiveness Continuous and Convex Hull representations for Zero-One Programming

SDP sufﬁciently and on the same time do not increase the Problems SIAM Journal on Discrete Mathemati@s(1990), 411-430.
[25] H.D. Sherali and W.P. Adamg\ Hierarchy of Relaxations and Convex

compu_tational task iS_ not an easy pr0_b|em- ) ) Hull Characerizations for Zero-One Programming Problenfiscrete
Parrilo [19] and Qi and Teo [22] listed some interesting Applied Mathematic$2 (1994), 83-106.
open questions on POP. [26] H.D. Sherali and C.H. Tuncbileld Global Optimization Algorithm for

Polynomial Programming Problems Using a Reformulation-Linearization
Technique Journal of Global Optimizatio2 (1992), 101-112.
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