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ABSTRACT
The concern of this thesis is with purely superficial

magneto- and e1ectrohydrodynamic interactions with 1iquid-
liquid or liquid-gas interfaces supporting free, polarization
or magnetic charge; free, Korteweg or Amperian current 0 The
problems considered are so arranged as to exclude any
coupling between fields and fluid in the volume. Those
effects resulting from the gravitational field and the
action of cohesion are included.

Surface problems in six configurations are analyzed
and compared. Use is made of a perturbation analysis and
of a "space rate" expansion of the d~pendent variables.
Surface waves are classified according to whether the
steady electric or magnetic fields are perpendicular (type I)
or tangent'j.a1(type II) to the interface.

E1ectrohydrodynamic examples of type I and type II
waves are experimentally verified by studying surface
instability, radiation and resonance. Conditions for
resonance in rectangular geometry are given for each of the
six waves. The type I waves are characterized by a phase
velocity that decreases with increasing field strength, the
possibility of negative group velocity simultaneously with
a positive phase velocity and by a discrete field-strength
and wave-length for impending instability.

Type II waves theoretically may propagate more, or less
rapidly along field lines, depending on the strictions at
the interface. Although the C1ausius-Mossotti equation is
commonly used to illustrate the effect of strictions at
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dielectric interfaces, its validity is clearly contradicted
by experimental evidence that the waves are speeded up.

A discussion of the non-linear behavior of two of the
waves is given, in the limit where the interface interacts
strongly with external boundaries. The growth of magneto-
and electrohydrodynamic shocks and anti-shocks from
compression and depression waves is discussed, with
transition electrohydrodynamic waves originating from time-
like data given to illustrate waves partly controlled by
gravity and partly by the electric field. Waves initiated
from space-like data are also described and the integral
shock. and anti-shock relations derived.

Thesis Supervisor: Herbert H. Woodson
Title: Associate Professor of Electrical Engineering
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CHAPTER 1

INTRODUCTION
A .. Purpose

Water or gravity waves have been of interest since at
least the time of Lagrange. As a result of this interest,
problems involving the dynamics of a free fluid interface
essentially controlled by superficial forces have received
considerable attention. More recently, problems concerning
free surfaces supporting free surface currents have appeared
in the context of magnetohydrodynamic stability theory.l,2,*
On the other hand, even the casual observer has seen the
effect of electric surface charge on the surface of a liquid
jet or the surface of a water drop; problems that had
received some mathematical attention even before the turn of

3the century.
This thesis represents an effort to go back to the

beginning. Field coupled surface waves, as they appear in
the literature, are complicated by geometry, until the
basic features of the dynamics are obscure and the possi-
bilities of experimental verification unnecessarily remote.
An effort is made here to compare several basic types of waves
that can exist at fluid interfaces stressed by either magnetic
or electric fields, under conditions made as simple as is
consistent with a laboratory investigation. No bulk forces
are involved, so that the complicating features of coupling
between bulk and surface interactions are removed. The
philosophy used here is to begin with as simple a set of
models as is physically plausible and proceed to a detailed
mathematical description and comparison. The major classifi-
cations of waves (those stressed by perpendicular or tangential

*The superscript numerals refer to the Bibliography that begins
in Appendix D.
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telds) are then illustrated experimentally by two of the
three electrohydrodynamic wave types. The experimental
results are accurate enough to serve to justify the mathe-
matical model usedo

Two of the wave types discussed, those involving free
currents and free charges, illustrate a concept that will
be termed anti-duality, as opposed to duality. Among the six
types of waves investigated, four have complete duals while
two have complete anti-duals. One system is the dual of
another if the defining equations for one system result
from substituting analogous or dual variables and constants
in the equations describing the dual system. An anti-dual
involves a change of sign of a constant of one set of equa-
tions, in order to obtain the equations of the anti-dual.

In the same sense as for duality, the worth of recog-
nizing anti-duality arises from the considerable economy of
effort that results, because computations need only be
extended to include the reversal of sign in one of the para-
meters. 'Unlike systems that satisfy conditions of duality,
however, anti-duals have antithetic behavior. Hence, wave
like properties are anti-dual to unstable behavior. A
surface shock on a compression wave is the anti-dual of a
shock (or anti-shock as it is dubbed here) on a depression
wave.

This work is not meant to be a complete investigation,
but rather a starting point from which work in the area of
linear and non-linear magneto- and electrohydrodYnamics of
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surface interactions may proceed in an efficient and physically
meaningful way. The equations of motion and boundary conditions
tabulated here indicate for example the consistent sets of
equations that may be used to analyze problems for each wave
type in more complicated geometries.

B. Background
The literature of surface waves is one of the oldest of

mathematical physics. Yet, there are many of the well-developed
concepts that appear but rarely in the context of modern-day
investigations of field coupled surface waves. Here, emphasis
is placed on this work by putting the field coupled waves into
the nomenclature of the more common gravity and capillary
surface waves. The exposition on Water waves4 by Stoker is an
invaluable reference, and of course Lamb's HydrodynamicsS is of
great assistance.

Several of the wave types investigated here have precedent
because of their connection with the theory of stability. The
role of the free surface current in various configurations
involving perfect conductors has been rather exhaustively
investigated as it applies to the thermonuclear effort.6 An
early interest in the dynamics of charged jets has already
been indicated. More recently some work has been done, by
means of energy principles, on the stability of a dielectric
jet in a longitudinal electric field.7

The area of electrohydrodynamics has received some atten-
tion recently8 concerning electro-convection of surfaces, an
outgrowth of work done by Avsec and Luntz in the late 30's.9
The phenomenon they considered is of some importance in the
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present experimental work because it appears as an interfering
effect in the observation of one of the wave types.

After forty years of virtual stagnation, interest in
e1ectrohydrodynamics appears to be on the up-swing. In this
connection it is important that the force density on a
dielectric liquid be accurately known. In the chapters which
follow, the stress tensor of Korteweg and Helmholtz will be
used. It is common practice in well-known texts10 to
illustrate the use of this force density by computing the
traction at the dielectric interface with the assumed density
dependence of the permittivity given by the C1ausius-Mossotti
equation, and to arrive at results that are directly contra-
dicted by certain of the experimental observations of Chapter
4. Hence, one of the functions of this work is to emphasize
the fact that thi~ equation is not valid when applied to a
liquid interface.

Non-uniform electric field effects have been investigated
11 .experimentally at some length. Perhaps too much has been

attributed to the effect of the non-uniformity, however, as
will be shown by the i~vestigations of free charge inter-
actions in Chapters 3 and 4.

C. Areas of Interest
The emphasis throughout this work is on the e1ectrohydro-

dynamic waves. Aside from the fact that these represent inter-
actions about which the least is known, they are the logical
wave types to investigate first. This is true because they are
most easily produced in the laboratory, where high electric
fields are more easily obtained than high magnetic fields.



In fact, one is at more of an advantage than this, since the
natural tendency of currents is to diffuse throughout the.
bulk of a conducting fluid while charges relax to the
boundaries with time.
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CHAPTER 2
FUNDAMENTAL EQUATIONS AND BOUNDARY CONDITIONS

A. Bulk Equations
This thesis will be devoted to the low frequency electro-

mechanical interactions between polarized or magnetized
incompressible fluids and electric or magnetic fields. Hence,
the equations that will be used to describe volume dynamics

*are the non-relativistic Maxwell equations for moving media,
Euler's equation, and the appropriate continuity conditions 0

The nomenclature used conforms to that commonly used in the
literature. A list of symbols is given in Appendix A.

DV -
P Dt + 'Vp = F

'V . V = 0

'V E dBx = - dt

\J • IJ.H = 0

(2-1)

(2-2)

(2-3)

(2-4}

-'V x H = j + \7 + d c:E + 'V x « c:. - c: ) E x \7)q dt a (2-5)

'V • c:E = q (2-6)

The form of the body force F will depend on the problem
considered, and will be introduced when needed. Equation (2-3)
implies the Minkowski model of magnetization.

*See Panofsky and Phillips,lO p. 147.
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The problems that will be considered have in common
the following properties:

1. The bulk of the fluid does. not support free
current or charges.

2. Disturbances communicate with a celerity
much less than that of sound in the fluid.

The first of these properties exclu4es free current or
charge interactions from F in Eq. (2-1), while the second
justifies the use of Eq. (2-2). Together they e1im~nate
bound current or charge interactions from F and show that
Eq. (2-1) is independent of theaectromagnetic fields. It
follows also that Eqs. (2-5) and (2-6) are homogeneous (the
e'ffects of polarization or displacement current are not
significant unless the fluid is compressible).

In the work which follows" four types of problems will
be considered that concern interactions between:

1. electric fields and bound surface currents
or charges;

2. magnetic fields and bound surface currents
or charges;

3. electric fields and both free and bound
surface charges;

4. magnetic fields and both free and bound
surface currents.

Each of, these problem types corresponds to a further simpli-
fication of the equations (2-1) through (2-6). The fact that
the currents of Eq. (2-5) are dropped from the problems
involving electric fields leads to a dynamics governed by
Eqs. (2-1),(2-2), (2-3) with ~~ = 0 and (2-6). The
problems involving'magnetic fields but no free surface



8.

cur~ents are predicted by the similar Eqs. (2-1), (2-2),
(2-4) and (2-5) while the addition of a free surface
current requires the use of Eq. (2-3).

All of these problems may be described by a single
set of equations of motion (hybrid equations) if it is
recognized that the equations imbody, in general, more
information than is necessary to solve individual
problems. A list of the equations of motion for each
problem is given below.

DV
P Dt + Vp = F

V • V = 0

(2-1a)

(2-2a)

2-3a)

2-4a)

2-5a)

2-6a)

I Electric Fields Magnetic Fields. Hvbrid EQuationsl
no free free no free free

char2e char2e' current current

VxE = 0 vxE = 0 - dB VxE dB (VxE = - - = - dtat

Vo ~E == 0 VO eE = q VO eE = q (

= 0 - - (vxH VxH = j VxH = j

V.J.LH= 0 V.J.LH= 0 v ° J.LH= 0 (

It may be seen that each of the sets of equations is
a simplification of the hybrid equations.

In order to provide an economy of effort, six
different problems will be solved simultaneously in



.C4apter3, using as a starting point the same set of hybrid
equations. It is important to note that although these
equations are not consistent (the n~gl~ct of displacement
current leads to an inconsistent continuity of charge
equation), the equations used in each particular problem
are consistent.

B. Surface Conditions
As has been pointed out, the electric and magnetic

fields will satisfy bulk equations that are elliptic in
character, i.e. the static field equations. The fact that
the present concern is with wave-like interactions or
phenomenon predicted by hyperbolic equations points to the
extreme importance of t~e boundary conditions.

The solutions to the bulk equations will differ
according to the properties of the material occupying the
region of interest. The boundary conditions, at the same
time fit these solutions together so as to define field
quantities throughout the region of interest, and define
the domain of validity of the volume solutions.

The interface between two fluids is physically a
three dimensional surface always composed of the same
particles. If F(x,y,z,t) = 0 is the equation defining
this surface in space and time, it follows from the physical
definition that

DF = 0Dt (2-7)

The fact that particles on the surface defined by
(2-7) remain on the surface is evident by a simple argument
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*originating with Lagrange •. If (x,y,z) are the space co-
ordinates of a particle with an initial position a,b,c
the solution for the position of that particle at time t
may be written

[

X 1- [X(a'b,c,t~y - y(a,b,c,t)
z z(a,b,c,t)

(2-8)

The particle will always remain on a surface defined by
F(a,b,c,t) = 0 (2-9)

since a given point (a,b,c) always corresponds to the same
particle. Equation (2-9) may be solved for a,b,c as
functions of (x,y,z). Hence differentiation of Eq. (2-9)
with respect to time and the fact that (V ,V ,V)= (ox £l az)x y z. at' at' at
gives Eq. (2-7) .

Boundary conditions are commonly formulated in terms of
a unit normal vector n. Because this vector intimately
depends on the orientation of the surface, but not on
dynamical considerations, it is purely a function of
F(x,y,z,t) = O. That is,12

'VF
n = ['VF . 'VF]1/2 (2-10)

Equations (2-7) and (2-10) are quite general in that
they hold for any interface, free or not.

* 5See Lamb, p. 7.
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The boundary conditions are a result of integrating
Eqs. (2-1a) through (2-6a) across the interface. It is
convenient, in this connection, to consider the body force
F as derived from the gradient of a stress tensor.

(2-11)

where Ma~ includes the Maxwell stress tensor (superficial
forces of electromagnetic origin) and mechanical stresses,
such as those due to surface tension. Superscripts will
designate the region in which the variable is to be
evaluated while single subscripts will indicate the axis
directions. The normal vector is directed from region (1)
to (2), when evaluated at the fluid-fluid interface. The
conditions that correspond to the hybrid Eqs. (2-1a)
through (2-4a) are

na[p (2) _ p (1)] _ [M(2) - M(l)]n = 0 (2-12)~f3 a~ ~

n • [V(2) V(l)] = 0 (2-13)
- [E(2) -(1)] - -[ (2)-(2) _ lJ.(l)ii(l)] (2-14)nx E -n. V ~ H = 0

n. (2-15)

Because the electromagnetic body force is written in
terms of the field variables (not the currents or charges)
the conditions of Eqs. (2-5a) and (2-6a) are not needed
unless the free charges or currents on the interface vanish.



In that case

n x (H(2) - H(1» = 0

n • (£(2) i(2) _ £(1) i(1» = 0

(2-16)

(2-17)



PART I
CHAPTER 3

CLASSIFICATION OF WAVES; PERTURBATION THEORY
Ao. Classification

By far t~e most commonly used model for analyzing surface
interactions is the "small signal" or "linearized" representa"-'
tiona This approximation is used by virtually all workers
concerned with magnetohydrodynamic stability problems,
whether they approach the problem by use of an energy principle
or by means of direct dynamical analysis. It has the virtue of
reducing the problem, not only to a linear one, but to one of
fixed domain as well. As a result, solutions can be produced
by superimposing normal modes that individUally represent waves
and instabilities.

As was pointed out in Chapter 1, the literature includes a
considerable number of experimental observations on interactions
between charges and electric fields of a highly inhomogeneous
nature. Magnetohydrodynamic stability problems are mainly con=
cerned with the useful interactions between currents and non-
uniform magnetic fields. Yet, the normal mode analysis used,
shows that each of these problems is ultimately a complicated
set of waves and instabilities. It would seem worthwhile, in
order to understand the basic character of the possible waves
and instabilities, to consider them as they are supported in a
situation of greatest possible simplicity, i.e. uniform fields
and plane geometry. It will be seen that certain phenomena~
previously associated with non-uniform fields, are accounted
for by the dynamics of a surface stressed by a uniform fie1do
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This chapter will be concerned with demonstrating
theoretically six possible types of surface interactions in
plane geometry. These are defined in Table (3-1).

Table (3-1)
Static Surface Sources

Type Static Field or Vortices
EH-I.f E perpendicular to interface free charges
EH-Ip E perpendicular to interface polarization charges
EH-II E tangential to interface
MH-I B perpendicular to interface magnetic charge
MH-Ilf B tangential to interface free current
MII-Ila B tangential to interface amperian current

Just as volume A1fv~n waves couple to acoustic and electro-
magnetic waves, so also incompressible surface waves couple to
gravity and capillary waves. A physically realistic theory
must include, therefore, the effects of energy storages in the
gravitational field and in the molecular formation of the inter-
face, as well as interactions between external boundaries and the
interface. The problems under consideration are shown in Figs.
3-1 and 3-2. They involve two non-miscible fluids separated by
a plane interface of tension T parallel to two rigid boundaries •
.The fluids are presumed inviscid, incompressible and perfect
dielectrics. A gravitational field g is taken as acting in
the negative x-direction with the other axes lying in the plane
of the static interface. The circumstance of the free surface
current of case MH-Ilf might be created by passing a current
through a conducting film at the interface. This problem is



similar to the incompressible limit of the gravitational
instability considered by M. Kruska1 and M. Schwarszchi1d,1
in the limit where ~(1)= ~(2)= permeability of free space,
surface tension is zero and a - b ~~.
B. Equations of Motion

The bulk equations consistent with the present problems
are Eqs. (2-1a) through (2-6a) with F = -gpa, j = q = O.x

The interface is conveniently described by letting
F(x,y,z,t) = x - ;(y,z,t) - 0

Hence Eqs. (2-7) and (2-10) become

.£S.-v +v 25.+ V .21 .. 0ot x Y oy Z oz
- - - 25. -.2i S 2 .2i 2 -1/2n = [ax- ay oy - az oz][l + (Oy) + (oz) ]
The boundary conditions that apply at x = ;(y,z,t)

are Eqs. (2-12) through (2-17). For the present set of
*problems the stress tensor Ma~ is

[
2 -3/2 2 -3/j

M = T + () T n[l + (.2.S.)2] + n[l + (25.)2]a~ a~ a~ oy2 oy oz2 OZ

where Ta~ will be taken as the Maxwell stress tensor
consistent with the surface traction derived by Korteweg
and He1mholtz.13

* 5See Lamb, p. 455.

15 ..

(3-1)

(3-2)

(3-3)

(3-4)
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Basic to the derivation of this tensor is the assumption that
E and ~ are only functions of the density. The striction
constants are defined by

c = .£ dE
E dp

In problems EH-If, EH-Ip and MH-IIf, the boundaries at
x = -a,b are perfectly conducting and in MH-I infinitely
permeable, so that

EH-If: EH-Ip: MH-IIf; n x E = 0
MH- I; n x ii = -0 (3-5)

In problems EH-II and MH-Ila, it is required that as
x~~ the perturbation fields vanish. Finally, in all
problems the boundaries are rigid so that at x = -a,b

n.V=O (3-6).

c. Perturbation Analysis
It would seem worthwhile to make a few comments about

the 'formalism of making an amplitude parameter expansion
while carrying it out for the problems at hand. ~his
discussion is an adaptation of one given by Stoker for
gravity waves and is the mathematical justification for
what is commonly termed linearization.

Each of the dependent variables, V,p,E,B and n are
assumed to have an expansion in a parameter ~ of the form

o 1 2 2
p = p(x,y,z,t) + ~p(x,y,z,t) + ~ p(x?y,z,t) + ...

If these expansions are substituted into the bulk equations,
as well as into Eq. (3-1), an infinite set of conditions is



generated from the require~ent that each equation be satisfied
for each power of 6. For example Eq. (2-la) is written

o 0 0 0
oV 0 oV 0 oV 0 oV ~o

6o[~ + V ~ + V ---!. + V ---!. + .£E. + pg]ot x ox Y oy z oz ox
1 1 ~Vo 1 0 1 0 1

1 oV 0 oV 1 0 0 oV 1 oV 0 oV 1 oV ~+6 [ x + V x + V ~ + V ---!. + V ~ + V ~ + V ~ + .QE.]~ x ox x ox y oy y oy Z oz Z oz ox
2 2 1 0 2 1 0

2 oV 0 oV 1 oV 2 oV 0 oV 1 oV 2 oV
+A[ x + V ~ + V -2 + V -2 +V ~ + V ~ + V ~~ ot x ox x ox x ox y oy y oy y oy

2 1 0
o oV 1 oV 2 oV 2

+ V ~ + V ~ + V ~ +.2.E.]+ = 0
Z oz Z oz Z ox' ox ·••

and each term in brackets is required to vanish. A "linearizable"
problem is one where the zero order equations can be 'satisfied
by solutions that in turn generate a first order set of equations

000that are linear. In the present problems, these are V = V = V = 0
o x y z

and p = -pgx + constant, or the conditions for static equilibrium.
The resulting first order equations have constant coeffi-

1 ~ at + ~yY + ~zzcients and admit solutions of the form p = p e
All first order variables may be written in terms of the first
order fields p, e and h which are defined byZ Z

~
2 p[L _k2] "" 0 (3-7)e =

dx2 z

hz

where k2 2 ~2 _~2= -~ - =y z



Now the assumption of negligible displacement and conduction
currents is justified by the fact that for all of the fluids
considered here 113;1 + 113; I » I ~l1a I + I ~Ea21. Equation (3-7)

has solutions
'" Al A2P

'" C1 ekx + C2
-kx (3-8)e = ez

'"h DI D2z

where A's, CiS and D's are coefficients determined by the
boundary conditions. The remaining variables are written in
terms of the A's, e's and D's

'" I d'"V =--~-x pa dx - ..k. [A ekx
pa I . (3-9)

'"V =-y (3-10)

'" t3z '"V = - - p = -z pa (3-11)

'"de h'" 1. z at3y~ z k [kx -kx]e = - -,.. - = - ele - C2ex t3z dx t32 t3zz

a~t3
-~ [D1ekx + D2e-kx]

z

(3-12)

(3-13)

(3-14)



~
~ dh ~

~ =:....Y e + ~ ~ =:J.. [C ekx + C e-kx]ey ~z Z ~2 dx ~z 1 2
Z

These solutions may now be used to generate driving
functions for the second order equations, and so on.

The arbitrary coefficients are determined from the
boundary conditions which must also be satisfied to all
orders of ~. Care must be taken that the boundary con-
ditions are evaluated at the position of the interface,
i.e. at x = ~ (y,z,t), x = -a or x = b as the case
may be. Since a series solution has ,been assumed for
~ (y,z,t), each of the other dependent variables is
evaluated at x = ~(y,z,t) by making a further expansion
of its x dependence in powers of 6 and the functions012
~, ;, ; .••• Equation (3-1) then defines these ~'s in
terms of the arbitrary constants introduced by the bulk
equations. To first order terms:

(3-15)

~ = 1. vi =o x

x=o

k- - [A - A ]212po
(3-16)

and the first order normal vector is defined,
~
n = 0x

~
n =y

= 0

~
n

Z

= 0

(3-17)



It ~s now clear that the domain of validity of solutions
to the bulk equations is fixed. The problem has been reduced
to the usual fixed boundary value problem.

The boundary conditions for first order terms in ~
(Eqs. 3-18 through 3-36) are shown in Table B-1 of Appendix B.
Not all of these equations are independent or pertinent for
each problem. The eqbations defining the A's, C's and D's,
together with comments on the consistency of the remaining
equations are tabulated in Table B-2.

D. Dispersion Equations
For a given surface perturbation, Eqs. (3-30) through

(3-36) define the first order relations among the dependent
variables. Which perturbations are a110~ed is determined by
the compatibility condition of the system equations. The
reduced form of these conditions is,

~EH-If] - (:~)Probe 1 EH- Ip 2 2 k
2

V2 + V
2

CJ.) = -a =
g c

MH-I

~EH-II J
k
2 (v2

)Probe 2 MH-IIf; 2 2 k2 V2 + V
2 + ~ a

CJ.) = -a = g c k2 V2MH-IIa b

2 g(p(l) _ p(2»where .V =g I
Peq k

V2 = Tkc IPeq

(3-37)

(3-38)

(3-39)

(3-40)



P = p(2)coth(kb) + p(l)coth(ka)
eq

23 ..

(3-41)

The parameters V and V are the phase velocities of
g' c *

gravity and capillary waves respectively while Va and Vb
are the effective A1fven velocity and its e1ectrohydrodynamic
dual as given below,

1a - free charge on interface (EH-If)

(3-42)

1a - no free charge on interface (EH-Ip)
(e(2)_ e(1»(e(2)(1+c(1»_e(1)(1+c(2»)E(2)E(1)

V2 = __1__[ x x] (3-43)
b Peq e(~)tanh(ka) + e(l)tanh(kb)

2a - EH-II

1b - (MH-I)

V2 is given by Eq. (3-43) after the substitutiona

e -+ Jl, E -+ H, c -+ d

2b - free current on interface (MH-IIf)

(3-45)

* 5See Lamb, p. 461.
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2b - no free current on interface (MH-IIa)
V2 is given by Eq. (3-44) after the substitutiona
e: -+ lJ., E -+ H, c -+ d •

E. Interpretation of Results
The phase velocities of the six types of surface waves

are given by Eqs. (3-37) through (3-45) as they depend on the
2.".perturbation wave-length 1t ·

For reasonable values of the electrostriction constants,
the velocities squared v~ and v~ are positive. It follows
from Eqs. (3-37) through (3-41) that the effect of an increased
field intensity in Problem 1 (type I waves) is to slow down a
surface wave of a given wave length until the effective phase
velocity vanishes and the surface becomes unstable. The wave-

, 2.".length of the instability is that value of 1t that first ful-
fills this condition. If the e1ectro- or magnetostriction is
assumed to be proportional to the permittivity or permeability,
the striction terms act to enhance the unstabi1izing influence"
of the fields for the EH-If,waves, while tending to stabilize
the EH-Ip and MH-I waves.

As would be expected, in all of the cases considered,
there is an instability at some sufficiently long wave length
if the heavier fluid is placed on ,top (p(2) > p(l». This is
the familiar gravitational instability.

If the effect of the strictions are presumed small in the
EH-II, MH-IIf and MH-IIa problems, the results indicate that
transverse incompressible surface waves propagate along the
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field lines, which for high magnetic or electric field
intensities [(IVai) » Iv I + IV I] may be termed A1fven or

IVbl c g

e1ectrohydrodynamic surface waves respectively.

The parallel field problems are apparently more strongly
dependent on the strictive terms, however. In fact, Eqs.
(3-44) and (3-45) show that the effective velocities squared,
V~ and V~, may be positive or negative depending on the
values of the d's and CIS.

The dependence of E on p, for example, is sometimes
*computed from the C1ausius-Mossotti equation which gives

(k - 1) (k + 2)
c = [ e 3k e ]

e

It follows that,

(E(2) _ E(1»[E(2)(1_c(2» _ E(l)(l_c(l»]
2

E
= -2 (k (2)_k (1»[2 _ (k (l)+k (2»]3 e e e e

or, according to the C1ausius-Mossotti equation, for k (1)
e

and ke (2) greater than unity, V~ of Eq. (3-43) is
negative and the electric field slows down surface waves
propagating in the z direction. In Chapter 4, independent
experimental means will be used to show that such large

* 13See Stratton, p. 140.

(3-46)

(3-47)



(3-48)

26~

electrostrictions do not occur at interfaces of common liquids,
but rather, that v~ is positive for waves of type EH-II.

With the assumption that V2 and v2 are positive,a b
certain characteristics that are common to the wave types may
be pointed out. If the interactions with the external
boundaries are small, the electric and magnetic parts of the
waves are dispersionless. Waves propagating in the z direction
then are dispersed according to the equation

r I ] (J)2 = 2 g{p(1) (l (
2
» + Tk + U2]Lu ; k [k(p(1) + p(2» (p(1) + p(2»

2where the U 's are given for the respective problems by the
limit a ~ 00, b ~ 00 of Eqs. (3-42) through (3-45), and are
independent of k.

Observe that:
1. Although at a fixed k the field intensity
can always be made large enough to make U2
larger than the square of the gravity or
capillary phase velocities, there is always
a wavelength such as to make either the
capillary wave or gravity wave phase velocity
the largest of the three terms.

2. The wave number of minimum phase velocity
corresponding to

k = ~ g(p (1) T- p (2»'
(3-49)

remains unchanged with increasing field intensity.
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3. For type II waves the group and phase
velocities are always positive, while for
type I waves there may be values of k for
which the group velocity is negative, while
the phase velocity is positive .. This will
happen if

(3-50)

The nomenclature of capillary and gravity waves may be
generalized to define waves as capillary, gravity or of
type I or II in accordance with the phase velocity that is
largest in magnitude. The regions of each wave are illustrated
in Fig. 3-3. The least value of k that can give a type I
or type II wave is

while the largest value of k to give these waves is

Hence, U2 must exceed a minimum value for the type I or II
wave to exist as defined. That value is

Interactions with the parallel plates occur at long wave-
~ngths (small values of k). The effect is illustrated by
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considering the following limits:
EH-If t1(1»> 0'(2), E(l)...0, P(2)....0

EH-Ip e:(1»> e:(2), p(2)...0

MH-I ~(1»> ~(2), P(2)...0

MH-IIf currents returned on upper plate:
H(l) ... 0 p(2) ... 0

z '

These problems then have the same dispersion relation

2
(1) = k2[~ktanh ka + Tpktanh ka + U2 tanh ka]tanh kb (3-51)

This effect of the boundaries at low k has been
included in Fig. 3-3. (This figure was drawn using data for
water at a depth of 1 cm. and U2 = 50.) In the limit where
both ka and kb are much less than one (wavelengths long
compared to both plate spacings), the dispersion relation is

[IJ 002= k2[ag + aTk
2 + U2 ~] (3-52)

II P b

Again, the type I and II phase velocities are independent
of k. However, now the gravity wave propagates without disper-
sion.

It will be observed that the EH-Ip and MH-I, as well as
the MH-IIa and EH-II waves are complete duals. Also, if
doy = 0, the MH-IIf and EH-If waves are anti-duals, even
including coupling to the external plates. That is v~ is of
the same form as V2 for these cases and the dispersion re1a-a
tions are given by the substitution V~ -+ -V; .
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F. Field Distributions
The physical pictur~ of the fundamental dynamics of each

wave type is worthy of mention. This is especially true of
the polarization and magnetization surface waves, since their
prediction depends on a force density derived by means of
energetic rather than dynamic principles.

The stress tensor of Korteweg and Helmholtz has, as
its volume force counterpart, a force density given by

- - - 1 - - 1 --fm = j f x B - "2 H.H\7~ + "2'V(H.Bd) (3-53)

(3-54)

In four of the cases considered, the free currents and
charges are assumed to vanish. A few remarks will be made at

- -this point about the force densities f and f as appliedm e
to these cases where jf = qf = O.

A manipulation of Eqs. (3-53) and (3-54) renders them
more physically interesting. Consider Eq. (3-54) for example
in the case where c is small enough that the last term can
be ignored. Then,

f =-e :;: - tv[E.D] + ~E'V (E.E) (3-55)

Because 'Vx E = 0 this can be rewritten as
1 - 1 - 1 - -fe = - "2(EeV)D + "2(De'V)E+ "2 E x (V x D)

1 - -The first two terms of this equation combine to 2 D(VeE),

(3-56)
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since D is parallel to E and v.fi = O. Hence

where

~
= £ V.E

0

jp = [V X D]/£
0

Analogously, Eq. (3-48), for small d's and

where

[V x B]/~
o

j f = 0 is

(3-57)

(3-58)

The force density, according to the constrained form of
the model used by Korteweg and Helmholtz, can apparently be
divided into interactions between the macroscopic fields and
equivalent field sources and vortices. The quantities jm
and ~ will be recognized as in the form of what are some-
times called the amperian current and magnetic charge~
Although ~ is commonly termed the polarization charge,
there does not seem to be a precedent for j. (Note thatp
the static surface vortices for type EH-II waves have not
been specified in Table B-1.) In this work, J will be

p
termed the Korteweg current, for lack of another name. The
terminology here has no more significance for the microscopic
dynamics than does the magnetic charge. The variable jp
signifies the vorticity of polarization only.
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In an actual fluid, the force densities of Eqs. (3-57) or
(3-58) would revise the material microstructure, and the
resulting equilibrium (assuming there is one) would be accounted
for by the force densities corrected for strictions.

Finally, it is useful to note that since
wholly rotational,

v.j = V.j = 0m p

and are

(3-59)

The physical interactions that account for the six types
of surface waves may now be pointed out by making use of the
preceding concepts.

The static equilibria corresponding to the unperturbed
problems are of two types; interfaces stressed by perpendicular
fields (type I, Probe 1), or interfaces stressed by tangential
fields (type II, Probe 2). The type I waves are dynamically
dominated by surface charge interactions (free, polarization
or magnetic) while the type II waves are more reasonable if
viewed as surface current interactions (free, Korteweg or
Amperian). It is essential that, according to this model,
dynamical interactions can not, in general, be predicted by
use of either sources or vortices alone. Both must be included.

The equations of Table B-1 make possible a discussion of
the field distributions that correspond to the various wave types.
As an example, consider the fields that accompany waves
traveling in the negative or positive z direction. (For this
discussion the motions will be assumed to have no y dependence.)
The surface could be distorted so that

""; =; cos (rot+ kz); ; = ;0-0 (3-60)

where k and m are related by the dispersion relation (3-37)
or (3-38).
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The perturbation fields consistent with this traveling
wave would appear as shown in Figs. 3-4a through 3-4e and
are described by the equations of Table C-l. Superimposed
on the electric or magnetic field intensities shown are
zero order field intensities. The first order fields are,
in general, distributed sinusoidally along the z axis and
exponentially perpendicular to the surface. Field lines,
stream lines and points of maximum pressure are shown.
Note that Fig. 3-4a gives the pressure and velocity
distributions for all of the wave types and that the fluid
particle velocities are such as to make the pressure peaks
propagate jrom right to left, i.e. the wave traveling to
the left is shown.

In Table C-l, the sources and vortices of the previous
sections are given as'defined. They do not include the
effect of strictions.

The most obvious difference between the field distribu-
tions of the type I and type II waves, is that the primary
field intensities (perturbations of the static field
intensities) are 90 degrees out of space phase with the
surface displacement for type I waves, while they are in
phase for the type II waves. This result is directly related
to the ~stabilizing influence of the type I fields as compared
to the stabilizing influence of type II fields, i.e. to the
decrease and increase of the phase velocity of type I and II
waves respectively with increasing field intensities. To
see this, note that the gravitational field and surface tension
produce wholly wave-like interactions, and always tend to force
the interface toward its center of curvature. The perturbations
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that play a dominant role in stressing the interface are made
from finite zero order field variables. Hence, for type I
waves, the surface traction resulting from surface charges
and the perpendicular fields is always in a direction
opposite the center of curvature of the surface, while for
type II waves the traction resulting from surface currents
and horizontal fields is toward the center of curvature.
From these statements the predicted dynamics would be
expected. More physical feeling for the wave types will
follow from the consideration of standing waves and surface
resonators given in Chapter 4.

G. EH-If and MH-Ilf Waves
Insight into the physical meaning of the previous free

surface charge and free surface current problems may be
gained by considering a pair of simple problems that
illustrate the role of conductivity.

Consider first of all the problem illustrated by
Fig. 3-5.

x
(2)

(1)
o finite

Figure 3-5
EH-If Configuration

= 0

z

A fluid of finite conductivity 0 in region (1) forms
a horizontal interface with a fluid of zero conductivity.
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This is stressed by a perpendicular electric field. After
sufficient time has elapsed for the charge to relax to the
interface,

a(l)E(l) = a(2)E(2) (3-61)

Since a(l) is finite, a(2)= 0 implies that E(l) = o.
o

the static electric field is confined to region (2), where
it terminates on a surface charge Q = e E(2). The facto 0
that there is a no static conduction current makes it
possible to treat this problem exactly, to first order
perturbation terms. The equations of motion are Eqs. (2-la)
with F = -p g a + qE, (2-21), (2-3), (2-4) and (2-6).x
Displacement current will be included so that Eq. (2-5) is

oE~ x H = aE + eo ot (3-62)

It is assumed that e = e , ~ = ~ .o 0
In the bulk of the fluid

~ • aE = .QSot (3-63)

so that in region (1) Eqs. (3-63) and (2-6) give
00 a~+-q=Oat eo

(3-64)

This is identically satisfied by the steady state condition
that q = (~.E)E = O. It follows that Eqs. (2-3) and (3-62)o
define the z components of Band E. If perturbations are
taken of the form

_ at + A Ze = e e ~z
z z
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these equations are
2

[~:]=[L _~2] 0
dx2

where now

In the same way as demonstrated in section C, Chapter 3,
the remaining variables are defined in terms of solutions
to Eq. (3-65).

(3-65)

If

[~:] = [::J -k'xe (3-66)

then these variables are

(3-67)

(3-68)

(3-69)

[~ a + ~E a]k'1) = _ 0 00

y 62

where

(3-70)

2 2 2
6 = (~ -~ aa - ~E a )zoo 0

and the perturbed pressure and velocity fields are, as defined
by Eqs. (3-8), (3-9), and (3-11).
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The present purposes are served if the external boundaries
of the system are assumed to be very far away. Then,

C(2) = C(l) = 01 2
so that the fields are finite at infinity. The boundary con-
ditions evaluate the remaining coefficients. These conditions
are Eqs. (3-18), (3-19a) through (3-24a). It is now possible
to see the crucial role played by the static electric fields.
Since E(l)= 0, Eqs. (3-21a) and (3-22a); Eqs. (3-20a) and
(3~23a) ~how that e(l) = e(l)= O. This implies that
c~l) = D~l)= 0, or t~at allYelectric and magnetic field
components are excluded from region (1). Since the boundary
conditions and the remaining field solutions are independent
of the conductivity, the dispersion relation and field distri-
butions are also independent of 0. Hence the solution is
meaningful for fluids that vary in conductivity from o(l)~ ~
to the a's of good insulators, so long as 0(2)= 0 (roughly
speaking 0(1») 0(2» and sufficient time is allowed for the
charge to relax to the interface. Although it is not
physically interesting, the limit can in fact be taken where
both regions have a vanishing conductivity and hence a static
electric field, but where charge has been placed on the
boundary by some external means. The previous solutions for
the EH-If waves include this possibility. It is clear that
in this limit the surface currents necessary to account for
perturbations of the surface charge must be convective. The
previous results make it apparent however, that the currents
are convective whether one fluid is a perfect conductor or a
perfect insulator,
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shows

""vx/a~o and Eqs. (3-9)
lx=;

that e~2) = 0, because (3 = O. It follows from (3-67)y y

D~2) = O. Boundary condition (3-22a) gives -c~2)=~o~zE~2)

To see this, consider once again a wave where ~ = ; •o
"" (3 a;

and (3-11) give Vz= ~. Eq. (3-20)

that

Then

and hence the magnetic field at the interface is

"" ""b = b = 0z x (3-71)

and the surface current density is

(3-72)

= - e; ak~ (3 E(2~o 0 Z 0 2 2
«(3 - ~ e; a )zoo

On the other hand the surface charge density is

""q = ""e; n •o = (3-73)

Note that the continuity relation is satisfied on the surface.
The term 02 is within relativistic corrections of (32

z
so that the current Lz' given by

l' = QV = - e E(2) k~o a
z zoO (3

Z
(3-74)

where Q is the static surface charge, and agrees with (3-72).



44.

The migration of charge along the interface is therefore
accounted for by the convection of the zero order charge as
carried by the first order particle motions. No conduction
process is involved. The charges convect at the interface in
just such a way as to satisfy simultaneously the conditions
that the interface can not support shear and that the
tangential component of the electric field be continuous.
This is why, for example, the problem of an interface
supporting a charge that is constrained to remain fixed is
not well posed for the model ..used here.

The MH-IIf problem has a somewhat similar property
x

I

y

Figure 3-6
MH-Ilf Configuration

If the surface current is returned as shown in Fig. 3-6,
and there are no external currents, the zero order magnetic
field is excluded from region (1). In the same way as in the
previous EH-IIf problem, the magnetic and electric field
perturbations are then excluded from region (1) also. As a
result, the wave properties are again independent of the
conductivity in region (1), where 0(1) may range from infinity
to zero.
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However, a stronger statement can be made. At the inter-
face, the boundary conditions require that E = B x V, a con-
dition satisfied by a perfectly conducting interface. As a
consequence, the fields throughout the bulk of regions (1)
and (2) satisfy this condition (see Eqs., Table C-l). If
the problem were to be solved with finite conductivity in
regions (1) and (2), the boundary conditions would be the
same as for the problem with zero conductivity. The differ-
ence would arise in the solutions to the bulk equations,
which would couple to the magnetic field through a finite
conductivity. The bulk equations are (2-la) through (2-6a)
with F = J x B, where 3 = a(E + V x B). Since E = B xV
everywhere, F = 0 and the original equations for a = 0
are retained. The solutions to the problem with zero
conductivity are admissible with finite bulk conductivity.
The wave properties are independent of finite conductivities
in both regions (1) and (2). The unphysical limit of a
infinite in both regions is analogous to the limit where a = 0
in the previous EH-If problem.
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CHAPTER 4

INSTABILITY, RADIATION AND RESONANCE
A. Introduction

A party trick of supporting water in an inverted glass
by a coarse-meshed cloth placed over the open end may have
embarrassing consequences if too coarse a mesh is used.
Everyone has seen the radiating wavefront resulting from
a rock thrown into a quiet pond, or the standing surface
waves in a cup of coffee tapped on the side with a spoon.
These are demonstrations of surface wave instability,
resonance and radiation. It will be the purpose of this
chapter to indicate experimentally the nature of the type I
and type II waves with these three common phenomena.
B. Type I Waves - Instabilities

i. Theory
The type I waves have in common the fact that V2

2 aor Vb can be made large enough to lead to a vanishing
phase velocity, i •.e .. an instability. The type I waves will
be considered here in the limit where the field intensities

(2). For the EH-IIf
so that E(2) ~~ E(l)

x »x
e(l) and ~(2) ~? ~(l)

«
»or«

so that E(2) ~~ E(l) and H(2) ~~ H(l). In these cases, thex »x x» x
conditions for stability (see Eq. (3-37)) are given by

are confined to region (1) or region
(2»> (1)waves, this means that a or a«

while for EH-IIp or MH-II waves e(2)

11> 0 where
~ = (kf)2 - kf(coth kf)W + G (4-1)
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w= (1 + c) e[:X] \/T
x

G = (p(l) _ p(2»gf2/T

E = E(2)
x x

b when
H(2)H =x x

f = E(l)E =x x
a when

H(l)H =x x

The dimensionless number W is proportional to the

ratio of electric energy stored per unit volume to surface

energy per unit volume, while G is proportional to the

ratio of energy density stored" in the gravitational field

to energy density stored in the surface formation. By

analogy with ordinary fluid mechanics, ~ might be called

the electric Weber number and~ the electric Froude number.*

For increasing values of field intensity, i.e. W, there is

one value of the normalized wave-number (kf)m at which

instability will first occur. The combination of Wand

(kf)m that will first produce instability simultaneously,

satisfy Eq. (4-1) wr~tten as an equality and the condition

that (kf) give the least possible value of ~;m

dTl = 0
d(kf)

* . 14See Rouse, p. 104.
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It follows that

sinh 2(kf) «kf)2 - G) + 2(kf) «kf)2 + G) = 0m m m m
(kf)2 + G

W = [(kf)m coth (kf) ]m m

(4-2)

(4-3)

A general numerical evaluation of the problem is
effected by solving Eq. (4-2) for (kf) as a function of G.m
(This is shown in Fig. 4-1.) The corresponding values of
W follow from Eq. (4-3). If (kf) is very large or verym
small (corresponding to weak or strong interactions with the
charges on the plate), Eqs. (4-2) and (4-3) reduce to simple
forms.

(kf) »1
m

(kf) «1m

W=2{G

W = G

(kf)m = fG
(kf) = 0m

(4-4)

(4-5)

As would be expected, the instability condition is
independent of the surface tension for long wave-length
instabilities. It maybe surprising, however, that this
condition occurs for low values of G, since this corresponds
to low values of the density difference at the interface or
high values of surface tension. This is a consequence of
short wavelength stabilization by the surface tension, a
phenomenon that forces the initial instability wave-lengths
to infinity for G less than 3. In this limit the electric
and gravitational fields have the same dependence on A and
exactly cancel at the point of instability.

For large values of G, the initial instability occurs
at the wavelength corresponding to the minimum phase velocity
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given by Eq. (3-49). The dispersionless character of the
field coupling is responsible for the fact that this is
also the upper bound on the wavelength for ordinary gravi-
tational instability.

ii. Type EH-If Waves - Experiment
For the EH-If problem, the conditions of Eqs. (4-4)

and (4-5), written in terms of the voltage V are:
o

(kf) »1m [
4( (1) _ (2)) TJl/4V = f P P g

o [(1 + c) E]2
(4-6)

(kf) «1m vo
(p(l) _ p(2))g

(1 + c) E
(4-7)

Equations (4-6), (4-7) and (3-49) provide an experimental test
of the previous theory. The first two of these equations give
the theoretical dependence of the voltage for instability on
the spacing of the plate and the interface. The experimental
arrangement of Fig. 4-2 gives a check on this result.

Several liquids were used with water to obtain curves of
the general form shown in Fig. 4-3. In general, it is found
that the curves follow the 3/2 power law for low values of b
and are linear at high values, with the transition in the
region of kf = 1. The plot shown is for a Xylene-water inter-

*face, so that b = f. The two solid curves in Fig. 4-3

* 15For constants used for theoretical results see Lange,
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indicate the theoretical results if electrostriction is
ignored and if it is taken into account. The discrepancy
between the curve for c = 0 and the experimental results
may be used to infer a value for c of 0.40 as compared
to a value of 0.85 from Eq. (3-46).

The instability consists of a disturbance on the inter-
face which, although initially sinusoidal in nature, quickly
grows into a sharply pointed spout that extends toward the
upper plate. The point of instability is taken as the
voltage at which this spout appears.

A sequential photograph of one section of the inter-
face during the instability growth is shown in Fig. 4-4.
The position of the viewer in these photographs is shown
in Fig. 4-2. Note that the initial sinusoidal disturbance
quickly grows into a sharp peak with a much shorter base
than the initial disturbance wavelength. As may be seen,
the instability is in a more advanced stage in the back-
ground.

The sharp point of the non-linear disturbance peak
leads to a considerably increased local field intensity. If
this intensity is sufficient to break down the dielectric,
the instability criterion gives also a prediction of the
voltage breakdown between a liquid interface and a solid
boundary.

The approximate disturbance wavelength may be taken
from Fig. 4-4. In this experiment b = 5.22 em. Using a
value of the wavelength from the picture of 3.3 em, the
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value of kb is about 5. Hence, Eq. (3-49) gives the
initial instability wavelength as 3.5 cm. This agreement
is better than would be expected from the experimental
error involved.

iii. Critique
The instability experiment described here has

at least two basic difficulties. The fringing fields
resulting from the finite dimensions of the plate lead to
an enhanced unstabilizing influence at the outer edges of
the experimental surface area. At the same time, the
steady state or zero order condition of a flat, parallel
interface becomes extremely difficult to maintain as the
point of instability is approached. Both of these effects
lead to a measured point of instability that is lower than
the true one. For this reason, it can only be concluded
from this experiment that the electrostriction constant c
is less than 0.40 This certainly serves to indicate that
the Claussius-Mossottiequation significantly over-estimates
the value of c for Xylene.

C. Type II Waves - Surface Wave Radiation
i. Theory

The most obvious way to demonstrate type II waves,
is to take advantage of the direction dependence of the
propagation velocity. A disturbance on a surface stressed
by a tangential field would be expected to lead to
"elliptical" wave fronts with the major axis in the direc-
tion of highest propagation velocity. For the EH-II waves
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and V~ > 0, propagation on a dispersion1ess surface (i.e.
at a constant wavelength) would lead qualitatively to wave
fronts as shown in Fig. 4-5, where the ratio of the major
and minor axes would give a check on the magnitude of v~.

2 2 \
V + Vg c

Figure 4-5
EH-II Wave Pattern

(4-8)
00

Jekx[ cos (kz+Wt)+ cos (kZ-Ult)]dk(; )
o ~

3 1/2
w = [kg + k T + k2V2]

P b

1im
X-t()

The major difficulty that arises in an actual experi-
ment comes in determining the influence of dispersion on the
wave fronts, since any disturbance excites a spectrum of
wavelengths. For example, in the problem considered here,
an essentially point disturbance is usedo In two space
dimensions, the wave resulting from an initial elevation of
the fluid surface at the origin (an impulse S) are described

*by

* 16See Sneddon, p. 285.
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where replacing z ~ y and Vb ~ 0 gives the wave propa-
gating across the E lines. Although this Fourier
representation ignores the effect of curvature of the wave
front, i.e. one of the three space dimensions, solutions
in three dimensions for the gravity wave alone indicate
that this is consistent with further approximations that

*will be made here.

Integrals of the type of (4-8) are difficult to
complete, because of the complicated interference phenomena
that they describe. The integrand is a rapidly oscillating
function of k. This is the basis of a well-known approxi-
mation technique called Kelvin's Principle of the Stationary
Phase**which says that the main contribution to the integral
arises when one or the other of the phases is stationary in
k. That is, those wave numbers on a positive traveling wave
that make a major contribution to the integral satisfy the
relation

d-- [kz - rot] = 0dk (4-9)

Physically, these are the wave numbers that would
predominate at a position z and time t. Equation (4-9)
is then recognized as the familiar statement that

dwz = t--dk

* 16See Sneddon, po 290.
** 4See Stoker, po 1630

(4-10)
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This says that a group of waves characterized by the wave
number k will be found at a distance z from the origin
after an elapsed time t.

ii. Type EH-II Waves, Experiment
The experiment is best described by Figo 4-6. An

interface of air and nitrobenzene is stressed by a tangential
electric field applied simultaneously with a disturbance
impulse of airo After a time interval sufficient to allow
the resulting waves to develop, the radiating disturbance
is momentarily projected by a point source of light onto
enlarging papero Examples of the resulting photographs are
shown in Figo 4-70 These pictures were taken using nitro-
benzene. Similar photographs have been made using water,
transformer oil, acetaphenone and xylene. The resulting
'~llipses" have in common the fact that the major axis of
the "ellipse" extends in the direction of the electric field,
never perpendicular to it as would be predicted by use of
the Claussius-Mossotti equation (Eq. (3-46»0

Equation (4-10) makes it possible to obtain somewhat
more quantitative information from the photographs. The
ratio of the major and minor axes is given by this equation
as

[1 v2

]+ b
z . axis [..8.. + 1 kT]

R= ma]or = 2k 2 p (4-11)
Yminor axis [1 V2 1/2

+
[.& +\T]]
k P

where k is the "wave number corresponding to the waves at
the points z and y. Unfortunately the theory requires
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No E Field

E Field Top to Bottom
Figure 4-7

EH-II Wave Patterns Photographed on the
Interface of Nitro-Benzene
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that z and yare the distances along the axes to groups of
waves corresponding to a given ke The distance may be
determined by this prescription only if there are many waves
in a distance on the order of z from which to se1ecto
Fortunately, the photographs indicate that the wavelength is
not essentially altered along a given phaseo This is a
direct consequence of the fact that the waves are very nearly
at a wavelength where the phase velocity is equal to the group
velocity, so that a dispersionless addition to the phase
velocity in one direction does not essentially alter the
wavelength 0

For the present purposes z and yare measured to
points of equal phase, it being recognized that an error is
incurred that appears to be proportional to the difference
between the phase and group velocitieso

The initial wavefronts of Figo 4-7 have wavelengths of
about 0078 cm. If the e1ectrostriction constant is ignored
(this will be shown to be an excellent assumption in the
next section), at an electric field of 1057 x 105 vIm,
Vb = 7077 cmlsec, Eqo (4-11) gives R = 10050 If the ratio
of the phase velocities rather than the group velocities is
used, this ratio is 10070 The wavefronts of Figo 4-7 give
a ratio of about 1007. Several consecutive pictures under
these conditions gave values ranging from 1007 to 1008. If
longer wavelengths are used, corresponding to points nearer
the origin of the wavefronts, better agreement of theory and
experiment is obtainedo

Eccentricities as high as 1025 have been observed at
higher field intensitieso However, there seems to be a close
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connection between the dynamics of electrohydrodynamic waves
and the propagation of electroconvective surface instabilities.8
It becomes increasingly difficult to observe distinct wave-
fronts as the field is increased, even if, as was done in
taking the pictures of Figo 4-7, the field is applied
simultaneously with the impulse of airo In some pictures
there was a marked increase in electroconvection behind the
wave fronts 0 The appearance of the surface convection may
be noted in Figo 4-70

iii. Critique
The qualitative nature of the previous experiment

is evident. Although the measurements support the theory of
chapter 3, they are not definitive. However, it is clear that:

1. The waves propagate more rapidly along the E
lines indicating that v~ is positive.
2. The propagation is independent of the sense
of the field as indicated by the symmetry of the
disturbance ringso The predicted dependence is

-2on E 0

3. The propagation velocity is in fair agreement
with theory if c« 1.

Do Type I and II Waves, Resonances
i. Theory

The previous experiments have in common the compli-
cations resulting from a wave number that is free to change.
A resonator has the advantage that for any given mode, the
wave number is fixedo Even analytically this is an advantage,
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since the dispersion relations, Eqs. (3-37) and (3-38) are
conveniently written as explicit functions of k. More
important, however, is the basically elliptic character of
the bulk equations, which makes it possible to write down
the total wave number k, independent of dynamical considera-
tions.

The results of chapter 3 lead directly to the resonator
conditions 0 Equation (3-7) shows that p satisfies the
equation

(4-12)

If a rectangular resonator is formed by rigid perpendicular
walls at y = 0, y = Land z = 0, z = L , the perpendi-y z
cular velocities must vanish on each of the boundaries.
Hence, from Eqs. (3-10) and (3-11)

.2E.j = 0dZ
z=o,L3

(4-12) have been

f;/ = 0 ;

~=o,L2
Solutions to Eqo
wave type,

(1) (1) [ kx + -kx - 2ka]p =-12- e e e

so that Eq. (4-12) becomes

(4-13)

found such that for each

(4-14)

(4-15)

The boundary conditions (4-13) and Eqo (4-15) lead to the
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requirement that

k2 = (.!!!!:) 2 n = 0, 1, 2, 3 o 0 0Y L
Y

k2
= (ID1r) 2 m = 0, 1, 2, 3 •• 0z Lz

where k2
= k2 + k2~

m and n 1= 0 at the same time.y z.

(4-16)

For any given mode, specified by m and n, k, ky z
and hence k are fixed. The corresponding resonant

frequency for each particular wave type is given by Eqs. (3-37)

through (3-45).

It will be observed that no stipulation has been made on

the electrical properties of the rigid vertical walls; that

is, on the values taken by the electric and magnetic fields

at the walls. This makes clear the point that single modes

may be excited only if the conditions implied by the eigen-

values of Eq. (4-16) and the dispersion relations are

satisfied. Furthermore, the walls must have properties
consistent with the static fields.

It follows that the walls must be insulating for the

type I waves. If there are to be no sources or vortices in

the problem not accounted for by the bulk equations and the

boundary conditions, it follows that at the vertical walls,

n.

n.

(4-17)

(4-18)

The boundary conditions of Table B-1 show that these conditions""" ""
f3yV

X or. t3z
Vx -- 0

are implied by the requirement that at thea a
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vertical boundaries. That is, that ~; or ~~ = 0 at the
boundaries; a direct consequence of the continuity condition
and the irrotational character of V. The pertinent equa-
tions to show this are:

EH-If; Eqs. (3-20a) and (3-23a); Eqs. (3-21a) and
(3-22a) show that

e = 0 at y = O,L e = 0 at z = O,LY y z z
j = 0 when V or V vanish.f y z
EH-Ip; Eqs. (3-22a), (3-23a), (3-27a), (3-14) and

(3-15) show that
e = 0 at y = O,L e = 0 at z = O,L

Y Y z z

MH-I; Eqso (3-24a), (3-25a), (3-26a), (3-12) and
(3-13) show that

h = 0 at y = 0 L h = 0 at z = 0 LY , Y z ' z

The type II resonators are not symmetrical in y and
Zo The rigid plates at y = O,L and z = O,L may thereforey z
imply different boundary conditions. Those listed below
are allowed by the static and first order fields if k = O.

Y(The modes resulting from propagation in the z direction are
the interesting oneso)

EH-II Perfect conductor or infinite permittivity
at z = O,Lz
Perfect insulator at y = O,L 0

Y

MH-IIa Infinite permeability at z = 0 L, z
Perfect insulator at y = O,L •

Y
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MH-Ilf Perfect insulator at z :: O,L butz
infinite permeability
Infinite conductivity at y ::O,L .y

This follows from the conditions of Table B-1.
EH-II Since ~ = 0, e = 0 everywherey y

Eqs. (3-21b) and (3-27b) show that when ~ = 0,
e = O.x

MH-IIa Since ~ = 0, h = 0 everywherey . y Qt
Eqs. (3-2lb) and (3-24b) show when az = 0,
h = O.x

MH-IIf Eqs. (3-22b) and (3-2lb) show e = e = 0 everywherex z
Since ~ = 0, h = O.Y Y

It must be recognized that the resonator solutions
determined in this way are idealizations, for the cases with
electrically transparent boundaries. The equations' of motion
are not satisfied for the fields that must fringe out of the
resonator region, so that the problems are similar, in these
cases, to any of the "open ended" wave structures that support
standing waves. The solutions are questionable at the edges
of the resonator, in the same way that solutions to a trans-
mission line problem are questionable at an open end. This is
a meaningful approximation if the sources and vortices of the
fields are accounted for within the resonator volume.

ii. Type EH-If, EH-II Waves, Experiment
For a given mode, the wave numbers k and k arey z

fixed by Eq~ (4-16). Equations (3-37) and (3-38) then give a
linear relationship between the square of the resonant angular
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frequency (002) and the square of the electric field intensity,
(or the applied e~ectrode voltage squared V~). The type I and
II problems are ch~racterized respectively by negative and
positive resonant frequency shifts as a function of an increasing
.applied voltage.

~xpertments using the EH-If and EH-II resonators are
depicted by Figo 4-8. A transparent shake-table driven by a
synchronous motor was used to create standing waveso The
resonant frequency and mode were found by ~arying the driving
frequency or applied voltage while observing the mode patterns
as projected onto a screeno For the type I resonator the best
accuracy was obtained by tuning the freq~ency while for type II
resonators it was found best to tune the voltageo

The resonant condition was defined by assuming that the
resonance "Q" curve was synnnetrical as a function of frequency
or voltage, the desired condition being the one for which
there was no adjacent condition that would result in the same
pattern ° The driving mechanism favored the excitation of even
n and odd m modes 0 The resona~t frequency was on the order
of 7 CpSo, so that numbers on the order of 350 were recorded
as proportional to the driving frequency ° With no electric
fields applied, the resonant condition could be repeated
within one part in '350. This ..is better than the dimensional
accuracy of the two resonatorso

Data for the.type I resonator using water and air are
plotted in Figo 4-9 .. In this experiment the electrostriction
did.not enter, because the electric fields are virtually
confined to a region where the permittivity. is very nearly that..
of free space. The frequency squared as a function of applied
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point source of light

~

I \
I \

I \
/ \

I \
I \

I \
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table .--..
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Fig. 4-8b EH-If and EH-II Resonator Experiments
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voltage squared is clearly a ~traight line. Moreover, the slope
of the line, as predicted by Eq. (3-37), is within about 5% of
straight lines that. can reasonably be drawn through the points.
The line drawn has ",thetheoretical slope.

The upper l~it of voltage represents a practical limit
on the resistance to break-down of the apparatus used. It
must further be men~ioned that hysteresis effects due ~o
accumulating free charges may produce a considerable error
unless care is taken with insulating surfaces. In the system
used here for example, this meant making the bottom surface
of the glass plate the conducting one.

The experimental results of measuring the frequency shift
of a resonance on an air-nitrobenzene interface in a type II

\

resonator are shown in Fig. 4-10. Here, only m modes were
excited. The upper limit on the curve represents the highest
field intensity at which the mode could be reasonably
recognized in spite of the interferin~ e1ectr~convection.
Again, the curve appears to be a straight line. The value of
c inferred from this curve and Eq. (3-38) is 0.03:* The value
of c must again be interpreted as predicting c to be on
the order of 0.03 or less, since this represents the limit of

.the accuracy involved in the measurements. It is much lower
than would be expected from the C1aussius-Mossotti equation
(3-46) which gives a value of 12.0. This latter value would
indicate a negative rather than a positive slope for the
curve of Fig. 4-10.

* 15For constants used for theoretical results see Lange.
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iii. Critique
The resonator experiments are, undoubtedly, the best

of the three methoa~ of observing electro-hydrodynamic surface
waves. They are dynamical in nature and do not depend on the
maintenance of a uniform interface at high field intensities,
as the instability experiment does. At the same time, they
fix the wave length and hence make the dispersion relations
directly applicable.

The main errors arise from:
1. First order fring~ng fields, especially
in the "open cir~uit" peripheries of the
type I resonator. This may be minimized by
making L . and L much larger than b or a.y z

2. The meniscus formed at boundaries by the
surface tension and enhanced by the electric
field., This leads to an error in the effective
positions of the rigid walls, an effect that is
minimized by making the dimensions of the
resonator large.

3. The dielectric boundaries give a distortion
of the zero order fields, an effect that is
minimized by making these walls very thin.
4. The experiments are steady state and hence
are even more subject to the noisy conditions
of electroconvection.

E. Conclusions
The previous experiments include both type I and type II

configurations and serve to inuicate the behavior that may be
expected dynamically with waves other than EH-If and EH-II.



The experiments have verified:
EH-If
1. The dispersion relation at high and 10~ field
intensities (Sections B and D). This followed from
the observation of an interface in the extreme of
impending instability and at constant k and low
field intensities.
2. The dependence of the wave velocity on inter-
actions with a close spaced conductor, (Section B).
This is an indication of the validity of the
electrical part of the "long wave" approximation
used in chapter 5.

EH-II
1. The dispersion relation at low field intensities

2(Sections C and D). The value of Vb was clearly
2positive and dependent on E 0 The fact that experi-

ments using several different liquids always made c
on the order of the ac~uracy of the experDnent,
indicates not only that c is very much smaller

2than is often supposed, but that the value of Vb
is correctly given by the dispersion relation.

The experiments of this chapter strongly indicate that
the theoretical treatment of EH-If and EH-II waves given in
chapter 3 is physically meaningful in situations easily
produced in the laboratory.
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PART II
NON-LINEAR ANALYSIS

CHAPTER 5
MAGNETOHYDRODYNAMIC AND ELECTROHYDRODYNAMIC

SURFACE SHOCKS AND ANTI-SHOCKS
A. Introduction

There is a large class of problems, of interest mainly
to hydraulic engineers, concerned with free surface flows
dominated by gravity, and hence dynamically dominated by
gravity waves. The effects of interest in these problems
are often grossly non-linear in character and are meaning-
fully approximated by the so-called long-wave approximation.
Many of the most interesting phenomena observed on fluid
surfaces are essentially non-linear in character. Breakers
at the beach or hydraulic jumps at the foot of a dam are
waves strongly influenced by a velocity of propagation which
depends on the fluid depth. The breaker, for example, is
a form of surface shock. As a wave progresses into shallow
water it is reduced in velocity only to be overtaken by
faster moving fluid that follows in deeper water.

The purpose of this chapter is to indicate the
theoretical basis for a class of free channel electro- and
magnetohydrodynamic flows that are, to linear terms, the
EH-If and MH-IIf waves as they interact strongly with
external boundaries. EH and MH surface waves have phase
velocities that are directly dependent on the electric and
magnetic field intensities, just as long gravity waves
directly depend for their velocity on the square root of the
depth. It would be expected that non-linear stages of the
surface interactions of the previous chapters could be

75.
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discussed in a way similar to that commonly used in the
literature of gravity waves. Thus, the problem may be
approached by proceding to higher order terms in the
perturbation analysis, or by reducing the equations to a
non-linear set that may be handled by known techniques.
The first sections of this chapter follow the latter course,
and arrive at a tractable, but non-linear formulation of
EH-If and MH-IIf configurations.

B. Electrohydrodynamic Equations
,

In ordinary bulk interactions, much can be said about
non-linear plane waves by taking advantage of the well-
known theory of characteristics. The power of this
technique is available if the defining equations are hyper-
bolic and have two independent variables. A set of equations
is now developed that meet these conditions and define the
dynamics of a shallow conducting fluid stressed by a perpendic-
ular field and bounded above by a fluid of small density
(water and air for example). It is assumed that surface
tension is ignorable (note that T did not play an important
role in the long wave limit (kb < 1) of the linear problem
except near the point of instability. However, in this
limit the point of instability was itself independent of T).
(See Eqs. (3-52) and (4-7)). Also of note is the fact that
there is an equipotential boundary close to the surface of
the conducting fluid. The procedure of rationalization used
here is similar to that used in formally arriving at the long-

· f .t 17wave equat10ns or grav1 y waves.

The configuration under investigation is shown in
Fig. 5-10'
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x

x = b(y)

l
vo

+
y

x = -a(y)

Figure 5-1
EH-If Configuration

The fluid is confined from below by a surface at
x = -a(y) and the potential at x = b(y) is constrained to
-v with respect to the conducting fluid. A gravitationalo
field acts in the negative x direction. The pertinent .bulk
equations are:

[OV + (V.~)V] - (5-1)+ ~p = -pgap ot x

~ x V = o. \j.V = 0 (5-2),

'V x E = o. \j.E = 0 (5-3),

Equation (5-2) is valid if the motions studied proceed from
irrotational flows. Boundary conditions consistent with
these equations are:

(5-4)

where is defined by Ta~ = eE EA - 6 AcE E /2
a f-.I Uf-.I 'Y 'Y



[Ii • V]! = 0
x=-a(y)

b
JE dx = + V
~ x 0
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(5-5)

(5-6)

(5-7)

In addition the interface is defined dynamically and geometri-
cally by

DF = _ £5. + V _ V o~j,= 0Dt dt x Y oy
x=~

(5-8)

-n =

where

'VF
('VF. 'VF)1/2 (5-9)

F = x - ~(y,t)

The last two equations may be used to restate the boundary
conditions of Eqs. (5-5) and (5-7)

[V + V oa]/ = 0
x y oy x=-a(y)

Ezf = 0
x= ;

[E + ~ E ]/ = 0y oy x x= ~

(5-10)

(5-11)

(5-12)

Differentiate Eq. (5-6) with respect to y and use Eq. (5-12)
to write

[E + ob E ]/ = 0y oy x x= b
(5-13)
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Note that this is equivalent to the condition that
(n x E) vanish at x = b.

(5-14)

(5-15)

(5-4) gives two non-trivial relations:
2

eE oe
~] - ~2 oy eE E I = 0

x y x= ~

221o eE eE
EE E + S [--Y - -2.] = 0y x oy 2 2 x= ~

p 3._oy

Equation
eE2

p + [ 2
x

-

Equations (5-12), (5-14) and (5-15) combine

eE
2 Ip + 2x (1 + (~) 2) = 0

Y x= ~
(5-16)

The pertinent Equations are now (5-1), (5-2), (5-3), (5-8),
(5-10), (5-12), (5-13) and (5-16).

An approximation to these equations is now formulated
based upon an expansion in a "space rate" parameter .. This
parameter, which has the effect of scaling the width to
depth ratio, will be taken as A = (w)2 where dimensionlesss
variables are defined as:

- VI~gw' (~)y = ys VI = b = bw
- v2~gw\X = xw V2 = a = aw
- (5-17)ts p(pg)wt =- P = Ex = EoEX

~gw\
- s -

~ = ~w Ey = Eo(w)Ey

wE V = Vo 0 0

The time has been purposely scaled to horizontal distances
while the velocity is scaled to the velocity of gravity waves.
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The vertical velocity and y directed electric field have
been intentionally surpressed by the ratio (~). The equa-

w
tions of motion and their boundary conditions summarized in
dimensionless form are: (For convenience, the bar is omitted
from the dimensionless variables in the following equations.)

oV oV op oV
[XX ] x

A at + Vy oy + ox + 1 + Vx ox = 0

oV oV op oV
A[--Y + V --Y + -] + V ---Y = 0

ot Y oy oy x ox

oV oV
ox x + A at- = 0

oV oV
--:L = -2.
ox oy

oE oE
~ - A OyX = 0

where

(5-18)

(5-19)

(5-20)

(5-21)

(5-22)

(5-23)

(5-24)

(5-25)
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[v - "A(V .2i + 3.) 1/ = 0x y oy ot x= ~(y,t)

[E + A ~b E ] / = 0y y x x=b(y)

[V + ~V ~a]1 = 0x y y x=-a(y)

(5-26)

(5-27)

(5-28)

(5-29)

A series expansion of each of the dependent variables is
taken to be of the form,

o 1 22
V = V +"AV + A V + .. 0x x x x

(5-37)

(5-36)

(5-38)o I[V] == 0
X x== ~(y,t)

2
o Q2 Ub j[p + Ex T] = 0

x= ~(y,t)

o IE = 0
Y x= ~(y)t)

(5-32)

(5-30)

(5-31)

and substituted into Eqs. (5-18) - (5-28). The problem is
formally described by the equations obtained by equating
coefficients of like power in A. Hence, the zero order
terms are:

o
o oVx
Vx ox = 0

o
o oV
V ~= 0x ox

ooVxox = 0

o 0oV oV
~-~ox - oy (5-33) o I[E] == 0

Y x== b(y,t)
(5-39)

o 0oE oE
~ + ~ = 0 (5-35)ox oy

ooE
~-Oox - (5-34) o i[V ] = 0

x x=...a(y,t)
(5-40)
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oand (5-38) or (5-40) imply V = 0,
o 0 x
V = V (y,t), Equations (5-34) andy yR = 0, while (5-35) states thaty

Use is made of these facts in writing the

Equations (5-32)
Eq. (5-33) shows that
(5-37) or (5-39) give
o 0E = E (y,t).x x
first order equations.

o
p = -x + F1(y, t) (5-41)

o 0 0oV 0 oV op
---L+V ~+-=Oot y oy oy

o
1 oV
Vx = - ~ x + F2(y,t)

(5-42)

(5-43)

1 1oV oV~-~ox - oy (5-44)

(5-45)

1 1oE oE
~+--Y=Oox oy (5-46)

1 0
01[E + ¥ E] = 0

Y Y x x= ;(y,t)

1 0 og og I[V - V ~ -~] = 0
x y oy ot x= ;(y,t)

[i + ~b ~ ]/ = 0
y y x x=b(y)

(5-47)

(5-48)

(5-49)

1 0 ~ I[V + V ~] = 0
x y oy x=-a(y) (5-50)
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(5-51)

Hence Eq. (5-41)

2
o 02 Db
P = (~ - x) - Ex :r

F1(y,t) is evaluated using Eq. (5-36).

becomes

F2(y,t) follows from Eq. (5-50) to make Eq. (5-43)
0

1 oV 0 oaV = -(x + a) --X - VY oyx oy

F3(y,t) is given by Eq. (5-49) so that Eq. (5-45) is
0

1 oE 0 obxE = oy [x - b] - Ex oyY

(5-52)

(5-53)

The equations of motion consistent with an expansion

to first order in A are (5-42), (5-47) and (5-48) with
011
p, V and E eliminated by Eqs. (5-51) - (5-53)x y

= 0 (5-54)

o(V (;+a»
y
oy = 0 (5-55)

where
V (t)

E = _0__
x (b-;) (5-56)

In retrospect, these equations could be simply derived

after making three assumptions, corresponding to the state-

ments of Eqs. (5-50) - (5-52) and (5-53).

c. Magnetohydrodynamic Anti-Dual

The magnetohydrodynamic problem of a flux of magnetic

field trapped between a rigid perfectly conducting wall at
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x = b(y) and a perfectly conducting fluid interface at
x = ;(y,t) may be shown to be very similar to the problem
outlined in the previous section. This problem is summarized
by Fig. 5-2.

x
x = b(y) (j-+oo

y
I
I
I (j .....00

I x = -a(y)
I

(1)

p ... 0 z
(2)

Figure 5-2
'~ong-Wave" MH-Ilf Configuration

Since the magnetic field is presumed confined to region
(2), the fluid bulk equations are ~gain given by Eqs. (5-1)
and (5-2). However, induction is essential so that

"V E dBx = - dt
"V . B = 0

"V x B = 0

(5-57)

(5-58)

(5-59)

where these equations apply in region (2).

The boundary conditions of Equations (5-10) and (5-12)
are applicable, while the conditions that replace Equations
(5-6) and (5-7) are:



bey)
f B dx =A

~(y,t) y 0

[il. - 1/· B]/x: ~(y,t)

In addition Eq. (5-57) requires that
n x [E(2)_ E(l)]j' = ii.V[B(2)_B(1)]

x=~(y,t) x=~(y,t)
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(5-60)

(5-61)

(5-63)

The conditions of Eq. (5-12) and (5-61) show that for
problems where the induced electric field E exists, thez
surface charge must vanish. Hence, the surface traction
is accounted for by the magnetic counterpart of the stress
tensor in Eq. (5-12).

B may be taken as zero.zEquation (5-59) shows that
Hence, Eq. (5-4) gives

1 2 25.
21[p - z- B [1 + (d ) ]] = 0

~ y y x= ~(y,t) (5-64)

The problem is now defined by the volume equations,
(5-1), (5-2), (5-58), (5-59) together with the surface
conditions of (5-8), (5-10), (5-60), (5-61) and (5-64).

In the same way as in section B, a solution in the
form of a power series in A is assumed and equations

*are found to first order in A. However, here the magnetic
field is scaled so that B = B B (~), B = B B . Followingx oxw y oy
the line of reasoning used previously the long wave
normalized equations are:

*wB ..A = A000



oV 'oVy 0;
----Z+V +-ot y oy oy (5-65)

o[V (a + ;]
Yoy

B =y

(5-66)

(5-67)

The transformation of this set of equations to those
defining the electrohydrodynamic system is completed by
substituting A -+ V U2 A,2 -+ -ub

2v2 and B -+ E. The
o 0 a 0 2 0 2 Y x

change of sign in going from Ua to Ub is the basis for
terming the problems of sections Band C anti-duals. The
effect of this sign change on physical problems will be
apparent in the sections which follow.

D. Physical Me'aning of the ."Long-Wave" Approximation
If Eqs. (5-54) or (5-65) and (5-66) are linearized and

solutions are taken of the form V = V ej(ro"t+ ky) they y ,
dispersion relation

(5-68)

is obtained. This is identical with Eq. (3-52) when T -+ O.
A similar limitation exists on the non-linear equations

resulting from A expansion. The general nature of this
limitation is demonstrated by considering the dependent
variable E. Sincey



E
Y

o 1 . 2 2=E +'AE +'A E + ...
Y Y Y

87.

(5-69)

a meaningful approximation taking terms to first order in A
requires that

(5-70)

(5-71)

dbConsider now, as an example, the ~roblem where dY = O.
Then Eqs. (5-53) and (5-46) generate Ex;

02~ (x-b)21 x
Ex= - ol -2-- + F4(y,t)

2
E

Y

The second order form of Eq. (5-22) in turn determines

2 1 03~ 2oE oE (x-b) oF4--Z=~= x (y,t) (5-72)- oy3 +--
ox oy 2 dY

or
o3E 3 oF42 (x-b)xE = - oy3 +- (x-b)y 6 oy

where use has been made of the second order form of Eq. (5-27).
The solution of the problem, to second order would require

14(y,t) to be evaluated using Eq. (5-26). This would introduce
; and eventually the remaining dependent variables. However,
interest is confined here only to determining the approximations
involved in cutting the series off at first order terms, and

2
not in solving the second order problem. Hence, consider E

y
to be proportional to terms like the first one of (5-73) and
write Eq. (5-70) as, at worst
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0 o3~ b)2dE (a +~» __ x
3 6oy oy

If linear solutions of the form jky are considered ae
limitation similar to that arising in linear theory is

(5-74)

obtained. That is

1 » k(a + b)/JEr

However, Eq. (5-74) gives an indication of a more general
limitation which may be used to test a solution to Eqs. (5-54)

1and (5-55) for validity. Since, at a given x, E goes likey

o~
OyX , Eq. (5-74) says that the first order approximation

1breaks down when E is not much larger than the producty
of its second derivative - (say the curvature) and the
square of a characteristic dimension in the transverse
direction. Hence, solutions become suspect at points where
the interface is sharply distorted such as near the face of
a shock. It will be seen later that this is not the only
reason why the first order equations, or any order of
equations for that matter, are not valid at a shock front.
Nevertheless, they will predict the properties of a flow as
it leads to a shock.

E. Characteristic Equations
The characteristic equations equivalent to Eqs. (5-65)

*and (5-66) are found by standard techniques. (It is assumed

*8 C d F · d · h 18 40ee ourant an r1e r1C s, p ..
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now that a(y) = a,b(y) = b or that the boundaries are
parallel.) Designating the families of characteristics in

+ -the y-t plane by C and C these are:
C+ V' + R(cp, K) = cl
C V' - R(cp,K) = c2

cl and c2 constants

C+ EL = V' + V(l-cf» (1- K/ cf> 3)dt

(5-75)

C EL = V'dt
(5-76)

where
R(cp, K)

cp cp3_K 1/2
= -J [--] dcp

constant cp3(1_cp)
(5- 77)

v' = Vy/ Va + b

y'=Y/V8.+b

cf> = ltll
K = u2v2 / (1) + a) 3 or _u2 A 2 / (b + a) 3boa 0

= € v2 / (b+a) 3pg or _'J..2 /'tJ. pg (b+a) 3o 0 0 0

Since Eq. (5-76) is complex if k/cp3) 1 (cp ) 1 is not
physically meaningful), this is the condition that real
characteristics exist, and hence that the equations be hyper-
bolic. In the linear theory, this is also the condition that
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the interface be stable. The two theories agree on the
definition of stability if, as will be done here, the non-
linear unstable interface is taken as one which is no
longer defined by hyperbolic differential equations.

Solutions starting from ~3 > K will be shown to tend
to remain in this condition. Hence, this is a plausible
and consistent definition if used in connection with this
first order theory.

F. The Growth of Shocks and Anti-Shocks
i. Simple Waves

The problem of a wave propagating into a region of
constant state (V' = 0, ~ = ~ ), defined by its height foro
time t > 0 at a fixed position, is easily investigated,
since all of the characteristics of one family (say the C+)

..
intersect at some point characteristics which originate in
a region of constant state. Equations (5-75) and (5-76)
imply that ~ and V' are constant along C+ characteristics
and that these are straight lines. Only ~/y=O as a function
of time need be given since from Eq. (5-75),

vi = R(~K)I - R(~o,K)
y= 0 y=O

Hence the characteristics are easily drawn, using Eq. (5-76)
to determine the slopes. That is, the C+ characteristics
intersect the time axis with a slope given by,

M = :~' = [R(~,K)- R(~o,K) + j(1-~)(1-K/~3)]
y=O

(5-78)

Clearly, if this slope increases with increasing time,
h C+ h.' d htee aracter~st~cs must cross an t e wave must steepen



(5-79)

3.

2.

4.
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into a shock. Hence, the condition

dM dct>/> 0
dct>dt !y=O

implies that a shock will form. Equations (5-7nand (5-78)
show that K > ~4< ~ implies dM > 0

dct><
Four possible dynamical situations are of interest.

1. Magnetohydrodynamic compression waves; dct>
dt < 0, K< 0,

dMdct>< 0; a shock will always form.
dct>Magnetohydrodynamic depression wave; dt > 0, K < 0,

'dM
dct> < 0; a shock will never form.
Electrohydrodynamic compression wave; ~~< 0, K> 0,

3ct> > K for stability. A shock mayor may not form
according to whether:

4 3 dMa. ct> < K < ct> or dct>> 0 and a shock does not form;
b. if>4 >K or ~:<0 in which case a shock forms.

Electrohydrodynamicdepression wave; ~~ > 0, K > 0;
A shock mayor may not form according to whether:

4 3 dM .a. ct> < K < ct> or dct>> 0, 1n which case a shock forms;
b. if>4> K or ~: < 0, in which case a shock does not form.

These statements strictly apply only to waves with corresponding
values of ct> confined to a single regime. For waves that make
a transition from one regime to another the negative statements
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should say that a shock does not tend to form since, while the
C+ characteristics may be spreading with increasing time, they
may still cross characteristics in another regime, although at
a later time than ,if the spreading had not occurrede

A transition compression wave would tend to form into a
.shock at its base while smoothing out at its top. Similarly,

a transition depression wave would form a discontinuity near
the initial wave front and smooth out at the wave back. These
are reasonable consequences of the tendency of the wave
velocity to increase with increasing depth due to the gravita-
tional field and to decrease with increasing depth due to the
electric field. The dynamics are roughly the same as for
ordinary gravity waves so long as ~4 > K. Hence, this regime
will be called gravity controlled, while ~4 < K < ~3 will
be called EH controlled.

As examples of EH transition waves, Figs. 5-6 and 5-7
show the compression and depression waves of Fig. 5-3
propagating into regions of constant state. The associated
characteristics are given in Figs. 5-4 and 5-5.

Since the dynamics of the Magnetohydrodynamic simple
waves are not grossly different from those of ordinary gravity
waves, it will simply be pointed out that the effect of a
magnetic field is always to make a compression wave shock
earlier in time, since increasing the magnetic field

d k. dM .correspon s to ma ~ng d~ more negat1vee
Although the discontinuities formed by EH controlled

waves may be called shocks, it would seem worthwhile to
draw attention to the fact that their behavior is just the
opposite of shocks normally formed in nature by referring



o
.

o
.

o

93 .

. - /
/

/
/

/
/

/
/

/
/

o.

I
Q) I
~ I
~ /

~ \/
~ I
8 /
/

/
/

/
/

/
/



94.

Lrt

$.of
0

\4-f

"'*' u)
0

.r-f
~
u)

.r-f
$.of

M t <U <U~ >o t1S
t1S~

~ $.of
t1S:I::

N ..c I
Utz3

~
d

Lrt 0
I .r-f

"'*' Lrtu)
..-4 -e. u)

• <UII 00 $.of
.r-f Q.

~~<U
~

0

0
0.- ~

"'*' t

o
o



0.
N

tl
ex:> .u.
~

CU
>

~
s::
0

.rf
(/)
(/)

CU
$-4

~
0
U

s::
I 0

-rf
.u

I
.rf
(/)s::I~ Cd
$-4

I II ~

f-e- II ::r:
I

.u ~

I \0
Ian.

...::t CO. -rf
0 ~

U
.u

95.

.
o I~---~

pall°.1::luo3
H3

.
o

.
o~I

pal10.1:~uOO A~lAB.1:~
~~



<U
>

~
,~

0.,...

t
CI)
CI)

<U
~
Q.
<U
~
~
0.,...
~.,...
CI)
~
tt1
~

E-4
::c
I

~

,......
I

Lrt.
bO-,...

JZ.. I

- . ,......
0 I 0

.

I.- ~

0

+
pall°.1~uo:> pal1°;t~Uo~ A~lAe.1~

aAeg .
H:fl uOlsSa;tdaa

CP ---.

96.



to them as anti-shocks. Here the shock is associated with
the wave-like property of a system, while the anti-shock is
a consequence of a tendency toward instability. The anti-
shock should not, however, be confused with the manifestation
of an instability.

ii. Waves from Space-Like Data
It is interesting to consider briefly certain

disturbances which originate on initial static displacements
of the interface. That is, given that V = 0 and ~ = ~(y)
at t = 0, what is the ensuing dynamical motion.

Equations (5-75), (5-76) and (5-77) make possible
in the usual way, a step-wise construction of the character-
istics and hence of the solution. Interest is confined
here to pulses that are symmetrical about the origin and
bounded by regions of constant state. Hence, the problem
is completely solved for t > 0 by:

1. Performing the integral of Eq. (5-77) to
determine the values of cl and c2 from the
initial data for characteristics originating at
intervals along the y axis in the region of
the pulse.
2. Simultaneously solving Eqs. (5-75) and
inverting R(~,K) to determine ~ and V
at all characteristic intersections in a region
bounded by the y axis and the C+ ~nd C
characteristics originating from the negative and
positive y extremities of the initial pulse.
3. Iteratively using the characteristic directions
defined by Eq. (5-76) to determine the (y,t) position
corresponding to each of the characteristic inter-
sections of 2.



The problem is solved for all y and t once the
characteristics have been determined in the "cone" of part
2, since all characteristics leaving the region are straight
lines, (they intersect characteristics that originate in a
region of constant state).

A problem, pertinent to the effect of finite surface
displacements on impending instability, can be resolved
from the simple fact that R(~,K) is a negative monotonically
decreasing function of ~o The fact that any initial static
displacement of the interface that is stable will remain
stable follows from Eq. (5-75). Let ~ correspond to theo
minimum value of ~ at t = 0 and corresponding to y = Y .

o
Then originating at ~ there are C+ and C characteristics
along which

(5-80)

Similarly along characteristics originating at another
arbitrary point Yl'

(5-81)

where ~l > ~o. Therefore at any given point on the
characteristics coming from Yo there is a ~l' such that

R(~,K) = [R(~o,K) + R(~1,K)]/2 (5-82)
or since R(~ ,K) > R(~l,K), R(~,K) < R(~ ,K) and finallyo 0

~ > ~ along the y characteristics originating at y.000
The argument is complete if it is observed from Eqo (5-82)
that ~ takes on the smallest possible values on the character-
istics that cross at Yo. Hence, ~ is greater than ~o
everywhere in the (y,t > 0) plane and the interface remains
stable.
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As examples of symmetric waves originating on initially
static pulses, Fig. 5-8 shows magnetohydrodynamic and electro-
hydrodynamic hump and depression pulses propagating into regions
of constant state. Since the resulting waves are symmetric
about the origin, only the positive y axis is shown. In
these examples de electrohydrodynamic cases do not make a
transition to the gravity controlled regime.

The waves behave as would be expected. The velocity of
small disturbances increases with the depth of the fluid in
the magnetohydrodynamic problem. The particles at the top
of the hump catch up with those at the front while the
particles at the back of a depression catch up with those
at the bottom. Hence in a way similar to the ordinary
gravity wave, a hump steepens into a shock at the front, a
depression forms a shock at its back edge.

Conversely, the velocity of small disturbances can
decrease with the fluid depth for an electrohydrodynamic
problem. Hence, in the examples shown, anti-shocks form at
the back and front edges of the hump arid depression waves
respectively.

G. Integral Conditions
The conditions which correspond to fully developed shocks

may be written by integrating the first order equations over
a volume which encloses the shock. The appropriate volume
element is shown in Figo 5-9 for the E-H and M-H cases.
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Figure 5-9
Shock Configuration

Note that the upper and lower boundaries of the volume are
just inside the-rigid parallel plates. The fluid is assumed
to enter and leave the volume with velocities V and V' as
shown. The problem is assumed to be steady state, i.e. the
discontinuity is fixed in position. The equations of motion
are invarient to a constant translation. Hence, the problem
is easily generalized to give a moving discontinuity. Since
Q QV = V (y,t), the continuity condition requires thaty y

V'(~'+a) = V(~ + a)

From Eq. (5-56), the electric fields are related by

E(b-;) = E'(b-;') = Vo

(5-81)

(5-82)

The momentum equation, (5-1), may be generalized to apply
throughout the volume, so long as it is agreed that when it
is taken in region (2), the density vanishes. That is
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(5-83)

A detailed knowledge of the field in the vicinity of the
discontinuity is not known. However, far from the discontin-
uity it would be expected that the first order field approxi-
mations would apply. Use may be made of these solutions to
integrate Eq. (5-83) over the volume indicated in Fig. 5-9.
First, the volume integral of Eq. (5-83) is converted to a
surface integral

(5-84)

Since the volume was chosen so that there is no contri-
bution to the integration of the y component of Eq. (5-84)
on the upper and lower surfaces, the first order fields
serve to evaluate Eq. (5-84), and give

(5-85)

Equations (5-81), (5-82) and (5-85) relate the velocity
of the fluid into the volume to the discontinuity in the
surface height.

The velocity of a wave-front moving into a region of
constant state is numerically equal to V. Hence, Eq. (5-86)
reduces, for small ;' and ;, to the phase velocity resulting
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from linear theory, i.e. Eq.(S-68).
The shock conditions are fully formulated only after

account is taken of the energy balance associated with a
given discontinuity in the interface position. Since
v.,V = 0, the energy equation resul ts from dotting V into
Eq. (5-1) to obtain the conditio~:

where
~~ = - Iv · (Vw) dv = -

v
JVw · ds
s

(5-87)

w = p(V;V) + P + pg(x + a)
dwFor a conservative system dt = O. At the shock front

kinetic energy may not be conserved. However, it is certainly
true that in the physical system energy must flow into the
volume and not out of it. Hence the condition

dw > 0dt

The integration of Eq. (5-87), carried out using the
2value of V given by Eq. (5-86) results, after some

algebraic manipulations, in Eq. (5-88).

If V = 0, this equation gives the well known resulto
that V > 0 implies that ~'> ~ or that the step in fluid
height is as shown in Fig. 5-9.
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Equations ~-82), (5-86), and (5-88) hold for the magneto-
hydrodynamic problem of a trapped-magnetic field directed far
from the discontinuity, along the y axis, if the substitution
is made:

E ......B

From these equations it is now clear that:
1. A magnetohydrodynamic surface shock, like the
gravitational shock, must propagate into a region
of higher velocity and lower depth. That is, for
V > 0 the energy balance requires ~t > ~.

2. An electrohydrodynamic surface shock, unlike the
gravitational shock, may propagate into a region of
lower velocity and greater: depth. That is, for
V > 0 the energy balance does not require ~t>~.
In fact, it follows from Eq. (5-88) that the existence
of a discontinuity does not necessarily imply that
energy is dissipated at the interface.
These results are a consequence of the fact that the

magnetic field always increases the equilibrium velocity of
the discontinuity while the electric field always decreases
this velocity. It appears that the electric field may
interact as an "electric weir", in that it may produce an
abrupt decrease in the fluid depth in the stationary con-
figuration of Fig. 5-9.
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CHAPTER 6
CONCLUSION

The concern of this thesis has been with purely super-
fi~ial magneto- and electrohydrodynamic interactions with
liquid-liquid or liquid-gas interfaces. The problems con-
sidered have been so arranged as to exclude any coupling
between fields and fluid in the volume. Those effects
resulting from the gravitational field and the action of
cohesion have been included and also will be recognized
as characterized by a surface traction. Hence, the
unifying theme of this work has been the delineation of
the dynamics of interfaces in plane geometry, stressed by
uniform magnetic or electric fields.

A. Summary
Surface problems in six configurations have been

analyzed and compared. Use has been made of a perturbation
analysis and of a space rate expansion of the dependent
variables. The first of these techniques is common in field-
coupled surface wave problems that appear in the literature
of magnetohydrodynamic stability theory and leads to a
linear approximation. The second, to the author~ knowledge,
is a new approach to field coupled surface wave problems,
and leads to a non-linear approximation.

The waves studied have been classified according to
whether the steady electric or magnetic fields are
perpendicular (type I) or tangential (type Into the inter-
face. The relationship between the wave types has been
clarified by viewing their similarities (duality) and by
taking advantage of their antithetic behavior (anti-duality).
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The problems considered in the linear analysis are
summarized by Table 6-1. The first three columns give the
shorthand designation used here for each of the waves, while
the fourth column indicates the zero order surface charge or
current. The role of each wave type may be clarified by
considering the circumstance under which it might be observed.
For example, if the EH-I problems were established by
applying a step of voltage to parallel plates, the EH-Ip
wave would define dynamics on an initially uncharged surface
at times t« T while EH-If waves would occur in the limitr
of t» T , where T is the time constant for relaxationr r
of free charge to the interface;

(6-1)
E2a + Elb

T =r <12a+ <1lb

In an inverse
used to establish

way, if uniformly conducting fluids were
the MH-II waves, the MH-IIf wave would be

observed during the initial stages of a pulsed experiment,
while an MH-IIa wave would result after a long time. This
points to an inherent characteristic of the EH problems.
The interactions in plane geometry are always at the
surface. The EH-II wave is observable at all times, as is
also the MH-I wave. This is a direct consequence of the
homogeneous nature of two of Maxwell t s equations ..

The type I waves are characterized by a phase velocity
that decreases with increasing field strength, the possi-
bility of a negative group velocity simUltaneously with a
positive phase velocity and by a discrete field strength
and wave-length for impending instabilityo The conditions
corresponding to these characteristics have been given
ranging from strong to weak interactions with the external
boundaries.
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Type II waves theoretically may propagate more, or less
rapidly along field lines, depending on the strictions at the
interface. Although the Clausius-Mossotti equation is commonly
used to illustrate the effect of strictions at dielectric inter-
faces, its use here indicates that a type EH-II wave would be
slowed by an electric field, whereas it was clearly indicated
experimentally that the wave is in fact speeded up.

The nature of both type I and II waves has been illustrated
by a discussion of several experimental observations on the
EH-If and EH-II waves.

The discrete nature of the field strength and wave-length
corresponding to impending instability in an EH-If configura-
tion made it possible to correlate theory with experiment in
an unambiguous way. This experiment showed the expected
behavior of voltage for instability as a function of plate
spacing, and clearly indicated that the effect of electro-
striction was considerably smaller than predicted by the
Clausius-Mossotti equation; a result that correlated with
the EH-II experiments. The results of this experiment were
shown by mathematical similarity to be illustrative of the
type of behavior to be expected from certain EH-Ip and MH-I
experiments.

The conditions for surface resonance in rectangular
geometry have been given for each of the wave types. Errors
inherent to the instability experiment were avoided by using
one of these resonators involving an interface where strictions
could not play an important role (water-air). The resonant
frequency shift as a function of field strength was correlated



Ill.

with theory to within errors expected from the dimensional
uncertainty of the equipment.

One of the most intriguing aspects of free surface
waves results from the fact that they can be seen with the
aid of little or no optical aids. The anisotropic nature
of the Type II waves makes it seem worthwhile to demonstrate
these waves by simply taking a picture of radiating waves,
as created by a disturbance. The dependence of the EH-II
wave velocity along E lines on E2 was demonstrated by
shadow projections, two of which were given in chapter 4.
However, the dispersive nature of surface wave propagation
and the experimental difficulties involved (it is certainly
not as easy as it looks) make this a poor experiment in
terms of information for effort. The elliptical nature of
the radiating disturbance made possible a rough correlation
with experiment, but the accuracy was limited by ambiguities
arising from dispersion.

A considerably more satisfactory correlation of theory
and experiment was made using an EH-II resonator. Here
correlation was within the dimensional accuracy of the
equipment, if the electrostriction constant was ignored.
The fact that this experiment, conducted using xylene,
acetaphenone and nitrobenzene (materials of very different
conductivities and polar characteristics) always indicated
an electrostriction effect much smaller than would be
expected from the Clausius-Mossotti equation, indicates
not only that this equation is not valid at an interface,
but that the theory predicts, at least at low.field
intensities, the correct surface dynamics. The effect of
electro-convection is a limit on the electric field intensity
that can be used in this experiment.
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The concept of anti-duality may seem a needless definition
of terminology if viewed in terms of the linear analysis given
in chapter 30 However, the convenience that can result from
observing this relationship between problems was made evident
in chapter 5, where a discussion of non-linear surface
dynamics of the type EH-If and MH-llf waves was given 0 The
"space rate" or "long wave" approximation used makes the
results physically meaningful when the boundaries interact
strongly with the interface 0 This work, at the same time,
indicated a tractable method of getting at non-linear field-
surface interactions and showed the non-linear role played
by unstabilizing influences in strong contrast to stabilizing
influences. The theoretical nature of MH-Ilf and EH-If
shocks and anti-shocks was investigated, showing the growth
of MH shocks from compression waves and EH anti-shocks from
depression waves. Transition EH-If waves originating from
time-like data were given to illustrate the dynamics of waves
that were partly controlled by gravity and partly by the
electric field. As a further illustration, both MH-Ilf and
non-transition EH-If waves were given, illustrating hump
and depression waves originating on space-like datao

The integral conditions for shocks and anti-shocks were
given, demonstrating that the anti-shock could in theory
exist without the dissipation of kinetic energy. This is
in strong contrast to the usual gravity shock or the MH-Ilf
shocko

BG Areas of Active and Suggested Research
There are many directions in which research efforts can

go, using as a starting point the wave properties that have
been describedo Several of these are presently being pursued
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by the author and his students so that preliminary observa-
tions and results can be given.

The role of losses in surface waves presents a problem
of considerable difficulty. This is true because the losses
provide coupling between the mechanical and electrical bulk
equations. Surface wave problems are than complicated by
the fact that solutions must be fabricated from bulk solutions
that may satisfy linear differential equations, but with
space varying coefficients. The role of viscosity is not
this complicated. In the resonator problems it was noted
that as the E field was increased, the apparent "Q" of the
system increased also. Hence, the viscous damping may
predominate the electrical losses in these problems.
Certainly a Q curve could be measured for a resonator and it
would then be possible to correlate what appears to be a
tractable theory with experiment. In any case surface wave
solutions with losses could provide a valuable addition to
the physical picture.

Only two of the six types of waves have been experi-
mentally investigated in this thesis. It should be possible
to demonstrate each of the wave types. The EH-Ip wave could
be observed using existing dielectrics if considerable care
were exercised in handling the liquid. The high magnetic
fields now available make possible experiments involving
the MH-I and MH-Ila waves in spite of the low permeabilities
of liquids (Ferric Chloride solution for example). The MH-Ilf
experiment could be conducted using an air-liquid metal
interface and a transient current. However, it would seem more
reasonable to float a light liquid metal (NaK) on the surface
of a dielectric liquid to achieve the simulation of a steady
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surface current. The conjecture will be made here that
systems that involve zero order currents interacting with
zero order fields are much less subject to the effects of
attenuation than are those involving first order currents
interacting with zero order fields. Physically this would
seem to be plausible, since MH pinches of mercury jets are
observed to become unstable at modest currents. The
existence of the instability would seem to imply the
existence of a wave propagating with small enough attenuation
that at some current it predominates the dynamics.

The problems considered in this thesis are physically
meaningful at extremes in time. It would be interesting to
know more about the dynamics of interfaces during the
transient stages of type EH-Ip ~ EH-If and MH-IIf ~ MH-IIa
waves.

It was pointed out in chapter 3 that the type I waves
could have a negative group velocity at the same field
strength and wave-length that would give a positive phase
velocity. This suggests interesting interactions that may
occur in convective systems. In fact, if the waves are
considered in cylindrical geometry, it is possible for each
of the wave-types to exhibit a convective instability.
This is an area of active research. On the theoretical side,
the cylindrical counterpart of the EH-If, EH-Ip and EH-II
waves has been analyzed in a convective state of rigid
body axial translation and rotation. Preliminary investiga-
tions show theoretically and experimentally that traveling
wave amplification occurs at certain frequencies in a parti-
cular case of this problem--theEH-If configuration of a
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liquid jet. Here problems connected with the detection and
excitation of surface waves by electrical means become of
considerable interest.

While the name magnetohydrodynamics is a misnomer, the
word electrohydrodynamics 'is not. As has been shown in
this thesis, ordinary water can act like a dielectric or
like a conductor, depending on the orientation of the
applied electric field. In the EH-If configuration it is
for all practical purposes a perfect conductor. The great
abundance of water in the earth's atmosphere and on the
earth's surface, together with the high electric fields
that commonly accompany thunder storms, make it plausible
that electro hydrodynamics is of some importance in the
weather. Even gravity waves on the ocean are significantly
affected by electric fields from atmospheric conditions
(E fields as high as 2.8 x 105 vIm at the earth's surface
are reported).19 However, the fact that gravity waves are
important in the earth's atmosphere also, where density
gradients are small, leads to the suspicion that here
electrohydrodynamic waves may be of considerable importance.
If one can, for example, simply turn on a water faucet to
convert steady kinetic energy to alternating electric energy,
(the only mechanical motion that of the waterh there must
be a multiplicity of interesting dynamical situations that
can occur in the atmosphere, where all of the ingredients
are present.

If EH waves are of any importance in the atmosphere, it
would be suspected that they, like the gravity waves, might
prove to be most important as a result of non-linear motions.
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The non-linear behavior of EH-If waves has been demonstrated
for one approximate model in this thesis and work is presently
proceeding to varify this model using a water-air interface.
This work views the EH-If wave in the context of free surface
flows and has the further purpose of determining the flow
regimes and types of non-linear interactions that can occur
with the boundaries. Gross interactions can be demonstrated
experimentally that are roughly as would be expected from
the theory. However, there is still much to be learned
about the way in which, for example MH and EH shocks and
anti-shocks may unambiguously be produced. The problem
must still be taken from the kinematical description of
chapter 5 to a dynamical one.

Compressibility in electrohydrodynamics has the effect
of allowing for the possibility of bulk coupling. A class
of waves that propagate along E lines with the velocity

2 EO OE 2
V=a +--EE op

a = velocity of sound

(6-2)

may be shown to exist. In interactions with a plasma sheath
such effects may be of importance and remain to be considered,
even in the simple continuum picture of the fluid. Incompress-
ible bulk waves are not impossible in a dielectric, however,
for if the dielectric is anisotropic, bulk waves may certainly
exist. This may be shown by simply superimposing, in layers,
the waves discussed in this thesis.
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APPENDIX A
List of Symbols

Mass density
Fluid velocity, Eulerian System
Fluid body force
Fluid pressure
Electric field intensity
Magnetic flux densi ty -
Magnetic field intensity
Permeability
Permittivity
Free current density
Free charge density
Functional form of free surface
Normal vector
Total body force stress tensor

Interface position
Maxwell stress tensor
Kronecker delta function

Vector with unit components in axes directions
Unit normal to interface

/Effective Alfven velocity

Effective electrohydrodynamic velocity
Electrostriction constant
Magnetostriction constant
Electric displacement vector
Surface tension
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Gravitational constant
Upper plate distance from interface
Lower plate distance from interface
General distance standing for a or b
Conductivity

Defined by Equation (4-1)

Wave number
Angular frequency
y dimension of surface resonator
z dimension of surface resonator

Wave-length or dimensionless "space-rate" parameter
Dimensionless interface position
Renormalized velocity
Coupling coefficient defined by Equation (5-77)
Defined by Equation (5-77)
Characteristic dimensions
Conserved electric potential
Conserved magnetic flux

Defined by Equations (5-24) and (5-67)
Slope of straight line C+ characteristics
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APPENDIX B

Detailed Compatibility Conditions

Table B-1

(2-13)+
At the Interface
\1(2)_ V(l) = 0
x x

(3-18)

'"V 2 -N a
("'p(2)_"'p(1»_~(p(2)_p(1»g+ ~ T]+[ 11] = 0 (3 19 )

a N
33

- b

(2-12)+

(2-14)

(3-22~)

(2-16)

(3-26~)



120.

(2-17)

AT x • -a, x • b

(3-5)
{

N ~ ~ ~ 0EH-I£,pje =e =0: MH-I;n =n ~z y z y

MH-Ilfoe =e =0: EH-II MH-Ilaoc(2)=c.(1)=D(2)=D(1)=0'z y , '1 2 1 2

(3-6)
~
V I: 01 (3-29)

where

° EH,
MH

s =n ~(2)(H~2»2 _ ~(1)(H~1»2

[

E(2)E(2)e(2)(1 + 6 c(2»_e;(1)E(1)e(1) (1+0 c(l»] [EH]
n m - mn n m -mn

N
mn

= ~(2)H~2)h~2)(1! 6mnd(2»-~(1)H~1)~~1)(1+6mnd(1»; MH

in which the upper quantities are to be used in type I
problems, lower quantities in type II problems except
where indicated.
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APPENDIX C

Traveling Wave Fields
Table C-l

Solutions for wave types illustrated by traveling waves
propagating in the positive and negative z directions. The
dispersion equations relate k and w +a ~ b ~ 00

For all wave types:
~ = ~ cos(wt + kz)o
V(2) = -; me-kxsin(wt + kz)
x 0 -

V(l) = _~ roekx sin(wt + kz)
x 0 -

V(2) = + ~ roe-kx cos(wt + kz)
Z - 0 -

V(l) = + ; roekx cos(wt + kz)
z 0 -

(2) 2 (2)~ kP = _ ill P 0 e- x cos(wt + kz)k -
(1) w2p(2);o kxp = k e cos(wt + kz)

For EH-If waves:

€ = €o

e(2)= + E(2)k~ e-kx sin(wt + kz)
z - x 0

(1) (1) kx.e = + E k; e s1n(wt + kz)z - x 0 -

e(2)= E(2)~ ke-kx cos(wt + kz)
x x So

e(l)= _E(2)~ kekx cos(wt + kz)
x x 0



Table C-l cont.

q£ = g k[E(2) + E(l)]; cos(wt + kz)
o x x 0 -

k£ = + g ; w[E(l) + E(2)]cos(wt + kz)al00 x x -

qf = perturbation of free surface charge
kf = first order surface current (convective)

For EH-Ip or MH-Im waves
e(2)= + G; E(l)e-kx sin(wt + kz)

Z - 0

e(l)= + G~ g(2)ekx sin(wt + kz)
z 0 -

e(2). ~ GE(l)e-kx cos(wt ~ kz)
x 0

e(l) - ~ Ge(2)ekx cos(wt f kz)
x 0

k - + 2~ G sin(wt + kz)ap 0 - y

~ - -eoG cos(wt I kz)(e(2). e(l»

G - (E(2)_ E(1»k/(e(2)+ e(l»x x
k - first order Korteweg surface currentp

~= perturbed surface polarization charge
for MH-Im waves replace

E -+ H, e -+ h, E -+ IJ., k -+ k , q -+ a
p m p Ln

k = first order amperian surface currentm

~= perturbed surface magnetic charge
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Table C-l cont.

For MH-Ilf waves

125.

~ = ~o

h(2) = + H(2)k~ e-kx sin(rot + kz)
x z 0 -

h(l) = + H(l)k~ ekx sin(rot + kz)
x z 0 -

h(2) = H(2)k~ e-kx cos(rot + kz)z z 0

h(l) = -H(l)k~ ekx cos(rot + kz)z z 0

e(2) = _m~H(2)~ e-kx sin(rot + kz)
y z 0 -

e(l) = _~H(l)~ ekx sin(rot + kz)
y z 0 -

kf = -k~ [H(l) + H(2)] cos(mt + kz)
o z z -

kf = free surface current

For EH-II or MH-Ila waves
e(2) = + ~ Le-kx sin(rot + kz)
x 0

e(l) = + ~ L ekx sin(wt + kz)
x - 0

e~2) = ~oL e-kx cos(wt + kz)

e(l) = ~ L ekx cos(mt + kz)
z 0 -

~ L (2)k = - __0__cos(mt + kz)[e -
p e -

o



Table C-1 cont.

qp = + 2;oL sin(wt ! kz)
L = kE [E(2)_ E(1)]/(E(2) + E(l))

z

for MH-Ila waves replace
e -+ h, E -+ IJ., kp -+ km' ~ -+ ~
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