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Abstract

Curling stresses in concrete slabs poured on grade may be caused by both non-uniform
temperature and moisture distributions through the slab thickness. If the gradients of tem-
perature or moisture content are sufficiently high, very large stresses are induced which
surpass the tensile strength of the material. Cracking results which then may serve as initi-
ator sites for the ingress of external corrosive materials. Structural integrity may not be
lost but serviceability of the structure is lessened due to the unsightly cracks. If corrosion
of the reinforcement proceeds, staining and spalling of the concrete may ensue, further
reducing the structures serviceability.

Due to the complexity of studying concrete slabs, such as the variation in effects of con-
stituent materials such as coarse and fine aggregate type, quality and content, and the vari-
ation of temperature due to varying external conditions, cement paste slabs were
investigated with the goal to predict curling stresses as a function of mix design, and time.
A three phase study was developed to address: the design of new testing procedures to
quantify curling deformations due to non-uniform moisture content in the slabs thickness,
evaluation of the effects of a shrinkage reducing admixture on the curling phenomenon
and moisture profile, and the development of a theoretical model to predict curling defor-
mations and stresses resulting from uneven drying conditions of cement slabs.

Experiments were conducted using both normal and high strength paste mix designs with
0, and 5% replacement of mixture water by weight with a shrinkage reducing admixture
(SRA), and 0, and 7.5% silica fume content. The time dependent mechanical and material
properties measured were modulus of elasticity, compressive strength, shrinkage strains,
and curling deformations. The addition of the SRA had varying effects on mechanical
properties depending on the specific mix. The addition of the SRA reduced shrinkage
strains by 40% in a 90 day period, and curling deformations by 60% up to 90 days. How-
ever for very low water-to-cementitious ratios (W/C = 0.25), the admixed specimens
curled more than the companion control specimens. A computer model was developed
which predicts curling deformations.

Thesis Supervisor: Oral Buyukozturk
Title: Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

1.1 Background

Deterioration experienced by infrastructure due to unforeseen modes of failure in concrete

structures has significant social and economic implications. Durability is one of the most

important considerations that an engineer must address when planning and designing new

structural systems. Cyclic loadings due to mechanical and temperature effects can cause

the initiation and propagation of cracks. These cracks then serve as rapid transport sites for

external corrosive agents such as carbon dioxide, carbon monoxide, de-icing and/or

marine salts, and sulfates. Once these agents penetrate the cover layer of concrete and

reach the steel reinforcement corrosion may initiate and then propagate. Since the prod-

ucts from the corrosion reaction occupy a greater volume than the original material

hydraulic stresses develop further cracking the cover concrete. This may lead to unsightly

cracking, staining, and at later stages spalling. Structural integrity may not be compro-

mised, but serviceability certainly is. Therefore, designers should account for any sources

of premature cracking of structural members.

One source of cracking typically not accounted for in conventional design practice are

those cracks caused by excessive curling stresses due to restraint of curling deformations.

These deformations arise due to non-uniform moisture and/or temperature profiles

through the slab thickness. Although there have been several studies conducted with

regards to temperature related curling problems [Westergaard, 1926, Bradbury, 1938],

there is a gap in knowledge for curling in slabs due to moisture movement. Therefore the

focus of this research is to study the fundamental mechanisms related to curling of cement

slabs and use this information to develop an analytical model to predict curling deforma-

tions due to moisture changes through the thickness of slab structures.



1.2 Problem Statement

The modeling of deformations of concrete slabs poured on grade due to external environ-

mental conditions is a topic area of interest for the construction industry for the prevention

of excessive cracking. Floor systems such as parking garages, industrial storage facilities,

bridge decks, and even residential floors are affected by the early age curling deformations

associated with moisture movement in slabs. Exposed surfaces dry at different rates than

those insulated by subgrades. As drying proceeds a very non-uniform moisture profile

occurs which results in differential shrinkage through the thickness of the slab.

The differential shrinkage occurs because the cement matrix in concrete expands

slightly when saturated and shrinks when dried. Therefore in order to study the curling

phenomenon, one must first understand the mechanisms of drying shrinkage and expand

the knowledge gained from that field to curling. Recent advances in cement additive tech-

nologies have occurred and several different types of shrinkage reducing admixtures

(SRA's) have been developed. Hence, in order to fully address the problem of curling

deformations this study will focus on both conventional as well as admixed neat cement

slabs. Concrete is not addressed due to several complicating factors which arise due to the

size, gradation, and quality of coarse and fine aggregate.

1.3 Need for Enhanced Modeling Approaches

The analysis of rigid pavements subjected to transverse loads and temperature variations

has been conducted by many researchers [Westergaard 1926, Westergaard 1927, Bradbury

1938, Pickett 1946, Harr and Leonards 1959, Al-Nasara and Wang 1994, Mohamed and

Hansen 1997], but the problem of variational moisture conditions through the thickness of

the slab must still be addressed in detail. One of the earliest stress analysis for temperature

effects on pavements was conducted by Westergaard in 1926. Later in 1938 Bradbury

improved the analysis of Westergaard by developing a simple design chart to evaluate

curling stresses in finite slabs with free edges. Moisture content was considered of second-

ary importance in both analyses and nonlinear temperature effects were treated as equiva-

lent linear distributions through the slab thickness. The stresses calculated with this

assumption can grossly underestimate actual stresses [Mohamed and Hansen 1997]. Both



Westergaard and Bradbury modeled the slabs as plates fully supported on Winkler founda-

tions which maintain full support during the lifetime of the structure. Many researchers

have documented that full support of slabs does not occur [Harr and Leonards 1959].

Instead partial support is the rule, and the resulting stresses developed coupled with

mechanical and temperature effects may be several orders of magnitude larger than those

caused by simple wheel loads. Although Westergaard and Bradbury had to make the sim-

plifying assumption of full contact and support, many designers to date use their theory as

a design guideline to calculate curling stresses and deformations due to temperature

effects.

There is insufficient research on the mechanisms of curling deformations caused by

moisture, and there is a considerable need to fill this void of knowledge. There is also a

need to take mechanistic work and translate it into readily available computational tools

and guidelines so that the engineering community can address this important design prob-

lem.

1.4 Objectives of the Research

Many modem designers have access to very sophisticated computational design tools, i.e.

packaged finite element programs for the analysis of structural elements, but those in

smaller design firms may not have the same access or expertise to use the available soft-

ware. So these designers rely on the simplified theory postulated by Westergaard and

Bradbury and most continue the practice of linearizing temperature distributions when

conducting analyses and few bother to account for moisture effects at all. Therefore, the

objective of this study is to develop in an evolutionary fashion a computational model to

accurately predict curling deformations in cement slabs which may then be extrapolated to

concrete slabs poured on grade.

Deformations are dramatically affected by the use of modern chemical admixtures that

change the unrestrained drying shrinkage behavior of concrete. Therefore, a large portion

of the study will address the basic mechanisms that these shrinkage reducing admixtures,

(SRA), have on the microstructure of the cementitious composite, and how this then

effects macroscopic response.



1.5 Research Approach

The planned course of study shall involve multiple phases conducted in parallel. The first

phase is the study of the mechanisms involved in drying shrinkage and differential shrink-

age induced by non-uniform moisture profiles in cement paste slabs. Cement paste was

chosen as a simpler model than concrete which has natural variations in behavioral

response due to the restraining components, i.e. type, quality, content, and grading of

coarse and fine aggregate. The second phase provides the analytical modeling requisite to

establish a computational tool to quantitatively predict changes in curling behavior as a

function of mix design and time. The third and final phase is the implementation of the

knowledge learned into the computational model. Comparisons are made between experi-

mental and modeling results in this stage, and final conclusions drawn with suggestions

for further research are given.

To address the drying shrinkage-curling problem from a phenomenological approach

an extensive experimental program is designed with varied material parameters affecting

bulk macroscopic properties such as compressive strength, modulus of elasticity, and

modulus of rupture, as well as microstructural properties such as pore size distribution and

permeability. Measurements are taken under varying environmental conditions to establish

a relationship between moisture content and free shrinkage. Mass loss measurements will

also be useful to determine rates of moisture flow from different mixes. To establish the

shape of the moisture profiles for varying mixes, electrochemical impedance spectroscopy

techniques will be used to establish trends on changes in cement dielectric properties as a

function of curing condition, storage environment, and time. Curling deformations are

induced in plate specimens by sealing five sides and allowing moisture movement only

from the top surface. Measurements are taken in time and the specimens are stored in a

constant environmental condition. The information obtained from the experimental pro-

gram will be used to verify the analytical analysis to be conducted in the second phase.

The second phase of the study is to develop an analytical model of drying behavior of

cement and correlate this information with drying shrinkage to calculate the residual

stresses and deformations experienced slabs. Considerable work has been previously done

in the area of uniform and linear temperature gradients in slabs to calculate induced



responses. Moisture effects are therefore modeled using similar assumptions, except non-

uniform moisture profiles are accounted for. This portion of the study treats the slab

response independent of restraint and boundary conditions due to subgrade reactions.

The final phase of the study is to use the analytical model as the basis for computa-

tional model which can accurately predict the curling behavior of cement slabs accounting

for mix design and the passage of time. The requisite comparisons with experimental

results are conducted.

1.6 Thesis Organization

Chapter 2 of this thesis provides a succinct literature review of factors affecting drying

shrinkage and curling deformations. Current analysis techniques will be presented and

problems associated with the simplifying assumptions used for these techniques will be

discussed.

Chapter 3 presents the experimental aspects of this work. New testing techniques for

quantifying drying shrinkage as a function of moisture content, curling deformations, and

moisture profiles as well as standardized testing for mechanical properties will be pre-

sented. Chapter 4 discusses interesting trends found in the results for both conventional

mixes and those admixed with SRA's.

Chapter 5 describes the analytical modeling of drying and the relations used to corre-

late moisture content to shrinkage strains. The computational model will also be pre-

sented. This Chapter also compares experimental results with the predicted curling

behavior given by the computational model. Any discrepancies are discussed as well as

further suggestions to obtain additional required data.

The final chapter will summarize the work accomplished, draws conclusions and

makes recommendations concerning future work. Comments on further possible refine-

ments of the newly developed testing techniques as well as possible applications of the

moisture profile technique to field conditions are made.



Chapter 2

Literature Review

2.1 Introduction

This chapter presents the necessary background information. Basic definitions of technical

terms are presented first. A discussion of general background information concerning con-

crete and cement paste and then the key models proposed for drying shrinkage are pre-

sented. A short discussion pertaining to shrinkage reducing admixtures is presented, and

then correlation between drying shrinkage and curling deformations is discussed. Finally,

some of the modeling assumptions and restrictions presented by previous researchers to

predict curling deformations in plate structures are discussed.

2.2 Definitions

2.2.1 Curling

Curling, also called warping, is the distortion of an originally planar member into a curved

surface. For concrete or cement slabs the curling deformations are induced by non-uni-

form moisture or temperature profiles through the slab thickness [Ytterberg, B 1987].

2.2.2 Shrinkage/Swelling

Neville defines shrinkage/swelling as the volumetric change in concrete or cement [Nev-

ille 1996]. Drying causes a decrease in volume, i.e. shrinkage, while wetting causes in

increase in volume, i.e. swelling. This volumetric change may be induced by several dif-

ferent mechanisms and so is further subdivided as: autogeneous shrinkage, plastic shrink-

age, chemical shrinkage, and drying shrinkage.

2.2.2.1 Autogeneous Shrinkage

Autogeneous shrinkage occurs due to the consumption of internal moisture content from

hydration reactions also referred to as self-desiccation. According to the Power's model of

cement paste, mixes with water-to-cement ratios greater than 0.38 contain sufficient water

to completely hydrate [Soroka 1972]. For lower water-to-cement ratios Neville reports



that autogeneous shrinkage may increase depending on the rigidity of the microstructure.

One can expect higher values of autogeneous shrinkage with increasing temperature,

higher cement contents, finer ground paste, and pastes which contain high values of trical-

cium aluminate and tetracalcium aluminoferrite. Due to the restraint of aggregate particles

and the hydrated structure of paste the autogeneous shrinkage in concrete is often an order

of magnitude lower than in paste [Czernin 1962]. Pickett addressed this problem in the

early forty's and developed a the following relation:

S = So(1 -g)a (2.1)

where S is the shrinkage of the mortar or concrete, So is the shrinkage of the paste, g is the

proportion by volume of aggregate in the unit volume of concrete, and finally oX is the con-

stant derived from the compressive modulus of elasticity of the aggregate and the cement

paste. Hence the model for shrinkage and curling deformations for paste should account

for autogeneous shrinkage while for concrete it may be ignored.

2.2.2.2 Plastic Shrinkage

Plastic shrinkage describes the shrinkage that occurs prior to cement setting caused by

moisture loss, i.e. bleeding and evaporation from the top surface of the slab and capillary

suction in subgrades at lower moisture contents than the slab. The rate of moisture loss is

affected by temperature, convective forces, anid ambient relative humidity. Plastic shrink-

age occurs when the mix still acts like a very viscous liquid. As soon as the rigidity of the

matrix is sufficiently high, plastic shrinkage ceases. Surface crazing or cracking may

occur, but can be prevented if the structural member is wet cured. Dry subgrades should be

avoided to prevent moisture loss from the bottom surface of the slab. The interest of this

thesis is on the material behavior of cement after setting has occurred, so this type of

shrinkage is not addressed in the modeling section.

2.2.2.3 Chemical Shrinkage

Chemical shrinkage is a blanket terms used to describe shrinkage or swelling changes

resulting from chemical reactions, such as thermal shrinkage, dehydration shrinkage, crys-

tallization shrinkage, and carbonation shrinkage. Since these types of shrinkage predomi-

nately occur close to the setting time they also shall not be included in the analytical

modeling section. Carbonation shrinkage will only effect the outermost layers of speci-



mens and so plays a small role in typical sized specimens, however for very small speci-

men it may play a larger role. The small scale specimens used in this study were not sealed

in a CO 2 free environment and hence may experience some problems due to this phenom-

enon.

2.2.2.4 Drying Shrinkage

The final type of shrinkage to be defined plays the largest role in the typical environments

of interest for this study. The environment range of interest is between 40-100% relative

humidity (RH). This type of environment is typical of moderate climates such as those

experienced in the Eastern United States. Drying shrinkage is defined as the negative volu-

metric change induced by the removal of moisture. Drying shrinkage is composed of two

parts, reversible and irreversible drying shrinkage. Irreversible drying shrinkage is that

portion of drying shrinkage is not recoverable. Most of the irreversible drying shrinkage

occurs during the initial drying period, with subsequently smaller percentages from addi-

tional wetting-drying-rewetting cycling [Neville 1996, Czernin 1972, Soroka 1979]. This

may occur due to reorganization of microstructural bonds when gel particles come in close

enough contact. Soroka comments that the reorganization of bonds occurs to reduce the

free surface energy of the system [Soroka 1979]. This idea is also postulated by Scherer,

but with respect to sol-gels [Scherer 1992, A, B]. For very low external relative humidity

environments, the percentage of irreversible drying shrinkage increases. Reversible drying

shrinkage is caused by the alternating storage of specimens under dry and wet conditions

and is the portion of drying shrinkage which is recoverable. Figure 2.2.1 depicts the

shrinkage behavior of a paste due to typical drying rewetting drying cycles [Adaptation of

figure given by Soroka 1979, Neville 1996]. One should note that since a primary source

of moisture movement in cement paste is diffusion, there is a size effect which must be

accounted for when comparing data from different sized specimens.

Typical values of drying shrinkage for concrete are between 400 to 800 millionths

[Ytterberg 1987, A]. Larger ranges are possible depending on a number of different fac-

tors. The factors which affect shrinkage include water-to-cementitious ratio, water and

cement content, the microstructure of paste, the use of chemical admixtures, aggregate

content, type and quality, the degree of hydration, and the curing conditions [Soroka 1979,



Neville 1996]. These factors will be further discussed in the overview portion of this sec-

tion.
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Figure 2.2.1. Shrinkage behavior due to drying then wetting cycles.

2.2.3 Cracking Stress

Cracking in cement takes place whenever the general state of stress exceeds the intrinsic

strength of the matrix. Due to the heterogeneity of the paste structure, the failure envelope

for cement is radically different than that of metals. Cement paste is able to carry signifi-

cant loads in compression while its tensile strength is typically one-tenth of its compres-

sive strength. From classical linear elastic fracture mechanics, the theoretical strength of a

material is dependent on the strength and type of intermolecular forces and intermolecular

spacing. This calculated value typically exceeds measured values by three orders of mag-

nitude.

The difference in strengths is due to the presence of cracks or flaws in the material

which experience very high stress concentrations when subjected to external loads [Grif-

fith 1920]. Griffith developed a criterion for cracking of brittle materials based upon

energy release rates. He considered an elliptical crack, and calculated the associated

decrease in elastic strain energy in a plate due to the formation of this type of crack. Next

he suggested that in order for a crack to propagate that a critical energy release rate must

be reached, i.e. the strain energy release rate must equal the energy release rate associated

with creating new crack surfaces. This is succinctly represented by the expression
'2

a cE=) __(4 Ysva) (2.2)

which upon simplification results in the classic Griffith equation
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where a is the applied stress, a is the crack half size, E is the materials modulus of

elasticity, and Ysv is the solid-vapor interfacial surface energy. Since the flaw size is in the

denominator of the expression, it is expected that larger flaw sizes will decrease the

strength of the material. Also, the solid-vapor interfacial energy should decrease as a func-

tion of increasing internal relative humidity, thereby decreasing the strength of the mate-

rial. The interfacial energy is measured indirectly by comparing the strengths of

specimens subjected to different relative humidity environments. The failure criterion is

clearly represented in Figure 2.2.2 [adapted from Soroka 1979].

Required Interfacial Surface
:rgy =4 aYsv

:leased Strain Energy
(7a2a 2)/E

Half Crack Size, a
Figure 2.2.2. Energy release rate failure criterion for a brittle material.

When the energy release rate becomes critical, that is at impending motion of the crack,

the slope of the required interfacial energy equals the slope of the parabolic relation for

critical strain energy release.

The significant difference between the strength in tension versus compression in

cement paste is the fact that in tension the energy release rate increases with crack size,

and the first activated crack is the critical crack. In compression, the release rate is con-

stant and independent of crack length, so multiple cracks may grow in a stable manner

until the multiple cracks grow and/or coalesce to a sufficient size to cause failure [Soroka

1979].

2.3 Overview

2.3.1 General Background

Concrete is a complex particulate composite composed of stones and sand (the aggregates

up to 70% of composite) that are held together by an adhesive. This adhesive is generally a

~
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Portland cement mixed with water and a few specialty admixtures added to obtain specific

enhanced material properties. Portland cement is manufactured by firing a controlled mix-

ture of chalk, CaCO3, and clay at high temperatures. The clay is made up of Alumina, Sil-

ica, and water.

To describe the processes and reactions more succinctly, a reduced nomenclature is

introduced: Lime, CaO, is denoted by C, Alumina, A120 3, by A, Silica, SiO, by S, Ferrite,

Fe20 3, by F, and water, H20, by H. When the Portland cement is mixed with water during

the batching process, a hydration reaction occurs that changes the microstructural charac-

ter of the cement and binds the system together. The main constituents of cement clinker

are tricalcium aluminate, C3A, Dicalcium Silicate, C2S, Tricalcium Silicate, C3S, Tetra-

calcium Aluminoferrite, C4AF, and gypsum, CS. The first hydration reaction involves the

constituents C3A, gypsum, and water. The reaction produces ettringite, C6AS3H 32, in an

exothermal reaction. Ettringite is a crystalline structure and is responsible for the setting

and early strength of concrete (first 2 - 4 hours). Hydration reactions involving C2S, C3S,

and water produce calcium silicate hydrates, CSH, calcium hydroxide, Ca(OH) 2 or CH,

and heat [Soroka 1979, Neville 1996, Czernin 1962]

Cement gel is what is responsible for the long term strength of the composite. It is the

main bonding material and occupies approximately 70% of the solid matter in pure

cement pastes specimens. The gels formed are covalently bonded in sheets and experience

high surface forces between sheets. The gel pores are formed when fribillar rods grow

from cement grains and interlock leaving areas with small microvoids exposed. Calcium

hydroxide forms in small crystals that grow in interfacial regions. It can provide some

strength to the composite, but usually orders of magnitude below the corresponding

strength of gel particles.

What follows is a succinct review of the parameters which affect the microstructural

character of typical mix designs. These same factors play roles in the response of mixes to

drying shrinkage and hence curling deformations.

2.3.2 Water-to-Cement Ratio, Cement Content, and Water Content

Several authors have commented on the effects of water-to-cement ratio (w/c), cement

content, and water content on shrinkage [Soroka 1979, Bazant and Whittmann 1982, Nev-



ille 1996] The trend for w/c ratios is that mix designs with higher values shrink more than

those with smaller values at later time periods (in excess of 90, days). Mixes containing

high cement contents usually experience increased shrinkage. Higher water content mixes

also experience greater shrinkage values. All three factors have a profound impact on the

microstructure.

2.3.3 Microstructure

The pore structure of the composite governs the effects of both bulk and microstructural

properties. One of the most important measures of microstructure quality is permeability.

Permeability is a measure of the ease or rate of transport of matter, solid, liquid, or gas, in

a porous media. From electro-chemistry we know that the surface region of any body is, in

a thermodynamic sense, more reactive than the interior. This fact is especially true where

ratios of surface area to volume are very large, as in the porous networks of cementitious

composites. Porosity is dependent on: curing temperatures, the size, shape and roughness

of aggregate inclusions, the water to cementitious material ratio, the degree of hydration of

the cementitious paste, and the uniformity of hydration products and inclusions in the mix

after batching and setting [Neville 1996].

Three separate types of porous structures are generated during batching and setting:

gel pores, capillary pores, and air voids. The state of water in the pores of a hardened

cementitious composite matrix are described as: chemically bound, physically adsorbed,

and/or free. Gel pores range in size from less than 0.5 nm to 10 nm. These micro-pores

experience surface forces that intensely adsorb water and prevent it from forming a menis-

cus. Capillary pores range in size from 10 nm to 15 lim. Water in these pores experience

moderate surface forces. Finally macro-pores or air voids range in size from 15p.m and

larger. The water in these pores have the properties of its body phase. Air voids and capil-

lary pores affect the macro-mechanical properties of strength, shrinkage and permeability.

Gel pores strongly affect shrinkage and creep of the cementitious composite [Neville

1996].

2.3.4 Chemical Admixtures

The addition of pozzolanic particles to the mix causes an additional set of hydration reac-

tions to occur. The pozzolanic admixtures (fly ash and silica fume) react with calcium



hydroxide to form more CSH. Again, this reaction is exothermic and caution must be used

to insure that excessive shrinkage and microcracking does not occur. Pozzolanic additives

may be much finer particles than cement grains increasing the overall density of the matrix

and reducing the size of the interfacial transition zone [Neville 1996].

Other admixtures generally used for manufacturing high performance cementitious

composites are superplasticizers, air entraining agents, and recently drying shrinkage

reducing admixtures. The data available for superplasticizers is indecisive. This may be

due to the fact that the use of these admixtures allows mix designs to have decreased water

and/or cement contents which increases shrinkage yet the rigidity of the microstructure

matures quicker so it may be able to resist the higher tendencies to shrink. Air entrainment

has little or no effect on shrinkage, because the pores size of these air voids are sufficiently

large that when moisture is removed, surface forces of high intensity are not generated

[Soroka 1979 Neville 1996]. However, excessively air-entrained mixes (i.e. > 10%) will

have decreased rigidities which may allow for larger shrinkage values. Recent publica-

tions on shrinkage reducing admixtures demonstrate that very significant reductions are

possible in the order of 20-50% depending on mix design [Berke et al. 1996]. That is why

these types of admixtures are a key focus of the present study.

2.3.5 Aggregate Content, Type, and Quality

The aggregate particles in concrete or mortar serve as restraining agents against which the

shrinking paste must conform. The content of and grading of both coarse and fine aggre-

gates is important, because poorly graded mixes with low aggregate contents allow higher

concentrations of free paste which may shrink and crack. Certain types of aggregates

shrink less than others (i.e. granite, limestone, or quartz vs. dolerites, basalts, or mud-

stones) and may also imbibe water from the mix further increasing volumetric shrinkage

strains. The quality of the aggregates is dependent on the location from a quarry or other

source that it is taken from and the weathering that it has been subjected to. Dirty aggre-

gates, or aggregates covered with clay type materials will exhibit much greater shrinkage

strains than equivalent cleaned aggregates since clay has a great propensity to shrink

[Soroka 1979, Neville 1996].



2.3.6 Degree of Hydration

Soroka has reported a positive correlation between the degree of hydration and the amount

of shrinkage that a given mix experiences. The higher the degree of hydration, the higher

the gel content and the lower the capillary pore content. Since moisture loss from larger

voids induce small or no shrinkage strains, the more mature microstructure shrinks greater

[Soroka 1979]. Yet he cautioned that the effect is small since one requires a low relative

humidity environment to empty the smallest pores and induce the shrinkage strains.

Therefore the degree of hydration is of second order effects and may not need to be

accounted for in an analysis.

2.3.7 Curing Conditions

The curing conditions and storage environments of mix designs play a major role in the

development of microstructure, but a lesser role for drying shrinkage. Longer periods of

curing delays drying shrinkage strains and allows the microstructure to mature by increas-

ing matrix rigidity. Greater percentage content of gel pores in neat cement pastes due to

longer curing periods may increase shrinkage values because there is less restraining

material to resist the shrinkage, but these values may be offset by the fact that the matrix is

quite rigid. So curing condition may also be of second order effects.

According to Neville, the length of curing is not important for concrete mixes. Steam

curing dramatically reduces drying shrinkage values due to the increase in percentage of

larger capillary and air pores. External storage environmental conditions affect drying

rates and the ability of the generated stresses to be relieved by creep. Moist cured slabs

exposed to very low ambient relative humidities may crack. The hygral conductivity in

cement and concrete is very low and so for extended exposure conditions, evaporation due

to convective currents plays a minimal role.

2.4 Shrinkage Models

There are four mechanisms which affect drying shrinkage [Soroka 1979]. These are: capil-

lary tension, surface tension, swelling pressures, and the movement of interlayer water.

The four most commonly referenced models associated with drying shrinkage and which

make use of these mechanisms are attributed to: Power, Ishai, Feldman and Serada, and



Wittmann.

A succinct description of the four mechanisms and the relative humidity ranges of

interest are first given then more detailed discussions as to a combination of the models for

use in the course of this paper follows.

(1) Capillary tension [Taken from Soroka 1979]

The formation of a meniscus on drying results in tensile
stresses in the capillary water. The tension in the water is
balanced by compression in the solids causing, in turn, elas-
tic decreases in the volume of the paste, i.e. shrinkage. This
mechanism is reversible and is considered to be operative
when the relative humidity exceeds 40%.

(2) Surface tension [Soroka 1979]

Surface tension may produce very high compressive stresses inside solid particles of

colloidal size. Depending on the size and type of material of the particles, the effect of sur-

face tension varies. It has been demonstrated that surface tension is dependent on the

amount of physically adsorbed water. Lower adsorption of water molecules induces higher

surface tensions in gel particles while higher adsorption reduces the surface tension. This

inverse relationship is due to the fact that the solid vapor interface is thermodynamically

much more active, i.e. contains more energy, than the solid liquid or liquid vapor inter-

faces. Therefore, on drying the compression in the gel particles increases causing shrink-

age strains to occur. On rewetting, the surface tension decreases, and some of the

compression in the solids is relieved, and the material swells.

(3) Swelling pressure [Soroka 1979]

The thickness of the adsorbed water layer is determined by the ambient vapor pressure

and temperature. The interparticle spacing of gel plates may be less than the required

thickness to accommodate adsorption of water layers, so a 'swelling' or 'disjoining' pres-

sure is developed which tends to separate gel particles. When drying occurs this pressure

is relieved because the thickness of the adsorbed layer decreases.

(4) Movement of interlayer water [Taken from Soroka 1979]

Exit and re-entry of water into the layered structure of the
gel particles causes volume changes due to resulting



changes in the spacing of layers, i.e. exit of water on drying
causes volume decrease (shrinkage) and re-entry of water
on wetting causes volume increase (swelling).

The dominant mechanisms related to the Power's shrinkage model are variations in

swelling pressure augmented by the effects of capillarity. According to his model, these

mechanisms covers the full range of relative humidity (0-100%). Ishai uses a different

approach, applying variations in surface energy in the range of 0-40% RH and capillary

tension affects from 40-100% RH. Feldman and Serada make use of the mechanisms of

movement of interlayer water in the range of 0-35% RH and both capillary tension and

variations in surface energy for relative humidities in excess of 35%. Finally Wittmann

applies variations in surface energy and variations in swelling pressure in the ranges 0-

40% RH and 40-100% RH respectively. For the purposes of this study, only those mecha-

nisms which contribute to shrinkage behavior in relative humidity ranges exceeding 35-

40% will be applied in the modeling section. For completeness of the discussion all mech-

anisms will be discussed further below.

The volumetric change in concrete has been partially attributed to the movement of

water in gel and capillary pores. Cement paste that is subjected to a wet environment

swells, whereas in drier conditions it shrinks. One mechanism that relates shrinkage to

moisture movement is that of capillary tension (Please refer to Figure 2.4.1).

Figure 2.4.1. Representation of surface tension effects in the pore microstructure.

The vapor pressure of a liquid is defined as the pressure at which liquid and vapor

coexist in equilibrium. This means that the total number of molecules leaving the liquid

phase into the vapor phase equals the total number of molecules leaving the vapor phase

and entering the liquid phase. When evaporation takes place in a liquid, the total number

of molecules leaving the liquid phase exceeds the number reentering it from the vapor. The



relative vapor pressure of a liquid is typically defined as the ratio of pressure over the liq-

uid in its current state, P, over the saturated vapor pressure at the same temperature, P,.

When the liquid of interest is water, many researchers refer to the vapor pressure

expressed as a percentile as relative humidity, RH. In cement systems, if the pore walls are

exposed to the vapor phase of water, the energy state is higher than the associated liquid

vapor surface energy. The system always tends towards the lowest energy state, and so a

curved meniscus forms spreading the liquid phase across the exposed solid phase. The ten-

sion in the liquid is related to the radius of the meniscus through the Laplace equation

a' = -2-Lv  (2.4)
r

where the liquid tension is denoted by a', the radius of curvature of the meniscus is r,

and yLV is the liquid/vapor interfacial energy. The form of the Laplace equation presented

is that for right cylindrical pores with equi-sized in- and out-of-plane radii of curvature.

The liquid is in tension when the radius of curvature is negative (which occurs during

evaporation of pore liquid) and the pore water wets the solid phase surface. The relation

between the radius of curvature, r, of the meniscus and the corresponding vapor pressure P

is given by Kelvin's equation

In() - 2yv (2.5)P(PO RTpr
where Po is the saturation vapor pressure, yLV is the liquid/vapor interfacial energy or

surface tension, R is the universal gas constant, T is the temperature in degrees Kelvin, and

p is the density of the liquid. The Kelvin equation is applicable for pores in the ranges -5-

5000 angstroms. For smaller pore sizes the concept of a meniscus breaks down, because

the surface forces are so intense a meniscus cannot form. For larger pores sizes the Kelvin

equation does not provide any useful information and BET techniques break down.

Returning to the expression, for a capillary pore experiencing no evaporation, the ratio

P/Po = 1, and the surface of the water is flat, i.e. the system is fully saturated. Subsequent

decreases in the vapor pressure occur when evaporation starts and the radius of the menis-

cus becomes smaller until a critical point where it equals the radius of the pore. At that

point it enters the pore and if further evaporation occurs the pore empties completely

[Scherer 1992, Soroka 1979].



The relation helps describe why the large pores empty first and then progressively

smaller pores as drying continues. Since drying rates are dependent on the pore sizes and

distributions, this relation helps to explain, to a certain extent, why one would expect

higher moisture loss as a function of increasing water-to-cement ratio early on.

The tensile stresses in the pore water are balanced by compressive stresses in the solid.

These compressive stresses cause an elastic decrease in volume. The response of the solid

network and subsequent elastic deformations are dependent on the skeletal rigidity. There-

fore, for equi-distributed pore size distributions, pastes with higher elastic moduli will

shrink less. This explains why pastes with lower water-to-cement ratios experience less

shrinkage.

This mechanism can also explain why at early ages of drying there is a large amount of

water lost with relatively little shrinkage. The large pores contribute little to shrinkage

strains (see Laplace's equation above) and these are the pores that empty first. At later

stages, the micropores become active and increased shrinkage is experienced with a

decreased rate of moisture loss [Soroka 1979].

The forces experienced by the solid skeleton are related to the tensile force in the pore

solution through the following expression:

fc = o'x A c  (2.6)

where fc is the compressive force, Y' is the tensile force in the liquid, and Ac is the

cross-sectional area of the water filled capillary pores. When a critical stage is reached

during the drying process, a maximum value of shrinkage is obtained. Upon further drying

some of the induced shrinkage strains should be recovered, and after complete drying full

recovery must be expected if this mechanism holds. In general this behavior is not exhib-

ited and so other mechanisms must be acting, because experimental results indicate that

shrinkage continues until complete dehydration has taken place. The removal of water

from interlayer CSH may account for the continued shrinkage strains observed.

The second major mechanism which affects drying shrinkage is attributed to the sur-

face forces exerted by the colloidal particles. Surface tension experienced by these parti-

cles occurs due to the difference in electrostatic attraction of atoms or molecules at the

surface versus the same type of atoms or molecules in the interior of the particle. The inte-



rior molecules are attracted/repulsed by their closest packed neighbors on all sides. Those

on the surface have a complete plane where the attraction/repulsion of similar molecules

does not occur, and the interaction between the solid surface and the gaseous interface is

not in equilibrium. The surface contracts upon itself and so results in tensile forces. This

'surface tension' is defined as the force acting tangentially to the surface per unit length of

surface. The units of surface tension are given as N/m. Energy must be applied to the sys-

tem to increase the area of a surface. The units of surface energy are given as ergs/cm2 .

Returning to the form of the Laplace equation, but applying it now to the solid surface,

the solid vapor interfacial energy, y,., is related to the inverse of the radius of curvature of

the particle. For simplified analysis, spherical particles are chosen with the relation then

equal to
= 2y- 

(2.7)
r

For the colloidal size gel particles compressive forces can easily reach 250 N/mm'.

This is of sufficient magnitude to induce reduction in volume of the solid gel. Adsorption

of water molecules on the surfaces of the gel reduce the interfacial tension and the gel

expands elastically. A common expression relating changes in interfacial surface energies

to shrinkage strains is [Soroka 1979]

Al= Esh= k(y - y,) (2.8)

where y and y,, are the solid-vapor interfacial energies at to different constant relative

humidity environments.

This expression predicts a linear relationship between shrinkage strain and changes in

solid-vapor interfacial energy. It is expected that this relationship will hold only for the

adsorbed layers on the gel, and not for gels with excess moisture. As such it is only appli-

cable to very dry specimens (stored in environments < 40%RH). For the purposes of this

study, it will play a lesser role than a similar expression relating solid-liquid, liquid-vapor

energies.

The third mechanism, swelling pressure is also commonly referred to as disjoining

pressure. This pressure is generated when two gel particles are spaced close enough

together that the number of adhered layers of water molecules typical of the given internal

relative humidity are compressed. An easy way to picture this scenario is to imagine that



water adsorbed on a charged surface exhibits an ordered structure. When additional layers

become adsorbed, the extent of order decreases further away from the solid surface. Typi-

cal ordered ranges for cement gels are five molecular layers, or 13 angstroms. Because of

the ordered nature of this water, if two parallel plates are spaced slightly under the thick-

ness of the adsorbed layers (-26 angstroms) a pressure is generated. The ordered water is

capable of bearing 'load'. The chemical potential of this water is then at a higher state then

free water and diffusion towards the lower chemical potential water may take place. Some

researchers use this idea as one of the basic mechanisms for creep. Higher relative humid-

ities result in greater numbers of adsorbed layers and hence increase swelling. Lowers rel-

ative humidities cause shrinkage. This is the primary mechanism involved in Powers

model. Feldman and Serada discount this argument.

The final mechanism to be discussed is that of movement of interlayer water. Powers

discounts the importance of this mechanism, while Feldman and Serada insist that this a

governing mechanism for moisture movement at very low relative humidity environments,

i.e. <35% RH). Movement of the interlayer water in the Feldman and Serada model is pos-

sible both outwards during drying and inwards during re-saturation. The other models pre-

sented consider the spacing between the CSH sheets fixed and once interlayer water leaves

it cannot return. Hence the shrinkage is irreversible [Soroka 1979].

This concludes the discussion on the mechanisms which contribute to drying shrink-

age. The most important one of interest in the range of environmental conditions applica-

ble to this study is that of capillary tension. The next section presents a simplified

explanation of how the shrinkage reducing admixture works. This information will then be

applied and tested in the analytical modeling section.

2.5 Shrinkage Reducing Admixtures

Several new types of shrinkage reducing admixtures have been proposed both in Japan as

well as in the United States [Ogawa et al., 1993, Fujiwara et al., 1994, Shah et al., 1992,

Shah et al., 1997, Shoya et al., 1990, A, B, Tomita et al., 1986, Uchikawa 1994 ]. These

admixtures are direct applications of the dominant mechanism described above. They are

surfactants which reduce the solid-liquid, liquid-vapor interfacial surface energies in the



analysis of calculating shrinkage stresses applying the Laplace equation, the relative

amount of expected decrease in shrinkage is directly related to the decrease in surface ten-

sion of regular pore solutions versus admixed pore solutions. Again, mix designs with

higher water-to-cement ratios, water content, and cement content are expected to experi-

ence greater shrinkage strains. Yet the scaling effect is expected to work for mixes of sim-

ilar designs.

2.6 Differential Shrinkage Strains

Differential shrinkage strains occur in structural members just after casting due to differ-

ences in the rates of drying of interior and exterior elements. If each element were allowed

to shrink at its equivalent unrestrained shrinkage value at the given internal relative humid-

ity (RH), continuity between the different layers of the member would be lost. Depending

on the internal RH value, the cement or concrete sheet will shrink or swell at a different

rate then for lower or higher RH values. Figure 2.6.1. graphically depicts curling deforma-
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Non-uniform Drying Unrestrained Shrinkage in Sheets Internally Restrained Deformations

Figure 2.6.1. Differential shrinkage induced by non-uniform drying rates.

tions caused by convective drying from the top surface of a slab alone. The other edges are

insulated from moisture movement and one-dimensional flow occurs. The curling defor-

mations resulting from non-uniform moisture profiles are very sensitive to size effects.

This happens because the rate of moisture movement from internal regions to a given sur-

face is governed by capillary and diffusional flow. Diffusional flow governs soon after set-

ting takes place. The solution to the one-dimensional flow of moisture in porous media is

very non-linear containing and exponential term, so the resulting moisture profile changes

dramatically with thickness of the slab (thickness is the characteristic length of the sys-

tem). The analytical modeling section will present the full solution to the one-dimensional

flow problem. The next section presents a brief overview of the assumptions used by pre-
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vious researchers to solve the deformation problem.

2.7 General Plate Theory

The theory for calculating plate or slab responses due to external loads is well established.

The early theoretical treatment of concrete slabs poured on grade, by Westergaard in 1926,

modeled the slab on grade system as a simple plate resting on an elastic foundation (or

Winkler foundation). He applied the following simplifying assumptions in order make the

problem tractable:

* The slab is elastic, homogeneous, and isotropic with temperature independent mate-
rial properties.

* Plane section prior to deformations remain plane after bending.
* Stresses and strains normal to the slab face are negligible and assumed to be zero.
* Deflections of the slab are small when compared to overall slab dimensions, (small

strain theory).
* The slab is subjected to temperature variations through its' thickness which are inde-

pendent of time. This temperature variation is constant on all planes parallel to the
slabs upper and lower faces.

* Warping is not of sufficient magnitude to result in only partial support by the sub-
grade.

As he pointed out in his analysis, there are two critical time periods of interest for

slabs poured on grade, just after casting and before opening the slab to live loads, and any

time after the slab has been opened for general service. Prior to usage, the slab experiences

volumetric changes due to changes in temperature and moisture content. If the changes are

sufficiently large, the early post set strength of the slab may be exceeded and cracking will

ensue. At later times two types of temperature and moisture variations are present, sea-

sonal variations and daily cyclic changes. Irrespective to the effect studied, there are three

areas of the slab of interest: the corners, the interior area, and the edges of the slab.

Results obtained from these assumptions have been substantiated with experimental

results, but as reported by Leonards and Harr full support of the slab throughout its service

life often does not occur. Poorly consolidated subgrades, pumping, and excessive mechan-

ical loads may contribute to only partial support.

Also inducing curling deformations by using equivalent linear temperature gradients

through the slab thickness can underestimate actual stress levels. Leonards and Harr pro-



ceeded to calculate curling deformations accounting for slab lift off with a finite difference

computer scheme. Again for the sake of simplicity, temperature gradients were linearized

and moisture gradient were not addressed. The authors did say that a similar approach

could be applied for moisture content. Pickett calculated differential shrinkage strains

assuming that shrinkage strains could be modeled following a diffusion like model and

obtained fairly good results compared to laboratory experiments. He did not account for

the rigidity of the subgrade or possible consolidation of the subgrade. As this type of

information was not published in textbooks, because it was considered of secondary

importance, many modern researchers have reworked this problem, but most with an

emphasis on temperature effects. To the author's knowledge, no one has combined all the

knowledge gained form these earliest of researchers and implemented their ideas in a

usable computational model for the aid of practicing engineers. Also none of the previous

researchers accounted for the effects of shrinkage reducing admixtures, and so the work

presented in the analytical and computational modeling section are timely for the use of

modern engineers.

2.8 Summary

Since the curling deformation of cement slabs cast on grade arise due to the changes in the

moisture content through the slabs thickness, the response of individual layers at a given

relative humidity may be superposed on the complete structure provided that linear elastic

response governs. It is proposed that the drying shrinkage at different relative humidities

can be determined from experimental tests and used in the analytical modeling section.

Other parameters of interest are both the shape of the moisture profile and the change in

the shape through time. To determine this kind of information very time consuming tests

are required. Therefore the experimental methodology section will devote considerable

time in the discussion of the development of a new testing technique.

This section presented a succinct literature review of drying shrinkage and some of the

previous modeling work for curling deformations. Definitions of key ideas were discussed

and detailed discussions of the governing mechanisms were presented. For the typical

environmental conditions experienced in the Eastern United States, it is decided that the

governing mechanism for drying shrinkage is capillary tension. The key assumptions



required for a simplified analysis of plate structures and drawbacks of some of these

assumptions were also discussed. Linear elastic conditions with an isotropic material are

the key assumptions. The transfer of mass and heat within the slab system for the condi-

tions of interest are assumed uncoupled. Problems associated with slab lift off/partial sup-

port were discussed. This is important due to the large changes in measured stresses for

this type of condition as opposed to a fully supported condition. Chapter 5 presents the

analytical work associated with modeling these types of systems.



Chapter 3

Experimental Methodology

3.1 Drying Shrinkage Under Varied Environmental Conditions

3.1.1 Introduction

The objective of the drying shrinkage study is to obtain a fundamental understanding of

how the shrinkage behavior of neat cement paste specimens are affected by varied con-

stant relative humidities. This information is required to correlate how the curling defor-

mations change with changes in moisture content through a slabs thickness. Also, the use

of a newly developed shrinkage reducing admixture is studied to address its effects on

shrinkage performance. Reductions in drying shrinkage strains as a result of the addition

of this admixture is expected to result in changes in the moisture profile as well as curling

behavior. This portion of the experimental methodology is divided into a description of

materials used, mixing and casting procedures, and finally storage requirements of differ-

ent specimens.

3.1.2 Materials and Mix Designs

A type I Portland cement was used throughout this and all the other studies.The generic

chemical composition (weight percentage) is as follows: SiO2 = 21.11; A120 3 = 4.59;

Fe20 3 = 3.30; CaO = 64.39; MgO = 2.86; SO3=2.32; NaO2 = 0.09; and K20 = 0.54.

The study is interested in the changes of shrinkage behavior with changes in mix

design, and time. Therefore, a total of twenty test mixes were designed and are outlined in

Table 3.1. In the table the short hand notation used is: W represents water, C represents

cement content, SF represents the addition of silica fume, and finally SRA represents the

addition of the shrinkage reducing admixture. The addition of silica fume was included in

the study to obtain a wide range in pore size distributions, as well as to test the affects of



the SRA on high performance mix designs. Also, the use of silica fume enhances durabil-

Mix Design W/(C + SF) % SRA % SF

Ultra-high Strength 0.25 0 0
(Not used Commercially)

High Strength 0.35 5 7.5

Typical Structural 0.45
Strength

Floor Systems 0.55

Very Poor Quality - Low 0.65
Strength

Table 3.1: Mix designs used in drying shrinkage study.

ity of pastes by reducing the permeability of the mix by several orders of magnitude as

compared to a regular neat cement paste. The five percent addition of SRA is by replace-

ment of mixture water. The composition of the SRA is proprietary information and so is

labeled by its generic chemical admixture name, SRA.

3.1.3 Casting Procedures and Storage Requirements

Three types of shrinkage specimens were designed: platelets, typical mortar samples filled

with neat cement paste, and typical concrete shrinkage specimens, again filled with neat

cement paste. The dimensions of the platelet specimens are 5.25 inches in length by one

inch depth by one-quarter inch width. The small size was designed to reduce the length of

drying time to reach equilibrium and for storage requirements. These specimens were
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measured with a modified Humboldt comoarometer depicted in Figure 3.1.1. Gauge points

Figure 3.. 1.1 T ne modifine comparometer used to measure shrinkage strains ror platelet
specimens used in drying shrinkage study.

were screwed into the end-plates cast in the specimens. The end-plates were constructed

from rectangular brass tubing with cap-end screws attached in the casting direction to

assure adequate bond between the end-plate and the specimen. Figure 3.1.2 depicts the

type of molds used to cast these specimens.

Platelet Mold for Drying Shrinkage Study

each platelet 0.25"x l"x5.25"

Top View

Front View Side View
Figure 3.1.2 Mold used to cast platelet drying shrinkage specimens.

The typical size of mortar type specimens are one inch by one inch by eleven inches in

length. Gauge points are cast into the samples for readings with a Humboldt Comparome-

U
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ter. The typical size of a concrete shrinkage specimen is three by three by ten inches in

length. These specimens also have embedded gauge points and measurements are also

read with a Humboldt comparometer. Platelet specimens were cast in triplicates per envi-

ronmental condition while standard mortar type beams were cast in duplicates.

Figure 3.1.3 depicts the standard comparometer and a typical paste specimen being

measured. Figure 3.1.4 depicts the typical mortar mold used to cast these paste specimens.

Figure 3.1.3 Standard mortar comparometer and typical paste specimen used in
drying shrinkage study.

Mortar Shrinkage Mold for Drying Shrinkage Study

Shrinkage Prism l"xl"x 1l"

FI - I
Top View

|I i
Front View Side View

Figure 3.1.4 Mold for typical paste shrinkage prism.

The mixes were batched in a pan mixer for five minutes, with additional time for mixes

that exhibited large clumps. One-half the water was placed in the mixer before half of the



solid material was added. Initial agitation of the half mix was allowed before the addition

of any chemical admixtures and the rest of the materials. Some mixes that maintained

lumps after dumping into a wheelbarrow, were further mixed by hand with a garden mash-

ing tool till adequate homogeneity was obtained.

Typical ASTM standards require the partial filling of specimens followed by tamping

to assure consistency through the thickness of specimens. However, due to the nature of

the paste mixes, specimens were filled in thirds and then vibrated for 30-60 seconds

depending on the fluidity of the mix. The small platelet specimens were filled using a plas-

tic 50 cc syringe. All specimens were screeded off in a similar manner. The specimens

were covered with plastic sheeting and allowed to cure for one day prior to stripping. The

high water-to-cementitous material ratio mixes were allowed to cure for two days to

assure adequate rigidity prior to stripping. Typical mortar and concrete type specimens

were stripped, painted with a urethane coatings on the ends with gauge points, soaked in a

saturated lime solution for thirty minutes and then initial readings of both weight and

length were taken. The platelet shrinkage specimens had to be painted on the thin edges

with a urethane coating to assure one-dimensional flow from the wide faces. Next they

were drilled and end gauge points were attached to the brass tubing end pieces. The speci-

mens were then weighed and initial length measurements were performed following mod-

ified ASTM C 157.

After initial measurements of weight and length were take of the mortar and concrete

type cement paste specimens, they were stored in a room maintained at 50% RH and 72 OF.

The platelet specimens were stored in small environmental chambers constructed of high

density polyethylene (HDPE) tubs containing saturated salt solutions to obtain specific

relative humidity environments at 72 OF. Table 3.2 lists the types of saturated salt solutions

used for the environmental chambers. To ensure adequate dispersion and mixing of inter-

nal relative humidity for each chamber, small fans were mounted on the chamber walls

and kept on at all times. Specimens were stored on drying racks maintained six-seven

inches above the level of the saturated salt solutions, except for the 100% RH specimens,



which were immersed in a sealed container filled with laboratory water. Measurements of

Substance dissolved and solid phase Temperature OF % Humidity

Laboratory water 72 100

Zinc sulfate 72 90

Sodium thiosulfate penta-hydrate 72 78

Sodium nitrite 72 66

Zinc nitrate 72 42

Table 3.2: List of saturated salt solutions used in environmental chambers.

change in length and mass were taken at 1, 7, 14, 21, 28, 35, 42, 56, 70, and 90 days for all

shrinkage specimens. The results from this portion of the study are discussed in Chapter 4.

3.2 Mechanical Properties

3.2.1 Introduction

The objective of this portion of the study was to determine the evolution of mechanical

properties with maturation time. The mechanical properties measured: compressive

strength and compressive modulus of elasticity, are used in the modeling portion of the

study to predict stress behavior of curling specimens.

3.2.2 Materials, Casting Procedures, and Storage Requirements

The mechanical properties measured were compressive strength and compressive modulus

of elasticity. The same mix designs, materials, and casting procedures were used as out-

lined in the drying shrinkage study above. The compressive strength tests were conducted

at 7, 14, 28, 56, and 90 days following ASTM 39-94 guidelines. Modulus of elasticity tests

were conducted at 7, 14, 28, 56, and 90 days. All specimens were stripped after one day

and then placed with in a laboratory room maintained at 100% RH and 72 OF until the time

of their testing. The compressive tests used triplicate 3x6 cylinder specimens while the

compressive modulus tests used duplicate 4x8 cylinder specimens at each testing age. The

results are further discussed in Chapter 4.



3.3 Curling Deformations

3.3.1 Introduction

The objective of this portion of the experimental methodology section is to quantitatively

describe the curling behavior of neat cement paste specimens cast on infinitely hard sub-

grades. This information is used to correlate modeling predictions with measured curling

response. It is expected that the addition of shrinkage reducing admixtures will change the

behavior of the curling specimens.

3.3.2 Materials

The same materials and mix designs described in the drying shrinkage portion of this sec-

tion were used for the curling deformation study. A total of twenty different test mixes

were prepared and tested.

3.3.3 Casting Procedures and Storage Requirements

Each curling specimen had nominal dimensions of 42 inches in length by 2.5 inches in

width by one-half inch in thickness, see Figure 3.3.1 for typical mold. The molds were
Molds for Curling Study

Curling Prism 0.5" x 2.5"x 42"

Top View

Front View Side View
Figure 3.3.1 Typical curling specimen mold.

constructed of 46 inch long by 3.5 inch deep by either one-half or three-quarters of an inch

wide PVC sheets. The 3/4 of an inch sheets were monolithic, while the intermediate 1/2 of

an inch sheets were routed to the dimensions mentioned above. Several of these sand-

wiched plates could be placed together and clamped. This mold design was very useful for

quick construction, de-molding and cleaning. Duplicate specimens were cast for each test

mix, and the same mixing and curing conditions were followed as described in the drying

shrinkage study for paste - mortar and concrete type specimens. That is molds were filled

in thirds and then vibrated for 30-60 seconds. Then each mold was screeded, covered by



plastic sheets, and left for one or two days in the molds in the laboratory depending on the

mix design. Upon stripping, each specimen was painted on five sides with a water based

urethane coating and marked at the gauge points for measurement of the curling profile.

The direction of bleeding was parallel to the top surface and may change the drying rates

of the slabs somewhat. The curling specimens were then transferred to the same storage

room as the drying shrinkage specimens (maintained at 50% RH and 72 OF). Curling

deformations are determined by lining the curling specimen up against a 46 inch by 2.5

inch by 2.5 inch aluminum square tube and measuring displacements using an electronic

caliper. Figure 3.3.2 depicts a typical curling specimen secured to the measuring beam

with the electronic calipers used to determine out of plane deflections. Measurements of

Figure 3.3.2 Curling measurement beam with typical specimen and electronic calipers.

3.4 Microstructural Analysis

3.4.1 Introduction

The objective of the microstructural study is to determine the effects of varying constituent

percentages in mix designs on the pore size distribution of mixes. Drying shrinkage, curl-

ing deformations, and mass transport in cementitious composites are dependent on the

pore sizes and distributions, and appropriate correlating factors need to be developed. A

total of twenty test mixes are used. Results and discussions are presented in Chapter 4.

3.4.2 Materials

The same materials and mix designs described in the drying shrinkage portion of this sec-

tion were used for the microstructural analysis study. A total of twenty different test mixes

were prepared and tested.



3.4.3 Casting Procedures and Storage Requirements

Because the mortar and concrete type shrinkage specimens, as well as, the curling speci-

mens were stored in a 50% RH, 720F environment, the tested platelet specimens were also

stored in the same environment. These specimens were cast following the same proce-

dures described in the drying shrinkage study, and actually were a subset of those speci-

mens. They were stored for 90 days prior to mercury poresimetry testing. The results from

these tests are discussed in detail in Chapter 4

3.5 Moisture Profile Study

3.5.1 Introduction

In order to quantify the curling behavior of cementitious slabs subjected to varying drying

rates from multiple regions on the slab, a very detailed and accurate measuring technique

is required to describe the changes in moisture content as a function of mix design, and

maturation. Conventional probe hygrometers fail to describe the non-uniformity of the

moisture profile due to accuracy limitations [Terrill et al., 1986]. These types of probes

ascertain relative humidity in large void structures post cored or preformed in the slab.

Terrill et al. have demonstrated that information obtained using these types of probes are

susceptible to large errors, because the internal relative humidity in these large macrovoids

does not correlate well with total internal moisture content.

Other researchers have tried sectional analysis, that is sectioning a sample and baking

off any residual moisture to obtain the moisture profile. While this technique has been

proven to be accurate, it is very labor intensive. So there is a need for an accurate, efficient,

testing technique to nondestructively ascertain moisture content as a function of mix

design, maturity, and depth for slab systems.

Therefore, this section presents detailed information on the development of a new test-

ing technique to quantitatively determine moisture content in structural members sub-

jected to varying drying environments. First the necessary background information

requisite to understanding the technique is presented and then the details pertaining to the

testing procedure will be discussed



3.5.2 Background Information on Electrochemical Impedance Spectroscopy

Recent research applying electrochemical impedance spectroscopy (EIS) techniques to

cementitious composites has yielded a wealth of information concerning developing

microstructure, hydration reaction rates, and damage propagation under static loading

conditions [Christensen et al., 1992, Gu et al., 1992, Gu et al., 1993 A, B, C, McCarter et

al., 1988, McCarter et al., 1990, Xie et al., 1993, Xie et al., 1994, Xu et al., 1993]. EIS

techniques are also widely used in corrosion studies. The basis of the technique stems

from the response of an alternating current applied across a pair of electrodes separated by

an electrolyte and/or dielectric material. Depending on the frequency range of the applied

sweep, detailed information concerning both electrode kinetics and bulk material response

may be obtained [Christensen et al., 1992, Gu et al., 1992, Gu et al., 1993 A, B, C]. The

electrode/cement contribution to the impedance response is important at lower frequen-

cies, whereas bulk material response dominates at higher frequencies [Gu et al., 1992, Gu

et al., 1993 A, B, C].

Impedance is a complex quantity composed of resistance, capacitive, and inductive

elements. For cementitious composites, inductive elements are not used in modeling sys-

tem response. The a-c impedance is the analog of resistance for d-c circuits. Applying d-c

circuit theory, the resistance is defined by Ohm's Law:

R= V (3.1)7
and for a-c circuit theory the impedance is defined by:

z= E (3.2)I

where E represents the applied voltage measured in Volts, I is the current measured in

Amps, R is the resistance measured in Ohms, and Z is the impedance in units of Ohms.

Both current and voltage can be decomposed into real and imaginary components and

expressed vectorially. The impedance is then expressed as the quotient of the voltage and

current.

Z - (E'+ jE") = Z' + jZ" (3.3)
(1" + j1")



The modulus of the impedance is defined as:

IZI= (Z' + jz")(Z'-jZ"). (3.4)

The analysis of EIS results is conducted using equivalent electrical circuit models.

Each element in the model circuit must have physical meaning derived from either proper-

ties of the system or microstructure. Figure 3.5.1 is a typical equivalent circuit used to

describe a simple cement paste electrode system [Gu et al., 1992]. McCarter et al. [1988,

I
Ct(int) 1 Cdi

Rt(s+l) j I

Rt(int) I  Rct
Bulk cement paste effect ' Electrode effect

Figure 3.5.1. Simplified equivalent circuit for one layer of cement paste.

1990], outlined the necessary steps required to develop an equivalent circuit model for

cementitious systems to ensure physical significance of circuit elements, and Gu et al.,

applied similar reasoning to develop an equivalent circuit model capable of relating

detailed information about the cement system microscopic properties.

The two most common ways of representing impedance data graphically are through

Nyquist and Bode plots. The complex component of the impedance is plotted versus the

real component of impedance in a Nyquist plot (See Figure 3.5.2). For high frequency
Z'
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Figure 3.5.2 A sample Nyquist plot of a cement paste cylindrical specimen..



ranges, 10E+04 to 15E+07, the Nyquist plot for typical cementitious composites displays

a depressed semi-circle. The impedance response for an ideal system composed of simple

combinations of resistance and capacitive elements in series and/or in parallel will form a

perfect semi-circle in the Nyquist plot (See Figure 3.5.3). Gu et al., have attributed the

non-ideal behavior to a "spread in relaxation times" of the ions adsorbed on the solid-liq-

uid interface, surface roughness, and the uneven distribution of current across the inter-

faces [Gu et al., 1993]. To account for the non-ideal behavior a frequency dependent

element is introduced in the equivalent circuit model used to predict bulk material changes

as a function of environmental conditions and time.
Bulk cement effect Electrode effect

Rt(s+) Rt(s+l) + Rt(int) Rt(int) + Rct

Figure 3.5.3. Nyquist plot of the complex impedance response of the
equivalent circuit model.

The important parameters obtained from the Nyquist plot associated with maturity of

microstructure are the diameter of the high frequency arc, the depression angle, and the

projected intercepts of the arc with the real component of impedance. Each of these quan-

tities must be carefully extracted from the data plots, and some finesse with handling the

data is required.

Bode diagrams plot modulus and phase angle versus the logarithm of frequency (See

Figure 3.5.4). The real component of the impedance is due to resistive elements which are

in phase with the applied current, therefore the phase angle for these types of elements is

near 00. The phase angle of a perfect capacitor is -900. For systems with combinations of

resistive and capacitive elements the phase angle varies between the two bounds. In the

above figure, it is readily apparent that either modulus or phase angle at a given frequency

-jZ-)



range can accurately differentiate differences in the response of cementitious materials

subjected to different environmental conditions. It is because of the intuitive sense associ-

ated with the phase angle that makes it a logical choice for indicator of moisture content.
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Figure 3.5.4. Bode plot demonstrating typical response for cement specimens stored in
different constant environmental conditions.

When cement specimens are first mixed, the constituents are in a water-colloidal sus-

pension and the electrochemical response is best represented as a dielectric electrolyte dis-

persed between the two electrodes. The sample is considered fully saturated. An

equivalent circuit model of this system would best be represented by a series of resistors

and the high frequency response depicted in a Nyquist plot is not semi-circular in shape.

As the hydration reactions proceed and the water is consumed, the microstructure starts to

develop interfaces between the hydration products and the unhydrated cement. Water is

also lost after initial curing due to evaporation and subsequent drying. Therefore, the once

fully saturated material develops a porous network and becomes unsaturated as drying

proceeds. There are three types of water present in the porous network: chemically

adsorbed, physically adsorbed, and free water. Depending on the pore size distribution of

the specimen, each type of water will affect the determination of the moisture content of

i nAran



the sample. The two competing sources of moisture loss in the material are hydration and

drying.

Terrill et al., conducted a study on ascertaining the moisture profile of rectangular

specimens using crack initiators and relative humidity probes, and determined that the rel-

ative humidity probes are unable to accurately ascertain changes in moisture content in gel

pores and may be only applicable to meso-to-macro porous systems [Terrill et al., 1986].

The advantage of using a.c. electrochemical measurement techniques is the fact that these

types of measurements are very sensitive to moisture content in any of the available forms/

types.

A small perturbing a.c. signal is applied across the set of electrodes and the salt ions in

the pore water solution respond by fluctuating in response to the field until they reach their

relaxation time which is the time required to fluctuate in phase with the applied field at the

given frequency. The relaxation time is dependent on the source of water responding, i.e.,

free water has the fastest response while chemically adsorbed water has the slowest

response. As described earlier, the spread in relaxation times of the material is depicted in

the Nyquist plot as a depression of the semi-circle below the real component of the imped-

ance. Since the real component of the impedance is composed of the resistance's of ele-

ments in the porous network and the electrolytic material, the phase angle of these

components are small near 00. Therefore for the fully saturated case, in the earliest time

times after mixing there is no formation of a high frequency arc. Later as pores start to

empty and interfaces start to develop the high frequency response evolve. When a pore is

completely empty of water it acts as a leaky capacitor and maintains a phase angle close to

-900. Therefore by plotting phase angle as a function of depth for the profile specimens

one is able to ascertain a qualitative moisture profile.

The purpose of the electrochemical impedance experiments are to ascertain specific

parameters from the Bode or Nyquist plots which may serve as key indicators of moisture

content of a specimen without the need to develop sophisticated equivalent circuit models.

Often times several different equivalent circuit models may describe the same experimen-

tal information well. Detailed understanding of the mechanisms and microstructure of the

system and user expertise are required to generate meaningful circuits. A simplified test is

desired for the lay person. The developed test will demonstrate the ability of the electro-



chemical impedance spectroscopy results in predicting changes in the moisture gradients

in neat cement paste samples.

3.5.3 Materials

A Type I portland cement was used for all experimental specimens. The same form of sil-

ica fume was used in this study as was used in the drying shrinkage study.

3.5.4 Specimen Preparation, Casting Procedures, and Storage Requirements

Two types of specimens were developed for the EIS moisture profile experiments. The

first specimen type was composed of a pair of concentric cylinder electrodes embedded in

high density polyethylene (HDPE). This specimen is modeled after the specimens used by

Christensen et al. [Christensen et al., 1992]. The two electrodes are composed of type 304

stainless steel. The inner diameter of the outside electrode is 3/4 of an inch and the outside

diameter of the inner electrode is 0.0625 inches. The length of the electrodes is 3/4 of an

inch. Figure 3.5.5 depicts a typical concentric cylinder specimen. Paste mixes are batched
Concentric Cylinder Specimen

Neat Cement Paste Inner Electrode

Outer Electrode

Am HPDE

Figure 3.5.5 A typical concentric cylinder specimen.

in a Hobart mixer until the paste develops a uniform consistency. The freshly mixed paste

is then injected into the mold using a plastic 50 cc syringe. The molds are vibrated for 30-

60 seconds at a high frequency low amplitude. These specimens are then stored in differ-

ent constant relative humidity environments.

The second set of molds, the moisture profile molds, are constructed of four inch by

four inch by 1/2 of an inch, four inch by four inch by one inch, and four inch by four inch

by two inch HDPE plates. A two inch cylinder was bored through the center of each mold

and then evenly spaced paired holes for the electrodes were drilled in a counterclockwise

manner on each face of the HDPE, see Figure 3.5.6. This was done to ensure that there

was minimal interference between electrode pairs at any given height. The electrodes were



made from 19 gauge type 304 stainless steel tubing. The electrode lengths were 1.6 inches

Top View

Front View

Figure 3.5.6 Typical two inch EIS profile mold.

and the length of the electrode exposed to the cement paste was 0.4 inches. The one inch

specimens contained six pairs of electrodes, the two inch specimens contained twelve

pairs of electrodes, and the 1/2 inch specimens contained three pairs of electrodes.

In order to ascertain moisture content within specimens, the concentric cylinder speci-

mens were filled with paste, cured one day, and then stored in four different environmental

chambers at 720 F and the following relative humidities 100, 88, 75, 63, and 42. The envi-

ronmental chambers were constructed of HDPE containers containing saturated salt solu-

tions to establish the required relative humidity environments. Electrochemical and mass

loss measurements were taken at 1, 3, 7, 14, 21, 28, 35, 42, 56, 70, and 90 days. The

results from these tests are used to correlate the water content in a specimen as a function

of time. The moisture profile specimens are filled with the same mix designs as the con-

centric cylinder specimens and tested at the same ages. These specimens are stored in a

50% RH environment at 720F.

The impedance data was collected using a Solatron 1260 frequency response analyzer.

Measurements were taken logarithmically in a frequency range from 30 MHz to 10 Hz

with ten readings per decade. A signal amplitude of 0.1 of a volt was used throughout the

sweep.

3.5.5 Summary

This section presented information on why conventional methods to determine moisture



content as a function of slab depth are either inefficient or inaccurate. To address this

important problem, a new testing technique applying electrochemical impedance spectros-

copy techniques is described. First the background information on electrochemical imped-

ance spectroscopy was discussed and then the experimental methodology was presented.

The results obtained using this technique are discussed in Chapter 4.

3.6 Summary
All of the tests required to fully describe how curling deformations occur in cement slabs

cast on grade were described, as well as, those tests which will provide information con-

cerning differences in behavioral response due to the addition of a drying shrinkage reduc-

ing admixture. As moisture leaves the system, the non-uniform moisture profile develops

and individual layers of cement paste experience different drying shrinkage strains. If

compatibility between layers is enforced curling deformations occur. The first test series

varies water-to-cementitious material ratios and the presence of the shrinkage reducing

admixture to test affects on long term drying shrinkage performance. This information

will then provide the necessary correlation between constant relative humidity environ-

ment and drying shrinkage so that the drying shrinkage strain field may be constructed.

Mass loss behavior is also studied to determine diffusivities of specimens at different

ambient relative humidity environments.

Next mechanical properties are obtained to feed into the model. Then curling speci-

mens are developed and tested to determine actual changes in magnitudes of deformations

between the SRA admixed and reference mixes. Microstructural studies are carried out on

mature 90 day old specimens to determine whether the addition of the SRA changes the

pore structure of neat paste specimens. This information is also used to determine theoret-

ical shrinkage strains based upon the Kelvin and Laplace equations.



The last study is conducted to determine how di-electric response of maturing cemen-

titious systems changes due to the addition of the shrinkage reducing admixture and mois-

ture loss from a single face. Various types of specimens are used to obtain correlations

between specific constant relative humidity environments and moisture loss. The size

effect is studied by varying the exposed surface area to volume ratios for the three differ-

ent thicknesses studied. The use of the electrochemical impedance spectroscopy technique

is expected to provide a very efficient manner to determine moisture changes in cement

systems. It is hoped that this testing technique can then be modified for use in the field.

The next chapter presents the results obtained from these test series. Finally, the results

will be used in conjunction with the analytical developments to predict curling deforma-

tions in time for various mix designs.



Chapter 4

Experimental Results

4.1 Drying Shrinkage

4.1.1 Introduction

As stated earlier in the experimental methodology section, the objective of the drying

shrinkage study is to obtain information about the affects of different constant relative

humidity envi;onments on the shrinkage performance of a number of mix designs that

change the rate of development of the microstructure and the pore sizes and distributions.

In the literature review portion of this text, the key factors affecang drying shrinkage were

outlined. A new chemical admixture developed to reduce drying shrinkage strains is tested

and very dramatic results are obtained for the higher water-to-cementitious ratio mixes

while mixed results are obtained for the high strength low water-to-cementitious ratio

mixes. A total of twenty design mixes were tested, and the results from these tests are fur-

ther discussed below.

This section of the thesis is split into two separate sections. The first discusses the dry-

ing shrinkage behavior of the three different types of mix designs: high, intermediate, and

low water-to-cementitious ratio mix designs. The design mixes were chosen based upon

the types of mixes typically used for different types of structural systems. The lowest and

highest mixes are not usually used in practice, but were included for completeness of

trends. The second section relays information pertaining to mass loss behavior of the dry-

ing shrinkage platelet specimens. As discussed in the experimental methodology section,

the platelet specimens, a subset from each mix, were subjected to different constant envi-

ronmental conditions. Both the drying shrinkage and moisture loss information will be

useful in ascertaining drying rates as a function of mix design and will be incorporated

into the modeling section.

4.1.2 Drying Shrinkage Performance of High Water-to-Cementitious Ratio Mixes

The high water-to-cementitious (W/C) ratio mixes are defined as those mixes with a W/C



ratio greater than or equal to 0.55. The W/C = 0.55 ratios may be used for floor systems

that require high workability and/or finishability. These mix designs often provide moder-

ate strength and permeabilities compared to the intermediate W/C ratios. The W/C = 0.65

ratios were included in the study for completeness of trends. Both the W/C = 0.55 and

0.65 mixes are expected to experience the largest mass losses and drying shrinkage strains.

Figure 4.1.1 depicts the response of the W/C = 0.55 reference paste mix to different

constant relative humidity environments. As expected the largest shrinkage strains occur
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Figure 4.1.1 The drying shrinkage performance of the reference W/C = 0.55 paste mix.

in the harshest drying environment, 42% RH. The magnitude of swelling is very small for

the fully saturated condition. At 102 days the specimens continue to experience changes in

shrinkage strains, but at significantly reduced rates for the higher relative humidity envi-

ronments. The 42% RH environment specimens experience the highest shrinkage strains

with a magnitude at 102 days of 0.34%. The distribution of magnitudes between the differ-

ent environments is relatively wide spread, with the difference between the 63% RH and

the 75% RH the lowest. One problem noted during the course of the experimental program

was the variability of relative humidity with temperature. The 75% and 63% RH environ-

mental conditions were the two most sensitive of all the saturated salt solutions. These two

mixes had to be monitored closely for drift in RH values and adjusted accordingly. There-

fore, the information obtained from these two conditions will be scrutinized carefully



before drawing final conclusions concerning the applicability of the analytical model in

Chapter 5.

Figure 4.1.2 depicts the companion mix with a 5% replacement by weight of mixture

water with the drying shrinkage reducing admixture. Similar trends occur in terms of
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Figure 4.1.2 The drying shrinkage performance of the W/C = 0.55 with a 5%

replacement of mixture water by weight with the SRA design mix.

increasing shrinkage strains with decreasing relative humidity, but the magnitudes of the

shrinkage strains have decreased considerably. It appears as if these specimens have

reached an equilibrium state since there are only very small changes in shrinkage with

time after 28 days. The exception is the 42% RH environmental condition, which still

shows a considerable decrease in shrinkage rate compared to the reference design mix.

The differences in shrinkage between the 100%, 88%, 75%, and the 63% environmental

conditions have decreased and are separated considerably from the 42% RH test speci-

mens. The shrinkage reduction between the two types of mixes is lowest for the 42% RH

condition, 43.5% at 102 days, and is 76.3%, 83.0%, and 70.2%% for the 63% RH, 75%

RH, and 88% RH respectively. The differences in 7 day magnitudes are approximately

40%, 52.4%, 50%, and -1.3% respectively from lowest RH to highest RH shrinking envi-

ronments. Figure 4.1.3 depicts the change in shrinkage behavior of the W/C = 0.55 design



mix with a 7.5% addition of silica fume. Note the dramatic increase in drying shrinkage

-.- 100% RH -.- 88 % RH -*- 75% RH --" 63 % RH -e- 42% RH

0.5000UUU

0.4000

of 0.3000
0,

m 0.2000

cn 0.1000

0.0000

-0n nnn

Age (Days)
Figure 4.1.3 The drying shrinkage performance of the W/C = 0.55 with a 7.5%

replacement of cement by weight with silica fume design mix.

with the addition of the pozzolan admixture. The average magnitude of drying shrinkage

for the 42% RH specimens at 90 days is 0.494%. There is little difference between the

intermediate environments of 75% RH and 63% RH with magnitudes about 0.34% and

0.3% respectively. This follows the same pattern established with the reference paste mix.

The increases in the magnitudes between the pozzolan admixed mix design with the refer-

ence mix design are +44.4%, +59.8%, +58.5%, and +62.33% respectively for the 42 - 88%

RH specimens. These specimens appear to have reached their equilibrium shrinkage val-

ues, since the change in slope of shrinkage versus time is slight. This type of behavior was

expected because pozzolan admixed mixes typically experience large increased shrinkage

rates early on due to the increased hydration reaction rates. Also the magnitudes of the

shrinkage experienced are expected to be larger than the reference mix following the cap-

illary tension theory because of the refined pore structure. This shall be further discussed

in the microstructural analysis portion in Section 4.4.

As depicted in Figure 4.1.4, there is a considerable reduction in drying shrinkage for

the 5% SRA admixed design mix compared to the complementary pozzolan admixed

design mix. The improvement in performance by reducing the magnitudes of drying

shrinkage strains are: 51.2%, 42.0%, 32.8%, and 24.4% respectively for the 42 - 88% RH

I



environments at 90 days. It is surprising that the 63% RH and the 75% RH shrinkage

curves intersect several times and reach approximately the same equilibrium value. The

-+- 100% RH -.- 88% RH -- 75% RH -- 75% RH - 63 % RH -e- 42% RH

0.5000UU

0.4000

0.3000

m 0.2000

en 0.1000

0.0000

-n ilnnn

Age (Days)
Figure 4.1.4 The shrinkage performance of the W/C = 0.55 with both a 7.5%

replacement by weight of cement with silica fume and a 5% replacement
by mixture water of the SRA design mix.

pore size distributions for this two mixes may be similar enough that at the given ambient

environmental conditions the internal moisture contents are very similar and hence the

shrinkage behavior is also similar. Another interesting trend is the reduction in efficiency

at higher relative humidity environments. This is contrary to the behavior of the reference

versus 5% admixed SRA design mixes. Moist environments should enhance the final mag-

nitudes of hydration, thus refining the pore structure of samples. The final equilibrium

moisture content then dictates which pores are actively inducing shrinkage stresses on the

skeletal matrix. Since there are so many active variables, it is hard to tell based upon this

single set of tests which trend is appropriate.

Figure 4.1.5 depicts the shrinkage behavior of the four W/C=0.55 mixes at the harshest

drying environment, 42% RH. The SRA admixed mixes clearly improve shrinkage perfor-

mance. The trend followed in terms of increasing drying shrinkage with age is: the 7.5%

silica fume admixed test series, the reference paste series, the 7.5% silica fume and 5%

SRA admixed series, and then the 5% SRA admixed series. The 7.5% silica fume design



mix experiences the largest drying shrinkage strains as expected due to its refined pore

structure. The reference paste mix experiences the next largest shrinkages, while the com-
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Figure 4.1.5 The drying shrinkage performance of the W/C = 0.55 mixes at 42% RH.

bined admixed 7.5% silica fume and 5% SRA design mix is intermediate between the ref-

erence and the paste with 5% SRA test mix. The question of the affect of admixing the

SRA on developing microstructure is discussed in the microstructural analysis section.

However, if the microstructure is relatively similar for the reference and SRA admixed

mixes, it is purely the reduction in surface tension that can account for the improved per-

formance. This information is useful for designers who may require higher strengths and

lower permeability mix designs and choose to place a pozzolan admixed floor system with

the addition of the SRA.

The W/C = 0.65 mixes provided similar results, with the highest shrinkage strains in

the order: pozzolan admixed, reference paste, pozzolan admixed with 5% SRA, and finally

paste admixed with 5% SRA. Figure 4.1.6 depicts the results of shrinkage performance in
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the harshest shrinkage environment, 42% RH. The magnitude of drying shrinkage of the
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Figure 4.1.6 The shrinkage performance of W/C = 0.65 mixes at 42% RH.

four mixes at 90 days are: 0.535%, 0.407%, 0.255%, and 0.216% respectively listed in the

same order as given above with increased shrinkage of 31.4% for the 7.5% pozzolan

admixed mix design, and reduced drying shrinkages by 38% for the 7.5% admixed poz-

zolan with 5% SRA mix design and 47% for the admixed 5% SRA replacement by mix-

ture water mix design. The drying shrinkage data for all the high water-to-cementitious

material ratio mix designs attached in Appendix I.

4.1.3 Drying Shrinkage Performance of Intermediate Water-to-Cementitious Ratio Mixes

The intermediate water-to-cementitious material ratio mixes are defined as those mixes

with a W/C ratio greater than or equal to 0.35 and less than or equal to 0.45. The W/C =

0.45 ratios are often used for floor systems that require early strength development. The

W/C = 0.35 ratios mixes are usually not used for most floor systems, but may be used in

the design of panel systems or other structural elements that require higher compressive

strengths and lower permeabilities. These test mixes are expected to experience smaller

drying shrinkage strains than those experienced by the higher water-to-cementitious mate-

-- 7 _ _



rial ratios. Figure 4.1.7 presents the shrinkage performance of the W/C = 0.45 reference
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Figure 4.1.7 The shrinkage performance of the WIC = 0.45 reference paste mix

subjected to different constant environmental conditions.

paste mix design as a function of different constant environmental conditions. The same

trends established earlier apply, with swelling occurring for the fully saturated specimens

and increasing shrinkage strains with decreasing relative humidity environments. The

other three design mixes also exhibit the same behavior with varying magnitudes of drying

shrinkage for each constant environmental condition. The trend of highest shrinkage strain

to lowest also is followed as discussed above for each mix design. The differences in dry-

ing shrinkage magnitudes at the harshest environment are: +48.6%, -12.1%, and -33.0%

with respect to the reference mix at 90 days. Note the small variations in the measured

shrinkage strains with age. At 21 days the reference paste mix experiences a drop in

shrinkage which implies that the saturated salt solutions were above the required constant

relative humidity range desired. Also, the 75% RH series appears to have stabilized at two

different points which could have occurred if the environmental chamber drifted slightly

lower in relative humidity. These observations will be addressed further in the drying

I



shrinkage modeling discussion in Chapter 5.
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Figure 4.1.8 The shrinkage performance of the W/C = 0.35 mixes at 42% RH.

Figure 4.1.8 shows the trends of drying shrinkage for the harshest environment for the

four W/C = 0.35 mix designs. Again trends follow similarly to the all previously discussed

mix designs. However the magnitudes of the percentage difference in drying shrinkage

compared to the reference paste have dropped considerably: +11%, -27.5%, and -37.8%

respectively at 90 days. Again drawing on capillary tension theory, the governing effects

on drying shrinkage performance are rigidity of the skeletal matrix, the surface tension of

the pore solution, and the tensile strength of the pore walls. The smaller WIC ratio mixes

are providing higher matrix rigidities at earlier ages, and so the reduction in efficiency of

the shrinkage reducing admixture is not surprising. Further discussions are presented in

the microstructural analysis section. The shrinkage data for the W/C=0.35 and 0.45 mix

designs are attached in Appendix I.

4.1.4 Drying Shrinkage Performance of Low Water-to-Cementitious Ratio Mixes

The mix designs with a W/C = 0.25 are usually not used for most practical design consid-

erations and were included in the study for completeness of trends. Due the very low water

contents of these mixes, very low mass loss is expected. Figure 4.1.9 depicts the behavior

of drying shrinkage performance of the four mix designs subjected to the harshest environ-

mental condition, 42% RH. However the trends typically followed have now changed. The

silica fume admixed mixes, with and without the SRA, experience less shrinkage than the



reference and the 5% admixed SRA mixes. The magnitudes of shrinkage reduction are: -
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Figure 4.1.9 The shrinkage performance of the W/C = 0.25 mixes at 42% RH.

39.9%, -15.5%, and -53.6% respectively at 90 days with respect to the reference paste

mix. The same trends of increasing shrinkage strain with decreasing relative humidity are

followed.

One possible explanation for the behavior is that the silica fume mixes have much finer

pore size distributions and thus their diffusivities are much lower than the reference and

5% SRA admixed design mixes, hence they lose water at slower rates. This allows for a

greater degree of hydration to occur. Provided that the early hydration reaction thermal

stresses produced were smaller than the strength of the bulk paste matrix, thermal microc-

racking will not have occurred and hence the matrix is rigid enough to resist any deforma-

tions due to capillary forces. These ideas will be tested and discussed further in the mass

loss portion of the discussion in the next section. The shrinkage values for these test mixes

are included in Appendix I.
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Finally, Figures 4.1.10 through 4.1.13 present the drying shrinkage performance of all

the test mixes at the harshest test environment, 42% RH. Note the interesting result that
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Figure 4.1.10 The shrinkage performance of all paste reference mixes at 42% RH.

the highest shrinkage strains are experienced by the W/C = 0.25 test mixes. At first the

results may seem contrary to what one would expect, but for the test mix designs the

cement contents of each mix were not held constant. Drying shrinkage is not only depen-

dent on water-to-cementitious material ratio but also cement content, therefore a direct

comparison of shrinkage results may not be appropriate. The results are applicable to

mixes designed with very similar cement factors and thus still provide useful information

with which to correlate the performance of the analytical mode. The spread in shrinkage

strains is not very large for the W/C = 0.35, 0.45, and 0.55 mixes. The W/C = 0.25 and

0.35 contain the highest cement contents and therefore it is not surprising that they experi-

ence large shrinkage strains. Also, since the W/C = 0.65 mix loses the most water, it is not

surprising that it shrinks the second largest of all mixes.
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Figure 4.1.11 The shrinkage performance of all the paste plus 5% SRA
admixed mixes at 42% RH.

Figure 4.1.11 shows an interesting clustering of shrinkage strains for the all mixes

excluding the W/C = 0.25. The admixed 7.5% silica fume reference mixes depicted in
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Figure 4.1.12 The shrinkage performance of all 7.5%
mixes at 42% RH.

60 70 80 90

admixed silica fume paste

These mixes experience a very interesting pattern. Shrinkage increases with increasing

water-to-cementitious material ratio. This is opposite to what occurred in the reference



paste mix. Figure 4.1.12 are spread further apart. Figure 4.1.13 depicts the admixed 7.5%

silica fume with the 5% SRA. These mixes all experience very similar long term shrinkage

strains. Again the distribution of curves is with the same pattern established for the previ-

ous SRA admixed mixes.
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Figure 4.1.13 The shrinkage performance of all the 7.5% silica fume plus 5% SRA

admixed mixes at 42% RH.

It is interesting to note that the 5% SRA admixed test series with a W/C = 0.25 per-

forms very differently then the 7.5% silica fume admixed with 5% SRA with a W/C =

0.25. In Figure 4.1.11 the W/C = 0.25 test series appears almost like an outlying curve

compared to the similar response of the other mixes. The same behavior does not occur for

the complementary silica fume admixed SRA test series in Figure 4.1.13. Possible expla-

nations for the changes in the behavior may become apparent after the mass loss behavior

and microstructural analysis sections.

4.1.5 Moisture Loss of High Water-to-Cementitious Ratio Mixes

The meaning of high water-to-cementitious material ratio has been defined earlier. Based

upon the shrinkage performance that these mixes experienced when a subset of specimens

are subjected to different constant relative humidity environments, it is expected that they



shall experience the greatest mass losses through time. Figure 4.1.14 depicts the average
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Figure 4.1.14 The average mass loss behavior of the W/C = 0.55 reference paste platelet

specimens subjected to different constant relative humidity environments.

changes in mass loss behavior of the W/C = 0.55 reference paste mix. As expected the

harshest drying environment causes the most moisture to leave the system. However, after

the first 21 days there is very little change in mass loss. The exception is the 75% RH envi-

ronmental condition which appears to have a slight discontinuity at 35 days and may rep-

resent a slight drift in relative humidity. Also, following the trend established for

shrinkage, the amount of water lost is proportional to the ambient environmental condi-

tion, increased mass loss for decreased relative humidity. This trend is followed by all the

other mixes with the same W/C ratio but with varying chemical admixture contents. The

magnitudes of moisture lost follows the trend: the silica fume and 5% SRA admixed mix,

the silica fume admixed reference mix, the 5% SRA admixed mix and then the paste refer-

ence.

Figure 4.1.15 depicts the moisture loss behavior of the 5% SRA admixed paste mix.

Despite the fact that the SRA mixes shrink less than their complementary reference mixes,

they lose more moisture. If the pore structure were identical respectively, then the reduc-
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tion in surface tension is the only possible explanation for both the reduced shrinkage

strains experienced.

+-42% RH --- 63% RH --- 75% RH -e-88% RH -+-100% RH

mom- -__ -

_______________ _____________ ______________ ______________ ______________ ______________,

___________________ _________________ __________________ __________________ ___________________ _________________________________WIN,

Age (Days)
Figure 4.1.15 The average mass loss behavior of the W/C = 0.55 5% SRA admixed paste

platelets subjected to different constant relative humidity environments.

However, the ease with which the moisture leaves the system remains unexplained. In

the microstructural analysis section it becomes apparent that the pore structure for this

particular mix is coarsened due to the addition of the SRA and hence one would expect

that there would be greater moisture loss.

Observe that as discussed above there is greater moisture loss for these specimens

compared to the complementary reference paste specimens. There is little difference in

water absorption, but the reference mix does absorb more water at different periods of

time.

The W/C = 0.65 mixes experience greater moisture losses then the W/C = 0.55 mixes

with a few exceptions which may be due to the environmental relative humidity drift. This

behavior is expected due to the coarser microstructure developed for the higher water-to-

cementitious material ratio mixes. Figure 4.1.16 compares the behavior of the silica fume

mixes at 42% RH.

It is interesting to note that the relative amounts of moisture absorbed for the speci-

mens immersed in water are less for the lower water-to-cementitious ratio mix and for the
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silica fume mixes. A possible explanation is that the smaller pores are less permeable and

hence takes longer to absorb water from the external system if the governing transport

phenomena is diffusion or effusion. However if the mechanism is capillary suction, then

the reduced surface tension inhibits the height to which the liquid may penetrate.

Figure 4.1.16 depicts the moisture loss behavior of all the W/C = 0.65 test mixes at

42% RH. There is a considerable difference between the 7.5% silica fume with a 5% SRA

-0- Reference -4-5% SRA -- 7.5% SF -- 7.5% SF & 5% SRA
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Figure 4.1.16 The behavior of the silica fume admixed test series subjected to the
42% RH environmental condition.

replacement by mixture water test series with the other test series. As expected it is greater

than the associated silica fume reference mix, but the magnitude seems a little too much. If

the initial condition of the environmental chamber was below the prescribed 42% RH

environmental condition at the time that the specimens from this mix was placed into the

chamber, then excess irreversible moisture loss could have occurred and skewed the

results. It is interesting that the associated shrinkage values for these specimens seem very

reasonable when compared to companion specimens from the other mixes. Special atten-

tion is paid to this behavior in the analytical modeling section to assure that the experi-

mental results are not skewed.



Note that for the SRA admixed test series, the amount of water absorbed is consis-

tently less than for the complementary reference mixes. Figure 4.1.17 shows this behavior

for the W/C = 0.65 mix at 7, 28, and 90 days.

7 28 90

Age ( Days)

Figure 4.1.17 The mass gain behavior of the W/C = 0.65 mixes at various ages
in a fully saturated environment.

4.1.6 Moisture Loss of Intermediate Water-to-Cementitious Ratio Mixes

The microstructure of the W/C = 0.45 mix is much finer than the higher water-to-cementi-

tious mixes, and hence it is expected that the amount of moisture lost should be smaller.

Figure 4.1.18 depicts the mass loss behavior of the reference paste mix as a function of

several different constant relative humidity environments. The trend of increasing mois-

ture loss with decreasing relative humidity drying environment is followed by all four test

mixes in this series. Note that there appears to be consistent drift in both the mass loss and

shrinkage.

I I
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Figure 4.1.18 The mass loss behavior of the reference paste WIC
various constant relative humidity environments.
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Figure 4.1.19 The mass loss behavior of the W/C = 0.45, 5% SRA admixed mix at
several different constant relative humidity environments.
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behavior of the reference paste and the 5% replacement by mixture water of SRA mixes at

the 75% RH and the 88% RH environmental conditions. The mass loss behavior of the 5%

SRA mix is depicted in Figure 4.1.19.

The W/C = 0.35 mixes lose less moisture than the W/C = 0.45 complementary mixes

as expected. The spread in mass loss data decreases between SRA admixed and reference

mixes. This may be occurring due to the finer pore structure. As the pore walls get closer

together, they are able to exert greater surface forces. If the surface forces are sufficiently

large, then the thickness of the adsorbed water layers increases and additional free water

becomes loosely bound. The movement of water from the pore system is due to both vapor

diffusion arid capillary suction forces. The diffusion of pore water in very fine pores is

very slow, and if the capillary forces cause no or little moisture movement then the accom-

panying mass loss trends similar to what we have determined. These hypotheses shall be

tested in the microstructural analysis section where detailed information about the micro-

structure of these mixes are determined. A further discussion is also made in the analytical

modeling section in Chapter 5.

Figure 4.1.20 depicts the typical behavior of the W/C = 0.35 mixes at the harshest

environmental condition, 42% RH. The mass loss data for these test series are included in

Appendix I.
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Figure 4.1.20 Typical mass loss behavior for the W/C = 0.35 test mixes, 42% RH.



4.1.7 Moisture Loss from Low Water-to-Cementitious Ratio Mixes

These test series have the finest pore structures of all the test mixes therefore their perme-

abilities are very low. The uptake of water must occur at a very slow rate, as well as the

drying behavior. Since this mix is at such a low water-to-cementitious ratio, it is expected

that the specimens shall be subjected to internal self desiccation. Therefore a key mode of

moisture loss is through internal hydration which may be of the same order of magnitude

as the moisture loss due to drying. This is important to note for the modeling section. Fig-

ure 4.1.21 depicts the behavior of the reference paste W/C = 0.25 platelets subjected to

different constant relative humidity environments. It is apparent that the same trends fol-

lowed by the other mixes are also followed here, greater mass loss at lower relative humid-

ity environments.

Figure 4.1.22 depicts the trends for all the W/C = 0.25 test mixes at 42% RH. Note that

the uptake of water from the fully saturated case is larger than the associated W/C = 0.35

mixes due to greater differences between internal and external conditions. So despite the

lowered permeability, the driving force for absorption is large enough to ensure greater

moisture absorption. Similar trends are followed for the silica fume admixed test series.

Mass loss behavior of the reference, the 5% SRA admixed, the 7.5% silica fume admixed,

and the 7.5% silica fume with 5% SRA mixes are depicted in Figures 4.1.23 through

4.1.26. In Figure 4.1.23, the W/C = 0.65 and WIC = 0.55 curves intersect one another 14

days and then the W/C = 0.55 mix loses more moisture from that time onward. The other

three series follow the regular pattern of moisture loss with mix design. It is very interest-

ing that the W/C = 0.25 mix loses the least water but experiences the largest shrinkage

strains. Again the explanation proffered is that this mix had the highest cement content of

all the mixes, and the lowest water content. So it should have a large propensity to shrink

and lose little water. It had very little water to begin with.
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Figure 4.1.21 The mass loss behavior of the reference paste W/C = 0.25 mix.
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Figure 4.1.22 The mass loss behavior of all W/C = 0.25 mixes at 42% RH environment.
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Figure 4.1.24 follows the regular pattern expected from the shrinkage results. That is

greater mass loss with reduced ambient relative humidity condition. It is interesting to

note the relatively large separation between the magnitudes of moisture loss for these

mixes when the shrinkage strains were very closely clustered except for the W/C = 0.25

mix. The shrinkage strains almost progressed in reverse order: 0.45, 0.65, 0.55, 0.35, 0.25,

from lowest shrinkage to highest. The mass loss behavior of the 7.5% silica fume admixed

series is somewhat out of order: 0.35, 0.45, 0.25, 0.55, and 0.65. The shrinkage pattern fol-

lowed is: W/C = 0.25, 0.35, 0.45, 0.55, 0.65, with the W/C = 0.55 mix crossing the W/C =

0.65 mix at 50 days. The pattern of W/C ratio with moisture loss and shrinkage is followed

fairly well with this mix. Figure 4.1.25 follows the trend exactly, which corresponds also

with the shrinkage data. The moisture loss data for these test mixes are attached in Appen-

dix I.
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Figure 4.1.23 The mass loss behavior of the reference paste mixes for all W/C

ratios at 42% RH.
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Figure 4.1.24 The mass loss behavior of all 5% SRA admixed mixes at 42% RH.
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Figure 4.1.25 The mass loss behavior of all 7.5% silica fume mixes at 42% RH.
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Figure 4.1.26 The mass loss
at 42%RH.

behavior of all 7.5% silica fume with 5% SRA mixes



4.2 Mechanical Properties

4.2.1 Introduction

The objective of the mechanical property tests is to determine how the addition of the SRA

as well as changes in the mix design affect the evolution of mechanical properties in time.

The properties required to accurately model the curling behavior of cement slabs are: the

compressive strength and the compressive modulus. The tests are conducted using adapted

ASTM procedures, and the results and discussion of trends follow.

4.2.2 Compressive Strength

As discussed in the experimental methodology section, 3x6 cylinder specimens were used

to characterize changes in compressive strength behavior with maturation time. However,

the 3x6 test cylinder data obtained from testing was extremely erratic. Some possible

causes of the erratic behavior established for the larger 3x6 cylinder specimens are: the

creation of large air voids due to poor consolidation, pour lines caused by partial setting of

separate layers, irregular bleed pathways, as well as drying and thermal shrinkage strains

that cause severe microcracking. After 14 days, the differential strains established in the

cylinders due to internal restraint and tension near the surface are sufficient to cause severe

cracking that then penetrates into the cylinder causing it to further degrade.

So in order to obtain the required property, standard mortar cube specimens were used

instead of the 3x6 cylinders, but filled neat cement paste. These specimens are much better

suited for this particular test because of the greatly reduced volume to surface area ratio.

The appropriate ASTM standard for mortar cube testing was modified for the paste speci-

mens and followed.



The early age results obtained from the cube specimens contained a much smaller spread

in the averaged data. Figure 4.2.1 shows the evolution of compressive strengths for the

-*-w/c=0.25 ----w/c=0.25, 5% SRA
--- w/c=0.25 & 7.5% SF ---- w/c--0.25 & 7.5% SF9 5% SRA
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Figure 4.2.1 The averaged compressive strength behavior for the W/C = 0.25 mixes.

W/C = 0.25 mixes. Note the consistent drop in strength at 14 days for the silica fume

admixed mixes. This type of behavior is fairly common. The early strength development is

followed by a short dormant period. The strength then grows again usually after 21 - 35

days and increases dramatically between 56 - 90 days. The reference paste and reference

paste plus silica fume mixes are consistently stronger than the SRA admixed test mixes at

this water-to-cementitious ratio. This trend is not followed for the higher water-to-cemen-

titious material ratio test mixes.

Figures 4.2.2 and 4.2.3 depict the changes in compressive strength behavior for the cube

mixes at all the various water-to-cementitious material ratios at 7 and 28 days respectively.

The W/C = 0.25, 0.35, and 0.45 reference mixes at seven days are stronger than the com-

plementary SRA admixed test mixes. However, the 5% SRA admixed W/C = 0.55 and

0.65 mixes are stronger than the reference mixes at the same age. For early age strength a

reduction in drying shrinkage at the lower water-to-cementitious material ratios may



enhance the compressive strength performance while playing a lesser role at the higher

water-to-cementitious material ratios.
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Figure 4.2.2 The averaged compressive strength for the W/C = 0.25 cube specimens
at 7 days.
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Figure 4.2.3 The averaged compressive strength behavior of all mix design

cube specimens at 28 days.

It was also noticed that when the mixing was taken place, the 5% SRA admixed mixes had

higher workabilities. Measurements were not taken on a flow table, the workability was



determined by the ease of flow through the 50 cc syringe used to fill platelet molds. The

presence of large air voids and/or flow lines may have been reduced.

Again, Figure 4.2.3 shows the 28 day behavior of all test mixes. Some of the mixes

experienced reductions in compressive strength at this age: W/C = 0.35 and 0.45. These

mixes experienced high shrinkage strains at this age and these large strains may have

caused the reductions in strength. The W/C = 0.25, 0.55, and 0.65 mixes gained strength

as expected. The same trends in terms of mix type and higher strength values established

at 7 days is followed. The average compressive strengths of all the test mixes determined

by cube specimens up to 28 days are included in Appendix I. Simple logarithmic regres-

sions were performed on all mixes and these formulas will be used to establish changes in

behavior through time in the modeling section of this report.

4.2.3 Compressive Modulus of Elasticity

As described in the experimental methodology section, 4x8 cylinders were used to estab-

lish the evolution of compressive modulus of elasticity in time. Figures 4.2.4 and 4.2.5

depict the changes in the compressive modulus of elasticity between mix designs at 7 and

28 days respectively. In both graphs the modulus information for the W/C = 0.35 paste

with and without the addition of 5% SRA by replacement of mixture water are not

included. These tests series were not included due tc the malfunction of the testing rig at

both these ages. As expected the compressive modulus increases with a decrease in water-

to-cementitious material ratio. The finer pore structure increases the rigidity of the paste

matrix. The exception to this trend occurs for the W/C = 0.55 mix. The addition of the

SRA has a variable effect at 7 days with increases in modulus for the W/C = 0.35 paste,

0.45 paste plus 7.5% silica fume, and the 0.65 paste plus 7.5% silica fume. The other

mixes have higher compressive moduli for the reference mixes.
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Figure 4.2.4 The compressive modulus of elasticity of the various mixes at 7 days.

Changes in the behavior at 28 days follow: increased moduli for all the W/C = 0.25, 0.35,

0.45, the reference paste 0.55, and 0.65 test mixes. Again compressive modulus increases

with decreasing water-to-cementitious material ratio with the exceptions of the W/C =

0.35 mixes and the reference and SRA admixed W/C = 0.25 mixes. This may be due to the

internal microcracking due to the self-desiccation. All magnitudes increase at 28 days

compared to the 7 day values as expected. Based upon the information presented, the addi-

tion of 5% SRA has a variable but slightly positive effect on the compressive modulus of

elasticity. Higher moduli imply that higher stresses are needed at the same strain to pro-

duce cracking. The compressive moduli data are included in Appendix I. Simple logarith-

mic regressions were performed on all mixes and these formulas will be used to establish

JLL-0 I



changes in behavior through time. This information is used in the modeling section to

determine the stresses produced from curling deformations at a given relative humidity

environment and moisture content.
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Figure 4.2.5 The compressive modulus of elasticity determined at 28 days.

4.3 Curling Deformation Study

4.3.1 Introduction

A total of twenty test mixes were tested in the curling deformation study to determine

changes in curling behavior with time resulting from changes in mix design and the pres-



ence of the SRA. Each test mix had duplicate specimens which were measured at the

times described in the experimental methodology section and the averaged results are dis-

cussed and presented below. This information shall be used to correlate and verify findings

presented in Chapter 5 about analytical and computational modeling of curling deforma-

tions due to changes induced in moisture content through a specimens depth by the addi-

tion of the SRA.

4.3.2 High Water-to-Cementitious Material Ratios

These test mixes experienced the highest reductions in curling deformations with the use

of the SRA. Figure 4.3.1 shows a typical prolifigram of the W/C = 0.65 reference paste

mix at various ages. All the test series experience some curling due to the one dimensional

loss of moisture through the top surface of the cement plates. The magnitudes of curling at

the ages shown: 0, 7, 28, 56, 70, and 90, are all increasing in magnitude, however very

early age data indicates that the degree of curl fluctuates with early age. Again the curling

deformations were measured by placing the specimen on it side against a rectangular piece

of aluminum tubing and then restraining it with elastic bands at either end. A pair of elec-

tronic calipers were then used to measure the out-of-plane deformations. The experimental

methodology section has a picture of the measuring procedure. Some of the earlier ages

experience greater curling deformations than the 28 day curling deformation.
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Figure 4.3.1 Prolifigram of reference paste W/C = 0.65 mix at various ages.



This may be due to the nonuniform manner in which hydration proceeds, i.e. greater

hydration in the interior portion of the specimen and less hydration at the surface. Also

some additional testing information indicates that a perfect seal was not obtained, which

may cause drying fronts from both edges and the bottom surface. At some point in time

the movement of moisture equilibrates such that moisture is lost again in a one dimen-

sional manner from the top surface. Another possible explanation is that early age creep

occurs relieving the curl stresses and then when additional moisture is lost the creep

response is overcome.

Figure 4.3.2 shows the center-line deflection reductions at four different ages ranging from

7 - 90 days. The silica fume admixed series experienced the largest curling deformations

and the greatest reductions due to the addition of the SRA. The slope of the curve becomes

negative after 28 days, when the largest curling reductions occurred. The same shape of

curve occurs for the reference paste and the 5% SRA admixed series. At 90 days there is
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Figure 4.3.2 Comparison of center-line deflection reductions for the reference

and the silica fume admixed series, W/C = 0.65.

comparable reductions in curling deformations for the two types of mixes: paste, and silica

fume admixed. Please no,te that although the reductions in curling decrease somewhat with

age there is still a considerable difference in curl between the SRA and reference mixes.



Figure 4.3.3 depicts the same behavior for the W/C = 0.55 test series. Again the greatest

difference in center-line curling deflection occurs for the silica fume admixed series. At 90

days there is comparable reductions between the paste and silica fume series. There is a

dramatic change in the slope of the silica fume mix difference curve at 56 days. A possible

-*--0.55 Paste & 5% SRA -4-0.55 7.5% SF & 7.5% SF with 5% SRA

o

70

o 60

50

30

.2 20

= 10

0 20 40 60 80 100 120 140 160 180

Age (Days)
Figure 4.3.3 Curling reductions experienced by the W/C = 0.55 test series.

explanation is that the creep relaxation is greater for the silica fume mixes. All specimens

were cast using identical procedures and stored in the same environment, therefore the dif-

ference in behavior must be attributed to the internal redistribution of moisture from points

of high stress to region of lower stress. The relaxation experienced by the SRA admixed

mixes is much less than that experienced by the reference mixes. This could occur because

the chemical composition of the pore solution changes dramatically for the SRA admixed

mixes. When drying occurs, the organic polymer in solution of the SRA comes out of

solution and establishes a higher concentration near the drying front. The solubility index

of the SRA is approximately 17%. If the redistribution of moisture occurs in this region,

then the viscosity of the pore solution changes and we must expect that the creep response

will change. Further research into this area should be addressed. A summary of the center-

line curling data is attached in Appendix I.



4.3.3 Intermediate Water-to-Cementitious Material Ratios

Similar results are exhibited by the W/C = 0.45 test series as those experienced by the

higher water-to-cementitious material ratio mixes. Figure 4.3.4 shows the curling center-

line deflections of the reference paste and silica fume mixes as well as the SRA admixed

mixes between the ages of 7 and 180 days. At earlier ages the reference paste mix experi-
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Figure 4.3.4 Center line curling deflections of W/C = 0.45 test mixes
between 7 and 180 days.

ences the largest reductions in curling deformations compared to the silica fume admixed

mixes. This trend is opposite of that established for higher water-to-cementitious material

ratios which consistently experienced larger curling reductions for the silica fume mixes.

Note that at 180 days there are comparable reductions for both type of mixes. Between 56

- 180 days the greatest benefits are experienced by the silica fume admixed mixes. Again

creep is occurring at a greater magnitude for the reference mixes which explains the reduc-

tions in effectiveness of the SRA admixed mixes.

Figure 4.3.5 depicts the reductions in curling deformations experienced by the

W/C = 0.45 testing series with and without the SRA. Note the radically changed behavior



for the paste series. The optimum benefit for that mix is experienced at 28 days, and is
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Figure 4.3.5 Reductions in curling center-line deflections of the W/C = 0.35 mixes.

larger in magnitude than the silica fume mixes. The silica fume mixes lag the paste mix

until 42 days at which time they experience greater benefit from the presence of the SRA.

Comparable reductions occur at 42 and 180 days between both mix types. Again note that

the relative difference in curling reductions serves only as a basis of comparison between

the silica fume and reference test series due to the addition of the SRA. The actual magni-

tudes of curl for these specimens are smaller than those experienced by the higher water-

to-cementitious ratios and the reductions in efficiency are consequently scaled.

Figure 4.3.6 depicts the reductions in curling deformations experienced by the W/C = 0.35

mixes. Note the dramatic change in behavior exhibited by this mix design. The silica fume

mixes experience a very early peak performance, and then become increasingly less well

behaved until 56 days. Then the same type of behavior occurs, a dropping off of effective-

ness of the SRA. Both mixes experience comparable reductions in curling at 28 and 165

days. Note that at 180 days all specimens are experiencing the same amount of curling

I



deformation. Again the magnitudes of these curling deformations are much smaller then

the higher water-to-cementitious material ratio mixes.
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Figure 4.3.6 The reductions in curling deformations experienced by the
W/C = 0.35 mixes.

The summary of the center-line deflection values for the various mixes are attached in

Appendix I.

4.3,4 Low Water-to-Cementitous Ratios

The W/C = 0.25 test series behaves considerably different than the higher water-to-cemen-

titious ratios. Similar to the W/C = 0.35 silica fume mix, the largest reductions experi-

enced occur early on at 7 days. Figure 4.3.7 shows the different behavior experienced by

these test mixes. The negative values correspond to greater curling deformations for the

SRA admixed test series. The 7.5% silica fume admixed mixes perform better than the ref-

erence mixes. The self desiccation of water in these mixes cause considerable internal

consumption of moisture, which may produce more uniform hydration reaction products

I



through the plate thickness. If the microstructure becomes sufficiently rigid to resist mois-
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Figure 4.3.7 Reductions in curling center-line deflections for the W/C = 0.25 mixes.

ture induced deformations, then smaller overall curling deformations are expected. What

may be producing the increased non-uniformity in moisture content, and hence greater

curling deformations in the SRA admixed series is the nonuniform distribution of polymer

coming out of solution. The added differential in concentration may be sufficient to pro-

duce unwanted flow of moisture. This possibility is under further investigation and will

not be reported in this report. The summarized center-line deflection data for these test

series are included in Appendix I.

4.4 Microstructural Analysis

4.4.1 Introduction

The purpose of the microstructural analysis is to determine the effects of changing mix

design and the addition of an SRA on the pore size distributions of matured hardened

cement paste samples. A total of twenty mixes are tested, using the Mercury Intrusion

Poresimetry techniques. Finer pore structures are expected with lowered water-to-cemen-

titious material ratios. The addition of the pozzolan additive will further reduce the pore
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structure. By applying the simplified capillary tension theory, we propose to explain quan-

titatively the reductions in shrinkage experienced by the SRA admixed mixes.

4.4.2 High Water-to-Cementitious Ratios

Figure 4.4.1 depicts the normalized cumulative pore size distribution for the W/C = 0.65

reference paste and 5% SRA admixed test series. The normalized curve was determined
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Figure 4.4.1 Normalized cumulative distribution of pore sizes for the W/C = 0.65
reference and 5% SRA admixed test series.

by dividing the intruded volume at a given pore diameter size by the total intruded volume.

The most significant differences between the two mixes occur for pores with diameters

greater than 1800 angstroms. The reference mix is much coarser than the SRA admixed

test series. As will be discussed later in this section, the pore range which exerts the largest

influence on drying shrinkage is within 2 - 1000 angstroms. The larger pores contribute

less to shrinkage strains than the smaller pores. Based upon this hypothesis, the reference

mix should shrink less than the complementary SRA admixed mix. It does not because the

SRA admixed test series has a dramatically reduced surface tension which effectively

shifts the 5% SRA curve to the left and hence these specimens experience smaller shrink-

age strains. This of course is verified by the drying shrinkage data presented earlier.



Figure 4.4.2 shows the normalized cumulative pore distribution for the 7.5% silica

fume and the 7.5% silica fume plus a 5% replacement of mixture water with the SRA test
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Figure 4.4.2 The normalized cumulative distribution of pores for the W/C = 0.65
silica fume admixed test series with and without the SRA.

mixes. The difference between the two curves is much smaller than the difference between

the paste mixes, therefore the reduction in shrinkage shcaild be greater. This occurs

because the effective distribution is shifted by a constant amount, i.e. the ratio of surface

tensions in the pore solutions for the two mixes. The silica fume mixes are almost exactly

the same, therefore the shift will result in pores of much greater diameters becoming

active thereby reducing the experienced shrinkage strains. For pore sizes greater than 1000

angstroms the reference silica fume mix is coarser. This follows the same trend established

for the reference paste mix.

The steepness of the 5% SRA curve at approximately 1800 angstroms indicates that a

large proportion of the pores are active at that diameter provided that by applying Kelvin's

equation the moisture content of the matrix is in that pore range. The reference silica fume

mix is active over a larger pore range since the curve is less steep. This will be further dis-

cussed later in this section.
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Figure 4.4.3 depicts the normalized cumulative distribution of the W/C = 0.55 refer-

ence paste and the paste plus a 5% replacement of mixture water by the SRA. Unlike the

W/C = 0.65 mixes discussed above, the microstructure is coarser for the SRA admixed test

mix. However the magnitudes of the separation between the two mixes is similar.
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Figure 4.4.3 The normalized pore distributions of the W/C = 0.55 reference paste and
the paste plus a 5% replacement of mixture water with the SRA mixes.

As expected the overall distribution is finer than the paste W/C = 0.65 mix. The behav-

ior of a sharp distinction at a particular pore size is also switched, i.e. the paste is centered

around 1400 angstroms while the SRA curve is around 4700 angstroms. It is interesting to

note that the fineness of the silica fume admixed W/C = 0.65 mix is comparable to the W/

C = 0.55 mix. This should imply similar shrinkage characteristics provided that the com-

pressive moduli of elasticity are similar.



The 7.5% silica fume
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mixes are depicted in Figure 4.4.4. They are finer than the paste

the largest portion of pores clustered about 1000 angstroms.

-4- Paste -0-5% SRA

1000 100 10
1

0.9
0.8
0.7

0.6

0.5

0.4
0.3
0.2
0.1
nLP

Pore Diameter (Angstroms)

Figure 4.4.4 The normalized cumulative distribution of pores for the W/C = 0.55
silica fume admixed test series with and without the SRA.

Therefore these mixes should experience larger shrinkage strains than the associated paste

mixes. This was verified with the shrinkage data from the drying shrinkage study. Note

how the two curves almost lie one on top of the other for the finer pore sizes. This follows

the same trend established for the higher water-to-cementitious material ratio above. How-

ever, like the reference paste mix, for the larger pores the SRA admixed test series is

coarser. If a sample contains a moisture content in that range, it should experience much

smaller shrinkage strains. This also was verified in the drying shrinkage study discussed

above.



4.4.3 Intermediate Water-to-Cementitious Material Ratios

Figure 4.4.6 depicts the affect that the SRA has on the microstructure of the W/C = 0.45

paste and paste plus a 5% replacement by mixture water with the SRA test mixes. Similar
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Figure 4.4.6 The normalized distribution of pores for the W/C = 0.45 paste mixes
with and without the SRA.

to the W/C = 0.65 paste mixes, the paste mix is coarser than the SRA admixed mix. Again

the behavior of reduced slope of the reference versus SRA admixed curve occurs. The

SRA test series is clustered about approximately 1000 angstroms, while the paste mix is

clustered about 3700 angstroms. These mixes should exhibit similar shrinkage strains as

those experienced by the W/C = 0.55 paste plus a 7.5% replacement of cement with silica

fume mixes. Here however there is a much larger spread of pore sizes so the effect is

greatly determined by specimen moisture content. Also the effective distribution for the

SRA mix will be closer spaced to the paste mix than for the W/C = 0.55 paste plus a 7.5%

replacement of cement with silica fume mixes so the reductions in shrinkage should be

less dramatic.
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Figure 4.4.7 shows the behavior of the W/C = 0.45 test mixes with a 7.5% replacement

of cement by silica fume with and without the SRA. As expected the pore structure is
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Figure 4.4.7 The normalized cumulative distribution of pores for the W/C = 0.45
paste plus 7.5% silica fume with and without the SRA mixes.

refined with a similar spread between the reference silica fume and SRA mixes. This pat-

tern indicates that the reductions in drying shrinkage should be less than for the W/C =

0.55 mixes. Note the overlap in pore structure for pores smaller than 600 angstroms. This

type of behavior is consistent with all the previous mixes. For the ultra-fine pores, at least

those measurable with the MIP technique, there seems to be little difference between the

two type of mixes.

Figure 4.4.8 shows the changes in pore structure caused by the addition of the SRA for

the W/C = 0.35 paste mixes. The paste mix is coarser than the SRA admixed mix in the

pore ranges which contribute most to drying shrinkage strains. When the "effective" distri-



bution is plotted one surmises that the effectiveness of the SRA will decrease. This behav-

ior is verified with information obtained in the drying shrinkage study discussed above.
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Figure 4.4.8 The normalized cumulative distribution of pores for the W/C = 0.35
paste mixes with and without the SRA.
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silica fume mixes with and without the SRA.
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Note the dramatic decrease in pore sizes for these mixes. The SRA mix is clustered

about 500 angstroms while the paste is clustered about 900 angstroms. Again moisture

content will play an important role in terms of the efficiency of the SRA.

Figure 4.4.9 depicts the affects on microstructure of adding the SRA to the silica fume

mixes. As with the reference paste mix the reference silica fume mix is coarser than the

SRA admixed mix. The points about which a large proportion of pores cluster for the two

mixes are: 600 and 400 angstroms for the silica fume paste and silica fume SRA admixed

mixes respectively. The trend of very little difference between the two types of mixes on

pore structure for silica fume mixes has changed, in that there is a more pronounced differ-

ence between these two mixes. This indicates that depending on the moisture content in

the matrix, different degrees on reduction are expected. Again this type of behavior was

verified in the drying shrinkage study.

4.4.4 Low Water-to-Cementitious Ratios
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Figure 4.4.10 The normalized cumulative pore distributions of the W/C = 0.25
reference paste and 5% SRA admixed mixes.

The final test series consisted of paste and silica fume mixes with and without the SRA

at a W/C = 0.25. These mixes contain very fine pores. Figure 4.4.10 depicts the affects that

the SRA has on the pore structure of the paste mixes. Again the reference paste mix micro-

structure is coarser than the SRA admixed test series. The pore sizes about which the
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respective mixes cluster are: 500 angstroms and 270 angstroms. These pore sizes exert the

largest potentials for drying shrinkage of any discussed yet. So we expect the associated

shrinkage behavior to be large. This is verified with results from the drying shrinkage

study. The improvement in drying shrinkage should be fairly low at this low water-to-

cementitious ratio since the relative shift of the curve barely clears the reference paste

curve.

Figure 4.4.11 on the other hand again demonstrates that for the silica fume admixed
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Figure 4.4.11 The normalized cumulative distribution of pores for the W/C = 0.25
silica fume mixes with and without the SRA.

testing series there is little difference between the two types of mixes. The pore structure is

refined as expected. Unlike the reference paste mix, the SRA causes a coarser microstruc-

ture to develop. So it is expected that there will be significant reductions in drying shrink-

age strains experienced between the two mixes. This behavior does occur in the drying

shrinkage specimens tested.

4.5 Moisture Profile Study

4.5.1 Introduction

As described earlier in the experimental methodology section, it is important to under-
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stand how moisture leaves a slab system due to evaporation, capillary suction, and/or dif-

fusion. As the top surface dries at an increased rate compared to the insulated bottom

surface, the internal moisture distributes itself in a very non-uniform manner. The differ-

ence in moisture content then results in a variation in strain causing the curling deforma-

tion. This is a very size dependent phenomena, because internal movement of water is

governed by diffusion. The larger the specimen the longer it takes to move to the surface.

Therefore, there are uneven layers of hydration products which may affect the bulk behav-

ior of the system. In order to understand curling, it is important to describe the shape and

change in shape of the moisture profile with time. This section presents the results

obtained from the application of the electrochemical impedance spectroscopy technique to

three different mix designs at three different surface to volume ratios.

4.5.2 EIS Background

This is a quick review of the key concepts described in the experimental methodology sec-

tion pertaining to the use of the EIS techniques to determine moisture content as a function

of depth in cement slabs. When the neat cement specimens are first mixed, the constituents

are in a water-colloidal suspension and the electrochemical response is best represented as

a di-electric electrolyte dispersed between the two electrodes. The sample is considered

fully saturated. An equivalent circuit model of this system would best be represented by a

series of resistors and the high frequency response depicted in a Nyquist plot is not semi-

circular in shape. As the hydration reactions proceed and the water is consumed, the

microstructure starts to develop interfaces between the hydration products and the unhy-

drated cement. Water is also lost after initial curing due to evaporation and subsequent

drying. Therefore, the once fully saturated material develops a porous network and

becomes unsaturated as drying proceeds.

There are three types of water present in the porous network: chemically adsorbed,

physically adsorbed, and free water. Depending on the pore size distribution of the speci-

men, each type of water will affect the determination of the moisture content of the sample

[Gu et al., 1986]. The two competing sources of moisture loss in the material are hydration

and drying. For the purposes of this study, drying is the primary source addressed. For the

higher water-to-cementitiolls catios, full hydration, i.e. greater than 80%, may take up to a

month to occur. However, the lower water-to-cementitous ratios achieve the same level of
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hydration as soon as 2-7 days and hence the majority of moisture loss is associated with

drying.

Terrill et al., conducted a study on ascertaining the moisture profile of rectangular

specimens using crack initiators and relative humidity probes, and determined that the rel-

ative humidity probes are unable to accurately ascertain changes in moisture content in gel

pores and may be only applicable to meso-to-macro porous systems [Terrill et al., 1986].

The advantage of using a.c. electrochemical measurement techniques is the fact that these

types of measurements are very sensitive to moisture content in any of the available forms/

types.

A small perturbing a.c. signal is applied across the set of electrodes and the salt ions in

solution in the porous network respond by fluctuating in response to the field until they

reach their relaxation time which is the timet to required to fluctuate in phase with the

applied field at the given frequency. The relaxation time is dependent on the source of

water responding, i.e., free water has the fastest response while chemically adsorbed water

has the slowest response. As described earlier, the spread in relaxation times of the mate-

rial is depicted in the Nyquist plot as a depression of the semi-circle below the real compo-

nent of the impedance.

Since the real component of the impedance is composed of the resistance's of elements

in the porous network and the electrolytic material, the phase angle of these components

are small near 00. Therefore for the fully saturated case, in the earliest times after mixing,

there is no formation of a high frequency arc [Gu et al., 1986]. Later as pores start to

empty and interfaces start to develop the high frequency response evolves. When a pore is

completely empty of water it acts as a leaky capacitor and maintains a phase angle close to

-900. Therefore by plotting phase angle as a function of depth for the profile specimens

one is able to ascertain a qualitative moisture profile.

Several preliminary tests were conducted on paste and SRA admixed specimens to

determine what the optimum frequency is for choosing phase angle as a descriptor for

moisture content. These tests were conducted both on the cylindrical specimens as well as

the platelet specimens described in the drying shrinkage study. The characteristic range for

obtaining information about bulk paste properties for all mixes tested lay between 10^4
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and 10^7 Hz. The best suited frequency was 10^6 Hz, and hence all data presented in the

upcoming sections are measured at this frequency.

4.5.3 One-half inch moisture profile EIS specimens
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Figure 4.5.1. Measured moisture profiles of paste and admixed one-half inch
W/C = 0.45 SRA admixed specimens.

Figure 4.5.1 depicts the profiles of the W/C = 0.45 with 5% SRA one-half inch specimen

at various ages.The data points have been fitted using a higher order polynomial. The

datum, zero, occurs at the top surface of the specimen which is exposed to the ambient

50% RH environment. The first point is artificially set to -90o corresponding to a fully dry

condition. As expected the shape of the curve steadily shifts towards higher negative phase

angles as time proceeds indicating that drying is occurring.

At early ages there is a large gradient in the measured phase angle. The magnitude of

the gradient decreases with time as expected, because most of the material reaches its

equilibrium moisture content. Nevertheless, there is still a gradient present at 91 days

which implies that there should still be some curling deformation present. This is substan-

tiated with the experimental results obtained in the curling deformation study.

Figure 4.5.2 depicts the changes in profiles of the one-half inch paste specimens. Note

that the magnitudes of the phase angles are higher at all testing stations for the SRA

admixed specimens. This is consistent with the mass loss data obtained in the drying
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shrinkage study. The SRA mixes consistently lose more water than the reference mixes,

and hence the measured di-electric properties should be higher. Despite the difference in
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Figure 4.5.2. Measured moisture profiles of W/C = 0.45 paste specimens.

magnitudes, the shapes of the curves are also different. There is a slower change in the

moisture profile as a function of time. Note how much more uniform the moisture content

is through the thickness of the material (the negative of the phase angle is taken as a

descriptor of moisture content, and hence the moisture profiles are only qualitative) for the

SRA admixed series. Since a larger portion of the material is maintained at a constant

moisture content, it serves as a restraint thereby reducing curling deformations. This is

indeed the behavior exhibited by the curling specimens.

Figure 4.5.3 depicts the behavior exhibited by the W/C = 0.55 SRA admixed speci-

men. The slope of the curve initially is greater than the corresponding W/C = 0.45 SRA

admixed mix. This is expected because the microstructure is coarser and so there is more

moisture lost for the higher water-to-cement ratio mix. The uniformity after the first sta-

tion remains. The overall shapes remain similar with greater disparity at later ages. It is

interesting to note that the magnitudes of the phase angles are similar for both mixes at

later ages, with smaller phase angles for the higher water-to-cement ratio mix. This seems

contrary to the expected results, but because the microstructure is different, i.e. coarser,

the measured resistive and capacitive responses change. That is, not only is the pore solu-
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tion different but the distance between capacitive plates is greater. This implies that the

method can only be used to compare mixes of similar design with changes only in the

addition of the SRA.
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Figure 4.5.3. Measured moisture profiles of the W/C = 0.55 SRA one-half inch
EIS specimens.

Figure 4.5.4 shows how the phase angle changes with time for the associated reference

W/C = 0.55 paste mix. There is a greater difference in shape between this mix design and
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Figure 4.5.4 The measured moisture profile for the W/C = 0.55 reference one-half
inch paste EIS specimen.
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the SRA mix design at the same water-to-cement ratio then for the W/C = 0.45 mixes.

Another interesting trend in the data is that the magnitudes of the phase angles are greater

for the paste mix then for the SRA mix. There is still much larger gradients through the

full thickness of the specimen. This implies that this mix should experience greater curling

deformations. Again this observation is substantiated with the results from the curling

deformation study. From the microstructural analysis we know that the difference in pore

structure measured, i.e. paste finer than SRA admixed mix, is opposite to that experienced

by the W/C = 0.45 mixes. This may explain why the paste mix is know showing higher

phase angle magnitudes then the SRA mix. Further work is required to fully explain this

behavior.

The finest pore structure mixes, WIC = 0.45 with the addition of 7.5% silica fume with

and without the SRA are expected to demonstrate similar behavior as the W/C = 0.45

mixes based upon the microstructural analysis. Figure 4.5.5 shows the SRA admixed
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Figure 4.5.5 The measured EIS response of the W/C = 0.45 with a 7.5% silica fume
and 5% SRA addition.

response. There is a very large gradient in the curve for early ages, progressively decreas-

ing at later ages. There is little difference between the 70 and 91 day response. At these

ages there is a small gradient present which should correspond to reduced curling tenden-

cies. The measured center line deflections of this mix at these two ages substantiate this

behavior.
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Figure 4.5.6 depicts the change in EIS response for the reference paste mix. As

expected the magnitudes of the phase angles for the paste mix are smaller than the associ-

ated SRA measured response. This supports the notion that whether the SRA admixed mix

produces a coarser or finer microstructure will affect the magnitude of the phase angle

measured. The gradient in phase angle is greater for the paste mix, indicating that the mea-

sured curling deformations should be larger. This is substantiated with data from the curl-

ing study.
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Figure 4.5.6 The measured EIS response for the W/C = 0.45 with a 7.5% silica fume
addition.

In summary, the response of each test mix correlates well with the measured curling

behavior. Since these mixes have the smallest exposed surface area to volume ratios, it is

expected that they will experience the most changes in di-electric properties in the time

frame of the test.

4.5.4 One inch moisture profile EIS specimens

For this set of specimens, only the W/C = 0.45 mix is presented because the same trends

established for the one-half inch specimens also occur with all the one inch specimens.

What is interesting is the change in magnitudes of the measured phase angles. Figures

4.5.7 and 4.5.8 depict the change in measured phase angle with time for the W/C = 0.45

test mixes with and without the addition of the 5% SRA. Again the shape of the curves are

very similar with the reference specimen exhibiting a steeper gradient at the later ages.
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The 70 and 91 day curves show that the SRA specimen maintains a uniform moisture pro-

file, while the reference specimen has an almost linear gradient through most of its thick-

ness and a higher gradient between the first station and the top surface.
-- 1 Day -7 Day -- 14 Day -*-21 Day-7Day -91 Day

0 5 10 15
Depth (mm)

Figure 4.5.7 The measured changes in phase angle
reference one inch EIS specimen.
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Figure 4.5.8 The measured changes in phase angle

SRA admixed one inch EIS specimen.
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with time for the W/C = 0.45

This implies that the tendency to curl is larger for the reference mix than for the SRA

mix which is substantiated with the trends in curling data presented earlier for the one-half

inch specimens. These test were conducted after the curling tests, and so later age infor-
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mation is not available yet. What is required is the correlation between moisture content at

a given level and the measured EIS response in order to quantitatively assign moisture val-

ues in the specimen using this technique. Theses tests are ongoing and will be reported

elsewhere. Since the relative difference in phase angle magnitudes through the thickness

of the samples for the one-half inch and the one inch specimens are fairly large, one must

expect that the curling behavior of thicker specimens will take longer to fully develop. If,

as presented in the curling deformation study, there is a tendency for the reference mixes

to relax due to creep then the measured reductions are expected to decrease.

4.5.5 Two inch moisture profile EIS specimens

Following similar trends as established earlier for the one-half inch and one inch speci-

mens, only the W/C = 0.45 specimen responses will be presented as representative behav-

ior for the two inch specimens. The three different thicknesses were tested to obtain

information on size effect problems. One problem mentioned in the mechanical property

section of the thesis is that without any restraining inclusions in the paste matrix, there is a

greater tendency to crack for larger specimens than smaller specimens. This will of course

affect the way that moisture leaves the system, i.e. a change from diffusional flow to capil-

lary suction. Also, if the change encountered is small, then the rate of flow out of the sys-

tem is expected to be dramatically lower the smaller the exposed surface area to volume

ratio. This is due to the increased internal reservoir of moisture.

Figures 4.5.9 and 4.5. 10 depict the changes in measured phase angle experienced by

the two inch EIS specimens as a function of time. The same trends, reference paste exhib-

iting higher phase angles than the SRA for the W/C = 0.45 and 0.45 with a 7.5% addition

of silica fume occur. The W/C = 0.55 trend is still opposite to the other two mixes. The

greater uniformity in the moisture content for the SRA mixes should cause a larger portion

of the slab thickness to resist curling deformations and hence produce smaller measured

center line deflections. This type of behavior is exhibited in the one-half inch specimens.

Several tests have been initiated varying the thickness of the cement slab for particular



mixes and will be presented elsewhere. Initial data does support the hypothesis that larger

thickness samples take longer to curl than thinner specimens [Dallaire et al., 1997].
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Figure 4.5.9 The measured changes in phase angle with maturity for the V
two inch reference paste specimen.

-- 1 Day -7 Day -14 Day --o-21 Day -*- 70 Day -4-91 Day

90

80

050
.-40

30

020

10
n

W/C = 0.45

0 10 20 30
Depth (mm)

Figure 4.5.10 The measured changes in phase angle
two inch SRA specimen.

with maturity for the W/C = 0.45

The mass loss information obtained for these specimens substantiate that the higher

the exposed surface area to volume ratio the greater the mass loss. Figure 4.5.11 depicts

this type of behavior. This type of behavior was followed by all the test mixes tested.
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Notice that the slopes of the mass loss curve for the one inch and the two inch reference

past specimens have not leveled off. That is because there is still plenty of moisture in both

systems. The one-half inch specimen however, has leveled off and is near equilibrium.

Similar behavior is exhibited by the SRA mixes. Chapter 5 will discuss this behavior in

greater detail.
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Figure 4.5.11 The mass loss behavior of the EIS moisture profile samples, W/C = 0.45.

4.5.6 Cylindrical EIS Specimens

'There were some problems encountered with these specimens in the lower relative

humidity environments. Shrinkage cracking occurred at ages greater than 28 - 35 days

which dramatically altered the response of the specimens. Therefore the discussion of

these results will not be presented. There was to much scatter in the data and hence a new

set of specimens need to be tested. The purpose of these specimens were to correlate mois-

ture content at a given environmental condition with the measured EIS response.

It was decided that sectional analysis would provide more accurate information for

slab specimens because the same mold shapes could be used. Sectional analysis is the

splitting of specimens of a given thickness at a preset age and measuring the change in

moisture content as a function of depth. Final moisture content is determined by baking

specimens at an elevated temperature for a short period of time and measuring the final
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mass loss. These types of tests are currently being conducted, but will not be presented in

this report. Therefore the results obtained using the EIS technique provide only a qualita-

tive measure of moisture.

4.6 Summary

The results presented in this section of the thesis provide the necessary background empir-

ical data with which to correlate findings determined from the analytical and computa-

tional model to be discussed in Chapter 5. There are benefits in using the SRA to reduce

not only drying shrinkage strains at low relative humidity environments but also curling

deformations in cement slabs. In particular, the drying shrinkage strains are reduced

between 30 - 46% depending on the mix design. Typical magnitudes of reductions in curl-

ing deformations exceed that amount and hence lead to the concept of an additional mech-

anism occurring simultaneously with the reductions in drying shrinkage at a given

moisture content. Based upon the results obtained using the electrochemical impedance

technique, the second mechanism is a change in the shape of the moisture profile. The

addition of the shrinkage reducing admixture produces a more uniform moisture profile

through time. The greater the uniformity, the greater the reductions in curling behavior

expected. This has been substantiated with the one-half inch curling specimens.

The newly developed testing technique to determine moisture content as a function of

depth and time still requires additional tests to correlate change in phase angle with mois-

ture content. These tests are currently being conducted, but will not be presented in this

report. Due to the exaggerated behavior of both drying shrinkage and curling for paste, it

is expected that reduced effects will occur in mortar and concrete. This is an area of

research that needs to be studied applying the same basic testing procedures established in

this study. These types of tests are currently being conducted but will not be presented in

this report.
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Chapter 5

Analytical Modeling

5.1 Introduction

This section of the thesis presents the required analytical developments of moisture move-

ment and drying shrinkage and relates this information to the curling deformation prob-

lem. Again, curling in cement slabs occurs due to the formation of a non-uniform moisture

profile. The non-uniform moisture profile develops due to differences in drying rates

between the exposed upper surface of the slab and the insulated bottom surface as depicted

in Figure 5.1.1. Cement paste shrinks in drying environments, so the non-uniform mois-

Evaporation from the top surface of the slab

Moisture Profile

Figure 5.1.1 Changes in moisture content through slab thickness due to
uneven drying rates between top and bottom surfaces of slabs.

ture profile results in differential shrinkage strains through the slab thickness. Unre-

strained slabs experience curling deformations, and restrained slabs experience high

tensile stresses and may crack extensively. The cracks reduce the serviceability of the

structure.

The purpose of the experimental section of the thesis was to develop in an evolutionary

fashion a set of data capable of explaining some of the fundamental mechanisms occur-

ring. The use of a newly developed shrinkage reducing admixture was also tested and

changes in the drying shrinkage, the moisture profile, and curling behavior were observed.
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This information is now used to help develop a computational model. Earlier research ini-

tiatives which tried to explain changes in the curling phenomena are presented and used.

5.2 Drying Shrinkage

5.2.1 Introduction

This portion of the analytical section provides the necessary theoretical development

explaining how the SRA affects drying shrinkage. The environmental conditions of inter-

est are those that lie between 40% - 100% RH, above freezing temperatures. In this range

of relative humidity environments capillary tension theory applies. Therefore, this is the

main mechanism used to describe changes in the drying shrinkage behavior of specimens

with the SRA.

As described earlier in the literature review section of this report, capillary tension the-

ory has been used by many researchers in the past to describe how changes in mix design,

such as cement and water content, affect drying shrinkage. The key equations applied are

the Kelvin equation and the Laplace equation which describe the relations of moisture

content, surface tension and pore radii, with the compressive elastic stresses developed in

the paste matrix. Coupled with these equations are moisture transport laws. Size effect is a

considerable problem which needs to be addressed. By combining these different aspects

of this complex problem, one is able to develop a rational theory to describe drying shrink-

age. What follows is the development of this theory.

Drying shrinkage as described by Neville is due to the movement of moisture from a

paste sample [Neville 1996]. The types of moisture loss from the system include: internal

hydration, evaporation at surfaces, capillary suction, and internal diffusion. Of the men-

tioned types, internal diffusion governs for large samples, and at later ages. Hydration may

cause problems in systems prior to setting in the form of plastic shrinkage and thermal

cracking. With sufficient care when casting, these problems are easily overcome by chang-

ing curing times, methods, and temperatures. Therefore it plays a small role in the drying

shrinkage process. The rates of evaporation from the exposed surfaces are important in
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determining how the system interacts with the ambient environment and should be consid-

ered. Capillary suction may be important for very coarse sized pore structures, but play a

lesser role for high strength pastes and lower water-to-cementitious material ratio mixes.

For concrete systems where bleed channels develop between particle inclusions and the

bulk matrix, capillary suction may prove to be important, but because the system analyzed

is neat cement paste devoid of entrained air, this mechanism is not included. Neat paste

mixes after sufficient hydration do not have interconnected pores of sufficient size to war-

rant the use of capillary suction. Instead the movement of water in these systems is

through vapor diffusion. So the governing mechanism associated with moisture movement

in paste at later ages is diffusional flow.

5.2.2 Moisture Transfer in Cementitious Slabs

Diffusional flow is dependent on the diffusivity of the material, which may be constant or

concentration dependent. This type of flow may occur either in a steady state manner, or

under transient conditions. Transient conditions are often characterized by changes in con-

centration of the liquid of interest in both position and time. The basic equations used to

describe simple diffusional flow derive from the work of Fick in 1855. The first equation is

called Fick's law of diffusional flow which mimics the flow of heat. It states that the rate of

transfer of a liquid through a unit area of an isotropic section is proportional to the concen-

tration gradient measured normal to the surface [Sih et al. 1986, Vergnaud 1992]:

f = -D (5.1)ax
where f is the rate of transfer per unit area of section or flux, C is the concentration of

the diffusing liquid, x is the spacial position measured normal to the section surface, and D

is the diffusivity of the material.

There are two types of evaporation of interest in the modeling of drying systems, a

finite rate of evaporation and an infinite rate of evaporation. A finite rate of evaporation

from the surface of a material is proportional to the difference between the actual concen-

tration at the surface and the concentration which is in equilibrium with ambient condi-

tions remote from the surface [Scherer 1992, Sih et al 1986, Vergnaud 1992]. The

proportionality coefficient is given by the rate of evaporation of a pure liquid exposed to

the same conditions. This is typically written:
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E = Eo(Cs - Camb) (5.2)

where E is the finite evaporation rate, Eo is the rate of evaporation of a pure liquid, Cs

represents the surface concentration, and finally Ca,b represents the remote ambient con-

centration. For processes where the evaporation rate is dependent on diffusion, one can

combine equations (5.1) and (5.2) to obtain:

-D s = Eo(Cs- Camb) (5.3)

From this expression one observes that the rate of evaporation from the surface

increases with the rate of evaporation of the pure liquid. The dependence on temperature

for the rate of evaporation is introduced using the well known Clausius-Clapeyron equa-

tion [Vergnaud 1992]:
ln(Ey,,E, AHv, 1
In(ET '= AHi (5.4 a)

ET2J R T1 T2

where ET, and ET2 are the rates of evaporation of the pure liquid at temperatures TI and

T2, R is the ideal gas constant, and AHv is the enthalpy of vaporization of the pure liquid.

The other typical equation used to describe the dependence of moisture transfer on tem-

perature is the Arrhenius relation [Sih et al. 1986]:

D = Doexp -T . (5.4 b)

where D is the diffusivity of the material, Do is the proportionality constant, Ed is the

activation energy, R is the universal gas constant, and finally T is the temperature mea-

sured in the Kelvin scale.

For infinite rates of evaporation, the exposed surfaces of the solid reach equilibrium

with the surrounding atmosphere immediately. Typically strong convective currents and a

much larger ambient environment volume than material volume is required. This type of

evaporation is usually characterized as a boundary condition in the form:

C, = 0. (5.5)

Either type of evaporation mechanism strongly influences the ease of calculating sys-

tem response to different drying conditions. From an analytical standpoint equation (5.5)

is the simplest type of boundary condition to address.

For cement slabs, the assumption required to begin a simplified analysis is that the slab

is a thin isotropic plate which is subjected to different initial and boundary conditions. The

analysis of drying shrinkage conducted in this report follows the assumptions stated by
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Pickett in 1946, namely that the functional form of drying shrinkage is related to moisture

loss, and hence a detailed description of several classic drying initial and boundary condi-

tions are presented. Then due to the similarities of the problem statements, the shrinkage

problem will be answered after new descriptions of certain parameters and their dimen-

sions are defined.

5.2.3 Transient Constant Diffusivity Analyses with an Infinite Rate of Evaporation

The simplest case to begin with is the analysis of the constant diffusivity non-steady state

with infinite evaporation scenario. The equation for diffusion in one dimension with a con-

stant diffusivity follows Fick's second law [Powers 1987, Sih et al. 1986, Vergnaud 1992]:
2

ac Da- (5.6)
at ax 2

with initial conditions: t = 0, 0 < x < L, C = Cin (slab)

and boundary conditions: x = 0, x = L, C = 0 (exposed surfaces).

The slab is initially at a uniform concentration Cin, and because there is infinite evapo-

ration at the two exposed faces the concentration there is zero. For a perfectly insulated

slab on a single side with one exposed surface at the opposite side, the analysis is similar

due to symmetry. Half the double exposed slab gives the appropriate solution. A solution

to the partial differential equation given above is easily determined by assuming that the

solution is separable in space and time respectively.

Cx, , = CxC ,  (5.7)

substituting this expression into equation (5.6) yields:
2

1 aC, D o C xc DC(5.8)
cat Cxax2

Notice that the expression on either the left or right hand side are solely dependent on

a single variable, t or x respectively, and are therefore equal to a constant which we shall

conveniently choose as -X2D. The problem has been simplified to two differential equa-

tions:
2

1 , - _ 2 D, , = 2 D . (5.9)
C,at cxax2

The solutions for these two differential equations are:

C, = exp(-X 2Dt) + Ct (5.10)

and Cx = Asin(Xx)+Bcos(Xx) (5.11)
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which therefore leads to the solution:

Cx, = (Asin((Xx) + Bcos(Xx))exp(-,2Dt) (5.12)

where A and B are constants of integration. The most general solution is obtained in a

trigonometric series format:

Cx, = ((An sin(Xnx) + Bncos(hx))exp(-Xnn2Dt)). (5.13)
n=l

The assumption that the liquid in the slab is initially uniformly distributed and that the

surfaces are kept at zero concentration are defined by the initial and boundary conditions

given above. The general equation (5.13) has constants A,, B,, and X, which may be deter-

mined using the boundary and initial conditions. To begin, applying the boundary condi-

tion C = 0 for x = 0 leaves B, = 0, while the condition C = 0 at x = L leaves , n The

initial condition becomes:

Cin,= A,, sinnx(5.14)

in the region defined between 0 < x < L. Using the orthogonality relations from Fourier

analysis, equation (5.14) is multiplied by sinnj ( ) and integrated from 0 to L. Recalling

that:

f sin X sin n d= (5.15)

when p # n and wOhen p = n respectively.

The equation now has the form:
L L

Cin sinn Q2dx = Ap sin( sin (n )dx + A, sin(n ( I)2 d (5.16)

A useful relation that will provide an answer in a better format is given by [Vergnaud

1992]:
pix px. ntxx (n - p)x COSc(n + p)x

2sin_•L)sinml_) = c)C - cos(n )x. (5.17)

Applying this to equation (5.16) and reducing one obtains the following:
[ CinL (nCo xxL CinL[ AL

cos [1 -(-1)"] = (5.18)Snt x L 0 nn 2

Note that all terms where n is even equal zero, and where n is odd A, becomes:

A - 4Cin (5.19)
(2n + I)7r

Therefore the final solution is given by:

4 Cin 1 ((2n + 1)lX) (2n + 1)2  (5.20)
Cx,r = (+s L sinexp 2 Dt (5.20)' t (n+= 1)0LL 2
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A useful quantity to know based upon this analysis is how much liquid is expected to

leave one side of the slab of exposed area A at a given time t, Fo.,. Choosing the face x = 0,

the quantity may be calculated from:

F0,, = AfD ldt (5.21)Fo <1x

At x = 0 equation (5.20) yields after differentiation:

4C= n exp (((2n + 1)2 2 Dt . (5.22)
FX n= oL2

Substituting this relation into equation (5.21) and reducing the result to the simplest

form gives:

Fo., = i 1 + 1 exp Dt(2n +1)2 -D(5.23)
n= o 0(2n + 1)2eL

Of course, the total loss for two exposed faces is just two times the above quantity.

Finally, after a sufficiently long time, all of the liquid which can leave the slab has and the

calculated value is then given by (for moisture loss from two faces):

F. = CiLA. (5.24)

This relation enables us to describe the moisture loss at anytime from the slab in terms

of the absolute total moisture loss possible:
F' -_ = 8 exp( (2n + 1)2 2Dt . (5.25)

F
After a sufficiently long period of time, 0.5<F <1, this relation can be further reduced

to:

F,- F, - exp(-Dt) (5.26)

This relation is very useful in determining the diffusivity of a material from experi-

mental data. When the diffusivity becomes constant, one can calculate it assuming that

this occurs around the time 0.5 = F of equation (5.25).
F,

Now if the slab has an alternative initial concentration, i.e. not quite saturated, and the

surfaces are at a concentration different from the slab but held constant, Cex,, the solution

becomes:

Cext - Cx, _4 1 s (2n + l)rx p(2n + 1I2 2n

Cext-Cin (2n + 1) L L2n=o



Another alternative case occurs if the surface concentrations are held constant at a

given concentration while there is an initial distribution through the slab thickness. Then

the same procedure is followed with only changes in the initial condition. This solution is

also represented in the form of a trigonometric series:

c2 C o exi cosnP- 1 n I nnxP 2 ) 2J) D(5.28)
X.r - Cext = - smn exp L2 O (5.28)

n= n

= L L+ _, smL exp -lD fx)in "Dt(p)sdxp (5.28 cont-)

Using the relations established by these analyses one is able to determine the diffusiv-

ity of a slab under the following assumptions: constant diffusivity with an infinite volume

of the surrounding atmosphere and an infinite rate of evaporation. The three relations

applicable to these conditions are [Vergnaud 1992]:

for short time periods Ft  4D(5.29)
F, - Lz 5

at the half life of the process D = 0.0498, (5.30)
L

and for long time periods In F ) = - i- + In() (5.31)

5.2.4 Diffusion from a Permeable Layer on the Bottom Face and Infinite Evaporation on

the Exposed Upper Face

The next analysis of interest stems from observation in the experimental program, where

sealed specimens did not act perfectly sealed. To treat this case analytically, we assume

that there is a diffusing layer on the base of the slab that is permeable and that the top

exposed face experiences infinite evaporation. The only difference in the analysis is the

presence of the thin permeable layer. The boundary conditions are written to address this

layer. The same governing one dimensional flow equation holds as stated in (5.6). The

boundary conditions are:

t= 0, < x <h, C = C, (permeable layer)

0<x<L, C=O (slab)

t > 0, Co., = CL, = 0 (exposed surfaces)
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where t is time, x is spatial location, h is the thickness of the permeable coating, L is

the thickness of the slab, and the concentrations are as defined earlier.

The solution for the concentration is then given by:
Cx 4Cin 1. nh .1 -- 1nx n2 2., -= I n sin 2L sin L)exp 2 Dt (5.32). = R n = 2 L L

Therefore, the amount of liquid remaining in the slab after some time period is given

by the following:

FP= Cx,,dx (5.33)

where C,, is given by (5.32). This is again similar to the analysis conducted earlier.

As time approaches infinite extent, the amount in the permeable layer becomes constant

at: F. = Ci,h. Like the earlier analysis it is appropriate to write the final content as a nor-

malized quantity [Vergnaud 1992]:
FP" 8L fn{ 1) {sin((2n + 1)7txh)exp ((_(2n + 1)2 n2)Dt)} (5.34)
F. h 2  (2n + 1)2 2L L2

There the total amount of liquid which has left the permeable layer and the slab is:

F. = F, + Fp. (5.35)

The problem with many of the trigonometric series solutions is that they converge very

slowly and may require very high n values. For problems where the diffusivity is not con-

stant then numerical solutions must be relied upon.

5.2.5 Finite Rates of Evaporation

The next types of problems of interest are those where the rate of evaporation is not infi-

nite and the process is transient. This type of problem occurs when the surrounding atmo-

sphere is larger than the slab, and the amounts of evaporated material does not change the

ambient concentration. Another scenario occurs when the ambient environment is not

large but the external conditions are forced to a constant condition. The one dimensional

flow equation again applies as given by equation (5.6), and the boundary conditions are

now given by:

t = 0, -L >x > L,

x < -L or

x>L

C= Cin

C= Cext

(Slab)

(Air)
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These conditions show that the rate of evaporation is equal to the rate that the liquid in

the slab reaches the surface. Therefore, internal diffusion governs. As described earlier the

rate of evaporation is proportional to the difference in concentrations of the surface and the

ambient environment. Earlier the concentration on the surface was denoted by a sub-

scripted o. Without further derivations, the solution to the posed problem is:

Pnx
Cext_ cx, 2Scos L expPDt . (5.36)
Cext - Cin n= 2 + S2+S)cos , L 2

where the p, s are the positive roots of the equation 3,,tanOn = S, and S is a dimension-
ELless number given by:s = DL . The roots of the o, equation are easily determined using a

MATLAB script or from published tables. The total amount of liquid that leaves the slab at

time t is again expressed as a fraction of the infinite loss:
F. - F,1 2S2 exp 2n D . (5.37)

F. n 1 n2(2 2 + S + S) L2

It is easy to ascertain that if the ambient concentration is lower than the slab concentra-

tion evaporation occurs, or if the ambient concentration is higher than the slab concentra-

tion that condensation occurs. The kinetics of the process are again studied applying the

same principles already outlined above.

5.2.6 Steady State Analyses

For the steady state response to either the infinite or non-infinite rates of evaporation prob-

lems the solution process is simplified because the transient term in equation (5.6)

becomes zero. Double integration of the equation and then application of the appropriate

boundary conditions yield the solution.

Cext - CX = (5.38)
Cext  L

and the rate of moisture loss is given by:
DC

F= Cex (5.39)
L

The second problem of interest is that of the steady-state constant diffusivity with con-

stant concentration on one exposed surface and a finite rate of evaporation on the other

exposed surface. Choose the datum surface, x = 0, to correspond to the constant concentra-

tion side, Ci, and the opposite face at x = L as the one with finite evaporation. The concen-
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tration at the surface is denoted as CO while the ambient concentration is Ca,. The

conditions at x = L yield:

ac-Da c = Eo(C-Ce) (5.40)

For the steady state condition the concentration gradient is constant in the slab, and

after integration the above relation yields:

D(Ci C) = E,,(Co -Cext), (5.41)

and the surface concentration is given by:

D Ci - EL Cet (5.42)C = . (5.42)D + LE O,

Using this expression one can derive the rate of transfer of the liquid through the slab

as:
DE (543)

F = (C i - Cxt)D (5.43)

where F is the rate of flow of material, and the other variables have been defined

above.

5.2.7 Summary of Simplified Analytical Analyses
Now the drying problem of constant diffusivity with both finite and infinite rates of evapo-

ration have been addressed. These problems constitute some of the classic partial differen-

tial equation problems where separation of variables and the use of Fourier analysis and

orthogonal functions are used. Applying these means to solve the problems leaves solu-

tions in trigonometric series that may rely on a large number of terms to converge. For

problems of varying diffusivity numerical methods must be used and checked based upon

these analytical expressions. A finite difference code was developed to calculate the

response of a slab with varying diffusivities. The results correlate well with the analytical

solutions presented.

5.2.8 Numerical Analyses
Figure 5.2.1 depicts the change in moisture in a slab with a diffusivity of 3.OE-4 in^2/day

for the SRA mix and 5.0E-4 in^2/day for the reference paste mix, both with a W/C = 0.45.

The diffusivity values were calculated from the mass loss data of the EIS moisture profile
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specimens. The measured moisture content at the first station is in very good agreement

with the calculated response, however because hydration was not taken into account there

is no other manner in which moisture can be consumed and the calculated response has the

moisture content near the insulated surface approach fully saturated conditions. Another

problem which needs to be addressed is the fact that the insulated face indeed lost mois-

ture, albeit at a much lower rate then the exposed surface due to improper sealing. The cal-

culated response made use of the earlier developed solutions for a slab subjected to an

infinite rate of evaporation with a constant external concentration of moisture. Hydration

can be modeled in two separate stages, initially an almost linear relation holds in terms of

moisture consumption and then a dormant period ensues when diffusion governs [Neville

1996]. This is easily incorporated in the numerical model provided that the certain mate-

rial parameters are known from experimental techniques. This is not reported further here.
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Figure 5.2.1 The 7 day mnoisture profile measured and calculated for the W/C = 0.45 mix.

The one and three day calculated responses are closer to the measured results. As time

progresses it becomes increasingly evident that there are two distinct moisture loss fronts.
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Figure 5.2.2 depicts the changes in the moisture profile as a function of a wide range of

values for the diffusivity, and Figure 5.2.3 shows how the moisture varies in a single sam-
. 2

pie through time. The diffusivity has units of ' and the normalized time scale is dimen-

sionless. Note that at the later stages of drying the steady state moisture gradient is linear

through the thickness which causes uniform curling deformations. It is interesting to recall

that the measured di-electric response for the one-half inch specimen also demonstrated

linear behavior for the upper measuring stations. The drying front extending from the bot-

tom changed the response such that it will induce even greater curling deformations do to

the increased non-linearity of the moisture content. Also based upon those results it was

apparent that there was more moisture in the system in general, hence the drying shrinkage

strains experienced by the SRA admixed series would be even less then expected if the

two moisture profiles had been the same and the dominant mechanism was just the reduc-

tion of drying shrinkage at a particular moisture content.

-- D = 0.005 -- D = 0.003 - D = 0.001 - D = 0.0007
a I"dh

"'u

~90

4m80

70

0
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0 0.1 0.2 0.3 0.4 0.5

Depth (inches)

Figure 5.2.2 The calculated moisture profiles for a 1/2" cement slab with
varied values of diffusivity.

5.2.9 Shrinkage Functional
Since the shrinkage in cement paste follows the movement of moisture from the slab sys-

tem, these analyses are applicable to that problem with some slight modification of defini-
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Figure 5.2.3 Changes in the calculated moisture content at particular depths of a
1/2" cement slab through time.

tions of terms. Pickett conducted such an analysis and found good correlation between

these types of expressions and drying shrinkage [Pickett, 1946]. Some experimental data

is required to obtain estimates of some of these parameters. A shrinkage functional

replaces the concentration in equation (5.6) and the boundary conditions are defined simi-

larly. The diffusivity now becomes the diffusivity of shrinkage. It is expected based upon

the results presented in the experimental results section that the value of the diffusivity

changes with the addition of the SRA, because the measured moisture profiles are differ-

ent.

With the developed expressions for shrinkage following the movement of moisture in

the system, we are now capable of calculating how drying shrinkage changes with external

environmental conditions. For a general analysis, a computational scheme is desired using

the finite difference or finite element approach. The numerical technique used for this

study was the finite difference technique. As this approach is well documented in the liter-

ature or covered in most undergraduate curricula no background information concerning

the technique is presented. The program was developed using MATLAB, an available
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commercial mathematical software package. The finite difference approach is able to

account for varying boundary conditions in a very efficient manner. The governing differ-

ential equations are discretized using the calculus of finite differences, and variable diffu-

sivity attributed with concentration changes can easily be modeled for moisture

movement. In order to develop a understanding of shrinkage phenomena a fundamental

understanding of the mechanisms involved is required. So for the purposes of this paper

only constant diffusivity analyses are conducted, and if the results are in considerable

error, then the possibilities of concentration dependence will have to be addressed.

In these analyses an implicit assumption made is the independence of moisture flow

from temperature effects. For typical operational environments this is warranted. How-

ever, for structures that experience large changes in temperature or moisture in a very short

period of time need to account for the coupled phenomena. Luckily in the field of heat and

mass transfer many researchers have studied these effects and their work may be applica-

ble to the current study.

So applying the concepts developed by Pickett, a new functional is defined in terms of

shrinkage and the diffusivity of interest is then associated with drying shrinkage. For the

purposes of brevity, only the one dimensional analysis is presented. The same relations

then developed earlier are now applicable to the shrinkage problem with the new defini-

tions for the evaporative constant and initial and final equilibrium shrinkage values. These

are easily determined experimentally and so the model is semi-empirical in nature. The

complimentary evaporative coefficient accounts for the geometry of the specimen involved

and should be related to the governing dimension, as well as the exposed surface area to

volume ratio. Figure 5.2.4 depicts the new problem in similar form to the one already

solved. The solution to this problem is of course composed of both the steady state and

transient solution. The final form of the shrinkage functional is:
S(x, t) S° +xE(Si - S ° )

(S(x = (k + Eh) + bnsinXnxexp(- 2nkt). (5.44)
n=lI

By using the orthogonality relations one is able to determine the values for bn and the

kroots of the equation tan(Xb) = -k then give the correct values of X,. Here E is the pro-

portionality constant associated with the convective term, and not the compressive modu-

lus elasticity.
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Problem Statement:

as _ las 0 < x < hx; 0<t
,x2 k•- "

Initial Condition: S(O,t) = So, 0 < t

Boundary Conditions: -kdS/dx(hx,t) = E(S(hx,t) - Sinf), 0 < t
S(x,O) = f(x), 0 < x < hx

Figure 5.2.4 Description of the shrinkage functional following diffusional behavior.

5.2.10 Application of the Kelvin and Laplace Equations
An alternative approach to the one taken by Pickett is to directly apply moisture movement

analyses coupled with an understanding of microstructural information with the Kelvin

and Laplace equations to directly calculate the shrinkage strains induced on the system.

Again, for the ease of the discussion the Kelvin and Laplace equation are given below:
(P_ lyyLv

In (p - 2 LV (2.5)
PoJ' RTpr

o' = -2 (2.4)r

where all the terms have been defined in Chapter 2. Table 5.1 depicts the calculated mag-

nitudes of stresses for various sized capillary pores filled with water:

Table 5.1: Theoretical magnitudes of stress calculated using the Kelvin and Laplace
equations.

130

Pore VaporRadius Stress Stress VaporRadius Pressure
(microns) (pascals) (psi) P/P

5000 30 0.00 1.0000



Pore Va orPorea Stress Stress VaporRadius Pressure
(microns) (pascals) (psi) P/Po

2500 59 0.01 1.0000

1250 118 0.02 0.9999

625 236 0.03 0.9998

312.5 472 0.07 0.9997

78.125 1889 0.27 0.9986

39.0625 3778 0.55 0.9973

19.53125 7556 1.10 0.9945

9.76562 15111 2.19 0.9891

4.88281 30222 4.38 0.9782

2.44141 60455 8.77 0.9569

1.22070 120890 17.53 0.9157

0.61035 241780 35.07 0.8385

0.30518 483560 70.13 0.7031

0.15259 967120 140.27 0.4943

Table 5.1: Theoretical magnitudes of stress calculated using the Kelvin and Laplace
equations.

Note how the stress increases with decreasing pore size as discussed earlier. This

information may be of use if the water filled pores at a given equilibrium moisture content

are determined from the moisture analysis. A critical pore size range must be defined with

which to average the hydrostatic stress. There are certain pores which under the conditions

stipulated in the drying shrinkage study will never empty, and may therefore play a larger

role in the drying shrinkage strains experienced. Obviously the larger pores which are

empty play no role at all. Therefore a critical pore size range is defined as made up of all

the gel pores that do not empty under normal drying environments to the upper pore limit

composed of those pores just about to empty. This pore range is used to determine the

average stress and strain that a specimen experiences. The only way to conduct this analy-

sis is through the use of the mercury intrusion poresimetry data, where we have informa-

tion concerning the pore structure of each mix design.



An example calculation is illustrative. Let us examine the pore size distribution of the

W/C = 0.45 reference paste mix and the companion 5% SRA admixed design mix. Figure

4.4.6 in the microstructural analysis section presented the normalized pore distribution for

these test mixes. From the table above it is apparent that pores greater then 1000 ang-

stroms do not actively participate in inducing drying shrinkage strains. For a particular rel-

ative humidity we can calculate which is the upper limit for the pore range. As an example

let us assume that the ambient condition is at 50% RH, therefore by applying Kelvin's

equation the pores that are still active are smaller than or equal to 16 angstroms. We can

calculate what the active pore volume is by taking a the ratio of the evaporable water to the

remaining water after a long time period [Nagataki et al., 1982, Nagataki et al., 1983]. To

obtain this information we must have some experimental information because the mercury

poresimetry technique is unable to measure pores typically below 20 - 30 angstroms. Old

samples, in excess of 90 days may be baked in an oven at a low enough temperature to

obtain the required evaporable water content without degrading the delicate CSH sheets.

Using this information along with the assumption that the difference in pore solution sur-

face tensions remain relatively constant through time we can calculate the predicted

response for this system. Typically it is useful to normalize the pore volume by dividing

through with the unit cement paste volume [Nagataki et al., 1982, Nagataki et al., 1983]. If

all other parameters are comparable we can expect the reduction in shrinkage to be close

to the ratio of the surface tensions. Indeed the long term benefits comparing these two

mixes are very close to that value. The small difference calculated may occur due the sec-

ond order pore wall-vapor interfacial energy effects. Due to results from wetting-rewetting

experiments it is apparent that the shrinkage reducing admixture comes out of solution and

may coat the pore walls [Dallaire et al. 1997]. Comparison of residual compressive

strengths and by applying a Griffith type relation, one should be able to calculate the dif-

ferences in the solid-vapor interfacial energies. However these types of analyses have not

been conducted yet.

5.3 Curling Deformations

The curling deformations in slabs may be caused by nonuniform distributions of tempera-

ture and moisture. This non-uniformity causes internal stresses to develop due to restraint
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between different regions of the slab. The slab expands or contracts due to the local inter-

nal moisture content. These strains occur even when no external forces are applied to the

system, i.e. gravity, tires, and/or external restraints. Provided that the stresses do not insti-

tute any changes in the diffusion process, classical linear elastic analysis holds and drying

shrinkage or thermal stresses are super-positionable.

For the problem of a slab drying from one surface, i.e. a plate resting on the ground,

one dimensional moisture flow is expected as discussed in the last section. Typically the

deformations are small on the scale of the length of the slab, so small deformation theory

applies. The following relations for strain apply [Pickett 1946, Sih et al. 1986]:

EyV= EV+ KIX

E = E. + K.x (5.45)
0 0

yV =  
YyZ + + IyX"

In equation (5.46), "e, "e, and 'y.: are the strain components, while "~ K, K, and ",

are the curvatures experienced at the mid-plane of the slab. The coordinate system is

defined as y, and z lying in the plane of the slab while the x-direction is in the direction of

the top surface. This is a right handed coordinate system. The mid-plane of the plate is

defined at x = 0. The strains may be weighted through the slab thickness -hx < x < hx and

are defined as follow:
hh

E = ~ J Ez(x)dx (5.46)
-hh

hh

and K, = jxz(x)dx. (5.47)
-hA

Of course similar expressions ap•ply for the other strains and curvatures. From linear

elasticity, we know that:

EV, (O'. - Z) + a(T - To) + S (5.48)

E z = (az- -av) + a(T- To) + S (5.49)

and Y,. 2(l+u) 0+,. (5.50)E

where v and E are the Poisson's ratio and modulus of elasticity respectively, a is the

coefficient of thermal expansion, T is the temperature, and S is the shrinkage strain deter-

mined from the analyses conducted above. Next one calculates the resulting temperature

and shrinkage forces through the slab thickness as:
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N aEJ(T-T,)dx
S(I
-hh

The moments caused

and (5.52) by x within the

and

Therefore the general

are given by:

h4

SN = -v)Sdx . (5.52)
-h

by these forc~s are determined by multiplying equations (5.51)

integral. The results are:
hh

TM = E x(T- To)dx (5.53)
(I -v)-h

-hh

hh

sp Es fxSdx .

expressions br strains and curvatures the midpoint

0 F-= 0 E. h-V)f + 'N 1;0 0-E -h (5.55)

"K = oKIC 3 (1 -v)[M + sM];oK = 0. (5.56)
2EhX

Using the above expressions and enforcing global equilibrium one is able to establish

the equations for the general strain components:
= -(1V)= N + S N+ 3 xTM +SM] 0. (5.57)

2Ehx (hx) 2

This describes a one dimensional analyses which is applicable due to the symmetry of

the system, the strain varies solely in the x-direction. Using these expressions, it is easy to

then compute the internal stresses induced on the solid due to the temperature and shrink-

age. These stresses are given by:
E, =( [E + VE - (1 + )(T-To)-(1 +U)S] (5.58)

(1-.2)

E
(.- = + V •,v - a (l +1))(T- To)-(1 + 2)S]

(1 -u )
(5.59)

o E :. (5.60)
S 2(1 + 1)) y

Next substitute the expressions determined above for the shrinkage strains and note

that the shear stress vanishes as it must, to yield:

1 r S 3x T s [ M E E
,. = = •-[ N+ N]+ 3x M+M] E (ETo) S. (5.61)

2hx 2(hx) 3 (1 - u) (1 -_)
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With this, the stresses and strains have been defined and the elastic analysis is con-

ducted easily with the introduction of the strain field associated with the drying shrinkage

determined in the previous analysis including uncoupled temperature effects if necessary.

To begin let us assume that temperature plays a lesser role and the problem of interest

is the deformation induced in the cement slab due solely to the non-uniform distribution of

moisture through it thickness caused by the one dimensional flow out the top surface.

Since the flow of moisture in a cement slab drying from only one surface is believed to be

the same as that occurring in either half of a slab of twice the thickness drying from two

surfaces, it is logical to assume that the expressions developed for the drying shrinkage of

the slab drying from only one surface will apply equally well for either half of the slab

drying from two exposed surfaces. Therefore, the plane which lies mid-way between the

two faces is taken as the datum x = 0 (See Figure 5.2.4). For a slab drying from two sides

with equal rates of evaporation, the two sides experience symmetric curling forces and

hence restrain each other from curling. This is substantiated with the small drying shrink-

age prisms that had two sides exposed in multiple environmental conditions with no out of

plane deformations. They experienced uniform shrinkage strains.

However for the slab with a single exposed surface, there are no restraining forces

present and curling deformations are expected. If the slab is completely unrestrained lying

on an infinitely hard surface, neglecting friction between the slab and the interface and

gravity loads, then the only contributing source for the unbalanced curling forces are due

to the differential strains induced by drying shrinkage. A simplified analysis is to address

the longitudinal strains first and then expand the analysis to include the lateral portion.

Similar to the heat transfer problem, the first step is to determine the stress which occurs

due to complete longitudinal support/restraint. This stress is defined as:

Pa. = S. (5.62)

The average value of Pa,. is determined by:

P = - E fSdx (5.63)z (1 -u)h x
0

and so the sum of these two parts of the stress is:
h,

, = E S- dxl. (5.64)
(1-i) hx0
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The moment that is produced by this stress is of course determined by multiplying the

stress by x and integrating through the thickness. This is the moment which occurs to pre-

vent curling deformations and is given by:
h,

M = PPaxdx. (5.65)
0

Of course for the case of interest there is no external restraint and so this moment must

be removed by adding an equal but oppositely signed moment. Using this moment expres-

sion and the expressions for longitudinal restraint and average longitudinal restraint one is

able to determine the stress w ich occurs by applying elementary beam t eory:

(= •, S+ - 4)fSdx +(6- 12x( Sxdx . (5.66)

For slabs with comparable length to width ratios, a, is of similar form. If one applies

simple beam theory using these expressions it is possible to calculate the expected curling

deformations. Since the system is symmetric about the center-line of the longitudinal axis

of the slab, then the maximum curling deformation occurs at the center and is calculated

by:

max 1 2f Sxdx - Sdxi (5.67)[max 2-, (hi 2 x0 J
where 1 is the length of the slab and the rest of the terms are already defined above.

The slightly more complicated analysis including curvature effects follows a similar

analysis and is not presented in full. Using these developed expressions, one is able to cal-

culate the expected curling deformations for slabs with and without the addition of the

SRA. The key differences in the analyses are the determination of the diffusivities of each

slab respectively for input into the shrinkage model discussed above. If the analysis for the

drying shrinkage strain is conducted using the Kelvin and Laplace equations following the

one dimensional flow of water from the system and using a critical pore size range, then

that is what is used as the shrinkage functional.

An illustrative example is helpful to describe the performance of the analysis com-

pared to actual experimental results. For early time periods the variation of strain through

the thickness of a sample may be modeled using a second order function. At later ages

when the steady state solution governs, the behavior is better approximated with a linear

variation in strain through the thickness of the member. So two time periods are then con-
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sidered, and early age response around 28 days and the response at the later age of 90

days. The second age was picked based upon the qualitative results described in the mois-

ture profile study. The slope at that point in time would have been linear if not for the pres-

ence of the second drying front. Figure 5.3.1 depicts the variation in moisture content for

the slab at 28 and 90 days. Based upon the response of the system, correlations between

-- 28 day Reference -0-90 day Reference
-6-28 day SRA --- 90 day SRA

100

90

80

70

60

50
0 0.1 0.2 0.3 0.4

Depth (Inches)
0.5

Figure 5.3.1 The calculated moisture profiles for a 1/2" cement slab with a W/C = 0.45.

the drying shrinkage behavior at a particular environmental condition and the shape of the

moisture profile may be used to map the strain field. A second order polynomial is fitted to

the strain field and then used for the functional of strain in the analyses described above.

Comparisons between the center-line deflections in time for the reference paste and 5%

SRA admixed mixes are presented in Table 5.2 below.

Deflections DeflectionsCalculated Measured
(inches) (inches)

Age 28 Day 90 Day 28 Day 90 Day

Reference 0.551 0.712 0.205 0.65

SRA 0.34 0.508 0.095 0.33

Table 5.2: Comparison of model and experimental center-line deflections at 28 and
90 days for the W/C = 0.45 reference and SRA admixed mixes.
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As described earlier, there is a problem with calculating the response of the system

when the hydration reactions are still actively occurring. The early age response should

take moisture loss into account. Still the differences experienced by the SRA admixed

series at 28 days is larger than one would expect. In order to accurately describe the mois-

ture profile for these types of mixes, one may have to account for inter-diffusional flow

induced by the concentration gradients that arise as drying occurs. As the moisture content

reaches a critical concentration, the SRA comes out of solution and establishes a second-

ary potential field for moisture movement. This can easily be incorporated in the computa-

tional model. The results at 90 days are better for the reference mix with differences in the

measured and calculated response of nine percent. It is hypothesized that the results would

be even closer if the effects of creep due to self weight are accounted for. The later age

response for the SRA admixed mix experience differences of about thirty five percent.

Again I strongly believe that one must account for the inter-diffusion of water and the con-

centrated SRA through the thickness of the slab.

5.4 Summary
The fundamental theory of capillary tension and its effect on the drying shrinkage

response of drying systems was presented. This information was required to establish the

relative changes in the differential strains through the cement paste slab thickness. The key

assumptions required to model the curling phenomena are that the system acts in a linear

elastic manner, and the shape of the strain field follows the shape of the moisture profiles

established using a one dimensional fluid flow analysis. Temperature and moisture are

assumed to be uncoupled and the stresses arising from curling restraint or self weight do

not affect the manner in which diffusion occurs. The expressions developed are for a one

dimensional analysis, but extrapolation of the procedure to multi-dimensions is easily

accomplished. The results of calculated drying shrinkage strains versus the measured

strains are fairly good. Yet the curling model is found to have some deficiencies in

accounting for changes in the shape of the moisture profile established by inter-diffusional
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flow of pore water and the SRA polymer. Further work in accounting for the separate peri-

ods of hydration alid the subsequent removal of moisture as well as the inter-diffusional

flow problem are currently being addressed but will not be included in this thesis.
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Chapter 6

Conclusions and Future Research Needs

6.1 Summary

The problem addressed in this thesis is that of curling deformations induced in cement

slabs cast on grade. As a result of the differential drying rates from the top to the bottom

surfaces, a non-uniform moisture profile develops. Since cement paste experiences

changes in volume depending on the ambient environmental conditions, this non-uniform

moisture profile produces differential strains through the thickness of the slab and curling

deformations occur. For symmetrically exposed systems no out of plane deformations

occur. However there are still differential strains through the thickness which may cause

microcracking depending on the rigidity of the system.

To address this complex problem, a multiphased study combining experimental tests

and analytical developments was conducted. The benefits gained from using the shrinkage

reducing admixture for drying shrinkage strains have magnitudes related to the ratio of the

pore solution surface tensions. Reductions in shrinkage strains varied somewhat with mix

design, but the optimal benefits occurred in the mid to high water-to-cementitious material

ratios. For these mixes the range in long term reductions in drying shrinkage are from 35 -

45%.

The mechanical property tests demonstrated that there is a variable effect on compres-

sive strength and compressive modulus of elasticity due to the addition of the shrinkage

reducing admixture depending on the mix design. Generally with the addition of the

shrinkage reducing admixture in concrete samples, a five to ten percent reduction in com-

pressive strength with little change in modulus of elasticity occurs. The results from the
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paste study provide no such clear indication. For many of the mixes the strength increased,

perhaps due to the reduction in internal microcracking caused by self desiccation and dif-

ferential shrinkage from the interior to the exterior walls of a specimen.

The microstructural analyses provided very useful information concerning changes

induced in the pore size distributions of both reference and SRA admixed mixes. As

expected the pore structure is refined with decreases in water-to-cementitious ratio.

Greater refinement occurs for the silica fume admixed mixes. Variable changes in terms of

refinement/coarsening of the microstructure occurred for the neat cement paste mixes with

the addition of the shrinkage reducing admixture. The technique used was unable to pro-

vide detailed information about the smallest pore sizes in any given mix.

The flow of moisture from the SRA admixed test specimens was different then the

companion reference as determined using the newly developed electrochemical imped-

ance spectroscopy technique. Samples with the SRA exhibited more uniform moisture

content through a majority of the thickness with slightly higher gradient occurring at the

exposed surface. The greater uniformity through the thickness provided additional

restraint against curling deformations. This occurs because a greater proportion of the slab

is shrinking at the same rate, which then acts like a monolithic slab restraining the curling

tendencies of the non-uniform moisture gradient above it. The measured center-line curl-

ing deformations for the specimens admixed with the SRA were less than the companion

reference specimens. The magnitudes of reductions are greater then those predicted due to

drying shrinkage reduction alone. The change in the moisture content may occur due to an

additional mechanism. As the SRA reaches a critical concentration in the pore solution it

is believed that SRA then precipitates out and coats the pore walls. This then may cause

not only a change in the surface tension exhibited within the pore but also a change in the

contact angle. Absorption/desorption tests should be conducted to exam changes in the



rates of adsorption and desorption with time. Changes in both types of behavior should

occur if the tendency of the SRA is to remain adsorbed on the pore wall as opposed to

going back into solution.

The elastic analyses of a cement slab subjected to one dimensional moisture flow from

the upper exposed surface was conducted and compared with experimental results. Linear

elasticity is a simplified assumption for cementitious composites which exhibit very non-

linear material response due to internal microcracking and differences in the tensile and

compressive strengths. Therefore the simplified analyses is able to model the deformation

characteristics of a cement slab cast on an infinitely hard foundation without accounting

for creep, interfacial friction between slab and subgrade, and cracking. However within

these limitations the modeled deformations match fairly well with the experimental results

at later ages for the reference mixes but less well for the SRA admixed mixes. Shrinkage

was said to follow the movement of moisture from the slab with a constant diffusivity and

the moisture transport is governed by diffusional flow. Some complications experienced

were that the seal on the experimental samples was permeable and drying occurred from

the bottom and side faces at a reduced rate compared to the exposed upper surface. The

difference in experimental versus analytical results probably partially stem from this

occurrence. Other possible causes for differences in behavior could be attributable to the

internal sink of moisture due to hydration. This is especially true for lower water-to-

cementitious materials where self-desiccation is sure to occur.

6.2 Conclusions

The conclusions drawn based upon both the experimental and analytical developments

are:

* The introduction of a drying shrinkage reducing admixture into a wide variety of mix
designs reduces the long term drying shrinkage strains experienced in low relative
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humidity environments. The reductions in shrinkage strains become less significant
at very high relative humidities.

* The presence of the shrinkage reducing admixture has variable effects on the com-
pressive strength and compressive modulus of elasticity. Many of the test mixes had
improved strengths with reduced compressive moduli.

* The use of a drying shrinkage reducing admixture changes the curling behavior of
neat cement paste slabs. Reductions in curling are typically in excess of 60% within
the first 90 days and then decrease at later ages.

* Based upon the extensive microstructural analysis conducted on both reference and
shrinkage reducing admixed mixes there is a variable effect on the pore size distribu-
tions. Typically silica fume mixes with and without the SRA have very similar distri-
butions, but the neat paste mixes with and without the SRA experience both refined
and coarsened microstructures depending on the particular mix design.

* The measured and calculated curling deformations suggest that there are other mech-
anisms involved besides the reduction in drying shrinkage at a given depth and mois-
ture content.

* The shape of the moisture profile becomes more uniform due to the addition of the
shrinkage reducing admixture. Since a greater portion of the slab is subjected to sim-
ilar shrinkage strains, that portion acts as a restraint against any curling tendencies
induced by high gradients present at the exposed surface.

* The newly developed testing technique to determine moisture content as a function
of time and environmental history applying electrochemical impedance spectros-
copy is very efficient and sensitive to changes in moisture content and damage prop-
agation.

6.3 Future Research Needs

Based upon tht.e ,nclusions drawn at the close of this study, it is evident that more work is

required to fully characterize the effects of using the shrinkage reducing admixture to

reduce curling deformation. Tests with curling specimens with greater length to width

ratios should be conducted to examine edge effects. The analyses conducted were for one

dimensional flow and deformation, two and three dimensional analyses should also be

conducted. The effects in changes of the subgrade modulus with the slab response should

also be tested. Creep is an important phenomena that all cementitious composites exhibit

and needs to be accounted for. The constant diffusivity and uncoupled temperature and

moisture flow conditions should be re-examined. Many structural elements in the field

may experience sufficient transient temperature and moisture changes that there is a cou-
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pling effect.

Further tests are required with the electrochemical impedance spectroscopy measuring

technique to obtain the correlation between changes in dielectric response with moisture

content. It is suggested that larger samples be tested to ascertain the extents of size depen-

dence on deformations and moisture transport response.The addition of restraining parti-

cle inclusion such as coarse and fine aggregate should be modeled with changes in the

moisture and shrinkage models to account for bleed pathways and increased overall poros-

ity. Finally, similar tests and analyses for mortar and concrete samples are needed. These

tests would be more representative of real applications.
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Appendix I

The tables attached in this Appendix are those which are referenced in the body of the text

of this report. Tables A. 1.1 through A. 1.20 provide the shrinkage data obtained from the

testing of the platelet cement paste specimens at various constant relative humidity envi-

ronments. The shrinkage values are presented in terms of percentage shrinkage and the

age is given in days. TablesA. 1.21 through A. 1.40 provide the companion mass loss infor-

mation from the same specimens used in the shrinkage study. Mass loss is presented in

terms of a percentage, while again the age is given in terms of days from casting. The last

three tables included provide a succinct summary of the mechanical properties obtained

from the different mix designs. The units appropriate for each table are presented in the

table itself.

Table A.1.1 Shrinkage values of the WYC=0.65 Referernce test series.
Shrinkage Is preosnted In (%)

Age (days) 100% RH 8% %RH
-0.01
-0.02
-0.023
-0.02B
-0.035
-0.011
-0.031
-0.016
-0.02

0.05
0.071
0.097
0.095
0.102
0.128
0.105
0.13
0.132

75% RH
0.15267
0.17933
0.19257
0.20133
0.20733
0.225
0.21733
0.24133
0.24733

63%RH
0.182
0.215
0.225
0.234
0.235
0.255
0.255
0.2655
0.281

42% RH
0.24133
0.282
0.29867
0.31 B67
0.3366BB7
0.36665557
0.394
0.406
0.40667

Shrinkage Values of
Shrinkage Is preamnted
100% RH 89% RH
-0.002 0.02733
-0.013 0. 04733
-0.013 0.06857
-0.017 0.07133
-0.019 0.08857
-0.783 0.098
-0.809 0.083
-0.797 0.1
-0.811 0.107

the WC=0.65 5 % SRA test series.
In (%)
75% RH 63% RH 42% RH
0.094 0.09733 0.128
0.115 0.11857 0.15067
0.122 0.132 0.15933
0.13 0.13857 0.1 6067
0.132 0.13867 0.16867
0.14 0.158 0.17867
0.158 0.16333 0.19467
0.151 0.15257 0.202
0.175 0.17133 0.216
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Table A.12

Age (days)
7
14
21
28
35
42
56
70
90



Table A.1.3 Shrinkage values of the W/C=0.65 7.5% SF test series.
Shrinkage is presented in

Age (days)
7
14
21
28
35
42
56
70
90

120

100% RH
-0.039333
-0.030667
-0.039333
-0.033667
-0.028
-0.053333
-0.018
-0.034
-0.027333
-0.044667

88 % RH
0.048
0.0906667
0.0986667
0.1193333
0.1083333
0.0973333
0.1413333
0.176
0.126
0.1146667

Table A.1.4 Shrinkage values of the W/C=0.65 7.5% SF & 5% SRA test series
Shrinkage is presented in (%)

Age (days)
7
14
21
28
35
42
56
70
90
120

100% RH
-0.029333
-0.024
-0.029333
-0.024
-0.018667
-0.038667
-0.023333
-0.022
-0.030667
-0.034

88 % RH
0.01
0.0613333
0.0646667
0.08
0.07
0.06
0.0886667
0.086
0.078
0.074

75% RH
0.074
0.114667
0.122
0.135333
0.142667
0.15
0.153333
0.149333
0.148
0.150667

63 % RH
0.056667
0.134667
0.144
0.149
0.157
0.161333
0.161333
0.17
0.163333
0.170667

42% RH
0.14667
0.19
0.202
0.22533
0.236
0.24667
0.24867
0.26667
0.25867
0.25533

150

(%)
75% RH
0.150667
0.232
0.246
0.27
0.280667
0.291333
0.296667
0.32
0.331333
0.329333

63 % RH
0.168
0.275333
0.298667
0.312
0.325
0.331333
0.329333
0.334667
0.339333
0.345333

42% RH
0.27133
0.348
0.37267
0.41667
0.44267
0.472
0.49333
0.51067
0.50467
0.53533



Table A.1.5 Shrinkage values of the W/C=0.55 Reference test series.

Age (days)
0
7
14
21
30
37
42
54
63
102

Shrinkage is presented in (%)
100%RH 88%RH 75%RH
0 0 0
0.001117 0.02255 0.06681
-0.003318 0.04565 0.10575
0.000547 0.04841 0.11343
-0.002224 0.05061 0.1255
-0.002192 0.05226 0.13591
-2.2E-06 0.05171 0.14305
0.000564 0.05501 0.16883
0.001643 0.06162 0.17103
-0.006074 0.07537 0.19353

63% RH 42% RH
0
0.10589
0.16241
0.17503
0.18548
0.19208
0.19151
0.19977
0.20417
0.20855

0
0.16437
0.23508
0.24761
0.26992
0.28025
0.28349
0.30035
0.30851
0.34172

Table A.1.6

Age (days)
0
7
14
21
30
37
42
54
63
102

Shrinkage values of
Shrinkage is presented
100% RH
0
0.004356
0.004377
0.004377
0.004399
0.004421
0.00441
0.004415
0.004399
0.004432

88% RH
0
0.02285
0.02269
0.02265
0.02262
0.02261
0.0226
0.02257
0.02252
0.02245

the WIC=0.55 & 5%
in (%)
75% RH 63% RH
0
0.0341
0.03369
0.03359
0.03345
0.03335
0.03328
0.03309
0.03305
0.0329

0
0.05042
0.04979
0.04969
0.04963
0.04961
0.04961
0.04955
0.04952
0.04947

SRA test series.

42% RH
0
0.10357
0.15515
0.16502
0.16888
0.17436
0.17436
0.1804
0.18259
0.19302
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Table A.1.7 Shrinkage values of the W/C=0.55 & 7.5% SF test series.
Shrinkage is presented in (%)

Age (days)
0
7
14
21
28
35
42
56
70
90

100% RH
0
-0.01
-0.03867
-0.02767
-0.01667
-0.018
-0.01
-0.00867
-0.01333
-0.022

93 % RH
0
0.098
0.110667
0.132
0.145333
0.138
0.134333
0.135333
0.128
0.122667

78% RH
0
0.20933
0.25133
0.25533
0.266
0.26467
0.294
0.302
0.30733
0.30667

66 % RH
0
0.25933
0.29733
0.30333
0.30667
0.31467
0.31533
0.34
0.328
0.33333

42% RH
0.0000
0.3630
0.4110
0.4250
0.4390
0.4630
0.4800
0.4870
0.4910
0.4940

Table A.1.8 Shrinkage values of the W/C=0.55 & 7.5% SF & 5% SRA test series.

Age (days)
0
7
14
21
28
35
42
56
70
90

Shrinkage
100% RH
0
-0.008
-0.03333
-0.02333
-0.01333
-0.014
-0.01333
-0.016
-0.01733
-0.02267

is presented in (%)
93% RH 78% RH
0 0
0.077333 0.138
0.087333 0.16533
0.108667 0.16333
0.106667 0.16733
0.104667 0.16867
0.104667 0.18533
0.104667 0.19333
0.097333 0.20533
0.092667 0.206

66% RH
0
0.14933
0.17
0.172
0.17133
0.17733
0.17733
0.19533
0.18867
0.19333

42% RH
0
0.184
0.21333
0.21933
0.22267
0.232
0.24467
0.254
0.25067
0.24067
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Table A.1.9 Shrinkage values of the W/C=0.45 Reference test series.

Age (days)
0
7
14
21
28
35
42
49
56
70
130

Shrinkage is
100% RH
0
-0.009924
-0.011581
-0.01544
-0.013784
-0.018764
-0.017636
-0.018748
-0.019297
-0.013236
-0.022069

presented in (%)
88% RH
0
0.033678
0.038643
0.03809
0.041962
0.048035
0.047501
0.041964
0.0486
0.046382
0.052454

75% RH
0
0.07438
0.08958
0.08306
0.09827
0.10806
0.10968
0.11457
0.1249
0.13795
0.14122

Table A.1.10 Shrinkage
Shrinkage is

Age (days) 100% RH
0 0
7 -0.013672

14 -0.01586
21 -0.019685
28 -0.017497
35 -0.016947
42 -0.021319
49 -0.020772
56 -0.020228
70 -0.018581
130 -0.027859

values of the W/C=0.45 & 5% SRA test series.
presented in (%)
88% RH
0
0.029526
0.036628
0.035568
0.041581
0.046508
0.044852
0.040474
0.048669
0.046484
0.051411

75% RH
0
0.05024
0.06718
0.06771
0.07701
0.08301
0.08574
0.09394
0.0994
0.11196
0.11579

63% RH
0
0.094634
0.112807
0.107831
0.12326
0.127114
0.126577
0.131511
0.135418
0.138702
0.143093

42 % RH
0
0.11373
0.13154
0.12776
0.14071
0.14448
0.14503
0.14826
0.14827
0.15366
0.16663

153

63% RH
0
0.143418
0.168172
0.164887
0.181941
0.187439
0.188538
0.192401
0.195148
0.202341
0.204506

42 % RH
0
0.2083
0.23439
0.23387
0.25181
0.2578
0.26215
0.27193
0.27467
0.28064
0.28445



Table A.1.11 Shrinkage Values of the W/C=0.45 + 7.5% SF test series.
Shrinkage is presented in (%)

Age (days)
0
7
14
21
28
35
42
56
70
90

100% RH
0
-0.038667
-0.024667
-0.024
-0.023333
-0.027333
-0.031333
-0.035333
-0.034667
-0.043333

88 % RH
0
0.065333
0.096667
0.099333
0.1
0.100667
0.108667
0.125333
0.098
0.092667

75% RH
0
0.17
0.215333
0.226667
0.233333
0.235333
0.234
0.238667
0.245333
0.244667

63% RH
0
0.21267
0.24333
0.26133
0.262
0.27933
0.266
0.28667
0.28667
0.27933

39% RH
0
0.27867
0.31933
0.34867
0.368
0.372
0.382
0.416
0.41733
0.42267

Table A.1.12 Shrinkage
Shrinkage is

Age (days) 100% RH
0 0
7 -0.022667
14 -0.002667
21 -0.001667
28 -0.000667
35 -0.005333
42 -0.01
56 -0.012667
70 -0.014
90 -0.020667

Values of the W/C=0.45 + 7.5% SF & 5% SRA test series.
presented in (%)
88 % RH
0
0.06
0.088667
0.096667
0.094667
0.098667
0.104667
0.114667
0.092667
0.086

75% RH
0
0.133333
0.170667
0.184
0.186667
0.185333
0.185333
0.192667
0.196667
0.198

63 % RH
0
0.16267
0.18733
0.2
0.20267
0.206
0.20133
0.21067
0.22067
0.218

39% RH
0
0.172
0.209
0.218
0.229
0.229
0.232
0.238
0.242
0.25
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Table A.1.13 Shrinkage values of the W/C=0.35 Reference test series.
Shrinkage is presented in (%)

Age (days)
0
7

14
21
28
35
42
49
97

100% RH
0

-0.009873
-0.007675
-0.002737

-0.00768
-0.000545
-0.000547
-0.008222
-0.008771

88% RH
0

0.046748
0.053355
0.053919
0.051694
0.057743
0.062153
0.052248
0.061055

75% RH
0

0.091415
0.110152

0.12448
0.136608
0.140472
0.153707
0.160874
0.184039

63% RH
0

0.15572
0.19154
0.20253
0.20638
0.21135
0.21633
0.21741
0.22679

42% RH
0

0.23175
0.25973
0.27128
0.2795

0.28555
0.28828
0.29323
0.31354

Table A.1.14 Shrinkage values of the W/C=0.35 & 5% SRA test series.
Shrinkage is presented in (%)

Age (days)
0
7

14
21
28
35
42
49
97

100% RH
0

-0.012024
-0.016939
-0.012548
-0.015848
-0.014757
-0.019672
-0.021863
-0.028428

88 % RH

0.032396
0.035654

0.0373
0.038405
0.046602
0.040578
0.034542
0.044436

75% RH 63% RH 42% RH

0.068718
0.084657
0.099505
0.109418
0.113816
0.122626
0.13088

0.144638

0.10979
0.12956
0.13834
0.14438
0.14767
0.15042
0.15372
0.16197

0
0.14105
0.16732
0.17389
0.17937
0.18155

0.1843
0.18648
0.19524
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Table A.1.15 Shrinkage values of the W/C=0.35 + 7.5% SF test series.
Shrinkage is

Age (days) 100% RH
0

14
21
28
35
42
56
70
90

0
-0.050667

-0.042
-0.042
-0.042
-0.046

-0.052667
-0.075333

-0.058

presented in (%)
88% RH 75% RH

0
0.05933
0.07933
0.07867

0.078
0.08

0.078
0.056

0.06467

0
0.188

0.20667
0.204
0.226

0.21133
0.226
0.214
0.236

Table A.1.16 Shrinkage values of the W/C=0.35 & 7.5% SF & 5% SRA test series.
Shrinkage is presented in (%)

Age (days) 100% RH

14
21
28
35
42
56
70
90

-0.023333
-0.012

-0.006667
-0.006
-0.012

-0.019333
-0.058667
-0.023333

88% RH 75% RH 63% RH

0.05333
0.078

0.08533
0.08

0.08133
0.07867

0.052
0.068

0.13867
0.154

0.16467
0.16333

0.156
0.16267

0.15
0.174

0
0.14867

0.156
0.17333

0.174
0.172
0.172

0.15133
0.17267

156

63 % RH
0

0.232
0.248

0.25533
0.262

0.25733
0.26333

0.238
0.26267

42% RH
0

0.288
0.31

0.322
0.334

0.32867
0.34

0.32933
0.348

42% RH
0

0.18133
0.204

0.21333
0.222

0.22467
0.226

0.20867
0.22733



Table A.1.17 Shrinkage values of the W/C=0.25 Reference test series.
Shrinkage is presented in (%)

Age (days)
0
7
14
21
28
35
42
49
56
70

100% RH 88% RH
0

-0.162209
-0.187453
-0.202395
-0.202395
-0.222102
-0.202474
-0.232723
-0.159362
-0.150279

0
0.014911
0.015367
0.004724
0.012293
0.030506
0.052987
0.034717
0.054865
0.047468

75 % RH
0

0.30457
0.29342
0.30396
0.31292
0.31437

0.3466
0.3114

0.34964
0.35197

63% RH 42% RH
0 0

0.328347 0.3543012
0.332764 0.3684439
0.363038 0.3879343
0.379721 0.3960869
0.380957 0.402457
0.401706 0.4188798
0.366571 0.4068996
0.413178 0.4421977
0.410706 0.4527754

Table A.1.18 Shrinkage Values of the W/C=0.25 & 5% SRA test series.
Shrinkage is presented in (%)

Age (days)
0
7
14
21
28
35
42
56
70
90

100% RH
0

0.0000
-0.1096
-0.1574
-0.1791
-0.1765
-0.1726
-0.1625
-0.1726
-0.1344

88% RH
0

0.0000
0.0696
0.0643
0.0569
0.0718
0.0858
0.1117
0.1204
0.1289

75 % RH
0

0.0000
0.2113
0.2229
0.2312
0.2407
0.2504
0.2744
0.2738
0.2807

63% RH 42% RH
0 0

0.0000 0.0000
0.2364 0.2820
0.2528 0.3065
0.2792 0.3164
0.2924 0.3242
0.2990 0.3286
0.3211 0.3495
0.3343 0.3629
0.3331 0.3673
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Table A.1.19 Shrinkage values of the WI/C=0.25 & 7.5% SF test series.
Shrinkage is presented in (%)

Age (days)
0
7
14
21
28
35
42
49
57
71
91

100% RH
0

-0.074667
-0.076

-0.065333
-0.064

-0.063333
-0.064667
-0.069333

-0.074
-0.073333

88% RH
0

0.01i 133
0.02267

0.026
0.03733
0.04333
0.04133
0.05133
0.04533
0.05867
0.03867

75 % RH
0

0.011
0.038
0.051
0.067
0.075
0.081
0.081
0.082
0.085
0.092

Table A.1.20 Shrinkage values of the W/C=0.25 & 7.5% SF & 5% SRA test series.
Shrinkage is presented in (%)

Age (days)
0
7
14
21
28
35
42
56
70
90

100% RH 88% RH 75% RH
0 0 0

-0.02
-0.04
-0.04

-0.024
-0.024667
-0.021333
-0.024667
-0.034667
-0.039333

0.0273
0.0427
0.0473
0.0633
0.0593
0.0640
0.0647
0.0710
0.0680

0.0887
0.1173
0.1280
0.1447
0.1513
0.1640
0.1680
0.1730
0.1740

63% RH
0

0.13067
0.146

0.15133
0.16867
0.17667

0.178
0.17667

0.186
0.18267

42% RH
0

0.15867
0.18

0.188
0.202
0.21

0.21333
0.21333
0.21233
0.21133
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63% RH
0

0.164
0.18467

0.19
0.21067
0.21333
0.21533
0.21933
0.21733
0.22867
0.22067

42% RH
0

0.22
0.24267

0.256
0.268
0.278

0.28133
0.282

0.28933
0.28467

0.28



Table A.1.21 Mass loss valuse of W/C = 0.65 Reference test series.
Mass loss is presented in (%)

Age (days)
0
7
14
21
28
35
42
49
52
70
90

100% RH
0

-6.88036
-8.12017
-8.52103
-8.21586
-8.28763
-8.36344
-8.41629
-8.52716
-8.81842
-8.93123

88 % RH
0

6.22164
6.29313
7.25209
7.20529
7.22145
7.30052

7.1198
7.20624
7.14401
7.15903

75% RH 63% RH 42% RH
0

9.79633
10.3386
10.6139
10.8099
10.8726
10.9414
10.8935
10.8225
10.6238

11

0
11.8689
12.4357
12.8285
13.1868
13.2908
13.4066
13.5219
13.5676
13.4975
13.6359

0
13.5694
14.4019
14.5594
14.4414

14.237
13.954
13.828

13.8044
13.7651
14.1189

Table A.1.22 Mass loss valuse of W/IC = 0.65 & 5% SRA test series.
Mass loss is presented in (%)

Age (days)
0
7
14
21
28
35
42
49
56
70
90

100% RH
0

-4.44023
-5.0948
-5.3203

-5.35154
-6.63481
-5.35154
-4.82678
-4.82648
-5.14452
-5.14452

88 % RH
0

8.47231
8.8462
9.5698

9.62752
9.63672
9.73381
8.80951
9.63753
10.3856
10.3856

75% RH
0

12.9401
13.4551
13.9384
14.0572
14.0416
14.0768
14.0172
13.9456
13.7911
13.7911

63 % RH
0

13.0478
14.0621
14.6584
14.9258
14.9564
15.0478
15.0937

15.5
15.124
15.124

42% RH
0

15.643
16.5793
16.7973
16.8747
16.8976
16.8499

16.889
16.8413
16.5745
16.5745
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Table A.1.23 Mass loss valuse of W/C = 0.65 & 7.5% SF test series.
Mass loss is presented in (%)

Age (days)
0
7
14
21
28
35
42
70
90
120

100% RH
0

-6.1945094
-6.7254566
-6.5150251
-6.8178895
-7.1207539
-7.1269853
-7.2753221

-7.468096
-7.5969364

88 % RH 75% RH 63% RH 42% RH
0 0 0 0

4.868945 10.983844 10.66712 16.23715
6.431939 12.363948 14.58529 17.50086
6.552423 12.70953 13.49003 17.60756
6.697683 12.89385 13.84 17.49636
6.701608 12.912776 13.96 17.19309
6.705532 12.931703 14.14814 17.1008
7.197329 13.407644 14.47253 17.32266
6.592077 14.34205 14.60547 17.02828
6.003245 13.658749 13.72485 15.39215

Table A.1.24 Mass loss valuse of WIC = 0.65 & 7.5% SF & 5% SRA test series.
Mass loss is presented in (%)

Age (days)
0
7
14
21
28
35
42
49
56
70

100% RH
0

-5.1770669
-5.6915704
-5.7476175
-5.9641634
-6.1807093
-6.1240081
-6.4773971
-6.3096734
-6.397463

88% RH 75% RH 63% RH 42% RH
0 0 0

7.386721 13.291048 11.24956 22.207
9.477709 14.62426 15.06717 23.2678
9.541693 15.106624 15.54615 23.3528
9.647783 15.313911 15.553 23.295
9.667863 15.291845 15.679 23.2286
9.687944 15.269779 15.87901 23.168C
9.647276 15.27777 '15.87074 22.3098
9.793935 15.210567 15.93582 22.9866
10.07935 15.567925 15.98463 22.9524

0
'1
36
36
55
34
)8
33
32
,1
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Table A.1.25 Mass loss values of the W/C=0.55 Reference test series.

Age(days)
Mass loss is
100% RH

presented in (%)
88% RH 75% RH 63% RH 42% RH

-0.969469
-1.150874
-1.436165
-1.496758
-1.716429
-2.140185
-2.382984
-2.200736
-2.054557

6.33328
7.75988
8.01931
8.38305
7.61167
7.44798
7.21836
7.27754
6.75016

9.59104
11.6024
12.1013
12.434

12.2752
12.4793
12.5473
12.5246
12.5853

Table A.1.26 Mass los,
Mass loss is

Age(days) 100% RH
0 0
7 -0.552097

14 -0.656897
21 -0.812787
30 -0.940234
37 -1.328578
42 -1.941987
54 -1.796971
63 -1.885878
102 -1.301469

s values of the W/C=0.55 & 5% SRA test series.
presented in (%)
88% RH 75% RH

0 0
3.12614 6.84214
5.11825 9.95955
5.64185 10.3553
5.94474 10.1062
5.70057 9.82684
5.8704 9.66564

5.58246 9.38615
5.76653 9.47463
5.38241 8.85756

63% RH
0

10.9228
13.3557
13.8129

14.108
13.9233
14.1374
14.1301
14.3143
14.3807

42% RH
0

13.2385
15.2229
15.6875
15.8097
15.6799
15.8549
15.8855
15.9084
15.7941
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7
14
21
30
37
42
54
63
102

3.0815
3.83847
4.07578
4.15171
3.96084
4.06174
3.81709
3.92403
3.29513

12.374
14.4904
14.8752
14.7936
14.5562
14.6603
14.5935
14.5416
14.1039



Table A.1.27 Mass loss values of the W/C=0.55 & 7.5% SF test series.
Mass loss is presented in (%)

Age(days)
0
7
14
21
28
35
42
56
70
90

100% RH
0

-5.075874
-5.721096

-5.99626
-5.818916
-5.907363
-5.996016
-6.117692

-6.26268
-6.256044

88% RH 75% RH
0 0

5.243947
6.367355
6.312861
6.499837
6.320285
6.763254
6.27244

5.798022
5.471708

9.928009
10.40248
10.62265
10.71442
10.79057
11.13421

11.3535
11.5728

11.78196

63 % RH 4:
0

12.031
12.6812

12.983
13.1496

13.285
13.4907
13.8473
13.4502

13.116

2% RH
0

14.3985
15.1118
15.3368
15.2259

14.906
15.1632
15.0958
14.3404
13.6946

Table A.1.28 Mass loss values of the W/C=0.55 & 7.5% SF & 5% SRA test series.
Mass loss is presented in (%)

Age(days)
0
7
14
21
28
35
42
56
70
90

100% RH

-3.496008
-5.143611
-5.675449
-5.735902
-5.812568
-5.876029
-5.889978
-6.108118
-6.169937

88% RH 75% RH
0 0

6.820557 11.73081
7.685961 12.37387
7.670225 12.57254
7.902782 12.65981
7.717784 12.7234
8.183803 13.05707
7.678248 12.88657

7.26086 12.71607
7.003905 12.54129

63% RH 42% RH
0 0

13.3081 14.7215
14.18 15.5006

14.4313 15.6344
14.5808 15.5871
14.6674 15.3824

14.62 15.343
14.58 15.39

14.558 15.28
14.181 15.34
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Table A.1.29 Mass Loss values of the W/C=0.45 Reference test series.
Mass loss is presented in (%)

Age(days)
0
7
14
21
28
35
42
49
56
70

100% RH 88% RH
0 0

-3.92458948 1.68994112

-4.0528644 1.54466356

-4.17334694 1.32587156

-4.21855209 1.25316248

-4.2418093 1.2759568

-4.36132395 1.47185446

-4.50451979 1.22446369

-4.44367465 1.19513251

-4.27065538 1.04237214

75% RH
0

4.3872314
4.6399327

4.3855628

4.4819802

4.6684387
4.6968714

4.4988108

4.4680065

4.1817581

63% RH 42% RH
0 0

8.2828063 10.697699

8.9308616 11.280552

8.9438295 11.353844

9.2747285 11.644922

9.3950703 11.797708

9.6504208 11.542554

9.6498267 11.542072

9.6350728 11.411378

9.7610367 11.309709

Table A.1.30 Mass Loss values of the W/C=0.45 & 5% SRA test series.

Age(days)
0
7
14
21
28
35
42
49
56
70

Mass loss is presented in
100% RH 88% RH

(%)
75% RH 63% RH 42% RH

0

-2.92679224
-3.14668208

-3.23034802

-3.32988057

-3.27382682

-3.44317035

-3.54200791

-3.4144365

-3.28792566

2.77412115
2.88418285

2.72299379

2.74465399

2.83252404

3.0095514

2.73723776

2.84016368

2.54616228

7.1102893

7.6850592

7.5647125

7.6642449

7.7796959

7.7288266

7.5424723

7.4116609

7.2759639

10.342115

11.295259

11.214157

11.612849

11.77191

11.931756

11.916442

11.865417

12.010343

12.657251

13.317263

13.403078

13.826579

13.920024

13.948514

14.005839

13.962778

14.027413
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Table A.1.31 Mass loss values of the W/C = 0.45 &7.5% SF test series.

Age(days)
0
7
14
21
28
35
42
56
70
90

Mass loss is presented in (%)
100%RH 88% RH 75% RH

0 0 0
-6.675871 3.282639 5.953545
-6.932551 3.565328 6.500531
-6.474587 3.594206 6.757669
-6.967785 3.565059 6.991769
-7.018984 3.631367 7.021688
-7.027355 3.776869 7.079779
-7.144752 4.023038 7.738079
-7.163693 3.724798 7.956904
-7.219203 3.461184 7.994764

63% RH 42% RH
0 0

8.49013 11.0201
9.15406 11.5508
9.44574 11.5344
9.65008 11.5578
9.78086 11.5493
10.0064 11.45
10.1449 11.456
10.2615 11.3198
9.70779 11.2214

Table A.1.32 Mass loss values of the W/C = 0.45 & 7.5% SF & 5% SRA test series.
Mass loss is presented in (%)

Age(days) 100% RH 88 % RH 75% RH 63% RH 42% RH

-6.981327
-7.453082
-7.461928
-7.29656

-7.427094
-7.427551
-7.604945
-7.638165
-7.714297

4.437046
5.436103
4.827137
4.768059
4.871179
5.011046

5.18
4.841417
4.443882

7.186548
7.900007
8.092858
8.188504
8.254972
8.254299
8.615231
8.609163
8.354473

9.95621
10.5195
10.7596
10.9084
10.9544
11.0747
11.1722
11.2692
10.9908

11.53
11.974

12.0091
12.0311
11.9872
11.9363
11.8188
11.6222
11.4251
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7
14
21
28
35
42
56
70
90



Table A.1.33 Mass loss values of the W/C=0.35 Reference test series.

Age(days)
0
7
14
21
28
35
42
49
97

Mass loss is
100% RH

0
-0.990453
-1.523158
-1.236232
-1.229722
-2.303301
-1.948342
-2.107666
-1.676174

presented in
88 % RH

0
1.084698
1.032573
1.080552
1.059065
0.956897
0.828585
0.699356
0.407339

(%)
75% RH

0
2.789963
3.190725
3.217806
3.395312

3.27937
3.449909
3.442505
3.803043

Table A.1.34 Mass loss values of the W/C=0.35 & 5% SRA test series.

Age(days)
0
7
14
21
28
35
42
49
97

Mass loss is
100% RH

0
-2.513526
-3.474185
-2.780161
-2.961636

-3.7587
-3.269847
-4.053086
-3.366785

presented in
88 % RH

0
0.933177
0.919855
0.858867
0.906282
0.743306
0.647493
0.309745
0.024881

(%)
75% RH 63%RH 42% RH

0
3.498437
3.917713
3.917855
4.180369
3.944301
3.910029
3.964706
4.355801

0
6.30037
7.39051
7.79184
7.9514

7.99187
7.88509
7.95177
8.30596

0
8.66437
9.71939
10.0425
10.2136
10.2997
10.2507
10.3378
10.5381
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63 % RH
0

6.14895
6.98597

7.3106
7.49872
8.24992
8.00719
7.66805
8.12931

42% RH
0

9.15441
10.2618
10.5559
10.6163
10.9451
10.7366
10.7844

10.757



Table A.1.35 Shrinkage values of the W/C=0.35 + 7.5% SF test series.
Mass loss is presented in (%)

Age(days)
0
14
21
28
35
42
56
70
90

100% RH
0

-4.198562
-4.750202
-4.476164
-4.760886
-4.666344
-4.748388
-4.756296
-4.973342

88 % RH 75% RH 63 % RH 42% RH
0

1.17423
1.20188
1.13273
1.16041
1.20172
1.29843
1.44326
1.17419

0
3.49821
3.72768
4.03671

3.9353
3.97817
4.12923
4.33496
4.29865

0
5.66123
5.98913
6.16414
6.35978
6.39481
6.58984
6.7244

6.80422

0
7.85504
8.2823

8.46102
8.59525
8.72948
8.63974
9.00456
8.51806

Table A.1.36 Shrinkage values of the W/C=0.35 + 7.5% SF & 5% SRA test series.

Age(days)

14
21
28
35
42
56
70
90

Mass loss is
100% RH

-4.602522
-4.789354
-4.782501
-5.030758
-4.925388
-5.058766
-4.999002
-5.084335

presented in (%)
88% RH 75% RH

0 0
1.79035
1.87383
1.90182
1.90872
1.95733
2.06879
2.22195
1.91554

5.0679
5.36693
5.74178
5.87923
6.0084

6.16541
6.45067
6.49914

166

63 % RH
0

7.3445
7.67097
7.80699
7.93672
7.94302
8.09332
8.30433
8.14773

42% RH
0

8.38689
8.79266
8.93125
9.04223
9.11142
9.05638
9.21576
8.69605



Table A.1.37 Mass loss values of the W/C=0.25 Referece test series.

Age(days)
0
7
14
21
28
35
42
49
56
70
90

Mass loss is
100% RH

0
-3.336621
-3.659473
-4.223454
-4.099011
-3.805118
-3.785616
-3.704758
-3.895387
-3.913759
-3.920436

presented in (%)
88 % RH

0
-0.18537
-0.52625
-0.66438
-0.78886
-0.74303
-0.74977
-0.74341
-0.35711
-0.27903

-0.3647

75% RH
0

3.34356
3.18526
3.19789
3.21057
3.23588
3.24857
3.25488
3.28019
3.25488
3.22319

63% RH 42% RH
0

3.127394 4.44101
4.267384 5.02894

3.89154 5.44918
3.962938 5.67145
4.05235 5.88188

4.075753 6.01142
4.033549 6.12238
4.01547 6.21525

4.080159 6.65624
4.035311 6.760601

Table A.1.38 Mass loss values of the W/C=0.25 & 5% SRA test series.
Mass loss is presented in (%)

Age(days)
0
7
14
21
28
35
42
49
56
70
90

100% RH
0.0000

-3.4629
-3.5576
-3.8645
-3.9487
-3.6427
-3.6482
-3.6668
-3.8097
-4.0341
-3.8676

88 % RH 75% RH 63% RH 42%
0.0000
0.9862
0.5829
0.4482
0.3841
0.4424
0.4682
0.4885
0.5081
0.6656
0.5590

0.0000
3.9797
3.9291
4.0111
3.9733
4.0425
4.0358
4.0463
4.0751
4.0463
4.0174

0.0000
4.1696
4.6294
4.8222
4.8782
4.9403
4.9589
4.9029
4.8843
4.8045
4.7002

167

44
14
56
79
35
03
37
01
16
92

RH
0.0000
5.1615
5.7078
6.0858
6.2354
6.4049
6.4962
6.5676
6.6327
6.6781
6.6586



Table A.1.39 Mass loss values of the W/C=0.25 & 7.5% SF test series.
Mass loss is presented in (%)

Age(days)
0
7
14
21
28
35
42
57
71
91

Table A.1.4

Age(days)
0
7
14
21
28
35
42
49
58
70
90

100% RH
0

-3.049104
-3.653722
-3.883706
-3.844096

-3.86359
-3.949756
-3.978271
-3.949964
-3.997765

40 Mass loss
Mass loss is
100% RH

0
-5.471055
-4.798823
-4.856494
-5.768195
-5.729772
-5.118024
-5.322632
-5.259876
-5.188001
-5.201401

88 % RH
0

-0.23562
-0.2553

-0.29468
-0.39312
-0.37343
-0.38005
-0.34069
-0.14379
-0.29488

75% RH
0

0.83114
1.147956
1.230844
1.379832
1.398449
1.417794
1.501444
2.248439
2.350517

63% RH
0

1.61194
2.15187
1.80123
2.57485
2.69207
2.75068
2.86773
3.10217
3.11504

42% RH
0

3.49213
4.32533
4.70325
4.87934
5.00301
5.09429
5.1536

5.68027
5.19795

values of the W/C=0.25 & 7.5% SF & 5% SRA test series.
presented in (%)
88 % RH

0
0.24756
0.28088
0.17118
0.24739
0.24126
0.02542
0.03455
0.32555
0.54599
0.20805

75% RH
0

2.008461
2.50355

2.774493
3.073922
3.012635
3.045744
3.098655
3.105461

3.12
3.11

63% RH
0

3.39513
4.12959
4.38508
4.47683
4.53591
4.54889
4.60126
4.60126
4.80457
4.67996

42% RH
0

4.3439
4.96912
5.21787
5.32569
5.41994
5.46699
5.44708
5.47397
5.68251
5.18526
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Table A.1.41 Summary of Cube Strength, All Mixes
Compressive Strength in units of psi

7 14 28 56
w/c=0.25 15862 16558 19278
w/c=0.25, 5% SRA 13383 14143 17496
w/c=0.25 & 7.5% SF 15448 14950 17899
w/c=0.25 & 7.5% SF, 5% SRA 13542 12959 15725
w/c=0.35 12717 12650 9175 10064
w/c=0.35, 5% SRA 11775 13167 8758 12826
w/c=0.35 & 7.5% SF 10117 9850 7792 8208

w/c=0.35 & 7.5% SF, 5% SRA 9425 10875 7142 8208
w/c=0.45 8167 8900 6625 9638
w/c=0.45, 5% SRA 7308 8383 6167 8110
w/c=0.45 & 7.5% SF 7450 9017 5967 9853
w/c=0.45 & 7.5% SF, 5% SEA 7517 8800 6233 9138
w/c=0.55 5633 4799 4936
w/c=0.55, 5% SRA 6025 6872 7195
w/c=0.55 & 7.5% SF 4917 6163 6907
w/c=0.55 & 7.5% SF, 5% SEA 5817 6864 7936
w/c=0.65 4608 5608 6188
w/c=0.65, 5% SRA 5033 5488 5949
w/c=0.65 & 7.5% SF 3325 4424 5130
w/c=0.65 & 7.5% SF, 5% SRA 4183 4740 5895
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Table A.1.42 Compressive Moduli of Elasticty, All Mixes
All units in 10A6 psi
w/c=0.25 w/c=0.25, 5% SRA
1.0347813 1.012890193
1.1829602 1.034216129
1.2600797 0.966632589
1.3496099 1.199432074
1.425768 1.255287925
1.7363833 1.683205592

w/c=0.35 w/c=0.35, 5% SRA

Age
1
7
14
28
56
90

Age
1
7
14
28
56
90

Age
1
7
14
28
56
90

Age
2
7

14
28
56
90

Age
2
7

14
28
56
90

w/c=0.45
2.4171784
2.5007223
2.9212259
2.8714193
2.8991428
3.2146529

w/c=0.55
1.0443266
1.9902635
2.0851689
2.4052743
2.1089351
2.4033803

w/c=0.65
0.5097791
0.491458

0.5681664
0.5892971

0.9658293

wlc=0.25 + 7.5% SF
3.72303833

4.251666979
3.843553316
4.382309469

3.925446

w/c=0.35 + 7.5% SF
0.735938916
0.818197783
0.787169966
1.100371162
1.055615564
0.947067621

w/c=0.45 + 7.5% SF
2.216728215
2.209667788
2.588479374
2.818613226
3.147591328
3.017735035

w/c=0.55+7.5% SF
1.346
1.590
1.726
2.163
2.137
2.395

w/c=0.65+7.5% SF
0.959652313
1.071635206
1.290325199
1.757559159
1.736997873
1.913520751

w/c=0.25 + 7.5% SF, 5% SRA
3.694379125
4.142160429
3.83108325
3.93069815

4.563576258
4.27077049

w/c=0.35 + 7.5% SF, 5% SRA
0.731618284
0.99107779

0.980297568
0.847490084
1.030243734
0.913867019

w/c=0.45 + 7.5% SF, 5% SRA
1.868658884
2.248053005
2.492367848
2.660424679
3.043057101
2.919034552

w/c=0.55 + 7.5% SF, 5% SRA
1.416937875
1.506160872
2.58168565

2.409539348
2.74407534

2.531

w/c=0.65 + 7.5% SF, 5% SRA
1.026663058
1.25230012

1.510955598
1.688779986
2.051211288
1.869491326
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w/c=0.45, 5% SRA
2.044596849
2.184950928
2.407699278
2.714106252
2.870477006
3.024867847

w/c=0.55, 5% SRA
1.488376099
1.674955244
1.898046931
2.107420387
1.947598822
2.448813682

w/c=0.65, 5% SRA
0.523774593
0.584411875
0.540886059
0.520701198

0.833228629



Table A.1.43 Curling Center-Line-Deflections, All Mixes
Deflections measured in inches, Age in days

w/c SF% %SRA 7 28 56 90
0.25 0 0 0.055 0.05 0.065 0.09
0.25 0 5 0.055 0.085 0.11 0.145
0.25 7.5 0 0.06 0.04 0.065 0.105
0.25 7.5 5 0.05 0.075 0.11 0.14
0.35 0 0 0.115 0.095 0.14 0.18
0.35 0 5 0.085 0.06 0.105 0.145
0.35 7.5 0 0.15 0.175 0.285 0.365
0.35 7.5 5 0.075 0.11 0.17 0.25
0.45 0 0 0.22 0.205 0.35 0.46
0.45 0 5 0.095 0.05 0.12 0.18
0.45 7.5 0 0.295 0.38 0.635 0.8
0.45 7.5 5 0.21 0.13 0.18 0.295
0.55 0 0 0.13 0.295 0.59 0.77
0.55 0 5 0.11 0.115 0.195 0.3
0.55 7.5 0 0.265 0.385 0.65 0.785
0.55 7.5 5 0.165 0.12 0.17 0.295
0.65 0 0 0.21 0.355 0.615 0.765
0.65 0 5 0.2 0.125 0.195 0.3
0.65 7.5 0 0.265 0.445 0.68 0.74
0.65 7.5 5 0.155 0.075 0.18 0.3
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