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Abstract

This thesis develops methods for estimating wideband shallow-water acoustic com-
munication channels. The very shallow water wideband channel has three distinct
features: large dimension caused by extensive delay spread; limited number of de-
grees of freedom (DOF) due to resolvable paths and inter-path correlations; and
rapid fluctuations induced by scattering from the moving sea surface. Traditional
LS estimation techniques often fail to reconcile the rapid fluctuations with the large
dimensionality. Subspace based approaches with DOF reduction are confronted with
unstable subspace structure subject to significant changes over a short period of time.

Based on state-space channel modeling, the first part of this thesis develops algo-
rithms that jointly estimate the channel as well as its dynamics. Algorithms based
on the Extended Kalman Filter (EKF) and the Expectation Maximization (EM)
approach respectively are developed. Analysis shows conceptual parallels, includ-
ing an identical second-order innovation form shared by the EKF modification and
the suboptimal EM, and the shared issue of parameter identifiability due to channel
structure, reflected as parameter unobservability in EKF and insufficient excitation
in EM. Modifications of both algorithms, including a two-model based EKF and a
subspace EM algorithm which selectively track dominant taps and reduce prediction
error, are proposed to overcome the identifiability issue. The second part of the the-
sis develops algorithms that explicitly find the sparse estimate of the delay-Doppler
spread function.

The study contributes to a better understanding of the channel physical con-
straints on algorithm design and potential performance improvement. It may also
be generalized to other applications where dimensionality and variability collide.

Thesis Supervisor: James C. Preisig
Associate Scientist, Woods Hole Oceanographic Institution

2



Acknowledgements
My sincerest thanks to my thesis supervisor, Dr. James Preisig, for his encour-
agement and guidance throughout this thesis research and my graduate study in the
MIT-WHOI joint program. Jim's devotion to students, enthusiasm and thoroughness
for his work was an inspiration. His insistence on out-of-box thinking and intuitive
reasoning had a great impact on this thesis work. The privilege of working with him
closely in the past four and half years means a great deal to me both professionally
and personally.

I am extremely grateful to my thesis committee members Prof. Arthur Baggeroer
and Prof. Sanjoy Mitter, for sharing thoughtful comments and valuable suggestions.
The stimulating discussions I had with both of them over many occasions greatly
helped shaping the thesis development. The opportunity of working with Prof. Bag-
geroer as a teaching assistant was a great learning experience. It would be a privilege
for me to continue working with both of them in the future.

I am also thankful to Prof. Henrik Schmidt for being on my thesis qualify exam
committee and chairing the thesis defense.

I want to thank Dr. Miijdat Qetin for fruitful discussions on sparse estimation and
providing Matlab codes for LP norm constrained estimation, which greatly helped
my understanding of the subject. Also thanks to Dr. Yongmin Jiang from University
of Victoria for help proof-reading the first two chapters of the thesis.

Thanks to all the members of the WHOI Ocean Acoustic Lab. for providing helps
too numerous to mention individually. Especially I would like to thank Dr. Jim
Lynch, Dr. Tim Stanton and Dr. Ying-Tsong Lin for offering thoughtful suggestions
to the thesis presentation, Dr. Dezhang Chu for many interesting discussions and
Dr. Andone Lavery for great helps on many occasions.

I am especially grateful to my academic advisor, Prof. Jerome Milgram, for of-
fering me the chance to come to MIT and work on the fantastic digital holography
project. I also want to thank Dr. Sandy Williams for many stimulating discus-
sions and the collaboration on applications of signal processing techniques to current
measurements while tolerating my initial request of being excused from his course.

I would like to thank MIT OE and later ME administration offices and the WHOI
academic program office for providing numerous helps during this work.

In the course of graduate study at MIT, I have profited considerably from discus-
sions with several friends and colleagues on several problems, although not necessarily
related to this thesis. Special thanks to Yile Li, Guanyu Wu, Manish Bhardwaj and
Raj Rao.

None of this would have been possible without the lifetime support and love from
my parents and the sacrifice they've made. Finally, I want to thank my wife, Hua, for
her love, patience and support over these years. Also I want to thank our daughter,
Jada, for all the joys and wonders she has brought to us.

Financial support for this thesis research was provided by the Office of Naval
Research and the WHOI Academic Program Office.

3



Contents

Table of Contents

List of Figures

1 Introduction

1.1 The Problem ......................

1.2 Previous W ork .....................

1.2.1 Adaptive Algorithms for Channel Estimation.

1.2.2 Dynamic Channel Tracking . . . . . . . . . .

1.2.3 Sparse Channel Estimation . . . . . . . . . . .

1.3 Approaches of this Thesis . . . . . . . . . . . . . . .

1.4 Summary of Contributions . . . . . . . . . . . . . . .

2 Surface Channel Physics and Modeling

2.1 Characteristics of Surface Scattering Channel . . . .

2.1.1 Acoustic Surface Scattering . . . . . . . . . .

2.1.2 A Wideband Surf-Zone Channel Example . .

2.2 Channel Modeling . . . . . . . . . . . . . . . . . . . .

2.2.1 LTV and WSSUS Channels . . . . . . . . . .

2.2.2 State-Space Channel Model . . . . . . . . . .

2.3 Concluding Remarks . . . . . . . . . . . . . . . . . .

4

4

7

12

. 12

. 17

. 17

. 21

. 23

. 25

. 26

28

. . . . . . . . 28

. . . . . . . . 29

. . . . . . . . 31

. . . . . . . . 43

. . . . . . . . 43

. . . . . . . . 47

. . . . . . . . 59



3 EKF based Channel Impulse Response Estimation

3.1 Introduction ...........................

3.2 EKF Joint Channel State and Parameter Estimation

3.2.1 The EKF Procedure .................

3.2.2 EKF Channel Estimation Error ........

3.2.3 EKF vs. MMSE and ML Estimation . . . . .

3.3 Parameter Observability and Detectability . . . . . .

3.4 Two-Model EKF Parameter Estimation . . . . . . . .

3.4.1 Two-Model Parameter Estimation . . . . . . .

3.5 Concluding Remarks . . . . . . . . . . . . . . . . . .

4 EM

4.1

4.2

4.3

based Channel Impulse Response Estimation

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . .

EM Joint Channel State and Parameter Estimation.....

Fast Recursion of Sums of the Second-Order Smoothed State

4.4 Suboptimal Algorithms . . . . . . . . . . . . . . . . . . .

4.4.1 The Derivation of the Suboptimal Algorithm . . .

4.4.2 Special Cases . . . . . . . . . . . . . . . . . . . .

4.4.3 A General Parameter Recursion . . . . . . . . . .

4.4.4 A Numerical Example . . . . . . . . . . . . . . .

4.5 Properties of the Suboptimal Algorithm . . . . . . . . .

4.5.1 The Innovation Form of the Parameter Recursion

4.5.2 The Extended Persistent Excitation Condition . .

4.5.3 Convergence of the Parameter Recursion . . . . .

4.6 EM Parameter Estimation Within Subspace . . . . . . .

4.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . .

101

. . . . . 102

. . . . . 104

Moments 109

. . . . . . . 113

. . . . . . . 114

. . . . . . . 116

. . . . . . . 117

. . . . . . . 118

. . . . . . . 120

. . . . . . . 120

. . . . . . . 123

. . . . . . . 126

. . . . . . . 127

. . . . . . . 130

5 Sparse Estimation of the Delay-Doppler Spread Function

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . .

132

132

5

60

. . . . . . . . . 61

. . . . . . . . . 64

. . . . . . . . . 66

. . . . . . . . . 68

. . . . . . . . . 73

. . . . . . . . . 78

. . . . . . . . . 86

. . . . . . . . . 88

. . . . . . . . . 98



5.2 Explicit Sparse Channel Estimation . . . . . . . . . . . . . .

5.2.1 Basis Pursuit With L, Norm Constraint . . . . . . .

5.2.2 Matching Pursuit (MP) . . . . . . . . . . . . . . . .

5.2.3 Sensitivity to Channel Time-Variations . . . . . . . .

5.3 Sequential Least Squares Matching Pursuit . . . . . . . . . .

5.4 Sparse Estimation of the Delay-Doppler Spread Function . .

5.4.1 Suboptimal Two-Stage Sparse Estimation Algorithms

5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . .

5.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . .

6 Summary and Future Work

6.1 Sum m ary . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.2 Future W ork . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 135

. . . . . 136

. . . . . 137

. . .. .... 141

. . . . . 143

. . . . . 155

. . . . . 156

. . . . . 157

. . . . . 157

160

. . . . . 160

. . . . . 162

A EKF Channel Estimation

A.1 The Extended Kalman Filter Channel Estimation Algorithm

A.2 Special Cases: Diagonal and Tridiagonal State Transition Matrix

164

. . . 164

. . . 168

B EM Channel Estimation

B. 1 Derivation of the smoothed state correlation equations

B.2 Kalman smoothing formula . . . . . . . . . . . . . . .

B.2.1 Fixed-point Kalman smoothing . . . . . . . . .

B.2.2 Fixed-interval Kalman smoothing . . . . . . . .

B.3 Derivation of the new vector form recursions . . . . .

B.4 Proof of the stability of the new vector form recursions

B.5 Some Proofs for Section 4.5 . . . . . . . . . . . . . . .

B.5.1 Derivation of (4.32) . . . . . . . . . . . . . . . .

B.5.2 Derivation of (4.35) . . . . . . . . . . . . . . . .

B.6 |II "'-(I - Sjbjb )1 . . . . . . . . . . . . . . . . . .

172

. . . . . . 172

. . . . . . 174

. . . . . . 174

. . . . . . 175

. . . . . . 176

. . . . . . 179

. . . . . . 180

. . . . . . 180

. . . . . . 182

. . . . . . 186

6



C The Kronecker Product 193

CA The Vec(.) Operator ........................... 193

C.2 The Kronecker Product and Its Properties . . . . . . . . . . . . . . . 194

7



List of Figures

1-1

1-2

1-3

2-1

2-2

2-3

2-4

2-5

2-6

Acoustic communications in surf-zone channel . . . . .

Channel estimate based equalization . . . . . . . . . .

Diagram of the state-space channel model . . . . . . .

Wavefronts II experiment top view . . . . . . . . . . .

Wavefronts II experiment side view . . . . . . . . . . .

Channel Impulse Response Estimate . . . . . . . . . .

Time-varying scattering function estimate sequence I

Time-varying scattering function estimate sequence II

Signal prediction error using the RLS algorithm . . . .

3-1 Parameter undetectability, a numerical example . . . . . . . . . . . .

3-2 Two-Model EKF, Plain EKF and RLS . . . . . . . . . . . . . . . . .

3-3 Doppler Estimates Using the Two-Model EKF algorithm . . . . . . .

3-4 Doppler Estimates Using the Plain EKF algorithm . . . . . . . . . .

3-5 Channel Impulse Response Estimates Using the Two-Model EKF al-

gorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3-6 The Scattering Function Estimate at t = 20.05747 seconds . . . . . .

3-7 Doppler Estimates Using the Two-Model EKF algorithm, faster pa-

rameter convergence. . . . . . . . . . . . . . . . . . . . . . . . . . . .

4-1 EM parameter estimation with Kalman state smoother . . . . . . . .

4-2 Diagram for the new vector form recursions. . . . . . . . . . . . . . .

. . . . . . . . 15

. . . . . . . . 15

. . . . . . . . 15

. . . . . . . . 32

. . . . . . . . 32

. . . . . . . . 35

. . . . . . . . 38

. . . . . . . . 39

. . . . . . . . 42

87

94

96

97

97

98

99

108

112

8



4-3 EM algorithm based on the new recursion form . . . . . . . . . . . . 113

4-4 Diagram of the suboptimal EM algorithm . . . . . . . . . . . . . . . 116

4-5 Parameter convergence of the suboptimal EM algorithms . . . . . . . 120

4-6 Steady-state channel prediction errors of Suboptimal EM algorithm . 121

5-1 A constant sparse channel . . . . . . . . . . . . . . . . . . . . . . . . 143

5-2 Tap identification of a constant sparse channel . . . . . . . . . . . . . 144

5-3 MSE of sparse estimation of a constant sparse channel . . . . . . . . 144

5-4 A sparse channel with fixed tap delays and varying gains . . . . . . . 145

5-5 Tap Identification of a sparse channel with fixed tap delays and varying

gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5-6 MSE of sparse estimation of a sparse channel with fixed tap delays

and varying gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5-7 A sparse channel with varying tap delays and fixed gains . . . . . . . 146

5-8 Tap Identification of a sparse channel with varying tap delays and

fixed gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5-9 MSE of sparse estimation of a sparse channel with varying tap delays

and fixed gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5-10 Comparison of Matching Pursuit algorithms, A simple Example . . . 148

5-11 Sparse estimation of the discrete delay-Doppler spread function . . . 158

5-12 Delay-Doppler spread function estimate via the SLSMP algorithm . . 159

B-1 Singular values of H7"'1(I - Sbjbh), (S) = 10 . . . . . . . . . 190

B-2 Singular values of I_+m-1 (I - Sbjb ), Arnx(S) = 104 . . . . . . . . . 190

B-3 Singular and eigen values of Hn,-1(I - Sbb ), (S) = 10.. . . 191

B-4 Singular and eigen values of Hm1 (I - Sbjb ), \- (S) = 10 .. . . 192

9



Abbreviations

LTI linear time invariant

LTV linear time-varying

WSSUS wide-sense stationary and uncorrelated scattering

DFE decision feedback equalizer

SVD singular value decomposition

MSE mean square error

MMSE minimum mean square error

MAE minimum achievable error

ML maximum likelihood

MAP maximum a posteriori

LMS least mean square

RLS recursive least squares

KF Kalman filter

EKF Extended Kalman Filter

EM Expectation Maximization

BMP basic matching pursuit

OMP orthogonal matching pursuit

SLSMP sequential least squares matching pursuit

BP basis pursuit

PE persistent excitation

EPE extended persistent excitation

DOF degrees of freedom

10



Notation for thesis

The following notation is used throughout the whole thesis, unless otherwise stated:

a, b, ... lower case letters denote scalars

a, b, ... bold face lower case letters denote column vectors

A, B, .-. bold face upper case letters denote matrices

At transpose of A

A* complex conjugate of A

Ah Hermitian ( complex conjugate transpose) of A

A- 1  inverse of A

At psuedo-inverse of A

Ai (A) ith eigenvalue of A

Amax (A) maximum eigenvalue of A

IN N x N identity matrix

1 all L2 norm of vector a

|IAJl the L2 induced norm of A

det(A) determinant of A

Vec(A) long vector obtained by stacking all columns of A

MatL (a) matrix whose columns are the consecutive L segments of a,

the inverse operator of Vec(.)

Diag(a) diagonal matrix whose diagonal elements are a

diag(A) column vector consists of the diagonal elements of A

Kronecker product

0 Hadamard (or Schur) product, elementwise product
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Chapter 1

Introduction

This introductory chapter presents a discussion of the main problem studied by the

thesis, a review of previous work relevant to the problem and an outline of the thesis

itself, including its approaches and contributions.

1.1 The Problem

Underwater acoustic communication has experienced significant progress over the

last two decades [KilOO] [Sto96] [Bag84] [Bag8l]. Technological feasibility has allowed

advanced developments such as underwater acoustic networks [Pro01b]. However, the

complex underwater acoustic environment still remains one of the most challenging

type of channels for information transmission. As research and applications push

towards even shallower and more extreme environments, understanding the physical

constraints of the channel and developing signal processing techniques based on these

constraints becomes even more crucial to system design and performance evaluation.

The chief concern in the thesis is with channel estimation for wideband acoustic

communications in very shallow-water environments.

The very shallow-water short-range wideband channel often has the following

distinct features: large channel dimension due to an extensive delay spread; limited

12



number of degrees of freedom (DOF) due to resolvable multipath arrivals and inter-

path correlations; and rapid channel fluctuations due to scattering from the moving

sea surface, as elaborated below.

As illustrated in Figure 1-1, surface waves are the dominant factor contributing

to the dynamics of the rapidly varying channel in shallow-water environment. While

traveling through the channel, the transmitted signal experiences severe distortions

induced by multipath propagation. Multiple scatterings from both the surface and

bottom, with relatively small propagation attenuation over short range, can yield

a delay spread well over a hundred symbols. Within that delay spread the resolv-

able arrivals compose a fairly sparse multipath structure, given a sufficiently wide

bandwidth. Due to the surface time-variability, the surface scattered arrivals have

migrating propagation delays and large, time-varying Doppler spread and shifts.

Scattered by different surface patches at variable angles, surface scattered arrivals

may have very different fluctuating rates among themselves and from the non-surface

scattered arrivals. On the other hand, large scale smoothness of the surface motion

may contribute to correlations among macropath fluctuations and scattering from the

same surface patch causes correlated micropath fluctuations. The direct arrival and

bottom scattered arrival usually have little surface induced variations and are more

stable. Channels with such rapid time-variabilities and the inter-path correlations

mentioned above would be difficult to assume as wide-sense stationary uncorrelated

scattering (WSSUS) (the concept of WSSUS channel is introduced in [Bel63] and

also explained in section 2.2.1).

While other aspects of the channel physics, such as attenuation and scattering

by bubbles created by breaking waves, transient caustics due to acoustic focusing by

wave crest curvature, may also contribute to the fluctuations of the channel [Pre04],

the factors mentioned above, highlighting a well structured multipath image that

is over-extended in delay with inhomogeneously fluctuating arrivals, contribute to

significant challenges to acoustic communications.

13



Phase coherent demodulation relies, explicitly or implicitly, on accurate esti-

mation of channel impulse response. Imperfect channel estimation directly causes

performance degradation of a channel estimate based equalizer [Pre05] [Sto95]. For

time-varying channels, it has been shown in [Shu91] that channel estimate based

equalizer (see Figure 1-2 ) has superior performance over the directly adapted linear

equalizer (LE) or decision feedback equalizer (DFE).

The channel properties mentioned previously, combined, pose significant chal-

lenges to the accurate estimation of the channel impulse response. The specific

question this thesis addresses is how to estimate accurately and track the channel

impulse response or other transfer functions under these physical conditions.

Without an appropriate dynamic model, traditional estimation techniques such

as the RLS algorithm often fail to reconcile the rapid fluctuations with the large

dimensionality. It has been observed [Pre05] [Li,05] that for the type of environments

considered here LS channel estimation leads to significant errors. This inadequacy

is due to the assumption held by these algorithms that the channel is constant

or slowly varying over a time scale proportional to the channel dimension, which

becomes invalid when the channel fluctuates rapidly and even the dynamics of the

fluctuations vary over time. The time scale over which the channel may be assumed

stationary becomes much shorter than 2 - 3 times of the channel dimension, the

rule of thumb value required to maintain the stability of the RLS algorithm.

Also, efforts to reduce the number of DOF based on subspace decomposition are

confronted with unstable subspace structure due to significant changes in arrival de-

lays and Doppler phases over a short period of time. Frequent updating of subspaces

will not improve the situation greatly, as it is still limited by the minimum time

scale required to extract the dominant subspace directions. If over this time scale

the channel changes significantly, then the obtained subspace directions may not be

a good basis with which to represent the channel at the next sample.

Clearly the dynamics of the channel fluctuations as well as the variations of these

14



Figure 1-1: Acoustic Communications in Surf-Zone Channel. Surface waves are the
dominant factor causing channel dynamics.

vn

Cn Channel xn + . Equalizer

--o Channel Estimator

Figure 1-2: Channel Estimate based Equalization. n is the time index, cn is the
sequence of transmitted symbols, xn is the channel impulse response, vn is the additive

ambient noise and y, is the received signal.

nn
Wn n+ X" Yn

A (0)

Figure 1-3: Diagram of the State-Space Channel Model, red marks unknowns.
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dynamics have to be accounted for in order to successfully estimate and track this

type of channel. In the first part of the thesis, this is done through dynamic modeling.

A state-space model modeling the variation of channel taps as first-order AR process

is adopted due to its analytical tractability and the wealth of theory associated with

it. Although it may not closely match acoustic scattering models for time-varying

random rough surface, it is still found to be a good approximation for wideband

transmissions as shown in Chapter 2. A more accurate acoustic model for wideband

scattering from time-varying random rough surface would be too cumbersome to be

directly usable and its development is itself still an unsolved problem.

Channel estimation with dynamic modeling is essentially a system identification

problem. Within this framework, the channel impulse response is the state vector

and its dynamics are specified by a set of unknown parameters. In reality neither the

channel impulse response nor how it evolves over time is known. Both the state and

the parameters need to be estimated jointly from the received signals. More explicitly,

given a state-space channel model (as will be derived rigorously in Chapter 2),

{xi 1 = Aix, + wi (1.1a)

yi = cixi + vi (1.1b)

where xi, ci and yi are the channel state, the transmitted symbol sequence and the

received signal, respectively, the problem is to estimate xi and the unknown model

parameters based on yi. Figure 1-3 depicts the block diagram of the state-space

model (1.1). Both xi and y, are complex. wi and vi are a zero-mean, circularly

Gaussian complex random vector and variable respectively. For the channel to be

asymptotically wide-sense stationary, it is necessary and sufficient to have A(Ai) < 1.

For the channel to be characterized as uncorrelated scattering, it would require that

Ai be diagonal.

Throughout the thesis it is assumed that the transmitted symbol sequence ci

is perfectly known, as would be the case in the training period where the channel

16



is probed using symbols known to the receiver, or in a decision direct mode where

the previously detected symbols are used as known, neglecting the error propagating

effects.

The second part of the thesis finds the explicit sparse estimation of the channel

delay-Doppler spread function [Bel63]. The channel time variability is accounted for

via the assumed Doppler for each component and the channel structure is explored

using sparse estimation.

The development in this thesis draws concepts and results from several areas,

including adaptive filtering, linear system theory, system identification and digital

communications, as reviewed in the next section.

1.2 Previous Work

In this section, previous work relevant to the thesis from various aspects is reviewed.

1.2.1 Adaptive Algorithms for Channel Estimation

Adaptive filters have been extensively used for channel equalization and estimation

[Hay96]. This section reviews several basic concepts, commonly used analysis ap-

proaches and results of these algorithms. A general form, from which each individual

algorithm may be derived, provides the basis for the presentation. The goal is to

provide conceptual parallels to later algorithm analysis developed in this thesis. Com-

prehensive coverage of these topics can be found, for instance, in [Hay96],[Guo95a]

[Lju90] and [Ben87].

Consider the following linear regression model:

zi = w i u + vi (1.2)

17



where the output z, and the regressor ui are both known, wi is to be estimated.'.

Several well-known adaptive filter algorithms include least mean squares (LMS),

recursive least squares (RLS) and adaptive Kalman filter (AKF)2 , can all be derived

as special cases from the following general form:

wj+j= wi + [tkie* (1.3)

where ei = yj - - ui is the prediction error. The adapting gain vector often has the

form ki = p R-luj for some 0 < p < 1 and non-negative Ri. ki and p reflect the

adaptation direction and rate respectively. RW is often called the information matrix.

Its inverse Pi A R7-1 plays the role similar to the state error covariance matrix in

the Kalman Filter (KF).

Various algorithms can be obtained from (1.3) by taking special values of 1L and R

or Pi, see, for instance, [Guo95a]. A stochastic linear difference equation governing

the channel estimation error propagation is very important. Denoting Ei A wi - Wi,

then

Ei = (I - pR i Uh) i - pR-'ujvj + (wi,1 - wi) (1.4)

which is often used in tracking analysis. The algorithm stability is determined by the

largest singular value magnitude of the matrix (I - pR1ui u ), The second term and

the last term on the right hand side of (1.4) are associated with noise and the time

variations of wi, hence are often called as the noise error term and lag error term

of Ej+ 1 respectively. It can be shown that increasing the adapting gain will have

opposite effects on the noise error and the lag error contributions to the channel

estimation error.

Error analysis of adaptive algorithms based on (1.4) have been extensively stud-

'A note about notation. (1.2) is often adopted in adaptive filtering for linear regression models.
By letting ci = u4, xi = wi and y = z , this can be converted into the observation equation in
state-space model, i.e. yi = cixi + v*

2AKF is essentially a Kalman filter based on random walk state model with ad hoc noise
covariances.
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ied, see, for instance, [Mac86], [Say03] for LMS, and [Ele86], [Nie9l] for RLS. The

above error Ei is often split into the minimum achievable error (MAE) associated with

the optimal Wiener filter, and the excess error that above MAE. Similarly follows

the terms excess lag error and excess noise error.

Three important properties of an adaptive algorithm are its tracking capability,

stability and convergence rate.

1. Tracking Capability

Tracking capability is a steady-state concept. When limi, 0 ki -+ 0 in (1.3), in

steady-state the estimate will not be alert to any changes. Thus the algorithm

is said to stop tracking. Therefore to maintain tracking capability ki should be

kept away from zero, or equivalently, Pi bounded from below and Ri bounded

from above. In RLS, this is done by either exponentially weighting or finite

windowing. In AKF, a positive definite process noise Q ensures that tracking

capability will not be lost. Intuitively, in either case the algorithm attains some

finite bandwidth to keep from allowing no change.

Discussion of tracking capability can be found in [Hag85], [Ben87], [Par92],

[Nie9l] for RLS and [Lju9O] in a general form, just to name a few.

2. Stability

Stability of an algorithm is often associated with the step size as well as the

so-called Persistent Excitation condition which essentially requires that Ri

bounded from below, or equivalently, Pi bounded from above. The Persistent

Excitation condition usually requires that ui span the whole space, determin-

istically or stochastically. Under this condition new information is acquired

(as excited by the regression vector as a probe) to update vi in all directions.

Insufficient excitation will cause the algorithm to diverge since Pi hence the

adapting gain ki would increase unbounded. The step size is usually chosen

such that the largest singular value magnitude of the matrix (I - pR;-luiu )
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is less than one.

Later in Chapter 4 this concept is extended for parameter estimation in linear

dynamic models. From the system identifiability perspective, the PE condition

is closely related to the observability/detectability of a state-space model. This

is discussed in Chapter 3.

The condition of persistent excitation and its requirement on the regression vec-

tor is covered for instance in [Bit84] [Cam94] and recently in [CaoOO]. Cao, et al.

[CaoOO] proposed a directional forgetting RLS algorithm to ease this problem

by updating only the excited subspace, or forgetting information in the excited

directions, based on the subspace decomposition of Ri.

3. Convergence Rate

By convergence rate here it refers to the learning speed of the algorithm hence

is a transient performance measure. From (1.4) it follows that the convergence

speed is closely related to the eigen-structure (modes and singular values) of

the matrix (I - piR-u u,). In Chapter 4, similar results are developed for a

suboptimal EM algorithm.

The adapting gain, the boundedness of Ri, or equivalently, Pi, as well as the

degree of excitation of ui and the eigen-structure of I - pzRT 1 uiu. are the key factors

governing the performance of an adaptive algorithm, i.e. maintaining tracking ability

while staying stable, trading noise error with lag error, balancing convergence rate

with steady-state error, etc. Many of these results will find analogy in the analysis

in Chapter 3 and Chapter 4.

Although these adaptive algorithms have been successfully applied for many

tracking problems, they are still quite inadequate in dealing with rapidly varying

systems, due to the general assumption that the parameter is constant or as a simple

random walk process. For RLS this is generally limited by the minimum effective

window length that it requires to maintain stability. Even in the case of random
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walk model, effects such as phasor rotation caused by Doppler would not be cap-

tured effectively.

1.2.2 Dynamic Channel Tracking

When the channel fluctuates rapidly, often due to environmental changes or platform

motions, more effective tracking can be achieved via dynamic modeling and model

based channel estimation. This is especially true in underwater acoustic environ-

ments.

In the context of underwater acoustic communication, the work by Eggen et al.

[EggOG, Egg0l] precedes and closely relates to the current development in this thesis.

While addressing channels mainly suffering from severe Doppler spread, Eggen,et

al. propose to estimate explicitly the channel scattering function (the concept of

channel scattering function is introduced in section 2.2.1)and then track the channel

impulse response using a state space model derived from the estimated scattering

function. This approach significantly improves the performance of channel estimate

based equalizers in such environments. However, this technique is limited by the re-

quirement that the channel scattering function remain constant for a period of time

sufficiently long to initialize and run a model based tracking algorithm. Unfortu-

nately, as later demonstrated in Chapter 2, the scattering function of some surface

scattered paths can change as rapidly as the channel impulse response itself. Thus,

techniques requiring a constant or slowly varying channel scattering function such as

that proposed by Eggen would fail in this type of channel.

In estimating the scattering function of underwater acoustic channels, Kay [Kay03]

extended the 2D autoregressive (AR) spectrum estimation method and applied to

nonstationary channels with limited data length. For channels with limited spread in

delay and Doppler, hence of small dimension, this method would be very appealing,

although it does not directly provide the channel impulse response. When the scat-

tering function has a sparse structure that is both severely spread and time-varying,
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this method will quickly become overwhelmed due to the large channel dimension,

the necessary large AR order and the need to keep track of the time variations.

The work by Iltis ([Ilt90] pertains to underwater acoustic channels and[Ilt91, Ilt94,

Ilt0l] mainly for wireless channels) is based on explicitly modeling of the parameters

associated with the multipath arrivals for single user channel, including the complex

arrival gain, the delay and Doppler shift. Extended Kalman filter (EKF) algorithm

is then applied to estimate those parameters due to the nonlinearity introduced by

this modeling. Iltis' scheme is largely limited by two factors. First, only the bulk

delay and bulk Doppler are modeled and estimated. This implicitly assumes that

all arrivals fluctuate uniformly, which is generally not the case for surface scattering

channels. As shown in Chapter 2, the surface scattered and non-surface scattered

arrivals have very different fluctuation rates. Even among surface scattered arrivals,

fluctuation rates may vary due to interactions with different patches at variable an-

gles, and possibly with multiple times of scattering. Secondly, the dynamics of those

arrival gain, bulk delay and Doppler, are assumed by Iltis as known and constant.

Similar to the reason mentioned early, it is unrealistic to make such assumptions

when the dynamics of the channel fluctuation also vary rapidly with time.

More recently, in [Tsa05] and [Gao03], dynamic channel estimation algorithms

in the context of multi-user direct-sequence spread-spectrum (DSSS) transmission

are developed, based on the Extended Kalman filter (EKF) and the Expectation

Maximization (EM) algorithms respectively. In both cases the single user channel

is assumed flat fading and modeled as lower-order AR process. Joint estimation of

the tap gain as well as its AR coefficients are obtained using the EKF or the EM

algorithm. The line of thinking would be very close to this thesis, except that in both

cases the authors are more focused on the analysis of the EKF and EM algorithms

themselves, which are fairly well-developed topics, see for instances, [Lju79] for EKF

and [Shu82] for EM respectively, without paying any attention to the physical prop-

erties of the channel being estimated. The distinction between the work in this thesis
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and those of [Tsa05] and [Gao03] is that the fundamental assumptions held by the

existing general theory and analysis results of either EKF or EM algorithms may

be violated due to certain physical conditions of the interested channel; hence, the

results of those general analysis can not be applied or become marginally important.

For instance, as demonstrated in Chapter 2, wideband underwater acoustic channels

are generally sparse which leads to unobservable parameters. Without appropriate

modeling to account for this sparseness, direct application of the standard EKF and

EM algorithms will diverge when applied to such sparse channels. The plausible

solution would be to actively track the occupied delay-Doppler cells only.

1.2.3 Sparse Channel Estimation

In wideband transmission with sufficiently large bandwidth, the delay spread of each

multipath arrival is small. As a result, different multipath arrivals are resolvable in

delay. This gives rise to a sparse channel impulse response where within the overall

delay span, there are clusters of energetic taps 3 associated with strong arrivals as

well as large silent regions in between, occupied by quiescent taps that have little

energy.

Inclusion of those quiescent taps for adaptive estimation, whether or not it is

model based, will cause channel overparameterization and risk increased noise sen-

sitivity. Dynamic tracking of these quiescent taps without an appropriate model, as

shown in Chapter 3 and Chapter 4, would even cause algorithm to diverge. Often it is

with the motivation of reducing noise sensitivity and potentially improving tracking

performance that various sparse estimation techniques have been developed, most of

which are based on least squares formulation thus divergence due to the sparseness

is of a less concern.

The idea of channel sparsing is to reduce the number of taps of the channel

3By tap, it refers to a discretized delay sample, i.e. an element of a uniformly sampled channel
impulse response.
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impulse response that are tracked. Applied to a sparsing processed channel, the

tracking algorithm have a reduced computational complexity and memory, and more

importantly, the rate of channel fluctuations that it can track increases [Sto99] [Stoed].

A majority of sparsing techniques can be classified into two different categories.

The first group include approximation algorithms that try to solve the nonlin-

ear optimization problem of minimizing the squared prediction residual error as a

function of the gain and the delay location of all the dominant taps, among which

are the sparse DFE [Ron05], the adaptive delay filter [Che89], the adaptive echo

canceller [Yip90], the thresholding RLS algorithm [Stoed] [Koc95] [Sto99] [OzeO2].

The common strategy of these algorithms is to break down the original optimization

problem over the whole gains-delays space into a sequence of optimization problems

with smaller parameter spaces. In [Ron05] this is done by optimizing over the gains

first and then find the optimal delays. The adaptive delay filter [Che89] approximates

the original problem by sequentially optimizing over the gain/delay of each tap. The

adaptive echo canceller [Yip90] and the threshold RLS are similar, in the sense that

a full-tap adaptive filter is used as an auxiliary filter to provide tap location and

then transfer the detected delay locations to a set of lower order filters to adapt

the gains of those identified taps. The adaptive echo canceller uses a combination

of various criteria to pick the dominant taps while the threshold RLS uses simple

energy criterion.

The second group include algorithms that find the sparsest representation of the

received signal, using the transmitted symbol sequence as basis vectors (often called

as dictionary as they may not be orthogonal). Explicit sparse estimation mainly

includes LP norm regularized method [Don03] [Mal03] [FucOO] and "'greedy"' method

such as the Matching Pursuit (MP) algorithm [Mal93]. The MP algorithm is com-

putationally more efficient, yet, until the recent work by Tropp [Tro04], has been

analytically less tractable. These methods originate from the signal representation

problem where the dictionary subset providing the most compact signal represen-
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tation is sought after. Recently, some of these sparse techniques, mostly the MP

and its orthogonalized variant, have been increasingly applied for sparse channel

estimation and equalization, see for instance [CotOO, Cot02] [Kar04] [Cet05]. Note

that some of these works are developed for the high definition television (HDTV)

terrestrial broadcast channel which, similar to wideband acoustic channel, has very

sparse structure.

Comparison between these algorithms has not been done extensively, especially

in the context of channel estimation. It has been pointed out in [Cot0l] based

on simulation results that the thresholding RLS method does not perform as well

compared with explicit sparse estimation methods such as the MP algorithms for

time-varying channels. 4

Yet the main limitation of these sparsing methods, is that they require the sparse

structure of the channel is stable over a certain time scale, which could be easily

violated for the type of channel considered in this thesis as illustrated in the next

chapter.

1.3 Approaches of this Thesis

The approaches taken in this thesis are directly motivated by the three dominant fea-

tures of wideband shallow-water acoustic channels mentioned in section 1.1, namely,

large channel dimension due to an extensive delay spread; limited number of degrees

of freedom (DOF) due to resolvable multipath arrivals and inter-path correlations;

and rapid channel fluctuations due to scattering from the moving sea surface.

To account for channel fluctuations, two different approaches have been taken.

The first is to model explicitly the channel dynamics using a state-space channel

model (derived in Chapter 2) based on which both the channel state and its dy-

namic model parameters are jointly estimated using the EKF (Chapter 3) or the

4Cotter's result on RLS may not be reliable due to the rather large forgetting factor he used
which causes his results to show that the RLS is significantly slower than the LMS to converge.
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EM approach (Chapter 4) with necessary modifications. The second approach is

to represent the channel by its discrete delay-Doppler spread function (Chapter 5)

which models channel variations through populating its components uniformly along

the Doppler axis.

To deal with the sparse channel structure, soft constrained methods are first

developed for the dynamic model based channel estimators, including a two-model

based EKF algorithm (Chapter 3) and the subspace EM algorithm (Chapter 4).

Both selectively track the dominant channel components by adaptively changing

the model parameters, while also avoid the divergence problem. Secondly, explicit

sparse algorithms such as the MP algorithm and its variants are applied to find sparse

estimate of the delay-Doppler spread function (Chapter 5).

1.4 Summary of Contributions

The main contributions of this thesis consists of the following:

1. The derivation of a state-space model for communication channels consisting of

clusters of moving point scatterers. The dependency of the model parameter,

specifically the state transition matrix, on the Doppler associated with each

scatterer and the equivalent shaping filter, is explicitly derived;

2. The development and analysis of the EKF channel estimation algorithm un-

der the wideband rapidly varying sparse channel condition; The constraint of

channel sparseness upon the EKF algorithm is identified in terms of parameter

observability and detectability. It is shown that channel sparseness may lead

to potential divergence in dynamics parameter estimation if the parameters

are not modeled appropriately; The development and analysis of a separate

parameter model based EKF algorithm which selectively tracks active taps

while circumventing the parameter identifiability issue. A 2 ~ 3 dB reduction
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in signal prediction error is achieved using the Two-model EKF algorithm on

experimental data that involves significant channel dynamics.

3. The development and analysis of the EM channel estimation algorithm; The

derivation of a fast recursive algorithm for computing the cumulative second-

order smoothed state moments and its stability analysis; The development and

analysis of a class of suboptimal EM algorithms, including the derivation of a

second-order innovation form for the parameter recursion. The establishment of

the extended Persistent Excitation (EPE) condition which indicates successful

dynamic tracking requires fully exciting channel estimate sequence as well as

transmitted symbol sequence. The development of the subspace EM algorithm.

4. The derivation of a sequential least squares matching pursuit (SLSMP) algo-

rithm for sparse processing with nonorthogonal dictionaries. The development

of sparse algorithms estimating the channel delay-Doppler spread function, in-

cluding the SLSMP algorithm and two-stage sparse estimation algorithms. A

uniform 2 ~ 3 dB reduction in signal prediction error is achieved using sparse

estimation of the channel delay-Doppler spread function.

5. The thesis presents a relatively systematic, albeit preliminary, study of dynamic

channel estimation and tracking based on state-space model, with an emphasis

on application. Performance gain in terms of signal prediction residual error

reduction is demonstrated through a set of surf-zone wideband experimental

data. Within this framework, channel physical features and constraints are

transformed, through modeling, into concepts well known in system and filter-

ing theory which then provide guidance and insights for algorithm design. The

overall development may be viewed as a first step towards the development of

a general framework within which one could effectively cope with realistic sit-

uations where rapid time variations, large dimensionality and limited numbers

of freedom are all combined, as typical in many applications.
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Chapter 2

Surface Channel Physics and

Modeling

This chapter discusses channel characteristics and modeling. Characteristics of time-

varying surface scattering channel are presented through examining a set of experi-

mental data obtained from a surf-zone channel, following a brief review of acoustic

surface scattering theory and results. Linear time-varying (LTV) filter and wide-sense

stationary uncorrelated scattering (WSSUS) channel representations are briefly re-

viewed. A state-space model is derived for wideband channel consisting of clusters

of moving point scatterers, which provides the model framework for the development

in Chapter 3 and Chapter 4.

2.1 Characteristics of Surface Scattering Channel

Surface forward scattering plays an important role in shallow-water acoustic com-

munication channels. The sea surface by nature is a time-varying and randomly

rough interface. It also generates bubble sublayers via wave breaking. Consequently

signals scattered from the surface experience a great deal of fluctuations, including

Doppler spread/shift, variations in amplitude, propagation time as well as arrival

28



angle. These fluctuations are time-varying and random as well.

A brief review of acoustic scattering from sea surface is given in section 2.1.1, fol-

lowed by an examination of a set of surf-zone experimental data in section 2.1.2. It is

found that the general results obtained from acoustic surface scattering theory only

provide fairly limited information for wideband shallow-water short-range channel

due to the various assumptions upon which the theory is based. Furthermore, exper-

imental data analysis in section 2.1.2 as well as previous study [Pre04], reveal that

many aspects of the channel dynamics, although not captured by the general acoustic

scattering theory, have significant impacts on acoustic communication performance.

2.1.1 Acoustic Surface Scattering

The problem of scattering from sea surface has been extensively studied, resulting

an abundant literature including general theory [Bec63 [Ogil ] [Brel ] [Vor9 ]; vari-

ous numerical approximation methods such as the Kirchhoff Approximation [Eck53]

[Tho88], the Small Perturbation Method [Tho89] and the Small Slope Approxima-

tion [Vor9 ][Tho95][Bro97]; and a few experimental studies such as [Med70][Spi72]

[Bro74], and more recently [Dah01][Dah99][Dah96]. Review of early work may be

found in[For70]. Although these theoretical and experimental studies provide basic

understandings of the mechanism of acoustic surface scattering and certain second-

order statistics and sometimes characteristic scales of the acoustic scattering field,

many of these results are limited to narrowband scattering and are either too detailed

to be useful for robust design or too simplistic to provide any realistic guidance for

algorithm design. For wideband very shallow-water short-range channels considered

in this thesis, however, these studies fail to capture the most salient channel features,

hence their results provide little valuable information germane to coherent wideband

communications.

Most previous studies of surface scattering focuses the dependency of the mean

scattering field, the second order statistics (such as the power spectra as well as
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the spatial and temporal coherence), or the characteristic scales (such as the delay,

Doppler and angle spread) on the grazing geometry and the surface conditions such as

the wave spectrum and roughness scale ( e.g the Rayleigh roughness). As important

are these results, however, they do not provide a dynamic picture of the scattered

field, i. e. the variations of these statistics and scales, which are evident in the exam-

ple channel shown in section 2.1.2. The channel dynamics are the main factor limiting

the performance of channel estimation and equalization for this type of channel. In

statistical channel modeling, previous efforts have also been made to tie the statis-

tical properties of the scattering field with explicit channel representations, such as

[Ven7l] for time-varying transfer function modeling, [Spi72] with impulse response

measurements, [McD75] for scattering function representation, and [Zio82a, Zio82b)

for both the time-varying transfer function and the scattering function. Although

efforts in [Zio82a, Zio82b] made the important connection from the acoustic scat-

tering mechanism to the LTV filter channel representation which is more accessible

to communications applications, they had not been transformed into any significant

conceptual impact on either surface scattering or stochastic channel modeling.

The inadequacy is mainly due to the surface assumptions upon which these stud-

ies are generally based. With rare exception the surface is usually portrayed as spa-

tially homogeneous and temporally stationary random processes (or deterministic

periodic gratings) specified by a wavenumber spectrum. For shoaling surface waves

homogeneity and stationarity are often not good assumptions as the waves become

more directional and nonstationary. The stationary assumption is a concept largely

dependent on the relative scales of the problem which is determined by the surface

wave period, the acoustic wavelength, the propagation range and the water depths of

the source and receiver. For low frequency, long distance, deep water transmission,

stationarity in general is a good approximation. Yet, for high-frequency short-range

shallow water channels the surface is in general highly nonstationary as the relative

surface scale increases. A key factor in channel estimation is the required adaptation
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rate which is intimately related with the stationary scale. In dealing with time-

variations of the surface, some recent work substitutes the traveling surface with a

series of instantaneously frozen surfaces [Mil03] [Ros99]. That essentially neglects the

effect of surface motions, both vertically and horizontally, during its interaction with

the acoustic signal. As a result, the resulting Doppler prediction could be severely

underestimated.

Most of the theoretical and approximation based studies are carried out earlier for

monochromatic waves. Result for wideband scattering of a pulse from a time-varying

rough surface is understandably scarce considering the complexity of the problem.

2.1.2 A Wideband Surf-Zone Channel Example

To illustrate the characteristics of wideband short range shallow-water channels, this

section exams such an example taken during the Wavefronts II experiment.

The Wavefronts II Experiment

A detailed description of the Wavefronts II experiment can be found in [Pre04]. The

Wavefronts II experiment took place in the surf zone with approximately 6 m deep

water, 30 m north of Scripps Pier in December 2000. Figure 2-1 and Figure 2-2 show

the top and side views of the experiment geometry. As shown in Figure 2-2, the

source transducer is fixed at 2 m above the seafloor. Broadband signals with center

frequencies ranging from 12 to 26 kHz were transmitted 38 m inshore to a vertical

array of 3 hydrophones spaced 0.5 m apart, with the bottom hydrophone 1.51 m above

the seafloor. A reference hydrophone, used to monitor the source signal level, was

deployed at the same depth as and 0.71 m shoreward of the source. The experiment

geometry was designed to allow surface reflected arrivals to be resolved from other

paths in delay with the source bandwidth. Shoaling surface gravity waves were

monitored simultaneously with the acoustic transmissions by an array of 8 pressure

sensors deployed just above the seafloor along the acoustic propagation path. The
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seafloor had an almost constant slope of 2.0' along the propagation path. The sea

surface corresponds to an actual surface gravity wave profile measured during the

time of the transmissions, and illustrates the fact that generally only one wave crest

was found between the source and the receive array. The sound speed during the

experiment was measured to be 1503 m/s. The density and sound speed of the

seafloor is calculated as 2048 kg/m 3 and 1757 m/s respectively, corresponding to a

critical angle in the seafloor of 31.2' and an absorption of 0.85 dB per wavelength.

Transmission Path Shoreline

Source Receive Array

N
Scripps Pier

Figure 2-1: Wavefronts II Experiment Top View [Pre04]
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Figure 2-2: Wavefronts II Experiment Side View [Pre04]

For the data analyzed and presented below, the transmit and receive signals were

both sampled at 96 kHz. Transmit signals were generated with center frequencies

of 18 kHz, and were prefiltered to provide an approximately flat system frequency

response over a bandwidth of the inverse of the pulse or symbol duration around the
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center frequency of the signal. The signal format is binary phase shift keyed (BPSK)

signal modulated by continuous repetitions of a 4095 point maximum length shift

register sequence (M-sequence). The symbol rate is 24000 symbols per second.

Channel Characteristics

The time-varying channel impulse response (or the input-delay spread function), es-

timated from the received signal via a simple exponentially weighted RLS algorithm

with a forgetting factor A = 0.998 assuming perfectly known transmitted symbols,

is shown in Figure 2-3 for a time span of approximately 60 seconds. The effective

averaging window of the RLS algorithm used is 250 symbols, or 10.4 ms. As Figure

2-3 (a) shows, the channel has a delay spread (vertical axis) of approximately 7 ms,

or equivalently 336 samples at a fractional sample rate of 2 samples per symbol. The

multipath arrivals are resolved from each other in delay. As labeled in Figure 2-3

(a), counting upwards from the bottom of the plot are the directly arrival (DA),

the bottom reflected arrival (BA), the surface reflected arrival (SA), the surface re-

flected and then bottom reflected arrival (SB), the bottom reflected and then surface

reflected arrival (BS) and the bottom reflected, surface reflected and then bottom re-

flected arrival (BSB). Above BSB are arrivals have multiple surface interactions. The

overall multipath structure is very sparse, in the sense that between those discrete

multipath arrivals, the channel impulse response does not have significant energy.

On the very top of Figure 2-3 (a) is the surface gravity wave profile measured

during the same time span. It is the pressure sensor measurement obtained at the

nominal specular point after spatial and temporal interpolation. A cross-section of

Figure 2-3 (a) at each particular time corresponds to the channel impulse response at

that time. It can be observed that as time progresses, the channel impulse response

changes significantly, as reflected in Figure 2-3 (a) by both the intensity fluctuations

and the delay migrations of those surface scattered arrivals. The Doppler associated

with these variations, although not shown in Figure 2-3 (a), can be expected to be
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large. The direct and bottom reflected arrivals are relatively stable. It is evident

that the channel fluctuations are closely coupled with that of the surface. Note that

due to the fact that the pressure sensors are deployed just above the seafloor, the

small scale surface features are lost.

According to the surface wave time series plotted on top of Figure 2-3 (a), a large

wave crest ran over the nominal specular point in the time period of 19.5 seconds and

21.5 seconds. A segment of the time-varying channel impulse response covering the

first two surface scattered arrivals over that time period is shown enlarged in Figure

2-3 (b). The zoomed plot shows 'butterfly' shaped structure for both surface arrivals,

and the appearance of a strong transient arrival in the first surface scattered arrival

at about 20.5 second. The bifurcation of a single arrival into two 'butterfly' wings

moving at opposite directions is caused by the splitting of a single specular reflecting

point (or rather a surface patch) into two moving specular reflecting patches within

the surface wave crest as the surface curvature increases. The strong transient arrival

is a result of surface focusing. Detailed explaination for the physical mechanisms

behind these processes as well as comparison with model predictions are can be found

in [Pre04]. From Figure 2-3 (b), it is shown that the delay-advancing 'butterfly wing'

of the first surface arrival migrated over 0.6 ms in delay within approximately 1.5

seconds, corresponding to about 7.2 Hz Doppler calculated according to the center

frequency 18 KHz. Considering that the other 'butterfly wing' is moving in opposition

at approximately equal velocity, this leads to a Doppler spread of about 14 Hz. The

second surface scattered arrival, also shown in Figure 2-3 (b), has even faster moving

rate hence can be expected to have a larger Doppler spread. This is reflected more

clearly in the channel scattering function plots shown in Figure 2-4 and Figure 2-5.

The time-varying scattering function was estimated using the Matched Filter

(see, for instance [Egg97] [Van7l]) with an effective averaging window of 8190 sym-

bols, or 341 ms, corresponding to Doppler resolution around 2.9 Hz. A sequence

of 12 such estimates were obtained between 19.852 seconds and 22.582 seconds, an
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approximately 3 second period, at a time step 273 ms (or 6552 symbols). Only the

Doppler-delay region ([-20 Hz 20 Hz 0.8 ms 3 ms]), covering the first four sur-

face scattered arrivals, is shown in Figures 2-4 and 2-5. For each plot the horizontal

axis is Doppler in Hz and the vertical axis is delay in ms. The order of each plot in

the sequence is labeled at its lower left corner, from 1 to 12. The whole sequence

covers from the onset of the large surface wave till it completely leaves the nominal

specular reflecting region.

The channel dynamics induced by scattering from this traveling wave can be

observed through the movement of those energetic delay-Doppler components, the

emergence and the disappearance of the 'butterfly' wings with opposite Doppler and

transient arrivals with little Doppler.

As shown in Figure 2-4 (1), in the beginning all surface arrivals have negative

Doppler as they start to retreat in delay when the surface level rises. As the wave crest

moves close to the nominal specular reflection region, the birth process of the opposite

'butterfly wing' for the first two surface arrivals can be readily observed from Figure

2-4 (2) to (4) where they gradually develop into very strong arrivals. The positive

Dopplers associated with those newly born arrivals indicate that they are moving in

the opposite direction, since the original arrivals still maintain negative Dopplers. In

Figure 2-4 (4) to (6), these arrivals start to develop significant intensity and move

closer towards each other in delay, effectively caused by the progressing of the wave

crest into the nominal specular reflection region. A strong stable arrival with zero

Doppler emerges in Figure 2-4 (5). During the wave onset period, the formation of the

'butterfly' patterns in delay-time domain observed in Figure 2-3 assumes a different

dynamic appearance on the delay-Doppler domain: All arrivals follow a clockwise

nearly circular motion: the original arrivals retreat in delay with negative Dopplers

whose magnitudes increase; the newly emerged arrivals (the 'butterfly wings moving

in opposite direction) advance in delay with positive Dopplers that reduce magnitude

gradually. The increasing negative Doppler and the reducing positive Doppler are
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both associated with changes of the surface slope at the scattering patches as the

wave crest moves. This circular motion continues as the wave crest moves on, until

the original arrivals are replaced by the arrivals newly developed during the onset of

the wave crest, as shown from Figure 2-4 (7) to (8). The channel resumes a stable

condition after the wave crest moves away. The remaining arrivals have positive

Dopplers due to the lowering of the surface level.

During the whole process, maximum Doppler spread of approximately 25 Hz

(Figure 2-4 (5) and (6)) , 30 Hz (Figure 2-4 (4) and (5)) and 35Hz (Figure 2-5 (9)

and (10)) are observed for the first, second and third surface arrivals, respectively.

Another important observation is that the scattering function has a very sparse

structure, in the sense that the energy clusters around several dominant components

that are well separated, the large area between them has little energy.

The most dominant feature of the example channel is its highly dynamic behavior.

Judging either from the time-varying channel impulse response estimate or the time-

varying scattering function estimate, the channel cannot be assumed as stationary.

The circular rotation of the delay-Doppler components and the butterfly pattern

bifurcation of multipath arrivals characterize a type of channels that could not be

appropriately modeled using the general acoustic surface scattering theory mentioned

early.

Implications on Channel Estimation

The observed channel characteristics pose significant challenges for the problem of

channel estimation, mainly due to the following competing requirements:

1. The rapid channel fluctuations as well as the variations of the dynamics of

those fluctuations would keep algorithms with long averaging window from

accurately tracking the channel; While on the other hand the extensive de-

lay spread multipath structure implies a proportionally long averaging time

window is necessary;
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2. The highly structured channel impulse response and delay-Doppler spread func-

tion, either being explicitly sparse or having inter-path correlations, prompt

consideration for sparse processing which usually requires such structures to

be stable over a period of time proportional to the channel dimension; On the

other hand, the multipath structure is rapidly time-varying;

3. The migration of arrivals over delay effectively makes the uniformly sampled

channel impulse response a physically less meaningful representation; However,

arrival based estimation approaches are confronted with the time-varying and

sometimes unstable arrival tracks, not to mention the nonlinearity that would

arise in estimating the propagation delay of each arrival.

Other factors such as the emergence and disappearance of strong transient arrivals,

the crossing of arrivals, all make the tasks of channel estimation and subsequent

equalization more difficult.

Note that the Doppler spread observed above at a scale of 30 Hz, which probably

would seem less harmful to wireless applications, has a more severe effect due to

the significantly slower symbol rate typical in acoustic communications. For the

example above, the Doppler spread 30Hz, at symbol rate 24000 symbols per second,

contributes to a phase rotation of 7r in only 400 symbols, a scale comparable to the

channel dimension. This means significant phase smearing if an averaging based

algorithm is used without accounting for these Doppler effects. The problem is

further complicated by the fact that arrivals fluctuate at different rates. Hence the

bulk Doppler or bulk delay models together with the approaches based on that,

such as Doppler and delay correction using Phase-Lock Loop and Delay-Lock Loop,

becomes inadequate.

Yet much of these complications can be attributed to the single factor of channel

dynamics. To see the problem more concretely, in the following a simple exponen-

tially weighted RLS algorithm is applied to estimate the example channel mentioned

early. Figure 2-6 shows the performance of RLS with different effective averaging
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window length. The performance is evaluated in terms of the signal prediction resid-

ual error

ek Yk - YkIk-1 = Yk - CkXkk_1 (2.1)

where y and YIk-1 are the received signal at time k and its prediction based on

previously received signals. Ck is the transmitted symbols, a row vector. xkIk_1 is

the one-step channel prediction. That is, the estimate of the channel at time k using

data up to time k - 1.

Figure 2-6 (a) shows in a dB scale the total received signal energy (the blue

curve on the top), the squared signal prediction residual error lekI2 for RLS with

A = 0.96, 0.98, 0.998 respectively. The curves are all smoothed over one second. A

is related to the effective averaging window length approximately as below [Hay96]:

1
N oc (2.2)

1 - A

Hence larger A means longer averaging window.

As shown in Figure 2-6 (a), the overall lek1 2 reduces significantly as A increases

towards 1, or, effectively the length of the averaging window increases towards infin-

ity. This is mainly due to noise suppression by longer averaging. However, this trend

is reversed around 20 second when the channel becomes highly dynamic due to the

passage of the surface wave event. As shown enlarged in Figure 2-6 (b) (the averag-

ing window is 1/6 seconds), lek1 2 increases when A increases from 0.98 to 0.998, and

is only about 2dB smaller than the total energy (note this is still a smoothed result.

result prior to smoothing has sharper spikes and indicates even smaller difference

between the total energy and the residual error), which means that the channel is

probably not being tracked at all during these dynamic events.

This simple example is a good indication of the limitation of the often used ad

hoc tracking mechanism, namely, to bound the information matrix from above (with

A < 1), without explicitly modeling the dynamics of the time variation. For the
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type channel considered in this thesis, it indicates that these simple techniques are

inadequate.

2.2 Channel Modeling

This section discusses channel modeling. A concise review on various aspects of

channel modeling for general underwater acoustic communications can be found in

[KilOO]. First, in section 2.2.1 results from the well-known theory of linear time-

varying (LTV) filter channel model [Pri58] [Kai59] [Bel63] [Ken68] [Van7l] and

the wide sense stationary uncorrelated scattering (WSSUS) channel model [Bel63]

[Ken68] [Van7l] are briefly reviewed, as some of the concepts will be used throughout

the thesis. Secondly, a state-space channel model is derived in section 2.2.2, directly

based on a simplified channel model that consists of clusters of moving pointer scat-

terers. The state-space dynamic model is motivated by the observation and analysis

made in the previous section, and most importantly, will be the foundation for the

development of dynamic model based channel estimation and tracking algorithms in

Chapter 3 and Chapter 4.

2.2.1 LTV and WSSUS Channels

Modeling communication channels as linear time-varying (LTV) filter has been a

well-developed topic as nicely summarized in [Bel63. The channel is represented by

a set of system functions that are inter-connected via Fourier transformation over

two pairs of dual domains: time vs Doppler and delay vs frequency. These system

functions not only provide mathematical channel descriptions, but also lead to a

physical picture of channel consisting of scatterers [Van71]. Since conceptually these

system functions are equivalent, it is not necessary to repeat them all here. Instead,

the two most popularly used functions, the so-called input delay-spread function

and the delay-Doppler spread function, are reviewed as they will be heavily used
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throughout the thesis.

The input-delay spread function (later it will be used interchangeably with the

name time-varying channel impulse response), denoted by g(t, r) is defined as follows

[Bel63]:

r(t) J g(t, r )z(t - T)dT (2.3)

where r(t) and z(t) are the received signal and the transmitted signal respectively.

Hence g(t, r) is the current channel response to a unit impulse input T seconds

earlier. Should the channel be time-invariant, g(t, T) simply degenerates into the

channel impulse response.

In discrete-time, a vector form may be used

ri = gizi (2.4)

where ri = r(it), gi = [g(iot, To) g(iot,To + 6r) ... g(i6t, ro + M6r)]t and zi =

[z(i6t - ro) z(i6t - ro - 6T) ... z(i6t - To - M6T)]t. ro is the reference delay, 6t and

6T are the sample interval in time and delay respectively and M is the number of

delay-taps, i.e. the channel dimension.

The delay-Doppler spread function, denoted by u(v, ), is defined as follows:

r(t) = J u(v, r)e j 2"" tz(t - T)dTdv (2.5)

which represents the output as a sum of delayed and Doppler shifted elements.

In discrete-time,

ri = u (zi 0 00') (2.6)
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where ri and zi are defined the same as previously, 0 is the Kronecker product,

Ui = [u(vo, 7o) u(vo + 6v, To) - - -u(vo + Pov, r0 )

u(vo, 70 + 6T) u(vo + 6V, To + 6T) ... u(Vo + P6V, TO + 6TF)

u(vo, To + M6T) u(vo + 6v, - + M6T) ... u(vo + Piv, T0 + M67)]' (2.7)

= [e2*i""6  ej2*r(vo+6 v)iMt ... e *(vo+Pv)i]t (2.8)

u(v, T) is related to g(t, r) via the Fourier transformation between t and v:

u(v, -r) = jg(t, -r)e-j2"'vdt (2.9)

It is clear that u(v, T) explicitly models the channel time-variation in terms of

Doppler shifts. When dealing with rapidly varying channels, the assumption that

the delay-Doppler spread function remains constant for a certain period of time is

less strict than assuming the channel impulse response to be constant.

Both g(t, T) and u(V, T) are deterministic channel representations. In general

channels are random processes, hence so are g(t, T) and u(v, T). The second-order

moments of g(t, T), denoted by Rg(ti, t2 ; T1 , 72 ), is defined as follows:

Rg(ti, t2;71, 7r2)= E{g(t1, 71)g*(t 2 , 72)} (2.10)

Two important assumptions that will significantly simplify the problem and in

most cases thought to be valid, are the wide-sense stationary and the uncorrelated

scattering assumptions. Reflected on Rg(ti, t2 ; T1 , 7 2 ), that means

R 9 (t1 , t2 ; T1, T2 ) = Rg(t2 - t1 , Ti)6(TI - T2) (2.11)
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Consequently, the scattering function, denoted as S(v, T), is given by

S(V, T) J R,(At, T)ej27AtdAt (2.12)

which is essentially the delay-Doppler power spectrum.

The wide-sense stationary assumption implies that the first and second-order mo-

ments are invariant to shift in time, or equivalently white in Doppler domain. That

is, elements associated with different Doppler shifts are uncorrelated. Combined

with uncorrelated scattering assumption, it essentially relates the channel to a set

of scatterers with different delay and Doppler and are uncorrelated. For most cases

when the scale of the surface time-varying roughness is relatively small, the wide-

sense stationary assumption would be a good approximation. However, as discussed

early, it is not so for wideband shallow-water short-range channels where the relative

surface scale is large. Also, the assumption that elements with different delays are

uncorrelated may not hold. Scattering from a common random surface patch, mi-

cropath arrivals may be correlated. Large scale surface motion and wave traveling

may introduce correlation among the macropaths.

The scattering function represents the average distribution of energy over the

delay-Doppler plane, from which several important characteristic scales can be de-

rived, including the delay spread, Doppler spread, and coherence time and coherence

bandwidth[Bel63] [Ken68]. Without repeating these concepts, it is worth pointing out

here that the notions of overspread and underspread sometimes can be misleading.

In the example channel above, the delay spread L, is about 7ms and a maximum

Doppler spread L, is less than 40Hz. As a result, the product LL, < 0.28 < 1. This

channel would be claimed as underspread [Ken68] [Bel69]. On the other hand, as

argued previously, phase smearing can be pretty severe even within a time window

comparable to the channel dimension, hence the channel may not be measurable

using a LS method which contradicts the results in [Bel69].
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2.2.2 State-Space Channel Model

In this section a state-space channel model is derived directly based on the assump-

tion that the channel consists of clusters of moving pointer scatterers. Finite di-

mensional state-space model has been previously used for communication channels,

see, for instance [Van7l] where the optimal receiver is also derived based on the

state-space channel model. However, it has not been shown, even for the simplest

cases, that finite-dimensional state-space models are good channel models based on

certain criteria. In fact, as explained later, a state-space formulation is generally not

as natural as the tapped delay line model, except for a few rare cases.

The derivation starts with a single point scatterer channel and then consider the

multiple pointer scatterer case. The derivation follows the notation of [Van7l].

Single Point Scatterer Channel

Consider the case where the channel consists of only a single moving point scatterer,

denoted as P. Suppose the following signal is being transmitted over a communica-

tion channel:

s(t) = vf2Et Re{g(t)ej2 7fct} (2.13)

where (t) and Et are the baseband signal and its power; and f, is the carrier fre-

quency.

Denote the signal propagation path length by R(t). Neglecting additive noise the

received signal is given by

y(t) v/ Et Re{b(t)p (t - R t) (t_ Rt}

V2Et Re{ (t) f } (2.14)
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The equivalent baseband received signal f(t) is given by

Q(t) = b(t)P(t - Rt ) )ef' (t)) (2.15)

where b(t) denotes the scattering cross section, C is the speed of sound; P(t) is the

equivalent matched filter output, and may be represented by the convolution of the

input 9(t) with a continuously differentiable shaping filter f(t) [ProOla]:

(t) = J s(r)f(t - r)dT (2.16)

The baseband channel output p(t) and the baseband transmitted signal 9(t) can

be related via the baseband input delay-spread function as follows:

M(t) = g(t, -r).(t - -r)dr (2.17)

and
R(t) j2rf (t>

g(t,T) = b(t)f (r - C ) C (2.18)

In [Van7l] (Chapter 9), it is pointed out that the scatterer velocity, denoted as V,

causes both Doppler shift and time scale compression/dilation of the complex enve-

lope in the received signal; Furthermore a upper limit for the signal bandwidth-pulse

width product (BT product) is established under which the time scale compres-

sion/dilation of the complex envelope may be neglected:

BT < (2.19)
2V

where B and T are the signal bandwidth and pulse duration respectively. The factor

of 2 is related with the monostatic scattering.

In the current development such requirement is not needed. In fact, the time scale

compression/dilation is preserved, which is necessary for wideband transmissions
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considered in this thesis. According to (2.15) the time scale variation of the complex

envelope is caused by the time-varying propagation delay associated with the moving

scatterer. Equation (2.18) indicates that this can be represented by the delay shift

of g(t, r) over time. In the state-space channel model to be developed later this is

represented quite conveniently using a diagonally banded state transition matrix.

Continuing the consideration of channel dynamics caused by the scatterer motion.

After some small time interval 6t,

g(t + 6t, T') = b(t + 6t)f (T' - R(t + 6 t))e-27rfcfl"(t)

R(t) R(t + 6t) - R(t) _2rf ( R(t+6t) -R(t)

- b(t +6t)f (T' - ce C

,R(t ) 6 R(t ) _-27rf (t ,R M)= b(t + 6t)f (T' - - J e f A (2.20)
C C

where 6R(t) = R(t + 6t) - R(t).

Applying change of variable T' = T + 6R(t) the following equation is obtainedC

connecting g(t + 6t, r) with g(t, r):

b(t + 6t) 6R(t) _R(t)

g(t + 6t,T) = g(t, T - ) e-j2wfc t (2.21)
b(t) C -&

(2) 
(3)

(1)(2

where the first factor is due to the change of scattering cross section over the time

interval 6t, the second factor reflects the path length change, and the third factor

is a phase component associated with Doppler shift. Note that the expression in

the first term runs into trouble in the presence of scintillation, i.e., b(t) becomes

very small or close to zero. This is an inherent limitation of dynamic modeling

and will cause the estimation of the channel dynamics a mathematically ill-defined

problem as shown later. Equation (2.21) essentially describes the time-evolution of

the baseband channel input delay-spread function following the scatterer trajectory.

This evolution could appear very different when observed through fixed delays, i. e.
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from the perspective of the uniformly sample channel impulse response. To see that,

expanding the second term in (2.21) using the first order Taylor series of f(-), it

yields

R(t) R(t) 6R(t) r, (t)

g(t,T- C =b(t)f(T C C 2 ,c C

R~)R(t) j2rf, R(
C C C

f(T R(t) R(t)
g(t,r) - b(t)f'(r - R(t) e 2

' (t, T)g(t, T) (2.22)

where -yf(t, r) 1 - [f'(T- Ei)) 6 R(t) 7f ( - R())]; and f'(r- () is the first-order

derivative of f(-) taken at r - R. It is clear that the significance of the second term

of -yf(t) depends on f'(T - () as well as .R(t)

Note that the above approximation requires 6R(t)/C to be small compared to the

pulse duration. Consider the case where the pulse has a Gaussian shape. If 6R(t)/C

is larger than the pulse duration, denoted as Tf, then f(r - R(t+1) 0 even

though f (-r - R) =R(t)/C can be fairly large. The first-order approximation breaks

down since f'(r - R)=) = 0. More specifically, let V be the scatterer velocity,

B as the signal bandwidth hence, the symbol interval is dt = 1/B, then the above

requirement becomes

Vd< T (2.23)
C

equivalently,

BT > (2.24)

As Tf > dt hence BTf _> 1, (2.24) is generally satisfied since V < C. Considering

the example channel mentioned previously, B = 24000 Hz, C = 1500m/s, assuming

V = 2m/s, then (2.24) requires that the delay spread of each multipath arrival

Tf > 24002 5.6 x 10-5 Ms, which is easily satisfied. (2.24) can also be interpreted

as requiring that the scatterer has a relatively smooth migration from tap to tap for
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a given BT product, which is usually a reasonable assumption for surface scattering

channels.

Substituting (2.22) back into (2.21) yields

b(t + 6t) -j7f,"te) R(t) -jR7rf R(t)

g(t + 6 t,r) b(t) e-2fc [g(tr) - b(t)f'(T - R ) R e C_

b(t + 6t ) _-j27rf 'R^tb(t) e i c y(t, T)g(t, T)

A a(t, T)g(t, r) (2.25)

where a(t, r) -2b(t) 2c y(t, T). (2.25) describes the time evolution of the

channel tap gain along the fixed delay T, while (2.21) governs the evolution of the

tap gains along the trajectory of the scatterer. Another difference is that (2.25) only

applies for differentiable pulse shape f(-), since otherwise yf(t) is ill-defined. On the

other hand, (2.21) always holds regardless the choice of f(.). Again (2.25) becomes

ill-defined for scatterers with strong scintillation or weaker scatterers as b(t) - 0.

Channel with Multiple Point Scatterers

Now assume that a channel consists of a cluster of point scatterers and the second-

order multiple scattering among the scatterers is neglected. Then the input delay-

spread function is the sum of contributions from all scatterers:

K

g(t, 7) = g(t, 7)

k=1
K

= Zbk(t)fk (7- Rk t) 3 2 7 .f, ) (2.26)
k=1

where the subscript k is used to indicate the variables' association with the kth

scatterer. For simplicity, here it is assumed that the number of scatterers, K, is

fixed. In many real situations due to the emergence and disappearance of scatterers,

K often varies over time.
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Now suppose that the input delay-spread function is sampled along the delay axis

uniformly with interval 6T, i.e. Tm = To +m6T, for m = 0, . . . , M - 1. Here ro is the

bulk delay and M is the total number of delay taps. The sampled input delay-spread

function is then represented by a vector g(t):

g(t) = [g(t, TO), g(t, 7i), - - - , g(t, rzI_1)1 t (2.27)

From (2.26), it follows

g(t) = F(t)b(t) (2.28)

where

b(t) -A [b1 (t)-j227rfc(R1j)/C)

fi(To _ Rit))

Ff(t) )

f1 (TM_1 --- )

- bK(t)e-j21fc(RK(t)/C)]t

fK (70 ~ R

fK(To - RKt

fK (TM1 - RKt)

b2(te e-j27 fc(R2(t)/C)

R2 (t) '

22 (t) '

f2 (T-1 '

Remarks:

1. The matrix F(t) contains all the delay information. Columns of F(t) are as-

sociated with different scatterers and rows of F(t) are associated with fixed

delay taps. The vector b(t) bears information on the scattering gain varia-

tion, and more importantly, the Doppler associated with each point scatterer.

The latter can be better seen using the simple linearly moving scatterer model

Rk(t) =rk + Vk(t)t. In that case,

b(t) = [bI(t)e- 22r(fcov(t)/C)t b2 (t)e-j27(fcV2(t)/C)t ... jK2(t)e
2 x(fcVK(t)/C)tli

= (t)eJ2 xld(t b2(t)e ... b K(t)eJfdK

where bk(t) = bk(t)e- 2 fc(rk/c), for k 1,- , K; and the Dopplers fd,k(t) =
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fev(t)/C.

2. In the case of wideband transmission, the pulses fk(-) typically have narrow

width. This leads to a block diagonal structure in the matrix F(t). Suppose at

time t, -rm1 = mi5r is the delay tap closest to R 1(t)/C. Then due to the finite

support of fi(-), the first column of F(t) will concentrate near its m1th element,

with spread proportional to the pulse width. The same argument affects the

remaining columns.

3. Further decomposition of the channel into subspaces may be carried out based

on this representation, in terms of F(t) and b(t), i.e. delay subspace, Doppler

subspace.

If the signal bandwidth is sufficiently large, the paths associated with different

scatterers may become resolvable in delay. Reflected in F(t), different columns

will span distinct row segments. This requires that (Tk + T)/2 < [Rk(t) -

R(t)]/C for all k, j. Here Tk and T are pulse width associated with kth and

jth scatterers.

Consider after a small time interval 6t,

K

g (t + 6t, ') = A g(t + 6t, 7)
k=1
K

=Zb(t +6t)fk(T- Rk(t -6t (,e) kt- (2.32)
k=1

In vector notation,

g(t + 6t) = F(t + 6t)b(t + 6t) (2.33)

Using the first-order Taylor series expansion,

F(t + 6t) ~ F(t) + F'(t)AT(t) (2.34)

A T(t) A diag([6R1 (t) R2 t) ... 6RK(t)])/C (2-35)
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where 6Ri(t) = Ri(t + 6t) - Ri(t); and F'(t) is an matrix whose entries are fk(m6T -

Rk(t)/C).

In addition,

b(t + 6t) = A(t)b(t) (2.36)

where

A(t) A b1(t + 6t) j2,rfe6Rl/C b2 (t+6t) j2,fc6R2/c . bK(t + t) j2,rf6RK/C
diag([ b1 (t) b2 (t) bK(t)

(2.37)

Substituting (2.34)-(2.36) into (2.33) yields

g(t + 6t) [F(t) + F'(t)AT(t)] A(t)b(t)

= [I+ F'(t)AT(t)Ft(t)] F(t)A(t)b(t) (2.38)

where Ft(t) = [Fh(t)F(t)] lFh(t) is the pseudo-inverse of F(t), i.e. Ft(t)F(t) = I.

Here Fh(t) is the Hermitian of F(t).

Let M(t) A F(t)A(t)Ft(t), it yields F(t)A(t) = M(t)F(t). Therefore

g(t + 6t) = [I + F'(t)AT(t)Ft(t)] M(t)F(t)b(t)

= [I+ F'(t)AT(t)Ft(t)]M(t)g(t)

- L(t)g(t) (2.39)

where r(t) A [I + F'(t)AT(t)Ft(t)]M(t) = [I + F'(t)AT(t)Ft(t)]F(t)A(t)Ft(t).

While the form of equation (2.39) is simple, the transition matrix F(t) is unfor-

tunately a complicated function of F(t), Ft(t), F'(t), AT(t) as well as A(t).

In general the transition matrix r(t) in equation (2.39) does not have a simple

dependency on channel parameters such as Doppler and delay, as in the single point

scattering case. One exception is when the signal bandwidth is sufficiently large. As

shown in the following, for wideband transmission, a block diagonal structure can
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be obtained for the transition matrix and explicit dependency on Doppler and delay

can be derived.

Wideband Channel Model

As mentioned early, when the transmitted signal has sufficiently wide band, the

arrival signals from different scatterers are resolvable in delay which means that each

column of F(t) has narrow nonzero span and these spans do not overlap. For a

two-scatterer channel, this yields:

F(t) = fi(t) 0 1

0 f2 (t)
(2.40)

where fi (t) and f2(t) are column vectors that cover the nonzero support regions of

scatterer 1 and 2, respectively. F'(t) has the same block structure. F(t) is given by

Ft (t) f, (t) 1|-2ffh (t)Ff (t) =

is also well structured.

Accordingly, for this two-scatterer channel

b1 (t+6t) e-j27rfc6R1 IC

A(t) b 1()

0

Ot

Ijf2 (t)K-2f2(t)l

(2.35) and (2.37) become:

0

62 (t+6t) e-j2,rfc 6 R2/C
b2 (t)

0

6 R2(t)IC_
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Consequently, following (2.39) it yields:

Sb1(t+6t) -j27fc6R1/C

M (t) =i M1*

0

F(t)= I+ f1(t) ] 6R1/C
F(t) 0

ri T(t) o

0 F2(t)-

0
b2(t+t) e-j27fc6 R2/C f 2 (t)fb2 (t)ef2M2

0 |1f1 (t)||- -2fth(t)

6R21C Ot

where for i = 1, 2,

b(t+ tjej27rftRj1c f.(t)+ f'(t)6R /C f (t)L' (t) A bi(t) 
I

(2.46)

where the term inside the bracket is the first order Taylor expansion of fi(t+ SRI/C).

Further expanding the scattering cross section:

bi(t + 6t) ~ bi(t) + b'(t)6t (2.47)

it follows that

'(t ) ~ + b's(t t] [fi(t) + f(t)jRi/C] fh(t)e - 2
2rfe

5Rj/C
ri (t bi (t) . (2.48)

In summary, (2.45), (2.46) and (2.48) give a block diagonal transition matrix for

a wideband channel that consists of moving scatterers. They also explicitly gives the

dependency of the transition matrix on the Doppler associated with each individual

scatterer.

Based on this dynamic formulation, the following discrete-time state-space model
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can be proposed for the uniformly sampled channel impulse response:

( x j+ = A ix + w i 
(2.49a)

yi = Cixi + Vi (2.49b)

where xi A g(i6t), y, A y(i6t), Ai A I(i6t) are the sampled channel impulse re-

sponse, the sampled received signal and the channel state transition matrix, respec-

tively. ci is the sequence of transmitted symbols.

The derivation of (2.45), (2.46), (2.48) and (2.49) does not rely on explicit as-

sumptions regarding the signal bandwidth. The signal BT product upper bound

(2.19) is not necessary as the time-scale compression or dilation in the complex en-

velope is preserved and its effect is represented conveniently using the off-diagonal

elements of the matrix Ai in (2.49a). The lower bound for the product BTf, the

signal bandwidth and the delay spread of multipath arrivals, is not an issue typically.

However, as will be shown later, estimation of the channel dynamic parameters, i.e.

the unknown elements of Ai in (2.49a), does require that the multipath arrivals ener-

gize the corresponding delay taps throughout the averaging window within which the

parameter estimation is operated. Otherwise, it'll lead to the problem of parameter

unobservability in Chapter 3 and insufficient excitation in Chapter 4.

All modeling attempts involve approximations and the point is usually to high-

light the dominant aspects of the problem while simplifying others under identifiable

conditions. The same is true in this case. The state-space model proposed above

is based on deterministic dynamical arguments, as motivated by the previous obser-

vations of significant channel dynamics. The derivation does not involve statistical

properties of the channel. For instance, the process noise wi is largely unspecified,

although the observation noise vi can be added on without any conceptual confu-

sion. However, this does not imply that the statistical channel properties are not

important, rather it is hoped that (2.49), assuming a general state-space formulation,

would account for a fairly broad range of statistical cases.
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A more rigorous development of statistical channel properties of a channel, un-

der the assumption that the channel consists of clusters of point scatterers, can

potentially be considered based on statistical as well as dynamical properties of i)

the scattering gain bk(t) which is a random process and ii) the motion, or velocity

of those scatterers. It is certainly an interesting direction for further development

based on stochastic modeling of bk and their motions, for which results derived from

acoustic surface scattering may then be used.

For the purpose of dynamic channel estimation, (2.49) provides a good justifi-

cation for developing channel tracking algorithms. As it is generally unrealistic to

assume that one could possibly have perfect knowledge of model parameters for any

real channel, for the purpose of channel estimation or equalization, the common prac-

tice is either to estimate these parameters from received signals or simply consider

them as tweaking parameters of the estimation algorithm.

Thus here and throughout the remaining part of the thesis, it is simply assumed

that both wi and vi are zero-mean Gaussian white processes, with covariances Q"

and variance o , respectively. They are mutually and temporally independent, and

independent from the initial state xo. That assumed, one can connect the noise

covariance Q, and the transition matrix Ai with the steady-state tap gain energy

via the state-space equation provided the model is stable. The Doppler shift/spread

associated with channel taps are specified by Ai as derived in (2.46).

It is well known that finite-dimensional state-space model has a rational spectrum,

hence the model (2.49) may be viewed as approximating the channel with one having

rational spectrum. Due to the simplistic assumption of single scattering from point

scatterers, the model (2.49) is essentially of first-order and would not be suitable for

channels that have multiple Doppler shifts at a single tap, or equivalently, multiple

poles. However, extension towards high-order cases are straightforward based on the

development above.
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2.3 Concluding Remarks

The characteristics of wideband shallow-water surface scattering acoustic channels

are presented via a set of surf-zone communication experimental data. Examination

of both the channel impulse response and the time-varying scattering function high-

lights that the channel is rapidly fluctuating with a fast-changing dynamics; it also

has a very sparse channel structure that spreads extensively over both propagation

delay and Doppler. All these features are not captured by the previous acoustic

surface scattering theory and results.

A general state-space channel model is derived, based on the assumption that

the channel consists of clusters of moving pointer scatterers. Explicit dependency of

the state transition matrix on the Doppler and the signal parameters is given for the

wideband case.

The presented channel characteristics and the established state-space channel

model provide, respectively, the physical constraints and the model theoretical basis

for the development of channel estimation methods in the forthcoming chapters.
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Chapter 3

EKF based Channel Impulse

Response Estimation

Dynamic model based channel estimation approaches are developed in this chapter

and Chapter 4. This chapter covers the extended Kalman Filter (EKF) based ap-

proaches. The Expectation Maximization (EM) based approaches are discussed in

Chapter 4. The primary goal is to obtain accurate one-step prediction of the rapidly

time-varying channel impulse response which can then be used for channel estimate

based equalization. The major issue is that in reality neither the channel nor how

it evolves over time is known. Based on the state-space channel model developed in

Chapter 2, both the EKF and the EM based approaches jointly estimate the state

and the model parameters from the received signal. Hence, it is essentially a system

identification problem.

In this chapter the EKF algorithm for joint channel state and parameter es-

timation is derived. Tracking error analysis of the EKF as an adaptive filter is

presented. Second-order innovation corrections of the EKF are proposed based on

the comparison between the EKF and stochastic descent algorithms minimizing the

mean squared prediction error (MSE) and the negative log-likelihood function (ML).

More importantly, it is shown that due to the structure of the wideband channel
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impulse response, the dynamic parameters associated with those quiescent taps or

the unexcited tap subspace are unobservable and if not modeled properly, become

undetectable. A two-model based EKF algorithm is then proposed to address the

parameter detectability issue. It is effectively a soft constraint based approach to

actively track the dominant taps while maintaining modest adapting gain for those

quiescent taps.

3.1 Introduction

It is well known that the EKF can be applied for joint state and parameter estimation

[Jaz70] [Lju79] [And79]. By augmenting the original state with the unknown model

coefficients, it applies the standard Kalman Filter (KF) to the augmented state

space system linearized around the current estimates. The resulting estimates are

suboptimal solutions to the nonlinear estimation problem. The EKF can also be

viewed as an adaptive filter rather than a suboptimal approximation to the Kalman

filter. In reality it is rarely the case that one would know the noise covariances

while not knowing the model coefficients. The inaccuracy in the assumed noise

covariances could disqualify any optimality claims of the EKF. Although one could

estimate those noise covariances directly from data, which is a well-studied topic and

dates back to early 70s, see, for instance Mehra[Meh70] [Meh72], Jazwinski [Jaz70]

and Belanger[Bel74], and more recently, Bunn [Bun81], the number of unknowns in

the process noise covariance that can be estimated is found to be limited [Meh72].

Furthermore, all the approaches, which are based on the correlation properties of

either the innovation or the observation sequence, assume that model coefficients are

perfectly known. With joint estimation of the model coefficients, noise covariances

and the states, the algorithm will likely run into the issue of overparameterization,

not to mention the amount of computation involved. A more practical and robust

approach would be to choose the noise covariances in an ad hoc manner to accomplish
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some desired filter properties rather than seeking the exact match with the ground

truth (which is often model dependent). Effectively these covariances become tuning

parameters of the EKF as an adaptive algorithm.

Despite the extensive use of the EKF algorithm in numerous applications, rig-

orous analysis of its transient as well as steady-state performance has been scarce.

A well cited work on that aspect is by Ljung [Lju79]. In addition to pointing out

that parameter bias is mainly caused by inaccuracy in the assumed noise covariance

matrices, Ljung [Lju79] proposed two modifications of EKF to improve steady-state

convergence based on the comparison between EKF and the stochastic descent al-

gorithms that minimize either the mean squared prediction error or the negative

log-liklihood function. The analysis is based on the assumption that the model pa-

rameterization is both detectable and stablizable.

In the context of dynamic model based channel estimation using EKF, there

have been several developments that may be connected with this chapter on various

aspects.

In a series of papers [Ilt9O, Ilt9, Ilt94, Ilt0l], Iltis has developed several EKF

based algorithms for joint estimation of multipath gain, delay and/or Doppler in

direct-sequence (DS) spread-spectrum systems. In all cases the channel for a single

user ([Ilt01] considers multiple access formulation) is modeled such that only the bulk

delay and/or the bulk Doppler shift need to be estimated. Furthermore, the dynamics

of the delay, Doppler and multipath gains are assumed known. These assumptions

significantly simplify the problem but are ill-suited for the wideband rapidly varying

multipath channel considered in this thesis. The multipath arrival structure and their

dynamics considered here cannot be adequately represented by bulk delay or Doppler

since the arrivals have inhomogeneous fluctuation rates. Furthermore, compared to

the tap-based model 2.49, Iltis uses arrival based channel model which leads to an

observation equation that is nonlinear in delay. The paper by Lakhzouri, et al.

[Lak03] may be considered as an extension of the work by Iltis, in the sense that
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instead of modeling a bulk delay, the delays of all the multipath arrivals are modeled

and estimated. Again the dynamic parameters of delay fluctuations are assumed

perfectly known. This assumption of known channel dynamics is unrealistic for the

type of channel considered in this thesis because not only the channel fluctuates

rapidly, but the dynamics of these fluctuations vary over time as well.

In terms of application context, closely related to this chapter is the recent work

by Tsai, et al. [Tsa05] where in the context of multi-user DSSS transmission, the

single user channel is assumed flat fading and modeled as a low-order AR process.

The tap gain and its AR coefficients are then jointly estimated from the received

signal. The authors focus on the asymptotic analysis of the algorithm, such as

bias correction and convergence improvement by comparing with ML estimation,

which may be viewed as a straightforward application of Ljung's work [Lju79]. No

attention was paid to the potential impact of channel properties on the performance

of the channel estimator.

In the context of channel estimation, however, the performance of the EKF algo-

rithm is affected inevitably by the physical properties of the channel. A fundamental

issue concerning joint state and parameter estimation is that the assumption of model

detectability and stablizability of [Lju79] may not hold for some wideband multipath

channels, thus the analysis results of [Lju79] will not be applicable. This connection

from channel physics to the performance of the EKF channel estimation algorithm

is not exploited in any of the work mentioned above. Yet understanding the implica-

tions of the channel physical characteristics, through system theoretic properties of

the model, upon channel estimation and tracking is essential to algorithm design and

performance analysis. Especially in the case of wideband transmission, the channel

impulse response or delay-Doppler spread function generally has very sparse struc-

ture. As a result direct application of the EKF algorithm to a state-space model of

channel taps runs into parameter identifiability issues and eventually cause algorithm

divergence.
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In this chapter, the EKF algorithm for joint channel state and dynamic param-

eter estimation is derived, the performance issues related with channel sparseness

are identified and modified algorithms based on system theoretic arguments are pro-

posed. The content is organized as follows: Section 3.2 presents a brief account of the

EKF algorithm for joint channel state and parameter estimation (its derivation de-

tails and specialization to cases with diagonal and tridiagonal state transition matrix

are provided in Appendix A) which is followed by a tracking error analysis of EKF

channel estimation and a discussion of the EKF vs MSE and ML parameter estima-

tion. Parameter observability and detectability within the linearized system model is

analyzed in Section 3.3; and a two model based EKF algorithm is presented in Sec-

tions 3.4 . Separate models for parameters associated with active taps and inactive

taps are proposed in Section 3.4 to avoid the algorithm divergence due to parameter

undetectability, and also as a soft constraint based approach to actively tracking the

dominant taps while maintain a modest adapting gain for those quiescent taps.

3.2 EKF Joint Channel State and Parameter Es-

timation

Restate the state space channel model from Section 2.2.2:

{xi+ = Aix, + wi (3.1a)

yi = cixi + vi (3.1b)

where xi E CM denotes the channel impulse response state, Ai E CMxM is the

state transition matrix, yi is the scalar observation and the row vector ci consists of

the transmitted symbol sequence at time i. Both wi and vi are zero-mean circularly

Gaussian complex white processes, with covariances Q" and variance oa, respectively.

They are mutually and temporally independent, and independent from the initial

state xO.
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The model parameters including Ai, Q, and ac are not known in general. The

transmitted symbols ci here are perfectly known, assuming the system works in train-

ing mode, or in decision directed mode with the error propagation effect neglected.

The goal then is to estimate the state process xi based on the observation sequence

Y={Yi,. -, Yi}. To do so the parameter set Oi, which consists of Ai, Q, and o,

also needs to be estimated. Therefore, the problem is one of joint state and parameter

estimation.

Note that it might be tempting to estimate all the unknown parameters, including

Ai, Q, and o,, jointly with the state vector from the data. Doing so has several

disadvantages. First, the number of unknown parameters becomes prohibitively

large, O(M2 ) given xi is M x 1. That raises problems including algorithm instability

and extra noise errors due to overparameterization. Secondly, it potentially causes

large tracking errors if these parameters are actually time-varying due to the very

long processing window needed. Despite the existence of noise estimation approaches

mentioned in the previous section (they assume known model coefficients though

and may not really apply), these approaches will not be pursued that in the current

development. Instead, both Q, and oQ are treated as tuning parameters for the

algorithm and only estimate Ai jointly with the state. This work will focus on the

priority issue, that is, the rapid channel variations. The effect of the choices of Q"
and o,2 on the steady-state tracking performance of EKF algorithm will be discussed

later.
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3.2.1 The EKF Procedure

Assume a random walk model for the parameters Oi which contains the unknowns in

Ai only. Then, (3.1) becomes {i+1 = 0, + uZ (3.2a)

xi+1 = A(0i)xi + w, (3.2b)

y = cixi + vi (3.2c)

where ui, the process noise of 0j, is i.i.d. zero-mean complex circularly Gaussian

with covariance Q., and independent from wi, vi, xo and 60.

Without any prior knowledge about the structure of Aj, all elements of Ai are

assumed unknown, i.e. 0i = ai A Vec(Aj). ai is an x 1 column vector formed

by stacking orderly all columns of the matrix Aj. Special cases where some elements

of A are known to be zero can significantly reduce the number of unknown and the

amount of computation.

The EKF procedure basically consists of i) state augmentation, ii) linearization

and iii) applying the Kalman filter to the linearized model [Jaz70, And79, Lju79l.

Appendix A contains the derivation of the EKF algorithm for (3.2), for general Ai

as well as diagonal and tridiagonal A2 .

For reference the linearized model (c.f. (A.7) and (A.9)) and the time and mea-

surement update steps for the general case(c.f. Table A.1) are restated here:

aj+j IM2 OM2xM ai Ui[ ~ 1  + + di (3.3a)
Lxi+1 Xijis Aili _ xi J _wi

yi = [0 Cj] ai + Vi (3.3b)
xi

where Xi A x' 9 IM and di is assumed deterministic as given in Appendix A.
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Time

Update:

Measurement

Update:

xi+ 11 = j ig

Pa,i+12 = Pa,ij + Qui

Px,i+1li = ZijPa,iji ii + ijiPXig Aii
+XigPax,ij Aj, + 2 %pPx,ij~iil + QW,2

Pax,i+1li = Pa,iji + Pax,*Ai

e-i = yi - Ciiig-1

Re,i CiPx,igich + or 2

aili ali_ 1 + ka,iei

xil = xl- 1 + kx,e,

Pa,ip = Pa,i2- - ka,iRe,ikh,,

Pxjjg = Pxjg_1 - kx,iRe,ik

Pa,iji = Pax,i2-1 - ka,iRe,ik,

where ka,i A Pax,iiic'R-- and k, A , R- are the Kalman gains for the

parameter and state estimates, respectively.

The key step in EKF is the linearization of the augmented state equation around

the current state and parameter estimates. The coefficients of the resulting linear

model and the Kalman gains thus become data dependent. This data-dependency

constitutes the important difference between EKF and the standard Kalman filter. In

the latter the state error covariance and Kalman gain do not depend on the observed

data and can actually be calculated offline [And79]. This difference has fundamental

impact on the algorithm behavior and properties such as the asymptotic stability,

steady-state tracking capability, etc.

In the context of channel estimation, the off-diagonal elements of the Ai specifiy
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the coupling between channel tap fluctuations. In general strong cross-tap coupling

is confined within a small neighborhood. Hence the elements in A becomes less

significant as they move further away from the main diagonal. These further off-

diagonal elements of A may thus be neglected (i.e. assumed to be equal to zero)

without causing large estimation error. When the coupling is time varying, as occur

in scenarios where the multipath arrivals change their drifting directions in delay, it

is also desirable to dynamically populate the elements of A to reflect this type of

variations.

3.2.2 EKF Channel Estimation Error

From an adaptive tracking point of view, error analysis is often carried out in terms

of the so-called lag error (associated with channel variations) and noise error (as-

sociated with observation noise). The asymptotic bounds for the mean squares of

these error components are often sought to quantify the performance of particular

algorithms, see, for instance, [Mac86] for LMS, [Ele86] for RLS, [Lju90] and [Guo95b]

for a general framework that includes LMS, RLS and adaptive Kalman filter with

random walk state model as special cases, and more recently [Pre05] for RLS applied

to a state-space channel model. In [Ele86], the analysis is explicitly done in terms of

the excess error, that is, the error above the MSE of the optimal Wiener solution,

while others consider the total error. A common tool to facilitate this type of analysis

is the so-called direct averaging method which was originally proposed in [Kus78].

This analysis methodology is applied to the EKF algorithm (3.4)-(3.15) in this

section. First the decomposition of the total estimation error is carried out and the

recursion for the lag error and the noise error are derived. Then similar to [Ele86],

a decomposition of the excess error is derived and recursion forms for the excess lag

and noise errors are given. The excess error in this case becomes the error above

the MSE of the optimal Kalman solution assuming full model knowledge, compared

to the Wiener solution as in [Ele86]. This is a natural result of the state-space
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formulation. The steady-state MSE of the optimal Kalman estimate is specified by

the solution of the associated steady-state Ricatti equation.

Due to the state-space formulation, the analysis becomes more challenging. Al-

though previous efforts of analyzing the Kalman filter have been reported in [Lju9O]

and [Guo95b], the formulation does not include a full state-space model. Instead,

a random walk model is assumed to simplify the analysis. The presence of a state

transition matrix that is not an identity matrix complicates the error propagation

equation and the direct averaging method becomes inadequate. In the case of EKF

the difficulty is further increased due to the coupling between the parameter estima-

tion error and state estimation error.

The purpose of the analysis here is two-fold. First, it gives insight into the EKF

algorithm in terms of error propagation caused by channel variations and observation

noises respectively, which is the basis for the discussion of tracking performance in

section 3.4. Secondly, it shows that the EKF procedure can be viewed and derived

as an adaptive filter, in the sense that once the recursion of the state and parameter

estimate are chosen according to a generic stochastic approximation form, the EKF

update equations of the associated error covariance matrices can be readily obtained

by setting the adapting gains equal to the Kalman gains.

Assume that the channel state and parameter predictions are updated as follows:

a+ j1j = aiji- 1 + pa,iei (3.16)

+ ( = ili (xil-1 + px,iei) (3.17)

where pa,i and px,i are some adapting gain for a, and xi respectively, and ei A

yj - cixili-1 is the signal prediction error.

First, consider the total channel estimation error. Denoting Rij_ 1 A xi - Rii-1, it

follows that ej = cifik_ 1 + vi. Also denote Aj 1j A Ai - A- 11, Agg_1 Vec(Aig- 1),

A2ig A Ai - Aili and dil A Vec(Aig). Then subtracting (3.16) and (3.17) from the
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original parameter and state model equations in (3.2) yields

di+1pi =ai- 1 + Pa,iCifiji_1 - Pa,iVi + ui (3.18)

i+1l [Ail (IM - pxicj) ] iii_1 + Ailixi + wi - (Ailipx,i)vi (3.19)

= [AiliM( - Px,ici) - XiPa,ciC]i ip_ + Xiii-1i + Wi - (A ppj + Xipa,i)vi

(3.20)

where Xi A x' 0 IM. The identity Aixi = Xid1 , and the fact that -iai = az+lli

aiji-1 +pa,iei have been used in deriving (3.20). wi, ui and vi are the true noise terms

whose covariance and variance are specified by the original model, independent of

what are assumed by the algorithm. The assumed covariance and variance only

determine the adapting gains Pa,i and px,j .

Equations (3.18) and (3.20) show how the parameter and state estimation errors

are coupled. In addition, the last term in (3.20) is associated the observation noise

and would increase as the adapting gains Pa,j and px,i increase. The sum of the second

and third terms in (3.20) may be considered as lag error forcing term, since they are

associated with the channel variations and the estimation error of its dynamics.

In the following analysis, Px,i, Pa,z and Ai are treated as nonrandom. It is then

straightforward to show that taking covariance on both sides of (3.18) and letting

Pa,i = ka,i yields an update equation for Pa 1, p_ A E{a d 1,, 1 1 } that has the same

form as (3.6) and (3.13) combined, i.e. the update equation for Pa,i+1ii from Pa,i 1ti,

the assumed parameter error covariance.

Taking covariance on both sides of (3.20) and denoting P,jj_ 1 A EC,1,_1jh_}
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Pda,ii-i A E{*i 1 _1 h } and Paf , 1, A 1_ 1} yields

PZi+1p =[ Aigj (IM - px'ici) - XiPa,iCilPiiii [ii(IM - Pici) - Xipa,iCilh

+ XtPa,~ii-Xf+ [Aig (IM - Pxic) - XiPa,iCi]P aitX2

+ XiPdx,igi-1 [A i (IM - PXici) - XiPa,iCi] h + Qw

+ ofIIAjjjpx,j + XiPa,i1 2 I (3.21)

where again the last term is the observation noise error forcing term and the sum

of the second, third and fourth terms are the lag error forcing terms associated with

uncertainty in dynamic parameter estimation and the channel process noise.

It can be shown that letting p,, = kx,i and replacing X by Xig in (3.21) lead

to (3.7) and (3.14) combined, i.e. the update equation for Pxi41 g from Px, g- 1 , the

assumed channel estimation error covariance.

Reorganizing (3.16) and (3.17), it gives the following state-space form for the

state and parameter prediction error propagation:

[i+11 I(I - P[,iCA) - XiPaiCi X [ j1 Apj + XiPa,] [w]
Aig-Pa,iCi IM2 aiji_1 pa,i 11

(3.22)

Choosing ad hoc values for the state process noise covariance Q" and observation

noise variance ov in EKF is equivalent to choosing adapting gains Pa,i and px,i in

(3.16) and (3.17) that may be different from ka,j and kxi respectively, and have

effects on the lag error and noise error contributions.

The channel estimation error derived above contains both the error associated

with the optimal Kalman filter with perfect system knowledge as well as the excess

error due to the unknown parameters in Ai as well as the inaccurate noise covariances.

The latter is analogous to the gradient noise in LMS and the misadjustment noise in

RLS. However the component associated with unknown parameters in Ai is unique

to the current formulation.
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Consider the excess error. Assuming perfect system knowledge, the Kalman filter

channel estimate RZ+m, and error R,, can be written as follows:

11i = Ai(j-_ + kicitkoi- + kivi) (3.23)

(I = Ai(I -kici + wi -Aikiv, (3.24)

where ki is the optimal Kalman gain for the state estimates.

Denoting 3k' 1 Aki1 _1 -R as the excess error and subtracting (3.24) from

(3.20) yields

6k0+1 = [Aiji(IM ~ PX'iCi)]6Okyg_1

+ [A 7 (IM - kici) - Aigopxjcii_1

+ A gixi - (Aiiipi - Ajkj)i

[Agg (IM - PX,,iC) - XPCLZCi] 6oi-

+ [A (IA! - kicl) - Aigopxjcj - XiPa,ziCiijL1

+ Ai2K1xi - (Ajgpxj - Aiki + XiPa,2 )vi (3.25)

where 6 px,i P, - ki. The second equality used Ailixi = Xidg = Xi [iji_1 +

Pai(cikiii-i + vi)].

The second, third and last term on the right hand side of (3.25) are the error

associated with the optimal Kalman filter, the error due to inaccurate parameter

estimation and the observation noise error term, respectively. It can be verified that

the sum of all three terms becomes zero if Aig - 0 and p3 ,i = ki. Hence (3.25)

makes it explicite that excess errors are caused by the parameter estimation error

and the inaccurate assumption of noise covariances which causes p.,i to deviate from

ki. Note that the process noise does not contribute to excess errors directly.
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3.2.3 EKF vs. MMSE and ML Estimation

In this section, EKF parameter estimation is compared with minimum mean squared

prediction error (MMSE) estimation and maximum likelihood (ML) parameter esti-

mation. It is shown that modifications to the EKF algorithm based on such com-

parison as proposed in [Lju79] essentially involves applying correction terms to the

time-update and measurement update equations. These correction terms are the first

and second-order functions of the signal prediction error. The main purpose of the

analysis in this section is to establish a connecting point between the EKF algorithm

and the EM algorithms. In the next chapter, it will be shown that this second-order

correction also exists in the suboptimal EM algorithms.

Before venturing into comparing EKF with MMSE and ML estimation, the sub-

optimality of EKF can be argued intuitively as follows. One advantage of EKF is

that it is recursive, hence, efficient, while most optimal implementations are iterative

(see, for instance, the EM algorithm developed in the next chapter). Yet this effi-

ciency comes at the expense of performance loss. This can be argued based on the

principle of orthogonality. It is well known that the Kalman filter, applied to linear

Gauss-Markov model, orthogonalizes the observation sequence into the innovation

sequence. It recursively computes the optimal (filtered or predicted) state estimate

at time i given Y , the set of all available observation samples up to i. While the

state estimate prior to i can be improved by smoothing over Yj, that has no effect on

the (filtered or predicted) state estimate at time i given Yj, due to the orthogonality

of the innovation sequence. This is not true for EKF. The sequence of prediction er-

rors in EKF does not guarantee orthogonality. Conceivably the EKF state estimate

at time n can always be improved by smoothing earlier states. Loosely speaking,

the lack of orthogonality in the prediction error sequence renders the recursive EKF

algorithm suboptimal.

In the following, as a parameter estimator the EKF is compared with the stochas-

tic descent algorithms that recursively minimize the mean squared signal prediction
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error or the negative log-likelihood function. The development here is mainly based

on Ljung [Lju79] where two modifications of the EKF algorithms were originally pro-

posed in a general joint estimation setting. The analysis presented here establishes

the explicit connections between the descent direction (i.e. the negative gradient)

of the stochastic gradient algorithms and the parameter Kalman gain in the EKF,

while in [Lju79] it was the asymptotic ordinary differential equations (ODE) associ-

ated with each algorithm that were compared and matched.

1. The EKF vs the stochastic descent algorithm that minimizes the mean squared

prediction error (MSE).

The criterion is to seek the minimization of

V1(6) = E{ Ji(6)} A E{ei(6)1 2} (3.26)

where Ji(6) A le(O)1 2, and ei(6) = y- ci~ip_ 1(6) is the prediction error

assuming 6 as the model parameter. The stochastic descent direction for mini-

mizing V1 (6) is the complex gradient which, according to [Bra83] and [Hay96],

is given by twice the conjugate derivative:

Ji(6)
VJi(6) = 2 ,

2e*(6) 0ei(6)
=2 , es(6)+el(6) 06

20ez(6)(6=2 ,0 ei(o)

= -2 ] hcihei(6) (3.27)

where the second equality assumes that ei(6) = yi - ciAi_ 1 1i + ciwi+ v+ =

yi - 0i1 0 ) + ciwi + vi is analytic in 6, hence 7 - 0. Details

regarding complex gradient and conjugate derivatives may be found in [Bra83]
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and [Hay96]. The conjugate derivative 9 is defined as

-90* = - + 0 (3.28)

where 0 , and 0, are the real and imaginary parts of 0, respectively. j = -.

It follows that the EKF parameter estimation would be the same as a stochastic

descent algorithm minimizing the MSE if

ka,i = 2 [a (3.29)

Pax,i 1- = 2 [i]Rei (3.30)

where Pax,ii-i is the one-step prediction error cross-covariance and ka,i is the

parameter Kalman gain. Following the derivation given in [Lju79l,

OBiii O2g_ Ai - ki()
=~ Ai(Im - kx,ici) ak+ x~ gil + Ai s ei

a2 1 Ai,
= Ai (IM - kxici) + x [k()

96 k 9 0k 9

S[Ai(IM - kx,ic) c0 R-ei (3.31)

where Rei is the assumed covariance of ei, Ok is the kth elements of the unknown

parameter vector 0.

The last term in (3.31) may be viewed as associated with the derivative of Rii

with regard to O.For the EKF, as shown in Appendix A, Rig is assumed to

be independent from 0 in the EKF linearization and the last term in (3.31)

is missing. It was suggested in [Lju79] that it should be included in the state

transition matrix of the linearized model.

2. EKF vs stochastic descent algorithm that maximizes the log-likelihood function

(ML).
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The negative log-likelihood function is given as follows

V2 (6) = E{e(6)R (6)ei(6)} + log(det(Re,(6)))

= E{e(6)Re- (6)ei(6)} + 1og(Re,(6)) (3.32)

since the assumed prediction error covariance Rej is a scalar in our case.

Then the steepest descent direction for minimizing V2(6) is given by (general-

ized from [Lju79] with complex 6):

VV2 (6) = 2 (6)
06*

2EJ(o) R ()

=2E{e()R - (6) (6)}+
0R-1 (6)

+ 2tr (R-' (6) ) (3.33)

where the conjugate derivative is defined in (3.28) and the terms associated

with 2e ) are equal to zero due to the same reason mentioned in (3.27) and

not included.

Note that the last two terms would cancel if Ri, is indeed the true covariance

of the prediction error. Accordingly, the measurement update equation of the

parameter estimate can be modified as the stochastic gradient algorithm (i.e.

remove the expectations in (3.33)) that minimizes V2 (6):

Oili = 6 ip-1 + ko,jej + (i (3.34)
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where

ko,= 2 e()R1(0) (3.35)
00* e

~ -e(6R~1 (9 R- 1(0) 0R- (0)(i A -2ej(0)R-() R-'(0)e*(0) + 2tr (R- (6) ) (3.36)

Modifications as Higher-Order Innovation Terms

The modifications above effectively add first and second-order innovation terms to the

time-update equation (the first modification) and the measurement-update equation

(the second modification), respectively.

For the first modification, according to (3.31), Xi in (3.5)-(3.8) should be re-

placed by

Xij A X + Liej (3.37)

where

L (Ai - k P,icl caRo7 (3.38)

As a result, (3.5), (3.7) and (3.8) becomes

xj+11 = Xipii + Le-ipe- (3.39)

x h A AiliPx,i+18i = ZipPa,ipi ii + Aip~x,ipA

" XijiPax,iA'j A x Qw,

+ LiPa,iLfeie: + LPa,pitXjie%+

+ XiPa,i Lie + LiPax,ipAjei (3.40)

Pax,i+1 z = Pa,iji iX + Pax,iiAl + Pa,iiLie (3.41)

respectively. The innovation terms in (3.39), (3.40) and (3.41) account for the de-

pendency of Riji on 0, or aj.

In the second modification, recall Res = c PC,1,_iC + ,2 is scalar, (j can be
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further simplified as

( - ko,i,2(I - ej(6)R '(6)e(6)) (3.42)

where the gain for the second order innovation term is given by

aR- 1(0) hPko,i,2 A 2 R ( R- 1(0) = 2ci CR-'(0) (3.43)
06* e~ 06a * i Rj(6

(3.42) is exactly a second-order innovation term which converts the difference be-

tween the assumed prediction error covariance and the squared prediction error into

a parameter update component. It may be viewed as a second-order new innova-

tion. It would have zero mean if the assumed prediction error covariance is the true

covariance.

In Chapter 4, a second-order innovation terms identical to (3.42) will be found

in the sequential suboptimal EM algorithm, which is not coincidental since this

modified EKF algorithm is derived by matching the stochastic descent algorithm that

minimizes the negative log-likelihood function (or ML), and EM is an approximating

scheme for ML estimation.

3.3 Parameter Observability and Detectability

In this section the issue of parameter observability and detectability is considered.

More specifically, it shows that when the channel is either explicitly sparse, i.e. there

exist quiescent taps with little energy, or confined within a rank p subspace of CM

with p < M, then the unknown parameters associated with the quiescent taps or the

orthogonal subspace are not observable, and are further not detectable if their models

are unstable. This has important implications on the application of EKF algorithm

to estimate wideband multipath channels which usually have either explicit sparse

structure or correlated tap fluctuations.

The development in this section centers around the concepts of observability
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and detectability from linear system theory, for details please see, for instance,

[And79] [Aok67].

The main result are Theorem 1, Corollary 2 and Corollary 3, which address the

issues of parameter observability and/or detectability for explicitly sparse channels

and correlated channels, respectively.

Theorem 1 necessary conditions for parameter observability Consider the

linearized augmented state space model (3.3). Let n > 0 and K > L A M2 + M,

here M is the original state dimension. The necessary conditions for the parameter

to be observable are that the sequence of state estimates, 'ix for n < i < n + K - 1,

be persistently exciting and the nominal system for the original state be observable,

in the sense that the matrix whose rows are vectors cn+m7"- 1  n for m =

1, .. , K - I and i = 1,... , m is full rank.

In the following we present the proofs for Theorem 1. For notational compactness,

denoting

F I 2 OXM (3.44)
Xili Aili

hi L [0 ci] (3.45)

The observability matrix of the system (3.3) for n < i < n + K is given as follows:

hn

hn+1Fn+1
On,n+K-1 (3.46)

L 
hn+K-1Fn+K-1Fn+K-2 ... Fn+1_

The state zn is said to be completely observable during the time n < i < n + K - 1

if On,n+K-1 has full rank. If On,n+K-1 does not have full rank but the unobservable

elements of the unknown parameters are stable, zn is said to detectable.
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Using (C.8) and (3.44), it gives

Fn+mFn+m-1i-- Fn+1 =

IM2

Lz>i1 Xn+iln+i 0 (Hj=i+1 At+jln+j)

hn+mFn+mFn+m-1 - Fn+=

[z1 n+iln+i (Cn+m +1-ji Ain+jln+j)

for m > 1. Substituting (3.48) into (3.46), it yields

OM2XM

A n+iln+i

Cn+n H 1 n+iln+i

On,n+K-1 L [Oa,n,n+K-1 Ox,n,n+K-1]

O1XM2

n+|n+1 () Cn+1

i n+iln+i 0 (Cn+m H>j-+ 1 A+jln+j)

ZEi=l n+iln+i 0 (Cn+K-1 H2K A+lin+)
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(3.47)

(3.48)

where

(3.49)

Oa,n,n+K-1 (3.50)



cn

Cn+1 n+lln+1

Ox,n,n+K-1 M (3.51)
(Cn+m fl ~An+jln+j)

(Cn+K-1 -1j= 1 n+ln+j)_

oa,n,n+K-1 and (9 x,n,n+K-1 are the blocks of the observability matrice associated with

the parameter vector a and the original state x respectively. ox,n,n+K-1 in fact is the

observability matrix of the original linear state-space model assuming An =Ann.

It should be noted 9 a,n,n+K-1 and Oxn,n+K-1 are not the observability matrices

for a and x in the linearized model (3.3) respectively. They are used here as shorthand

notations within 0 n,n+K-1 that indicate their respective association with a and x.

The proof proceeds by considering two separate cases: 1) the nominal state system

is observable while the sequence of state estimates is not persistent exciting; 2) the

sequence of state estimates is persistently exciting while the nominal state system

is not observable. In either case, it is shown that the matrix oa,n,n+K-1 hence the

observability matrix 9 n,n+K-1 is rank-deficient.

1. Under the assumption that the nominal state system is observable while the

sequence of state estimates is not persistent exciting, i.e. 2xi for n < i <

n + K - 1, only span a rank p subspace of CM with p < M, it follows that 3

non-zero v E CM, such that

Rn+in+iv = 0, for n < i < n + K - 1 (3.52)

Then multiplying On,n+K-1 by v 0 e1 with el being any nonzero M x 1
OMx1i
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vector, it yields

Un,n+K-1 0 ei) 9a,n,n+K-1(V 0 ei) + 09 x,n,n+K-l 0 Mxl

Oa,n,n+K-1(v 0 ei)

O1XM2(v o ei)

+n+ Cn+) (v ei)

[Zi 1 Xn+iln+i 0 (Cn+m H'=i+1 An+jln+j)] (v 9 ei)

[Zi1 X~i ni 0 (Cn+K-1 H1=j 1 n+jin+j (

O1xM2

n+1ln+1V) (Cn+1el1

1~ n+iln+iV) (Cn+m 3j=i+l n+jln+j)e1

K i1 Xn+iln+iV) (Cn+K -1 j3j 1n+jln+j)el

OK x1 (3.53)

where in the fourth equality we have used the Kronecker product identity 4 in

Appendix C and the fact that the terms inside the parentheses are scalars.

(3.53) shows that On,n+K-1 does not have full rank. Specifically (3.53) holds for

all v that is orthogonal to the space spanned by the sequence of state estimates

within the observation duration.

2. Under the assumption that the sequence of state estimates is persistent exciting

while the nominal state system is not observable. It follows that there exists

u ? 0, such that

(Cn+m I n+jin+j)u = 0 (3.54)
j=i+1
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for m= 1,. ,K-1 andi= 1, .- , m.

Then multiplying Oni+K-1 by with el being any nonzero M x I
OMx1

vector, it yields

On,.+K-1 (e0 u) Oa,n,n+K-1 (e1 0 v) + Ox,n,n+K-l0 Mxl

= Oa,n,n+K-1 (el & v)

O1xM2 (el 0 u)

n+1n+1 Cn+1 ) (el 0 u

[Zil Xn+in+i 0 (Cn+m H;j 1 An jln+3 )] (el 9 u)

LZi= 1  +in+i® (Cn+K-1 Hi+1  n+jjn+j)] (el u)

01 XM 2

= OKxl (3.55)

where in the fourth equality we have used the Kronecker product identity 4 in

Appendix C and the fact that the terms inside the parentheses are scalars.

This completes the proof for Theorem 1.

Corollary 2 parameter observability/detectability for channels confined

within a lower-order subspace Consider the linearized augmented state space

model (3.3). Let n > 0 and K > L M2 + M, here M is the original channel state
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dimension. If the sequence of state estimates Rili for n < i < n + K - 1, span only a

rank p subspace of CM with p < M, then the set of unknown parameters associated

with the orthogonal subspace are unobservable and undetectable in (3.3) over the time

period n < i < n + K - 1.

The proof of Corollary 2 follows directly from that of Theorem 1.

The case where the channel is explicitly sparse can be viewed as a special case of

channels span a lower order subspace, hence the following corollary holds:

Corollary 3 parameter observability/detectability for explicitly sparse chan-

nels Consider the linearized augmented state space model (3.3). Let n > 0 and

K > L A M2 + M, here M is the original state dimension. If the sequence of state

estimates Rili for n < i < n + K - 1, has its jth element, ,ili, consistently equal to

zero1 , for n < i < n + K - 1, then the subset of parameters associated with the jth

column of A are unobservable and undetectable in (3.3) over the observation time

period n K i < n + K - 1. The same applies to the case where a fixed subset of

elements of the state estimates, rather than a fixed single element, are equal to zero.

Remarks:

1. Theorem 1 and Corollaries 2, 3 explicitely connect the performance of the

EKF joint channel state and parameter estimator, in terms of the parameter

observability and detectability, with the characteristics of the channel physics,

i.e. sparseness and subspace span. The observability and detectability has

important implication on the stability of the EKF algorithm, the quality of the

EKF parameter estimate and eventually the performance of channel estimate.

For instance, without accounting for the undetectable parameters, the EKF

algorithm will diverge linearly as explained later. For parameters that are

'It may seem unrealistic to assume certain taps stay strictly zero. However, the observabil-

ity/detectability results here still apply to the case where taps are quiescent rather than being zero.

The observability matrix may not be strictly singular, but is still ill-conditioned in the quiescent

case.
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detectable but not observable, the EKF filter may be stable yet the estimate

of those parameters will be conceivably poor since little information is gained

from the received signal. Consequently they introduce large noise error into

the channel estimation.

2. Intuitively speaking, Theorem 1 and Corollaries 2, 3 state that the problem

of estimating the channel dynamics while some of its components, e.g tap

coefficients or subspace components, have little energy is ill-defined. Essentially

if a tap has no energy, then its dynamics parameter which describes how it

would evolve over time is not clearly defined.

3. For the purpose of analytical tractability, the assumptions imposed by Corol-

laries 2 and 3 are rather strict and even unrealistic. In real channels, more

often taps would fluctuate at different energy levels. Taps with small magni-

tude would be noisy rather than being zero. In addition, the period during

which a tap keeps quiescent or a subspace stays null could be relatively short.

However, the observability/detectability results of Theorem 1 and Corollaries

2, 3 can be easily extended to these cases. For instance, the ill-conditioning

of the observability matrix would increase the noise sensitivity and introduce

large noise error, and parameters may be effectively unobservable if on average

the new information provided by the received signal flows into those parameter

estimates at a negligible rate.

A Simulation Example

The consequence of parameter undetectability is the linear divergence of the assumed

parameter error covariance matrix Pa,zi-1. This is a result of the fact that the

Kalman gain ka,i associated with the unobservable parameter estimate becomes zero

as it obtains no new information from the observation. Thus the measurement update

step does not reduce Pa,iji. On the other hand, assuming a random walk parameter
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model, Pa,ili-i is increased monotonically by the assumed noise covariance during the

time update step.

To demonstrate this linear divergence, a simple two-tap channel is simulated.

The first tap coefficient, x 1, is generated as a Gauss-Markov process, with transition

coefficient a, = .998e-j 2 ***O/ 24Oo and process noise variance 10-3. Effectively, it

has steady-state variance 0.2503 and Doppler 10Hz at a symbol rate 24KHz. The

second tap coefficient, x2 , is a white noise process with variance 10-6. The sequence

of transmitted symbols, ci, is obtained from a sequence of zero-mean Gaussian white

noise bi, such that ci 1 if bi > 0 and ci = -1 otherwise. The received SNR is 10 dB.

The received signal is generated for 5000 symbols. An EKF algorithm is then applied

to jointly estimate the tap coefficients and their assumed dynamic parameters. The

assumed channel process noise covariance and observation noise variance are the

same as the simulation values. The parameter process noise variance is assumed

as 10 4 for both taps. The initial values of both dynamic parameters are taken as

1. The simulated tap coefficients, the parameter error covariance, the parameter

Kalman gain and parameter estimation error are given in Figure 3-1. It shows that

the Kalman gain associated with the second parameter is close to zero, the error

covariance of the second parameter linearly increases over time and the estimation

error for the second parameter stays large (as decided by the initial value).

3.4 Two-Model EKF Parameter Estimation

Motivated by the results of Section 3.3 this section presents a modified EKF algo-

rithm based on separately modeling the parameters associated with energetic taps

and those with quiescent taps. The two parameter model is effectively a soft con-

straint based approach compared to hard constraint based approaches such as sparse

channel estimation and multipath arrival tracking where various tap initiation and

termination schemes are employed to choose explicitly the active taps while discard-

86



2

1.51

0.5

"L
0 1000 2000 3000 4000

sample points

CL

5000

0.12

0.1 -L-.-.2

0 .0 8 -.. . -... . -.. -.-.-.. -.-.-.

0.06

0.04 -

0.02 -

0

0 1000 2000 3000 4000 5000
sample points

(10

0.6

0.5

0.4

0.3

0.2

0.1

0

-0.1
c

1

0.8

0.6

0.4

0.2

0

1000 2000 3000
sample points

0 1000 2000 3000
sample points

Figure 3-1: Simulation Example: Parameter Undetectability

87

. . ..

* .. . . ... . .. . .

I. ...t- -;1

... . . ..y

)Y

--t-o 1-2-
- - -- - T -

- -. .
.......... ...2

-.. ..-.

- . .. . . . .. .-. ....-. .-.-

4000 5000

4000 SC

-. ..-. ..
2

- - - -- --. .... ........

-..-.-..-.-
-. .. -. .. .

)00



ing others. Although still using a dynamic tap labeling scheme, the new method

does not explicitly initiate and terminate taps. Instead, whether or not a tap is

actively tracked is indirectly controlled by adapting its dynamic parameters based

on a suitable stable model.

The approach contains three essential parts: the parameter model, the choice of

model parameters and the tap labeling scheme. The details of each part and their

impact on estimation performance are discussed in this section. One of the key points

during the consideration, as becomes evident later, is how to trade covariance with

bias, so that the overall signal prediction error is minimum.

3.4.1 Two-Model Parameter Estimation

As shown in section 3.3, the dynamic parameters associated with quiescent taps are

unobservable and further undetectable if their models are unstable. In the latter

case, the filter becomes unstable, in the sense that the error covariance associated

with those undetectable parameters grow linearly towards infinity.

The approach proposed here is based on the result from the Kalman filter theory

that detectability is the sufficient and necessary condition for filter stability, but

observability is not a necessary condition [And79l. As long as the unobservable

components remain stable, the filter will not diverge in the sense that the error

covariance remain bounded from above. Heuristically speaking this is because the

error covariance is always upper bounded by the state correlation matrix which in

turn would be bounded from above if the model is stable.
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The Parameter Model

Denoting q as the index subset containing those quiescent taps, and e containing the

energetic taps, each subset of parameters are then modeled separately as follows:

Oe,i+1 = 0 e,i + Ue,i (3.56)

0 q,i+1 = o 0 q,i + (1 - O)e + uq,i (3.57)

where 0 < < 1, 0 < E < 1, uej ~ A(O, Q,,,) and uqi- A'(0, Quq,,).

(3.57) is a stable system in which 0q,i converges exponentially in mean towards

e at a rate specified by 13, with a steady-state fluctuation variance specified by

QUq,i/(1 -32). The presence of uq,i allows the associated parameter error covariance

to be bounded from below so that the algorithm can maintain a certain tracking

capability for these parameters after they have converged to E. This is useful in sce-

narios where a quiescent tap is turned into an active tap by an incoming multipath

arrival.

In the case where 0, = ai = Vec(A2 ), the following linearized augmented state

model can be obtained following the same procedure as in Appendix A.1:

ae,i 1 I 0 0 0 ae,i Ue,i 0

aq,i+1 0 /31 0 0 aq,i Uq,i (1 - 3)c

Xe,i+1 Xeis 0 Aeiji 0 Xe,i We,i 0

Xq,i+1 L 0 Xq,i 0 Aq,iiJ Xq,J Wq,J 0

(3.58)

where the terms with subscripts q and e are associated with the quiescent and ener-

getic taps respectively. di is given in Appendix A.1.

Accordingly, the time-update equations (3.4), (3.6) (3.8) should be changed into
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the following:

=e,j+ig ae,ili (3.59)

^q,i+1i = q,ig + (1 - 13)E (3.60)

Pa.,i+1i= Pae,ig + Qu,,i (3.61)

Paq,i+1g = 32Pa,ig + Quq,, (3.62)

Paqa.,i+1i = Paqa.,ii (3.63)

Pax,i+li =1 [Paq,iiiXi + Paxe,Aii ] (3.64)

Paxz,,iwi =/[PaqizX, 1 + PaXh A , (3.65)

Pax,,i+1ip = Pa.,ii i + Pa.,i (3.66)

Pa.x,i+1i = Pa.,iz e i + Pa.ex,iji (3.67)

As a result, the error covariance associated with those taps which belong to the

subset e increases by Que,j at each time update, hence it is expected to maintain the

active tracking capability. (Note due to the fact that these taps are observable, their

error covariances are reduced in the measurement step.) On the other hand according

to (3.62) the error covariance associated with those taps belonging to the subset q

converge exponentially to Qu,i/(l - 02) even if no reduction is obtained during the

measurement step. This ensures that the filter would be stable even though these

taps are not observable. The choice of 3 and Quq,i affects the tracking performance

of the filter as discussed later.

The change in the parameter model has no effect on the measurement update

equations.

Consequently, the observable parameters (associated with those energetic taps)

are modeled as random walk processes to maintain active tracking capability, and

the unobservable parameters (associated with those quiescent taps) are kept stable.

The values of 0 and E should be chosen carefully as discussed later. A larger f would
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allow the associated tap become active if an arrival moves into that tap. If e is close

to zero, such recovery from a quiescent tap would be difficult even in the presence

of process noise. On the other hand, a larger E implies that the associated taps have

larger energy which might not be true for weak or quiescent taps.

Tap Labeling

The parameter model above relies on the classification of channel taps into two

subsets, i.e. the energetic taps and the quiescent taps. The key is what criteria

should be used to do this tap labeling. For the purpose of avoiding parameter

undetectability, it is natural that an energy criterion should be used. That is, if

I > y then j E e, otherwise j E q, for some threshold level -y > 0. As a result

parameters associated with taps whose magnitude is less than -y are put in the subset

of quiescent taps and those having larger tap magnitude in the subset of energetic

taps.

The energy criterion is simple and efficient. Yet it would have problem in cases of

low SNR. In the extreme case when the ambient noise level is higher than the energy

of a small arrival, such as those with multiple surface interactions, then the simple

thresholding technique would mistakenly put noisy taps into energetic category while

the tap associated with the small arrival is put into the quiescent category. Actively

tracking noisy taps that are not associated with arrivals increases the adapting noise

error. Labeling taps associated with small arrivals as quiescent tends to suppress

these taps with a small E being used. As a result it introduces bias into the channel

estimation. This would not be a problem if all arrivals have energy larger than the

background noise. When the channel fluctuates such that the mean tap energy varies

over time, the threshold level should also be adaptively chosen.

In addition to the energy criterion, other criteria may be used as well, such as

based on the tap phase trajectory. They are not exploited in this thesis and left for

possible future work.
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The performance impact of these tap labeling schemes essentially involves the

tradeoff between covariance and bias. A loose labeling scheme tends to put more

quiescent taps into the subset e, hence increasing the adapting noise error, or variance

(the stability issue is also at stake), while an over-restrictive labeling scheme puts

taps associated with weak arrivals into the subset q and causes large bias as these

taps are not accurately estimated.

The development of a optimal criterion would have to be based on probabilistic

models of the arrival distribution.

Choice of Model Parameters

The values of /, E, Quei and Q,,i in (3.57) remain to be determined. As the subse-

quent analysis and experimental results show, the choice of these parameters is very

important. Effectively they act as the parameters for a soft constraint on the channel

taps that adaptively controls the tracking capability for each tap. The choice of these

parameters involves balancing the lag error and the noise error from tracking point

of view, and ultimately making trade-off between bias and covariance of the resulting

channel estimate.

It is the steady-state tracking performance that should be the criterion for choos-

ing these values. Among them the key parameter that directly impact channel tap

magnitude is E According to (3.5). Qualitatively, a smaller e tends to suppress ex-

ponentially the tap coefficient over time. According to (3.5), in the time update

equation Ri+i1 p not only gets Doppler compensation, but also changes its magnitude

as scaled by Ji I. If a jth tap is labeled as quiescent and put in subset q, then aij

converges to ej, the jth element of e, exponentially. If the jth tap is in the subset

q for a sufficiently long time, then ej effectively determines the rate at which Xi+11

is exponentially suppressed. This is desirable if there is indeed no arrival associated

with the jth tap, but it also causes error. e also affects how ji1 is being tracked.

This can be observed from the error covariance time update equation (3.7).
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Other values such as /3 and Q ,,i are also important, especially for those taps

infrequently associated with arrivals. / determines the rate at which elements of a

associated with quiescent taps converge to E and also the tracking ability of these

elements of ' through Pa. It also effectively controls the time constant of the param-

eter filter, as demonstrated in the experimental results. Qu,,i, as mentioned early,

maintains tracking capability for those elements associated with quiescent taps. For

those taps infrequently associated with arrivals, it is desirable to initiate them quickly

when they are energized by an arrival and terminate them when the associated ar-

rival moves away. This would be difficult if the parameters and the coefficients of

these taps are trapped in an inactive tracking mode.

Experimental Results

This section shows the results obtained by applying the EKF algorithms to the

example channel in Chapter 2. Both the plain EKF algorithm and the two-model

EKF algorithm are used. The results show that in both cases the signal prediction

residual error is reduced comparing to that of RLS algorithm, with the two-model

EKF attaining the maximum reduction. The effects of choosing / and E are also

demonstrated.

Figure 3-2 gives the performance comparison between the Two-Model EKF, the

plain EKF and the exponentially weighted RLS, from 18 seconds to 21.5 seconds, a

3.5 second span that coincides with the wave event. The plot shows, compared to

the residual error obtained by RLS, the residual error obtained by the plain EKF is

about 1 ~ 2 dB less and the reduction is the largest around 20 seconds when the

channel become the most dynamic. The residual error obtained by the Two-Model

EKF is about 3 - 4 dB less than that of the RLS. At places where the channel

is less dynamic, it maintains an error reduction from that of the plain EKF by

approximately 2 dB. Around 20 seconds, the difference between the plain EKF and

the Two-Model EKF is less significant. This is what would be expected. When the
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--..--. II

residual error is mostly dominated by lag error due to the rapid channel fluctuations,

the Two-Model EKF and the plain EKF both obtain significant error reduction due

to their dynamic tracking capability and the noise error reduction due to separate

parameter modeling is marginal, although the Two-Model EKF still has a visible

improvement. When the channel is less dynamic, the Two-Model EKF algorithm

can successfully apply the soft constraint to reduce the number of taps to be tracked,

which effectively reduces the noise error as well as improve the tracking capability.

Note that the plain EKF does not appear to suffer from the parameter unobserv-

ability/undetectability from this plot. This is due to the fact that the divergence

of the error covariance of parameters associated with the quiescent taps is linear, as

shown in section 3.3. The computation did indicate the linear growth of those error

covariances which implies that they will eventually diverge given a sufficiently long

time.

Signal Prediction Error

unconstr EKF

constr EKF

RLS

-50... .

-54

-51 18.5 19 19.5 20 20.5 21 21.5
Tinesecond)

Figure 3-2: Two-Model EKF, Plain EKF and RLS, 2 ~ 4 dB performance gain.

The phase of the diagonal elements of the estimated transition matrix can be

converted into the Doppler of the associated tap. The Doppler thus obtained from
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the parameter estimation using the Two-Model EKF and the plain EKF algorithms

are shown in Figure 3-3 and Figure 3-4 respectively. The Two-Model EKF used

0 = 0.999998 and F = 0.95. Both show the successful detection of significant Doppler

values associated with the surface arrivals. The maximum Doppler values are on the

order of 15 Hz, or the maximum Doppler spread at the order of 30 Hz, both closely

match the results in Chapter 2. It also shows an asymmetric learning capability of

the parameter filter. The shape of the Doppler pattern within the time-delay region

[19.5 sec 20.5 sec 2 ms 3 ms] indicates that the filter quickly estimates the large

Doppler upon its onset; however, after the arrival moves on towards other delay

taps, it takes longer than 0.5 second for the Doppler to change. The asymmetry is

associated with the fact that the Kalman gain for the parameter is a function of the

channel impulse response estimate. When the tap coefficient has a larger magnitude

as when it is associated with an arrival, the Kalman gain for the parameter tends

to become larger; and when the tap coefficient is weak as no arrival is associated

with it, the parameter Kalman gain is small. In this sense the EKF algorithm is

itself selectively tracking the parameters. Comparing Figure 3-3 and Figure 3-4,

several differences can be observed, mainly in the quiescent regions and the region

associated with arrivals having multiple surface interactions. First, in the quiescent

regions including between 3.5 - 4.5 ms and between 0.2 - 0.6 ms in delay, which

are essentially the gaps between arrivals, the plain EKF has a noisy Doppler pattern

while the Two-Model EKF has a smooth Doppler which converges towards zero,

albeit slowly. Secondly, in the weak arrival region (i.e. the region with arrivals

having multiple surface interactions) between 5.5 ~ 6.5 ms in delay, the plain EKF

algorithm still picks up some Doppler patterns which are however not evident in the

Two-Model EKF case. Therefore, this comparison gives a good indication of the

tradeoff between covariance, associated with noise within the quiescent region, and

bias, associated with the weak arrival region.

The channel impulse response estimate for the same time span is given in Figure
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3-5. The correspondence between the multipath structure of the significant arrivals

in Figure 3-5 closely matches the Doppler pattern in both Figures 3-3 and 3-4.

Figure 3-6 shows the scattering function estimate at time t = 20.05747 seconds.

It connects to both Figures 3-3 and 3-3 by cutting a cross section along t = 20.09159

in both plots. The Doppler values associated with the dominant arrivals given in

Figure 3-6 is of the same order as those in Figures 3-3 and 3-4.

Doppler from two-model EKF parameter estimate (Hz)

0

-5

10

19.5 20 20.5
Time(second)

Figure 3-3: Doppler Estimates Using the Two-Model EKF algorithm

A Doppler plot obtained using the Two-Model EKF with 3 = 0.98 and e =

0.96 is shown in Figure 3-7. The difference that is evident between Figure 3-7 and

Figure 3-3 is that the Doppler patterns have a much shorter tail in Figure 3-7 which

corresponding to shorter memory. Note the apparent learning symmetry in Figure 3-

7 is not because of an increase in the parameter Kalman gain in the absence of arrival.

It is because the tap is labeled as quiescent and the parameter model (3.57) drives

the parameter quickly towards c which is a real quantity. Figure 3-7 also indicates

both the quiescent region and the weak arrival region see little Doppler. The latter
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Doppler from standard EKF parameter estimate (Hz)

10

o ~E.10
0
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Figure 3-4: Doppler Estimates Using the Plain EKF algorithm

Constrained EKF Channel IR estimate

15.m 1 19.0 z
Tnme(second)

Figure 3-5: Channel Impulse
rithm

YJ.0 z1 Z1.

Response Estimates Using the Two-Model EKF algo-
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Figure 3-6: The Scattering Function Estimate at t = 20.05747 seconds

is a sign of parameter bias caused by over-constraining using smaller values of 3 and

E.

3.5 Concluding Remarks

To summarize, this chapter has developed channel estimation approaches based on

the EKF algorithm. The EKF joint channel and dynamic parameter estimation al-

gorithm is derived. Tracking error analysis is also given which highlights the error

caused by inaccurate parameter estimation, a term analogous to the lag error, and

the error term associated with noise. Most importantly, it is shown that for wideband

shallow-water multipath channel, due to the explicit sparseness of the channel struc-

ture, or inter-path correlation, plain application of the EKF algorithm would run into

the problem of parameter unobservability/undetectability which consequently cause

the filter to be unstable. Based on that, a Two-Model EKF algorithm is proposed

which models separately the parameters associated with energetic taps from those
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Doppler from Two-Model EKF parameter estimation (Hz)
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Figure 3-7: Doppler Estimates Using the Two-Model EKF algorithm, faster param-

eter convergence.
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with quiescent taps. It thus stablizes the parameter filter and on the other hand

selectively tracks those dominant taps associated with multipath arrivals. Details of

the separate modeling and the Two-Model EKF algorithm is presented. Finally as

demonstrated through experimental data analysis, the dynamic model based track-

ing using EKF based approach significantly reduces the signal prediction residual

error, and the Two-Model EKF algorithm attains further performance improvement

due to its soft-constrained selective tracking.
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Chapter 4

EM based Channel Impulse

Response Estimation

Dynamic channel estimation algorithms based on the Expectation Maximization

(EM) approach are developed in this chapter. Applied to the state-space channel

model developed in Chapter 2, the EM algorithm combined with the Kalman fil-

ter (KF) iteratively computes state estimates and ML estimates of the parameters.

A new vector form recursion for computing the cumulative sum of the smoothed

second-order state moments, from which the parameters are directly estimated, is

derived in this chapter. By generalizing the log likelihood function into an exponen-

tially weighted form, the new recursion motivates a class of suboptimal sequential

EM algorithm with adjustable averaging memory length and state smoothing mem-

ory, whose properties are subsequently analyzed. The analysis shows a second-order

innovation term in the parameter update in addition to the first-order Kalman inno-

vation. An extended persistent excitation condition necessary for the stability of the

parameter recursion is established. Extension of the EM approach towards a least

squares (LS) framework is also presented.
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4.1 Introduction

The EM algorithm is an approximating scheme first developed by Dempster, et al.

[Dem77] to obtain ML parameter estimation for problems with incomplete data. It

has since then been applied extensively to many problems that can be converted into

an incomplete data formulation [Mcl97]. Parameter estimation in linear models using

the EM algorithm traces back to the original paper [Dem77]. Application of the EM

algorithm to estimate unknown parameters of linear dynamic systems is believed

to be developed first by Shumway, et al. [Shu82], where the EM algorithm com-

bined with the Kalman state smoother was proposed to compute the ML estimates

of the system parameters while also providing the state estimates. Later the idea

was applied to the problem of speech enhancement in [Wei94] where a suboptimal

sequential algorithm is also proposed in which the state smoother is replaced by a

filter, an idea which can be found in the early work of Titterington [Tit84]. More re-

cently in [Gao03], the EM-Kalman filter structure and its suboptimal version similar

to the one in [Wei94] were employed to estimate time varying multipath fading chan-

nels. In all these cases the optimal EM parameter estimator is based on sums of the

second-order smoothed state moments. Upon the arrival of a new observation, these

moments must be updated using new state estimate at each sample point (and in a

forward-backward fashion when a state smoother is used) and stored. This requires a

memory that increases with observation time. The suboptimal algorithms in [Wei94]

and [Gao03] circumvented this problem by simply using the lag-one smoothed state

estimation which certainly leads to performance degradation. Recently in [E1199],

a class of finite-dimensional filters were proposed to directly estimate the sums of

those second-order smoothed state moments, instead of estimating the moments first

and then accumulating. This greatly reduces the storage requirement and is compu-

tationally more efficient. The derivation is based on the notion of measure change.

Subsequently in [E1102], the same filters were employed in a suboptimal recursive

algorithm whose convergence was proved under certain conditions. The recursion
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forms proposed in [E1199] have to be implemented element-wise for those cumula-

tive sums and is difficult to be interpreted intuitively. In addition, despite of the

convergence claim, the suboptimal algorithm in [E1102] generally have a very slow

convergence rate .

In this chapter the EM algorithm is derived which together with the Kalman filter

jointly estimates the state and the ML parameter estimate. Then a new vector form

recursion for computing the cumulative sum of the smoothed second-order moments

is derived. The derivation is directly based on the state smoothing formula and the

properties of the Kronecker product, hence, it is mathematically simpler than that

in [E1199]. More importantly, the resulting recursion form yields new insight into

the structure of the problem which facilitates the stability analysis of the estimation

algorithm. It leads to an intuitive interpretation of the effect of exponential forget-

ting on parameter estimation in terms of the parameter averaging memory and the

state smoothing memory respectively. This intuition motivates a new class of subop-

timal recursive algorithm which encompasses the algorithms proposed in [E1102] and

[Wei94] as special cases. In the new algorithm the parameter averaging memory and

state smoothing memory are adjustable separately by two forgetting factors. Finally,

the stability analysis of the suboptimal algorithm reveals the fact that the one-step

recursion of the parameter matrix is rank-one. An extended persistent excitation

(EPE) condition is then established for the stability of the suboptimal parameter re-

cursion. The EPE condition requires that both the observation vector and the state

estimate to be persistently exciting, a concept well known in system identification

for linear regression models. This renders a geometric picture that illustrates intu-

itively the identifiability of the parameters which are observed indirectly through the

observations. The implications of this condition are especially relevant for channel

estimation in wideband transmission where the channel is generally sparse due to

the resolved multipath structure hence would violate the EPE condition. As a re-

sult, dynamic parameter estimation may diverge if those quiescent taps are to be
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dynamically tracked. The suboptimal EM algorithm alternates between parameter

estimation based on the sequence of state estimates and state filtering via Kalman

filter. An extension of this alternating structure towards the least squares frame-

work is developed where the parameter estimation is explicitly formulated as a LS

estimation problem.

Several conceptual parallels can be found between the development in this chapter

and that in Chapter 3, including the extended Persistent Excitation condition of the

suboptimal EM algorithm vs the parameter observability and detectability results

in section 3.3; the second-order innovation term in the suboptimal EM algorithm vs

the innovation correction terms for the EKF algorithm in section 3.2.3.

The content of this chapter is organized as follows: Section 4.2 formulates the

problem and reviews the EM algorithm; in Section 4.3 the new recursion form of

the cumulative sum of the smoothed second-order moments are derived. Section 4.4

presents the suboptimal algorithm. Analysis of the suboptimal algorithm, including

its stability and convergence, is carried out in section 4.5. The analysis leads to the

second-order innovation term in the suboptimal algorithm and the extended persis-

tent excitation (EPE) condition. Section 4.6 proposes a modified EM algorithm that

only estimates the parameter associated with the dominant channel tap subspace,

based on eigenvalue decomposition of the cumulative sum of the smoothed state self

correlation matrix. Finally Section 4.7 presents a summary of this chapter.

4.2 EM Joint Channel State and Parameter Esti-

mation

Restate the state-space channel model (3.1):

{Xk+1 = A(8)xk + Wk (4.1a)

Yk = CkXk + Vk (4.1b)
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All the model assumptions held in section 3.2, including the noise statistics, are

followed here.

The derivation assumes that 0 is the only unknown parameter and there is no a

priori structure of A specified. The time-variations of 0 is not explicitly modeled,

but will be dealt with later by exponentially weighting the log-likelihood function.

Note that the state process noise covariance Q, and the observation noise variance

2 can be parameterized and estimated as well, as was done in [Shu82]. The basic

idea and procedures of estimating Q, and aV are very similar to those of estimating

6 in A; therefore, the development assumes that they are both known to simplify

the derivation and highlight the crucial point.

The goal is to estimate the state process xn and parameter 0 based on the se-

quence of received signals Yn A {yi,- - , yn} assuming Ck, k = 1, ... , n, the sequence

of transmitted symbols, are known.

The EM algorithm [Dem77], when applied to system (4.1) with observation data

Yn available, consists of multiple iterations. At the lth iteration it carries out the

following 'E'-step and 'M'-step:

1. E-step:

Qn(,6 )= E{An (0)Yn;O } (4.2)

where An(0) is the log likelihood function. E IYn; On } is the expectation

( -1) -(1-1)taken with respect to the conditional density PA, (An IYn; en ). And 6 is

the parameter estimate obtained from the (1 - 1)th iteration based on Yn.

2. M-step

S =zarg max Q (0, ) (4.3)

EM is a batch iterative ML algorithm that deals with fixed-interval observation data
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[Dem77]. The subscript n here merely indicates that the estimation is based on Y,

does not imply that EM is time recursive. When new data arrives, one needs to start

the EM algorithm for the new data segment. If the total number of iterations for
(1) -(L)

each data segment is L, then the EM algorithm can be initialized with On+1 =On

When restricting L = 1, then the overall EM procedure becomes time-recursive and

suboptimal. This is discussed in section 4.4.

The log likelihood function of the observation and state is given as

An(6) = log[p(y, y2,- ,Yn, XO, XI, ,xn; )]

log P(xixi1;6)) + C1  (4.4)

where C1 A Ei log(p(yilxi)) + log(p(xo)) is not a function of 6. From the state

equation (2.49a), it follows

log (P(xiIxi_1;) - |xi - A(6)x _1 2 _I + C 2  (4.5)

where C2 = -!log(27rdet(Q.)) and ||-||Q 1 is the Q-1 weighted norm. Substituting

(4.4) and (4.5) into (4.2) and (4.3) yields

-Y')
n= arg max J(6) (4.6a)

0
n

J(9) A E{2 I|x - A(6)xiII||2 - } (4.6b)
i=1

As a generalization that will become useful later, let

JA(6) A E{ A" lixi - A6xi-I . Y(4.7)

where 0 < A < 1. Then J\(0) = J(O) when A = 1.
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Consider the case 0 = Vec(A). Solving DJA(0)/o0 = 0 yields

[ -i R( [1]] [ An- R1-[ ] (4.8)
- A i=1n xi -ilnl

where

R -1)[j] Efxixi_ n A }, j=0 1 (4.9)

will be called the smoothed state correlations, with lag j. As shown in Appendix B.1,

R ~_I n[0] = i-j Xi- (_-) + P _ (4.10)

1- = i'-(I-Ij(11)h p(11)(j(1-1))h (.1

where x and P(1-1) are the smoothed state estimate and the error covariance,

respectively. (J(1)) is the closed-loop state transition matrix for the smoothed

estimator (from xin to x.i11n) and is defined in (B.5). It also has other useful forms

as given in (B.11) and (B.15). Note that the n dependency in J (I 1) has been dropped

for notational simplicity.

Equations (4.8)-(4.11) effectively indicate that the EM algorithm estimates the

dynamic parameter, An in this case, directly from the sequence of state estimates and

their error statistics. Intuitively, this can be interpreted as the following. Assuming

an initial A 0 74 A, although the resulting sequence state estimates i. may not be

close to the true state xn, the trajectory i contains information about how the true

state actually evolves over time. Hence one may estimate the true state dynamics

from the sequence of state estimates and use that to improve the state estimation.

Both the dynamics and state estimates can be further refined through iterations.

This is illustrated by the block diagram shown in Figure 4-1. On the other hand,

unlike the EKF algorithm where the uncertainties of the parameter estimation, i.e.

the parameter estimate error covariance and the cross error covariance between the
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state and parameter estimate, are available and provided to the state estimation, the

EM based algorithm does not quantify this uncertainty.

(I(l-l ) 

y,,c, KF smoothing iln R [, 0, j

Figure 4-1: EM parameter estimation with Kalman state smoother

The derivation of (4.7)-(4.11), without the exponential weighting, can be found

in [Shu82] and [E1199] as well. The inclusion of the exponential weighting here is to

favorably weight the error associated with the recent states hence allows some degree

of parameter time-variability. Another effect of exponential weighting is that it also

controls the smoothing memory, as explained in section 4.4.

The algorithm proposed in [Shu82] alternates between (4.8)-(4.11) and the fixed-

interval Kalman state smoother (which has been included in Appendix B.2, and also

see, for instance, [Jon89] and [KaiOO] ), and iteratively yields the parameter and state

estimates. The problem is that o compute state estimates using the state smooth-

ing recursion at the next observation data point, it needs to know all the previous

smoothed state estimates and covariances. To save all these results, it requires a

memory length increasing with time. In the next section a new algorithm is derived

which recursively updates the sequential sums of the smoothed state correlations

directly in vector form, thus eliminates that storage requirement.
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4.3 Fast Recursion of Sums of the Second-Order

Smoothed State Moments

Substituting (4.9) into (4.8) and using (4.10) and (4.11) yields

An =H, [n] [H'- u[n]] (4.12)

where

n A(-'

Hl-)[n] A E{ A"-xixi_ Yn;A2~1 } ZA"i[-( 1)( i_ 1 ) ) i- jn
i=1 i=1

(4.13a)
n n

(1-1)[n A-XX E{Z1 n-i~_ A'[_(I-l) (_(I-l))h p(J-) (j(1y1))h]

i==1 i=1

(4.13b)

(4.13a) -(4.13b) are the weighted sequential sums of the smoothed state correlations,

and will be called the the cumulative state moments with lag j = 0 and 1, respectively.

Intuitively, (4.12)-(4.13b) view the sequence of sil as observations from which A

is estimated. The uncertainty associated with -iin is accounted for by the second

terms in (4.13a) and (4.13b). (4.12) indicates that Hj- [n] for j = 0, 1 are all that

is needed to compute AP). Hence the basic idea of the new recursion scheme is to

compute Hj 1 ) [n] directly in a recursive fashion. This is similar to that of [E1199]

where a finite-dimensional filtering algorithm has been developed directly in terms

of the elements of these cumulative state moments (with A = 1). However, unlike

in [E11991 where the algorithm is derived via measure changes and the recursions of

Hj~ [n] are elementwise, the new recursion algorithm proposed here is in vector

form and the derivation follows directly from the state smoothing formula and the

properties of the Kronecker product. The result is simpler from a mathematical point

of view, more importantly, the resulting form of the recursion gives more insight into
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the structure of the problem and leads to an intuitive interpretation of the effects of

the parameter estimation averaging memory and the state smoothing memory. Note

that neither [E1199] nor [E1102] deals with the exponential forgetting formulation.

For notational simplicity, in this section the iteration index (1) is dropped. All the

discussion is based on the data block Y,.

Substituting the fixed-point smoothing formulas (B.13) (see Appendix B.2) into

(4.13) gives

H,[n] = AHi[n - 1] + [Ran-n_ 1n + PninJ ,n]
n-1

+ AZ A (Ti,,MTi_1,n + Rji,-1N Ti_1,, + Ti,nNn U_ 11n- 1 ) (4.14)

Ho[n] = AHo[n - 1] + [iXn- 1 nnin + Pn-1n]
n-1

+ A (T_1,nMnT T_, + 1nNT_, + Ti_1,nNnst 1n_1)

i=i

(4.15)

where Tj j ]Hn2 J8 ,,j+ for i < n (and T ,n = I) is the closed-loop state transition

matrix from Rxnn to Xiln. In addition,

Mn Pninicn [RjneneR-j - nn_1 (4.16)

Nn A Pin_1ChR-len (4.17)

Note that Nn is the measurement update term of the state estimation, i.e. Nn =

in - nin-1, and Ti,nNn = jiin - Xin_1. Mn contains the cross term NnNn coming

from the state smoothing recursion and the update term of the smoothing state error

covariance. Both Mn and Nn are zero-mean.

Based on (4.14)-(4.15) and using the properties of the Kronecker product, as

shown in Appendix B.3, Hj[n] for j = 0,1 can be computed recursively according to

the following theorem:
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Theorem 4 Consider the linear dynamical system (4.1), suppose a Kalman Filter

assuming A A, is applied to the system and at time n generates Rni , xn,

Pinn 1, Pinl, en, Ren, then the cumulative second-order state moments, Ho[n] and

H1 [n], both defined in (4.13), can be updated recursively as follows:

Vec(Hl[n]) = AVec(Hi[n - 1]) + Vec[-nln2n_ ln + Pin~J s]

+ A{G1,,Vec(Mn) + L 1 ,,Nn + T1,nN*} (4.18a)

Vec(flo[n]) = AVec(fio[n - 1]) + Vec[i-_ 1 |i2l_ + P-_hn]

+ A{,nVec(Mn) + PO,nNn + Vec[Mat(o,nNn)]h} (4.18b)

where fyn, P,n and T1,n for j = 0, 1 can be updated recursively as follows

fj,n+1 = [ 0*,n 0 Lj,n + A\Q,n] (J*,n+ 0 Js,n+1) (4.19)

-,n+= - 0 L + A'11] s,n]+1 + A 3,n(N* 0 Jsn 1 ) (4.20)

Tj,n+l = [J7*n 0 Xn-1+jIn + ATj,] J*,n+ 1 + Afy,n (J*,n+o 0 Nn) (4.21)

where LO,n = J,,n and L1 ,= I. Furthermore, that (An, Q1/ 2 ) is completely stabil-

isable and (An, Cn) is completely detectable is the sufficient (and also necessary if

A = 1) conditions for (4.19)-(4.21) to be exponentially stable and hence Qjn, L',n

and T3 ,n all bounded.

The proof of (4.18a)-(4.21) is provided in Appendix B.3. The stability result is

established in Appendix B.4.

The algorithm can be implemented as follows:

1. Get en, R, from Kalman filtering then calculate Mn and Nn according to

(4.16)-(4.17);

2. Using (B.13) with i = n - 1 to compute in_ 11 n and P n-lln;

3. Kalman filter measurement update: calculate Xann and Pinj;
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4. Update Ho[n] and H1 [n] using(4.18);

5. Kalman filter time update: calculate -x,+1ifl and P,+11,;

6. Calculate J,+ 1 from P,+11i using (B.15);

7. Update Q1,n, io,n, n1 ,n, LO,n and Ti,n using (4.19)-(4.21).

where 'in, Pinn can overwrite Rn-ljn-1, Pn-in-i

The block diagram for the vector form recursion for Hi [n] is given in Figure

4-2 and the EM algorithm based on this new recursion form is given in Figure 4-3.

In Figure 4-2, the exponential weighting factor A is split into A, and A 2 with each

controls the averaging window length of H, [n] and the state smoothing memory

length. More details about this generalization is given in section 4.4.

Vec(R 11]) z- 1

A1

Vec(Hi_1 [n])

Vec(knk )(en1 2 - Re

s,n

(17,11 and T E, are similar

Figure 4-2: Diagram for the new vector form recursion of H, [n]. Similar for

HO~ [n]

Note that up to this point, the new recursion form is derived solely as the com-

puting engine for the iterative EM parameter estimator. Thus it runs once every

EM iteration to calculate the parameter estimate. The EM procedure requires mul-

tiple runs of these recursions over the whole data block every time when a new data
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YnCn KF 1-step smoothing H
H(3

Figure 4-3: EM algorithm based on the new recursion form of the cumulative state
moments

emerges. From this perspective, the advantage of the new recursion form (4.18a)-

(4.21) is to provide a recursive filtering scheme at each iteration whose storage space

is small and independent of the observation time.

A useful observation is that in both (4.14) and (4.15), the first terms are the av-

eraging terms over time; the second terms are the new components associated with

latest state estimates; and the terms in the summands represent the update com-

ponents of the smoothed state correlations associated with the latest measurement

data. Therefore, in both equations the exponential forgetting factor A simultaneously

controls the time averaging memory length as well as the smoothing memory length.

This, of course, is the result of the formulation laid out in section 4.2, specifically

by (4.7). Heuristically speaking it is not necessary to have both memory lengths

controlled by the same factor. This will be reflected in the suboptimal algorithm to

be developed in the next section.

4.4 Suboptimal Algorithms

The EM algorithm involves multiple iterations at each time point. In every itera-

tion, using the parameter estimate obtained from the previous iteration, Hj'- [n]

has to be recursively computed all the way from Hj - [1] before being used to gen-
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erate the new parameter estimate. For most on-line applications this is not feasible

computationally. This section develops a class of suboptimal algorithms based on

the recursion forms derived in the previous section. Specifically the new suboptimal

algorithm is obtained after three modifications of the EM algorithm: 1) Limiting the

number of iterations at every time point which gives the dynamic EM algorithm as

discussed in [Jor99]; 2) Based on 1), further limiting the latest parameter estimate to

be applied only on the current state estimate which leads to the recursive algorithm

similar to the one proposed in [Tit84]; 3) Controlling separately the parameter esti-

mate time averaging memory length and the state smoothing memory length. It will

be shown that the suboptimal algorithms proposed previously in [Wei94] and [E1102]

and applied in [Gao03] are special cases of this new algorithm.

4.4.1 The Derivation of the Suboptimal Algorithm

Recall that the EM algorithm may be viewed as a solution to the quadratic min-

imization problem of (4.7) and an iterative approach to compute (4.13). Restate

both equation as follows

JA() i E,1A -E{ xi - A(9)xj_ 1| lYn; Oh-) } (4.22a)

Hf [n] A E{ E="- iY 1 n; A() A) } (4.22b)

Limiting the number of iterations at each time point to be 1 effectively changes

(4.22a) and (4.22b) into

JA() A E%1A -E{||xi - A(6)xil|Q yQiIYn; On_} (4.23a)

Hj[n] A f {E 1An x-i_1+jxh_14; An_1} (4.23b)

in which the Kalman filter assuming 0 = On-1 is applied to obtain smoothed state

estimates for i = 1, ... n with A = An_ 1 from which H3 [n] is calculated all the
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way from Hj[1], using the recursions (4.18a)-(4.21). This is because all the state

estimates are impacted by the latest parameter estimate _n-1.

The second step of simplification, replacing On-, and An-1 in (4.23a) and (4.23b)

by O_1 and Aj_1 respectively, converts the algorithm into recursive form. That is

J(0) En A n-1 ~E{ |xi - A(6)xiI_ 1 lYn; Oi-1}

Sy[n] =A E fE xj-1+jx'-1j>n;A'-1}

(4.24a)

(4.24b)

in which the latest parameter estimate is applied only to the state estimates at time

n and n - 1. Consequently the resulting algorithm carries out one update step of

(4.18a)-(4.21) every data point.

The next modification is motivated by the observation described at the end of

the last section. That is, the parameter averaging memory and the state smoothing

memory are controlled separately. Heuristically, after dropping the iteration index,

(4.18a)-(4.21) can be modified directly into the following

Vec(fi1[n]) = AiVec(H1[n - 1]) + Vec[Xnilnn_ 1 + PInJs,n]

+ Aj{1,,Vec(Mn) + F1,nN, + T1,nN*}

Vec(fto[n]) = AVec(Ho[n - 1]) + Vec[fn1 1 ni$_ -n + Pn- 11n]

+ A,{ o,,Vec(Mn) + ro,nN + Vec[Mat(ro,nNn)}]h}

Qj,n+1 = [J,n & Lj,n + A2 Qj,n] (J*,n+ 1 0 Js,n+1)

= [*n L,n + A ,] Js,n+l + A2 ,n(N* 0 J,, 1 )

Tj,n+1 = [J,n 0 Xn-1 jin + Tj,n] Js*,n+1 + A2nj,n (Jsn+1 0 Nn)

(4.25a)

(4.25b)

(4.25c)

(4.25d)

(4.25e)

where again LO,n = J,,, and L1 ,n = I. As a result, the parameter average memory

length and the state smoothing memory length are controlled by A, and A2 , respec-

tively. The choices of A, and A2 will both have effects on Hj [n] and hence on the

transient as well as steady-state performance of the resulting algorithm.
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Figure 4-4 shows the block diagram of the suboptimal algorithm.

H,[n]
Art =_ H, [n] [Ho[n]]

yn)Cn KF 1-step smoothing H

Figure 4-4: Diagram of the suboptimal EM algorithm

4.4.2 Special Cases

The algorithms given by (4.25) can be specialized by choosing specific sets of forget-

ting factors. In particular, two previously reported suboptimal algorithms, in [Wei94]

and [E1102] respectively, can be included as special cases of (4.25).

Letting A, = A2 =1 in (4.25) gives the recursive algorithm proposed in [E1102],

which also corresponds to (4.24) with A = 1. Note that in [E1102] the authors claims

that their algorithm can also deal with time-varying parameter. Strictly speaking

that is not true when the algorithm effectively has an infinite averaging window

length, even though the parameter estimates used by the Kalman filter are time-

varying. In fact, the algorithm of [E1102] usually has a very slow convergence rate as

confirmed by their own numerical results.

Another special case is when A2 = 0 in (4.25). This is similar to the sequential

algorithm proposed in [Wei94]. Effectively, the smoothing memory is limited to lag
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one. It corresponds to

JA(G) A E '1A-E{ lIxi - A(6)xi_ 1 I|l Yi; &3_1} (4.26a)

Hj[n] A Exi-+jxi-1Yi; Ai- 1} (4.26b)

Consequently the computation of H,[n] has a much simpler recursion form (for

j 0, 1):

H3 [n] = AH3 [n - 11 E{xn-1 +yxi-1 A- 1 } (4.27)

(4.27) has also been used in [Gao03] due to its reduced computation.

4.4.3 A General Parameter Recursion

The suboptimal algorithms (4.25) and its special cases can be captured by the fol-

lowing recursion for the parameter estimate An:

An = An-1 + (Li[n] - An_ 1 Lo[n])HO 1 [n] (4.28)

where LI[n] - An_1 Lo[n] and H I[n] may be viewed as the innovation and the gain

respectively, more will be said on this in section 4.5. Lj[n] A HI[n]-AjHj[n--1], i

0, 1 are functions of the weighting factors:

L1[n] = (-nin-iin + PanJn,n) + AiMat{1,nVec(Mn) + r 1,nNn + T 1 ,nN*}

(4.29a)

Lo[n] = (Xn-tn2_ 1 n + Pn-1 1n) + A1Mat{Go,nVec(Mn) + Fo,,Nn + Vec[Mat(o,nNn)]h}

(4.29b)

(4.28) will be the basis for the parameter convergence analysis given in the next

section.
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4.4.4 A Numerical Example

This section presents a numerical example of channel estimation using the suboptimal

EM algorithm. The results are presented together with those of the Exponentially

Weighted Recursive Least Squares (EWRLS) algorithm, the EKF, and the Kalman

filter. The four-tap channel was generated according to model (4.1) such that A

is a 4 x 4 diagonal matrix with complex diagonal elements all close to the unit

circle. The mean amplitude of the diagonal elements is 0.96. The process noise had

a unit variance. The received signal was generated using transmitted symbols Ck

derived from a Gaussian pseudo-random sequence gk such that Ck = 1 if g > 0 and

-1 otherwise. The observation noise variance was determined by the SNR values.

The EWRLS had a forgetting factor .99. The EKF jointly estimated the states

and the parameters. The Kalman filter, as a benchmark, knew the true value of

A. The suboptimal EM algorithm used different combinations of values for the two

forgetting factor A, and A2 for studying the transient parameter convergence and for

steady-state error performance evaluation.

Figure 4-5 shows the parameter convergence curves using the plain EKF algorithm

and the suboptimal EM with four sets of forgetting factor combinations (A, A2 ) =

(0.92,0), (0.92,0.92), (0.98,0), (0.98,0.98), (0.998,0), (0.998,0.998), respectively.

The data was generated as described above with SNR = 3dB with 10Hz Doppler.

The plot indicates that with A, = 0.998 the suboptimal EM algorithm has a very

slow convergence (the flat curves on the top). When A 2 is fixed and as A, decreases,

effectively with a shorter parameter averaging window, the convergence speeds up.

This is because the adapting gain increases as averaging memory is shortened. The

effects of A2 which controls the length of the smoothing memory, is in opposite. As

A2 decreases while fixing A,, the convergence slows down. This is due to the smaller

amount of data used to update the parameter at each recursion when the smoothing

window is shortened. Note that the simulation is based on a constant A. In the case

of a time-varying Ai, it would be desirable to use smaller values for both forgetting
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factors to obtain a good tracking ability. In addition, by choosing a smaller A,, the

suboptimal algorithm parameter estimate converges faster than the EKF estimate.

Figure 4-6 shows the steady-state channel prediction errors obtained using the

EWRLS, the suboptimal EM algorithm with two sets of (A,, A2 ) = (0.92, 0), (0.92, 0.92),

the EKF algorithm and a Kalman filter respectively. The comparison is made at six

different receiver SNR levels with a fixed 5 Hz Doppler . The Kalman filter is the

optimal benchmark as it assumes perfect knowledge of the system. At the lower

SNR region, i.e SNR = -10 - -5dB, the suboptimal EM algorithm performs bet-

ter than the EWRLS and the EKF. As the SNR level increases, the EWRLS has

a significantly larger error than the suboptimal EM. On the other hand, the EKF

gradually approaches and eventually outperforms the suboptimal EM. This could

be explained by decomposing the error into the noise error and the lag error. At

the lower SNR region, it is expected that the noise error dominates the total pre-

diction error. The effect of dynamics which causes the lag error is less important.

As a result, the EWRLS, even though does not account for the channel variations

explicitly, still has a marginally larger error. In addition, the suboptimal EM uses a

smoother with a limited smoothing memory, is expected to perform better than the

EKF which only provides filtered estimates. In the higher SNR region, the lag error

caused by channel dynamics becomes more important as the noise effect diminishes.

Thus the lack of dynamic modeling of the EWRLS causes substantial performance

loss. Both the suboptimal EM and EKF are able to estimate the channel as well

as its dynamics. However, as the noise level lowered, the advantage of smoothing

become less important. Furthermore, the suboptimal EM with a small A, has a fixed

adapting gain that does not diminish in steady-state. Since the parameter used is

constant, this causes the EKF to perform better in the steady-state.
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Parameter Convergence N=4, SNR = -3dB, laI=.96, Doppler 10Hz
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Figure 4-5: Parameter convergence of the suboptimal EM algorithms. A four-tap
channel with SNR = -3dB and 10Hz Doppler. A is a diagonal matrix. The mean
amplitude of its diagonal elements is 0.96.

4.5 Properties of the Suboptimal Algorithm

4.5.1 The Innovation Form of the Parameter Recursion

This section considers the stability of parameter recursion, using the suboptimal

algorithm (4.25) with A2 = 0. More specifically, consider the recursion

An A=.- 1 + (LI[n] - An_1 LO[n])H H [n] (4.30)

L[[n] = Elxn_ x Yn; A} j = 0, 1 (4.31)

where the parameter estimate obtained at time n, An, is a matrix.

According to (B.34) derived in Appendix B.5,

Li[n] - A._1 Lo[n] = k(ynx_ n - cA1nLo[n]) (4.32)
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Figure 4-6: Steady-state channel prediction errors of Suboptimal EM algorithm, the
EWRLS, the EKF, and the KF knowing the model parameters. A four-tap channel
with 10Hz Doppler. A is a diagonal matrix. The mean amplitude of its diagonal
elements is 0.96
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where kn = (CnQwch + or2)Qwch.

Denoting sn A (cnQwc$ + u2) 1 then kn = snQ -C$.

Substituting (4.32) into (4.30) yields

An = Ani + kn(ynin-_n - CnAniLo[n]) H [n] (4.33)

(4.33) is essentially a matrix recursion in CNxN. However, it is clear that the second

term on the right hand side of (4.33) is of rank one. In other words, the one-step

update of the matrix is only of rank one along a particular direction. Hence intuitively

one would expect that at least N x N steps will be needed to completely update the

whole parameter space. Later this will become more evident.

Now letting an = Vec(An), following (B.39) derived in Appendix B.5 yields:

a = an-1 + (i-'[n] ® Qw) hn1 0 cn)hRen

+[(H-'[n] 0 Qw) (Pt1 1 _1 0 c -n)]n.iRe-1 (R-ee* - 1) (4.34)

in which the parameter is updated by two innovation terms. The first order term

is similar to that of EKF update hence an equivalent Kalman gain may be defined

as Ln A [(-t[r]i*_ _) ® Q] c$nR-'. The second term is of second order in

en. Specifically, it is an update term based on the error Rejene* - 1, the mismatch

between Ren, the predicted innovation variance, and ene*, the residual error energy.

A connection between the suboptimal EM algorithm and the EKF modification

in section 3.2.3 can be established at this point. The second-order innovation term

in (4.34) is in an identical form as in (3.42). This is not accidental. (3.42) is obtained

by matching EKF with the stochastic gradient algorithm that minimizes the negative

log-likelihood function, or equivalently computes the ML parameter estimate, while

the suboptimal EM is a sequential version of the EM algorithm which also tries to

find the ML parameter estimate. This extra second-order term is effectively a result

of data smoothing which is required to obtain the ML parameter estimate for this
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nonlinear problem.

Another important consequence of (4.34) is computational. It can be seen that

except H- [n], all terms in the update equation have been computed from the Kalman

filtering and the previous parameter estimation. Thus an efficient and relatively

accurate approximation of Ho[n] will lead to a fast version of the suboptimal EM

algorithm.

4.5.2 The Extended Persistent Excitation Condition

Now define AL AA-A as the parameter error matrix; gn Aznxn_1In-E{znn}+

cnA5Cin 1|n2_n, a zero-mean random row vector and r, A k-n1gkHi [n]. Here

Zn = Cnwn-1 + n. Denote the parameter error vector by dn = Vec(An), and let

yn = Vec('n), the following has been shown in Appendix B.5,

An = An1 + [kn (-CnAn-1nnf 12 In + 9n)] H [n] (4.35a)

An = An-1 - kncnAniIn_1Ing H-[n] + Fn (4.35b)

i-tn = [I - (2niin22_ nf"[n]) t 0 (k n-)]_ 1 + Yn

= {I- [(II4-n||inI 2 H t Hn) 0 (QwjII1 2 (cnQcl + or2) )] (bnbh) }_1 + _n

(4.35c)

A [I - Snbnb ]h -1 + Yn (4.35d)

where Sn A [(Ijn-IinI2H-[n]) 0 (QwllCn1 2 (CnQCh + o)2)] and

t ~h
bn A Cn (4.36)

(1Xn-1In|| ||Cn11)

is a N 2 x 1 unit vector along the direction of Kn 0 c.

Remarks on (4.35c)-(4.36):

1. (4.35c) is a time-varying stochastic difference equation in the parameter esti-

mation error dn. It specifies convergence behavior as well as the stability of the
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parameter estimation. The exponential stability of (4.35c) is decided by the

maximum singular value of the sequential products of its coefficient matrices.

In this case, it is omax [HIi- - (I - Smbmbm) ] for some M > N2 and any

n > 0. If -m, < 1 deterministically or in probability 1, then given a bounded

stochastic input, (4.35c) will be exponentially stable and the parameter esti-

mation converges. In this case, that is largely dependent on the sequences of

Sm and bm.

2. The coefficient matrix I - Sababh has a very interesting structure. if Sn = 21,

then it corresponds to the Householder transform matrix with (I-Snbnbh)b =

-bn. If S,, =iI for some 0 <7q < 1, then I-Snbnbh acts like a filter, such that

vectors orthogonal to b, pass through the system intact while all others will be

compressed, i.e. 11(I -,qbnbh)ell = Iel| if bhe = 0, and 11(I -(L bnb)eI < |lell

if bhe = 0. When S, is not a scaled identity matrix, it is easy to show that all

eigenvalues of I - Sbnb are on or within the unit circle. But the singular val-

ues, which decides the stability as mentioned early, are not necessarily confined

by the unit circle. This makes the stability analysis of (4.35c) very difficult.

As shown in Appendix B.6, the singular values of Hn+Ml (I - Smbmbh) are

decided by the eigenvalue distribution of Sm as well as the degree of persistent

excitation of the sequence bm.

3. The expression (B.51c) is similar to the error recursion equation for parameter

estimation in linear regression models, as reviewed in Chapter 1. According

to the stability results developed in [Bit84][Cam94][Guo95a], that 0 c,0 ,

satisfies the persistent excitation (PE) condition is necessary for the stability

of (4.35c), which in turn requires both "n,_u, and cn be persistently exciting.

The above persistent excitation result can be interpreted from a slightly different

perspective. The recursive algorithm that alternatively estimates the state and the

parameter, using one to get the other, can equivalently be viewed as formulating the
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problem into two steps:

" Step I: State estimation, using A A 1 and the model:

{xk+1 = A-l(O)xk + Wk (4.37a)

yk = CkXk + Vk (4.37b)

" Step II: Parameter estimation, assuming Xk = Axk-11k + Wk11k, from

Yk CkAk-Iik + CkWkl1k + Vk (4.38)

taking Vec on both sides yields

Yk = k--1|k 9 Ck)Vec(A) + CkWk-1|k + Vk (4.39)

which is a linear regression model with unknown parameter a = Vec(A). The

condition of persistent excitation then is in terms of 1K 09 Ck.

As remarked early, the stability of (4.35c) is determined by |ILnJ+-1 (I-Smbmb )

for some M > N2 and any n > 0 and the boundedness of yn. The difficulty is that

I - Smbmbh may have singular value greater than 1 even though all its eigenvalues

are all less than 1. Appendix B.6 provided analytical results concerning the singular

values of I InM-1(I _ Smbmbh) for special cases, and for general case, conjectures

via numerical investigation that assuming Sm = S and if S is well conditioned, then

limm-_.o 1 n+M-1 (I - Smbmb h) - 0; otherwise, limM._c rI"+--1(I - Smbmb ) =

refh with r > 1 and e, f are some unit vectors. In both cases S is assumed Hermi-

tian and ISII < 1 which holds in this case. Therefore if Sm is slowly time-varying

compared with bin, it is possible to establish stability only if Sm is well conditioned.

Since Sn A [(X in_1|inI2ii[n]) 0 (QwllCn12 (CnQwCh + U)-1)], it follows that the

stability of parameter estimation requires that both H-'[n] and Qw are well condi-

tioned, in addition to the PE condition mentioned above. The following conjecture
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summarizes the stability results concerning (4.35c) :

Conjecture 1 The parameter estimation error of the suboptimal EM algorithm is

specified by equation (4.35c). If Sm is slowly time-varying compared with b, then the

exponential stability of (4.35c), hence the stability of parameter estimation, requires

that both Ho-[n] and Q, are well conditioned, and both sequences 'X_ and Cn are

persistently exciting.

4.5.3 Convergence of the Parameter Recursion

Stability is a steady-state behavior and as mentioned above, is determined by the

singular values of limM-+o, rm+M-1 (I - Smbmb%). The convergence rate describes

the transient behavior of the algorithm. However they both are decided by the same

factors. Appendix B.6 shows that assuming that bn are persistently exciting, the

convergence rate of (4.35c) is essentially determined by the eigenstructure of Sn.

Since Sn A [(IIn-linI2f it[n]) 9 (QwIlcnI2(cnQwco+ U))], the eigen-spread

of Sn is determined by those of lo*-[n], the conditional state correlation, and Qw,

the state noise covariance. More specifically,

Amax (Sn) _ Amax (Qw) Amax (Ho [n]) (4.40)
Amin (Sn) Amin (Qw) Amin (Ho[n])

The eigen-spread of Ho[n] is related to the energy distribution of the true system

over state components.

In addition, ||Sn| is related to Iin~inI1 2 11 -[tn]II which is a function of the expo-

nential weighting factor A 1 , and IQwI I IIc12(CnQwch + U2) which depends on the

signal noise ratio (SNR) and the eigen-spread of Qw.

Therefore, if the true system is such that either Ho[n] or Qw is ill-conditioned so

that their eigen-spread is considerably large, then the parameter estimation may well

diverge. For certain applications such as broadband acoustic communication where
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the channel is often sparse or not well populated, this indicates that the suboptimal

algorithm may lead to parameter divergence.

In the case where both Ho[n] and Q, are well-conditioned, then the convergence

rate is controlled by A, and SNR. Large value of A, leads to long averaging window

hence IIXniinII 2IfH [n]I is small which gives a small |ISn|I. Low SNR level leads

to small ||Q,||||Cn|12(CnQ"Ch + o) which also reduces IISn|I. Hence according

to Appendix B.6, small IISnjI leads to a slow rate at which IIn+M-1 (I - Smbmb )

approaches 0 , therefore large A, value or low SNR level will result a slow parameter

convergence rate, and vice versa.

In general, however, due to the fact that the parameter recursion is only a rank-

one update in the CN 2 space, the rate of convergence is slow relative to that of linear

regression problems and decreases as the state dimension increases.

4.6 EM Parameter Estimation Within Subspace

The Extended Persistent Excitation condition (EPE) indicates that if the sequence

Xn- 0 cn is not persistently exciting then the parameter recursion will diverge,

a phenomenon often called wind up or parameter drift in system identification and

control literature [Ast95] [Bit9O] [Kul87] [Par9O] [Par92] [CaoOO] [Set86] [Set88]. In

communication applications, in general the sequence of transmitted symbols can

be assumed as persistently exciting, especially if the symbols are modulated using

an M-Sequence. Hence the limitation mainly comes from sparsity in the channel

estimates.

Consider the original EM parameter estimation form (c.f (4.12) after dropping

off the iteration index):

An = H,1[n] [H-o[n]] (4.41)

Clearly the quality of the estimate An heavily depends on the conditioning of the

matrix Ho[n]. If the channel is sparse and Ho[n] is ill-conditioned, then A, would
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be very sensitive to noise.

Equivalently, viewed from the parameter recursion form (c.f. (4.34)),

an= 1 + (h-'[n] 0 Q,) ( - 11n- 1 0 cn)hRajen

+ [(H-'[n]) 0 QW,)(Pan_1 1 ® ch cn)]- iRl(R-lene* - 1) (4.42)

this means an ill-conditioned or singular Ho[n] will lead to large or unbounded adapt-

ing gains for both the first and the second-order innovations. As mentioned in Chap-

ter 1, large adapting gain yields large noise error and unbounded adapting gain leads

to divergence.

In the context of system identification with a linear regression model, several ad

hoc approaches have been proposed to deal with this insufficient excitation problem

[Kul871 [Par90] [Par92] [CaoOO]. Most of them are based on the so-called directional

forgetting method in which only the parameter subspace that's been persistently

excited is constantly updated (a detailed exposition on subspaces with different levels

of persistent excitation may be found in [Set86]). More specifically, with RLS, the

forgetting factor is applied selectively to different parameters [Kul87] [Par90] [Par92].

Recently directional forgetting based on subspace decomposition of the information

matrix is developed in [CaoOO].

The subspace EM approach in this section is similar to the information matrix

subspace decomposition method in [CaoOO].

Consider the eigen-decomposition of the matrix Ho[n]:

Ho[n] = UnE (4.43)

where En = diag(A1 , A2 , - , AN) with A, > A2 > - > AN. Un is orthonormal.

Assume that only the first P (P < N) eigenvalues of Ho[n] are significant, and

denote 2A = diag(A,, 2, - - - Ap), Un and U, are the first P columns of U, and the
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remaining N - P columns of U,. The following approximation

-1
H0 [1n] ~U lUh (4.44)

effectively projects the parameter onto the subspace spanned by the first P eigen-

vectors as (4.41) becomes:

AnUn = (H 1 [n]Gn)2n1  (4.45)

Using Vec(AnUf) (Ut & IM)an, left multiplying both sides of (4.42) by

(U' 0 IM), it yields:

an = an-1+ (2;- n .(-len1 0 Cn)tRe-e

+ { ( Q) [(Pin_11 1 0 Cc)dn_

+ (Pn_ 11'- 1 ® cc) -1] }R- 1 (R-jene* - 1) (4.46)

where

S (fit 0 IM)-a (4.47)

n (n IM)an (4.48)

Pn-1ln-1 A Pn-1n-1Un (4.49)

p 1 1 1 A UhP_ U (4.50)

The parameter recursion in (4.46) is stable. The extra step involved in the subspace

EM parameter estimation is the eigen-decomposition of Ho[n].
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4.7 Concluding Remarks

This chapter develops joint channel state and dynamics parameter estimation algo-

rithm based on the EM formulation. Optimal and suboptimal EM algorithms are

both developed. A fast recursion form for the sums of the second-order smoother

state moments is derived. The properties of the suboptimal algorithm are analyzed

which lead to the extended persistent excitation (EPE) condition. The EPE con-

dition indicates that if the channel is sparse then the parameter estimation is not

persistently excited.

1. The optimal EM algorithm is derived. The algorithm combined with the

Kalman filter iteratively computes state estimates and the ML estimates of

the parameters. It can be viewed intuitively an iterative scheme in which the

parameter estimated directly from the sequence of state estimates obtained

from the previous iteration is used in the state estimation for the next it-

eration. Through multiple iterations, both the parameter estimates and the

state estimates are refined. The uncertainties associated with the parameter

estimates are not quantified;

2. A fast vector form recursion for the sums of the second-order smoother state

moments is derived. The new recursion reduces the memory requirement and

motivates the development of a class of sequential suboptimal EM algorithms;

3. Suboptimal EM algorithms are derived which sequentially computes the pa-

rameter estimates and state estimates as new data arrives. It is point out that

in the suboptimal EM algorithm the parameter averaging window length and

the state smoothing memory length can be adjusted separately, to achieve de-

sirable convergence rate and steady-state performance, as demonstrated in a

numerical example;

4. The properties of the suboptimal algorithm is analyzed which leads to the
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extended persistent excitation (EPE) condition. The EPE condition indicates

that if the channel is sparse then the parameter estimation is not persistently

excited. the Subspace EM algorithm is proposed to obtain a stable parameter

recursion within the dominant channel subspace.
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Chapter 5

Sparse Estimation of the

Delay-Doppler Spread Function

This chapter develops algorithms that find explicitly sparse channel estimates. Com-

paring to the state-space model based channel estimation algorithms developed in

Chapter 3 and Chapter 4, the approach taken in this chapter is not based on such

an explicit channel dynamic model. Instead it accounts for the channel variations by

using the discrete delay-Doppler spread function representation. Sparse estimation of

the delay-Doppler spread function is then obtained using several modified Matching

Pursuit (MP) algorithms.

5.1 Introduction

As shown in Chapter 2, in addition to the highly dynamic channel fluctuations,

another evident feature of the broadband shallow-water surface scattering channel is

the sparse channel structure, as reflected in both the time-varying channel impulse

response and the delay-Doppler spread function. This sparse structure is formed by

the delay-resolved multipath arrivals, as the delay spread of each arrival, proportional

to the inverse of the the transmission bandwidth, is smaller than the delay separation
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between these arrivals.

The advantage of sparse adaptive channel estimation is the potential of reducing

the number of taps to be tracked. As a result, the tracking algorithms have a

reduced computational complexity and memory, and more importantly, a smaller

noise error and an increased rate of channel fluctuations that it is capable of tracking

[Sto99] [Stoed].

There are mainly two categories of sparse estimation techniques that have been

used in adaptive filtering and recently in channel estimation. Algorithms falling in

the first category are effectively approximation schemes for solving the nonlinear opti-

mization problem of minimizing the squared prediction residual error as a function of

the gain and the delay location of all the dominant taps. Among them are the sparse

DFE [Ron05], the adaptive delay filter [Che89], the adaptive echo canceller[Yip90]

and the thresholding RLS algorithm [Stoed] [Koc95] [Sto99] [OzeO2]. The common

strategy of these algorithms is to break down the original optimization problem over

the whole gains-delays space into a sequence of optimization problems over a smaller

parameter space. In [Ron05] a sparse DFE algorithm is derived by optimizing over

the gains first and then finding the optimal delays. The adaptive delay filter [Che89]

approximates the original problem by sequentially optimizing over the gain/delay of

each tap. The adaptive echo canceller [Yip90] and the threshold RLS are similar,

in the sense that a full-tap adaptive filter is used as an auxiliary filter to provide

tap location and then transfer the detected delay locations to a set of lower order

filters to adapt those identified taps. The adaptive echo canceller uses a combination

of various criteria to pick the dominant taps while the threshold RLS uses simple

energy criterion.

The second group includes algorithms that find the sparsest representation of

the received signal, using the transmitted symbol sequence as basis vectors (or often

called as dictionary). Explicit sparse estimation mainly includes LP norm regularized

method [DonO3] [Mal03][FucOO] and greedy method such as the MP [Mal93] and its
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orthogonal version (OMP)[KarO4]. MP is computationally more efficient, yet, until

the recent work by Tropp [Tro04], has been analytically less tractable. These meth-

ods originated from the signal representation literature where the dictionary subset

that provides the the most compact signal representation is sought. Applications to

sparse channel estimation and equalization, mostly using MP or its orthogonalized

variant, have noticeably increased recently, see for instance [CotOO, Cot02] [Kar04]

[Cet05]. Some of these works are developed for the high definition television (HDTV)

terrestrial broadcast channel which, similar to wideband acoustic channel, also has

very sparse structure. Cotter, et al. in [CotOO] applied adaptive MP algorithm for

slowly time-varying channel tracking which according to the authors performs favor-

ably over both LMS and RLS algorithms. In [Cot02] the same authors showed that

MP also outperforms the thresholded LS algorithms in dealing with slowly varying

channels. In [Cet05], Cetin, et al. compared MP with LS and L, norm constrained

algorithm for channel estimation. It was shown, in terms of locating the nonzero taps,

MP performs better than LS and is close to the L1 constrained algorithm. In [Kar04],

the authors proposed an orthogonal MP (OMP) algorithm which twas shown to per-

form better than the basic MP algorithm in a decision feedback equalizer. However,

these applications of MP algorithms to channel estimation were preliminary and

rarely provide performance analysis. Comparison between these algorithms has not

been done extensively. The main limitation of these sparsing methods, is that they

require the sparse structure of the channel impulse response to be stable over a cer-

tain time scale, which could be easily violated for the type of channel considered in

this thesis as illustrated in Chapter 2.

Following the line of development in Chapters 3 and 4, conceivably one would

expect to combine dynamic model based channel tracking with sparse processing.

An explicit formulation of this can be carried out by first generalizing the quadratic

minimization formulation of the Kalman filter [Jaz70] to the EKF algorithm and

then modifying that quadratic cost function by adding some sparse penalty terms.
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Although such formulation seems analytically appealing, its implementation and

analysis are nevertheless nontrivial. Hence it is left for the future development.

This chapter develops explicit sparse estimation algorithms for the delay-Doppler

spread function. As illustrated in Chapter 2, although the channel impulse response

has a very fast fluctuating rate, mainly due to Doppler, the variations of the scattering

function, although still significant, are much slower at a comparable time scale.

In section 5.2, various explicit sparse estimation algorithms are reviewed. Sensi-

tivity of these algorithms to channel variations are investigated through a numerical

example. Section 5.3 derives a sequential least squares modification of the MO

algorithm (SLSMP). While the MP algorithm sequentially maximizes the cross-

correlation between the transmitted symbol and the residual vector, the SLSMP

algorithm minimizes the LS error at each iteration. A recursive procedure is derived

using the Shur formula. Section 5.4 formulates the sparse estimation of the delay-

Doppler spread function, develops MP, OMP and SLSMP based channel estima-

tion algorithms. An efficient two-stage sparse estimation procedure is also proposed

which finds the sparse channel estimate first and then estimates a reduced set of the

delay-Doppler spread components on the identified delays. Experimental results are

presented in section 5.5.

5.2 Explicit Sparse Channel Estimation

Consider the general least squares (LS) problem

y = Cx (5.1)

where C is a N x M matrix, y and x are N x 1 and M x 1 vectors respectively.

A solution x may be viewed as coefficients of the representation of y in terms of

the columns of C. Therefore the problem of finding the sparsest solution for the

original LS problem becomes finding the most compact representation of y in terms

135



of the columns of C, in the sense that it has the least number of nonzero coefficients.

In that context, the columns of C are often called the dictionaries instead of basis

vectors since they may or may not be orthogonal.

Two major approaches for solving the sparse LS problem are the Lp norm con-

strained LS or the Basis Pursuit (BP) method [CheO1] [Don03] and the Matching

Pursuit (MP) algorithm and its orthogonal variants. The MP algorithm was origi-

nally introduced into the signal processing literature by Mallat, et al. [Mal93].

5.2.1 Basis Pursuit With L, Norm Constraint

The degree of sparseness of a given vector, i.e., its number of nonzero elements, is

naturally quantified by its LO norm:

lixilo ~> f (xm) (5.2)
rn=1

with f (xm) = 0 if Xn = 0 and f (Xm) = 1 otherwise .

Finding the sparsest solution for (5.1), or equivalently the LO norm constrained

solution, is NP-Hard [Don03]. It has a complexity growing exponentially with M. To

simplify the problem, LP constrained approach, for 0 < p < 1 and most often p = 1,

is used as a convex relaxation of the original LO constrained LS problem. The L1

constrained problem is analytically more tractable since it can be solved by convex

optimization, although the amount of computation it involves is still intensive. In

[Don03], the conditions for solution uniqueness and the equivalence between Lo and

L1 constrained problems are established for general dictionaries.

The Basis Pursuit principle is based on reformulating the L1 norm constrained

LS problem into the following optimization problem [Che0l, Don03]

minlixil1, subject to: y = Cx (5.3)
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Or

minly - Cx11 2 + AJlxil1 (5.4)

where A is a scalar parameter that can be chosen to balance the degree of sparseness

in the resulting solution with the LS error. (5.4) basically includes a L, norm penalty

term in addition to the LS cost function so that the resulting solution would achieve

the minimal LS error under certain sparse condition.

In [Cet05], the formulation (5.4) was used to find the sparse channel impulse re-

sponse estimate. both (5.3) and (5.4) can be solved using either Simplex or Interior

Point method [Che01]. The BP is a global optimization principle and its implemen-

tations are in general computationally intensive.

5.2.2 Matching Pursuit (MP)

A more efficient alternative for solving the sparse representation problem is the so-

called Matching Pursuit (MP) algorithm. The MP algorithm is an iterative greedy

procedure that selects at each iteration the column of C that correlates best with

the residual of the approximation at the previous iteration [Mal93]. The Orthogonal

Matching Pursuit (OMP) algorithm is a variant of of MP with an additional step

that projects y onto all the selected columns of C. It has been shown that for finite

dimensional problem, MP converges exponentially and OMP converges in finite steps

(see [Tro04] and its references).

At each iteration, the MP algorithm finds the column of C onto which the residual

vector ri (with ro = y) has the maximal projection:

|C hri-112
c,,i = arg miax I 112 (5.5)

cwecs,1,...cs-1 eci i n

where c,, , .. -e,i_1 are the columns chosen at previous iterations. The residual
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vector is computed iteratively as

C h ri-1
ri = r _ - h (5.6)

csics'i

and ro = y.

Then Ji, the ith element of x, is found as the coefficient associated with c8 ,,:

/hri_1
- ' = i 2  (5.7)

Note that according to (5.5) and (5.7), there is no need to compute the residual vector

ri recursively. Instead it is only necessary to compute bi cfri for j =1,-,M,

which can be recursively computed as

=b. h ____ 58byij = bi -1,j - Fi s, = b._1,8 '1 bi-1,,s, (5.8)

which is just a scalar update for each j. Here bi_ 1 ,,, A Chri_1.

The MP algorithm is summarized in Table 5.1.

The major amount of computation involved in the MP algorithm is computing the

inner product between each pair of columns and recursively compute bij according

to (5.8). Suppose that there are maximum K nonzero taps to be identified, then

the overall computations are: K divisions for 24, 2MK multiplications and MK

subtractions for bj with j=1, ,M and i = 1,.- , K. The computation of inner

products between columns , i.e. ChC , for a fixed block of data is NM 2 . In the case

when data arrives sequentially, and the transmitted symbols are shifted symbol by

symbol, ChC can be computed recursively, only involving 2M 2 multiplications and

additions. In summary, the amount of computation involved in the BMP algorithm

working in recursive data processing is of the order O(K + 211K + 2M 2 ), which is

independent of the averaging window length N.

It can be shown that each MP iteration is equivalent to solving the following
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initialization

the ith iteration, i > 1

ro = y

bo, = c hro, for j = 1, - - - , M

k, = arg max ' bo,2
j=l,---,Af ||CjI|2

Cs,l Cki

III~j 1122C8 ,1 =[c8,1], I8,1 ={ki}

S bo, 1

b -y b0,3  2 ~ bo8si b,,j ~ Ioj IC112

k- arg max |bi_1,j|2
:j=1,- -,A,,j I,,j- i |Cj||2

Cs,i = ks,

CS'i =[CS'i_1 ; cs,i], Is,j = {Is,j_1 ki}

-2 bi_1,,'

JICkiI2

- Cbyij b_1,,j -C"' bi-1,ks
1 11 2l

Table 5.1: The Basic Matching Pursuit Algorithm (MP).
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optimization problem:

cs,i = arg min (minllri_1 - cjx|| 2 ) (5.21)

This leads to a representation of y as follows:

M h M

y = ri c,i + rM = xicS,i + rM (5.22)
i hS,2

and as c5 , is orthogonal to ri, it follows that

M

Ily 112 = IScs~iI 2 + IlrMII (5.23)

Equation (5.23) essentially expands y in terms of the columns c,,,, with coefficients
hq

given by - .

When the chosen set of columns are not orthogonal, the obtained set of coefficients

xi at the end of MP iteration may not give the minimal LS residual error, hence an

Orthogonal Matching Pursuit algorithm was proposed to correct this by adding an

extra step in which the coefficients are computed by projecting y over the set of all

chose columns. However, the selected columns stay the same.

The MP algorithm is a greedy algorithm for finding the sparse solution. It solves

the original sparse problem by a sequence of one-dimensional projections. It does not

try to find the minimum LS error hence the resulting estimate is not guaranteed to

give a small LS error. However, when the transmitted symbols are white, it is optimal

in the sense that it provides a sparsest solution that has the smallest LS error. In

fact, the algorithm obtained in [Ron05] by minimizing the LS error over the gains

first and then find the optimal delays and assuming the transmitted symbols are

white, is exactly the MP algorithm, although the authors did not make the explicit

connection.

Note that although ri is orthogonal to c8,, ri is not necessarily orthogonal to c8 ,,
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for j < i.

5.2.3 Sensitivity to Channel Time-Variations

Although both the BP and the MP algorithms have increasingly been used for channel

estimation, some times even for time-varying channels, very little has been done to

find out what effect channel variations may have on the resulting estimate and the

LS error. Here a numerical example is used to investigate the sensitivity of the BP

and MP algorithms to channel variations.

The main results are:

1. For both algorithms, the mean square channel estimation error is less sensitive

to variations in the tap gain provided that the tap delay locations are fixed,

but is very sensitive to variations in tap delay variations even though the tap

gains are kept constant.

2. For both algorithms, the number of correctly identified taps is very sensitive to

all channel variations, including variations in tap gain with delays being fixed

and fluctuations in delay with constant gains.

Figure 5-1 shows a constant sparse channel with 10 nonzero taps over a span of

120 taps. For the purpose of comparison, the channel impulse response is the same

as that used in [Cet05] and [Cot02]. The number of correctly identified taps and

the mean square channel estimation error are given in Figure 5-2 and Figure- 5-3

respectively, as functions of SNR. Each plot contains results obtained using LS, BMP

and BP. Results with three different averaging window lengths L = 40, 80, 130 are

shown separately. Both figures show an increased performance, i.e. increased number

of correctly identified taps and smaller MSE, as SNR increases. In addition, as the

averaging window length increases, the performance also increases, both in terms

of the number of correctly identified taps and the resulting MSE. Comparatively

speaking for short averaging window, the results of the BP and the MP algorithms

141



are superior than that of the LS algorithm, with the BP algorithm slightly outperform

the MP algorithm. The performance difference is less significant with sufficiently long

averaging window.

The channel is then set to vary in two different ways.

First, the delay location of all taps is fixed while the tap gains fluctuates according

to a state-space model with different Doppler values. The channel impulse response

snapshots are plotted in Figure 5-4 which shows the fluctuations as the snapshots

overlap. Then the LS, the MP and the BP algorithms are applied and the resulting

number of correctly identified taps and the mean square channel estimation errors

are shown in Figure 5-5 and Figure 5-6. Figure 5-5 shows the number of correctly

identified taps is reduced significantly (by about a half) when a long averaging win-

dow is used while it is approximately the same if a short window is used. On the

other hand, Figure 5-6 shows that the channel MSE appear less sensitive to gain

fluctuations alone. This indicates that when tap gains fluctuate significantly, the

sparse structure becomes more difficult to maintain over a long averaging window.

A relatively small MSE can still be attained by a less sparse solution (aka, smearing

of the sparseness).

The next step is to fix the tap gains while let the tap delay locations to vary

randomly, with a small variance, as shown in Figure 5-7 (an overlap plot of channel

impulse response snapshots). In this case the number of correctly identified taps

and the channel MSE both deteriorate drastically, for all values of averaging window

length. With a long averaging window, essentially the sparse structure is lost in all

estimates.

While rigorous analysis is not presented here. It can be point out here that the

sparse channel estimation algorithms are similarly subject to the dilemma of reducing

lag error at the cost of increased noise error. On the other hand, due to the explicit

sparse constraint, it also tries to maintain the sparseness in the estimates which

would be severely smeared when the channel fluctuates significantly. The impact of
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the loss of sparseness on MSE needs further analysis.

Time-invariant Sparse Channel Impulse Response

0.5 .. .................

Mom

.flF. 7

.0 20 40 60
Tap

80 10 120

Figure 5-1: A Constant Sparse Channel

5.3 Sequential Least Squares Matching Pursuit

In general the set of columns selected by the MP algorithm does not necessarily lead

to a representation of y that has the smallest LS error. This can be demonstrated

through a simple example in the three-dimensional space. Figure 5-10 shows various

MP algorithms that try to find a sparse representation for the vector y, plotted in

red, in terms of the vectors ci, - - - , c6 which are labeled in the upper left plot. The

LS, the BMP, and the OMP and the sequential LS Matching Pursuit (SLSMP, which

will be presented later in this section) methods are applied to find the two vectors

out of cI, ... , c6 to represent y. The upper left plot shows that ci and c2 are the

best LS fit, which is simply because among all the 2D plane spanned by any two of

these vectors the one spanned by c, and c2 has the largest projection of y. The BMP

algorithm, however, picks up c5 first and then c1 . This is because among any of those

143

. . .... ............



Ave len=40
10

LB
8 -... .. . ... - . -.....-. M P -

- - --- - Li
8............. - --.. -- .-

4 - .............

5 10 15

Ave len=80

20 25 30

0 5 10 15 20 25 30

Ave Ien=130
10

- - L8 -- -. .... --- ....... --- . MP ---

20 5 10 15 225 30
SNR

Figure 5-2: Tap Identification in Sparse Estimation of A Constant Sparse Channel
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Figure 5-3: MSE of Sparse Estimation of A Constant Sparse Channel
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Sparse Channel With Fixed Tap Delay But Varying Tap Gains
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Figure 5-4: A Time-Varying Sparse Channel with Fixed Tap Delays and Varying
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Figure 5-10: Comparison of Matching Pursuit algorithms, A simple Example

vectors c5 has the largest projection of y. Then because c6 is almost affine with c5

and nearly orthogonal to the residual error vector thus is not selected as the second

vector. As a result, BMP has a much larger residual error. OMP essentially has

the same vector selection but coefficients are recomputed, which does not reduce the

error significantly. The SLSMP has a different column vector selection criterion, as

is discussed in this section, and chooses c5 and c6 despite that these two are highly

non-orthogonal. The resulting residual error is still larger than the LS case, but is

better than those of the BMP and the OMP.

At each iteration of the MP or the OMP algorithm, a new column vector is

selected such that the projection of the residual vector onto the selected column is
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maximized. In the context of channel estimation, an important measure is the LS

residual error, i.e. |ly - CS,ixij 2 which needs to be minimized. Now suppose Cs,i is

the set of columns identified after ith iteration, from minimizing the LS error point

of view, ci+i, the new column to be selected at the i + 1 st iteration, should form

a subspace together with C,,i to which y has the minimal distance. The column

selected by MP or OMP, as described above, does not necessarily lead to such a

subspace expansion. This is because geometrically a subspace spanned by a set of

vectors is invariant to the rotation of those vectors within the subspace, as long as

the rank stays the same (even though the vectors are nearly affine to each other).

The projection onto a vector as done in MP/OMP is very sensitive to vector location

within the subspace. Hence as suggested by the counterexample in Figure 5-10, it is

quite possible that MP/OMP chooses a set of vectors that have the largest normalized

cross-correlation with the residual vector but form a subspace to which the residual

vector is not minimal. In addition, MP/OMP will not simultaneously select columns

nearly affine to each other due to the subtraction of the signal component along

the first selected vector, even though the subspace spanned by those vectors has a

smaller distance.

Motivated by these observations, a new algorithm is developed in this section

which, instead of choosing columns based on the normalized cross-correlation, it

chooses columns based on minimizing the LS error at each iteration.

More specifically, assume that after the ith iteration, the set of identified columns

are C,,- [Cs,1 Cs,2 -. ,i]; the associated coefficients, contained in the vector xi,

are obtained using the LS method, i.e.

xi = Ri zi (5.24)
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where

R= Ch C (5.25)

z= Cy (5.26)

and Ri is assumed invertible.

The associated residual vector, ri, and the squared residual error, Iri11 2 , can be

calculated as

ri = y - Cs,ixi (5.27)

I|riII2 11Y112 - zhR- 1 zi (5.28)

The second equality follows from the Orthogonality Principle and (5.25).

Now at the i + 1 st iteration, the algorithm finds a new column out of the set

of remaining columns, denoted by c,,i+1, which gives the minimum squared residual

error, that is

cs,i+1 = arg min |Irj+1,j 12 (5.29)

where

ri+1,j = y - [CS'i c,]xi+l,j (5.30)

and xi+1,j is the associated LS coefficients and is given by:

xi+1,j = R+ , (5.31)
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where

Ri+1,,= [Cs,i CjI h [C S,i Cj]

i C~ ci] (5.32)
C hCs',i ||Cj|2

i

Zi+1,j = i (5.33)
cJ y

Using the Shur formula for block matrix inversion [Har97], it yields

R-1 0 -R-ilChcl -R-Cch
R-+ ,- + Al-I '~' ' ~i (5.34)il - 0 0 1j I[L J -- AJL ZSJ [L S3J (4

where

Aij = Ic| 112 - [Chicj] hR [Ch ,cj]

= ch[I - C ,iR;-1Ch,]cj

3 c Q-c (5.35)

where Qi 4 I - CS,iR;-1 Ch is a projection matrix associated with the nullspace of

Cs,. Aij is the Shur complement of Ri and has the geometric meaning as the LS

distance between the vector cj and the subspace spanned by C,,i (or analogously the

variance of the estimate of cj based on C8,,). A, =Ic 112 if cj is orthogonal to C,.

Combining (5.31)-(5.36) yields the following recursion form for the residual vector

ri+,, = ri - Qc (5.36)
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Suppose at i + 1 st iteration, the ki+ 1th column is chosen, i.e. c,,i+1 = Cki+ then

ri+1 = ri - Ai*i* Cki+1 (5.37)

where ri+ 1  ri+1,ki, 1 . (5.38) is analogous to (5.6) and is the same if Qi is an identity

matrix. It can be shown that ri+1 is orthogonal to c5,3 for all j < i + 1.

Denoting bj ri, it follows from (5.38) that

bi+1,,= byij - [Cj Qieki+1] Aki +1

b - [c QiCki+l]i~i (5.38)

where

^i+1 = ci r (5.39)

Combining (5.32)-(5.35) and (5.40) yields

Xi -R 1 ~zCki+lc 1  h
xi+1 - + Aik+Ckiri

- Ch

xi -Ri C liCki+1
= + ' 1  i+1 (5.40)

01

Using the orthogonality principle and the idempotent property of the projection

matrix, i.e. QiQi = Qi, the squared residual error associated with the set of columns

[C8,, cj] is given by

12 = 11Y11 2 
- ZI ,jRljzi+1,j

= 11y112 - Z - A;-1 1y[I - C ,iR-Ch]cI 2

= ||r 112 - A;-' Jrr c|j12 (5.41)
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Consequently, the newly chosen column should maximize the second term in (5.42):

c,+ = arg max 1 (5.42)
cy(Cai Aijy

For notational convenience, assume c.,i i is the ki+ 1 th column in C.

Equations (5.43) and (5.5) differ only in the denominator. Recall that A =

11c j2 - [C),ci]hR1 [C),c3], (5.43) and (5.5) become identical if all columns are

orthogonal, since then Ch cj = 0 and Aij = Ilcj|2.

In (5.5) the cross-correlation between the residual vector and a column is normal-

ized by the L2 norm of the column while in (5.43) the cross-correlation is normalized

by the squared distance between the new column and the previous column set C,.

This change of normalization in (5.43) may be viewed geometrically as an orthogo-

nalization step at each iteration, so that if a new column is affine to any columns in

CS,i, it may still be selected by the new algorithm due to its smaller distance to the

space spanned by C,2, while it will not be selected by the MP or OMP algorithm.

On the other hand, the sequential LS basis selection algorithm is not globally

optimal as it approximates the original NP hard optimization problem by a set

of successive lower dimension LS minimization problem, although that is one-step

further than the MP algorithm which approximates the original problem by a set of

successive one dimensional projections. A globally optimal i +1 dimension subspace

is not necessarily a simple augmentation from the optimal subspace of dimension Z.

The net increase of computation involved in the SLSMP algorithm is mainly

in (5.35) and (5.39). Other than that, it involves computing the inner products

between columns of C and between y and columns of C all of which, similar to the

MP algorithm, only need to be computed once for a given block of data and can be

computed recursively if data arrives sequentially. The algorithm is summarized in

Table 5.2.
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initialization ro = y

bo, = c h ro,

AO,j = I Cj 112,

for j = 1, - - - , M

forj = 1,... fM

k, = arg max ' bojI2

Cs,1 =Cc, IS',1 = {ki}

R- 1 =ick1 12i

I1, = -lbo,k,

bijy bo,j - c hCkj51, for j ',---,M

Qi I -- C,,1R-I1 

(5.43)

(5.44)

(5.45)

(5.46)

(5.47)
(5.48)

(5.49)
(5.50)

(5.51)

(5.52)

(5.53)

(5.54)

A1 ,3 = c1 Q1c3 ,

the ith iteration ki = arg max lbi-1,j|2
j=1,-, j.7m, _1, Ai-ijy

i > 1 C8,i = [Cs,i_1; cki]

R-1 R I- '1 0
101 01

4-l'- 1 h+ A21 ~ [-jlC'SjCkj [-R ~iiC .i 5)

(5.55)

23 = k bi_1 k

xi = R Cli_ ce S.
[0i, [R 10 -~i

bi, = bi 1  _ Qi_ IC-iii,

Q = I - CR,,R-IC

forj = 1,-... ,Ai

forj = 1,... ,M
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(5.57)

(5.58)

(5.59)

(5.60)

Table 5.2: The Sequential Least Squares Matching Pursuit Algorithm (SLSMP).

for J= 1,.. - -,M

,I Is,j = { 1;ki}



5.4 Sparse Estimation of the Delay-Doppler Spread

Function

In terms of the discrete delay-Doppler spread function, the received signal can be rep-

resented as sums of delayed and Doppler shifted copies of the transmitted sequence.

Restating the equation (2.6) in Chapter 2 (with noise term dropped off),

ri = u (zi 0 O) (5.61)

where 0 is the Kronecker product, ri = r(iot) is the sampled received signal, zi =

[z(it -- o) z(i 6 t -To -- 6T) - - z(? 6 t -To --- MT)]t is the transmitted symbol sequence.

HereTO is the reference delay, 6t and 6T are the sample interval in time and delay

respectively and Ml is the number of delay-taps. The delay-Doppler components ui

and the Doppler phase vector #i are given by:

Ui [U(vO, TO) u(vo + 6v, TO) - - u(Vo + P6V, To)

u(vO, To + 67) u(vo + 6v, To + 6T) - u(vo + P6V, To + 6T)

u(vo, To + Mr) U(Vo + 61', To + M(5T) - 4u(v/0 + P6v, TO + M6T)] t  (5.62)

[C = e'2**""i ej2*7r(vo+v)it . . . e2*(vo+P6v)i6t]t (5.63)

where P is the maximum number of Doppler shifts. ui and #i are MP and P x 1

respectively.

Let

yrNso en Auin tht u ri-N+1 it (.64)

where N is the window length. Assuming that ui is sufficiently slowly varying so
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that it may viewed as constant during the window period, it follows that

u1(z 0 4)

yi = (5.65)

uI (Zi-N+1 0i-N+1)

C ui (5.66)

where

(Z 0 )

cj (Zi-1 0 Oi-t (567C, = (5.67)

(Zi-N+1 0i-N+l) t

is N x (MP). It consists of M horizontal blocks each is of size N x P and is associated

with a particular delay. It can be shown that the columns of Ci are not orthogonal.

Equation (5.67) is a typical sparse LS problem in which ui has a very sparse

structure that only a limited elements are significant. Therefore the sparse estima-

tion approaches, including the BP, the BMP and the SLSMP algorithms, can be

applied. It is expected that the SLSMP algorithm would perform better than the

BMP algorithm due to the nonorthogonality of columns of Ci.

5.4.1 Suboptimal Two-Stage Sparse Estimation Algorithms

Direct application of the BMP or the SLSMP algorithm to (5.67) requires large

memory space as well as a significant amount of computation, especially in the case

of the SLSMP algorithm. Recall from Chapter 2 that the scattering function is

sparse in both delay and Doppler. This motivates a two-stage suboptimal algorithm

which in the first stage identifies the dominant delay taps from a fast sparse channel

estimation and then the second stage estimates the delay-Doppler spread function
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on these identified delay locations using sparse algorithms.

5.5 Experimental Results

Both the Orthogonal Matching Pursuit (OMP) algorithm and the Sequential Least

Squares Matching Pursuit (SLSMP) algorithm are applied to the example channel

presented in Chapter 2. An averaging window of 800 samples was used for both

the OMP and the SLSMP algorithms and a total of 200 delay-Doppler components

were estimated. Figure 5-11 shows the signal prediction residual error obtained by

both algorithms, compared with the residual error obtained from channel impulse

response estimation using exponentially weighted RLS algorithm with A = 0.98. The

residual error of both the OMP and the SLSMP algorithms are lower than that of

the RLS algorithm by about 2dB.

Figure 5-12 shows snapshots of both the nonsparse estimate and sparse estimate

of the delay-Doppler spread function using SLSMP algorithm, respectively, both at

time t = 20.05747 seconds. It shows that the sparse estimate picks up the dominant

delay-Doppler components. It also picks up some slightly larger Doppler components

compared with the nonsparse estimate.

5.6 Concluding Remarks

Sparse channel estimation algorithms are developed in this chapter. Several existing

sparse estimation algorithms are reviewed and their sensitivity to channel variations

are investigated through a numerical example. Based on the Matching Pursuit al-

gorithm, a new Sequential Least Squares Matching Pursuit (SLSMP) algorithm is

developed and applied to estimate the channel delay-Doppler function. Experimental

results show a 2dB reduction in the signal prediction residual error compared with

the RLS channel impulse response estimation.
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Figure 5-11: Sparse Estimation of the Discrete Delay-Doppler Spread Function
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Figure 5-12: Nonsparse (the upper plot) and sparse (the lower plot) delay-Doppler

spread function estimate via the SLSMP algorithm
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Chapter 6

Summary and Future Work

6.1 Summary

In this thesis, channel estimation and tracking algorithms are developed for broad-

band shallow-water acoustic communications. The problem of estimating and track-

ing rapidly fluctuating channel that also has very sparse structure is approached from

two different paths.

First, a state-space channel model is derived based on the dynamics of moving

point scatterers for wideband transmission. Based on this model, two types of dy-

namic channel estimation algorithms are developed based on the Extended Kalman

Filter (EKF) and the Expectation Maximization (EM) approach, respectively. These

algorithms jointly estimate the channel impulse response and the the dynamic pa-

rameters of the channel fluctuations. Parameter identifiability associated with the

sparse channel structure is analyzed for both types of algorithms, which reveals that:

i) in the EKF algorithm the dynamic parameters associated with those quiescent

taps are unobservable and, if in addition the model is unstable, are undetectable; ii)

in the EM based algorithms the dynamic parameter estimation is not persistently

exciting if the channel is very sparse. In either case it will lead to unstable pa-

rameter estimation and eventually cause divergence, linearly in the EKF algorithm
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and exponentially in the EM based algorithms. Base on these analysis, separate pa-

rameter models are proposed for the EKF algorithm in which parameters associated

with quiescent tap are modeled as stable. The resulting algorithm can selectively

tracks the dominant taps while avoiding the instability associated with those quies-

cent taps. For EM based approach a subspace EM algorithm is proposed so that the

parameter is only updated recursively within the dominant subspace. Performance

gains of both algorithms are demonstrated via experimental results. Additionally,

the analysis has established several important conceptual parallels between the EKF

algorithm and the sequential suboptimal EM algorithm, such as the second-order

innovation representation.

The development in this first part effectively transforms the physical proper-

ties of the channel, i.e. large fluctuation dynamics and very sparse structures,

through modeling, into model theoretical concepts such as the parameter observ-

ability/detectability and the Extended Persistent Excitation conditions, which can

be directly used for tracking algorithm design and performance evaluation.

In the second part of the thesis, algorithms for explicit sparse estimation of the

channel delay-Doppler spread function are developed. Based on the Matching Pur-

suit algorithm, a Sequential Least Squares Matching Pursuit (SLSMP) algorithm is

proposed which successively find the best subspace to which the residual vector has

the shortest distance hence yields the minimum LS error, instead of the best vector

to which the residual vector has the maximum correlation. The algorithm is then ap-

plied to estimate the discrete delay-Doppler spread function. A suboptimal two-stage

algorithm is also proposed which identifies the dominant delays via sparse channel

impulse response estimation and then estimates the delay-Doppler components on

those identified delays. The performance gains of the sparse estimation algorithms

are demonstrated via experimental results.

The focus of the thesis study has been on how to reconcile the rapid channel

fluctuations and the sparse channel structures. The approaches described above
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provide not only algorithms having improved performance, but more importantly, a

framework that allows the physical channel constraints be incorporated effectively

in receiver algorithm development. The approaches developed here should also be

useful to other applications where similar conflicting constraints exists, such as in

array processing where it is typical to have large data dimension, a limited number

of actual targets and fast time-variations due to target maneuvering.

6.2 Future Work

The current development in the thesis opens up several interesting fronts for future

study.

1. More rigorous study of stochastic channel modeling.

The state-space channel model in Chapter 2 is derived based on deterministic

dynamic behavior of the point scatterers. The stochastic properties attached to

the model are rather ad hoc. As mentioned in Chapter 2, a natural continuation

would be to look at the stochastic and dynamic properties of the scattering

amplitude of the surface patches and combine them with the state-space model.

The existing theory and results of acoustic surface scattering would then be

directly helpful.

2. Explicit formulation of dynamic tracking with sparse constraints.

Considering the problem of dynamic tracking with sparse constraints, a natu-

ral extension of current work would be to explicitly modify the associated cost

function of the Kalman filter in both the EKF and the EM algorithms, in such

a way that explicit sparse constraints are included as penalty terms, similar to

the L1 norm constrained optimization. Although the amount of computation

involved in that development would be understandably intensive, it would pro-

vide a more coherent framework within which dynamic tracking capability and
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estimate sparseness can be analyzed and evaluated.

3 Efficient Implementations.

Modifications of the proposed algorithms are needed for real-time implementa-

tions. This can be achieved through several suboptimal modifications, such as

using two loosely coupled Kalman Filter instead of an EKF for joint parameter

and state estimation, and simplified LS implementations of the EM algorithm.

4. Detailed study of impact of various channel estimation methods on equalization

performance.

One important goal of channel estimation is to provide channel estimates for

subsequent equalization. The performance of various channel estimator, cur-

rently evaluated in terms of signal prediction residual error, would have im-

portant impact on the equalization performance which heavily relies on the

channel estimation error.

5. Extension towards channels in more hybrid environmental conditions.

So far the thesis has been limited to the broadband shallow-water short-range

channels of which the issues addressed in this thesis are the most dominant fea-

tures. In a sense these channels are extreme cases with mostly discrete arrivals.

In other environment conditions, such as deep-water long-range channels, the

multipath structure would consist of both discrete-arrivals (normal modes or

boundary reflected arrivals) and continuous arrivals (refracted arrivals). It

would be of practical importance to study how the approaches developed in this

thesis would perform under those conditions, and what modifications should

be made.
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Appendix A

EKF Channel Estimation

A.1 The Extended Kalman Filter Channel Esti-

mation Algorithm

Restate the augmented state-space model((3.2) in section 3.2):

{i+1 = 9, + ui (A.1a)

xi+1 = A(9i)xi + w, (A.1b)

yi = cixi + vi (A.1c)

We first assume that all elements of A are unknown and mathematically inde-

pendent. Thus 64 = ai A Vec(Ai). ai is an x 1 column vector formed by orderly

stacking all columns of the matrix Aj. Special cases where some elements of A are

known to be zero are discussed later.

The EKF procedure basically consists of i) state augmentation, ii) linearization

and iii) applying the Kalman filter to the linearized model [Jaz70, And79, Lju79]. In

the following we briefly state each step as applied to the model (3.2).

1 State Augmentation.
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Define the (M2 + M) x 1 augmented state zi as:

zA (at xt) (A.2)

based on which the augmented system model, in terms of zi, is given as follows:

fzi+1 = f(zi) + vi (A.3a)

yi = (0 Cj) zi + vi (A.3b)

where v (ux w)is(M2+M)x1, and

f(zi) A a (A.4)
Aixi

2. Linearization

The state equation in the system model (A.3) becomes nonlinear. Linearizing

f (zi) around iiji:

f(zi) ~ z Fizi + di (A.5)

where di A f(-ile) - Fisili, and

F - f'(ile f( (A.6)

It leads to the following approximating linear model:

fzi+1 ~ Fizi + di + vi (A.7a)

yi = [0 cjz i + vi (A.7b)

The observation equation is not affected by the linearization.

Using the Vec(.) property of the Kronecker product given in Appendix C, we
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could write

Aixi = Vec(Aix ) = (x' 0 IM)ai A Xiai (A.8)

where Xi A x 0 IM is M x M2.

Taking the derivation in (A.6), then Fi can be obtained explicitly as follows:

F- M2 OM2 XM(A9

LXipi Ailp

where Xi, A Iim 0 IA. Note (A.9) is obtained assuming Xip or equivalently

xig is independent of a,.

Substituting (A.9) back into (A.5), it becomes clear that the linearization es-

sentially carries out the following approximation:

Ai-il + Aigxi - Api- ~~ Aixi (A.10)

in which the second order estimation error term, Aiggl has been neglected.

Here A 1, A Ai - Ai, and Rilp A xi - xil.

3. Kalman Filtering on the Linearized Model

Applying the standard Kalman Filter to the model (A.7) is straightforward.

Expanded in terms of state and parameters estimation separately, both the

time-update and measurement update steps are summarized in Table A.1.

It is clear that the first term on the right hand side of (A.21), the time update

of state error covariance, consumes the major amount of computation and

the number of complex multiplications and additions involved are of 0(M5 ).

Hence without any structural constraints, the estimation of a general Ai will

be computationally very intensive and requires prohibitive amount of storage

space even for a moderate state dimension M.
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Measurement

Update:

Time

Update:

-i = yi - cixipa
Rea = i~apah + C72

Ai = igl-1 + ka,iei

xip= Rip _1 + knes,

Pa,ig = Pa,ipi - ka,iRe,iK,

Pxip = P _ Il-i - kxJRek/1

Pax,ig = Pax,ii-_ - ka,iRe,ik,

a2+i19 = sg

Ri+19i = pRili = pi

Pa,iig = Pa,ig + Qu,
Px,i+li = XiiPa,ilitXij + A Px,izpk

+XipiPax,izAi I A P2xtIg + Q,1
Pax,i+11i = Pa,ili X~ + Pax,ilit (

Table A.1: EKF algorithm for the joint estimation of state and state transition
matrix. P,,. and P,,. are the error covariance matrices of the state and parameter
estimates respectively, and P,,,. is their error cross-covariance matrix. Subscript %i+11i
corresponds to one-step prediction and -i refers to filtering. ka,i A Pax,iIiicMR-1

and k A pxg_1chR-1 are the Kalman gains for the parameter and state estimates,
respectively. The portion highlighted as red corresponds to the standard Kalman
filtering assuming known Ai.
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A.2 Special Cases: Diagonal and Tridiagonal State

Transition Matrix

We now consider two special cases: i) Ai is diagonal and ii) Ai is tridiagonal. In

both cases one could get the algorithm by repeating the procedure in last section

with the new parameterization. Alternatively, one could derive the same results

by specializing the EKF algorithm obtained in last section according to the new

parameterization, as presented in the following:

1. Diagonal A.:

Letting Ai be diagonal, we effectively assume that channel fluctuations are

not coupled across taps. As a result, there are only M unknown parameters.

Denote the diagonal elements as ad A , a2, . , adm = diag(A), then for

a = Vec(A) (for notational simplicity, we have temporally dropped the time

index),

t= (ad ad - d ._ . a0 ) (A.23)
M+1 M+1 M+1

The same applies to u. Denote Pad and Pad. as the error covariance of estimate

of ad and cross error covariance between estimates of ad and x, It then can be

verified that

XPaXh = Djag(x)PadDiag(x)h (A.24)

XPaxAh = Diag(x)PadDiag(ad)h (A.25)

S(PaX*) = Pad Diag(x)h (A.26)

S(PaxAh) = PadxDiag(a)h (A.27)

S(Paxch) = PdX Ch (A.28)

hold for both one-step prediction as well as filtering. Here the operator Diag(p)

is a diagonal matrix whose diagonal elements are given by the vector p; the
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operator S(G) squeezes out all the elements in G known to be zero. It also

follows that

S(a) = ad (A.29)

S(Ka) = Kad (A.30)

S(Pa) = Pad (A.31)

S(Pax) = Paad (A.32)

We now recover the time index i in the presentation.

Applying the operator S on both sides of (A.13), (A.15), (A.17), (A.18), (A.20)

and (A.22) and using(A.24)-(A.32), it follows that the algorithm corresponding

to a diagonal Ai would simply be the EKF algorithm in Table A. 1 with its

elements appearing on left hand side of (A.24)-(A.32) replaced by their right

hand counterparts.

The reduction in both computation and storage space is significant. With

diagonal Aj, the involved number of complex multiplications and additions are

of 0(M2).

2. Tridiagonal Aj:

The case of a tridiagonal Ai is similar to the diagonal case. However, by

including the first upper and first lower off-diagonal elements, the channel fluc-

tuations are allowed to be correlated with those of the immediate neighboring

taps.

Denote the main diagonal elements, the first upper diagonal elements and

the first lower diagonal elements of A as (the time index are dropped off

again temporally) ad A [a ,an]j, a- A , , ad]] and a- 
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[a--, a2, ... , am- 1 ]', respectively, then for a = Vec(A)

a dAaa +** d~a~~ i.....+ d +

M-2 M-2 M-2

(A.33)

The same holds for u.

Using the zero-squeezing operator S defined previously,

d - + d +- ]5(a) = [a a- a+ a2 a- - a _ aM_4 a- - a+ am]t A as (A.34)

Then similar to (A.24)-(A.32), we have

XPaXh - XPasXh (A.35)

XPA h = XPasAh (A.36)

S(PaX*) = Pas Xh (A.37)

S(PaxA h) = PasxAh (A.38)

S(Paxch) = PasxC h (A.39)

hold for both one-step prediction as well as filtering. Here

F 0 X 2 0

0 X 1 0 x2 0 x3  0

0 X2 0 X3 0

0

X4 0

XM_2 0 XM-1 0 XM 0

0 xM-1 0 xM

(A.40)
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and similarly

S(Ka) - Kas (A.41)

S(Pa) = Pas (A.42)

S(Pax) = Pasx (A.43)

Due to the sparse structure of X, (A.35)-(A.37) can be computed efficiently

and only involve 0(M 2 ) number of complex multiplications and additions.
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Appendix B

EM Channel Estimation

B. 1 Derivation of the smoothed state correlation

equations

The derivation of the autocorrelation R [0] directly follows from the orthogonality

principle. Since xi = R + i) here x(-l and x-'-, the smoothed state

estimate and error conditioned on Anh- 1 ) respectively, are orthogonal to each other,

it yields

R 1)[0] A E{x' 1 (xA))hjyn; -- ) }}

= (-1 2 -U (I-) + ( -1) (B. 1)

The lag-i cross-correlation R [1] can be derived using the so-called the law of

iterative projection: given two sets of observations Z1 C Z2 , the following equality

holds

E{X|Z1 } = E{E{XZ 2}IZI} (B.2)
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Applying (B.2) with X = xixt_ 1 , Z1 = Y,, and Z2 = {xi, Y}, it yields

R(- [11 A E{xixj_1 Yn; A(~-) } = E{E{xixf_ 1 xi, yJ; I- } y; X-1 } (B.3)

Since

E{xixU_1xi, y,; A--)} = xjE{x_ 1 xi,AY 1;A2~1)} = x [ +2j-1 +J (x - (-4)

(B.4)

where the gain factor associated with the state prediction error

(B.5)

is also the closed-loop state matrix for the smoothed estimator [KaiOO]. Substituting

(B.4) into (B.3), it yields

Rfyf)[1] =-Ex Jx (xi - X (-1 )] y; -1)}

= E{xx(J -) ) ~ - } + E{x i [i- _1 - J Ril ) j;1 A -n

-1) 1 1) h I 1)] ((-1)) h + - 1-) 1-J J - 1 1) )h

= -(1) {J(I-l) ( - _) + -(_)}h + p(11) (j(1))h

Using the fixed-interval state smoothing formula (B.16)

-x J (- 1-1 - x.) + -(1-

(B.6)

(B.7)

Substituting (B.7) into (B.6), it yields

R11)[1] = ~-1)(i_(-1))h + p( 1 )(j(1 l))h (B.8)
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B.2 Kalman smoothing formula

B.2.1 Fixed-point Kalman smoothing

The fixed-point smoothing formula follows directly from the innovation representa-

tion ([KaiOO]):

f an = an_1 + Psnc~hR&en (B.9a)

Pin =Piln- 1 - Pi,C (B.9b)

where n > i; en, Re, are the innovation and its variance at time n; the cross error

covariance Pi,n = E[k 1 2kin1 1 ] is given by

Pi,n = Pii_1 [F,,aF,,n-2 F - -Fi] h (B. 10a)

Fp,, = An[I - Pis-ici- (B.10b)

for n > i, and Pin = Pinn 1 for i = . A is the latest estimate of A; FPi

denotes the transition matrix of the one-step state prediction. The iteration index

is dropped in this appendix to simplify the notation, and is understood to be (I - 1)

unless otherwise specified.

Since PasAn = (Pal-- Pas-ic R-1c P _) A = Pjs_1F,, as defined in ap-

pendix B.1,

JS'i+1 A Pili A(Pi+11 Pjjj-1FhP7i- (B.11)

Combining (B.11) with (B.10a), and denoting T, A H- 1 j it is easy to show

that for i < n

Pin= (I) A T, T _ (B.12)

For i = n, one may let Tj,n = I. Substituting (B.12) into (B.9) yields the following
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recursions

hn =ln-1 + e-n (B.13a)

Piln Pin_1 - TP h R-1 ph Ti,n (B.13b)

which are the base for the new recursion form derived in section 4.3 and appendix

B.3.

Note there is another useful expression for J,. Right multiplying both sides of

the error covariance measurement update equation Pj iij = AjPjjjAn + Qj by Pj 1

yields

I -Q A Pj1 A P- 1  (B.14)

Assuming An invertible, it follows

_1 pilihp-l1i A - 1 [I1 (B. 15)
Js,i+1 A n j+ARG =n [1 - Qip +11] (.

B.2.2 Fixed-interval Kalman smoothing

Following [KaiOO], the fixed-interval smoothing formula is

( i-i 1 = J O~ ( in - R i ji_ 1) i_ 1g - 1i (B .1 6 a )

Pi-1n = Pi-i_1 + Js,i(Pin - Pig_1 J,, (B.16b)

In [Shu82] [Wei94], the fixed-interval smoothing formula was used to recursively

compute the smoothed state estimate and its error covariance, starting from XZnj and

Pnin backwards to '11n and Plin , after the Kalman filter has generated the filtered

state estimate and the 1-step prediction for i = 1, - - - , n. From that the smoothed

state correlations were computed and summed up to obtain the parameter estimate

according to (4.10), (B.8) and (4.8).
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B.3 Derivation of the new vector form recursions

The following identities are crucial to the derivation of the vector recursion form

[Gra8l]:

Vec(ABC)

(AB) ® (CD)

= (C ®A)Vec(B)

(A 0 C) (B 0 D)

Taking Vec on both sides of (4.14) and (4.15), and applying (B.17), it yields

Vec(Hl[n]) =AVec(Hi1[n - 1]) + Vec[iXin>_ 11 + PninJ ,n]

+ A [Qi,nVec(Mn) + T1 ,nN* + Li,nNn]

Vec(Ho[n]) =AVec(Ho[n - 1]) + Vec[iniS$nn- + Pn-iin]

+ A[ Qo,nVec(Mn) + TO,nN*, + Fo, Nn]

(B.19)

(B.20)

where Mn and N, are defined in section 4.3. Nn is a column vector so Vec(Nn)= Nn

and Vec(Nh) = N*. In addition for j = 0, 1,

n- T

Qjn A -- A'T*>,, ® Ti-l+j~ (B.21)
i=1
n-1

n-1

A" l-i i_ T + (B.22)

(B.23)
i=i

which can all be calculated recursively as shown below.
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First consider Q1,n,

n

f1,n+1 A Z1lTil,n+1 0 Ti,n+ 1

i=1

n-1

-,n+1 0 Tn,n+- - ,Tn+ 0 ,+ 1

i=1

sn s,n+1 s,n+ J A i-l,n s,n+l i,ns,ni=1

n-n

sn 0 s,n ,+ 1) A S - 1
-J ( 0T),n+ 0 ,+1

i=1

[@sn 0 1) + Ai,n] (is,n+1 s, ) (B.24)

where we used Tin+ = Ti,nJs,n+1 in the second equality and applied the property

(B.18) in the third equality. Now consider T1,n+1,

n

n-i

-i,n+10 Xnln - n ,n+

n-1

1 Js,n+ 0 n + - 0s(zn-1T )

i=1
n-

= (,n8n+1) 0 n SlnnJn1) n n)
i=1

n-1

snn E A~ s-- (+1 1, - ilsn+1

A A~~ T~nnJl)i 0 (il,n sn) 1
ii=i

n-n1

--A n-1- (T-1,n 0,n) sn+ Nn)
i=1

(sn0 nn i,n1.,n+Ansn+i 0 Nn) (B.25)
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The recursions for the remaining terms can be derived similarly. To summarize,

for j = 0,1

Qj,n+1 [Jsn & Lj,n + Afj,n] (J,, 1 0 Js,n+1) (B.26)

+1= [ 0* Lj,n + Aj,n] Js,n+1 + A~j,n(N* 0 J8 ,,+1) (B.27)

Tfy,n+1= [is*,n 0 Xn- 1+j + AT,,]Jsn+1 + Af0,n(Jsn+1 0 Nn) (B.28)

where Lo,n = Js,n and L1 ,n = I.

178



B.4 Proof of the stability of the new vector form

recursions

Grouping (B.26)-(B.28) yields the following state equations for Q,,,, Lj,n and Tj,,

(for j = 0, 1):

,1 G 0 0 1 G(+1 0 0 J 0 L,

AU1 8n 1 
jh0 LanJ + 8J,7+1 + 0 i_0 1 0 Lt

_,n+n n+1 s J2,n+ in 0- J_,n n

(B.29)

where L0 ,n2  J3,,, L1,72  I. And Gn+ 1 = J 0 =Lsn+ 0 s+1, Un+1  N Js,+ ,

V J=1 = J* Nn.

Equation (B.29) has a block lower tridiagonal transition matrix hence it is sta-

ble if and only if (iff) all the eigenvalues of AGn+1 and AJ,,n+1 are inside the unit

circle. Since the eigenvalues of Gn+1 are the set of all products between those of

J3*, and Js,n+1, (B.29) is stable iff all the eigenvalues of AJ,7 +1 are inside the unit
sn+1nlarinieteut

circle. For A = 1 this is equivalent to saying that the KF assuming A =An-1 is

stable (equivalently (An~-0, Q1/ 2) and (An-1 , c[n]) are completely stabilisable and

completely detectable, respectively). This follows from the fact that the KF state

estimates admit the following recursion [KaiOO]

(Pa-7 2nIn) =J, n-(P- 1 2 1 |7 _1 ) + Ce 1 Q- 1 y (B.30)

which is stable iff all the eigenvalues of Js,, are inside the unit circle.

Therefore, the complete stabilizability and complete detectability of the Kalman

filter assuming A = An-')is the sufficient condition (and also necessary if A = 1)

for the stability of the recursion (B.29).
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B.5 Some Proofs for Section 4.5

B.5.1 Derivation of (4.32)

Consider the matrix recursion (4.30) where Lj[n] and HO-j[n] are computed using

(4.25) with A2 = 0.Denote 6L[n] A Li[n] - An 1 Lo[n], then

6L[n] = E{xnx$_ 1 - AnxniX 1 Yn; An_1}
= E{(xn - AnXn n; 'n

= E{wnxn|Yn; An_1} (B.31)

where the last equality used the state equation xn = Ax-1 + wn_1

Using the law of iterative projection

E{wn_1 x_ iyn; A._ 1 } = E{E{w,_1x_ 1Ixn_1, Yn; An_ 1} Yn;

=E{E{w._1|xn_1, Yn; An-1 }x_ 1 Yn;

with A = An_1.

An- 1}

An_1} (B.32)

Conditioned on A = A_ 1, using the observation equation Yn = cnxn + vn and

the state equation, denoting zn A yn - CnAn_ 1xnI, it follows that zn = CnWn- 1 + Vn.

Consequently,

E{wn_ 1 xn1i, Y; An1} = (wn1, z)(zn, zn)~ 1zn = (CnQ + o)zn knZn

(B.33)

where kn = Q ~C(CnQ.Ch + or2
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Substituting (B.33) into (B.32) and (B.31) yields

6L[n] = E{w_1 xn_ iIYn; An-1}

E{k,(yn - CnAn_1xni)x_1|Yn; An}

-kn(ynK_1n - Cn n_ 1 Lo[n]) (B.34)

which gives (4.32).

The term inside the parenthesis can be expressed in terms of the first-order and

the second-order innovation terms. To show that, first note the following identities:

x, 1 | - 1 _ _chR-en (B.35)

Pn_1=n Pn_1-11 - p(B.36)

Ren = nAn_1pn_1In_1AnICn + (CnQ~,cn + 0') (B.37)

where (B.35) and (B.36) directly follow from the smoothing formula in Appendix

B.2.

Using (B.36) and (B.37) it can be shown that

CnAn_1Pn-1|n =(enQ~cn+(7v)R-CenAn_1Pn-lln-1

w1 s he noise cont (B.38)

where sn (CnQ n Vf contains the total noise contribution in the residual error.
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Now consider the term inside the parenthesis in (B.34),

yn'42_in - AnAnLo[] yn22_gn -- Cn n_ 1 n -1 + Pn-in)

= (Yn - C n n 1niin)2 n - Cn An_1P 11n

= (Yn - CnAn_1XnIn)inun - CnAn1Pn-1n_1$_c2R--en$_un

- s -RCnAn_1Pnu in_1

= (I --en An1Pni_ $_ic-R-)en2un - sReCnAnPnin_

snR;-1 (enx _n - CnAn_1P_ 11n_1)

= snR-1 (en_ un_ + s (R--ene* - 1)R-1CnAn-1Pn_ jn_1 (B.39)

where the third equality used (B.35) and (B.36), the fourth equality used en

yn - nAn1Xniin_1, the fifth equality used (B.37) and the last equality used (B.35).

Note that en = Yn - CnA nRnin_. (B.39) essentially consists of a first-order and

a second-order innovation terms. This will be used in section 4.5.1 to derive the

innovation form of the parameter recursion.

B.5.2 Derivation of (4.35)

Following (B.34),

6L[n] = kn(CnAxni1$X un + Zn- hi - CnAnLO[n])

kn(-enAnLO[] + CnA (xn un - Lo[n]) + ZnXtign) (B.40)

Substituting (B.40) into (4.30) gives

An =An_1 + [kn(-CnAni-Lo[n] + cnA(Xni12n_ 1n - Lo[n]) + ZnX2_ n)]H0
1 ffl]

(B.41)
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Since Lo[n] = Rn-1hni2_ , + Pn- 11n, (B.41) may be rewritten as

n= A 1 + [kn (-cnAkiLo[n] + CnA(Ri11 n_ 11_n - Pn_ 11n) + znK jn)]H [

(B.42)

It is clear that EfCnAin_1|nn} = 0. Now consider -CnAPn_ ln + zxn_ ln.

Since

Xn-1jn = Xn_1n_1 + Js,nPnin-iCn en

(en, Vn) = , (en, wn_1) = CnQ

it follows that

(Rn-ni, wn_1) = JsnPn_1C - en

(iRn-jn, Vn) = Js,nPnnIC h R-lo 102

Therefore,

EfZnxn_ 11}= Cn(wn_1, Xn_11 n) + (Vn, in_11n)

= (CnQWch + Ov) R-1CnA_

where Pin_11Jon = A_ 1 Pn_1 |_ has been used in the last equality.

Also recall

Pn_11n = P-_1|n_1 - Pn-_1 _A I n ~en~n1a1n1

Ren = CnPnniCh + or 2

= Cn (An_1pn_11_1An-_ + QI)cn + oa

= CnAn_1Pn_ 1Ancn + (cnQwcn + Ou)
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Hence

CnAPn- 1 n= -c nA 1Pn_1 In + CnAn- 1 [Pn_ 11n 1 - P-1n_1-en 1 P 1 1 ]

= -CnAn_ 1 P_1 In + -n c n1Pn_1j1 - CnAn_1Pn_1jn1 n I n-en _

= -CnAnPn_ 1 n + CnAn_ 1 Pn-1|n_ 1

- [Ren - (CnQwch+ 0,)]R-+CnAn_1P

= -cn n 1Pn_ 1|n + E{znxn_11 n} (B.47)

Denoting n z _ - E _} + cAk 1nX n j_, which is a zero-mean

fluctuation component, consequently

CnA (Rn_1xn-_1jn - Pn 11n) + Zxn_1n = CnAn_ 1 P 1n-in + gn (B.48)

Substituting (B.48) into (B.42) gives

A= An- 1 + [kn (-CnAn_ 1 Lo[n] + Cn A_ 1Pn-11n + 9n)] t1[n]

An- 1 + [kn (- nun_1 jn1_n + (B.49)

Subtracting both sides of (B.49) by the true parameter A yields

n =An 1 - knenAn_1n_1 Rh H_ 1 [n] + Fn (B.50)

where Fn A kn~nn [n]. Denoting dn = VecAn and ya = VecL', then taking Vec

on both sides of (B.50) and using the identity Vec(ABC) = (C' 0 A)VecB, it
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follows

n= [I - ( l nnIn-1[n])t & (knen)] dn 1 + -yn (B.51a)

{I - [(I|in_ g| 2 h-t[h]) 1 (QwC + a)-)] (bb)} 1 + y

(B.51b)

A [I -S + yr (B.51c)

where S. A [(I|i,_ inI2fi-t[n]) 1 (Q 2c W(cQch + uf)1)] and

/ith

bi a=N ~ui vtano (B.52)

is a N 2 x I unit vector along the direction of Rtng - 0Cn.
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B.6 |fln+n-l(I -- Sibibf)

According to section 4.5, the maximum singular value of the sequential matrix prod-

uct M+" 1 (I - Sibib') is crucial to the stability of the parameter estimate error

equation (4.35c). This section consider the properties of this important product.

First analysis is carried out for several special cases. Then numerical investigation

is implemented for the general case which leads to a conjecture concerning the de-

pendency of the singular values of ln+m'l (I - Sibibh) on the eigen-structure of the

matrices Si and the excitation properties of the sequence bi.

According to Appendix B.5, in particular (B.51c) and (B.52),

Sn - [(||n_ gn|| 2 fi-tn) ( 2( h + 2))] (B.53)

b. =0 - ( C" (B.54)

from which several observations are immediate:

1. Si is nonnegative Hermitian. This is because both Ho[n] and Qw are nonneg-

ative Hermitian;

2. All eigenvalues of Si are less than 1. This is follows from the property 7 of the

Kronecker product (eigenvalue decomposition of a Kronecker product) together

with that all the eigenvalues of |IInn mn|1 2 H [n] are less than 1(assuming that

Ho'[n] is invertible), and the same is for Qw||Cn||2(CnQwCh + or)' ;

3. bn have unit norm.

It can also be shown that the matrix (I - Sibib h) only has one nonzero eigenvalue

and this nonzero eigenvalue has absolute value less than 1. However, the eigenvalue

distribution of (I - Sibib ) is not relevant to the stability analysis of interest here.

Instead, it is the singular values of the sequential product directly matter in this

case. A reasonable assumption, to simplify the problem, is that Si changes slower
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than bi does. This is in general true in communications where the transmitted

symbols change faster than the channel does.

Hence replace Si by a constant S with all the previously mentioned properties.

Consider H"i'-(I - Sbb'). It can be converted into a more accessible format

using the following eigenvalue decomposition of S:

S=UAUh (B.55)

where U is orthonormal and A is diagonal. Since orthonormal transformation does

not change singular values, it follows

11117"1 (I - Sbib ) 11=IUh [Hn+n-1 (I - Sbibf)]U|

=in+m-lUh (I - Sbib h)U1|

= ||Hn2"-1(I- UhSUUhbib U)UhI

= If"1(I - Adidi) | (B.56)

where di j Uhbi still has unit norm, and A is diagonal matrix containing eigenvalues

of S.

(B.56) reveals, explicitly, the dependency of the maximum singular value of the

sequential matrix product on the eigenvalues of S and the sequence bi.

Consider the following special cases first:

1. A = aI, i.e. S has equal eigenvalues.

As mentioned before, 0 < a < 1. In this case, since I - adid is Hermitian,

its singular values are squares of its eigenvalues. On the other hand, I - adid

has one eigenvalue less than one, all others equal to one. Then it can shown

that if the sequence di is persistently exciting, 111+-1 (I - adid4) < 1.

2. The sequence bi are orthogonal, for i =,- , n + N2 _ 1.
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So are the sequence di. Denoting D [dn,-- , dn+N2_1], D is orthonormal.

Then it follows that

n+N2 -1

||11+N2_(- Adidh)II - A 1 did Ij

III - ADD I

III - D hAD||

-I - All < 1 (B.57)

Strict inequality holds if S is not singular.

The above two cases both lead to stability of the parameter estimation using the

suboptimal EM algorithm.

For the general case, however, the proof is more difficult. In fact, the problem is

essentially in the same form as that of establishing the stability of RLS parameter

identification in linear regression models see, for instance, [Hay96] [Cam94] [Guo95a],

where Si is usually the (weighted) averaging of bib . The typical approaches there

has been i) to invoke the so-called direct averaging method [Hay96] which replaces

both Si and bib h by their expectations; or ii) to show that the error propagation

is well approximated by its expectation version for which the stability would hold

when the regressor satisfies certain conditions such as 0- mixing [Cam94][Guo95a].

Effectively the direct averaging method approximates Sibib' with PI for some 0 <

ft < 1. Yet that approximation is not accurate in general since III - SibibhII may be

greater than or equal to 1 while |I - pI is always less than 1 for 0 < f < 1.

In the following a numerical investigation is implemented, leaving rigorous proof

for possible future work. The goal is to gain some insights on which factors have

dominant influence on I|llZn-1 (I - Sibib ) 11. That Si is slowly varying compared

with bi is still assumed, thus Si = S.

The experiment generates H+n-1 (I - Sbibh) for some constant S with different
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eigenvalue distribution and a sequence of random unit vectors bi, and then computes

the distribution of its singular values. The main discovery is the following Conjecture:

Conjecture 2 Suppose S is nonnegative Hermitian with eigenvalues less than or

equal to 1, and bi are a sequence of randomly generated unit vectors, then dependent

on the eigen-spread of the matrix S, the matrix if"n- (I - Sbib'), denoted by Am,

converges either to a zero matrix (for moderate eige-spread) or to a rank one matrix

with singular value greater than or equal to 1 (for large eigen-spread). Here the

eigen-spread of S is the ratio between its maximum and minimum eigenvalues. In

addition, ||S11 controls the rate of that convergence: the closer is it to 1, the faster is

the convergence.

Figure B-1 and B-2 show the 2-dimensional case where the singular values of

Am = I7+M-" (I - Sbbf) can be visualized by plotting IIAmxI for all unit vectors

x. Figure B-1 depicts the case where S has a moderate eigen-spread equal to 10.

The four plots corresponding to m = 1, 2, 10, 60 respectively. It clearly shows that

while A1 has a dominant singular value larger than 1, Am gradually converges to a

zero matrix. Figure B-2 shows that case where S has a large eigen-spread equal to

104 . As it shows, Am converges to a rank-one matrix with singular value larger than

1.

For higher dimensional case, N = 5, Figure B-3 and B-4 have plotted the distri-

bution of the singular values of Am for several values of m, as well as the distribution

of its eigenvalues. In each figure, the small plots on the right column is the enlarged

display of the dominant singular value or eigenvalue. Figure B-3 shows the results

with moderate eige-spread (10) in S where all the singular values, including the dom-

inant one, converge toward 0. while Figure B-4 correspond to the case with large

eigen-spread (104) in S where it shows that all singular values, except the dominant

one, converge to 0. The dominant singular value stays larger than 1. In all cases,

however, the eigenvalues are less than or equal to 1.
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Appendix C

The Kronecker Product

Kronecker product and its properties have been extensively used in this thesis, es-

pecially in Chapters 3 and 4 where matrix calculus and equations are involved in

derivations. Some of the materials present here were taken from [Gra8l] but can also

be found in many matrix analysis books. We also prove some new properties in this

appendix.

C.1 The Vec(-) Operator

Definition 1 Vec(M) is a vector valued function of matrix M obtained as an or-

dered stock of columns of M. i.e. if M is k x 1,

Vec(M) =

M.,2

(C.1)

where M.,j is the jth column of M , for j = 1,.. ,l.

From the definition it follows that Vec(a) = a for any column vector a.
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C.2 The Kronecker Product and Its Properties

Definition 2 The kronecker product between matrices A (k

denoted by A 0 B, is a kp x lq matrix given as follows:

AOB=

aj,1B ai,2 B

a2 ,iB a2 ,2 B

ak,lB ak,2 B

... ak,lB

... a2,1B

'. a , B

x 1) and B (p x q),

(C.2)

where ak,1 is the element of A on the kth row and lth column.

The following properties and rules of the Kronecker product hold (c.f. [Gra8l]):

1. Scalar multiplication: A 0 (aB) =aA 0 B for scalar a;

2. Distributivity: (A +B) 0 C =A OC+B 0 C; A (B + C) = A 0B+ A 0 C.

Associativity: A 0 (B 0 C) (A 0 B) 0 C;

3. Hermitian: (A 0 B)h = Ah 0 Bh;

4. Product of two Kronecker products: (A 0 B) (C 0 D) = (AC) 0 (BD);

5. Inverse: (A 0 B)' = A-' 0 B- 1 assume both A and B invertible;

6. Vec of matrix products: Vec(ABC) = (C' 0 A)Vec(B);

7. Eigenvalue decomposition: The (eigenvalue, eigenvector) pairs of A 0 B are

(Aqi 2 , ui 0 vj). Here (Ai, uj) and (pj, vj) are the (eigenvalue, eigenvector)

pairs of A and respectively;

8. Determinant: det(A 0 B) = (det(A)) m (det(B)) for n x n A and m x m B;

9. The trace: tr(A 0 B) = tr(A)tr(B).

The following properties can be proved directly from the definition or the above

rules.
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1. Kronecker product of column and row vectors:

a® b'= b' 0 a

directly follows from the definition.

2. Kronecker product of vectors and a matrix:

a' ® (c'B) = c'(at 0 B)

(ctB) &a= (c' t a)B

where a, c and B are n x 1, k x 1 and n x m respectively. Proof:

c'(at 9 B) = c'(a1B a2B ...

= (aic'B a2c'B ...

= at 9 (ctB)

(Ct ® a)B = (cia c2 a ... cka

aictB

a2ctB

anctB

anB)

anctB)

(C.6)

=a 0 (ct B)

=(c'B) o a

where the last equality uses (C.3).
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3. Kronecker product of matrices and a vector:

a t 0 (CB) = C(at 0 B) (C.8)

(CB) ® a = (C 0 a)B (C.9)

where a, B and C are n x 1, k x m and 1 x k respectively.

Proof: Directly follow from (C.4) and (C.5) respectively.

3. Vec of vector outer-product: Vec(abt) = b 0 a which directly follows from

the definitions of Vec and the Kronecker product.

196



Bibliography

[And79] Anderson, B. D. 0. and Moore, J. B. Optimal Filtering. Prentice-Hall,
1979.

[Aok67] Aoki, M. Optimization of Stochastic Systems. Academic Press, 1967.

[Ast95] Astrom, K. J. and Wittenmark, B. Adaptive Control. Addison-Wesley,
2nd edition, 1995.

[Bag8l] Baggeroer, A. B. A Survey of Acoustic Telemetry. Proceedings of Oceans,
pages 48-55, 1981.

[Bag84] Baggeroer, A. B. Acoustic Telemetry, An Overview. IEEE Journal of
Oceanic Engineering, OE-9(4):229-235, Oct. 1984.

[Bec63] Beckmann, P. and Spizzichino, A. The scattering of electromagnetic waves
from rough surfaces. Pergamon Press , Oxford, 1963.

[Bel63] Bello, P.A. Characterization of Randomly Time-Variant Linear Channels.
IEEE Trans. Communications Systems, CS-11(4):360-393, Dec 1963. Clas-
sical on LTV channel.

[Bel69] Bello, P. Measurement of random time-variant linear channels. Informa-
tion Theory, IEEE Transactions on, 15(4):469-475, 1969.

[Bel74] Belanger, Pierre R. Estimation of noise covariance matrices for a linear
time-varying stochastic process. Automatica, 10(3):267-275, May 1974.

[Ben87] Benveniste, A. Design of Adaptive Algorithms for the Tracking of Time-
Varying Systems. International Journal of Adaptive Control and Signal
Processing, 1:3-29, 1987.

[Bit84] Bitmead, R. R. Persistence of Excitation Conditions and the Convergence
of Adaptive Schemes. IEEE Trans. Information Theory, IT-30(2):183-191,
March 1984.

197



[Bit90] Bittanti, S. and Bolzern, P. and Campi, M. Recursive Least-Square Iden-
tification Algorithms with Incomplete Excitation: Convergence Analysis
and Application to Adaptive Control. IEEE Trans. Automatic Control,
35(12):1371-1373, Dec 1990.

[Bra83] Brandwood, D. H. A complex gradient operator and its application in
adaptive array theory. IEE Proceedings, 130, Parts F and H(1):11-16, Feb
1983.

[Brel] Brekhovskikh, L. M. and Lysanov, Y. P. Fundamentals of Ocean Acous-
tics. Springer-Verlag , New York, 2nd edition, 1991 .

[Bro74) Brown, M. V. and Frisk, G. V. Frequency smearing of sound forward-
scattering from the ocean surface. Journal of the American Statistical
Association, 55:744-749, 1974.

[Bro97] Broschat, S. L. and Thorsos, E. I. An investigation of the small slope ap-

proximation for scattering from rough surfaces. Part II. Numerical studies
. Journal of the American Statistical Association, 101( 5 ), 1997.

[Bun8l] Bunn, Derek W. Recursive estimation of the observation and process noise

covariances in online Kalman filtering. European Journal of Operational

Research, 6(3):302-308, March 1981.

[Cam94] Campi, M. Performance of RLS Identification Algorithms with Forget-
ting Factor: A <D-Mixing Approach. Journal of Mathematical Systems,
Estimation, and Control, 4(3):1-25, 1994.

[Cao00] Cao, L. and Schwartz, H. M. A directional forgetting algorithm based on
the decomposition of the information matrix. Automatica, 36:1725-1731,
2000.

[Cet05] Cetin, M. and Sadler, B. Semi-blind sparse channel estimation with con-
stant modulus symbols. In ICASSP, volume III, pages 561-564, March
2005.

[Che89] Cheng, Yung-Fu and Etter, D.M. Analysis of an adaptive technique for
modeling sparse systems. Acoustics, Speech, and Signal Processing, IEEE
Transactions on, 37(2):254-264, 1989.

[Che0l] Chen, Scott Shaobing and Donoho, David L. Atomic Decomposition by
Basis Pursuit. SIAM Review, 43(1):129-150, 2001.

[Cot00] Cotter, S.F. and Rao, B.D. The adaptive matching pursuit algorithm for
estimation and equalization of sparse time-varying channels. In Signals,
Systems and Computers, 2000. Conference Record of the Thirty-Fourth
Asilomar Conference on, volume 2, pages 1772-1776 vol.2, 2000.

198



[Cot0l] Cotter, S. F. Subset Selection Algorithms with Applications. PhD thesis,
University of California, San Diego, 2001.

[Cot02] Cotter, S.F. and Rao, B.D. Sparse channel estimation via matching pursuit
with application to equalization. Communications, IEEE Transactions on,
50(3):374-377, 2002.

[Dah96] Dahl, P. H. On the spatial coherence and angular spreading of sound
forward scattered from the sea surface: Measurements and interpretive
model. J. Acoust. Soc. Am. , 100( 2 ), 1996.

[Dah99] Dahl, P. H. On bistatic sea surface scattering: Field measurements and
modeling. Journal of the American Statistical Association, 105( 4 ), 1999.

[Dah0l] Dahl, P. H. High-Frequency Forward Scattering from the Sea Surface:
The Characteristic Scales of Time and Angle Spreading. IEEE Journal of
Oceanic Engineering, 26( 1 ), Jan 2001.

[Dem77] Dempster, A. P. and Laird, N. M. and Rubin, D. B. Maximum Likeli-
hood from Imcomplete Data via the EM algorithm. Journal of the Royal
Statistical Society, 39, series B (Methodological) (1): 1-38, 1977.

[DonO3] Donoho, D. L. and Elad, M. Optimally sparse representation in general

(nonorthogonal) dictionaries via Li minimization. Proc. Nat. Acad. Sci.,
100(5):2197-2202, Mar. 2003.

[Eck53] Eckart, C. The Scattering of Sound from the Sea Surface . Journal of the
American Statistical Association, 25:566-570, 1953.

[Egg97] Eggen, T. Underwater acoustic communication over Doppler spread chan-
nels. PhD thesis, Massachusetts Institute of Technology, 1997.

[Egg00] Eggen, T. H. and Baggeroer, A. B. and Preisig, J. C. Communication
Over Doppler Spread Channels, Part I: Channel and Receiver Presentation.
IEEE Journal of Oceanic Engineering, 25(1):62-72, Jan 2000.

[Egg0l] Eggen, T. H. and Preisig, J. C. and Baggeroer, A. B. Communication
Over Doppler Spread Channels, II:Receiver Characterization and Practical
Results. IEEE Journal of Oceanic Engineering, 26(4):612-622, Oct. 2001.

[Ele86] Eleftheriou, E. and Falconer, D. D. Tracking Properties and Steady-State
Performance of RLS Adaptive Filter Algorithms. IEEE, Trans. ASSP,
ASSP-34(5):1097-1110, Oct 1986.

[E1199] Elliott, R. J. and Krishnamurthy, V. New Finite-Dimensional Filters for
Parameter Estimation of Discrete-Time Linear Gaussian Models. IEEE
Trans. Automatic Control, 44(5):938-951, May 1999.

199



[E1102] Elliott, R. J. and Ford, J. J. and Moore, J. B. On-line almost-sure pa-
rameter estimation for partially observed discrete-time linear systems with

known noise characteristics. International Journal of Adaptive Control and

Signal Processing, 16:435-453, 2002.

[For70] Fortuin, L. Survey of literature on Reflection and scattering of sound waves
at the sea surface. Journal of the American Statistical Association, 47( 5
):1209-1228, October 1970.

[Fuc00] Fuchs, J. J. and Delyon, B. Minimal Li-norm reconstruction function for
oversampledsignals: applications to time-delay estimation. IEEE Trans.

Information Theory, 46(4):1666-1673, Jul 2000.

[Gao03] Gao, W. and Tsai, S. and Lehnert, S. Diversity Combining for DS/SS
Systems With Time-Varying, Correlated Fading Branches. IEEE Trans-
actions on Communications, 51(2):284-295, Feb 2003.

[Gra8l] Graham, A. Kronecker Products and Matrix Calculus: With Applications
. Wiley, 1981.

[Guo95a] Guo, L. and Ljung, L. Exponential Stability of General Tracking Algo-
rithms. IEEE Trans. Automatic Control, 40(8):1376-1387, August 1995.

[Guo95bl Guo, L. and Ljung, L. Performance Analysis of General Tracking Algo-

rithms. IEEE Trans. Automatic Control, 40(8):1388-1402, August 1995.

[Hag85] Hagglund, T. Recursive estimation of slowly time-varying parameters. In
Proceedings of the seventh IFAC symposium on identification and system

parameter estimation, pages 1137-1142, 1985.

[Har97] Harville, David. Matrix Algebra from a Statistician's Perspective. Springer,
1997.

[Hay96] Haykin, S. Adaptive Filter Theory. Prentice Hall, 3rd edition, 1996.

[Ilt90] Iltis, R.A. Joint estimation of PN code delay and multipath using

the extended Kalman filter. Communications, IEEE Transactions on,
38(10):1677-1685, 1990.

[Ilt91] Iltis, R.A. and Fuxjaeger, A.W. A digital DS spread-spectrum receiver
with joint channel and Doppler shift estimation. Communications, IEEE

Transactions on, 39(8):1255-1267, 1991.

[Ilt94] Iltis, R.A. An EKF-based joint estimator for interference, multipath,
and codedelay in a DS spread-spectrum receiver. Communications, IEEE
Transactions on, 42(234):1288-1299, 1994.

200



[Ilt0l] Iltis, R.A. A DS-CDMA tracking mode receiver with joint channel/delay
estimation and MMSE detection. Communications, IEEE Transactions
on, 49(10):1770-1779, 2001.

[Jaz70] Jazwinski, A. H. Stochastic Processes and Filtering Theory. Academic
Press, 1970.

[Jon89] Jong, P. d. Smoothing and Interpolation with the State-Space Model.
Journal of the American Statistical Association, 84(408):1085-1088, Dec
1989.

[Jor99] Jorgensen, M. A dynamic EM algorithm for estimating mixture propor-
tions. Statistics and Computing, 9:299-302, 1999.

[Kai59] Kailath, T. Sampling Models For Linear Time-Variant Filters. Technical
report, MIT Research Lab, 1959.

[KaiOO] Kailath, T. and Sayed, A. H. and Hassibi, B. Linear Estimation, chapter
A.6, pages 740-742. Prentice Hall, 2000.

[Kar04] Karabulut, G.Z. and Yongacoglu, A. Sparse channel estimation using or-
thogonal matching pursuit algorithm. In Vehicular Technology Conference,
2004. VTC2004-Fall. 2004 IEEE 60th, volume 6, pages 3880-3884 Vol. 6,
2004.

[Kay03] Kay, S. M. and Doyle, S. B. Rapid Estimation of the Range-Doppler
Scattering Function. IEEE Trans. Signal Processing, 51(1):255-268, Jan
2003.

[Ken68] Kennedy, R. S. Fading Dispersive Communication Channels. Wiley, 1968.

[KilOG] Kilfoyle, D.B. and Baggeroer, A.B. The state of the art in underwater
acoustic telemetry. Oceanic Engineering, IEEE Journal of, 25(1):4-27,
2000.

[Koc95] Kocic, M. and Brady, D. and Stojanovic, M. Sparse equalization for
real-time digital underwater acousticcommunications. In OCEANS '95.
MTS/IEEE. 'Challenges of Our Changing Global Environment'. Confer-
ence Proceedings., volume 3, pages 1417-1422 vol.3, 1995.

[Kul87] Kulhavy, R. . Restricted exponential forgetting in real-time identification.
Auomatica, 23:589-600, 1987.

[Kus78] Kushner, H. J. and Clark, D. S. Stochastic approximation methods for
constrained and unconstrained systems. New York: Springer-Verlag, 1978.

201



[Lak03] Lakhzouri,A. and lohan, E. S. and Hamila, R. and Renfors, M. Extended
Kalman Filter Channel Estimation for Line-of-Sight Detection inWCDMA
Mobile Positioning. EURASIP Journal on Applied Signal Processing,
13:1268-1278, 2003.

[Li,05] Li, W. and Preisig, J. Identification of rapidly time-varying wideband
acoustic communication channels. J. Acoust. Soc. Am., 118(3):2014-2014,
September 2005.

[Lju79] Ljung, L. Asympototic Behavior of the Extended Kalman Filter as a
Parameter Estimator for Linear Systems. IEEE Trans. Automatic Control,
AC-24(1):36-50, Feb 1979.

[Lju90] Ljung, L. and Gunnarsson, S. Adaptation and tracking in system
identification-A survey. Automatica, 26(1):7-21, Jan 1990.

[Mac86] Macchi, 0. Optimization of adaptive identification for time-varying filters.
Automatic Control, IEEE Transactions on, 31(3):283-287, 1986.

[Mal93] Mallat, S.G. and Zhang, Zhifeng. Matching pursuits with time-frequency
dictionaries. Signal Processing, IEEE Transactions on, 41(12):3397-3415,
1993.

[Mal03] Malioutov, D. A Sparse Signal Reconstruction Perspective for Source Lo-
calization with Sensor Arrays. Master's thesis, Massachusetts Institute of
Technology, 2003.

[McD75] McDonald, J. and Tuteur, F. B. Calculation of the range-Doppler plot
for a doubly spread surface-scatter channel at high Ratleigh parameters .
Journal of the American Statistical Association, 57( 5 ):1025 -1029, May
1975.

[Mcl97] Mclanchlan, G. J. and Krishnan, T. The EM Algorithm and Extensions.
Wiley, 1997.

[Med70] Medwin, H. and Clay, C. S. Dependence of spatial and temporal corre-
lation of forward- scattered underwater sound on the surface statistics. II.
Experiment. Journal of the American Statistical Association, 47( 5(part
2) ):1419-1429, 1970.

[Meh70] Mehra, R. On the identification of variances and adaptive Kalman filtering.
Automatic Control, IEEE Transactions on, 15(2):175-184, 1970.

[Meh72] Mehra, R. Approaches to adaptive filtering. Automatic Control, IEEE
Transactions on, 17(5):693-698, 1972.

202



[Mil03] Miles, D. A. and Hewitt, R. N. and Donnelly, M. K. and Clarke, T. For-
ward scattering of pulses from a rough sea surface by Fourier synthesis of
parabolic equation solutions. Journal of the American Statistical Associa-
tion, 114(3):1266-1280, 2003.

[Nie9l] Niedzwiecki, M. and Guo, L. Nonasymptotic Results for Finite-Memory
WLS Filters. IEEE Trans. Automatic Control, 36(2):198-206, Feb 1991.

[Ogil Ogilvy, J. A. Theory of waves scattering from random rough surfaces.
Institute of Physics Publishing , Bristol and Philadelphia , 1991 .

[Oze02 Ozen, S. and Hillery, W. and Zoltowski, M. and Nereyanuru, S.M. and Fi-
moff, M. Structured channel estimation based decision feedback equalizers
for sparse multipath channels with applications to digital TV receivers. In
Signals, Systems and Computers, 2002. Conference Record of the Thirty-
Sixth Asilomar Conference on, volume 1, pages 558-564 vol.1, 2002.

[Par9O] Parkum, J. E. and Poulsen, N. K. and Holst, J. Selective Forgetting In
Adaptive Procedures. In Proceedings of the 11th Triennial World Congress
of the IFA C, number 2 in 1, pages 137-142, 1990.

[Par92] Parkum, J. E. and Poulsen, N. K. and Holst, J. Recursive Forgetting
Algorithms. Int. J. Control, 55(1):109-128, 1992.

[Pre04] Preisig, J. C. and Deane, G. B. Surface wave focusing and acoustic com-
munications in the surf zone. Journal of Acoustical Society of America,
116(3):2067-2080, Sept 2004.

[Pre05] Preisig, James C. Performance analysis of adaptive equalization for coher-
ent acoustic communications in the time-varying ocean environment. J.
Acoust. Soc. Am., 118(1):263-278, July 2005.

[Pri58] Price, R. and Green, P. E. A Communication technique for multipath
channels. Proc. IRE , 46, 1958.

[ProOla] J. G. Proakis. Digital Communications. McGraw-Hill, 4 edition, 2001.

[ProOlb] Proakis, J.G. and Sozer, E.M. and Rice, J.A. and Stojanovic, M. Shallow
water acoustic networks. Communications Magazine, IEEE, 39(11):114-
119, 2001.

[Ron05] Rontogiannis, A.A. and Berberidis, K. Bandwidth efficient transmis-
sion through sparse channels using a parametric channel-estimation-based
DFE [decision-feedback equaliser]. Communications, IEE Proceedings-,
152(2):251-256, 2005.

203



[Ros99] Rosenberg, A. P. A new rough surface parabolic equation program for com-
puting low-frequency acoustic forward scattering from the ocean surface.
Journal of the American Statistical Association, 105(1):144-153, 1999.

[Say03] Sayed, Ali H. Fundamentals of Adaptive Filtering, chapter 2.B, pages 105-
107. John Wiley & Sons, 2003.

[Set86] Sethares, W. A. and Lawrence, D. A. and Johnson, C. R. and Bitmead,
R. R. Parameter Drift in LMS Adaptive Filters. IEEE Trans. Acoustics,
Speech, and Signal Processing, ASSP-34(4):868-879, August 1986.

[Set88] Sethares, W. A. and Mareels, I. M. Y. and Anderson, B. 0. and Johnson, C.
R. and Bitmead, R. R. . Excitation Conditions for Signed Regressor Least
Mean Squares Adaptation. IEEE Trans. Circuits and Systems, 35(6):613-
624, June 1988.

[Shu82] Shumway, R. H. and Stoffer, D. S. An Approach to Time Series Smooth-
ing and Forecasting Using the EM Algorithm . Journal of Time Series
Analysis, 3(4):253-264, 1982.

[Shu91] Shukla, P.K. and Turner, L.F. Channel-estimation-based adaptive DFE
for fading multipath radio channels. Communications, Speech and Vision,
IEE Proceedings I, 138(6):525-543, Dec 1991.

[Spi72] Spindel, R. C. and Schultheiss, P. M. Acoustic Surface-Reflection Channel
Characterization through Impulse Response Measurements . Journal of the
American Statistical Association, 51( 6 ):1812-1824, 1972.

[Sto95] Stojanovic, M. and Proakis, J.G. and Catipovic, J.A. Analysis of the im-
pact of channel estimation errors on the performance of a decision-feedback
equalizer in fading multipath channels. Communications, IEEE Transac-
tions on, 43(234):877-886, 1995.

[Sto96] Stojanovic, M. Recent advances in high-speed underwater acoustic com-
munications. Oceanic Engineering, IEEE Journal of, 21(2):125-136, 1996.

[Sto99] Stojanovic, M. and Freitag, L. and Johnson, M. Channel-estimation-
based adaptive equalization of underwateracoustic signals. In OCEANS
'99 MTS/IEEE. Riding the Crest into the 21st Century, volume 2, pages
985-990 vol.2, 1999.

[Stoed] Stojanovic, M. Efficient acoustic signal processing based on channel es-
timation for high rate underwater information. Journal of the American
Statistical Association, submitted.

204



[Tho88] Thorsos, E. I. The validity of the Kirchhoff approximation for the rough

surface scattering using a Gaussian roughness spectrum . Journal of the

American Statistical Association, 83( 1 ):78-92, January 1988.

[Tho89] Thorsos, E. I. The validity if the perturbation approximation for the

rough surface scattering using a Gaussian roughness spectrum . Journal

of the American Statistical Association, 86( 1 ):261-277, July 1989.

[Tho95] Thorsos, E. I. and Broschat, S. L. An investigation of the small slope

approximation for scattering from rough surfaces. Part I. Theory. Journal

of the American Statistical Association, 97( 4 ), 1995.

[Tit84] Titterington, D. M. Recursive Parameter Estimation Using Incomplete

Data. Journal of the Royal Statistical Society, 46:257-267, 1984.

[Tro04] Tropp, J.A. Greed is good: algorithmic results for sparse approximation.
Information Theory, IEEE Transactions on, 50(10):2231-2242, 2004.

[Tsa05] Tsai, S. and Lehnert, J. S. and Bell, M. R. Convergence of a ML Parameter-
Estimation Algorithm for DS/SS Systems in Time-Varying Channels With

Strong Interference. IEEE Transactions on Communications, 53(1):142-

151, Jan 2005.

[Van7l] Van Trees, H. L. Detection, Eestimation and Modulation Theory, Part

III. New York: Wiley, 1971.

[Ven7l] Venetsanopoulos, A. N. and Tuteur, F. B. Stochastic Filter Modeling for
the Sea-Surface Scattering Channel. Journal of the American Statistical

Association, 49( 4 ):1100-1107, 1971.

[Vor9] Voronovich, A. G. Wave scattering from rough surfaces. Springer-Verlag

, New York, 2nd, Updated Edition edition, 1999 .

[Wei94] Weinstein, E. and Oppenheim, A. V. and Feder, M. and Buck, J. Iterative
and Sequential Algorithms for Multisensor Signal Enhancement. IEEE
Trans. Signal Processing, 42(4):846-859, Apr 1994.

[Yip90] Yip, P.C.-W. and Etter, D.M. An adaptive multiple echo canceller
for slowly time-varying echo. Communications, IEEE Transactions on,
38(10):1693-1698, 1990.

[Zio82a] Ziomek, L. J. Genralized Kirchhoff approach to the ocean surface-scatter
communication channel. Part I. Transfer function of the ocean surface .
Journal of the American Statistical Association, 71( 1 ):116-126, January
1982.

205



[Zio82b] Ziomek, L. J. Genralized Kirchhoff approach to the ocean surface-scatter
communication channel. Part II. Second-order functions . Journal of the
American Statistical Association, 71( 6 ):1487-1495, June 1982.

206




