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Acoustic Scattering of Broadband Echolocation Signals from

Prey of Blainville’s Beaked Whales: Modeling and Analysis

by

Benjamin A. Jones

Submitted in partial fulfillment of the requirements for the degree of
Master of Science

at the Massachusetts Institute of Technology
and the Woods Hole Oceanographic Institution

Abstract

Blainville’s beaked whales (Mesoplodon densirostris) use broadband, ultrasonic echolo-
cation signals (27 to 57 kHz) to search for, localize, and approach prey that generally
consist of mid-water and deep-water fishes and squid. Although it is well known
that the spectral characteristics of broadband echoes from marine organisms are a
strong function of size, shape, orientation and anatomical group, little is known as
to whether or not these or other toothed whales use spectral cues in discriminating
between prey and non-prey. In order to study the prey-classification process, a stereo
acoustic tag was mounted on a Blainville’s beaked whale so that emitted clicks and
corresponding echoes from prey could be recorded. A comparison of echoes from prey
selected by the whale and those from randomly chosen scatterers suggests that the
whale may have, indeed, discriminated between echoes using spectral features and
target strengths. Specifically, the whale appears to have favored prey with one or
more deep nulls in the echo spectra as well as ones with higher target strength.

A three-dimensional, acoustic scattering model is also developed to simulate broad-
band scattering from squid, a likely prey of the beaked whale. This model applies
the distorted wave Born approximation (DWBA) to a weakly-scattering, inhomoge-
neous body using a combined ray trace and volume integration approach. Scatterer
features are represented with volume elements that are small (less than 1/12th of the
wavelength) for the frequency range of interest (0 to 120 kHz). Ranges of validity
with respect to material properties and numerical considerations are explored using
benchmark computations with simpler geometries such as fluid-filled spherical and
cylindrical fluid shells. Modeling predictions are compared with published data from
live, freely swimming squid. These results, as well as previously published studies,
are used in the analysis of the echo spectra of the whale’s ensonified targets.

Thesis Co-Supervisor: Andone C. Lavery
Title: Assistant Scientist

Thesis Co-Supervisor: Timothy K. Stanton
Title: Senior Scientist
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Chapter 1

Introduction

1.1 Historical background on echolocation research

Echolocation is a term coined by Griffin (1944) for an animal’s emission of high

frequency sounds and the consequent reception of echoes for use in obstacle avoidance.

This ability, also now known to be used in hunting for prey, has been most thoroughly

documented in two very distinct taxa of mammals. Most species of the suborder

Odontoceti, or toothed whales, use echolocation including members of the family

Ziphiidae, or beaked whales (Johnson et al., 2004; Madsen et al., 2005; Zimmer et al.,

2005). Likewise, sound is used by the small flight-capable mammals, Chiroptera, or

bats. Both of these groups of mammals have evolved echolocation capabilities for

use in the absence of light. While bats use sound to navigate and hunt on the wing

at night, beaked whales use echolocation to hunt for prey at ocean depths where

significant sunlight cannot penetrate. A brief review of research on these animals’

biosonar, summarized in the following paragraphs, provides context for this study.

1.1.1 Echolocation in bats

Researchers have debated for over two centuries the capabilities of certain species of

animals to use biosonar in orientation, communication, and prey capture. As early as

1793 Italian scientist Lazaro Spallanzani and Swiss zoologist Louis Jurine discovered
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that bats depend primarily on hearing rather than sight for orientation in dark envi-

ronments (Galambos, 1942). Spallanzani conducted extensive experiments in which

blinded bats avoided slender obstacles, such as silk threads suspended from the ceil-

ing, with the same success as visually unhindered bats. After repeating Spallanzani’s

experiments on blinded bats, Jurine provided conclusive evidence that bats rely heav-

ily on hearing to navigate. In a series of experiments in which bats’ ears were plugged

with a variety of substances, such as wax and wood, the animals crashed aimlessly

into obstacles in their path.

It was not until much later, however, with the development of G.W. Pierce’s ul-

trasonic detector, that Pierce and Grifin (1938) collected data to support theories

that bats use ultrasonic emissions to provide spatial orientation. Evidence of hunting

minute insects using active sonar would not be found for another decade and a half

(Griffin, 1953). This, in turn, has led researchers to question the extent to which

bats can acoustically resolve their environment. Simmons and Vernon (1971) showed

that the big brown bat (Eptesicus fuscus), using broadband frequency modulated

(FM) clicks, can indeed discriminate size, shape, and distance to targets. Further-

more, Siemers and Schnitzler (2000) have shown that the Natterer’s bat (Myotis

nattereri), also using FM signals, can discriminate prey from background clutter us-

ing echolocation without the aid of passive secondary cues such as prey-generated

sounds or olfactory information. Bats’ use of frequency dependent cues found in

echoes from objects that they ensonify is an area of ongoing research (Simmons and

Chen, 1989; Schmidt, 1992; von Helversen and von Helversen, 2003). Recently, it has

been suggested that bats use spectral information from sequences of target echoes to

discriminate between differing shapes and sizes (von Helversen, 2004). This line of

research, which gives strong evidence that bats do make use of spectral cues in object

discrimination, provides motivation to explore similar adaptations in toothed whales.

1.1.2 Echolocation in toothed whales

Historically, studies on echolocation capabilities of the sub-order Odontoceti, toothed

whales, have concentrated on various species of dolphins in captivity. It is well-known
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that these animals transmit a variety of broadband, ultrasonic signals in order to nav-

igate and hunt their prey. Many tank experiments, using artificial targets with subtle

differences in size, shape and material compositions, have shown that dolphins use

information contained in the broadband echoes to aid in discrimination tasks (Nachti-

gall, 1980). Identifying the features of acoustic signals that dolphins use in these

tasks is a goal of ongoing research. Au and Pawloski (1989) have shown that dolphins

can discriminate between broadband signals having a “rippled” or “non-rippled” fre-

quency spectra. Fuzessery et al. (2004), cites experiments by Vel’min and Dubrovskiy

(1976), and Dubrovskiy (1989), where dolphins discriminate between pulse pairs with

intervals of 0.05 to 0.2 ms, much shorter than the dolphin’s auditory integration time

of 0.3 ms given by Au (1993). It is suggested that dolphins, which would perceive

these pulse pairs as a single echo, may be processing them in the frequency domain.

With respect to the inverse problem, research on acoustic scattering from marine or-

ganisms has shown that different groups of animals can be classified by the frequency

spectra of their backscattered signal (Martin et al., 1996; Stanton et al., 1998b). It is

unclear, however, to what degree dolphins, or other toothed whales, use features of

broadband, acoustic backscattering to aid in the classification of prey.

The limited number of in situ studies on echolocating toothed whales has limited

progress in this area of research. In many species the combination of depth of the

echolocating animal and attenuation of the high frequency signal prevent either ship

mounted or towed sensors from recording their emitted signals. A number of recent

studies, using new technologies and novel methods, have begun to advance the under-

standing of these animals’ behavior in their natural environment. Using hydrophone

arrays deployed from small boats to record whales foraging by echolocation (Au et al.,

2004) and newly developed acoustic data tags affixed directly to echolocating whales

(Johnson and Tyack, 2003; Akamatsu et al., 2005; Zimmer et al., 2005; Madsen et al.,

2005) researchers have started to collect new information about the echolocation sig-

nals and foraging behavior of free-ranging toothed whales. The analysis presented

in Ch. 2 of this thesis is based upon data collected from such a study in which an

acoustic tag recorded a beaked whale echolocating in the wild.

17



1.2 Broadband scattering from marine organisms

In complement to the research on the biosonar systems of these capable predators, a

concurrent body of research has been conducted on acoustic scattering from marine

organisms of lower trophic levels. Attempts to estimate zooplankton biomass have

highlighted the need for accurate acoustic characterization of various classes of zoo-

plankton (Stanton et al., 1994; Martin et al., 1996). Constructive and destructive

interference of the sound wave scattered by features such as tissue interfaces or skele-

ton create a frequency dependent interference pattern specific to orientation, material

properties (i.e. sound speed and density), and morphology of the scatterer. Models

that predict frequency specific scattering amplitude from different organisms can aid

in the remote classification and identification of species being surveyed.

Recent trends in fisheries research have followed a similar course. Through the use

of multibeam sonars, multiple discrete frequencies, and higher bandwidth systems,

researchers have improved spatial resolution of fish schools and species identification

during acoustic surveys (Horne, 2000). Broadband acoustic systems have been used

with a variety of processing techniques in efforts to conduct reliable species recog-

nition based on the spectral signature of backscatter from fish aggregations (Sim-

monds et al., 1996; Zakharia et al., 1996). Broadband scattering from individual,

swimbladder-bearing fish has also been investigated. Reeder et al. (2004) has shown

that high frequency acoustic backscatter from alewife is highly frequency dependent

as well as strongly affected by orientation. Combining this insightful research on

scattering from marine organisms with the knowledge that echolocating whales use

broadband, ultrasonic biosonars leads to the hypothesis that an acoustic basis for prey

discrimination exists in the frequency dependent characteristics of the prey echoes.

It is the goal of this study to elucidate specific characteristics found in prey echoes of

a free-ranging beaked whale that may be used by the whale to discriminate between

prey and non-prey scatterers in the water column.
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1.3 Modeling of broadband acoustic scattering

Modeling of acoustic scattering from individual marine organisms complements labo-

ratory and field measurements by helping to quantify factors that influence the scat-

tering of sound. Furthermore, extracting biologically important information, such

as species type and abundance, from high-frequency, acoustic scattering data relies

heavily on the availability of experimentally validated scattering models (see review

by Horne (2000)). The intended application of a model often dictates the level of

complexity used in representing a marine organism as a scatterer. These applica-

tions range from predictions of volume scattering, which may use discrete scattering

predictions averaged over a range of parameters such as size and orientation of the

scatterer, to models that attempt to replicate discrete echoes for unique identification

of class, size, or even species of scattering organism.

In general acoustic scattering from individual marine organisms is a complex

process that is dependent on the frequency of the incident sound wave, the orien-

tation of the scatterer with respect to the incident wave, and the size, morphology,

and material properties (i.e. density and sound speed) of the organism. Scattering

by organisms of widely varied anatomical groups have been modeled. Fish, both

swimbladder-bearing and non-swimbladder-bearing, have been extensively modeled

for use with acoustic survey data to estimate fish stocks (see reviews by Maclen-

nan and Simmonds (1992); Foote (1997)). Zooplankton models have, likewise, been

developed for use with echo sounder surveys. The diversity of organisms within zoo-

plankton populations is reflected in the variety of models developed (see review by

Foote and Stanton (2000)).

One group of zooplankton that researchers have focused on are weakly-scattering

organisms with fluid-like material properties (i.e. tissue that does not support shear

waves). Many advances have been made in developing high frequency acoustic scat-

tering models for this group of organisms involving shapes of varying complexity.

The representation of shape in early studies were based on fluid models of simple

geometric volumes such as spheres, finite cylinders, and prolate spheroids (Anderson,
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1950; Yeh, 1967; Johnson, 1977; Stanton, 1988). More recent models have incorpo-

rated high resolution 2-D (Stanton et al., 1998a; McGehee et al., 1998; Amakasu and

Furusawa, 2006) and 3-D (Lavery et al., 2002) details of zooplankton shape. The

complex representation of shape in these models are made possible by the application

of the distorted wave Born approximation (DWBA). This modification to the Born

approximation (BA), a volume integral formulation for weakly scattering bodies, can

account for complex 3-D shape as well as inhomogeneous material properties. The

DWBA formulation has been successfully applied to model the scattering of sound

from various types of zooplankton including euphausiids, copepods, krill and decapod

shrimp and validated through field measurements (Wiebe et al., 1997; Lawson et al.,

2004).

Incorporation of high resolution material properties into DWBA models such that

variations correspond to the anatomical structure of the organism being simulated is

still a challenge. Limited information on sound speed and density of different tissues

within marine organisms, as well as difficulties in implementing the DWBA for in-

homogeneous bodies, are the primary obstacles. Application of the DWBA has been

primarily limited to scattering bodies of homogeneous material properties (Stanton

et al., 1993; Chu et al., 1993; Stanton et al., 1998a; McGehee et al., 1998; Stanton

and Chu, 2000; Lavery et al., 2002). Yet, marine organisms have complex internal

morphologies, which include internal organs (e.g. lungs, liver, gonads, etc.), and may

also include large seawater filled cavities as found in squid or jellyfish. These inter-

nal structures of differing material properties create multiple interfaces that strongly

affect the scattering of sound. The DWBA has been applied to inhomogeneous vol-

umes by varying material properties along the length of an organism’s body (Stanton

et al., 1998a; Stanton and Chu, 2000; Lavery et al., 2002). In these cases variation

corresponded to general body composition such as segmentation of the exoskeleton.

To date, however, 3-D inhomogeneities due to internal structure of an organism’s

body have not been incorporated into a DWBA model. The modeling section of this

thesis presents a DWBA model that can accurately account for 3-D inhomogeneities

within a weakly-scattering body. This model is applied to squid, a common prey of
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beaked whales, using high resolution morphology obtained from spiral computerized

tomography (SCT) scans. Results from this modeling is used in the analysis of beaked

whale prey discussed in Ch. 1.

1.4 Overview of study

This thesis is organized as follows. Chapter 2 presents an analysis of broadband

echoes, recorded in-situ, from prey of an echolocating beaked whale. Chapter 3

reports on the development of an advanced model for weakly scattering bodies that

incorporates both detailed, 3-D shape and 3-D material property inhomogeneities of

the scatterer. Chapter 4 contains concluding remarks and contributions of this paper

to the scientific community. Coefficients of the modal-series-based solutions for fluid

shells and the algorithms used in the numerical scattering model are given in the

appendices.
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Chapter 2

Classification of broadband echoes

from prey of a foraging Blainville’s

beaked whale 1

2.1 Introduction

In a recent study non-invasive digital acoustic recording devices, DTAGs (Johnson and

Tyack, 2003), were attached to a Blainville’s beaked whale, (Mesoplodon densirostris)

and used to record echolocation signals during deep foraging dives (Johnson et al.,

2004). These whales use broadband signals to search for and localize prey consisting

of mesopelagic fishes and squid (Pauly et al., 1998). Acoustic data recorded by the

DTAG contained both the whale’s emitted signals as well as echoes from prey in

the water column. These data show that, although the whale ensonified a large

number of scatterers, it only actively pursued a small percentage of them. This

suggests that the animal is actively selecting certain types of prey (Madsen et al.,

2005). In this paper, these data are examined to determine if there is evidence of an

acoustic basis for target discrimination based on the scattering of their echolocation

signals. Singly resolvable echoes from prey selected by the whale and from non-

1This chapter is based on an article to be submitted to the Journal of the Acoustical Society of
America (Jones et al., in prep.b)
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selected scatterers in the water column are compared using spectral characteristics

and relative target strengths. Secondly, two populations of depth separated prey are

juxtaposed to provide a comparison of two, likely different prey types. Finally, the

results are discussed in context with experimental and modeling results of scattering

from marine organisms.

Conducting an analysis of echoes, recorded in situ, using the whale’s biosonar as a

sound source and the animal’s body as the platform for the receiver present a myriad

of difficulties. These challenges and how they are addressed, which are discussed in

detail in the following sections, are summarized: 1) It was not feasible to make far

field measurements of the sounds emitted by the whale. Instead, as a reference for

the frequency responses of the scatterers, the featureless portion of the frequency

spectrum of an echolocation signal recorded from another whale of the same species

is used. 2) The near-field recording of the whale’s emitted signal is used as a proxy for

changes in the amplitude of the emitted signal. Thus, relative target strengths of the

scatterers can be obtained. 3) The unpredictability of the platform, i.e. the whale,

has a significant effect on the position of the scatterer within the beam. The angle

of arrival information from the hydrophone pair is used to limit, in one dimension,

the position of the scatterer with respect to the longitudinal centerline of the whale.

Using this carefully constrained subset of the data, it is demonstrated that there are

significant differences with respect to relative target strengths and spectral content

between echoes of prey selected by the whale and non-selected scatterers.

2.2 Signals emitted by the Blainville’s beaked whale

(M. densirostris)

The M. densirostris transmits two distinct echolocation signals. Johnson et al., (sub-

mitted) discriminates between these signals based on their repetition rate, waveform,

and frequency content. A slow repetition rate signal (referred to here as FM clicks)

is used by the whale in the search and approach of prey while a high repetition rate
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Figure 2-1: Echolocation signal (FM click) of M. Densirostris : (a) normalized time
series, (b) frequency spectrum.

signal, called buzz clicks, is used during the terminal portion of a prey capture.

2.2.1 FM clicks

The FM clicks, following the nomenclature of Johnson et al. (submitted), are char-

acterized by an upswept, frequency modulated waveform of 220 to 320 µs in length.

They are produced nearly continuously at depth while the animal is searching for and

localizing prey. The inter-click-interval (ICI) for the FM clicks ranges from 0.1 to 0.6

s. The associated frequency spectrum is smoothly shaped between approximately 25

to 54 kHz with a rapid fall off at lower frequencies and has -10 dB endpoints at 27

and 57 kHz (Fig. 2-1). It has been shown by Johnson et al. (submitted) that the
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frequency content of these clicks, when recorded on axis, is generally consistent from

ping to ping. Throughout this analysis only echoes from targets ensonified by FM

clicks are considered.

2.2.2 Buzz clicks

When approaching prey to within approximately a body length, the M. densirostris

switches to a high-repetition-rate click. These clicks are approximately half the du-

ration of the FM clicks and are of significantly lower amplitude. This series of clicks,

referred to collectively as a buzz, is often accompanied by a rapid acceleration of the

whale and is believed to be associated with the final homing and capture phase of the

hunt (Johnson et al., 2004). Buzzes are used in this analysis to identify the whale’s

selected prey.

2.3 Acoustic data acquisition

A free-ranging beaked whale was tagged with a digital acoustic recording device,

DTAG. The tag was used to record echolocation signals emitted by the whale as well

as echoes from scatterers in the water column. It is the characteristics of the echoes

from scatterers in the water column that are of particular interest to this study.

2.3.1 Instrumentation (Digital Acoustic Recording Device,

DTAG)

The DTAG is a small, self-contained device designed to record acoustic and orientation

data from a freely swimming animal (Johnson and Tyack, 2003). This tag attaches

to the surface of a whale with four suction cups, which actively release after a pre-set

period of time. The version used to collect the data presented in this paper containes

two hydrophones spaced 2.5 cm apart, each with a frequency response that is constant

to within 3 dB between 0.4 and 67 kHz and with a sensitivity of -171 dB re V/µPa in

that band. The tag samples acoustic data from each of the hydrophone channels at
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a rate of 192 kHz. Also included in the tag’s sensor suite were 3-axis accelerometers

are 3-axis magnetometers for orientation and a pressure sensor for extracting depth.

These sensors record data at a 50 Hz sampling rate. Data are stored in a non-volatile

FLASH memory array with a capacity of 6.6 gigabytes.

2.3.2 Fieldwork

An adult, female Blainville’s beaked whale (MD287a) was tagged in October of 2004,

near the island of El Hierro, in the Canary Islands, by means of a 5-meter-long car-

bon fiber pole from a 4-meter-long rigid-hull inflatable boat (RHIB). The animal was

observed surfacing from a 7-meter-long RHIB during daylight hours, which included

the acoustic portion of the recording. The tag recorded acoustic data for the prepro-

grammed time of 9.5 hours. A reserve of memory allowed the logging of an additional

8.9 hours of orientation and depth data after which the tag automatically released.

The tag was located and recovered with the aid of a VHF transmitter included in the

tag.

The tag was initially placed on the right side of the whale, but moved to a position

approximately 1 meter posterior of the blowhole on the animal’s dorsal ridge prior to

the dives discussed in this paper. This position, fortuitously, minimized shading of

the hydrophones by the whale’s body and provided favorable conditions for recording

echoes from objects ensonified by the whale. One intrinsic difficulty with a tag located

behind a whale’s head, is that only near-field, off-axis transmissions can be recorded

(Johnson et al., 2004). These measurements, clearly, do not reflect actual source

levels within the animal’s forward beam. However, measurements of transmitted

signals from a tag in this position can provide a proxy for relative changes in the

power output of the whale’s clicks (Madsen et al., 2005). Thus, it is possible to

estimate ping-to-ping variation in source level.

Three dives are discussed in this paper, dives #2 - #4. During these dives FM

clicks were only recorded at depths greater than 440m while the whale dove to various

depths down to 1300 m. During dive #3 the whale hunted near the bottom in a narrow

band of depth between 600 and 650 m as indicated by the buzzes at these depths.
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Foraging during dives #2 and #4 appeared to be spread out in depth over several

hundred meters; although, in both cases the majority of buzzes were concentrated in

depth bands of less than 200 meters.
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Figure 2-2: Two representative examples of echograms displaying scattered echolo-
cation signals of a foraging beaked whale which are used to identify echo trains: (a)
low echo density environment, (b) high echo density environment. FM click num-
ber is shown on the y-axis and the x-axis shows time since last emitted click. Echo
strength is indicated by color with red corresponding to higher sound pressure and
blue corresponding to lower sound pressure. The top plot shows a single echo train
as the whale approaches a target. The black line represents a spacing of greater than
1 second between outgoing clicks that meet a pre-set threshold level which, in this
case, indicates the whale’s switch to the lower amplitude buzz.
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2.4 Data analysis

2.4.1 Selection criteria of echoes

Identifying echo trains from whale-selected prey

The acoustic data recorded by the DTAG corresponded to four full dives of this whale.

Both the tagged animal’s emitted signals and scattered echoes were recorded on all

four dives; however, only data from dives #2 through #4 were considered due to the

preferred placement of the tag on these dives. Approximately 1.4 hours of acoustic

data from these three dives were analyzed.

The acoustic record was analyzed to identify all buzzes, or suspected predation

events, that occurred during the three dives of interest. Firstly, an algorithm indi-

cating relative amplitude and time between clicks was used in combination with a

time-frequency spectrogram of the signals to identify buzzes. Secondly, echograms

were produced indicating sound power on a color scale in a plot of click number ver-

sus time (see Fig. 2-2). By aligning the envelopes of the tagged whale’s transmitted

clicks on one axis and two-way travel time (TWT) along the other, these echograms

were used to identify echo trains, or continuous series of echoes from a single scatterer.

A 25 ms TWT window was used corresponding to a range from source to scatterer

of about 18 m. Using this method prey echo trains were easily identifiable by their

slowly varying, and generally, monotonically decreasing TWT.

The echograms were analyzed in the vicinity of the buzzes to identify echo trains

from intended prey. Only echo trains associated with regular clicks that terminated

within five seconds of a buzz were selected. If multiple echo trains were identified (i.e.

series of echoes with different TWT from the same outgoing transmission and, thus,

different ranges from whale to scatterer) the echo train that terminated most closely

to the first buzz click echo, in time, was selected. If no echo was visible from the buzz

in such a case, or two echo trains were very close together in time, that sequence was

not considered in the analysis. An identifiable echo from the buzz, however, was not

a criterion if there was no ambiguity in selecting the echo train.
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Identifying echo trains from non-selected scatterers

Randomly chosen echo trains, not selected by the whale as prey, were identified for

processing on each dive. These non-selected echo trains were defined as those that

did not immediately precede a buzz from the whale. The same two way travel time

window of 25 ms was used to choose these non-selected echo trains.

Acoustic environment: aggregations of varying density

In addition to the discrete echoes, which were selected from the acoustic record,

several other parameters were extracted from the data record such as depth and echo

density. Each of these data was recorded for the time corresponding to the beginning

of the identified echo train. Echo density was calculated manually from the number

of echoes returned from a single FM click in the echogram with a 25 ms window (Fig.

2-2). Less than 5 echoes was considered “low” echo density and greater than 5 echoes

was considered “high” echo density. Further refining of this definition was not needed

as nearly all environments were in the extrema of this definition.

Beam pattern effects and noise

In order to obtain information about the frequency response of a scatterer, without

the benefit of a precisely known source signal, it was necessary to assume a con-

sistent, undistorted emission from the whale. Evidence from on-axis recordings of

click trains from other M. densirostris has shown that the frequency content in the

main lobe of FM clicks is stable and relatively featureless in spectral content over

the band of frequencies considered in this analysis (Johnson et al., submitted). The

same assumption can not be made for off-axis signals. Broadband signals emitted by

dolphins have shown a distortion in the waveform and corresponding spectrum for

small off-axis angles. Au (1993) attributes these off-axis distortions to the emitted

signal radiating from different portions of a finite aperture and to internal reflections

from the whale’s anatomy such as skull and air sacs. It is expected that similar

distortions to off-axis clicks of other toothed whales, such as the one studied here,
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would also occur. Therefore, it was necessary to constrain the echoes in this study to

scatterers that were considered on-axis or nearly on-axis in order to take advantage

of the smoothly shaped signal of this animal.

To localize the position of the scatterer within the whale’s forward beam, the

polar angle, θ, is calculated from the difference in time of arrival between the two

hydrophones using the relationship: θ = arcsin(τc/d) where τ is the measured time

delay between hydrophones, c is the speed of sound in seawater, and d is the distance

between hydrophones. The error tolerance for θ is less than 1 degree. This angle,

measured from the plane equidistant from the two transducers, only partially localizes

the scatterer as the line of bearing from the whale to the scatterer has an ambiguity of

2π radians. However, the fact that the vast majority of echoes seen in the echograms

(e.g. Fig. 2-2b) have a consistently decreasing TWT strongly suggests that most

echoes, if not all, are coming from in front of the fast moving whale. The ambiguity

is, therefore, believed to be a much smaller angle. An error due to angular offset

of the tag with respect to the longitudinal axis of the whale, and presumably with

the main beam, was visually observed during surfacing of the whale. Assuming equal

distribution of echoes about the beam axis, this offset was corrected on each dive using

the relationship: θbeam = θtag−θdive, where angle of arrival, θsubscript, is measured from

the axis of the reference frame noted in the subscript and θdive is the mean zero offset

of all echoes analyzed from a given dive.

In order to minimize effects due to the beam pattern off the main axis, acceptable

echoes were limited to ± 4 degrees. Although the beam width for the M. densirostris

is unknown, Zimmer et al. (2005) has shown that Ziphius cavirostris, a closely related

beaked whale, has an estimated -3 dB beam width of 6 degrees. In line with the

suggestion by Au et al. (1999), that a smaller head corresponds to a broader trans-

mission beam, and considering the smaller size of the Mesoplodon (Mead, 1989) and

similar centroid frequency (Zimmer et al., 2005; Johnson et al., submitted) it can be

assumed that this whale has a slightly broader beam pattern. A conservative increase

of 1 degree half beam width has been assumed.

Additionally, only echoes with an echo-to-noise ratio, ENR, of 8 dB were consid-
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ered in the analysis in order to provide signal strength to differentiate structure in the

received spectra from noise interference. It is believed that these constraints on ENR

and AOA are sufficient to assume that structure in the spectra of the echoes is due

primarily to the scattering physics of the ensonified object rather than a distortion

of the received signal due to these interfering effects.

Figure 2-3: Example of automated structure analysis results. Plus signs indicate
nulls and horizontal dashed lines indicate mean target strength of frequency band
displayed. An example of the two criteria for a null are illustrated in the lower plot:
(1) The dip near 42 kHz does not meet the criterion of 1 dB less than both adjacent
peaks (2) The dip at 47 kHz does not meet the criterion of 3 dB less than the average
of the two adjacent peaks.

2.4.2 Spectral classification

Acoustic scattering spectra of marine organisms are characterized by unique inter-

ference patterns specific to target size, shape, material properties, and orientation
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(Stanton et al., 1998b; Lavery et al., 2002; Reeder et al., 2004). In order to perform

a quantitative, statistical analysis of the prey echoes compiled in this study, an algo-

rithm was created to quantify the structure of the spectra. Once the echoes of interest

were identified, the time series was filtered using a 20 to 70 kHz 4-pole Butterworth

bandpass filter, and windowed using a 400 microsecond rectangular window. This

result was then converted to a frequency spectrum using a Fourier transform.

The frequency band between 27 and 54 kHz was selected for analysis. This range

falls within the -10 dB endpoints of the power spectrum of the transmitted signal and

is limited to the range of frequencies where FM clicks have been shown to be nearly

featureless as discussed in Sec. 2.2. Given the limited ENR of echoes selected for

this study, three simple robust parameters were chosen to characterize the frequency

response of the scatterers: (1) number of nulls, (2) location of first null, and (3)

spacing of the first two nulls (Fig. 2-3). Nulls were identified by a greater than 3 dB

difference between a local minimum and the average of two adjacent maxima. Nulls

of less than 1 dB from either adjacent peak were discarded to minimize false detection

of nulls. These limits were set so as to discriminate between nulls due to scattering

phenomena and other sources of spectral structure such as variability in the source

and ambient noise.

2.4.3 Target strength calculations

Estimated target strength of the scatterer was found using the active sonar equation

(Urick, 1983).

TS = EL + 2TL− SL (2.1)

For these calculations only target strength, TS, and the received echo level at the

transducer, EL, were allowed to vary with frequency, f , as explained below. TL

and SL are one-way transmission loss and source level respectively. All values are

calculated in terms of dB re 1 µPa. The echo level is determined from the raw
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time-voltage signal, y(t) using the expression

EL(f) = 20 log Y (f)− S (2.2)

where Y (f) is the discrete Fourier transform of y(t) and S is the sensitivity of the tag

in dB re V/µPa.

Transmission loss, accounting for spherical spreading and absorption losses, was

determined by the relation TL = 20 log r+αr, where r is one-way distance from trans-

ducer to scatterer and α is absorption loss. The frequency dependence of absorption

was neglected as the effect on transmission loss over the short target distances and

range of frequencies considered here was small (< 0.5 dB). Thus, alpha was considered

a constant: α ' 11 dB
km

@ 40 kHz (Urick, 1983).

Source levels have not yet been measured for this species; therefore, all target

strength values are presented in relative terms. A constant source level, i.e. constant

at each frequency within the band, was chosen to represent the featureless portion

of the whale’s transmitted signal. This notional source level, SLk, was adjusted for

variation in the apparent output of the transmitted click corresponding to each echo

using the formula: SL = SLk + [AO − AO], where AO is the apparent output of a

specific click and AO is the mean apparent output of all regular clicks associated with

echoes analyzed. As discussed in Sec. 2.3, it is believed that this provides a reasonable

method for estimating fluctuations in the source level and, therefore, improves the

precision of relative target strengths.

Target strength, TS, can be further defined as the logarithmic measure of the

backscattered energy and is given by

TS = 10 log σbs (2.3)

where σbs is the differential backscattering cross section. Mean target strength of an

individual echo was found by averaging σbs(f) over all frequency bins within the band

of interest prior to logarithmic conversion.
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Broadband acoustic signatures of whale prey

Figure 2-4: Broadband acoustic signatures of four prey selected by the whale. Each
plot is comprised of frequency spectra of a series of echoes that make up one echo
train. Plots only include spectra from echoes within each train that met the criteria
discusses in Sec. 2.4.1. Echoes represented are identified by a tick mark on the “echo
#” axis. Figures (a) and (b) show examples of high target strength prey found at
deep depths (below 700 m) in low echo density environments. Figures (c) and (d)
show examples of lower target strength prey found in shallower water (above 700 m)
in high echo density environments.
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2.5 Results

2.5.1 Echoes selected for analysis

A total of 89 buzzes were observed during the three dives analyzed indicating possible

predation events. Of these, 47 were preceded by unambiguous echo trains that are

believed to correspond to scattering from prey. The remaining buzzes were associated

with either irresolvable echo trains due to a cluttered environment or no echo trains

with sufficient ENR. Additionally, in the echograms of dive #3, where a high percent-

age of buzzes could not be correlated with echo trains, it is suspected that many echo

trains existed but were obscured by reverberation from the bottom. The first echo

of each train was discernable from background noise at varying TWT’s equivalent

to a distance to the scatterer of between 5 and 15 m. In each case the echo train

terminated shortly before the start of the buzz at a distance of 3 to 5 m.

The 47 echo trains identified as prey selected by the whale contained a total of 426

discrete echoes. Of those 135 echoes from 30 different echo trains, met the criteria for

sufficient ENR and for angle of arrival within ±4◦. In order to accumulate a sufficient

number of non-selected echoes as a control, 92 echo trains from random scatterers,

not selected as prey by the whale, were chosen. Of these 34 trains containing 102

echoes remained after following the same procedure. Distribution of the echoes over

the three dives analyzed is shown in Table 2.1. Many more random, non-selected echo

trains were required to obtain a similar sample size as they generally had fewer echoes

in each train. This is likely due to the shorter length of time that these non-pursued

scatterers remained within the whale’s acoustic beam.

2.5.2 Echo classification

Characterization of echo trains for comparison

A comparison was conducted between echo trains from scatterers selected by the

whale and a non-selected control set based on spectral complexity and relative target

strength. The primary focus of this study is to investigate whether or not the whales
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Figure 2-5: Normalized distribution of prey “selected” by the whale, and randomly
chosen “non-selected” scatterers, i.e. not pursued by the whale as prey, (black and
grey bars respectively) that contain a given characteristic: (a) number of nulls, (b)
first null location, (c) spacing of first two nulls, and (d) relative target strength. Bins
represent characteristics of a given echo within an echo train. Echoes are weighted
by their fraction of the total number of echoes within a train. Distributions are
normalized by the total number of echo trains (selected or non-selected). Vertical
dashed line in target strength plot (d) represents absolute target strength value of
-65 dB based on a source level of 200 dB.
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Table 2.1: Distribution of echoes from selected and non-selected (in parenthesis) echo
trains among three dives examined. Filtered echoes are limited to echo-to-noise ratio,
ENR, of 8 dB and angle of arrival, AOA of ±4◦. Echo trains used in averaged results
had a minimum of 2 echoes per train.

echo trains echoes
total identified

dive 2 18 (36) 139 (276)
dive 3 9 (18) 77 (130)
dive 4 20 (38) 209 (177)

47 (92) 425 (583)
filtered
dive 2 7 (14) 30 (48)
dive 3 3 (14) 18 (47)
dive 4 20 (6) 87 (7)

30 (34) 135 (102)

are discriminating between echoes with different characteristics. Since the spectra

of discrete echoes from a single marine organism can vary significantly with small

changes in the scatterer’s orientation (Reeder et al., 2004), it is possible that distinct,

but complementary information is obtained by the whale from multiple aspects of a

single target. For these reasons the characteristics of individual echoes within each

echo train, with no averaging, are considered in the statistical analysis performed on

the data. Results presented here are shown as the number of echoes, as a percentage

of the echo train in which they are contained, that exhibit a given spectral feature or

target strength. The results are normalized by the total number of echo trains in the

specific category, i.e. whale-selected group or non-whale-selected control group. It is

believed that this method best reduces biases caused by the disproportionate length

of some echo trains and also enables the classification of the echo trains according to

one or more distinct features.

In addition to this method, two other statistical methods were used to analyze

the echoes. One comparison was conducted on the echoes as a whole. In this method

it was necessary to discard duplicate characteristics within an echo train to reduce

the bias caused by echo trains of different lengths. The drawback of this method
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was that, by removing redundant features within an echo train, key characteristics

that may be used by the whale could be diluted through removal of an unrelated

bias. Finally, an analysis was conducted by averaging the characteristics over each

echo train. The effect of averaging is to smooth the frequency response patterns. In

particular, sharp individual nulls in a discrete spectrum may become broad dips in

an averaged frequency response. It is suspected that this approach may remove some

subtle features of the echoes used by the whale in discriminating prey from other

acoustic clutter. These concerns notwithstanding, good agreement was found in the

primary results of all three methods. Only results of the first method, which present

the data in the most raw form, are presented here.

Spectra

Results of the spectral analysis showed that significant structure exists, quantified by

the number of nulls within the frequency band examined, in the frequency responses

of many ensonified targets. As detailed in the data analysis section, it is believed

that interference due to noise and beam pattern effects can be discounted as a major

contributor to this structure. If noise were a significant contributing factor to the

spectral structure, a trend towards a lower ENR for echoes containing more nulls

would be expected as these echoes would be more susceptible to this interference.

However, a comparison of number of nulls and ENR over all angles of arrival did not

show such a trend. Instead the comparison showed only a 3 dB decrease in echo-to-

noise ratio from 0 to 2 null targets and, most notably, a flat trend from 2 to 6 nulls.

Furthermore, no correlation was found between number of nulls and angle of arrival,

θbeam. This supports the assumption that the constraint of a narrow range of arrival

angles has removed any distortion effects due to the angular offset within the whale’s

sonar beam.

Figure 2-5a shows a comparison of the number of nulls in the frequency spectra

of echo trains selected by the whale and non-whale-selected echo trains from all dives

examined. One can see that there is a bias, in the echo trains from scatterers selected

as prey, towards more highly structured returns (selected mean: 3.06, non-selected
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mean: 2.12). A t-test showed that the difference was significant (t = 2.803, df =

63, p-value = 6.72 × 10−3). Notably, less than 2% of the selected echo trains were

characterized by a featureless echo (i.e. an echo with no nulls), whereas nearly 10% of

the non-selected echo trains were composed of such echoes. These results are contrary

to that which would be expected if echo structure was primarily due to effects of the

off-axis beam pattern. Non-selected targets are more slightly more likely to fall on

the edge of the transmitted beam pattern, θbeam ≥ ±3deg, (non-selected: 24.5%,

selected: 20.0%), probably because they are not being actively pursued by the whale.

However, a bias in structure content due to location in the beam, which would be

expected if beam pattern effects were strong, is not seen.

A comparison of the different structure features between the selected and non-

selected echo trains was less revealing. Figure 2-5 (b and c) compare the the whale-

selected and non-whale selected distributions of first null locations and spacings of the

first two nulls, respectively. These results did not appear to have normal distributions

and a Kolmogorov-Smirnov test showed no significant difference in the distributions

(null location: k = 0.290, p-value = 0.131, null spacing: k = 0.232, p-value = 0.381).

The spacing of the nulls did appear to have a bi-modal (selected) and multi-modal

(non-selected) distribution.

Target strengths

Echo trains selected by the whale are composed of echoes that have a target strength

distribution that is shifted approximately 18 dB higher than non-selected echo trains

(Fig. 2-5d). A Kolmogorov-Smirnov test rejected the null hypothesis that the two

samples were from the same distribution (k = 0.400, p-value = 7.22×10−3). It is also

observed that echo trains from selected prey showed wide echo to echo variation in

target strength with 60% containing echoes that varied by 9 dB while 17% contained

echoes varying by at least 15 dB. Non-selected echo trains had less variability with

only 26% of echo trains having a 10 dB variation and 15% varying by at least 15 dB.

This difference in variability between selected and non-selected echo trains may be a

factor of the fewer number of echoes, on average, in the non-selected echo trains.
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Figure 2-6: Depth distribution of prey categorized by echo density. Depth is truncated
above 450 m as no predation events were found at shallower depths.

2.5.3 Comparison of echo characteristics between two groups

of prey

Echo characteristics of two groups of prey, which were separated by depth and differed

in aggregation density, are compared. It is suspected that two distinct prey categories

can be defined by comparing discrete backscattering by prey in a deep, low echo

density aggregation with prey in a shallow, high echo density aggregation. Echo

density, in regions where the whale hunted, varied widely during the three dives (Fig.

2-2). Prey aggregations on dive #2 and #4 were characterized by low density while

dive #3 was nearly exclusively high echo density. The two suspected prey categories

were separated spatially in the water column with the high density group in water

shallower than 700m and lower density group found at greater depths (Fig. 2-6).

In the shallow, high echo density aggregation, differences in the number of nulls be-

tween selected and non-selected targets is shown to not be significant by a Kolmogorov-
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Figure 2-7: Spectral content in frequency responses of prey selected by the whale and
non-whale-selected scatterers (black and grey bars respectively) in: (a) shallow, high
echo density aggregations, and (b) deep, low echo density aggregations. Weighting
and normalization are identical to Fig. 2-5.

Smirnov test (k = 0.447, p-value = 0.318) and may have suffered from small sample

size (Fig. 2-7a). However, as in the combined results of all prey targets, discussed in

Sec. 2.5.2, the targets selected by the whale in the low echo density aggregation were

characterized by more highly structured echoes than the control group of non-selected

targets (Fig. 2-7). A t-test showed that the difference in means (selected: 2.96 nulls,

non-selected: 1.85 nulls) was significant (t = 3.186, df = 40, p-value = 2.80 × 10−3)

Other spectral characteristics were also inconclusive here due to the small sampling
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size available.

The target strength distribution provided further information about these two

scattering groups. The target strength distribution between selected and non-selected

echo trains in both echo density environments were heavily overlapping (Fig. 2-8).

No significant difference was found using Kolmogorov-Smirnov tests in either case

(high echo density: k = 0.178, p-value = 0.999; low echo density: k = 0.340, p-value

= 0.140). However, when scatterers from the two environments are compared it can

be seen that there is at least a 15 dB shift in the target strength distributions.

2.5.4 Comparison between echo characteristics and scatter-

ing predictions/observations

Target strength variability

In Sec. 2.5.3. a significant difference in the target strength distribution is shown

between a shallow, high echo density aggregation and a deep, low echo density ag-

gregation. Using a simple, straight finite cylinder model for weakly scattering marine

organisms of length L, it is seen that in the geometric scattering region target strength

varies as 10 · log(L2), (Stanton et al., 1993, 1994). This first order approximation can

be used to estimate a ratio of the prey lengths from the difference in target strengths.

For broadside scattering from two organisms of roughly the same aspect ratio and

material composition, a 15 dB difference in target strengths correlates to a length

factor of approximately 5.5. The fact that this whale dives to significantly greater

depths, i.e. an additional 500 to 600 m, to pursue a type of prey found in less dense

aggregations is counterintuitive. However, the possibility that the prey found at depth

are significantly larger may be one explanation for this behavior.

Effects of orientation

In another study an acoustic scattering model for squid has been developed. This is

based on a weak-scattering theory using high resolution spiral computerized tomog-

raphy (SCT) scans. Predictions of target strengths from small squid have been made
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Figure 2-8: Reduced target strength distribution of prey selected by the whale and
non-whale-selected scatterers (black and grey bars respectively) in: (a) shallow, high
echo density aggregations, and (b) deep, low echo density aggregations. Vertical
dashed line represents absolute target strength value of -65 dB based on source level
of 200 dB. Weighting and normalization are identical to Fig. 2-5.

over a range of angles and orientation. In the analysis of whale-prey echoes, signif-

icant ping-to-ping variability in both structure content and target strength if found

to exist within some echo trains selected by the whale (Fig. 2-4a and b). Because

the transmitted signal of the whale has been constrained to near on-axis signals, vari-

ations presumably relate to the orientation of the scatterer relative to the incident

sound wave. Modeling predictions for squid show a similar variability. The interfer-

ence pattern and magnitude of the frequency response are highly affected by changes
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in the aspect of the scatterer with respect to the incident sound wave. Measured

broadband scattering from fish have shown similar results with changes as small as

5 degrees dramatically changing the backscattered frequency response (Reeder et al.,

2004).

2.6 Discussion

The characteristics of broadband echolocation signals have been studied through data

obtained, in situ, by a recording device mounted on a foraging Blainville’s beaked

whale. By setting stringent criteria on the echoes analyzed and, in part, due to

the opportunely smooth spectrum of the M. densirostris’ emitted signal, the spec-

tral characteristics of the prey’s frequency responses can be analyzed over a limited

frequency range and relative target strengths can be estimated.

Significant structure, resembling the type of interference patterns observed from

marine organisms in modeling and laboratory experiments, exist in the frequency

spectra of prey echoes measured in this study. It has been concluded that structure

contained within the frequency responses of scatterers is consistent with, and most

likely due to, interference from multiple wave interactions incurred by the morphology,

material properties, and orientation of the scatterer.

A combination of whale depth and echo density was combined with the scattering

results to show that it is likely that the whale preyed upon at least two different

types of organism with different target strength distributions. This whale hunted a

low target strength population found in high density aggregations between depths

of 600 and 650 m. Higher target strength prey were found at various depths below

700 meters in low echo density environments. In neither case was a significant differ-

ence found in the target strength distributions between prey selected by the whale

and a control group of non-whale-selected scatterers. This suggests that the target

strength of a scatterer is not the whale’s sole means of discriminating between prey

and non-prey targets. It is significant that, for at least the low echo density case,

this animal appeared to favor targets that display a higher degree of structure within
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their frequency responses. It is not possible to confirm, however, that this whale is

using specific structural features, such as null location or spacing, in recognizing or

classifying specific prey items.

Finally, an explanation has been proposed as to why this large marine predator

chooses to dive to significantly deeper depths to hunt less dense populations of prey.

Scattering theory for weakly scattering, non-swimbladder bearing marine organisms

suggests that the higher target strength organisms found at depth could be 5 to 6

times the size of prey hunted in shallower water, thus giving the animal an incentive

to expend the energy required to dive to greater depths.
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Chapter 3

Acoustic scattering by weakly

scattering shelled objects:

Application to Squid1

3.1 Introduction

A model has been developed, based on the distorted wave Born approximation (DWBA),

to predict acoustic scattering from arbitrarily shaped, arbitrarily inhomogeneous,

weakly scattering volumes. Although the DWBA formulation, in principle, can ac-

count for 3-D material property inhomogeneities, significant obstacles are encountered

when applying this model to a randomly inhomogeneous object. In the Born approx-

imation the amplitude and phase of the incident wave are only dependent on the

position of the wave front with respect to some arbitrary origin and the material

properties of the surrounding medium. This is due to the general assumption that

the incident wave is unmodified by the weakly scattering body. In contrast, the

DWBA is a modification to the Born approximation in which the wavenumber in-

side the scattering volume is determined by the material properties within the body

(Stanton et al., 1993). Thus, the phase of the wavefront, at any point in the volume,

1This chapter is based on an article to be submitted to the Journal of the Acoustical Society of
America (Jones et al., in prep.a)

47



is dependent both on the distance traveled by the incident wave and any sound speed

variations encountered along the path traveled.

As discussed in Ch. 1, the DWBA has been applied to homogeneous scattering

volumes and volumes with material properties that vary only in one dimension. In

these cases the DWBA formulation can be applied directly, either to the body as a

whole or, in the axially varying case, to each cross section separately assuming normal

incidence of the sound wave. The primary advance made in this study is correctly

accounting for the phase of the incident wave as it travels through an inhomogeneous

medium. The numerical incorporation of this method uses a ray trace component to

track the phase at every position within the scattering volume. A two part algorithm

calculates phase and amplitude for every discretization before integrating over the

entire volume. Application of this DWBA ray-tracing model to squid is discussed in

detail.

Although relatively little work has been published on acoustic scattering models

of squid there is interest in this research from two areas. The first is commercial fish-

eries. As a fast growing but short-lived species, squid are particularly vulnerable to

overfishing (Goss et al., 2001). Acoustic stock assessments can be use to complement

more traditional techniques such as trawl surveys and fishery catch analyses by rapidly

surveying large volumes of water and providing real time population assessments (re-

view by Starr and Thorne (1998)). Understanding the factors that influence sound

scattering from squid is clearly essential for reliable surveys of this type. Secondly,

there is increasing interest in the predator-prey relationship between echolocating ma-

rine mammals and squid. Beaked whales, for instance, hunt squid using broadband,

ultrasonic sonar (Johnson et al., 2004; Madsen et al., 2005). Scattering models that

help define the dominant scattering mechanisms of squid may elucidate factors that

are exploited by the whales in discriminating between prey and non-prey.

The DWBA ray-tracing model is applied to long-finned squid, (Loligo pealeii).

Density and sound speed measurements of squid suggest that these invertebrates are

well suited to modeling as weak scatterers (Mukai et al., 2000; Kang et al., 2004; Iida

et al., 2006). Accordingly, previous models of squid use the exact liquid prolate spher-
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oid model (LPSM) and the DWBA formulation, also using prolate spheroid geometry

(Arnaya and Sano, 1990b; Mukai et al., 2000). These models assume homogeneous

material properties within the scattering volume. In this study high-resolution spiral

computerized tomography (SCT) scans have been used to obtain 3-D morphology

of squid. Unlike previous DWBA models of squid, the DWBA ray-tracing model

incorporates the complex mantle structure by differentiating between seawater filled

cavities and the squid’s body. Material property variation due to internal organs,

however, is not included in this study. Predictions are compared with published

results of both anesthetized, tethered squid and live, freely swimming squid.

Application of the DWBA ray-tracing model is presented in two parts. First, to

validate the model, it is applied to simple geometric shapes of both homogeneous and

inhomogeneous material composition. Target strength predictions are compared with

solutions to modal-series-based formulations, and existing DWBA scattering models

defined in Sec. 3.2. Acoustic scattering predictions, given in Sec. 3.4.1, are calculated

for simple geometric objects with variations in material properties, shell thickness,

and orientation. Second, the DWBA ray-tracing model is applied to squid of the

species L. pealeii. In order to compare scattering predictions with actual scattering

measurements, the model is extended to a second species of squid T. pacificus by

digitally scaling the 3-D morphological measurements of squid used in the model.

Comparisons of predicted target strengths with published target strength data for

this species are shown in Sec. 3.4.2.

3.2 Theory

3.2.1 Basic definitions

Acoustic scattering from an object in the far field is described in terms of the ampli-

tude of the incident sound wave, P0, and the scattering amplitude, f ,
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Figure 3-1: Bisection of spherical shell or cross section of cylindrical shell. Indices 1-3
correspond to fluids of different material properties (i.e. sound speed, ci, and density,
ρi, i = 1, 2, 3). The radii a and b are the outer and inner shell radii respectively such
that (a− b)/a corresponds to fractional shell thickness, τ .

Pscat = P0
eik1r

r
f (3.1)

where, r is the distance from the object to the receiver. The acoustic wavenumber

of the surrounding medium, k1, is defined as 2π/λ, where λ is the acoustic wavelength.

Target strength is the logarithmic measure of the backscattered energy, expressed

in decibels, dB, relative to m2.

TS = 10 log σbs (3.2)

where σbs = |fbs|2 is the differential backscattering cross section and fbs, or backscat-

tering amplitude, is f evaluated in the backscattered direction. Mean target strength

is found by averaging σbs prior to logarithmic conversion as 〈TS〉 = 10 log〈σbs〉.

In order to compare scattering from objects that are similar in proportion but of

different overall size, reduced target strength, RTS, is often used. For a sphere or
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spherical shell of outer radius a (Fig. 3-1) it is given by

RTS = 10 log
σbs

πa2
(3.3)

In the case of elongated objects such as cylinders or cylindrical shells of length L

reduced target strength is given by

RTS = 10 log
σbs

L2
(3.4)

For the case of scattering from squid, the length L is replaced by dorsal mantle length,

Lml. Additionally, due to the lack of published data on mean mantle widths, from

which mean radii for squid could be derived, the non-dimensional term k1Lml is used

instead of the more commonly used k1a.

3.2.2 DWBA-based scattering models

The Born approximation is derived for weakly scattering bodies in which the pres-

sure field inside a scattering volume is approximated by the unperturbed, incident

field. The approximation is valid when the amplitude of the scattered wave is much

smaller than the incident wave (Morse and Ingard, 1968). Due to its volume inte-

gral form this approximation may be used for arbitrarily shaped scatterers with any

orientation with respect to the incident sound wave. The distorted wave Born ap-

proximation (DWBA) involves replacing the incident wavenumber vector inside the

integral with the wavenumber vector of the internal medium. It is this modification

that accounts for phase change of the sound wave due to material property inhomo-

geneities within the scattering volume. The DWBA formulation is valid for the entire

range of frequencies and all angles of orientation. It is given by

fbs =
k2

1

4π

∫ ∫ ∫

v

(γκ − γρ)e
2i~kv ·~rvdv (3.5)

Material properties are expressed in terms of compressibility, κ, and density, ρ, or

the commonly used ratios of density, gv = ρv/ρ1, and sound speed, hv = cv/c1, given
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here by

γκ =
κv − κ1

κ1

=
1− gvh

2
v

gvh2
v

(3.6)

γρ =
ρv − ρ1

ρ2

=
gv − 1

gv

(3.7)

In all cases the subscript “1” indicates parameters of the surrounding medium and

the subscript “v” indicates parameters within the scattering volume. Accordingly,

the wavenumber in the external medium is the constant k1, while the wavenumber

vector within the volume is ~kv. Throughout this paper, when a model formulation

is applied to a scattering problem, the subscript “v” takes on the integers “2, 3, ...”

corresponding to given material property parameters of that region within the volume.

For example, in the region designated by “3” in Fig. 3-1 the sound speed ratio, gv,

becomes g3 = ρ3/ρ1.

It has been noted that the DWBA formulation will have phase errors for cases

where the internal volume has inhomogeneous material properties or when the wave

passes through part of the body, into the surrounding medium, and back into the

body. However, the phase can be accurately calculated at each point in the volume

by piecewise integration of the exponential phase term (Stanton et al., 1998a). It

is this advance, accomplished numerically and detailed in Sec. 3.3, which is the

motivation for this work.

For straight, finite cylinders with homogeneous material properties, Eq. (3.5) can

be solved analytically (Stanton et al., 1998a). This result is used to test the DWBA

ray-tracing model over varying orientations of the scattering volume with respect to

the incident acoustic wave. This model is termed the DWBA solid, finite cylinder

model throughout this paper and is given by

fbs =
k1kva

2L

2
(γκ − γρ)e

−iLkv sin θ J1(2kva cos θ)

2kva cos θ

sin (kvL sin θ)

kvL sin θ
(3.8)

where J1 is the Bessel function of the first kind, kv is the amplitude of the

wavenumber within the volume, and θ is the angle of the incident wave measured
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from the longitudinal axis of the cylinder (θ = 0 is normal incidence).

3.2.3 Exact modal-series-based scattering models

The primary purpose of this paper is to describe a DWBA-based ray tracing model

that can accurately account for material property inhomogeneities within a scattering

volume. In order to validate the model for an inhomogeneous object, comparisons are

made with two analytic solutions for scattering from simple geometric, shelled, and

hence inhomogeneous, objects. The two modal-series-based formulations presented

here test the model over a range of frequencies and shell thicknesses.

The wave equation can be separated and solved exactly for a limited number of

simple shapes (e.g. spheres, infinite cylinders, prolate spheroids, etc.). In this section

scattering models are presented for fluid-filled, fluid spherical and finite cylindrical

shells. The term “fluid” implies that the formulation does not include shear waves.

The modal series solutions for these simple geometric volumes are derived by separat-

ing the wave equation in spherical and cylindrical coordinate systems, respectively,

and applying two boundary conditions at each interface: continuity of pressure and

continuity of radial velocity. Though these solutions are straight forward to derive,

the resulting coefficients for these particular cases are not known to have been docu-

mented previously and are presented in appendix A.

Fluid-filled, fluid spherical shell

The far field, modal-series-based solution to the wave equation for a fluid-filled, fluid

spherical shell in the backscattered direction is expressed as

fbs =
i

k1

∞∑
n=0

(2n + 1)(−1)nAn (3.9)

where, An is the modal series coefficients and is given in appendix A.
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Fluid-filled, fluid cylindrical shell of finite length

The finite length cylindrical shell approximation uses the coefficients of the modal

series solution for an infinitely long cylinder. While the exact modal series solution for

infinite cylinders is valid for all angles of orientation, the finite cylinder approximation

neglects end effects and is, therefore, valid only near broadside. Accordingly, this

formulation is only applied at normal incidence to test the DWBA ray-tracing model

over a range of frequencies.

Stanton (1988), related the scattering amplitude of a finite cylinder to that of an

infinite cylinder using a volume flow per unit length approximation. These equations

can, likewise, be applied to a finite length cylindrical shell. Applying the backscatter

condition to the equation for a finite fluid-filled, fluid cylindrical shell results in

fbs =
−iL

π

∞∑
n=0

−εn(−1)nBn (3.10)

where, Bn is the modal series coefficients to the infinite length fluid-filled, fluid

cylindrical shell and is given in appendix A. The term εn is the Neumann number

(ε0 = 1, εn = 2 for n = 1, 2, 3, ...).

3.3 Materials and methods

3.3.1 Animals studied

Two species of squid are discussed in this article. High resolution morphometry are

taken of a locally available species, the long-finned squid, Loligo pealeii, while pub-

lished target strength data is available for a second species, the Japanese common

squid, Todarodes pacificus. Scattering predictions are calculated using the DWBA

ray-tracing model, which makes use of high resolution morphology of L. pealeii. Ad-

ditionally, predictions are made based on a version of this squid’s 3-D morphology

scaled to match the aspect ratio, i.e. width to length ratio, of a T. pacificus and

compared with published data.
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Figure 3-2: Sketches of the species of squid discussed in this article (Roper et al.,
1984). The L. pealeii, shown on the left, is the littoral species found near Woods Hole,
MA, from which high resolution morphometry was obtained using SCT scans. The
T. pacificus shown on the right, a pelagic species found in the western Pacific Ocean,
has a larger aspect ratio (width-to-length ratio). Published data from experiments
involving this species are used to compare with DWBA ray-tracing model predictions.

Long-finned squid, Loligo pealeii

L. pealeii specimens, obtained from the Marine Biological Laboratory, were selected

due to ease of availability and well documented details of its anatomy. This coastal

species of squid has a long, slender body and a large fin in proportion to its mantle

length as implied by its common name. The commercial importance of L. pealeii

comes from fishing and biological research (Roper et al., 1984).

Japanese common squid, Todarodes pacificus

T. pacificus are an oceanic squid with a muscular, moderately slender body and a

relatively short fin. Although these squid have a larger aspect ratio than L. pealeii,

the two species are broadly similar (Fig. 3-2). T. pacificus are of high commercial
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Figure 3-3: Volume rendering composed of SCT scan images of L. pealeii (in semi-
transparent grey-scale) and four binary cross sections, Ml, showing the fin (1), mantle
cavity (2,3), and neck (4). In the cross sections grey indicates squid body and white
indicates surrounding seawater and seawater filled cavities. Arrows show the orien-
tation of the squid with respect to an incident sound wave (−θ is head down, +θ is
head up, and θ = 0 corresponds to normal incidence).

interest to Japan and support the largest squid fishery in the world (Roper et al.,

1984; Sakurai et al., 2000).

Squid material properties

Reliable acoustic scattering predictions require accurate values of sound speed and

density of the scatterer. This is especially true of weakly scattering organisms whose

material properties may vary from seawater by only a few percentages (Chu et al.,

2000). Published literature on squid material properties is limited (see table 3.1).

However, some recent measurements provide useful information for this study. Kang

et al. (2004), measured average density and sound speed of anesthetized squid in

seawater. Their sound speed estimates, as compared to previously reported values,

show better agreement with measured target strength data when used as parameters

in a Kirchhoff ray mode (KRM) model. Iida et al. (2006), recently obtained values
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Table 3.1: Material properties of squid from published sources. Values given as a
ratio of squid material properties to those of seawater in the same publication.

reference material g h
Hashimoto and Maniwa (1952, in Japanese) whole squid – 1.007

Mukai et al. (2000) whole squid 1.025 –
Kang et al. (2004) whole squid 1.028 1.04
Iida et al. (2006) mantle tissue 1.043 1.053

for sound speed and density through squid mantle tissue. These values for g and

h are higher than reported for whole squid. This is expected, however, as these

measurements are for a single tissue type whereas the whole squid measurements

are average values of sound speed and density through both the squid tissue and

the seawater-filled mantle cavity. In light of these results, the values given by Iida

(g = 1.043 and h = 1.053) were used in the DWBA ray-tracing model to represent

the non-seawater filled regions of the squid’s body (i.e. tissue, organs, etc.). Seawater

filled cavities were given values of 1 for g and h.

3.3.2 High resolution morphometry of squid: SCT scans

Spiral computerized tomography (SCT) scans were taken of a live, anesthetized squid

at the Marine Research Facility at the Woods Hole Oceanographic Institution (Fig.

3-3). Spiral CT scanners measure data in a helical manner by advancing the body

continuously through the scanning aperture for each 360◦ rotation. Cross sections are

then reconstructed by interpolation into 2-D images with each pixel containing the

x-ray attenuation in Hounsfield units, HU, (Hofer, 2000).

The squid measured in this study was anesthetized in a 1% ethanol seawater so-

lution. During scanning the animal was suspended vertically in seawater to minimize

distortion of body shape caused by laying the animal, unsupported, on a hard sur-

face. Contrast agent was added to the seawater to help distinguish between x-ray

attenuation of the solution and the squid body. Scans were taken by a Siemens Vol-

ume Zoom, four-slice SCT scanner using pitch and collimator settings of 2 mm and 1
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mm respectively. Images of 512× 512 pixels were reconstructed from the data using

0.5 mm slice thickness. Individual pixel size was 0.5078 × 0.5078 mm. Images were

later resized on separate mathematical software using bicubic interpolation such that

all pixels represent one cubic volume element, or voxel, with dimensions, lvs equal

to 0.5 × 0.5 × 0.5 mm. In this way dimensional ratios are preserved in the image

rotations discussed in the next section.

Figure 3-4: Ray trace illustration through inhomogeneous volume. Each differential
element is labeled with an integer that indicates the specific fluid type. The phase
change, due to sound speed of the fluid and distance traveled, is calculated in the x
direction. Each differential element is assigned a phase change. The total one-way
phase to any individual volume element, or voxel, is the cumulative sum of phase
changes in the x direction from the origin to that point.

3.3.3 Numerical implementation of the DWBA ray-tracing

model

Ray tracing and volume integration

This model, which numerically computes the DWBA volume integral, is based on

discretizing the scattering volume, Sv. This volume is composed of “l” cross-sectional

matrices, M . Each element of the matrix, M , represents one volume element, or voxel,
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and is assigned an integer value depending on the material properties of that voxel.

The matrices, M l, are not directly incorporated into the summation, but instead, as

a single 3-D matrix, they provide a map of the regions of various material properties

within the volume. Although only two fluid types are used to represent scattering

volumes in this study, it should be noted that this model can be applied to volumes

containing any arbitrary variation of material properties.

In order to accurately track the phase of a sound wave as it is transmitted through

an inhomogeneous scattering volume, it is necessary to incorporate a ray trace com-

ponent. This algorithm is used to calculate the phase of the incident wave at each

voxel. The computed phase term numerically represents the piecewise integration of

the exponential phase term in Eq. (3.5). Since the backscattered case is considered

here, only the one-way phase change is found, which is then simply doubled to find

the full phase term.

The task of calculating phase change through the scattering object is begun by

digitally rotating the volume matrix, Sv, such that the incident wavenumber vector,

~k1, is orthogonal to the new cross sections M̃ l. All rotations are accomplished using

“nearest neighbor” interpolation, thus preserving the integer value of each matrix

element. The benefit of this rotational approach is in greatly simplifying the ray

trace to a one dimensional problem in the x direction (Fig. 3-4). Once the rotations

are complete, the differential phase change, which depends on the locally assigned

sound speed, is calculated for each voxel. The total one-way phase change to each

volume element is then found as the cumulative summation of these differential phase

changes from the origin to this voxel in the x direction.

Finally, a search routine creates a linear index of all voxels within the rotated

volume, S̃v, assigned a particular material property and matches the appropriate

amplitude term with the round trip phase term. Thus, the analytical expression

given in Eq. (3.5) becomes

fbs =
k2

1

4π

Nz∑

l=1

Ny∑
j=1

Nx∑
i=1

(γκ − γρ)
l
ije

2iϕl
ijdv (3.11)
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where dv is the product of the differential distances, dx, dy, and dz, and the phase

term, ϕl
ij, is a cumulative summation of the phase change, in the x direction, and is

given by

ϕl
ij =

i∑
q=1

kl
qjdx (3.12)

Numerical issues

The accuracy of digitization of an organisms body limits the range of frequencies for

which the DWBA ray-tracing model can be applied. In general the spatial resolu-

tion of the images used in a scattering model should be fine enough that the ratio of

acoustic wavelength to maximum dimension of the voxel size should be about 20:1

(Stanton and Chu, 2000). A closely related limitation is in the computational time of

high resolution models. Calculating the frequency dependent, backscattering ampli-

tude, fbs, for broadband sound, where many finely incremented, discrete frequencies

are considered, can take a considerably amount of computing time. Similarly, calcu-

lating fbs for multiple angles of orientation, can be time intensive depending on the

angular resolution. In this model calculating fbs for multiple angles of orientation

required significantly more processing time, per discretization, than calculations for

multiple frequencies due to the rotation of the volume.

3.3.4 Application to squid

The SCT images of squid were cropped to the size of the largest cross section and

then converted to binary matrices, M l, using a simple threshold technique (Fig. 3-3).

For incorporation into the DWBA ray-tracing model all voxels identified as seawater

were assigned a value of “0” while voxels representing the squid’s body was assigned a

value of “1”. For modeling purposes all tissue not identified as seawater was assumed

to have material properties of mantle tissue. The binary conversion was insensitive

to threshold level as the contrasting agent made the seawater significantly higher in

x-ray attenuation than the squid’s body.

In order to model scattering by T. pacificus, the morphometry from the SCT
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scans of L. pealeii was scaled so that the aspect ratio, i.e. mantle length to width

ratios (Lml/Lmw) were approximately the same. These squid are approximately 10%

thicker in mantle width than L. pealeii. Model predictions were then compared with

published data using reduced target strength [Eq. (3.4)].

3.4 Results

3.4.1 Scattering from fluid-filled, fluid spherical and finite

cylindrical shells

The DWBA ray-tracing model is applied to computer generated volumes of two simple

shapes, cylindrical and spherical shells. In both cases the shell and interior volume

of the object are fluid materials. Reduced target strengths of spherical shells are

compared with the exact modal series solution for fluid-filled, fluid spherical shells

[Eq. (3.9)]. RTS predictions for cylindrical shells are compared, at normal incidence,

with the modal-series-based solution for finite length, fluid-filled, fluid cylindrical

shells [Eq. (3.10)] and at various orientations with the DWBA solid, finite cylinder

model [Eq. (3.8)].

Shell thickness

Predictions of RTS for fluid shells of various thickness are compared with modal series

results to verify that the DWBA ray-tracing model is applicable for objects containing

varying degrees of inhomogeneities (Fig. 3-5 and Fig. 3-6). In both figures fractional

shell thickness, τ , (see Fig. 3-1) is varied from 10% to 50% and compared with a

homogeneous volume. Agreement between the DWBA ray-tracing model predictions

and modal series solutions is excellent. In the spherical case (Fig. 3-5), the numerical

model predictions were generally within ±1 dB of the modal series solution for all

values of shell thicknesses up to a k1a of 12.5 and within ±2 dB up to a k1a of

17.5. In the cylindrical case (Fig. 3-6) the DWBA ray-tracing model matched the

modal-series-based solution generally within ±0.5 dB for k1a up to 5 and ±2 dB to
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Figure 3-5: Effect of varying shell thickness on reduced target strength for a spherical,
fluid-filled, fluid shell. DWBA ray-tracing predictions (solid lines) are compared with
exact modal series solutions [Eq. (3.9)], (dashed lines). [Parameters: outer radius:
a = 5 cm; material properties: g2 = 1.01, h2 = 1.01, g1 = g3 = 1, h1 = h3 = 1; voxel
size: lvs = 0.5 mm]

a k1a of 12.5. In both cases some large discrepancies (> 10 dB) existed, however,

these were isolated to nulls of very low RTS. As discussed in a following section, the
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disagreement between the DWBA ray-tracing model and modal-series-based solutions

at higher values of k1a is a numerical issue related to voxel resolution.

Using shell thickness as a proxy for various size inhomogeneities, these results

show that RTS from spherical shells and cylindrical shells at normal incidence is

strongly affected by inhomogeneous material properties. Small scale structure seen

here is due to interference between waves scattered from the front and back interfaces

of the object. While these interference patterns, for differing shell thicknesses, are

nearly identical in terms of null spacing, the large scale structure varies dramatically.

An important aspect of these results is that the broadband frequency response of a

weakly scattering, inhomogeneous object cannot be accurately modeled by a simple

homogeneous object of the same outer form.

Material properties

It is known that the DWBA formulation is only valid for weak scatterers. In order

to validate the range of accuracy for the DWBA ray-tracing model with respect to

material properties, finite cylindrical shells with various sound speed and density

contrasts are considered. The model predictions are compared with the modal-series-

based, finite cylindrical shell solution [Eq. (3.10)] that can describe a wide range of

material profiles.

Modeled RTS predictions from finite cylindrical shells with fractional shell thick-

ness of 25% and g and h values ranging from 1.02 to 1.06 are shown in Fig. 3-7.

The primary effect of increasing sound speed and density contrast was to increase

the objects target strength. Frequency was varied such that the maximum k1a of 10

equates to a minimum resolution of λ/lvs ' 25. There is excellent agreement outside

the deepest portion of the nulls (±1 dB) up to a k1a of 5 (λ/lvs ' 50). Errors of up

to 2 dB seen at higher k1a is largely due to resolution issues discussed in a following

section.
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Figure 3-6: Effect of varying shell thickness on reduced target strength for a cylindri-
cal, fluid-filled, fluid shell of finite length. DWBA ray-tracing predictions (solid lines)
are compared with approximate, modal-series-based solutions, [Eq. (3.10)], (dashed
lines). [Parameters: outer radius: a = 4 cm; aspect ratio: a/L = 1/5; angle of
incident wave: θ = 0 (normal incidence); material properties: g2 = 1.01, h2 = 1.01,
g1 = g3 = 1 , h1 = h3 = 1; voxel size: lvs = 1.0 mm]
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Figure 3-7: Effect of varying material properties on reduced target strength for a
cylindrical, fluid-filled, fluid shell of finite length. DWBA ray-tracing predictions
(solid line) are compared with approximate modal-series-based solutions for a finite
cylinder, [Eq. (3.10)] (dashed lines). [Parameters: outer radius: a = 4 cm; fractional
shell thickness: τ = 25%; aspect ratio: a/L = 1/5; angle of incident wave: θ = 0
(normal incidence); material properties of shell: h2 (in fig.); material properties of
inner and outer fluid: h1 = h3 = 1; voxel size: lvs = 1.0 mm]
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Orientation of scattering object

In order to test the DWBA ray-tracing model for sound waves incident on an object

at various angles, scattering from homogeneous cylinders at a given k1a and varying

tilt angles, θ, were considered. Since the modal-series-based solution for finite length

cylinders is only accurate near broadside incidence, the ray-tracing model was com-

pared with the DWBA solid, finite cylinder model [Eq. (3.8)], which is known to be

valid for all orientations. The DWBA ray-tracing model showed very good agreement

with the analytic solution (±1 dB) except in the deepest nulls (Fig. 3-8a).

It should be noted that the values chosen for k1a in the orientation test were

neither in the deepest part of the null or at a peak in the frequency response curve

(Fig. 3-6c). As seen in all the modeling tests (Figs. 3-5, 3-6, 3-7, and 3-8a) the

accuracy of the DWBA ray-tracing model at very low RTS, such as in very deep

nulls, is not as good as for the rest of the curve. This discrepancy, which is magnified

because of the logarithmic scale, is seen in both high and low resolution models and is

therefore believed to be associated with the DWBA formulation itself. It is expected

that this error at low RTS is somewhat mitigated by the fact that very deep nulls are

not as common in real organisms as in ideal shapes. The presence of these nulls in

scattering from ideal shapes comes from nearly complete destructive interference of

coherent scattering from the front and back interfaces. In real organisms the complex

scattering from material property inhomogeneities and surface roughness is expected

to dampen out these interference patterns.

Effects of varying voxel resolution

As the spatial resolution of a volume used to depict organism shape decreases, a

numerical scattering model is susceptible to errors. This is due in large part to

the inability of large voxels to accurately represent the curvature of an object. As

resolution decreases, smoothly curving lines become stair-stepped facets. When these

facets approach the size of the incident sound wavelength the coherent scattering from

this flat face creates errors in the model solution.
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Figure 3-8: Reduced target strength versus orientation predictions for solid cylinder
of finite length. DWBA ray-tracing predictions (solid line) are compared with DWBA
solid, finite cylinder model, [Eq. 3.8], (dashed line). [Parameters: g = 1.01, h = 1.01,
k1a = 5.03, aspect ratio, a/L = 1/5. ]

In order to test the accuracy of the DWBA ray-tracing model at different resolu-

tions, RTS predictions from homogeneous cylindrical volumes of the same dimensions

and varying voxel size, lvs, are compared to the DWBA solid, finite cylinder model

[Eq. (3.8)]. Voxel size with respect to wavelength, λ/lvs, is varied from 12.5 to 75 for
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the RTS versus orientation curves given in Fig. 3-8. The model predictions matched

the analytical solution fairly well for large scale structure at values of λ/lvs ≥ 12.5 and

considerably better at values of λ/lvs ≥ 25. Small small scale structure was generally

within ± 2 dB at λ/lvs ≥ 50 .

The effects of resolution can also be seen in the results of broadside scattering

from simple shapes. Figures 3-5 and 3-6 show how increasing k1a, and thus decreasing

λ/lvs, affects the predictions. In the case of a spherical shell (Fig. 3-5) an accuracy

of ±2 dB requires a resolution of approximately 35. In the cylinder case a similar

accuracy can be obtained by a resolution of 20. From these results it is suspected that

decreased resolution has a more pronounced effect on a volume with more complex

curvature (i.e. two dimensions in the spherical case as compared with one dimensional

curvature in the cylindrical case). Further comparisons using spheres of increased

resolution confirm that the disagreement seen at higher k1a is due solely to resolution

issues.

3.4.2 Application to squid

Reduced target strength predictions of the DWBA ray-tracing model were compared

with measurements from live, freely swimming squid (Arnaya et al., 1989b,c; Kang

et al., 2005), as well as tethered, anesthetized squid Kang et al. (2005). Measurements

of live squid are all of the species T. pacificus. The model predictions use a 3-D

digitization of a L. pealeii scaled to match the aspect ratio of a T. pacificus. Material

properties for squid tissue and swimming tilt angle distributions come from published

sources and, therefore, it should be noted that no floating parameters were necessary

in these predictions.

Comparison of reduced target strength versus tilt angle with model pre-

dictions

Figure 3-9 shows reduced target strength predictions versus tilt orientation for dor-

sal aspect backscatter from squid. Model predictions use a 3 degree running average.
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Figure 3-9: Reduced target strength versus tilt angle for squid (T. pacificus) using
scaled morphometry of L. pealeii. DWBA ray-tracing model predictions (solid line)
use scaled morphometry of L. pealeii and are compared with reduced target strengths
from published measurements of T. pacificus (data points). Top three plots show data
from live, freely swimming squid, ensonified at 38 kHz, while bottom two plots show
data from anesthetized, tethered squid also ensonified at 38 kHz (Kang et al., 2005).

Frequency of the incident wave, as a model parameter, was chosen that corresponds to

a k1Lml that matched the frequency and mantle length of squid used in the published

study. The published results of live squid ensonified at 38 kHz (Kang et al., 2005)

include freely swimming squid ensonified by a split beam transducer with swimming
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Figure 3-10: Average RTS predictions for squid (T. pacificus) using scaled morphom-
etry of L. pealeii. DWBA ray-tracing model predictions (solid and dashed lines) are
averaged over tilt angle using normal distributions limited to ±2 standard deviations
of the mean. The two tilt angle distributions presented use mean angle and standard
deviation, [θ,s.d.], from published sources of swimming squid: [-4,11.1] from Arnaya
et al. (1989a) and [-17.7,12.7] from Kang et al. (2005). Predictions are compared
with published results of average target strengths for live, freely swimming squid, T.
pacificus : circles (Arnaya et al., 1989b), squares (Arnaya et al., 1989c), and plus signs
(Kang et al., 2005).

angle determined from perpendicular side-view cameras and anesthetized squid teth-

ered at various angles of tilt. While data is sparse for the main lobe ±10◦, it is clear

that off-broadside predictions underestimate the actual backscattered target strength

by 5-10 dB or more. Furthermore, both freely swimming and tethered results show

considerably less variability than predicted by the model.
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Comparison of average reduced target strength with model predictions

Average RTS with respect to tilt angle is predicted for squid by compiling model re-

alizations for two degree angle increments from −50◦ to +50◦. Results were weighted

using two different tilt distributions of freely swimming squid from published sources

(Kang et al., 2005; Arnaya et al., 1989a). Published measurements from three stud-

ies on target strengths of T. pacificus are compared with DWBA ray-tracing model

predictions (Fig. 3-10). The model predictions are cut off at a k1Lml of 150 corre-

sponding to a minimum resolution, λ/lvs, of 12.5. The live measurements come from

two sources. Measurements from Arnaya et al. (1989b,c) were estimated from mean

volume backscattering target strength. The data from Kang et al. (2005) was mea-

sured from individual squid using a split-beam transducers at 38 and 120 kHz. The

tilt distribution with a mean of −4◦ showed better agreement with published data.

3.5 Discussion

A scattering model that accurately treats inhomogeneities within a weakly scatter-

ing volume using a composite DWBA and ray trace formulation has been developed.

This model is applicable for all frequencies and angles of scatterer orientation and

can be applied to arbitrarily shaped three dimensional objects. This model is primar-

ily limited by the spatial resolution of digital volumes used to represent shape and

inhomogeneities of the scattering object. For objects with 1-D curvature, as with a

cylinder, a minimum resolution of λ/lvs = 20 is sufficient to model broadband, re-

duced target strengths at normal incidence with an accuracy of ±2 dB. A resolution

of approximately λ/lvs = 50, however, is required to accurately model RTS from a

cylinder over all orientations. Objects with 2-D curvature, such as a sphere, require a

higher minimum resolution (λ/lvs = 35) for modeling accuracy similar to the accuracy

of modeling a cylinder at broadside.

The application of the DWBA ray-tracing model to simple, shelled objects shows

that material property inhomogeneities have a significant impact on reduced target

strength. For weakly scattering objects it is apparent that simulating an inhomoge-
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neous object with a homogeneous object of the same outer form is not sufficient to

accurately describe the broadband frequency response of that scatterer.

This DWBA ray-tracing model has been applied to squid using high resolution

SCT scans. A result of this modeling is the discovery that, for off-broadside backscat-

tering, something other than soft tissue and the seawater filled mantle chamber con-

sidered in this model, appears to dominate the scattering. In measurements of zoo-

plankton, treated as a weakly scattering organism, there has been similar discrep-

ancies between experimental measurements and DWBA predictions of scattering at

off-broadside angles, or sidelobes (McGehee et al., 1998; Lavery et al., 2002). There

are several factors that could contribute to the higher target strengths seen in mea-

surements of these sidelobes. These factors include scattering from a complex shape,

roughness of external anatomy, material properties inhomogeneities, flexing or bend-

ing of the animal, and phase variability from the influence of noise (Stanton et al.,

1998a; Demer and Conti, 2003; Amakasu and Furusawa, 2006). Stanton and Chu

(2000) showed that for zooplankton, axial variations in material properties, simulat-

ing internal inhomogeneities in zooplankton, had the effect of generally raising the

sidelobe levels. For squid, swimming motion has also been shown to be a factor in

scattering (Arnaya and Sano, 1990a).

In this study the comparison of predictions versus measured reduced target strengths

of both tethered, anesthetized squid and freely swimming squid show sidelobe dis-

crepancies. Therefore, although swimming motion and changes in body shape cannot

be ruled out as a contributing factor, other factors most likely apply. Considering

the incorporation of both the complex outer shape of squid and the interior morphol-

ogy of the mantle chamber used in this model, only a few possible factors remain.

One probable factor is inhomogeneities in the internal anatomy of the squid. The

interior body of the squid includes a long thin pen, a parrot-like beak, statoliths

(small, bony inner ear organs), a hard cartilaginous cranium, and hard lenses in the

eye (Williams, 1909). Iida et al. (2006), also identifies the liver, a low density organ

surrounded by higher density tissue, as a likely scatterer of sound. In combination

it seems likely that scattering from the variety of inhomogeneities within a squid’s
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body could significantly contribute to scattering and even dominate the scattering

from off-broadside orientations. It is suggested that future work on scattering from

squid include focused array transducer measurements along the length of a live squid.

This type of measurement can localize and quantify relative scattering contributions

from different areas of an organism’s body (Nash et al., 1987).

Orientation averaged, reduced target strength results show better agreement be-

tween modeling predictions and published data. This is likely due to the fact that

broadside and near-broadside echoes dominate the averages in the given tilt distrib-

utions. Scattering from organisms at broadside angles are less sensitive to shape and

material profile because the scattering is dominated by echoes from the front and back

interfaces (Stanton et al., 1993; Stanton and Chu, 2000). Errors in the predictions due

to inhomogeneities not included in this model are, thus, less significant when averages

include the broadside scattering levels. In general, this model produces reasonable

predictions for squid and may have direct application to other soft bodied marine

organisms.
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Chapter 4

Summary and conclusion

This thesis investigates the scattering of broadband echolocation signals emitted by

beaked whales. For the first time, echoes, recorded in situ from prey of echolocating

toothed whales, have been comprehensively examined. Furthermore an advance to

an existing scattering model has been motivated by this analysis to give further

insight into the scattering by prey. The following paragraphs summarize the research

presented here, present recommendations for future work, and list the contributions

of this thesis.

4.1 Scattering of echolocation signals

New methods and technologies in data collection often lead to exciting research oppor-

tunities. Recordings of beaked whale hunting signals and the resultant, backscattered

echoes have provided a new insight into the relationship between these predators and

their prey. Scattering research, which has developed over the years as a means of

surveying marine populations and fisheries stocks, can now be applied to help un-

derstand a complex predator behavior. The research detailed in this thesis shows

that data acquired in this form can be studied to determine how and if beaked whales

acoustically discriminate their prey from other scatterers in their environment. While

no clear answer is determined, as to what specific feature or features within the fre-

quency response of their prey is key to the classification process, it does appears that
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there is an acoustic basis, beyond target strength, for this discrimination. Specifically,

the spectral structure content, i.e. patterns of peaks and nulls in the echoes’ spectra,

appear to play an important role in the whale’s selection of prey.

4.2 Modeling

The goal of modeling acoustic scattering is to both increase the understanding of

the scattering process from complex objects, such as marine organisms, as well as

provide a useful tool in analyzing in-situ acoustic data from marine populations.

Generalizing existing models can help extend their application to organisms of greater

complexity. The application of the DWBA model to inhomogeneous bodies broadens

the applicability of this model and improves accuracy for such objects. It is believed

that this high resolution, DWBA ray-tracing model has a useful application to squid

with some reservations, in its current form, for predictions of off-broadside scattering.

This limitation will need to be addressed if discrete scattering predictions are going

to useful in individual echo classification schemes for squid. Nonetheless, the results

from this modeling work, qualitatively, provide insight into the whale echolocation

problem. Additionally, it is expected that this model will have direct application to

other complex, soft-bodied organisms.

4.3 Recommendations for future work

One of the limitations of this study is the small amount of data available. Useful

acoustic data of discrete echoes from prey of an echolocating whale is limited to well-

placed tags in which the target echoes are not shadowed by the whale’s body. It is

hoped that future measurements from tagged whales will provide more data that can

be used to further analyze both the whale’s behavior and also help characterize the

prey field where these animals hunt.

It is suspected that future development of automated algorithms is possible to

classify series of echoes, such as the prey echo trains discussed in this paper, into
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broad morphological categories based on target strengths and spectral structure of the

echoes. Requirements for this type of work include high quality in situ data like that

analyzed here, accurate and frequency-specific source levels for the species of whale

being studies, and expected prey based on stomach content data of similar species

of whales foraging in the same habitat. Scattering models used in such algorithms

depend on accurate morphological features, size, and material properties of expected

prey. Although unambiguous classification of species may not be possible, broad

categories such as swimbladder bearing fish, non-swimbladder-bearing fish, squid,

etc. may be feasible.

4.4 Contributions of this thesis

• Analysis of echo characteristics from prey of an echolocating beaked whale.

Comparison with non-whale-selected scatterers gives evidence of an acoustic

basis for prey selection by the Blainville’s beaked whale.

• Application of the distorted wave Born approximation (DWBA) to fully 3-D

inhomogeneous, weakly-scattering objects using a combined volume integration

and ray trace approach.

• Application of DWBA ray-tracing model to squid using high resolution spiral

computerized tomography (SCT) scans for internal and external morphology.

This advancement serves dual purposes: (1) to accurately model acoustic scat-

tering from a marine organisms, (2) to add further insight into the echolocation

behavior of beaked whales.
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Appendix A

Modal series coefficients for

fluid-filled shells

As explained in the theory section of this article, the ray-tracing DWBA model devel-

oped in this work is validated, in part, by comparison to exact modal series solutions

for fluid-filled, fluid spherical shells and modal-series-based solutions for finite cylin-

drical shells. The modal series solutions are derived by separating the wave equation in

spherical and cylindrical coordinate systems, respectively, and applying two boundary

conditions at each interface: continuity of pressure and continuity of radial velocity.

The resulting modal series solution coefficients for spherical shells and infinite length

cylindrical shells are presented here. In the examples given in this this paper, the

properties of the fluid surrounding the scatterer are denoted by the subscript “1”, the

fluid shell of the scatterer is denoted by subscript “2”, and the fluid inside the shell

is denoted by the subscript “3” (Fig. 3-1).

A.0.1 Spherical shells

The modal series coefficients for a fluid-filled, fluid spherical shell expressed as the

variable, An, in Eq. (3.9) is given below as the determinants of two matrices. These

matrices contain the spherical bessel functions of the first kind, jn, the second kind

ηn, and the third kind (also known as the spherical Hankel function of the first kind,
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h
(1)
n ). Primes on the Bessel functions, (e.g. h

(1)′
n (k1a) ), indicate derivatives with

respect to their argument.

An =

∣∣∣∣∣∣∣∣∣∣∣∣

jn(k1a) 0 −jn(k2a) −ηn(k2a)

j′n(k1a) 0 −ρ1c1
ρ2c2

j′n(k2a) −ρ1c1
ρ2c2

η′n(k2a)

0 −jn(k3b) jn(k2b) ηn(k2b)

0 −ρ2c2
ρ3c3

j′n(k3b) j′n(k2b) η′n(k2b)

∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣

h
(1)
n (k1a) 0 −jn(k2a) −ηn(k2a)

h
(1)′
n (k1a) 0 −ρ1c1

ρ2c2
j′n(k2a) −ρ1c1

ρ2c2
η′n(k2a)

0 −jn(k3b) jn(k2b) ηn(k2b)

0 −ρ2c2
ρ3c3

j′n(k3b) j′n(k2b) η′n(k2b)

∣∣∣∣∣∣∣∣∣∣∣∣

(A.1)

A.0.2 Cylindrical shells

The modal series coefficients for a fluid-filled, fluid infinite cylindrical shell, expressed

as the variable, Bn, in Eq. (3.10), is given below as the determinants of two matrices.

These matrices contain the cylindrical bessel functions of the first kind, Jn, the second

kind (also known as the Neumann function, Nn) and the third kind (also known as

the Hankel function of the first kind, H
(1)
n ). Primes on the Bessel functions, (e.g.

H
(1)′
n (k1a) ), indicate derivatives with respect to their argument.

Bn =

∣∣∣∣∣∣∣∣∣∣∣∣

Jn(k1a) 0 −Jn(k2a) −Nn(k2a)

J ′n(k1a) − ρ1c1
rho2c2

J ′n(k2a) − ρ1c1
rho2c2

N ′
n(k2a)

0 −Jn(k3b) Jn(k2b) Nn(k2b)

0 − ρ2c2
rho3c3

J ′n(k3b) J ′m(k2b) N ′
m(k2b)

∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣

H
(1)
n (k1a) 0 −Jn(k2a) −Nn(k2a)

H
(1)′
n (k1a) − ρ1c1

rho2c2
J ′n(k2a) − ρ1c1

rho2c2
N ′

n(k2a)

0 −Jn(k3b) Jn(k2b) Nn(k2b)

0 − ρ2c2
rho3c3

J ′n(k3b) J ′m(k2b) N ′
m(k2b)

∣∣∣∣∣∣∣∣∣∣∣∣

(A.2)
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Appendix B

Algorithms for DWBA ray-tracing

model

The algorithm used to calculate backscattering amplitude, fbs, for inhomogeneous

objects consists of two files, given in this section, that are written for MATLAB

technical computing software (ver. 7.2.0.232). This example uses three material

properties but the algorithms can be easily modified to accept any number of discrete

material properties. The first file, “DWBA_3D_ray.m”, is an algorithm that calculates

the amplitude and phase for each volume element and numerically integrates these

results for each frequency discretization of a broadband frequency array. This file

calls on the second algorithm “vrotate.m” that rotates the volume so that the incident

wavenumber vector ~ki is orthogonal to the matrices of size [r,c] in the 3-D volume

matrix, S̃v, of size [r,c,im].

81



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%DWBA_3D_ray.m %%

%%Ben Jones 4/11/06 %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Computes volume integral DWBA of scattering

% with multiple material properties

% uses ray tracing to track phase

% uses CT scan images for high resolution morphometry

clear, close all

%% USER SELECTED VARIABLES

vol_file = ’LP05’ ; %scattering volume filename

%incident wave

phi = 0 ; %0/180 dorsal/ventral, 90/-90=lft/rt lateral

theta = 45 ; %tilt: (-) head down , (+) head up

fmin = 1e-30 ; %min frequency

fmax = 100e3 ; %max frequency

df = 0.5e3 ; %[Hz] frequency resolution

%set material properties

rho0 = 1020 ; %[kg/m^3] (medium tagged with ’0’) %1020 for squid

c0 = 1500 ; %[m/s]

g1 = 1.043 ; %rho1/rho0 (medium tagged with ’1’) %1.043 for squid

h1 = 1.053 ; %c1/c0 %1.053 for squid

g2 = 1.0 ; %rho2/rho0 (medium tagged with ’2’)

h2 = 1.0 ; %c2/c0

%scan resolution

ps = 5e-4 ; % [m] voxel size **assumes cubic voxels
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%% DIRECTORIES

HOME_DIR = pwd ;

DATA_DIR = [HOME_DIR,’\data’] ;

VOL_DIR = [HOME_DIR,’\volumes’] ;

%% ROTATE VOLUME (orthoganalize K vector)

[BWtop] = vrotate(phi,theta,VOL_DIR,vol_file,0) ;

cd(VOL_DIR)

save(’BWtop’,’BWtop’) %saves rotated volume in volume directory

cd(HOME_DIR)

fprintf(’volume rotated successfully’)

%% LOOP PARAMETERS

[r,c,im] = size(BWtop) ;

%frequency array

farray = fmin:df:fmax ; flen = length(farray) ;

%preallocate memory

fbs_dwba = zeros(1,flen) ; f_dwba = zeros(1,flen) ;

%% FREQUENCY LOOP

for fnx = 1:flen f = farray(fnx) theta

%preallocate memory

dph = zeros(r,c,im) ; dA = zeros(r,c,im) ;

%wavenumbers in various mediums

k(1) = 2*pi*f/c0 ; %[rad/m] wavenumber in medium ’0’

k(2) = k(1)/h1 ; %[rad/m] wavenumber in medium ’1’

k(3) = k(1)/h2 ; %[rad/m] wavenumber in medium ’2’
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%DWBA coefficients

%amplitude in medium ’1’

Cb_1 = 1/(g1*h1^2)+1/g1-2 ; %gamma_kappa - gamma_rho

Ca_1 = k(1).*k(1)*Cb_1/(4*pi) ; %summation coefficient

%amplitude in medium ’2’

Cb_2 = 1/(g2*h2^2)+1/g2-2 ;

Ca_2 = k(1).*k(1)*Cb_2/(4*pi) ;

%find differential phase for each voxel

dx = ps ; dy = ps ; dz = ps ;

fldnx0 = find(BWtop==0) ; %for medium (tag = ’0’)

dph(fldnx0) = (k(1)*dx) ;

fldnx1 = find(BWtop==1) ; %for medium (tag = ’1’)

dph(fldnx1) = (k(2)*dx) ;

fldnx2 = find(BWtop==2) ; %for medium (tag = ’2’)

dph(fldnx2) = (k(3)*dx) ;

%1-way phase to center of voxel

phase = cumsum(dph,3)-dph/2 ; %cumulative summation of phase

%find differential amplitudes for each voxel

dv = dx.*dy.*dz ;

dA(fldnx1) = Ca_1*exp(2*i*phase(fldnx1))*dv ;

dA(fldnx2) = Ca_2*exp(2*i*phase(fldnx2))*dv ;

%volume summation

fbs_dwba(fnx) = sum(sum(sum(dA))) ;

f_dwba(fnx) = f ;

clear dph phase fldnx0 fldnx1 fldnx2 dA

end
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%% COMPILE AND SAVE DATA

%calculate target strength

sigmabs = (abs(fbs_dwba)).^2 ; TS_dwba = 10*log10(sigmabs) ;

%parameters

param.c0 = c0 ; param.c1 = h1*c0 ; param.c2 = h2*c0 ;

param.rho0 = rho0 ; param.rho1 = g1*rho0 ; param.rho2 = g2*rho0 ;

param.phi = phi ; param.theta = theta ;

param.ps = ps ;

data_file = [vol_file,’_’,num2str(phi),’_’,num2str(theta)] ;

Q = input(’Do you want to save these results?’,’s’) ;

if Q == ’y’

cd(DATA_DIR)

save(data_file,’fbs_dwba’,’TS_dwba’,’f_dwba’,’param’)

cd(HOME_DIR)

end
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function [BWtop] = vrotate(phi,theta,voldir,file,sav)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%volume_rotate %%

%%Ben Jones 3/21/06 %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% rotates to selected coordinate system

%

% phi: rotate about center column of center frame

% theta: rotate about center row of center frame

% **note: setting phi,theta = 0 rotates cross-

% section slices to longitudinal slices

% voldir: volume directory

% file: volume file

% sav: 1/0 (1=query to save / 0=don’t save)

%% DIRECTORIES

HOME_DIR = pwd ;

%% LOAD VOLUME

cd(voldir)

load(file) ;

cd(HOME_DIR)

[r,c,listl] = size(BWtop) ; %BWtop is 3-D volume matrix prev. loaded

BW = BWtop ;

%% ROTATE IN PHI DIRECTION

BWph1 = imrotate(BW(:,:,1),phi,’nearest’,’loose’) ;

[sz1,sz2] = size(BWph1) ;

BWphi = zeros(sz1,sz2,listl) ;

for nx = 1:listl %for each original image
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%nx

BWphi(:,:,nx) = imrotate(BW(:,:,nx),phi,’nearest’,’loose’) ;

end

%% ROTATE IN THETA DIRECTION

%first reslice along longitudinal axes and pasting as array

[r,c,p] = size(BWphi) ;

BWside = zeros(r,p,c) ;

for nim = 1:c %for each new image (= number of cols of old images)

%nim

for oim = 1:p %for each new image column (old image slice)

BWside(:,oim,nim) = BWphi(:,c-nim+1,oim) ; %from right to left

end

end

%rotate

BWth1 = imrotate(BWside(:,:,1),theta,’nearest’,’loose’) ;

[sz1,sz2] = size(BWth1) ;

BWtheta = zeros(sz1,sz2,c) ;

for phnx = 1:c %for each new image (= number of cols of old images)

%phnx

BWtheta(:,:,phnx) = imrotate(BWside(:,:,phnx),theta,’nearest’,’loose’) ;

end

%% RESLICE IN ORTHOGONAL PLANES

%reslice matrix from top to bottom

[r,c,p] = size(BWtheta) ;

BWtop = zeros(p,c,r) ;

for nim = 1:r %for each new image (= number of rows of old images)

%nim

for oim = 1:p %for each new image row (old image slice)
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BWtop(p-oim+1,:,nim) = BWtheta(nim,:,oim) ; %from right to left

end

end

%% SAVE DATA

if sav == 1

Q=input(’Do you want to save the parameters? ’,’s’) ;

if Q == ’y’

filename = [file,’_’,num2str(phi),’_’,num2str(theta)] ;

cd(voldir)

save(filename,’BWtop’)

cd(HOME_DIR)

end

end
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