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Abstract

A group at the Charles Stark Draper Laboratory developed a concept
for a mine reconnaissance platform called Intelligent Sonobuoy. This platform
utilizes a low frequency sonar with wide aspect angle coverage. Furthermore
the platform is designed to drift past an area of interest and thus obtain
multiple detections from each sonar target. This thesis examines methods of
fusing together those detections into a composite map of the target field in
order to detect and localize those sonar targets.

A technique based on hypothesis testing and maximum likelihood
estimation is first derived and then applied to simulated data. Lastly, the system
is validated on actual test data obtained in Mendum's Pond, New Hampshire
during the summer and Fall of 1994. This system is shown to be effective at
resolving targets to within a few meters.

A competing approach based on the Hough transform is next examined.
This clustering technique is applied to find the change in target location with
respect to the buoy's position. The system works for simulated test data with
a small number of detections. System performance declines rapidly as the
number of detections increases and the system does not work well with the actual
test data.
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1. Introduction

Due to a changing global political environment, the U.S. Navy has

placed an increased importance on mine warfare. The collapse of the Soviet

Union has led to a increased number of regional conflicts for which the U.S.

Warfare Strategy must adapt. 1 A new emphasis has been placed on power

projection and the ability to fight in smaller scale, conventional conflicts such

as Operation Desert Storm in Southwest Asia. Military downsizing has caused

a removal of overseas assets and an increased dependence on power projection.

One such method of power projection deemed important by military authorities

is that of Marine Expeditionary Warfare. The ability to transport troops and

place them on a hostile shore is an important option for military planners as

the number of overseas military bases continues to decrease. Integral to the

success of Marine Expeditionary Warfare is the concept of mine warfare,

which includes both offensive mining and mine countermeasures.

Operation Desert Storm in early 1991 demonstrated glaring deficiencies

in. mine warfare and particularly in mine countermeasures (MCM). The

presence of approximately 1,300 Iraqi mines interspersed throughout the

Persian Gulf eliminated the possibility of any plans for an amphibious

operation. Furthermore on 17 February 1991, a $25K magnetic-acoustic mine

caused $15M of damage to the Aegis cruiser, USS Princeton. 2 In response to

these shortcomings the U.S. Navy has placed an increased emphasis on mine-

countermeasures, especially in littoral, or coastal, environments. 1

Conventional mine-hunting techniques use sophisticated ship-board

sonar systems to detect mines. A need for more rapid response has recently

led to development of helicopter-based mine reconnaissance. A major problem

with these methods is that they are risky and involve placing human assets

near a potentially hostile coast. These conventional systems have a very low

area coverage rate which increases the time needed to search a potential

minefield. The area coverage rate drops even lower in littoral environments, so

hunman operators are in a dangerous position for an even longer period of time.



Based on the above reasons, the top priority in the U.S. Navy Mine Warfare

Plan is to " ... develop a clandestine mine surveillance, reconnaissance, and

detection capability that uses a variety of systems to provide knowledge of the

full dimensions of the mine threat without exposing the reconnaissance

platforms." 1

1.1 Thesis Motivation

Internal research done at the Charles Stark Laboratory has been

directed at creating a platform to safely, rapidly, and effectively detect, localize

and classify mines in a littoral environment. The overall conceptual approach

involves deploying a set of sonobuoys with a surface craft or low-flying

helicopter. The buoys then drift through the area of interest, such as a known

minefield or an intended assault location. The buoys contain on-board

processing ability necessary to obtain sonar detections. A GPS-based

navigational system determines the track of the buoy. The resulting list of

detections and position data is relayed to a host ship or aircraft via an RF link

where a global map of the sonar environment is created. The area coverage

rate is greatly enhanced through the use of many buoys and the inherent

drifting of the buoys through the area of interest. Overlapping coverage helps

ensure multiple detections of the sonar targets. The host platform then

performs additional processing to convert lists of detections from the individual

buoys into a global map of the target field. Finally, planning software

determines safe areas or areas in which to concentrate conventional mine-

sweeping assets.

The baseline sonobuoy concept uses a conventional SSQ-62 buoy which

has proven successful in anti-submarine warfare. The original buoys are

modified to include a cylindrical receive array. The on-board processing in the

buoys performs matched-filtering, beamforming, and other signal processing

operations necessary to detect targets. An characteristic of the sonar system

is that while the sonar detections have relatively good range accuracy, the

angle resolution is limited to knowledge of the beam in which the detection was

made. With 32 beams comprising 360 degree coverage, the angle resolution is



equal to 11.25 degrees. Further signal processing has provided a monopulse

estimate which improves on that angle resolution.

1.2 Problem Statement

The goal of this research is to examine methods to localize sonar targets

from the detection list. This list contains the ping number, beam, range, SNR,

and monopulse estimate. The location of the sonobuoy at each ping is also

known. The core problem becomes one of data fusion. As the buoy drifts past

a sonar target, multiple detections of the object are observed. This allows an

inherent integration gain which may improve the signal to noise ratio and

reduce the probability of a false alarm. The overall idea is similar to that of a

synthetic aperture radar (SAR). A breakdown in the similarity occurs because

of the fundamental importance of phase information to SAR which is lost in

the sonar environment. Experiments using synthetic aperture sonar have

been impractical because of this dependence on phase. Therefore, incoherent

methods must be adopted. The sonobuoy at each ping location can be

considered a separate sensor which is both spatially and temporally separated

from the other sensors. These sensors thus are independent and identical. In

essence the problem has become how to best utilize the overlap in detection

data given the constraints regarding the accuracy of detection data and

position data, as well as the loss of phase information.

1.3 Overview of Analysis

This study begins by describing the Intelligent Sonobuoy project. The

design of the sonobuoy defines the various constraints imposed on target

detection and localization. The background places particular emphasis on

those subsystems which have direct implications on target localization. In

particular, the sonar characteristics, signal processing, and the role of map

building receive specific consideration.

A prototype sonobuoy designed and constructed at Draper Laboratory

was tested during the summer and fall of 1994. Information about the
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prototype is provided as needed to comprehend the data composition. The data

itself is analyzed next. The types of errors inherent to the system affect the

design of target localization algorithms. This section discusses the errors

inherent in range, azimuth angle, and buoy position.

Various techniques for localizing targets are presented in section 3, and

comprise the bulk of the thesis. Discussion of these techniques includes a brief

background behind the theory of the algorithm and its application to this

problem.

After all of the algorithms have been introduced, the various advantages

and disadvantages of the procedures are discussed. Comparisons are made

based on accuracy, resilience to noise, and target resolution.

18



2. Background

The Intelligent Sonobuoy project was formulated as a direct response to

the deficiencies in current mine countermeasure (MCM) capabilities. This

concept is "different from other minefield reconnaissance concepts currently

being developed for the U.S. Navy...." 3 The Intelligent Sonobuoy concept

addresses those deficiencies by creating a low-cost platform for mine

reconnaissance which provides a higher area coverage rate and lower threat to

human assets than conventional mine hunting techniques.

2.1 Intelligent Sonobuoy System Concept

The Intelligent Sonobuoy concept entails using a set of sonobuoys for

mine reconnaissance. The mission concept is depicted pictorially in Figure 2-1.

Information about ocean currents and the physical geometry of the area of

interest is first gathered. Planning software on the host platform then

determines the seeding pattern for the buoys based on this information so that

full coverage of the target field is obtained. A set of sonobuoys are then

deployed according to this seeding pattern. The sonobuoys are based on

conventional, SSQ-62 buoys used for anti-submarine warfare so traditional

deployment platforms such as helicopters or surface ships may be utilized.

Unlike conventional MCM methods, these assets are only required during the

deployment process.
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Figure 2-1 Intelligent Sonobuoy Mission Concept

After splashdown, floats inflate and the sonar arrays lower on wave

motion-isolating tethers. Each buoy contains a wide-bandwidth omni-

directional projector array, wide-bandwidth multibeam receive array, compass,

depth sensor, batteries, analog signal conditioning, and digital processing

subsystems in the underwater section. An RF link, antenna, CA-code GPS

receiver, and differential GPS receiver reside in the float.

The buoys drift through the target field for up to eight hours, depending

on battery life. The projector array sends out coded pseudo-random noise

transmissions which reduces mutual interference between buoys. This also

enables multistatic operation whereby a sonobuoy utilizes the sonar

transmissions from nearby sonobuoys as well as its own. The multibeam

receive array obtains sonar returns from the reflected transmissions. On-

board processing creates detections from these returns, while the GPS

receivers determine the sonobuoy's track. At periodic intervals, the detection

list and navigation data are transferred to the host platform through the RF

20



link. At the end of the mission, a software scuttle ensures security in case

enemy forces capture the buoy. The sonobuoys may then be recovered and

later programmed for reuse.

2.1.1 Sonar Characteristics

The characteristics of the sonar projector array and receiver array

greatly affect detection performance. The sonar projector is consistent with

the existing AN/SSQ-62 sonobuoy. A 21 degree nominal vertical beamwidth

was chosen to illuminate the horizontal plane and reduce the effects of

multipath reflections. The vertical beamwidth thus determines the minimum

detection radius on the sea bottom. The appropriate geometry illustrating this

point is shown in Figure 2-2.

Figure 2-2 Horizontal View of Sonobuoy in Operation

The transmission blanking interval also affects the minimum range.

The sonar array does not receive signals while pings are transmitted, so the

length of the active transmission introduces a period of silence in the sonar

return. Once the transmission blanking interval is over, the minimum range is

defined by the geometry shown in Figure 2-2. Sonar characteristics and the

water medium the signals are propagating through both affect the maximum

range.

The wide-bandwidth, multibeam receive array is unique among sonar

receivers currently in use. The fully-populated array contains 16 staves
constructed of poly-vinylidene fluoride (PVDF) material. These receive staves
are shaded vertically to provide the same vertical beamwidth as the projector.
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Groups of 5 or 6 staves are combined during beamforming to create 32

overlapping beams with 17 degree beamwidths and 11.25 degree separation

between centers. 4 The angle estimate to target is determined solely by beam

number. Strong detections may appear in multiple beams.

tensity

nge

n sector

22.5"
coverage
sectors

Figure 2-3 Top View Showing 360 Degree Coverage

Another important characteristic of the Intelligent Sonobuoy sonar

concept is multi-aspect operation. Figure 2-4 shows a plot of the relative

target positions with respect to the buoy's reference frame. This plot shows

that the target is within the sonobuoys field of view for many ping cycles.

Conceivably, each location could result in a detection, depending on the target

geometry and other factors. In comparison, an ideal side-scan sonar will

ensonify a point target only once. For Intelligent Sonobuoy, multiple detections

of the same target, in essence, allows the target to be tracked within the field of

view. The multiplicity of detections provides an incoherent integration gain

which may be used to significantly lower the false-alarm rate.
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Figure 2-4 Top view of Buoy Drift Geometry With Respect to Target

Aspect angle coverage refers to the total range of aspect angles as a

sonobuoy drifts by an target. The number of possible detections is determined

by the minimum and maximum ranges of the sonar and also by the cross-

track offset. The variation of aspect angle as a function of cross-track offset is

shown in Figure 2-5. This figure shows that for a cross track offset of 500

meters, the aspect angle coverage is 120 degrees, while at 100 meters, the

coverage increases to 170 degrees. In comparison, side-scan sonars may have

a coverage rate of only 90 degrees or less.
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Aspect Angle vs. Cross-Track Offset

0 200 400 800 1000
Cross-Track OAseT (m)

Figure 2-5 Aspect Angle vs. Cross Track Offset

A high rate of aspect angle coverage can be very important in obtaining

high target returns. Certain sonar targets display a high level of aspect angle

dependency. This is especially true of man-made objects which commonly

have right angles and flat surfaces. An example of this phenomenon may be

observed with a cylindrical target. Cylinders are characterized by strong

detections reflected from the sides and end-caps. This property is readily

observed in Figure 2-6. This figure shows the measured free-field target

strength for a mine-like shaped cylinder at 10 KHz. 5 The peak values of the

target strength in this plot are approximately -6 dB and the target strength

beamwidths are about 80. It is interesting to note that the plot is asymmetric

and that there are only 3 main lobes instead of 4.

A sonar with narrow aspect angle coverage, such as a side-scan sonar,

would need to be designed to make detections at -25 dB target strength.

Intelligent Sonobuoy, on the other hand, has a much higher rate of coverage.

In fact, by seeding the buoys such that they are placed at half the maximum

range of the sonar, upwards of 320 degree coverage may be obtained. This
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makes detecting sonar targets much easier because there is a high probability

of at least one detection on a main lobe. The sonar thus may be designed to

make detections at a much higher target strength than would be necessary

with lower aspect angle coverage.

Target Strength for Cylinder - 10 KHz
90

18C

270

Figure 2-6 Target Strength for Cylinder at 10 KHz

The aspect angle granularity refers to the increment in aspect angles

between consecutive pings. In order to make a detection, the target strength

of the object must exceed a given threshold and the sonar has to sample the

target strength while it exceeds the threshold. In essence, the aspect angle

granularity is interpreted as the sampling rate as a function of angle. Ideally,

the granularity is fine enough so that the specular lobes in the return are

detected.

A plot of aspect angle granularity appears in Figure 2-7. This plot

shows that the granularity is typically below one degree. The worst case

scenario of nearly 6 degrees only appears for small cross track distances at
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their closest point of approach. The target strength beamwidth of the cylinder

is approximately 8 degrees, so this value is more than adequate.

Aspect Angle Granularity vs. Along-Track Distance
0

5
(n
aC

a4

a,E
a3

<.2

o-
<1

- 10b
Along- I racK uistance km)

Figure 2-7 Aspect Angle Granularity

2.1.2 Signal Processing

Signal processing converts raw sonar receive data into detections. Both

analog and digital signal processing are used to derive the low-level target

returns from the much higher levels of background noise. The analog signal

processing is first performed after the signals are received. As shown in Figure

2-8, the analog signal processing consists of: pre-amplification, time-varying

gain (TVG) emphasis, anti-alias filtering, and A/D conversion. The time-

varying gain boosts weaker signals which occur later in the return data.

ki 1 DIGIi ZED

TIME- DIGITIZEDTIME- ~ ANTI-ALIAS A/D
PREAMP VARYING AUDIO

GAIN FILTER CONVERTER SAMPLES
GAIN SAMPLES

ARRAY
SIGNALS

Figure 2-8 Analog Signal Processing

26

100-900m Cr

-. Rmin=1 G0-m-

Rmax= 1000 ri

- •Tprf= -1.0. sec

Vdrift= 2 kts

-si

100 -5C



After the signal conditioning has been performed, a series of digital

processing techniques are used to extract detections from the data. These

techniques include gain compensation, matched filtering, beamforming,

demodulation, energy detection, reverberation estimation and normalization,

thresholding, and monopulse angle estimation. The goal is to obtain a list of

detections with a signal energy much higher than the background noise.

CENTER WAVEFORM

DIGITIZEE
AUDIO

SAMPLE

BEAM DATA
AT

)ETECTIONS

- PING #
- BEAM #

S- RANGE
- BEARING
- SNR

PROFILE

Figure 2-9 Digital Signal Processing and Energy Detection

2.1.3 Map Generation

The ultimate goal of the entire system is to transform the list of

detections provided by the signal processing into a map of the target field.

Each buoy creates a local map of its own environment. Local maps from all

the buoys are then combined to create a global map of the entire field of

interest. This global map may then be used by tactical planners or an

automated tactical planning system to determine areas of low concentration of

mines, or areas in which to concentrate mine sweepers and other mine

countermeasure assets.

2.2 Data Collection

After forming the concept described above, the Intelligent Sonobuoy
group at Draper Laboratory designed and built a prototype buoy. Then, they
conducted tests of the prototype during the summer and fall of 1994. The
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purpose of the data collection effort was to create a data set to be used the

evaluation of the Intelligent Sonobuoy sonar and signal processing systems.

More specifically, the test was designed to achieve the following goals:

(1) Acquiring a library of geocoded multi-aspect angle sonar returns

against mine-like and calibrated targets in a meaningful acoustic environment.

(2) Evaluating the Intelligent Sonobuoy sonar and signal processing

systems' detection performance against these targets.

(3) Evaluating the Intelligent Sonobuoy system's local map generation

algorithms for target registration over multi-aspect looks.

2.2.1 Sonobuoy Prototype

Only one prototype buoy was built, which therefore negates the

possibility of testing multistatic operation. As this was a proof-of-concept

vehicle, certain other modifications to the original system concept were also

made. The basic subsystems for the sonobuoy remain intact, though. The

sonobuoy was permanently fixed to a test barge to provide propulsion due to

the lack of sufficient currents in the lake. The depth of the buoy was set at

approximately 21 feet. The sonar receive array was surrounded by a

hydrodynamic shroud to reduce water resistance. Most electronic equipment

such as the power amplifier and data acquisition system were located above

the surface on the barge. Additional test equipment and computers were also

placed on the barge. Other changes more directly affected sonobuoy

performance. The sonar receive array contained only 10 of the 16 elements

necessary for a fully populated array. The active elements were located

adjacent to one another to provide 13 of the desired 32 beams. As a result, the

receive array constantly faced left. There was no float section for the buoy

since the entire barge was used as a float. The GPS antennas were positioned

on the top of the barge for optimal line of sight to the necessary satellites and

the differential GPS ground station.

2.2.2 Mendum's Pond Test Site

The prototype sonobuoy was tested at the AUSI (Autonomous

Undersea Systems Institute) field test support facilities at Mendum's Pond.
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Mendum's Pond is a freshwater lake in southern New Hampshire,

approximately 1.5 km long and 0.7 km wide. The water is highly stratified with

sound speeds ranging from 1490 m/sec at the surface to 1436 m/sec at the

bottom. Although the water is murky with visibility less than one meter at the

bottom, there is very little vegetation. The target field extends over 180,000

square meters with an average depth of 45 ft. The bottom is typically mud

sediment, with granite outcroppings. 6

The test facility also contains a variety of sonar targets used in

sonobuoy testing. Among these are three inert mine-like targets. The

southeast target is inside a shipping frame and lies in 15 meters of water. The

northwest target is located in 13 meters of water. Lastly, the southwest

target is located in about 14 meters of water. ' The approximate positions of

these mine casings are known; however, the amount of silt covering the mines

is unknown. In addition to these targets, two calibrated spheres, -11 dB and

-20 dB, were tethered in the pond at approximately mid-water column.

Navigation at the test site was performed in several different ways. The

primary method is the GPS system listed above. Located with the sonar array

on the barge is the GPS receive antenna and differential receive antenna. In

addition, a differential transmit station was located on the western shore of the

pond at a site surveyed by AUSI. This station included a GPS receiver and

antenna, an amplifier, and a differential transmit antenna. AUSI used a

different system on the barge for navigation purposes and it was also used as a

secondary navigation system for the sonobuoy. They adopted the Miniranger

Falcon IV by Motorola as an RF navigation system which displays data in the

Universal Transverse Mercator format. ' Conversions were then made

between the two types of data formats.

2.2.3 Sample Test Data

Members of the Intelligent Sonobuoy group, together with AUSI, tested

the prototype buoy throughout the summer and fall of 1994. The test plan

involved first performing a series of pings from a moored location in the center

of the lake to determine the optimal set of waveform performance. A series of
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5 different linear FM waveforms were chosen for active transmissions and

were cycled repeatedly. These were 5 msec, 5000 Hz; 10 msec, 5000 Hz; 20

msec, 5000 Hz, 40 msec, 5000 Hz; and 40 msec, 7000 Hz. The group then

cast the barge off from the mooring and drove it in a series of transit runs

around the target field. The ping interval was set at approximately 6 seconds

and an average of 900 pings were obtained for each run.

A sample of the beam-level receive data is shown in Figure 2-10. The

blanking interval is clearly visible in this plot. The ping transmission in this

figure lasted 20 msec and corresponds to approximately 30 meters. Thus no

detections may be made within that first 30 meters. Every spike in the

normalized signal energy above a certain threshold is declared a detection. The

placement of the threshold must be low enough to allow detections of targets

with a low target strength to pass, while at the same time it must be high

enough to reduce the amount of background noise classified as detections. This

tradeoff is made more apparent in Chapter 4.

Oct5_nsl - Ping #970

20

15
m

10

5

0

Range (m)

Figure 2-10 Normalized Signal Energy
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Another method of displaying the detection data is shown in Figure 2-11.
This plot, called a B-Scan, shows a waterfall type display of detections for a
particular run. The B-Scan plots detections for a given ping as a function of
range. The plot does not differentiate among beams or aspect angle, but
merely plots the maximum value of normalized energy in each range bin for
each ping. This format reveals the changes in detections from ping to ping.

PING 974

LEG 4S

LEG 4N

LEG 3S

PINr 8R95
0 50 100 150 200 250

Range (m)

Figure 2-11 B-Scan Example for Pings 825-974, October 5, Transit NS1

The structure of the data in the B-Scan is easily explained though the
geometry involved. If the sonobuoy proceeds in a straight line, the distance to
the target defines a hyperbola. A simplified view of the B-Scan geometry is
shown in Figure 2-12. This figure is a plot of ping number versus range to
target over a 40 ping interval. The buoy is assumed to have a constant 100
meter cross-track offset and a constant vertical speed of 10 meters per ping.

In actual testing, the buoy did not move in a constant direction. This
causes deviation from the exact hyperbola shape in the tracks plotted in
Figure 2-11. The tracks are piecewise constant, though, and thus targets may



clearly be tracked from this data. Two items merit additional attention. First,

the buoy's performance is evident from the strong detections still observed at

ranges up to 300 meters. The high number of detections is also noteworthy.

Each of the numerous serpentine tracks corresponds to a sonar target in the

environment. This is clearly more than the expected number of known mine-

like targets. The high number of clutter objects with significant target

strength levels increases the difficulty of the localization and classification

processes.

40

20

15

10

100
range

150 200

Figure 2-12 B-Scan Geometry

2.3 Error Characteristics

Various sources of error contribute to the final output. These errors

must be accounted for when selecting an appropriate technique for map

building. For this problem, the errors may be broken down into errors in the
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sonar measurements and errors in the position of the buoy. The measurement

error is further subdivided into errors in range and errors in azimuth.

Additional error is caused by various noise sources. These sources of noise

include background noise in the environment, the noise of the barge motor,
self-noise created by the sonar array as it travels through the water, and

electronic noise produced by the generator and other assorted electronic

systems.

2.3.1 Range error

Several factors contribute to the range error of the sonobuoy. The range

to target is determined by the time delay shown in the normalized energy

display such as is shown in Figure 2-10. The resolution of the measurement

depends largely on the bandwidth of the signal. The Intelligent Sonobuoy

prototype used a center frequency of 8500 Hz. The sampling rate of our

system was 27.4 KHz, with 16 bits per sample. Another source of error in the

range estimate is caused by variations in the speed of sound. The speed of

sound is assumed to be constant in this design, while this is not the case. The

speed of sound depends on many parameters, including: depth, the season,
geographic location, and time of day. s For this testing, all the parameters are

relatively constant with the exception of depth. Several studies have been

performed which show that the speed of sound in water depends almost

entirely on three parameters: temperature, salinity and pressure. 8 Both the

temperature and pressure of the water vary with its depth. The sound velocity

profiles performed at Mendum's Pond record variations in the speed of sound

from 1436 m/sec to 1490 m/sec. A more accurate determination of speed of

sound was not necessary for this problem, because the inaccuracies associated

with the position vastly outweigh the errors in the range estimate.

A common problem with sonar range estimates is caused by a

phenomenon known as multipath. The echoes from a target arrive at a time

equal to the speed of sound multiplied by the distance to the target and back.

A problem arises because the sound may travel in more than one path. This

problem, called multipath, is common in shallow water because the depth of
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the water channel is small in relation to the horizontal range to target. s

Multipath returns may echo off the surface or bottom of the water channel.

These reflections appear after the primary detection and therefore act as

detections at a greater range. A structure to the multipath detections should

be evident in the B-Scan data. As the data in B-scan plot in Figure 2-11

suggests, multipath reflections did not appear to be too significant in these

tests. A possible reason for this is that the multipaths were reduced by the

horizontal beamwidths of the projector and receiver which eliminated those

multipaths widely separated in angle.

A final source of error in the range estimate is caused by the geometry

of the sonar return. The range estimate to target is assumed in this analysis

to be the distance along the horizontal plane which contains the target. The

actual distance along this plane will actually be somewhat less than the range

estimate, depending on the height of the target in the water column and the

range to the target. Figure 2-13 displays this scenario. The greatest error

likely to be caused by this approximation would occur for a target on the

bottom of the lake at a range equal to the minimum range allowable by the

vertical beamwidth. This deviation at this point is a few meters, and is easily

correctable.
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measured range

- -- true range

Figure 2-13 Range Approximation

2.3.2 Azimuth error

With the sonobuoy project, there are two primary sources of angle

estimates. The first estimate is based solely on the beam which records the

detection. As reported earlier, the beamwidth of each beam is 17 degrees and

there is an 11.25 degree separation between centers. Thus a detection for a

given beam may lie anywhere within an 17 degree sector with uniform

probability. Compounding this problem is the fact that strong echoes show as

detections on multiple beams. This increases the uncertainty of the angle

estimate.
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The monopulse estimate is an attempt to correct this problem. The

monopulse estimate is an estimate of the exact angular position to target.

This estimate is explained more in section 3-3. The variance of the monopulse

estimate decreases with increasing SNR and is given by Equation 1. 9

var0 = K* beamwidth * (1)
3 l+ snr(

K is a factor depending on the specifics of the noise.

2.3.3 Position error

The position error refers to errors in the buoy position as it is pinging.

An accurate estimate of the buoy position is fundamental to creating an

accurate map. Obviously the range and bearing to a target are meaningless if

the starting point is unknown.

The position data for Intelligent Sonobuoy system is based on the Global

Positioning System (GPS). A conventional CA code receiver was located on the

barge along with the differential receive antenna. A duplicate GPS receiver

was placed at a surveyed location on the shore with the differential

transmission antenna. Differential corrections sent out by this antenna

correct for deviations caused by propagation through the atmosphere and

errors intentionally injected at the source. When working correctly, this

system should provide a variance of position on the order of less than a

meter. 10 The geometry of the lake created problems which caused actual

performance to deteriorate from that ideal. GPS satellites generally track in a

position south of our test area. The GPS system requires line of sight for

transmission. Therefore, for best operation, the GPS antenna needs to have

an unobstructed view toward the south. Unfortunately this was not possible in

the test range at Mendum's Pond. Improvements made in site selection

increased the reliability of the data, but some serious glitches remained. These

discontinuities in the position data occur whenever the GPS receiver switches

satellite constellations. Four GPS satellite are used to create a fix, but if one of

those satellites is out of view, it is replaced by a different satellite. When the

new constellation of satellites is used to determine the position, a jump occurs
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in the differentially corrected position data. Gradually the satellites in the new

constellation track back to the proper course, but this may take 10-15

seconds, or several pings. When the previously obstructed satellite reappears,

the receiver switches back to the original constellation and another

discontinuity occurs.

An even greater problem occurs if multiple satellites are obstructed

from view. This was not a problem on the barge since the center of the lake

provided open access to the sky in all directions. The shore station was located

in a fixed location along the edge of the lake and its view was partially

obstructed by nearby trees. On several occasions, the number of satellites

acquired by the GPS receiver at the shore location dropped below four and a

position fix was not made. When this happened, the GPS system located on

the barge could no longer take advantage of the differential corrections, so the

standard deviation of the position measurement increased to over 30 meters.

A plot of the first 200 pings of the October 5th North-South run appears

in Figure 2-14. Here the discontinuities in position are clearly observed. The

first major break at 2150 east, 1760 north shows an example of the type of

error which occurs during a change of satellites. At first there is a large jump,

and then the position slowly tracks onto the proper location.
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Figure 2-14 Buoy Position during pings 1-120 of Oct. 5, NS1

Creating maps obviously requires first filtering or smoothing this

navigational data to remove the known discontinuities. A filtering program

designed for this purpose removes those discrepancies and replaces them with

appropriate values. First the instantaneous velocity for each position is

calculated. The position data from the buoy is converted from latitude and

longitude to UTM coordinates. Then the instantaneous velocity for each point

is determined by comparing its position to the previous position. A plot of the

instantaneous velocity for the first 400 data points appears in Figure 2-15.

Here the jumps in position data are clearly observed. These points are located

by comparing the instantaneous velocity to a threshold. There are both high

and low values for the threshold and these values are determined by the known

barge dynamics. Data points were observed at approximately one second

intervals and the inertia of the barge does not allow drastic changes in that

amount of time. The points outside the acceptable range are then rejected and

replaced by more appropriate values. More specifically, each rejected point is

replaced by a new value which is equal to the mean of the points surrounding it.
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A split-windowed mean of the instantaneous velocity is used so that nearby

data points do not influence the mean. A plot of the new, smoothed velocity

vector also appears in Figure 2-15. The spikes in the data are clearly removed.

Instantaneous Velocity
2.5

2
C,

E1.5

U1
o

>0.5

0
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1.5
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0.5

0

Ping #
Smoothed Velocity

0 50 100 150 200
Ping #

250 300 350 400

Figure 2-15 Instantaneous Velocity, Original and Filtered Version

The final step is to calculate a new set of positions for the rejected

points. This is accomplished using the smoothed velocity combined with the

compass heading data. The revised position data can be seen in Figure 2-16.

The discrete jumps in position data have now been successfully removed, while

the finer-scale changes in position have been retained. These characteristics

in position data are important for the integration of data between pings.
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Smoothed Position Data for Oct5_nsl, pings 1-120
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Figure 2-16 Position Data after Filtering
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3. Data Fusion / Map Building Algorithms

The previous chapters have introduced the basic problem which needs

to be solved. This problem is to detect and localize mines and mine-like objects

in the sonar environment. In particular, the analysis will focus on data

obtained during testing at Mendum's Pond in 1994. The sonar measurements

of the target field are characterized by rather accurate information concerning

the range, but relatively little information regarding the azimuth of the

detection. The sonar platform at each ping may be modeled as a separate

sensor both temporally and spatially separated from the others. The problem

then becomes one of combining data from these different sensors into a

composite map. Techniques for combining the information from several

sensors are a concern of multisensor data fusion. n

Multisensor data fusion is often very useful when data is noisy.

Frequently, many signals and sensors working together produce superior

results when compared to a single sensor. A study by Willet, et. al. showed

that the gains from a fused system are minimal is a statistically well-behaved

environment, but can be quite substantial in noisier environments. 2 Overlap

in area coverage can also improve detection performance. The redundant

information contained in the overlap helps to reduce ambiguity in a noisy

environment. 13 Also, spatially separated sensors reduce the probability that a

target is blocked from view.

In an effort to encourage the use of data fusion in target discrimination

and tracking, the Assistant Secretary of Defense for C3I (Command, Control,
Communications, and Intelligence) set up a panel to codify data fusion

terminology. The definition formulated from that panel has since evolved into

the following:

A multilevel, multifaceted process dealing with the automatic detection,
association, correlation, estimation, and combination of data and
information from single and multiple sources. 14

41



There are four levels in a classic data fusion hierarchy. The goal of

Level 1 fusion is to achieve a refined position and identity estimate by

combining individual sensor position and identity estimates. Therefore, Level 1

processing is all that is necessary to detect and localize mines in this problem.

In Level 1 processing, sensor outputs must be combined to produce the desired

target discrimination and position estimate. Different fusion algorithms may

be used for each of these tasks and they may have separate architectures as

well. A diagram listing Level 1 processing algorithms is shown in Figure 3-1.

Physical
Models

Simulation

- Estimation

- Kalman Filtering
- Maximum Likelihood
- Least Squares

yntact l;

- Image Algebra

Feature-Based
Inference

Techniques

- Parametric
- Classical Inference
- Bayesian
- Dempster-Schafer
- Generalized
Evidence
Processing

- Nonparametric
- Parametric Templates
- Artificial Neural
Networks

Cognitive-Based
Models

- Logical Templates
Knowledge-Based
Systems
Fuzzy Set Theory

Cluster Algorithms

Voting Methods

Entropic Techniques

Figure of Merit

Pattern Recogntion

Correlation Measures

Thresholding Logic

Figure 3-1 Taxonomy of Level 1 Algorithms

The types of algorithms available for a given problem depends highly on

certain parameters in the problem, such as the type of data and any a priori

information about that data. Physical models involve using features which are

easily measurable and recognizable, such as the radar cross section as a

function of aspect angle. These methods involve comparing the measurements

to predicted values suggested by the model. Feature-based inference
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techniques accomplish classification by transforming information into

knowledge of its identity. Feature-based classification methods may be further

subdivided into parametric, nonparametric, and other methods. Lastly,

cognitive-based models attempt to model human thought patterns.

In addition to choosing an appropriate fusion algorithm, a system

designer must also select a proper data fusion architecture. The data fusion

architecture is composed of the individual processing components and their

interconnections. The design of this architecture again depends on the problem

and the types of data being combined.

There are three main types of data fusion architectures: sensor-level

fusion, also referred to as postindividual sensor processing fusion and

autonomous fusion; central-level fusion, also referred to as preindividual sensor

processing fusion and centralized fusion; and hybrid fusion, which is a

combination of the previous two architectures. 14

The architecture for sensor level fusion is shown in Figure 3-2. In this

architecture, decisions regarding target classification and identification are

made at a low level, before combining with other sensors for target tracking

and association purposes. This architecture is optimal when the sensors use

different physical phenomena to make detections. As a result, the sensors are

less likely to arrive at false alarms caused by the same types of clutter or

noise. Further advantages of sensor-level architectures include a reduced

workload on the central processor, flexibility in the structure and number of

sensors, and ease of transition for adding data fusion to an existing multisensor

architecture.

43



Feature Extraction,
Target Classification,

Transducer 1 - Identification, and
Tracking

Sensor 1

Feature Extraction,
Target Classification,

Transducer N --- Identification, and
Tracking

Sensor N
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Target
Report
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Target
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Figure 3-2 Sensor-Level Fusion Architecture

For central-level fusion, each sensor transmits minimally processed

data to the central processor. A diagram showing this architecture is shown in

Figure 3-3. Central-level fusion is optimal for target tracking purposes. One

reason for this is that all the data is combined before making decisions, so

multiple hypothesis tracking is more readily performed. Other advantages of

central-level fusion include more effective object discrimination if the sensors

use the same physical phenomena, increased reliability of signal processing

hardware, and the possibility of reduced cost and power consumption since

fewer processors should be needed.
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Data

Figure 3-3 Central-Level Fusion Architecture

Hybrid fusion architectures can combine the advantages of both sensor-

level and central-level architectures. The main drawbacks of this architecture

are increased complexity and increased data transmission requirements.

3.1 Model of problem

The map building subroutines must localize and map target locations

from the array of detection data. This array includes the ping number, beam

number, range to detection, monopulse angle estimate, signal to noise ratio

(SNR) of detection, and absolute energy level. This data is assumed to contain

a majority of relevant information from the sonar return, but some information

has been lost in this data reduction. This loss is assumed to be low and greatly

outweighed by the increased computational benefits. In creating the detection

lists, a degree of sensor-level fusion has already been performed.

A sample of the data available for processing appears in Table 1. The

number of detections per ping is determined by the threshold used for the signal

to noise ratio, as well as by the sonar parameters and the geometry of the

underwater environment. This table reflects a simulation in which the target

field consisted of one cylinder.
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1
1I
1
1
2
2
2
3
3
3

6
13
1
6
13
1
13
13

110.26
158.12
126.26
105.51
153.40
114.81
98.68
148.67

250.88
340.40
216.03
249.94
339.93
209.64
339.39
339.42

IU.6t5
10.55
45.56
37.55
8.12
45.54
17.59
15.11
45.56

53.81
67.47
54.21
53.48
67.77
54.13
54.07
67.90

Table 1 Example of Detection Array

In addition to the detection array, a list of sensor position data is also

provided. This array includes time, latitude, longitude, and heading for each

ping number.

The lack of a sufficiently precise estimate of angle creates an added

problem which must be dealt with. As stated previously, the range estimate is

relatively precise, while the azimuth estimate is not. This lack of angle

accuracy hampers attempts at data association and clustering of multiple

measurements. Since the accuracy of the angle estimate is known only by the

beam in which the detection occurred, the region of uncertainty for the

measurement is an arc, such as is shown in Figure 3-4. The buoy location and

angular position, the range to detection and beam in which the detection

occurred all combine to determine the arc location and orientation. The width

of the arc is equivalent to the beamwidth, which in this case is 17 degrees. The

width of the arc in meters is directly proportional to the range estimate of the

detection.
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Arc of Uncertainty

Bu o

Figure 3-4 Region of Azimuthal Uncertainty

The uncertainties in range and azimuth result in a rather imprecise

knowledge of target localization from just one detection. Furthermore,

separate detections of the same object will be obtained on separate pings and

thus separate buoy positions, so an accurate estimate of the target location

cannot be determined from only one ping. Since each buoy position is defined

as a sensor, the remaining processing must be done at the central-level. Thus,

central-level data fusion algorithms must be developed to localize the sonar

targets.

The type of algorithm depends on the data available. Many different

algorithms would suit this purpose. Due to the amount of uncertainty in a

single detection, an algorithm must be able to combine multiple detections into

a single target localization. Noisy and incomplete data hampers attempts at

physical modeling. Also, the lack of a priori information regarding the target

environment, especially concerning the number of targets, reduces the ability

to estimate the sonar returns. For these reasons, feature-based methods are

more likely to be appropriate for this problem. Again, the lack of information
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regarding the a priori probabilities controls the selection of an appropriate

algorithm. In addition to the lack of a priori probabilities, a measure of the

uncertainties regarding individual detections is difficult to quantize. These

problems hinder attempts at parametric methods. Other feature-based

methods which can work under such situations include nonparametric

methods, clustering algorithms, figures of merit, pattern recognition,

correlation measures, and thresholding logic.

3.2 Maximum-Likelihood Energy Integration

One method to determine an estimate of the target locations has been

developed based on principles of hypothesis testing and maximum likelihood

estimation. The background for this method starts as a physical model of the

sonar environment; however, the composition of the data and uncertainties

regarding target numbers and position result in more of a feature-based

algorithm.

3.2.1 Derivation of Algorithm

As mentioned above, the derivation of this algorithm results from

principles of hypothesis testing. The questions we are trying to answer is

whether or not a target is present and where that target is. First it is

necessary to form the hypotheses. Hypothesis Ho is known as the null

hypothesis and corresponds to no target present. Hypothesis H1 states that a

target is present. A decision rule must now be established to determine

between these two hypotheses.

There are four possible outcomes every time a decision is made. These

are:

1. Ho true, choose H0. "Correct Non-detection"

2. Ho true, choose H 1. "False Alarm"

3. Hi true, choose H,. "Correct Detection"

4. Hi true, choose H0. "Miss"
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Of these four possibilities, outcomes 1 and 3 correspond to correct

choices while outcomes 2 and 4 correspond to incorrect choices. Actually, in

probability terms, outcome 2 is known as a false alarm, outcome 3 is known as

a detection, and outcome 4 is known as a miss. A decision criterion must now

be established to attach a relative importance to each possible outcome. For

example, in cancer testing, the most important outcome would be to minimize

the probability of a miss. The other error, that of a false alarm, is less

important, since additional tests may be performed to confirm the presence or

absence of the disease.

One such criterion is called Bayes' risk. In this method, a cost is placed

on each possible outcome. The cost of making an error is assumed to be

greater than the cost of making a correct decision. The object is then to

minimize the expected value of the cost. The expected value of the cost is

called the risk and is equal to the sum of the probability of each outcome. The

outcomes are also weighted by the appropriate cost and the a priori

probabilities. In mathematical terms:

Risk = CooP o Pr(say Ho I Ho is true)

+ CIoPo Pr(say H, I Ho is true)

+ C1,P , Pr(say H, I H1 is true)

+ Co0 P, Pr(say Ho I H, is true)

This criterion may now be used as a rule to divide the observation space

into the two parts. A resulting decision rule between the two regions appears
below.

If

P,(Co, - CI,)PrlH, (RI H,) - Po(C) o - Coo)PrIHo(R I Ho), (3)

Then conclude H1 is true, otherwise conclude Ho is true.
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Another way to express this statement is:

Choose H,

PrIH, (R I HI) > PO(CIO - Co) (4)

PrlHo (R I Ho) < P (C, - C11)
Choose Ho

The quantity on the left is known as the likelihood ratio and is given by:

PrIHI(R I HI)
PrIHO(R I H) (5)

This number is a ratio of two functions of a random variable, and thus is

a random variable itself. It is also one dimensional, regardless of the

dimensionality of the observation, R.

The quantity on the right is the threshold of the test and is given by:

Po(Co - C,,)S C11) (6)
P,(C, - Coo) (6)

Since the natural logarithm is a monatonic function and both sides of

are positive, an equivalent test is:

H,

In A(R) < In 17 (7)

Ho

In this problem, the prior probabilities, Po and P1, are unknown and

assumed to be equal. Also, the cost function has been simplified as follows:

Clo = C o01 = 1, C o= Coo = 0. These assumptions comprise what is known as

maximum likelihood criteria.

In the basic sonar problem, the decision to be made is whether or not a

mine is present. Therefore, it is a binary hypothesis testing problem, where
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hypothesis HI is that a mine is present and hypothesis Ho is that no mine is

present. Maximum likelihood criteria is assumed as shown above. The only

unknowns remaining are the probability density functions under the two

hypotheses. A simpler example will first be presented, followed by extensions

which correspond more directly to the problem defined in section 3.1.

Example 1:

Assume that there is only one measurement and the target position is

known. For this problem, the hypothesis test is used to determine whether or

not a target is present at a given range.

The probability density functions under both signals are defined by the

envelope of the complex Gaussian signal. The density functions both have zero

mean and different variances.

Hypotheses:

Hi: Z=S+V

H0: Z=V

Assumptions:

S, V complex

E(SV) = 0

E(S) = E(V)

Var(Z I HI) =

Var(Z I Ho) =

Gaussian signals

=0

o -s2  + o -V2

(Ov2
+v2

The probability density function for z given Hi is:

PzIH, (Z I H,) = eXp 1 (Iz 2)
27r(s ,2 + ) 2(,2 + C2,)

(8)
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The probability density function for z given Ho is:

PzHO(Z I H) = exp(- I ( ))Pz1 0) 27rav 2CyV

Thus the likelihood ratio function for this example may be expressed as:

-1 2  exp
2 7r( ',2 + O '2 2

2 (I2a V21r exp(
2na,

1 (IZ2)
2(a 2+ (z2)

ZI•))

Now, taking applying the natural logarithm to both sides yields:

In A(Z) = [In
1

27r(O s
2 + (,V2)

1+ 2(, 2 f 2)2(a, + U 2)

1
In

27rC,,
+ 2I (IZi2)

Combining like terms:

12
2 i

1

as2 
2+ av
2

Finally:

av' 2 < as 2
H,2  s2
Ho

(s 2 +v 2 ) 1

(9)

A(Z) = (10)

0<

Ho
(11)

H,

1
2 - In a 2

v2  < (S 2 + 2a 22

Ho

(12)

(13)
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Therefore, the signal energy is normalized by the background noise

variance and compared to a threshold. If the signal energy exceeds the

threshold, then a detection is declared. In practice, the threshold is adjustable

to achieve a desired probability of detection and probability of false alarm.

This procedure for setting the threshold represents what is known as Neyman-

Pearson criteria.

Example 2:

Assume that only a single measurement is made, but the target position

is unknown. The position of the target then becomes an unknown, non-random

variable. In example 3 we will determine the target location through maximum

likelihood estimation techniques.

The error in range is now considered. This error consists of both the

range measurement error and the navigational error of the buoy. The range

error may be modeled as a Gaussian function and simply adds a term to the

target present hypothesis.

The probability density function for z given H1 is:

PIH,a,(Z I HI) = 1 expI (IZ2 )exp - (ro-r(x,y))2
27r(a) 2 -) a r 2(O2 + a,2)  2--r()

(14)

In this formula, ro is the measured range to the target, r(x,y) is the range

from the buoy to a pixel (x,y) in the plane, and ar is the RMS sum of the sonar

range resolution and positional accuracy.

The probability density function for z given H o is:

pzlHo (Z I Ho) = - exp(_ (Z2) (15)
27ra, 2(,2
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Thus the likelihood ratio function for this example may be expressed as:

I I exp - 12 (IZ|2) ex1{- -(X, y))2 HJ
A(Z) = 27 r(as2 + av2)M 12/2 r 2(as2 + a'2) -, 2gr >

1 1 <
exp 2 jZ|2

27zca 2a, V ) Ho

(16)

Applying the natural logarithm to both sides and combining like terms:

H1

i 1 1 1 ro-r(x, y)2> a

2 0,( C2 + 22 2 (:r2 r< _2 (s2 + 2
Ho

Finally:

H1

Z12 (r0 - r(x,y))2 s> ___2 + (2 ( 2_ __
S- 2 In= 72 (18)

o r
2  s

2 
<r ( ss

2 
+ 2 y

2

H0

This equation describes the likelihood function for each point in the

target range. In essence, the error in the position estimate has created an

additional term on the left hand side of the equation which causes the likelihood

of a target to decrease as the range to the point (x, y) deviates from the

measured range, r0.

Example 3:

Assume that there are multiple detections and the target position is

unknown.

This final case examines the remaining extension to the problem at

hand, which is to fuse multiple measurements together under the constraints
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of navigational uncertainty. The target position will be estimated by

maximizing the energy over the entire plane.

Hypotheses:

Hi: Zn = Sn + V,
H0: Z, = V,

Assumptions:

So, Vn complex Gaussian signals

E(SV) = 0
E(S,) = E(Vn) = 0
Var(Zn I H,) = ,2 + 2

Var(Z, I H o) = (v 2

Var(Range) = r,

Detections are independent

Since the detections are assumed to be independent of one another, the

resulting joint probability density function is equal to the product of the

individual probability densities.

PzLlZ.....2Z (ZI Z2,--,ZN) = PZ (ZI)PZ2(Z2) -- PzZ (ZN) (19)

This problem is simplified even further since all the individual probability

density functions are identical and Gaussian.

The probability density function for z given Hi is:

PIH,.o, (ZI H,) =
1 I exp- 1 Zi2 exp - (ri-r(xy))

1= 2r(, +)2 .2 r 2(Q 2 + a 2 ) 2

(20)

55



The probability density function for z given Ho is:

N exp1 1Z2)
-1 2ra 2PzlH,,(Z I Ho) = (21)

Thus the likelihood ratio function for this example may be expressed as:

A(Z) =

(22)

Applying the natural logarithm to both sides yields:

In A(Z)= Nln + Nln 1
27(S,2+ 2)Y 42r

-Nn 1
27ro-1

1 N i2 2

2(a 2 + Uv2) ii+

H1 (23)

1 , (r- r(x,y)2)
2,- 2 i =

1 N
+2U2 i =

2I-
Ho

Combining like terms:

- NlnI 21 2 2
2 a2+ 92 2 V

(ri - r(x, y))
Cyr

2

27 r(s2 +s y2)27
(24)
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Rewriting equation [24]:

N Zi 2 (r - r(x,y))2
i = ILr

- 2N( + 'S 2 .)In , " - = 73 (25)

Ho

The estimate of the target location is determined by first performing this

hypothesis test for every point (x,y) in the map plane and then finding the point

which has the maximum value of energy in the plane. This point is then

compared to the detection threshold to determine whether a target is present.

Thus, an approximately similar expression for determining the existence and

location of a target is the following:

H1

max E(xy)] Ymap
x,y <

(26)

HO

where E(x,y) is the following energy summation:

N det

E(x,y) =
i=l

Ndet
= SNRI
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and

Ndeg = number of detections passing screening threshold

ni = ping number at which detection i occurred

bi = beam in which detection i occured

ri = observed range at detection i

z(ni, bi, ri) = measured signal at point of detection i

2  V = SNR, = estimated signal to noise ratio for detection i
V

r(x,y) = range between map pixel at x,y and estimated array position for ping ni

where (x, y) are within 17 degree sector of the beam in which the detection
occurred

Ymap = global map detection threshold

An additional constraint is that Ei(x,y) > 0; i.e. no negative energy

summations are allowed.

3.2.2 Description of Algorithm

In other words, the algorithm involves integrating energy in the x-y

plane. Each detection results in a concentration of energy in the form of an

arc. The position of the buoy, range to detection, and beam number determine

the location and orientation of the arc. The energy contained in the arc is

determined by the signal to noise ratio of the detection. The probability density

function of the arc, which describes the errors in range and angle, governs its

shape.

In this example, the uniform probability of the azimuth causes the

height of the arc to be constant along its width. The cross-section of the arc is

determined by the probability density function of the range, however. The

peak of the arc is equal to the signal to noise ratio of the detection and this

value decreases quadratically with the range deviation. The width of the arc is

directly proportional to the variance in the position measurement. Figure 3-5

illustrates the composition of the arcs. The arc in this figure is 17 degrees wide

58



and the buoy location is at [1900,1700], 158 meters away from the centerline

of the arc. The signal to noise ratio of the arc is 10, so this is the maximum

height of the arc and is the value at its centerline. The range standard

deviation is set at 0.75 meters.
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Figure 3-5 Three-dimensional View of Arc Structure

With just one arc, the position of the target in Figure 3-5 can only be

determined within about 30 meters in the East-West direction and almost 70

meters in the North-South direction. As the buoy moves through the water it

receives multiple detections of the same target. For each detection, another

arc is added to the energy array of the target field. Multiple detections of the

same target tend to intersect at the one point. The intersection of the arcs

determines the location of the target. The method is analogous to triangulation

of a location using multiple measurements. Figure 3-6 illustrates this

technique.
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Figure 3-6 Map Construction Technique

The algorithm which implements this technique is shown in Figure 3-7.

First the ends of the arc are found to determine whether the detection is in the

area of interest. If so, then the energy contribution of every pixel within the

are is computed using equation [27]. Lastly, this energy contribution is added

to the map plane.

In the absence of noise and positional error, two detections are all that is

required to exactly locate the target source of those detections. The aspect

angle granularity and aspect angle coverage explained in chapter 2 indicate

that multiple detections of the same target are likely. This hypothesis is

further supported by Figure 2-11, the B-Scan of the data. The B-Scan clearly

shows tracks in the data that are created by multiple detections of the same

target in consecutive pings. Additional detections of the same target further

contribute to the peak and in doing so provide more resilience to noise and

errors in measurement and buoy position.
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Figure 3-7 Energy Integration Algorithm

3.2.3 Simulated Data

This concept is clarified through the use of the following simulation. In

the simulation, one cylinder has been placed in the target field at the

coordinates [2050,1750]. The sonobuoy travels due North at a constant

horizontal position of 2100 meters East. The buoy starts at 1600 meters

North and transmits a ping every 5 meters until it reaches 1800 meters

North. Therefore the simulation consists of 41 pings. The simulation

geometry is depicted in Figure 3-8. This particular simulation takes into
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account ambient noise, surface scattering, and bottom scattering, but

assumes there is no positional error.
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5 x 1.5 ft
Cylinder
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Buoy Locations
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Transmissions

• - Finish 1800 m

- Start 1600 m

50 2000 2050 2100 2150 2200 2250

Figure 3-8 Simulation Geometry

The resulting energy-domain map made from this simulation is shown in

Figure 3-9. This plot clearly shows the position of the cylinder at the proper

location, [2050, 1750]. The vertical bar on the right side of the image is a key

to the color map. The color map has been chosen to be bi-directional with dark

values on both ends. This choice is effective because the structure of the

energy is such that any dark colors at the high end of the color map are

necessarily surrounded by lighter colors. In addition, the peak of the color map

is scaled to the peak energy value in the plane. A similar color map will be used

for all subsequent maps, except when noted otherwise.
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Other characteristics of the plot deserve attention. First, the structure
of the noise is very important. While the detections associated with the target
tend to peak in one location, spurious detections caused by noise are
distributed more evenly throughout the plane. This feature provides significant
resistance to noise corruption. The maximum value of the energy at the target
peak is almost 250, while the peak of the background does not rise about 100.
The great separation between signal and noise is more readily seen in Figure 3-
10. This map is a close-up of the area in the vicinity of the target. The color
map has been adjusted to suppress the appearance of background noise. In
essence, a threshold has been placed on the map to only display those pixels
with an energy value greater than 95.
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Figure 3-9 Energy Map using Cylinder Simulation
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Figure 3-10 Close-up of Cylinder

The "X" shape of the energy plot in Figure 3-10 is also noteworthy. The
target strength profile characteristics for the cylinder determine this shape. A
higher target strength for the sides and end-caps of the cylinder creates
stronger detections in those directions. A higher SNR leads to a higher number
of detections in those directions as well. The cylinder orientation in this map is
240 degrees. Man-made objects may often be characterized by 90 degree
corners such as this and will have a similar shape. Thus the shape of the
return may provide a classification cue.

3.2.4 Test Data

Additional problems arise when dealing with actual test data. Although
the simulation includes the effects of underwater noise, other sources of error
affect localization results. Large detections appear in multiple beams and
increase the arc uncertainty beyond 17 degrees. Errors in position caused by
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problems with the GPS also have a considerable effect on target localization.

The largest source of error was caused simply by the high number of sonar

targets. This problem, introduced in chapter 2, causes interference among

arcs in the energy domain. These problems will be explained in greater detail

later in this section along with proposed solutions.

The subset of data used in this discussion comes from the October 5,

North-South transit #1. An energy plot using the algorithm displayed in Figure

3-7 is shown in Figure 3-11. The white dots in the picture correspond to the

locations of the buoy during pings. As the receive array for the prototype buoy

is populated entirely on its left side, the sonobuoy is this example moved in a

counter-clockwise direction. A comparison of this plot to the one in Figure 3-9

shows several key differences. The most obvious difference is that instead of a

single peak with a well-defined structure, there are numerous peaks and a

more complex structure. These differences are caused primarily by the

presence of numerous targets of different amplitudes. A major concern is how

to reduce this interference between various sonar targets.
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Figure 3-11 Energy Map using Actual Data

One reason why multiple targets have this interference problem is

because of the wide azimuthal uncertainty. A major difficulty when using real

data is that strong detections of the same object appear on multiple beams.

This phenomena causes the angle uncertainty of the measurement to increase

by 11.25 degrees for every additional beam in which the measurement

occurred. In other words, a detection present in 6 adjacent beams creates an

arc which is 73.25 degrees wide. In Table 2, a sample of the detection data is

shown. This sample clearly shows that detections at a given range are present

for multiple beams.
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Ping# Beam # Range (i) Bearing SNR (dB) Echo

883 1 40.56 203.80 13.10 111.48
883 1 277.46 210.77 12.40 92.33
883 2 277.41 214.83 17.32 96.66
883 2 40.58 209.33 13.30 108.26
883 3 277.44 219.41 15.20 92.76
883 3 42.34 221.45 11.85 103.89
883 3 40.61 229.94 11.37 102.96
883 4 277.33 244.27 13.38 89.96
883 4 40.64 243.86 13.03 105.30
883 5 277.38 249.86 14.69 91.32
883 5 40.66 244.16 13.83 104.49
883 6 40.74 259.38 12.67 103.02
883 6 277.62 254.58 11.60 89.24
883 7 277.30 265.45 11.82 88.72
883 7 40.79 274.16 10.85 100.44
883 8 40.79 281.15 11.31 100.91
883 8 277.59 284.71 10.73 88.44
883 9 277.67 292.88 15.43 91.40
883 10 277.57 298.33 14.19 91.79

Table 2 Detection list array for real data

Long arcs cause several problems in the map building process.

Foremost among these is the interference between detections of multiple

targets. Another problem is the increase in uncertainty of the target location.

Obviously, it is desirable to know the azimuth to the target as accurately as

possible. For this problem, the resolution is desired to within the width of one

beam.

Fortunately, the width of the beams helps to determine the proper

location of the target. While detections exist on multiple beams for the same

target, the beampattern causes the detection to be highest for the beam whose

sector contains the target. Since the SNR also depends on the noise level for a

given beam, the appropriate beam is the one which has the highest echo level,
which is the maximum value of the signal for the detection.

An algorithm employed to reduce the problem of multiple detections for

the same target is shown in Figure 3-12. Within the ping, detections which

have approximately equivalent ranges are compared. Then, the detection with

the highest echo level is chosen as the only detection for the given range bin.
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The resolution of the range bin has been chosen to coincide with the range

variance. The effective beamwidth has now dropped to 11.25 degrees, the

distance between beam centers, because the ambiguity caused by the beam

overlap has been removed.

Figure 3-12 Local Ping Maximum Algorithm

Using this algorithm, the number of detections shown in Table 2 is

reduced from 19 to only 2. The resulting map created after using this

technique is shown in Figure 3-13. A comparison of this map with the map in

68



Figure 3-11 shows several key differences. First, the maximum value of the
map has dropped considerably from 3100 to just over 1000. The number of
detections which contributed to making the map decreased by a factor of 5,
from 26002 to 5436. This reduction creates favorable results in the map
domain. The amount of background noise in Figure 3-13 has also decreased
considerably. Even more significant is the presence of an additional peak at
location [2277, 1772]. In Figure 3-11, this peak was suppressed by the larger
peak at [2282, 1766].
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Figure 3-13 Map after Filtering Multiple Detections

Another problem is evident from the B-Scan data shown in Figure 2-11.
The problem is that the maximum SNR of the arcs depends greatly on range.
This causes targets with higher SNR values to completely overshadow those
with lower SNR values. To counteract this effect, an additional modification
has been to limit the SNR of all the detections which exceed the detection
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threshold to the same value. Though this technique may not be optimal in a

theoretical sense, the limiting has been observed to be useful on real data. A

map showing the SNR limiting modification is pictured in Figure 3-14. The

background only appears to be noisier in this picture because the color map

has been scaled to the peak, which has dropped to approximately 270. The

map in Figure 3-15 reflects a more comparable color map to the previous

maps.

Again, several dissimilarities are worth noting. First, the value of the

peak has again been reduced--this time by a factor of four from the previous

map. The same algorithm described above to reduce the effect of multiple

beams has been employed for this figure as well. The number of pings used in

the past two examples has remained the same. The increased resolution of

this map is owed, in part, to the decrease in SNR to the limiting value. Since

the width of the arc is directly proportional to the SNR of the detection, a

decrease in the SNR causes the arcs of energy to be narrower. This factor

helps reduce the interference between arcs. Also, the desired objective to

reduce the dominance of stronger detections has been achieved. In essence,

the modifications to the original algorithm now involve adding the number of

detections which exceed a given threshold, instead of the energy contribution of

those detections. The peak values in the map are now roughly proportional to

the number of detections passing through the peak location rather than the

sum of energy.
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Figure 3-14 Map after SNR Limiting
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Figure 3-15 SNR Limiting with Thresholded Color Map
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3.3 Monopulse Estimate

Until now the energy-integration algorithm has ignored the existence of

the monopulse estimate. The monopulse estimate attempts to calculate the

angle to the target to within the horizontal beamwidth.

The monopulse estimate is determined by first finding the complex ratio

between the sumbeam and difference channels. The sumbeam channel is

roughly equivalent to the sum of energies from all 6 receive staves which

comprise the beam. The difference channel is the difference between the left

half and right half of the beam. This ratio has a linear relationship to the

direction cosine estimate in the horizontal direction. 15 For a complete

discussion, the reader is advised to see [15].

With the conventional sensor, object resolution was limited the

beamwidth of the individual beams. The monopulse sensor has improved upon

that by estimating the angle to the target within the beam.

This new technique is simply a variation of the energy integration

algorithm used in section 3.2. The derivation is also simply an extension of the

algorithm previously covered.

3.3.1 Derivation of Algorithm

The derivation of the algorithm which uses the monopulse estimate is

merely an extension of the previous algorithm in that now a measure of the

angle uncertainty is given.

Example 4:

First assume a single measurement is made, range and angular

estimate to the target are unknown.

In this case, the azimuthal uncertainty is shown to follow directly from

examples 2 and 3. The hypotheses and assumptions remain the same and are

listed below.



Hypotheses:

H,: Zn = Sn + V,

H0: Zn=V,

Assumptions:

S., Vn complex Gaussian signals

E(SV,) = 0
E(Sn) = E(Vn) = 0

Var(Zn I H,) = ",2 + a,2

Var(Z, I Ho) = Ov2

Var(Range) = Or2

Var(Bearing) = ao2

Detections are independent

The next step is the only major change. For a single detection the

probability density function under H1 becomes:

PzlHI,.a (Z I H,) = I exp ( (IZ2)exp _ 12 (ri - r(x,y))2
(27r)• -,a' (., 2 + ,2Z) ex 2(a,2 + aOv2) ) 20,

exp - (0 - O,(x,Y))2

(28)
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After extending the hypothesis to multiple detections, such as was

shown in the transition from example 2 to example 3, the probability density

function for z given H1 is:

PziH,., (Z I H1) =

1 1 1 exp

N 22()o 2 2+ o2) r 0 exp

=1 r1 2_ 2 01
exp_ 2a (ri_ r(x,y))2jexp(_ 2l026,2o ) , 20"0

+1 (z, 12)2(as2 + ,v2)

(0 (o , Y)

The probability density function for z given Ho is:

pzIHO (Z I Ho) =
N (

Ni=1 exp 2a 1Z
i= 1 27o'a 2 ,

Thus the likelihood ratio function for this example may be expressed as:

N

i=l

A(Z) =

2 (O'S2  + ,,2) 2 - r 2 ..

exp - 1 12•
S2(, + z 2) 2- •

I
202(e

S(x,y)) 2

N 1

(31)

Applying the natural logarithm to both sides yields:

In A(Z) = Nln 1
2(,s 2 + 2)

1
+ Nln

42Ilr

N

•c (r - r(x,y))2
2r 2 i= 1

N- I
20 2 i =

1
+ Nln

42-r,0o
N 2n1 1
27'a, 2(o.,2 +v2)

N
IZi12 +

i=l

N
- 8(x, y)) 2 + IIlZi1 2

2, 2 i = I

(32)
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Combining like terms:

N
1 1 JZI
2 s2" + •,2 av i - 1

Hi (33)

1 N (r1-r(x,y)) 2  N N (6i-9(xy))2 > - _ __ _ a
-2 2 2j a 22i=1 <r 1i=1 +2 22)X

Ho

Finally:

H,

(34)

This formula may also be expressed in terms of the detection SNR:

H,
Z (x,2 -Xy) = -snri (ri - r(x, y)) 2 (0i - (x,))2

i= 1 2 2 map (35)
H

Ho

3.3.2 Description of Algorithm

Once again, the algorithm requires integrating energy in the x-y plane.

The orientation of the arc is now determined by the monopulse angle estimate

instead of the beam number. The shape of the are has also changed

considerably. Now the shape of the arc is defined completely by equation [35].

The peak position of the arc is determined by the measured range and

monopulse angle estimate and the height at this point is equal to the SNR of

the detection. Both the width and cross-section of the arc decrease
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quadratically at a rate according to the appropriate variances in those

directions. Thus along the centerline of the arc, the height of the arc is

determined solely by the deviation in angle from the monopulse estimate.

Figure 3-16 illustrates the structure of these arcs. The position of the buoy in

this picture is the same as before, but the shape of the arc is considerably

different than the arc shown in Figure 3-5. For this arc, the signal to noise

ratio is 10, the range standard deviation is .75, and the azimuthal standard

deviation is set at 3 degrees.
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Figure 3-16 Three-dimensional View of Monopulse Arc Structure

A major change with this new technique is that the target location can

be determined exactly with only one detection. This is a big improvement over

the previous method, but obviously depends on the accuracy of the monopulse

estimate in addition to the other measurements. Additional detections of the

same target again tend to intersect at the same point and provide resilience to
noise in the measurements.
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Figure 3-17 Monopulse Energy Integration Algorithm

The algorithm implemented in software for the modified technique is

shown in Figure 3-17. This flowchart is very similar to the one in Figure 3-7,

however the major difference is that for each pixel with positive energy, the
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energy contribution is reduced according to the deviation in angle between the

pixel to the buoy and the monopulse estimate.

3.3.3 Simulated Data

For comparison purposes, the simulation environment has been kept

the same as before. This environment is portrayed in Figure 3-8. Once again,

the simulation takes into account the effects of various sources of sonar noise,

while assuming there is no positional error. The same detection list is used in

this simulation as in the previous one.

The resulting energy-domain map made from this simulation is shown in

Figure 3-18. This plot once again clearly shows the position of the cylinder at

the proper location, [2050, 1750]. The plot also exhibits a similar noise

structure as before, with the background noise distributed evenly throughout

the plane. The peak has dropped slightly from about 250 to just over 200. The

reason for this is that the amount of energy contained in the new arcs has

decreased. This has caused the peak energy in the background to drop

considerably from 100 to less than 50, and has created an even larger signal to

noise ratio between the target and the background. This difference is again

more evident in a close-up of the target area in which a threshold has been

applied to the color map of the image. This threshold is set at 20% of the peak

value, or approximately 45.
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Figure 3-18 Energy Map using Monopulse Estimate
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Figure 3-19 Close-up Using Monopulse

The close-up image in Figure 3-19 shows the clear the distinction

between target and background for this image. With the background threshold

set at only 20%, almost all the visible energy in the plane is associated with the

target. One change in Figure 3-19 as compared to Figure 3-10 is that the

characteristic "X" shape is now less noticeable. This is due to the fact that the

individual arcs which make up the image are now considerably narrower. The

close-up image also shows that the image is now much smoother since the

jagged edges at the ends of the arcs have been removed.

3.3.4 Test Data

With the actual test data, there are again problems due to multiple

detections of the same target with different beams. Instead of a continuous

arc such as in section 3.2, the spurious detections instead are now spread at

various angles for the given range. While this poses less of a problem to the

map building algorithm, these detections still interfere with the background

200

180

160

140

120

100

80

60

40

20

n



noise and can create false peaks or mask smaller, true peaks. For these

reasons, the local ping maximum algorithm described in Figure 3-12 and the

SNR limiting have again been applied.

A resulting map created using the monopulse estimate is shown in

Figure 3-20. This map should be compared with the map in Figure 3-14. Next

a threshold was applied to the background of this map and the new map is

shown in Figure 3-21. This map is closely comparable to Figure 3-15, the

thresholded version without using the monopulse estimate. Comparing these

two maps, the map created using the monopulse estimate does not have the

same jagged edges that the map without the monopulse estimate exhibits.

These jagged edges are artifacts of the map-building process which result from

the discontinuities at the ends of those arcs. The maps created with the

monopulse estimate use arcs which have been smoothed in both directions and

therefore do not suffer from these problems.

82



1620

1600

1780

1760

"1740
A

' 1720

z 1700

1660

1660

1640

1620

100

80

60

40

20

0
East - > (m)

Figure 3-20 Energy Map using Monopulse Estimate
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Figure 3-21 Monopulse Estimate with Thresholded Color map

The map created with the monopulse estimate has a more well-defined

structure than the map created without using the estimate. This results

primarily because of the smaller arcs and less jagged structure. The benefits

of these characteristics include higher signal to noise ratio and less interference

between arcs and are visible in Figure 3-21.

3.4 Hough Transform

The Hough Transform will next be used as a comparison to the energy

integration method. The Hough Transform is a clustering algorithm commonly

used in computer vision problems. Lately, it has received use in such wide-

ranging applications as silicon wafer fault detection and target tracking. The

Hough Transform was first introduced as a method of detecting complex

curves in binary image data. It operates on the notion that the parameters of

the curves and the resulting image space are mutually constrained by the
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same equation. Points which lie along a common curve are characterized by

the same parameters. The global curve detection problem in the image space

has transformed into a peak detection problem in the parameter space. A

common and straightforward application of the Hough transform has been to

find straight lines in images.

3.4.1 Derivation of Algorithm

A series of collinear points may be described by the relation, f, such that:

f((m, ), (x, y)) = y - Mx - E = 0 (36)

where r^i and 8 are the slope and intercept of the line connecting those points.

The Hough transform shows that equation [36] defines a mutual constraint

between the parameter space and the image space. So, instead of using a set

of parameters such as the slope and intercept to map from the parameter

space to the image space, a single point (x,y) can be used to map from the

image space to the parameter space. The possible parameter values are those

which define the set of all possible lines which pass through the image point.

This operation is called backprojection of the image point and is given by the

relationship shown below:

g((X, ),(m,c)) = - m - c = 0 (37)

Thus for straight lines, each point in the image space defines a straight

line in the parameter space. Points which are collinear in the image space

intersect at a single point in the parameter space. This coordinates of this

point in the parameter space then defines the straight line which connects the

points in the image space. 16

A problem with the slope-intercept parameterization scheme is that

both the slope and intercept are unbounded. In an influential paper, Duda and

Hart modify Hough's technique to use the normal parameterization. 17 This

parameterization, shown in Figure 3-22, describes a straight line by the angle,
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theta, of its normal and the distance, rho, from the origin. The equation of this

line is given by:

xcose + y sine = p (38)

Once again, every point in the image space corresponds to a line in the

parameter space. This time the lines in the parameter space are sinusoidal

curves, as shown in Figure 3-23.

In order to find a straight line through a series of points (xi, yi) the same

process is followed as before. The points must first be converted to sinusoidal

curves in the parameter space. These curves are given by:

p = xi cos9 + y1 sine (39)

Curves corresponding to a straight line in the image space have a

common point of intersection in the parameter space. This point in the

parameter space is the normal parameterization for the line connecting those

points. Figure 3-22 shows a set of collinear points in the image space and the

line which connects those points. After performing the Hough Transform, the

corresponding lines in the parameter space are shown in Figure 3-23. The

point of intersection for those lines is defined by the parameters, p and e, for

the normal parameterization of the straight line which connects the points in

the image space.
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A summary of the transformation between image space and the normal

parameterization space follows:

Property 1.

Property 2.

Property 3.

Property 4.

A point in the image plane corresponds to a sinusoidal curve in

the parameter plane.

A point in the parameter plane corresponds to a straight line in

the image plane.

Points lying on the same straight line in the image plane

correspond to curves through a common point in the parameter

plane.

Points lying on the same curve in the parameter plane

correspond to lines through the same point in the picture plane.

Using the method described above, exactly collinear sets of image points

can be found. A set of n points in the image space are transformed into n

curves in the parameter space. These n curves intersect in n(n-1)/2 points,

which correspond to the set of all possible lines between pairs of points. The

problem becomes quite cumbersome as the value of n increases. Also, many

times in images, the points are only approximately collinear and a linear

approximation is required. Both problems can potentially be solved by

properly quantizing the parameter space.

In order to quantize the parameter space, it is first necessary to

determine the acceptable amount of error in both the range and in angle. The

parameter space is then treated as a two dimensional array of accumulators.

A discrete curve in the parameter space is created for every point in the image

space. The value in the accumulators which lie along the curve are then

incremented. This process is repeated for every detection. Multiple curves

intersecting at a common point cause the accumulator value for the bin

containing that point to be a local maximum.

The accumulator for the quantized version of the previous example

appears in Figure 3-24. The white area in the image corresponds to all 13
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curves passing through that point. The light gray areas correspond to areas
containing 2 curves, and the dark gray areas contain only one curve. The bin
size used in this example is relatively coarse with a single bin corresponding to
2 units of range resolution and 10 degrees of angular resolution. The peak of
this graph is at a value of 60 degrees or pi/3 for the angle and 20 for the range.
These numbers agree with the predicted values from the earlier graphs.
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Figure 3-24 Two-dimensional Accumulator Array

3.4.2 Application to Sonar Problem

The Hough Transform has been shown to be useful as a clustering
technique for collinear image points. The targets in the sonar problem
described in section 3.1 do not move, though. If the buoy position is assumed to
be fixed, however, the targets 'move' in a manner according to the path of the
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buoy. This reference frame was first introduced in Figure 2-4. In this reference

frame every detection creates a new point in the image space. We will assume

for now that the buoy moves only in straight lines. The Hough transform can

then be used to determine the straight line created by the targets. These lines

are also convenient in that they are parallel to the buoy track and thus the

angle of the target track is known. This reduces the number of operations

which must be performed to calculate the accumulator array.

The algorithm used to apply the Hough Transform to this sonar problem

is shown in Figure 3-25. After computing the Hough Transform of the sonar

data, additional post-processing must be accomplished to determine the

position of the target. This is because the straight line only tells the x-offset

from the buoy and not the y-offset from the fixed buoy location.
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For every detection:

Compute Hough
Transform of image points

Discretize range and
normal angle

Add to accumulator array

Continue Loop

Find peaks in
accumulator array

Determine x,y location of buoy
corresponding to peak

Figure 3-25 Target Localization Algorithm

3.4.3 Simulated Data

Now we will apply the Hough Transform to the same simulation

described in section 3.2. This simulation consists of a cylinder at location

[2050, 1750]. The buoy in the simulation moves along a vertical line from

1600 meters north to 1800 meters north. Assuming a fixed location for the

buoy, the cylindrical target then moves along a vertical line.

A plot of the accumulator array in the parameter space for this

simulation is shown in Figure 3-26. The bright spot in the bottom center of the

image denotes the peak number of detections in the map at (00, -50 m). This

means that the line passing through the target points is vertical and 50 meters



to the left of the buoy location. This result is verified by the simulation

geometry.
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Figure 3-26 Accumulator Array for Simulation

A two-dimensional display of the number of intersections along the rho

axis is shown in Figure 3-27. This plot once again shows the peak of 30

intersections with a range of -50 meters. This means that 30 points in the

image space lie along that same vertical line.
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Figure 3-27 Accumulator Array at Rho Axis

As the flow chart in Figure 3-25 indicates, the task is not yet finished.

While the Hough transform yields the cross-track offset from the buoy's track,

it does not contain information concerning the vertical offset of the target.

Once the peak in the accumulator array is found, the detections contributing to

that point are next isolated. A plot of the range vs. ping number for those

points is displayed in Figure 3-28. This plot is similar to the B-Scan plot,
except that the clustering algorithm has already automatically filtered these

points from the main detection list. The vertical offset can then be determined

as the minimum value of the hyperbola. The range value at this point is

approximately equivalent to the value of rho determined earlier. In this

example, ping 31 corresponds to that range value and this buoy location at this
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point is [2100, 1750]. Thus the target location

[2050, 1750].

has been correctly identified at

30 35 40
ping #

Figure 3-28 Range vs. Ping Number

3.4.4 Test Data

Lastly, the Hough Transform will be applied to actual test data. The

subset of data used for this test is pings 895-934 from the October 5, North-

South transit #1. A plot of the accumulator array for this test is shown in

Figure 3-29. The data in this image is much noisier than in the simulation.

Also, several peaks are evident in this figure. Although some of the peaks

appear at aspect angles away from the rho axis, a majority of the energy is

concentrated along that line.
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Figure 3-29 Accumulator Array for Test Data

The energy at the rho axis can be seen more clearly in Figure 3-30. This

plot differs from the one in Figure 3-27 in that several peaks are evident in the

data. This is expected because there are several known and many more

unknown targets in the target field.
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Intersections on rho axis, pings 895-934
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Figure 3-30 Accumulator Array at Rho Axis

The high number of detections and targets cause the most problems

when attempting to complete the final step which is to determine the exact

position of the targets from the peaks in the accumulator array. Figure 3-31

shows a plot of the range vs. ping number for the detections contributing to the

peak at -24 meters. It is difficult to find the classic hyperbola shape in this

image and thus determine the target location. Additional processing needs to

be accomplished in order to increase the performance of the system. One

option is to use the Hough Transform to find the hyperbolic shapes in the B-

Scan data directly.
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4. Performance Analysis

Now that the algorithms have been defined, it is necessary to test how

well they work and compare their relative advantages and disadvantages.

Since the algorithms are designed for target localization, an obvious and highly

critical test of performance is determining whether the targets are properly

identified. Comparisons will also be made on several other key characteristics,

such as resilience to noise and positional errors and the effects of detection

thresholds.

4.1 Detection Capability

The ability to properly locate targets of interest is the most important

measuring stick for these algorithms. Unfortunately, the ground truth

knowledge of the target field at Mendum's Pond is not well known. While the

approximate positions of several mine-like objects are known, the location and

size of other sonar targets are unknown. This problem hampers attempts at

quantifying the results. An analysis of the structure of the energy in the plane

caused by both the noise alone case and the noise plus cylinder case will also be

used to help determine performance capability.

There were five known targets of interest in the Mendum's Pond test

range. These objects are of different sizes and shapes and are located both on

the bottom of the lake and moored in mid-water column. These objects and

their locations are listed in Table 3.

Target Actual Monopulse Energy
Integration

Northwest (2143,1783) (2148,1787)
Southeast (2266,1695) (2268,1694)
Southwest (2169,1679) Not Located
-11 dB (2270,1777) (2270,1773)
-20 dB (2230,1736) (2231,1735)

Table 3 Target Localization Comparison
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Table 1 shows that the sonobuoy seemed to locate the target positions

quite accurately. The one exception is that the Southwest target was not

found. This target also was not found in a side-scan survey of the target field.

The map in Figure 4-1 shows several target locations which are denoted by the

black arrows. This map was created using only 378 of the 977 pings for the

run, because the map appears more cluttered as the number of pings

increases. The -20 dB target does not appear in this map, but is found quite

clearly using some of the remaining pings. Close-up maps of the areas

surrounding each target are stored in the appendix as Figures A-2 through A-6.

These maps were used to establish the locations listed in Table 1.
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Figure 4-1 Energy Map of Overall Target Field

Another significant characteristic of the map in Figure 4-1 is the high

number of sonar targets present. This problem has been addressed in previous
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sections. Various methods have been adopted to reduce the interference

between these targets, but the targets themselves remain. A side-scan sonar

image of a segment of the target field is shown in Figure 4-2. While it is difficult

to localize targets in this figure, areas of difficult topography are readily

observed and these corroborate the results displayed in Figure 4-1. For

example, the area from 2175 East to 2225 East and 1600 North to 1700

North is shown to contain a high number of clutter objects in both images.

The Hough transform technique did not work well with the large number of

targets and noise in the sonar environment. There were simply too many

detections which created many collinear points that were not all related to the

same target.
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4.2 Energy Distribution

It is difficult to quantify the actual test results due to the significant

amount of clutter objects, so additional analysis of the simulated data will be

used to demonstrate the detection capability of the energy integration method.

One way in which this can be done is through an analysis of the structure of

the noise and targets in the energy plane. While the exact probability

distribution regarding the nature of the energy is rather complex because of the

number of targets, an approximation can be made using histograms of the

energy in the plane for both the noise only and noise plus target cases. Figure

4-3 displays various histograms comparing the data for both cases. Separate

plots are created for different detection thresholds. In each of these plots, the

solid line corresponds to the noise only case, while the dashed line depicts the

cylinder plus noise case. The image plane is a square with 1024 pixels per side

and each pixel represents 0.2 meters. So, the resulting image is approximately

200 meters on a side. In creating the histograms, the monopulse energy

integration algorithm was utilized with both the SNR limiting and beam

filtering features turned on, as this configuration has produced the best results

for detecting objects. These energy maps are contained in the appendix as

Figures A-8 through A-15.
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Figure 4-3 Histograms of Energy in Plane for Simulated Data

These images show remarkable differences between the two cases which

simplify target detection tremendously. The peak values of the noise only case

range from a high of 50.46 at 8 dB to only 10 at 12 dB. Incidentally, the

maximum value at 11 dB is also only 10. This means that none of the arcs

intersected at either level. The peaks values using the cylinder and noise case

range from a high of 204.25 at 8 dB to 146.91 at 12 dB. Clearly, these results

indicate the great integration gain which may be achieved using this technique.

The number of detections used to construct the various images are listed in

Table 2. The target plus noise case added between 40 and 70 detections for the

41 pings. Some of the additional pings are caused by multipath reflections.

While these detections are not randomly distributed like the noise, the arcs due
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to the multipaths do not intersect with each other because of the range

separation.
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Table 4 Number of Detections for Given Detection Thresholds

4.3 Map Parameters

Several parameters have an affect on the appearance of the map.

These include the range variance, monopulse estimate variance, map

threshold, and detection threshold. The range variance and monopulse

estimate variance affect the shape of the arc. More accurately, the range

variance affects how much the energy in a given pixel decreases due to the

deviation from the measured range and the monopulse estimate variance

controls the decrease in energy due to the deviation from the monopulse

estimate. While these values are adjustable, typically they are set to reflect

the model of the detection data.

The map threshold, or background threshold, does not affect the creation

of the map, but is used to detect targets after the map has been created. The

thresholded map images essentially display the result of the map threshold.

After applying the threshold to an image, a local maximum routine would then

be used to determine the peak locations.

The detection threshold has perhaps the greatest affect on map

appearance. As the detection threshold is raised, the number of detections

decreases drastically. This relationship is displayed in Table 4. A smaller

number of detections considerably reduces the number of computations which
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must be performed to create a map. This also decreases the storage

requirements on the buoy and the amount of time necessary to uplink to a host

platform. Also seen in Table 4 is that the proportion of detections associated

with a target also increases with the detection threshold. This characteristic

helps explain why the distance between the peak due to the target and the

peak due to the background in the histograms of Figure 4-3 first increases as

the detection threshold increases. Thus it would seem to be wise to set the

detection threshold as high as possible.

A high detection threshold is not always desirable, however. Obviously,

a high threshold may cause weaker targets to remain hidden. Figure 4-4

displays an energy map of the -11 dB calibrated sphere. The sphere location is

denoted by the arrow. Figure 4-5 is a plot of the same area, except in this plot

the detection threshold has been raised from 8 dB to 12 dB. The calibrated

sphere has disappeared from view. Spherical objects, such as in the plots just

mentioned, are characterized by a uniform return instead of strong detections

in any particular direction. While the peak target strength may be lower than

for a similarly sized cylinder, the integration gain is much higher. For a target

such as this, a lower threshold works better. Thus a tradeoff exists on where to

place this threshold. The optimum position allows a majority of target

information to pass, while at the same time restricting the background noise.

The exact location will depend on the desired probability of false alarm and

probability of detection values. More experimentation in a cleaner sonar

environment is necessary to determine this location.
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Figure 4-5 Detection Threshold: 12 dB

A similar tradeoff exists for the Hough transform. Several graphs

showing the effect of the detection threshold on performance are shown in
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Figure 4-6. These plots are all based on the same set of detections from the

cylinder simulation used in section 3-4. As the threshold drops lower and the

number of detections increases, the performance of the Hough transform

decreases dramatically. A larger number of detections at a range close to the

buoy creates a second peak which at 8 dB completely overshadows the desired

peak at - 50 meters. From this data, the Hough transform does not appear to

be as noise resilient as the maximum-likelihood method.
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5. Conclusions

In response to shortcomings in current mine reconnaissance techniques,

the Charles Stark Draper Laboratory developed a concept for a sensor

platform called Intelligent Sonobuoy to detect and localize mines and mine-like

objects. This sonar system is unique in that it uses a low frequency, wide

azimuth sonar projector and cylindrical receive array. In addition, the

sonobuoys themselves contain on-board processing to allow them to create

lists of detections and map their surroundings. Detecting and localizing targets

requires a fusion algorithm which takes into account the various

characteristics of the data.

An algorithm based on maximum-likelihood techniques has been

developed to process the detection lists. This algorithm amounts to integrating

the energy contribution of each detection in an x-y plane of the target field. As

the sonobuoy moves through the field, multiple detections of the same object

tend to peak in one location, while detections attributed to background noise

are spread evenly throughout the plane.

The theoretical results are supported with actual test data obtained

during the summer and fall of 1994. While problems caused by inaccuracies in

the GPS system reduced the effectiveness of the algorithm, it still proved to be

robust enough to locate the desired targets. A high number of sonar targets

also hampered the effectiveness of the algorithm; however, modifications which

reduced the effective size of the arcs in the plane minimized the interference

caused by those targets and allowed finer target resolution in the map domain.

The Hough transform was next studied as a competing approach. The

Hough transform is similar in that it too involves accumulating the detections

which pass through a given location. The Hough transform, though, assumes

that the arcs are infinitely long and does not take into account the probability

distributions which describe the data. While this technique worked for

simulated data in a relatively clean sonar environment, the Hough transform
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was not as able to accurately process the large number of detections found in

the actual test; data.

5.1 Future Work

The results to date from using the Intelligent Sonobuoy system have

been promising, but future work needs to be performed to fully validate the

concept. Chief among these would be to test in a sonar environment in which a

more precise ground truth knowledge of sonar targets is known. This would

allow the various error sources to be quantified and thus better study the

effects of those errors. Exact knowledge of target locations and orientations

also helps quantify the performance of the system and enables a more

complete analysis of the tradeoffs concerning the detection threshold.

Another major step which is yet to be performed is classification of the

various sonar targets. Ideally, this process differentiates between mine-like

sonar targets and other clutter that had a high enough target strength to be

detected. The shape of the target in the energy domain has already been

described as a possible method. In addition, the measured target strengths

associated with a mine-like target should be comparable to its theoretical

model and have a definite structure, as opposed to the more random target

strengths associated with rocks and other natural objects. The structure of

the sonar reflection in the vicinity of the detection also provides clues as to the

identity of the target.

Lastly, additional work is yet to be done with the Hough transform.

Although it was less robust in the noisy environment as implemented, several

other ideas deserve attention. For example, the Hough transform could be

used on the B-Scan data directly to find the characteristic hyperbolic shapes.

Another option would be to look for the inverse tangent shape associated with

the plot of aspect angle as a function of ping number. This graph should

correspond to the B-Scan and provide an additional source of information.
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Appendix A. Maps

Several energy maps are placed here in the appendix. These maps have

been previously referenced in the body of the thesis and are located here

because they provide a reference for the reader and are not essential for the

positions that were made.

Figure A-1 is a map of the entire target field. The color map has been

altered to have a greater affect in color printing. These color plots are helpful

in identifying targets in the maps.

Figures A-2 through A-6 are maps surrounding each of the known target

areas. The target of interest in each plot has been identified with an arrow.

These maps were used to find the target positions listed in section 4-1. Figure

A-7 is a three-dimensional view of the Southeast target. The great separation

between signal and background noise is especially evident in this plot.

Figures A-8 through A-15 are energy maps using the simulated data. A

pair of maps have been created for each of four different detection thresholds.

For each detection threshold there is a plot of the noise only case and the

cylinder plus noise case. These maps were used to create the histograms in

section 4-2.
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Figure A-3 Southeast Target
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Figure A-4 Southwest target (Not Found)
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Figure A-5 Calibrated Target, -11 dB
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Figure A-6 Calibrated Target, -20 dB
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Figure A-7 Surface Plot of Southeast Target
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Figure A-8 Noise Only, 8 dB Threshold
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Figure A-9 Cylinder and Noise, 8 dB Threshold
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Figure A-10 Noise Only, 9 dB Threshold
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Figure A-11 Cylinder and Noise, 9 dB Threshold
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Figure A-12 Noise Only, 10 dB Threshold
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Figure A-13 Cylinder and Noise, 10 dB Threshold
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Figure A-14 Noise Only, 11 dB Threshold
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