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Abstract-- Silicon in  single crystal form has been the material of 
choice for the first  demonstration  of the MIT microengine 
project.  However, because it has a relatively low melting 
temperature, silicon is not an ideal material for the intended 
operational environment of high temperature and stress.  In 
addition, preliminary work indicates that single crystal silicon has 
a tendency to undergo localized deformation by slip band 
formation.  Thus it is critical to obtain a better understanding of 
the mechanical behavior of this material at elevated temperatures 
in order to properly exploit its  capabilities as a structural material.  
Creep tests in simple compression with n-type single crystal 
silicon, with low initial dislocation density, were conducted over a 
temperature range of 900 K to 1200 K and a  stress range of 10 
MPa to 120 MPa.  The compression specimens were machined 
such that the multi-slip <100> or <111> orientations were 
coincident with the compression axis.  The creep tests reveal that  
response can be delineated into two broad regimes: (a) in the first 
regime rapid dislocation multiplication is responsible for 
accelerating creep rates, and (b) in the second regime an 
increasing resistance to dislocation motion is responsible for the 
decelerating creep rates, as is typically observed for creep in 
metals.  An isotropic elasto-viscoplastic constitutive model that 
accounts for these two mechanisms has been developed in support 
of the design of the high temperature turbine structure of the MIT 
microengine. 
 
Index Terms—single crystal silicon, constitutive model, finite 
element analysis, microengine. 
 

I. INTRODUCTION 
 
The design of the MIT microengine is limited in part by the 
capabilities of Si as a structural material at temperatures 
higher than its brittle-to-ductile transition temperature 
(BDT), 900 K.  Fig. 1 illustrates the thermal-softening and 
strain-softening of Si.  In order to circumvent this 
limitation, it has been proposed to reinforce the Si with 
CVD SiC in strategic locations to create a Si/SiC hybrid 
microengine turbine spool.  The feasibility of this hybrid 
turbine spool design has been investigated by a series of 
finite element analyses involving primitive material models 
[1, 2, 3].  While this has confirmed the potential of the 
Si/SiC hybrid microturbine structure for improving engine 
efficiency, as well as maintaining structural integrity, the 
thermomechanical structural analyses conducted thus far 
have not addressed the following three specific questions: 

1) Can the upper yield strength of Si be relied on in 
designing a part that is to be in service at 
temperatures higher than the BDT? 

2) Can the admissible operating conditions and 
service life of a part be reliably estimated? 

3) Will stress concentrations, such as fillet radii, be 
susceptible to localized creep/plasticity 
deformation? 

  
An isotropic elasto-viscoplastic constitutive model for the 
deformation of single crystal Si in multi-slip <100> and 
<111> orientations is presented in the following section.  
The next section shows a calibration of the model against 
our compression creep experiments in order to determine 
the material parameters appearing in the model.  The 
calibrated model is then used to predict the response of 
silicon in 4-point bending at an elevated temperature.  This 
paper  concludes with remarks on  possible additional 
improvements to the model, as well as its usefulness as a 
design tool. 

 
II. BACKGROUND 

 
In the range of 0.5 to 0.8 homologous temperatures, single 
crystal Si, initially having a small grown-in dislocation 
density on the order of 106 to 107 #/m2, deforms fairly 
elastically until yielding with a noticeable peak in the 
stress-deformation response as shown in Fig. 1.  Once it 
begins to deform plastically, facilitated by the number of 
dislocations that rapidly increases by the multiplication 
mechanisms such as a Frank-Read sources, Si softens with 
the increase of strain.  In other words, the lattice resistance 
to the movement of dislocations, which defines the 
macroscopic material strength, decreases with the increase 
of the dislocation density.  This rapid multiplication of 
dislocations is also responsible for the initial accelerating 
primary, or incubation creep stage of single crystal Si.  The 
infrared photomicrographs shown in Fig. 2 illustrate the 
dislocations formed within a Si crystal in its early creep 
stages and a multiplication mechanism, a Frank-Read 
source.  The plastic flow favored by the fast dislocation 
multiplication in diamond-structured materials was 
investigated by many researchers, including Hassen and  
co-workers [4, 5].   
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
Figure 1. (a) Upper yield strength of Si as a function of 
temperature.  (b)  4-point bending test result at 800 °C and 
1 mm/sec ram speed. [Chen, K-S., Ph. D. Thesis, Dept. of 
Mechanical Engineering, MIT, Cambridge, MA, 1999] 
 
As the Si crystal deforms further, the influence of 
interactions of dislocations becomes important.  The 
increase of the dislocation density, to the extent of forming 
subgrain structures, leads to a deformation mechanism 
where the thermally-activated deformation theory operates, 
as is often observed in metals at elevated temperature.  
Myshlyaev and co-workers accounted for the activation 
energy as being about equal to that for self-diffusion and a 
high stress dependence of Si in this deformation regime [6, 
7].  The TEM micrographs in Fig. 2 show the subgrain 
structures formed within Si, which in turn implies the high 
interaction of dislocations during the deformation. 
 

III. CONSTITUTIVE EQUATIONS 
 
We outline below an elasto-viscoplastic constitutive model 
the deformation of single crystal Si, initially containing a 
low density dislocations in the multi-slip <100> and <111> 
orientations, at homologous temperatures of 0.5 to 0.8 
based on the deformation mechanisms described above.   

 
(a) 

 

 
(b) 

 
Figure 2. (a) Infrared microphoto of deformed Si. 
Dislocations and trails decorated with Cu.  [W. C. Dash, J. 
Appl. Phys. 29, 705 (1985)].  (b) TEM micrograph  of cell 
structure during decelerated strain stage, revealed by 
chemical etching.  .  [M. M. Myshlyaev, et al., Dislocation 
Structure and Macroscopic Characteristics of Plastic 
Deformation at Creep of Silicon Crystals, Phys. Stat. Sol., 
Vol. 36, 1969] 

 
The constitutive model employs two scalar internal 
variables: a mobile dislocation density, ρm, , taken equal to 
the total dislocation density, ρm = ρ, which governs the 
magnitude of the plastic shearing rate in the initial stages of 
deformation where the dislocation density is rapidly 
multiplying, and an isotropic resistance to plastic flow, s,  
which has dimensions of stress, and represents (in a 
collective sense) the resistance to plastic flow offered by 
the dislocation substructure in the later stages of 
deformation after a sufficiently large mobile dislocation 
density has been generated.  The transition between the two 
deformation regimes takes place at a certain critical 
dislocation density, above which the material history cannot 
be described by a single measure of the dislocation density 
but by the high degrees of interactions among dislocations.  
This critical dislocation density appears to be a function of 
only the effective shear stress.  The frame-work of our 
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constitutive model is based on the previous work by Anand 
and co-workers [e.g., 8, 9]. 
 
The governing variables in this constitutive model are: 

),,,,,( sp ρθFFT ,   (1) 
where T is the Cauchy stress, F is the deformation 
gradient tensor, pF is the plastic deformation gradient 
tensor, θ is the absolute temperature in Kelvin, ρ is the 
dislocation density, and s is the isotropic slip resistance.  
The basic constitutive equation for Si is given by the 
following linear relation: 

])([ 0 1ET θθα −−= T
eC ,  (2) 

where T is the symmetric second Piola-Kirchoff stress 
tensor, eE is the strain tensor defined by the Green elastic 
strain measure, which in turn is set equal to the logarithmic 
strain, C is a fourth-order isotropic elasticity tensor, and 

1Tα is the second-order isotropic thermal expansion 
tensor, and θ and θ0 are the absolute temperature and a 
reference temperature, respectively.  The evolution equation 
of the plastic deformation is given by 

ppp FDF =& ,    (3) 
with 

τ
γ

2

'TD pp &= ,    (4) 

where 'T  is the deviatoric part of T , ''
2
1 TT ⋅=τ  is 

the equivalent shear stress, and 
pγ& is the equivalent plastic 

shear strain rate.  

A. regime 1 )( critρρ ≤  

This regime has been extensively investigated by  many 
researchers, including Hassen and co-workers [4, 5], and an 
isotropic constitutive model  has been previously  proposed 
by Dillon and co-workers [12].  The plastic strain rate 
produced by a crystal is, in general, determined by the 
Orowan equation [10], 

vbm
p ργ =& ,    (5) 

where ρm is the mobile length of dislocations per cubic 
centimeter, b is the Burgers vector magnitude, and v is the 
average velocity of these dislocations.  For small 
deformation, the mobile dislocation ρm can be replaced with 
the total dislocation density ρ.  They found that a statistical 
arrangement of the dislocations produces a mean internal 
stress , 

,ραµτ bi =     (6) 
where µ is a shear modulus and α is a constant.  They also 
found that it is an effective stress, the difference between 
the internal stress and the applied stress, i.e.: 

ieff τττ −= ,    (7) 
that determines the dislocation velocity and the 
multiplication rate.  Combining the Orowan equation and 
the dislocation multiplication law (which states that the 

multiplication of moving dislocations occurs in proportion 
to their moving length and the distance traveled or dρ = 
ρ⋅v⋅dt⋅δ, where δ is the multiplication parameter) yields the 
multiplication rate as 

effKτδ = ,    (8) 
with K is a multiplication rate constant. 
 
Then, in regime 1, the plastic shear strain rate as taken as 
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where v0 is a reference value for the dislocation velocity, Q 
is an activation energy, k denotes the  Boltzmann’s 
constant, τ0 is a reference stress and m is a strain rate 
sensitivity parameter. 
 
The evolution equation for the dislocation density in regime 
1 is taken as 

phγρ && = ,  effb
Kh τ





= .   (10) 

B.  regime 2 )( critρρ >  
 
In this regime the previous work of Myshlyaev and his co-
workers [6, 7] is important.  They showed that over a wide 
range temperatures and stresses (900 °C to 1300 °C and 20 
to 150 MPa) the steady creep rate may be represented by 
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where ∆G* is the activation free enthalpy or the Gibb’s free 
energy for activation, ∆F is the activation free energy 
required to overcome the obstacles to slip without the aid of 
an applied shear stress, and V is the activation volume.  
This kinetic equation can be rearranged as 
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with the isotropic shear resistance s = ∆F/V, which is now a 
specific form of the suggestion by Kocks et al. [11], 
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with p = 1 and q = 1.  Here 0γ& is a reference shearing rate 
and s is a constant slip resistance. 
 
To allow for both primary and steady-state creep we allow s 
to vary and adopt the following simple evolution equation 
for the slip resistance s: 

phs γ&& = ,  




 −=

*
10 s

shh
’  (14) 

where h0 and s* are additional non-zero positive-valued 
material parameters that govern the primary creep response. 
 
 
 



 

 

C. Transition between two regimes 
 
A simple criterion for the transition between regimes 1 and 
2 is that as long as the dislocation density is less than a 
critical value  then the flow and evolution equations for 
regime 1 are operative, and regime 2 becomes operative as 
soon as the dislocation density reaches the critical value.  
The critical value critρ  is taken to be a power-law function 
of the equivalent shear stress: 
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Here, the parameter ρcrit0 is set to be somewhat greater than 
the initial dislocation density ρ0 so that the inequality 
condition does not fail at the first root. Further, in order to 
guarantee the smooth transition between the two regimes, 
the plastic shear strain rates for each regime should be the 
same when the transition.   By equating these two plastic 
shear strain rates for each regime at the transition, i.e., 

21 regime
p

regime
p γγ && =  at )( critρρ = . (16)  

the shear resistance, s, can be initialized for the Myshlyaev 
regime as follows:
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IV. MODEL CALIBRATION & VERIFICATION 

 
The constitutive model has been implemented by writing a 
subroutine VUMAT for  a commercial finite element 
program, ABAQUS EXPLICITTM.  The material 
parameters in the model have been calibrated using 
compression creep experiments  on Si performed at MIT 
and also those reported in the literature [6, 12].  The 
material parameters in the model can be classified into three 
groups based on what they do: material parameters for 
regime 1, which govern the initial accelerating creep or 
incubation stage and strain softening, regime 2 material 
parameters, which determine the transition of the primary 
and the secondary creep and strain-hardening, and the 
transition parameters.  These three material parameter 
groups are somewhat independent of each other.  In the 
model calibration, finite element calculations using 
ABAQUS/EXPLICITTM are performed for simple 
compression with a single ABAQUS-C3D8R element, a 
reduced order three-dimensional continuum element, 
subjected to the appropriate load and temperature.  The 
material parameters were fitted to the experimental results 
through this finite element calculation.  The calibrated 
material parameters for the model are given in Table 1.  
Fig. 3 shows the calibration at two different temperatures, 
600 °C and 800 °C; the fit is reasonably satisfactory.  At 
low temperatures the model can predict the observed 
incubation creep stage.  At high temperatures, the 

incubation creep stage almost is negligibly small, and the 
model can be satisfactorily fit to the primary and secondary 
creep regimes. 
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Figure 3. Calibration results of the Si model fitted against the 
experimental creep data. (a) 600 °C and (b) 800 °C. 
 

Table 1. Calibrated material parameters for the model 
 

Material parameters for regime 1 
b = 3.83E-10 m 

v0 = 4.3E-4 m/sec 
τ0 = 5.5 MPa 

Q = 3.47E-19 J 
kB = 1.38E-23 J/K 

m = 0.9091 
ρ0 = 2E7 #/m2 
ρinit= 2E7 #/m2 

α = 2.0 
K = 2.0E-4 m/N  

Material parameters for regime 2 

0γ&   = 0.5E9 1/sec 
∆F = 6.6E-19 J 
h0 = 12.5E9 Pa 
s* = 330E6 Pa  

Material parameters for transition between two regimes 
A = 208.2 
n = 2.11 

ρcrit0 = 2E8 #/m2  



 

 

 
 
The responses of the model to a monotonic loading have 
been investigated further.  Using the same finite element 
mesh, the uniaxial compression testing was simulated for a 
series of loading conditions with various temperatures, 
strain rates, and the grown-in dislocation densities.  Fig. 4 
illustrates the qualitative behaviors of this model for the 
response to a dynamic loading.  The compression testing of 
Si, when performed with a constant strain rate, is 
characterized by a pronounced upper yield strength 
followed by strain-softening, an easy glide region, and 
strain-hardening similar to that for metals [13].  As 
supported by the experimental results in the literature [14, 
15], the upper yield strength increases with the decrease of 
temperature, the increase of strain rate, and the decrease of 
the grown-in dislocation density.  Moreover, the strain-
hardening curves after an easy glide region appear to 
converge somewhat.  With the dislocation density in the 
crystal increased enough to yield high interactions of 
dislocations, the deformation mechanism becomes less 
sensitive to the changes in temperatures, strain rate, and 
rather obviously, the dislocation density. 
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Figure 4, Characteristics of the model in the response to a 
dynamic loading for uniaxial compression testing: (a) 
Temperature dependence, (b) strain rate dependence, and 
(c) the dependence of the grown-in dislocation density in 
the crystal. 
 
The predictive capabilities of the model were verified by 
comparing the load deflection response of Si in 4-point 
bending at 800 °C.  A Si flexural specimen with dimensions 
of 1 mm thick, 8.8 mm wide, and 50 mm long was modeled 
with ABAQUS-CPE4R elements as shown in Fig. 5 (a).  
Both the inner and the outer roller, modeled with rigid 
surfaces, form a frictional interface with the Si specimen.  
While the inner roller is held fixed, the outer roller moves 
upwards at a speed of 1 µm/sec.  Fig. 5 (b) and (c) show the 
dislocation density distribution of the specimen and the 
shear resistance distribution, respectively.  Fig. 6 shows a 
comparison of the load predicted by the finite element 
analysis versus the experimental result.  While it 
satisfactorily predicts the peak load followed by softening, 
the finite element calculation deviates from the experiment 
at larger deflections.  It is possible that the actual 
experiment shows a softer response because the rollers can 
move laterally during bending, while in the simulation they 
cannot.  However, a careful examination shows that this 
problem may also be related to the progress of the localized 
deformation that relieves the stress in the Si flexural 
specimen.  This problem may call for a complete crystal 
plasticity formulation for the Si constitutive model that 
enables the improved prediction of localized deformations 
under  the rollers. 
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Figure 5. (a) Finite element mesh for a 4-point bending test 
with the undeformed in dashed lines and the deformed in 
solid lines(b) dislocation density distribution, (c) isotropic 
shear resistance distribution.  Experiments performed at 800 
°C with the ram speed of 1µm/sec. 
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Figure 6. Comparison of the finite element prediction of the 
load as a function of the crosshead displacement predicted 
for a 4-point bending test against the experimental result.  
 

V. SUMMARY 
 
An isotropic constitutive model for the elasto-viscoplastic 
deformation of single crystal Si, with low initial grown-in 
dislocation density, deforming under multi-slip conditions 
at elevated temperatures has been developed.  The model 
has been implemented in ABAQUS/ EXPLICITTM, and 
calibrated to fit our data from creep experiments.  While it 
is versatile in predicting various aspects of the mechanical 
behavior of Si at high temperatures, this model may not be 
effective when localized deformations dictate the overall 

structural response.  More elaborate crystal plasticity 
formulations may provide a more reliable solution for this 
problem, but only at a substantial computational cost. 
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