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ABSTRACT

Rapid solidification of undercooled pure nickel and hyperperitectic Fe-(10-30) wt.%
Ni alloys has been imaged at sufficiently high spatial resolution (64 x 64 pixels) and
temporal resolution (40,500 frames/sec) to observe interfacial shape and solidification
velocities exceeding 45 m/s. Imaging was of 8 gram, quartz-fluxed melts at undercoolings
between 70 K and 300 K. Dendrite velocities within the melt were calculated from the
surface velocities observed employing a simple geometric model of growth. Solidification
was found to proceed invariably from a single nucleation point at every composition. In
the case of Fe-Ni, primary solidification of both the equilibrium FCC phase and the
metastable BCC phase was observed, with phase selection dependent upon the thermal
history, composition, presence of heterogeneous nucleants, and degree of undercooling
attained. In all cases of primary BCC solidification, a subsequent transition to the FCC
phase was observed, resulting in a two-stage “double recalescence” evident in the thermal
and video records. A primary solidification map was generated to predict the preferred
phase for primary solidification as a function of composition and nucleation temperature for
similar experiments with quartz-fluxed Fe-Ni specimens.

The computer-based growth model enabled determination of solidification velocities
with much greater precision than had been previously accomplished using pyrometric
techniques alone. Growth velocity in pure Ni was found to follow an approximate power-
law relationship with respect to undercooling up to some critical value AT*, where 150 K <
AT* < 180 K. Growth velocities in BCC Fe-(10-12) wt.% Ni followed a similar power-
law relationship, but no velocity transition was observed despite undercoolings of nearly
250 K. However, both pure Ni and Fe-Ni specimens did exhibit a secondary transition in
solidification interface morphology. At smaller undercoolings, interface curvature was
discontinuous, with tendencies toward growth along preferred crystallographic directions.
At larger undercoolings, interfaces were completely smooth, with no discontinuity in
curvature caused by irregular growth. Values for the morphological AT* were estimated at
160-170 K for pure Ni and 180-190 K for intermediate Fe-Ni compositions.
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1. Introduction

One of the most interesting solidification phenomena to undergo extensive study in
the last 30 years is the rapid solidification behavior of pure elements and alloy melts.
Rapidly-solidified materials have proved to offer a wide range of desirable materials
properties not exhibited by their conventionally-cast counterparts. For specimens

exhibiting at least one thin dimension, numerous rapid solidification techniques have been

developed which rely upon ultra-high rates of heat extraction (10%-10'2 K/s); examples
include melt-spinning, splat-quenching, ion bombardment, laser-pulse heating, and many
others.

These methods, however, cannot be used in the production of large-scale ingots in
the foundry, because the absence of a thin dimension makes it impossible to obtain the
requisite heat-extraction rates. One alternative approach to produce rapid solidification in
these cases is to achieve a large undercooling of the liquid melt prior to solidification.

Undercooling techniques enable rapid solidification by lowering the melt
temperature well below the liquidus prior to solidification, gradually removing a significant
portion of the ingot’s sensible heat. The resulting rapid solidification is caused by the
increased thermodynamic driving force inherent to the highly-undercooled liquid, and a
large portion of the solidification process can be made to occur in an essentially adiabatic
manner, a phenomenon known as “recalescence.”

The undercooling phenomenon has been under considerable study for decades, and
an important parameter of characterization has been the velocity with which the newly-
formed solid propagates through the undercooled liquid during the solidification process.
Prior film-based and electronic methods of measuring solidification velocities have met
with variable success. In general, investigators have achieved either high temporal

resolution (strategically-placed photodiodes), or high spatial resolution (conventional film-



based cameras)—but not both. As a result, the velocity measurements from these
experiments have suffered from a large degree of scatter.

It is only recently that electronic imaging technology has developed to the point
where there exists sufficient temporal resolution (up to 40,500 Hz with the system
employed in this work) and spatial resolution (a 64 x 64 pixel image) to generate a complete
visual record of the rapid solidification of a highly-undercooled specimen. This record, if
properly interpreted, can be used to obtain the most accurate velocity measurements yet
performed in this type of experiment.

In the current work, an original computer model has been developed to analyze the
photographic records of rapid solidification events and measure the propagation velocity of
the solid/liquid interface. The method is first applied to melts of high-purity nickel—an
extensively-studied material—in order to demonstrate the validity and accuracy of the
technique. Analysis is subsequently extended to the solidification of binary Fe-Ni alloys,

with special emphasis placed upon the exploration of the metastable §-phase and related

double-recalescence phenomenon.



2. Literature Survey

2.1 Pure Nickel
2.1.1 Methods of Investigation

Numerous investigators have studied dendrite growth velocities in undercooled
high-purity elements, particularly nickel, since the undercooling phenomenon was first
observed in the Au system by Van Riemsdyk [1] in 1880. Walker [2] made the first
thorough investigation of undercooled nickel melts using photodiodes to measure the time
required for an interface to propagate along a column of molten material. Colligan and
Bayles [3] used photodiodes in conjunction with high-speed cinematography, determining
surface solidification morphology in addition to solidification velocities

Subsequent velocity studies have primarily involved refinements in the placement of
photodiodes and interpretation of the thermal record. Piccone, et al [4], for example,
employed a single photodiode focused on a portion of an undercooled, quartz-encased

nickel ingot in conjunction with a digital oscilloscope. Velocities were determined using

the relationship
D
V=—, 2.1
At 2.1

where D is the diameter of the pyrometer view field and At is the signal “rise time” for the
recalescence, as depicted in Figure 2.1. This technique—like any technique that does not
directly image the solidification interface—suffers from several inherent uncertainties
regarding both D and At: first, the D value is an inaccurate measure of the distance traveled
by the solidification interface unless it is certain that growth proceeded directly across the

field of view of the pyrometer. In addition, a large degree of interpretation is required to
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derive a At value from a given thermal record; the sigmoidal shape of the temperature
transition makes it possible to determine At consistently, but not precisely.

Other researchers have employed electromagnetic levitation (containerless
processing) to study undercooled Ni melts. One such example is the work of Willnecker,
et al [5], who used two hemispherical photodiodes and calculated solidification velocities
using signal rise time and geometric considerations. Hofmeister, et al [6], used a single,
tightly-focused (1 mm) photodiode, supposedly to minimize the effects of potential multiple
nucleation events. In the latter investigation, the reduced pyrometer spot size may have
mitigated the effect of the unconstrained solidification path. In the former study,
measurement accuracy may have been improved by constraining the solidification path via
manually-induced nucleation at the south pole of the specimen. However, in both
investigations, the results of the work again depend upon the interpretation of sigmoidal
thermal profiles.

Eckler and Herlach [7] used a polar photodiode and a unique capacitance trigger in
their work, defining more accurately the duration of the solidification event. In this study,
the moment of nucleation was marked by a jump in the capacitance of a metallic stimulation
needle upon contact with the base of the specimen. As a result, pyrometry was only
required to detect the end of the solidification event.

Bassler, et al [8], were among the first to use a linear array of photodiodes—later
moving to a two-dimensional array—in an effort to improve the spatial resolution of their
studies. An iterative computer routine was employed in conjunction with the photodiode
records to produce a calculated velocity associated with minimum deviation from the
observed data. The work was also based upon the assumption that the solid/liquid interface
remains convex to the liquid at all undercoolings; deviations were assumed to result from
multiple nucleation events, and all such trials were thrown out. However, both the current

investigation and prior work [3] have shown numerous deviations from the convex-
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interface restriction which clearly result from a single nucleation point. As a result, the
validity of Bassler’s “multiple nucleation” assumption is in question.
2.1.2 Experimental Results

With the exception of Hofmeister and Bassler, the results of the above work are
qualitatively and quantitatively similar (Figure 2.2). At small undercoolings, the
investigators show an approximate power-law relationship between undercooling and

solidification velocity,

V =k (AT)P, 2.2)

where B varies between 2 and 3. This behavior is relatively well-predicted by the “LKT”
theory of Lipton, et al [9], particularly when a kinetic parameter is included in the analysis.
At larger undercoolings, the results of prior investigations diverge more sharply, but many
conclude that there exists some critical undercooling, AT*, in the range 170-190K, above
which a normal LKT analysis is no longer valid.

In addition, several researchers [10,11,12] have observed a corresponding
microstructural transition at AT* in a similar range of values, marking the shift from a
columnar dendritic grain structure to a finer, equiaxed structure. Notable also is the
transition in solidification interface morphology identified by Colligan and Bayles in their
high-speed cinematographic work. It was determined that surface interfaces displayed
continuous curvature at undercoolings greater than 160 K, but shifted to a discontinuous,
angular morphology as undercooling fell below 145 K.

The scatter of undercooling-velocity data at undercoolings above AT* is quite
remarkable, bounded at the lower end by the results of Hofmeister and Bassler, who report
a constant velocity of about 20 m/s at all undercoolings larger than AT*. They propose that

interfacial attachment kinetics is the limiting factor at these large undercoolings, while no

12



satisfactory explanation has yet been proposed to explain the relationships observed by the
other investigators.

Scatter at undercoolings less than AT* is much less pronounced than at higher
undercoolings and may be explained by variations in convective effects and methods of
pyrometry, deviations from assumed specimen geometry, and, as supported by Eckler, et

al [7], uncertainty regarding the growth direction of the dendrites.

2.2 Iron-Nickel
2.2.1 Metastable Phase Solidification

One of the first observations of the tendency of hyperperitectic Fe-Ni alloys to
solidify into more than one crystalline phase was made by Cech [13] in 1956. It was found
that micron-range particles of Fe-29.5 at.% Ni cooled from the liquid state formed not only
the expected equilibrium FCC phase upon solidification, but also frequently solidified into
an unexpected BCC phase. A simple graphical extension of the liquidus and solidus lines
of the (BCC) 8 phase on the equilibrium Fe-Ni phase diagram (Figure 2.3) supported the
hypothesis that molten droplets of Fe-Ni undercooled below these extensions could solidify
into a metastable form of & Fe-Ni.

2.2.1.1 Theoretical Basis

Kelly, et al [14] presented a strong theoretical argument for the solidification of
alternative (or nonequilibrium) crystalline phases from an undercooled melt based on the
thermodynamics and kinetics of nucleation and growth. Numerical results for Fe-Ni
showed that the metastable phase was indeed preferred for homogeneous nucleation under
a wide range of particle sizes, cooling rates, and compositions. In the case of
heterogeneous nucleation, wetting angle and other variables entered the analysis, but

primary metastable phase solidification remained a theoretical possibility.
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2.2.1.2 Powder Studies

Subsequent powder studies have continued to reveal metastable phase formation
from the melt in Fe-Ni alloys. Kim, et al [15] reported development of the alternative BCC
phase in submicron droplets of Fe-30-, and Fe-40 at.% Ni, but not in Fe-50 at.% Ni.
Thoma, et al [16] (an excellent review paper on this topic) found BCC solidification in a
wide compositional range, proposing a map to define the structural evolution of solidified
Fe-Ni as a function of both composition and undercooling.

Although Libera, et al [17] managed to obtain thermal profiles of 44-46 um Fe-30
at.% Ni particles upon solidification, they were unable to salvage the individual particles
and thus did not perform any microstructural evaluation. Also, the temporal resolution of
their pyrometry was insufficient to reveal potential two-stage recalescence behavior.

2.2.1.3 Bulk Studies

Investigations of bulk Fe-Ni specimens have further characterized metastable BCC
phase solidification. The Thoma study reported no retained metastable BCC structure in
larger (1-3 mm) droplets of Fe-(10 to 30) wt.% Ni; however, it was speculated that the
cooling rate in these droplets was insufficient to suppress a solid state BCC-->FCC
transformation, and that the initial solid phase to form from the undercooled melt may well
have been the metastable 3 phase.

Stronger evidence for the proposed transition was supplied by Zhao, et al [18] and
Herlach, et al [19], who recorded fast thermal profiles of bulk Fe-Ni solidification events.
These efforts revealed a double-recalescence behavior for certain hyperperitectic Fe-Ni
specimens at sufficient undercoolings: initial growth of BCC material was followed by a
plateau period near the metastable BCC solidus temperature lasting from about 1 ms to
several seconds, followed ultimately by a transformation to FCC material from either a
liquid/solid mixture or the solid state. These thermal profiles, in agreement with theoretical

work by Chuang, et al [20] which more accurately defined the metastable liquidus and
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solidus lines for 8 Fe-Ni, provided an exceedingly strong indication that the metastable
phase was solidifying directly from the undercooled melt.
2.2.2 Experimental Results

In general, the microstructure and solidification velocities observed in undercooled
Fe-Ni melts resemble the results of the pure Ni work. The undercooling-velocity data from
Barth, et al [21] for Fe-25- and Fe-30 at.% Ni are summarized in Figure 2.4; the behavior
is reasonably well modeled by modified LKT analyses for the equilibrium FCC phase. The
investigators argued that the data in Figure 2.4 reflects the existence of a critical
undercooling (AT*) for both compositions at 175 K—similar to that of pure Ni—although
this appears to be a more valid assessment of the lower data set. Above AT*=175 K, it
was surmised that dendrite growth theory no longer offered an accurate prediction of the
AT-V correspondence, indicating some shift in solidification mechanism. It is worth noting
that this study assumed primary solidification of the equilibrium FCC phase in Fe-25- and
Fe-30 at.% Ni. The Zhao study found FCC solidification in Fe-30 wt.% Ni, but primary
BCC solidification in Fe-5- and Fe-10 wt.% Ni specimens.

Other investigations identified a microstructural AT* which marked a transition from
a dendritic structure below AT* to a much finer-grained, “spherical” structure at higher
undercoolings. Early work by Kattamis, et al [22] indicated a AT* value of 170 K for Fe-
25 wt.% Ni. Abbaschian, et al [23] found a similar value of 175 K for that alloy, while the
Barth study reported a microstructural AT* between 135 K and 180 K for a range of Fe-Ni
compositions.

One final experimental result of importance is the demonstration of phase selection
or “phase seeding” in Fe-Ni through the use of a heterogeneous nucleation trigger of high
catalytic potency. Herlach, et al [19], were able to induce solidification of the metastable
BCC phase in Fe-(20-30) at.% Ni by surface stimulation with a trigger wire composed of
BCC Feg;Mog. Identical specimens displayed primary FCC solidification when allowed to

recalesce spontaneously from similar or greater undercoolings. This result reveals the
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potential for reliable phase selection in this and other alloy systems through the use of

carefully-selected heterogeneous nucleants.

Specimen

Pyrometer

Intensity

Figure 2.1: Typical pyrometric method to determine solidification velocity,

where V =D/ At.
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3. Experimental Procedure

Figure 3.1 shows a schematic of the apparatus used in the current work to obtain

thermal profiles and visual images of undercooled specimens.

3.1 Specimen Preparation

Two lots of high-purity nickel were used for this study, both obtained from
Electronic Space Products International. The first lot was 99.9+ pct. (3N) pure wire stock;
the second was rod stock of 99.999+ pct. (5N) purity. The iron used in the Fe-Ni
specimens was 99.9 pct. pure flake obtained from Johnson Matthey Alfa Aesar.

For each pure Ni specimen, approximately eight grams of either 3N or SN material
was cut, cleaned in ethanol, and then induction-melted inside an open-ended quartz tube on
a bed of high-purity quartz frit (see Figure 3.2). The Fe-Ni specimens were prepared in
similar manner from portions of 3N Ni wire and Fe flake pre-weighed to a nominal
accuracy of £.001 g. Compositions under study included Fe-10-, 12-, 15-, 20-, and Fe-30
wt.% Ni. For all specimens, prior to melting, the enclosing test tube was evacuated and
flushed several times with high-purity Ar gas; subsequently, the gas was allowed to flow
continuously through the test tube.

Power for heating was supplied by a Lepel model T-10-3 10 kW radio-frequency
current generator operating at a nominal frequency of 400 kHz. Energy was input to the
specimen by an 8-turn, 1/8" copper tubing split induction coil. During a typical thermal
cycle, the cylindrical ingot was inductively heated through its liquidus temperature to a
maximum superheat of 100-150 K. The heating power was then switched off and the
specimen was allowed to cool under the flowing Ar until either spontaneous nucleation
occurred, or else nucleation was stimulated at the top surface of the ingot using a short

length of Fe or Ni wire.
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3.2 Pyrometry
3.2.1 Data Acquisition

Temperatures were measured using a silicon photodiode-based Capintec Ratioscope
III two-color pyrometer operating at near-infrared wavelength bands centered at 0.81 and
0.95 um. Pyrometric data was recorded by a Nicolet 4094B digital oscilloscope with two
model 4562 plug-ins and an XF-44 twin disk drive. During a typical run, the four
differential analog inputs of the Nicolet were used as follows: two inputs sampled the
pyrometer channels continuously at a rate of approximately 20-50 Hz, producing a 1-3
minute thermal history of a melt-superheat-solidification cycle. The other two inputs
produced a high-speed recalescence profile by triggering upon recalescence and recording
at the rate of 0.2-1 MHz for 4-20 ms, retaining an adjustable amount of pre-trigger data.
3.2.2 Data Analysis

The results of each thermal cycle were saved in Nicolet-specific format on 5 1/4”
floppy disk for archiving and then downloaded to an IBM PC-AT computer via a GPIB
interface using the “Henry” file-transfer package provided by Nicolet. Usually, the
4094LTU transfer program was used, rendering the data into an older “LOTUS 1-2-3”
spreadsheet-style format. The data was ultimately transformed into simple tab-delimited
column format using a C program (see Appendix A4) in order to facilitate subsequent
analysis.

Temperatures were derived from each two-channel set of pyrometer data using the

following relation:

Tobs = Tref + m (Rops - Rref), 3.1

where Robs is the observed ratio of the signal intensities of the two pyrometer

channels: Robs = Ig o5 um / Tp.81 wm>
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Tref is the temperature of a known reference point on the thermal
profile, usually the liquidus temperature for a pure material,

Res is the ratio value observed at Tyef, and

m is the slope of an experimentally-obtained ratio-temperature curve,

roughly linear over a range of several hundred degrees

This linear relationship between ratio and temperature is an empirical one only; radiation

theory [24] suggests the following dependence:
R =k; exp (_sz) (3.2)

with ko =(1.44 x 10 um K) (—1— - L)
M A

This equation predicts a theoretical variation in m, the slope from Eq. 3.1, of about 6%
between 1726 K and 1426 K (a 300 K undercooling in pure nickel).

However, the error in temperature measurement is reduced somewhat by defining m
as the average slope observed in a wide range of undercoolings during a set of calibration
experiments. These experiments require the immersion of a thin, zirconia-sheathed type-B
thermocouple in the molten ingot, allowing simultaneous measurement of both pyrometer
signal ratio and true specimen temperature. A best-fit linear analysis of the undercooling
segment of the resulting ratio-temperature plot (Figure 3.3) yields the average m value for a

given run. In the present work, the overall average slope value for nickel was found to be

880 +20 K-1; this compares well with a value of 850 K-1 previously obtained [26] using

the same setup. No reliable calibrations were performed for the Fe-Ni material; instead, an

approximate value of 900 K-l was assumed. As a result, the absolute accuracy of the
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temperature measurements is estimated to be +10 K for nickel and, conservatively, +25 K
for Fe-Ni specimens at the highest undercoolings.

The conversion in Eq. 3.1 was applied interactively to the pyrometer data using a

virtual instrument written in LabVIEW! running on a 100 MHz Pentium-based IBM-
compatible computer. The resulting time-temperature profiles could then be evaluated to

determine the extent of undercooling for each thermal cycle.

3.3 Image Acquisition and Analysis
3.3.1 Acquisition
3.3.1.1 Hardware

The camera depicted in Figure 3.1 is a Kodak EktaPro HS Motion Analyzer, Model
4540—a high-speed digital camera. The device supports a maximum acquisition rate of
40,500 frames/sec, at which speed the image consists of a 64 x 64 pixel array with a
precision of 8 bits/pixel. A 200 mm lens was employed in this work to capture an
approximately 10 mm x 10 mm image from a working distance of about 40 cm.

After each thermal cycle, selected video frames comprising the entire solidification
event were recorded onto S-VHS videotape for archiving. In order to perform subsequent
computer-assisted image analysis, the images from the videotape were re-digitized and
stored on a Macintosh Ilci personal computer using a frame-grabber expansion card and an
image-processing package called IPLab® The frame-grabber sampled the videotaped
images at twice the pixel resolution of the EktaPro 4540, producing 128 x 128 pixel images
with an artificially enhanced resolution. These images were suitable for further analysis

and digital image-processing using IPLab.

I LabVIEWisa registered trademark of National Instruments, Inc.
ii IPLab is a registered trademark of Signal Analytics, Inc.
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3.3.2 Analysis
3.3.2.1 Solidification Interface

The camera observes growth of the solidification front by sensing a change in light
intensity (and therefore temperature) near the front comprising the array of dendrite tips.
This temperature change takes place over a distance of approximately o/V from the growth
front interface, where o is thermal diffusivity for nickel and V is dendrite tip velocity.
Taking a = 1.6 x 105 m?/s (refer to Appendix A2 for a summary of physical constants
used) and a conservative solidification velocity of 5 m/s, the ratio of 3.2 um indicates that
the thermally measured growth front closely approximates the actual physical interface.
3.3.2.2 Processing

The digitized images of the solidification interface were manipulated as follows:
first, the location of the solid/liquid interface was consistently defined in each recorded
frame by isolating only those pixels (xj, y;) included in a numerically-defined transition
zone between the neighboring bright (solid) and dark (undercooled liquid) pixels (Figure
3.4a). The zone typically spanned about 5% of the intensity transition and was centered
near 25% maximum brightness.

As this interfacial band was identified in each individual frame, the interface pixels
were incrementally incorporated into a 32-bit composite master image (Figure 3.4b).
Since, in the general case, it was possible for a specific composite pixel (x¢, yc) to have
appeared in the interfacial bands of multiple frames (for example, a slow-moving interface),
special care had to be taken to ensure that the frame-by-frame pixel record could be

accurately reproduced from the composite image. Thus, each interface pixel from an

individual frame was made to contribute an increase in intensity of 2N in the corresponding
composite pixel, where N={0,1,2,...} was the frame number from which the pixel

originated.
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3.3.2.3 Composite Image Interpretation

The resulting composite image was a two-dimensional matrix of intensity values
which could be interpreted in the following manner: a zero at a given (X,y) position
indicated that no pixels from any frame’s solid/liquid interfacial band appeared at that
location during solidification. Nonzero values were readily interpreted by their binary
representation: a nonzero bit at arbitrary bit position M (counting the lowest-order bit as bit
0) indicated the presence of a pixel from the interfacial band of frame M. For example, a
value of 0d192 = 0b11000000 at coordinate (45, 63) indicated that the solid/liquid interface
had been present at that location during frames 6 and 7 of the solidification record. In
general, however, interface motion was fast and predictable enough that each coordinate
contained either a zero or a perfect power of two.

The composite image was finally transferred as text to a UNIX-based workstation
for velocity analysis. There, another C routine (see Appendix A4) was used to create a
formatted datafile listing the interface points by frame along with various supplementary
information and calibration values. This datafile completely characterized the solidification
event along the visible surface of the specimen and was suitable for input to the iterative
solidification model.
3.3.2.4 Pixel Intensity Profiling

One additional method of analysis which helped characterize the double-
recalescence phenomenon in Fe-Ni was pixel intensity profiling. In this technique, an
IPLab script stepped through a series of solidification images and sequentially recorded the
average pixel intensity observed in a very small (2x2 pixel) portion of each image. The
result was a time-intensity profile similar to the output of a 40.5 kHz wide-band pyrometer
tightly-focused on a ~0.16 mm square portion of the specimen. No attempt was made to
calibrate the observed intensities to true temperature in this work, since experimental
conditions varied greatly from specimen to specimen; however, the profiles were very

useful in establishing relative temperatures and defining successive stages in solidification.
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3.4 Solidification Model
3.4.1 Assumptions

An original computer-based solidification model (see Appendix A4) was used to
calculate dendrite growth velocity within the melt from the observed surface propagation.
The primary assumption underlying the model was that the solid phase grew spherically
outward at a constant rate from a single nucleation point in an infinite undercooled melt;
observed surface interfaces reflected the intersection of the expanding spheres with the
physical boundaries of the ingot (Figure 3.5).

It was expected that this assumption might begin to break down either at very small
undercoolings or else during the latter portion of the solidification event, when remnant
undercooled liquid may become significantly reheated by the neighboring solid. Shrinkage
effects might also distort the assumed geometry of the specimen.

It was assumed in addition that solidification proceeded quasi-adiabatically in the
undercooled melt, and that the effects of the quartz enclosure on solidification kinetics were
negligible. In this manner, the material at the quartz/metal interface could be assumed to be
representative of the material in the bulk of the melt. This is another set of assumptions
which will admittedly break down at very small undercoolings, when time scales increase
and heat flow begins to become an issue.

3.4.2 Operation

Operating under the constant-velocity assumption, the computer model first input all
the (x,y) points from a given interface datafile and assigned a relative time value (relative to
the acquisition time of the first video frame) to each point. The relative time consisted of an
integral multiple of T¢ plus a fractional value of Ty that varied with the screen location of the
interface pixel, where T¢ was the acquisition time for a single video frame. The fractional
portion is required because the pixel elements are not scanned simultaneously, but instead

sampled by four horizontal passes of a 1x16 pixel vertical raster block (Figure 3.6; see also

26



effect on appearance of image in Figure 4.3). As a result, the relative time value for a given

pixel (xj, yi) in frame N is expressed as

- 1 RIS
trel = Te{N + ) floor 16 + (3.3)

Given the dimensions of the cylindrical ingot and a calibration value (mm/pixel), the model
was also able to assign a z value to each (x,y) pair, thus defining each interfacial point
completely in space and time.

At this stage, there remained two unknowns: the exact coordinate of the nucleation
site and the period of time which had elapsed between nucleation and the first video frame
of the solidification event. Given any possible nucleation point (Xp, Yp, zp) and time delay
(tp) the program was able to calculate a consequent average velocity for each frame based

upon the location of its interface points (x;, yj, zj):

P
2 Vi
V=5 forVis ’3_ (3.4)
where D;= «/ (xj - xn)2 +(yi - Yn)2 +(z; - Zn)z,
t; = tre] + by,

and P is the total number of interface points evaluated.

The standard deviation of a group of average frame velocities, normalized over the
average overall velocity, represented the degree of validity associated with the assumed
nucleation position and time. The model proceeded to iterate over both position and time
until it reached a local minimum in standard deviation, and the resulting solution was

assumed to reflect the actual nucleation point of the solidification event.
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Figure 3.1: Schematic of apparatus used for pyrometric data and image acquisition.

28



\’A INERT GAS OUT
——

—— PYREX TEST TUBE

}L’—;‘: <«—INERT GAS IN

/' 11 x 13mm QUARTZ TUBE

Y
Ii/. INDUCTION COILS

([ ~8g Ni SPECIMEN

FINE QUARTZ CHIPS

&/ s PYREX/VYCOR CHIPS
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during processing.
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Figure 3.3: Typical ratio-temperature curve obtained during slope-calibration testing for
pure Ni. Included at left are the time-ratio and time-temperature data for the
specimen which yielded the ratio-temperature plot. In this case, a best-fit linear

analysis of the data gives a ratio-temperature slope of 880 K.
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(a) (b)

Figure 3.4: Determination of solidification interface. At left is single image from
recalescence event with computer-defined interface shown in black and newly-
formed solid bright at top. At right is complete sequence of interfaces from same

recalescence event.
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Figure 3.5: Cross-section of solidifying specimen, with successive model interfaces

shown at constant time intervals following nucleation.
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Figure 3.6: Raster motion during image acquisition at 40,500 frames/sec. Raster block
begins at top left and scans from left to right, top to bottom in four passes, reaching

bottom right after slightly less than 1/40,500 sec.
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4. Results and Analysis

4.1 General Observations

The high-speed optical investigation produced thousands of images, with most
recalescence events comprising between 5 and 100 video frames. A comparison of the
pure Ni and Fe-Ni images revealed several trends which held for all compositions.

4.1.1 Multiple Nucleation

Multiple simultaneous nucleation was never conclusively observed at any
composition, despite detailed post-experimental review of both spontaneously-nucleated
and needle-stimulated specimens. One or two apparent multiple nucleation events could
instead be attributed to propagation from a single event on the back side of the specimen,
during which the jagged leading edge of the dendrite array intersected with various
unconnected points on the front (visible) surface (Figure 4.1). A particularly striking
example of this phenomenon occurred during related investigation of Ni-25 wt.% Sn
alloys, and is shown in Figure 4.2, in which the “apparent” new grains all have the same
crystallographic orientation as the parent grain.

These results do not imply that multiple nucleation can never occur. Instead, the
video evidence is a strong indication that growth kinetics dominate nucleation kinetics in
this sort of experiment. Moreover, the growing solid does not appear to have any influence
on nucleation in the undercooled material ahead of the solid/liquid interface.

4.1.2 Interfacial Morphology

The solidification interface was also observed at every composition to exhibit two
distinct interfacial morphologies. The envelope of solid dendrites appeared
macroscopically jagged at lower undercoolings, but smooth and convex to the liquid at
higher undercoolings, a phenomenon previously reported by Colligan and Bayles [3] in
pure Ni. This behavior will be further discussed in later sections devoted to the individual

specimen compositions.
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4.2 Lens and Wetting Effects

A combination of two factors caused the diameter of the molten specimen to appear
larger than the 11 mm inside diameter of the quartz tubing that housed it. First, a lens
effect arose near the left- and right-hand walls of the tube when its contents were viewed
from the side, due to the increased thickness of curved quartz between the viewer and the
specimen. A secondary and more dominant effect developed when a hot specimen became
molten and began to wet the inside wall of the tube; there was an immediate and significant
apparent increase in sample diameter.

After some experimentation, it was found that the best way to quantify the above
phenomena was to introduce an immersion oil-soaked section of millimeter-rule graph
paper onto the inner surface of the quartz tube in place of a specimen, and photograph the
setup with backlighting (Figure 4.4). The immersion oil enabled the graph paper to wet the
quartz in much the same way as the specimen, and the wetting and lens effects could be
calculated by examining the apparent spacing of the vertical rules of the paper across the
width of the image.

The unaffected, 1 mm-spaced horizontal rules in Figure 4.4 provided a calibration
value in terms of pixels/mm which could later be used to relate pixel distances to true
distances when calculating velocities. The value was also fed into a small optimization
routine, along with the positions of the vertical rules in the calibration image. The routine
calculated that the data was best modeled by assuming the inside radius of the quartz tube
was approximately 14% larger than its physical value. Figure 4.5 shows black model rule

lines (R, psrene = 6.25 mm) superimposed over the gray observed rule lines (R, = 5.5

actual
mm) traced from Figure 4.4, demonstrating excellent agreement over almost the entire
width of the tube. In practice, data was never taken from less than about 1 mm away from

the sides of the tube, in order to avoid the large error inherent to such measurements.

4.3 Solidification Model Behavior

35



4.3.1 Iterative Convergence

As previously discussed, operation of the solidification model consisted of an
iterative search for an optimum nucleation point, assuming constant-velocity growth of
solid. The variables of iteration were, in order, t, (time delay), z,, x,, and y,, where the
positive z axis extended toward the camera. The model’s ability to converge upon an exact
solution depended greatly upon the true location of the nucleation point; complete
convergence was far more likely if the nucleation point lay on the front surface than if it lay
on the top, bottom, back, or interior of the specimen.
4.3.1.1 Convergence for All Variables

Often, a spontaneous nucleation site appeared to be located on the front surface
(metal/quartz interface) of the ingot. In some cases, the nucleant was clear upon review to
have been an oxide particle or a scratch in the quartz tube; in other cases the only evidence
was an initial solidification interface with a very small radius of curvature (Figure 4.3).
For almost all of these “front-surface” nucleation events, the computer model verified the
apparent nucleation site by iterating to convergence in all variables. The predicted
nucleation point typically matched the observed point within approximately 0.5 mm, and
the delay time between nucleation and first frame acquisition was between 0 and 1
frames—a required condition for a visible nucleation site.

It should be noted that the model was also able to converge for all variables in some
cases where the nucleation point did not lie on the front surface. For instance, there were a
number of examples of needle-stimulated top-surface nucleation that were correctly
predicted by the solidification model. More generally, in all cases of complete
convergence, the model’s optimum (Xp, Yn, Zp) coordinate was found to lie within a
distance (.05*R) of the ingot’s surface, where R represents either the radius (cylindrical
surface nucleation) or the half-height (top/bottom surface nucleation) of the ingot. This

behavior was interpreted as strong evidence that nucleation occurred at a metal/quartz or
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metal/gas interface in all cases in which it was not manually stimulated at the top surface by
a needle.
4.3.1.2 Convergence on Cylindrical Surface

In many other cases, the model was unable to reach an exact solution for t,, z,, Xp,
and y,. This often occurred when the nucleation point lay unseen on a hidden surface and
occasionally even when the point appeared to be located on the front surface of the
specimen. In many of these cases, a solution was possible if the nucleation site was
constrained to lie on the cylindrical surface of the specimen and the model iterated over only
ty, Xn, and yy, with z, determined by the other two spatial coordinates and the geometry of
the ingot.

4.3.1.3 Time-bounded Convergence

A final general case occurred when no convergence was possible for any set of
initial conditions because the optimum t,, value increased without bound. As expected, the
model often behaved in this manner when the true nucleation point was far removed from
the front surface of the specimen and the camera had not recorded the initial portion of the
solidification event.

Fortunately, it was often possible to impose constant upper- and lower-bounds on
ty in these cases and solve for the optimum (X, yn, Zz,) coordinates and solidification
velocities given the bounding t, values. This was a particularly useful technique in the case
of non-convergent needle-stimulated events, because the y, coordinate was known to lie
within a small distance of the (visible) top edge of the specimen. The strategy in these
cases consisted of iterating with various fixed values of t, until two arguments were found
which resulted in sensible bounding values of y,—typically, two pixels above and two
pixels below the observed top edge of the specimen. The corresponding velocity values
were also taken to be upper- and lower-bounds, and they did not often differ by more than

five percent.
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In all cases where bounded solution sets showed a variation of more than 10% of
the average solution, the solutions were removed from further consideration. This result
typically followed when the radius of curvature of the first observed solidification interface
was unusually large, supporting the notion that the camera had only observed the final

portion of the solidification event and the model has broken down.

4.4 Pure Ni Results
4.4.1 Solidification Velocity

Presented in Figure 4.6 are the solidification velocity values, plotted against
undercooling, obtained from the computer model used in this work. Comparison with
dendrite growth theory will be made using the so-called “LKT” model of Lipton, et al. [9],
who adapted the Ivantsov dendrite growth model [25] using a marginal stability analysis
(see Appendix Al for LKT development). Shown in Figure 4.6 are both the unmodified
LKT prediction for pure nickel and the LKT prediction assuming a linear kinetic
undercooling parameter = 0.40 m/sK. Clearly, there is fair agreement between
experiment and theory up to some critical undercooling AT*, where 150 K < AT* < 180 K
in this case. Above AT*, it is difficult to characterize exactly the relationship between
undercooling and velocity, other than to observe that solidification velocity continues to
increase. These results are in general accord with all of the prior work referenced, with the
exception of Hofmeister and Bassler.

4.4.2 Interfacial Morphology

A morphological analysis of the solidification interface at various undercoolings
was carried out in the following manner: any specimen whose images exhibited
discontinuous interface curvature not attributable to the camera raster pattern was classified
as “jagged;” specimens showing only continuous interface curvature were called “smooth.”
This analysis revealed a transition undercooling range for Ni of 160-170 K, above which
all solidification envelopes were smooth and below which all envelopes were jagged

(Figure 4.7). This range is slightly above the critical range for morphological transition
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previously proposed by Colligan and Bayles. The temperature range does correspond well
to the “critical undercooling” values observed on undercooling-velocity plots both in the
current work (150-180°C) and by prior investigators. Furthermore, a morphological
transition AT* of 160-170°C is also approximately equal to the microstructural AT*
observed by Walker, Colligan, Schleip, and others in pure Ni.

The present work strongly suggests that the morphological transition in solid/liquid
interfacial shape and the observed transitions in velocity and microstructure are coupled
phenomena resulting from the same intrinsic shift in solidification mechanism. However,
the physical mechanism responsible for the transitions has yet to be satisfactorily explained.
Various hypotheses point toward either a kinetic attachment limitation [6], the onset of
dendrite fragmentation by remelting [26], dynamic nucleation via shrinkage-induced

cavitation in the undercooled melt [27], or other fluid-flow phenomena.

4.5 Fe-Ni Alloy Results
4.5.1 Pyrometric Thermal Profiles

Two typical high-speed thermal profiles from Fe-10 wt.% Ni specimens are shown
in Figure 4.8. The upper profile represents a specimen which was not observed in the
video record to have undergone double recalescence; instead, the equilibrium FCC phase
solidified directly from the undercooled melt. This profile exhibits a clear thermal peak at
the tail end of the rapid transition, approximately 10 K in amplitude and spanning about 0.1
ms. A similar phenomenon was observed by Piccone [28] during his studies of hyper-
peritectic Fe-Ni, Ni-Sn, and Fe-Co alloys using the same apparatus. He attributed the peak
to superheating and subsequent remelting of a portion of the newly-formed dendrite array.

The profile in the lower half of Figure 4.8 shows a specimen which did exhibit
double-recalescence behavior in the video record. This behavior is clearly reflected in the
thermal profile by a preliminary plateau at approximately 1495 K (near the metastable
liquidus temperature) lasting for about 1 ms, followed by a secondary rise in temperature to

near the equilibrium FCC liquidus with no characteristic thermal peak.
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Unfortunately, not every specimen which underwent double recalescence visible by
the camera displayed such-an unambiguous pyrometric profile. Many such specimens
instead showed little more than a change in inflection, and sometimes no hint at all of
double recalescence in the pyrometric record (Figure 4.9). Failure to detect multiple
thermal transitions was probably a result of the pyrometer’s relatively low spatial
resolution; the view field of the instrument was between 6 and 10 mm in diameter for the
duration of the work, and the output voltage reflected the average light intensity of the
entire field. It is not surprising that transitions narrowly separated in distance or time were
not crisply detected by this instrument.

4.5.2 Pixel Intensity Profiles

The pixel intensity profiling outlined in section 3.3.2 was a much more reliable
method of detecting and characterizing double recalescence events, despite its limited
temporal resolution (40,500 Hz). In general, double recalescences were easily identified
by a secondary intensity transition either on videotape or in an animation of the digitized
images from a single event. Occasionally, the growth of FCC material took the shape of a
nearly continuous interface which lagged the BCC solidification interface by a short
distance. More often, however, the FCC transition was more diffuse, appearing to
nucleate and grow from multiple points behind the BCC interface. In either case, the
transition was predictable enough so that, at any given point on a single specimen, there
appeared to be a roughly constant delay time between the passage of the BCC interface and
the subsequent transformation to brighter FCC material.

Due to the consistent behavior of the transformation, the choice of the target area for
pixel intensity profiling was relatively unimportant; an arbitrary 2x2 pixel area free of
oxidation or quartz discoloration was chosen for each event. The resulting time-intensity
profile was generally a much more sensitive record than the corresponding pyrometer
profile (Figure 4.10), giving a clearer indication of recalescence behavior and delay times

between transitions, if not accurate temperature values.
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4.5.3 Recalescence Behavior
4.5.3.1 Characterization -

Recalescence characterization was accomplished through simultaneous examination
of the pixel intensity profile, the high- and low-speed thermal profiles, and the video
record. Double recalescences which were clear on the video record were almost always
verified by a double-plateau in the pixel intensity profile and were considered clear
instances of initial BCC phase formation. Apparent single recalescences on the video
record were typically supported by single-plateau pixel intensity profiles; in addition, the
high-speed thermal profiles in these cases generally exhibited a superheat peak on
recalescence of about 5-15 K which was absent in the case of double recalescence.

The video record was no help in the identification of secondary recalescence events
which lagged the initial solidification by more than about 0.2 seconds, because video data
was not recorded beyond this time. However, the low-speed thermal record was assumed
to be sensitive enough to identify these delayed transitions. In cases where the recalescence
behavior was truly unclear, the data points were omitted from plots and calculations.
Figure 4.11 reveals the recalescence behavior of the various Fe-Ni specimens as a function
of composition and nucleation temperature. Filled symbols indicate that primary BCC
solidification and double recalescence occurred; outlined symbols indicate primary FCC
solidification. Briefly ignoring the significance of symbol shape, one can interpret Figure
4.11 as a primary solidification map valid for all quartz-fluxed Fe-Ni specimens of similar
aspect ratio weighing approximately 8 g and exhibiting the same cooling rate (phase
selection depends upon the thermal history of the undercooled liquid as well as the presence
of heterogeneous nucleants [17]).

This work suggests that there exists a window of primary BCC solidification in
hyperperitectic Fe-Ni bounded at smaller undercoolings and very large undercoolings by a

transition to primary FCC solidification. The window appears to span about 150 K at 10
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wt.% Ni, tapers to less than 120 K at 15 wt.% Ni, and has disappeared entirely at
compositions of 20 wt.% Ni and higher.
4.5.3.2 Phase Selection via Induced Nucleation

As noted earlier, both Fe and Ni trigger needles were used at various times to
induce heterogeneous nucleation at lesser undercoolings, with the idea that the Fe (BCC
from room temperature to 1185 K and from 1667-1811 K) might induce primary BCC
solidification and the Ni (FCC through the entire range) might produce instead the FCC
phase. As Figure 4.11 clearly reveals, these efforts met with no success at all, with the
exception of three points near 1350 K in the Fe-12 wt.% Ni material. In those three
instances, FCC material formed from the Ni trigger on a section of the map which
otherwise featured solely BCC solidification.

At all other compositions and temperatures, trigger needle structure seemed to have
absolutely no effect on the determination of the primary solidification phase. Apparently,
FCC Ni is simply not a sufficiently potent heterogeneous nucleant to have much of an
effect on the kinetics of primary phase solidification in the compositions that were
extensively studied. Perhaps a trend would have emerged if more data had been collected
from the Fe-15 wt.% Ni alloy.
4.5.3.3 Delay Times in Double Recalescence

The delay time .between recalescences was defined on the pixel intensity profile as
the time between points of maximum curvature at the beginning of each transition. The
resulting correspondence between undercooling and delay time for double recalescence is
shown in Figure 4.12 for the compositions which most consistently exhibited that
behavior.

Figure 4.12 reveals that average delay time drops with increasing undercooling in a
roughly exponential manner. The data scatter may be an indication that there are several
different mechanisms by which the FCC phase nucleates and grows into the mixture of

undercooled liquid and BCC solid material. However, the data is in qualitative agreement
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with a theory that FCC formation requires the attainment of a critical local fraction solid,

since the fraction solid immeédiately following recalescence can be expressed as:

= AT Ghere ATy, = 2t @.1)

fs

FCC nucleation may result from the impingement of growing BCC dendrite arms during
the equilibrium solidification period following initial recalescence.
4.5.4 Interfacial Morphology

A morphological analysis identical to that described in section 4.3.2 enabled the
characterization of solidification interfaces as “smooth” or “jagged” for most compositions
of Fe-Ni studied in this work. Figure 4.13 summarizes the results of the analysis.

Once again, there is a rather sharply-defined transition from jagged to smooth
morphology at a critical undercooling; this AT* is approximately 190 K for both Fe-10- and
Fe-12 wt.% Ni. The exact value at higher Ni compositions cannot be precisely determined
from the data, but it is evidently no more than 190 K, and not a great deal less. The range
of 160-190 K previously identified for morphological transition in pure Ni would suggest
that AT* decreases only slightly, if at all, as the specimen grows richer in nickel content.
4.5.5 Solidification Velocity

Solidification velocities obtained from the computer model are given in Figure 4.14
for Fe-10- and Fe-12 wt.% Ni specimens which exhibited double recalescence
(undercoolings are measured from the metastable liquidus temperature). The two sets of
data are plotted on the same graph because LKT theory predicts a virtually identical
undercooling-velocity curve for both compositions. Indeed, it is clear from the plot that the
two data sets essentially overlap and are well-predicted by an LKT analysis for Fe-Ni using

a kinetic parameter of 0.28 m/sK.
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The most notable aspect of Figure 4.14 is the clear lack of any transition in
functional dependence in the range 170 K < AT < 190 K. Instead of the downward shift
observed in this work for Ni (Figure 4.6) and in the work of Barth, et al [21] for Fe-25-
and Fe-30 wt.% Ni, the data continues to be well-described by LKT theory right up to
undercoolings of nearly 250 K.

In light of the observed transition in interface morphology, the lack of any
corresponding shift in solidification velocity is somewhat difficult to explain. One
difference between these Fe-(10-12) wt.% Ni results and the contrasting pure Ni and prior
Fe-Ni work is that the primary solidification phase in the current work is a BCC material.
Perhaps crystallographic structure plays an important role in determining the interface
kinetics of these rapidly-solidified materials. Unfortunately, there is insufficient data in the
present work at the higher Ni concentrations to draw any conclusions regarding the
solidification velocities observed there for FCC Fe-Ni.

A more likely explanation is that the velocity transition is not actually governed by a
critical undercooling, but instead by a critical velocity which is comparable across
materials. The transitions in the Barth work appear to begin somewhere above 30 m/s. The
data in Figure 4.6 for pure Ni suggests that the critical velocity range corresponding to
150°C < AT* < 180°C is approximately 26 m/s < V* < 35 m/s; velocities of nearly 50 m/s
were observed at the largest undercoolings. The maximum velocities observed for Fe-(10-
12) wt.% Ni in this work were only 30-35 m/s. Thus, if the transition velocity for Fe-(10-
12) wt.% Ni alloys is near the top of the range observed for pure Ni, it is not surprising
that no transition was experimentally observed. However, regardless the explanation, it
would seem that solidification velocity behavior and interface morphology are not strongly
coupled in the metastable phase solidification of these Fe-Ni alloys, as seemed to be the

case for pure Ni.
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Figure 4.1: Schematic of apparent multiple nucleation scenario, observed experimentally

in Figure 4.2.
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Figure 4.2: Example of solidification interface propagating from back to front, almost
directly toward the camera lens. System is Ni-25%Sn, ~25 ms between images.

Dendrite tips intersecting front surface appear as numerous expanding diamonds

with the same axial orientation.
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Figure 4.3: Composite interface image showing front-surface nucleation; initial interface
at upper-right exhibits very small radius of curvature. Note also raster pattern effect
at 1/4, 1/2, and 3/4 of the image height causing apparent discontinuities in interface

curvature.
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Figure 4.4: Calibration image of oil-soaked millimeter graph paper rolled inside 11 x 13

mm quartz tubing.
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Figure 4.5: Model vertical rules (black) overlaying observed rules (gray, traced from
Figure 4.4), verifying that the lens and wetting effects are well-modeled by

assuming a 14% increase in specimen radius.
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Figure 4.6: Solidification velocity plotted versus undercooling for pure Ni, as
determined by this work. Also shown is LKT prediction with and without

modification by a kinetic undercooling parameter.
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Figure 4.7: Interface morphology transition for pure Ni. Shown are typical interface
morphologies observed at undercoolings less than the critical range of 160-170 K

(left column) and greater than the critical range (right).
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Figure 4.8: Typical thermal profiles for Fe-10 wt.% Ni specimens undergoing single
recalescence only (top) and double recalescence (bottom). Note superheat peak at

top and double-plateau behavior at bottom.
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Figure 4.9: Pyrometer profile for Fe-10 wt.% Ni specimen which was revealed in the

video record to have undergone double recalescence. No clear indication is present

in the thermal record.
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Figure 4.10: Comparison between pyrometer profile and pixel intensity profile for Fe-10
wt.% Ni specimen undergoing double recalescence. Details are much more

sharply-defined in the pixel intensity profile.
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Figure 4.11: Solidification behavior in Fe-(10-30) wt.% Ni.

55



Delay time between recalescence events

e I ——
= W Fe-10% Ni |
=257 O Fe-12% Ni |
£ I '
E ,t © u
o |
E 5] ]
E 1F H h
T
05} o ‘é’ ]
ol O~ B odo e
100 150 200 250

undercooling (K)

Figure 4.12: Delay time between recalescence events in Fe-10- and Fe-12 wt.% Ni

specimens.
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Figure 4.13: Interface morphology at various compositions and undercoolings. A
transition from jagged to smooth structure appears at approximately 190 K

undercooling.
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Figure 4.14: Solidification velocities for BCC Fe-10- and Fe-12 wt.% Ni.
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5. Conclusions

5.1 General

1. The undercooling and subsequent solidification of high-purity Ni and
hyperperitectic Fe-Ni specimens were accomplished, and the thermal front accompanying
the solidification interface was directly observed through the use of an ultra-high-speed
digital camera from Kodak. The degree of undercooling was evaluated for each heating
cycle through the use of a two-color pyrometer and subsequent calibration experiments; a
solidification velocity was calculated for each recorded solidification using digital image
analysis and an original computer-based solidification model.

2. At no time were multiple nucleation sites observed during a single primary
solidification event. Instead, at lesser undercoolings the solidification interface exhibited a
“jagged” morphology, a phenomenon which may, at lower resolution, present the
appearance of multiple nucleation sites

3. The computer-based solidification model was successful in determining
solidification velocities with less data scatter than had previously been observed using
pyrometric methods. The model can also be made to track the growth of subportions of the
overall dendrite array, in the event that a study of growth velocities observed in different

crystallographic directions is desired. Pyrometric analyses exhibit no such flexibility.

5.2 Pure Nickel

1. The relationship between solidification velocity and undercooling for pure Ni
showed general agreement with many prior investigations; namely, there was an
approximate power-law dependence at low undercoolings which is well-described by the
LKT solidification model. Above a critical undercooling, 150 K < AT* < 180 K, there
appeared to be a partial shift in solidification mechanism, resulting in a secondary velocity

dependence whose exact nature is unclear.
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2. Observed at a similar critical undercooling (160K < AT* < 170 K) was a shift in
interface morphology from “jagged” to macroscopically smooth, implying a change in
controlling mechanism at the dendrite tips perhaps related to attachment kinetics, dendrite
fragmentation, or fluid flow phenomena. The morphological and solidification velocity

transitions appear to be coupled in pure Ni.

5.3 Iron-Nickel

1. Primary solidification of both the equilibrium FCC phase and the metastable
BCC phase was observed in the hyperperitectic Fe-Ni specimens. The BCC phase
appeared to be favored at lower Ni concentrations (10-12 wt.%), while FCC solidification
was observed exclusively at 20 wt.% Ni and above.

2. A transition in interface morphology similar to that observed in pure Ni was also
found in all compositions of Fe-Ni. The critical undercooling was well-defined around 190
K for Fe-10- and Fe-12 wt.% Ni specimens, and grew no larger at higher Ni
concentrations.

3. Solidification velocities for BCC Fe-10- and Fe-12 wt.% Ni were plotted against
undercooling and found to be nearly identical, as predicted by LKT theory. Agreement
between experiment and theory was also excellent even at the highest undercoolings
observed (250 K); there was no shift in velocity dependence as seen in pure Ni. A
plausible explanation is that the shift actually occurs at a critical velocity, not a critical
undercooling, but in any case it appears that interface morphology and velocity dependence

are not coupled in Fe-Ni as they appeared to be in pure Ni.
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6. Suggestions for Future Work

1. The structure of the solidification interface behind the dendrite tips has yet to be
adequately understood. The high-speed images obtained in this work reveal an apparent
thermal transition spanning a distance of several millimeters, but no attempt has been made
here to develop a theoretical model for the behavior. One possible avenue for future
investigation could be to use higher magnification to obtain high-resolution images of the
apparent interface with the camera used in this work.

2. A theoretical basis is needed to explain the transitions in interface morphology
and velocity dependence observed in this and similar work. Of the explanations offered to
date (attachment kinetics, dendrite fragmentation, cavitation due to shrinkage effects, other
fluid-flow arguments), none has managed to predict the phenomena experimentally
observed in both alloys and pure materials.

3. A further study of the solidification behavior of Fe-Ni alloys using the high-
speed camera could further characterize the double-recalescence phenomenon and help fill
in the solidification map in this work at compositions outside Fe-(10-12) wt.% Ni.
Experiments incorporating on-camera quenching, with subsequent microstructural analysis,
might also shed light on the microstructural evolution that takes place following primary

BCC solidification.
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Appendices
Al. Solidification Theory

The dendrite growth theory used to create the “LKT” solidification velocity plots for
Ni and Fe-Ni in this work stems from the work of Ivantsov [25] and Lipton, et al [9], with
additional contributions by Boettinger, et al [29], Aziz [30], and Turnbull [31].

In short, Ivantsov proposed the first analytic equation to determine heat flow in a
solidifying dendrite tip realistically modelled as a parabaloid of revolution, resulting in a
single relationship linking R, dendrite tip radius, with V, solidification velocity. Lipton, et
al later derived a secondary relationship between these two variables on the basis of
morphological stability arguments. The combination of this work and Ivantsov’s prior
relationship formed the most widely accepted theory of dendrite growth established to date.
Incorporating modifications by the other contributors listed above, researchers were able to
predict accurately the undercooling-velocity behavior observed in many different elements
and alloy melts.

For further information regarding LKT solidification theory, refer to the above
work or individual treatments given by Piccone [26] and Barth, et al [21]. The next five
pages show a numerical implementation of the growth model using the symbolic
mathematics package Maple V 5.0', following closely the developments of Piccone and

Barth.

i Maple is a trademark of Waterloo Maple Software
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>
LKT SOLIDIFICATION MODEL IMPLEMENTED IN "Maple version 5.0,"

SYMBOLIC MATHEMATICS SOFTWARE AVAILABLE FOR UNIX WORKSTATIONS.
NOTE: This is an effort to implement a create a clear, usable
LKT model that will calculate undercoolings, radii, etc., at

various solidification velocities.

* All thermodynamic constants will be expressed in SI units.

>
Enthalpy of fusion: (assumed equal in liquid and solid)
> H := 1.746e9;
H :=.1746 10'°
>

Heat capacity: (assumed equal in liquid and solid)

> c_p := 6.029e6;

c_p = .6029 107
>
Solid/liquid interfacial energy:
> sigma := 0.28;
0:=.28
>

Thermal diffusivity of undercooled liquid:

> alpha := 5e-6;
o:=.5107

>
Solutal diffusivity of undercooled liquid:

>D_o := 6e-9;
D_o:=.610%
>
Marginal stability constant:
> sigma_star := 1/ (4 * Pi*2);
: 21
sigma_star = P
T
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Assumed kinetic undercooling coefficient (if kinetic undercooling is to be ignored, set this
to a very high value, such as 1e10):

> mu := 0.28;
n:=.28

>
Solute concentration in atomic %, i.e. Fe-20 at.% Ni --> "20"

>C_0:=10.4;
Co:=104

>
Equilibrium liquidus temperature:

>T f:=1770;
T f:=1770

>
Calculated value for entropy of fusion:
>delS:=H/T_f;
delS§ := 986440.6779
>

>
Here is the approximate slope of the liquidus. Note this is a NEGATIVE number, in K/at %:

>m:=-2.1;

m:=-2.1

>

Next is the “equilibrium partition coefficient," used in the calculation of the
velocity-dependent slope of the phase diagram of the material:

> ke := 0.74;
ke :=.74
>
Also need the "atomic diffusive speed:"”
> Vd := 20;
Vd =20

>k:=(V)->(ke+V/Vd)/(1+V/Vd);
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>
This produces a velocity-dependent slope in the effective phase diagram:

>m1:=m* (1 + (ke - k(V)*(1 - In(k(V)/ke))) / (1 - ke));

1
J4+—V
1 20
(.74 +— Vj 1-1In| 1.351351351
20 1
1+ 5‘(‘) \%4
ml :=-8.076923077 + 8.076923077 ’
1+—V
20

>
With all physical constant input, here are the equations to predict growth:

>
First, the definition of the Ivantsov function (a function of a Peclet number):

> Iv := (P) -> P * exp(P) * Ei(1, P);
Iv:=P - PePEi(1, P)

>
Thermal Peclet number;

>P_t:=(V,R)->R*V/(2*alpha);

1RV
Pt=(V,R)>—-———
2 o
>
Solutal Peclet number:
>P_c:=(V,R)->R*V/(2*D_o);
1 RV
Pc:=(V,R)»>—-——
2Do

>
Constitutional undercooling w Aziz velocity-dependent slope as per Barth paper:

>delT_c :=(P_c(V,R), k(V))->m*C_o*(1-(m1/m)/(1-(1-k)*Iv(P_c(V, R)));
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delT_c := (P_c(V,R), k(V)) > m C_o (1 ; ml )
A m(1-(1-k)Iv(P_c(V,R)))

>
Capillary undercooling:

> delT_r := (R) > 2 * sigma /(R * delS);

delT r-=R—?2
R delS
>
Kinetic undercooling:
> delT_k := (V) > V/mu;
delT k:=V— -Y-
n

>
Ivantsov thermal undercooling solution:

> delT_t :=(P_t(V,R)) -> (H/ c_p) * Iv (P_Y{(V,R));
HIv(P_t(V,R))
cp

delT t:=P_t(V,R)—

>

This is the marginal stability solution for dendrite tip radius, as copied from Piccone’s Sc.D
thesis:

Defined first are two simplifying expressions, n and g:

>n:=(P_YV,R)) -> 1/ (sqrt(1 + 1/ (sigma_star * P_t(V,R)*2)));
1

n:=P_t(V,R)—> "
sqrt] 1 + 5
sigma_star P_t(V, R)

> g := (P_c(V,R), k(V)) > 2 * k(V) / (1 - 2*k(V) - sqrt(1 + 1/ (sigma_star * P_c(V,R)*
2));

(V)

1
1-2k(V)-sqrtf 1+ >
sigma_star P_c(V, R)

g:=(P_c(V,R),k(V))—>2

>
Here is the actual equation defining R (here, R_th or theoretical) in terms of V and itself:

> R_th := (P_t(V,R), P_c(V,R), k(V)) -> (sigma / (sigma_star * delS)) / (P_t(V,R) * H
*(1-n(P_t(V,R)))/c_p)-((2*m*C_o*(1-k(V))* (1+g(P_c(V,R))) * P_c(V,R))
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1(1-(1-k(V)* Iv(P_c(V,R))));

R_th:=(P_t(V,R),P_c(V,R),k(V)) =0 / (sigma__star delS (

PV, R)H(1-0(P_{(V,R)))  mCo(l-kKV))(1+g(Pc(V,R))P.c(V,R)
cp ) 1-(1-k(V))Iv(P_c(V, R))
>

With the equation above, we can numerically solve for R given any V value:
> vval := 2.107;

wal :=2.107

> rval := fsolve(R = subs(V = vval, R_th(P_t(V,R), P_c(V,R), k(V))), R, R=1e-9..1e-
4);

rval := 4122501976 10

This is the real meat of the development; it iterates through a user-defined series of
velocities by a variable amount and computes each of the various dendrite tip radii, as well
as the various undercooling contributions, at each velocity value.

The output is spewed into tab-delimited column format as the file "outfile".

*** NOTE: If the iteration refuses to converge for some conditions, you’ll have to alter the
search range defined for R in the "fsolve" step on line 3 of the expression below. The
horrible run-on is due to the fact that I couldn’t get the "continuation" behavior to work

correctly for this command, perhaps because the "writeto" function is involved.

> vstart := 0.5; vend := 61; vstep := 4;

vstart := .5
vend =61
vstep =4

> writeto(outfile); print(printf(‘deiT\tvel\trad\tP_t\tP_c\tdelT_t\tdelT_c\tdelT_r\tdel
T_k\n")); for vval from vstart by vstep to vend do writeto(terminal); rval := fsolv
e(R = subs(V = vval, R_th(P_t(V,R), P_c(V,R), k(V))), R, R=1e-9..1e-4); Pt := P_{(
vval, rval); Pc := P_c(vval, rval); delTt := evalf(subs (V = vval, R = rval, delT_t(P
_t(V,R)))); delTc := evalf(subs(k = k(vval), (subs(V = vval, R = rval, delT_c(P_c(
V, R), k(V)))))); delTr := delT_r (rval); delTk := delT_k (vval); delT := delTt + deilT
c + delTr + delTk; appendto(outfile); print(printf(‘%e\t%e\t%e\t%e\t%e\t%e\t%e\
t%e\t%e\n‘, delT, vval, rval, Pt, Pc, delTt, delTc, delTr, delTk)); od; writeto(termi
nal);
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A2. Tabulated Thermodynamic Data

Thermodynamic data for Ni and Fe-Ni alloys were again drawn from the prior

work of Piccone [26] and Barth, et al [21], and are given in the following table:

Property Units |Pure Ni BCC Fe-10 wt.%|BCC Fe-12 wt.%
Ni Ni

thermal diffusivity,im%s |1.6 x 10°® 5.0 x 10 5.0 x 10

o

solutal diffusivity, |m®/s 6.0 x 10°° 6.0 x 10°°

D,

enthalpy of fusion, |J/kg |2.98 x 10° 2.40 x 10° 2.41 x 10°
{

heat capacity, ¢, [J/kgK |7.34 x 102 8.28 x 10° 8.29 x 102

solid/liquid J/m* |o.255 0.28 0.28

interfacial energy,

o

marginal stability |[none] |{ / 452 1 / 4r? 1 / 47?2

constant

linear kinetic m/sK |0.40 0.28 0.28

undercooling

coefficient, U

solute at % 10.4 12.5

concentration

equilibrium liquidus(K 1728 1769 1759

temperature

liquidus slope, m |K/at % -2.1 -2.1

equilibrium [none] 0.74 0.74

partition

coefficient, k
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A3. Tabulated Experimental Data

Undercooling-velocity data shown from other work was obtained either from a
table supplied in the appendix of the work (Piccone [26]) or by scanning a published figure
into a computer and using image-analysis techniques to determine plot values from the
resulting images (Bassler, et al [8]; Walker [2]; Hofmeister, et al [6]; Schleip, et al [12];
Colligan and Bayles [3]; Barth [21]). The error inherent to the scanning technique is
estimated at 0.5%.

The following tables summarize the undercooling-velocity values both of the prior

work and the current investigation of Ni and Fe-Ni alloys:

Part I: Pure Ni

Piccone Walker
AT (K) velocity AT (K) velocity
(m/s) (m/s)

6 0.03 27.6 1.0
6 0.03 40.6 1.7
8 0.06 47.5 2.9
8 0.05 53.2 4.3
10 0.03 59.8 4.3
12 0.04 61.2 6.2
12 0.08 71.2 7.3
16 0.14 75.8 7.2
25 0.16 80.4 8.3
32 0.32 86.8 11.1
46 0.15 91.3 11.6
47 0.14 95.2 11.7
49 0.20 99.3 13.4
60 0.35 100.3 16.0
61 0.67 109.8 14.1
114 20.0 108.9 15.4
115 69.8 111.9 20.6
132 29.3 121.9 19.5
141 35.7 120.8 20.0
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152 13.8 123.3 20.8
169 62.9 126.1 20.9
178 56.6 121.3 24.6
190 64.7 133.6 25.1
194 43.1 130.4 26.9
196 45.5 138.8 27.6
213 46.2 143.0 29.0
215 54.2 146.6 28.8
260 46.2 158.7 28.9
263 44.6 154.1 32.9
264 50.8 158.9 36.5
271 102.3 166.7 34.7
277 67.7 171.7 36.2
277 60.4 169.2 38.7
279 68.7 182.7 36.6
280 62.5 182.5 38.5
284 48.1 191.8 37.6
286 80.4 188.6 40.7
286 55.6 169.0 44.7
286 48.4 177.7 45.5
288 84.9 188.4 43.5
288 54.5 201.9 41.4
289 52.9 200.5 44.9
294 50.6 232.2 33.1
298 83.3 223.3 41.1
302 69.2 214.2 47.6
304 52.6 248.9 48.7
306 62.5 211.9 61.1
307 55.9 233.4 64.4
308 70.3 218.3 70.0
309 52.9 241.1 77.7
315 59.2

316 55.9

317 49.5

317 62.1
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Bassler Hofmeister
AT (K) velocity AT (K) velocity
(m/s) (m/s)

133.0 9.7 28.1 2.7
132.0 10.1 30.6 3.1
145.7 12.7 34.7 3.8
149.5 13.4 54.1 9.3
153.6 13.6 71.5 9.3
167.6 17.8 80.6 11.5
165.7 18.3 82.4 11.9
169.4 18.3 112.1 13.3
173.0 18.4 125.8 14.6
182.7 18.1 145.0 15.2
177.7 20.3 148.4 15.7
178.9 19.3 156.7 16.1
180.3 20.7 161.7 16.5
182.5 19.0 161.7 15.9
184.1 19.8 179.5 15.9
187.2 19.4 194.6 16.0
190.3 20.6 202.6 16.1
200.5 19.4 214.2 16.6
201.0 19.8 254 .4 16.2
206.2 19.6 267.4 16.4
240.8 20.8 289.6 16.3
260.4 20.2 298.5 16.2
266.9 20.2 239.5 34.9
293.6 21.7

292.5 20.8

295.7 20.8

294.3 20.0

294.3 20.3

297.7 20.2

300.8

20.3
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Colligan/Bayles Schleip
AT (K) velocity AT (K) velocity
(m/s) (m/s)
23.0 1.0 67.6 0.9
31.2 1.5 81.4 2.2
36.4 2.3 89.0 3.7
42.4 2.8 96.9 5.1
46.1 3.5 106.0 5.0
54.2 4.3 108.9 7.4
60.2 5.2 118.6 8.6
55.0 3.6 128.2 7.8
68.4 5.2 130.6 8.0
63.9 5.8 134.7 9.9
79.5 5.8 136.7 12.1
80.2 6.3 147.5 12.2
79.5 6.6 148.1 17.4
78.8 6.9 151.1 17.7
76.5 7.7 151.6 18.5
78.0 8.4 156.0 17.8
80.2 9.1 174.2 31.1
78.0 9.3 182.1 34.4
89.9 8.4 184.7 34.2
95.1 8.9 185.3 34.7
95.8 9.2 200.2 40.5
102.5 9.9 202.0 40.1
94.4 11.3 188.8 45.1
112.9 14.5 209.0 39.9
115.2 14.5 209.0 41.4
116.7 14.5 210.2 43.9
118.1 16.7 208.7 47.6
116.7 17.5 221.3 48.4
111.5 17.9 228.9 44.0
115.2 17.9 238.9 50.8
117.4 17.9 253.5 56.0
128.5 19.6 264.1 55.8
130.0 20.0 303.9 66.0
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142.7 21.4 323.2 72.2
139.7 21.7
138.2 22.9
150.1 26.3
150.1 26.5
145.6 26.8
144.1 27.3
146.4 29.4
151.6 30.3
152.3 30.1
154.5 30.2
162.7 32.1
166.4 32.9
167.9 32.5
171.6 32.0
187.2 34.9
188.7 35.0
186.5 35.7
187.2 37.1
193.9 38.0
202.8 37.0
168.7 37.6
158.3 38.2
164.9 39.9
189.5 40.0
184.3 41.9
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Lum (this work)

AT (K) velocity
(m/s)
262 41
296 46
101 11
143 19
110 12
128 20
187 35
113 11
93 8.2
287 47
283 50
285 46
284 45
280 46
203 32
273 38
74 4.6
131 28
119 16
122 19
236 38
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Part II: Fe-Ni
Barth FCC Fe-25 at.% Barth FCC Fe-30 at.%
Ni Ni
AT (K) velocity AT (K) velocity
(m/s) (m/s)

73.3 2.7 69.4 4.1
77.1 1.9 85.1 4.5
88.5 2.1 93.2 4.7
93.4 3.0 95.9 7.3
96.7 6.0 101.3 5.3
97.7 5.1 118.7 6.2
110.8 4.1 137.1 14.7
122.7 9.5 139.2 11.1
144 .4 14.9 142.0 10.6
150.4 17.7 147 .4 13.5
153.1 10.8 172.8 22.1
174.8 40.2 175.5 16.8
179.2 30.3 189.1 26.5
180.8 32.3 202.1 22.0
196.0 32.9 203.7 33.6
197.7 30.2 205.3 31.2
198.7 32.1
203.1 31.5
211.2 30.9
217.2 34.4
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Lum BCC Fe-10 wt.%

Lum BCC Fe-12 wt.%

Ni Ni
AT (K) velocity AT (K) velocity
(m/s) (m/s)

238 32.8 195 22.8
243 27.5 117 13.6
240 31 114 16.5
181 19.9 104 8
237 27.9 138 14.6
233 35.3 222 28
132 6.5 167 17.1
154 11.4 186 23.7
227 33.3 113 14.1
143 12.4 110 15.6
135 8.6 214 26.3
244 32.9 195 25.4
145 14.5 226 37.2

91 4.2 228 32.8
185 21.1 167 19.8
155 7 136 15.9

62 5.2 95 6.1
185 16.4 152 12.7
229 32.7 195 20.6
170 13.9 161 14.7
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A4. Computer Code

The following pages contain the original computer code developed by the author
during this work.

Listed first is “Nic-xfer.c” (three pages), the routine used to translate Nicolet
oscilloscope data from an older, unwieldy “LOTUS 1-2-3” format to a more usable tab-
delimited column format.

Next is “mk-cyl-data.c” (two pages), the program which input text-style
composite interface IPLab images and produced datafiles suitable for input to the
solidification model (cylsim11.c), simultaneously querying the user for various calibration
values.

Listed finally is “cylsim11.c” (seventeen pages). This is the computer-based
solidification model which made possible the determination of the solidification velocities

of the Ni and Fe-Ni specimens investigated in this work.
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\“m»*»*&‘&t*&*¥*¥¥$»‘454»*tt»»*t»»x‘»»&%*&*&»*»“x»xﬁ*w**&*$x*$‘\

Nic-xfer.c

#define COL1_LINES (2029)
#define COL2_LINES (1919)

int get_field(char *, FILE **);

/* */
/* This program is designed to read a file generated by */
/* "4094.1tu" and render a tab-delimited datafile arranged */
/* in this format:

COL1 COL2 COL3 COL4 COL5 COL6
CH1 Time CH1/A data CH1/B data CH2 time CH2/A data CH2/B data

(assuming that the data from every channel is desired by the user)

The user specifies which channel he wants, and the */
/* program subsequently informs the user what the data */
/* acquisition rate of his channel was. */
/* */
/* To be more specific, the files created using "4094.ltu" */
Vad are structured as follows:

COL1 coL2 COL3 COL4 COL5 coLé COL7 COL8 CcoL9

CH2/A CH1/B CH1/B CH2/B CH2/B
info first second first second first second first second
/ half  half  half  half half  half  half half

/ / / / / / / / /

/ / ! / / / / / /
v/ VN N N N N NN

. s ’ , , . , , ,

(2029 (1919
points) points)

data CH1/A CH1/A CH2/A

where there are 2029 rows of actual data, and CH M/N
refers to the Mth plugin (plugin 1 == LH side of ’'scope,
plugin 2 == RH side) and the Nth channel (Channel 1 ==
top channel of a given side, Channel 2 == bottom channel).

Note: "4094.ltu’ is one of the "Henry" data transfer
programs supplied to us by Nicolet, for use with their
Nicolet oscilloscopes, of which we have two. It is
located on the hard drive of the PC in the end lab, as
well as on a backup floppy diskette that is either in
the end lab or else in Dr. Kattamis’ old office.

*/
/* ~--J. Lum 4/25/95 */

\»w**t%»»*&*&tﬁ***&»*****;***k**n**%‘&&*»»»*&**»***4»»*»&»**‘¥*&x\

#include <stdio.h>

#define TRUE (1)
#define FALSE (0)
#define NEWLINE (’'\n’)
#define TAB (’\t’)
#define SPC (' ')
#define END ('\0°)
#define QUOT ('"")

CcoL10

CTL
chars

main()
{
char readfile[20), writefile[20], field[128)
FILE *fpread, *fpwrite;
int i, j;
char chl(5], ch2[5], ch3(5], ch4[5];
int chan(S];
int count = 0, counter = 0;
double perpointl, perpoint2;
double ch_vals[5][3950]};
double timel, time2;

\**4»»#»»x»t*»*»*&*‘*ﬁ***b$‘»**i&»&}$‘*»xw*»»*»;&4*4&»*}$»£»»#$;&\

/* Note: the ch_vals matrix will hold the various */

IH voltage values from the columns of the plugin desired. */
\&***4#**%!**:‘ﬁbt‘***‘**ﬁ*****‘l******‘x.&Kﬂ.*&t*****‘*}%**1****%\*1‘*\

printf("\nPlease enter the name of the \"read\" file: ");
scanf ("%$s", readfile);

printf("\nPlease enter the name of the \"write\" file: ");
scanf(*%s*, writefile);

printf{“\nEnter the time of the first point of plugin 1: ");
scanf ("$1£", &timel);

printf ("Enter the time per point of plugin 1 (sec)\n"};
printf("(enter 0 if plugin was not used): ");

scanf ("$1£f", &perpointl);

printf {"\nEnter the time of the first point of plugin 2: ");
scanf (“%1f", &time2);

printf("Enter the time per point of plugin 2 (sec)\n");
printf (" (enter 0 if plugin was not used): "),

scanf ("$1f", &perpoint2);

printf{“\n\nPlease verify which of the channels you want output:\n");
printf({*\tChannel 1 (PLUGIN 1A) (y/n): "); scanf("$s", chl);
printf("\tChannel 2 (PLUGIN 2A) (y/n): "); scanf("%s", ch2);
printf(“\tChannel 3 (PLUGIN 1B) (y/n): "); scanf("%s", ch3};
printf("\tChannel 4 (PLUGIN 2B) (y/n): "); scanf("%s", chd);
for (i = 1; i < 5; i++)

chan(i] = 0;
if (strcemp (chl, "y") == 0}

chan([1l] = TRUE;

if (strcmp (ch2, "y") == 0)
chan{2] = TRUE;
if (stremp (ch3, "y") == 0}

chan{3] = TRUE;
if (strcmp (ch4, "y") == 0)
chan([4] = TRUE;

fpread = fopen(readfile, "r");
fpwrite = fopen(writefile, "w");
if ((fpread == NULL) || (fpwrite == NULL}) (
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printf(*\n\nFile Error. Exiting.\n\n\n");
exit(0);

ﬁﬁwﬁﬁmA:/5*»*&**ﬁ»»*k*ﬁt&&***t»*&»t»»»*i»»t&/ﬂ:v“

printf("*** SCANNING THROUGH 4094 FILE ***\n");

DrAintE (" ¥ *aadrshdtakaddkhkhahkdrxdkhkkknk\n") ;
i

for (i = 1; i <= COL1_LINES; i++)
for (j = 1; j <= 10; j++) {
count = get_field (field, &fpread);
if (count == 0) break;
1€ ((J t= 1) && (3 != 10)) {
if (strcemp ("\"\"", field) != 0) {
1f ((3 !'= 1) && (J '= 10)) (
if ((7 % 2) == 0)
sscanf (field, "$%$1f", &ch_vals[j/2][1i]);
else
sscanf (field, "%$1f", &ch_vals([(j-1)/2][1+COL1_LINES]};

printf("\n\n");

UﬁwdﬁmA:t»wtt»t&w**tt»ﬁt*****w&**»t»»k*rt&/ﬂ=v.
H

printf(nx** PRINTING OUTPUT FILE ***\n");

UNMS“MAstﬁt»ﬁt$*‘tt»$;t»att»»ttst»tﬁ»»»»»t/ﬂxvm

\»*&k4¥3‘¥%1l»%%»»¥¥‘*%»*x»»&*wt***»»x»*»&t**&&4$“»‘*x»&»»»w%*&&\

/* Here is where the data is printed to file */

/* for whichever channels were chosen. */
\l“*ﬁ&“*i**‘*“‘&*‘*****‘i‘%**it&ht‘ﬁ“¥‘ﬁ*‘%¥$‘¥¥**$¥i*»‘¥ﬁ‘l*\

for (i = 1; i <= (COL1_LINES + COL2_LINES); i++) {
if (perpointl > 0) {
fprintf (fpwrite, "$1f\t", timel);
if (chan(1l] == TRUE)
fprintf (fpwrite, "$1f\t", ch_vals(1](i]);
if (chan{3) == TRUE)
fprintf (fpwrite, "$1f\t", ch_vals{3]([i]);
}
if (perpoint2 > 0) {
fprintf (fpwrite, "\t\t");
fprintf (fpwrite, "%1f\t", time2);

if (chan{2) == TRUE)
fprintf (fpwrite, "$1f\t", ch_vals(2][i]);
if (chanf{4] == TRUE)

fprintf(fpwrite, "%1f\t", ch_vals{4][i]);
}
fprintf (fpwrite, “"\n");
timel += perpointl;
time2 += perpoint2;

fclose(fpread); fclose(fpwrite),

Nic-xfer.c

}

\x\ llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll ‘\
\*¥¥*¥¥¥*‘*ﬁ“****‘****‘**‘*******‘*i***‘%***********4%****i**ﬁ**\

VAl "get_field" is necessary because the data from the */

/* 4094.1tu program is not very conveniently separated. */

/* The big problem is the fact that white spaces are */

/* mixed in with column 1 information for a portion of */

/* the datafile. */

\***4&&»**»*&»***&*&»%»»***»x*ﬁ&t‘»‘»*%*$*»**‘x**#»*»%&*t%»*xx*&*\

int get_field(char *target, FILE **orig_fp) {
int INSIDE_QUOTE = FALSE;

char ¢ = ‘f*;
int counter = 0;
FILE *fp;

/* Set up a "local” file pointer to mirror the original one passed to us */
fp = *orig_fp;

/* FIRST, read in chars until no more whitespaces */
do {
¢ = getc(fp);
/* If the end-of-file is reached, return O characters in this field */
if (c == EOF) {
/* Ensure that any changes we made to the file pointer are reflected */
/* in the ORIGINAL file pointer in the calling functiom */
*{orig_fp) = fp;
*target = END;
return{0); } }
while ((c == SPC) || (c == TAB) || {(c == NEWLINE));

/* AT this point, we have read one character deep into the next field */
/* (put this character into the target string */

*(target + counter) = c;

counter++;

if (c == QUOT) {
/* Take special action if a quote is the first character */
do {
c = getc(fp):

if (¢ == EOF) {
printf ("ERROR: reached EOF inside a quotation\n");
exit(1l);

*(target + counter) = c;
counter++;

}

while (c != QUOT);

/* Ensure that any changes we made to the file pointer are reflected */
/* in the ORIGINAL file pointer in the calling function */
*(orig_fp) = fp;

/* I CHANGED THIS TO "counter" INSTEAD OF "counter + 1" AS THE */

/* KNAVE HAD IT, BECAUSE I THINK HE WAS WRONG. */

*(target + counter) = END;
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return(counter);

}

/* Otherwise, we have a "normal" (unquoted) field */
do {
c = getc{fp);

if (c == EOF) {
*{target + counter) = END;
/* Ensure that any changes we made to the file pointer are reflected */
/* 1in the ORIGINAL file pointer in the calling function */
*(orig_fp) = fp;
raeturn (counter) ;

if ({(c != SPC) && (c != TAB) && {c !'= NEWLINE)) {
*{target + counter) = c;
counter++;

/* perform some error checking */

if (¢ == QUOT) {
printf(*Ach, gehfeh! Encountered a lone quotation marki\n"};
exit(l);

}
while ((c != SPC) && {(c != TAB) && {c != NEWLINE));

/* Ensure that any changes we made to the file pointer are reflected */
/* in the ORIGINAL file pointer in the calling function */
* {orig_fp) = fp;

/* THIS SHOULD ALSO BE "counter" INSTEAD OF “"counter + 1" */
*{target + counter) = END;
return(counter);

Nic-xfer.c
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\*ﬁ_q#»4*x&».&»»»&*»n;‘*&‘&?‘*x‘*t*‘x&*»»4!&»*»»xlf»&*%*‘%*x.»*****x*&»&»‘»**%\

/* THIS FILE WAS MADE IN ORDER TO TRANSFORM THE TEXT-STYLE */
/* "POINTFILES® CREATED IN IPLAB (REPRESENTING ALL THE INTERFACES */
/* FROM A GIVEN RECALESCENCE) INTO THE BASIS FOR A DATAFILE TO BE */

/* USED BY THE CYLINDER-TYPE SOLIDIFICATION MODEL PROGRAM, cylsimll.c */

/* THERE IS A CORRESPONDING PROGRAM FOR THE LEVITATED, ELLIPSOIDAL */
/* APPROACH AS WELL (mk-lev-data.c).

/*

Assumed input format: an mxm-pixel IPLab datafile, saved as
text, resulting in something like the following:

where the first two numbers refer to the width and height of the image
(in pixels), and the I refers to "image"” or something. This is a
typical IPLab image format, when saved as text.

Note that each pixel has a value of either 0 or some power of 2. A
zero means that no interface pixels were recorded at that screen
location in any frame; a non-zero number indicates that there was at
least one interface pixel specified from some frame at that screen
location.

For simple power-of-two numbers, the frame associated with the
interface pixel is simply (log_2(number)) + 1, so that 1’s indicate an
interface pixel occurring in the first frame only.

For non-exponential numbers, there were multiple interface points
specified at that screen location (points from more than one frame).
The individual frames in which that screen location was an interface
point can be determined by finding the component powers of two that
comprise the number given, and applying the log 2 relation above to
each of the components.

~~John Lum 5/8/96

*/

#include <stdio.h>
#include <math.h>

/* MAXIMUM NUMBER OF FRAMES ALLOWED IS LIMITED BY IPLAB’S LARGEST */
/* LONG INT; IT IS SOMEWHERE AROUND 2725, SO YOU CANNOT RECORD MORE */
/* THAN 25 SETS OF INTERFACE POINTS IN A SINGLE FILE. */

#define MAXFRAMES (25)

/* THE MAXIMUM NUMBER OF POINTS WHICH CAN BE SPECIFIED FOR A SINGLE */
/* FRAME IS CONSTRAINED HERE TO BE 60; THIS IS NOT DUE TO ANY */

mk-cyl-data.c

/* NUMERICAL LIMITATION, BUT SIMPLY BECAUSE HAVING MORE POINTS THAN */
/* THIS FOR A GIVEN INTERFACE MEANS THAT YOU ARE GOING TO HAVE */

/* TREMENDOUSLY SLOW PROGRAM EXECUTION. */

#define MAXPTS (60)

#define EXTRA_HEADER (1)

int get_frame number (long int);

main()

{
FILE *fin, *fout;
char readfile[30]), writefile([30], garbage[30];
int i, j, a, index, max_a = 0;
double width, height, liguidus, coeffexp;
long int fval;
double x[MAXFRAMES] [MAXPTS], y[MAXFRAMES] [MAXPTS];
int numpoints{MAXFRAMES];
int framenum, firstframe, skip, key:
double scale, xc, yc, calib;

for (i = 1; i <= MAXFRAMES; i++)
numpoints([i} = 0;

printf{"\nFilename for read: ");

scanf ("%s", readfile);

printf("\n \*.new\" will be appended...\n\n");
sprintf(writefile, "$s.new", readfile);

printf{" (Writefile name is %s.\n\n", writefile};
fin = fopen(readfile, "r");
fout = fopen(writefile, "w"};

if ((fin == NULL) || (fout == NULL)) {
printf("\n**FILE ERROR: DATAFILE DOESN’'T EXIST!\n\n");
exit(0);

/* THIS PART STRIPS THE HEADER INFO FROM THE TOP OF THE IPLAB */

/* DATAFILE AND STORES THE INFORMATION REGARDING THE NUMBER OF ROWS */
/* AND COLUMNS IN THE DATAFILE FOR FURTHER USE. */

fscanf (fin, "%1f£%1f", &width, &height);

for (i = 1; i <= EXTRA_HEADER; i++)
fscanf (fin, "%s", garbage);

if (height != width) (
printf("Illegal image format: image must be sqguare.\n\n");
exit(0);

}

scale = height / 64.0;

for (j = 0; j < height; j++)
for (i = 0; i < width; i++) {

if (fscanf(fin, "%1d", &fval) i= 1) {
printf ("\n\n**FORMAT ERROR: IMAGE FILE WRONG LENGTH!\n\n");
exit(0);

}
else while (fval > 0) {
a = get_frame_number {(fval);

/* RECORDS LARGEST FRAME INDEX YET SEEN */

Page 1
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if (a > max_a)
max_a = a;

index = ++numpoints{al;
/* MUST NORMALIZE IMAGE SIZE INTO 64X64 GRID TO ALLOW COMPATIBILITY */
/* WITH THE SOLIDIFICATION MODEL PROGRAM */

x[a) [index] = ((double) i / scale);
/* IMAGE Y-AXIS IS REVERSE OF SOLIDIFICATION MODEL’S Y~AXIS: */

yla) [index] = ((double) ((height - 1)-j)/scale);

fval = fval - pow(2, a);

for (i=1; i<=max_a; i++)
printf (“frame number is: %d points read in: %d\n",i, numpoints(il);

/* AT THIS POINT, THE PROGRAM PROMPTS FOR THE HEADER INFORMATION FOR */
/* THE FINISHED DATAFILE--THINGS SUCH AS NUMBER OF FRAMES, ROTATIONS */
/* AND CENTERPOINTS, ETC. */
printf ("\nWhat is the total number of frames to be analyzed?\n");
scanf ("%d", &framenum);
printf ("\nHow many interface frames to ignore at the beginning? \n");
printf("(I.E., in case there are bad or unnecessary frames of data): ");
scanf ("%d", &firstframe);
printf ("\nWhat was the skip rate for recorded frames?\n");
printf (“Enter \"0\" for every frame, \"19\" for every 20th frame...\n");
scanf ("%d", &skip);
printf (*\nWhich frame is to be \"key\" frame? (Regardless of\n");
printf ("\"actual\" number, give index from above list\n");
printf("(1, 2, 3, 4...); NOTE: key frame used for model‘s initial\n");
printf("guess of nucleation position, and is not crucial: ");
scanf ("$d", &key);
printf ("\nPlease enter x and y centerpoints:\n”);
printf ("NOTE: This are PIXEL values, with the same image size and\n"};
printf("axis orientation as in the interface point datafile, and\n");
printf("the rest of IPLab in general: ");
scanf ("%$1£%1f", &xc, &yc);
xc = {{double) xc / scale);
yc = ((double) ((height - 1)-yc)/scale):
printf ("\nPlease enter calibration value (mm/pixel): ");
scanf ("$1f", &calib);
calib = calib * scale;
printf(“\nEnter liquidus of material (K)\n");

printf (" (Will not matter if exp_coeff of 0 is chosen): ");
scanf("%1f", &liquidus);
printf("Enter desired coefficient of expansion (0 if unwanted): ");

scanf ("$1f", &coeffexp);
printf ("\n\nFrame rate assumed to be 40500/sec...\n");

/* FINALLY, THE DATA CAN BE WRITTEN TO FILE: */
fprintf (fout, "%d\n%d\n\n", framenum, 40500);

skip++;
for (a=1; a<=(framenum*skip); a+=skip)

fprintf (fout, “%d ", a):

fprintf (fout, “\n\n%d\n\n", key);

mk-cyl-data.c

fprintf (fout, "%1f $1f\n\n", xc, yc);

fprintf (fout, "y\n%1f\n%lf\n%lf\n\n", calib, liquidus,

fprintf (fout, "%$1f\n%lf\n", 6.25, 5.5);

for (i = firstframe+l; i <= max_a; i++) {
if (numpoints{i] > 0) {
fprintf(fout, "\n%d\n", numpoints[i]);
for (j = 1; j <= numpoints[il; j++)
fprintf (fout, *"%1f $1f\n", x[i]1(3), y[i](31):

\i
else
fprintf(fout, "\n0O\n");
*/
}
fclose(fin); fclose(fout);
printf ("\n\nAll done!\n\n");

int get_frame_number (long int fval) {
int frame = 1;

while (pow(2, (frame - 1)) <= fval)
frame++;

return (frame - 1);

coeffexp);
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This is a program for the interpretation of video results
from undercooling studies carried out using the EktaPro
4540 camera from Kodak.

This particular version of the general program is
designed to interpret results from the undercooled
specimens which were processed in guartz test tubes, on
beds of quartz glass. The program’s main purpose 1s to
determine a velocity of solidification for a given
solidification event, and this verison assumes that the
velocity is a "BULK" velocity; that is, the solidified
material grows as a sphere in the undercooled melt,
expanding at a constant rate.

SHORT OVERVIEW OF THE STRUCTURE OF THIS PROGRAM:

1) read either from file or from keyboard several
materials and/or geometric constants associated
with the solidification event at hand. (for
example, the radius of the test tube used, the
calibration factor to go from pixels to mm, etc)

2) read, again from file or keyboard, the (x,y)
coordinates of every point supplied in every frame.
Place these values in respective x, y, and z
matrices, where x[1][1] refers to the x coordinate
of the first point in the first frame, and y[2](3]
refers to the y coordinate of the third point given
in the second frame given, etc.

3) determine, from the cylindrical geometry of the
specimen, the z coordinate associated with each
(x,y) pair. (the positive z-direction i1s "out of
the screen”)

4) calculate a rough estimate of the nucleation point--
the origin of growth--determined by noting the
apparent growth behavior of the interfaces given.

5) from this spatial estimate, determine an approximate
"delay time, " the time between the nucleation event
(t = 0) and the recording of the first pixel of the
first frame recorded by the camera.

6) now assign a "relative time" value to each (x,y)
point; place this value into another matrix, r.
The value is determined by summing the "delay time"
estimate, the time of the elapsed frames between
the first frame and the frame which contains the
(x,y) point of interest, and a "raster delay time"
which depends upon the position of the (x,y) point
on the fassumed) 64x64 pixel video display.

7) You now have an initial guess for (xn, yn, zn) and
tn--the coordinates of the nucleation point and a
guess for the "delay time." Using these values,
begin an iterative procedure which attempts to
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minimize the standard deviation of the average
velocities observed for each frame. That is,

given the above values, it is possible to determine
vl, v2, v3, ..., vf--the average velocities observed
for each individual frame. The idea is to make it
so these v values are all nearly the same, thus
satisfying our "sphere expanding at a constant
velocity" assumption.

8) Alternately try slightly different values for xn, yn,
zn, and tn, until virtually no further decrease in
the standard deviation of the average velocities is
observed. At this point, you’ve reached some local
minimum in some function of (xn, yn, zn, tn), and
we assume that this point is the actual nucleation
point, and that tn is the actual delay time.

9) Given this final point and time, return the implied
average velocity for each frame, as well as the
overall average velocity and the standard deviation.
Assuming the point and delay time are physically
reasonable, low standard deviations imply a good
agreement between the model and reality, and
therefore accurate values for the solidification
velocity which is returned.

NOTE: There are several options embedded in the program.
One is to restrict the guesses of the nucleation point
to lie on the "round” surface of the cylindrical
specimen--the glass/metal interface. This is a fairly
likely physical scenario.

Another option is to hold the delay time, tn, constant
while iterating only over xn, yn, and zn. This is a
helpful option at times.

NOTE: If you use the "read from file" option (which is
certainly the most efficient way to go about things, the
datafile to be read must have a very specific structure.
This structure is shown in several "EXAMPLE" datafiles
which accompany the program.

NOTE: The program records the details of every step of
the iteration process in an "ouput" datafile, whose name
ther user supplies. This way, problems with the
iteration process can be more easily identified if, for
instance, the program were to "hang."

--Doug Matson, John Lum 6/14/95
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/* FORMAT OF INPUT DATAFILE:

[VALUE] [COMMENT] (example begins next line)
9 TOTAL #FRAMES TO BE ANALYZED
40500 FRAME RATE
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14 7 10 13 16 19 22 25 FRAME INDEXES OF FRAMES TO BE ANALYZED
1 MEMBER OF ABOVE LIST WHICH IS "KEY” FRAME

32.500000 30.000000 X AND Y CENTERPOINTS (NORMALIZED TO 64X64)

y CHANGES TO DEFAULTS? (ALWAYS YES)

0.100000 CALIBRATION VALUE (mm/pixel)

1726.000000 LIQUIDUS

0.000000 COEFFICIENT OF EXPANSION

6.250000 THESE ARE CALIBRATION VALUES TO CORRECT FOR THE

5.500000 LENS-EFFECT OF THE CYLINDRICAL QUARTZ TUBE.
THE NUMBERS ARE, ROUGHLY, THE ACTUAL TUBE RADIUS
AND THE APPARENT TUBE RADIUS, AS OBSERVED. THE
RATIO SHOULD ALWAYS BE ABOUT THE SAME, SO USE
THESE NUMBERS IF IN DOUBT.

5 #POINTS IN FRAME 1

17.000000 57.500000 POINT 1

15.500000 56.000000 POINT 2

14.500000 54.000000 ..
14.000000 52.500000
13.500000 51.000000

6 #POINTS IN FRAME 2
19.500000 57.000000 POINT 1
18.000000 55.500000 POINT 2

17.000000 54.000000 ..
16.000000 52.000000 ..
15.000000 50.000000 ..
14.500000 48.000000 ..

JARAAARAAAREARA AR AR R A AT LR RXR A A AT AR AR A AT AR R AR ARSI A FA KRN AR R AR [

/* These are typical header files seen in most programs: */
\*‘x‘x‘**t““}*ii‘*&‘&‘*‘%i&***x,;.‘x»».i%*bi**‘***‘!!*‘*%%ﬁ“‘"**‘*l*\

#include <stdio.h>
#include <math.h>

SRR AR KAk R A AR A AR A AR AR A AN AN AR A KA A AR A AR AR A AR A A AR,/

/* These "define” statements cause the program to */
/* specific values with specific keywords, so that the */
/* programmer can use meaningful arguments like "SURFACE" */
Vad instead of resorting to numbers all the time. */

JAAKARKEA AR AR K LRA AR AKX R AAA A AR A A A AR AN AR AR AR A AR RN Ak [/

#define PI (3.141592654)
#define FMAX (50)

#define PMAX (50)

#define NEG_ROOT (-10000)
#define BIG_FLOAT {(1lel0)
#define INF (l1lel0)
#define FAIL (-1)

#define OK (0)

#define XITER (3)

#define YITER (4)

cylsimll.c
#define ZITER (2)
#define TITER (1)
#define FITER (6)
#define MITER (7)
#define INIT_ITER (8)
#define MID_ITER (9)
#define REP_ITER (5)
#define TMAX (0.5)
#define SURFACE (1)
#define BULK (2)
#define FRONT (0)
#define BACK (1)
#define SCR_HEIGHT (64.0)
#define SCR_WIDTH (64.0)
#define FPRINTOUT (1)
#define PRINTOUT (2)
#define NORMAL (0)
#define TIMEDEV (1)
#define GETNEWTIME (2)
#define TIMEMAX (0.025)

JRARAE AR AR A A AR AT R AAR AR A HAA A A A A AR A A A AR A A A A A F AR A AT RN A KK )

/* The following are either definitions of special data */
/* structures or else function prototypes. In C, all */
/* user-defined functions must have these prototypes at */
/* the beginning of the program, so that the compiler */
/* knows what functions take what kinds of arguments, etc. */

VAR R e

typadef struct coords {
double xo0; double yo; double zo;
double xd; double yd; double zd;
int status;

} Coords;

typedef struct iter_coords {
double xn; double yn; double zn;
double tn;

} Iter_coords;

typedef struct coords2
double bx; double by; double rad_curv;
} Cent_Cocrds;

double get_zval (int, double, double);

Cent_Coords get_center (double *, double *,
int, int, int);

double spread (double *, double *, int, int,
double, double);

Iter_coords gen_iterate (int, int, double, double, double,
double *, double *, double *,
double, double *, int, int *, double,
double, double, FILE *,
double *);

84



Wed, May 8, 1996 17:59:17

char * get_ittype (int);

double fill_vels (double *, double *, int, int *,
double, double, double,
double *, double *, double *,
doubla, double *, int, double, double *);

double get_dev (double *, double, int, double);

double get_frame_dev (int, double *, double, double, double,
FILE *);

void make_report (int, double, double, double, double,
double, double, double, FILE *,
double, double);

int was_change (double, double, double, double,
double, double, double, double);

double create_timedev (int, double, int, int *, double, double,
double, double *, double *, double *,
double *, double, double *,
double, FILE *);

double return_xact (double, double, double, double),
double return_yact (double, double);
double return_xobs (double, double, double, double);
double return_yobs (double, double);

/RS S ok Sk ok ok SOk S 3 Ok ok SRR A Rk Sk Sk Sk Sk Ok ok ok Sk kR R R )

Vi Here’s where the program really “starts:" */
\l.uvx.4-Q‘#1‘%‘**«?‘*‘?‘*h*“***‘%*****%**‘l‘x\&*l"1&****%*********‘****\

main()

{

\t»»ﬁ»&ﬁ%t*&&*&»*»&**»*&&»xx*»t&*»‘x&t»‘*xwxxnt:*»&»»»»******‘**;\

/* 1’11 declare all of my "global” variables here. */
/* "double” means double-precision floating point number, */
/* "int" means integer, "char" means character string. */

\&x&»&*;n»t»*»&x»**»wx&*******‘***&}4*»»‘wﬁ‘wﬁ**w‘ﬁw*»»&»»n&m$¥*%\

double calib, tm, linear, radobs, radact, scale, random_val;
char figl[10], achar([10], nuctype([5}, cont_scan(5];

char i_or_pl[5], t_or_h[5], s_or_bl[5];

double vid[FMAX], timemin, timemax;

int n[PMAX], m, mx, key, vidinc, p, nx, i, c_nc;

char cformat({5), response[5];

double bt, veloc, xobs, yobs, zobs, bxobs, byobs, bzobs;

int w, v, count, frame, k, frontback, tecplot, contscan;
double angl, rad_curvl, rad_curv2, ratio, up_bound, end_it;
double xcoc[3)[PMAX], ycocl[3][PMAX];

double xcent, ycent, xact, yact, zact, frate;

double r[FMAX][PMAX], x[FMAX][PMAX], y[FMAX][PMAX], z[FMAX][PMAX];

cylsimll.c

double rad(FMAX], vel[PMAX*FMAX], xvid, yvid;

double bx, by, bz, bxl, bx2, byl, by2, zcheck, rsurface;
Coords drop_frame, curvcoords;

Cent_Coords centcoords;

Iter_coords itercoords;

double delta, testtime, avevel, presdev;

int numpoints = 0, ntype, ittype, change_total = 0, hundred_cycles = 0;
FILE *fp, *fpout, *fpin, *fptec;

double velocity{FMAX] (PMAX], fvel[FMAX];

double xold, xnew, yold, ynew, zold, znew, told, tnew;
double xreplac, yreplac, zreplac, treplac;

char outputfile(30], inputfile({30], sysstring(40], rdtypel(5];
char tecfile[30];

\4‘4*$%*‘¥**“$¥»*&&‘&»$»tx“x¥*$%»*t»w$‘$%**$*$»‘&»»&x»wx»$*$*&¥\

/* Input raw data and calculation options */
\***‘ﬁ**l****&*****k***4*%‘**“**%“*4#‘****ﬁ*******#**ﬁ&*&****¥¥\
printf ("CONTENTS OF CURRENT DIRECTORY:\n");
printf( ' ~mm s e oo \n"};
system ("1ls”);

printf("\n\n");
printf{"Read from file (f) or keyboard (other)? ");
scanf (*%s", rdtype);

if (strcemp(rdtype, "£") == 0) {
printf("Name of read file: );
scanf ("%s", inputfile); }

printf{“Nane of output file: *);

scanf ("%s", outputfile);
fpout = fopen(outputfile, "w");
fpin = fopen(inputfile, "r");

SRR AR KA AR KRN KA R KA A KA A A FF A A A A A AN AR A A AR AR A AR AR A AKX XK KA [

/* This part for later plotting, temporarily disabled: */
\*¥l*§¥¥¥‘*¥*‘tﬁ***Q*i&l‘%&i*%**‘**‘tt***%*»x¥¥x$*$$‘¥*¥*¥*¥#¥¥*¥\
\n.
printf("\nProduce tecplot-format datafile of interface points®\n");
printf(" (enter 1 if yes, 0 if no): ");
scanf("8%d", &tecplot);
if (tecplot == 1) {
printf("Enter name for tecplot datafile: ");
scanf("%$s", tecfile);
fptec = fopen(tecfile, "w");
if (fptec == NULL)
exit (0);
else {
fprintf(fptec, "ZONE T=\"Observed interfaces\”\n");
fprintf(fptec, " F=POINT\n\n");

*/
tecplot = 0;
printf("Number of frames of data: ");

if (strcmp(rdtype, "f") == 0)
| fscanf (fpin, "%d", &m);
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else
scanf ("%d", &m);
printf ("Inherent frame rate (frames/sec):\n"):;

printf(* NOTE: this is actual speed at which camera was recording: ");
if (strcmp(rdtype, "f") == 0)

fscanf (fpin, "%1£f", &frate);
else

scanf ("$1f", &frate);

\&*»***t‘nt*x**x&*»*¥¥¥t¥*kt&***‘$&*$w¥n4*»»w*¥&****;»**&***t*»*&\

/* This for-next loop fills the vid[mx] array with the */
Vad appropriate "frame” indices of interest. In case the */
/* user wanted, for instance, to use only every fifth */
/* frame, the values would become 1,6,11,16,21, etc. */

\tt‘t!1t‘*t%*tw&‘x»¥¥¥»ﬁ¥$¥*“*3&»tx!‘&»‘xx»»&**&;**4*&&**&*»;***\

printf ("\nFor the frame number entries, the absolute values are\n"});
printf ("unimportant. Frame numbers are only meaningful when\n");
printf (“considered \"relative\" to the first frame entered.\n");
printf("I.E., if your data are from frames 3, 7, 11, 15, etc,\n");
printf("as taken from the camera (\"every 4\"), then you could\n");
printf(“enter as the relative frame numbers:\n"};
printf("(1, 5, 9, 13, 17, etc) or\n");
printf("*(3, 7, 11, 13, 13, etc) or\n");
printf{"any other sequence with each number four integers apart.\n\n");
for (mx = 1; mx <= m; mx++) {
printf{"Entry Frame %d = Relative Frame #: ", mx);
if (strcmp(rdtype, "f") == 0)
fscanf (fpin, "$1f", &vid(mx]);
slse
scanf (“%1f", &vidimx]);

}
\l“5,04¥1‘*$$ﬁ‘***‘.}‘.&*‘***4‘***1*W*%n‘l‘*uw»‘v»ﬁ&.%x\vvx.b.*‘x.l\n‘**%&*vﬁix.***‘«f\
/* This section pertains to the program’s effort to make */
/* an initial guess as to the nucleation site, etc. It */
Vad needs to make this guess from the information on two */
/* frames where it can see the interface progressing. .. */

\&&&‘*t»$;¥t¥¥*¥»&»*$‘¥»*$»»$xx;**»*t»w%%‘&xx»$%~**x*»x**»»*»»x&;\

printf(*\nWhich entry is first of two key reference frames for ");

printf("nucleation\nestimate (counting video index %d ", vid(1]);
printf("as entry frame 1): ");
if (stremp(rdtype, "f%) == 0)
fscanf (fpin, "%d", &key):
else

scanf (“%d", &key):

\x»»t;&ﬂ*»t&»&**»n&»»‘x*&w‘ﬁa**‘&t»»‘w**&k*&%&**&**&***»*»*;»*&»n\

Vad The following section requests the user to input the */
/* starting position of the cylinder’s observed centerpoint */
/* in the x and y directions. This is quite important in */
Vad the x-direction, but not important and only a matter of */
/* reference for the y-direction. (since x can only range */
/* between (xcent - radius) and (xcent + radius), but y is */
Vi essentially unbounded; the "height" of the cylinder is */
/* not crucial.) */

\tt»4nx*“&**»»*»*»&*%&n*n**n****&*an*&»%***»»&****&*&4*****&»*&\

cylsimll.c

- e
printf(“\nKey Frame %.01f data: ", vidlkeyl):

printf("\nAxis of cylinder is the \"y\" direction; \"x\" goes\n");
printf("from left to right; \"z\" goes into and out of the screen.\n");
printf{“\nObserved centerpoint coordinates (x,y)\n");

printf (" (enter x, then y): ");

if (strcmp(rdtype, "£") == 0)
fscanf (fpin, "$1f£%1f", &xcent, &ycent);
else

scanf("%$1£%1£f", &xcent, &ycent);

\***»»x**&&****t&*‘&&»*»*»x»*%*%*»*&»&***»**&x*&x»»*»&»i**»*&»»»*\

/* Here is where some "constants" are listed, and possibly */
Vad changed. At present, we don’t take into account */
Vad contraction upon solidification, but we could later. */

\‘$#&4»x*»#¥~*x&4*&**&*»**4&**‘&4&»»4&»%&»&***&*&»»;»*&*ws»»tw»»*\

printf("Default settings:\n\tScreen calibration = 0.10 mm/pixel\n®);
printf("\tTm = 1726 K\n\tCoef. of expansion = 0 microns/m degC\n");

printf("\nAny changes (y/n}?");

if (strcmp(rdtype, "f") == 0)
fscanf (fpin, "%s", cformat);
else
scanf("%s", cformat);
if (strcmp(cformat, "n") == 0) {
calib = 0.1; tm = 1726; linear = 0; }
else {

printf("\tScreen size calibration: "):
printf("\n(on the 64x64 screen, not the 128x128 screen) ");
if (stremp(rdtype, "f£°) == 0)
fscanf (fpin, "%1f", &calib):
else
scanf ("$1f", &calib);
printf(*\tAlloy melting point: ");

if (strcmp(rdtype, "f") == 0)
fscanf (fpin, "$1f", &tm);
else

scanf("$1f", &tm);
printf{"\tAverage alpha: "):
if (stroemp(rdtype, "f") == 0)

fscanf (fpin, "$1f", &linear);
else

scanf("%1f", &linear);
linear *= le-6; )}

/%K ok ok ook Sk Sk Sk SRk K R XA K XA A X A AR Ak kX

Vad At this point, the user must enter the "observed,” */
/* neffective” radius of the cylindrical droplet, as */
/* observed or assumed from the digitized data. */
Vad (refer further into work for explanation of the */
/* reffective" radius; this is likely a value greater */
/* than the actual, measured radius of the droplet, */
/* thanks to magnification characteristics of the quartz) */

/R Sk ok ok Kk ok SRk Sk Sk S Sk Sk kA Sk Sk kR Ak Kk AR )

printf("\nPlease enter the \"observed\" radius of the\n");
printf("cylindrical droplet (mm): ");

Page 4
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if (strcmp(rdtype, "£") == 0)
fscanf (fpin, "%1f", &radobs);
else
scanf ("$1f", &radobs);

radobs /= calib;
\*l*‘***l‘*‘**‘}'%*l**¥¥******V*ﬁ*k*#‘**%*&&**l*****»*******‘****\

’* The actual radius is also needed. */
\%*‘**‘&%%¥*¥***¥*‘*¥&‘**¥*&&t*‘****‘****¥ﬁ¥*“***‘4*%**%***%**!*\
printf("\nPlease enter the actual radius of the\n");
printf("cylindrical droplet (mm) (inner test tube radius): ");
if (strcmp(rdtype, "f*) == 0)
fscanf (fpin, "$1f", &radact);
else
scanf ("%1f", &radact);
radact /= calib;

/KR A sk ok o ok ok Sk ok sk ok ok S Sk E Sk Kk R R kS Rk Sk Ak Rk Ak Kk A Ak

Vad Here’s where the guts of the program kick in. We start */
VA a big loop which begins to cycle through the frames and */
/* assign (x,y) values to matrices, etc... */

\*&»i‘&*4*wb$&&»*¥»»$»»4**»&&;‘x*»*w**&&4$*»¥&w»x*»&$»*x»&»&‘*;&*\

for (mx = 1; mx <= m; mx++) {
printf{"\nFrame %d = Video screen %.0lf\n", mx, vid[mx]);
vidinc = vid[mx] - vid{1);

/* The above gives us the number of video frames we are
from the start. */

printf{"\nPlease give the number of interface pixels: ");

if (strcmp(rdtype, "f") == 0)
fscanf (fpin, "%d", &p):
alse
scanf ("%d", &p);
nimx] = p;

\t»nt;tt»»&»»i&&t**%»»;*tw%t**&“»*$¥*&x*l»**»&$%*¥&$»»¥»‘»‘;nm*w\

Vad Need not perform any rotation of translation of given */

/* coordinates, since there is no motion of the droplet. */
\%‘$t¥*&&»*‘*‘*‘*ﬁ**l%‘&*‘»‘&*&*‘;%“ﬁ**‘**ﬁl&*#%*t‘*i*btl*t!&*&ﬁ\

\*;**%&**»wt#*n»&*&»»****ﬁt‘$$¥»&**w*»*%**&»¥&*n&*x4&»»;»x»‘*¥»*»\

/* Actual points from the interface are read in or entered */
Vad starting at this point in the code. */
\**-r*‘**‘»fl“*““‘*‘*****‘*5**%“*‘t%**“i‘*‘*!*‘&*%‘&1“#%‘*#‘*‘\
for (nx = 1; nx <= p; nx++) {
printf (*\n\nInput interface coordinates (x,y)\n");
printf (" (enter coordinates separated by a space)\n");

printf ("X(%d) Y(%d): ", nx, nx);
if (strcmp(rdtype, "£") == 0)

fscanf (fpin, “"$1f%1£", &xobs, &yobs);
else

scanf ("$%1£%$1£f", &xobs, &yobs):

\t*‘»»**»*»¥*;»»**b»t$**»»»%%*ﬁ*t»*%t*&t*%&*&%»»*t»*»$¥‘*4»*»»nx¥\

/* This bit saves the points "as observed" 1into a small */
/* array for both the "key" and "key+l" frames, so that a */

cylsimll.c

Vad center of curvature can later be calculated from them. */
\*¥v4l.x.‘*xyx.x‘x‘****v«&****x.x‘*******‘*x\&&t‘x\***4*‘%***ﬁ*****‘**&%*?**t“\
if (mx == key) {
xcoc [key]) [nx] = xobs; ycoclkey] [nx] = yobs; }
1f (mx == key+l) {
xcoc [key+1] [nx] = xobs; ycoclkey+1][nx] = yobs; }

\»*x**w***&*x**&»*&*»**xx%»t%»%%;x*»»¥*x¥¥$¥*¥***&*&*4“&*}&4»‘*»\

/* Now the "actual" x, y, and z values--that is, the values */

/* corrected for lens distortion and in a reference frame */
/* with x=0 at the midplane of the as-observed cylinder-- */
/* are calculated and stored in three arrays: */
\‘*&l*‘*'*1%l************4*&*****4&%*&‘*%**%i*‘»**#*****&%*‘&&&*&\

x[mx] [nx] = xact = return_xact {(xobs, xcent, radact, radobs);

ylmx] [nx] = yact = return_yact (yobs, ycent);

\44**4****#44n**»*t&ﬁ&*»*»&*»x*»&;%m*‘**nt»&****%*$$&**%**4***&*#\

/* Here we use the geometry of a cylinder to obtain */
/¥ the unknown value of "z"--that is, the distance "out of */
Vi the screen" that an observed point rests. */
\**‘***%&ﬁ**ﬁ*‘*********»****V¥¥¥**¥¥¥ti**}$*ﬁ}%*»»*‘*&*****%*k**\
z[mx] [nx) = zact = get_zval (FRONT, radact, xact);
if (zact == NEG_ROOT) {
if (strcmp{rdtype, "f£*) == 0) {

Uﬂwﬂﬂma=/3/3»&»ttt»%:*w»*twt»ﬁwk*t»&t*tt»»*t»»**t*»tt»‘$*t»n/5:vn

printf{"* Error in data point entry: point given not *\n")
printf("* within bounds of droplet surface! *\n");
UHWNH"WA:*****?***»k**&.**‘?*&***&ﬁ*&.}l*»*&&*ﬁ?.}*ﬁk}**l&ti:vn
printf("\nTrouble point was (%.21f, % 21f).\n",
xobs, yobs);
printf("\n\tPlease remove the point from \"%s\"\n",
inputfile);
printf{"\tand run again.\n"};
exit (0);
}
printf("\n");

UHHS”MA=%»$%»w»»t*»»tﬁ»ttﬁ»*&nt»*ﬁ*t»»»**t&*t&kﬁt»t*»»&#/ﬁ:v“

printf("* Error in data point entry: point given not *\n");
printf ("> within bounds of droplet surface! *\n");
printf("* Please enter again. *\n");
mvH.u.r:ﬂmA..n.l}***#?}**l*»‘ﬁﬁ*&.)ﬁ»}.?l»‘t}*%*****»*t&.?**%l‘i&*i:vw
nx--~;

}

else {

zobs = get_zval (FRONT,
printf("*** Verify:\n");

radobs, xobs - xcent);

printf (¥ (%0.21f, %0.21f, z) = (%0.21f, %0.21f, %0.21f)"
xobs, yobs, xobs, yobs, zobs);

printf (" apparent,\n");

printf("Goes to (%0.21f, %0.21f, %0.21f) actual",
xact, yact, zact);

if (tecplot == 1)
fprintf (fptec,
yact*calib,

"$1f $1f %1f\n",
zact*calib);

xact*calib,
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/R RSk Rk kR R sk sk s ok sk ok sk ko b kSRR A A ARk

/* Here is where the "time residual" is defined for each */
/* point entered, corresponding to the raster motion of the */
/* video capture. */
/* This assumes that the screen rastering is done in the */
/* following way: 4 passes, each the height of 1/4 of the */
/* screen size, starting at the top of the screen. */
/* (all vertical elements in an individual 1/4 screen pass */
/* are acquired simultaneously--parallel factor of 16, */
/* if the screen is 64 pixels high.) */

\X‘*‘**‘*“‘ﬁ*‘**‘**»***‘¥‘¥$‘***‘4***“*‘*‘ﬁ¥¥¥k‘*ﬁ****‘}“**“*\
w = yobs; v = 0;
while (w+(SCR_HEIGHT/4.0) < SCR_HEIGHT) {
w = w + (SCR_HEIGHT/4.0); v = v + 1; )}
rimx) [nx]) = (1 / frate) * (0.25) * (v + xobs / SCR_WIDTH);

if (nx == p) {
if (strcmp(rdtype, “f") != 0) {
printf{"\n\n\tREDO THIS FRAME? (enter y for yes): ");
scanf("%$s", achar); }
if (!stremplachar, "y*))
nx = 0; }

\it»x&x:&&x&»i!‘k‘»tiibt‘*;n$t‘n$‘t‘»ltxn»&»t»x*x*&*»*&*&*»ﬁ&xb‘$\

/* This merely calculates the total # of points given. */

\&5**‘***!%4»**%%%)ii%*%**&&*4***}&*‘***!*&&‘*ﬁ*&*&t;t*l..‘44**1!*1\
for (count = 1; count <= m; count++)
nunpoints += nlcount];
\bi}‘*“‘*‘&‘*“‘*'*‘&4******!*}‘*¥***¥$t‘5¥%*“¥¥*¥»¥¥¥‘t¥i**¥ﬁ*\

VA Now the initial rough nucleation site estimate is made */
\‘t**ﬁ*‘%%‘44*‘***!4»1%*4‘***4&**%“&*&%‘****&&&*‘*&%liﬁﬁ*****»**\

\t**tn»t;&w&n»x*&Qt*&*&ﬁx§4it$§*;»w¥$*»!t¥t*$¥t‘4§4~b»w‘t;ntl*»xx\

/* Function "get_center" takes arguments of the "key” */
/* interface points and returns the rough center of the */
/* best-fit circle, as fitted to the points in the "view” */
/* reference frame. */

\‘x*»»*&*4**%»¥‘$$xi#‘t*‘*w‘»t‘¥xw¥44%;&*&*i%*»»t**&*n;%bt»&»t*i&\

system("clear"):
centcoords = get_center (&xcoc[0][0], &ycoc[0][0]
n{key], 1, radobs);
bxl = centcoords.bx; byl = centcoords.by;
rad_curvl = centcoords.rad_curv;
printf ("\nCenter of curvature for key interface");
printf(" at (%.31f, %.31f)\n",
bx1l, byl);
printf(" --with radius of curvature of %.21f pixels.\n\n",
rad_curvl);

\w»**&xtt»*»*****&:»*%*»*»‘»»»‘w‘wa»»*»***4¥¥*&x‘¥¥&*x*&&%»*“*x%\

/* we do this for the [key+1] frame as well: */

\‘&n»x»**»&»w»*&4»¥*¥*‘*»**»***;t&&***&&»**&*t****»*x»»*»&;»t&*t*\

cylsimll.c

if (n(key+1l] > 0) {
centcoords = get_center (&xcoc[0][0], &ycoc{0][0}
nlkey+1l), 2, radobs);
bx2 = centcoords.bx; by2 = centcoords.by;
rad_curv2 = centcoords.rad_curv;
printf('Center of curvature for (key+l) interface at (%.31f, %.31f)\n",
bx2, by2);
printf(* --with radius of curvature of %.21f pixels.\n\n",
rad_curv2); }

\‘&$&&»**4%***&***»&x*‘*&&‘&*»*»$wx&%*¥&»»*»»*****&&**4&**»}‘¥»**\

/¥ Now time to analyze the relative motion of */
/* the interface. First, I’l11l choose the target center as */
Vad the one which had the lesser radius of curvature. */

\»»‘%»&‘**&¥¥4w»¥*}»tt»%*»&»»»»*w*x;;%**»**»til»z***&l‘&»x***a‘&*\

if (rad_curv2 > rad_curvl) {
printf ("Therefore, growth is outward as time progresses...\n\n"};
bx = bxl; by = byl; frame=1;

}

else {
printf{"Therefore, growth is inward as time progresses...\n");
printf(" (point will be opposite of observed center)\n"):;
bx = bx2; by = by2; frame=2;

bxobs = bx; byobs = by;

\‘*‘i&*l***%»b‘l*****x\*x.%b‘!*&‘ll‘*x‘%*%“*l****‘*?v«&%%&*}****¥¥¥¥\ %
VA Remember here to put bx and by in the "droplet" frame, */
/* not the "observed” frame, for calculations. */

/R sk s ok Sk Sk e kA R S kR sk Sk sk sk ks kR R R Ak

bx = return_xact (bx, xcent, radact, radobs);
by = return_yact {(by, ycent);

/SR R R R R AR R R SRk kX kA

/* Next, calculate whether the center of curvature point */
/* that was returned is in fact located within the bounds */
/* of the visible droplet surface. */

SRR R kA Ak A F A A A KRR A AR AR A A A AA KA AA A KA A A A A ALK AR A AR KRR )

zcheck = get_zval (FRONT, radact, bx);

if (zcheck == NEG_ROOT) {
printf{" ** Screen center of key/key+l frame off of droplet.\n");
printf (" Interpolating to droplet surface ..\n");
\*****‘***ﬁ*****‘*“*%*“*‘&**‘ﬁ***»%%******4******‘*****¥***‘%*‘\
Ve If the point is outside the visible surface, then start */
/* from the center point and work your way out along the */
/* line toward the outlying point until you come within */
/* a small distance of the droplet surface. */

\‘***»****&***%ﬁ**i%*%*&*‘**&%**‘%**‘****»¥‘4»%¥*%‘**¥*¥*¥***%***\
xvid = bx; yvid = by;
for (ratio = .1; ratio > .001; ratio *= .1) {
zcheck = 1;
while (zcheck != NEG_ROOT) {
xvid += ratio * (bx - xcent); yvid += ratio * (by - ycent);
zcheck = get_zval (FRONT, radact, xvid),
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}

xvid -= ratio * (bx - xcent); yvid -= ratio * (by - ycent);
}
bx = xvid; by = yvid;

bz = get_zval (FRONT, radact, bx);

\&x¥¥*¥}‘**¥&*»t‘»‘****»¥*¥***"»ﬁw**»$»*%x*¥x$x%*&&;k*&*»»t%»***\

/* Now we’ve got our point on the droplet. However, the */
Vad REAL rough nucleation point may be this one, or the one */
Vad diametrically opposite it. We can determine which it is */
Vad by looking at the rad_curv seen in (key) and (key+l). */
/* If R(key) < R(key+1l), it means that the interface was */
/* expanding between the frames, and our guess at the */
/* nucleation point is correct. If not, then the opposite */
/* point is the correct one. */
\&‘».**ii*‘ﬁ**‘*¥¥“4*$¥*‘**4¥&***‘*‘»Vvﬁﬁ*x‘l\*&%ﬁ**t1&‘%4;‘*%*****‘**\
if (frame == 2) {
\*¥4¥¥**‘**&.**‘$*&¥*¥**¥%}t#%**‘****&*}*b**&l**!t‘****‘i*uﬂi****»‘*\
/* Desired point is opposite calculated one. So, we’re */
/* changing the x/y/z values to be opposite. There really */
/* isn’t a precise "opposite” for the y value, unless the */
/* actual cylinder is perfect and the ycent value given is */
/* exact; however, (-y) will be a good enough start. */

\&wn»n*¥*4»*%*&»&»l»4‘t&&»‘tx*&*iwﬁ***‘»x*t%»*t»**»&»t;mt*&*‘%»»x\

bx = ~bx; by = -by; bz = -bz;

\¥¥*x&‘4%¥»&!;t&t%**ﬁ%&*»‘¥t*»*»n&»*%i»ﬁ*»n*»**»*4»*»»%»*»»»**;ﬁ&\

Vad These, recall, are in the “droplet" frame, so to speak. */

/* We’ll switch to "observed" frame when we tell the user */

/* what the verdict is: */

\t.».l*x‘}‘“*******»xv***“**‘*l&**x.‘*“‘**‘%»‘%*“x,*,}*vw*x‘m‘;‘**‘%‘?».*ww\
}

bxobs = return_xobs (bx, xcent, radact, radobs);
byobs = return_yocbs (by, ycent)
bzobs = get_zval (FRONT, radobs, bxobs - xcent);

printf{"Assumed nucleation point is (%.31f, %.31f, %.31f)\n",
bxobs, byobs, bzobs);

\&&t**&»»$$t“*»tﬁ‘*x»;»‘&*x;**&&$*wz*ﬁt4;&&»*&&&*»»:*»‘x*&&%»**&\

/* Next, we calculate the revised radii of curvature of the */
/* two frames’ interfaces with respect to the proper guess */
Vad of the nucleation point. */

\»\»‘l*¥*¥%‘**¥**ﬁ$‘l*&'*¥¥**‘*V*l****‘*‘&*ﬁ%**%*&******lﬁ*******&*\
p = nikeyl; rad_curvl = 0;
for (count = 1; count <= p; count++)
rad_curvl += sqgrt(pow({{x[key][count] - bx), 2} +
pow( (ylkey]} [count] - by), 2));:
rad_curvl = rad_curvl / (double) (p);

p = nlkey+1]; rad_curv2 = 0;
for (count = 1; count <= p; count++)
rad_curv2 += sqrt(pow(({x[(key+1] [count] - bx), 2) +
pow( (ylkey+1] [count] - by), 2)):
rad_curv2 = rad_curv2 / (double) (p);

cylsimll.c

\»*‘%*&x&»x‘x&**x4¥**$»&&$*&&t$*»»t&&x*x$**44**»**&*&&&¥&4»&*&*¥:\

/* Now, the initial rough guess of velocity and time delay */
/* (between nucleation and first frame) are assigned. */
Vad Note that this doesn’t take raster delay into effect. */
/* This will be accounted for in the fine calculations. */

\*»*&**%*‘**‘$*¥*»4v&»¥»t»n»»&&&*&»*****&»***44»*&xx**¥&*»%»&*‘»w\

\&i**»»}‘¥¥‘*t$*‘&»»%xt*»%*****&**%**k&**»**x»&»»»ln*&*t**»*x*&»&\

/* The following expresses the velocity in pixels/sec, by */
Vad dividing the change in radius from one frame to the next */
/* by the time between the two frames. This velocity isn’t */
/* accurate in any physical sense, but it is helpful in the */
/* determination of the delay time, assuming that the */
/* nucleation point was visible on the surface of the drop. */
/* If not, the delay time determined will be much too */
/* small, which is not a problem when it comes to the */
Vad iteration step. */

\*»*&&&*%x‘$»:»x*w¥****»%t»****;s%&*‘&sw*x»*»i“»i**x*#**#**%»»n*\

veloc = fabs(rad_curv2 - rad_curvl)/
((vidlkey+1] - vidlkeyl)*(1 / frate)):

\&t»***%»x¥¥x“4*»**&x»¥;ﬁ;&%&¥4¥»&%**»&4&*‘¥&»*‘**¥*&$*%»xﬁ¥*»x»\

Vad "bt" will be the delay time, the time between the */
/* nucleation event and the recording of the first pixel of */
Vad the first observed frame. If the first frame also */
/* happens to be the "key" frame (as is usually the case), */
Vad then this reduces to */
Ve bt = (rad_curvl / veloc) */

\*&&ﬁ*}**&xxw*nnx*&x¥»*»$$»&&b%4ﬁt;****x**»x»*»*»»&*x»*;**»**»*&*\

bt = (rad_curvl / veloc) - ((1 / frate)*(vid(key] - vid(1]));
printf("Guess of time between nucleation and first");
printf("frame: %.31f frames\n", bt*frate);

\»&*&xt*»&»$»&*nﬁ»**»%n**x»***&*t***&*»»»*1&*»»*%%x»*&t*x»*%**i*x\

/* User-defined corrections: this section gives the user a */
/* chance to give his or her own set of initial values to ¥/
/* the algorithm, if the ones determined by the computer */
/¥ don’t look good. Here is also where the user specifies */
/* a "bulk" nucleation search (nucleation can be within the */
Vad bulk of the droplet), or else a "surface" search (value */
/* of z is constrained to remain on surface, though x and */
/* y may vary. */

AR ARk A A A A KA E A KA AR AR AR AR A A A S AR AK A A A A A F A )

printf("\n\n----=--=----- R \n")
printf(* If you want NO changes to any of these values,\n");
printf(" enter 1 now; otherwise, enter 0: ");

scanf ("%d", &c_nc);

if (c_nc == 0) {
printf{"\n\n*** You’ll now be prompted for possible changes;\n"};
printf{”"\tat most prompts, an entry of -1 means");
printf (" that you accept the default given.\n\n");

printf("First, is the starting point for the search\n");
printf("to be a (s)urface or (b)ulk point? ");
scanf ("%s", s_or_b):

printf(*\n\tNew x (default is %.31f): ", bxobs);
scanf ("%1f", &xreplac};
if (xreplac != -1) {
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bx = return_xact AXNmUHWO\ xcent, HQQWOn. HWQOUmVn \x»*n»*»*w****»»nx*&4t&*»x****x;w****»:x*x*&****»»»**»»»x*»x»»*n*\

bxobs = return_xobs (bx, xcent, radact, radobs); random_val = create_timedev (TIMEDEV, 0, m, n, xold, yold,
} zold, &x[0)[0], &y{0} (0], &=z[0][0]}
&r[01[0], frate, vid, calib, fpout);
printf ("\tNew y (default is %.31f): ", byobs); exit(0);
scanf ("$1£f", &yreplac); }
if (yreplac != -1) {
by = return_yact (yreplac, ycent); /* SEARCH ROUTINE BEGINS HERE */
UKOUW = Hmﬂﬁﬁblkovm AUK. Knmﬁﬁvn \»&w¥t&x»‘»»*~4»»*»»*******&»ﬁ*x‘%‘&»»n**ﬁ"$*»4»*&»»:*»»*»*»**;*\
} /* Plan: perform several complete cycles of iteration over */
/* all of the dimensions (x, y, z, t). Begin with the time */
if (stremp(s_or_b, "s") == 0) { /* iteration, since we know that it will be off even if the */
printf("Is nucleation site on front (default 0) or back (1)? "); /* point coordinates happen to be exactly right. This is */
scanf (*%d", &frontback); /* because the initial time guess was obtained in 2-D space */
bz = get_zval (frontback, radact, bx); /* and did not take into account the droplet’s curvature. */

bzobs = get_zval (frontback, radobs, bxobs - xcent); \*»t&&x»**»&»n*&»**x*»*&»*4&***»&*&&»»***‘;ﬁ*&&&*»****nw»‘*‘*xx»*\

}

else { strcpy(cont_scan, "y");

printf("\tNew z (there is no default): "); 1f (strcemp(nuctype, "s") == 0)

scanf ("$1f", &bz); ntype = SURFACE;

bzobs = bz; else
} ntype = BULK;

printf ("\n\n");

printf("\tNew time value {(default is %.31f): *, bt*frate); fprintf(fpout, "Initial coordinates, time:\n");
scanf ("$1f", &treplac); fprintf (fpout, "(%.31f, %.31f, %.31f), %.31f frames\n",
if (treplac != -1) bxobs, byobs, bzobs, told*frate);

bt = treplac/frate;
v \‘**‘#*l\‘*‘t‘***“***xw*Q““‘&.xﬁ'*%‘i»‘**n“****&.****4*******‘.&.&.““*\ %
/* First call is just to get initial conditions for printout; */
/* "itercoords” will have no real value on this call. */
printf(*\nYou have selected point {%.31f, %.31f, %$.31f), %.31f\n", PR R R e e R e e ey
bxobs, byobs, bzobs, bt*frate); itercoords = gen_iterate (INIT_ITER, ntype, xold, yold, zold,
\4!*x\x‘*‘*;‘%*W*““ﬁii}¥‘¥**¥*‘******i*vf“*%*l“***“vﬂ**%‘*“‘**‘*\ MnxﬂOH ﬁcw- MAKHOH HOW~ ?NHOMHON-
/* Conforming to the structure of the "ellipsoid“ version */ told, &r{0]{0], m, n, radact,
/* of this program, I will rename these variables "xold," */ frate, calib, fpout, vid);
Vad "yold, " "zold, " and "told." */ while (strcmp(cont_scan, "y") == 0) {
\vv,b‘¥$-¢¥“l‘b\¥-*¥$ll"*&4*4*L,l!Wﬁ*“**%b*‘*}******‘%ﬁ*%*‘*‘*lm‘**“\ UHM.HN”MN..H”@H.W"MS@.../s"vn
xold = bx; yold = by; zold = bz; told = bt; for (count = 1; count <= 1000; count++) {
printf ("In droplet coords: (%.31f, %.31f, %.31f)\n", fprintf (fpout, "\nITERATION CYCLE #%d\n",
xold, yold, zold); (count + 1000*hundred_cycles));
\;t&;wt»t*»»“»&**%»4**t*n*‘mtt;¥;‘¥¥»~t$1»;xtttw*;n;4»*&4;*&*;&*\ for {ittype = TITER; ittype <= REP_ITER; ittype++) {
/* User has the Qmunu..n.b of ﬁNOQEQMBQ a std. dev. versus time */ \»*****»n‘*‘**&;,»#*»34x;%t**»t*‘*%»%&n»»»»»%»‘vq»&»*x»*‘*»»***x&»x‘t\
/* plot for the given (x,y,z) point instead of iterating, */ Vad Here, we skip either 1) the time iteration, if the user */
/* which can sometimes be helpful. */ /* has reqguested to hold time constant; or 2) the z value */
\4%******»‘*‘4*‘%*%*&*‘l‘l***i‘***ﬁ****»****i&***&*****X***i%*&l*t*\ \& Mﬁmﬂ.mﬁhonx .N..M n&—m user bmm QQQMQQQ to N.mMWN)Mﬁ.ﬁ ﬁNum t\
printf ("\n\nWould you like to (c)ontinue with the normal iteration\n"); /* nucleation point to the "round" surface of the cylinder. */
muﬂ.wﬂﬁmA._H.Oﬂﬁu..Um. or AUVNOQCOQ std dev vs. time data for this UOU.:JH‘.V _.vm \%**&x»*%&&x*»i»*;‘»\*x»}4&4****&&n***»x***nt%*»ix»***&**»»»*»*»x»»\
scanf("%$s", i_or_p); if {(ittype == TITER) && (strcmp(t_or_h, "h") == 0}) {
if (strcmp{i_or_p, "c") == 0) { ittype++; }
printf("\nAllow (t)ime to vary, or (h)old time constant>> "); if ((ittype == ZITER) && (ntype == SURFACE)) ({
scanf ("%s", t_or_h); ittype++; }
printf("\n(s)urface or (b)ulk nucleation? ");
scanf("%s", nuctype); } printf(*\nITTYPE: %s iteration\n", get_ittype(ittype));
else { printf{("Original coords: (%2.31f, %2.31f, %2.31f)",
\«Q&x‘l;."****‘l“*-—v‘***‘4*&!‘»4‘***&*****‘&%*&bﬁ**“ﬁ?‘**x\‘»‘*%%***\ XOHQ~ %OHQ\ NOH_MWV\.
/* Goes to the “create_timedev" function, which produces */ printf(* / %.31f frames delay\n", told*frate);

Vad the desired datafile. */
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itercoords = gen_iterate (ittype, ntype, xold, yold, zold,
&x[0) [0], &y[01([0], &z[O}[O],
told, &x([0]{0}, m, n, radact,
frate, calib, fpout, vid);
if (ittype !="REP_ITER) ({
xnew = itercoords.xn; ynew = itercoords.yn;
znew = itercoords.zn; tnew = itercoords.tn;

printf("New coords: (%2.31f, %2.31f, %2.31f)",
Xnew, ynew, znew);
printf(" / %.31f frames delay\n", tnew*frate);

if (was_change (xold, yold, zold, told,
xnew, ynew, znew, tnew)) {
make_report (ittype, xnew, ynew, znew, tnew,
xcent, ycent, frate, fpout,
radact, radobs});

x0ld = xnew; yold = ynew; zold = znew; told = tnew;

}
else (
fprintf (fpout, " (no change during this iteration)\n"});
change_total ++;
}
}

}
\‘*““¥¥*¥$¥¥Q¥¥“¥$**‘¥*¥l‘**‘**“»‘*‘*l****‘%il\*&“i**‘¥»*¥¥¥‘\
/* THIS section is the "escape condition,” i.e., "when is */
/* it done iterating?" It is certainly "done" if the */
/* routine goes through a complete (x,y,z,t) cycle without */
Vad generating any new guess of the nucleation point or */
/* time delay. That’s what the following says: if an */
/* entire cycle of "no changes"” has occurred, it is done. */

\li&»*l!l&ﬁﬁ‘*%*‘**t?‘&»*‘%*%i‘ﬁ*n*‘¥$*&*¥D**%¥x%‘l%**b**‘*i“l‘x\
if (((strcmp (t_or_h, "t") == 0) &&
( ({change_total == 4) && (ntype == BULK)) |}
( {(change_total == 3) && {(ntype == SURFACE)))) ||
{(strcmp (t_or_h, "h") == 0) &&
({(change_total == 3) && (ntype == BULK)) ||
( (change_total == 2) && (ntype == SURFACE))))) {
ﬁﬁwsnmﬁx+++++++++++++++++++++++++++++++++++++++++++++/::v“
printf{“The iteration procedure has reached the optimum\n®);
printf("point for every dimension. The result is: \n\n");

1

i

fprintf{fpout, "+++tttttttbbbtibbbbbbbbbbbbbbbbbbbbbb bbb 444\n")
fprintf(fpout, "The iteration procedure has reached the optimum\n");
fprintf{fpout, “point for every dimension. The result is: \n\n");

make_report (FITER, xnew, ynew, znew, tnew,

xcent, ycent, frate, fpout,

radact, radobs);
make_report (MITER, Xnew, ynew, znew, tnew,

xcent, ycent, frate, fpout,

radact, radobs);
fprintf{fpout, "\nCorresponding droplet coords (mm) are:\n")
fprintf (fpout, "(%.31f, %.31f, %.31f)\n",

xnew*calib, ynew*calib, znew*calib);

JARAAAK AR AR A AR KRR AR AL LA KA A A A A A LKA A AKX A A KA KK LA A A A KA A A AR AA Ak )

/* The next two commands exist only so that the velocity */

cylsimll.c

Vad array, deviation, and avg. velocity are printed out. */
\‘*‘t‘*%4‘*‘**4*****»¥*‘**‘****¥§¥%&%¥¥‘****¥*ﬁ&*****}*?¥¥*¥¥ﬁ¥%t\
avevel = fill _vels (vel, fvel, m, n, xnew, ynew, znew,
&x[0] [0}, &y[0] {0}, &=z[0]J[0}, tnew,
&r {0} [0], numpoints, frate, vid);
presdev = get_frame_dev (PRINTOUT, fvel, avevel, m, calib,
fpout);

if (ntype == BULK) {
rsurface = sqrt(pow({xnew, 2) + pow(znew,2));
printf ("NOTE: Final point is %.31f mm below the\n",
(radact - rsurface)*calib);
printf (" surface of the specimen.\n");
fprintf (fpout, "\nNOTE: Final point is %.31f mm below the\n",
{radact - rsurface)*calib);

fprintf (fpout, * surface of the specimen.\n");
}
printf("\nEntire search summary printed in file \"%s.\"\n",
outputfile);
fclose(fpout);
exit(l);

}
change_total = 0;

}
hundred_cycles++;
itercoords = gen_iterate (MID_ITER, ntype, xnew, ynew, znew,
&x[01[0), &y[0]1[0}, &z[0]1[0]
tnew, &r(0}[0], m, n, radact,
frate, calib, fpout, wvid);
make_report (MITER, xnew, ynew, znew, tnew,
xcent, ycent, frate, fpout, radact, radobs);
UNMS"Mn:/5#****}‘*#**»tti*l?*ttt#k#*tt*&»**ﬁ&isk**t*‘#*t/b:vu
printf("The iteration has reached 1000 cycles without\n");
printf("reaching a best point in all dimensions.\n\n");
printf("\nAnother 1000 cycles? (y/n): ");
scanf (“%s", cont_scan);

if (tecplot == 1)
fclose(fptec);
printf("\n\n");

}

KRk kS Sk sk sk sk ok ok ok Sk R SR Rt R Sk S K Rk A KRR R A R AR Ak Ak kot )

/* AxkkAkAAREAAE  DND OF MAIN A ratttdtitstsss */

JRA AR AR AR KA A AR A AR A AR A A AN A AR AR AR KR AR A A AR A A AN AN AR AT AR A A AR )

JARE AR A A AR AR A A AR A A KA A A A KA R A A A AR A A AR A AR AA A AR A AR A LA )

/* From here out, there are only definitions of special */
/* functions which were called from the main body of the */
/* program: */

KRR A K Kk kR ko K K kK R ARk K KK R A KRR A A A A A A A A AR A A KA AR KA A A

SRR AAE A A A A A AR AN A A AR A AR A AL AR AL AN A A A A A A A AR A KA AR AR AN A/

Vad This function returns a rough, (x,y) center of */
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/* curvature, given a spread of points in x and y. */
/* The function is about the first thing that I wrote, and */
/* it’s a bit rough, I think. It works, though, and I */
/* don’t really feel like optimizing it. */

/AR R ok Sk otk o ok oA ok A Sk R Sk o sk o Sk Sk ok ok Sk Sk Sk kA X Xk

Cent_Coords get_center (double *x, double *y,
int n, int frame, int radobs)

double xi, yi, m, minv, xprev, yprev;
double step, delx, dely, ave=0;

double spreadprev, spreadpos, spreadneg;
double xpos, ypos, Xxneg, yneg;
Cent_Coords centcoords;

int count;

/AR Ak A RO ok R kSR sk Sk RS R Rk kA A kRN AR Ak )

/* This calculates the average of the first and last */
/* interface point given in the vector of points. */
\¥$%‘*&*&*&*%**4“%“‘#%&5*&****4*‘*4‘****¥$l&**$ﬁ¥¥**#$¥***4**‘*\
xi = (*(x + PMAX*frame + 1) + *(x + PMAX*frame + n)) / 2;
yi = (*(y + PMAX*frame + 1) + *(y + PMAX*frame + n)) / 2;

/AR Sk S ok kS SR ok Sk S Sk oAk o S S Sk kS kS Kk Sk

Vd Now we get the slope and the inverse slope. */
/* Bear in mind that m, the slope we are interested in, is */
/* the slope of the line normal to the line which connects */
/* our two points given. */
\**‘*“‘****‘*ﬁ*‘**l*tl‘b*%**‘*&*“‘&***¥$$$**ﬁ¥*“%¥****?***“**\
i€ (xi !'= *{x + PMAX*frame + 1}) {
minv = {yi - *{y + PMAX*frame + 1})}/(xi - *(x + PMAX*frame + 1});
m = -1/minv; }
elge {
minv = INF;
m= 0; )}

xprev = xi; yprev = yi;
spreadprev = spread (x, y, n, frame, xi, yi);

if (fabs(m) <= 1) {

\*ié&&*t»‘hwttw*t$!43x*¥»&¥***t*&$»»l»#**tn&;‘»‘»»»‘x‘»¥»**¥*“&n\

/* Base steps on the x axis (so x step is not too large) */
\**‘*!*%‘*5%&‘*‘&**44&&W***“}‘***&l*******‘&‘%‘&*********4*‘***‘\
for (step = 0.1; step > .0001; step *= .1) {

Xpos xprev * {1 + 0.1*step);

ypos = yprev + 0.1*m*xprev*step;

xneg = xprev * (1 - 0.l*step);

yneg = yprev - 0.l*m*xprev*step;

spreadpos = spread (x, y, n, frame, xpos, ypos);

spreadneg = spread (x, y, n, frame, xneg, yneg);

if (spreadpos < spreadprev) {
\‘X*%**********‘i“‘%‘***!x*******¥**&*‘¥¥*¥¥¥‘4¥%&¥**¥¥¥¥*¥¥*4¥¥\

/* If stepping in the positive direction yields a lower */
Vad standard dev value (more equidistant from all the */
Vad interface points), we’ll step in the positive direction */
/* successively until this is no longer the case--getting */
/* progressively closer to the center of curvature as */
/* the "step"” value decreases. */

cylsimll.c
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\»*n*»‘*»*nx*‘w*&¥»***4“$*»t»*4&*%**&x*&*x»»***&;»»***»&*»»;ﬁ**»\

while (spreadpos < spreadprev) {
Xprev = Xpos; YPrev = ypos;
spreadprev = spreadpos;
xpos = xprev * (1 + step); ypos = yprev + m*xprev*step;

spreadpos = spread (x, y, n, frame, xpos, ypos);
\t**4*%********‘*%***%**#!%***%*‘*&**?ﬁ***»*ﬁ*%*&&&****»‘*******t\

Vad Thig line checks to see if we have definitely wandered */
/* the observed surface of the droplet without finding a */
/* center of curvature. If this is true, it means that we */
/* might as well quit right here and return the present */
/* guess as the "best" guess... */

\?l&****‘!‘**&&*t**l****&‘*¥*¥¥li‘%*%&******%&*4*‘¥&!¥*&‘¥**&****\
if (sqrt(pow({xprev-xi), 2) + pow((yprev-yi), 2}) > 2*radobs) {(
spreadpos = INF; } } )
else if (spreadneg < spreadprev) (

\»t*&&»»$$$4$t»‘***»»*&****&*t*&***»wb‘x;%%&t**»x%*x****%*&*»»&t*\

/* But, if stepping in the NEGATIVE direction yields a lower */

/* standard dev value (more equidistant from all the */
/* interface points), we’ll step in the negative direction */
/* successively until this is no longer the case. */

\t&&xx&»t&;»&&*¥*wxx*»&tx*i&»**»*%&&»4&»**»;t»*x**‘»*‘ni»&x*‘*¥*$\

while (spreadneg < spreadprev) {
Xprev = Xneg; yprev = yneg;
spreadprev = spreadneg;
xneg = Xprev * (1 - step); yneg = yprev - m*xprev*step;
spreadneg = spread (x, y, n, frame, xneg, yneg);
if (sqrt(pow((xprev-xi), 2) + pow{(yprev-yi), 2)) > 2*radobs) {
spreadneg = INF; } } }
if ((spreadpos == INF) || (spreadneg == INF)) {(
centcoords.bx = xprev; centcoords.by = yprev;
centcoords.rad_curv = spreadprev;
return (centcoords); }
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}
}
else
\***ﬁ**‘*ﬁ¥*¥¥*ll****%**%*‘*”*‘*i*‘***‘l*l*lx1*&******&'%&****‘&‘\
/* In this case, base steps on the y axis, since line is */
Vad most nearly vertical. This way, x steps won’t get */
/* too large.

\*&‘l***i***ﬁ&¥ii*%**&***!l*‘*****%*‘**»*******W*&****ﬁ%**¥*¥&**¥\
for (step = 0.1; step > .0001; step *= .1) {
ypos = yprev * (1 + 0.0l*step);
xpos = xprev + 0.l*minv*yprev*step;
yneg = yprev * (1 - 0.l*step);
xneg = xprev - 0.l*minv*yprev*step;
spreadpos = spread (x, y, n, frame, xpos, ypos):
spreadneg = spread (x, y, n, frame, xneg, yneg);:

if (spreadpos < spreadprev) {
while (spreadpos < spreadprev) {

Xprev = Xpos; Yprev = ypos;
spreadprev = spreadpos;
vypos = yprev * (1 + step);
Xpos = Xprev + minv*yprev*step;
spreadpos = spread (x, y, n, frame, xpos, ypos);
if (sqgrt (pow((xprev-xi), 2) + pow((yprev-yi), 2)) > 2*radobs) {
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spreadpos = INF; } }}
else if (spreadneg < spreadprev) {
while (spreadneg < spreadprev) {
Xprev = xneg; yprev = yneg;
spreadprev = spreadnegq;
yneg = yprev * {1 - step);
xneg = Xprev - ninv*yprev*step;
spreadneg = spread (x, y, n, frame, xneg, yneg):
if (sqgrt{pow((xprev-xi), 2) + pow((yprev-yi), 2)) > 2*radobs)
spreadneg = INF; )} } }
if ((spreadpos == INF) || (spreadneg == INF)) {
centcoords.bx = xprev; centcoords.by = yprev;
centcoords.rad_curv = spreadprev;
return (centcoords}); } } }

for (count = 1; count <= n; count++) {
ave += sqrt(pow({*(x + PMAX*frame + count) - xprev}, 2) +
pow( (*({y + PMAX*frame + count) - yprev), 2)); )
ave = ave / (doublse) (n);

centcoords.bx = xprev; centcoords.by = yprev;
centcoords.rad_curv = ave;
return (centcoords);

double spread (double *x, double *y, int n, int frame,
double xcent, double ycent)

int count;
double dist, ydist, avg = 0, total = 0;

for (count = 1; count <= n; count++)} {
dist = sqgrt(pow((*{x + PMAX*frame + count) - xcent), 2) +
pow((*(y + PMAX*frame + count) - ycent), 2));
avg += dist;
}
avg = avg / (double) (n);

for (count = 1; count <= n; count++) (
dist = pow{(*(x + PMAX*frame + count) - xcent), 2) +
pow((*(y + PMAX*frame + count) - ycent), 2);
total += pow((avg - sqrt(dist)), 2); }
total = sqrt(total / (double) (n-1));

return (total);

\t&*4‘»*&&&»»»**;&*****%&*x‘»;‘&¥*¥»$»x»**%1‘!%*&tix*»&»t****»»&t\

Vad This is the general iteration algorithm which will home */
/* in on the best-fit nucleation point coordinates and */
/* time between nucleation and first frame. */

/R RSk SE  k k k R k AKE H X  kkk  Rhk K Kk k)

Iter_coords gen_iterate (int it_var, int type,
double xn, double yn, double zn,
double *x, double *y, double *z,
double tn, double *r,
int frames, int *points, double radact,

{

cylsimll.c

double frate, double calib,
FILE *fpout, double *vid)

Iter_coords coords;

double delta, step, stepmin, presdev, posdev, negdev, newdev;
int numpoints = 0, count, sign;

double vel [PMAX*FMAX], temp_val;

double fvel [FMAX];

double avevel = 0, varnew, varprev, zold, znew;

char itervar(20];

double presdevnorm, posdevnorm, negdevnorm, newdevnorm;

for (count = 1; count <= frames; count++)
numpoints += points(count];

if (it_var == XITER)
strcpy({itervar, "X iteration");
elge 1f (it_var == YITER)
strcpy(itervar, "Y iteration");
else if (it_var == ZITER)
strcpy(itervar, "z iteration");
elge if (it_var == TITER)
strcpy(itervar, "Time iteration");
else if (it_var == INIT_ITER) {
avevel = fill_vels (vel, fvel, frames, points, xn, yn, zn,
x, Y, 2z, tn, r, numpoints, frate, vid);
presdev = get_frame_dev (FPRINTOUT, fvel, avevel, frames, calib,
fpout) ;
retuxrn (coords); }
elge if (it_var == MID_ITER) ({
avevel = fill_vels (vel, fvel, frames, points, xn, yn, zn,
X, ¥, z, tn, r, numpoints, frate, vid);
presdev = get_frame_dev (PRINTOUT, fvel, avevel, frames, calib,
fpout) ;
return (coords); )

if (it_var i= REP_ITER) {
printf("Doing %s now...\n", itervar);

fprintf (fpout, M- e oo e e s e \n*);
fprintf (fpout, "Beginning %s now...\n", itervar);
fprintf(fpout, "----e-omemm e e \n");
}

\*%**ﬁ*&*‘*‘****‘*¥»‘¥*¥*¥¥¥¥*W‘»&*x.‘**vavax\%i»*****%‘t*&*******ﬁ**x‘\

Vad This first bit sets up the values for use in the x/

Vad "best-point-search" iteration routine, depending on */

/* whether the search is in time (TITER) or space (any of */

/* the others). */

Vad */

/* -- r"delta"” is the initial small deviation to be used to */

Vad determine which direction (+ or -) is the way to go */

/* -- "step" is the intial value which is added or */

/* subtracted from the search variable. It cannot be */

/* too large, or there 1is danger of stepping past the */

/* the local minima we are searching for. */

/* -~ "stepmin® is the limit on the resolution of the */

/* search. It can be set any any desired level, but */

Page 11
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/* should be relatively small. */

[ Kk Ak kSR kA A ok Sk kR R AR A A A A AR A XA KA AR A A KKK )

if (it_var != TITER) (
delta = le-6 * radact;
step = 0.01 * radact;
stepmin = le-6 * radact; }
else (
delta = le-6 / frate;
step = 0.01 / frate;
stepmin = le-4 / frate; )

Rk kR sk ko Sk R kR R AR R A A R AR A XK AR K AN )

/* The following is the guts of the routine which tests to */
Vad see Iin which direction the iteration variable of choice */
/* should change in order to lower some standard deviation */
/* of velocity values of the interface points with respect */
/* to the assumed nucleation site and delay time. */
/* */
Vad Many "if” statements are needed in order to deal with */
/* the four possible iteration variables: x, y, z, and t. */

/AR ok sk ks sk ok sk ok ok sk sk Sk ok Sk SR R S X Sk k f

J Ak A kA A ok Sk S Sk ok Sk S Sk Ak Sk S A Sk Ak

/* First, an array is filled with the values of the */
/* velocities required to produce each interface point, */
/* assuming the initial nucleation point and time. */
/* The initial standard deviation of the velocities is */
Y also calculated and called "presdev." This value is */
/* then normalized over the average velocity, to ensure */
/* that no preferential treatment is given to smaller */
/* velocities (and, hence, smaller std. devs) */

/AR Sk kS Sk Aok o O Ok S O S Ak kSR SR Rk Sk K kA A A AR

/* DEBUGGING PRINTS
printf("Initial ave args are: frames=$d,\n",
frames) ;
printf(" (xn, yn, zn)=(%lf,81f,%1f),\n",
xn, ym, zn);
printf(* tn=%1f, numpoints=%1f, frate=%1f, vid=#$1f\n",
tn, numpoints, frate, vid);
printf("Initial dev args are: avevel=%1f\n",
avevel);
printf(" frames=%d, calib=%1f\n", frames, calib};
*/

avevel = fill_vels (vel, fvel, frames, points, xn, yn, zn,
X, ¥, 2z, tn, r, numpoints, frate, vid);
presdev = get_frame_dev (NORMAL, fvel, avevel, frames, calib,
fpout);
presdevnorm = presdev / avevel;

/* printf(rInitial standard dev is $%1f\n", presdev); */

if (it_var == REP_ITER) {

temp_val = get_frame_dev (FPRINTOUT, fvel, avevel, frames, calib,

fpout) ;

cylsimll.c

return (coords); }

/* Here is the "old" standard deviation method, calculating
the value with respect to each and every point.
presdev = get_dev (vel, avevel, numpoints, tn);

*/

\‘44‘*4**&“4**¥$‘*4******?******4*“***‘**%X***‘**‘****!*‘%**»‘*\
/* Next comes the "probe" in the positive direction. The */
/* new values for the velocity array and deviation are */
Vad determined in the case when the iteration variable is */
/* INCREASED ever so slightly (by “delta”). */

\‘*****&*&l*»‘**%*54*4*%4**‘*4*¥‘¥****?¥$**ﬁx.x.***»%**#*&******&.***\
if (it_var == XITER)
avevel = fill_vels (vel, fvel, frames, points, xn+delta, yn, zn,
X, ¥, %z, tn, r, numpoints, frate, vid);
else if (it_var == YITER)
avevel = fill_vels (vel, fvel, frames, points, xn, yn+delta, zn,
X, ¥y, z, tn, r, numpoints, frate, vid);
elge 1f (it_var == ZITER)

avevel = fill_vels (vel, fvel, frames, points, xn, yn, zn+delta,

x, ¥y, z, tn, r, numpoints, frate, vid);
else 1f (it_var == TITER)
avevel = fill_vels (vel, fvel, frames, points, xn, yn, 2n, X,
y, z, tn+delta, r, numpoints, frate, vid);
posdev = get_frame_dev (NORMAL, fvel, avevel, frames, calib,
fpout);
posdevnorm = posdev / avevel;

/* printf("posdev is %1f\n", posdev); */

/R kS ok S kK kK K O sk ok Sk Sk Sk Sk koK K R K A R sk Ak Kk ok

/* Now the same thing is done again, only the "probe" */
/* a distance "delta" into the negative direction. */
\5"‘1**‘*%‘4*"5*1‘*1**““**‘*“"“‘**&*ﬁ******‘***‘**‘*%‘%*‘#\
if ({it_var == XITER)
avevel = fill_vels (vel, fvel, frames, points, xn-delta, yn, zn,
X, ¥, 2z, tn, r, numpoints, frate, vid);
else 1f (it_var == YITER)
avevel = fill_vels (vel, fvel, frames, points, xn, yn-delta, zn,
X, Y., z, tn, r, numpoints, frate, vid);
else if (it_var == ZITER)
avevel = fill_vels (vel, fvel, frames, points, xn, yn, zn-delta,
X, ¥, 2z, tn, r, numpoints, frate, wvid);
else if (it_var == TITER)}
avevel = fill_vels (vel, fvel, frames, points, xn, yn, zn, X,
y, 2z, tn-delta, r, numpoints, frate, vid);
negdev = get_frame_dev (NORMAL, fvel, avevel, frames, calib,
fpout) ;
negdevnorm = negdev / avevel;

/* printf(“negdev is %1f\n", negdev); */

\x‘
printf(" Average velocity: $%.31f pixels/sec\n", avevel);
printf(" posdev: %1f negdev: %1f presdev: %1f\n",
posdev, negdev, presdev);
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*/
\itlﬁ?*l“?*****%‘*‘*4‘¥**‘**‘*‘%*4‘*4**%****‘;*t¥¥*)%***4****&**\
/* At this point, a decision can be made regarding which */
/* direction IMPROVES the overall fit. We go in the */
/* direction of minimum normalized standard deviation, and */
/* if the */
Vad present position is the minimum, we know that we’ve */
/* determined the optimum point at this "step" resolution, */
/* and we can choose to increase the search resolution or */
/* else quit the search and return the optimum point. */
\ty%%_0*‘&.*5‘-01‘*“*‘1‘3**‘&***%&1ﬁ***t!**i!iﬁ*‘ﬁ‘*!*%&***%********%*\
1f ((posdevnorm < presdevnorm) || {(negdevnorm < presdevnorm)) (

if (posdevnorm < negdevnorm} {

/* printf("Positive is the way to go.\n"); */
sign = 1; }

else {

/* printf("Negative is the way to go.\n"):; */

sign = ~1; }

JAAAKAA AR AR R AR A AR R AR AR A A A A A AR AL ARAA LA AR A A AR AN R AR XA

Vad Here, the iteration variable is changed to a value which */
Ve lies a distance "step” in the direction of improvement. */
\.n .v\
Vad This new value 1is cranked through the system in order */
/* to determine whether or not the "step” taken was too */
Vad large or not. The hope is that there exists a local */
/* minimum in the standard dev. variation, and that we can */
/* eventually reach that local minimum. */
/* */
s/ Note: special steps must be taken to force the */
Ve y variable to remain on the droplet surface, in the */
/* case of a "SURFACE" search. */

\&t»»t‘x%»tl*t»ﬁi%t*»&&i;&‘*$xw&&»‘l‘w&»§»¥wt‘~¥&*¥x»x*»»&***&*»*\

while (step >= stepmin) {
if (it_var == XITER)} {(
varnew = xn + sign*step;
if (type != BULK) {
zold = zn;

if ((pow(radact, 2) - pow(varnew, 2)) < 0)
\ll‘***%‘**ﬁ‘&QW“‘*“‘**‘**'l****‘*‘******&%*W*W****‘l*‘*‘%%****\

/* In this case, we have stepped "off the edge of the */
/* specimen.” In order to avoid errors, I’l1 just force */
/* the x and z coords to stay right where they are. */

\x#w»*»»&*»»&&*****4&¥‘¥%»»t4»4*‘»»»*&&»*»%w*»tx»*&**»**%&n»$t**ﬁ\

varnew = Xn;
else {
znew = sqrt(pow(radact, 2) - pow(varnew, 2));

/* Maintaining z coord on back of specimen, if it was previously;
this implies that the nucleation position cannot move from the
back to the front of the specimen, or vice-versa, during
iteration. The user must try separate back and front points,
if the position of the nucleation might be on either surface: */

if (zold < 0)
znew *= -1;

cylsimll.c

zZn = Znew;

avevel = f£ill_vels (vel, fvel, frames, points, varnew, yn, zn,
X, ¥y, 2z, tn, r, numpoints, frate, vid);

\*
printf("Initial ave args are: frames=%d, \n",
frames) ;
printf(" (xn, yn, zn)=($%$1f,%1f,%1f),\n",
xn, yn, zn);
printf(" tn=%l1f, numpoints=%1f, frate=%1f, vid=%1f\n",
tn, numpoints, frate, vid);
printf("Initial dev args are: avevel=%1f\n",
avevel);
printf(" frames=%d, calib=3%1f\n", frames, calib);
*/
}
else if (it_var == YITER) {
varnew = yn + Sign*step;
avevel = fill_vels (vel, fvel, frames, points, xn, varnew, zn,
X, vy, 2z, tn, r, numpoints, frate, vid);
}
else if (it_var == ZITER) {
varnew = zn + sign*step;
avevel = fill_vels (vel, fvel, frames, points, xn, yn, varnew,
%, ¥, 2z, tn, r, numpoints, frate, vid);
}
else { /* IF it_var == TITER */
varnew = tn + sign*step;
if (varnew > TIMEMAX) {
printf ("Iterated delay time has exceeded .025 seconds!\n");
printf("Try a different start point for the itexation,\n");
printf(" or else perform just a ’'surface’ iteration.\n\n\n");
exit(0);
}
avevel = fill_vels (vel, fvel, frames, points, xn, yn, zn, X,
¥y, z, varnew, r, numpoints, frate, vid);
}
newdev = get_frame_dev (NORMAL, fvel, avevel, frames, calib,
fpout) ;
newdevnorm = newdev / avevel;
/* printf{'newdev is %1f\n", newdev); */

JAKA A A A A R A AR A AR A AR AR AR A XA A AT A A AR A K XA AR A AR AR A A TN A A A A )

/* If the new norm. std. dev. is less than the old, we know */
/* that our "step” did in fact get us closer to the minimum */
/* without causing us to overshoot that minimum. This new */
/* value of the variable becomes the accepted "best" one. */

\**t****%******"*‘*%***&**‘**&‘**‘**‘*‘*******%*»*‘**»**”‘**%***\
if (newdevnorm < presdevnorm) {
Vad printf("** Stepped by %g\n", sign*step); */
if (it_var == XITER)
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Xn = varnew;

elge if (it_var == YITER)
yn = varnew;

else if (it_var == ZITER)

zn = varnew;
else /* IF it_var == TITER */
tn = varnew;
\*
printf("Better guess: (%.31f, %.31f, $%.31f), ",
xn, yn, zn);
printf(" time $g sec\n", tn);
*/

presdevnorm = newdevnorm; }
\*%lx**¥‘*“1‘*¥¥&‘i}ﬁﬁi&***%***4¥&¥t$¥*4¥¥%*%*t****!!****#***ﬁ**\

/* Otherwise, our latest "step” has taken us too far, past */
/* the local minimum, and we must retain the original */
/* "best " value and try a smaller "step.” */
\*“*Qiﬁ‘**“¥“‘$‘*§‘l¥¥**¥‘***¥¥‘¥¥‘4*¥*ﬁ*‘¥‘¥&******¥*‘*¥*¥“*\
else {

/* printf("** Step size diminished...\n"); */

\%**4¥‘)&“‘5*¥*‘¥¥¥*¥*4*$*¥*&*X*¥*ﬁ*$&‘**‘**‘¥l**&*i*‘t‘i***it**\
/* Must reset the value of "zn," which has been changed to */
Vi a "test” value when we restrict the point to lie on the */
/* surface and vary x or y. */
\4‘%&&5‘*‘****i**t%‘ﬁ*“*‘*¥*ﬁ*‘¥**&*****i*%*ﬁ¥**%¥‘*“‘¥&***‘%*'\

if ((type != BULK) && (it_var == XITER))

zn = zold;
step *= 0.1;

}
}

}
\*&1**&“‘&*&**lt»1‘4‘*4‘&‘***¥%4ﬁ%***“‘*%&&*%***‘**‘%&b***‘**&ﬁ\
/* Arrival at this point in the function means that the */
/* search algorithm has determined the local minimum of */
/* velocity variation with respect to the search variable, */
/* to the resolution of "stepmin." We have a new */
Vi "best guess” point. */

\4**»&tt&&&»*‘*%¥*»%&»»»k*;;x¥¥&t¥¥»»»&ﬁ»*&4»»ix»»»»»&***n**&*t*;\

\*
if (it_var == YITER)
step = get_frame_dev (FPRINTOUT, fvel, avevel, frames, calib,
fpout);
*/

coords.xn = xn; coords.yn = yn; coords.zn = zn;
coords.tn = tn;

return (coords);

/R ks kR kA A ok A KRR ok ok ok ok ok ok ok S Sk Sk Sk Stk Rk R R A Ak k)

Vad This routine does several things. First, it calculates */

cylsimll.c
/* the apparent velocity observed at each of the interface */
/* points given. It then stocks the velocity array with */
Vad these values--one for each point. Finally, it */
/* determines the average velocity overall, and returns it. */
/* */
/* Actually, this routine was changed to help out with the */
/* "correct" standard deviation measurement. I’ll retain */
/* the array with the velocity of each point, but I’1l also */
/* use the function to create an array of average frame */
/* velocities (this is "fvel,"” as opposed to "vel." */

ARk ok Sk ok kKR Rk R Sk Sk Sk AR R A A A A AR A

double fill_vels (double *vel, double *fvel, int frames, int *points,
double xn, double yn, double zn,
double *xp, double *yp, double *zp,
double tn, double *r, int numpoints,
double frate, double *vid)

double avevel = 0; double favevel = 0;
int fcount, pcount, index = 1;

double dist, time;

double x, vy, z, t;

/R ko sk Sk o S R kN Sk ok oKk sk ko S kS A kA S R Ak X Ak R )

/* Here’s where we fill up the velocity array with values */
/* for each frame. Recall that "vid" contains the */
/* video frame index for each frame that was entered. */

/T R kR ok Sk ok ko ok sk kSR sk SR Sk A K R A kR A R R R AR Kk )

for (fcount = 1; fcount <= frames; fcount++) {
for (pcount = 1; pcount <= points{fcount]; pcount++) {
= *(xp + (PMAX)*fcount + pcount);
*(yp + (PMAX)*fcount + pcount);
*(zp + (PMAX)*fcount + pcount);
*(r + (PMAX)*fcount + pcount);

N X
"

1"

dist = sqgrt(pow((x - xn), 2) + pow((y - yn), 2) +
pow((z - zn), 2));

time = tn + (vid{fcount] - vid[l])*(1/frate) + t;

vel [index] = dist / time;

avevel += vel[index];

favevel += vellindex];

index++;
\*
printf("Frame %d; point %d: (%.21f, %.21f, %.21f); r.d. $.31f frames\n",
fcount, pcount, x, y, z, {(t*40500.0));
printf("\tDistance: %.21f Time: %g Velocity: %g\n",
dist, time, vel[index-1]);
*/
}
favevel /= points{fcount];
fvel[fcount] = favevel;
favevel = 0;
}
\¥
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printf("\nNucleation point: (%.21f, %.21f, %.21f)\n", double frames, double calib, FILE *fpout)

xn, yn, zn); {
*/ double dev = 0;
int f;
avevel /= (double) (numpoints); double fave = 0;
/* for (£ = 1; £ <= frames; f++)
printf(” Average velocity for this case: %g pixels/sec\n”, dev += pow((avevel - fvel(f]l), 2);
avevel);
*/ dev = dev / (double) (frames);

dev = sqgrt(dev);
return (avevel);

} if (type == NORMAL)
return (dev);
\;.‘****4***?ﬁ**‘**ﬁ‘i*‘***tﬁ»*«f“bl"l‘.‘l‘ﬁt“*4k*****.}*x“x\*&‘*t‘*ﬁ*&**\ @Hmm ..Fm anu\ﬁm e m”HZ‘H.OCwH-v ﬁ
Vad we experimented with two different methods of */ printf ("\nAverage interface velocities for each frame:\n"):
/* determining a "best” point via some standard deviation */ for (£ = 1; £ <= frames; f++)
/* calculation. The first uses the velocity of EVERY POINT */ printf(* Frame #%d: %.31f m/sec\n",
/* for its standard deviation calculation. We have */ £, fvel[f]*calib/1000.0);
/* discarded this method for several reasons: Foremost, */ printf(*\nOverall average velocity (every point): %.31f m/s\n",
/* it favors the frames with more points over the frames */ avevel*calib/1000.0);
/* with less points (which are likely to be the smaller, */ printf("** STANDARD DEVIATION: %.51f\n\n*, dev*calib/1000.0);
/* more accurate interfaces, anyway!) */ }
\l‘&*“b¥¥-*4¥¥¥‘.~‘*¥$‘*&*ﬁl*t**l*#‘&‘$‘¥¥¥xx.t#**!t*».**&;.*‘*%*l‘t\ OHWQ &vm Aﬂém - m‘mumHzaH.oc‘H.v m
\*%‘x."‘*‘t“l‘!&&}%i**‘*l%*&&*&**l***41&.#t&})*4&?}**4‘&‘***!!‘&.‘\ mﬁﬁ.wnnmﬂmvogﬁ~ ../gasmﬂwmm Mwﬂnmﬁmmﬂm <mHOOHﬂWmm WCH. mmnwu MH.WBQ“/::VN
VA This routine takes as its input the array of velocity */ for (f = 1; £ <= frames; f++)
Vad values for all of the points, as well as the average */ fprintf (fpout, " Frame #%d: %.31f m/sec\n”,
Vad velocity. It returns the standard deviation of the */ f, fvell[f]*calib/1000.0); nO./.,
/* velocity with respect to all of the interface points */ fprintf (fpout, "\nOverall average velocity (every point): %.31f m/s\n",
Vad in all of the frames. We don‘t actually use this. */ avevel*calib/1000.0);
\u»*x‘*&‘x‘b‘tL‘&‘i*!l**“‘l&%%‘*****‘*n!**lt‘&i****‘*i**#b%*&*‘*‘ﬁ!“\ MUHWSﬁMAMMUOCW. LR MH»ZU%U Um/\Hy.MJHOZH @.WHW/:/::~ ﬁwm/\#anMU\HOOO.va
double get_dev (double *vel, double avevel, int numpoints, }
double time) }

{

double dev = 0; void make_report (int type, double x, double y, double z, double t,

double xcent, double ycent, double frate, FILE *fpout,

int count;
double radact, double radobs)

for {(count = 1; count <= numpoints; count++)

dev += pow((avevel - vel[count]), 2); {
: Iter_coords coordinates;
dev = dev / (double) (numpoints); char typename[S50];
dev = sqrt(dev); double xobs, yobs, zobs;

int frontback;
/* printf(" * Average deviation: %g\n", dev); */
if (z > 0)

return (dev); frontback = FRONT;
} else
frontback = BACK;

\&»»ﬁ;&.‘*»*wb»llwu»»w**xﬁtw*xx‘&t%*x“»**&ﬁi‘t»&&»»&*»x&&»w;%*x‘»&n‘&»\

/* This is the standard deviation method which seems to */ xobs = return_xobs (x, xcent, radact, radobs);

/* make the most sense. It calculates with respect to the */ yobs = return_yobs (y, ycent);

/* standard deviation of the average velocity for each */ zobs = get_zval (frontback, radobs, xobs - xcent);
/* frame. Thus, if there are four frames, the standard */

Vad deviation calculation involves four terms--the average */ t = t * frate;

/* velocity of each of the four frames */
\&l\lx.‘*l***x.****-w***‘%!%“***l“*‘*‘****‘*‘*&**4****‘*!%***&.“!!&\

if (type == TITER)
strcpy (typename, “"Time-iteration);

double get_frame_dev (int type, double *fvel, double avevel,
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else if (type == XITER)

strcpy (typename, "X-iteration");
else 1f (type == YITER)

strcpy (typename, "Y-iteration");
else 1f (type == ZITER)

strcpy (typename, "Z-iteration");
else if (type == FITER)

strepy(typename, “FINAL_ITERATION");
else if (type == MITER) {

printf("Nucleation coords and time after last iteration:\n");

printf("(%.31f, %.31f, %.31f), %.31f frames delay\n",
xobs, yobs, zobs, t); 1}

fprintf (fpout, "Nucleation coords and time after %s:\n", typename);

fprintf (fpout, *(%.31f, %.31f, %.31f), %.31f frames delay\n",

xobs, yobs, zobs, t);
return;

int was_change (double xold, double yold, double zold, double told,
double xnew, double ynew, double znew, double tnew)

{
if {(xo0ld == xnew) && (yold == ynew) &&
(zold == znew) && (told == tnew))
return (0);
else
return {(1);
}

double get_zval (int side, double radius, double x)

{
double z;

z = pow(radius, 2) - pow(x, 2);

if (z < 0)
/* Coords given cannot lie on droplet --> entry error */
return (NEG_ROOT);

z = sqrt(z);

1f (side == FRONT)
return (z);

else
return (-z);

)

\;J.l.»k*ﬁ»&»;%**&%%»»**&&&*wx&»4*&&¥»$}&x;*&»xi*x%»**t»x%»»%»*»»&»\

/* This function either creates a dataset full of times

/* versus the corresponding frame standard deviations,

/* given a certain nucleation point; or else, it iterates
/* through time starting from 0 until it finds the point
/* of minimum standard deviation, and returns that value.
Vad The behavior is controlled by the argument "type " If
Vad the type is TIMEDEV, the behavior is the former above;
/* If the type is GETNEWTIME, the behavior is the latter.

*/
*/
*/
*/

\4&»»»‘x;&x!**t*&»»**&*»*»k&x&»**»&x*****»*a***»»**&»»»*t;*»»**x*\

double create_timedev (int type, double tguess, int m, int *n,

cylsimll.c

/* See if new dev value is lower than previous.

double xo0ld, double yold,

double zold, double *x, double *y, double *z,
double *r, double frate, double *vid,

double calib, FILE *fpout)

double timemin, timemax, delta, avevel, presdev, testtime;
double besttime=0, bestdev;

int count, numpoints = 0;

FILE *fp;

double velocity[FMAX] [PMAX], fveloc[FMAX];

printf(*\nPlease enter minimum, then maximum time values for\n");
printf ("delay/dev data to be considered, in portions of frames: ");
scanf ("$1£f%1f", &timemin, &timemax);

timemin /= frate; timemax /= frate;

delta = ((timemax - timemin)/1000.0);
for (count = 1; count <= m; count++)
nunmpoints += n{count];

if (type == TIMEDEV) {
printf("\n\nGenerating dataset...\n");
fp = fopen("timedev.dat", "w");
if (fp == NULL) {
printf{"Exiting due to NULL pointer to file!\n\n")
exit(0);

bestdev = BIG_FLOAT;
for (testtime = timemin; testtime <= timemax; testtime += delta) (
avevel = fill_vels (&velocity[0]1{0], fveloc, m, n, xold, yold,
zold, x, y., z,
testtime, r, numpoints, frate, vid);
presdev = get frame_dev (NORMAL, fveloc, avevel, m, calib,
fpout);
presdev = presdev * calib / 1000.0;

/* printf("New deviation: $1f\n", presdev); */

if (type == TIMEDEV)
fprintf (fp, "%g\t%g\n", testtime*frate, presdev);
else {
If so, the current
time (minus the delta) is the best local delay time. */

/* printf("\nTime: %1f frames:\n", testtime*frate); */

if (presdev > bestdev) {
printf("0ld deviation was better...resetting best time.\n");
besttime = testtime - delta; }

else {
printf("New deviation is better; resetting bestdev.\n"); */
bestdev = presdev; }

)
if (type == TIMEDEV) ({
fclose (fp);

printf(" Data is stored in file \"timedev.dat\".\n\n");
return (0); }
else
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return (besttime);

Rk Sk R Sk Rk ok Ak ok Ak K R Rk R R kR R SR Rk R A R Ak R AR A R AR A Ak A/

/* These final functions are pretty clear. We are working */
/* with two frames of reference throughout this program: */
/* the "observed" frame, in which x and y vary from 1 to */
/* 64; and the "actual" frame, where x=0 is set to be the */
/* center of the observed cylinder, where z reaches its */
VA maximum value of radobs. */
Va4 The function switch between these two reference frames. */

SRR Rk A AR kAR A AR AR AR A AR AR AR AR A AR A A AR ARA KR AF AR A AR

double return_xact (double xobs, double xcent, double radact,
double radobs)

{
return ((xobs - xcent)*(radact/radobs));

double return_yact (double yvobs, doubls ycent)
{

return (yobs - ycent);
}

double return_xobs (double xact, double xcent, double radact,
double radobs)

{
return ((xact + xcent*(radact/radobs))*(radobs/radact)};

double return_yobs (double yact, double ycent)

{
raturn (yact + ycent);

char * get_ittype (int ittype)
{
if (ittype == 1)
return ("Time");
if (ittype == 2)
return {"Z-cooxd");
if (ittype == 3)
return ("X-coord");
1f (ittype == 4)
return {"Y-coord"};
if (ittype == 5)
return {“"Report");
if (ittype == 6)
return (*FITER");
if (ittype == 7)
return ("MITERY);
if (ittype == 8)
return ("Initial”);
if (ittype == 9)
raturn ("MID_ITER");
else
return ("nothing");
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