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ABSTRACT

Rapid solidification of undercooled pure nickel and hyperperitectic Fe-(10-30) wt.%
Ni alloys has been imaged at sufficiently high spatial resolution (64 x 64 pixels) and
temporal resolution (40,500 frames/sec) to observe interfacial shape and solidification
velocities exceeding 45 m/s. Imaging was of 8 gram, quartz-fluxed melts at undercoolings
between 70 K and 300 K. Dendrite velocities within the melt were calculated from the
surface velocities observed employing a simple geometric model of growth. Solidification
was found to proceed invariably from a single nucleation point at every composition. In
the case of Fe-Ni, primary solidification of both the equilibrium FCC phase and the
metastable BCC phase was observed, with phase selection dependent upon the thermal
history, composition, presence of heterogeneous nucleants, and degree of undercooling
attained. In all cases of primary BCC solidification, a subsequent transition to the FCC
phase was observed, resulting in a two-stage "double recalescence" evident in the thermal
and video records. A primary solidification map was generated to predict the preferred
phase for primary solidification as a function of composition and nucleation temperature for
similar experiments with quartz-fluxed Fe-Ni specimens.

The computer-based growth model enabled determination of solidification velocities
with much greater precision than had been previously accomplished using pyrometric
techniques alone. Growth velocity in pure Ni was found to follow an approximate power-
law relationship with respect to undercooling up to some critical value AT*, where 150 K <
AT* < 180 K. Growth velocities in BCC Fe-(10-12) wt.% Ni followed a similar power-
law relationship, but no velocity transition was observed despite undercoolings of nearly
250 K. However, both pure Ni and Fe-Ni specimens did exhibit a secondary transition in
solidification interface morphology. At smaller undercoolings, interface curvature was
discontinuous, with tendencies toward growth along preferred crystallographic directions.
At larger undercoolings, interfaces were completely smooth, with no discontinuity in
curvature caused by irregular growth. Values for the morphological AT* were estimated at
160-170 K for pure Ni and 180-190 K for intermediate Fe-Ni compositions.
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1. Introduction

One of the most interesting solidification phenomena to undergo extensive study in

the last 30 years is the rapid solidification behavior of pure elements and alloy melts.

Rapidly-solidified materials have proved to offer a wide range of desirable materials

properties not exhibited by their conventionally-cast counterparts. For specimens

exhibiting at least one thin dimension, numerous rapid solidification techniques have been

developed which rely upon ultra-high rates of heat extraction (109-1012 K/s); examples

include melt-spinning, splat-quenching, ion bombardment, laser-pulse heating, and many

others.

These methods, however, cannot be used in the production of large-scale ingots in

the foundry, because the absence of a thin dimension makes it impossible to obtain the

requisite heat-extraction rates. One alternative approach to produce rapid solidification in

these cases is to achieve a large undercooling of the liquid melt prior to solidification.

Undercooling techniques enable rapid solidification by lowering the melt

temperature well below the liquidus prior to solidification, gradually removing a significant

portion of the ingot's sensible heat. The resulting rapid solidification is caused by the

increased thermodynamic driving force inherent to the highly-undercooled liquid, and a

large portion of the solidification process can be made to occur in an essentially adiabatic

manner, a phenomenon known as "recalescence."

The undercooling phenomenon has been under considerable study for decades, and

an important parameter of characterization has been the velocity with which the newly-

formed solid propagates through the undercooled liquid during the solidification process.

Prior film-based and electronic methods of measuring solidification velocities have met

with variable success. In general, investigators have achieved either high temporal

resolution (strategically-placed photodiodes), or high spatial resolution (conventional film-



based cameras)--but not both. As a result, the velocity measurements from these

experiments have suffered from a large degree of scatter.

It is only recently that electronic imaging technology has developed to the point

where there exists sufficient temporal resolution (up to 40,500 Hz with the system

employed in this work) and spatial resolution (a 64 x 64 pixel image) to generate a complete

visual record of the rapid solidification of a highly-undercooled specimen. This record, if

properly interpreted, can be used to obtain the most accurate velocity measurements yet

performed in this type of experiment.

In the current work, an original computer model has been developed to analyze the

photographic records of rapid solidification events and measure the propagation velocity of

the solid/liquid interface. The method is first applied to melts of high-purity nickel--an

extensively-studied material--in order to demonstrate the validity and accuracy of the

technique. Analysis is subsequently extended to the solidification of binary Fe-Ni alloys,

with special emphasis placed upon the exploration of the metastable 8-phase and related

double-recalescence phenomenon.



2. Literature Survey

2.1 Pure Nickel

2.1.1 Methods of Investigation

Numerous investigators have studied dendrite growth velocities in undercooled

high-purity elements, particularly nickel, since the undercooling phenomenon was first

observed in the Au system by Van Riemsdyk [1] in 1880. Walker [2] made the first

thorough investigation of undercooled nickel melts using photodiodes to measure the time

required for an interface to propagate along a column of molten material. Colligan and

Bayles [3] used photodiodes in conjunction with high-speed cinematography, determining

surface solidification morphology in addition to solidification velocities

Subsequent velocity studies have primarily involved refinements in the placement of

photodiodes and interpretation of the thermal record. Piccone, et al [4], for example,

employed a single photodiode focused on a portion of an undercooled, quartz-encased

nickel ingot in conjunction with a digital oscilloscope. Velocities were determined using

the relationship

V = (2.1)
At'

where D is the diameter of the pyrometer view field and At is the signal "rise time" for the

recalescence, as depicted in Figure 2.1. This technique-like any technique that does not

directly image the solidification interface--suffers from several inherent uncertainties

regarding both D and At: first, the D value is an inaccurate measure of the distance traveled

by the solidification interface unless it is certain that growth proceeded directly across the

field of view of the pyrometer. In addition, a large degree of interpretation is required to



derive a At value from a given thermal record; the sigmoidal shape of the temperature

transition makes it possible to determine At consistently, but not precisely.

Other researchers have employed electromagnetic levitation (containerless

processing) to study undercooled Ni melts. One such example is the work of Willnecker,

et al [5], who used two hemispherical photodiodes and calculated solidification velocities

using signal rise time and geometric considerations. Hofmeister, et al [6], used a single,

tightly-focused (1 mm) photodiode, supposedly to minimize the effects of potential multiple

nucleation events. In the latter investigation, the reduced pyrometer spot size may have

mitigated the effect of the unconstrained solidification path. In the former study,

measurement accuracy may have been improved by constraining the solidification path via

manually-induced nucleation at the south pole of the specimen. However, in both

investigations, the results of the work again depend upon the interpretation of sigmoidal

thermal profiles.

Eckler and Herlach [7] used a polar photodiode and a unique capacitance trigger in

their work, defining more accurately the duration of the solidification event. In this study,

the moment of nucleation was marked by a jump in the capacitance of a metallic stimulation

needle upon contact with the base of the specimen. As a result, pyrometry was only

required to detect the end of the solidification event.

Bassler, et al [8], were among the first to use a linear array of photodiodes--later

moving to a two-dimensional array--in an effort to improve the spatial resolution of their

studies. An iterative computer routine was employed in conjunction with the photodiode

records to produce a calculated velocity associated with minimum deviation from the

observed data. The work was also based upon the assumption that the solid/liquid interface

remains convex to the liquid at all undercoolings; deviations were assumed to result from

multiple nucleation events, and all such trials were thrown out. However, both the current

investigation and prior work [3] have shown numerous deviations from the convex-



interface restriction which clearly result from a single nucleation point. As a result, the

validity of Bassler's "multiple nucleation" assumption is in question.

2.1.2 Experimental Results

With the exception of Hofmeister and Bassler, the results of the above work are

qualitatively and quantitatively similar (Figure 2.2). At small undercoolings, the

investigators show an approximate power-law relationship between undercooling and

solidification velocity,

V = k (AT), (2.2)

where 13 varies between 2 and 3. This behavior is relatively well-predicted by the "LKT"

theory of Lipton, et al [9], particularly when a kinetic parameter is included in the analysis.

At larger undercoolings, the results of prior investigations diverge more sharply, but many

conclude that there exists some critical undercooling, AT*, in the range 170-190K, above

which a normal LKT analysis is no longer valid.

In addition, several researchers [10,11,12] have observed a corresponding

microstructural transition at AT* in a similar range of values, marking the shift from a

columnar dendritic grain structure to a finer, equiaxed structure. Notable also is the

transition in solidification interface morphology identified by Colligan and Bayles in their

high-speed cinematographic work. It was determined that surface interfaces displayed

continuous curvature at undercoolings greater than 160 K, but shifted to a discontinuous,

angular morphology as undercooling fell below 145 K.

The scatter of undercooling-velocity data at undercoolings above AT* is quite

remarkable, bounded at the lower end by the results of Hofmeister and Bassler, who report

a constant velocity of about 20 m/s at all undercoolings larger than AT*. They propose that

interfacial attachment kinetics is the limiting factor at these large undercoolings, while no



satisfactory explanation has yet been proposed to explain the relationships observed by the

other investigators.

Scatter at undercoolings less than AT* is much less pronounced than at higher

undercoolings and may be explained by variations in convective effects and methods of

pyrometry, deviations from assumed specimen geometry, and, as supported by Eckler, et

al [7], uncertainty regarding the growth direction of the dendrites.

2.2 Iron-Nickel

2.2.1 Metastable Phase Solidification

One of the first observations of the tendency of hyperperitectic Fe-Ni alloys to

solidify into more than one crystalline phase was made by Cech [13] in 1956. It was found

that micron-range particles of Fe-29.5 at.% Ni cooled from the liquid state formed not only

the expected equilibrium FCC phase upon solidification, but also frequently solidified into

an unexpected BCC phase. A simple graphical extension of the liquidus and solidus lines

of the (BCC) 8 phase on the equilibrium Fe-Ni phase diagram (Figure 2.3) supported the

hypothesis that molten droplets of Fe-Ni undercooled below these extensions could solidify

into a metastable form of 8 Fe-Ni.

2.2. 1. 1 Theoretical Basis

Kelly, et al [14] presented a strong theoretical argument for the solidification of

alternative (or nonequilibrium) crystalline phases from an undercooled melt based on the

thermodynamics and kinetics of nucleation and growth. Numerical results for Fe-Ni

showed that the metastable phase was indeed preferred for homogeneous nucleation under

a wide range of particle sizes, cooling rates, and compositions. In the case of

heterogeneous nucleation, wetting angle and other variables entered the analysis, but

primary metastable phase solidification remained a theoretical possibility.



2.2.1.2 Powder Studies

Subsequent powder studies have continued to reveal metastable phase formation

from the melt in Fe-Ni alloys. Kim, et al [15] reported development of the alternative BCC

phase in submicron droplets of Fe-30-, and Fe-40 at.% Ni, but not in Fe-50 at.% Ni.

Thoma, et al [16] (an excellent review paper on this topic) found BCC solidification in a

wide compositional range, proposing a map to define the structural evolution of solidified

Fe-Ni as a function of both composition and undercooling.

Although Libera, et al [17] managed to obtain thermal profiles of 44-46 Rm Fe-30

at.% Ni particles upon solidification, they were unable to salvage the individual particles

and thus did not perform any microstructural evaluation. Also, the temporal resolution of

their pyrometry was insufficient to reveal potential two-stage recalescence behavior.

2.2.1.3 Bulk Studies

Investigations of bulk Fe-Ni specimens have further characterized metastable BCC

phase solidification. The Thoma study reported no retained metastable BCC structure in

larger (1-3 mm) droplets of Fe-(10 to 30) wt.% Ni; however, it was speculated that the

cooling rate in these droplets was insufficient to suppress a solid state BCC-->FCC

transformation, and that the initial solid phase to form from the undercooled melt may well

have been the metastable 8 phase.

Stronger evidence for the proposed transition was supplied by Zhao, et al [18] and

Herlach, et al [19], who recorded fast thermal profiles of bulk Fe-Ni solidification events.

These efforts revealed a double-recalescence behavior for certain hyperperitectic Fe-Ni

specimens at sufficient undercoolings: initial growth of BCC material was followed by a

plateau period near the metastable BCC solidus temperature lasting from about 1 ms to

several seconds, followed ultimately by a transformation to FCC material from either a

liquid/solid mixture or the solid state. These thermal profiles, in agreement with theoretical

work by Chuang, et al [20] which more accurately defined the metastable liquidus and



solidus lines for 8 Fe-Ni, provided an exceedingly strong indication that the metastable 8

phase was solidifying directly from the undercooled melt.

2.2.2 Experimental Results

In general, the microstructure and solidification velocities observed in undercooled

Fe-Ni melts resemble the results of the pure Ni work. The undercooling-velocity data from

Barth, et al [21] for Fe-25- and Fe-30 at.% Ni are summarized in Figure 2.4; the behavior

is reasonably well modeled by modified LKT analyses for the equilibrium FCC phase. The

investigators argued that the data in Figure 2.4 reflects the existence of a critical

undercooling (AT*) for both compositions at 175 K--similar to that of pure Ni-although

this appears to be a more valid assessment of the lower data set. Above AT*=175 K, it

was surmised that dendrite growth theory no longer offered an accurate prediction of the

AT-V correspondence, indicating some shift in solidification mechanism. It is worth noting

that this study assumed primary solidification of the equilibrium FCC phase in Fe-25- and

Fe-30 at.% Ni. The Zhao study found FCC solidification in Fe-30 wt.% Ni, but primary

BCC solidification in Fe-5- and Fe-10 wt.% Ni specimens.

Other investigations identified a microstructural AT* which marked a transition from

a dendritic structure below AT* to a much finer-grained, "spherical" structure at higher

undercoolings. Early work by Kattamis, et al [22] indicated a AT* value of 170 K for Fe-

25 wt.% Ni. Abbaschian, et al [23] found a similar value of 175 K for that alloy, while the

Barth study reported a microstructural AT* between 135 K and 180 K for a range of Fe-Ni

compositions.

One final experimental result of importance is the demonstration of phase selection

or "phase seeding" in Fe-Ni through the use of a heterogeneous nucleation trigger of high

catalytic potency. Herlach, et al [19], were able to induce solidification of the metastable

BCC phase in Fe-(20-30) at.% Ni by surface stimulation with a trigger wire composed of

BCC Fe92Mo 8. Identical specimens displayed primary FCC solidification when allowed to

recalesce spontaneously from similar or greater undercoolings. This result reveals the



potential for reliable phase selection in this and other alloy systems through the use of

carefully-selected heterogeneous nucleants.

Figure 2.1: Typical pyrometric method to determine solidification velocity,

where V = D / At.
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3. Experimental Procedure

Figure 3.1 shows a schematic of the apparatus used in the current work to obtain

thermal profiles and visual images of undercooled specimens.

3.1 Specimen Preparation

Two lots of high-purity nickel were used for this study, both obtained from

Electronic Space Products International. The first lot was 99.9+ pct. (3N) pure wire stock;

the second was rod stock of 99.999+ pct. (5N) purity. The iron used in the Fe-Ni

specimens was 99.9 pet. pure flake obtained from Johnson Matthey Alfa Aesar.

For each pure Ni specimen, approximately eight grams of either 3N or 5N material

was cut, cleaned in ethanol, and then induction-melted inside an open-ended quartz tube on

a bed of high-purity quartz frit (see Figure 3.2). The Fe-Ni specimens were prepared in

similar manner from portions of 3N Ni wire and Fe flake pre-weighed to a nominal

accuracy of ±.001 g. Compositions under study included Fe-10-, 12-, 15-, 20-, and Fe-30

wt.% Ni. For all specimens, prior to melting, the enclosing test tube was evacuated and

flushed several times with high-purity Ar gas; subsequently, the gas was allowed to flow

continuously through the test tube.

Power for heating was supplied by a Lepel model T-10-3 10 kW radio-frequency

current generator operating at a nominal frequency of 400 kHz. Energy was input to the

specimen by an 8-turn, 1/8" copper tubing split induction coil. During a typical thermal

cycle, the cylindrical ingot was inductively heated through its liquidus temperature to a

maximum superheat of 100-150 K. The heating power was then switched off and the

specimen was allowed to cool under the flowing Ar until either spontaneous nucleation

occurred, or else nucleation was stimulated at the top surface of the ingot using a short

length of Fe or Ni wire.



3.2 Pyrometry

3.2.1 Data Acquisition

Temperatures were measured using a silicon photodiode-based Capintec Ratioscope

III two-color pyrometer operating at near-infrared wavelength bands centered at 0.81 and

0.95 gim. Pyrometric data was recorded by a Nicolet 4094B digital oscilloscope with two

model 4562 plug-ins and an XF-44 twin disk drive. During a typical run, the four

differential analog inputs of the Nicolet were used as follows: two inputs sampled the

pyrometer channels continuously at a rate of approximately 20-50 Hz, producing a 1-3

minute thermal history of a melt-superheat-solidification cycle. The other two inputs

produced a high-speed recalescence profile by triggering upon recalescence and recording

at the rate of 0.2-1 MHz for 4-20 ms, retaining an adjustable amount of pre-trigger data.

3.2.2 Data Analysis

The results of each thermal cycle were saved in Nicolet-specific format on 5 1/4"

floppy disk for archiving and then downloaded to an IBM PC-AT computer via a GPIB

interface using the "Henry" file-transfer package provided by Nicolet. Usually, the

4094LTU transfer program was used, rendering the data into an older "LOTUS 1-2-3"

spreadsheet-style format. The data was ultimately transformed into simple tab-delimited

column format using a C program (see Appendix A4) in order to facilitate subsequent

analysis.

Temperatures were derived from each two-channel set of pyrometer data using the

following relation:

Tobs = Tref + m (Robs - Rref), (3.1)

where Robs is the observed ratio of the signal intensities of the two pyrometer

channels: Robs = 10.95 gtm /10.81 tm,'



Tref is the temperature of a known reference point on the thermal

profile, usually the liquidus temperature for a pure material,

Rref is the ratio value observed at Tref, and

m is the slope of an experimentally-obtained ratio-temperature curve,

roughly linear over a range of several hundred degrees

This linear relationship between ratio and temperature is an empirical one only; radiation

theory [24] suggests the following dependence:

R = k exp(4-,)(3.2)

with k2 -=(1.44 x 104 m K 1

This equation predicts a theoretical variation in m, the slope from Eq. 3.1, of about 6%

between 1726 K and 1426 K (a 300 K undercooling in pure nickel).

However, the error in temperature measurement is reduced somewhat by defining m

as the average slope observed in a wide range of undercoolings during a set of calibration

experiments. These experiments require the immersion of a thin, zirconia-sheathed type-B

thermocouple in the molten ingot, allowing simultaneous measurement of both pyrometer

signal ratio and true specimen temperature. A best-fit linear analysis of the undercooling

segment of the resulting ratio-temperature plot (Figure 3.3) yields the average m value for a

given run. In the present work, the overall average slope value for nickel was found to be

880 +20 K-l1; this compares well with a value of 850 K-1 previously obtained [26] using

the same setup. No reliable calibrations were performed for the Fe-Ni material; instead, an

approximate value of 900 K-1 was assumed. As a result, the absolute accuracy of the



temperature measurements is estimated to be ±10 K for nickel and, conservatively, ±25 K

for Fe-Ni specimens at the highest undercoolings.

The conversion in Eq. 3.1 was applied interactively to the pyrometer data using a

virtual instrument written in LabVIEW i running on a 100 MHz Pentium-based IBM-

compatible computer. The resulting time-temperature profiles could then be evaluated to

determine the extent of undercooling for each thermal cycle.

3.3 Image Acquisition and Analysis

3.3.1 Acquisition

3.3.1.1 Hardware

The camera depicted in Figure 3.1 is a Kodak EktaPro HS Motion Analyzer, Model

4540--a high-speed digital camera. The device supports a maximum acquisition rate of

40,500 frames/sec, at which speed the image consists of a 64 x 64 pixel array with a

precision of 8 bits/pixel. A 200 mm lens was employed in this work to capture an

approximately 10 mm x 10 mm image from a working distance of about 40 cm.

3.3.1.2 Technique

After each thermal cycle, selected video frames comprising the entire solidification

event were recorded onto S-VHS videotape for archiving. In order to perform subsequent

computer-assisted image analysis, the images from the videotape were re-digitized and

stored on a Macintosh IIci personal computer using a frame-grabber expansion card and an

image-processing package called IPLab". The frame-grabber sampled the videotaped

images at twice the pixel resolution of the EktaPro 4540, producing 128 x 128 pixel images

with an artificially enhanced resolution. These images were suitable for further analysis

and digital image-processing using IPLab.

i LabVIEW is a registered trademark of National Instruments, Inc.
ii IPLab is a registered trademark of Signal Analytics, Inc.



3.3.2 Analysis

3.3.2. 1 Solidification Interface

The camera observes growth of the solidification front by sensing a change in light

intensity (and therefore temperature) near the front comprising the array of dendrite tips.

This temperature change takes place over a distance of approximately a/V from the growth

front interface, where a is thermal diffusivity for nickel and V is dendrite tip velocity.

Taking a = 1.6 x 10-5 m2/s (refer to Appendix A2 for a summary of physical constants

used) and a conservative solidification velocity of 5 m/s, the ratio of 3.2 gm indicates that

the thermally measured growth front closely approximates the actual physical interface.

3.3.2.2 Processing

The digitized images of the solidification interface were manipulated as follows:

first, the location of the solid/liquid interface was consistently defined in each recorded

frame by isolating only those pixels (xi, yi) included in a numerically-defined transition

zone between the neighboring bright (solid) and dark (undercooled liquid) pixels (Figure

3.4a). The zone typically spanned about 5% of the intensity transition and was centered

near 25% maximum brightness.

As this interfacial band was identified in each individual frame, the interface pixels

were incrementally incorporated into a 32-bit composite master image (Figure 3.4b).

Since, in the general case, it was possible for a specific composite pixel (xc, Yc) to have

appeared in the interfacial bands of multiple frames (for example, a slow-moving interface),

special care had to be taken to ensure that the frame-by-frame pixel record could be

accurately reproduced from the composite image. Thus, each interface pixel from an

individual frame was made to contribute an increase in intensity of 2 N in the corresponding

composite pixel, where N={0,1,2,...} was the frame number from which the pixel

originated.



3.3.2.3 Composite Image Interpretation

The resulting composite image was a two-dimensional matrix of intensity values

which could be interpreted in the following manner: a zero at a given (x,y) position

indicated that no pixels from any frame's solid/liquid interfacial band appeared at that

location during solidification. Nonzero values were readily interpreted by their binary

representation: a nonzero bit at arbitrary bit position M (counting the lowest-order bit as bit

0) indicated the presence of a pixel from the interfacial band of frame M. For example, a

value of 0d192 = Ob 11000000 at coordinate (45, 63) indicated that the solid/liquid interface

had been present at that location during frames 6 and 7 of the solidification record. In

general, however, interface motion was fast and predictable enough that each coordinate

contained either a zero or a perfect power of two.

The composite image was finally transferred as text to a UNIX-based workstation

for velocity analysis. There, another C routine (see Appendix A4) was used to create a

formatted datafile listing the interface points by frame along with various supplementary

information and calibration values. This datafile completely characterized the solidification

event along the visible surface of the specimen and was suitable for input to the iterative

solidification model.

3.3.2.4 Pixel Intensity Profiling

One additional method of analysis which helped characterize the double-

recalescence phenomenon in Fe-Ni was pixel intensity profiling. In this technique, an

IPLab script stepped through a series of solidification images and sequentially recorded the

average pixel intensity observed in a very small (2x2 pixel) portion of each image. The

result was a time-intensity profile similar to the output of a 40.5 kHz wide-band pyrometer

tightly-focused on a -0.16 mm square portion of the specimen. No attempt was made to

calibrate the observed intensities to true temperature in this work, since experimental

conditions varied greatly from specimen to specimen; however, the profiles were very

useful in establishing relative temperatures and defining successive stages in solidification.



3.4 Solidification Model

3.4.1 Assumptions

An original computer-based solidification model (see Appendix A4) was used to

calculate dendrite growth velocity within the melt from the observed surface propagation.

The primary assumption underlying the model was that the solid phase grew spherically

outward at a constant rate from a single nucleation point in an infinite undercooled melt;

observed surface interfaces reflected the intersection of the expanding spheres with the

physical boundaries of the ingot (Figure 3.5).

It was expected that this assumption might begin to break down either at very small

undercoolings or else during the latter portion of the solidification event, when remnant

undercooled liquid may become significantly reheated by the neighboring solid. Shrinkage

effects might also distort the assumed geometry of the specimen.

It was assumed in addition that solidification proceeded quasi-adiabatically in the

undercooled melt, and that the effects of the quartz enclosure on solidification kinetics were

negligible. In this manner, the material at the quartz/metal interface could be assumed to be

representative of the material in the bulk of the melt. This is another set of assumptions

which will admittedly break down at very small undercoolings, when time scales increase

and heat flow begins to become an issue.

3.4.2 Operation

Operating under the constant-velocity assumption, the computer model first input all

the (x,y) points from a given interface datafile and assigned a relative time value (relative to

the acquisition time of the first video frame) to each point. The relative time consisted of an

integral multiple of Tf plus a fractional value of Tf that varied with the screen location of the

interface pixel, where Tf was the acquisition time for a single video frame. The fractional

portion is required because the pixel elements are not scanned simultaneously, but instead

sampled by four horizontal passes of a 1x16 pixel vertical raster block (Figure 3.6; see also



effect on appearance of image in Figure 4.3). As a result, the relative time value for a given

pixel (xi, Yi) in frame N is expressed as

trel = Tf N + [floor ( 4'+ .xl ) (3.3)

Given the dimensions of the cylindrical ingot and a calibration value (mm/pixel), the model

was also able to assign a z value to each (x,y) pair, thus defining each interfacial point

completely in space and time.

At this stage, there remained two unknowns: the exact coordinate of the nucleation

site and the period of time which had elapsed between nucleation and the first video frame

of the solidification event. Given any possible nucleation point (xn, yn, zn) and time delay

(tn) the program was able to calculate a consequent average velocity for each frame based

upon the location of its interface points (xi, yi, zi):

P

vi
1 Di

Vf_ for V Di (3.4)
P ti

where Di =(xi - Xn) + (yi- yn)2 + (zi - zn)2 ,

ti = trel + tn,

and P is the total number of interface points evaluated.

The standard deviation of a group of average frame velocities, normalized over the

average overall velocity, represented the degree of validity associated with the assumed

nucleation position and time. The model proceeded to iterate over both position and time

until it reached a local minimum in standard deviation, and the resulting solution was

assumed to reflect the actual nucleation point of the solidification event.



PYROMETER

Figure 3.1: Schematic of apparatus used for pyrometric data and image acquisition.
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Figure 3.2: Detail of experimental setup, showing specimen position and geometry

during processing.
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Figure 3.4: Determination of solidification interface. At left is single image from

recalescence event with computer-defined interface shown in black and newly-

formed solid bright at top. At right is complete sequence of interfaces from same

recalescence event.
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Figure 3.5: Cross-section of solidifying specimen, with successive model interfaces

shown at constant time intervals following nucleation.
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Figure 3.6: Raster motion during image acquisition at 40,500 frames/sec. Raster block

begins at top left and scans from left to right, top to bottom in four passes, reaching

bottom right after slightly less than 1/40,500 sec.



4. Results and Analysis

4.1 General Observations

The high-speed optical investigation produced thousands of images, with most

recalescence events comprising between 5 and 100 video frames. A comparison of the

pure Ni and Fe-Ni images revealed several trends which held for all compositions.

4.1.1 Multiple Nucleation

Multiple simultaneous nucleation was never conclusively observed at any

composition, despite detailed post-experimental review of both spontaneously-nucleated

and needle-stimulated specimens. One or two apparent multiple nucleation events could

instead be attributed to propagation from a single event on the back side of the specimen,

during which the jagged leading edge of the dendrite array intersected with various

unconnected points on the front (visible) surface (Figure 4.1). A particularly striking

example of this phenomenon occurred during related investigation of Ni-25 wt.% Sn

alloys, and is shown in Figure 4.2, in which the "apparent" new grains all have the same

crystallographic orientation as the parent grain.

These results do not imply that multiple nucleation can never occur. Instead, the

video evidence is a strong indication that growth kinetics dominate nucleation kinetics in

this sort of experiment. Moreover, the growing solid does not appear to have any influence

on nucleation in the undercooled material ahead of the solid/liquid interface.

4.1.2 Interfacial Morphology

The solidification interface was also observed at every composition to exhibit two

distinct interfacial morphologies. The envelope of solid dendrites appeared

macroscopically jagged at lower undercoolings, but smooth and convex to the liquid at

higher undercoolings, a phenomenon previously reported by Colligan and Bayles [3] in

pure Ni. This behavior will be further discussed in later sections devoted to the individual

specimen compositions.



4.2 Lens and Wetting Effects

A combination of two factors caused the diameter of the molten specimen to appear

larger than the 11 mm inside diameter of the quartz tubing that housed it. First, a lens

effect arose near the left- and right-hand walls of the tube when its contents were viewed

from the side, due to the increased thickness of curved quartz between the viewer and the

specimen. A secondary and more dominant effect developed when a hot specimen became

molten and began to wet the inside wall of the tube; there was an immediate and significant

apparent increase in sample diameter.

After some experimentation, it was found that the best way to quantify the above

phenomena was to introduce an immersion oil-soaked section of millimeter-rule graph

paper onto the inner surface of the quartz tube in place of a specimen, and photograph the

setup with backlighting (Figure 4.4). The immersion oil enabled the graph paper to wet the

quartz in much the same way as the specimen, and the wetting and lens effects could be

calculated by examining the apparent spacing of the vertical rules of the paper across the

width of the image.

The unaffected, 1 mm-spaced horizontal rules in Figure 4.4 provided a calibration

value in terms of pixels/mm which could later be used to relate pixel distances to true

distances when calculating velocities. The value was also fed into a small optimization

routine, along with the positions of the vertical rules in the calibration image. The routine

calculated that the data was best modeled by assuming the inside radius of the quartz tube

was approximately 14% larger than its physical value. Figure 4.5 shows black model rule

lines (Rapparent = 6.25 mm) superimposed over the gray observed rule lines (Ractual = 5.5

mm) traced from Figure 4.4, demonstrating excellent agreement over almost the entire

width of the tube. In practice, data was never taken from less than about 1 mm away from

the sides of the tube, in order to avoid the large error inherent to such measurements.

4.3 Solidification Model Behavior



4.3.1 Iterative Convergence

As previously discussed, operation of the solidification model consisted of an

iterative search for an optimum nucleation point, assuming constant-velocity growth of

solid. The variables of iteration were, in order, tn (time delay), zn, xn, and Yn, where the

positive z axis extended toward the camera. The model's ability to converge upon an exact

solution depended greatly upon the true location of the nucleation point; complete

convergence was far more likely if the nucleation point lay on the front surface than if it lay

on the top, bottom, back, or interior of the specimen.

4.3. 1. 1 Convergence for All Variables

Often, a spontaneous nucleation site appeared to be located on the front surface

(metal/quartz interface) of the ingot. In some cases, the nucleant was clear upon review to

have been an oxide particle or a scratch in the quartz tube; in other cases the only evidence

was an initial solidification interface with a very small radius of curvature (Figure 4.3).

For almost all of these "front-surface" nucleation events, the computer model verified the

apparent nucleation site by iterating to convergence in all variables. The predicted

nucleation point typically matched the observed point within approximately 0.5 mm, and

the delay time between nucleation and first frame acquisition was between 0 and 1

frames-a required condition for a visible nucleation site.

It should be noted that the model was also able to converge for all variables in some

cases where the nucleation point did not lie on the front surface. For instance, there were a

number of examples of needle-stimulated top-surface nucleation that were correctly

predicted by the solidification model. More generally, in all cases of complete

convergence, the model's optimum (xn, Yn, zn) coordinate was found to lie within a

distance (.05*R) of the ingot's surface, where R represents either the radius (cylindrical

surface nucleation) or the half-height (top/bottom surface nucleation) of the ingot. This

behavior was interpreted as strong evidence that nucleation occurred at a metal/quartz or



metal/gas interface in all cases in which it was not manually stimulated at the top surface by

a needle.

4.3.1.2 Convergence on Cylindrical Surface

In many other cases, the model was unable to reach an exact solution for tn, Zn, xn,

and yn. This often occurred when the nucleation point lay unseen on a hidden surface and

occasionally even when the point appeared to be located on the front surface of the

specimen. In many of these cases, a solution was possible if the nucleation site was

constrained to lie on the cylindrical surface of the specimen and the model iterated over only

tn, xn, and Yn, with zn determined by the other two spatial coordinates and the geometry of

the ingot.

4.3.1.3 Time-bounded Convergence

A final general case occurred when no convergence was possible for any set of

initial conditions because the optimum tn value increased without bound. As expected, the

model often behaved in this manner when the true nucleation point was far removed from

the front surface of the specimen and the camera had not recorded the initial portion of the

solidification event.

Fortunately, it was often possible to impose constant upper- and lower-bounds on

tn in these cases and solve for the optimum (xn, Yn, zn) coordinates and solidification

velocities given the bounding tn values. This was a particularly useful technique in the case

of non-convergent needle-stimulated events, because the Yn coordinate was known to lie

within a small distance of the (visible) top edge of the specimen. The strategy in these

cases consisted of iterating with various fixed values of tn until two arguments were found

which resulted in sensible bounding values of yn--typically, two pixels above and two

pixels below the observed top edge of the specimen. The corresponding velocity values

were also taken to be upper- and lower-bounds, and they did not often differ by more than

five percent.



In all cases where bounded solution sets showed a variation of more than 10% of

the average solution, the solutions were removed from further consideration. This result

typically followed when the radius of curvature of the first observed solidification interface

was unusually large, supporting the notion that the camera had only observed the final

portion of the solidification event and the model has broken down.

4.4 Pure Ni Results

4.4.1 Solidification Velocity

Presented in Figure 4.6 are the solidification velocity values, plotted against

undercooling, obtained from the computer model used in this work. Comparison with

dendrite growth theory will be made using the so-called "LKT" model of Lipton, et al. [9],

who adapted the Ivantsov dendrite growth model [25] using a marginal stability analysis

(see Appendix Al for LKT development). Shown in Figure 4.6 are both the unmodified

LKT prediction for pure nickel and the LKT prediction assuming a linear kinetic

undercooling parameter [t = 0.40 m/sK. Clearly, there is fair agreement between

experiment and theory up to some critical undercooling AT*, where 150 K < AT* < 180 K

in this case. Above AT*, it is difficult to characterize exactly the relationship between

undercooling and velocity, other than to observe that solidification velocity continues to

increase. These results are in general accord with all of the prior work referenced, with the

exception of Hofmeister and Bassler.

4.4.2 Interfacial Morphology

A morphological analysis of the solidification interface at various undercoolings

was carried out in the following manner: any specimen whose images exhibited

discontinuous interface curvature not attributable to the camera raster pattern was classified

as "jagged;" specimens showing only continuous interface curvature were called "smooth."

This analysis revealed a transition undercooling range for Ni of 160-170 K, above which

all solidification envelopes were smooth and below which all envelopes were jagged

(Figure 4.7). This range is slightly above the critical range for morphological transition



previously proposed by Colligan and Bayles. The temperature range does correspond well

to the "critical undercooling" values observed on undercooling-velocity plots both in the

current work (150-180 0 C) and by prior investigators. Furthermore, a morphological

transition AT* of 160-1700C is also approximately equal to the microstructural AT*

observed by Walker, Colligan, Schleip, and others in pure Ni.

The present work strongly suggests that the morphological transition in solid/liquid

interfacial shape and the observed transitions in velocity and microstructure are coupled

phenomena resulting from the same intrinsic shift in solidification mechanism. However,

the physical mechanism responsible for the transitions has yet to be satisfactorily explained.

Various hypotheses point toward either a kinetic attachment limitation [6], the onset of

dendrite fragmentation by remelting [26], dynamic nucleation via shrinkage-induced

cavitation in the undercooled melt [27], or other fluid-flow phenomena.

4.5 Fe-Ni Alloy Results

4.5.1 Pyrometric Thermal Profiles

Two typical high-speed thermal profiles from Fe-10 wt.% Ni specimens are shown

in Figure 4.8. The upper profile represents a specimen which was not observed in the

video record to have undergone double recalescence; instead, the equilibrium FCC phase

solidified directly from the undercooled melt. This profile exhibits a clear thermal peak at

the tail end of the rapid transition, approximately 10 K in amplitude and spanning about 0.1

ms. A similar phenomenon was observed by Piccone [28] during his studies of hyper-

peritectic Fe-Ni, Ni-Sn, and Fe-Co alloys using the same apparatus. He attributed the peak

to superheating and subsequent remelting of a portion of the newly-formed dendrite array.

The profile in the lower half of Figure 4.8 shows a specimen which did exhibit

double-recalescence behavior in the video record. This behavior is clearly reflected in the

thermal profile by a preliminary plateau at approximately 1495 K (near the metastable

liquidus temperature) lasting for about 1 ms, followed by a secondary rise in temperature to

near the equilibrium FCC liquidus with no characteristic thermal peak.



Unfortunately, not every specimen which underwent double recalescence visible by

the camera displayed such an unambiguous pyrometric profile. Many such specimens

instead showed little more than a change in inflection, and sometimes no hint at all of

double recalescence in the pyrometric record (Figure 4.9). Failure to detect multiple

thermal transitions was probably a result of the pyrometer's relatively low spatial

resolution; the view field of the instrument was between 6 and 10 mm in diameter for the

duration of the work, and the output voltage reflected the average light intensity of the

entire field. It is not surprising that transitions narrowly separated in distance or time were

not crisply detected by this instrument.

4.5.2 Pixel Intensity Profiles

The pixel intensity profiling outlined in section 3.3.2 was a much more reliable

method of detecting and characterizing double recalescence events, despite its limited

temporal resolution (40,500 Hz). In general, double recalescences were easily identified

by a secondary intensity transition either on videotape or in an animation of the digitized

images from a single event. Occasionally, the growth of FCC material took the shape of a

nearly continuous interface which lagged the BCC solidification interface by a short

distance. More often, however, the FCC transition was more diffuse, appearing to

nucleate and grow from multiple points behind the BCC interface. In either case, the

transition was predictable enough so that, at any given point on a single specimen, there

appeared to be a roughly constant delay time between the passage of the BCC interface and

the subsequent transformation to brighter FCC material.

Due to the consistent behavior of the transformation, the choice of the target area for

pixel intensity profiling was relatively unimportant; an arbitrary 2x2 pixel area free of

oxidation or quartz discoloration was chosen for each event. The resulting time-intensity

profile was generally a much more sensitive record than the corresponding pyrometer

profile (Figure 4.10), giving a clearer indication of recalescence behavior and delay times

between transitions, if not accurate temperature values.



4.5.3 Recalescence Behavior

4.5.3. 1 Characterization

Recalescence characterization was accomplished through simultaneous examination

of the pixel intensity profile, the high- and low-speed thermal profiles, and the video

record. Double recalescences which were clear on the video record were almost always

verified by a double-plateau in the pixel intensity profile and were considered clear

instances of initial BCC phase formation. Apparent single recalescences on the video

record were typically supported by single-plateau pixel intensity profiles; in addition, the

high-speed thermal profiles in these cases generally exhibited a superheat peak on

recalescence of about 5-15 K which was absent in the case of double recalescence.

The video record was no help in the identification of secondary recalescence events

which lagged the initial solidification by more than about 0.2 seconds, because video data

was not recorded beyond this time. However, the low-speed thermal record was assumed

to be sensitive enough to identify these delayed transitions. In cases where the recalescence

behavior was truly unclear, the data points were omitted from plots and calculations.

Figure 4.11 reveals the recalescence behavior of the various Fe-Ni specimens as a function

of composition and nucleation temperature. Filled symbols indicate that primary BCC

solidification and double recalescence occurred; outlined symbols indicate primary FCC

solidification. Briefly ignoring the significance of symbol shape, one can interpret Figure

4.11 as a primary solidification map valid for all quartz-fluxed Fe-Ni specimens of similar

aspect ratio weighing approximately 8 g and exhibiting the same cooling rate (phase

selection depends upon the thermal history of the undercooled liquid as well as the presence

of heterogeneous nucleants [17]).

This work suggests that there exists a window of primary BCC solidification in

hyperperitectic Fe-Ni bounded at smaller undercoolings and very large undercoolings by a

transition to primary FCC solidification. The window appears to span about 150 K at 10



wt.% Ni, tapers to less than 120 K at 15 wt.% Ni, and has disappeared entirely at

compositions of 20 wt.% Ni and higher.

4.5.3.2 Phase Selection via Induced Nucleation

As noted earlier, both Fe and Ni trigger needles were used at various times to

induce heterogeneous nucleation at lesser undercoolings, with the idea that the Fe (BCC

from room temperature to 1185 K and from 1667-1811 K) might induce primary BCC

solidification and the Ni (FCC through the entire range) might produce instead the FCC

phase. As Figure 4.11 clearly reveals, these efforts met with no success at all, with the

exception of three points near 1350 K in the Fe-12 wt.% Ni material. In those three

instances, FCC material formed from the Ni trigger on a section of the map which

otherwise featured solely BCC solidification.

At all other compositions and temperatures, trigger needle structure seemed to have

absolutely no effect on the determination of the primary solidification phase. Apparently,

FCC Ni is simply not a sufficiently potent heterogeneous nucleant to have much of an

effect on the kinetics of primary phase solidification in the compositions that were

extensively studied. Perhaps a trend would have emerged if more data had been collected

from the Fe-15 wt.% Ni alloy.

4.5.3.3 Delay Times in Double Recalescence

The delay time between recalescences was defined on the pixel intensity profile as

the time between points of maximum curvature at the beginning of each transition. The

resulting correspondence between undercooling and delay time for double recalescence is

shown in Figure 4.12 for the compositions which most consistently exhibited that

behavior.

Figure 4.12 reveals that average delay time drops with increasing undercooling in a

roughly exponential manner. The data scatter may be an indication that there are several

different mechanisms by which the FCC phase nucleates and grows into the mixture of

undercooled liquid and BCC solid material. However, the data is in qualitative agreement



with a theory that FCC formation requires the attainment of a critical local fraction solid,

since the fraction solid immediately following recalescence can be expressed as:

AT AHf
fs = AT where AThyp = (4.1)

AThyp Cp

FCC nucleation may result from the impingement of growing BCC dendrite arms during

the equilibrium solidification period following initial recalescence.

4.5.4 Interfacial Morphology

A morphological analysis identical to that described in section 4.3.2 enabled the

characterization of solidification interfaces as "smooth" or "jagged" for most compositions

of Fe-Ni studied in this work. Figure 4.13 summarizes the results of the analysis.

Once again, there is a rather sharply-defined transition from jagged to smooth

morphology at a critical undercooling; this AT* is approximately 190 K for both Fe-10- and

Fe-12 wt.% Ni. The exact value at higher Ni compositions cannot be precisely determined

from the data, but it is evidently no more than 190 K, and not a great deal less. The range

of 160-190 K previously identified for morphological transition in pure Ni would suggest

that AT* decreases only slightly, if at all, as the specimen grows richer in nickel content.

4.5.5 Solidification Velocity

Solidification velocities obtained from the computer model are given in Figure 4.14

for Fe-10- and Fe-12 wt.% Ni specimens which exhibited double recalescence

(undercoolings are measured from the metastable liquidus temperature). The two sets of

data are plotted on the same graph because LKT theory predicts a virtually identical

undercooling-velocity curve for both compositions. Indeed, it is clear from the plot that the

two data sets essentially overlap and are well-predicted by an LKT analysis for Fe-Ni using

a kinetic parameter of 0.28 m/sK.



The most notable aspect of Figure 4.14 is the clear lack of any transition in

functional dependence in the range 170 K < AT < 190 K. Instead of the downward shift

observed in this work for Ni (Figure 4.6) and in the work of Barth, et al [21] for Fe-25-

and Fe-30 wt.% Ni, the data continues to be well-described by LKT theory right up to

undercoolings of nearly 250 K.

In light of the observed transition in interface morphology, the lack of any

corresponding shift in solidification velocity is somewhat difficult to explain. One

difference between these Fe-(10-12) wt.% Ni results and the contrasting pure Ni and prior

Fe-Ni work is that the primary solidification phase in the current work is a BCC material.

Perhaps crystallographic structure plays an important role in determining the interface

kinetics of these rapidly-solidified materials. Unfortunately, there is insufficient data in the

present work at the higher Ni concentrations to draw any conclusions regarding the

solidification velocities observed there for FCC Fe-Ni.

A more likely explanation is that the velocity transition is not actually governed by a

critical undercooling, but instead by a critical velocity which is comparable across

materials. The transitions in the Barth work appear to begin somewhere above 30 m/s. The

data in Figure 4.6 for pure Ni suggests that the critical velocity range corresponding to

150 0C < AT* < 180 0C is approximately 26 m/s < V* < 35 m/s; velocities of nearly 50 m/s

were observed at the largest undercoolings. The maximum velocities observed for Fe-(10-

12) wt.% Ni in this work were only 30-35 m/s. Thus, if the transition velocity for Fe-(10-

12) wt.% Ni alloys is near the top of the range observed for pure Ni, it is not surprising

that no transition was experimentally observed. However, regardless the explanation, it

would seem that solidification velocity behavior and interface morphology are not strongly

coupled in the metastable phase solidification of these Fe-Ni alloys, as seemed to be the

case for pure Ni.
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Figure 4.1: Schematic of apparent multiple nucleation scenario, observed experimentally

in Figure 4.2.



Figure 4.2: Example of solidification interface propagating from back to front, almost

directly toward the camera lens. System is Ni-25%Sn, -25 ms between images.

Dendrite tips intersecting front surface appear as numerous expanding diamonds

with the same axial orientation.



Figure 4.3: Composite interface image showing front-surface nucleation; initial interface

at upper-right exhibits very small radius of curvature. Note also raster pattern effect

at 1/4, 1/2, and 3/4 of the image height causing apparent discontinuities in interface

curvature.



Figure 4.4: Calibration image of oil-soaked millimeter graph paper rolled inside 11 x 13

mm quartz tubing.



Figure 4.5: Model vertical rules (black) overlaying observed rules (gray, traced from

Figure 4.4), verifying that the lens and wetting effects are well-modeled by

assuming a 14% increase in specimen radius.
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Figure 4.6: Solidification velocity plotted versus undercooling for pure Ni, as

determined by this work. Also shown is LKT prediction with and without

modification by a kinetic undercooling parameter.

1



Figure 4.7: Interface morphology transition for pure Ni. Shown are typical interface

morphologies observed at undercoolings less than the critical range of 160-170 K

(left column) and greater than the critical range (right).
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Figure 4.8: Typical thermal profiles for Fe-10 wt.% Ni specimens undergoing single

recalescence only (top) and double recalescence (bottom). Note superheat peak at

top and double-plateau behavior at bottom.
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Figure 4.9: Pyrometer profile for Fe-10 wt.% Ni specimen which was revealed in the

video record to have undergone double recalescence. No clear indication is present

in the thermal record.
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Figure 4.10: Comparison between pyrometer profile and pixel intensity profile for Fe-10

wt.% Ni specimen undergoing double recalescence. Details are much more

sharply-defined in the pixel intensity profile.
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Figure 4.12: Delay time between recalescence events in Fe-10- and Fe-12 wt.% Ni

specimens.
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Figure 4.13: Interface morphology at various compositions and undercoolings. A

transition from jagged to smooth structure appears at approximately 190 K

undercooling.
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5. Conclusions

5.1 General

1. The undercooling and subsequent solidification of high-purity Ni and

hyperperitectic Fe-Ni specimens were accomplished, and the thermal front accompanying

the solidification interface was directly observed through the use of an ultra-high-speed

digital camera from Kodak. The degree of undercooling was evaluated for each heating

cycle through the use of a two-color pyrometer and subsequent calibration experiments; a

solidification velocity was calculated for each recorded solidification using digital image

analysis and an original computer-based solidification model.

2. At no time were multiple nucleation sites observed during a single primary

solidification event. Instead, at lesser undercoolings the solidification interface exhibited a

"jagged" morphology, a phenomenon which may, at lower resolution, present the

appearance of multiple nucleation sites

3. The computer-based solidification model was successful in determining

solidification velocities with less data scatter than had previously been observed using

pyrometric methods. The model can also be made to track the growth of subportions of the

overall dendrite array, in the event that a study of growth velocities observed in different

crystallographic directions is desired. Pyrometric analyses exhibit no such flexibility.

5.2 Pure Nickel

1. The relationship between solidification velocity and undercooling for pure Ni

showed general agreement with many prior investigations; namely, there was an

approximate power-law dependence at low undercoolings which is well-described by the

LKT solidification model. Above a critical undercooling, 150 K < AT* < 180 K, there

appeared to be a partial shift in solidification mechanism, resulting in a secondary velocity

dependence whose exact nature is unclear.



2. Observed at a similar critical undercooling (160K < AT* < 170 K) was a shift in

interface morphology from "jagged" to macroscopically smooth, implying a change in

controlling mechanism at the dendrite tips perhaps related to attachment kinetics, dendrite

fragmentation, or fluid flow phenomena. The morphological and solidification velocity

transitions appear to be coupled in pure Ni.

5.3 Iron-Nickel

1. Primary solidification of both the equilibrium FCC phase and the metastable

BCC phase was observed in the hyperperitectic Fe-Ni specimens. The BCC phase

appeared to be favored at lower Ni concentrations (10-12 wt.%), while FCC solidification

was observed exclusively at 20 wt.% Ni and above.

2. A transition in interface morphology similar to that observed in pure Ni was also

found in all compositions of Fe-Ni. The critical undercooling was well-defined around 190

K for Fe-10- and Fe-12 wt.% Ni specimens, and grew no larger at higher Ni

concentrations.

3. Solidification velocities for BCC Fe-10- and Fe-12 wt.% Ni were plotted against

undercooling and found to be nearly identical, as predicted by LKT theory. Agreement

between experiment and theory was also excellent even at the highest undercoolings

observed (250 K); there was no shift in velocity dependence as seen in pure Ni. A

plausible explanation is that the shift actually occurs at a critical velocity, not a critical

undercooling, but in any case it appears that interface morphology and velocity dependence

are not coupled in Fe-Ni as they appeared to be in pure Ni.



6. Suggestions for Future Work

1. The structure of the solidification interface behind the dendrite tips has yet to be

adequately understood. The high-speed images obtained in this work reveal an apparent

thermal transition spanning a distance of several millimeters, but no attempt has been made

here to develop a theoretical model for the behavior. One possible avenue for future

investigation could be to use higher magnification to obtain high-resolution images of the

apparent interface with the camera used in this work.

2. A theoretical basis is needed to explain the transitions in interface morphology

and velocity dependence observed in this and similar work. Of the explanations offered to

date (attachment kinetics, dendrite fragmentation, cavitation due to shrinkage effects, other

fluid-flow arguments), none has managed to predict the phenomena experimentally

observed in both alloys and pure materials.

3. A further study of the solidification behavior of Fe-Ni alloys using the high-

speed camera could further characterize the double-recalescence phenomenon and help fill

in the solidification map in this work at compositions outside Fe-(10-12) wt.% Ni.

Experiments incorporating on-camera quenching, with subsequent microstructural analysis,

might also shed light on the microstructural evolution that takes place following primary

BCC solidification.



Appendices

Al. Solidification Theory

The dendrite growth theory used to create the "LKT" solidification velocity plots for

Ni and Fe-Ni in this work stems from the work of Ivantsov [25] and Lipton, et al [9], with

additional contributions by Boettinger, et al [29], Aziz [30], and Turnbull [31].

In short, Ivantsov proposed the first analytic equation to determine heat flow in a

solidifying dendrite tip realistically modelled as a parabaloid of revolution, resulting in a

single relationship linking R, dendrite tip radius, with V, solidification velocity. Lipton, et

al later derived a secondary relationship between these two variables on the basis of

morphological stability arguments. The combination of this work and Ivantsov's prior

relationship formed the most widely accepted theory of dendrite growth established to date.

Incorporating modifications by the other contributors listed above, researchers were able to

predict accurately the undercooling-velocity behavior observed in many different elements

and alloy melts.

For further information regarding LKT solidification theory, refer to the above

work or individual treatments given by Piccone [26] and Barth, et al [21]. The next five

pages show a numerical implementation of the growth model using the symbolic

mathematics package Maple V 5.0', following closely the developments of Piccone and

Barth.

iMaple is a trademark of Waterloo Maple Software



LKT SOLIDIFICATION MODEL IMPLEMENTED IN "Maple version 5.0,"
SYMBOLIC MATHEMATICS SOFTWARE AVAILABLE FOR UNIX WORKSTATIONS.

NOTE: This is an effort to implement a create a clear, usable
LKT model that will calculate undercoolings, radii, etc., at
various solidification velocities.

* All thermodynamic constants will be expressed in SI units.

Enthalpy of fusion: (assumed equal in liquid and solid)
> H := 1.746e9;

H := .1746 101i

Heat capacity: (assumed equal in liquid and solid)

> c_p = 6.029e6;
cp := .6029 107

Solid/liquid interfacial energy:

> sigma := 0.28;

a := .28

Thermal diffusivity of undercooled liquid:

> alpha := 5e-6;

c := .5 10-5

Solutal diffusivity of undercooled liquid:

> D_o := 6e-9;

D_o := .6 10-8

Marginal stability constant:

> sigma_star := 1 / (4 * PiA2);

1 1
sigma_star .-

4 72



Assumed kinetic undercooling coefficient (if kinetic undercooling is to be ignored, set this
to a very high value, such as le10):

> mu := 0.28;

. := .28

Solute concentration in atomic %, i.e. Fe-20 at.% Ni --> "20"

> C_o := 10.4;
Co := 10.4

Equilibrium liquidus temperature:

> T_f:= 1770;
T f:= 1770

Calculated value for entropy of fusion:

> delS := H /Tf;

delS:= 986440.6779

Here is the approximate slope of the liquidus. Note this is a NEGATIVE number, in K/at %:

> m := -2.1;

m := -2.1

Next is the "equilibrium partition coefficient," used in the calculation of the
velocity-dependent slope of the phase diagram of the material:

> ke := 0.74;
ke := .74

Also need the "atomic diffusive speed:"

> Vd := 20;
Vd := 20

> k := (V) -> (ke + V / Vd) / (1 + V / Vd);



V
ke + -

Vdk := V --
V

1+ -
Vd

This produces a velocity-dependent slope in the effective phase diagram:

> ml := m * (1 + (ke - k(V)*(l - In(k(V)/ke))) 1 (1 - ke));

1
74+ -

20

ml := -8.076923077 + 8.076923077

1 -In 1.351351351

1
.74 + - V

20

1

20

1
1+- V

20

With all physical constant input, here are the equations to predict growth:

First, the definition of the Ivantsov function (a function of a Peclet number):

> Iv := (P) -> P * exp(P) * Ei(l, P);

Iv := P -4 P eP Ei( 1, P)

Thermal Peclet number:

> P_t := (V, R) -> R * V / (2 * alpha);
1RV

P_t := (V, R) -9 - -
2

Solutal Peclet number:

> P_c := (V, R) -> R * V / (2 * D_o);
IRV

P_c:= (V, R) -• -
2 D_o

Constitutional undercooling w Aziz velocity-dependent slope as per Barth paper:

> delTc := (P_c(V, R), k(V))-> m * C_o * (1 - (ml / m) / (1 - (1 - k) * Iv (Pc(V, R))));



delT_c := (Pc(V, R), k(V)) -4 m C_o 1 -
m(1 -(1 -k)

ml

) Iv(P c(V, R)))

Capillary undercooling:

> delT_r := (R) -> 2 * sigma / (R * delS);

delTr := R -> 2
R delS

Kinetic undercooling:

> delT_k:= (V) -> V / mu;
V

delT_k := V -

Ivantsov thermal undercooling solution:

> delT_t :=(Pt(V,R)) -> (H / c_p) * Iv (P_t(V,R));
HIv(Pt( V, R))

delT_t := P_t( V, R) --+H
c_p

This is the marginal stability solution for dendrite tip radius, as copied from Piccone's Sc.D
thesis:

Defined first are two simplifying expressions, n and g:

> n := (P_t(V,R)) -> 1 / (sqrt(1 + 1 / (sigma_star * Pt(V,R)A2)));
1

sqrt 1 +,
sigma_star P_t( V, R)2

> g := (P_c(V,R), k(V)) -> 2 * k(V) ! (1 - 2*k(V) - sqrt(1 + 1 / (sigma_star * P_c(V,R)A
2)));

k(V)
g := (P_c(V, R), k(V)) -- 2

1 - 2 k(V) - sqrt 1 + sigma_star P_c( V, R)2

Here is the actual equation defining R (here, R_th or theoretical) in terms of V and itself:

> Rth := (P_t(V,R), P_c(V,R), k(V)) -> (sigma / (sigma_star * delS)) / ((P_(V,R) * H
* (1 - n(P_t(V,R))) / c_p) - ((2 * m * C_o * (1 - k(V)) * (1 + g(P_c(V,R))) * P_c(V,R))



/ (1 - (1 - k(V)) * Iv(P_c(V,R)))));

R_th := (P_t( V, R), P_c( V, R), k( V)) - /sigmastar delS

P_t( V, R) H (1 - n(Pt(V, R))) -2 m Co (1 - k( V)) (1 + g(P_c( V, R))) P_c( V, R)
cp 1 - (1 - k( V)) Iv(P_c( V, R))

With the equation above, we can numerically solve for R given any V value:
> vval := 2.107;

vval := 2.107

> rval := fsolve(R = subs(V = vval, R_th(Pt(V,R), P_c(V,R), k(V))), R, R=le-9..le-
4);

rval := .4122501976 10-6

This is the real meat of the development; it iterates through a user-defined series of
velocities by a variable amount and computes each of the various dendrite tip radii, as well
as the various undercooling contributions, at each velocity value.

The output is spewed into tab-delimited column format as the file "outfile".

*** NOTE: If the iteration refuses to converge for some conditions, you'll have to alter the
search range defined for R in the "fsolve" step on line 3 of the expression below. The
horrible run-on is due to the fact that I couldn't get the "continuation" behavior to work
correctly for this command, perhaps because the "writeto" function is involved.

> vstart := 0.5; vend := 61; vstep := 4;
vstart := .5

vend := 61

vstep := 4

> writeto(outfile); print(printf('delTntvel\trad\tP_t\tP_c\tdelT_t\tdelT_c\tdelT_r\tdel
T_k\n')); for vval from vstart by vstep to vend do writeto(terminal); rval := fsolv
e(R = subs(V = vval, R_th(P_t(V,R), P_c(V,R), k(V))), R, R=le-9..1le-4); Pt := Pt(
vval, rval); Pc := P_c(vval, rval); delTt := evalf(subs (V = vval, R = rval, delTt(P

t(V,R)))); delTc := evalf(subs(k = k(vval), (subs(V = vval, R = rval, delT_c(P_c(
V, R), k(V)))))); delTr := delT_r (rval); delTk:= delT_k (vval); delT := delTt + delT
c + delTr + delTk; appendto(outfile); print(printf('%e\t%e\t%e\t%e\t%e\t%e\t%e\
t%e\t%e\n', delT, vval, rval, Pt, Pc, delTt, delTc, delTr, delTk)); od; writeto(termi
nal);



A2. Tabulated Thermodynamic Data

Thermodynamic data for Ni and Fe-Ni alloys were again drawn from the prior

work of Piccone [26] and Barth, et al [21], and are given in the following table:

Property Units Pure Ni BCC Fe-l0 wt.% BCC Fe-12 wt.%
Ni Ni

thermal diffusivity, ml/s 1. 6 x 10'-  5.0 x 10 -6 5.0 x 10 -6

solutal diffusivity, Im/s 6.0 x 10-9 6.0 x 10' 9

D
enthalpy of fusion, J/kg 2.98 x 105 2.40 x 10'  2.41 x 101
Hf
heat capacity, cp J/kgK 7.34 x 102 8.28 x 102 8.29 x 102

solid/liquid J/m 0.2 5 0.28 0.28
interfacial energy,

marginal stability [none] 1 / 4C2  1 / 472 1 / 4r2
constant
linear kinetic m/sK 0.40 0.28 0.28
undercooling
coefficient, p
solute at % 10.4 12.5
concentration
equilibrium liquidus K 1728 17 6 9 1759
temperature
liquidus slope, m K/at % -2.1 -2.1
equilibrium [none] 0.74 0.74
partition
coefficient, k,,



A3. Tabulated Experimental Data

Undercooling-velocity data shown from other work was obtained either from a

table supplied in the appendix of the work (Piccone [26]) or by scanning a published figure

into a computer and using image-analysis techniques to determine plot values from the

resulting images (Bassler, et al [8]; Walker [2]; Hofmeister, et al [6]; Schleip, et al [12];

Colligan and Bayles [3]; Barth [21]). The error inherent to the scanning technique is

estimated at 0.5%.

The following tables summarize the undercooling-velocity values both of the prior

work and the current investigation of Ni and Fe-Ni alloys:

Part I: Pure Ni

Piccone
AT (K) velocity

(m/s)
6 0.03
6 0.03
8 0.06
8 0.05

10 0.03
12 0.04
12 0.08
16 0.14
25 0.16
32 0.32
46 0.15
47 0.14
49 0.20
60 0.35
61 0.67

114 20.0
115 69.8
132 29.3
141 35.7

Walker
T (K) velocity

m rn/s)
27.6 1.0
40.6 1.7
47.5 2.9
53.2 4.3
59.8 4.3
61.2 6.2
71.2 7.3
75.8 7.2
80.4 8.3
86.8 11.1
91.3 11.6
95.2 11.7
99.3 13.4

100.3 16.0
109.8 14.1
108.9 15.4
111.9 20.6
121.9 19.5
120.8 20.0



123.3
169
1 c,17E
19C
194
19E
213
215
26C
263
264
271
277
277
279
280
284
286
286
286

288
288
289
294
298
302
304
306
307
308
309

315
316
317
317

62. c
56.6
64.7
43.1
45.5
46.2
54.2
46.2
44.6
50.8

102.3
67.7
60.4
68.7
62.5
48.1
80.4
55.6
48.4
84.9
54.5
52.9
50.6
83.3
69.2
52.6
62.5
55.9
70.3
52.9
59.2
55.9
49.5
62.1

126.1
121.3
133.6
130.4
138.8
143.0
146.6
158.7
154.1
158.9
166.7
171.7
169.2
182.7
182.5
191.8
188.6
169.0
177.7
188.4
201.9
200.5
232.2
223.3
214.2
248.9
211.9
233.4
218.3
241.1

20.9
24.6
25.1
26.9
27.6
29.0
28.8
28.9
32.9
36.5
34.7
36.2
38.7
36.6
38.5
37.6
40.7
44.7
45.5
43.5
41.4
44.9
33.1
41.1
47.6
48.7
61.1
64.4
70.0
77.7

15 2 13. i 20.8



Bassler
AT (K) velocity

(m/s)
133.0 9.7
132.0 10.1
145.7 12.7
149.5 13.4
153.6 13.6
167.6 17.8
165.7 18.3
169.4 18.3
173.0 18.4
182.7 18.1
177.7 20.3
178.9 19.3
180.3 20.7
182.5 19.0
184.1 19.8
187.2 19.4
190.3 20.6
200.5 19.4
201.0 19.8
206.2 19.6
240.8 20.8
260.4 20.2
266.9 20.2
293.6 21.7
292.5 20.8
295.7 20.8
294.3 20.0
294.3 20.3
297.7 20.2
300.8 20.3

Hofmeister
AT (K) velocity

(m/s)
28.1 2.7
30.6 3.1
34.7 3.8
54.1 9.3
71.5 9.3
80.6 11.5
82.4 11.9

112.1 13.3
125.8 14.6
145.0 15.2
148.4 15.7
156.7 16.1
161.7 16.5
161.7 15.9
179.5 15.9
194.6 16.0
202.6 16.1
214.2 16.6
254.4 16.2
267.4 16.4
289.6 16.3
298.5 16.2
239.5 34.9



Colligan/Bayles
AT (K) velocity

(m/s)
23.0 1.0
31.2 1.5
36.4 2.3
42.4 2.8
46.1 3.5
54.2 4.3
60.2 5.2
55.0 3.6
68.4 5.2
63.9 5.8
79.5 5.8
80.2 6.3
79.5 6.6
78.8 6.9
76.5 7.7
78.0 8.4
80.2 9.1
78.0 9.3
89.9 8.4
95.1 8.9
95.8 9.2

102.5 9.9
94.4 11.3

112.9 14.5
115.2 14.5
116.7 14.5
118.1 16.7
116.7 17.5
111.5 17.9
115.2 17.9
117.4 17.9
128.5 19.6
130.0 20.0

Schleip
\T (K) velocity

(m/s)
67.6 0.9
81.4 2.2
89.0 3.7
96.9 5.1

106.0 5.0
108.9 7.4
118.6 8.6
128.2 7.8
130.6 8.0

134.7 9.9
136.7 12.1
147.5 12.2
148.1 17.4
151.1 17.7
151.6 18.5

156.0 17.8
174.2 31.1
182.1 34.4

184.7 34.2
185.3 34.7
200.2 40.5
202.0 40.1
188.8 45.1
209.0 39.9
209.0 41.4

210.2 43.,

208.7 47.6

221.3 48.4

228.9 44.(

238.9 50.E

253.5 56.(

264.1 55.E
303.9 66.(

- LI- L ~p---



1 323.21 72.2



Lum (this work)
AT (K) velocity

(m/s)
262 41
296 46
101 11
143 19
110 12
128 20
187 35
113 11
93 8.2

287 47
283 50
285 46
284 45
280 46
203 32
273 38

74 4.6
131 28
119 16
122 19
236 38



Part II: Fe-Ni

Barth FCC Fe-25 at.%
Ni

AT (K) velocity
(m/s)

73.3 2.7
77.1 1.9
88.5 2.1
93.4 3.0
96.7 6.0
97.7 5.1

110.8 4.1
122.7 9.5
144.4 14.9
150.4 17.7
153.1 10.8
174.8 40.2
179.2 30.3
180.8 32.3
196.0 32.9
197.7 30.2
198.7 32.1
203.1 31.5
211.2 30.9
217.2 34.4

,.,,~mmw MM "

Barth FCC Fe-30 at.%
Ni

AT (K) velocity
(m/s)

69.4 4.1
85.1 4.5
93.2 4.7
95.9 7.3

101.3 5.3
118.7 6.2
137.1 14.7
139.2 11.1
142.0 10.6
147.4 13.5
172.8 22.1
175.5 16.8
189.1 26.5
202.1 22.0
203.7 33.6
205.3 31.2



Lum BCC Fe-lO wt.%
Ni

AT (K) velocity
(m/s)

238 32.8
243 27.5
240 31
181 19.9
237 27.91
233 35.3
132 6.5
154 11.4
227 33.3
143 12.4
135 8.6
244 32.9
145 14.5

91 4.2
185 21.1
155 7

62 5.2
185 16.4
229 32.7
170 13.9

Lum BCC Fe-12 wt.%
Ni

AT (K) velocity
(m/s)

195 22.8
117 13.6
114 16.5
104 8
138 14.6
222 28
167 17.1
186 23.7
113 14.1
110 15.6
214 26.3
195 25.4
226 37.2
228 32.8
167 19.8
136 15.9
95 6.1

152 12.7
195 20.6
161 14.7



A4. Computer Code

The following pages contain the original computer code developed by the author

during this work.

Listed first is "Nic-xfer.c" (three pages), the routine used to translate Nicolet

oscilloscope data from an older, unwieldy "LOTUS 1-2-3" format to a more usable tab-

delimited column format.

Next is "mk-cyl-data.c" (two pages), the program which input text-style

composite interface IPLab images and produced datafiles suitable for input to the

solidification model (cylsiml l.c), simultaneously querying the user for various calibration

values.

Listed finally is "cylsimll.c" (seventeen pages). This is the computer-based

solidification model which made possible the determination of the solidification velocities

of the Ni and Fe-Ni specimens investigated in this work.
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