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Abstract

This work is directed towards the design of self-assembling mechanical systems - mechanical
systems that can be assembled via random interactions among their components. A class
of self-assembling mechanical systems is studied where assembly instructions are written
in each component in terms of conformational switches. Conformational switches are
mechanisms which change component shape as a result of local interactions with other
components, observed in the spontaneous self-assembly of bacteriophages.

Parametric design optimization of two types of mechanical conformational switches is
discussed. These mechanical conformational switches are used as building blocks of parts
for one-dimensional self-assembly via sequential random bin-picking. A genetic algorithm,
in conjunction with computer simulation of sequential random bin-picking, optimizes the
parameterized switch designs maximizing the yield of a desired assembly. The results are
presented in the case of two, three and four part one-dimensional self-assembly. Rate
equation analyses of the resulting designs reveal that conformational switches can change
part concentration by forming temporal intermediate assemblies, and can encode sub-
assembly sequences. Effects of initial part concentration and defects during assembly
are discussed. Design guidelines for n-part self-assembling systems are made based on
these results, and principle of subassembly in biology is re-examined in the context of self-
assembling mechanical systems.

An abstract model of self-assembling systems is presented where assembly instructions
are written as local rules that specify conformational changes of components. The model,
self-assembling automaton, is defined as a sequential rule-based machine that operates on
strings of symbols. An algorithm is provided for constructing a self-assembling automaton
which self-assembles a string of distinct symbols in a given sequence. Classes of self-
assembling automata are defined based on three classes of subassembly sequences described
by assembly grammars. The minimum number of conformations is provided which is
necessary to encode instances of each class of subassembly sequences. It is proven that
the rules corresponding to the above two types of conformational switches, and three
conformations for each component, can encode subassembly sequences of a string of distinct
symbols with arbitrary length.

Finally, an example is presented where the concept of conformational switching is applied
to assembly in micro-electromechanical systems (MEMS).
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Introduction

This work is directed towards the design of self-assembling mechanical systems - mechanical

systems that can be assembled via random interactions among their components. In partic-

ular, this thesis focuses a class of self-assembling systems where assembly instructions are

written in each component in terms of conformational switches. Conformational switches are

mechanisms which cause conformational switching (shape changes) of components as a result

of interaction with other components. Conformational switching of the component protein

molecules, for example, is observed in the spontaneous self-assembly of bacteriophages.

The goal of this thesis is the fundamental understanding of the role of such conformational

switching in self-assembling systems, and application of conformational switching to design

of self-assembling mechanical systems.

This chapter will first introduce the terms coded and uncoded self-assembly, and the

principle of subassembly, an important characteristic of coded self-assembly. The potential

applications of self-assembling mechanical systems will be then described. Also, the scope

of this thesis will be explained. This chapter concludes with a short description of the

remaining chapters in the thesis.

M



1.1 Coded and uncoded self-assembly

In [59], Whitesides provided a definition of a self-assembling system:

A self-assembling process is one in which humans are not actively involved,

in which atoms, molecules, aggregates of molecules and components arrange

themselves into ordered, functioning entities without human intervention.

Nature exhibits various kinds of self-assembly. One of the simplest is raindrops on a

leaf which, when placed close enough, merge together spontaneously to form one big drop

with smooth, curved shape. On the other extreme in complexity, protein molecules inside

biological cells self-assemble to reproduce cells each time they divide. These two examples

represent two types of self-assembly in nature - coded and uncoded self-assembly [59]. The

self-assembly of raindrops is an example of uncoded self-assembly, where assembly of each

component (in this case each raindrop) is directed simply by minimization of potential (in

this case thermodynamic) energy. Uncoded self-assembly, therefore, works to construct only

the simplest of such structures. On the other hand, many complex structures in nature,

e.g. biological cells, arise via coded self-assembly, where instructions for the assembly of

the system are built into its components. Self-assembly of biological cells, for example,

is directed by conformational changes in protein molecules realized by energy-dissipating

structures such as ATP.

A well-studied example of coded self-assembly in biology is assembly of bacteriophages,

a type of virus which infect bacterial cells. It is known that the assembly of new progeny

viruses in their host cell occurs in a fixed morphogenetic pattern, indicating coded self-

assembly. Biologists believe that assembly instructions for this self-assembly of bacterio-

phages are written in each component molecules in the form of conformational switches. In

a protein molecule with several bond sites, a conformational switch causes the formation

of a bond at one site to change the conformation of another bond site. As a result, a

conformational change which occurred at an assembly step provides the essential substrate

for assembly at the next step [58].

Figure 1-1 shows an example of a conformational switch in the inhibition of protein

enzyme by specific end-product inhibitor molecules. The catalytic activity of many protein

enzyme are activated by binding their substrates, and forming enzyme-substrate complexes



(a)

+
enzyme substrate enzyme-substrate

complex
b " _ , :,

( ) conformational
change

end-product enzyme substrate inactive enzyme
inhibitor

Figure 1-1: Biological example of conformational switching: inhibition of protein enzyme
by specific end-product inhibitor molecules (abstracted from Figure 4-21 of [58])

(Figure 1-1-a). The end-product inhibitor blocks the enzyme activity by reversibly binding

to the enzyme at a site other than the active site (the region that binds the substrates). The

binding of the inhibitor causes a conformational change at the active site on the enzyme,

which prevents the enzyme from combining with its substrate (Figure 1-1-b). The chemical

forces binding a specific end-product inhibitor to an enzyme are weak secondary forces such

as hydrogen bonds, salt linkages, and van der Waals forces and do not involve covalent

bonding. Hence, inhibition can be quickly reversed once the end-product concentration is

reduced to a low level.

1.2 Principle of subassembly

Assembly of many complex systems - either biological or mechanical - takes place in several

stages. At each assembly stage, subassemblies are made, which are then incorporated into

subassemblies at the next stage. For example, the beginning stage of an automobile assembly

is the production of elementary parts, such as wire, bolts, nuts, etc. These are put together

into subassemblies such as generators, dashboard instruments, etc., which are then used

L

0+ +



to build more complicated subassemblies such as engines, bodies, etc. This process of

subassembly has three significant advantages [19, 18]: reliability, efficiency and variety.

Subassembly processes are reliable, since elimination of defective subassemblies can be done

at each assembly stage. A defective subassembly produced at one stage will not be built into

an assembly at the next stage. Also, with regard to efficiency, subassemblies at a stage can

be carried out simultaneously. This greatly speeds up an entire assembly process, compared

to sequential step-by-step assembly processes where parts are put together only one at a

time. Finally, a common subassembly can be used in a variety of different assemblies, or

can be used repeatedly in many places in an assembly. It is clear that these advantages of

subassembly process is more significant in self-assembling systems, where assembly occurs

via random interactions among components. This seems to be the reason almost all coded

self-assembling systems in nature show the formation of subassemblies.

An example subassembly process in biological systems is found in the self-assembly of

bacteriophages. Figure 1-2 shows the simplified pathway for assembly of a type of bacterio-

phage, T4, which infects the bacterium E.coli strain B [9, 14, 10]. The morphogenetic

pathway clearly shows formation of subassemblies; a head and a tail form a head-tail

subassembly, and this subassembly is then put together with tail fibers. For simplicity,

let us write the assembly tree in Figure 1-2 in a list representation (F(TH)), where F, T

and H represent tail fiber, tail and head, respectively. A question arises immediately: how

did nature prefer the fixed subassembly sequence (F(TH)) out of all possible subassembly

sequences? In particular, why not the other possible sequence, ((FT)H)? What kind of

conformational switching realizes this fixed morphogenetic pattern?

1.3 Applications of self-assembly in mechanical engineering

Based on the discussion in the preceeding sections, it can be said that the process of self-

assembly holds the following characteristics:

* Random interaction among components: assembly occurs via the random in-

teraction among components, subassemblies, and possibly final assemblies.

* Asynchronized formation of parallel assembly: multiple subassemblies can form

parallelly and the formation of each subassembly proceeds independently.



Head

0
Tail

I21
Tail Fiber
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Figure 1-2: Pathway of T4 bacteriopha, and rearranged from Figure
3 of [54])



From mechanical engineering point of view, these characteristics hilight a number of attrac-

tive features of self-assembly, in particular coded self-assembly. These include:

* Efficiency: since the process of self-assembly implicitly realizes parallel assembly of

components, very high assembly rates can be achieved. Also, no need for precise

part positioning/orientation increases the efficiency of assembly process, especially in

assembly of very small parts.

* Robustness: since assembly instructions are distributed among each components, the

assembly is more robust against unknown disturbances to the systems. This makes

the systems suitable to automated assembly in unstructured/unmodeled environment.

The following discusses some areas of the practical applications of coded self-assembly

in mechanical engineering which utilize the above features.

1.3.1 Assembly at very high rates

The common image of assembly is a robotic or human hand grasping one part at a time,

assembling it into a product held on a fixture. There are natural limits to the speed with

which this process can be carried out. Adding more human or robot hands is often not cost

effective to achieve very high rates of assembly.

Moncevicz et al. [38, 40, 39] developed a layered palletization technique, where parts are

"palletized" by using vibration to convey them over a plastic "pallet" into which are carved

an array of relief shapes that trap and orient the flowing parts. The first part is designed such

that once a quantity is held in the pallet, it becomes integral with the pallet for the purpose

of palletizing a quantity of the second part. Therefore, the second part palletization actually

assembles the second part to the first part. Since many part insertions occur simultaneously,

a very high assembly rate can be achieved. I believe that this layered palletization process

(and other similar processes) could be employed in more cases if temporary nonfunctional

shape features could be added to the pallet or the palletized parts. Between part layers,

for example, a "primer layer" of nonfunctional "pseudo parts" could be palletized. The

sole purpose of this primer layer would be to cause geometric shapes that would facilitate

the subsequent palletization of the next part layer. If the pseudo parts are not needed



for (or worse prevented) the functioning of the assembled device, they must be removed

before the device is used. This could be accomplished if their design involved the use of a

conformational switch that detached them upon the arrival and assembly of the part whose

assembly they were intended to facilitate.

1.3.2 Assembly of very small things

Another problem with the common "part grasping" image of assembly is that some parts are

simply too small to grasp. In that case, a self-assembly process might be the only possible

approach. Yeh and Smith [63, 64] used a (non-layered) palletization technique similar

to [40, 39], to assemble microstructures. They fabricated trapezoidal gallium arsenide

(GaAs) blocks and a Si wafer with trapezoidal holes. Assembly is then done by releasing

the GaAs blocks in a carrier fluid (ethanol) and dispensing the fluid over the Si wafer.

Cohn et al. [11] experimented with the self-assembly of a small hexagonal lattice (1 mm

in diameter) by placing a quantity of them on a slightly concave diaphragm that was

agitated with a loudspeaker. Incorporating conformational switching to such micro-scale

self-assembly processes might facilitate the non-trivial assembly of very small parts.

1.3.3 Assembly very far away

Consider trying to remotely assemble a set of components that are very far away. An

example might be the construction of housing units on a distant planet. Teleoperation

control issues arise along with the problem of the cost of transmitting control signals back

and forth to the remote site. An alternate approach might be to send quantities of the

component parts to the site, and outfit them with an autonomous means of locomotion.

The parts could roam around until they find each other and correctly assemble. Again, the

similarities with the viral assembly process are clear, and conformational switches could be

similarly useful.

1.4 Scope of this thesis

The goal of this thesis is the fundamental understanding of the role of conformational

switching in self-assembling systems, and application of conformational switching to design



of self-assembling mechanical systems. More specifically, the following problems will be

addressed:

* What is the role of conformational switching in the self-assembling systems, where

assembly occurs via random interaction among components? What kinds of confor-

mational switches are necessary to facilitate complex self-assembling processes?

* What is the mechanical implementations of conformational switches like? How one

can optimize the design of self-assembling mechanical systems using the mechanical

conformational switches?

Due to the random interactions among components, the process of self-assembly can be

very difficult to model. The modeling of bacteriophage self-assembly, for example, involves

modeling of dynamic interaction of molecules driven by electrostatic forces and van der

Waals forces. Studying such complex self-assembling processes as it is, therefore, is not

feasible for the purpose of addressing the above problems. Alternative approach is to define

a simplified model of self-assembling processes and use it as a tool to study the above

problems. If the simplified model effectively captures the essence of self-assembling process

in general, i.e. random interaction among components and asynchronized formation of

parallel assembly, what is learned from studying the simplified model will be able to give the

useful insight in the case of more complex self-assembling systems. Accordingly, this thesis

will address the above problems in the case of a simple model of self-assembling processes

called sequential random bin-picking. It is a one-dimensional self-assembling process where

assembly of a random pair of components occurs at a time. The details of the model will

be explained in Section 3.1.

1.5 Overview of the Chapters

The next chapter describes the previous work on self-assembling systems in mechanical

engineering, chemistry, and biology. In mechanical engineering, several designs of mechani-

cal systems with self-positioning/self-orientation capability are discussed. Also, some work

is presented on the mechanical model of conformational switches. In chemistry, work on

deigning three-dimensional self-assembling structure via molecular aggregation is described.



In biology, work on computational model of bacteriophage assembly, and classical models

of subassembly processes in biological self-assembly is discussed.

Chapter 3 discusses parametric design optimization of two types of mechanical conforma-

tional switches: sliding bar mechanisms and minus devices. It first introduces the sequential

random bin-picking, the simplified model of self-assembling process used throughout this

thesis. Then it briefly explains the genetic algorithm which is used for parametric design

optimization. Then, the results of genetic design optimization, along with rate equation

analyses of the resulting designs, are presented in the case of two, three and four part one-

dimensional self-assembly. Some questions on relationship between conformational switch

design and subassembly sequences are discussed.

Chapter 4 describes the theory of one-dimensional self-assembling automata, an ab-

stracted model of self-assembling systems motivated by the questions posed in Chapter

3. It starts with definition of self-assembling automata. An algorithms to construct a

self-assembling automata is then presented. Several theorems are proved on the classes of

self-assembling automata and the self-assembling automata with minimum conformations.

Chapter 5 presents a design of a micro "mouse trap," a conformational switch for micro

assembly. The basic function of the device, the results from structural analysis, and the

fabrication process are described.

Chapter 6 summarizes the contribution of the thesis and suggests several future work.

There are five appendices. Appendix A lists all optimal designs of two-part sequential

assembly described in Section 3.4.2. Appendix B is on details of the rate equation for

two part self-assembly with a dummy part and its numerical results, which appears in

Section 3.4.6. Appendix C explains the detailed derivation of Rosen's subassembly model

described in Section 2.3.2. Appendix D provides the proof of the Unique Factorization

Theorem used in Section 2.3.2. Appendix E describes the proof of the fact that the size of

non-ambiguous subassembly sequences of n-part one-dimensional assembly is Q2(2n).



2

Related Work

Although no work has been found directly focusing the scope of this thesis, there are some

related work in the general area of self-assembling systems which motivated this work.

This section reviews these previous studies on self-assembly in mechanical, chemical and

biological systems.

2.1 Self-assembling mechanical systems

2.1.1 Self-positioning of small mechanical parts

Several approaches have been proposed to incorporate self-positioning to assembly of small

mechanical parts. Some techniques are developed for self-positioning of components from

totally random positions and orientations.

Moncevicz and Jakiela developed the concept of mass aggregate assembly [40, 39] in

the domain of high volume assembly of consumer electromechanical products (cameras,

videocassette recorders, etc.). This process employs part presentation devices (feeding

and orienting machines) that transport bulk quantities of parts to actually assemble large

quantities of parts in parallel simultaneously.

As an implementation of the concept of mass aggregate assembly, Moncevicz [38] de-
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(a) GaAs

Si substrate

(b)

Figure 2-3: Fluidic self-assembly of GaAs blocks onto Si substrates. (redrawn from [64])

veloped layered palletization technique using SONY's Automated Parts Orienting System

(APOS). As shown in Figure 2-1, APOS "palletizes" parts by using vibration to convey

them over a plastic pallet with an array of relief shapes that trap and orient the flowing

parts. To achieve parallel assembly of two parts, a quantity of the first part is palletized

(Figure 2-2(a)). This first part is designed such that once held in the pallet relief forms,

it becomes integral with the pallet for the purpose of palletizing a quantity of the second

part. The second part palletization actually assembles a quantity of the second part to the

first part (Figure 2-2(b)). The mated part pair is removed as a subassembly unit from the

pallet. Since many part insertions occur simultaneously, a very high assembly rate can be

achieved.

In the domain of micro-electromechanical systems (MEMS), Yeh and Smith [63, 64]

assembled light-emmiting diodes (LED) using a (non-layered) palletization technique similar

to [40, 39]. Trapezoidal microstructures made of galium arsenite (GaAs) are transferred

into an inert carrier fluid (ethanol) and assembled onto a host silicon (Si) substrate with

trapezoidal holes by fluid transport (see Figure 2-3). This technique is well suited for the

integration of microstructures on substrates made of incompatible material systems such as

GaAs and Si.

Cohn et al. [11] experimented with the self-assembly of small hexagonal parts (1 mm in

diameter) by placing a quantity of them on a slightly concave diaphragm that was agitated
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Figure 2-4: Vibratory self-assembly of hexagonal parts. (redrawn from [11])

(a) (b)

Figure 2-5: Two-dimensional self-assembly of micro parts using surface tension of the water.
(redrawn from [29])

with a loudspeaker. The curvature of the diaphragm, as well as the amplitude and frequency
of the vibration exerted by the loudspeaker, is controlled so that a pile of the hexagonal parts
(Figure 2-4(a)) can form a regular two-dimensional lattice (Figure 2-4(b)) in the process
analogous to crystal annealing.

Hosokawa, Shimoyama and Miura [29] experimented with the two-dimensional self-
assembly of micro parts on a water surface. The micro parts (approximately 400pm long)
are designed such that they self-assemble in a regular arrangement due to surface tension
of the water (Figure 2-5).

While no external positioning/handling of components is necessary in these techniques,
the components are not positively fastened after self-positioning, causing them to disas-
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Deflecting cantilever

Figure 2-6: Self-adjusting microstructures (SAMS). (redrawn from [32])

semble very easily. On the other hand, some approaches have been proposed on the use

of mechanical force to both self-position and fasten micro components so that assembly

requires less positioning/handling of components. Judy, Cho, Howe and Pisano [32] fabri-

cated a self-adjusting microstructures (SAMS). It is a laterally-deflecting cantilever on the

sidewall of a polysilicon mesa which adjusts the position of substrate-free micro structures

attaching to the cantilever, and provides the bearing forces between structures (Figure 2-

6). Burgett, Pister and Fearing [8] used spring loaded latches to self-position the plates

within microfabricated hinges. After fabrication, they used hydrodynamic forces of rinsing

water to self-assemble the micro plate to rotate out of the plane of the wafer (Figure 2-7).

Prasad, B6hringer and MacDonald [45] fabricated a micro snap fastener with 1-2 pm wide

laterally-deflecting chambered latches (Figure 2-8).

2.1.2 Mechanical model of conformational switches

Due to its inherent complexity, little work has been done on coded self-assembly of physical

systems. Penrose [42], suggested several designs of mechanical conformational switches that

are used in devices that "self-reproduce". These conformational switches cause a bond at

one location to break a bond existing at another location or prevent a bond from occurring

at another location. When the correct number and arrangement of sub-devices are linked,

the conformational switches cause the entire chain to cleave into two copies of the original

self-reproducing device in a process akin to cell division (Figure 2-9). Another example

is found in Hosokawa et al. [28, 27]. They developed triangular parts employing switches

realized with movable magnets that allow parts to bond together to form hexagons. The

switches allow a part to be either in an active or inactive state. An activated part can bond



(b)

Figure 2-7: Snap-lock mechanism of a hinged microstructure. (redrawn from [8])

(a)

Figure 2-8: Micro snap fastener. (redrawn from [45])

(b)
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to an inactivated part, turning the part to an activated state (Figure 2-10). These parts are

assembled in a rotating box randomizer. The amounts of each intermediate subassembly

achieved agreed reasonably well with the predicted values obtained by techniques analogous

to chemical kinetics.

2.2 Self-assembling chemical systems

2.2.1 Liposome and self-assembling monolayers

Since 1960's, biomedical researchers have been experimenting with liposomes, spherical

bilayer structure shown in Figure 2-11, as drug-delivery systems. As the name indicates,

liposomes are made of phospholipids, major component molecules found in cell menbranes.

When placed in aqueous environment, phospholipids spontaneously self-assembles a double

layer (called phospholipid bilayer), in which the hydrophilic ends are in contact with the

water and the hydrophobic ends point towards one another. If there are enough molecules,

the phospholipid bilayer will grow into a sphere with a cavity large enough to hold a drug

molecule. Since the encapsulated drugs are protected from degradation by enzymes, a

drug contained in a liposome envelope can remain active longer than it would otherwise.

Liposome drug-delivery systems are currently under clinical trials.

Self-assembling monolayers (SAMs) are designed to utilize the process of uncoded self-

assembly similar to liposomes. A SAM is one- to two-nanometer-thick film of synthetic

organic molecules that form a two-dimensional crystal on an absorbing substrate. The

molecules in a SAM are designed such that they interacts strongly with the surface at one

end and not the other, just like the hydrophilic and hydrophobic ends of a phospholipid.

The most extensively studied system of SAMs is made of alkanethiols, long hydrocarbon

chains with a sulfer atom at one terminus. When a glass plate coated with a thin film of

gold is dipped into a solution of alkanethiol, the sulfer atoms attach to the gold, generating

a two-dimensional crystal (Figure 2-12). The thickness of this crystal can be controlled

by varying the length of the hydrocarbon chain, and the properties of the crystal's surface

can be modified by attaching different terminal groups. In contrast to most procedures

for surface modification, all these operations are simple and inexpensive, requiring neither

high-vacuum equipment nor lithography.
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Figure 2-9: Self-reprodcing machines. (redrawn from [42])
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(b)

Figure 2-10: Self-assembling triangles. (redrawn from [27])

hydrophilic end

Figure 2-11: Cross-sectional view of liposome. (redrawn from [58])
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Figure 2-12: Self-assembling monolayer (SAM). (redrawn from [59])

2.2.2 Three-dimensional self-assembly of synthetic supermolecules

Uncoded self-assembly of three-dimensional synthetic supermolecules has recently been

implemented in several types of organic and inorganic systems. By using metal coordi-

nation, hydrogen bonding, and donor-recepter interactions, researchers have achieved the

spontaneous formation of three-dimensional supermolecules. Lehn et.al introduced several

three-dimensional structures assembled via metal coordination. For instance, the cylindrical

structure shown in Figure 2-13 is made of three linear structures and two cyclic structures,

which are linked by six copper (I) metal ions. The complex form spontaneously upon

addition of [Cu'(CH3CN)4)]BF4 to a solution of the organic ligands.

Branda et. al [7] designed two complementary molecules which are capable to assembling

into dimeric capsules through hydrogen bonding. The capsule is made of two monomeric

structures with a self-complementary arrangement of electron doners and receptors on the

edge (Figuer 2-14(a)). The resulting structure has the same geometry as a tennis ball,

as shown in Figure 2-14(b). The self-assembly of the monomeric structures is induced by

addition of small guest molecules (e.g. xenon), and the resulting dimer encapsulates exactly

one guest molecule. The dimerization can be controlled by changes in the acidity of the

medium, realizing the reversible encapsulation of the guest molecule.

/1ý'N



Figure 2-13: Cylindrical supermolecuar structure assembled via metal coordination.
(redrawn from [34])
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(b)

Figure 2-14: Dimerization of self-complementary subunits to form a molecular "tennis ball."

(redrawn from [7])
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Figure 2-15: Tail structure and assembly of bacteriophage T4. (addopted from [9]: see [9, 14]
for detail.)

2.3 Self-assembling biological systems

2.3.1 Computational models of bacteriophage assembly

Coded self-assembly of bacteriophages has been studied by number of biologists (e.g. [9,

14], also see Figure 2-15), and several computational models have been developed. Thomp-

son and Goel [54, 55, 19] developed a computer model that simulates the assembly and

operation of bacteriophage T4. A simplified model of a virus is constructed from building

blocks which are abstractions of the protein molecules. These building blocks are augmented

finite automata that can move randomly in their environment and bond to the other blocks.

State transition rules of a block specify how bonds can form and how conformational

changes propagate within the block. The same approach has been used to model protein

biosynthesis [20, 19]. Berger et al. [6] developed a local rule theory for self-assembly of

icosahedral virus shells. They assume that identical protein subunits take on a small number

of distinct conformations. The local rules then specify, for each conformation, which other

conformations it can bind to and the approximate interaction angles, interaction length,

and torsional angles that can occur between them. By following this local information, the

subunits form a closed icosahedral shell with the desired symmetry.



2.3.2 Models of subassembly processes in biological assembly

This section discusses two important investigations on subassembly processes in biological

assembly. Due to the relevance to this work, these are described in some detail.

Crane's subassembly model

Crane [13] has provided a lucid discussion of the advantages of subassembly processes

in the construction of complicated structures from elementary subunits. One aspect of

his discussion has to do with scheduling the assembly process into a series of stages, or

subassembly processes. In his presentation, we start with 1,000,000 identical elementary

units. Our objective is to build structures of 1,000 unit length (deca-deca-decamers) using

two different subassembly processes. The first subassembly process consists of three stages:

1. Ten elementary units are put together to form 100,000 subassemblies of 10 unit length,

or 100,000 decamers.

2. Ten of the decamers are put together to form 10,000 subassemblies of 100 unit length,

or 10,000 deca-decamers.

3. Ten of the deca-decamers are put together to form 1,000 final assemblies of 1,000 units

long, or 1,000 deca-deca-decamers.

The second subassembly process is to join one thousand elementary units together in a

stage. He assumed there was a defect probability that a unit was added wrongly causing

the subassembly to become defective. He further assumed the defective subassemblies could

not be incorporated into a subassembly at the next stage, and the elementary units in the

defective subassemblies were completely wasted. Assuming the same defect probability of

1% at each subassembly stage, the first three-stage subassembly process gives 739 deca-

deca-decamers1 out of a possible 1,000. On the other hand, the second subassembly process

with the same defect probability produces only 0.0432 deca-deca-decamer 2 . It is clear that

the first three-stage subassembly process is far more efficient than the second one-stage

subassembly process.

1Obtained by (1 - 0.01)10+10+10 (1, 000, 000/1, 000) = 739; see Appendix C for more detail.
2Similarly, by (1 - 0.01)1,000(1, 000, 000/1, 000) = 0.0432; see Appendix C for more detail.



Rosen's subassembly model

Following Crane's work, Rosen [47] posed the following question: how can we choose the

number of subassembly stages, and the number of elementary units to be put together at

each stage, in such a way as to maximize the yield of the desired assembly at the last

stage? By extending Crane's subassembly model, he showed the above problem could be

formulated as an integer programming problem3 :

maximize (1 - q)rl+r2+-+r. N ( ) (2.1)

subject to L = rl .r2 -... " TN

N>0; NEZ (2.2)

ri_ 0; riEZ; iE{1,2,...,N}

where q, M and L are defect probability, the number of elementary units in the initial pool,

and the number of elementary units in a desired assembly, respectively. N is the number

of subassembly stages and ri is the number of subassemblies produced at the (i - 1)-th

stage, which are incorporated into a subassembly at the i-th stage4 . Since q, M and L

are positive constants, and (1 - q) _ 1, The above problem is equivalent to minimizing the

exponent rl + r 2 +... + rN under the same constraints. The Unique Factorization Theorem5

in elementary number theory shows that the factorization of L into prime numbers has the

property that sum of the factors is minimal. In the case of L = 1000, the prime factor

decomposition is:

L = 1000 = 2-2.2-5.5-5 (2.3)

which gives N = 6. The corresponding yield is:

(1O.O01)2+2+2+5+5+5 1, 0 00 0 00  810 (2.4)K1,000 -

"The derivation is found in Appendix C
'In the Crane's first subassembly process, for example, q = 0.01, M = 1,000,000, L = 1,000, N = 3,

and ri = r2 = r3 = 10.
dThe proof is found in Appendix D.



which is larger than 739, the yield by Crane's first subassembly process. Note that the theo-

rem says nothing about the order of factorization; it makes no difference how we distribute

the ri among the subassembly stages. In this case, for example, (r, r 2 , r3, r4, r 5 ,r6) -

(2, 2, 2, 5, 5, 5) and (rl, r2, r3, r4, r 5 , r6) = (2, 5, 2,5, 2, 5) are equivalent in terms of the yield

of the final assemblies.

The importance of Rosen's work lies in the fact that he formulated the problem of

finding the best subassembly schedule as an optimization problem, and provided a solution

in closed form. There are, however, several points to be generalized to make his model

more realistic. First, the defect probability q should not be the same for each subassembly

stage. This generalization, however, yields another integer programming problem, which in

general cannot be solved in a closed form:

maximize (1 - ql)rl (1- q2) r 2 ... (1- qN)rN (l) (2.5)

subject to L = rl - T2 .... • TN

N>0; NEZ (2.6)

ri 2 O; ri E Z; iE{1,2,...,N}

The second point for generalization is that the model should allow subassembly processes

which involve subassemblies with non-equal numbers of subunits. For instance, it should be

possible to consider the subassembly process which produces a 1,000-mer out of five 100-

mers and four 125-mers at the final stage. Finally, the model should be extended such that

it can express the simultaneous construction of subassemblies. It should, for example, be

possible to form a 100-mer out of ten 10-mers as soon as the first ten 10-mers are produced,

not after all the elementary units are assembled into 10-mers.



Parametric Design Optimization

of Simple Mechanical

Conformational Switches

This chapter discusses parametric design optimization of two types of simple mechanical

conformational switches, sliding bar mechanisms and minus devices. These mechanical con-

formational switches are used as building blocks of self-assembling parts for one-dimensional

self-assembly via sequential random bin-picking. A genetic algorithm, in conjunction with

computer simulation of sequential random bin-picking, optimizes the parameterized switch

designs to maximize the yield of a desired assembly. The results of genetic optimization,

along with rate equation analyses of the resulting designs, are presented in the case of two,

three and four part one-dimensional self-assembly. The principle of subassembly in biology

is re-examined in the context of self-assembling mechanical systems, and some questions on

relationship between conformational switch design and subassembly sequences are discussed.



3.1 Sequential random-bin picking

In this thesis, a simplified model of self-assembling process, the sequential random bin-

picking, is used to study the role of conformational switching in self-assembling systems.

It is a simple one-dimensional self-assembly process where assembly of a randomly-chosen

pair of parts (possibly subassembly of parts) occurs at a given time:

Assume a random assortment of parts in a (one-dimensional) bin (Figure 3-1(a)).

Step 1: Imaginary robot arm #1 randomly picks up a part from the bin. Then, imaginary

robot arm #2 randomly picks up another part from the bin (Figure 3-1(b)).

Step 2: The two parts are pushed against each other, possibly causing formation of a

bond (Figure 3-1(c)).

Step 3: The parts are randomly returned to the bin (Figure 3-1(d)), possibly as an

assembly.

The steps 1-3 are repeated until pre-specified conditions are satisfied (e.g. repeat for

a specified number of iterations, repeat until the number of parts decreases below a limit,

etc.). It is assumed that the parts do not change their orientations, so in general, AB and

BA are two distinct assemblies.

I follow Crane's assumption of defects [13] during the above self-assembly process.

Namely, I assume 1) with a certain probability two subassemblies (or two parts) are put

together incorrectly, causing the resulting subassembly to be defective, and 2) the defective

subassemblies cannot be incorporated into the subsequent subassemblies, so the parts in

the defective subassemblies are completely wasted. In the scenario above, a defect could

occur at step 2 with a certain probability if two parts picked can form a bond1, with the

defective subassembly being returned to the bin. If the defective subassembly is chosen at

step 1 in subsequent iterations, no bond is formed at the step 2, regardless of the bond

configurations of the two mating sites. In this manner defective subassemblies "waste" an

iteration of the robot bin-picking.

Note that the above definition of the sequential random bin-picking holds the essential

1If they cannot form a bond, no defect occurs and they are simply returned to the bin.
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characteristics of general self-assembling processes discusses in Section 1.4 - random in-

teractions among components and asynchronized formation of parallel assembly. The part

interactions are random due to the random picking at the step 1 and random returning at

the step 32. Also, it sequentially simulates asynchronized formation of parallel assembly

since the assembly process is "fine-grained" such that only a pairwise mating of tow parts,

a most fundamental unit of assembly, are allowed at a given time.

Although the sequential random bin-picking is simple enough to be simulated on com-

puter easily, it is also general enough to realize the three generalizations to Rosen's sub-

assembly model described in Section 2.3.2. It is possible to specify different defect proba-

bilities for different combinations of parts or bond configurations. Also, since the scenario

does not formulate subassembly sequences explicitly, rather they are assumed to emerge by

searching the space of possible conformational switch designs, any subassembly sequence

can be realized if it can be encoded by the conformational switch3 , including the ones

which involve subassemblies with non-identical numbers of parts. Finally, although there

are only two (imaginary) robot arms (as opposed to many robot arms for parallel assembly),

the scenario can simulate the simultaneous construction of several subassemblies since it is

globally synchronized based on mating of two subassemblies, rather than completion of a

subassembly stage.

3.2 Mechanical conformational switch for one-dimensional

self-assembly

3.2.1 Sliding bar mechanism

The design of the first type of conformational switches, sliding bar mechanisms, is motivated

by the "counting device" appearing in [42]. I extended this counting device so that a part

can form and destroy a bond with another part.

As shown in Figure 3-2-a, a part has two bonding sites and a conformational switch is

realized with a sliding bar mechanism that connects the two bonding sites. Conformational

2In fact, the returning does not have to be random if the picking is completely random.
3This raises the question of which subassembly sequences can be encoded by a particular conformational

switch. Some discussion on this issue is found in Sections 3.5.6 and 3.5.8.



(a) bonding site

co•nfo•rma•;tioa r•[Ir

change

(b)

Figure 3-2: One-dimentional conformational switch with a sliding bar mechanism.

change is triggered by interaction with another part (see Figure 3-2-b). Note that this

is a conformational switch design for one-dimensional self-assembly, where parts can be

assembled in only one direction, say horizontally. In Figure 3-2, therefore, one can place a

part on the left or the right of another part, but not on the top or bottom. However, the

model could easily be extended to the two-dimensional case.

A bond configuration is a parameter which describes the shape of a bonding site. It takes

a positive value if the corresponding site has convex shape, a negative value if the site is

concave, and zero if the site is flat. Examples of bond configurations and the corresponding

shape of bonding sites are shown in Figure 3-3.

When bonding sites of two parts meet, they form either 1) a stable bond, 2) an unstable

bond, or 3) no bond. The occurrences of these cases depend on the shape of the two

bonding sites, or equivalently, the bond configurations of the sites. Let a and b be bond

configurations of two bonding sites contacting each other. These sites form a stable bond

if a + b < 0 (complementary), form an unstable bond if a + b = 1 (fairly complementary),

and form no bond if a + b > 1 (not complementary). Figure 3-4 shows examples of each of

the three cases.
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bond +1 -1 0
configuration

Figure 3-3: Bond configurations.

An unstable bond induces conformational change of the involved bonding sites, which

can propagate over the connected parts via the sliding bar mechanism. After the confor-

mational changes, a stable bond is formed if a + b < 0 and no bond is formed if a + b > 1.

Also, an existing bond is destroyed if a + b > 1 after the conformational changes, which

results in detaching of the corresponding parts. Figure 3-5 illustrates an example of such

propagation and detaching.

Ambiguous situations may arise when conformational change can propagate in both

directions or in no direction, such as the cases shown in Figure 3-6-a. To resolve such

ambiguity, we assume an upstream propagation priority. As shown in Figure 3-6-b, confor-

mational change propagates downstream (as defined in Figure 3-6), only when the upstream

direction has a rigid end and downstream has a free end (the bottom picture of Figure 3-6-b).

Otherwise, propagation goes upstream (the top and middle picture of Figure 3-6-b).

3.2.2 Minus devices

The second type of conformational switches, minus devices, are designed such that they are

functionally opposite to the sliding bar mechanisms. Recall as a result of the conformational

11I .1. 1 1 1 1
bond site
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Figure 3-4: Three types of bonding.

Figure 3-5: Propagation of conformational changes and detaching.
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change, the sliding bar mechanisms can destroy a bond which is formed before the confor-

mational change. In contrast, the minus devices prevents the formation of a bond before

the conformational change, and allows the formation of a bond after the conformational

change.

In order to realize this function in a mechanically realistic way, we introduce a new

gadget called the minus device. Figure 3-7(a) shows the operation of a minus device. It

consists of two short sliding bars that constitute the shapes of two bonding sites, and one

inner sliding block that connects them. The left and right pictures in Figure 3-7(a) show the

minus device before and after conformational change, respectively. Before conformational

change, the right sliding bar cannot be pushed in due to the position of the inner sliding

block. After conformational change induced by pushing in the left sliding bar, the right

sliding bar can be pushed in since pushing in the left sliding bar causes the inner block to

slide down, leaving space for the right sliding bar to slide left. The device is named "minus"

since a sliding bar is being pushed by another part, as opposed to pushing another part

as in the case of a sliding bar mechanism. For simplicity, I will often use the abstracted

representation of the device, a minus sign with an arrow, shown in Figure 3-7(b). The

direction of the arrow indicates that causality of conformational change. A right-pointing

arrow indicates the conformational change is induced by pushing the left sliding bar and vice

versa. Note that in the abstract representation, the right sliding bar after conformational

change is drawn as the "pushed-in" state, representing that the bar is "free" to be pushed

in.

Figure 3-7(c) shows how interaction with another part induces conformational change in

a minus device. Note that conformational change realized by a minus device is unidirectional

and irreversible. In the top picture of Figure 3-7(c), for instance, no conformational change

is induced if the hatched rectangular part is placed on the right of the part with the

minus device (unidirectionality). Also, since the minus device is not "spring-loaded", it

is impossible to reverse the conformational change (irreversibility). This implies that once

a part changes its conformation and a bond is formed as a result, it will never be destroyed,

i.e. no detaching is possible.

The actual conformational switch design used in the following section consists of a "two-

digit" bonding site as shown in Figure 3-8. The two-digit bonding sites are introduced in
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Figure 3-8: One-dimensional conformational switch with "two-digit" bonding sites.

Figure 3-9: Examples of bond configurations and the corresponding two-digit bonding site
shapes (of the left bonding site).

order to increase the number of possible shapes they can take, which in turn increases the

number of subassembly sequences they can encode4

In the case of a two-digit bonding site, a bond configuration is a pair of integers (al, a 2 ).

As in the single-digit case, each component of a bond configuration takes a positive value if

the corresponding "digit" of the bonding site has convex shape, a negative value if the the

digit is concave, and zero if it is flat. Examples of bond configurations and the corresponding

shapes of two-digit bonding sites are shown in Figure 3-9.

The occurrences of the three types of bonding, a stable bond, an unstable bond and

no bond, can be defined as follows. Let (al, a2) and (bl, b2 ) be bond configurations of

"To determine the number of "digits" necessary to encode a given assembly tree is an interesting coding
problem and will be discussed in Section 3.5.8.

I I I



two bonding sites contacting each other. These sites form a stable bond if they are

complementary to each other:

ai+bl < 0 and a2 + b2  0 (3.1)

and form an unstable bond if they are fairly complementary:

(al+bl = 1 and a2 + b2  0) or (al+bl :50 and a2 +b 2 = 1) (3.2)

If none of the above apply, the two bonding sites are not complementary and therefore

no bond is formed. Figure 3-10 shows some examples of each of the three cases. An unstable

bond induces conformational change of the involved bonding sites. After the conformational

changes, a stable bond is formed if the condition (3.1) is satisfied. Otherwise, no bond is

formed.

Similar to the single-digit case, ambiguous situations may arise when conformational

change can propagate in both directions such as the case shown in Figure 3-11(a). In such

cases, I assume propagation goes upstream as defined in Figure 3-11(b) (priority to upstream

propagation).

3.3 Parametric design optimization with Genetic Algorithms

3.3.1 Genetic Algorithms

Genetic algorithms (GAs) are a search technique in which points in the design space

are analogous to organisms subject to a process of natural selection, or "survival of the

fittest" [21]. GAs model reproduction in populations of an encoded representation of

points in design space - genetic "chromosomes" - over generations. In a given generation,

the quality of a chromosome (or a point in design space) is measured based on a fitness

function, and highly-fit chromosomes have higher chances to be selected for reproduction.

Two "parent" chromosomes selected for reproduction are mated through genetic crossover,

resulting in two offspring chromosomes which are likely to inherit good "genes" from their

parents. Many generations of such selection and mating will produce a highly-fit population
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(a) ambiguous situation

U

(b) results by upstream propagation

upstream

Figure 3-11: Priority to upstream propagation.

of chromosomes, i.e. better designs.

3.3.2 Problem formulation

I am interested in designing conformational switches that, when randomly assembled,

maximize the yield of a desired assembly. More precisely, the problem is stated as follows:

Given: the total number of parts, and the number of each kind of part in the bin (in

other words, the initial state of the bin), and defect probabilities.

Find: the optimal design of conformational switches (ant their initial bond configurations)

that maximizes the yield of a desired set of parts in the process of the sequential

random bin-picking.

The above problem is formulated as search by parameterizing the design of the confor-

mational switches. A genetic algorithm is used to search the parameter space of possible

switch designs. It should be noted that I am searching the space of possible conformational

switch designs, not the space of subassembly sequences. There is no explicit formulation

IS~+

R+ _ L



of subassembly sequences in the above problem. Rather, an optimal subassembly sequence

emerges due to a particular design of conformational switches that maximizes the yield of

the desired assembly.

3.3.3 Reinforcement evaluation

A chromosome is evaluated by decoding the bit string representation (genotype) to a part

design (phenotyope), and by running the sequential random bin-picking simulation with the

decoded part design. The fitness of a chromosome (i.e. the suitability of conformational

switch designs and their initial bond configurations) is simply the number of desired assem-

blies produced after some number of iterations of the robot bin-picking simulation. In order

to reduce stochastic error due to random picking during the simulation, the actual fitness

is measured as an average of a pre-specified number of such bin-picking runs.

For further reduction of stochastic error involved in the fitness evaluation, A new scheme

called reinforcement evaluation is introduced. In this scheme, the best chromosome in

the population is evaluated again at the end of each generation. The fitness of the best

chromosome is then re-calculated to "reinforce" the evaluation:

n - fold + f
fnew = (3.3)n+l

where fold and fnew are the fitness values before and after reinforcement, f is the

fitness value obtained by the additional evaluation, and n is the number of times the

chromosome has been evaluated. This ensures that only good chromosomes that are carried

over generations have more chances to be evaluated many times, reducing stochastic error

of their fitness values. The above reinforcement evaluation scheme is used in the case of

three and four part self-assembly described in Section 3.5.

3.4 Two part one-dimensional self-assembly with sliding

bar mechanisms

This section describes several examples of genetic optimization of sliding bar mechanisms [49].

Unless otherwise specified, the GA in the following examples uses fitness proportionate



(roulette wheel) selection, linear fitness scaling with scaling coefficient = 2.0, an elitist

selection scheme, crossover probability = 0.8, and mutation probability = 0.03.

3.4.1 Design parameterization

The one-dimensional conformational switch with a sliding bar mechanism is uniquely speci-

fied in terms of four parameters: leftconfig, rightconfig, link, and bar-length. Left_config and

right_config are the initial bond configurations of the left bond site and the right bond site,

respectively. Link is a Boolean variable that specifies the existence of the conformational

link (a bar mechanism) in a part. If link is TRUE, there is a conformational link between

the two bond sites, so they can undergo conformational change. If link is FALSE, there is

no conformational link, so the bond configurations do not change from their initial values

(i.e. a solid part). Barlength is an upper limit on right.config and leftconfig. In order

for a design to be valid, I need leftconfig, rightconfig < barlength. Note that if

left_config = rightconfig = barlength, the bar cannot move at all. Also, bar-length

is ignored if link is FALSE.

A chromosome used in genetic search is a binary string that encodes the above design

parameters for all kinds of parts in the bin. For the examples in the next section, two bits

are assigned for each of leftconfig and right.config, and one bit for link and barlength5 . The

location of these bits on a chromosome is shown in Figure 3-12.

For leftconfig and right_config, the first bit corresponds to the absolute value and the

second bit corresponds to sign, with minus being 0 and plus being 16. If left.con fig = -1,

for example, the corresponding two bits are 10. Since six bits are necessary for one part, a

chromosome that encodes n kinds of parts has length 6n.

3.4.2 Two part sequential assembly

As an preliminary example, a two part sequential assembly is studied, where bin-picking is

done deterministically. The assumption here is as follows: two parts, part A and part B,

come in two separate bins, and robot arm #2 is picking a part from each bin in the fixed

5This implies bar_length can only take values {0, 1}
6This implies that left-config and rightconfig can only take values (-1, 0, 1}.



leftconfig

Figure 3-12: Bit assignment of a chromosome.

sequence ABAB.... The robot arm #1 is initially holding a base part (I will call it part Z).

The assembly is done by pushing parts against each other, followed by release of the part

held by arm #2. Since this pushing possibly causes formation and breakage of the existing

bond between parts, the assembled parts either stay on arm #1 (no parts detached), or fall

off (detaching occurs). The fallen parts are sent to a bin for assembled parts. Arm #2 then

goes to the next bin and the process iterates. No defect is assumed in this example. The

process is illustrated in Figure 3-13.

The objective is to maximize the yield of the assembly AB 7 . Since the assembly process

is deterministic, it suggests the following scenario for the maximum yield:

Step 1: Part A is picked and forms a bond to Z (i.e. Z + A -+ ZA).

Step 2: Part B is picked and forms a bond to A. Conformational change destroys the

bond between A and Z, releasing the assembly AB (i.e. ZA + B -+ Z + AB)

The evaluation of the switch designs, therefore, needs only two pickings (part A followed

by part B). Note that I do not need to take an average of several runs since the process is

7Note that AB and BA are distinct.
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design # Z A B AB

1
(0) (0,T,1,0) (1,T,1,1)

2
(0) (0,T,1,1) ( , F, 0, 0)

3
(1) (-1, T, 1, 1 (0, F, 0,0)

Figure 3-14: Best designs for two part, sequential assembly, found by GA.

deterministic. The fitness function is as follows:

0

fitness = 1

2

if ZA is not formed at Step 1

if ZA is formed at Step 1 but AB is not formed at Step 2

otherwise

The base part Z is assumed to have only the right bond site and no conformational

link, so the size of a chromosome is 6 x 2 + 2 = 14 bits. This means that there are 214

possible designs. Figure 3-14 illustrates the best designs obtained by three GA runs with

population size = 10 and number of generations = 5. The numbers below each designs are

the corresponding parameters (leftconfig, link, bar_length, rightconfig)8 . Only right_config

is shown for the base part Z. Note that all three designs scored the maximum fitness = 2.

All the possible designs that score the maximum fitness, found using a depth-first search,

are listed in Appendix A.

8Note that part B in design #1 is equivalent to a solid part (1, F, 0, 1)

(3.4)
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Figure 3-15: Best design (part A : part B = 1 : 1) : Design I

3.4.3 Two part self-assembly

The second example is a two part self-assembly as described in Section 3.1. The initial

bin contains a random mixture of two types of parts, part A and part B, and the design

objective is to maximize the yield of the assembly AB. The total number of parts in the

initial bin is fixed at 50 and the number of AB's in the bin is counted after 50 iterations of

Steps 1-3 in Section 3.1. As in the previous example, no defect is assumed. The fitness of

a chromosome is the average count of AB's over 50 such runs. In the GA runs described

below, the population size is 30 and the number of generations is 10.

Figure 3-15 shows the best design (fitness = 9.76) when the initial fraction of part A's

and part B's is 1:1 (i.e. 25 part A's and 25 part B's). Let us call it Design I. As easily seen

from the figure, the result is as expected: only A + B -- AB 9 occurs.

Figure 3-16-a shows the best design (fitness = 6.7) when the initial fraction of part

A's and part B's is 4:1 (i.e. 40 part A's and 10 part B's). Let us call it Design II. All

possible assemblies with this design are illustrated in Figure 3-16-b, where A' represents

part A after conformational change. Note that not only A + B -+ A'B (reaction 2), but

also A + A - A'A (reaction 1) and A' + A - A'A (reaction 3), are possible. Once A'A

is formed, it can also be bound to B to produce A'B (i.e. A'A + B -+ A' + A'B: reaction

7). The reactions 1, 3 and 5 help to decrease the total number of part A's in the bin, and

9It is implicitly assumed the operator '+' is not commutative. In particular, B + A is not possible in this
case.

BD
1 (1, F, O,O) (O, F, 0, 1) I I

A~ B A



in turn, to increase the chance of part B's being picked. If a part B is picked, it can bind

to any of A, A', and A'A (by reactions 2, 4, and 7). Also, once A'B is formed, it can

never be destroyed10 . The overall yield of A'B's, therefore, is better than that from only

A +B -- AB. For comparison, the typical fitness of the design in Figure 3-15, when applied

to the same situation (i.e. part A : part B = 4 : 1), is 5.5. The next section describes a

comparison of these two designs based on expected yield.

3.4.4 Rate equation analyses of two part self-assembly

Given the part designs and the their possible reactions, one can formulate a discrete-time

rate equation similar to the ones found in [53, 27]. The following recurrence describes the

self-assembly process described in Section 3.1:

n(t + 1) = n(t) + Ap(t) (3.5)

where n(t) is a vector of the numbers of each possible subassembly at iteration t, p(t)

is a vector of probabilities for each possible reaction at iteration t, and A is a matrix of

stoichiometric coefficients. Since only one reaction A + B -+ AB is possible for Design I

and no defect is assumed, n(t), A and p(t) (scalar in this case) are defined as follows:

nA (t-1

n(t) = nB(t) , A= -1 , p(t)= (t).(3.6)s(t) - s(t) - 1}
nAB(t) 1

where nA(t), nB(t) and nAB(t) are the numbers of part A, part B and assemblies AB at

iteration t, respectively, and s(t) = nA(t) + nB(t) + nAB(t).

In the case of Design II, the possible reactions are:

1oNote that reverse of reaction 7 A' + A'B -+ A'A + B is not possible due to the upstream priority rule
discussed in Section 3.2.1.



( a ) best design of part A and part B : Design II

A B A'B

( 0, T, 1, 1) (0, F, 1, 1)

( b ) possible combinations of assemblies

No. assembly

:A + A --> A'A

2
: A + B --> A'B

3 +

4
: A' + B --> A'B

5 +J
: A' + A' --> A'A

: A'A + A --> A' + A'A

: A'A + B --> A' + A'B

Figure 3-16: Best design (part A : part B = 4 : 1)



A + A -+ A'A

A+ B - A'B

A' + A - A'A

A' + B -+ A'B

A' + A' -* A'A

A'A + A -+ A' + A'A

A'A + B -+ A' + A'B
(3.7)

Corresponding n(t), A and p(t) are, therefore, defined as follows:

nA(t)

nf (t)

nAl (t)

nA'A (t)

nA'B(t)

p(t) =

-2

0

0

1

0

-1

0

-1

1

0

nA(t) . A (t) - 1}

s(t). {s(t) - 1}

n(t) - nB{(t)
s(t) -{s(t) - 1}

nA'(t) {nA(t) -

s(t). {s(t) - 1}

nA,'(t) nA{(t)

nA'A(t) - nA(t)

nA'A(t) . nB(t)

s(t) Is(t) - 1}

0

-1

1

-1

1
/

(3.8)

(3.9)

For Design I and Design II, equation 3.5 is solved numerically with the two initial

conditions discussed in Section 3.4.3. Figure 3-17-a and Figure 3-17-b are the solution for

Design I and Design II with initial condition n(0) = (25, 25, 0)', and n(0) = (25, 25, 0, 0, 0)',

n(t) =

\



respectively. Note that for both Design I and Design II, nA, nB -+ 0 and nAB 11- 25 as

t -+ oo00. The yield of the desired assembly AB is compared in Figure 3-18. It shows Design

I is consistently better than Design II for t E {0, 500}, and the difference in the yield is

maximum at t _ 150. At t = 50, nAB(t) for Design I and Design II am 9.8914 and 9.6590,

respectively.

Similar analysis is done with the initial conditions n(0) = (40, 10, 0)' for Design I, and

n(0) = (40, 10, 0, 0, 0)' for Design II. As shown in Figures 3-19-a and 3-19-b, Asymptotic

behaviors of nB(t) and nAB(t) are similar in Design I and Design II. In Design II, however,

nA(t) -+ 0 quickly whereas in Design I, nA(t) -+ 30 as t - oo00. This drop of nA(t) and

increase of nA'A(t) results in decrease of total number of parts in the bin s(t), which is

clearly shown in Figure 3-19-b. This supports the qualitative argument in Section 3.4.3.

Comparison of the yield in Figure 3-20 indicates Design II is consistently better than Design

I for t E {0, 500}, and the difference in the yield is maximum at t " 100. At t = 50, nAB(t)

for Design I and Design II am 5.7961 and 6.3230, respectively.

3.4.5 Two part self-assembly with a dummy part

This example is the same as the previous example except that a dummy part C is mixed

in the initial bin. The dummy part C is not involved in the desired assembly AB, but is

expected somehow to help part A's and part B's assemble to AB (as an enzyme does in

viral assembly).

Figure 3-21 shows the best design (fitness = 2.74) where initially A : B : C = 8 : 1 : 1

(i.e. 40 part A's, 5 part B's and 5 part C's). Let us call this Design I. The designs of part

A and part B are identical to the designs of part A' and part B in Figure 3-16, respectively,

and part C cannot bond to any of the possible assemblies. In other words, part C does not

play any role in the assembly of AB.

This, however, is not the case if the fraction of part C's is larger. Figure 3-22 shows

Design II, the best design (fitness = 2.84) where A : B : C is 11 : 3: 11 (i.e. 22 part A's, 6

part B's and 22 part C's). Part A and part B are the same as in the design of Figure 3-16.

This time, however, part C can bind to part A, part B, and other assemblies. During the

"1 denoted nA'B in Design II.
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Figure 3-17: Solution of Equation 3.5 (A : B = 1 : 1).
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Figure 3-18: Yield computed by Equation 3.5 (A : B = 1 : 1).

GA run, it was observed that part A's and part C's form a long chain such as A'C ... CA,

which seems to help to increase the chance of part B's being picked.

3.4.6 Rate equation analyses of two part self-assembly with a dummy

part

The rate equations for Design I am relatively simple. For Design II, however, the number of

possible subassemblies and the number of possible reactions can be very large since part C's

can form a subassembly C, (an n concatenation of part C's) for any positive integer n. To

get around this problem, I simply do not distinguish part C, and part Cm for any positive

integers n and m. This reduces the number of subassemblies down to 11. The resulting

rate equations are still useful since the desired assembly A'B does not contain part C's.

Also, there is no need to keep track of the number of each Cn's. The derivation of the rate

equations is found in Appendix B.

Figure 3-23 shows the comparison of the yield by Design I and by Design II with the

initial conditions n(O) = (40, 5, 5, 0, 0)' and n(0) = (40, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0)', respectively.
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Figure 3-19: Solution of Equation 3.5 (A : B = 4 : 1).
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Figure 3-20: Yield computed by Equation 3.5 (A : B = 4: 1).
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Figure 3-21: Best design (A : B : C = 8 : 1: 1) : Design I.



Figure 3-22: Best design (A : B : C = 11 : 3 : 11) : Design II.

It is observed that as t -+ oo, the yield of Design I converges to 5 (maximum possible)

and the yield of Design II goes to 4.5. At t = 50, however, the yield of Design I is 3.1260,

whereas it is 3.1551 for Design II. In other words, the numerical analysis indicates that

at t = 50, Design II is slightly better in yield, in contrast to the simulation results. A

similar trend is observed for the second case where n(0) = (22, 6, 22, 0, 0)' for Design I and

n(0) = (22,6,22, 0,0,0,0,0,0, 0)' for Design II (Figure 3-24). Even though Design I is

asymptotically better in yield, Design II barely wins at t = 50: nA'B(50) = 2.1148 for

Design I and nA'B(50) = 2.1709 for Design II. This matches the simulation result, but the

difference in yield is marginal.

3.5 Subassembly generation in multi-part one-dimensional

self-assembly with minus devices

This section describes two examples of genetic optimization of one-dimensional conforma-

tional switches with minus devices [50]. The GA in the following examples uses a crowding

population [21] with 10% replacement per generation, based on hamming distance between

chromosomes, fitness proportionate (roulette wheel) selection [21], linear fitness scaling [21]

with scaling coefficient = 2.0, and unless otherwise specified, crossover probability = 0.9

and mutation probability = 0.03. Also, reinforcement evaluation is performed as described

in Section 3.3.3.

A B C AB

(O,T, 1, 1) (0, F, 1, 1) (0, F, O, O)
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3.5.1 Design parameterization

The following four parameters uniquely specify the one-dimensional conformational switch

with two minus devices and two-digit bonding sites: leftconfig, rightconfig, upperlink and

lowerlink. Leftconfig and rightconfig are the initial bond configurations of the left bond

site and the right bond site, respectively. Upper_link and lower_link are variables that specify

the existence of conformational links (minus devices) in a part, each of which takes one of

the values LEFT, RIGHT or NONE. If upperlink is LEFT, there is a conformational link

between the "first digits" of the bond sites, with the direction pointing to the left bond site.

If upperlink is RIGHT, there is a conformational link between the first digits of the bond

sites pointing to the right bond site. If upperlink is NONE, there is no conformational

link that connects the first digits of the bond sites, so the first digits cannot undergo any

conformational change. Similarly, lower_link specifies the existence of the conformational

link between the second digits of the bond sites. Note that the conformational links are

independent of each other, so the second digits can change their conformation, for instance,

even though the first digits cannot.

A chromosome used in genetic search is a binary string that encodes the above design

parameters for all kinds of parts in the bin. For the examples in the next section, two bits are

assigned to each part of bond configuration 12, therefore each of leftconfig and rightconfig

occupies four bits. In addition, two bits are used for each of upperlink and lowerlink. The

location of these bits on a chromosome is shown in Figure 3-25.

For each part of leftconfig and rightconfig, the first bit corresponds to sign, with plus

being 0 and minus being 1, and the second bit corresponds to the absolute value13 . If

lejft_con fig = (1, 0), for example, the corresponding four bits are 0100 or 0110. The first

bit for upper_link and lower_link represents the direction of the conformational link, with

right (-) being 0 and left (+-) being 1. The second bit represents the existence of the link.

The bit is 1 if the link exists, and 0 if there is no link. The first bit is ignored if the second

bit is 0. For instance, the corresponding two bits for lowerlink = NONE is either 10 or

00. Figure 3-26 shows an example of a parameter encoding of a part. Since twelve bits are

necessary for one part, a chromosome that encodes n kinds of parts has length 12n.

12Recall a bond configuration is a pair of integer (al, a2).
"3This implies that each part of left-config and rightconfig can only take values {-1, 0, 1}.
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Figure 3-25: Bit assignment of a chromosome.
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Figure 3-26: Example of parameter encoding of a part.
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(a)
xyz xyz

(b) ((x y) z) (x (y z))
Figure 3-27: Representations of subassembly sequences: (a) binary tree representation, and
(b) list representation. x, y and z are subassemblies.

3.5.2 Representaion of subassembly sequences

Before proceeding, let us define our notion of subassembly sequences in one-dimensional

assembly. I define a subassembly to be a set of one or more parts connected together.

In particular, a part is a subassembly. A subassembly sequence is a sequence in which

two subassemblies are put together to produce a final assembly. According to the above

definition, any fixed (non-ambiguous) subassembly sequence of a one-dimensional assembly

can be represented uniquely by a binary tree (Figure 3-27(a)) or by a list representation

(Figure 3-27(b)) 14

It is, however, often the case that the assembly sequence encoded by a conformational

switch design is ambiguous, or under-specified. I use the notation {u} if (and only if) the

subassembly sequence to build a subassembly u is not specified. In the case where u = xyz,

for instance, {xyz} indicates that the three subassemblies x, y and z can be put together

in any order, i.e. either ((xy)z) or (x(yz)).

14Since I am dealing with one-dimensional assembly, the above binary tree representation can specify both
a final assembly and the order of assembly, whereas in mechanical assembly an assembly tree usually specifies
only the order of assembly.



3.5.3 Three part one-dimensional self-assembly

The first example is a three part one-dimensional self-assembly as described in Section 3.1.

The initial bin contains a random mixture of three types of parts, part A, part B and

part C, and the design objective is to maximize the yield of the assembly ABC. The

number of ABC's in the bin is counted after 700 iterations of Steps 1-3 in Section 3.1. At

each evaluation of a chromosome, an average is taken for the count of ABC's over 50 such

runs. The GA runs described in this section have population size of 300 and the number of

generations is 200. In the following results, no = (nA(0), nB(0), nc(0)) is the vector of the

initial numbers of parts A, B and C in the bin, and q = (qAB, QBc) is the vector of defect

probabilities of the bonds between AB and BC, respectively 15 . Note that there are only

two possible subassembly sequences in this example: ((AB)C) and (A(BC)).

Figure 3-28 shows the best designs of conformational switches obtained from GA runs

with no = (10, 10, 10), and with (a) q = (0.0, 0.0), (b) q = (0.2,0.0) and (c) q = (0.0,0.2).

In all three cases, the parts are designed such that only ABC can form through random

mating (e.g. CAB is not possible). During assembly of ABC, however, no conformational

links are actually used, i.e. no parts undergo conformational changes. This implies that none

of the three designs specifies a fixed subassembly sequence: an ABC can assemble in any

of the two possible sequences, ((AB)C) or (A(BC)). In other words, these conformational

switch designs encode {ABC}.

On the other hand, A non-ambiguous subassembly sequence emerges in the case where

there are more part B's than part A's and part C's. Figure 3-29 shows the resulting switch

designs in the case no = (10, 20, 10). For q = (0.0, 0.0) and q=(0.0, 0.2), a part A can bind

to a part B only after part B changes its conformation, which is triggered by the binding

of part C (see Figures 3-29(a) and 3-29(c)). The formation of an assembly ABC, therefore,

takes place through the following two-step "reactions":

B + C -+ B'C (3.10)

A + B'C --+ AB'C (3.11)

15I assume defect probability of a bond depends only on the parts associated to the bond. In particular,

I assume qAB = qA(BC) and qBc = q(AB)C-



(a) q = ( 0.0, 0.0); fitness = 9.99; n = 1

(b) q = ( 0.2, 0.0); fitness = 8.09; n = 1
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(c) q = ( 0.0, 0.2); fitness = 8.01; n = 1

Figure 3-28: Best designs with no = (10, 10, 10).
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qq no (10,10,10) (10,20,10) (20,20,10)

(0.0,0.0) { ABC} (A(BC)) ((AB ) C)

(0.2,0,0) {ABC } ((AB) C) ((AB) C)

(0.0,0.2) {ABC) (A (BC)) (A(BC))

Table 3.1: Summary of the results: three part self-assembly.

where B' represents a part B after conformational change. Since no other reactions are

possible, an ABC assembles only in the fixed subassembly sequence (A(BC)). On the other

hand, ((AB)C) is encoded in the best design with q = (0.2, 0.0) as shown in Figure 3-29(b).

In this case, a part C can bind to a part B only after the part B changes its conformation,

which is triggered by binding of a part A:

A + B - AB'

AB' + C - AB'C

(3.12)

(3.13)

Note that only one conformational link is actually used during the assembly of ABC in

both cases.

The results of GA runs with no = (20, 20, 10) are shown in Figure 3-30. The best designs

encode ((AB)C) for q = (0.0,0.0) and q = (0.2,0.0), and (A(BC)) for q = (0.0,0.2). The

summary of these nine GA runs are shown in Figure 3.1.

3.5.4 Rate equation analyses of three part self-assembly

Discrete-time rate equation analyses are done in order to understand the emergence of a

particular subassembly sequence in the above example. The rate equation formulation for

defect-free self-assembly in Section 3.4.4 is generalized to incorporate the effect of defects

in assembly. Even with non-zero defect probabilities, the rate equation is in the form of



(a) q = ( 0.0, 0.0 ); fitness = 9.52; n = 1

(b) q = (0.2, 0.0); fitness = 7.84; n = 9

(c) q = ( 0.0, 0.2); fitness = 8.07; n = 2

Figure 3-29: Best designs with no = (10, 20, 10).
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(a) q = (0.0, 0.0); fitness = 10.00; n = 11

(b) q = ( 0.2, 0.0 ); fitness = 9.98; n = 2

(c) q = ( 0.0, 0.2); fitness = 8.21; n = 1

Figure 3-30: Best designs with no = (20, 20, 10).
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Equation 3.5, except that the vector n(t) includes the number of defective subassemblies at

iteration t.

The following two reactions among parts A, B and C are necessary and sufficient to

produces an assembly ABC in the subassembly sequence ((AB)C))16:

A + B--+ AB (3.14)

(3.15)

The above reactions can be interpreted as "an A and a B yield an AB with probability 1, and

an AB and a C yield an ABC with probability 1." Assuming the defective subassemblies

cannot be incorporated into the subsequent subassemblies, the reactions (3.14), (3.15) can

be generalized to non-zero defect probabilities as follows:

A + B -> (1 - qAB)AB + qABABd

AB + C -* (1 - qBc)ABC + qBcABCd

(3.16)

(3.17)

where ABd and ABCd denote a defective AB and a defective ABC; and qAB and qBC are

defect probabilities of bonding between A and B, and between B and C, respectively. The

corresponding n(t), A and p(t) are, therefore, defined as follows:

nA(t)

nB(t)

ne (t)

nAB(t)
nABd (t)

nABC(t)

nABCd (t)

,A= 1

-1

-1

0

- qAB

qAB

0

0

0

0

-1

-1

0

1 - qBc

qBC

,p(t> =

nA(t) r nB(t)

s(t) s(t)- 1

nAB(t) -nc(t)

s(t) - {s(t) - 1}

(3.18)

16Conformational change is ignored in the notation here.

AB + C -> ABC

n(t) =



where nA(t), rB(t), nc(t), nAB(t), nABd(t), nABC(t) and nABCd(t) are the numbers of A,

B, C, AB, ABd, ABC and ABCd at iteration t, respectively, and s(t) is the sum of all the

parts of n(t).

Similarly, in the case of (A(BC)), the possible generalized reactions are:

B + C -+ (1 - qcB)BC + qBcBCd

A + BC -+ (1 - qAB)ABC + qABABCd

(3.19)

(3.20)

and the corresponding n(t), A and p(t) are:

n(t) =

nA(t)

nf (t)

nc(t)

nBc(t)

nBcd (t)

nABC(t)

nABCd (t)

0

-1

-1

1 - qBC

qBC

0

0

--1

0

0

-1

0

1 - qAB

qlA

iB(t) -nc(t)

s(t) -{s(t)- 1

nA(t) -nBC(t)

s(t) - {s(t) - 1}

(3.21)

Since both ((AB)C) and (A(BC)) are possible in the case of {ABC}, the rate equations

for {ABC} are constructed by simply merging (3.18) and (3.21) together:

r~u

,p(tM



n(t) =

nA(t) M

nrB(t)

nc(t)

nAB (t)

nABd (t)

nBc(t)

nBcd (t)

nABc(t)
nfRC/(t)

p(t) =

-1 0 -1 0

-1 -1 0 0

0 -1 0 -1

1 - qAB 0 0 -1

qAB 0 0 0

0 1 - qBC -1 0

0 qBC 0 0

0 0 1 - qAB 1 -q BC

0 0 (An B nt

s(t) - {s(t) - 1}

nB(t) -nc(t)

s(t) - {s(t)- 1}

nA(t) . nBC(t)

s(t) -{s(t) - 1}

nAB(t) - nc(t)

(3.22)

(3.23)

a I 111 - f

The equation (3.5) is numerically solved for different initial conditions and defect proba-

bilities, in order to compare the dynamic behavior of parts (and defective parts) in ((AB)C),

(A(BC)) and {ABC}. Figures 3-31, 3-32 and 3-33, show the solution with the initial

condition no = (10, 10, 10) and q = (0.0, 0.0), q = (0.2,0.0) and q = (0.0, 0.2), respectively.

The yield of {ABC} is slightly better than ((AB)C) and (A(BC)) in all of the three

cases, which matches the results obtained by the GA search 17 shown in Figure 3-28. For

q == (0.0,0.0), there is no difference between the solution of ((AB)C) and (A(BC)). It is

observed, however, that the higher defect probability between AB (q = (0.2, 0.0)) slightly

favors the subassembly sequence ((AB)C) (Figure 3-32), while q = (0.0, 0.2) slightly favors

(A(BC)) (Figure 3-33).

"'Recall the robot bin-picking simulation used in the GA search terminates at 700 iterations.
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Figure 3-31: Solution with no = (10, 10, 10) and q = (0.0, 0.0).
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Figure 3-32: Solution with no = (10, 10, 10) and q = (0.2,0.0).
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Figure 3-33: Solution with no = (10, 10, 10) and q = (0.0,0.2).

These trends become more prominent with no = (10, 20, 10), as shown in Figures 3-34,

3-35 and 3-36. The result of ((AB)C) and (A(BC)) are identical for q = (0.0, 0.0), which are

better than the yield of {ABC}. For q = (0.2,0.0), the yield of ((AB)C) is approximately

5% better than the yield of (A(BC)), whereas for q = (0.0,0.2), the yield of (A(BC)) is

approximately 5% better than the yield of ((AB)C). The above results support the results

by GA runs shown in Figure 3-29. It should be noted that in the case of no = (10, 20, 10),

the yield of {ABC} goes down to about 50% of the maximum possible yield. This rather

counter-intuitive drop of the yield is due to the large number of the middle part B, which

produces a large number of AB's and BC's in the early stage of iterations. The excess

production of AB's and BC's then causes the shortage of individual C's and A's later on,

which are necessary to complete the final assembly ABC from the subassemblies AB and

BC. By enforcing the subassembly sequence ((AB)C) or (A(BC)), this excess production

of AB and BC can be avoided.

Figures 3-37, 3-38 and 3-39 show the solution of equation (3.5) with no = (20, 20, 10)

and q = (0.0,0.0), q = (0.2,0.0) and q = (0.0,0.2), respectively. In all cases, {ABC} has

the highest rate of the desired assembly during the early iterations. However, ((AB)C)
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Figure 3-34: Solution with no = (10,20, 10) and q = (0.0, 0.0).
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Figure 3-36: Solution with no = (10,20, 10) and q = (0.0, 0.2).

becomes better approximately after the 250-th iteration and scores the best overall yield.

Differences in the final yield between ((AB)C) and {ABC} are the largest for q = (0.2, 0.0)

and the smallest for q = (0.0, 0.2). In particular, in the case of q = (0.0, 0.2), the overall

yield is almost identical for ((AB)C), (A(BC)) and {ABC}. The GA search in Figure 3-30

found the optimal solutions (i.e. conformational switch designs that encode the optimal

subassembly sequence) for q = (0.0, 0.0) and q = (0.2, 0.0), and found a suboptimal solution

within 1% of the optimal solution for q = (0.0, 0.2).

3.5.5 Four part self-assembly

The second example is a four part randomized assembly. The initial bin contains a random

mixture of four types of parts, part A, part B, part C and part D, and the design objective is

to maximize the yield of the assembly ABCD. The number of ABCD's in the bin is counted

after 1400 iterations of Steps 1-3 in Section 3.1. At each evaluation of a chromosome, an

average is taken for the count of ABCD's over 50 such runs. The GA runs described in this

section have population size of 600 and the number of generations is 900. In the following
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Figure 3-37: Solution with no = (20, 20, 10) and q = (0.0, 0.0).
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Figure 3-38: Solution with no = (20, 20, 10) and q = (0.2, 0.0).
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Figure 3-39: Solution with no = (20,20, 10) and q = (0.0, 0.2).

results, no = (nLA(O), nBs(O), nc(0), nD(0)) is the vector of the initial numbers of parts A,

B, C and D in the bin, and q = (qAB, qBC, QCD) is the vector of defect probabilities of the

bonds between AB, BC and CD, respectively. Figure 3-40 shows the five non-ambiguous

subassembly sequences possible for the four part assembly.

The best designs found by the GA are shown in Figure 3-41 with no = (10, 10, 10, 10)

and four different defect probabilities: (a) q = (0.0,0.0,0.0), (b) q = (0.2,0.0,0.0), (c)

q := (0.0, 0.2, 0.0) and (d) q = (0.2,0.0,0.2). As in the case of the three part assembly,

the parts are evolved such that only ABCD can form through random mating. The first

three results (a), (b) and (c) specify no fixed subassembly sequences. In other words, the

parts can be assembled in any of the five subassembly sequences shown in Figure 3-40, i.e.

the design encodes {ABCD}. A fixed subassembly sequence ((AB)(CD)) emerged for (d)

q == (0.2, 0.0, 0.2), which is realized by conformational changes of part B and part C after

forming subassemblies AB and CD:

A + B - AB' (3.24)



A B C D

(((AB)C)D)

A B C D

((AB)(CD))

A B C D A B C D

((A (BC)) D) (A ((BC)D))

A B C D

(A(B(CD)))

Figure 3-40: Five non-ambiguous subassembly sequences of a four part assembly.

C + D -* C'D

AB' + CD' -- AB'C'D

(3.25)

(3.26)

Figure 3-42 shows the results with no = (10, 20, 10, 10). For (a) q = (0.0, 0.0, 0.0) and

(b) q = (0.2,0.0,0.0), a conformational link in part B causes a B-C bond to be made

only after an A-B bond forms. The final assembly ABCD, therefore, is built in the order

either (((AB)C)D) or ((AB)(CD)), hence the design encodes the subassembly sequence

{(AB)CD}. In the case of (c) q = (0.0, 0.2, 0.0), on the other hand, a conformational link

in part B causes a B-C bond to be made before an A-B bond forms. Therefore, the design

encodes the subassembly sequences ((A(BC))D), (A((BC)D)) or (A(B(CD))). I refer to

the set of these three subassembly sequences as {(AB)CD}, since they are the subassembly

sequences that are not represented by {(AB)CD} among the five possible non-ambiguous

subassembly sequences in Figure 3-40. As in the case of no = (10, 10, 10, 10), the resulting

design specifies a fixed subassembly sequence ((AB)(CD)) for (d) q = (0.2, 0.0, 0.2).

The sequence ((AB)(CD)) also emerged for no = (10, 20, 20, 10), with (a) q = (0.0, 0.0, 0.0),

(b) q = (0.2, 0.0, 0.0) and (d) q = (0.2, 0.0, 0.2), as shown in Figure 3-43. The design with

(c) q = (0.0,0.2,0.0) encodes the subassembly sequence (A(B(CD))), which takes the

following three-step reactions:



(a) q = (0.0, 0.0, 0.0); fitness = 10.00; n = 32

(b) q = ( 0.2, 0.0, 0.0 ); fitness = 8.34; n = 2

(c) q = (0.0, 0.2, 0.0 ); fitness = 8.42; n = 2

(d) q = (0.2, 0.0, 0.2); fitness = 7.63; n = 3

Figure 3-41: Best designs with no = (10, 10, 10, 10).
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Figure 3-42: Best designs with no = (10, 20, 10, 10).

(a) q = ( 0.0, 0.0, 0.0); fitness = 9.84; n = 2

(b) q = (2, 0.0, 0.0); fitness = 8.16; n = 1
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Table 3.2: Summary of the results: four part self-assembly.

C + D - C'D

B + C'D -+ B'C'D

A + B'C'D -ý AB'C'D

(3.27)

(3.28)

(3.29)

Note in the above results (of Figures 3-41(d), 3-42(d), 3-43(a), (b), (c) and (d)), that

exactly two conformational links, one in part B and one in part C, are actually used

to encode the two non-ambiguous subassembly sequences ((AB)(CD)) and (A(B(CD))).

Other links are non-functional (do not cause conformational changes of a part) or redundant

(cause conformational changes that do not affect assembly sequences). Similarly, as shown

in Figures 3-42(a), (b) and (c), only one conformational link in part B is required to encode

{(AB)CD} and {(AB)CD}, and no conformational link is required to encode {ABCD}

(see Figures 3-41(a), (b) and (c)) 1 8 . The summary of these twelve GA runs are shown in

Figure 3.2.

3.5.6 Rate equation analyses of four part self-assembly

Rate equations (3.5) of four-part self-assembly are formulated in a similar way to the three-

part case in Section 3.5.4. The yield of the final assembly ABCD is then compared for all

8sConformational changes of part D in Figures 3-41(a) and (c) do not affect assembly sequences, therefore
the corresponding links are redundant.

q nO - (10,10,10,10) (10,20,10,10) (10,20,20,10)

(0.0,0.0,0.0) { ABCD }) { (AB) CD }) ((AB) (CD))

(0.2,0,0,0.0) { ABCD } {) ((AB) CD }) ((AB) (CD))

(0.0,0.2,0.0) { ABCD }) { (AB) CD }) (A(B(CD)))

(0.2,0.0,0.2) ((AB) (CD)) ((AB) (CD)) ((AB) (CD))



(a) q = ( 0. 0, 0. 0, 0. 0 ); fitness = 9.48; n = 1

(b) q = ( 0.2, 0.0, 0. 0 ); fitness = 8.08; n = 2

(c) q =( 0.0, 0.2, 0.0); fitness = 7.98; n = 1

(d) q = ( 0.2, 0.0, 0.2); fitness = 7.24; n = 1

Figure 3-43: Best designs with no = (10, 20, 20, 10).
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the subassembly sequences which can be encoded by the conformational switches with two

minus devices and two-digit bonding sites, described in Section 3.2.2. Such subassembly

sequences can be enumerated by listing combinations of functional and non-redundant

conformational links in the parts, i.e. by listing all combinations of conformational links

which are necessary and sufficient to encode a set of non-ambiguous subassembly sequences.

Since the desired assembly is ABCD, any conformational links in part A and part D are

non-functional/redundant. Also, one of any two conformational links in a part pointing

the same direction is non-functional/redundant since it is not possible to induce confor-

mational changes via two such conformational links (see Section 3.2.2). Even when two

conformational links in a part are pointing in the opposite directions, one of them is still

non-functional/redundant since a bond cannot be destroyed once it is formed.

The above discussion leaves us only eight non-redundant combinations of conforma-

tional links, which encode five ambiguous subassembly sequences {ABCD}, {(AB)CD},

{(.AB)CD}, {AB(CD)} and {AB(CD)}, and three non-ambiguous subassembly sequences

(((AB)C)D), ((AB)(CD)) and (A(B(CD))), as illustrated in Figure 3-4419. It is shown,

therefore, that the conformational switch model cannot encode two of the non-ambiguous

subassembly sequences ((A(BC))D) and (A((BC)D)) in Figure 3-40. This is due to the

fact that the conformational switch model does not allow propagation of conformational

change through parts 20

The rate equations for each of the eight subassembly sequences in Figure 3-45 are formu-

lated and solved numerically to compare the yield of the final assembly ABCD. The results

are obtained with three different initial conditions: no = (10, 10, 10, 10), no = (10, 20, 10, 10)

and no = (10, 20,20, 10). For each of the three initial conditions, four different defect

probabilities are tried: q = (0.0,0.0,0.0), q = (0.2,0.0,0.0), q = (0.0,0.2,0.0), q =

(0.2, 0.0, 0.2). These 3 x 4 = 12 conditions correspond to the conditions of GA runs shown

in Figures 3-41, 3-42 and 3-43. Figures 3-45-3-48 show the solution of the equation 3.5

with no = (10, 10, 10, 10) and with q = (0.0, 0.0, 0.0), q = (0.2, 0.0, 0.0), q = (0.0, 0.2, 0.0),

q == (0.2, 0.0, 0.2), respectively. For the first three cases, the sequence {ABCD} scores the

best at 1400 iterations, whereas it is outperformed by ((AB)(CD)) after approximately 500

19Some extensions are necessary to the conformational switch model, in order to encode {A(BC)D}. This
issue is discussed in Section 3.5.8.

20 An extension of the conformational switch model which can encode ((A(BC))D) and (A((BC)D)) is
discussed in Section 3.5.8.
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Figure 3-44: Eight possible subassembly sequences.

iterations for q = (0.2, 0.0,0.2)21. In all cases, the results are consistent with the ones by

GA shown in Figure 3-41.

The solutions with no = (10, 20, 10, 10) are shown in Figures 3-49-3-52. In this case, the

yields of the sequences {ABCD}, {AB(CD)} and {AB(CD)} drop to approximately 50%

of the maximum possible yield. This situation is similar to the case of the sequence {ABC}

with no = (10, 20, 10) in the three part assembly, where excess production of AB and BC at

the early stage of iteration causes the shortage of A's and B's later on. The sequences which

do not specify the assembly order of A, B and C (or CD) perform poorly due to excess

production of intermediate subassemblies such as AB, BC or BCD. As a consequence,

the sequences {(AB)CD} and {(AB)CD} yield the best with q = (0.0,0.0,0.0) (Figure 3-

49), the sequence ((AB)(CD)) is the best with q = (0.2,0.0,0.0) (Figure 3-50) and q =

(0.2,0.0,0.2) (Figure 3-52), and the sequence {(AB)CD} is the best with q = (0.0,0.2,0.0)

(Figure 3-51). The GA found a design that encodes the optimal subassembly sequence

for all cases except q = (0.2, 0.0, 0.0), where the design encodes the suboptimal sequence

{(AB)CD} within 5% of the yield of the optimal sequence (see Figure 3-42(b)).

Similar drops of yield in some subassembly sequences are observed in the solutions

with no = (10, 20, 20, 10). As shown in Figures 3-53-3-56, however, the drop occurs to all

of the ambiguous subassembly sequences, {ABCD}, {(AB)CD}, {(AB)CD}, {AB(CD)}

21Recall the robot bin-picking simulation used in the GA search terminates at 1400 iterations.
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Figure 3-45: Solution with no = (10, 10, 10, 10) and q = (0.0,0.0,0.0).
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Figure 3-46: Solution with no = (10, 10, 10, 10) and q = (0.2, 0.0, 0.0).
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Figure 3-47: Solution with no = (10, 10, 10, 10) and q = (0.0, 0.2, 0.0).
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Figure 3-48: Solution with no = (10, 10, 10, 10) and q = (0.2, 0.0, 0.2).
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Figure 3-49: Solution with no = (10, 20, 10, 10) and q = (0.0, 0.0, 0.0).
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Figure 3-50: Solution with no = (10, 20, 10, 10) and q = (0.2, 0.0, 0.0).
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Figure 3-51: Solution with no = (10, 20, 10, 10) and q = (0.0, 0.2, 0.0).
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Figure 3-52: Solution with no = (10, 20, 10, 10) and q = (0.2, 0.0, 0.2).
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Figure 3-53: Solution with no = (10, 20,20, 10) and q = (0.0,0.0, 0.0).

and {AB(CD)}. The sequence ((AB)(CD)) yields the best for q = (0.0,0.0,0.0), q =

(0.2, 0.0, 0.0), and q = (0.2, 0.0, 0.2), and the sequences (((AB)C)D) and (A(B(CD))) yield

the best for q = (0.0,0.2, 0.0). These results are consistent with the ones found by the GA

shown in Figure 3-43.

3.5.7 Sensitivity of yield to the initial concentration of parts

The optimal subassembly sequences encoded by conformational switch designs are {ABCD}

for no = (10, 10. 10, 10) with no defect, i.e. no order of assembly is specified as shown in

Figure 3-45. On the other hand, {ABCD} yields are very low with different initial concen-

tration of parts as shown in Figures 3-49 and 3-53. This seems to be a general property

of ambiguous subassembly sequences: their yield change dramatically depending on the

initial part concentration. In fact, the yield of ambiguous subassembly sequences are quite

sensitive to the change in the initial concentration of parts. Figure 3-57 shows the solution

of rate equations with no = (10, 11, 11, 10) and q = (0.0, 0.0, 0.0) (compare with Figure 3-

45). Even with the slightest change in no, the yield of ambiguous subassembly sequences

((AB)(CD))

(((AB)C)D). and (A(B(CD)))

{(AB)CD, and (AB(CD)J

{AB(CD))

. . . . . . . . . . . . . . . . . . . .

It
....................

..............* .........

.....................

.....................

I
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Figure 3-54: Solution with no = (10, 20, 20, 10) and q = (0.2, 0.0, 0.0).
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Figure 3-55: Solution with no = (10, 20, 20, 10) and q = (0.0, 0.2, 0.0).
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Figure 3-56: Solution with no = (10, 20, 20, 10) and q = (0.2,0.0, 0.2).

are approximately 10% lower than the ones of non-ambiguous subassembly sequences.

On the other hand, the initial part concentration has little effect on the yield of non-

ambiguous subassembly sequences. This robustness of non-ambiguous subassembly se-

quences against the initial part concentration is a great advantage in real-world self-assembly

processes, e.g. biological self-assembly, where realizing a precise and uniform concentration

of parts is extremely difficult.

3.5.8 Encoding power of a conformational switch model

One must note the encoding power of a conformational switch model, in order to say that

the switch design obtained by a GA actually encodes the optimal subassembly sequence.

There could be a subassembly sequence that cannot be encoded by a conformational switch

design, but that is better than any subassembly sequences encoded by the switch design. In

fact, ((A(BC))D) and (A((BC)D)), the subassembly sequences the conformational switch

model cannot encode, yield better than (A(B(CD))), the best sequence obtained by the

GA in the four part self-assembly with no = (10, 20, 20, 10) and q = (0.0, 0.2, 0.0), as shown
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Figure 3-57: Solution with no = (10, 11, 11, 10) and q = (0.0, 0.0, 0.0).

in Figure 3-58. It should be emphasized, however, that the sequence found by the GA is

the best among the sequences that can be encoded by the conformational switch design.

For comparison, Figure 3-58 also shows the solution of rate equations for three other un-

encodable subassembly sequences, ({ABC}D), (A{BCD}) and {A(BC)D}. The sequences

({ABC}D) and (A{BCD}) actually outperform the best encodable sequences (((AB)C)D)

and (A(B(CD))). The sequences ((A(BC))D) and (A((BC)D)) also perform better than

any encodable sequences in the cases with no = (10, 20, 20, 10) and q = (0.0, 0.0, 0.0), and

with no = (10,20,20, 10) and q = (0.2,0.0,0.0). The differences in yield, however, are

marginal.

Only a few modifications/extensions are necessary in the current conformational switch

model to encode the five un-encodable subassembly sequences in Figure 3-58, {A(BC)D},

((A(BC))D), (A((BC)D)), ({ABC}D) and (A{BCD}). In order to encode {A(BC)D},

I only need to modify priority to upstream propagation (Figure 3-11) such that conforma-

tional changes can propagate in both direction when it is possible22. Figure 3-59 illustrates an

22Appropriate changes in the definition of unstable bond are also required.
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Figure 3-58: Solution with no = (10, 20, 20,10) and q = (0.0,0.2,0.0): comparison with
un-encodable subassembly sequences
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Figure 3-59: Conformational switch design that encodes {A(BC)D}
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AB"C' + D -- AB"C'D

Figure 3-60: Conformational switch design that encodes ((A(BC))D).

example of a conformational switch design that encodes {A(BC)D} with this modification.

The sequences ((A(BC))D), (A((BC)D)), ({ABC}D) and (A{BCD}) can be encoded

by introducing the sliding bar mechanism described in [49], which allows propagation of

conformational change through multiple parts, and an additional "digit" 23 . The definition

of three types of bonding can be defined, for example, as analogous to the two-digit case.

Namely, two bond sites form a stable bond if Vaia. + bi _ 0, unstable bond if 31j aj + bj = 1

and Vi $ j ai + bi _ O, and no bond otherwise, where i, j E {1, 2, 3}. Figure 3-60 illustrates

an example of a conformational switch design that encodes ((A(BC))D) with this extension

and its three-step reactions.

231t seems that there is no two-digit switch designs that encodes these four sequences. Proving/disproving
this would be a part of future work.
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Figure 3-61: Conformational switch design that encodes ({ABC}D).

Note that the minus link in part B allows parts A and B to bond only after parts B and

C bond. By removing the link, therefore, one can construct a switch design that encodes

({ABC}D), as shown in Figure 3-61.

Conformational switch designs that encode (A((BC)D)) and (A{BCD}) can be obtained

by horizontally flipping the designs in Figures 3-60 and 3-61, respectively.

3.6 Summary

Two part one-dimansional self-assembly with sliding bar mechanisms

Examples in Sections 3.4.3-3.4.6 indicate that sliding bar mechanisms can temporarily

change the concentration of parts in the bin by forming temporal assemblies and disassemble

them. The optimal switch designs by genetic search, that maximizes the yield of a desired

assembly, exhibit this behavior when the part concentration in the itinital bin is significantly

different from the ones in the desired assembly. Formation of such temporal assemblies can

increase the chance of scare parts being found, by decreasing the overall part count in the

bin. If an AB assembly is desired, for example, and there are many more part A than part

.B in the bin, assemblies containing only part A (e.g. AA), will decrease the overall part

count and in turn increase the probability of randomly picking part B.
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Subassembly generation in multi-part one-dimensional self-assembly with minus

devices

As discussed in Sections 3.5.3-3.5.6, minus devices can encode a particular subassembly

sequence due to conformational changes of parts during one-dimensional self-assembly. An

optimal subassembly sequence that maximizes the yield of a desired assembly can be found

via genetic search over a space of parameterized conformational switch designs, rather

than a space of subassembly sequences. The resulting switch design encodes the optimal

subassembly sequence so that the desired assemblies are put together only in that sequence.

The results of genetic search and rate equation analyses reveal that the optimal subassembly

sequence depends on the initial concentration of parts and the defect probabilities during

self-assembly. More specifically, the results seem to indicate the following "rules of thumb"

to design conformational switches for the general n-part one-dimensional self-assembly:

* Non-ambiguous subassembly sequences yields better than ambiguous subassembly

sequences.

* Parallel subassembly sequences yield better than linear subassembly sequences.

* Abundant parts should be assembled earlier rather than later.

* Parts with high defect probability should be assembled earlier rather than later.
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4

Theory of One-dimensional

Self-assembling Automata

In this chapter, an abstract model of self-assembling systems is presented [52] where as-

sembly instructions are written as local rules that specify conformational changes of a

component. The model, the self-assembling automaton, is defined as a sequential rule-based

machine that operates on one-dimensional strings of symbols. An algorithm is provided for

constructing a self-assembling automaton which self-assembles a one-dimensional string of

distinct symbols in a given subassembly sequence. Classes of self-assembling automata

are then defined based on three classes of subassembly sequences described by assembly

grammars. The minimum number of conformations is provided which is necessary to encode

instances of each class of subassembly sequences. It is proven that the rules corresponding

to the two types of conformational switches described in the previous sections, with three

conformations for each component, are enough to encode any subassembly sequences of a

string of distinct symbols with arbitrary length.
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4.1 Motivation

In Section 3.5, it was found that conformational switches can encode one or more subassem-

bly sequences, and the encodable subassembly sequences depend on the conformational

switches employed. In particular, as discussed in Section 3.5.8, some subassembly sequences

cannot be encoded by conformational switches no matter how many conformations we

assumed. This raises the following questions:

* Is it possible to tell whether a subassembly sequence can be encoded by given types

of conformational switches?

* If so, how many conformations (or switch states) are necessary to encode a given

subassembly sequence?

The relationship between subassembly sequences and types of conformational switch is

analogous to the one between languages and "machines" (models of computation) in the

theory of computation [36], with a subassembly sequence being a language, and confor-

mational switches that encodes the subassembly sequence being a machines that accepts

the language. Under this view, the above problems can be seen as analogs of a problem

of finding a class of machines that accepts a given language, and a problem of finding the

minimum number of states of the machine that accepts a given instance of the language.

This analogy motivated me to address the above problems in the case of general self-

assembling systems, not in the case of the particular implementation of conformational

switches such as sliding bar mechanisms and minus devices. More specifically, the above

problems are approached by developing a formal model of self-assembling systems which

abstracts the built-in assembly instructions in the form of conformational switches, and by

identifying classes of self-assembling systems based on subassembly sequences in which the

components of the systems self-assemble. An abstract representation of such a system is

defined as a sequential machine that processes one-dimensional strings of symbols, which I

will refer to as an one-dimensional self-assembling automaton. Before proceeding to a formal

definition of a self-assembling system, two simple examples are discussed which emphasize

the essential aspect of machines of this type, by illustrating how conformational switches

can encode a subassembly sequence.
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4.2 Conformational switches as assembly instructions

Let us consider the following scenario of simple one-dimensional assembly. Suppose we are

given a one-dimensional component bin which initially contains a random assortment of

components. Further suppose we are given a set of assembly instructions, or simply rules,

describing which components can bind to which other components. Let the rules be of the

form a + b -- ab, which means a component a and a component b can bind together to form

an assembly ab. Assembly occurs by randomly picking two assemblies' in the bin and mating

them together. If one of the built-in rules fires, the two assemblies can bind together, and

the resulting assembly is returned to the bin. To keep track of the subassembly sequences,

we parenthesize the resulting assembly when it is formed. The rule a + b -+ ab fires, for

example, when a component a and a component b are picked and an assembly (ab) is added

to the bin as a result. If no rules fires, the two assemblies are simply returned to the bin.

Note that the rules are assumed to be local so that a + b -+ ab also fires when, for example,

an assembly (ca) and an assembly (ba) are picked, which results in forming an assembly

((ca)(ba)). This random picking continues until no further rule firing is possible by picking

any two assemblies in the bin. To see how the above scenario abstracts the one-dimentional

self-assembly via sequential random bin-picking discussed in the previous chapter, let us

consider a trivial example.

Example 1 Suppose our initial bin contains one component a, one component b, and two

component c's (which we represent as (a, b, c, c)), and our rule set contains a + b -+ ab and

b + c -+ bc, as shown in Figure 4-1 (a). As we proceed the random picking process described

above, no change occurs to the contents of the bin until a and b are picked, or b and c

are picked. If a and b are picked, the rule a + b -+ ab fires and the resulting bin becomes

((ab),c, c) (Figure 4-1 (bl)). After that, ((ab)c) is eventually formed when (ab) and c are

picked and b+ c -+ bc fires. The resulting bin becomes (((ab)c), c) and no further rule firing

is possible (Figure 4-1 (cl)). Similarly, if b and c are picked, the rule b+c -- bc fires and the

resulting bin becomes (a, (bc), c) (Figure 4-1 (b2)). After that, (a(bc)) is formed eventually

when a and (bc) are picked and a +b --ý ab fires. The resulting bin becomes ((a(bc)), c), and

no further rule firing is possible (Figure 4-1 (c2)).

1we assume a component is a special case of an assembly.
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(a) Rules: a + b -> ab, b + c --> bc
a b c c

(bl) (ab) c c (b2) a (bc) c

(c0) ((ab)c) c , (c2) (a(bc)) c ,

Figure 4-1: One-dimentional self-assembly with no conformational switches: abc can
assemble in the either order ((ab)c) or (a(bc)).

In the above example, the rules do not enforce any subassembly sequences to assemble

abc, in other words the final bin contains either ((ab)c) or (a(bc)) depending on the order of

rule firing. One can design conformational switches that enforce abc to be assembled only in

one of the above two subassembly sequences. Since conformational switches are essentially

rules of state transition of components triggered by local interaction with other components,

we can also represent them as rules of the form a + b -- a'b', which means a component a

and a component b can bind together to form an assembly a'b', where a' and b' represents

different conformations of a and b after conformational changes, respectively. Again, the

rules are assumed to be local, hence for example, (ca) and (ba) can form ((ca')(b'a)) by

applying this rule.

Example 2 Suppose a component b can take two conformations b and b', and conforma-

tional switching between b and b' occurs according to the rules a + b -+ ab' and b' + c - b'c,

as shown in Figure 4-2 (a). Note that such rules can be realized using minus devices as

described in Section 3.5.3. Starting with the same initial bin, (a, b, c, c), the random picking

process eventually picks up a and b. As a result of firing the rule a + b -+ ab', the state

of the bin becomes ((ab'), c, c) (Figure 4-2 (b)). After that, the rule b' + c 4 b'c eventually

fires to form an ((ab')c). The resulting bin becomes (((ab')c), c), and no further rule firing

is possible (Figure 4-2 (c)). Note that conformational change of component b after binding

to a enforces abc to be assembled only in the order ((ab)c)2 , by sending out a "signal" that

indicates it has bound to a so it is ready to bind to c.

2Here, we consider ((ab)c) and ((ab')c) are the same assembly.
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(a) Rules: a + b --> ab', b' + c --> b'c
a b c c

(b) (ab') c c

(c) ((ab')c) c

Figure 4-2: One-dimentional self-assembly with conformational switches: components abc
can assemble only in the order ((ab)c).

Similarly, the rules a + b' -+ ab', b + c -+ b'c enforces the only possible assembly order to be

(a(bc)).

In Example 2, we can view the rules a+b -+ ab' and b'+-c - b'c as a representation of the

subassembly sequence ((ab)c). In other words, the subassembly sequence ((ab)c) is encoded

by the conformational switches represented by the rules a + b -4 ab' and b' + c -+ b'c. In

the following sections, we will discuss which type of conformational switches (equivalently

types of the rules which represent the switches) can encode which types of subassembly

sequences.

4.3 Definition of one-dimensional self-assembling automata

We define a formal model of a one-dimensional self-assembling system as a sequential

rule-based machine that operates on one-dimensional strings of symbols. We refer to this

machine as a one-dimensional self-assembling automaton. In the following, we shall consider

a component of a one-dimensional self-assembling automaton as an element of a finite set E,

and an assembly is a string in E + . Additionally, a component a E E can take a finite number

of conformations represented by a, a', a", a"N - -, and the transition from a conformation to

the other is triggered by local interactions with other components specified by a set of

assembly rules3 .

3Each component, therefore, can be viewed as a finite automaton, hence the name self-assembling
automata.
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Definition 1 A one-dimensional self-assembling automaton (henceforth abbreviated SA) is

a pair M = (E, R), where E is a finite set of components, and R is a finite set of assembly

rules of the form either ac + bO -4 ab'h (attaching rule) or aabO -+ aTb6 (propagation

rule), where a,b E E and a,,3y,•, E {'}*4. The conformation set of a E C is a set

Qa = {a I a E {'}*, a' appears in R.}. The conformation set of M is a union of all

conformation sets of a E .

We will often call a string in Q+ as an assembly by conformation, or simply an assembly if

there is no ambiguity with a string in E+.

It should be noted that an attaching rules is an abstraction of the function of a minus

device, and a propagation rule is an abstraction of one of the functions of a sliding bar

mechanism. The other function of a sliding bar mechanism is to detach an exsisting bond.

This can also be abstracted by detaching rules of the form aabO -- al + bV. Such detaching

rules are not allowed in Definition 1 for simplicity of the discussion. Incorpoating detaching

rules is certainly a part of futute work.

Example 3 Using the above definition, the self-assembling system in Example 2 can be

defined as M1 = (E, R), where E = {a, b, c}, and R = {a + b --+ ab', b' + c -+ b'c}. The

conformation set of Mi is Q = {a, b, b', c}.

We view an SA as having an associated component bin, with a infinite number of slots

each of which can store an assembly (in conformation) or the null string A. Initially, a

finite number of the slots contain assemblies and the rest of the slots are filled with A.

Self-assembly of components proceeds by applying the rules in R to the a random pair of

assemblies (possibly A) in the component bin. As a result of the rule application, assemblies

are deleted from and added to the component bin, just like assertions are deleted from and

added to the working memory in rule-based inference systems. The rule application to a

random pair (x, y) is done according to the following procedure:

1. If (x, y) = (za a , b u) for some z, u cE *, and R contains the rule r = aa + b3 -4 arb6

(which we will refer to as r fires), delete x and y and add za y and b6u.

4It is assumed aA = a
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2. If (x, y) = (zaablu, A) or (x, y) = (A, zaab u) for some z,u E F+, and R contains

the rule r = aab# -+ aTb6 (which we will refer to as r fires), delete x and y and add

zatb6u.

where a, b E E and a, ,3, 7,6 {G}*. If none of the above applies to (x, y), x and y are simply

returned to the component bin, leaving the bin unchanged. Note that at any point of self-

assembly, the component bin contains a finite number of non-null strings with finite length,

since the total number of components in the initial bin is finite and no new component is

created by applying the rules to the bin.

In order to describe state of self-assembly at any point, there should be a representation

of the component bin which lists all assemblies currently in the component bin. It is also

convenient for the representation to keep a record of the sequence in which each assembly

has been assembled from its components. To define such a representation, a few notations

must be introduced first.

Let A be a finite set. A unordered list U over a finite set A is a list of some number

of elements in A, written as U = (a I a E A). In particular, U can contain more than one

copy of elements in A. We write a E U if NUMa(U) > 0, where NUMa(U) is the number

of a's in U. Also, we define SEQ(A) to be a shorthand of a language generated by the

context-free grammar Va E A, S -+ (SS) I a. Note that A C SEQ(A). A string x in SEQ(A)

is a full parenthesization of a string u = RM-PAREN(x) in A + , where RM-PAREN is a function

that removes parentheses from its argument string. We interpret the parse tree of x as a

(binary) assembly tree, i.e. a representation of a pairwise "assembly sequence" of u.

Definition 2 Let E be a component set of an SA. A subassembly sequence is a string in

SEQ(E). A subassembly sequence x is basic if x contains at most one copy of elements in

E, i.e Va E E, FN(x) < 1.

Definition 3 Let M = (E, R) be an SA. A configuration of M is a unordered list (x j x E

SEQ(Q)), where Q is the conformation set of M. Let x E SEQ(E) be a subassembly sequence.

A configuration F covers x if = (a I a E E) and Va E E, Na(x) 5 NUMa(F).

The sequence of self-assembly can be traced by examining the configuration each time

the component bin changes as a result of applying the rules in R to the component bin. To
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keep track of the order of assembly, the non-null string newly added to the component bin

are parenthesized in the new configuration if it is added by an attaching rule.

For two configurations F and 4, we write F F-M 4 if the configuration of M changes

from F to (D as a result of applying a rule in R to the component bin exactly once, reading

"(D is derived from F at one step." Similarly, F FI D if the configuration of M changes

from F to I) as a result of applying the rules in R to the component bin zero or more times,

reading "4 is derived from F." If there is no ambiguity, bFM and F-* are often shortened to

F- and F*, respectively.

Example 4 Let us consider M1 in Example 3. Let F = (a, b, c, c) and 4 = (a, b, c). The

configurations F and 4 covers the subassembly sequence ((ab)c). Self-assembly of ((ab)c)

from F proceeds as follows:

(a, b, c, c) F-M, ((ab'), c, c) •-, (((ab')c), c)

Given an SA as defined above, the process of self-assembly eventually terminates when

no rule firing is possible, or runs forever due to an infinite cycle of rule firing. It is natural

to say an SA self-assembles a given string in a given sequence if the process of self-assembly

terminates, and all terminating configurations contains the string which is assembled in the

sequence. Formerly, this can be stated as follows:

Definition 4 Let M = (E, R) be an SA, F be a configuration of M and x E SEQ(E) be a

subassembly sequence. F is stable if there is no rule firing from F, i.e. CM(F) = {F}, where

CM(F) = {(QI Fr F )}. M terminates from F if all configurations derived from F can derive

a stable configuration, i.e. V( E CM(r), 3B 1 E CM(,), CM(41) = {1i}. M self-assembles

x from F if both of the following hold:

1. M terminates from F

2. V4I E CJ1(F), 3y E D such that x = RM-PRIME(y), where Ch(F) is a set of stable

configurations derived from F, and RM-PRIME is a function that removes the prime

symbols (') from its argument.

Example 5 M1 in Example 3 self-assembles ((ab)c) from (a, b, c, c).
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4.4 Constructing one-dimensional self-assembling automata

Given a basic subassembly sequence x E SEQ(E), one can write a procedure which constructs

a set of assembly rules R such that M = (E, R) self-assembles x from any configuration

F that covers x. Since x is a representation of a binary assembly tree, such an algorithm

can be written as a simple recursive procedure. The following procedure MAKE-RULE-SET

takes as input a basic subassembly sequence x E SEQ(E), a flag q] E {left, right, none},

and a rule set R. The flag 77 indicates from which side the next assembly would occur,

with none indicating there is no next assembly, i.e. the current assembly it the last

one. MAKE-RULE-SET(x, none, 0) returns a pair (u,R), where u is the final assembly (by

conformation) such that RM-PRIME(u) = RM-PAREN(x) and R is the rule set containing the

assembly rules to assemble u from F. In the following pseudocode5 , x, y, z E SEQ(E) are basic

subassembly sequences, a, b E E, a,/3 E {'}*, and u,v E Q* where Q = {a jla E ,a E {}*},

and LEFT and RIGHT are functions that return the symbol at the left end right end of the

argument string, respectively.

MAKE-RULE-SET(x, 7, R)

1 if x =a

2 then return (a, R)

3 if x = (yz)

4 then (u, R) - MAKE-RULE-SET(y, right, R)

5 (v, R) - MAKE-RULE-SET(z, left, R)

6 a0 +- RIGHT(u)

7 b +- LEFT(v)

8 if 4 = none

9 then R +- R U {aa + bV -- ab }

10 return (uv, R)

11 if ' = left

12 then R - RU {(a + b -- aINC(a)b#}

13 (u, R) +- PROPAGATE-LEFT(u, R)

14 return (uv, R)

5The pseudocode conventions used in this paper follows [12].

113



15 if rI = right

16 then R +- R U {aa + b -+ aabINC(P)}

17 (v, R) +- PROPAGATE-RIGHT(v, R)

18 return (uv, R)

MAKE-RULE-SET recursively traverses the left and right subtrees (y and z in the line 3), and

adds a attaching rule to R that assembles (yz). If a component will be assembled from the

left at the next assembly step (,q = left in the line 11), propagation rules are added (by the

procedure PROPAGATE-LEFT in the line 13) that propagate conformational changes thorough

the assembly corresponds to the left subtree. If a component will be assembled from the

right at the next assembly step (77 = right in the line 15), propagation rules are added

(by the procedure PROPAGATE-RIGHT in line 17) that propagate conformational changes

thorough the assembly corresponds to the right subtree. If there is no next assembly step,

i.e. yz is the final assembly (7 = none in the line 8), no propagation rules need to be added.

The subroutines PROPAGATE-LEFT and PROPAGATE-RIGHT are defined as follows:

PROPAGATE-LEFT(u, R)

19 if u = a"

20 then return (aINC(a), R)

21 if u = vaabP

22 then R +-- RU {aabINC (P) -4 aINC(a)bINC(P)}

23 (u, R) +-- PROPAGATE-LEFT(va n , R)

24 return (ubINc(P), R)

PROPAGATE-RIGHT(u, R)

25 if u = aa

26 then return (aINc(a), R)

27 if u = aab v

28 then R +- R U {aINC(a)b 3 -+ aINC(a)bINCc ( )}

29 (u, R) +- PROPAGATE-RIGHT(blv, R)

30 return (aINC(a)u, R)
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where INC is the "conformation incrementor" function which appends the prime symbol (')

to its argument string such that for a E {'}*, INC(a) = a'. For example, INC(A) =' and

INC(') =".

Example 6 Let us consider E = {a, b, c, d} and x = ((a(bc))d). MAKE-RULE-SET(x, none, 0)

returns with (ab"c'd, R) where R contains the following rules: b + c -+ b'c, a + b' -+ ab",

b"c -+ b"c' and c' + d -- c'd. It is clear that an SA M = (E, R) self-assembles x from the

configurations that cover x, e.g. (a, b, c, d) and (a, a, b, b, c, c, d, d).

The following theorem tells the correctness of MAKE-RULE-SET in general case of x.

Namely, for any basic subassembly sequence x E SEQ(CF), MAKE-RULE-SET(x, none, 0) returns

a pair (u,R), where RM-PRIME(u) = RM-PAREN(x) and R is a set of assembly rules such that

an SA (E, R) self-assembles x from any configuration that covers x.

Theorem 1 MAKE-RULE-SET is correct.

Proof: In this proof, we will abbreviate MAKE-RULE-SET as MRS. Let x E SEQ(E) be a basic

subassembly sequence. we wish to prove the following statement: MRS(x, none, 0) returns

(u, R) such that RM-PRIME(u) = RM-PAREN(x) and M = (E, R) self-assembles x from any

configuration F that covers x. The proof is done by the mathematical induction on L(x),

where L(x) = IRM-PAREN(x)].

I. If L(x) = 1, x = a, a E E. MRS(x, none, 0) immediately returns (a, R) (the line 2), where

R = 0. Since no assembly is necessary for x, the above statement is true.

II. Suppose the above statement is true for L(x) = k. In other words, for any Xk E SEQ(E)

and L(x) = k, Mk = (E, Rk) self-assembles Xk from any configuration ]k that covers xk,

where Rk is the rule set returned by MRS(Xk, none, 0). we are going to construct (by hand)

Rk+l from Rk and then show Rk+1 is in fact the rule set returned by MRS(Xk+1, none, ).

Let Xk = (yz), y, z E SEQ( ), (u, Ry) = MRS(y), and (v, Rz) = MRS(z). Without loss

of generality, we can write write u = a 12 . a" and v = a+ aj2 . .. ak, where Vi e

{1,... , k}, as E E, ai E {'}*. Since we can choose xk arbitrarily, any basic subassembly
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sequences Xk+1 E SEQ(E) with L(xk+l) = k + 1 can be written as either (ak+l(yz)) or

((yz)ak+l), where ak+l E E and Vi E {1,..., k}, ai i ak+1. We consider these two cases

separately:

a. If Xk+1 = (ak+l(yz)), Rk+l1 must contain (1) the rules that assembles y and z, (2) the

rules that brings y and z together, (3) the rules that propagate conformational changes

through y to the left, and (4) the rules that brings ak+l and (yz) together. Accordingly, we

can construct Rk+1 from Rk by replacing the attaching rule

a ei i+l - ia ai+l
a i+l i i+l

with the attaching rule

a• + ac' i+ a INC(ai) aai+l
ai i+1 ' ai ai+l

(this corresponds to (2)), adding the propagation rules

ai-1 INC(ai) INC(ai-1) INC(ai)
ail1 ai  i1 i

ai-2 INC(ai-1) aINC(ai-2)a INC(ai-1)
i-2 i-1 i-2 i-1

aal aINC(a2) INC(al) INC(a 2)
1 2 1  a2

(this corresponds to (3)), and adding the attaching rule

ak + aINC(a ) -+ak INC(a)k ~+1 1 k+11

(this corresponds to (4)). Since the rules in Rk other than ai + aji+ ai ai+' are

unchanged in Rk+1, Rk+1 contains all the rules that assembles x and y separately (this

corresponds to (1)).

Now we wish to show that Rk+1 constructed as above is in fact the same as the

rule set returned by MRS(Xk+1, none, 0). Since xk+1 = (ak+l(yz)), MRS(Xk+l, none, 0) calls

MRS(ak+l, right, 0) (the line 4) which immediately returns (ak+l, 0), and then calls MRS((yz), lef t, 0)

(the line 5). Let )Rk be the rule set returned by MRS((yz), left, 0). Rk is the same as Rk
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except that )Rk contains the rule

a i+a INC(a 1) ai+ia' i+1 -+ ai  a+ 1

instead of

ai+l ai ai+lai +at+ 1 - a ia+

(the line 12), and additionally contains the propagation rules added by PROPAGATE-LEFT (the

line 13) which propagate conformational changes through y to the left. After MRS((yz), left, 0)

returns, the rule

INC(al) INC(al)ak+1 + a a Ik+lal

is added to iRk and MRS(Xk+l, none, 0) returns. The returned rule set, therefore, contains

exactly the same rules as in Rk+1 constructed as above.

b. If Xk+1 = ((yz)ak+l), Rk+1 must contain (1) the rules that assembles y and z, (2) the

rules that brings y and z together, (3) the rules that propagate conformational changes

through z to the right, and (4) the rules that brings (yz) and ak+1 together. The similar

discussion to the part a tells that MRS(xk+l, none, 0) returns the rule set that contains the

rules described above. I

The running time of MAKE-RULE-SET depends on the shape of the parse tree of the input

(basic) subassembly sequence. The worst case behavior of MAKE-RULE-SET occurs when,

at every step of its recursion, either PROPAGATE-LEFT or PROPAGATE-RIGHT is called. This

is the case when new components are added from the alternate directions at every step of

assembly. The best case, on the other hand, is when there is no call of PROPAGATE-LEFT

and PROPAGATE-RIGHT, i.e. at every step of assembly, new components are added from the

same directions. The following theorem provides the running time of MAKE-RULE-SET in the

worst, the best and the average cases.

Theorem 2 Let x E SEQ(E) be a basic subassembly sequence, and n = L(x). The worst,

the best and the average running time of MAKE-RULE-SET(x, none, 0) is E(n 2), O(n) and

0 (n log n), respectively.
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Proof: Let x be a input string of MAKE-RULE-SET and x = (yz). In the worst case scenario,

new components are added from the alternate directions at every step of assembly. This

implies the input string x has totally unbalanced subtrees at every recursive step, i.e.

L(y) = 1 or L(y) = n - 1. Since PROPAGATE-LEFT and PROPAGATE-RIGHT run in O(n), the

recurrence of the running time of MAKE-RULE-SET is given as

T(n) = T(n - 1) + T(1) + 8(n)

Since T(1) = O(1), T(n) = O(n 2). In the best case, new components are added from the

same directions at every step of assembly. This also implies L(y) = 1 or L(y) = n - 1 at at

every recursive step. Since there is no call of PROPAGATE-LEFT and PROPAGATE-RIGHT, the

running time is

T(n) = T(n - 1) + T(1) + 6(1) = T(n - 1) + E(1) = O(n)

On average, we can expect L(y) = n/2 and hence the running time is

T(n) = 2T(n/2) + 8(n)

In the average case, therefore, T(n) = O(n log n). I

4.5 Classes of one-dimensional self-assembling automata

The best running time of MAKE-RULE-SET occurs when neither PROPAGATE-LEFT nor PROPAGATE-RIGHT

are called during its execution. In this case, therefore, the rule set R returned by MAKE-RULE-SET

contains only attaching rules, whereas both attaching rules and propagation rules are in R

in other cases. Accordingly, two classes of SA can be defined based on the presence of

propagation rules in the rule set.

Definition 5 Let M = (E, R) be an SA. M is class I if R contains only attaching rules.

M is class II if R contains both attaching rules and propagation rules.

We are going to define the classes of basic subassembly sequences which correspond to

each of the above classes of SA. The basic subassembly sequences that correspond to the
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best running time (hence corresponds to class I SA) are those in which the direction from

which new components are added do not alter during the entire self-assembly process. On

the other hand, the directions must alter at least once in the basic subassembly sequences

that correspond to the worst and average running time (hence corresponds to class II SA).

Classes of such subassembly sequences are described more precisely below.

Definition 6 An assembly template is a string t E SEQ({p}). An instance of t on a finite

set E is a subassembly sequence x E SEQ(E) obtained by replacing p in t by a E E. If x is

an instance of t, t is an assembly template of x.

Example 7 Two strings t1 = ((pp)(pp)) and t2 = ((p(pp))p) are assembly templates. Let

E = {a, b, c, d}. The basic subassembly sequences xl = ((ab)(cd)) and x2 = ((b(ad))c) are

instances of tl and t 2 on E, respectively.

Definition 7 An assembly grammar is a context-free grammar whose language is a subset

of SEQ({p}). The class I assembly grammar GI is an assembly grammar defined by the

following production rules:

S - (LR)

L - (Lp) p

R - (pR) p

The assembly templates in L(GI) have the structure

(((... ((pp)p) ...- )p)(p(-- (p(pp)) .. )))

whose parse tree is shown in Figure 4-3. Each of the left and right subtrees is a liner

assembly tree, which specifies self-assembly proceeding in one direction. The parse trees of

the assembly templates in SEQ({p}) are general binary tree with no special structures.

Example 8 The assembly template t1 in Example 7 can be generated by GI, for example,

through the following derivation:

S => (LR) =* ((Lp)R) =- ((pp)R) =* ((pp)(pR)) => ((pp)(pp))
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Figure 4-3: Parse tree of an assembly template generated by G1 .

and hence t1 E L(GI).

We can interpret L(GI) and SEQ({p}) as sets of assembly templates with the different

number of changes in the direction of self-assembly. Let x be an subassembly sequence

which is an instance of an assembly template t. If t E L(GI), the direction of self-assembly

does not alter during the self-assembly of x. If t E SEQ({p}) \ L(GI), the direction of self-

assembly alters at least once during the self-assembly of x. Based on these observations, we

claim for any basic subassembly sequence whose assembly template is in L(GI), there exists

a corresponding class class I SA, and for any basic subassembly sequence whose assembly

template is in SEQ({p}) \ L(GI), there exists a corresponding class II SA. In the following

proofs, we will abbreviate MAKE-RULE-SET as MRS, and D(t) as the depth of the parse tree

of t.

Theorem 3 For any basic subassembly sequence x which is an instance of an assembly

template t E L(GI), there exists a class I SA which self-assembles x from a configuration

that covers x.

Proof: Let x E SEQ(E). By Theorem 1, it suffices to show that the rule set returned

by MRS(x, none, 0) contains no propagation rules. If D(t) = 0, x = a E E. Therefore,

MRS(x, none, 0) immediately returns (a, 0) (in the line 2). If D(t) > 1, let ml and mr be

the depth of the left and the right subtree of t, respectively. Without loss of generality

we can write t = (lmrm,) where li = (li_-p) for i = 1,...,mr, ri = (pri-1) for i =

1,...,mr, and 10 = ro = p. Let yi and zj be substrings of x that correspond to li

and rj, respectively. In this case, MRS(x, none, 0) recursively calls MRS(ym,,right, 0) and

MRS(zmr,, left, R 1) (the lines 4 and 5), where R 1 is the rule set returned by MRS(ym,, right, 0).

Let R 2 be the rule set returned by MRS(zm,, left, Ri). Since no propagation rules are added
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to R 2 before MRS(x, none, 0) returns in the line 10, it suffices to show neither R 1 nor R 2

contain propagation rules. We will consider these two cases separately.

A. To prove R 1 contains no propagation rules, we wish to show that for any n > 0, the

rule set Rn returned by MRS(y,, right, 0) contains no propagation rules. We will prove the

above statement by the mathematical induction on n.

i. If n = 0, yo = ao E E. Since MRS(ao, right, 0) returns (ao, 0), no propagation rules are in

Ro.

ii. Suppose for some k > 0, MRS(yk, right, 0) returns with the rule set Rk which contains no

propagation rules. Since Yk+1 = (ykak) where ak E E, MRS(yk+l, right, 0) recursively calls

MRS(yk, right, 0) and MRS(ak, left, Bk). By the inductive hypothesis, no propagation rules

are in Rk. Also, MRS(ak, left, Rk) returns (ak, Rk) since ak E E. After these calls return,

the condition in the line 15 is satisfied and an attaching rule is added to Rk (the line 16).

Let this new rule set be k. PROPAGATE-RIGHT(ak, R) then is called (the line 17), which

returns (a/k, ). Therefore, MRS(yk+l, right, 0) returns with the rule set Rk+1 = R, which

contains no propagation rules (the line 18).

B. To prove R 2 contains no propagation rules, we wish to show that for any n > 0, the rule

set R• returned by MRS(zn, left, Ro) contains no propagation rules, where R0 is a rule set

containing no propagation rules. The mathematical induction on n similar to the part A

tells the above statement holds. I

Theorem 4 For any basic subassembly sequence x which is an instance of an assembly

template t E SEQ({p}) \ L(GI), there exists a class H SA which self-assembles x from a

configuration that covers x.

Proof: Let x E SEQ(E). By Theorem 1, it suffices to show that the rule set returned by

MRS(x, none, 0) contains at least one propagation rule. Since

{sIs E SEQ({p}), D(s) _< 2} = {p, (pp), ((pp)p), (p(pp)), ((pp)(pp))} C L(GI)

we consider D(t) _ 3. Let ml and mr be the depth of the left and the right subtree of t,
respectively. Without loss of generality, we can write t = ( r) where ( ) for1 (int rmr,) where 1ý = (lilIli1) for
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i = 1,...,m, r i = (rilr_ 1 ) for i = 1,...,mr, I , E SE({p}), and 1 = r = p. Then

3j E {1,...,m,}, L(1r) Ž 2, or 3j E {1,... ,mr}, L(r) > 2, since otherwise t E L(GI). We

consider these two cases separately.

A. Suppose 3j E {1,... ,m}, L(lI) > 2. Let y, yj and y)+I, be substrings of x that

correspond to lI, lj and l+ 1. Let Ro be a rule set containing no propagation rules. It suffices

to show the rule set returned by MRS(y +l, right, Ro) contains at least one propagation

rule. Since y1+1 = (y y ), MRS(y+ 1, right, Ro) recursively calls MRS(y, right, Ro) and

MRS(yj, left, R 1) (the lines 4 and 5), where R 1 is the rule set returned by MRS(y, right, Ro).

Let (v, R 2) be a return value of MRS(yj, left, R 1), where RM-PRIME(v ) = RM-PAREN(y ).

Since L(yj) > 2, Ivjr > 2. After MRS(yj, left, R 1) returns, the condition in the line 13 is

satisfied and an attaching rule is added to R 2 (the line 16). Let this new rule set be R 2.

PROPAGATE-RIGHT(v>, R 2) then is called (the line 17). Since Ivj| > 2, the condition in the

line 27 is satisfied and at this point, a propagation rule is added to R 2. Therefore, the rule

set returned by MRS(y +1, right, Ro) contains at least one propagation rule.

B. Suppose 3j E {1,..., mr}, L(r ) > 2. The similar discussion to the part A tells that the

rule set returned by MRS(zr+ 1, left, Ro) contains at least one propagation rule. I

In addition to the above theorems, we can say that class I SA is not "powerful" enough

to encode any basic subassembly sequence which is an instance of an assembly template in

SEQ({p}) \ L(GI).

Corollary 1 For any basic subassembly sequence x which is an instance of an assembly

template t E SEQ({p}) \ L(GI), there exist no class I SA which self-assembles x from a

configuration that covers x.

Proof: By Theorem 4, there exists a class II SA MII = (E, Ru) which self-assembles x from

a configuration that covers x. Since the conformational changes realized by a propagation

rule cannot be realized by using only attaching rules, there are no rule sets containing only

attaching rules which is equivalent to RII. I
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4.6 Minimum conformation self-assembling automata

In this section, we will provide the minimum number of conformations necessary to encode a

given subassembly sequence based on the classes of basic subassembly sequences introduced

in the previous section. Since the number of conformations may vary for each component,

we simply define the number of conformations of an SA to be the maximum number of

conformations of all components.

Definition 8 Let M be an SA. M is an SA with n conformations if

n = max Ija
aaEQ

where Q is the conformation set of M.

Definition 9 The class II assembly grammar GII is an assembly grammar defined by the

following production rules:

S -+ (LoRo)

Lo -- (LoRi)I R

Ro -+ (L1Ro) Li

L 1 -+ (Lip) p

R1 -+ (pR) lp

Note that L(GI) C L(GrI) C SEQ({p}). The assembly templates in L(GII) have the

structure

((((... ((RIR1)R1) ..- )R1)(LI(-.. (Li(LL1)).. ))))

where L 1 and R 1 are strings of the forms ((... ((pp)p) ... )p) and (p(... (p(pp)) ... )), respec-

tively. The corresponding parse tree is shown in Figure 4-4. The parse tree in Figure 4-4 can

be obtained from the parse tree in Figure 4-3, by replacing leaves at the right branches of

the left subtree by a linear assembly tree, and vice versa. Let x be an subassembly sequence

and t is an assembly template of x. If t E L(GII) \ L(GI), the direction of self-assembly

alters exactly once, and if t E SEQ({p}) \ L(GII), the direction of self-assembly alters more

than once during the self-assembly of x.
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Figure 4-4: Parse tree of an assembly template generated by GII.

Example 9 The assembly template t 2 in Example 7 cannot be generated by GI but can can

be generated by G11 , for example, through the following derivation:

S =* (LoRo) =* ((LoRi)Ro) =* ((pRi)Ro) == ((p(pRi))Ro) == ((p(pp))Ro) => ((p(pp))p)

and hence t2 E L(GII) \L(GI). An assembly template t3 = (p((p(pp))p)) E SEQ({p}) cannot

be generated by GIC and hence t3 E SEQ({p}) \ L(GjI).

The minimum number of conformations of SA which is necessary to self-assemble a given

basic subassembly sequence x depends on whether x is an instance of an assembly tem-

plate in L(GI), L(GII) \ L(GI), or SEQ({p}) \ L(GII). Since attaching rules produced

by MAKE-RULE-SET requires at most two conformations for each component, the minimum

number is two if x is an instance of an assembly template in L(GI). The proof is very

similar to the one for Theorem 3.

Theorem 5 For any basic subassembly sequence x which is an instance of an assembly

template t E L(GI), there exists class I SA M with two (2) conformations which self-

assembles x from a configuration F that covers x. For L(x) > 3, M is an SA with the

minimum number of conformations which self-assembles x from F.

Proof: Let x E SEQ(E) and R be the rule set returned by MRS(x, none, 0). For the first

part, we wish to show the following statement: R contains only attaching rules of the form

a' + b -+ a0b0 such that IjaJ, 1I, ly,161 < 2, where a,b E E and a, ,7y, E {'}*. If

D(t) = 0, x = a e E. Therefore, MRS(x, none, 0) immediately returns (a, 0) (in the line 2),

hence the statement holds. If D(t) > 1, without loss of generality we can write t = (lm,rm,)

124



where li = (liilp) for i = 1,...,ml, ri = (pri-1) for i = 1,...,mr, and lo0 = ro = p.

Let yi and zj be substrings of x that correspond to li and rj, respectively. In this case,

MRS(x, none, 0) recursively calls MRS(ym,, right, 0) and MRS(zm,, left, R 1) (the lines 4 and 5),

where R 1 is the rule set returned by MRS(ym-1_, right, 0). Let R 2 be the rule set returned

by MRS(zmr, left, Ri). Since there are no INC in the attaching rule added to R 2 in the line

9, it suffices to show the above statement holds for both R 1 and R 2 . We will consider these

two cases separately.

A. To prove the above statement holds for R 1, we wish to show that for any n > 0, the

statement holds for the rule set Rn returned by MRS(yn, right, 0). We will prove the this by

the mathematical induction on n.

i. If n = 0, yo = ao E E. Since MRS(ao, right, 0) returns (ao, 0), the statement holds for

Ro = 0

ii. Suppose for some k > 0, MRS(yk, right, 0) returns with the rule set Rk for which the above

statement is true. Since Yk+1 = (ykak) where ak E E, MRS(yk+1,right, 0) recursively calls

MRS(yk, right, 0) and MRS(ak, left, B k). By the inductive hypothesis, the above statement is

true for Rk. Also, MRS(ak, left, Rk) returns (ak, Bk) since ak e E. After these calls return,

the condition in the line 15 is satisfied and an attaching rule af _ 1 +a1  ak- a k is added to

Rk. Let this new rule set be R. Since the above statement holds for Rk, |al < 2. Therefore,

the statement also holds for B. PROPAGATE-RIGHT(ak, R 1) then is called (the line 17), which

returns (ak, RI). Therefore, MRS(yk+l, right, 0) returns with the rule set Rk+1 = R for which

the above statement holds.

B. To prove the above statement holds for R 2, we wish to show that for any n > 0, the

above statement holds for the rule set Rn returned by MRS(zn, left, Ro), where Ro is a rule

set for which the above statement holds. The mathematical induction on n similar to the

part A tells this is the case.

Since at least two conformations are necessary for any x with L(x) > 3, M is an SA

with the minimum number of conformations which self-assembles x from I. I

The "conformation incrementor" INC used in MAKE-RULE-SET simply appends the prime

symbol (') to its argument string each time it is called. The number of conformations of

a component, therefore, could be very large depending on how many times INC is called
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to the component before MAKE-RULE-SET returns. Alternatively, we can use a "modulo n"

conformation incrementor INCn such that

INCn(a) = a' if Jla < n
SA if Ial = n

For example, INC2 (A) =' and INC2(') = A. Using this notation, we can write INC as

INC,. Running MAKE-RULE-SET with INCh, instead of INC, produces the assembly rules

at most n conformations for a component. Such rules, however, are no longer guaranteed

to self-assemble the components in a given subassembly sequence. In particular, there

could be more than one conflicting propagation rules which specify different conformational

changes of the same two adjacent components. In order to show MAKE-RULE-SET run with

INCn instead of INC, is correct, therefore, it suffices to show no such conflicts among

propagation rules are possible. There are two cases to be considered. First, if the rule set

R contains at most one propagation rule for each two adjacent components, no conflict is

possible. Therefore, the above statement is true for the smallest possible n, i.e. n = 2.

This is the case if the subassembly sequence x is an instance of an assembly template

t EE L(GII) \ L(GI), when the direction of self-assembly alters exactly once. Second, if R

contains more than one propagation rules of the same two adjacent components, n must be

large enough to cause no conflicts among the propagation rules. This corresponds to the

case where x is an instance of t E SEQ({p}) \ L(GII), when the direction of self-assembly

alters more than once. In the following proof, GL and GR are the assembly grammars

defined by the production rules S -+ (Sp) I p and S -+ (pS) Ip, respectively.

Theorem 6 For any basic subassembly sequence x which is an instance of an assembly

template t E L(GH[) \ L(GI), there exists class II SA M with two (2) conformations which

self-assembles x from a configuration F that covers x. And M is an SA with the minimum

number of conformations which self-assembles x from F.

Proof: Let x E SEQ(E), and R be the rule set returned by MAKE-RULE-SET(x, none, 0). For

the first part, we wish to show for any two adjacent components ab in x, R contains at most

one propagation rules of the form aab/3 -+ aTb6 , where a, f,7y,6 E {'}*, a,b E E and ab is

a substring in RM-PAREN(x). Without loss of generality, we can write t = (1 n r r r) where

S(l ) for i = 1,... , r = ( r ) for i = 1,...mr, E L(GR), rf E L(GL),
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and 10 = r' = p. Then 3j E {1,...,mi}, L(lj) Ž 2, or Bj E {1,...,mr}, L(r ) > 2, since

otherwise t E L(GI). We consider these two cases separately.

A. Suppose 3j E {1,...,mi}, L(lj) > 2. Let y1, yr and y+i, be substrings of x that
correspond to I, lT and IJ+ Let ab be an arbitrary substring of RM-PAREN(yr+l), and Ro

be a rule set containing no propagation rules. Since y)•+ and y++ does not overlap, ab is

not a substring of RM-PAREN(yj+ ). It suffices, therefore, to show the following statement:

the rule set returned by MRS(y3+ 1, right, Ro) contains at most one propagation rules of the

form aabO -+ a^bW, where O, , y, 6 E {'}*.

Since y+I = (Y4y~), MRS(y •+, right, Ro) recursively calls MRS(y', right, Ro) and MRS(yj, left, R 1)

(the lines 4 and 5), where R 1 is the rule set returned by MRS(y , right, Ro). Let (vj, R 2) be

a return value of MRS(yj, left, R1), where RM-PRIME(vjr) = RM-PAREN(yjr). Since lr E L(GR)

and L(GR) C L(GI), only attaching rules are required to assemble y , and hence R 2 contains

no propagation rules. Since L(yj) 2 2, vjrl > 2. After MRS(y , left, R 1) returns, the

condition in the line 13 is satisfied and an attaching rule is added to R 2 (the line 16). Let

this new rule set be R?2. PROPAGATE-RIGHT(vr, R 2) then is called (the line 17). Since Jvj I> 2,

the condition in the line 27 is satisfied and when PROPAGATE-RIGHT(vjr, 2) returns, exactly

one propagation rule of the form aaba -+ aab(INC(13)) is added to 1 2 for each substring ab

of RM - RAREN(yj). Since this is the only time the propagation rules are added, the above

statement holds.

B. Suppose 3j E {1,..., mr}, L(r ) > 2. Let ab be an arbitrary substring of RM-PAREN(z•+I),

The similar discussion to the part A tells that the rule set returned by MRS(zj+t, left, Ro)

contains at most one propagation rule of the form aab• -+ aTbh for each substring ab of

RM-RAREN(z ).

MAKE-RULE-SET(x, none, 0) run with INC2 causes no conflict among propagation rules,

since R contains at most one propagation rules for any two adjacent components in x. By

Theorems 1 and 4, therefore, there exist a class II SA M with two conformations which

self-assembles x from r. Since L(GI) C L(GII), Theorem 5 tells at least two conformations

are necessary and therefore, M is an SA with minimum conformation which self-assembles

x from F. I
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Example 10 Let us consider E = {a, b, c, d} and x = ((a(bc))d). The subassembly sequence

x is an instance of t 2 = ((p(pp))p) in Example 7. From Example 9, t2 E L(GII) \ L(GI). A

call of MAKE-RULE-SET(x, none, 0) run with INC2 returns with (abc'd, R) where R contains

the following rules: b + c --+ b'c, a + b' -+ ab, bc -+ bc' and c' + d -+ c'd. It is clear that

M = (E, R) is an SA with two conformations which self-assembles x from the configurations

that cover x, e.g. (a, b, c, d) and (a, a, b, b, c, c, d, d).

In the case where a basic subassembly sequence x is an instance of assembly template

in SEQ({p}) \ L(GII), we claim only three conformations are necessary to encode arbitrary

x. This might sounds counter-intuitive since we are claiming only three conformations can

encode basic subassembly sequences with arbitrary (possibly very large) sizes. The proof

of this claim is based on the observation that there are only two kinds of propagations

rules; the rules which propagate conformational changes to the left, and the rules which

propagates conformational changes to the right. As in the previous case, we will prove this

statement by showing MAKE-RULE-SET run with INCn causes no conflicts among propagation

rules of the same adjacent components in the case of n = 3. To do this, we will define a

concept called a n-conformation transition cycle. Then, we will prove that no such conflicts

among propagation rules are possible for INC. if there exists a n-conformation transition

cycle. Finally, we will show there exists a 3-conformation transition cycle. Since our focus is

on conformational propagation between two arbitrary adjacent components, it is convenient

to introduce several notations first.

A conformational transition rule is a rule of the form a - -+ 7 6, where a, 8,-, 6 e {'}*.

Let r be a propagation rule and p be a conformational transition rule. We write p = TRN(r)

if p = a -3 p 7 - 6 and r = aab, -+ aTb' where a, b E E. For two conformational transition

rules pl and P2, we write P1 '+-, P2 if one of the following holds:

* pl = a - -+ INC,(a) -P and P2 = INCn(INCn(a)) -/ -+ INCn(INC n(o)) . INC(/3).

* pl = a 3 -+ a INCn(0) and P2 = a - INC,(INC,(3)) - INCn(a) • INC (INCn ()).

In addition, we say two conformational transition rules pl = a• -• 1 -+ 71 - 61 and P2

a2 ' 2 -+ 72 62 are conflicting if (al, 01) = (a2, 32) and (y1, 61) # (72, 62).
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Definition 10 A n-conformation transition cycle is a finite sequence of non-conflicting

conformational transition rules < p1, P2, . , Pm > such that for i = 1, 2,... , m - 1, Pi n+n

Pi+1, and Pm -•n Pi.

Corollary 2 Let x E SEQ(E) be basic subassembly sequence which is an instance of an as-

sembly template t E SEQ({p})\L(Gjj). Let R be the rule set returned by MAKE-RULE-SET(x, rl, 0)

run with INCo. There exist a substring ab of RM-PAREN(x) such that R contains more than

one propagation rules of ab. For any two propagation rules ri, r2 E R of ab, TRN(rl) -- +o

TRN(r 2) if r2 fires after rl and no propagation rules of ab fires between rl and r2.

Proof: Let a, f E {'}*. During the self-assembly of x, the direction of self-assembly alters

more than once since otherwise t E L(GII) \ L(GI). This implies there exist at least one

substring ab of RM-PAREN(x) such that R contains more than one propagation rules of the

form aab3 -+ aTb6.

If rl is added to R by PROPAGATE-LEFT in the line 22, we can write rl as rl = aab -+

aINCm(a)b, . We are going to show r2 must be then added to R by PROPAGATE-RIGHT. Let us

suppose r2 is added to R by PROPAGATE-LEFT. This implies PROPAGATE-LEFT is called twice

in the two consecutive assembly steps. This then implies two components are added from

the left in the two consecutive assembly steps, since PROPAGATE-LEFT is called when the

component at the next assembly step is added from the left. If this is the case, however, the

second call of PROPAGATE-LEFT returns in the line 20, without adding any propagation rules

to R. This is contradiction. Therefore, r2 must be added to R by PROPAGATE-RIGHT. Since

r1 = aab
3 -+ aINCc,(a)bI and no propagation rules of ab fires between rl and r2, r 2 must be

the form r 2 = aINC°O(INC (a))bf -- aINCo(INCcO(a))bINC.(1). Hence TRN(r 1 ) o-,, TRN(r 2 ).

If rl is added to R by PROPAGATE-RIGHT in the line 29, we can write rl as rl = aabo -+

aabIN co( ). Similar discussion shows r2 must be added to R by PROPAGATE-LIGHT, and r2

must be the form r 2 = aabINC,(INCc (#)) -+ aINC°m(a)bINcx(INCx(/)). Hence in this case also,

TRN(ri) "--o TRN(r 2 ). I

Corollary 3 Let n > 3. For any basic subassembly sequence x which is an instance of an

assembly template t E SEQ({p}) \ L(GII), there exist a class II SA with n conformations

which self-assembles x from a configuration that covers x if there exists a n-conformation

transition cycle.
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Proof: Let x E SEQ(E). From Theorem 1, it suffices to show that MAKE-RULE-SET run with

INCn, is correct. Let Roo and Rn be the rule sets returned by MAKE-RULE-SET(x, none, 0)

run with INCoo and with INCn, respectively. We know Roo and R, contain exactly the

same attaching rules since n > 3 and attaching rules increment conformation of a com-

ponent at most twice. Let < ri, r2, ..., r > be a sequence of propagation rules of two

adjacent components ab, as produced by MAKE-RULE-SET(x, none, 0) with INCoo. Also, let <

rn, r,.. ., rl > be a sequence of propagation rules of ab, as produced by MAKE-RULE-SET(x, none, 0)

with INCn, where 1 < k. By definition of INCn, r' corresponds to r.modl for i = 1,2, ... k.

From Corollary 2, therefore, TRN(modl) n TRN(r(i+l)modl) for i = 1,2,..., k - 1. Since

there exists a n-conformation transition cycle, TRN(r ) and TRN(ri) are not conflicting for

any i, j E {1, 2,... l}. Since this holds for propagation rules of any two adjacent components,

Rn contains the rules which assembles x from a configuration that covers x. I

Corollary 4 There exists a 3-conformation propagation cycle.

Proof: In this proof, we will write the prime symbol (') as p. Let us consider a sequence of

conformational transition rules < r 2, r3, r4, r5, r6 > where

rl= A -A -ýp - A r2= pp.A-+pp-p r 3 = pp.pp--+A.pp

r4 = p.pp-+p.A r5 = P-p--PP.p r6 = A.p-+A-pp

By Definition 10, the above sequence is a 3-conformation propagation cycle, since INC3 (A) =

p, INC3 (p) = pp, and INC3 (pp) = A. I

Theorem 7 For any basic subassembly sequence x which is an instance of an assembly

template t E SEQ({p}) \ L(GII), there exists class II SA M with three (3) conformations

which self-assembles x from a configuration F that covers x. And M is an SA with the

minimum number of conformations which self-assembles x from F.

Proof: The first part follows from Corollaries 3 and 4. We will prove the second part by

showing that there exists no class I SA with 2 conformations which self-assembles x from

F. Since INC2 (INC2(a)) = a for a E {'}*, any two conformational transition rules pl and P2
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are conflicting if Pl -2 P2. By Corollary 2, therefore, running MAKE-RULE-SET with INC 2

always causes at least one conflict among propagation rules, since t E SEQ({p}) \ L(GIt). I

Example 11 Let us consider E = {a, b, c, d, e} and x = (a((b(cd))e)). The subassembly

sequence x is an instance of t3 = (p((p(pp))p)) in example Example 9, and t3 E SEQ({p}) \

L(GII). A call of MAKE-RULE-SET(x, none, 0) run with INC3 returns with (ab'c"d"e, R) where

R contains the following rules: c + d -+ c'd, b + c' -+ bc", c"d -+ c"d' d' + e -+ d"e,

c"d" -+ cd", bc -+ b'c, and a + b' -> ab'. It is clear that M = (E, R) is an SA with three

conformations which self-assembles x from the configurations that cover x, e.g. (a, b, c, d, e)

and (a, b, b, c, d, d, e, e).

4.7 Summary

This chapter introduced an abstract model of self-assembling systems, where assembly

instructions of components are written as conformational switches - local rules that specify

conformational changes of a component. The model, self-assembling automaton, is a

sequential rule-based machine that operates on one-dimensional strings of symbols. An

algorithm to construct a self-assembling automaton is provided which self-assembles an one-

dimensional string of distinct symbols in a given particular subassembly sequence. Classes

of self-assembling automata are then defined based on classes of subassembly sequences in

which the components self-assemble. For each class of subassembly sequences, I provided

the minimum number of conformations necessary to encode subassembly sequences of the

class. In particular, it is shown that attaching rules and propagation rules, which are

abstraction of minus devices and sliding bar mechanisms, as well as three conformations for

each component, is enough to encode any subassembly sequences of a string with arbitrary

length.

131



5

Conformational Switch for Micro

Assembly: Micro "Mouse Trap"

This chapter presents an implementation of conformational switch for micro assembly - a

micro "mouse trap," which has self-closing compliant latches that clamp a free planar part

inserted between them. The self-closing of the latches is induced by the insertion of the

part which releases the potential energy stored in the "cocked" state of the device, in the

manner of a mouse trap. The closed latch can re-open by cocking the micro mouse trap.

The self-closing action of the micro mouse trap allows the inaccurate insertion of the free

part (mouse) and leads to very accurate final positioning, with the insertion force required

to induce the self-closing being very small. The micro mouse trap is also reusable since

the release of the clamped part is done non-destructively. The micro mouse trap can be

used, for instance, for assembly and temporal clamping/positioning of micro-scale parts,

and electromechanical/opto-mechanical connectors. A prototype of the micro mouse trap,

which is approximately 150 pm long, 200 pm wide, and 10 pm thick, is fabricated from single

crystal silicon. The prototype device is tested using probe tips and the desired self-closing

behavior is observed.
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5.1 Motivation

Surface etching technologies have been widely used in micro fabrication, and a number

of micro devices have been successfully fabricated using these technologies. One of the

advantages of using surface etching in micro fabrication is there is no need for assembly; the

entire device with multiple components can be fabricated in one process by using sacrificial

layers. The design of micro devices, therefore, has focused on minimization or elimination

of assembly. One can imagine, however, that there is a natural limit in complexity for micro

electro-mechanical systems constructed without assembly. Beyond the limit, some assembly

methods would be necessary and these methods would have characteristics different from

the assembly methods of macro scale components. For instance, precise handling and

positioning of components involved in typical macro scale assembly is extremely difficult

in micro scale. One solution to this problem is to make components that are capable of

positioning themselves as observed in the induced fit in enzyme-substrate interactions. An

enzyme molecule binds to a substrate molecule by changing its conformation such that it

can "grab" the substrate. The conformational change of enzyme molecule is induced by the

interaction with the substrate molecule which causes the release of potential energy stored

in high-energy molecules such as ATP [58].

The design of a micro "mouse-trap" presented in this chapter is the first step toward

realizing mechanical systems with such induced fit capability. The micro mouse trap is a

micro latching fastener with self-closing compliant latches that clamp a free planar part

inserted between them. The self-closing of the latches is induced by the insertion of the

part which releases the potential energy stored in the "cocked" state of the device. The

self-closing action of the micro mouse trap allows the inaccurate insertion of the free part

(mouse) that leads to very accurate final positioning.

5.2 Mouse trap design

The micro mouse trap is a doubly-nested compliant crimping mechanism [4] with a snap fit

stopper, as shown in Figure 5-1. The device consists of three parts: outer and inner latches

(mouse trap), and a free part (mouse), as shown in Figure 5-1 (1),(2) and (3) respectively.

The free part is a part of a substrate-free structure to be clamped by the mouse trap, and
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Figure 5-1: Schematic top view of the micro mouse trap. The free part (mouse) (3) is
clamped by the outer latch (1).

assumed to be able to slide on the substrate. The outer and inner latches are cantilever

structures anchored on the substrate at the locations shown in Figure 5-1.

Figure 5-2 shows the four steps of the action of the micro fastening device: (a) cock, (b)

insertion, (c) clamping, and (d) releasing. Before clamping the free part, the outer latch

is "cocked" by snapping A into the inner latch B, as shown in Figure 5-2 (a). The cocked

outer latch is shown in Figure 5-2 (b). Once cocked, the outer latch opens up so that the

free part can be inserted. At full insertion of the free part, C's pressing D causes the release

of A from B, causing the outer latch to clamp the free part (Figure 5-2 (c)). The clamped

part can be released by re-cocking the outer latch (Figure 5-2 (d)).

The self-closing of the latches in Figure 5-2 (c) is induced by the insertion of the free part

that releases the potential energy stored in the cocked state of the device, in the manner of

a mouse trap. The above design of a micro mouse trap has the following properties desired

for micro assembly:

* Mechanical fastening: the free part is mechanically clamped by the outer latch,

which provides a fastening method for materials that would be incompatible with

other methods, e.g. chemical bonding.

* Self-positioning: the self-closing action of the micro mouse trap allows the inaccu-

rate insertion of the free part that leads to very accurate final positioning.
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Figure 5-2: The four steps of the action of the micro mouse trap; (a) cock, (b) insertion, (c)
clamping and (d) releasing. (a) The outer latch is "cocked" by snapping A into the inner
latch B. (b) The cocked outer latch opens up its arms so that the free part can be inserted.
(c) C's pressing D causes the release of A from B, causing the outer latch to clamp the free
part. (d) The clamped part is released by re-cocking the outer latch.
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Figure 5-3: Solid model for the prototype micro mouse trap. The size of the prototype

(excluding anchors and the free part) is approximately 250 im long, 150 pm wide, and
10 pm thick. The gap between the substrate and the cantilevered structure is 5 Am.

* Force amplification: the insertion force required to induce the self-closing of the

outer latch (by opening the inner latch) is much smaller than the actual clamping

force exerted by the outer latch.

* Reusability: the micro mouse trap is reusable since the release of the clamped part

is done non-destructively.

* Ease of fabrication: since the micro fastening device is a cantilevered compliant

mechanism, it is easily fabricated by normal surface etching processes, making the

integration with electrical components very easy.

A solid model of the prototype micro mouse trap was constructed with the SDRC I-

DEAS system to perform finite element structural analysis. Figure 5-3 shows a view of the

solid model used for the structural analysis. The prototype is designed to be fabricated

on a single crystal silicon (SCS) substrate, and to use microprobe tips to demonstrate the

desired function described above. As shown in Figure 5-3, the solid model has larger anchors

than shown in Figure 5-1 for easier alignment for silicon-to-silicon wafer bonding described

in the next section. Also, for demonstration purposes, the free part is supported by a
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cantilevered serpentine to allow insertion from various positions and orientations. The size

of the prototype (excluding anchors and the free part) is approximately 250 pm long, 150 pm

wide, and 10p m thick. The gap between the substrate and the cantilevered structure is

5 pm. The material properties of SCS used in the following FEM analyses were taken

from [43].

Figure 5-4 shows the predicted deflection of the outer latch' in response to a compressive

force (pointing to the right) of 1000lpN exerted at the left end of the outer latch (i.e.

"cocking"). The outer latch opens approximately 60 /m, which gives a enough room for

the free part for insertion.

Figure 5-5 shows the predicted deflection of the inner latch in response to an extensile

force (pointing to the left) of 1000 pN exerted at the hook of the inner latch. This is the

situation shown in Figure 5-2 (b), after the outer latch is cocked by snapping part A into

the inner latch B. The S-shape of the beam generates a counterclockwise bending moment

in response to the extensile force, which causes the inner latch to close rather than open.

Similarly, the FEM result of the situation in Figure 5-2 (c) is shown in Figure 5-6, where

a compressive force of 200 pN (pointing to the left) is exerted at the right end of the inner

latch, in addition to the extensile force of 1000 pN (pointing to the left) at the hook of the

inner latch. No friction is assumed between the two surfaces at the hook . In this case, the

inner latch opens approximately 6 pm, which is enough to release the hook.

In the above FEM results, a maximum stress of approximately 2.5 GPa (35% of the

yield stress of SCS) occurred near the S-shaped part of the outer latch and the inner latch.

5.3 Device fabrication

A combination of Plasma etching, reactive ion etching (wet etching) and a silicon-to-silicon

wafer bonding technique is used for fabrication of the prototype of the mouse trap device.

Two silicon (Si) wafers, which is referred to as the base wafer and the structure wafer,

are used for the substrate of the device and the device itself, respectively. The fabrication

process consists of the following eight steps (see also Figure 5-7):
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Figure 5-4: FEM result of the outer latch of the prototype mouse trap. A compressive force
of 1000 pN (pointing to the right) is exerted at the left end of the outer latch.

Figure 5-5: FEM result of the inner latch of the prototype mouse trap. An extensile force
of 1000 pN (pointing to the left) is exerted at the hook of the inner latch.
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Figure 5-6: FEM result of the inner latch of the prototype mouse trap. A compressive force
of 200 pN (pointing to the left) is exerted at the right end of the inner latch, as well as an
extensile force of 1000 MN (pointing to the left) at the hook of the inner latch.

1. Plasma etch the base wafer with a cavity mask to create the 5 pm deep cavity and

the anchors.

2. Bond the base wafer and an silicon-on-insulator (SOI) wafer (a sandwitch of silicon

dioxdie with two Si wafers) at the position of the anchors using silicon-to-silicon wafer

bond at 1100 o C.

3. Deposit silicon nitride on the bonded wafers using low-pressure chemical vapor depo-

sition (LPCVD).

4. Plazma etch silicon nitride on the top of the bonded wafers.

5. Wet etch (KOH) the top layer of Si in the SOI wafer to expose the silicon dioxside

layer.

6. Wet etch (buffered oxide etch: BOE) the silicon dioxide layer.

7. Wet etch silicon nitride on the bottom.

8. Plasma etch the structure wefer with a structure mask to create the actual shape of

the device with 10 pm thick.
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Figure 5-7: Fabrication
Microsystems Technology

process flow: courtesy of G.K Ananthasuresh at the MIT
Laboratory.

140

---------------
Si wafer

I



Figure 5-8: Structure mask layout: the devices in the original size (150 x 200 pm), the
double size, and the quadluple size are shown. Courtesy of G.K Ananthasuresh at the MIT
Microsystems Technology Laboratory.

The layout of the structure mask used at Step 8 is shown in Figure 5-8. The devices in

the original size (150 x 200 pm), the double size, and the quadluple size are shown. Figure 5-

9 shows an SEM micrograph of the fabricated micro mouse trap. It is approximately 150 pm

long, 200 pm wide, and 10 pm thick. This prototype device is tested using probe tips and

the desired self-closing behavior is observed.
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Fabrication in progress

Figure 5-9: Prototype micro mouse trap (SEM micrograph). The device is tested using
probe tips and the desired self-closing behavior is observed.
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Discussion and Future Work

This thesis discussed the efforts towards fundamental understanding of the role of conforma-

tional switching in self-assembling systems, and application of conformational switching to

design of self-assembling mechanical systems. This chapter provides the short summary of

the work presented in this thesis, discusses some related issues, and states the contribution

of the work. Finally, suggestion for future work is made.

6.1 Summary of the work

Parametric design optimization of simple mechanical conformational switches

Parametric design optimization of two types of simple mechanical conformational switches,

sliding bar mechanisms and minus devices was discussed. These mechanical conformational

switches were used as building blocks of self-assembling parts for one-dimensional self-

assembly via sequential random bin-picking. A genetic algorithm, in conjunction with

computer simulation of sequential random bin-picking, optimized the parameterized switch

designs to maximize the yield of a desired assembly. The results of genetic optimization

are presented in the case of two, three and four part one-dimensional self-assembly. Rate

equation analyses of the resulting designs revealed that sliding bar mechanisms could

cause temporal change in part concentration by forming temporal intermediate assemblies,
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and that minus devices could encode non-ambiguous and partially-ambiguous subassembly

sequences. Effects of initial part concentration and defects during assembly are discussed.

Principle of subassembly in biology is re-examined in the context of self-assembling mechan-

ical systems. The following design guidelines, or "rules of thumb", for n-part self-assembling

systems are made based on these results:

* Non-ambiguous subassembly sequences yields better than ambiguous subassembly

sequences.

* Parallel subassembly sequences yield better than linear subassembly sequences.

* Abundant parts should be assembled earlier rather than later.

* Parts with high defect probability should be assembled earlier rather than later.

Theory of one-dimensional self-assembling automata

An abstract model of self-assembling systems is presented where assembly instructions are

written as local rules that specify conformational changes of components. The model,

self-assembling automaton, is defined as a sequential rule-based machine that operates

on one-dimensional strings of symbols. An algorithm is provided for constructing a self-

assembling automaton which self-assembles a one-dimensional string of distinct symbols in

a given subassembly sequence. Classes of self-assembling automata are defined based on

three classes of subassembly sequences described by assembly grammars. The minimum

number of conformations is provided which is necessary to encode instances of each class of

subassembly sequences. It is proven that the rules corresponding to the above two types of

conformational switches with three conformations for each component are enough to encode

any subassembly sequences of a string of distinct symbols with arbitrary length.

Design of micro "mouse trap"

An implementation of conformational switch for micro assembly - a micro "mouse trap,"

was presented. It has self-closing compliant latches that clamp a free planar part inserted

between them. The self-closing of the latches is induced by the insertion of the part which

releases the potential energy stored in the "cocked" state of the device. The self-closing
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action of the micro mouse trap allows the inaccurate insertion of the free part (mouse)

and leads to very accurate final positioning, with the insertion force required to induce the

self-closing being very small.

6.2 Discussion

6.2.1 Bin-picking simulation vs. rate equation analyses

In Chapter 3, the space of parameterized conformational switch designs is searched to

find the switch designs that maximize the yield of a desired assembly thorough computer

simulation of sequential random bin-picking. And then, the resulting designs are analyzed

using the rate equation to confirm, and often to get better understanding of the search

results. This approach was chosen since designs found using the simulation may not be

optimal in a statistical sense due to the stochastic nature of bin-picking simulation. Also,

since it is impossible to run the simulation of each design for t -+ 00, a switch design

is evaluated based on the "reaction rate" at the time of simulation termination, not the

yield at t -+ co. Rate equation analyses would give statistically reliable predictions of the

behavior of parts during self-assembly for a long period of time. Hence a question arises:

why use bin-picking simulation at the first place?

Using the bin-picking simulation, the space of switch design are directly searched. The

size of the search space is 2mn where m is the number of bits used to encode the parameters

for a part design, and n is the number of parts in the desired assembly. This grows

exponentially as n increases. An alternative approach is using the rate equation to search

over the space of subassembly sequences to find the optimal sequence, and then find the

conformational switch designs that encode the subassembly sequence. In this case, the size

of search space is Q( 2 n), where Q denotes an asymptotic lower bound 1

Even though the complexity of the problems are exponential in the both approaches, the

first has several advantages over the second. First, by searching the space of parameterized

switch designs directly, we find only the subassembly sequences which can be encoded

by the given conformational switch model. Since some subassembly sequences cannot be

'The proof of this fact is found in Appendix E
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realized by a conformational switch model, additional constraints must be added when

searching over the space of subassembly sequences. It is difficult in general, however, to

know exactly which subassembly sequences can be encoded by a given conformational switch

model as discussed in the next section. Also, in the second approach, optimal switch designs

corresponding to the optimal subassembly sequences must be generated, whereas in the first

approach the optimal switch designs are found directly as a result of the search. The first

approach also seems to fit naturally within the framework of genetic algorithms since there

is a direct analogy between the short-order building blocks in the binary representation

and the complementary bonding sites in the geometric representation of the conformational

switches.

6.2.2 Limitation of the theory of one-dimensional self-assembling au-

tomata

The theory of one-dimensional automata presented in Section 4 is based on the abstraction

of conformational switches as the local rules that specify conformational changes of a

component. This abstraction made it possible to address the essential problems on the role

of of conformational switching in self-assembling systems, without dealing with unimportant

issues associated with particular implementations of conformational switches.

Corollary 1, for example, gives a clear explanation why ((A(BC))D) is un-encodable

as discussed in Section 3.5.8. The conformational switches described in Section 3.2.2 use

only minus devices, hence they are abstracted as a class I self-assembling automaton2 . On

the other hand, ((A(BC))D) is in SEQ({p}) \ L(Gi)3 . According to Corollary 1, therefore,

((A(BC))D) cannot be encoded using only minus devices. By using both a sliding bar

mechanism and minus devices, it becomes possible to encode ((A(BC))D) as shown in 3-

60, since it is now a class II self-assembling automaton which can encode subassembly

sequences in SEQ({p}) \ L(GI) by Theorem 4.

We must be careful, however, when applying these theorems to a particular implemen-

tation of conformational switches. For instance, it cannot be concluded from Theorem 7

2Recall attaching rules are abstraction of the function of minus devices.
3More precisely, ((A(BC))D) is a basic subassembly sequences which is an instance of an assembly

template in SEQ({p}) \ L(GI).
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that, for any subassembly sequence SEQ({p}) \ L(GII), one can design three-conformation

conformational switches using both a sliding bar mechanism and minus devices, which

encodes the subassembly sequence. This is because a sliding bar mechanism and a minus

device cannot be implemented in a single "digit." Due to this constraint, three-conformation

switches such as the one shown in Figure 3-60 can encode much fewer subassembly sequences

than their theoretical counterpart. Although the theorems in Chapter 4 can provide useful

insights on the encoding power of conformational switches, it is difficult in general to

determine which subassembly sequences can be encoded by a given conformational switch

implementation because of the existence of such implementation-dependent constraints.

6.2.3 Potential applications of micro mouse trap

As listed in Section 5.2, the design of the micro mouse trap has several properties desired

for micro assembly. In addition to a micro fastener in micro assembly, the unique properties

of the micro mouse trap makes it suitable for a wide range of applications:

* Assembly tools: since the micro mouse trap is reusable, it can be used for temporal

clamping/positioning of micro parts.

* Connectors: simple mechanical clamping of the micro mouse trap is suitable to

electro-mechanical and opto-electrical connectors.

* Actuators: the induced fit property of the micro mouse trap can be applied to a

micro reactive gripper.

* Circuit breakers: the easy integration with electrical components allows the micro

mouse trap to be used as a micro circuit breaker.

* Sensors: with appropriate probing of the free part, the micro mouse trap can

be a micro sensor for, e.g. force/impact, acceleration, displacement, pressure and

temperature.

It is also of great interested in the use of the micro mouse trap in micro self-assembly

processes such as those presented in [64],[11] and [29]. This would require re-designing of the

energy releasing mechanism of the current micro mouse trap, such that it can be activated

by a "feather touch" of free micro parts.
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6.3 Contributions of this work

This work is the first attempt toward the fundamental understanding and application of

conformational switching in self-assembling systems. The contributions of this work can be

summarized as follows:

* Parametric design optimization of simple mechanical conformational switches:

Design of two types of conformational switches, sliding bar mechanisms and mi-

nus devices, and identification of their roles in one-dimensional self-assembly pro-

cesses through quantitative analyses. Quantitative discussion on robustness of non-

ambiguous subassembly sequences in self-assembly processes. Design guidelines for

n-part self-assembling systems based on quantitative analyses.

* Theory of one-dimensional self-assembling automata: Development of an

abstract model of one-dimensional self-assembly, self-assembling automata. Math-

ematical proof of the fact that two types of conformational switches corresponding to

sliding bar mechanisms and minus devices, can encode any subassembly sequences.

Identification of classes of subassembly sequences and the corresponding classes of

self-assembling automata with theoretical minimum conformations.

* Design of micro "mouse trap"

Implementation of concept of conformational switching in micro-electromechanical

systems (MEMS) and demonstration of the potential of conformational switching for

assembly in MEMS.

6.4 Future work

6.4.1 Extensions to the theory of self-assembling automata

There are number of extensions which should be incorporated to the current theory of one-

dimensional self-assembling automata. The current definition of classes of SA is based on

the classes of subassembly sequences of one-dimensional string of distinct symbols, which

we referred to as basic subassembly sequences. Many self-assembling systems in nature,

however, often involves self-assembly of identical components. Therefore, the definition of
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SA based on classes of non-basic subassembly sequences would be desirable. Also, most

biochemical reactions are bi-directional; if the reaction a + b -+ ab is possible, the reverse

reaction ab -+ a + b is also possible. Hence the current definition of SA should be extended

such that the rule set can also contain detaching rules; rules of the form aab3 -- aa + b6.

Accordingly, the definition of self-assembly must be modified. Finally, since the classification

of SA presented in this paper is based on subassembly sequences, it can also be applied to

the self-assembly in higher dimensions since. However, there are no concept of geometry

and topology since the classes are developed for one-dimensional self-assembly. In order to

extend SA to higher dimensions, these concepts must be incorporated.

6.4.2 Turing completeness of one-dimensional self-assembling automata

In computational theoretical term, one-dimensional self-assembling automata (SA) dis-

cussed in Chapter 4 is a model of computation, and the theorems proven in the chapter

identify the classes of languages accepted by one-dimensional SA. Under these view, a

question arises immediately on the computational power of one-dimensional SA: if it can

simulate every Turing machine. From its similarity with one-dimensional cellular automaton

(CA), one can expect that one-dimensional SA is also Turing complete. In fact, it can

be shown that one-dimensional SA is equivalent to one-dimensional three-neighbor CA

with the H1 template described in [31]. Let us call this CA as one-dimensional HI CA.

Namely, for any one-dimensional H 1 CA, there exists an one-dimensional SA that simulate

it. [48]. Since one-dimensional HI CA is Turing complete [31], it can be concluded that

one-dimensional SA is also Turing complete. Further, Smith [31] has also shown that there

exists a 18-state one-dimensional H1 CA, and therefore there exists a one-dimensional SA

with I QI = 18, where Q is the conformation set of the SA. All these results are currently

under documentation, and will be included in [48].

6.4.3 Three part assembly using APOS

Along with the efforts of extending the theory to higher dimensions, I believe it is also

very important to study some experimental systems which exhibits the conformational

self-assembly in higher dimensions. Example of such mechanical systems are shown in

Figure 6-1. It is a two-dimensional self-assembling system which consists of pie-shaped
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(a) parts A B C

(c) example of assemblies

AA B C
C AA CC

Figure 6-1: Three part self-assembly using APOS. (a) pie-shaped parts with biased locations
of the center of gravity. (b) a pallet shape for the use with APOS. (c) examples of assemblies
as a result of vibratory agitation: depending on the concentration of A, B and C, the some
assembly would form with higher probability than the others.

components shown in Figure 6-1(a), which are assembled via vibratory agitation using

SONY's Automated Parts Orienting System (APOS)4 . Figure 2.1.1(b) shows an example

of the pallet which can be used for the palletization of the pie-shaped parts into a disk.

Each of these pie-shaped parts has an embedded weight which bias the location of their

center of gravity. There are, for instance, three kinds of parts: A, B and C, depending of

the locations of the center of gravity. Note in Figure 6-1(a), two parts shown as part A are

identical since parts can flip during the vibratory agitation by APOS.

Due to the biased locations of the center of gravity, the palletization of the mixture of

the pie-shaped parts A, B and C would results in the formation of three part assemblies (i.e.

disks) with various orientations, such as the ones shown in Figure 2.1.1(c). Interest here is

that how the the initial concentrations of parts A, B and C would affect the formation of

a particular type of assembly. In particular, the concentrations which yields an assembly

the most may not be the same as the part concentration in the assembly itself. One can

4See Section 2.1.1 for a short description of APOS.

150



expect, for example, an assembly shown in the leftmost figure in Figure 2.1.1(c) would

have higher probability to form than the other when the initial concentration of part C is

higher. The best yield of the assembly, however, would not be achieved when A:C = 2:1

since this would results in many defects caused by the part A's trapped in the cavity in the

wrong orientation before part C is palletized. Although no explicit conformational change

takes place during the vibratory self-assembly of the assembly in the figure, part C has to

be palletized before two part A's are palletized. The "conformational change" of the cavity

occurs as a result of the integration with part C, which increases the probability of palletizing

part A afterwards. This is analogous to the situation in three-dimensional biological self-

assembly, where a conformational change which occurred at an assembly step provides the

essential substrate for assembly at the next step [58]. Studying such experimental systems

would be one of the most important steps beyond this thesis in the immediate future.
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Appendix A

Optimal designs of two part

non-randomized assembly

This appendix lists all the possible designs that score the maximum fitness (fitness = 2) in

the two part sequential assembly discussed in Section 3.4.2. The length of the chromosome

in this example is 14 (6 for part A and part B, and 2 for part Z), so there are 214 = 16384

possible chromosomes. Since the assembly process is deterministic, depth first search can

find all the optimal solutions with little enumeration. They are listed in Figures A-1 and A-2.

Due to the degeneracy of parameter coding (see Section 3.4.1), more than one chromosome

maps to a design. Also, some designs are functionally equivalent. Figure A-2 shows such

designs equivalent to the two designs of part B appearing in Figure A-1. Since (0, F,

0, 0) has 4 equivalent part designs and (1, F, 0, 0) has 3 equivalent designs, there are

4 x 5 + 4 x 4 = 36 optimal designs.
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Figure A-i: Optimal designs for two-part sequential assembly.

153

Z A B AB

(0) (O,T, 1, 1) (0, F, 0, O)

(0) (1,T,1,0) (0,F, 0, 0)

(1) (-1,T, 1, 1) (0, F, 0, 0)

(1) (O,T, 1,0) (O,F, O,O )

Z A B AB

(0) (0,T,1,0) (1,F, 0,0)

(0) (1,T, 1,-1) (1, F, 0,O0)

(1) (-1,T,1,0) (1, F, 0,O0)

(1) (0, T, 1, -1) (1, F, 0,0)



Figure A-2: Equivalent designs of part B.
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equivalent designs of part B

(0, F, 0, O) (0, F, 0, -1) (0, F, 0, 1) (0, T, 0,O) (0, T, 1,1)
(0, F, 1, 0) (0, F, 1, -1) (0, F, 1, 1)

(1, F, 0,0O) (1,F, 0,-1) (1,F, 0,1) (1,T, 1,1)

(1, F, 1,0) (1, F, 1,-1) (1, F, 1,1)



Appendix B

Rate equation analysis of two part

randomized assembly with a

dummy part

This appendix explains details of rate equation analysis of two part randomized assembly

with a dummy part discussed in Section 3.4.6. In the following, Design I and Design II refer

to the part designs described in Section 3.4.6, unless otherwise specified. Derivation of the

rate equations of these part designs follows the same steps found in Section 3.4.4.

The possible reactions for Design I are:

A + A - AA' A+ B -4 AB AA' + B - A + AB

where A' denotes a part A after conformational change. And n(t), A and p(t) are:

n(t) = (nA(t), nB(t), nC(t), nAA' (t), AB(t))'
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-2 -1 1

0 -1 -1

0 0 0

1 0 -1

0 1 1

s(t) s(t)- 1}

nA(t) nB(t)
s(t) - (s(t) - 1}

nAA' (t) -nB(t)
) - t(s { s (t) - 1} J

where s(t) = nA(t) + lB(t) + nc(t) + nAA'(t) + nAB(t).

As easily seen in Figure 3-22, the number of possible reactions (and the number of

possible subassemblies) can be very large for Design II since part C's can form a subassembly

Cn (an n concatenation of part C's) up to 22 elements long. Fortunately, C is a solid part

so there are no conformational changes in C: once a C binds to another C, the bond will

never be destroyed. The resulting assembly CC will then behave exactly as a single C. This

leads to the idea of not distinguishing part Cn and part Cm for any positive integer n and

m. This reduces the number of subassemblies down to 11. The resulting rate equations are

still useful since the desired assembly A'B does not contain part C's. Therefore there is no

need to keep track of the number of each Cn's. Under the above assumption, there are 36

possible reactions of Design II:

A +A -+ A'A

A+ B -- A'B

A + Cn --+ A'Cn

A + CnA -+ A'C,A

A + CB - A'C,B

Cn + A - CA

C, + B-+ CnB

C + C, -+ C,
C, + A' - C,nA

Cn + CnA -* CnA

Cn + CB -+ CB

A' + A -+ A'A

A' + B -4 A'B

A' + Cn -+ A'Cn

A' + A' -+ A'A

A'A + A -+ A' + A'A

A'A + B -4 A' + A'B

A'A + Cn -4 A' + A'Cn

A'A + CnA -4 A' + A'CnA

A'A + CB -4 A' + A'CB

A'C± + A -+ A'CnA

A'Cn + B -+ A'CnB

A' C, + Cn - A'Cn

A'Cn + A' - A'CA

A'C, + CA -~ A'CnA

A'Cn + CnB -~ A'CnB

CA + A -+ Cn + A'A

CnA + B -4 Cn + A'B

CA + Cn -+ Cn + A'C,

CA + CnA - Cn + A'CnA

CA + CnB , C, + A'CnB

A'CnA + A -+ A'C, + A'A

A'CnA + B - A'C, + A'B

A'CnA + C, -+ A'C, + A'Cn

A'CnA + CnA -+ A'C, + A'CnA

A'CnA + C,nB -÷ A'C, + A'CB
(B.4)
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where A' denotes a part A after conformational change, and C" denotes a concatenation

of some number of part C's. Corresponding n(t), A and p(t) are, therefore, defined as

follows:

n(t) = (nA(t),nB(t),nco (t), A'(t), AA(t),nA'B(t),

nA'C, (t), LnCA (t), rnCB (t), nA'CA (t), nA'C, B(t))' (B.5)

0 -1 0 0

0 0 -1 0

0 0 0 0
1 0 0 0

0 1 0 0

0 0 1 0
0 0 0 -1

0 0 0 0
0 0 0 1
o 0 0 0

0 o --1 0

0 0 0 -1

0 0 0 0

1 1 0 0

-1 -1 0 0

0 0 0 0
0 0 --1 -1

-1 0 0 0

0 -1 0 0

1 0 1 0

0 1 0 1

-1 -1 0 0 0 0 0 -1 0 0 0 -1 0 0

0 0 -1 0 0 0 0 0 -1 0 0 0 -1 0

0 -1 -1 -1 -1 -1 -1 0 0 -1 0 0 0 -1

0 0 0 0 -1 0 0 -1 -1 -1 -2 1 1 1

0 0 0 0 0 0 0 1 0 0 1 0 -1 -1

0 0 0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1 0 0 0 1

0 1 0 0 1 0 0 0 0 0 0 0 0 0

-1 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 -1 0 0 0 0 -1 0 0 0 0

0 0 0 0 0 -1 0 0 0 0 -1 0 0 0

-1 0 0 0 1 1 0 1 1 0 0 -1 0 0

0 -1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 1 0 0 0

0 -1 -1 -1 0 0 1 0 0 1 1 2 1 1

0 0 -1 0 -1 -1 -1 -2 -1 0 0 0 -1 0

0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1

0 1 1 0 0 0 0 1 0 -1 -1 -1 0 -1

0 0 0 1 0 0 0 0 1 0 0 0 0 1
(B.6)
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21 A, A(t) n,, (t)
S (t)- {s(t) - 1}

27 AC,, (t) nA(t)

Ss(t) s(t) - 1}p24 (t) - sC(t) s(t)-C 1}

33 A(t)A nA(t)
P30(t) = s(t) {s(t)"- 1)

S ,(t) {C S ,,(t) -1
As(t) { s(t)B- 1

nA3c,,A(t) .S B(t)
;3L) = s(t)-{s(t) - 1}

nA6M ,,A(t) CC,, B (t)
p36(t) = s(t) {s(t) - 1}

(B.7)

For Design I and Design II, Equation 3.5 is solved numerically with the two initial condi-

tions discussed in Section 3.4.6. Figure B-i and Figure B-2 are the solutions for Design I and

Design II with initial condition n(0) = (40,5,5, 0, 0)', and n(0) = (40,5,5, 0, 0, 0, 0, 0, 0, 0, 0)',

respectively. The same analysis is done with initial condition n(0) = (22, 6, 22, 0, 0)' for
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Design I

0 50 100 150 200 250 300
Number of iterations

350 400 450 500

Figure B-l: Solution of equation 3.5 for Design I (A : B : C = 8 : 1 : 1).

Design I, and n(0) = (22, 6, 22, 070,0, 0, 0, 0, 0, 0)' for Design II. These results are shown in

Figure B-3 and Figure B-4.
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(a) Design II: N_A, N_B, N_Cn, NA', NA'A, N_A'B, N_total

cat•

a)ot.2E

E
z

0 50 100 150 200 250 300 350 400
Number of iterations

(b) Design II: N_A'Cn, N_CnA, N_CnB, N_A'CnA, NA'CnB

450 500

Number of iterations

Figure B-2: Solution of equation 3.5 for Design II (A : B : C = 8 : 1 : 1).
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Design I
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Number of iterations

Figure B3-3: Solution of equation 3.5 for Design I (A : B : C = 11 : 3 : 11).
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(a) Design II: N_A, N_B, N_Cn, N_A', NA'A, N_A'B, N_total

Number of iterations

(b) Design II: NA'Cn, NCnA, N_CnB, N_A'CnA, NA'CnB

)0
Number of iterations

Figure B-4: Solution of equation 3.5 for Design II (A : B : C = 11 : 3 : 11).
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Appendix C

Rosen's subassembly model

This appendix outlines the derivation of Rosen's subassembly model, equations (2.1) and

(2.2), described in Section 2.3.2.

Let N be the number of subassembly stages, and ri be the number of subassemblies1

produced at the (i - 1)-th assembly stage, which are incorporated into a single subassembly

produced at the i-th assembly stage. Hence the number of elementary units in the final

assembly L is:

L = r 2...r N (C.1)

We assume Crane's assumptions hold: 1) with probability q two subassemblies are put

together wrongly, causing the resulting subassembly to be defective, and 2) the defective

subassemblies cannot be incorporated into the subsequent subassemblies, so the elementary

units in the defective subassemblies are completely wasted. These assumptions give the

following recurrent expression of vi, the number of non-defective subassemblies produced at

the i-th assembly stage:

Svi = (1 - q)r (Vi-1); i E {1,2,..., N}
ri / (C.2)

vo = M

'Note that ri is the number of elementary units put together at the first assembly stage.
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where M is the number of elementary units in the initial pool. The above recurrence is

easily solved and yields vy, the number of non-defective final assembly:

VN = (1- q)r+r2+...+rN ( (C.3)

Using the equation (C.3), we can calculate the yields of Crane's two subassembly processes

described in Section 2.3.2. The yield of the first, three-stage subassembly process:

VN = (1- 0.01) 10 +10 + 10  1, 000,000 = 739 (C.4)
S1,000

and for the second, one-stage subassembly process:

N = (1- 0.01)100ooo (1 00 010 0  0.0432 (C.5)
1,1000

Our objective is to choose the N + 1 non-negative integers, N, ri, r2,..., rN, such that the

expression (C.3) is maximized, subject to the non-linear constraint (C.1). Equivalently in

integer programming formulation(equations (2.1) and (2.2) in Section 2.3.2):

maximize (1 - q)r •2+'.+rN (M
(ML

subject to L = rl rr2 -... ryN

N>0; NeZ

ri 2 0; ri E Z; iE{1,2,...,N}

By assuming different q's at each subassembly stage, qi, q2,..., qN, the solution of the

recurrence (C.2) becomes:

v •N = (1- q)r(1 - q2)r2 ... (1- qN)N (\ ) (C.6)

and the corresponding integer programming formulation (equations (2.5) and (2.6) in Sec-

tion 2.3.2) becomes:

maximize (1 - ql)r (1 - q2)r 2 ... (1- q)N (L•)

subject to L = rl Tr2 "... TrN
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N>O; NEZ

ri >O; rie Z; in{1,2, ... , N

which in general cannot be solved in closed form.
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Appendix D

Proof of The Unique Factorization

Theorem

Theorem 8 (Unique Factorization Theorem) Let L be an positive integer, and L =

1 .p2 ... "k be the unique factorization of L by the prime factors p,P21,... Pk. For

any factorization of L = rl - r2 ... " rm, the following inequality holds:

alpl + a2P2 + ... + akPk _ rl + r2 + ... + rm

Proof: Let I be a integer such that 0 < 1 < k, and N = {1,2,..., k}. Without loss of

generality, an arbitrary factorization of L can be written as

(D.1)

where for i E N, 0 < ui 5 ai, and for j E {1, 2,... ,1},

q3 = I i
iENj
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L pl-Ul . Pa2-u2 ak-k 2 uk
= i "k2 """~ "pk "q "1q2"... q1



and

I 0 ifi j
N = U Ni; Ni n NJ = (D.3)

i=1 N ifi=j

Let S be the sum of the factors of this factorization, and So be the sum of the factors of

the unique prime factorization. We wish to show that So < S or equivalently S - So 2 0.

Using the above notation, S can be written as

S = (al -u1)p1 + (a2-U 2)P2+...+(ak - Uk)Pk +q1 +q2+... +q

= (alpl + a2P2 +... + o kPk) - (lPl + u2P2 +... + UkPk)

+ql + q2 + .. + q (D.4)

Since So = alpi + &2p2 + ... + akPk,

S - So = ql + q2 + .+ ql-(Ul + u2P2 p+ + +UkPk)

= 1 + "'2 +... 71 (D.5)

where for j E {1,2,..., 1}

j3 = qj - E UiPi (D.6)
iENj

By Equation D.2,

Yj = qj- E uipi
iENj

= II p - Z Uipi
iENj iENj

1 E njuiPi

= pj iENu (D.7)
\iENj 

nj

where nj = INjI. We know for each j E {1, 2,...,1}, -j > 0 since (geometric mean) (arithmetic

mean). By Equation D.5, therefore, S - So > 0. I
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Appendix E

The size of the space of

subassembly sequences

Theorem 9 The number of non-ambiguous subassembly sequences Sn of n-part one-dimensional

assembly is Sn = -(2n).

Proof: Let k and I be positive integers such that k + 1 = n. Let us assume assembling

n parts by assembling k parts and 1 parts separately, and then combining the k-part

subassembly and i-part subassembly. In this particular case, the total number of non-

ambiguous subassembly sequences of n-part assembly is Sk - Si. Since in the general case k

and 1 can be any positive integer such that k + 1 = n, Sn is the sum of all such cases:

Sn = si Sn-1+ S2 -Sn- 2 +... + Sn-1 -S1
n-1

= SiSn-i (E.1)
i=1

where S1 = 1. Let
n-1

Tn = Ti (E.2)
i=-1

and T1 = 1. Since Vi E {1, 2,..., n}, Si 2 1, for any positive integer n,

Sn > Tn (E.3)
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We know Tn = 0(2 n ) since

Tn -1 + Tn-2 + T1 = Tn-2 + Tn-3 + - - + Tl) + Tn-2 + -..+ T1

= 2(Tn-2 + Tn-3 + -.. + T1)

= 2 2(Tn-3 +... +Ti)

= 2n-2T = 2 n-2

where O denotes an asymptotic tight bound. The equation (E.3) implies, therefore, Sn =

(2n). I

169



Bibliography

[1] J. Albert and K. Culik II. A simple universal cellular automaton and its one-way and
totalistic version. Complex Systems, 1:1-16, 1987.

[2] G. K. Ananthasuresh and S. Kota. Designing compliant mechanisms. Mechanical
Engineering, 117(11):93-96, 1995.

[3] G. K. Ananthasuresh, S. Kota, and Y. Gianchandani. Systematic synthesis of micro-
compliant mechanisms - preliminary results. In The Third National Conference on
Applied Mechanisms and Robotics Conference, 1993.

[4] G. K. Ananthasuresh, S. Kota, and N. Kikuchi. Strategies for systematic synthesis
of compliant MEMS. In ASME International Mechanical Engineering Congress and
Exposition, pages 677-686, 1994.

[5] L. Y. Lin ans S. S. Lee, M. C. Wu, and K. S. J. Pister. Micromachined integrated
optics for free space interconnections. In IEEE Micro Electro Mechanical Systems,
pages 77-82, 1995.

[6] B. Berger, P. W. Shor, L. Tucker-Kellog, and J. King. Local rule-based theory of
virus shell assembly. In Proceedings of the National Academy of Science, USA, pages
7732-7736, 1994. Vol. 91.

[7] N. R. Branda, R. M. Grotzfeld, C. Vald6s, and J. Rebek Jr. Control of self-assembly and
reversible encapusulation of xenon in a self-assembling dimer by acid-base chemistry.
Journal of Americal .Chemical Society, 117:85-88, 1995.

[8] S. R. Burgett, K. S. J. Pister, and R. S. Fearing. Three dimensional structures made
with microfabricated hinges. In ASME International Mechanical Engineering Congress
and Exposition, pages 1-11, 1992.

[9] S. Casjens. and J. King. Virus assembly. Annual Review of Biochemistry, 44:555-604,
1975.

[10] D.L.D. Caspar. Switching in the self-control of self-assembly. In R. Markham and
R. W. Horne, editors, Structure-Function Relationship of Proteins, pages 85-99, New
York, NY, July 1976. North-Holland.

[11] M. B. Cohn, C.-J. Kim, and A. P. Pisano. Self-assembling electrical networks: an
application of micromachining technology. In Transducers '91: 1991 Sixth International
Conference on Solid-State Sensors and Actuators, pages 490-493, New York, New York,
1991. IEEE.

[12] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The
MIT Press/McGraw-Hill, Cambridge, Massachusetts/New York, NY, 1989.

170



[13] H. R. Crane. Principles and problems of biological growth. The Scientific Monthly,
70:376-389, 1950.

[14] R. A. Crowther, E. V. Lenk, Y. Kikuchi, and J. King. Molecular reorganization in the
hexagon to star transition of the baseplate of bacteriophage T4. Journal of Molecular
Biology, 116:489-523, 1977.

[15] R. Dizon, H. Han, and M. L. Reed. Single-mask processing of micromechanical piercing
structures using ion milling. In IEEE Micro Electro Mechanical Systems, pages 48-52,
1993.

[16] K. E. Drexler. Nanosystems: molecular machinery, manufactureing and computation.
John Wiley & Sons, 1992.

[17] M. R. Garey and D. S. Johnson. Computer and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, 1979.

[18] N. S. Goel and R. L. Thompson. Movable finite automata (MFA): A new tool for
computer modeling of living systems. In C. G. Langton, editor, Artificial Life: the
Proceedings of an Interdisciplinary Workshop on the Synthesis and Simulation of Living
Systems, pages 317-340, Los Alamos, New Mexico, September 1987. Addison Wesley.

[19] N. S. Goel and R. L. Thompson. Computer Simulations of Self-organization in
Biological Systems. Croom Helm, London, England, 1988.

[20] N. S. Goel and R. L. Thompson. Movable finite automata (MFA) models for biological
systems II: Protein biosynthesis. Journal of Theoretical Biolology, 134:9-49, 1988.

[21] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, 1989.

[22] R. M. Grotzfeld, N. R. Branda, and J. Rebek Jr. Reversible encapsulation of disc-
shaped guests by a synthetic, self-assembled host. Science, 271:487-489, January 1996.

[23] R. M. Grotzfeld, N. R. Branda, C. Valdes, and J. Rebek Jr. Control of self-assembly
by acid-base chemistry. In J. S. Siegel, editor, Proceeding of the NATO Advanced
Research Workshop on Supermolecular Stereochemistry, pages 195-197, Dordrecht, the
Netherlands, 1994. Kluwer Academic Publisher.

[24] H. Han, M. L. Reed, and L. E. Weiss. A mechanical surface adhesive using
micromachined silicon structures. Journal of Micromechanics and Microengineering,
1(1):30-33, 1991.

[25] H. Han, L. E. Weiss, and M. L. Reed. Mating and piercing micro-mechanical structures
for surface bonding applications. In IEEE Micro Electro Mechanical Systems, pages
253-258, 1991.

[26] H. Han, L. E. Weiss, and M. L. Reed. Micromechanical velcro. Journal of
Microelectromechanical Systems, 1(1):37-43, 1992.

[27] K. Hosokawa, I. Shimoyama, and H. Miura. Dynamics of self-assembling systems:
Analogy with chemical kinetics. Artificial Life, 1(4):413-427, 1994.

171



[28] K. Hosokawa, I. Shimoyama, and H. Miura. Dynamics of self-assembling systems:
Analogy with chemical kinetics. In R. A. Brooks and P. Maes, editors, Artificial Life
IV: Proceedings of the Fourth International Workshop on the Synthesis and Simulation
of Living Systems, pages 172-180, Cambridge, Massachusetts, July 1994. The MIT
Press.

[29] K. Hosokawa, I. Shimoyama, and H. Miura. Two-dimensional micro-self-assembly using
the surface tension of water. In IEEE Micro Electro Mechanical Systems, 1996. to
appear.

[30] K. Culik II, L. P. Hurd, and S. Yu. Computation theoretic aspects of cellular automata.
Physica D, 45:357-378, 1990.

[31] A. R. Smith III. Simple computation-universal cellular spaces. Journal of the
Association for Computing Machinery, 18(3):339-353, July 1971.

[32] M. W. Judy, Y.-H. Cho, R. T. Howe, and A. P. Pisano. Self-adjusting microstructures
(SAMS). In IEEE Micro Electro Mechanical Systems, pages 51-56, 1991.

[33] D. S. Lawrence, T. Jiang, and M. Levett. Self-assembling supermolecular complexes.
Chemical Reviews, 95(6):2229-2260, 1995.

[34] J.-M. Lehn. Supermolecular chemistry. Science, 260:1762-1763, June 1993.

[35] C. S. Lent, P. D. Tougaw, W. Porod, and G. H. Bernstein. Quantum cellular automata.
Nanotechnology, 4:49-57, 1993.

[36] J. C. Martin. Introduction to Language and the Theory of Computation. McGraw-Hill,
New York, New York, 1991.

[37] M. L. Minsky. Computation: finite and infinite machines. Prentice Hall, 1967.

[38] P. H. Moncevicz. Orientation and insertion of randomly presented parts using vibratory
agitation. Master's thesis, Department of Mechanical Engineering, Massachusetts
Institute of Technology, 1991.

[39] P. H. Moncevicz and M. J. Jakiela. Method and appratus for automatic parts assembly.
United States Patent 5,155,895, October 20 1992.

[40] P. H. Moncevicz, M. J. Jakiela, and K. T. Ulrich. Orientation and insertion of randomly
presented parts using vibratory agitation. In A. H. Soni, editor, Proceedings of the
ASME 3rd Conference on Flexible Assembly Systems, pages 41-47, New York, NY,
September 1991. The American Society of Mechanical Engineers. DE-Vol. 33.

[41] J. von Neumann. Theory of Self-Reproducing Automata. University of Illinois Press,
1966.

[42] L. S. Penrose. Self-reproducing machines. Scientific American, 200:105-114, June 1959.

[43] K. E. Peterson. Silicon as a mechanical material. Proceedings of IEEE, 70(5), 1982.

[44] K. S. J. Pister, M. W. Judy, S. R. Burgett, and R. S. Fearing. Microfabricated hinges.
Sensors and Actuators A, 33(3):249-256, 1992.

172



[45] R. Prasad, K.-F. Bohringer, and N. C. MacDonald. Design, fabrication, and
characterization of single crystal silicon latching snap fasteners for micro assembly.
In ASME International Mechanical Engineering Congress and Exposition, 1995.

[46] M. L. Reed, H. Han, and L. E. Weiss. Silicon micro-velcro. Advanced Materials,
4:48-51, 1992.

[47] R. Rosen. Subunit and subassembly process. Journal of Molecular Biology, 28:415-422,
1970.

[48] K. Saitou. On Turing completemess of one-dimensional self-assembling automata. in
preparation., 1996.

[49] K. Saitou and M. J. Jakiela. Automated optimal design of mechanical conformational
switches. Artificial Life, 2(2):129-156, 1995.

[50] K. Saitou and M. J. Jakiela. Subassembly generation via mechanical conformational
switches. Artificial Life, 2(4), 1995. to appear.

[51] K. Saitou and M. J. Jakiela. Design of a self-closing compliant "mouse trap" for micro
assembly. In 1996 International Mechanical Engineering Congress and Exposition
(Winter Annual Conference of the American Society of Mechanical Engineers),
November 1996. submitted for review.

[52] K. Saitou and M. J. Jakiela. On classes of one-dimensional self-assembling automata.
Complex Systems, 1996. submitted for review.

[53] J. I. Steinfeld, J. S. Francisco, and W. L. Hase. Chemical Kinetics and Dynamics.
Prentice Hall, Englewood Cliffs, New Jersey, 1989.

[54] R. L. Thompson and N. S. Goel. A simulation of T4 bacteriophage assembly and
operation. BioSystems, 18:23-45, 1985.

[55] R. L. Thompson and N. S. Goel. Movable finite automata (MFA) models for biological
systems I: Bacteriophage assembly and operation. Journal of Theoretical Biology,
131:351-385, 1988.

[56] W. Trimmer, P. Ling, C.-K. Chin, P. Orton, R. Gaugler, S. Hashmi, G. Hashmi,
B. Brunett, and M. Reed. Injection of dna into plant and animal tissues with
micromechanical piercing structures. In IEEE Micro Electro Mechanical Systems, pages
111-115, 1995.

[57] L. C. Tucker. A local rule paradigm for the self-assembly of icosahedral viruses. Master's
thesis, Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, February 1993.

[58] J. D. Watson, N. H. Hopkins, J. W. Roberts, J. A. Steitz, and A. M. Weiner. Molecular
Biology of the Gene. Benjamin/Cummings, Menlo Park, California, 1987.

[59] G. M. Whitesides. Self-assemblying materials. Scientific American, pages 146-149,
September 1995.

173



[60] G. M. Whitesides, J. P. Mathias, and C. T. Seto. Molecular self-assembly and
nanochemistry: A chemical strategy for the synthesis of nanostructures. Science,
254:1312-1319, November 1991.

[61] S. Wolfram. Computation theory of cellular automata. Mathematical Physics, 96:15-57,
1984.

[62] S. Wolfram. Universality and complexity in cellular automata. Physica D, 10:1-35,
1984.

[63] H. J. Yeh and J. S. Smith. Fluidic self-assembly of microstructures and its application
to integration of GaAs on Si. In IEEE Micro Electro Mechanical Systems, pages 279-
284, New York, New York, 1991. IEEE.

[64] H. J. Yeh and J. S. Smith. Fluidic self-assembly of GaAs microstructures on Si
substrates. Sensors and Materials, 6(6):319-332, 1994.

174


