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ABSTRACT

The encoding of a discrete, independent letter information source with a distortion
measure is studied. An encoding device maps blocks of source letters into a subset of
blocks of output letters, reducing the number of different blocks that must be transmitted
to a receiving point. The distortion measure, defined between letters of the source and
output alphabets, is used to compare the actual source output with the encoded version
which is then transmitted to the receiver. This problem was previously studied by
Shannon who showed that the constraint that the average distortion per letter between the
source output and its facsimile at the receiving point not exceed d* implies a minimum
necessary information capacity (dependent on d*) between source and receiver.

In this work, the average distortion per letter for block codes of fixed rate and
length n is upper and lower bounded, and for optimum block codes these bounds are
shown to converge to the same limit, with the convergence being as a negative power of
n as n - 0. The asymptotic agreement of these bounds for optimum codes leads to an
alternate description of Shannon's rate-distortion function R(d*). Moreover, this
analysis of optimum block codes gives an explicit computational method for calculating
the rate-distortion function. The final results may be interpreted in terms of the same
test channel described by Shannon, though no such test channel is actually used in the
bounding arguments.

In studying the instrumentation of codes for sources, as a tractable example the
binary symmetric, independent letter source with Hamming distance as the distortion
measure is treated. The existence of group codes which satisfy the upper bound on
average distortion for optimum block codes is proved. The average distortion and the
average number of computations per encoded digit are upper bounded for sequential
encoding schemes for both group codes and tree codes.

The dual nature of channel coding problems and source coding with a distortion
measure is pointed out in the study of topics closely related ̀L the zero error capacity
of channels, channels with side information, and a partial ordering of channels.

Thesis Supervisor: Robert G. Gallager
Title: Assistant Professor of Electrical Engineering
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CHAPTER I

INTRODUCTION

In many communication systems it is required that messages be transmitted to

a receiver with extremely high reliability. For this reason there has been a great

effort to put into practice Shannon's theorems on coding information for error-free

communication through noisy channels.

There are also many communication systems in which not exact but merely

approximate transmission of messages is required. For example, it is certainly not

necessary to transmit television pictures to viewers without any errors. Let us con-

sider a communication system to transmit television pictures across the country. It is

impossible to transmit pictures over a distance of several thousand miles in the same

form of an amplitude modulated carrier for local transmission to viewers because the

cumulative effect of the noise along the entire transmission system would produce

objectionable picture quality. Therefore, for cross-country transmission, a picture is

divided into a large number of discrete picture cells or elements, and the light intensities

of these picture elements are coarsely quantized into discrete levels. This discrete

representation of a picture (the encoded picture) is then transmitted without error from

one relay station to the next across the country. In order to reduce the transmission

capacity requirements to transmit the encoded version of a picture without error, the

number of quantum levels for encoding the picture element intensities may be reduced.

I



However, it is clear that there is a trade-off between the required transmission capacity

and the distortion introduced into the picture by the quantization. If the quantization is

made too coarse, the resulting distortion will render the encoded version of the picture

objectionable even when the actual transmission of the encoded picture is done without

error. We may conclude that such a system requires a certain minimum amount of

information to be transmitted in order to maintain acceptable picture quality.

This work is concerned with a much simpler, abstract problem than the television

example. We shall confine ourselves to the consideration of a discrete information

source which chooses letters x from a finite alphabet X independently with probability

P(x). The output of the source, a sequence of letters, is to be transmitted over a

channel and reproduced, perhaps only approximately, at a receiving point. We are given

a distortion measure d(xy) - 0, which defines the distortion (or cost) when source letter

x is reproduced at the receiver as letter y of the output alphabet Y. The Y alphabet

may be identical to the X alphabet, or it may be an enlarged alphabet which includes

special symbols for unknown or partly known letters.

Consider another example in which we have a source which chooses integers

from 0 to 10 inclusive, independently and with equal probability. Suppose we are given

the distortion measure d(xy) = x-y I, where the output alphabet is identical to the source

alphabet. If we are required to reproduce each letter with no more than one unit of

distortion, we find that we need to use only four output letters to represent the source

output well enough to satisfy this requirement on distortion. We therefore need a

transmission channel capable of sending any one of four integers without error to the

decoder. (See Figure 1.1) 'The decoder is a device which merely looks up the output
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Figure 1. 1 An example of a simple source encoder and decoder.

S letter that a received integer corresponds to, and this output letter is the facsimile of

the source output. If we were required to reproduce each source letter with zero

distortion, we would require a channel capable of sending any one of eleven integers

to the decoder without error. It is clear from this example that a specification of the

tolerable distortion implies a certain minimum required transmission capacity for this

type of source encoding. A different type of specification on the tolerable distortion,

such as average distortion per letter of one unit or less, would lead to a different

minimum required transmission capacity between source and receiver.

We wish to consider a more general type of source encoder which maps blocks

of n source letters into a set of M blocks of n output letters called code words. When

the source produces a block of n letters, the encoder maps this block into one of the M

code words, say the jth one. The output of the encoder is then the integer j, and this



is transmitted without error over a channel to the decoder. The decoder output is the

jth code word, which is a sequence of output letters. The combination of the source

and encoder resembles a new source which selects one of M integers to be transmitted

to the decoder. A channel which is capable of sending any one of M integers to the

decoder without error is needed, and in view of this we define the transmission rate

per source letter for an encoder as

1
R = - log M.n

We wish to find encoders which minimize M for a given block length n while satisfying

a given specification on the tolerable level of distortion.

Throughout this work we will assume that the transmission channel introduces

no errors in sending the encoder output to the decoder. Error free transmission from

encoder to decoder may actually involve a noisy channel with its own coding and

decoding equipment to give the required reliability. We make the assumption of an

error free transmission channel in order to keep the source encoding problem separate

from the problem of combating channel noise.

There are obviously many ways in which the tolerable level of distortion could

be specified. In the example of Fig. 1. 1, we required that each source letter be

reproduced at the receiver with no more than D units of distortion. Another widely

applicable fidelity criterion is the average distortion per letter. Furthermore, this

fidelity criterion is mathematically more tractable than that used in the example of

Fig. 1. 1, and a much more interesting theoretical development can be achieved. The

majority of this research, therefore, deals with the fidelity criterion of average distor--

tlon per letter.



When a block of source letters u = x x2 . .. xn is encoded, transmitted, and

reproduced at the receiver as the block of output letters v = yl y 2 " yn, the average

distortion per letter is

n

d(uv) = n d(x i y ).
i=]

The noiseless channel assumption allows the transmission channel to be represented

as a fixed transformation, and since an encoder and decoder are fixed transformations,

the combination of an encoder, transmission channel, and decoder may be represented

simply as a transformation T(u) defined on all possible blocks of n source letters. The

T(u) are actually blocks of n output letters, and we may write the average distortion

for our communication system as

d= 5 P(u) d(u,T(u)) ,

where P(u) is the probability that the source produces the block of letters u. To

minimize the average distortion of the system for a particular set of M code words, the

encoder should map each block of source letters into the code word which gives the

smallest average distortion per letter with the source block. The operation of the

source encoder is very similar to the operation of a noisy channel decoder, which must

map a channel output sequence into the code word which gives the lowest probability

of error. The source decoder is also seen to be analogous to the channel encoder.

From our experience with channel coding and decoding, we expect that the source

encoder will be a far more complex device than the source decoder. A block diagram

of the communication system that we study in this work is shown in Figure 1.2.
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The concept of a fidelity criterion is basic to the information theory. The

information rate of an amplitude continuous source is undefined unless a tolerable level

of distortion according to some distortion measure is specified, since exact transmission

of the output of a continuous source to a receiver would require an infinite information

capacity. This is somewhat analogous to the problem of finding the channel capacity

of an additive gaussian-channel which is undefined until one puts constraints on the

signals that the transmitter may use.

The fundamental work on the encoding of a discrete information sourch with a

distortion measure was done by Shannon. (15) He showed that the constraint that the

average distortion per letter be no more than a certain amount, say d*, led to a unique

definition of the equivalent information rate R(d*) of the source. The rate-distortion

p function, R(d*), was defined by Shannon as follows. Given the set of source probabilities

P(x), and a distortion measure d(xy), we can take an arbitrary assignment of transition

probabilities q(ylx), (q(ylx) O0, q (ylx) = 1 ), and calculate the quantities

d (q(ylx)) = P(x) q (ylx) d(xy)
xY

R(q(ylx) ) = P(x) q (ylx) log q(yIx)

X, Y ZP(x') q(yfx')
X

The rate-distortion function R(d*) is defined as the minimum value of R(q (ylx)) under

the variation of the q(ylx) subject to their probability constraints and subject to the

constraint that d(q(ylx)) 5 d*. The use of a test channel q(ylx) with the source to define

R(d*) is similar to the use of a test source with a channel to define channel capacity.
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The test channel is adjusted to minimize the average mutual information of the source-

test channel combination while the average distortion is kept equal to or less than d*,

when transmitting the source output directly throagh the test channel.

The significance of the function R(d*) is explained by the following powerful

results. Shannon showed that there are no encoding schemes with rate less than R(d*)

which give average distortion per letter d* or less, but there are encoding schemes

which give average distortion per letter d* with rates arbitrarily close to but greater

than R(d*). These results justify the interpretation of R(d*) as the equivalent information

rate of the source.

This research is largely an elaboration of Shannon's fundamental work. Of

special interest were the problems involved in putting the theory of source coding into

practice.

The first results derived are upper and lower bounds on average distortion for

block codes of fixed rate and block length n. The asymptotic form of the upper bound

on average distortion as n-, o leads to the parametric functions R (t) and d (t), t 5 0,
u Lu

which have the following significance. For a given t 5 0, there exist block codes with

rates R (t) + E, E > 0, which give average distortion d*(t) or less. Convergence of the

upper bound on average distortion to its limiting value is as a negative power of n, as

n-o.

The asymptotic form of the lower bound on average distortion as n- *o leads to

the parametric functions R (t) and d (t), t S 0, which are interpreted as follows. For a
L L

given t 5 0, there exist no block codes with rate less than R (t) for which the average

distortion is less than d (t). Convergence of the lower bound to its limiting form is

found from an asymptotic series and the limiting value of the bound is also approached as

a negative power of n, as n- -o.



p The asymptotic form of the upper and lower bounds may be optimized to yield

asymptotic bounds on the average distortion for optimum block codes. We show that

this optimization yields R,(t) = R (t) = R*(t) and d (t)= d (t) = d*(t), for all t - 0. We
U L U L

have therefore shown that, for a given t 5 0, there are no block codes with rate less

than R*(t) for which the average distortion is less than d*(t), and there are block codes

with rate R*(t) + E, E > 0, for which the average distortion is d*(t) or less. The

parametric functions R*(t) and d*(t), t 5 0, thus have exactly the same significance as

Shannon's rate-distortion function R(d*). We find that R*(t) and d*(t), t 5 0, may be

calculated explicitly by solving two sets of linear equations. Although we did not use

a test channel in bounding the average distortion for block codes, the expression for

R*(t) is interpreted as the average mutual information of a channel Q(ylx), where Q(yjx)

p depends on P(x), d(xy), and t. The expression for d*(t) is also interpreted as the

average distortion when the source output is transmitted directly through this test

channel Q(ylx). Thus we have also found an explicit description of Shannon's test

channel. These results are presented in Chapters 2 and 3.

In Chapter 4, the general problem of analyzing block codes with algebraic

structure for sources is discussed briefly. The remainder of the chapter treats the

binary symmetric, independent letter source with Hamming distance as the distortion

measure. We show the existence of group codes which satisfy the upper bound on

average distortion for optimum block codes. We also study the use of group codes and

tree codes together with sequential encoding schemes as a means of reducing encoder

complexity. The sequential encoding of group codes is simple to instrument, but yields

a weak upper bound on average distortion. The sequential encoding of binary tree codes



appears to yield the optimum average distortion, but the complexity required to do so

is very great.

Chapter 5 presents three separate topics, the first of which deals with the

fidelity criterion mentioned above on maximum allowable distortion per letter. The

analysis of source coding problems with this fidelity criterion is quite similar to the

treatment of the zero error capacity of channels by Shannon ( 13 ) . The second topic

treats sources with side information available at the decoder, and this problem is

seen to be similar to the problem of a channel with side information available at the

(14)
transmitter

Finally, a partial ordering of sources is defined but only for a fidelity criterion

of geometric mean fidelity. Given the measure of fidelity p(xy) between letters of the

source and output alphabets, the geometric mean fidelity (g. m. f.) that is produced when

the source sequence u = xl x 2 ... xn is reproduced as the output sequence v = yly2 ... Yn

is defined as

g. m.f. (uv) = p(xYi ) n.
i=1

The partial ordering of sources has roughly the same significance as does Shannon's

partial ordering of channels (1 6) , with the important exception that the geometric mean

distortion seems to be much less practical as a fidelity criterion. A simple partial

ordering for arithmetic average distortion as fidelity criterion could not be found. All

of the topics in Chapter 5 serve to emphasize the dual nature of the problems of channel

coding and source coding with a distortion measure.

We present some general remarks on this research in Chapter 6 and also several

interesting directions in which to extend the theory.
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CHAPTER II

BLOCK CODES FOR INDEPENDENT LETTER SOURCES

2. 1 Introduction

The main concern of this chapter will be the theoretical performance of block

codes for reducing the equivalent information rate of an independent letter source at the

expense of introducing distortion.

We restate the source encoding problem in order to introduce some notation.

The information source selects letters independently from a finite alphabet X according

to the probability distribution P(x), x e X. There is another finite alphabet Y, called

the output alphabet, which is used to encode or represent the source output. We call

a block or sequence of n source letters a source word and a block of n output letters

an output word. An encoder is defined as a mapping of the space U of all possible

source words into a subset V* of the space V of all possible output words. The subset

V*, called a block code of length n or just a block code, consists of M output words

called code words. When the sourceproduces a particular sequence u E U, the encoder

output is the code word which is the image of u in the mapping.

The encoder may be specified by a block code and a partitioning of the space U

into M disjoint subsets w, w , . . ,wM . Each subset w. consists of all those source
1 2M 1

words u that are mapped into the code word v. E V*. Every u sequence is in some
1

subset w..



The distortion measure d(xy) - 0 defines the amount of distortion introduced

when some letter x is mapped by the encoder into the output letter y. When the sequence

U= 1 n 1 . , i E X2 is mapped by the encoder into the sequence v = 17 17. .

". 7n 7i ~ Y, the distortion is defined by

n
d(uv)= n Z d(i7i). (2.1)

= 1

For any block code and a partitioning of the source space U, there is a definite average

distortion (per letter) which is given by

M
d= C P(u) d(uvi). (2.2)

i= 1 w.
1

P(u) is the probability that the source produces the sequence u, and for an independent

letter source, this is given by

n
P(u) = P(i) i EX .

i=l 1

The output of the encoder must be transmitted to the information user or sink.

The output sequences themselves need not be transmitted if the block code is known in

advance. For instance, the binary representation of the integers from 1 to M could be

sent over a channel. At the output of the channel the binary numbers could be converted

back to code words, giving the sink an approximation to the actual source output. It

would take log M binary digits to represent n source letters in this scheme. In view of

1this, we define the information rate for a block code as R = - log M nats per letter.n

(All logarithms are to the base e unless otherwise specified.)

I
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p Throughout this work we will make the important assumption that there are no

errors introduced by the transmission channel. We thereby restrict ourselves to the

problem of mapping a large number of possible source words into a smaller set V* of

code words, assuming that the code words are presented directly to the sink. The sink

is presented with an approximate representation of the source output but the channel

capacity requirements to transmit the data are reduced by encoding.

2.2 The Average Distortion for Randomly Constructed Block Codes

We will study an ensemble of randomly constructed block codes in order to prove

the existence of block codes with rate R that guarantee a certain average distortion d.

The random code construction is as follows. We choose at random M code

words of length n, each letter of each word being chosen independently according to a

probability distribution P (y), y E Y. Each output word v has probabilityc
n

ic ici
i=l

of being chosen as a particular code word of a random block code. According to this

system, the same code word may appear more than once in a block code. Each block

code of the set of all possible block codes of length n with M code words has a certain

probability of being selected. An ensemble of block codes is then completely specified

by M, n, and P (y).c

Given a particular set of code words, we define a partitioning of the space U

which minimizes the average distortion. We put u E w. if and only if
1

d(uv.)-5d(uv.), j= 1, . . . , M. (2.3)
1 3
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If for a particular u there are several values of i which satisfy Eq. 2.3, then we put u

in the subset denoted by the lowest integer. Each block code now has a definite

probability of being chosen and a definite average distortion when used with the source

P(x) and distortion measure d(xy). We now derive an upper bound to the average over

the ensemble of codes of all the average distortions of the individual codes, the

weighting being the probability of choosing the individual codes. We can conclude that

there exists a block code with at least as low an average distortion as that for the whole

ensemble, and hence there exists a code satisfying our upper bound on average

distortion over the ensemble.

Denote the number of letters in the X and Y alphabets by a and b respectively.

Theorem 2. 1. Consider the ensemble of block codes consisting of M

code words of length n with letters chosen independently according to

Pc(y). The average distortion over this ensemble of codes, when used

with a source P(x) and a distortion measure d(xy) 2- 0, satisfies

A21/a a
-1/4 a 2I exp (-n /2 21) 22q exp(-n /2 )

d y'(t)+n +y'(0) -- (2 n (2r)"z nli 4

3 log n 93 a + 2.23

-1 4 n-1 4]

e-(M- 1) K(n) exp - n [ty'(t) - y(t) + n + ItIn ]
+e

(2.4)

for any t ` 0.

, Yx(t) = log yPc(y) etd(xy ) Tyx(t) = 8yx(t)/Dt considered as random



variables with probability P(x), have mean values y(t) and y'(t), and

v and o, respectively., l and Pz3 are third absolutevariances 1

moments of yx(t) and y'x(t), respectively. 'y indicates summation only

over letters y E Y for which P (y) > 0.
C

_a(b-1) ab tI xy-1] y
2 2

K(n) = (2 7rn) e

where Q(y x) = P (y) etd(xy)- y(t) A = max d(xy)
C XY

The proof of this theorem is rather involved and has been relegated to Appendix

A. It should be pointed out that an upper bound to d could actually be computed for

finite n from Eq. 2.4. However, the main use of this theorem will be to study the

upper bound on d for an ensemble of block codes as the block length n gets very large.

The only term of Eq. 2.4 that does not clearly vanish in the limit as n - 00 is the very

last term in the brackets, which depends upon M. In this term, K(n) is an unimportant

function of n whereas the exponential in the first exponent is all important since

ty'(t) - -y(t) 2 0. Substitute M = enR and notice that as n - ýo we must have the first

exponent

K(n) (enR-1) exp(-n [ty'(t) --y(t)+ 1 + It In ])--1/4

to drive this whole term to zero. This can be accomplished if we set R >ty'(t) -y(t)- -0

because as n -- o

enR-n(ty'(t) - y(t))

will then be increasing exponentially with n;, overcoming the algebraic functions of n in

K(n). The bound on-f then becomes, as n - oo
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d -y'(t)

The above discussion proves the following theorem.

Theorem 2. 2. There exist block codes with rate R > ty'(t) -y(t), t 5 0,

that give average distortion d 5 y'(t).

We will now put the constraints on R and d of theorem 2. 2 in a more useful

form. From the definitions of yx(t), y(t), y'x(t), y'(t) in theorem 2.

v(t) =
X

y'(t) =
X

P(x) yx(t) = Z P(x) log

1 we can write

P (y) etd(xy)

d(xy) P(x) Pc(y) etd(xy)
P(x) yx(t)= XY

Pc(y) etd (x y )

Y

It is convenient to define the tilted conditional probability distribution

Q(yrIx) = Pc(y) etd(xy)
EPc(y) etd(xy)
Y

with which Eq. 2. 5b (together with Eq. A. 6) becomes

du y'(t) = Q(yI x) P(x) d(xy) .
XY

Directl y from Eq. 2.6 we get

Q(ylx)
log P)

C

= td(xy) - In P (y)c
etd(xy)

= td(xy) - yx(t) .

(2. 5a)

(2.5b)

(2. 6)

(2.7)

(2. 8)



Combining Eqs. 2 . 5a, 2. 5b, 2. 6, and 2. 8 we can define R as
u

R u = ty'(t) - y(t) = (yIx) P(x) (td(xy) - yx(t))
XY

= Z Q(yAx) P(x)log Q(YlX)
XY Pc( y

(2.9)

Fano (4 ) has shown (on pages 46-47) that ZyQ(YI x) log (Q(yl x) / Pc(y) ) 2 0 so that w

have R u -0.

The expression in Eq. 2.9 for Ru rdsembles the expression for the average

mutual information I (X; Y) of a channel Q(yj x) dkiven by the source P(x). However,

Eq. 2. 9 is not exactly an average mutual information because the channel output

probabilities are L.Q(yj x) P(x) which do not in general match P (y). The expression

for d u in Eq. 2.7 resembles the average distortion for a source-channel combination.

The interpretation of Q(yJ x) as a channel will be used again later.

Ruand du are related parametrically through the variable t. We may think of

d as the independent variable and t as the intermediate variable when we write

R = td - y(t) (2.u u

The derivative of the curve of R vs du is then (see Hildebrand( 8) pages 348-351)U U

dR aR
u u dt

dd = t at dd
u u

but from Eq. 2. 10,

aR

t - du - ,'(t)
8t

which is zero from Eq. 2.7 because of the way t is related to d . The R vs d curve
u u U

has slope t - 0.

i

10)

e



We can show the convexity of the R vs d curve for fixed P (y) as follows.
U U C

u 8 (• \ u dt 1 1
dd t d dd - dd y"(t)

U U U U

dt

From Eq. 2.7

y"'(t) = P(x) d(xy) - Q(yjx)

= P(x) [y Q(ylx) d (xy) - Q(y x) d(xy )2j

X Y

We may interpret the qhntity inside the square brackets as the variance of a random

variable, and y"(t) is an average of variances, therefore y"(0) 2 0. We have shown

that for fixed P (y),
c

I d'Rd
u 1

--- = -. (2. 11)ddZ  y"(t)
dd

Since U = y"(t) - 0-, d is a monotone function as t decreases and this fact
dt u

together with Eq. 2. 11 show that R vs d is convex downward.
u u

2.3 Optimization of the Upper Bound on Average Distortion

For each probability distribution P (y) we have an ensemble of block codes and
c

an R vs d curve. From Theorem 2. 2 it is clear that we want to find the ensemble
u u

of codes which gives the lowest value of R for a fixed d . From another viewpoint,
u U

we want to find the lower envelope of all R vs d curves.
u u

From Eq. 2. 10 we see that if there was no parametric relation between t and d
U

such as Eq. 2.7, fixing t would give R as a linear function of d for any particular P (y).
u u cI



This straight line in the R - d plane is the tangent to the R vs d curve corresponding

to the P (y) at the point at which Eq. 2.7 is satisfied for the fixed t. The slope of this
c

straight line is t (from Eq. 2. 10) and its d-axis intercept is y(t) / t, t < 0. Because of

the convexity of the R vs d curves, we can find a point on the lower envelope of all
u u

Ru vs d curves by finding the P (y) which gives the minimum d-axis intercept. (SeeU U c

Figure 2.1.)

Let us define the lower envelope of all R vs d curves as the curve R* vs d*
u U U U

We attempt now to find the ensemble P (y) which for fixed t gives the minimum d-axisc

intercept. First, we show that for fixed t < 0, the intercept I(P(y) )= = - (t)Iti
is a convex downward function of the P (y). Consider two different probability vectors

c

P (y) and P (y) and denote
ci c2

(1) (t)log 2 P (y) etd(xy)

c3 c l 2

Y(2)(t) log P (y) etd(xy)x c3Y

Since log x is a concave downward function of X, we use the concave inequality from

Hardy(7 ) (theorem 98, page 80). For any x E X,

(3)(t) a X y(x)(t) + (1-X) y(2t) .
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0 I 1  I101 2
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Figure 2. 1. The lower envelope of all RU - d curves may be determined by finding
the smallest intercept I of all tangents of the same slope of the R -d

the smallest intercept I of all tangents of the same slope of the R - d curves.
u u

I

I



y(3)(t) X (1)(t)

-t i - Ittl
(2)

(1-x) (t)It[

therefore, for 0 5X 5 1,

I(X Pcl (y ) + (-) P2 y) I(Pl(y) ) + (d- a) I(Pc2(y) )

and the intercept I as a function of the P (y) is a convex downward function.
C

We now seek to minimize I = y(t)/t

straints P (y) 0, PP(y) = 1. Firs
c Y

for fixed t by varying the P (y) under the con-
c

3t we find a stationary point of I with respect

to the P (y) while constraining the sum of the P (y).
c c

a
y(t)t Y

y
P (y)c = 0, t < 0.

Using Eq. 2. 5a this becomes

etd(xyk
)

P(x)
P (y) et d ( x y )

Y

+ =0. (2.13)

Multiplying this last equation by t Pc(Yk ) gives

P(x)
X Q(yk/x) = - t Pc(yk ) (2.14)

where we have used Eq. 2. 6. We have a stationary point of I if we can find P (y), allc

y E Y, which satisfy Eq. 2. 14. It is convenient to define the probability distribution

Q(y) =
x

Q (y Ix) P(x). (2. 15)

If we now choose p = - I/t we see that Eq. 2. 14 becomes

Q(y) = P (y), all y Y
c

For t < 0,

(2.12)

(2. 16)
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and this value of.I then implies that the P (y) satisfy the constraint on their sum.
C

However, we can not guarantee that the P (y) which satisfy Eqs. 2. 16 will be non-c

negative.

It is convenient to denote

gx(t)== ebx (t )  Pc(y) td(xy) (2. 17)
Y

The Eqs. 2. 16 imply that in order to calculate the optimum P (y), we may first solve

cc
-1 -1forg,( (t) the following set of equations which are linear in g (t).

P td(xy) -1

Pc(y) etd(xy) gx(t), x E X (2.19)

which are linear in P (y). These operations are easy to perform with the aid of modernc

computers. However, we may notice that P(x), d(xy) and t may be such that one or

1 1
more of the g (t) satisfying the Eqs. 2. 18 are negative or zero. A (t) that is zero

implies that the Eqs. 2. 19 are meaningless and we cannot get a solution for P (y). A. c

negative gx(t) implies a negative Pc(y), but more important, since y(t)= CXP(x) log g (t),

we find that the solution for P (y) leads to imaginary values of R and d', again a
C -1

There are such P(x), d(xy), t - 0 such that g (t) < 0 for some x. For example, con-
sider the ternary source with letter probabilities all 1/3, set t = -1, and take

log 1. 5 log 6

d = log 2 0 log 2

log 6 log 1.5 0



meaningless situation. We can conclude that there are situations in which one does

not have any meaningful solution to Eqs. 2. 16 for a range of t < 0. This can be inter-

preted as an Rý vs d* curve with discontingities in its derivative dR */dd* , since the

slope of R1 vs d* is given by t (by construction).

Finally, it should be obvious that there may be situations in which all the
-1

gx (t) > 0 and we still get from the Eqs. 2. 19 a negative Pc(y). We have shown that I

is a convex downward function of the b arguments P (y) (b letters y E Y). We constrainc

the Pc($), considered as points in b-dimensional Euclidian space, to vary within a region

of the (b-1)-dimensional hyperplane Zy Pc(y) = 1. The boundary of the acceptable

region of points P (y) are the hyperplanes P (y) = 0, all y E Y. If the absolute minimumc c

of I lies outside this region, the solution to Eqs. 2. 16 may have one or more negative

probabilities P (y). We can still find a minimum of I along a hyperplane boundary ofc

the acceptable region by setting some P (y) = 0 and minimizing I again by solving the

set of Eqs. 2. 16. The fact that such a further constraint on P (y) still leads to a
c

minimum of I is guaranteed by the convexity of I.

The special case of t = 0 must be treated separately. We wish to find a minimum

of

lim y(t)

t-'O t

Since y(O) = 0 (from Eq. 2. 5a), we may write

lim y(t) lim y(t) - y(O)
- - =y'(0)

t-, O t t-O t -O



and so we wish to minimize y'(0) with respect to the P (y).
C

= min
P (y) XYc

and the solution to Eq, 2. 20 for which

From Eq. 2.5b

P(x) Pc(y) d(xy)
c

Zp(y) = 1 is the choice of

1 for yO

cP (y) =

0 otherwise

where y is such that

d =max
P(x) d(xy) = rmin

y
P(x) d(xy) )

From Eq. 2.6,

lim Q(ylx) = Pc(y)A. c

so that Q(y Ix) / P (y)c
= 1 and from Eq. 2. 9 we see that this implies R* = 0 for this

U

case. (2.22)

It will be helpful to put our results on the optimum upper bound on average

distortion in a form which will allow comparison with later results on a lower bound.

If we defirn the function f (x) as
o

fto (x) =g(t)

we may re-write Eqs. 2.20 as a linear set in ft (x), i.e.,

P(x) et d (x y ) ft(x) = 1, yE Y.O (2.22)

The optimum P (y) can then be found as the solution to the set of linear equationsc

= f-t (x), xE X.
0

min y'(0)
P (y)c

(2.20)

(2.21)

YP(y) e td(xy)
y (2.23)
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For the optimum ensemble of codes, we may interpret the Q(y Ix) as a channel driven

by the source P(x), with output probabilities E Q(y I x) P(x) = Q(y) = Pc(y). We can find

the dual set of transition probabilities Q(xj y) which speclfyi this channel as

Q(xly)- Q(y1 x) P(x) P(x) etd (x y) ft (x)
P (y)Y td(xy)ft
c) P(x) etdy) f (x)0

X

= P(x) etd(xy) ft (x), (2. 24)
0

where we have used Eq. 2. 22. From Eq. 2. 24 we find the useful relation

Q(xIy) = Q(yx) (2.25)
P(x) P (y)c

so that we may re-write Eqs. 2.7 and 2. 9 for the optimum P (y) as
c

R*(t) = xY P (y) In Q(x y)P(y))_ (2. 26)
a c P(x)

d'(t) = Q(x y) P (y) d(xy) , t5 0. (2.27)
XY

We see that the R*(t) - d*(t) function is defined by Eqs. 2.26 and 2.27 and by the

sets of Equations 2. 22 and 2. 23.

Theorem 2.3 For any t - 0 and any E > 0, there exist block codes with

rate R = R*(t) + E and average distortion at least as low as d*(t). *
u u

The Q(y[ x) may be interpreted as a channel whose transition probabilities

depend on P(x), d(xy), and t. R* is the average mutual information of the channel
U

Q(yl x) when driven by the source P(x), and d* is the average distortion from this source-
U

channel combination.I



Shannon (1) showed that any channel with input and output alphabets X and Y,

respectively, could be used as a test channel to prove a coding theorem for a source

with a distortion measure. His coding theorem states that there exist block codes

with rate arbitrarily close to but greater than the average mutual information of the

source-test channel combination with average distortion equal to that calculated for

the source-channel combination. J. L. Kelly (9) used this approach to prove a coding

theorem for amplitude-continuous sources by using a continuous channel. Our work

here obtains a coding theorem for sources without using such a test channel, but the

resulting expressions involve a fictitious channel Q(ylx). Moreover, we only have a

strict channel interpretation after optimization pf the upper bound on average distortion

with respect to the code ensemble P (y).c

As a special example, suppose we have a distortion measure with the property

that for every x E X there is one and only one y = yx such that d(xYx) = 0. There is only

one way to represent the source output exactly (zero distortion) in this case. Since,

from Eq. 2.6

lim Q(yx) = 6.
t --0 -x

we have for this case

lim du*(t) = P(x) 6 d(xy) 0.
t- '0 XY Y' Yx

Also

Z 6 log 6 = 0 so
SY'Y YxYx

lim R *(t) = P(x) log P H(X)
t-- 00 X



where H(X) is the well-known source entropy. From Eq. 2.21 we see that for t = 0,

d*(0)= d , , and from.Eq. 2,22,
ua max

R*(0) = 0.
U

In general, R*(--)' ='0 if and only if each source letter x C X has some output letter y
u

such that d(xy) = 0. A typical R* (t) - d* (t) function is shown in Figure 2. 2.
U U

H(X)

t12

0 d
max

Figure 2.2 A typical function R* vs d*.
U U

p



2,4 Lower pound to Average Distortion for Fixed Composition Block Codes

We have demonstrated the existence of block codes that guarantee a certain

average distortion. Now we seek a lower bound to average distortion applicable to all

block codes, so that we may compare the performance of our randomly constructed

codes to the best possible block codes.

First we define a distance function

D(xy) = d(xy) + log f()q) (2.28)

where d(xy) is the distortion measure and f(x) may be any strictly positive function

defined on the source alphabet X. The distance between two sequences u and v is

defined as

n n
D(uv) = n D(i ) = (d (i i) + log f(.))

Si=1 i= 1

d(uv) + - f(u) (2.29)n

where we have denoted

n
f(u)- = f ()

i=1

For any output word v of length n we may count the number of times each letter

of the Y alphabet appears. We denote by n(Yk) the number of times-letter yk appears

in the v sequence and we call the set of integers n(y), y E Y, the composition of v. The

composition of a source word u is denoted n(x). The product composition of a pair of

sequences u - v is denoted n(xy) and is the number of timesi the letters xk and y. appear

in corresponding positions of the u and v sequences. The product composition of a u-v

pair is such that



n(xy) = n,, n(xy) = n(y), n(xy) = n(x).
XY X Y

For a u-v pair with product composition n(xy) we can write the probability of the source

word t as

P(u) = P(x)n(xy) = P(x) fi P(x)n(x) (2.30)
XY X X

and the distance between the u-v pair is

D(uv) = n(xy) d(xy). (2.31)
XY

We see that for an independent letter source the probability of a source word depends

only on the composition of the word. Also, the distance function and distortion measure

between sequences depend only on the product composition of a u-v pair.

The distance function D(xy) can be thought of as another distortion measure so

that for any block code consisting of the code words vi, i= 1, ... , M and a given

partitioning of the source space U into encoding subsets wi, i=l, ... , M, we may write

the average distance for the block code and encoder as

M
D = P(u) d(uvi). (2.32)

i=l w.

Theorem 2.4 Consider a source P(x), distortion measure d(xy) 2 0, and

a positive function f(x). Suppose we have a set of M code words of length

n and all have the same composition n (y). Let U represent the subset of
c O

source sequences u for which D(uvo) 5 D for any particular sequence v

with composition n (y), and D such that U is not empty. Then if M is
c o0 0



p such that

M S 1 (2.33)
E P(u)
U

o

the average distance for the block code satisfies

P(u) D(uv0)

D : (2.34)

uP(u)
o

Proof The proof of this theorem is analogous to R. G. Gallager's (unpublished)

proof of a theorem on the lower bound to the probability of error for a memoryless

channel.

I A block code in which all code words have the same composition will be referred

to as a fixed composition block code. We proceed to derive a lower bound to the average

distance that any block code of fixed composition n (y) could give for any partitioningc

of the source space. For each code word v. , i=l, ... , M, we define the increasing1
staircase function F.(z) as follows. List all source sequences u of length n in order of

1

increasing D(uvi) and number the sequences in the i - th ordering uli, u2 , u3i, ...

Now define

F.(z)= 0 , z <0
1

Fi (z) = D(uliVi) , O 5 z P(ul
1 Iiii

Fi (z) = D(u2 ivi), P(Uli) < z P(Uli) + P(u 2 i

k-I k
F. = D(ul v)7 P(u <z s Pu, .

ii' jkivi" ls J i - j a jj=1 j=1
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We may visualize every source word u being represented in Fi(z) by a rectangle with

height D(uvi) and width P(u). (See Figure 2.3.)

For a given partitioning wi, i=1, ... , M, we can write the average distance as

M

1= 1

where

Di = P(u) D(uv)
wi

If we shade all rectangles of Fi(z) corresponding to all u sequences in wi, we can inter-

zipret D.as the area of these shaded rectangles. Each D. is lower bounded by1 1

D. f f F.(z) dz , z= P(u). (2.35)S 1 1 1
o W.

We have underbounded D. by the area under F. (z) on the interval 0 - z 5 z.. This
1 1 1

bound may be interpreted as a sequential process of replacing the area of shaded

rectangles for the largest D(uvi ) by smaller areas in unshaded portions of F.(z), pre-

serving the width measure of the shaded rectangles, until the entire area under F.(z)

is shaded out to some z..
1

Define
Z

Oi(z) =f F.i(21) dz'
0

where the .i (z) are convex downward, monotone increasing, continuous functions of z.

The main point of the proof hinges on the fact that P(u) and D(uv) depend only on the

product composition of the pair u-v and so for code words u1with identical composition



S

N

Figure 2.3

D(uvo)

Pr(u)

Z -.

The function Fi(z) for a code word v. of composition n (y), showing some
1 C

z,, z', and DO.of the u E wi,



33

n (y), the 0i(z) are all identical and we may drop the subscript i. Note from Eq. 2.35

that
M

i=l

since every source word is in some subset wi. We may now apply the convex inequality

(see Hardy(9) , theorem 86, page 72) to give us

M M
1 1 1(2.36)

5- M q (zi)  M ( " zi) 
= MO ( M) (2.36)

i= 1 i= 1

A lower bound to D for any block code of fixed composition n (y) is achieved if wec

assume that we can make all z. = z = 1/M so that
1 O

- 1
D. = (-) .

D- 1 o F(z) dz (2.37)
Z

I Zf F(z) dz 2- f F(z)dz, z'-zo. (2.38)
o0o o

Let us then define z' by

z' = P(u)-5z = (2.39)
U

where Uo is the subset of source words for which D(uv o) -Do. Any Do for which

Hereafter we will use the standard shorthand notation in the definition of sets, e.g.,
Uo = { u ID(uv0o ) sD O }



Eq. 2.39 is true can be used to define Uo. Hence, if Do is a constant such that

SM
1

EP(u)
U

0

then from Eqs. 2.37 and 2.38 and the definition of F(z),

P(u) D(uv°)

E P(u)
U

0

Q.E.D.

This theorem on average distance leads to a lower bound on average distortion

for block codes of fixed composition n (y). From Eqs. 2.29, 2.32, and 2.2 we see thatc

M M
= P(u) d(uv P(u) d(uv+)+ - Y P(u)log f(u)=d + P(x)log f(x) (2.40)

i=1 w. i=1 w. X1 1

since

n
log f(u)= log f(.i ) , u = (i),

i=1

and this term is entirely independent of the block code. We may now restate Theorem

2.4 in terms of its implications to the average distortion of fixed composition block

codes.

Theorem 2. 5 Suppose we have a source P(x), distortion measure d(xy),

and any positive function f(x). Any block code with M code words of length

n, all having fixed composition n (y), which satisfies
c

M - (2.41)
E P(u)
Uo

6



must have average distortion that satisfies

P(u) D(uvo)

Uo - P(x)log f(x) (2.42)

SP(u) X
U

0

where

U ={u [ D(uvo)D},
0

vo is any output sequence with composition nc(Y),

Do is such that Uo is not empty. *

It is difficult to get bounds on the expressions in Eq. 2. 42 for finite n which will

give the correct asymptotic bound on d as n -- ~. These difficulties and methods of

surmounting them are the main concern of Chapter 3. Our present interest is to obtain

the correct limiting forms for the constraints on M and d as n - 0.

Let us define the sets

A={ u [ D- 6 s D(uv) D } , 6 >0,
00 0

Uo-A= { uD(uvo) <D o - 6 }

and denote the right hand side of Eq. 2.34 as D . We re-write Eq. 2.34 as

C P(u) D(uv o ) + Z P(u) D(uv)
D-D Uo-A 0 A 0
D-D = o

SP(ou)
U

0

P(u)
(Do - 6 ) (2. 46)p 2 P(u)

U
0



For a given vo, nD(uvo) is a sum of independent, non-identical random variables and

we may write the distribution function for the random variable D(uv ) as
0

Sf(X ) = P'[ D(uv)- x ]

so that Eq. 2.43 becomes

D = (D - 6)
L o

- (D -6)o0

Pn(Do) - n(Do-6)

S(D)no

(1- qn(Do-6) )
n (Do)

We may apply Fano's(4) bounds (pages 265

which are as follows.

(2.44)

and 275) on Pn ( x )for a given von 0'

K (n) e--nnE(x) (x) - e -nE(X)
1t , t 0, (2.45)

E(X ) = t/•'(t) - p(t) - 0

(2.45a)(t) =- Pc(y) log Z P(x) etD(xy)
Y X

P (y) = nc(
c n

and t is chosen so that

(t)= (t)
'(t) t = mean value of X . (2.46)

K (n) is only algebraic in n and is similar to Eq. 8. 125 of Appendix A. Ap"(t) can be

interpreted as an average of variances, so p"(t) - 0, implying '(t) is a continuous

monotone increasing function of t which then guarantees that we can always satisfy

S

D

where



Eq. 2. 46 for some value of t s 0.

u'(t) = D
% '

'(t ) =Do- 6, 6 >0

then t2<t I-

d
Since E(X) = t/"(t) 5 0, for t - 0, E(X) is a continuous,

dt

of ts 0 and 0 - E(D - 6) < E(D).0 0 O

monotone decreasing function

This difference in exponents in the bounds of Eq. 2.45,

when applied to Eq. 2.44, overcomes the function K (n) as n--~ and we have
L

n(oD -6)
-" 0.S(Do

We conclude that for arbitrary 6 > 0,

lim
D =D

L0
n, o

-6

Therefore the limiting form of the bound on average distance is, for n- 0o

D_ D.
o

Applying Eq. 2.40, the bound on average distortion is, for n - 0o

lim D - Z P(x) log f(x)
n---,o X

= Do - P(x) log f(x) . (2.47)
X

We can write the constraint on M of Eq. 2.41 more conservatively, using Eq.

2.45, with t chosen so that p"(t) = Do'

If we have



* M en E(Do)
Z P(u)
Uo

From the definition of R we have the constraint on the code rate

1
R= - log M- E(D) .

n o

We summarize the above discussion with the statement of a theorem.

Theorem 2.6 There exist no block codes of fixed composition nc(y) withc

rate R -< t '(t) - p(t), t 5 0, that give average distortion

d < '(t) - P(x) log f(x) .
X

We now put the constraints on R and d of Theorem 2.6 in a more useful form.

From the definition of p(t) in Eq. 2. 45, we proceed (as in Eqs. 2. 6, 2. 7, and 2. 9) to

define

R = tp'(t) - p(t)= Q(x Iy) Pc(y) log
XY

d =p'(t) - P(x) log f(x)
X

Q(xly)
P(x) (2.50)

Q(x (Iy) P (y) d(xy)+ ( Q(x) - P(x) ) log f(x)

P(x) etd(xy) ft(x)
Q(x y) =

P(x) etd(xy) ft(x)
X

(2.48)

(2.49)

=
XY

where

(2. 51)

(2.52)



and

(2.53)Q(x) = rQ(x (y) Pc(y)
Y

R resembles the expression for the average mutual information of a channel Q(x Iy)

driven by the source P (y), but Q(x) and P(x) do not match in general so there is only
c

a resemblance.

For each function f(x) and composition P (y) we have a curve R vs d with R
c L L L

and dL related para:uetrically through t. We may think of d as the independent

variable and t as the intermediate variable when we write, from Eqs. 2. 50 and 2. 51,

(2. 54)R = t (d +)' P(x) log f(x)) - p(t)
L

The derivative of the R vs d curve for fixed f(x) and P (y) is
L L C

-dR 8R dt
=t + - -----

dd ' at dd
L L

but from Eqs. 2.50 and 2.51 we see that t is chosen so that k./ 8 t = O, hence

dRL
dd

L

We can show the convexity of

dd R, 8

I1"(t) can be interpreted as an

dZR
d d2

I-

(2.55)

R vs d as follows.
L L

d R. dt 1 1
ddL) ddL ddL p"(t)

dt

average of variances so

dd,and ddL - "(t) 0 is a monotone function of t. We conclude that R vs d is a
dt L L

1
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continuous, convex downward function of t with continuous slope for fixed f(x) and P (y).C

2.5 A Lower Bound on Average Distortion for Block Codes

The arbitrary function f(x) may be thought of as a parameter which may be

adjusted to optimize the lower bound on average distortion for block codes of fixed

composition P (y). Fano (4 ) used such a function in his derivation of both upper andc

lower bounds on probability of error for discrete, memoryless channels. To get the

strongest lower bound to average distortion for a fixed P (y) we should maximize R
c L

with respect to the f(x) while holding d fixed. Using the expression in Eq. 2.54 for RL

we obtaint

(aR,. 8R, aR t + R,
f( ) j akt f(xf) +af(xk)

Again, 8RL/at = 0 by choice of t. Using Bqs. 2. 54 and 2.45a,

ORL (P() - Pc(y) Q(xly) ) =0.Ef( k) f()(P(xk) y

Using Eq. 2. 53, we find that we have a stationary point of R for fixed d if we choose

f(x) so that

P(x)= Q(x) , all x EX . (2. 56)

We cannot show explicitly that this stationary point of R is a maximum with respect to

the f(x), but the Theorem 2. 6 is true for any positive f(x). Let us then assume for the

present that for fixed P (y) and each value of t 5 0 we can find a positive f(x) such thatc.

Eq. 2. 56 is satisfied and let us then use this f(x) in the following work.

We use Hildebrand's(8)notation of page 350, Eq. 4b.



We now find a lower bound to average distortion for any fixed composition block

code by minimizing R with respect to P (y) for fixed d ,
L C L

Pc(y) a 0Y, Y Pc(y)= 1

a

c cYk)

We solve

R+ X
Y

under the constraints that

P(y) ) =c

for fixed d . Again using

( 8RL

a P(yk)

Hildebrand's ( 8 ) notation,

Pc (Y),j#kcji

-z
X

aR
Ld f(x)

d f(x)

a f(x)

a Pc (yk)

since aR /at = 0.

stationary.

Also BR /Bf(x) = 0 for all x because the f(x) are chosen to make R

We obtain

08RL + A=0
aPc(k)

and from Eqs. 2.54 and 2 .45a, P (y) should be chosen so thatc

log E
X

P(x) etd (xy ) ft(x) = K

where K is a constant independent of y. We may re-write Eq. 2. 57 as

SP(x) e td ( xy ) f(x) = K'
X

(2.58)

but since X Q(x [y) = 1 for any y, we see that Eq. 2.58 together with Eq. 2.52 implies

(2.59)

8R

aP (yk)
c

(2.57)

P(x) e td ( x y ) ft(x) = 1, all yE Y.

I I I I I I



It remains for us to show that the choice of P (y) which makes Eq. 2. 59 truec
corresponds to a minimum of R for fixed d . Notice first that with Eq. 2.59, we can

L L

re-write Eq. 2.56 as

P (y) etd(xy) = f-t(x) , all xcX . (2.60)
Y

The functions R* (t) and d*(t) corresponded to a lower envelope of all R vs d for

different P (y) and this implies that we found a minimum of R *(t) with respect to P (y)
c U c

for fixed d*(t). The Eqs. 2. 22, 2. 23, 2. 24, 2. 26, and 2. 27 define R*(t) and d*(t).

Comparing these equations to Eqs. 2. 59, 2. 60, 2. 52, 2. 50, and 2. 51, we see that the

two sets of equations match exactly and we have therefore found a minimum of R with
L

respect to P (y) for fixed d
C L

Instead: of attempting the solution of Eqs. 2. 56 for f(x) for any given P (y), we
C

just solve Eqs. 2. 59 for ft(x) and then solve Eqs. 2. 60 for the optimum composition

P (y). We may then drop our assumption concerning the existence of solutions to
c

Eqs. 2. 56 and the statements about the existence of meaningful solutions to the

Eqs. 2. 18 and 2. 19 defining the upper bound will apply to the solution of Eqs. 2.59 and

2. 60 defining the lower bound.

We now have a lower bound on average distortion for any fixed composition

block code, and we may define the functions

R*(t) = R*(t) = R*(t)
L U

(2.61)
d*(t) = d*(t) = d*(t)

L U

We have proved the following theorem.I



P(x) = Q(x) P, (Y) = Q(y)

td(xy)
Q(ylx) = P(Y) etd(xy)

y SPc(y ) etd(xy)
Y

R*(t) =
XY

Q(y I x) P(x) log Q(ylx)
C (y) d*(t) =E

XY
Q(y I x) P(x) d(xy)

The test channel.

a
10

0
Q(x I Y),

or Q(ylx)

Figure 2. 4



Theorem 2.7 For any fixed composition block code with R ! R*(t),

t 0, the average distortion must satisfy d > d*(t), s

Note that our choice of f(x) satisfying Eq. 2. 56 implies that the output probabilities

Q(x) of the channel Q(x [y) driven by the source P(y) match P(x) and R corresponded to
c L

the average mutual information of this source-channel combination. We also see from

Eq. 2. 51 that d corresponds to the average distortion for the source-channel combi-

nation. We could actually use the channel Q(xj() for any P (y), if we can satisfyc

Eq. 2. 56, as a test channel and prove a coding theorem as Shannon does. We could

show that there exist block codes with rate arbitrarily close to but greater than the

average mutual information of the Q(xly) • P (y) combination which give average distortionc

d - XY Q(x[y) Pc(y) d(xy).

I Our asymptotic upper bound on average distortion only agrees with our lower

bound for fixed composition codes only for the optimum choice of P (y). This can bec

seen as follows. In the upper bound derivations, we do not have a test-channel inter-

pretation until we have optim ized with respect to P (y). In the lower bound derivation
C

we have a test-channel as soon as we select f(x) to satisfy Eq. 2. 56 for any P (y) for

which such a solution is possible. For other than the optimum choice of P (y) the bestc

asymptotic lower bound leads to a test channel and the upper bound does not.

Theorem 2.8 Any block code with rate R 5 R*(t), t 0, must have

average distortion d - d*(t). s



Proof Any block code of length n can be broken up into sub-codes of fixed

composition. There are B s n compovition classes of length n. Each sub-code has a

probability of occurrence which is the sum of the probabilities of all source sequences

included in the encoding subsets wi of code words of the sub-code.

Let c. denote the j-th composition class and p. the probability of the sub-code
J J

with the j-th composition. Suppose there are M. code words in this sub-code. Our
J

lower bound on average distortion for fixed composition codes applies equally well to

sub-codes. As in the proof of Theorem 2.4, we assume that we have disjoint subsets

w. of equal probability i. Then each encoding subset of the fixed composition sub-
1 M.

J w. of -

code gives the same distortion, which is a function only of or logT. The
j J

average distortion of the j-th sub-code is then bounded by

- 1 M
d. do( -log )
J n P

where d ( • ) may be thought of as the expression for d*(t) explicitly as a function of
0

R*(t). The lower bound on average distortion for any block code of length n then

becomes

B
d = p. d.

S3
j=1

B M
- PJ d  ( log )

j on p

We see from the definition of d (-) that in order to lower bound d (*) we must overbound
0 0

its argument.

At this point we make use of a combinatorial theorem on the distribution of a

set of weights totaling one pound into B boxes. If we have 0 < q < 1, at least q pounds

of the weights are contained in a set of boxes each of which contains at least (1-q)/B

(2.62)



pounds per box. The proof of this theorem is simple. Consider the set of all boxes

each of which contains less than q/B pounds of weights. This set of boxes must contain

a total weight of less than q/B times, the total number of boxes or q pounds. The

complementary set of boxes then must contain at least 1-q pounds.

Associating boxes with composition classes and weights with prbbabilities of

sub-codes, we define the subset C* of composition classes as

* = { C. I p , O <q < ,

so that we know from the combinatorial theorem

P [ C*] 1I-q
r

For C. E C*

.i. M < MB
Pj Pj q

- 1 MB
and d.j do  log q

For C. not in the subset C* we underbound d. by zero and Eq. 2. 62 becomes
J J

1 MB 1 MB
d p. do ( - log MB) = P [C*] d ( -logMB )

C*Jo n q r o n q

1 MB
- (1-q) d ( log B) . (2.63)

o n q

b 1
We may overbound B s n and choose q = - so that our lower bound on average distortion

n

for any block code of rate R = - log M becones
n

I
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- 1 1 b+l
d -(1--) d ( -log Mn ) . (2.64)

We see that as n - 00 the lower bound on average distortion for any block code approaches

(from below) the bound given in Theorem 2. 7.for any fixed compositicn block code. This

lower bound is weak for finite n but is asymptotically correct for n - o.
Q. E. D.

Example 1 - Consider the binary independent letter source with probabilities

P = 0. 8, P = 0. 2, and the distortion measure
0 1

d. =  1 - 6.. ; i,j =0, 1 .1J 1J

The distortion between binary sequences is just the Hamming distance divided by the

sequence length. Computer programs for the IBM 7090 were written to calculate the

R vs d curves so that f(x) and then P (y) could be optimized. The R vs d curves
L L c U u

were also computed and P (y) was optimized. We show the results of these calculationsc

in Figure 2.5. Even the simple case of the asymmetric binary source requires the use

of a non-trivial function f(x).

Example 2 - Consider Shannon's example of the symmetric binary source

with output alphabet consisting of the three symbols 0, 1, and ?. Suppose we have the

distortion measure

0 1 ?

d.. = 0 0 1 0.25

I1d 1 0 0.25

If we did not have the ?, the rate-distortion function would be given by

This result is derived in Chapter 4.
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Figure 2. 5. The rate-distortion function for an asymmetric binary source showing

the optimum f(x) and P (y).
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R(d) = 1- H(d) , O0 d-I
2

where H(d) = -d log d - ( 1-d ) log (1-d)

With the 7, we find gx(t), given by Eq. 2. 17 is independent of x and the Eqs. 2. 19

become

g(t) = q ( +et) + q? /4 (2. 65)

where the P (y) = q. are
C 1

qo = 
1 = probability of 0 = probability of 1

q = probability of? .

We may write the Eqs. 2. 18 as

g(t) = (1+et ) / 2 (2. 66a)

g(t) = et/4 (2. 66b)

It is easy to determine that t = 0 and only one negative value of t satisfy both Eqs. 2. 66a

and b. Eq. 2. 65 becomes

2% + q7 = 1

which is satisfied for any ensemble with our restriction that qo = q1 . This implies that

we have R*(t) vs d*(t) for any 0 - q ~5 1 with constant slope t* which satisfies

+et*) / 2 = et*/4
(1+e )/2=e

For q. = 1 we have d* = 0.25 and R* = 0.

For q, = 0, we have the ordinary binary symmetric source and Hamming distance dis-

tortion measure, so for t 5 t* we have

I
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*R*(t) = 1- H (d* (t)) .

We show these results in Figure 2. 6.

It is seen that the straight line portion of R*(t) vs d*(t) arises when we have one

more independent constraint in the set of Eqs. 2. 18 than we have in the set of Eqs.

2. 19. The P (y) are then not uniquely determined and there are many ensembles P (y)
C C

which satisfy Eqs. 2. 18 and 2. 19 for only one fixed value of t. We have illustrated an

R*(t) vs d*(t) with a discontinuity in slope since we have solutions for Eqs. 2. 18 and

2. 19 only for

t = 0, t- t* < 0.

Another interesting point occurs in studying this example. The curve R* (t) vs

d*(t) is the lower envelope of all R vs d curves which in turn are all continuous,
u u

a convex downward, with continuous slope given by t : 0. It is then impossible to have

a discontinuity in slope in R*(t) vs d*(t) for some range t2 s t tt where tl < 0. We

may, however, have straight line segments in R*(t) vs d*(t) for any t s 0.

2.6 Summary

We have discussed the performance of block codes used in encoding the output of

a discrete, independent letter information source with a distortion measure. First, an

upper bound to average distortion was derived for block codes of finite length n in which

M code words were selected at random, each letter of each code word being selected

independently according to a probability distribution P (y). The asymptotic form of thisc

upper bound for n - 0 was studied in detail. For each different probability distribution

P (y), the asymptotic upper bound took the form of a continuous, convex curve R vs d
c u u

with continuous derivative. We found the strongest upper bound on average distortion



by finding the lower envelope of all R vs d curves, denoted R*(t) vs d*(t) and given
U U

parametrically as a function of t s 0.

R*(t) vs d*(t) was found to be a continuous, convex downward function with

R*(0) = 0 and

d*(0)= d max min P(x) d(xy),
Y X

which agrees entirely with Shannon's results( 15 ) . Also, R*(t) is given by an expression

which could be interpreted as the average mutual information of a test channel Q(ylx)

driven by the source P(x). d*(t) is given by the calculation of average distortion when

the source output is transmitted through the test channel Q(ylx). Our formulation of a

coding theorem had no channel in it, yet the results appear to involve a test channel

Q(ylx). We also found the slope of R*(t) vs d* (t) to be given simply by t - 0.

We mentioned that d*(t)- 0 for t - - 0o if and only if each source letter x had

some output letter y for which d(xy) = 0. The case of d*(t) not approaching zero is

analogous to the problem of the zero error capacity of a discrete channel and is taken

up in Chapter 5 of this thesis.

Next, a lower bound to average distortion for block codes of fixed composition

P (y) was derived. This bound involved an arbitrary positive function f(x), similar to
c

that used by Fano(4 ) in bounding the probability of error in discrete, memoryless

channels. The asymptotic form of the lower bound to average distortion for n - o

for block codes of a fixed composition P (y) was found and the bound took the form of ac

curve R vs d for each f(x) and P (y). We optimized the lower bound with respect to f(x)
L L C

and P (y),obtaining a lower bound on average distortion for any fixed composition code.p
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We obtained exactly the same parametric functions R*(t) and d*(t) over the same range

0 of t S 0 as we obtained in the upper bound. Optimizing first with respect to f(x) lead

to the interpretation of a test channel Q(xly) for any P (y). The test channel for thec

optimum composition P (y) was shown to be identical with the test channel Q(ylx) foundc

in the upper bound.

We were then able to show that the R*(t) vs d*(t) curve applied also as an

asymptotic lower bound on average distortion for any block code. This allowed us to

identify our parametric functions R*(t) and d*(t), t : 0, with Shannon's rate-distortion

function R(d). Our test channel Q(xly) ( or Q(ylx) ) may be identified with Shannon's

test channel in his definition of the R(d) function. However, we provide an explicit

solution for the transition probabilities of the test channel and, hence, also for R*(t)

vs d*(t) in the Eqs. 2.6, 2.7, 2.9, 2.18, and 2.19. (See Fig. 2.4.)

An example showed that we may have straight line segments in R*(t) vs d*(t)

but the only discontinuity in slope must occur on the R*(0) = 0 axis. Each straight line

segment of R*(t) vs d*(t) could be attributed to one more independent constraint in the

set of Eqs. 2. 18 than in the set of Eqs. 2. 19. We then have a non-unique solution to the

Eqs. 2. 19 for a certain value of t (the slope of R*(t) vs d*(t) ), which implies that we

have many compositions P (y), and hence many values of R*(t) and d*(t) for whichc

R*(t) vs d*(t) has the same slope.

The lower bound on average distortion for finite block length codes is a very

difficult problem which is treated separately in Chapter 3, A different fidelity criterion

from average distortion per letter is also treated in Chapter 5.

I



CHAPTER III

ASYMPTOTIC CONVERGENCE OF THE LOWER BOUND ON AVERAGE DISTORTION

3. 1 A Lower Bound to Average Distortion

Our treatment of the lower bound on average distortion for any block code resulted

in the limiting expressions as the block length n - ,o. Shannon ( 15) has shown that the

rate-distortion function R*(t) vs d*(t) is a firm lower bound on average distortion for

any block length. We have no stronger lower bound on average distortion for finite n,

and hence no estimate of the convergence of the lower bound to the limiting form as

n - o. This is a weaker result than that given in Theorem 2.1 for the upper bound on

average distortion. We will show the inherent difficulties in obtaining such strong

results in the lower bound case, and we will instead find asymptotic expansions for the

lower bound expressions showing the convergence with large n to the limiting form.

We will study the expressions in Theorem 2.4 (given again below) as functions

of n for constant Do and a given output sequence v with composition n (y).
o c

1 1
R = - iog M -- log P [Uo] (3. 1a)

L n L n r0

•oP(u) D(uyo )

D = Pu) uv(3. Ib)
L P [U ]ro

where

U = { u D(uv)- Do.



Since the above expression for D differs from the lower bound on d given in Theorem
L

2.5 only by the term EX P(x) log f(x), which is independent of n, it is sufficient to study

RL and DL for large n to find the rate of convergence of the bound on d to its limiting

form.

We are concerned with the random variable

n
nD(uv) = D() i=)

i=l

which, for a given v = (7i.) is a sum of n independent, but non-identical random
0

variables. Define the distribution function

n (x ) = P [nD(uv ) 5X ]n r o

so that Eq. 3. lb may be re -written

nDo

nDL nD

f 0dpn(X)

(3.2)

Consider a new random variable whose distribution function H (X) is defined byn

x

e tX
-00

S(X)n
etxI
etX

d4n(X')

, (t real), (3.3)

g(x")

so that

(3.4)etX dPn(X)dH (x) =
n oo .

f
-00

dtX dPn(X')

Define the moment generating function of n(x) as

--

in
I D



gn(t) = eni/ n(t) = etx'dpn(X' )-00

Since we are dealing with the sum of independent random variables we can write n(t) as

n (y)log etD (xy ) P(x) =
X

where P (y) = nc(y)
C n

The mean value of D(uv ) is
O

D = Y
m y

Y

P (Y)
X

P(x) D(xy) = 1' (0)n

By an argument analogous to that used to show y"(t) 2 0 in Chapter 2, we can show

nLIn' (t) is the variance of the distribution H (X), so p"(t) - 0 and .'n(t) is a monotonen

increasing function of t. Let us fix the value of t so that

D =p'(t) D D
on m

(3.8)

We can always find such a t - 0 for Do D because n' (t)
o m n is continuous and monotone

in t. Now let us re-write Eq. (3.2), using Eqs. 3.4, 3.5, and 3.8.

x e dJ 1(X)

e dtHn(X)

The distribution n(X) has mean value ni' (t) and variance nCI" (t).n n n
If we make the

substitution

x - n/' (t)z= n
np" n (t)n

Jn(t) = E

(3.5)

Pc (y) y(t)c y
(3. 6)

9

(3.7)

nD =

- 0f 
( t )

, t 0. (3.9)__ _

np.(t~) nph(t)



and write (z) for R (n (t) z + np' (t) ), we obtain a distribution U with meann n n n n
zero and variance one, suitable for application of ordinary central limit results. The

Eq. (3. 9) becomes

enp(t) - _ntIz'( + n'(t) ( " z+(t)) etz dVn(z)
nDL = n/e(t) - ntA'(t) 0 --tNnp"z(tY z d(z) (3.10)

ef e nZ
-00

We have dropped the n subscripts on p, p', p", remembering that these quantities have

an n-dependence because v must be selected for each n.
o

We could use the central limit theorem by Cramer ( 1) (page 77-78) to write

U (z) - 4(z) I < C P_3n log n (3.11)
nJA(t 3/2

) where n is the third absolute moment of Hn and C is an absolute constant. A substitu-

tion for d ~n(z) from Eq. 3. 11 would enable us to use integration by parts to obtain
n

bounds on the integrals in Eq. 3. 10. Shannon( 17) has derived upper and lower bounds on

the integral in the denomination of Eq. 3. 10 in exactly this manner. Although his bounds

were derived for identically distributed random variables', it is clear from Cramer's

work on asymptotic expansions of n (z) - Q4(z) ((1), Part II, Chapter VII ) that our case

of non-identically distributed random variables only introduces the n-dependence in p,

p', p", ... as we have defined it in Eq. 3.6.

Shannon's upper bound to the denominator of Eq. 3..10.is

np/(t) - ntp'(t)
Ie K(n)
jtf 2Trn/•"(t)



where K(n) is a function of t, p", p""', and powers of n. The limiting form of K(n)

satisfies

lim K(n) > 1.
n -- oo

The numerator integrals involving C p log n / r( p" (t) )3/2 can all be bounded
3nn n

uniformly in n so the factor 1/nff'will cause these terms to approach zero as n - o.

The numerator integrals involving 4(z) are lower bounded by the expression

ennp (t )  -  n t p' (t )  ,(t2t + t <10)

t I27 =nt"(t)' P ntt' nt

We can see that the limiting form of the bound on D is
L

D ^lim p'(t) - 2tp"(t)
L , o K(n)

whereas we know from Chapter 2 the correct limit is p'(t).

We conclude that a much stronger central limit theorem than Eq. 3. 11 is needed

to get the desired lower bound to D to converge to jA'(t) as n - ". The factor
L

enIA(t) - ntI'(t)

It! 427rn'p"(t)

is common to the tight bounds on the numerator and denominator of Eq. 3.2 and cancels.

Our bounds must therefore be asymptotically correct inthe terms of lower order in n

than the cancelling factor. In the next section, we will then study an asymptotic

expansion of D



3.2 Asymptotic Expansion of D
L.

In order to get an asymptotic expansion for nDL, we must have asymptotic expansions

for the integrals in Eq. 3. 10. Since n is the distribution function for a normalizedn

sum of independent random variables, we can expand it in an asymptotic series and

proceed to derive an asymptotic series for the integrals of Eq. 3. 10. Let us suppose

for the moment that we have the expansions

0

f e d (z)= 1-oO n •
d2+ _

(3.12)
0

J ze dV (z)
.00

c1= +

n

+ d3 +
n3&

c2+ c3
n 3/ n

where a = ItI 4nip"(t)'. We

in a straightforward manner.

=n-IW +

where

it I 42irnp~"

npl

ItW I 427rnp

can derive the expansion for the numerator of Eq. 3. 10

S +n+ +
tn- n

c1 C 2 d2n+ V + * d+ d rnn n

1 It ', C,

a1 = Itl 2•" dI , etc.

Sa3
n

Cl + + . .
n

(3. 13)

etc.

I

(d1 + d2 +
4-n



1 S d2(ai + '4T

d3 +
n

II we xp"anU Iu ill Ln~ t LnIPLUamt isetries
L

n D. n'I' e.,+ + -+ o(Z
L \ V kr-

we can find the coefficients e. in terms of the c. and d.
1 1 1

r ++ d 2  c+d3
~ N n n- n1

ew n e + el e 2 +
o 4n n

1
n

o njj)

nfl (ed31+ ed 9 + e
IsWn

Equating coefficients (2 )

4+ 2

+4W

eo0 3 + el 2 +

nd
n

e2d 1

o(n1) nD
n a

1+ o (n ) )n ' (3. 15)

of like powers of n in the expansions for IN and nD * ID gives

the result

cl
e = 1, e =0, e

o

Dt J (t) ( 1

v L U

C1
3

+o( n ))
n' I

In order to see the asymptotic approach of D to qp'(t) we
L

need only the coefficients C

and d1 of the asymptotic expansions for the integrals in Eq. 3. 10.

1f The notation o( ff ) is used for terms which, for arbitrary E > 0, can be made smaller

in magnitude than - for large enough n.n

S (3.14)

1
I

so that

(3.16)
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In Appendix B we derive the coefficients c1 and d 1 resulting in

1 1
" t'(t)- + o (n) (3.17)

niti n

whether the distance D(xy) is a lattice or non-lattice random variable. This result is

intuitively appealing since the limiting value of D is /'(t), as we know from Chapter 2,
L

and also the limiting value is approached from below. We may interpret Eq. 3.2 as

the calculation of the location of the centroid along the x--axis of the tail of the distri-

bution functionfpn out to n/A'(t). We know the centroid must be located at a point

Xo < rIA'(t).

We may also find an asymptotic expansion for RL from Eqs. 3. la and 3. 14.

log ( e-n[t'(t) - A(t)]
R ~ -log ( + o())-L n Itil 427rn/"(t) )n

tp'(t)-p(t)+ 1logNt+ -logK- -log 1+o(1)n n n n

~ tI'(t) - p(t) + 1 log 4-+ o( 1 log "n) (3.18)n n

(We have used log (1 - E) ~ - E for E-- 0.) The asymptotic expression for R is

1 1
approached from above and convergence is like I log 47 Convergence in D (like n)

n n

is seen to be faster than convergence in R
L

If we consider R* - d* to be the equivalent of the R* - d* curve for finite n, we
Ln Lfn L L

may interpret our asymptotic results graphically as the convergence of the R* - d*
Ln Ln

curve to the R* - d* curve as n - 0. Since R* - d* is a firm lower bound on averageL L L LI



distortion for any n, R* - d* must approach R* - d*from above. Figure 3. 1 is a
Ln Ln L L

sketch of the locus of points on R* - d* for fixed D as n increases. This locus of
Ln Ln o

points shows D converging more rapidly than R , thus insuring that R* - d* converges
L L Ln Ln

to R* - d*from above.
L L

I.k
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Figure 3. 1 -- Convergence of points on R* - d* to R* - d*.
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CHAPTER IV

BINARY SOURCE ENCODING

4. 1 Introduction

In order to use a block code to encode a source, the encoder must be capable of

storing M = enR code words of length n. To encode each source sequence of length n,

the encoder must also compute the distortion between the source sequence and each

code word of the block code. The general theory of the previous chapters indicates that

if we wish to achieve an average distortion close to the minimum attainable average

distortion for a particular code rate R, the code length, n, must be very large. In

implementing a block code, therefore, both the amount of storage space for the code and

the number of computations of distortion per source letter increase exponentially with n.

Our purpose in this chapter is to explore coding systems which give average distortion

approaching the ideal performance indicated by the rate-distortion function R*(t) - d*(t)

with much less equipment complexity than block codes require.

Following the approaches to the complexity problem which were taken in coding

for noisy channels, we attempt to build some algebraic structure into codes

to enable us to generate the code by using an algorithm with a reduced amount of stored

data. For instance, if we were dealing with a binary source, we should first study

binary linear or group codes in which the block code consists of all possible linearI



combinations (addition modulo 2) of nR generator or basis sequences. Group codes,

therefore, only require the storage of nR generator sequences of length n. The

algebraic structure of group codes also allows a simpler encoding procedure than the

comparison of a source sequence with every code word. (12) It would then be of great

interest to demonstrate that the ensemble of randomly chosen group codes gives as good

an upper bound to average distortion as the ensemble of random block codes.

We derived an upper bound to average distortion for an ensemble of random

block codes in Theorem 2. 1 by using a non-optimum encoding procedure which led to

the correct asymptotic bound on average distortion. In attempting to encode a source

sequence, the encoder searched the list of code words to find one which gave less than

a certain amount, say d , of distortion with the source sequence. If no code word in

the list satisfied the d threshold, we could bound the distortion by A = max d(xy). As
o XY

before, let us define P as the probability that the source chooses a word u and we choose
0

a code at random such that we find no code word v for which d(uv) 5 d . The upper
O

bound on average distortion over the ensemble of random codes can be written as

d:5d +A* P. (4.1)
O O

Suppose all source words are equiprobable, to simplify things for the present.

If we denote the code words of a randomly chosen code as v1 , v2 , ... , vM, then

P = Prob. (v1 N.A. and v2 N.A. and ... and VMN.A.) N.A. = not acceptable,

which may in turn be written as

Po = Prob. (v N.A.)M (4.2)

I
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for block codes in which each code word is chosen independently at random. However,

if we have some algebraic structure to the code we cannot write P in a factored form
0

as in Eq. 4.2. For instance, a group code is completely determined by nR generator

sequences. A random group code is then selected by choosing only the nR generator

sequences independently at random and so all M = enR code words are not independent.

In this case, as in any code with algebraic structure, we see that the probability P

involves an intersection of events with subtle dependencies between them. The algebraic

dependencies introduced between code words by a group structure are difficult to

characterize and so we cannot derive an upper bound on average distortion for the

ensemble of block codes with this relatively simple algebraic structure. In bounding

the probability of error in channels for an ensemble of randomly chosen group codes,

p an upper bound to the union of dependent events is needed. This is conveniently gotten

since the probability of a union of events, whether dependent or not, is always upper

bounded by the sum of the probabilities of the individual events. In the source encoding

problem, the treatment of an ensemble of random codes with algebraic structure

involves a fundamental difficulty, namely, the upper bound on an intersection of

dependent events. We have not been able to overcome this difficulty in a general way

in this research.

In view of the above discussion, we will consider the simplest of source encoding

problems to gain some insight into the methods of analyzing the performance of coding

systems as well as the complexity involved in their use. We therefore discuss in the

remainder of this chapter our results concerning the binary source with equiprobable

dN'0 dnrl hnrl dlig A i~t-r%-rtA^1M
ones an zeroes 

a 

e



d., = .
1J [1 0

The distortion between two binary sequences, according to this distortion measure, is

just the Hamming distance between the sequences.

Suppose we wish to encode this binary source with no more than r errors in a

sequence of length n. If we are given a particular source word of length n, the proba-

bility of choosing a code word of length n with independent, equiprobable binary digits
r

which gives r or fewer errors with the source word is just 2- n  ( n ) where ( )
i=O

is the binomial coefficient. Since all source words are equiprobable, we may write P
0

for a block code with M independently chosen code words as

P 1 - 2-n N ]M< 2-M 2-nr (4.3)
o r

where
r

N (n
r ii=_0

The upper bound on average distortion of Eq. 4. 1 becomes, in this case,

- r
d - + P . (4.4)n o

In this chapter only, we will use as the definition of the code rate, R = - log M, so
n 2

that M = 2nR . From Fano (4 ) (page 216) we get the bounds on (),
r

1 -nH(d)
12nd(1-d) n 2' r

e < (r) < , O<d= - < 1, (4.5)
1 27r nd(1-d) n

where

p H(d) = - d log 2 d - (1-d) log 2 (1-d).
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We may lower bound N by ( n ) and using the above lower bound on n) in Eq. 4. 3,r r

we may get as an upper bound on P
0

P <2K(n) 2n [R-1+ H(d)]

o

where 1
12 nd(1-d)

K(n) =
NJ 27r nd(1-d)"

r
If we choose r so that - = d remains fixed as we increase n, it is clear that we must

n

have R - 1+H(d) > 0 in order to have P tend to zero with increasing n. From Eq. 4.4
0

we see that if R > 1 - H(d), then as n-- m the upper bound on average distortion becomes

d <d.

Let us now apply our lower bound on average distortion of Chapter 2, to this

binary case. The symmetry of the binary source and distortion measure allow us to

disperse with the distance function D(uv) in our derivation of Chapter 2, and we may take

D(uvo) in Theorem 2.4 to be the distortion between u and v . From Theorem 2.4, if we
0 0

have a block code for which

1
M -5 1 - (4.6)

-n I n2 (i)
i=O

then
1 n

d- n i
d0r, O-r-5-n. (4.7)

( n

=--0 i

D fl
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* It should be clear that in the binary case these inequalities are true whether the block

code is a fixed composition code or not. Using Eq. 4.5 we may upper bound the sum

of binomial coefficients by

n (r + 1) 2 (nd + 1) (4.8)
( r) < = (4. 8)

i=o 27nd(1-d) 2Rnd(1-d)

We now write the constraint on M in Eq. 4. 6 more conservatively using the bound in

Eq. 4.8,

M :- 2n ( 1- H (d ) )  2x nd(l-d)
nd+ 1

and from this we see that as n- oo, we get the constraint on R = - log 2 M as

R - H(d) . (4. 9)

Directly from our development in Chapter 2, we know that the limit of the right hand

r
side of Eq. 4.7 as n -* O is d = -. We conclude that as n - o, any binary block code

n

for which R s 1 - H(d) gives an average distortion d 2 d. The rate-distortion function

of the binary symmetric source with Hamming distance as distortion measure is then

R(d) = 1 - H(d). (4. 10)

4.2 Binary Group Codes

We first treat the simplest binary block codes with structure, namely group

codes. (See Peterson's book (12 ) , Chapters 2 and 3). A group code is determined by

k generator sequences of length n, the code consisting of all 2k possible linear combinations

This is true because the functions Fi(z) in the proof of Theorem 2.4 are identical
for all output sequences.



(addition modulo 2) of the generators. Since M = 2k , the code rate is

1 k
R= - log M =-.

n 2 n

Suppose we number the k code generators as the first k code words. We may specify

any linear combination of the generators by a sequence of k binary digits. If the jth

digit is a one, the jth generator is added into the linear combination. Any code word

is then specified uniquely by a sequence of k binary digits.

The source encoder may operate exactly like any group code decoder used with

a binary symmetric channel. (12) Once a source sequence has been encoded into a code

word, k binary digits which specify the code word must be transmitted over a channel

to the information sink. At the output of the channel the decoder forms the mod 2

sum of the generator sequences specified by the k digits and presents the sink with a

code word approximating the actual source output.

We now give a theorem which shows that group codes can be constructed to give

performance close to the ideal rate-distortion performance.

Theorem 4. 1 There exist binary group codes with rate R l1-H(-)

that give average distortion d or less. * *

Proof We give a construction proof. Since we can consider the zero sequence

(denoted 0) as a linear combination of a set of code generators, O is a code word in

every group code. Choose v1, the first code generator, as any sequence with Hamming

distance from 0 greater than r. Then choose as the second generator, v2 , any sequence

with Hamming distance, from both 0 and v1 greater than r. Then the code word which

is the mod 2 sum of v1 and v2 (denoted v1 ev 2 ) has distance greater than r from 0 because



v2 was chosen so that v v2 has weight greater than r. (Computing the Hamming

distance between two sequences is the same as computing the weight of the mod 2

sum of the sequences.) We see that v1 $ v2 has distance greater than r from 0, v1,

and v2 .

We choose as v3 any sequence not within Hamming distance r of all sequences

already in the code (0, v1, v2 , v1 , v2 ). In other words, we have chosen v3 so that the

sequences v3  0 = v3 ' v3  ' v1 , v 3 $ v2 ' v3 + v2 $ v1 all have weight greater than r. This

implies that the group code with Vl, v2 , and v3 as generators has no code words within

distance r of each other.

We proceed to construct a group code in this manner until we add no more

generators, i.e., there are no more sequences greater than distance r from all code

words. This implies that we guarantee the number of errors (the distortion) in

encoding any source word to be r or less. Since no two code words are within distance

r
r of each other, the sets of sequences within distance - of each code word are disjoint

sets. Therefore, in order to reach the point where we can add no more generators
r/2

to the code, we need no more than 2n/Z ( i) code words or more conservatively
i=0

2k (n) r 2n

Taking log 2 of this equation we get

k1 n
- +1- log 1.n n 2 r

If d = - is held constant as n increases, we get as n- 00n

) d -5 d and R - 1-H(-)2 Q. E. D.



This bound and the R(d) function of Eq. 4. 2 are plotted in Figure 4.1. We see

that our construction bound is quite weak for average distortion near 0. 5. Suppose

we have two block codes with rates R1 and R2 and giving average distortion dl and d2,

respectively. These may be plotted in the R-d plane as two points (R1 , d l ) and

(R2 ,d2 ). If the code lengths are n1 and n2, we can construct a block code of length
nRI +n2R2n1 + n2 by alternating the use of the two codes. The rate for the new code is

nldl+nd2 1+ 2
and the average distortion is . We may then plot this code in the R-d plane.n,+n2
We can easily see that mixing two block codes in any proportion gives codes with points

on the straight line connecting (R1, d1) and (R2 , d2). We can therefore tighten our

construction bound by a code mixing argument which enables us to draw a tangent to the

construction bound passing through the point (0, 0. 5). This is also shown in Figure 4. 1.

We now demonstrate the existence of group codes which satisfy the same upper

bound to average distortion as the ensemble of random block codes (Eqs. 4.3 and 4.4),

implying that there exist group codes giving performance as near the ideal rate -distortion

performance as we wish. First we present a useful lemma.

Lemma Let v and s denote points in an n dimensional binary space

(binary n-tuples), and denote the operation of addition of n-tuples mod 2

by ý . Suppose we have a set So of no points so and a set S1 of n, points

s 1. For any particular point vo we define the set S (vo)

{v Iv=v s for some s ES }. Then there exists a point v such that
O O O O O

the union of S(vo) and S1 includes at least no + n1 - n n1 2-n points.

p
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Figure 4. 1 The rate-distortion function for the binary symmetric source with Hamming
distance as the distortion measure, and a construction bound on average
distortion for binary group codes.

R = 1 - H (d), Construction bound
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Proof Consider the set of points v s for a particular sES and all 2

possible choices of v . It is clear that v e s takes on each of the 2n points in the

space once and only once as v takes on all 2n values. Therefore v q s coincides with
o o o

a particular sl E S1 once and only once for the 2n choices of vo. We then conclude that

each point in S(vo) corresponding to a particular so E So coincides only once with each

s1 E S1 for all possible choices of vo. For the 2n different sets S(vo) there are then a

total of non 1 coincidences of points of S(v o) and S1 and, hence, the average number of
-n

coincidences per choice of v is n n, 2 .
0 o

If S(vo) and S1 are disjoint, then S(vo)U) S1 contains no + nlpoints. If for a

particular v we have I points of S(v o) and S1. coinciding, then S(vo) U S1 contains
-n

no + n1 - I points. Since the average intersection of S(vo ) and S1 is no n 2-n for the

set of all possible choices of v , there exists a particular v which gives an intersectiono o
at least as small as the average. We conclude then, that there exists a particular v

0

such that S(vo ) , S1 contains at least no + 1 - n n1 2- n points.
Q. E. D.

We are now in a position to prove the following theorem on group codes.

Theorem 4. 2 For any r, 0 5 r - n, there exists a binary group code

k
of length n with rate - and with average distortion satisfyingn

r k

d r + [ 2-n (4. 11)n
n i]

i=O
00

Proof The proof is by induction. Consider sequences of length n as points in

S an n-dimensional binary space. Define the set S as the set of all points with weight r



r
or less. There are then (i ) points in S . For any particular point v' we define

i=o0
the set

S(v') ={ v v = v' s for some scS } .
0

It is clear that if we interpret v' as a code word, every point in S(v') can be encoded as

v' with r or fewer errors.

The point 0 is in every group code. For the code consisting only of 0 we have
r

No ) points that can be encoded with r or fewer errors. The probability of the
i=0

source producing a point which cannot be encoded with r or fewer errors with this code

is

Q 2 =  -N 1N- (4.12)
2 2n

* and so an upper bound to average distortion is

-r
do - + Qo (4. 13)

Now suppose we have a group code with j generators v.*i = ... , j, (v =0).

We then have 2i code points and the probability of the source producing a point which

cannot be encoded with r or fewer errors is

=1- (4.14)
2j

where N. is the number of points in S. = U S(v.), the v. are the code points. We can
J J i=1 1 1

write an upper bound on average distortion for this code as

d. - +Q..j n

Suppose we wish to add another generator v** to the code. We actually double

the number of code points because v** ~v., i = 1, ... , 2 are all new code words. The



set defined by i= S(v** 4 v.) is topologically the same as S. , i. e. they have the same
d=n b 1 J

number of points N., and if v** = 0, the sets are identical. We have 2n possible choices
j

for v** and by the previous Lemma there is a choice for v** such that the number of

points N. in
3+1

j+ 1
S.+ = S(vi), (v. include now the new code points due to v**),
j+1 i= 1 1 1

is guaranteed to satisfy

N 2N. - N2 2 " . (4.15)
j+1 j j

We may then write Q + ' the probability of the source producing a point which cannot

be encoded with r or fewer errors with the new code of j+1 generators,

+1 1-= 1-2 - + I -- 2
Sn 2n 2 n n2n

=Q2J
where we have used Eqs. 4. 14 and 4. 15.

Since we have defined in Eq. 4. 12

S1- (n) 2 -n

i=0

and now the recursion relation + 1 = Q, our inductive proof is complete and we may

write Qk for a group code with k generators as

r k
-n Z n 2

Qk = [ 1-2n ( i)] ,
i=0

where Qk is the probability that the source produces a point which cannot be encoded

with r or fewer errors.



Notice that we have demonstrated the existence of at least one group code with

k
rate - with average distortion satisfying

n
r k

d-k - + [1-2• (n)]
i=O

which is identical with Eqs. 4.3 and 4.4 with M = 2k . We have shown the existence of

group codes which satisfy the same upper bound on average distortion as the ensemble

of random block codes. Q.E.D.

Although Theorem 4. 2 is much stronger than Theorem 4. 1, the latter presents

a construction method which may actually be used on a digital computer to obtain a group

code, while Theorem 4.2 would be more difficult to implement in this way.

The algebraic structure of group codes allows a simple encoding procedure.

p Suppose we have a group code of length n with k generators and we wish to encode a

source word u. We would first compute the syndrome or parity check pattern corre-

sponding to u, look up the coset leader s(a binary sequence of length n) corresponding

to the computed syndrome, and then form v = u + s. The algebraic structure is such

that v is a code word and the distortion produced in encoding u as v is given by the

weight of s. The details of such a procedure have been described many times (3 ) ,(4),(12),(18)

and we will not discuss this system any further here. We wish only to point out that the

number of possible syndromes is 2n - k and so the required storage space for such a

system grows exponentially with n.

Every code word of a group code may be expressed as a linear combination of

the k generators of the code. Suppose we consider the list of k generators of a code to

form a k x n binary matrix with the generator sequences as rows. We may assume



S that no generators are zero and we can then put this generator matrix in a standard

form by diagonalizing the first k columns. The group code is then actually determined

by only (n-k) - k binary digits in the remaining n-k columns of the generator matrix.

We wish now to describe a simple scheme to search for an acceptable linear combination

of these diagonalized generators to encode a source word. Given a source word u of

length n, we form the code word vo which agrees exactly in its first k digits with u.

This is easily done by considering the first k digits of u to specify a linear combination

of the k diagonalized generators. A one in the jth position of u indicates that the jth

generator is added into the linear combination to form vo. Now the sequence u vo has

zeroes in its first k places and all errors between u and vo occur in the last n-k places.

We now try to improve the number of errors between u and vo by comparing the weights

of the sequences u vo and u vo 0 v 1, where v 1 is the first code generator. If the

weight of u s vo S v 1 is less than the weight of u + vo, we define the sequence S1 vo v 1,

and otherwise we define S 1 = vo . Next we compare the weights of the sequences u e S1

and u e S1 I v 2 . If the weight of u + S1  v2 is less than the weight of u s S1, we define

S2 = S 1 $ v 2 , and otherwise we define S2 = S . We thus proceed to test all generators in

this manner. In general, having tested j generators, we have a linear combination of v
o

and the first j generators, S.j, and we compare the weights of the sequences u eS. s v.

and u s S.. We then define S. = S. a v. if u s S. + v. has smaller weight than3 3+1 3 3+1 3 j+1

u e S., and otherwise S. = S.. After testing all k generators of the code we have the
J +1 3

linear combination of generators Sk which we then use as the code word to encode u.

If we consider the encoder to make n-k computations in testing one generator

sequence (one for each of the last n-k digits)I the ene.ndc r then dnoes nnlv k(n-k) = n2R(1 -RI
-- 5 L./ .-- i 4 V2ULJ L A-



computations to find Sk and a code word for the source sequence. This scheme uses a

simple rule to construct a linear combination of generators. Since we can always encode

u as v , we are sure of having a code word with distortion no more than n-k with u.
o

We then try to improve things by testing each generator to see if together with the

tentative code word it will give another code word with even less distortion with u. In

adding a generator to Sj, one error is introduced in the first k places, but more than

one error in the last n-k places may be removed. We add the new generator to S. only

if it improves the distortion. This is similar to the threshold decoding scheme for

channels presented by J. L. Massey and the step-by-step channel decoding scheme

discussed by Peterson( 12 )

It is clear that our source encoding scheme is not the optimum one since all

2k possible linear combinations of generators are not tested, but this is exactly what

we are trying to avoid. If only the order of the generators is changed before

diagonalization, the results in general would be different. In fact, having computed

Sk' we could s.art the whole process of testing generators over again using u 6 Sk

instead of u * vo and the result, in general, would not be Sk again.

In view of the greatly reduced computation for long block codes, let us study in

more detail the scheme of testing each generator once to compute Sk . We write the

probability distribution for the weight of a binary sequence of length n-k chosen at random

with equiprobable zeroes and ones as

-n-k n-k
Po(w)= 2-n + k ( ) , w = 0, 1, ... , n-k.

0 w

The probability distribution for the weight of the sequence u . vo is given by Po(w). If

I the last n-k digits of v 1 are chosen at random with independent and equiprobable letters,



the weight of the last n-k digits of u 0 v 0 v 1, given u s v, also has the probability

distribution po(w).

Suppose we choose a group code at random by choosing the last n-k digits of all

k diagonalized generators equiprobably and independently at random. Suppose also

that for a particular u selected at random by the source, we have constructed v and
o

have formed S. by testing the first j generators. Assume that we know completely

P.(c,w), the probability that there are c ones in the first k places of S. and w ones in
J J

the last n-k places. The c ones in the first k places would be due to c generators already

added into S.. Then since the last n-k digits of vj+ 1 are chosen at random, and the

jth column has never been changed befcre by any of the first j generators, we may

write for Pj (c,w)
j+1

SP.l(cw) = Prob. [S has c ones in the first k digits and w ones in the last

n-k digits and v j+ 1 has w-1 ones or more in the last n-k places.]
j+1

+ Prob [S. has c-i ones in the first k digits and w + 2 ones or more in

the last n-k digits and v +1 has w ones in the last n-k digits)
- j+1

n-k n-k
= P. (w, c) p(i) + Po() P.(i,c-1). (4.16)

i=w-- 1 i=w+2

The first term of P j+(c,w) corresponds to the event that the randomly selected vjj+v+1

does not improve the distortion between the tentative code word at step j and the source

word. The distortion at this step is c + w and even if vj+ 1 resulted in w-1 ones in the

last n-k digits of Sj+1, the change in the (j+l)th digit results in w-1 + c + 1 = w + c errors

again. The second term of Pj+(c, w) corresponds to the event that vj+ 1 does improvep ~j+l j+



the distortion between the tentative code word and the source word. Since each

generator is selected independently, we can write the joint probabilities of Pj+l(w,c)

as factors in Eq. 4. 16. But if we were to start testing generators again from the top

of the list with Sk, the tests would not be independent any longer and we could not write

Eq. 4. 16 so simply. This is the reason for treating only this scheme which tests each

randomly selected generator once and only once.

The average distortion in encoding u with a randomly selected group code and

the above step-by-step encoding procedure is given by

k n-k
d = c Z (c+w) Pk(c,w) (4.17)

c=O w=O

and so this is the average distortion over the ensemble of randomly selected group

codes together with the step-by-step encoding procedure. The recursion relation of

Eq. 4. 16 has not been solved explicitly for Pk(c,w), but it is easily programmed on a

digital computer. A computer program was written for the IBM 7090 digital computer

to calculate Pk(c,w) and d for code lengths up to 100 and many rates between zero and

one. The results are reasonably good in that this encoding method gives rate -distortion

performance comparable to but not as good as the rate-distortion function R(d) =l-H(d).

For a code length of 20, we have plotted code rate vs average distortion for step-by-

step encoding in Fig. 4.2. Longer code lengths up to about 60 gave essentially this

1
same curve and even longer codes gave poorer performance. At rate R = -, for2'

example, we see the lowest possible average distortion is about 0. 11 and step-by-step

encoding gives an average distortion of 0. 185. The straight line in Figure 4.2 represents

the performance we could expect if we encoded u as the vo calculated from u, since0
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there could only be errors in the last n-k digits of u e v and each of these n-k digits
0

1 - 1 n-k
has probability - of being in error. Hence, encoding u as v results in d =

2 o n 2
1 1

(1-R). For rate R = - and n = 20, we also see that we do only n2R(1-R) = 100
2 2

computations to encode u or only 5 computations per encoded digit.

In the following section we adopt another viewpoint that has been applied success-

fully to channel decoding with limited equipment complexity.

4.3 Sequential Encoding with Random Tree Codes

We now discuss a sequential encoding system for the binary symmetric source

and a Hamming distance distortion measure using randomly chosen tree codes. Consider

an infinite length binary tree code with two binary digits per brapch and two branches

emerging from each node (See Figure 4. 3a). We wish to represent the source output

by the path in the tree code which gives the least distortion with the source output. The

distortion between a source sequence of length n and a path of length n in a tree code

is just the Hamming distance between the source sequence and the path considered as a

sequence of length n.

It takes half the number of binary digits in a source sequence to specify a path

in the tree code of the same length as the source sequence since only the binary choice

of branches at each node must be specified. Therefore, for every two source letters,

the encoder will only put out one binary digit. In a tree of length n there are only M=2nA

1 n/z _ 1paths and the rate of the tree code is then - log 2 2. The binary digits which

specify a path in the tree code can be transmitted through a channel and a decoder then

produces for the information sink the corresponding path as an approximation to the

actual source output.
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We wish to have the encoder find a path in the tree code which has no more than

a certain amount, say d*, average distortion per letter with the source sequence. Finding

a path in the tree code which gives d* or less average distortion per letter is somewhat

analogous to finding the most likely transmitted path of a binary tree code at the output

(18)of a binary symmetric channel ( . The source encoder begins by calculating the

distortion between the first two digits of the source sequence and the two branches

emerging from the first node of the tree code. If neither of these branches gives

distortion 2d* or less (average distortion per letter d* or less ), the encoder extends

its computation of distortion to all paths of length four emerging from the first node of

the tree code, and checks to see if any of these paths gives distortion 4d* or less with

the first four digits of the source sequence. The encoder proceeds in this manner

p until it finds some path with I links (path of length £) which gives 2£d* or less distortion

with the first 21 digits of the source sequence. The encoder then accepts this path and

specifies this path by putting out I binary digits. It then attempts to encode the source

sequence, beginning at the (2. + 1)th binary digit by using the tree emerging from the

node at the end of the accepted path. Once a path of some length is accepted, the encoder

is faced with an entirely new encoding problem and begins its searching anew.

The encoding system also uses a set of reject thresholds.B2 , = 1, 2, etc.

Whenever any path of length I gives a distortion of Bi or more the encoder no longer

considers that path as a possible representative for the source sequence, and no further

distortion calculations are done on the paths emerging from the last node of a rejected

path. The encoder also gives up its search for an acceptable path when it has progressed

p down the tree code far enough to check paths of length £t and if no acceptable path is



found at this length, a standard path of length Jt is chosen to represent the source

sequence. (For instance, the standard path may be the path corresponding to the choice

of the upper branch at each node of the tree.) The encoder begins searching again in

the tree emerging from the last node of the standard path. It may happen that the

encoder rejects all paths at some length 2 < t, whereupon the portion of the standard

path of length a is used as a representation of the source output and the encoding

operation begins again at the node at the end of the accepted part of the standard path.

If no path of length I is accepted, the encoder extends the distortion calculation

of all paths not rejected to paths of length £ + 1, and again checks the accept threshold

2(1 + 1)d* and reject threshold B,+1". We will define a single computation of the encoder

as the calculation of the distortion between one of the braches of the code emerging

p from a certain path of length I and the corresponding two digits of the source sequence,

and the addition of this distortion to the distortion of the path from which the branch

emerges.

We will now consider this encoding system operation with the ensemble of random

tree codes in which all digits in a tree are chosen independently with zeroes and ones

equiprobable. We will upper bound N, the average number of computations to find an

acceptable path and also upper bound PF, the probability of failing to find an acceptable

path.

Failure occurs in two ways; all paths in the tree may be rejected at some length

a < It, and an acceptable path may not be found at any length 1£ 1t. Let C denote the

event of all paths being rejected at length 2, and E1 the event of no acceptable path at

length 2. For the ensemble of random tree codes we have



PF = Prob [C1 or C2 or C3 or ... or C 2t - 1 or no acceptable paths at any length

£I ]t

P [C] + P[C] + ... + P[C ] + P [E 1 and E2 and... and E2
t t

cP[C] +P[C 2] +... +P[C ] +P [E ]. (4.18)
t t

The average number of computations at length £ is upper bounded by two times the

average number of paths not rejected at length L - 1, which in turn is upper bounded by

2 2 - 1 (1-Pr1[C 1 ])

which assumes no rejection prior to length I-1. We have

I
t

N-52+2 22• (1-P[CP _])
2= r

where the first two computations at the start of the encoding process are expressed

separately and not included in the summation on , .

We now note from symmetry that the probability of finding a path in a randomly

chosen tree code "close" (in the distortion sense) to the zero sequence is the same as

the probability of finding a path close to any particular sequence. Since all source

sequences are equiprobable we have

Pr[ Bt] = probability that the minimum weight path in the tree has weight > 2t d*.
t t

Notice also that P[ C ] is upper bounded by the probability that all paths at length I are

rejected assuming no previous rejection. This is the same as the probability that the

minimum weight path of length I of a randomly chosen tree code has we

ight B or greater.
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Our analysis of this source encoding system depends now only on the distribution

function which we shall call P (w), which is the probability that the minimum weight

path of a randomly chosen tree code of length £ has weight w or greater.

If we picked 2 binary sequences of independent random digits, each of length

2 1, we could write the probability P (w) that the minimum weight sequence has weight

w or greater as

2
P (w) [1-P (w)]

where P (w) is the probability of choosing a single sequence of length 21 which has01
weight less than w. P (w) is a multinomial distribution function. (w) is the distribu-

tion function for the minimum weight code word of a randomly chosen block code of

length 21 and 2 code words.

This approach cannot be used for P (w) because the paths of a tree are not all

independent of one another. An alternate approach suggested by C. E. Shannon is to

develop a set of recursion relations for P (w). Suppose we know P (w) completely.

Let us form an augmented tree of length £ by adding a randomly chosen branch to the

beginning or first node of the tree of length £-1. (See Figure 4.3b) We can derive from

P- 1(w) the distribution function Q (w), the probability that the minimum weight path in

the augmented tree of length I has weight w or more. In fact,

Q (w) = p P -1(w) + P- 1 (w-1) + p2 P2--I(w-2)

where p is the probability of the extra branch having weight i. In our case of equiprobable

binary digits, po = 1/4, pl = 1/2, p2 = 1/4. Theterm po P -1 (w) is the probability of a

tree of length £-1 having its minimum weight path with weight w or more, and adding an
%- .; 4 7- - - - -- -



augmenting branch of weight zero. The explanation of the other terms follows

similarly. Knowing QI(w), we choose independently at random another augmented

tree of length i, and join the ends of the augmenting branches to form a standard tree

of length 2. (See Figure 4.3c) The probability that the new tree thus formed has its

minimum weight path of weight w or more is simply

P (w) = [Q (w)] 2

because of the independence of the augmented trees.

These recursion relations have not been solved explicitly for P (w), but it is

reasonable to expect that there is some limiting form for P (w) as £-" o. Since these

recursion relations are easily programmed on a digital computer, the actual distributions

P (w), s 200, were thus calculated and studied. It turns out that the limiting form

for P2 (w), which emerges distinctly at about £ =25, is such that the distribution function

does not change shape with increasing I but merely changes its position along the w-axis.

1
The position of the P (w) = point is located approximately at . 11 x 22. This is in

contrast to the multinomial distribution function P (w) in which the position of the

1
P (w) = point is proportional to I but the shape of the distribution spreads out aso1 2

1/2

The distribution function P(w) of the minimum weight binary sequence of a

length 22 block code behaves very much like P (w) with respect to its limiting behavior

0--b. The limiting form of P'(w) also appeared to keep its shape constant and change

its position in proportion to . The limiting form of P (w) was slightly less spread
i

than the limiting form of P,(w). An upper bound on P,(w) shows the P,(w) = points

approximately take on the posit f

I..Z' Z

n n-3 -3 1 -3 - C.! -3 1-r
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SR(d) = (4.19)

and R(d) is defined in Eq. 4. 10. The approximate valueof d is 0. 11. In Figure 4.4 we

plot the envelope of the probability distributions pY(w) and P,(w) which correspond to the

distribution functions P (w) and P• (w) respectively.

A computer program for the IBM 7090 was written to compute P (w) and also to

compute the bounds on P and N for 1t - 100 for the sequential source encoding system

described here. A single number, d*, specifies completely the set of accept thresholds.

The set of reject thresholds B were programmed to take the form of a linear function

of I with one break point. (See Figure 4. 5.)

After some experimenting, a good reject threshold could be found which could be

set high enough to give a low probability of failure due to rejection of all paths at some

p length (dependent upon Pr [ C] ), while still keeping the average computation down

(dependent upon 1 - P [C ] ). Some performance figures for the encoding system are

given in Table 4. 1 for It = 100. In this table, N* is the average number of computations

to find an acceptable path when no reject threshold is employed by the encoder.

TABLE 4. 1 (2t = 100)

d* PF N N*

0.14 0.359 1. 07 x 105  4 x 10 2 8

0. 15 0. 28 x 10-2  1.44 x 105  2 x 102 5

0. 16 0. 52 x 10 -4  1.37 x 105  2 x 1019

0.17 0. 61 x 10- 6 1.05 x 105 3 x 1014
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The bounds on both N and N* actually converge to a constant number independent

of it for large enough It, which indicates that there is a fixed amount of work on the

average to find an acceptable path with either scheme. Table 1 indicates that for

d* = 0. 14, t = 100 is not long enough to bring down the probability of failure PF. The

reject thresholds were chosen so that almost all of the contribution to PF in Eq. 4. 16

came from P[E ].r I
According to the rate-distortion function, the best possible encoding scheme

1
with rate R = 2 could not give average distortion per letter less than 0. 11, as we saw

from Eq. 4. 19. While PF and N converged well for d* = 0. 15 and t = 100, the probability

of failure converges much more slowly for d* = 0. 14, which is significantly closer to

the absolute limit for average distortion of 0. 11.

It is interesting to note that since P (w) only moves along the w-axis with increasing

n without changing shape, we can extrapolate safely the dashed line of Fig. 4. 5 to obtain

-4 1
the locus of the 10 points of P (w) for large 2. Since we know the locus of the P (w) =

points as approximately 0. 11 x 21 , we can also write the locus of the P (w) -- 104 points

as K + 0. 11 x 2£, where K is some fixed constant. We can then estimate the code
o O

length It at which PF converges for any accept threshold 22d* by noting the value of 2t

where 2£ d* = K + 0. 11 x 21 . As long as we choose the reject thresholds so that P
t o t F

given in Eq. 4. 18 is due mostly to Pr[ E , the suggested extrapolation of the P (w) = 10 4

line gives a fair estimate of the code length required to have PF converge to an acceptable

level. Based on such an extrapolation of Figure 4. 5, for d* = 0. 14 we find that P
F

converges to a satisfactory level for t 180.

I



In this connection we also notice that for any E > 0 we can always find an it

large enough so that PF will converge to a low value for an accept threshold 2 (0. 11 + E).

It would be of great interest then to actually calculate the exact rate at which the

limiting form of P (w) moves along the w-axis with increasing 2. Knowing the exact

rate of propagation of PZ (w) with 1, we could determine the limiting distortion d* for

which accept the threshold 21d* would allow P to converge to zero. From the
F

experimental work done on the digital computer, it seems that PF could be made to

converge for large enough It for any d* = d + E, where d satisfies Eq. 4. 19. This

carries the implication that random tree codes may give the ideal rate-distortion

performance with a complexity which is strictly bounded independently of it. This,

however, remains to be strictly proved, although this special case provides a

reasonable basis for speculation.

The techniques used in the above analysis could obviously be applied in the

analysis of non-binary systems, more general randomly chosen tree codes, and

different code rates. The sequential encoding procedure could also be modified to use

a set of rejection thresholds Bl , B1Z etc. such as J. M. Wozencraft and B. Reiffen

describe in channel decoding ( 18) . The source encoder would first attempt to encode

using the reject thresholds Bl2 , and if it failed to find an acceptable path it would then

go through the whole procedure again using the set B2 £ , etc. This system gives a

slight reduction in the bound on N.

It is obvious that it is as difficult to instrument a random tree code as it is a

block code, and in the final results the average number of computations is very high

even with this elaborate sequential scheme. Our purpose in this chapter was not to



produce an immediately workable scheme, but to explore the possible methods of

analyzing schemes to evaluate both average distortion and average number of computations

per encoded letter. We have presented several useful viewpoints in approaching such

problems and we also have produced some interesting results.

(3)As P. Elias comments (page 40) with regard to channel codes, it would be

completely consistent with the results of Chapter 2 if no code with any simplicity or

algebraic symmetry properties were a good source code. This first investigation shows

that this is fortunately not the case. We may speculate a bit more by adding that

perhaps the basic difficulties pointed out in this chapter are entirely mathematical

difficulties and we may find in future work that there are quite economical schemes

which perform as well as the optimum code.



CHAPTER V

MISCELLANY

5. 1 Maximum Allowable Letter Distortion as a Fidelity Criterion

The essence of the source encoding problem as we have discussed it in the pre-

vious chapters has been the coding of the source output to minimize the information

capacity required to transmit a facsimile of the source output to the information user

or sink. We were given a distortion measure with which to evaluate the facsimile of

the source output that is presented to the sink and we arbitrarily stated our fidelity

S criterion, or the tolerable performance level, in terms of average distortion per letter.

We then found the rate-distortion function as the fundamental restriction on code rates

under the constraint of the fidelity criterion, namely, that the average distortion per

letter must be kept at or below some specified level. Another type of fidelity criterion

or constraint on tolerable distortion would naturally lead to a completely different rate-

distortion function.

In this section we will study a fidelity criterion other than average distortion per

letter. We will require that each individual source letter be transmitted to the sink

with not more than a certain amount of distortion, say D. This is a fidelity criterion

encountered quite commonly in practice. For instance, the specifications on an analog-

to-digital converter (a quantizer) for an analog signal source often state that the quanti-

zation error should not exceed a certain amount sa

y 0. 
1 volts.-- ------------ -- ---- --- J ....



All the information essential to the coding problem for the letter distortion as

fidelity criterion is contained in a line diagram such as Figure 5. 1, in which a source

letter and an output letter are connected by a line if the distortion between these letters

is D or less. Letters connected by such lines will be called equivalent , and if two or

more source letters are equivalent to a single output letter, we refer to these source

letters as being adjacent. In the ex:ample of Figure 5. 1, we see that letters a and B are

equivalent and a, b, and c are adjacent since they are all equivalent to letter B. A

source word is equivalent to an output word only if each concurrent letter pair of the

words is equivalent.

A block code will not be acceptable according to the maximum letter distortion

criterion unless the probability that any letter is transmitted to the sink with more than

p D distortion is precisely zero. The line diagram of the mapping which describes an

encoder must be such that it can be superimposed upon the line diagram of equivalent

source and output words without adding any new lines to the latter diagram. We again

define the rate of a block code as R = 1 log M, but it is interesting to note that thisn

quantity does not now have the significance of the usual measure of information rate.

If we suppose that the source produces one letter per second, the rate of the block code

is R units per second. We cannot now use any transmission channel with ordinary

information capacity C nats per second, where C > R, because such a channel is only

guaranteed to transmit any one of M integers to the decoder with probability of error

approaching zero, in general. The fidelity criterion demands that each of the integers

representing a code word must be transmitted with probability of error precisely zero.

p From this, we conclude that we must have a transmission channel with zero error
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capacity Co units per second ( 13 ) , where C > R, in order to satisfy the fidelity criterion.

In Figure 5. 1 we see that an acceptable block code of length I must consist of at least

three output letters, such as B, D, and F, and the rate of this code is log3.

From the example of Figure 5. 1 we see that the source probabilities do not enter

into the coding problem for this fidelity criterion on letter distortion. In fact, all

sources with distortion measures which lead to the same line diagram can be encoded

in exactly the same way. We define D . as the smallest value of D for which eachmin
source letter has at least one equivalent output letter. For D < D we cannot satisfy

the fidelity criterion with any code because there exists at least one source letter which

is encoded with more than D distortion. The probability, PF, of the occurrence of at

least one such letter in a sequence of length n which cannot be encoded properly by any

S block code of length n, for D < Dmin, is then bounded away from zero by PF - 1-(1Pmn)n

where Pmin > 0 is the minimum source probability.

For D D. , it is possible to encode the source output with letter distortion Dmin
or less using codes with bounded rate. In view of the interpretation of the code rate, we

define the greatestlower bound of all rates that can be achieved with letter distortion D

or less to be the zero error rate of the source and will be denoted by R(D). If we let

MD(n) be the smallest number of code words in a code of length n giving letter distortion

D or less, then

R(D) = g. 1. b. - log MD(n) (5. 1)

when n varies over all positive integers.

A simple example shows that, in general, we do not have R(D) = log MD(1), where

MD(1) is the number of output letters in the smallest set of output letters for which each
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source letter has an equivalent letter. In Figure 5. 2a we have a 3-letter source and a

line diagram for a certain D. M(1l) = 2 and so log MD(1) = log 2. We show in

Figure 5. 2b that three output letter pairs form an acceptable code, so 1M(2) = 3 and

1
the rate of this code is 1 log 3 = log N73 < log 2. Therefore R(D) for this line diagram

is at most log .T

If we have a line diagram for a particular value of D for a certain distortion

measure, we may be able to increase D to D+E, E > 0 and not change the line diagram,

implying R(D) = Ar(D+E) in this case. We may raise D to some value D1 when the line diagram

suddenly changes, i.e. new lines appear with the original line diagram, implying a

relaxation of coding requirements and so R(D) > R(D 1). From this we can see that

R(D) for D - D is a positive, decreasing staircase function of D. If we define D
min max

S as the smallest value of D for which a single output letter is equivalent to the entire

source alphabet, we see that R(D) = 0 for D- D
max

Since the important information in encoding for a fixed letter distortion is

contained in a line diagram, let us put this information in the form of an "equivalence"

matrix where

S1, if source letter i is "equivalent" to output letter j
(D)= 0, otherwise

when the tolerable letter distortion is D. Every line of a line diagram will have a

corresponding 1 in the equivalence matrix.

Theorem 5. 1 R(D) for a discrete source with a distortion measure is

bounded from below by

R(D)-> max R(O), P .- 0, Pi = 1,
P. 1I
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where R(d) is the rate-distortion function of the discrete source with letter probabilities

P. and distortion measure d.. in which
1 ij

1, if Ej.(D) = 0

140j o, if E. (D) = 1

1
Proof From Chapter 2 we know that there exist no block codes with - log M

n

less than R(0) for which the probability of non-zero distortion is zero. The probability

of non-zero distortion with the source P. and distortion measure d.. can be interpreted

as the probability of a source letter being encoded as a non-equivalent output letter, in

the terminology of the letter distortion criterion.
Q. E. D.

We have shown the existence of block codes for which the probability PF of encoding a

source letter with more than D distortion is approaching zero, a relaxation of our

requirement that PF be precisely zero. Therefore we require block codes with rate at

least as great as R(0) in order to guarantee PF precisely zero.

Theorem 5.2 R(D) for a discrete source is bounded from above by

R(D)-5 -log max P.IE.j (D) Qj
P.1 j i,j

11iwhere P. 0, P. = 1,2Q 02 , Q =*

Proof A random coding argument will be used in this proof. Consider the

ensemble of block codes with M code words of length n, each letter of each code word

chosen independently with letter probabilities Qj. If source words are now chosen atchosen
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random by selecting letters of each word independently according to the probabilities

P., we can find the probability over the ensemble of codes of finding a source word which
1

cannot be encoded with all letter distortions D or less.

Suppose we pick a source word and a block code at random. The probability

that the first letter of the first code word is equivalent to the first letter of the source

word is

S P E .. (D) Qj
i,j

since this sum includes probabilities of pairs of letters for which E.. (D) = 1, i.e.

letters which are equivalent. The probability that the first code word is equivalent to

the source word is

P 1 Ei j(D)Qj) n
I,1

and the probability that the first code word is not equivalent to the source word is

therefore

1- Pi Eij (D)Qj)n
1,j

Since code words are selected independently, we may write the probability PF that no

code word is equivalent to the source word as

1, JF [iP Pi E i (D) Q)] (5.2)

Denote by A the quantity P. E. (D) Q. Since for D D 0, O <A < 1, and we may
1 lj min'

i,j
bound P using an inequality from Appendix A,I F
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PF ( An) M -M(5An 3)= - < e (5. 3)

From the above discussion we see that over the ensemble of random block codes

the average probability of choosing a source word which cannot be properly encoded

with a random block code is just PF. Therefore, there must exist at least one block

code for which the actual probability of choosing a source word which cannot be properly

encoded is as small as PF. If we define

Pmin = min P. > 0PM 1 n1
1

then there are at most PF / pin source words of length n which cannot be properly

encoded. We need only add PF/pmin code words to our block code in order to encode

every source word properly. Our augmented block code has M' code words, where

M' = M+P/n = M+pn eMA. (5.4)
F mm mm

Suppose we choose M so that

n2

M=An or MAn=n 2 . (5.5)

Then Eq. 5.4 becomes

M'= ( 2 +An -MAn -n log Pmin)

-1 (n2+e -n2 + n log A - n log Pmin) (5.6)

We conclude that the actual code rate necessary to have all source words properly

encoded is

1 1 2 +-n 2 + n log A/ pmin . (5.7)
R= 1logM'=-logA+ Ilog n +e Ain(5.7)n n
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A is a constant independent of n. We see that as n - , the exponent in the second term

of Eq. 5.7 is essentially -n2 which causes the second term to approach 1 log n2 . Then

result is

lim R = -log A. (5.8)
n - 00

There exist block codes with rate - log A which properly encode the source. Therefore

R(D) 5 - log A and we may now tighten this bound by maximizing A with respect to the

arbitrary probability distributions P. and Q
1.Q.E. D.

The bounds on R(D) are dependent only upon the matrix E.j(D) which is a function

of D. We see then that the upper and lower bounds on R(D) are decreasing staircase

functions with location of the steps along the D--axis coinciding with the steps of R(D).

However, for sources with small alphabets, it will probably be easier to obtain R(D)

by construction of codes rather than by using the above bounds.

If we have a complicated source which can be decomposed into the product of

two sources, we may relate the R(D) function for the product source to the i.ndividual

sources. Let us first define a product source as one which produces a pair of letters

(x1 , x2) at a time. Supppse we have a sum distortion measure such that the distortion

between (x1 , x2 ) and (Y1, y2) is given by dl(x1 y 1) + d2 (X2 y2). The letters x1 , x2, yl'

and y2 may all be from different alphabets. In fact, we can treat the product source

as though it consisted of two single letter sources operating simultaneously.

Let us consider the source S1 with its distortion measure dl(x1Y1) and zero

rate distortion function RI(D 1) and the source S2 with d2(x2Y 2) and R2(D2). Suppose we
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have a block code of length n, for S with M code words which guarantees D or less
D 1

(2)letter distortion and a block code of length n for S2 with MD code words which
22

guarantees D2 or less letter distortion. Then we can clearly construct a code for the

product source with D1 M(D2 code words of length n which guarantees letter

distortion D1 + D2 or less. We can in fact define R 12 (D), the zero error rate of the

product source, as

R 12(D) = mm [RI(D) + R2(D-D 1)] (5.9)

0-D 1 :D

since we can never get codes of lower rate that give D or less letter distortion, and by

actually combining existing codes for the two single letter sources we can realize a code

for the product source with this rate.

* Even though the fixed letter distortion as a fidelity criterion seems simpler to

work with than the average distortion per letter criterion, this is not actually true. For

instance, it is more difficult to calculate R(D) than the rate distortion function for the

average distortion per letter criterion. Moreover, there are probably not very many

more interesting results that can be derived for the letter distortion criterion, whereas

the average distortion criterion could be pursued to obtain many and detailed results.

The theorems presented in this section of the chapter bear a close resemblance

to Shannon's theorems on the zero error capacity of a discrete, memoryless channel. 13)

We have already mentioned the zero error capacity in connection with the interpretation

of the code rate for the letter distortion criterion. If we demand that each source letter

be transmitted to the sink with D or less distortion, then we must have C > R(D), where
o
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C is the zero error capacity (per unit time) of the channel and R (D) is the zero error
0

rate (per unit time) of the source. The problem of finding codes which give letter

distortion D or less is a sort of dual to the problem of finding codes which give zero

probability of error with a discrete channel. A typical function R (D) is shown in

Figure 5.3.

5.2 Sources with Side Information

Consider a discrete source which has a finite number of states, s!, s2, ... , sh.

Before each source letter is chosen, a new state is chosen independent of previous states

and previous source letters, with probability p. for state s.. When in state s., the
11 1

source selects a letter x E X according to the probability distribution P.(x). A distortion

measure d(xy) is given and we again use the standard fidelity criterion of average

I distortion per letter. We shall consider the situations in which the encoder, or the

decoder, or both have the state of the source available as side information.

If we first suppose that both the encoder and the decoder are given the state of

the source in advance of each source letter, a different block code may be used for

each source state. Since both the encoder and information user know the state of the

source, they also know which block code is being used at any instant. Each block code

is governed by a rate distortion function R.(d) for a discrete, independent letter source

Pi(x) and the distortion measure d(xy). If we have block codes with rate Ri(di) which
i -

give average distortion d., and if p d. = d, then we can encode the source with side

information with rate Z pi Ri(di) and average distortion d. The rate-distortion function
i

for the source with such side information is given by
h

R(d) = min PiRi(di)
di i=1
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D
mmn max

Maximum letter distortion D -

A typical fi(D) function.Figure 5. 3
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h

subject to the constraint that p. d i d. This situation is schematized in
i=1 1

Figure 5.4a.

A more interesting case arises when only the decoder has access to the side

information. (See Figure 5. 4b) The encoder maps the source output into one of M

code words to be transmitted to the decoder. If each code word is merely a sequence

of output letters, the decoder cannot take advantage of the state information since he

has no freedom to operate on the code words. The code words shouid be selected so

that there is some remaining freedom for the decoder to take advantage of the state

information in interpreting the facsimile of the source output. If the length of the block

code is n, in general, the decoder will use n functions, fl(m; s), f2 (m; s), ... , fn(m;s),

where s = rl, r 2 , ... , rn is the sequence of source states corresponding to the encoded

source sequence. In these functions m ranges over the integers from 1 to M and the ri

range over all possible source states. The functions themselves take on values in the

output alphabet. The decoder operates as follows. The encoder operates only on the

source sequence and encodes it as some code word denoted by an integer from 1 to M.

This integer m is transmitted without error to the decoder which presents the sink with

the letters yi = fi.(m; s). We should notice that the decoder may base its operation on

the entire sequence of source states because the encoding operation cannot be completed

until the source sequence and hence the state sequence is completed.

Theorem 5.3 Suppose we have a discrete, independent letter source S

with a distortion measure d(xy), and suppose also the decoder only has available side

information, defined by p.i and P.(x), i=1, 2,..., h. The rate-distortion function for S

is identical to the rate distortion furction for a discrete, independent letter source S'
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(a)

(b)

Figure 5.4 A sour ce with side information available
and (b) only at the decoder.

(a) to both encoder and decoder,
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with letter probabilities P'(x), distortion measure d'(xy), and without

side information. The source alphabet of S' is the same as that of S and

h
P'(x) = Z Pi(x).

i= 1

The output alphabet of S' has bh letters y = (Yl2' " " ' Yh) , where

the Yi are in the output alphabet of d(xy). The distortion measure for

S' is

h
d'(xy) = p• i d(xyi).

i=1

Proof We reduce the anaylsis of the source with side information to a source

p with a different distortion measure and more output letters but without side information.

Codes derived for source S' can be used with S and the statistical properties of these

codes are identical with either source.

Let us discuss how a code for S' could be used with S. The encoder for S is

identical to the encoder for S'. The encoder maps the source word into one of M code

words with letters y E Y, say the mth one. The decoder for S is given the integer m and

from this and the sequence of source states, which it has stored, it must produce a

sequence of output letters y E Y to present to the sink. A particular letter y of the Y

alphabet may be thought of as a function from the state alphabet to the output alphabet Y.

The whole alphabet Y consists of all bh such possible functions. The decoder merely

treats each of the letters y of a code word as independent functions from the state

alphabet to the output alphabet Y. If the state is sl, the decoder presents yl of the
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letter y to the sink. For state k, the decoder decodes as yk. The translation is letter

by letter since there is no memory involved in the generation of source states and letters.

The codes for S' are actually a specialized set of the decoding functions defined

above, where f.(m;~s) is really a function only of m and of s., the ith state. In fact, the
1 1

encoder actually uses decoding functions as output letters in encoding the source output,

thus giving the decoder the freedom to decode using the side information. The average

distortion of such a code with S is exactly the same as the average distortion of the

code with S'.
Q.E.D.

This result is an obvious adaptation of Shannon's analysis of a discrete,

memoryless channel with side information at the transmitter only. (14) As in Section I

of this chapter, we have a sort of dual to a channel coding problem.

The case of the source with side information available only to the encoder is

trivial. The uncertainty about source letters is the same as for a source with letter

probabilities i P.(x) = P(x), but merely broken down into two uncertainties, one about
i1

the state and the other about the actual source letter. The job of the encoder may be

aided with the state information but the actual block codes and their statistical properties

will be exactly the same as for the source P(x).

5. 3 A Partial Ordering of Information Sources

Consider a discrete, independent letter source with letter probabilities P(x), and

a measure of fidelity p(xy) which gives the amount of fidelity (or the reward) involved in

reproducing source letter x as output letter y at the decoder. We restrict the value of

p(xy) to be non-negative. We define the average fidelity per letter between sequences

u = xl, x2 ... xn and v = y l 2 ... nas
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n 1
p(uv) = P(xYyi)) 1

1= 1

which is the geometric mean fidelity per letter. For a block code of length n with M

code words v 1 , v 2 , ... , v M , and a partitioning of the source space into M disjoint

encoding subsets wi, we may write the geometric mean fidelity as

M
g.m.f. = P(u)p(uvi).

i= 1 wiwi

An examplet in which a geometric mean fidelity criterion may be preferrred over the

usual arithmetic average distortion would be in comparing an encoder to a noisy trans-

mission channel. Suppose

p(xy) = exp - (x-y)2 /2

for the case of source and output alphabets consisting of the integers from 0 to 10. The

measure of fidelity between a source and an output word then resembles the probability

that the source word results in the output word when transmitted directly through a

particular noisy channel. (The transition probabilities of the channel may not be properly

normalized in this interpretation.) A high fidelity corresponds to accurate reproduction

of the source word at the receiver. Notice that if any one letter of the source word is

reproduced giving zero fidelity, the fidelity measure in reproducing the entire source

word is zero. Low fidelity corresponds to poor reproduction of the source sequence-,

and zero fidelity letter transitions are very costly, ruining the entire sequence fidelity,

and these transitions should be avoided.

t Suggested by B. Reiffen'.in a private communication.
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We can carry out our upper and lower bounding techniques of Chapter 2 for the

geometric mean fidelity criterion and derive a rate-fidelity function for the source. The

only point to be mentioned in this connection is that we encounter probabilities such as

Pr [ p(uv) Po ] , where u or both u and v are chosen at random. We merely
I n

restate this as Pr[ log p(uv) 5 log po], and since log p(uv) = log p(xiyi), we have
i= 1

only to bound a sum of the independent random variables log p(xiYi). In fact, if we

define p(xy) in terms of a given distortion measure d(xy) as

p(xy) = e-d(xy)

the fidelity-distortion curve is merely the rate-distortion curve with a scale change

and reversal of the distortion axis.

Let us define the matrix O(xy) for a source with a fidelity measure as

8(xy) = P(x) p(xy). (5.10)

A block code of length 1 is merely a transformation T(x) defined on source letters into

input letters. The g. m.f. for a given code of length 1 is then

g.m.f. = P P(x) p(x,T(x) ) = Z O(x, T(x) ). (5.11)
X X

We can visualize the code of length 1 with the aid of the O(xy) matrix. If we circle all

the 9(xy) elements with subscripts (x, T(x) ), the g. m.f. is then the sum of the circled

elements of 8(xy). Every row of 6(xy) must have one circled element in this representa-

tion of a block code. We can use this same representation for block codes of any length

n by merely using the nth order direct or Kronecker product of 8(xy) with itself.

I
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In Eq. 5. 12 we have the 8 matrices of two different sources.

6 J 36 11 = 3 4 2 02 = ](5.12)
Notice that comparing the columns of 82 with the columns of 0 1 with the last row

deleted, we see the first columns ofe2 and 81 are the same and the second and third

columns of 81 are both larger t than the second column of e 2 . This implies that we can

use any block code of length 1 for the two letter source to obtain a code for the three

letter source with at least as large a g. m. f. The circled elements of the E2 matrix

lead to circled elements in the first two rows of e1 which sum to at least the g. m. f.

associated with 82, and any elements circled in the third row of 01 can only add to the

g.m. f. associated with 81. Therefore, a code of length 1 for source No. 2 leads to a

code of the same rate for source No. 1 with at least the same g. m. f. as the code for

source No. 1 gives. This argument can be generalized to block codes of any length.

In a sense, we may think of source No. 2 in the above example as being included

in source No. 1. We are especially interested in generalizing the notion of adapting a

block code for one source for use with another source, giving at least as good a g. m.f.

We now present a definition of source inclusion which will lead to a useful coding

theorem.

Definition Consider the discrete memoryless source SI with letter

probabilities Pl(x1) and fidelity measure P1 (x1Y 1), and source S2 with

P2 (x2) and P2 (x2Y 2). We shall say that S1 includes S 2, (Sl__S2 or S2 C S1),

t A column is considered larger than another column if every element of the first column
is larger than the corresponding element of the second column.
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if and only if there exist two sets of transition probabilities, pa(x 2 IX1 ) and q (yl1Y 2),

4 with

Pa(X21Xl) - 0, , p (x2 x1 ) = 1,
x2

and

qa(y1 Y2) - 0, g q(Y!Y2) = 1,
Y

and there exists

ga 0, g, = i

with

go Pa(x 2 IX) l 1 (x 1 1) qa(y IY2) = 02(x2Y2)'
a ,XX1rYiwhe(5.13)

01(x1y1) = P1(x1) P1 (x 1Y 1), 02 (x2 Y2 ) = P2(x2) P2 (x2Y 2).

We may think of the sets of transition probabilities pa (x2 Ix1) and q2(y 1 Iy2 ) as

channels used in pairs, go being the probability for the pair with subscript a . Any

discrete channel may be interpreted as being composed of a weighted sum of pure

channels in which all transition probabilities are either 0 or 1. A pure channel carries

each input letter with certainty to some output letter. A pure channel may also be

thought of as a mapping of the input alphabet into a subset of the output alphabet. For

each a, this decomposition of the channels pa(x2 Ix1 ) and qa(y 1 Iy 2) may be carried out.

A more complete description of the decomposition of a channel into a weighted sum of

mappings is given by Shannon. (16) In particular we wish to make the point that the

randomly chosen channel pairs can be decomposed into randomly chosen pairs of pure
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channels or transformations. In other words, source inclusion can be defined equivalently

to the above definition but with the added condition that pa (x2 Ixl) and qa (Y1 Y2 ) correspond

to pure channels.

The relation of source inclusion is transitive. If S •) S2 and S 2 S3, then

S 1  S 3 . In fact, if ga, P, Q, are the probabilities for the first inclubion relation,

and , P, Q' those for the second, then

gZ ' g (P P) 0 ( Qjaa )=e3Qa ,AP

where * denotes the ordinary matrix product. If S. S2 and SD2 S1, we will say that

these are equivalent sources and write S, - S2 . We see that S- SL always. Grouping

sources with fidelity measures into these equivalence classes, we have a partial

ordering of sources. A universal lower bound of all sources is the source with one

letter and E matrix (1 x 1) with entry zero.

The ordering relation is preserved under the source operation of multiplication.

That is, if S DS' and S DS' , then

S S S' x S'1 2 1 2

where x denotes the direct or Kronecker matrix product. A product of sources

corresponds to a source which produces letter pairs (xi, x2) with probability P (x1) P2 (x2)

and fidelity measure between (x , x 2) and (yl'Y2) given by P xlY1) P2(x2Y2). Suppose

again gl, Pa, Q are the probabilities of the inclusion relation S 1  S1, and g, PsP Q

are those of the relation S • S'. Then it is easy to show

a, gc• (Px P) ( x E2 (Q Q )' 1 x 2Q

P and Qa denote the stochastic matrices of the pure channels p (x2 xl) and %c(ylY2),
respectively.
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Our chief reason for defining source inclusion as above is the following theorem

which relates the ordering to the coding problem for sources.

Theorem 5.4 Suppose S1  S2 and there is a block code of length n for

S2 with M code words which gives g. m. f. f2 Then there exists for

source S 1 a block code of length n and M code words which gives g. m.f.f*

f*.

2 *

Proof We have a block code for S2 which may be represented by a transformation

T(u 2 ) = v* defined on all possible source words of length n of S2. We may write the

g. m. f. for the encoder as

f* = P2 (u2 ) P 2 (u2 ,T(u 2 )) = 2 2 (u2 V*). (5. 14)S U2  U2

By the preservation of the ordering under source multiplication, we know that we have

ga' Pa (u21ul)' qa(vllv 2) such that

go PZ (u2%u 1) Pl(ul (Ul 1 a 2 1. P2(u2 2(U2 2), (5. 15)
e , UI,Vth

where pa(u2uI l ) and %q (V1 v2 ) are pure, nt h power channels. Let us drive the

channel po (u2ul) with the source S1n and let us also connect the output of this channel

to the input to the encoder for S2 . We also connect the channel gq(v 1 iv 2 ) to the output

of the encoder for S2 . For a particular a, pi(u2Iu 1) maps the output of source S 1 into

the input to the encoder for S2, while qo (lv1 2) maps the set of M code words for S2

into a set of M v1 words, which then may be considered a block code for S! . We thenD1
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have defined a mapping of the source words of length n of S1 into M output words Vl

for each a, and we then have an encoder for SI for a block code of length n and M code

words.

Each of the encoders for SI for a particular a then gives a certain g. m. f., say

fa. We may think of using the ensemble of encoders with S1, choosing each encoder

with probability ga. We may then write the g. m. f. for the ensemble of randomly

chosen encoders as

f* = fZ *•  (5. 16)

We can calculate f* as follows. The probability that the source word ul will be mapped

into output word vI by a randomly chosen set of transformations P and Q is justa a

Pl(ul) ~ go P (u2Jul) qa(v rv*) '
U2 a

where v* is defined by the encoder for S2 as T(u) = v*. When the source word u

is mapped in this manner into v 1, the fidelity is pl(U1V1), hence, the g. m. f. over the

ensemble of randomly chosen encoders is given by

f1I = Z Z 2 ga Pa (u2 1ul) (P 1(U 1) 1 (u1 )) q(v [ )
U1 V1 U 2 a

Z (z 2 g a( llu ))
U2 U V U1 V

= e2(u2v ) =f*2
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where we have used Eqs. 5. 10, 5. 15, and 5. 14. In view of Eq. 5. 16, there exists a

particular pair of transformations P, Q such that f* ~ f* = f"* We have shown
a a lac 1 2

the existence of a block code of length n and M code words for SI which giv' g. m. f.

f* or more.
Q. E. D.

In particular, we can conclude that if S1 S2, the best possible code of length n

and M code words for S2 could not give greater g. m. f. than the best possible code of

length n and M code words for S1 . It is possible to define the inclusion relation with an

inequality sign in Eq. 5. 13, thus making it more general, but this is not a basic change

(16)
from what we present here. Shannon 16)presented a partial ordering for discrete,

memoryless communication channels which looks very much like our source ordering

from a mathematical viewpoint. However, we find such an ordering only for a geometric

mean fidelity criterion and not for the more interesting arithmetic average distortion

criterion. We may conclude that there is a dual source problem to the partial ordering

of channels, but the duality involves the less practical geometric mean fidelity criterion,

and is thus not as useful as the channel ordering.

D
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CHAPTER VI

CONCLUDING REMARKS AND SUGGESTIONS FOR FURTHER RESEARCH

6. 1 Summary and Conclusions

It was intended that this research consist of a general study of the problems

involved in attempting to encode an information source with a distortion measure. We

have presented several aspects of this general problem area from an information

theoretic viewpoint. Our results on the rate-distortion function elaborate on the

previous work of Shannon ( 15 ) , whereas the other topics of i) binary source encoding,

ii) sources with side information, and iii) the fidelity criterion on maximum letter

* distortion are treated for the first time.

The upper and lower bounds on average distortion for block codes of fixed rate

were very useful in arriving at the rate-distortion function of a source. We optimized

the asymptotic form as n- -0 of the bounds on average distortion until the two bounds

were identical. This gave us a unique relation between rate and average distortion which

had the significance of Shannon's rate-distortion function. Moreover, this approach

gave an explicit method of computing the rate-distortion function by simply solving two

sets of linear equations. Our results agreed completely with previous results even to

the extent of interpreting our parametric expressions for rate and average distortion

in terms of a test channel. The upper and lower bounds on average distortion were

shown to converge to their limiting values only as negative powers of n.
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SThe discussion of binary source coding gave some insight into the basic mathe-

matical difficulties involved in applying codes with algebraic structure to sources. We

showed the existence of group codes which gave rate-distortion performance as good as

the ensemble of random block codes, which is asymptotically ideal. The encoding

complexity in applying codes to the binary source was investigated for two sequential

encoding schemes. We presented a simple scheme for binary group codes of length n

and rate R which required only n R(1-R) computations per source letter to encode the

source output. The ensemble of random group codes together with this sequential

encoding scheme was shown to give an upper bound on average distortion which is useful

but weaker than the rate distortion function.

The analysis of a sequential encoding scheme for randomly chosen binary tree

1
* codes of rate R = gave an upper bound to average distortion which seemed to approach

the rate. distortion function. An upper bound on the average number of computations

per source letter to encode the source output was found to be independent of the length

of the code. While the upper bound on average computation was independent of the code

length, it indicated a large number of computations per source letter. It is not clear

whether the bound is weak or whether the average number of computations is, in fact,

high. It would be very desirable to analyze this sequential encoding scheme with

convolutional codes( 18 ), which are extremely simple to store and generate.

A logical and interesting extension of this study of source encoding would be the

study of group codes for use with non-binary sources and a more general class of

distortion measures. In analyzing codes with algebraic structure, we are usually faced

with the problem of finding the probability distribution of the smallest value obtained in
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S several selections of some random variable. The statistical theory of extreme values

is well developed and may be of use in this aspect of the problem. In view of what we

present here, there is a reasonable chance that a good solution can be found to the

complexity problem in a fairly general class of source encoding problems.

The fidelity criterion on maximum allowable distortion per letter is interesting

in that it is used often in practice, but also because it is directly connected with a

problem in channel coding, i.e., the zero error capacity of a channel. The problem of

encoding a source according to this fidelity criterion is a sort of mathematical dual to

the problem of coding for a channel for zero probability of error.

Our work on sources with side information and a partial ordering of sources

again bring out the dual nature of problems in channel coding and source coding. Prior

to Shannon's work on coding sources according to a fidelity criterion, interest in sources

generally centered on finding expressions for source entropy and noiseless coding schemes

to give low probability of misrepresenting the exact source output. This research shows

clearly that the fidelity criterion generalizes the notions of source coding and produces

as many interesting facets of this newer problem as have been found in the general area

of channel coding. Even in the work on the rate-distortion function, we see that the

techniques used in getting upper and lower bounds on average distortion are quite

similar to those used in deriving bounds on the optimum probability of error for channel

codes.

It must appear to the reader as it certainly has to the author that the problems

in source coding are generally more awkward than their dual counterparts in channel

p coding. We point out as examples the difficulty of analyzing codes with algebraic
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S structure and our difficulties in obtaining a lower bound to average distortion for finite

code length. This awkwardness appears to be due in some degree to the sum distortion

measure which measures the distortion between sequences of letters as the sum of the

individual letter distortions. The simplicity of the results on the partial ordering for

sources for a geometric mean fidelity criterion leads one to believe that a product

distortion measure may be closer to the mathematical dual to channel coding problems.

However, the geometric mean distortion criterion seems much less useful as a measure

of the performance of a communication system.

6.2 Extension of the Theory to Markov Sources and Markov Distortion Measures

Throughout this work we have assumed the simplest of sources, one which

selects letters independently at random. It would certainly be of value to have a

method of calculating the rate-distortion function for a source with memory, i.e. random

letter selections dependent on the past history of the source. Perhaps the simplest

source with memory is the finite state Markov source, for which the entropy is already

well known (4 ) . It is clear that our general approach of analyzing the performance of

block codes for such Markov sources would be a logical first attempt to obtain the rate-

distortion function. We have shown that we needed probability bounds on a sum of

independent random variables which were exponentially correct to obtain the rate-distor-

tion function for independent letter sources. However, the analogous bounds on sums of

random variables generated by Markov processes do not yet exist, and this is the first

and main problem encountered in the extension of the theory to Markov sources.

The distortion measures that we have used were single letter distortion measures

in which the distortion was defined by concurrent source and output letters, i.e. d(xy)
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Swas the distortion when the source letter x was reproduced as output letter y. Shannon

(15)discussed a local distortion measure in which the distortion was defined by con-

current blocks of source and output letters. (The length of the blocks was finite.) Let

us call a pair of successive source letters in a sequence a transition. For example,

if Xtl and xt are the source letter produced at time t-1 and the succeeding letter,

respectively, we call xt-1, xt the transition occurring at time t-1. A local distortion

measure with finite memory can be represented as a distortion measure which depends

only on concurrent source and output letter transitions, if we are willing to deal with

expanded alphabets consisting of sequences of source and output letters. A distortion

measure which depends only on source and output letter transitions, such as

d(t-1 xt' Yt-' yt) is called a Markov distortion measure.

We now discuss a simple example of a Markov distortion measure. Consider a

source which selects independently, with equal probability, one of A discrete wheel

positions numbered from 0 to A -1. Let us define the operations of addition and

multiplication of these source letters as modulo A. Suppose we are now faced with the

situation in which the information user or sink does not 'see' the actual decoder output

directly, but has access to the data only after it has passed through an input device

which cannot be by-passed. (See Figure 6. 1). The input device of the sink may be

characterized as a data processing system, possibly with memory. The distortion

measure may be defined in terms of the difference between what the sink receives when

the actual source output and the decoder output are passed through the sink input device.

The situation in which the sink has access to data only through a fixed input device is

p not entirely academic, for a human being has access to optical and auditory stimuli only

through his eyes and ears.
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Actual Sink

Block diagram showing a sink with a fixed input device.

p

Figure 6. 1
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9 Let us suppose that we are given the distortion measure d(x'e y') which depends

only on the difference x' o y', where x' is the response of the input device to the actual

source output x and y' is the response of the input device to the decoder output y. If we

now suppose that the input device is a linear system whose response depends only on

input letter transitions, the linearity allows us to write

d(x' t 1yt) = d( (a 1 Xt- 1 ~ ao x t ) e (a yl t1 y t ) )

= d (al(xt- 1 a Yt-1) + ao (xt yt) )

d' (xt-l i Yt-l' xt e Yt)

where d' (xt- 1, xt' Yt-1' Yt) is a Markov distortion measure which depends only on the

transitions of the difference (mod A) between the source output and decoder output. We

can see that an i-put device with memory and a distortion measure d(x,z) (using the

notation of Figure 6. 1) will lead to a local distortion measure d' between the X and Y

alphabets.

This particular case of the linear data processor can be analyzed, since the

distortion between source and output sequences depends only on the difference between

these sequences. The random coding argument was carried out for this example for the

ensemble of random codes with equiprobable and independent letters. The probabilities

Pr [d(uv) : do] do not depend on the particular u and v sequences, and we need only
n

bound the probability Pr[d(w)5 dl ], where w = u ov and d(w) = 1 d(w., wil).
i=2

(10) 1 i2
R. S. Kennedy has derived exponentially correct bounds on Pr [d(w) - do] when w

p is generated by a finite state Markov process. These probability bounds enabled us to
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find the rate-distortion function for this special case of a Markov distortion measure.

The general Markov source with a Markov distortion measure requires very general

exponential bounds on Markov processes, which do not yet exist.

6. 3 Fidelity Criterion on Several Distortion Measures

Suppose we have an independent letter source, P(x), and two distortion measures

dl(xy) and d2(xy). We may have a fidelity criterion which requires that the average

distortion with respect to dl(xy) is dj or less while, simultaneously, the average

distortion with respect to d2 (xy) is d* or less. An example of such a situation would

be one in which d (xy) is an ordinary single letter distortion measure while d2(Y) is

merely a cost attached to the use of each output letter. We cculd also conceivable

encounter the situation in which dl(xy) was a single letter distortion measure and

d2 (xt-1, xt, Yt-1' Yt) was a Markov distortion measure on letter transitions, which

would be somewhat analogous to having a fidelity criterion on the derivative of a

continuous waveform.

For the case where dl(xy) and d2(xy) are single letter distortion measures, the

necessary exponential bounds would not be difficult to derive. We conjecture that the

random coding bound on average distortion could be derived and that the asymptotic form

of this bound as n- oo would lead to parametric functions R (t), dl(t), d2 (t), t 5 0,

which have the following significance. There exist block codes with rate R > R (t) for
U

which the average distortions satisfy dl - dlu(t) and d2u(t), t - 0. A lower bound on the

average distortions would lead to a rate-distortion surface R(d 1 ,d2 ). A typical rate-

distortion surface has been sketched in Figure 6. 2. A fidelity criterion on several

distortion measures seems to be an interesting extension of the theory with some practical

application, and it should be only slightly more involved than the single distortion measure

case.,,
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9

p

I Figure 6.2 A typical rate-distortion surface R(d 1, d2 ).
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6.4 General Remarks

The mathematical framework within which this research was done pertains only

to the simplest abstraction of a physical information source. Yet the present theory

does provide a useful way of looking at communication systems which attempt to reduce

transmission capacity requirements by encoding the output of an information source

before transmission to the receiver.

The most interesting applications of such a theory would obviously be with very

complex signal sources which would ordinarily demand a very large transmission

capacity without coding. Whenever subjective appreciation of the facsimile of the source

output is encountered, it is clear that this may be interpreted as the application of a

distortion measure to evaluate system performance. A good example of just such a

physical situation is an ordinary television system. The signal source is governed by

extremely complicated statistical constraints, and it is known that viewers do not

require very accurate transmission of pictures. Moreover, the eye is an input device

to the information user which cannot be by-passed. The visual acuity of the human eye

is such that only blocks of picture elements (as contrasted to individual picture elements)

can be resolved and that the average light intensity over a block of picture elements is

all that is important to a viewer. It seems that a local distortion measure with a

fidelity criterion on average distortion should be general enough to characterize this

situation.

One of the standard engineering approaches to encoding a television source has

been the experimental determination of the coarseness of quantization in picture element

p intensities that renders a picture objectionable to viewers. Other standard approaches
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attempt to encode pictures by first separating the signals that represent the light

intensities of the picture into several frequency ranges and then quantizing the signals

in each frequency range differently. More sophisticated methods of processing

television pictures attempt to exploit the resolution of the eye by scrambling the

quantization noise in adjacent picture elements so that the eye will average them out.

The latter technique is similar to scrambling signals for transmission through a rapidly

fading channel (a channel with memory) to remove correlation in errors in received

data. The channel decoder then processes the received data as if the channel was

memoryless. This technique is simple and it works to some extent, but it provides

little insight in learning the fundamental limitations on the performance of the system.

The information theory indicates that the statistical constraints governing the

operation of the information source must be studied and a suitable statistical model

chosen to represent the source. The next key step indicated is the determination of

the distortion measure and the tolerable level of distortion used by the information user

to evaluate system performance. The job of modeling something as complex as a

television picture source is obviously an extremely difficult task because of the wide

variety of pictures that can occur. Likewise, the determination of the distortion measure

used by television viewers is complicated by the fact that the eye characteristics and

artistic tastes of different viewers implies that there are many distortion measures

actually in use simultaneously.

If a suitable source model and distortion measure could be found, and analyzed,

it would yield the limiting rate reduction that could be achieved by any encoding technique

p with the given source and distortion measure. This would provide a yardstick with which
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i to evaluate any proposed encoding scheme. Since the source encoder is the complicated

link in the system, the search for good codes would have to consider the complexity in

instrumenting proposed codes. The decoder at the -various information users is much

less complicated than the source encoder, which is fortunate since there may be many

users of the encoded source output, e.g. in the television system example, there are

many, many information users interested in one signal source. The block diagram of

our proposed communication system is given in Figure 1. 2.

The actual detailed design of systems which attempt to reduce transmission

capacity requirements of complex signal sources will most certainly be influenced by

the information theory someday, but that day is a long way off. However, the theory

does at present provide a design philosophy by indicating the basic steps involved in

p building signal processing equipment to conserve transmission channel capacity.
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W APPENDIX A

PROOF OF THEOREM 2. 1

Consider the situation in which the source P(x) has just generated a word u of

length n and we are about to choose a list of M code words of length n at random according

to P (y). We want to get an upper bound to the average distortion that results afterc

choosing the code and encoding u for minimum distortion. We will study a non-optimum

encoding system to get the desired bound. We have a threshold d and we start cal-
n

culating the distortion between u and each code word in the list of code words. The

source word u is mapped into the first code word v that we come to the list for which

d(uv) - dn. If the first M-1 code words in the list fail this test, we map u into the last

code word vM.

If any code word satisfies the d(uv) 5 dn test, the resulting distortion in encoding

u is upper bounded by dn. If none of the first M-1 code words satisfy the test, the

average distortion in mapping u into vM is just

P(x) P (y) d(xy) = d (A. 1)
XY c m

The upper bound on the average distortion in encoding u with the described

system, when averaged over all u, is an upper bound on the average distortion over the

ensemble of random block codes with the best partitioning of U. We then get the bound

on d, the average distortion for the ensemble of block codes,

d -5d (1-Po) + d P - d + d P (A. 2)n o mo n mo
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where P is the probability that the source selects a sequence u and that none of the
0

first M-1 code words satisfy d(uv) d .n

For the case of M = 2 we have only one code word to test so

Po = P(u) (-P [ d(uv) dn u ] ).
U

It follows that for M code words

Po = P(u) (1-P [ d(uv) dn 1 u] )M (A.3)
0 Ur n

We wish to next show the conditions under which P can be made to tend to zero
0

with increasing block length n so that the bound on d in Eq. A. 2 tends to dn. For any

particular source word u we may count the number of times each letter of the X

alphabet appears. We denote by n(xk) the number of times letter xk appears in the u

sequence and we call the set of integers n(x), x E X, the composition of u.

The probability Pr [d(uv) " dnlu] depends on u only through the composition

of the u sequence. It is intuitively clear that the letter composition n(x) of very long

u sequences tends to n P(x) with high probability. We therefore divide the space U into

the subsets U* and U*, the complement of U*. U* is so defined that the composition

of u E U* is approximately nP(x), which defines Pr [d(uv) 5 dnlu E U*] within narrow

limits. The part of P involving the subset U* then depends on M and can be made to
o

vanish only by restriction of M. The subset U* has vanishing probability for very large

n.

We need a lower bound on P [d(uv) -d Iu] in order to upper bound
r n

exp (- (M-1) P [d(uv) 5 d ju] ) in P. R. M. Fano's lower bound (pages 275-279)
r our purposes and is restated below in our notation.

is suitable for our purposes and is restated below in our notation.



P [d(uv) -- d Iu] -K
r- n -

(n) eFn(u ' t) - tri (u,t), t 0

a . .n'i E Xwith composition n(x), and

y (t) = log 3 Pc(y) etd(xy)
Y

n
r (u,t) = (t) =

i= 1
n(x) yx(t)

(t) atat

n
r' (u,t) =n

i= 1

Q(yx) = P (y)C

K (n) = (27mn)
L

Y (t) = 3 n(x) y'(t)
X

etd(xy) - yx(t)

a(b-l)
-2

exp - + It

(8. 128)

SA + Xy(n (x) Q (y x) ) (8. 125)

(8. 130)A = max d(xy) (larger than Fano's A)
XY

The value of t is specifically chosen in (4) to satisfy

r' (u,t) = nd , t 0n n
(8. 146)

but it can be seen from the derivation of this bound that we are free to choose any value

of t 5 0 such that

(A.4)r' (u,t) nd .n n

tThe underlined equation numbers are from (4) to aid in comparing the different notations.

w
where u = S4.
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(8.125)t

(8. 127)

(8. 129)

I I I
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We define y(t) and y'(t) as the mean values of yx(t) and y'(t), respectively con-

sidered as random variables with probability P(x). We see that the mean values of

F (u,t) and r'(u,t) are ny(t) and ny'(t), respectively. Let us take the threshold
n n

d =d+n / 4  (A.5)
n u

where do is a constant. Then as n- oo, dn - du. Now we may choose the value of t

independent of any u sequence by

y'(t) = d t - 0. (A. 6)

Also, we see from Eq. A. 1 and the definition of y'(t) that

y'(0) = dm (A.7)

Define the subset U* of u sequences such that

ny(t) - n -_ r (u, t)n

and ny'(t) - n 1 "' (u,t) 5 ny'(t) + n0
n

For u E U*, we have from Eqs. A.5 and A. 6

F' (u,t) -< ny'(t) + n3 = nd
n n

so that t is chosen to give a valid lower bound to P [d(uv) d jul for u E U*. Ther n

definition of U* is used to lower bound exp (F (u,t) -)r' (u,t))for u E U* so that we get
n n

Pr [d(uv) d luEEU*]K(n)eny(t) - nty'(t) - n - Itln 3  (A.8)r na

where K(n) differs from KI(n) in that each n(x) has been replaced by 1. This gives
K (n) L K(n) and K(n) now has no u dependence.
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Eq. A.2 now becomes, using Eq. A.3,

dSd + dm ( P(u)+ P(u)-P [d(uv) -dn/ u]) M 1)
n m U*

Using Eqs. A.5, A.6, A.7, and the inequality for 0< p 1,

(1-p)M-1 e(M-1) log (l-p) < e-(M-1)p

we get

(A.9)

-( -(M-1)P[d(uv)-5 d /ue U*]d-d +d (P[U*] +• P(u) e r nd d /u
n m r U*

1/4 +y'(O) +

where we have upper bounded ZU* P(u) by unity.

From the definition of U* we see that the

the union of the three events

-(M-1) K(n) exp - n[ty'(t)-y(t)+n +tln -1•4
e

probability of U* is the probability of

r (u-,t) < ny(t) - n3/4

n

r'(u,t) < ny'(t) - n3/ 4
n

r'(u,t) > ny'(t) +n3 / 4

n

which can always be upper bounded by the sum of the probabilities of the individual

events.

(A. 10)
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P r [  Pr[i(u;,t) < ny(t) -n ]

+ Pr [rf(u,t) < ny'(t) - n3/4r n

+ P [r' (u,t) > ny'(t) + n3/4 ] (A. 11)
r n

Denote the distribution function for the random variable

r (u,t) = r by L (r) = P (r -r). We define the random variablen n n rn

zn r - ny
n N"if" q

1

where y = y(t) and oz is the variance of y"x(t).

The distribution function for z is then

n(z)= £n (4/W'o z+ ny) (A. 12a)

which implies

S(r)= = ( ( rn (A. 12b)
n n

and 1n(z) has mean zero and variance one so that we may apply ordinary central limit

results. n (z) can be estimated by using a theorem by Cramer ( 1) (pages 77-78) with

the constant c in the theorem estimated by Cramer to be 3. (See comments of

Gnedenko and Kolmogorov(6) page 201.) Thus

!n(z) < @((z) + Bln(z)  (A. 13)

where B (z) = 3P,, log n and P is the third absolute moment of L . Then combining
in & 4 ny3P 13 n

1

) Eqs. A. 12b and A. 13,



P [r(u,t) < ny(t) - n3/4r n

exp (-n1l/

n 1/4
" al

N'2Tr n1/4

n1/4
) < ( )+Bln

+ Bln

We have used a bound for 4(- a), a > 0 given by Feller(5)(page 166, Eq. 1.8),

a) --s-, exp - a 2/2 a> 0.Nr2 .-r a I

In an entirely analogous manner we bound the other terms of Eq. A. 11.

o as the variance of the random variable y'(t), and P as the third absolute moment2 X 23

of yx(t).
Tx We get

P [r'(u,t) < ny'(t) - n 4 ]
r n

P [r' (u,t)r n

a, ex(-n / 2 )

N/ 37n 1/4

n1/4

2
) + B2n

,(nip

22~txp (n
r n 1'/4

where B =:2n

Combining Eqs. A. 14, A. 15, and A. 16 in Eq. A. 10 gives Eq. 2.4 and proves

Theorem 2. 1.

P(x) and d(xy).

This bound on d is for any t 5 0 and involves only n and functions of

Q.E. D.
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(A. 14)

Define

+ B2n (A. 15)

+ B2

3 p23 log n

4ýn 1 itp

+ B2n (A. 16)

I -

> n-y'(t) + n* ] :5

c
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APPENDIX B

ASYMPTOTIC EXPANSION OF CERTAIN INTEGRALS

We wish to obtain an asymptotic expansion of integrals of the form

0 0
j e dd(z) and f ze d (z)

n n
-oo .. oo

where Y is the normalized distribution function for a sum of discrete, independent,
n

non-identical random variables. We shall assume that the random variables are non-

lattice, i.e., there are no numbers r and h such that all values of D(xy) can be expressed

as r + hn, n = 0, + 1, + 2, ... From Esseen's theorem (Gnedenko and Kolmogorov (6 )

page 210), we may write n as
n

(z) = (z) 03n (z -1) exp - z 2 /2 +E (B. )S (z) = (z)- + , >0 (B.)n 6 3-2,( N1 _n

n

where P3n is the third absolute moment of the distribution 1n(z) given in Eq. 3.3. From

(1)Cramer's work( it is clear that this theorem applies to sums of non-identical random

variables.

Denote the function

(i) di  exp - zZ/ 2<( (z) = d (B. 2)

and the integral

I. (01) f e az (z) dz. (B. 3)
-00



Since

(zl -1) exp -Qz/ 2 _ (2) (z)

and dp()(z) = (i+ 1)(z) dz, we see that the integrals we are interested in are

and 13(a). Note that

d ii(a) = f
-d00

0
ze az (i)

p (z) dz = Ji(a)

and we are interested in the integrals Jo(a) and J3 (a) as well.

By completing the square in the exponent we find

Slo(a)= 4(-a) expa z/2

Integration by parts yields

13(a)= -1 -a I2 (a)

I2 (a) = -a I1(a)

11(a) = 1 -a Io(a)0

13 (a) =
2 3

-1 + a - a I o(a).0

By use of Eq. (B. 4) we obtain from Eqs. B. 5 and B. 6

1
J (a) =

2a
J3(a) 

2

+ a (- a) expa 2 /2 (B. 7)

- 3a- I10(a) - a'Ja B8

i
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I (a)

(B. 4)

(B. 5)

so that

(B. 6)

^ 2 , .%
Jo(a) • (B. 8)



141

From Feller (5 ) (page 179, Eq. 6. 1) we obtain an asymptotic expansion for t(- a), a>0O.

1
1-3
a4 2ir

3
a5

15
7 (B. 9)

If we now use a = Iti Ir4n7 together with Eq. B. 9 we obtain the asymptotic

expansion of the desired integrals as

+o ( n )
It! JN~tiTT

13(a) 
1

J (a)
1

Nf-27r

J3 (a) ~

3
I. I -

It np"

1

It 2np."

6
t 2 (nI")/

+ o ( ))

+o (+0 ()) "

The last term of Eq. B.

0
- f

IVn -oo

E 
f

Nrnj - 0

1 in the expansion of U~(z) yields integrals

az E 1
e dz = - o(-)n

eaz
ze dz =

E

4a2

Now we may combine our results in Eqs. B. 10 and B. 11 to obtain

(B. 11)

(B. 10)

If-%O 3/2K-



Seaz 1 +o(
J~~~ e d 8(z) + o( -

0C
f

(B. 12)
az 1 1ze d0 (z) 1- 2 + o (n)

n T~2 [t It 2 np. n

and from Eqs. 3. 12 and 3. 13 we obtain

-1

cI =Itl 2 0"

I

jtj /-L'

di = I

di =1I
1

The case of a lattice random variable is substantially the same with the compli--

cation of one extra term in the expansion of n (z). Esseen's theorem on lattice dis-

tributions (Gnedenko and Kolmogorov , page 213) is used and the result for Cl/ dl

is exactly the same as Eq. B. 13.

i
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(B. 13)
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