CODING FOR A DISCRETE INFORMATION SOURCE
WITH A DISTORTION MEASURE

by

THOMAS JOHN GOBLICK, JR.

B. S., Bucknell University (1956)
S. M., Massachusetts Institute of Technology (1958)

E. E., Massachusetts Institute of Technology (1960)

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

October 1962

Signature of Author . . . . & . . v v v i i i e e e e e e e e e e e e e e e
Department of Electrical Engineering, October 1962
Certifiedby . . . . . . . . .« o i e e e e e e e e e e e
Thesis Supervisor
Accepted BY . v v v v it e e e e e e e e e e e e e e e e e e e e e

Chairman, Departmental Committee on Graduate Students



ii
CODING FOR A DISCRETE INFORMATION SOURCE

WITH A DISTORTION MEASURE

by
THOMAS JOHN GOBLICK, ]R.

Submitted to the Department of Electrical Engineering in October 1962 in partial ful -
fillment of the requirements for the degree of Doctor of Philosophy.

ABSTRACT

The encoding of a discrete, independent letter information source with a distortion
measure is studied. An encoding device maps blocks of source letters into a subset of
blocks of output letters, reducing the number of different blocks that must be transmitted
to a receiving point. The distortion measure, defined between letters of the source and
output alphabets, is used to compare the actual source output with the encoded version
which is then transmitted to the receiver. This problem was previously studied by
Shannon who showed that the constraint that the average distortion per letter between the
source output and its facsimile at the receiving point not exceed d* implies a minimum
necessary information capacity (dependent on d*) between source and receiver.

In this work, the average distortion per letter for block codes of fixed rate and
length n is upper and lower bounded, and for optimum block codes these bounds are
shown to converge to the same limit, with the convergence being as a negative power of
n as n— ©. The asymptotic agreement of these bounds for optimum codes leads to an
alternate description of Shannon's rate-distortion function R(d*). Moreover, this
analysis of optimum block codes gives an explicit computational method for calculating
the rate-distortion function. The final results may be interpreted in terms of the same
. test channel described by Shannon, though no such test channel is actually used in the

bounding arguments.

In studying the instrumentation of codes for sources, as a tractable example the
binary symmetric, independent letter source with Hamming distance as the distortion
measure is treated. The existence of group codes which satisfy the upper bound on
average distortion for optimum block codes is proved. The average distortion and the
average number of computations per encoded digit are upper bounded for sequential
encoding schemes for both group codes and tree codes.

The dual nature of channel coding problems and source coding with a distortion
measure is pointed out in the study of topics closely related W the zero error capacity
of channels, channels with side information, and a partial ordeNng of channels.

Thesis Supervisor: Robert G. Gallager
Title: Assistant Professor of Electrical Engineering



iii

ACKNOWLEDGEMENT

I wish to express special thanks to Professor Robert Gallager for his patient
supervision and many very valuable suggestions during the course of this research, and
also to Professor Claude Shannon for motivating and encouraging this work. I also wish
to thank Professor Irwin Jacobs, Professor Peter Elias, and Dr. Barney Reiffen for
helpful suggestions during the course of many discussions.

I am grateful to my fellow graduate students in the Information Processing and
Transmission group of the Research Laboratory of Electronics, especially Robert
Kennedy, James Massey, and Jacob Ziv, for the benefit of many helpful discussions

which contributed to this research.

I wish to express my thanks to Dr. Paul Green and Dr. Robert Price of Lincoln
Laboratory who encouraged me to undertake my graduate study as a Lincoln Laboratory
Staff Associate. The difficult job of typing this thesis was cheerfully done by Miss
Linda M. Giles, to whom I am grateful. I thank also Lincoln Laboratory for their

financial support during the three years of my graduate study.
Finally, it would have been impossible to undertake and complete my graduate

study if it had not been for the many sacrifices of my wife Carolyn.



ABSTRACT

TABLE OF CONTENTS

ACKNOWLEDGEMENT

TABLE OF

CONTENTS

LIST OF FIGURES

CHAPTER I INTRODUCTION

CHAPTER II BLOCK CODES FOR INDEPENDENT LETTER SOURCES

Sec. 2.1
2:2
2.3
2.4
2.5

2.6

Introduction

The Average Distortion for Randomly Constructed Block Codes
Optimization of the Upper Bound on Averagé Distortion

Lower Bound to Average Distortion for Fixed Composition Block Codes
A Lower Bound on Average Distortion for Block Codes

Summary

iv

ii

iii

iv

vi

11

11

13

18

CHAPTER III ASYMPTOTIC CONVERGENCE OF THE LOWER BOUND ON AVERAGE

3.1

3.2

DISTORTION
A Lower Bound to Average Distortion

Asymptotic Expansion of D
L.

CHAPTER IV BINARY SOURCE ENCODING

4.1

4.2

4.3

Introduction
Binary Group Codes

Sequential Encoding with Random Tree Codes

54

54

59

64

64

69

83



CHAPTER V MISCELLANY

Sec. 5.1 Maximum Allowable Letter Distortion as a Fidelity Criterion
5.2 Sources with Side information
5.3 A Partial Ordering of Information Sources

CHAPTER VI CONCLUDING REMARKS AND SUGGESTIONS FOR FURTHER
RESEARCH

6.1 Summary and Conclusions

6.2 Extension of the Theory to Markov Sources and Markov Distortion
Measures

6.3 Fidelity Criterion on Several Distortion Measures

6.4 General Remarks
APPENDIX A -- PROOF OF THEOREM 2.1
APPENDIX B -=- ASYMPTOTIC EXPANSION OF CERTAIN INTEGRALS
BIOGRAPHICAL NOTE

REFERENCES

96

96

106

111

120

120

123

127



Fig.

LIST OF FIGURES

1.1 An example of a simple source encoder and decoder.

1.2 A block diagram of the communication system studied in this work.
2.1 The lower envelope of ail RU« dU curves may be determined by finding
the smallest intercept I of all tangents of the same slope of the
Ru~d curves.

U

2.2 A typical function R* vs d*.
u U

2.3 The function Fi(z) for a code word v, of composition nc(y), showing
some of the u € W Zo’ z', and Do°

2.4 The test channel.

2.5 The rate-distortion function for an asymmetric binary source showing

the optimum f(x) and Pc(y).

2.6 A rate-distortion functicn with a discontinuity in slope and a straight
line segment.
3.1 Convergence of points on R* - d* to R*-d*.
n Ln L L
4.1 The rate-distortion function R(d) for the binary symmetric source

with Hamming distance as the distortion measure, and a construc-
tion bound on average distortion for binary group codes.

4.2 Comparison of R(d) and the upper bound on average distortion for
step-by-step encoding with codes of length 20.

4.3 (a) Binary tree code of length 3
(b) Augmented binary tree of length 4
(c) Tree code of length 4 formed from two independent augmented
trees of length 4.

4.4 The function p,(w) for a tree code, £ =25, 100. Also included for
comparison is the function p E(W) for a block code, £ = 100.

vi

20

27

32

43

48

50

63

73

82

84

91



Fig. 4.5

5.1

5.2

5.3

5.4

6.1

6.2

Accept thresholds 2£d* and reject t.hresholfs BE that give good results.

The broken line is the locus of Pz(w) =10 ~.
Line diagram showing equivalent source and output letters.

(a) Line diagram of a 3-letter source.
(b) Acceptable encoder of length 2 with 3 code words.

A typical R(D) function.
(a)

A svurce with &)i)de information available to both encoder and

decoder, and only at the decoder.
Block diagram showing a sink with a fixed input device.

A typical rate-distortion surface R(d] s d2).

vii

92

98

98

107

109

125

128



CHAPTER 1

INTRODUCTION

In many communication systems it is required that messages be transmitted to
a receiver with extremely high reliability. For this reason there has been a great
effort to put into practice Shannon's theorems on coding information for error-free
communication through noisy channels.

There are alsc many communication systems in which not exact but merely
approximate transmission of messages is required. For example, it is certainly not
necessary to transmit television pictures to viewers without any errors. Let us con-
sider a communication system to transmit television pictures across the country. It is
impossible to transmit pictures over a distance of several thousand miles in the same
form of an amplitude modulated carrier for local transmission to viewers because the
cumulative effect ¢f the noise along the entire transmission system would produce
objectionable picture quality. Therefore, for cross-country transmission, a picture is
divided into a large number of discrete picture cells or elements, and the light intensities
of these picture elements are coarsely quantized into discrete levels. This discrete
representation of a picture (the encoded picture) is then transmitted without error from
one relay station to the next across the country. In order to reduce the transmission
capacity requirements to transmit the encoded version of a picture without error, the

number of quantum levels for encoding the picture element intensities may be reduced.



However, it is clear that there 1s a trade-off between the required transmission capacity
and the distortion introduced into the picture by the quantization. If the quantization is
made too coarse, the resulting distortion will render the encoded version of the picture
objectionable even when the actual transmission of the encoded picture is done without
error. We may conclude that such a system requires a certain minimum amount of
information to be transmitted in order to maintain acceptable picture quality.

This work is concerned with a much simpler, abstract problem than the television
example. We shall confine ourselves to the consideration of a discrete information
source which chooses letters x from a finite aiphabet X independently with probability
P(x). The output of the source, a sequence of letters, is to be transmitted over a
channel and reproduced, perhaps only approximately, at a receiving point. We are given
a distortion measure d(xy) =0, which defines the distortion (or cost) when source letter
x is reproduced at the receiver as letter y of the output alphabet Y. The Y alphabet
may be identical to the X alphabet, or it may be an enlarged alphabet which includes
special symbols for unkncwn or partly known letters.

Consider another example in which we have a source which chooses integers
from 0 to 10 inclusive, independently and with equal probability. Suppose we are given
the distortion measure d(xy) = |x-y |, where the output alphabet is identical to the source
alphabet. If we are required to reproduce each letter with no more than one unit of
distortion, we find that we need to use only four output letters to represent the source
output well enough to satisfy this requirement on distortion. We therefore need a
transmission channel capable of sending any one of four integers without error to the

decoder. (See Figure 1.1) The decoder is a device which merely looks up the output
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Figure 1.1 An example of a simple source encoder and decoder.

letter that a received integer corresponds to, and this output letter is the facsimile of
the source output. If we were required to reproduce each source letter with zero
distortion, we would require a channel capable of sending any one of eleven integers
to the decoder without error. It is clear from this example that a specification of the
tolerable distortion implies a certain minimum required transmission capacity for this
type of source encoding. A different type of specification on the tolerable distortion,
such as average distortion per letter of one unit or less, would lead to a different
minimum required transmission capacity between source and receiver.

We wish to consider a more general type of source encoder which maps blocks
of n source letters into a set of M blocks of n output letters called code words. When
the source produces a block of n letters, the encoder maps this block into one of the M

code words, say the jth one. The output of the encoder is then the integer j, and this



is transmitted without error over a channel to the decoder. The decoder output is the
jth code word, which is a sequence of output letters. The combination of the source
and encoder resembles a new source which selects one of M integers to be transmitted
to the decoder. A channel which is capable of sending any one of M integers to the

decoder without error is needed, and in view of this we define the transmission rate

per source letter for an encoder as

We wish to find encoders which minimize M for a given block length n while satisfying
a given specification on the tolerable level of distortion.

Throughout this work we will assume that the transmission channel introduces
no errors in sending the encoder output to the decoder. Error free transmission from
encoder to decoder may actually involve a noisy channel with its own coding and
decoding equipment to give the required reliability. We make the assumption of an
error free transmission channel in order to keep the source encading problem separate
from the problem of combating channel noise.

There are obviously many ways in which the tolerable level of distortion could
be specified. In the example of Fig. 1.1, we required that each source letter be
reproduced at the receiver with no more than D units of distortion. Another widely
applicable fidelity criterion is the average distortion per letter. Furthermore, this
fidelity criterion is mathematically more tractable than that used in the example of
Fig. 1.1, and a much more interesting theoretical development can be achieved. The
majority of this research, therefore, deals with the fidelity criterion of average distor-

tion per letter.



When a block of source letters u = x. x

1 Xg e X is encoded, transmitted, and

reproduced at the receiver as the block of output letters v =y IR A the average

distortion per letter is
, B
{ = = d( .
dfwv) = = i}:j] (3,

The noiseless channel assumption allows the transmission channel to be represented
as a fixed transformation, and since an encoder and decoder are fixed transformations,
the combination of an encoder, transmission channel, and decoder may be represented
simply as a transformation T(u) defined on all possible blocks of n source letters. The
T() are actually blocks of n output letters, and we may write the average distortion
for our communication systrem s

d= ), P(u)d@,T@)),

u

where P(u) is the probability that the source produces the block of letters u. To
minimize the average distortion of the system for a particular set of M code words, the
encoder should map each block of source letters into the code word which gives the
smallest average distortion per letter with the source block. The operation of the
source encoder is very similar to the operation of a noisy channel decoder, which must
map a chaanel output sequence into the code word which gives the lowest probability
of error. The source decoder is also seen to be analogous to the channel encoder.
From our experience with channel coding and decoding, we expect that the source
encoder will be a far more complex device than the source decoder. A block diagram

of the communication system that we study in this work is shown in Figure 1. 2.
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The concept of a fidelity criterion is basic to the information theory. The
information rate of an amplitude continuous scurce is undefined unless a tolerable level
of distortion according to some distortion measure is specified, since exact transmission
of the output of a continuous source to a receiver would require an infinite information
capacity. This is somewhat analogous to the problem of finding the channel capacity
of an additive gaussian-channel which is undefined until one puts constraints on the

signals that the transmitter may use.

The fundamental work on the encoding of a discrete information sourch with a

(15) He showed that the constraint that the

distortion measure was done by Shannon.
average distortion per letter be no more than a certain amount, say d*, led to a unique
definition of the equivalent information rate R(d*) of the source. The rate-distortion
function, R(d*), was defined by Shannon as follows. Given the set of source probabilities

P(x), and a distortion measure d(xy), we can take an arbitrary assignment of transition

probabilities q(y[X), (q (ylx) =0, ZYq (ylx) = l) , and calculate the quantities

d (k) = ), P q(ylx) dxy)

XY
Ryl ) =) P& aq(ylx) log VA BY
XY ), P') q(ylx)

X

The rate-distortion function R(d*) is defined as the minimum value of R(q (ylx)) under
the variation of the q(ylx) subject to their probability constraints and subject to the
constraint that d(q(y|x)) = d*. The use of a test channel q(y]x) with the source to define

R(d*) is similar to the use of a test source with a channel to define channel capacity.
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The test channel is adjusted to minimize the average mutual information of the source-
test channel combination while the average distorticn is kept equal to or less than d*,
when transmitting the source output directly through the test channel.

The significance of the function R(d*) is explained by the following powerful
results. Shannon showed that there are no encoding schemes with rate less than R(d*)
which give average distortion per letter d* or less, but there are encoding schemes
which give average distortion per letter d* with rates arbitrarily close to but greater

than R(d*). These results justify the interpretation of R(d¥*) as the equivalent information

rate of the source.

This research is largely an elaboration of Shannon's fundamental work. Of
special interest were the problems involved in putting the theory of source coding into
practice.

The first results derived are upper and lower bounds on average distortion for
block codes of fixed rate and block length n. The asymptotic form of the upper bound
on average distortion as n— « leads to the parametric functions Ru(t) and du(t), t=0,
which have the following significance. For a given t = 0, there exist block codes with
rates Ru(t) + €, € >0, which give average distortion d*(t) or less. Convergence of the
upper bound on average distortion to its limiting value is as a negative power of n, as
n-—°,

The asymptotic form of the lower bound on average distortion as n— * leads to
the parametric functions RL(t) and dL(t), t = 0, which are interpreted as follows. For a
given t = 0, there exist no block codes with rate less than R:_(t) for which the average

distortion is less than d (t). Convergence of the lower bound to its limiting form is
L

found from an asymptotic series and the limiting value of the bound is also approached as

a negative power of n, as n — *.



Th_e asymptotic form of the upper and lower bounds may be optimized to yield
asymptotic bounds on the average distortion for optimum block codes. We show that
this optimization yiglds Ru(t) = RL(t) = R*(t) and du(t) = dL(t) = d*(t), for allt= 0. We
have therefore shown that, for a given t = 0, there are no block codes with rate less
than R*(t) for which the average distortion is less than d*(t), and there are block codes
with rate R*(t) + €, € > 0, for which the average distortion is d*(t) or less. The
parametric functions R*(t) and d*(t), t = 0, thus have exactly the same significance as
Shannon's rate-distortion function R(d¥}. We find that R*it) and d*(t), t = 0, may be
calculated explicitly by solving two sets of linear equations. Although we did not use
a test channel in bounding the average distortion for block codes, the expression for
R*(t) is interpreted as the average mutual information of a channel Q(ylx) , Wwhere Q(y[x)
depends on P(x), d(xy), and t. The expression for d*(t) is also interpreted as the
average distortion when the source output is transmitted directly through this test
channel Q(y]x). Thus we have also found an explicit description of Shannon's test
channel. These results are presented in Chapters 2 and 3.

In Chapter 4, the general problem of analyzing block codes with algebraic
structure for sources is discussed briefly. The remainder of the chapter treats the
binary symmetric, independent letter source with Hamming distance as the distortion
measure. We show the existence of group codes which satisfy the upper bound on
average distortion for optimum block codes. We also study the use of group codes and
tree codes together with sequential encoding schemes as a means of reducing encoder
complexity. The sequential encoding of group codes is simple to instrument, but yields

a weak upper bound on average distortion. The sequential encoding of binary tree codes
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appears to yield the optimum average distortion, but the complexity required to do so
is very great.

Chapter S presents three separate topics, the first of which deals with the
fidelity criterion mentioned above on maximum allowable distortion per letter. The
analysis of source coding problems with this fidelity criterion is quite similar to the
treatment of the zero error capacity of channels by Shannon(ls) . The second topic
treats sources with side information available at the decoder, and this problem is
seen to be similar to the problem of a channel with side information available at the

o (14)
transmitter = ',

Finally, a partial ordering of sources is defined but only for a fidelity criterion
nf geometric mean fidelity. Given the measure of fidelity p(xy) between letters of the
source and output alphabets, the geometric mean fidelity (g. m.f.) that is produced when

the source sequence u = X) Xp eee X is reproduced as the output sequence v = Vi¥y oo Vn

is defined as
n 1
g.m.f. (uv) = (Hl p(xiyi)) n,

The partial ordering of sources has roughly the same significance as does Shannon's

16 . . . .
( ), with the important exception that the geometric mean

partial ordering of channels
distortion seems to be much less practical as a fidelity criterion. A simple partial
ordering for arithmetic average distortion as fidelity criterion could not be found. All
of the topics in Chapter 5 serve to emphasize the dual nature of the problems of channel
coding and source coding with a distortion measure.

We present some general remarks on this research in Chapter 6 and also several

interesting directions in which to extend the theory.
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CHAPTER 1I

BLOCK CODES FOR INDEPENDENT LETTER SOURCES

2.1 Introduction

The main concern of this chapter will be the theoretical performance of block
codes for reducing the equivalent information rate of an independent letter source at the
expense of introducing distortion.

We restate the source encoding problem in order to introduce some notation.
The information source selects letters independently from a finite alphabet X according
to the probability distribution P(x), x € X, There is another finite alphabet Y, called
the output alphabet, which is used to encode or represent the source output. We call
a block or sequence of n source letters a source word and a block of n output letters

an output word. An encoder is defined as a mapping of the space U of all possible

source words into a subset V* of the space V of all possible output words. The subset
V*, called a block code of length n ox just a block code, consists of M output words
called code words. When the sourceproduces a particular sequence u € U, the encoder
output is the code word which is the image of u in the mapping.

The encoder may be specified by a block code and a partitioning of the space U
into M disjoint subsets W wZ se e e sV Each subset w, consists of all those source
words u that are mapped into the code word v € V*. Every u sequence is in some

subset W1 .
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The distortion measure d(xy) = 0 defines the amount of distortion introduced
when some letter x is mapped by the encoder into the output letter y. When the sequence

u= 51 E ... En ’ gi € Xz is mapped by the encoder into the sequence v = 'r)1 N e
2

. nn ,ni € Y, the distortion is defined by

d(lI‘V) s d(ﬁini) . (2‘ l)

1

=
s

For any block code and a partitioning of the source space U, there is a definite average

distortion (per letter) which is given by .

M
d = Z Z P() d(uvi) . 2.2)

i=1 w i
P(u) is the probability that the source produces the sequence u, and for an independent

letter source, this is given by

n
P@) = [[ PE), & eX.
i=1
The output of the encoder must be transmitted to the information user or sink.

The outiput sequences themselves need not be transmitted if the block code is known in
advance. For instance, the binary representation of the integers from 1 to M could be
sent over a channel. At the output of the channel the binary numbers could be converted
back to code words, giving the sink an approximation to the actual source output. It

would take logzM binary digits to represent n source letters in this scheme. In view of

this, we define the information rate for a block code as R = ;IJ’ log M nats per letter.

(All logarithms are to the base e unless otherwise specified. )
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Throughout this work we will make the important assumption that there are no

errors introduced by the transmission channel. We thereby restrict ourselves to the

problem of mapping a large number of possible source words into a smaller set V* of
code words, assuming that the code words are presented directly to the sink. The sink
is presented with an approximate representation of the source output but the channel
capacity requirements to transmit the data are reduced by encoding.

2.2 The Average Distortion for Randomly Constructed Block Codes

We will study an ensemble of randomly constructed block codes in order to prove
the existence of block codes with rate R that guarantee a certain average distortion d.

The random code construction is as follows. We choose at random M code
words of length n, each letter of each word being chosen independently according to a

probability distribution PC (y)s vy € Y. Each output word v has probability
n
P =
> ) 11__11 P (n,)

of being chosen as a particular code word of a random block code. According to this
system, the same code word may appear more than once in a block code. Each block
code of the set of all possible block codes of length n with M code words has a certain
probability of being selected. An ensemble of block codes is then completely specified
by M, n, and Pc(y).

Given a particular set of code words, we define a partitioning of the space U

which minimizes the average distortion. We put u € w, if and only if

d(uvi) = d(uvj), j=1ly, ..., M. (2.3)
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If for a particular u there are several values of i which satisfy Eq. 2.3, then we put u
in the subset denoted Liy the lowest integer. Each block code now has a definite
probability of being chosen and a definite average distortion when used with the source
P(x) and distortion measure d(xy). We now derive an upper bound to the average over
the ensemble of codes of all the average distortions of the individual codes, the
weighting being the probability of choosing the individual codes. We can conclude that
there exists a block code with at least as low an average distortion as that for the whole
ensemble, and hence there exists a code satisfying our upper bound on average
distortion over the ensemble.

Denote the number of letters in the X and Y alphabets by a and b respectively.

Theorem 2.1. Consider the ensemble of block codes consisting of M

code words of length n with letters chosen independently according to
Pc(y). The average distortion over this ensemble of codes, when used

with a source P(x) and a distortion measure d(xy) = 0, satisfies

Ve 2 /2 2
i “i/s o, exp(-n /20 20, exp(-n~ " / 20, )
d=7v'(t)+n +v'(0) { en7? o2 1) + (22,”)1/2 7% 2

3logn B 28
2 (B )
+ o"M-1) K@) exp -n[ey'(t) - v(t) e N 4]}

(2.4)

for any t = 0.

'yx(t) = log ZY Pc(y) etd(xy), y;((t) = ayx(t)/at considered as random
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variables with probability P(x), have mean values y(t) and y'(t), and
variances of and o‘: , respectively. B, , and B,, are third absolute

moments of 'yx(t) and 'y'x(t) s, respectively. EY indicates summation only

over letters y € Y for which Pc(y) > 0.

R LI ey 1 P
K(n) = (2mn) 2 e 2 —XY

where Q(y]x) = P ) LA0Y) = 74 , A = mf;zcyd(xy) oo

The proof of this theorem is rather involved and has been relegated to Appendix
A. It should be pointed out that an upper bound to d could actually be computed for
finite n from Eq. 2.4. However, the main use of this theorem will be to study the
upper bound on d for an ensemble of block codes as the block length n gets very large.
The only term of Eq. 2.4 that does not clearly vanish in the limit as n — « is the very
last term in the brackets, which depends upon M. In this term, K(n) is an unimportant
function of n waereas the exponential in the first exponent is all important since
ty'(t) - y(t) = 0. Substitute M = enR and notice that as n — * we must have the first

exponent

K@) €2-1) exp(n [t7'©) - 7@ +n %+ ¢] n )~ w

to drive this whole term to zero. This can be accomplished if we set R >ty'(t)-y(t) =0
because as n — ®
MR-y’ (0) - (1))

will then be increasing exponentially with n, overcoming the algebraic functions of n in

K(). The bound ond then becomes, as n —
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ds=s Y'(t) .
The above discussion proves the following theorem.

Theorem 2. 2. There exist block codes with rate R > ty'(t) - y(t), t < 0,

that give average distortion ds= y' (t). oo

We will now put the constraints on R and d of theorem 2. 2 in a more useful

form. From the definitions of 'yx(t), v(t), -y'x(t), v'(t) in theorem 2.1 we can write

Y = ) By ® = ) P log ), By e 4*Y (2.52)
X X Y
td(xy)
¥'(t) = Z P6O ¥(0) = Z d(xy) P(x) 1%:(32(:;) . (2.5b)
X XY Z P@G)e Y
Y

It is convenient to define the tilted conditional probability distribution

td(xy)
PC(Y) € td(x) (2° 6)
ZPC(Y) e oY
Y

Qly[x) =

with which Eq. 2.5b (together with Eq. A.6) becomes

d, =v'(®) = ), Qy|x) P(x) d(xy) . (2.7)
XY

Directly from Eq. 2.6 we get

Qy|x) td(xy)

log
P.()

td(xy) - In ), P(y)e
Y

td(xy) - v, @®) - (2.8)
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Combining Eqgs. 2.5a, 2.5b, 2.6, and 2.8 we can define Ru as

R,=ty'® -v©® = ), Q¥[x) PO (dlxy) - 7, ()
XY

_ Qy| x)
= ), Q(ylx) P(x) log ==~ | (2.9)
);Y Pc(y)

Fano(4) has shown (on pages 46-47) that ZYQ(y{ x) log (Q(y| %) / Pc(y) ) = 0 so that we
have R, = 0.

The expression in Eq. 2.9 for R | rdsembles the expression for the averdge
mutual information I(X;Y) of a channel Q(y|x) driven by the source P(x). However,
Eq. 2.9 is not exactly an average mutual information because the channel output
probabilities are ZXQ(y[ x) P(x) which do not in general match Pc(y). The expression
for d jin Eq. 2.7 resembles the average distortion for a source-channel combination.
The interpretation of Q(y| x) as a channel will be used again later.

R and d are related parametrically through the variable t. We may think of
duas the independent variable and t as the intermediate variable when we write

R, = td -7 . (2. 10)

The derivative of the curve of Ruvs duis then (see Hildebrand(g) , pages 348-351)

dR oR
u - t- U dt
dd ot dd
U U
but from Eq. 2.10,
R

- =d, -7'0)

ot

which is zero from Eq. 2.7 because of the way t is relatedtod . The R vsd curve
U U U

has slope t = 0.
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We can show the convexity of the RU Vs du curve for fixed Pc(y) as follows.

2
dR, _ 8 CRU ) e _ 1 _ _1
dd? ot d dd dd v (t)
U U U u

dt
From Eq. 2.7

y'®) = ), P@day) 5 Ayl
XY

2
= ) P(x) [Z Qylx @ @y - (T Qylx dixy) ) ] :
X Y Y

We may interpret the qukntity inside the square brackets as the variance of a random

variable, and ¥''(t) is an average of variances, therefore y''(0) = 0. We have shown

that for fixed PC ),

d°R ]
= —_— = - °
—d—dzu—- 770 0 (2.11)
dd,
Since rralie Yy't)=0, d is a monotone function as t decreases and this fact

together with Eq. 2. 11 show that RU Vs du is convex downward.

2.3 Optimization of the Upper Bound on Average Distortion

For each prqbability distribution Pc(y) we have an ensemble of block codes and
an RlJ vs du curve. From Theorem 2.2 it is clear that we want to find the ensemble
of codes which gives the lowest value of RU for a fixed du . From another viewpoint,
we want to find the lower envelope of all RU vs dlJ curves.

From Eq. 2.10 we see that if there was no parametric relation between t and dU

such as Eq. 2.7, fixing t would give Ru as a linear function of du for any particular Pc(y).
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This straight line in the R - dlJ plane is the tangent to the RlJ Vs dU curve corresponding
to the Pc(y) at the point at which Eq. 2.7 is satisfied for the fixed t. The slope of this
straight line is t (from Eq. 2.10) and its d-axis intercept is y(t) / t, t < 0. Because of
the convexity of the Ru vs dlJ curves, we can find a point on the lower envelope of all
RU Vs dU curves by finding the Pc(y) which gives the minimum d-axis intercept. (See
Figure 2. 1.)

Let us define the lower envelope of all RlJ vs d curves as the curve R* vs d*.

5] u u

We attempt now to find the ensemble Pc(y) which for fixed t gives the minimum d-axis

/

intercept. First, we show that for fixed t < 0, the intercept I(Pc(y) )= lg—)“ =

1
- —v()
[t]

is a convex downward function of the Pc(y). Consider two different probability vectors

Pcl(Y) and Iz: 2(y) and denote

7(;) () =log ), PO eHde)

~<

v = 10g L Py )

P, =AP (M+A-MN)P, (), yeY, 0=a=1

'y)({s)(t) = log% Pcs(y) etd(xy) .

Since log x is 2 concave downward function of x, we use the concave inequality from

(7
Hardy( L (theorem 98, page 80). For any x € X,

o =r P + a-0) Py
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tangents of
slopet <0

Figure 2.1. The lower envelope of all Ru - ducurves may be determined by finding

the smallest intercept I of all tangents of the same slope of the Ru -du curves.
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Fort <0,
(3) (1) (2)
YD) <Ly XY O oy X ()
N (3 e £ A T
therefore, for 0 =A s 1,
IOP_ )+ (-0 P 5)) = AR () +(1-2) IR,()) (2.12)

and the intercept I as a function of the lz: (y) is a convex downward function.
We now seek to minimize I = vy(t)/t for fixed t by varying the l-'é (y) under the con-
straints Pc(y) =0, ZYPC(y) = 1. First we find a stationary point of I with respect

to the Pc(y) while constraining the sum of the Pc(y).

0 v(t) + P (y) =0,t<0.
CRAN ( t ”% c )

Using Eq. 2.5a this becomes

td(xyy)
1y b —=

+ up = 0. (2. 13)
t X Z PC ) etd(xy)
Y

Multiplying this last equation by t Ii: (yk) gives

), P&) QY /%) = - ut B (yy) (2. 14)
X

where we have used Eq. 2.6. We have a stationary point of I if we can find Pc (y), all

y € Y, which satisfy Eq. 2.14. It is convenient to define the probability distribution

Q) = ), QW |x P (2. 15)
X
If we now choose p = - 1/t we see that Eq. 2. 14 becomes

Q@) = Pc(y), allyeY (2. 16)
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and this value of  then implies that the Pc (y) satisfy the constraint on their sum,
However, we can not guarantee that the %(y) which satisfy Eqs. 2. 16 will be non-

negative.

It is convenient to denote

gx(t)= e‘)’x(t) = % Pc(y) etd(xy) . (2.17)

The Eqs. 2. 16 imply that in order to calculate the optimum Iz: (y), we may first solve

for gx— 1(1:) the following set of equations which are linear in gx_ l(t).
(]

Y px) 4OV g® =1,yeV. (2. 18)

X
We may then solve for Pc(y) the set of equations

% By 1Y) _ g, xeX 2.19)

X
which are linear in Pc(y). These operations are easy to perform with the aid of modern
computers. However, we may notice that P(x), d(xy) and t may be such that one or
more of the g,: 1(t) satisfying the Eqs. 2. 18 are negative or zero. A g; 1(t) that is zero
implies that the E‘Iqs. 2.19 are meaningless and we cannot get a solution for f; (y). A
negative gx(t) implies a negative PC (y), but more important, since y(t) = ZXP(X) log gx(t),

we find that the solution for Pc(y) leads to imaginary values of Ru and duT, again a

f There are such P(x), d(xy), t = 0 such that -l(t) < 0 for some x. For example, con-
sider the ternary source with letter probabilities all 1/3, set t = -1, and take
0 log 1.5 log 6
dxy = log 2 0 log 2

log 6 log 1.5 0
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meaningless situation. We can conclude that there are situations in which one does
not have any meaningful solution to Eqs. 2. 16 for a range of t < 0. This can be inter-
preted as an R} vs dj curve with discontinyities in its derivative dR}/dd? , since the
slope of R} vs d is given by t (by construction).

Finally, it should be obvious that there may be situations in which all the
g;(t) > 0 and we still get from the Eqs. 2.19 a negative Pc(y). We have shown that 1
is a convex downward function of the b arguments Pc(y) (b letters y € Y). We constrain
the Pc(y'), considered as points in b-dimensional Euclidian space, to vary within a region
of the (b-1)-dimensional hyperplane ZY Pc(y) = 1, The boundary of the acceptable
region of points Pc(y) are the hyperplanes Pc(y) =0, all y € Y. If the absolute minimum
of 1 lies outside this region, the solution to Eqs. 2.16 may have one or more negative
probabilities Pc(Y)' We can still find a minimum of I along a hyperplane boundary of
the acceptable region by setting some Pc (y) = 0 and minimizing I again by solving the
set of Eqs. 2.16. The fact that such a further constraint on Pc(y) still leads to a
minimum of I is guaranteed by the convexity of I.

The special case of t = 0 must be treated separately. We wish to find a minimum
of

lim  y(t)
t— 0 t

Since y(0) = 0 (from Eq. 2.5a), we may write

lim  y(t) lim  y@®) -¥(0) _
- = - = v'(0)
t—~0 t t—0 t-0
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and so we wish to minimize ' (0) with respect to the Pc(y). From Eq. 2.5b

min ¥'(0) = min ), P(x) P(y) dlxy) (2. 20)
P (y) P(y) XY

and the solution to Eq. 2.20 for which ZY Pc(y) = 1 is the choice of

1 for Y
P@y) =
0 otherwise
where y0 is such that
dmax = }i P(x) d(xy,) = n;in ( )Z( P(x) d(xy) ) ) (2.2'-])

From Eq. 2.6,

lim  Q|x) = P(y)
t—0

so that Q(y Ix) / Pc(y) = 1 and from Eq. 2.9 we see that this implies R: = 0 for this

case. (2.22)

It will be helpful to put our results on the optimum upper bound on-average
distortion in a form which will allow comparison with later results on a lower bound.
If we define the function fo (x) as

t -1
£ = g ©
we may re-write Eqs. 2.20 as a linear set in fz (x)/, i.e.,

Z P(x) etd(xy) f;(x) =1, yeY. (2.22)
X

The optimum Pc(y) can then be found as the solution to the set of linear equations

; Pc(y) etd(XY) = f;t(x), x € X. (2.23)
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For the optimum ensemble of codes, we may interpret the Q(y l x) as a channel driven
by the source P(x), with output probabilities ZX Q(y | x) P(x) = Q(y) = Pc(y). We can find

the dual set of transition probabilities Q(x|y) which specifiy this channel as

Qlyy = QWP | P &%) £ o
P ) > rw S0

P(x) 4™V f:)(x), 2. 24)

where we have used Eq. 2.22. From Eq. 2.24 we find the useful relation

Qxly) _ Qlx)
P RG) (2.25)

so that we may re-write Eqs. 2.7 and 2. 9 for the optimum Iz:(y) as

RO = ) Qixly) By Q&0 (2.26)
u XY c (x)
d*e) = ), Qx|y) B(y) dxy) , t= 0. (2.27)
XY

We see that the Ru*(t) - d:(t) function is defined by Eqs. 2.26 and 2.27 and by the

sets of Equations 2,22 and 2. 23.

Theorem 2.3 For any t = 0 and any € > 0, there exist block codes with

rate R = R:(t) + € and average distortion at least as low as d:(t). oo
The Q(y|x) may be interpreted as a channel whose transition probabilities
depend on P(x), d(xy), and t. R: is the average mutual information of the channel
Q(ylx) when driven by the source P(x), and d: is the average distortion from this source-

channel combination.
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Shannon( 1 showed that any channel with input and output alphabets X and Y,
respectively, could be used as a test channel to prove a coding theorem for a source
with a distortion measure. His coding theorem states that there exist block codes
with rate arbitrarily close to but greater than the average mutual information of the
source-test channel combination with average distortion equal to that calculated for
the source-channel combination. J. L. Kelly ©) used this approach to prove a coding
theorem for amplitude -continuous sources by using a continuous channel. Our work
here obtains a coding theorem for sources without using such a test channel, but the
resulting expressions involve a fictitious channel Q(y|x). Moreover, we only have a
strict channel interpretation after optimization iof the upper bound on average distortion
with respect to the code ensemble Pc(y).

As a special example, suppose we have a distortion measure with the property
that for every x € X there is one and only one y = A such that d(xyx) = 0. There is only
one way to represent the source output exactly (zero distortion) in this case. Since,
from Eq. 2.6

lim Qlx) =g _ ,
t— - Vo Yy

we have for this case

lim d*(t) =Z P(x) & d(xy) = 0.

t— Xy X
Also
Z 6 log 6 =0 so
Y Y’YX y’yx

1 .
lim R*{) = P(x) log 5+ = H(X)
£ — 0 u ; P(x)
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where H(X) is the well -known source entropy. From Eq. 2.21 we see that for t = 0,

d*(0)=d, , and from.Eq. 2,22,
U max
* =
RU(O) 0.

In general, R:(‘-*)'=\O if and only if each source letter x € X has some output letter y

such that d(xy) = 0. A typical R: ) - d: (t) function is shown in Figure 2. 2.

t— -

N

decreasing t = 0

Figure 2.2 A typical function R: vs d: .
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2,4 Lower Bound to Average Distortion for Fixed Composition Block Codes

We have demonstrated the existence of block codes that guarantee a certain
average distortion. Now we seek a lower bound to average distortion applicable to all
block codes, so that we may compare the performance of our randomly constructed
codes to the best possible block codes.

First we define a distance function
D(xy) = d(xy) +log f(x) (2. 28)

where d(xy) is the distortion measure and f(x) may be any strictly positive function

defined on the source alphabet X. The distance between two sequences u and v is

defined as
1o 1<
Dv)= 2 ), D) =5 ) @(n)+log £(5))
i=1 i=1
1
=d(uv) + o f(u) (2.29)
where we have denoted
n
=[] )
i=1
.. For any output word v of length n we may count the number of times each letter

of ;he Y alphabet appears. We denote by n(yk) the number of times letter ¥, appears
in the v sequence and we call the set of integers n(y), y € Y, the composition of v. The
composition of a source word u is denoted n(x). The product composition of a pair of
sequences u - v is denoted n(xy) and is the number of times: the letters X, and yj appear

in corresponding positions of the u and v sequences. The product composition of a u-v

pair is such that



29

Y n(xy) =n, ), n(xy) =n(y), ), n(xy) = nx).
XY X Y

For a u-v pair with product composition n(xy) we can write the probability of the source

word U as
Y, nxy)
Pu) = || ™™ = ][ pew) = ] py™® (2.30)
XY X X
and the distance between the u-v pair is
D(uv) = % Z n(xy) d(xy) . (2.31)

XY

We see that for an independent letter source the probability of a source word depends
only on the composition of the word. Also, the distance function and distortion measure
between sequences depend only on the product composition of a u-v pair.

The distance function D(xy) can be thought of as another distortion measure so
that for any block code consisting of the code words vi, i=l, ..., M and a given
partitioning of the source space U into encoding subsets Wi i=1, ..., M, we may write
the average distance for the block code and encoder as

M

D= Z Z P(u) d(uvi) . (2.32)

i=l w,
i

Theorem 2.4 Consider a source P(x), distortion measure d(xy) = 0, and

a positive function f(x). Suppose we have a set of M code words of length
n and all have the same composition nc(y). Let Uo represent the subset of
source sequences u for which D(uvo) = Do for any particular sequence v0

with composition nc(y), and D0 such that U0 is not empty. Then if M is
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such that

Ms —1 (2.33)

Y, Pu)

U
o

the average distance for the block code satisfies

g P(u) D(uv,.)

D=z-0 3 . (2.34)
P(u) .o
U
(o)

Proof  The proof of this theorem is analogous to R. G. Gallager's (unpublished)
proof of a theorem on the lower bound to the probability of error for a memoryless
channel.

A block code in which all code words have the same composition will be referred
to as a fixed composition block code. We proceed to derive a lower bound to tite average
distance that any block code of fixed composition nc(y) could give for any partitioning
of the source space. For each code word vi, i=1, ..., M, we define the increasing
staircase function Fi(z) as follows. List all source sequences u of length n in order of
increasing D(uv) and number the sequences in the i - th ordering u i’ u 3 s oo
Now define

Fi z)=0, z<0

F‘i (z) = D(uh,vi), O0=z= P(uli)

Fi (z) = D(uZiVi)’ P(uli) <z = P(uli) + P(u2i)
k-1

F(z) Duy; vy, ), Pu,) <z = Z P(u;;)

]=1 J_
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We may visualize every source word u being represented in Fi(z) by a rectangle with
height D(uvi) and width P(u). (See Figure 2.3.)
For a given partitioning w,, i=1, ..., M, we can write the average distance as
_ M
D=) D
i=1

where

D, =), P@)D@v) .
Wi '

I}

If we shade all rectangles of Fi(z) corresponding to all u sequences in W, we can inter-

pret -Isias the area of these shaded rectangles. Each Bi is lower bounded by

Z:
— i
Dz [ Fdz, z=), P . (2.35)

0 w,

' i

We have underbounded _D-l by the area under F1 (z) on the intexrval 0 = z = z,. This
bound may be interpreted as a sequential process of replacing the area of shaded
rectangles for the largest D(uvi) by smaller areas in unshaded portions of Fi(z), pre-
serving the width measure of the shaded rectangles, until the entire area under Fi(z)
is shaded out to some z,.

Define

z
0, = [ F@)dz
(o)

where the ¢i (z) are convex downward, monotoneiincreasing, continuous functions of z.
The main point of the proof hinges on the fact that P(u) and D(uv) depend only on the

product composition of the pair u-v and so for code words u with identical composition
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YL'

NN

F.(z) —~

5
N

-
D(uv,,) ’—V/

s

>~

N

z' z

()

Figure 2.3 The function Fi(z) for a code word Vi of composition nc(y), showing some

of theu € Vs Zps z', and Do'
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nc(y), the ¢i(z) are all identical and we may drop the subscript i. Note from Eq. 2.35

that

since every source word is in some subset W We may now apply the convex inequality

(see Hardy‘g)‘, theorem 86, page 72) to give us

— M 1 1 1
D=M), 4 ¢@) = M¢<Z %) = Me(3p) - (2. 36)
i=1 i=1

A lower bound to D for any block code of fixed composition n (y) is achieved if we

assume that we can make all z, =2 = 1/M so that

= 1
by = ey -
We can write Eq. 2.36 as
= 1 Zo
D= z of F(z) dz (2.37)

which may be interpreted as the average area per unit length under F(z) for 0=z = Z -

Clearly, with this interpretation the monotonicity of F(z) allows us to write

1 1 :
7 of F(z) dz = 7, J Fiz)dz, z' =z . (2.38)

Let us then define z' by

2= ) M=z = or (2.39)
U
o

where Uo is the subset f of source words for which D@v,) =D,. Any D for which

(o]

T Hereafter we will use the standard shorthand notation in the definition of sets, e. g,
Ug={ul D(uvo)sDo}
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Eq. 2.39 is true can be used to define Uo' Hence, if Do is a constant such that

1

Y, P(u)

U
0

M=

then from Eqs. 2.37 and 2.38 and the definition of F(z),

@ P(w) D(uvo)
D = —2

). P()

U
o

Q.E.D.

This theorem on average distance leads to a lower bound on average distortion

for block codes of fixed composition nc(y). From Egs. 2.29, 2.32, and 2.2 we sée that

M M
=Y Y Pwdv) + = ) Y Pu)logf()=d+) Px)log f(x)  (2.40)
i1 w, ! = w, X
since
n
log f(u) = ), log f(£) , u= (),
i=1

and this term is entirely independent of the block code. We may now restate Theorem
2.4 in terms of its implications to the average distortion of fixed composition block

codes.

Theorem 2.5 Suppose we have a source P(x), distortion measure d(xy),

and any positive function f(x). Any block code with M code words of length

n, all having fixed composition nc(y), which satisfies

1
Ms ——— (2.41)

Y, P(u)
U

(o]



must have average distortion that satisfies

Y, P@)D(v,)

d =20 - Y P(x) log £(x)
Y, P) X

Y

where

u ={u] D(uvo)SDo},

v, is any output sequence with composition nc(y),

D0 is such that U, is not empty.

35

(2. 42)

It is difficulti'. to get bounds on the expressions in Eq. 2.42 for finite n which will

give the correct asymptotic bound on d as n — =, These difficulties and methods of

surmounting them are the main concern of Chapter 3. Our present interest is to obtain

the correct limiting forms for the constraints on M andd as n— <,

Let us define the sets
A={u] D -6 SD(uvo)SDO} , 6>0,
u-a= {uID(uvo) <D, - 6}
and denote the right hand side of Eq. 2.34 as D..’ We re-write Eq. 2.34 as

Z P(u) D(uvo) + ; P(u) D(uvo)

b— = DL - UO-A
Y, P(u)
U
(o]
P(u)
= (Do -6) .

(2.48)
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For a given v, nD(uvo) is a sum of independent, non-identical random variables and

we may write the distribution function for the random variable D(uvo) as
= P =
P (x) = B [Dv)=x |
so that Eq. 2.43 becomes

P,D,) - PuD-6)

DL = (Do -6)
P @)
-@-8) (1- a8 1y (2.44)
P, @)
@

We may apply Fano's' * bounds (pages 265 and 275) on pn( x ) for a given A

which are as follows,

K (@) eMEM) < p ()= MEN) | i<y, (2.45)
where E(x)= tu'(t) ~p) =0
k)= Y, B.) log 3, Px) 0OV (2.452)
Y X
P (y) n;(Y)

and t is chosen so that

p'e) = %&E_t)_ =y €mean value of X . (2.46)

KL(n) is only algebraic in n and is similar to Eq. 8.125 of Appendix A. p''(t) can be

interpreted as an average of variances, so u''(t) = 0, implying p'(t) is a continuous

monotone increasing function of t which then guarantees that we can always satisfy
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Eq. 2.46 for some value of t = 0. If we have
W'(t,) =D
;L(t:2)=Do -6,6>0

then t, <t, =0.

Since —;—lt- E(x) = tu''(t) = 0, for t = 0, E(x) is a continuous, monotone decreasing function

oft=0and 0= E(DO- 6) < E( Do)' This difference in exponents in the bounds of Eq. 2.45,

when applied to Eq. 2.44, overcomes the function KL(n) as n— <« and we have

BD,-0
P (D) ’

We conclude that for arbitrary 6 > 0,

lim D =D -5
L [o)

n—.co

Therefore the limiting form of the bound on average distance is, for n— «
D= D.
o

Applying Eq. 2.40, the bound on average distortion is, for n —

g lim D - ), P(x)log f(x)

n— o X
= D }‘)_(, P(x) log £(x) . (2.47)

We can write the constraint on M of Eq. 2.41 more conservatively, using Eq.

2.45, with t chosen so that u**(t) = Do’
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M="E(D) o L . (2. 48)
Y, PQ)
U

0

From the definition of R we have the constraint on the code rate
R = -[1; log M= E(D,) . (2. 49)

We summarize the above discussion with the statement of a theorem.

Theorem 2.6  There exist no block codes of fixed composition nc(y) with

rate R = tp'(t) - p(t), t = 0, that give average distortion

d < u'@) - ), P(x)log f(x) . .o
X

We now put the constraints on R and d of Theorem 2.6 in a more useful form.

From the definition of u(t) in Eq. 2.45, we proceed (as in Eqs. 2.6, 2.7, and 2.9) to

define
ey _ Qx}y)
R =tp'(t) - u(o) —XZY Qx|y) B() log pes (2.50)
dL =pu'(t) - Z P(x) log £(x)
X
=), Qx[NEG)dey) + ), (Q) - P(x) ) log £(x) (2.51)
XY X
where

P(x) etd(xy) ft )
Z P(x) etd(xy) ft(x)
X

Qix|y) = (2.52)
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and

Qx) = ), Qx| R) - (2. 53)
Y

RL resembles the expression for the average mutual information of a channel Q(x [ y)
driven by the source Pc(y), but Q(x) and P(x) do not match in general so there is only
a resemblance.

For each function f(x) and composition Pc(y) we have a curve Rl_ Vs dl_ with RL
and d_related para:aetrically through t. We may think of d as the independent
variable and t as the intermediate variable when we write, from Egs. 2.50 and 2. 51,

R o=t + ; P(x) log £(x) ) - p(t) - (2.54)

The derivative of the Rl_vs dl_curve for fixed f(x) and Pc (y) is

.dR _ 9R,_ dt

—bl =
aa " 't et ad
[ L.

but from Egs. 2.50 and 2.51 we see that t is chosen so that R'_/ ot = 0, hence

dR. =0 . (2.55)

We can show the convexity of RLvs d._ as follows.

&R, _ 9 (dR._).dt _ 1 _ 1
sk = = -
dd’ ot \dd dd, dd,_ B (t)
dt

1''(t) can be interpreted as an average of variances so

2
IR =
d@

L

dd
and 3 tL = u''(t) = 0 is 2 monotone function of t. We conclude that R vsd isa
i [
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continuous, convex downward function of t with continuous slope for fixed f(x) and PC ).

2.5 A Lower Bound on Average Distortion for Block Codes

The arbitrary function f(x) may be thought of as a parameter which may be
adjusted to optimize the lower bound on average distortion for block codes of fixed
composition Pc(y). Fano(4) used such a function in his derivation of both upper and
lower bounds on probability of error for discrete, memoryless channels. To get the
strongest lower bound to average distortion for a fixed f:: (y) we should maximize R

with respect to the f(x) while holding dl_ fixed. Using the expression in Eq. 2.54 for R,

we obta inJr

(ar5) -
af(x ) 8t 8f( ) of(x )
ka()@) j=k k *

Again, aRL/Bt = 0 by choice of t. Using Bgs. 2.54 and 2.45a,

oR

BE(R) f(xk)

(PGx) - E P )k |y) ) =0.

Using Eq. 2.53, we find that we have a stationary point of Rl_for fixed dL if we choose
f(x) so that

Px)=Q(x) , allxe X . (2.56)
We cannot show explicitly that this stationary point of RL is a maximum with respect to
the f(x), but the Theorem 2.6 is true for any positive f(x). Let us then assume for the
present that for fixed Pc(.Y) and each value of t = 0 we can find a positive f(x) such that

Eq. 2.56 is satisfied and let us then use this f(x) in the following work.

T

We use Hildebrand's (8) notation of page 350, Eq. 4b.
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We now find a lower bound to average distortion for any fixed composition block

code by minimizing RL with respect to Pc(y) for fixed d , under the constraints that
| .

Pc(y) =0, ZY Pc(y) =1, We solve

0
(R+A ) P(y))=0
aPc(yk) L v ©
for fixed d . Again using Hildebrand's( 8) notation,
L
9R
(8P (I.) ) = Z BRL 0 f(x) + aRL
Y,
¢k X df(x) 9P(y) oF ()

ROy, i
since aRL/at = (0. Also aRL /0f(x) = 0 for all x because the f(x) are chosen to make RL
stationary. We obtain

_aBJ-_ + A=0

81;(yk)

and from Eqgs. 2.54 and 2.45a, Pc(y) should be chosen so that

log ), P(x) 40V oy = K (2.57)
X

where K is a constant independent of y. We may re-write Eq. 2.57 as
Y pw) 90 iy =k (2.58)
X

but since ZX Q(x|y) = 1 for any y, we see that Eq. 2.58 together with Eq. 2.52 implies

Y P OV oy =1, anyey. (2.59)
X
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It remains for us to show that the choice of Pc(y) which makes Eq. 2.59 true

corresponds to a minimum of RL for fixed dL. Notice first that with Eq. 2.59, we can

re-write Eq. 2.56 as
2 Boy) V) = £y, allxeX . (2. 60)
Y
The functions R:(t) and d:(t) corresponded to a lower envelope of all Ru Vs dufor
different Pc(y) and this implies that we found a minimum of R:(t) with respect to Pc(y)
for fixed d*(t). The Eqgs. 2.22, 2.23, 2.24, 2.26, and 2.27 define R }(t) and d:(t).
Comparing these equations to Egs. 2.59, 2.60, 2.52, 2.50, and 2.51, we see that the
two sets of equations match exactly and we have therefore found a minimum of R;_ with
respect to Pc(y) for fixed dL.

Instead: of attempting the solution of Egs. 2.56 for f(x) for any given Pc(y), we
just solve Egs. 2.59 for ft(x) and then solve Egs. 2.60 for the optimum composition
Pc(y). We may then drop our assumption concerning the existence of solutions to
Egs. 2.56 and the statements about the existence of meaningful solutions to the
Egs. 2.18 and 2. 19 defining the upper bound will apply to the solution of Eqs. 2.59 and
2.60 defining the lower bound.

We now have a lower bound on average distortion for any fixed composition
block code, and we may define the functions

R*t) = R*(t) = R](t)
(2.61)

d*@) = d:(t) = du*(t) .

We have proved the following theorem.



Qx|y),
P(x) = Q(x) P(y) = Q)

or Q(y|x)

p.(y) V)
Y P.(y) LHxy)
Y C

Qylx) =

R*©) = ), Q%) P() log —Q—f,x(y'%)— , d*0) = ), Q%) PG dexy)
XY c XYy

Figure 2.4 The test channel.
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Theorem 2.7  For any fixed composition block code with R = R¥%(t),

t = 0, the average distortion must satisfy d = d*(t). X

Note that our choice of f(x) satisfying Eq. 2. 56 implies that the output probabilities
Q(x) of the channel Q(x [y) driven by the source Pc(y) match P(x) and RL corresponded to
the average mutual information of this source-channel combination, We also see from
Eq. 2,51 that d.. corresponds to the average distortion for the source-channel combi-
nation. We could actually use the channel Q(x [‘r) for any Pc(y), if we can satisfy
Eq. 2,56, as a test channel and prove a coding theorem as Shannon does. We could
show that there exist block codes with rate arbitrarily close to but greater than the

average mutual information of the Q(x [y) . Pc (y) combination which give average distortion

d= )

Our asymptotic upper bound on average distortion only agrees with our lower

Qxly) P (y) d(xy).

bound for fixed composition codes only for the optimum choice of I:: (y). This can be
seen as follows. In the upper bound derivations, we do not have a test-channel inter-
pretation until we have optim ized with respect to Pc(y). In the lower bound derivation
we have a test-channel as soon as we select f(x) to satisfy Eq. 2. 56 for any Pc(y) for
which such a solution is possible. For other than the optimum choice of l"C (y) the best
asymptotic lower bound leads to a test channel and the upper bound does not.

Theorem 2.8 Any block code with rate R = R*(t), t = 0, must have

average distortion d= d*(). oo
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Proof Any block code of length n can be broken up into sub-codes of fixed
composition. There are B = nb comporition classes of length n. Each sub-code has a
probability of occurrence which is the sum of the probabilities of all source sequences
included in the encoding subsets W of code words of the sub-code.

Let cj denote the j-th composition class and pJ the probability of the sub-code
with the j~th composition. Suppose there are MJ code words in this sub~code. Our
lower bound on average distortion for fixed composition codes applies equally well to

sub-codes. As in the proof of Theorem 2.4, we assume that we have disjoint subsets

W of equal probability WIEL . Then each encoding subset of the fixed composition sub-
j

p. .
code gives the same distortion, which is a function only of -Ml- or log leI'L The
j j
average distortion of the j-th sub-code is then bounded by

M.
log _._l_)
Ps

=R

d = d(

G

where do( * ) may be thought of as the expression for d*(t) explicitly as a function of
R*(t). The lower bound on average distortion for any block code of length n then

becomes

M

B B .

d=Y pd=) pd (=log—). (2. 62)

: . o'n p.
j=1 =1 J

We see from the definition of do(-) that in order to lower bound do(' ) we must overbound

its argument.
At this point we make use of a combinatorial theorem on the distribution of a
set of weights totaling one pound into B boxes. If we have 0 <q < 1, at least q pounds

of the weights are contained in a set of boxes each of which contains at least (1-q)/B
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pounds per box. The proof of this theorem is simple. Consider the set of all boxes
each of which contains less than q/B pounds of weights. This set of boxes must contain
a total weight of less than q/B times the total number of boxes or q pounds. The
complementary set of boxes then must contain at least 1-q pounds.

Associating boxes with composition classes and weights with prbbabilities of

sub-codes, we define the subset C* of composition classes as

c*={cl|p=3,0<q<1},
{cgle= 5 q<1}

so that we know from the combinatorial theorem

* -
Pr[C]Zlq.

Pj q
- 1 MB
d d = = log — .
an [Zd (5 log =)

For Cj not in the subset C* we underbound dJ by zero and Eq. 2. 62 becomes

- 1 MB . _ . 1. MB
d zé* p;d, (7 log ==) = RIC* 4 ( log ==)
1 MB
= (I~ d ( ~ log q ) . (2.63)

b 1 . .
We may overbound B = n~ and choose q = L S° that our lower bound on average distortion

for any block code of rate R = %log M becomes
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- 1 1 b+l
d = (l-n) d0 ( nlog Mn ) . (2.64)

We see that as n — * the lower bound on average distortion for any block code approaches
(from below) the bound given in Theorem 2.7 .for any fixed compositicn block code. This
lower bound is weak for finite n but is asymptotically correct for n — %,
Q.E.D.
Example 1 - Consider the binary independent letter source with probabilities

P0 = 0.8, Pl = (0.2, and the distortion measure

d.=1-6_; i,j=0,1 .

The distortion between binary sequences is just the Hamming distance divided by the
sequence length. Computer programs for the IBM 7090 were written to calculate the
R:_ Vs dL curves so that f(x) and then PC (y) could be optimized. The RlJ Vs du curves
were also computed and Pc(y) was optimized. We show the results of these calculations

in Figure 2.5. Even the simple case of the asymmetric binary source refjuires the use

of a non-trivial function f(x).

1
Example 2 - Consider Shannon's (13) example of the symmetric binary source
with output alphabet consisting of the three symbols 0, 1, and ?. Suppose we have the

distortion measure

0 1 ?
d.. = 0 0 1 0.25
1j
1 1 0 0.25

If we did not have the ?, the rate-distortion function would be given by

1"I'his result is derived in Chapter 4.
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P =0.8 0
P =0.
1 0.2 1
0.4 |
R*(t) vs d*(t)
L - 1.0
92}
bt P.(0)vsd
=
o 0.2 A
5
e
L 0.8
£(0) vs d - 0.6
0 i 0.5
0 0.1 0.2
d—-»

Figure 2.5. The rate-distortion function for an asymmetric binary source showing

the optimum f(x) and 12 ).

£(0) and PC(O) —
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N =

Rd) = 1-Hd) , 0 =d=

’

where H(d) -dlog d - (1-d)log (1-d) .
With the ?, we find gx(t), given by Eq. 2.17 is independent of x and the Eqs. 2. 19

become

t/4

g0 = q (1+e") + q, e (2. 65)

where the lz (y) = q, are
¢
9,=9; = probability of 0 = probability of 1
q? = probability of ? .
We may write the Egs. 2. 1§ as
glt) = (1+e") / 2 (2. 66a)

g =4 (2. 66b)

It is easy to determine that t = 0 and only one negative value of t satisfy both Eqs. 2.66a

and b. Eq. 2.65 becomes
2qo + q? =1
which is satisfied for any ensemble with our restriction that q,=4;- This implies that
we have R*(t) vs d*(t) for any 0 = q, = 1 with constant slope t* which satisfies
%* *
(1+et )/2=et /4 .
For q, = 1 we have d* = 0.25 and R* = 0.

For q,y = 0, we have the ordinary binary symmetric source and Hamming distance dis-

tortion measure, so for t = t* we have
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0. 693 0
0
0.25
?
0.6 - 0.25
1
0
0.4 -
t
2 "with 7"
g
3
q
-4
Ol 2 -
"'without ?'', R(d) = 1- H(d)
0 T
0 0.25 0.5
d—
Figure 2.6 A rate-distortion function with a discontinuity in slope and a straight

line segment.
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R*t)=1-H*t)) .
We show these results in Figure 2. 6.

It is seen that the straight line portion of R*(t) vs d*(t) arises when we have one
more independent constraint in the set of Eqs. 2. 18 than we have in the set of Egs.
2.19, The Pc(y) are then not uniquely determined and there are many ensembles I:: (y)
which satisfy Eqs. 2.18 and 2. 19 for only one fixed value of t. We have illustrated an
R*(t) vs d*(t) with a discontinuity in slope since we have solutions for Eqs. 2. 18 and
2.19 only for

t=0,t=t*<0.

Another interesting point occurs in studying this example. The curve R*(t) vs
d*(t) is the lower envelope of all Ru Vs dU curves which in turn are all continuous,
convex downward, with continuous slope given by t = 0. It is then impossible to have
a discontinuity in slope in R*(t) vs d*(t) for some range t,=t=t, where t 1< 0. We

may, however, have straight line segments in R*(t) vs d*(t) for any t = 0.

_2.6 SummarX

We have discussed the performance of block codes used in encoding the output of
a discrete, independent letter informartion source with a distortion measure. First, an
upper bound to average distortion was derived for block codes of finite length n in which
M code words were selected at random, each letter of each cbde word being selected
independently according to a probability distribgtion I-;: (y). The asymptotic form of this
upper bound for n — * was studied in detail. For each different probability distribution
Iz: (y), the asymptotic upper bound took the form of a continuous, convex curve Ru vs dlJ

with continuous derivative. We found the strongest upper bound on average distortion
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by finding the lower envelope of all Ru vs du curves, denoted R*(t) vs d*(t) and given

parametrically as a function of t = 0.

R*(t) vs d*(t) was found to be a continuous, convex downward function with

R*(0) = 0 and

= min Z P(x) d(xy) ,

d*(0)=d
m Y X

ax

which agrees entirely with Shannon's results‘ls) . Also, R*(t) is given by an expression
which could be interpreted as the average mutual information of a test channel Q(y[x)
driven by the source P(x). d*(t) is given by the calculation of average distortion when
the source output is transmitted through the test channel Q(ylx). Our formulation of a
coding theorem had no channel in it, yet the results appear to involve a test channel
Q(y]x). We also found the slope of R*(t) vs d* (t) to be given simply by t =< 0.

We mentioned that d*(t)— O for t — - = if and only if each source letter x had
some output letter y for which d(xy) = 0. The case of d*(t) not approaching zero is
analogous to the problem of the zero error capacity of a discrete channel and is taken
up in Chapter S of this thesis.

Next, a lower bound to average distortion for block codes of fixed composition
Pc(y) was derived. This bound involved an arbitrary positive function f(x), similar to
that used by Fano(4) in bounding the probability of error in discrete, memoryless
channels. The asymptotic form of the lower bound to average distortion for n — «
for block codes of a fixed composition Pc (y) was found and the bound took the form of a
curve Ri_ vs d'_ for each f(x) and Pc(y). We optimized the lower bound with respect to f(x)

and Pc (y),obtaining a lower bound on average distortion for any fixed composition code.
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We obtained exactly the same parametric functions R*(t) and d*(t) over the same range
of t = 0 as we obtained in the upper bound. Optimizing first with respect to f(x) lead
to the interpretation of a test channel Q(xly) for any Pc(y). The test channel for the
optimum composition IZ: (v) was shown to be identical with the test channel Q(y|x) found
in the upper bound.

We were then able to show that the R*(t) vs d*(t) curve applied also as an
asymptotic lower bound on average distortion for any block code. This allowed us to
identify our parametric functions R*(t) and d*(t), t = 0, with Shannon's rate-distortion
function R(d). Our test channel Q(xly) (or Q(ylx) ) may be identified with Shannon's
test channel in his definition of the R(d) function. However, we provide an explicit
solution for the transition probabilities of the test channel and, hence, also for R*(t)
vs d*(t) in the Eqgs. 2.6, 2.7, 2.9, 2.18, and 2.19. (See Fig. 2.4.)

An example showed that we may have straight line segments in R*(t) vs d*(t)
but the only discontinuity in slope must occur on the R*(0) = 0 axis. Each straight line
segment of R*(t) vs d*(t) could be attributed to one more independent constraint in the
set of Eqs. 2.18 than in the set of Eqs. 2.19., We then have a non-unique solution to the
Egs. 2.19 for a certain value of t (the slope of R*(t) vs d*(t) ), which implies that we
have many compositions Pc (v), and hence many values of R*(t) and d*(t) for which

R*(t) vs d*(t) has the same slope.

The lower bound on average distortion for finite block length codes is a very

difficult problem which is treated separately in Chapter 3, A different fidelity criterion

from average distortion per letter is also treated in Chapter 5.
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CHAPTER III
ASYMPTOTIC CONVERGENCE OF THE LOWER BOUND ON AVERAGE DISTORTION

3.1 A Lower Bound to Average Distortion

Our treatment of the lower bound on average distortion for any block code resulted

(15 has shown that the

in the limiting expressions as the block length n — *. Shannon
rate-distortion function R*(t) vs d*(t) is a firm lower bound on average distortion for
any block length. We have no stronger lower bound on average distortion for finite n,
and hence no estimate of the convergence of the lower bound to the limiting form as

n — °, This is a weaker result than that given in Theorem 2.1 for the upper bound on
average distortion. We will show the inherent difficulties in obtaining such strong
results in the lower bound case, and we will instead find asymptotic expansions for the
lower bound expressions showing the convergence with large n to the limiting form.

We will study the expressions in Theorem 2.4 (given again below) as functions

of n for constant D and a given output sequence A with composition nc(y).

R = = logM_=- %105 PIU] @3. 1a)
g, P(s) D(uv,,)
_ Yo
D =—Fiu] (3. 1b)
r o

where
u={u ID(uvo) =D}.
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Since the above expression for D.. differs from the lower bound on d given in Theorem
2.5 only by the term ZX P(x) log f(x), which is independent of n, it is sufficient to study
R_and D_for large n to find the rate of convergence of the bound on d to its limiting

form.

We are concerned with the random variable

=

n D(uvo) = D(¢ ini)

i=1

[
i

which, for a given v, = (ni) is a sum of n independent, but non-identical random

variables. Define the distribution function

0= P [nD@v) = x|

so that Eq. 3. 1b may be re-written

nD
()
_[o x dpf_(x) I,
nD = D = 7 . 3.2)
o D
S ap 0

Consider a new random variable whose distribution function Hn(x) is defined by

x ’
f e dap,(x")
HOO = — , (treal), 3.3)
J o™ o
so that
tx
dHn(X) = ew dPn(x) . 3.4)

J a% ap )

Define the moment generating function of «Pn(x) as
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g0 = ¥ = [ eXap o) .5)

Since we are dealing with the sum of independent random variables we can write un(t) as

D
b= = L noiog ], &9 py = EAOTNC (3.6)

n.(y)

where lt: (y) = -

The mean value of D(uvo) is

D = ; P (y) ; P(x) D(xy) = 1 (0) - (3.7)

By an argument analogous to that used to show y''(t) = 0 in Chapter 2, we can show
nur'l' (t) is the variance of the distribution Hn(x), S0 p;l'(t) = 0 and pl’l(t) is a monotone

increasing function of t. Let us fix the value of t so that
=yt < - .
D po(®) D 3.8)
We can always find such a t = 0 for DO = Drn because “;1 (t) is continuous and monotone
in t. Now let us re-write Eq. (3.2), using Egs. 3.4, 3.5, and 3.8.

np (t)
0D = en#n(t) _L n X otX dH_ (x) Ct=o. 3.9)

nup(t)
enp'n(t) f n etx d]_/n(x)

The distribution Hn(x) has mean value nu;l(t) and variance nu;l' (t). If we make the
substitution
X - oyl ()
NETio)
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and write %n(z) for ]-/n (W;'—(?)‘ z+ nu;l(t) ), we obtain a distribution 8n with mean
zero and variance one, suitable for application of ordinary central limit results. The
Eq. (3.9) becomes

eny(t)-ntu'(t) fm NI z+0p'(D) ) e -t N () z d3 (z)

(3. 10)

nDl_ = en;,t(t)-ntpt'(t) 0 --t'\fnu"(t) z d%n(z)

We have dropped the n subscripts on p, p', u'", remembering that these quantities have

an n-dependence because A must be selected for each n.

(1)

We could use the central limit theorem by Cramer" ° (page 77-78) to write

15 @ - 8@ | < c_fm log n 3.11)
n(t)3/l '\/-Ill_'

where 8 ;N is the third absolute moment of Hn and C is an absolute constant. A substitu-~
tion for d%n(z) from Eq. 3. 11 would enable us to use integration by parts to obtain
(17

bounds on the integrals in Eq. 3. 10. Shannon ) has derived upper and lower bounds on

the integral in the denomination of Eq. 3. 10 in exactly this manner. Although his bounds
were derived for identically distributed random variables, it is clear from Cramer's
work on asymptotic expansions of %n(z) - &(z) ((1), Part II, Chapter VII ) that our case
of non-identically distributed random variables only introduces the n-dependence in p,
u, u'', ... as we have defined it in Eq. 3.6.
Shannon's upper bound to the denominator of Eq. 3..10 is
() - ntp'(t)

|t| NZmp™ ()

K(n)
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where K(n) is a function of t, p'*, p'''*, and powers of n. The limiting form of K(n)
satisfies

Hm o )y s 1.

n-— o0
The numerator integrals involving C 8 log n /Nn ( u'ﬁ (t) )%  can all be bounded
n
uniformly in n so the factor 1/Nn will cause these terms to approach zero as n — «.

The numerator integrals involving &(z) are lower bounded by the expression

np(t) - ntp'(t) "
£ nu (t) (1 - Zt“ + ni ' ntZ " ) t <0.
lt|N2Zrap ™y #

We can see that the limiting form of the bound on DL is

D ~ UM _HO- 2070

- n—+ K(n)

whereas we know from Chapter 2 the correct limit is u'(t).
We conclude that a much stronger central limit theorem than Eq. 3. 11 is needed
to get the desired lower bound to D:. to converge to u'(t) as n — ©. The factor
enu(t) - ntp'(t)

[t] NZrnp™ ()

is common to the tight bounds on the numerator and denominator of Eq. 3.2 and cancels.
Our bounds must therefore be asymptotically correct inthe terms of lower order in n
than the cancelling factor. In the next section, we will then study an asymptotic

expansion of D .
| .
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3.2 Asymptotic Expansion of D

In order to get an asymptotic expansion for nDL_, we must have asymptotic expansions
for the integrals in Eq. 3.10. Since iin is the distribution function for a normalized
sum of independent random variables, we can expand it in an asymptotic series and
proceed to derive an asymptotic series for the integrals of Eq. 3.10. Let us suppose
for the moment that we have the expansions

0

[ Mas @=L+ %2 + 93 4
- o n ny?‘
3. 12)
0
C C C
[ 2e%%d5 (z) = L +_2 +3 4+ .,
- n n n¥? n®

where a = 'tl '\]nu"(t) . We can derive the expansion for the numerator of Eq. 3. 10

in a straightforward manner.

(LG ) e (BB

! 8 8 PN d a
o ( LS 2% + +dp + 243 )
le] N27np® n n Nn n
s (31 + 9 4 ctdy L ) (3. 13)
|t| 'JZwrnp" Nry n
I«’ [
where c lt' H,Z"“ Cyo etc.
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L = (d1+..._..+........+....) 3. 14)
Itl'\l21mu” Nn n
T

If we expand nDL in the asymptotic series

, el e 1
nD nu <e0+ + + O(H)\)

,\]F n

we can find the coefficients ei in terms of the ci and ai .

Ly~ oy’ (&l+iz_+ €1+d3 4 o(ﬁ-))
N1 n

1

e - d
~nu' (e +__1_+_e_2+ o(—)) (dl+__2_ +_3 +o(l))~nD ID
° yz = nt AL E L
ed + ed eqdy + e;d, +e,d
~np’ (e61+ o A1, 08 " 12 2 +o(1)) 3. 15)
o N1 n n
Equating coefficients(z) of like powers of n in the expansions for IN and nDL‘ I.D gives
the result
= = = L
eo—l, el—O, e, = al
so that
. ¢ 1 1
DL u'(t) (’1+—.—- 5 +o(n)) . (3. 16)

1
In order to see the asymptotic approach of DL to u'(t) we need only the coefficients ¢ 1

and d 1 of the asymptotic expansions for the integrals in Eq. 3. 10.

T The notation o(% ) is used for terms which, for arbitrary € >0, can be made smaller

. . €
in magnitude than a for large enough n.
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In Appendix B we derive the coefficients ¢ 1 and d 1 resulting in
D~ W) - ——— + 0 (=) (3.17)
n e n

whether the distance D(xy) is a lattice or non-lattice random variable. This result is
intuitively appealing since the limiting value of D'~ is p'(t), as we know from Chapter 2,
and also the limiting value is approached from below. We may interpret Eq. 3.2 as
the calculation of the location of the centroid along the x-axis of the tail of the distri-
bution function «Pn out to nu'(t). We know the centroid must be located at a point

Xo < DR'(t)-

We may also find an asymptotic expansion for R from Egs. 3. la and 3. 14.

o [eu'(t) - u@t)]
[t] Narnu™()

1
R - nlog

[

1
(1+0('\IT£)))
~ tu'(t) - pk) + %log'\/?-i- %logK- %log (1+o(§))

~ W) - p) + %mg N+ o(%log NT) (3. 18)

(We have used log (1 - €) ~ - € for e— 0.) The asymptotic expression for R._ is
approached from above and convergence is like %log Nn. Convergence in DL (like %)
is seen to be faster than convergence in RL .

If we consider R:_*n = d:n to be the equivalent of the R : - df curve for finite n, we
may interpret our asymptotic results graphically as the convergence of the R I’_"n ~ d:n

curve to the R* - d* curve as n — . Since R: - dlf is a firm lower bound on average
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distortion for any n, R :n -d n_*n must approach R: - dL* from above. Figure 3.11is a
sketch of the locus of points on R:n- d:n for fixed D0 as n increases. This locus of
points shows D:. converging more rapidly than R:_’ thus insuring that R:n - d:n converges

to R* - d*from above.
L L.
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Figure 3.1 -- Convergence of points on R;_n dn_n to R:. dL-.
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CHAPTER IV

BINARY SOURCE ENCODING

4.1 Introduction

In order to use a block code to encode a source, the encoder must be capable of
storing M = enR code words of length n. To encode each source sequence of length n,
the encoder must also compute the distortion between the source sequence and each
code word of the block code. The general theory of the previous chapters indicates that
if we wish to achieve an average distortion close to the minimum attainable average
distortion for a particular code rate R, the code length, n, must be very large. In
implementing a block code, therefore, both the amount of storage space for the code and
the number of computations of distortion per source letter increase exponentially with n.
Our purpose in this chapter is to explore coding systems which give average distortion
approaching the ideal performance indicated by the rate-distortion function R*(t) - d*(t)
with much less equipment complexity than block codes require.

Following the approaches to the complexity problem which were taken in coding
for noisy channels, (3),(12), (19) we attempt to build some algebraic structure into codes
to enable us to generate the code by using an algorithm with a reduced amount of stored
data. For instance, if we were dealing with a binary source, we should first study

binary linear or group codes in which the block code consists of all possible linear
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combinations (addition modulo 2) of nR generator or basis sequences. Group codes,
therefore, only require the storage of nR generator sequences of length n. The
algebraic structure of group coedes also allows a simpler encoding procedure than the
comparison of a source sequence with every cede word. (12) It would then be of great
interest to demonstrate that the ensemble of randomly chosen group codes gives as good
an upper bound to average distortion as the ensemble of random block codes.

We derived an upper bound to average distortion for an ensemble of random
block codes in Theorem 2. 1 by using a non-optimum encoding procedure which led to
the correct asymptotic bound on average distortion. In attempting to encode a source
sequence, the encoder searched the list of code words to find one which gave less than
a certain amount, say do’ of distortion with the source sequence. If no code word in
the list satisfied the d0 threshold, we could bound the distortion by A = Igl(%x d(xy). As
before, let us define P0 as the probability that the source chooses a word u and we choose
a code at random such that we find no code word v for which d(uv) = do. The upper

bound on average distortion over the ensemble of random codes can be written as

d=d +A-P. “.1
(o) (o]

Suppose all source words are equiprobable, to simplify things for the present.

If we denote the code words of a randomly chosen code as v_, Vos cees Vs then

P0 = Prob. (v1 N.A. E-E-qu N.A. and ... and vy N.A.), N.A. = not acceptable,

™

which may in turn be written as

P0 = Prob. (le.A.)M 4.2)
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for block codes in which each code word is chosen independently at random. However,
if we have some algebraic structure to the code we cannot write P0 in a factored form
as in Eq. 4.2. For instance, a group code is completely determined by nR generator
sequences. A random group code is then selected by choosing only the nR generator
sequences independently at random and so all M = enR code words are not independent.
In this case, as in any code with algebraic structure, we see that the probability Po
involves an intersection of events with subtle dependencies between them. The algebraic
dependencies introduced between code words by a group structure are difficult to
characterize and so we cannot derive an upper bound on average distortion for the
ensemble of block codes with this relatively simple algebraic structure. In bounding
the probability of error in channels for an ensemble of randomly chosen group codes,
an upper bound to the union of dependent events is needed. This is conveniently gotten
since the probability of a union of events, whether dependent or not, is always upper
bounded by the sum of the probabilities of the individual events. In the source encoding
problem, the treatment of an ensemble of random codes with algebraic structure
involves a fundamental difficulty, namely, the upper bound on an intersection of
dependent events. We have not been able to overcome this difficulty in a general way
in this research.

In view of the above discussion, we will consider the simplest of source encoding
problems to gain some insight into the methods of analyzing the performance of coding
systems as well as the complexity involved in their use. We therefore discuss in the
remainder of this chapter our results concerning the binary source with equiprobable

ones and zeroes and the distortion measure
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The distortion between two binary sequences, according to this distortion measure, is
just the Hamming distance between the sequences.

Suppose we wish to encode this binary source with no more than r errors in a
sequence of length n. If we are given a particular source word of length n, the proba-
bility of choosing a code word of length n with independent, equiprobable binary digits

—n r
which gives r or fewer errors with the source word is just 2 Z ( I; ), where ( I]l )
i=0
is the binomial coefficient. Since all source words are equiprobable, we may write P0

for a block code with M independently chosen code words as

- M2 N
p=(1-2"Nn Mc2™M2 Tk 4.3)
(o] r
where
i n
N = ()
L=

The upper bound on average distortion of Eq. 4.1 becomes, in this case,

+P. (4.4)

d =

= Ly

In this chapter only, we will use as the definition of the code rate, R = -1-11— log2 M, so

that M = 2nR. From Fano(4) (page 216) we get the bounds on ( : )s
1
o v -nH(d)
e 12nd(ld)<(n) 2 <1,0<d=£<l, (4.5)

N 27 nd(1-d) 8

where

H(d) = - d log, d - (1-d) log,, (1-d).
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We may lower bound N by ( ;1 ) and using the above lower bound on ( [; ) in Eq. 4.3,

we may get as an upper bound on Po

n[R-1+ H(d)]

p <o KO 2
(o}
where . 1
. 12nd(l-d)
K(n) =

N"27 nd(1-d)

If we choose r so that £= d remains fixed as we increase n, it is clear that we must
have R - 1+H() > 0 in order to have P0 tend to zero with increasing n. From Eq. 4.4
we see that if R > 1 - H(d), then as n— * the upper bound on average distortion becomes
d =d.

Let us now apply our lower bound on average distortion of Chapter 2, to this
binary case. The symmetry of the binary source and distortion measure allow us to
disperse with the distance function D(uv) in our derivation of Chapter 2, and we may take
D(uvo) in Theorem 2.4 to be the distortion between u and A From Theorem 2.4, if we

have a block code for which

1
M= , (4.6)
-
2™ $()
i=0
then
1 .
_ o L (D
d = 1=0 , 0=r=n. 4.7)

3o

i=0
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It should be clear that in the binary case these inequalities are true whether the block
code is a fixed composition code or not.Jr Using Eq. 4.5 we may upper bound the sum

of binomial coefficients by

nH(d) nH(d)

. 4.8)

i (y < +D) 2 _ (nd+1) 2
T

i=0 N 27 nd(1-d) N 27 nd(1-d)

We now write the constraint on M in Eq. 4. 6 more conservatively using the bound in

Eq. 4.8,

M = n(1-H@) ('\/ 27 nd(1-d) \)

nd + 1
. . 1
and from this we see that as n— *°, we get the constraint on R = Y log2 M as

R=1-H@) . (4.9
Directly from our development in Chapter 2, we know that the limit of the right hand
side of Eq. 4.7asn—= ®isd= -i— We conclude that as n — *, any binary block code
for which R = 1 - H(d) gives an average distortion d =d. The rate-distortion function

of the binary symmetric source with Hamming distance as distortion measure is then
R@d) = 1 - H@). (4.10)

4.2 Binary Group Codes

We first treat the simplest binary block codes with structure, namely group
codes. (See Peterson's book(lz) » Chapters 2 and 3). A group code is determined by

k generator sequences of length n, the code consisting of all 2k possible linear combinations

f This is true because the functions Fi(z) in the proof of Theorem 2.4 are identical
for all output sequences.
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(addition modulo 2) of the generators. Since M = Zk, the code rate is

1 K
R= — log,M==.

Suppose we number the k code generators as the first k code words. We may specify
any linear combination of the generators by a sequence of k binary digits. If the jth
digit is a one, the jth generator is added into the linear combination. Any code word
is then specified uniquely by a sequence of k binary digits.

The source encoder may operate exactly like any group code decoder used with
a binary symmetric channel. (12) Once a source sequence has been encoded into a code
word, k binary digits which specify the code word must be transmitted over a channel
to the information sink. At the output of the channel the decoder forms the mod 2
sum of the generator sequences specified by the k digits and presents the sink with a
code word approximating the actual source output.

We now give a theorem which shows that group codes can be constructed to give

performance close to the ideal rate-distortion performance.

Theorem 4.1 There exist binary group codes with rate R = 1-H( %)

that give average distortion d or less. oo

Proof We give a construction proof. Since we can consider the zero sequence
(denoted 0) as a linear combination of a set of code generators, 0 is a code word in
every group code. Choose Vi the first code generator, as any sequence with Hamming
distance from 0 greater than r. Then choose as the second generator, v,, any sequence
with Hamming distance, from both 0 and v, greater than r. Then the code word which

is the mod 2 sum of vl and v, (denoted vl & VZ) has distance greater than r from Q because
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v, was chosen so that v, ® v, has weight greater than r. (Computing the Hamming

distance between two sequences is the same as computing the weight of the mod 2

sum of the sequences.) We see that v ® v, has distance greater than r from 0, v.,

and v2 .

We choose as v3 any sequence not within Hamming distance r of all sequences

already in the code (0, Vs Yy, V) @ VZ)' In other words, we have chosen V3 SO that the

sequences v, 0= Vas va ® Vi V3 ] Vo v3 eV, ® ) all have weight greater than r. This

implies that the group code with Vi Vs and vy as generators has no code words within

distance r of each other.

We proceed to construct a group code in this manner until we add no more
generators, i.e., there are no more sequences greater than distance r from all code
words. This implies that we guarantee the number of errors (the distortion) in
encoding any source word to be r or less. Since no two code words are within distance
r of each other, the sets of sequences within distance z of each code word are disjoint

2

sets. Therefore, in order to reach the point where we can add no more generators
n 2 n
to the code, we need no more than 2/ Z ( ; ) code words or more conservatively
i=0

2k(§) = 2",

Taking log2 of this equation we get

k 1 n
H+;10g2(£)51.
2

T . .
Ifd= o 18 held constant as n increases, we get as n— ®

Esdandnsl-ﬂ(g-). 0.E.D
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This bound and the R(d) function of Eq. 4.2 are plotted in Figure 4.1. We see
that our construction bound is quite weak for average distortion near 0.5. Suppose

we have two block codes with rates R1 and R2 and giving average distortion cll and d2,

respectively.  These may be plotted in the R-d plane as two points (Rl’dl) and

(R2,d2). If the code lengths are n and n,, we can construct a block code of length
MR, +o,R,
T

. We may then plot this code in the R~-d plane.

n + n, by alternating the use of the two codes. The rate for the new code is
ndj+n,d,
mT

We can easily see that mixing two block codes in any proportion gives codes with points

and the average distortion is

on the straight line connecting (Rl’dl) and (Rz,dz). We can therefore tighten our
construction bound by a code mixing argument which enables us to draw a tangent to the
construction bound passing through the point (0, 0.5). This is also shown in Figure 4. 1.
We now demonstrate the existence of group codes which satisfy the same upper
bound to average distortion as the ensemble of random block codes (Eqs. 4.3 and 4.4),
implying that there exist group codes giving performance as near the ideal rate-distortion

performance as we wish. First we present a useful lemma.

Lemma Let v and s denote points in an n dimensional binary space
(binary n-tuples), and denote the operation of addition of n-tuples mod 2
by @ . Suppose we have a set So of n points S and a set Sl of n points
S For any particular point v, we define the set S (vo) =

{v |v = .Vo e S5 for some s0 € So}. Then there exists a point A such that

the union of S(v ) and S, includes at leastn +n, -n n 2™ points.
0 1 o 1 o1
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R=1-H (521-), Construction bound

e
w

Rate (bits) —

Code mixing

R =1 - Hd)

0.25

d—

Figure 4.1 The rate-distortion function for the binary symmetric source with Hamming
distance as the distortion measure, and a construction bound on average

distortion for binary group codes.
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Proof Consider the set of points v, @8 for a particular s € So and all 2"
possible choices of v, It is clear that v, ® s takes on each of the 2" points in the
space once and only once as vy takes on all 2" values. Therefore MALER coincides with
a particular 5, € Sl once and only once for the 2" choices of A We then conclude that
each point in S(vo) corresponding to a particular s € S0 coincides only once with each
sl € S1 for all possible choices of vo. For the 2rl different sets S(vo) there are then a
total of nn, coincidences of points of S(vo) and S1 and, hence, the average number of
coincidences per choice of A is nn 2-n.

If S(vo) and S1 are disjoint, then S(VO)U S1 contains n + n points. If for a
particular v we have I points of S(vo) and Sl‘ coinciding, then S(vo) U S1 contains
n + n - I points. Since the average intersection of S(VO) and Sl is nn 27" for the
set of all possible choices of A there exists a particular v which gives an intersection

at least as small as the average. We conclude then, that there exists a particular v

. -n_ .
such that S(vo) U S, contains at least o +n - nn 2 = points.

! 1 Q.E.D.

We are now in a position to prove the following thecrem on group codes.

Theorem 4.2 For any r, 0 = r = n, there exists a binary group code

. k . . . e
of length n with rate 0 and with average distortion satisfying

T k

d = ;111+ [1-2'“2 (Ii‘)]z. (4. 11)
1=

Proof The proof is by induction. Consider sequences of length n as points in

an n-dimensional binary space. Define the set So as the set of all points with weight r
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r
n o . . .
or less, There are then Z (' ) points in So. For any particular point v' we define
i=0
the set

Sv)={v]v=v'e sfor someseSo} .

It is clear that if we interpret v' as a code word, every point in S(v') can be encoded as

v' with r or fewer errors.

The point 0 is in every group code. For the code consisting only of 0 we have

r
No = E ( I: ) points that can be encoded with r or fewer errors. The probability of the
i=0

source producing a point which cannot be encoded with r or fewer errors with this code
is

Q = o =1-No (4.12)

and so an upper bound to average distortion is

_ r
d ==+Q. (4.13)

Now suppose we have a group code with j generators vi* yi=1l,.0., 3, (vi‘ = 0).

We then have 2 code points and the probability of the source producing a point which

cannot be encoded with r or fewer errors is

N.
ol
where Nj is the number of points in Sj = Ul S(Vi ), the v, are the code points. We can
1=

write an upper bound on average distortion for this code as

d = =

+Q..
J QJ

Suppose we wish to add another generator v** to the code. We actually double

the number of code points because v** & Vis i=1, ..., 2) are all new code words. The
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set defined by ig{ S(v** ¢ vi) is topologically the same as Sj, i.e. they have the same

number of points Nj’ and if v** = 0, the sets are identical. We have 2" possible choices

for v** and by the previous Lemma there is a choice for v** such that the number of

points NJ R
2j +1
Sj+ 1= ik—Jl S(vi ), (vi include now the new code points due to v**),

is guaranteed to satisfy

N, = 2N - sz 2™, (4. 15)
We may then write Qj+ 1’ the probability of the source producing a point which cannot
be encoded with r or fewer errors with the new code of j+1 generators,

N, N, N. N.
=1- -t 1_2_4_4,(_.12:(1__12
%‘*1 " 20 2n 21

2
g

where we have used Eqgs. 4. 14 and 4. 15.

Since we have defined in Eq. 4.12

Q-1-2 ()2

and now the recursion relation QJ i1° sz , our inductive proof is complete and we may

write Qk for a group code with k generators as

r k
Q=r1-2") (Hi1?,
i=0

where Qk is the probability that the source produces a point which cannot be encoded

with r or fewer errors.
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Notice that we have demonstrated the existence of at least one group code with

k . . . e
rate o with average distortion satisfying

r
- T -1 n,.2
d = >+ [1-2 120 (7)1

which is identical with Eqs. 4.3 and 4.4 with M = Zk. We have shown the existence of
group codes which satisfy the same upper bound on average distortion as the ensemble

of random block codes. Q.E.D.

Although Theorem 4.2 is much stronger than Theorem 4. 1, the latter presents
a construction method which may actually be used on a digital computer to obtain a group
code, while Theorem 4.2 would be more difficult to implement in this way.

The algebraic structure of group codes allows a simple encoding procedure.
Suppose we have a group code of length n with k generators and we wish to encode a
source word u. We would first compute the syndrome or parity check pattern corre-
sponding to u, look up the coset leader s(a binary sequence of length n) corresponding
to the computed syndrome, and then form v=u & s. The algebraic structure is such
that v is a code word and the distortion produced in encoding u as v is given by the
weight of s. The details of such a procedure have been described many times(s) :(4), (12), (18)
and we will not discuss this system any further here. We wish only to point out that the
number of possible syndromes is én-k and so the required storage space for such a
system grows exponentially with n. ‘

Every code word of a group code may be expressed as a linear combination of

the k generators of the code. Suppose we consider the list of k generators of a code to

form a k X n binary matrix with the generator sequences as rows. We may assume



78

that no generators are zero and we can then put this generator matrix in a standard

form by diagonalizing the first k columns. The group code is then actually determined
by only (n-k) - k binary digits in the remaining n-k columns of the generator matrix.

We wish now to describe a simple scheme to search for an acceptable linear combination
of these diagonalized generators to encode a source word. Given a source word u of
length n, we form the code word Vo which agrees exactly in its first k digits with u.

This is easily done by considering the first k digits of u to specify a linear combination
of the k diagonalized generators. A one in the jth position of u indicates that the j"h
generator is added into the linear combination to form v o Now the sequence u @ v o has
zeroes in its first k places and all errors between u and v, occur in the last n-k places.
We now try to improve the number of errors between u and v, by comparing the weights
of the sequences u@ v, and u @ v, ® Vs where v,is the first code generator. If the
weight of u @ vV, ®v, is less than the weight of u @ Ve We define the sequence S1 =V BV,
and otherwise we define S = v, Next we compare the weights of the sequences u & S1
and u & Sl &v,. If the weight of u ¢ S1 9 Vv, is less than the weight of u  S;, we define

» and otherwise we define S_ = S.. We thus proceed to test all generators in

S =Slev 2 1

2 2

this manner. In general, having tested j generators, we have a linear combination of v

and the first j generators, Sj’ and we compare the weights of the sequences u 9Sj @ Vj+ 1

and u & Sj' We then define Sj w1° Sj & vj+ 1 +1 has smaller weight than

ifueS ev,
J J

1= Sj. After testing all k generators of the code we have the

]

ue Sj’ and otherwise S,
linear combination of generators Sk which we then use as the code word to encode u.
If we consider the encoder to make n-k computations in testing one generator

sequence (one for each of the last n-k digits), the encoder then does only k(n-k)=n2R(1-R)
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computations to find Sk and a code word for the source sequence. This scheme uses a
simple rule to construct a linear combination of generators. Since we can always encode
uasv, we are sure of having a code word with distortion no more than n-k with u.

We then try to improve things by testing each generator to see if together with the
tentative code word it will give another code word with even less distortion with u. In
adding a generator to S_, one error is introduced in the first k places, but more than

one error in the last n=k places may be removed. We add the new generator to Sj only
if it improves the distortion. This is similar to the threshold decoding scheme for
channels presented by J. L. Massey(“) and the step-by=-step channel decoding scheme

(12)

discussed by Peterson .

It is clear that our source encoding scheme is not the optimum one since all
Zk possible linear combinations of generators are not tested, but this is exactly what
we are frying to avoid. If only the order of the generators is changed before
diagonalization, the results in general would be different. In fact, having computed

S. , we could s.art the whole process of testing generators over again using u & Sk

K
instead of u & A and the result, in general, would not be Sk again.

In view of the greatly reduced computation for long block codes, let us study in
more detail the scheme of testing each generator once to compute Sk. We write the
probability distribution for the weight of a binary sequence of length n-k chosen at random

with equiprobable zeroes and ones as

-n+k | n-k
pc(w)=2n ("*y,w=0, 1, ..., n-k
w

The probability distribution for the weight of the sequence u & A is given by po(w). If

the last n-k digits of v; are chosen at random with independent and equiprobable letters,
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the weight of the last n-k digits of u & v, @V given u Vs also has the probability
distribution po(w).
Suppose we choose a group code at random by choosing the last n-k digits of all
k diagonalized generators equiprobably and independently at random. Suppose also
that for a particular u selected at random by the source, we have constructed A and
have formed Sj by testing the first j generators. Assume that we know completely
Pj (c,w), the probability that there are c ones in the first k places of Sj and w ones in
the last n-k places. The c ones in the first k places would be due to c generators already
added into S_. Then since the last n-k digits of vqu_1 are chosen at random, and the

jth column has never been changed befcre by any of the first j generators, we may
write for Pj +1 (c,w)

P,_H(c,w) = Prob. [Sj has c ones in the first k digits and w ones in the last

n-k digits and vj+1 has w-1 ones or more in the last n-k places. ]

+ Prob [Sj has c-1 ones in the first k digits and w + 2 ones or more in

the last n-k digits and Vj+l has w ones in the last n-k digits)

n-k n-k
= Pw,c) ), p@+p W ) P.c-l). (4. 16)
J i=w-1 i=w+2 3

The first term of P,+l(c,w) corresponds to the event that the randomly selected Vj+ 1

does not improve the distortion between the tentative code word at step j and the source
word. The distortion at this step is ¢ + w and even if vj+l resulted in w-1 ones in the
last n-k digits of Sj Y the change in the (j+1)th digit results inw-1+c+ 1=w + c errors

again. The second term of Pj+1(c,w) corresponds to the event that v,_}_1 does improve
J
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the distortion between the tentative code word and the source word. Since each
generator is selected independently, we can write the joint probabilities of Pj +1(w,c)
as factors in Eq. 4.16. But if we were to start testing generators again from the top
of the list with Sk’ the tests would not be independent any longer and we could not write
Eq. 4.16 so simply. This is the reason for treating only this scheme which tests each
randomly selected generator once and only once.

The average distortion in encoding u with a randomly selected group code and

the above step-by-step encoding procedure is given by

_ k n-k
d=72 ) EwP,w (4.17)
c=0 w=0

and so this is the average distortion over the ensemble of randomly selected group
codes together with the step-by-step encoding procedure. The recursion relation of
Eq. 4. 16 has not been solved explicitly for Pk(c,w), but it is easily programmed on a
digital computer. A computer program was written for the IBM 7090 digital computer
to calculate Pk(c,w) and d for code lengths up to 100 and many rates between zero and
one. The results are reasonably good in that this encoding method gives rate-distortion
performance comparable to but not as good as the rate-distortion function R(d) =1-H(d).
For a code length of 20, we have plotted code rate vs average distortion for step-by-
step encoding in Fig. 4.2. Longer code lengths up to about 60 gave essentially this
same curve and even longer codes gave poorer performance. Atrate R = -;—, for
example, we see the lowest possible average distortion is about 0. 11 and step-by-step
encoding gives an average distortion of 0. 185. The straight line in Figure 4.2 represents

the performance we could expect if we encoded u as the vy calculated from u, since
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1.0

R=1-2d

Step-by-step Encoding

Rate (bits) —
o
(¥)]

R =1 - H()

0.5

Figure 4.2 Comparison of R(d) and the upper bound on average distortion for step-by-
step encoding with codes of length 20.
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there could only be errors in the last n-k digits of u ® v and each of these n-k digits
has probability —21- of being in error. Hence, encoding u as A results ind = % Ez—k
= -21- (1-R). For rate R =—;— and n = 20, we also see that we do only n2R(1-R) = 100
computations to encode u or only 5 computations per encoded digit.

In the following section we adopt another viewpoint that has been applied success-

fully to channel decoding with limited equipment complexity.

4.3 Sequential Encoding with Random Tree Codes

We now discuss a sequential encoding system for the binary symmetric source
and a Hamming distance distortion measure using randomly chosen tree codes. Consider
an infinite length binary tree code with two binary digits per brapch and two branches
emerging from each node (See Figure 4.3a). We wish to represent the source output
by the path in the tree code which gives the least distortion with the source output. The
distortion between a source sequence of length n and a path of length n in a tree code
is just the Hamming distance between the source sequence and the path considered as a
sequence of length n.

It takes half the number of binary digits in a source sequence to specify a path
in the tree code of the same length as the source sequence since only the binary choice
of branches at each node must be specified. Therefore, for every two source letters,
the encoder will only put out one binary digit. In a tree of length n there are only M=2né
paths and the rate of the tree code is then % logz 2n/ = % The binary digits which
specify a path in the tree code can be transmitted through a channel and a decoder then

produces for the information sink the corresponding path as an approximation to the

actual source output.
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We wish to have the encoder find a path in the tree code which has no more than
a certain amount, say d*, average distortion per letter with the source sequence. Finding
a path in the tree code which gives d* or less average distortion per letter is somewhat
analogous to finding the most likely transmitted path of a binary tree code at the output

(18). The source encoder begins by calculating the

of a binary symmetric channel
distortion between the first two digits of the source sequence and the two branches
emerging from the first node of the tree code. If neither of these branches gives
distortion 2d* or less (average distortion per letter d* or less ), the encoder extends

its computation of distortion to all paths of length four emerging from the first node of
the tree code, and checks to see if any of these paths gives distortion 4d* or less with
the first four digits of the source sequence. The encoder proceeds in this manner

until it finds some path with £ links (path of length £) which gives 2£d* or less distortion
with the first 2£ digits of the source sequence. The encoder then accepts this path and
specifies this path by putting out £ binary digits. It then attempts to encode the source
sequence, beginning at the (2£ + 1)th binary digit by using the tree emerging from the
node at the end of the accepted path. Once a path of some length is accepted, the encoder
is faced with an entirely new encoding problem and begins its searching anew.

The encoding system also uses a set of reject thresholds B , £ =1, 2, etc.

)/
Whenever any path of length £ gives a distortion of B s or more the encoder no longer
considers that path as a possible representative for the source sequence, and no further
distortion calculations are done on the paths emerging from the last node of a rejected

path. The encoder also gives up its search for an acceptable path when it has progressed

down the tree code far enough to check paths of length ﬂt and if no acceptable path is
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found at this length, a standard path of length Zt is chosen to represent the source
sequence. (For instance, the standard path may be the path corresponding to the choice
of the upper branch at each node of the tree.) The encoder begins searching again in
the tree emerging from the last node of the standard path. It may happen that the
encoder rejects all paths at some length £ < Et, whereupon the portion of the standard
path of length £ is used as a representation of the source output and the encoding
operation begins again at the node at the end of the accepted part of the standard path.

If no path of length £ is accepted, the encoder extends the distortion calculation
of all paths not rejected to paths of length £+ 1, and again checks the accept threshold
2(£ + 1)d* and reject threshold B +1° We will define a single computation of the encoder
as the calculation of the distortion between one of the braches of the code emerging
from a certain path of length £ and the corresponding two digits of the source sequence,
and the addition of this distortion to the distortion of the path from which the branch
emerges.

We will now consider this encoding system operation with the ensemble of random
tree codes in which all digits in a tree are chosen independently with zeroes and ones
equiprobable. We will upper bound N, the average number of computations to find an
acceptable path and also upper bound P_,, the probability of failing to find an acceptable
path.

Failgre occurs in two ways; all paths in the tree may be rejected at some length
£ < ,Zt, and an acceptable path may not be found at any length £ = ﬂt. Let C I denote the
event of all paths being rejected at length £, and E 2 the event of no acceptable path at

length 4. For the ensemble of random tree codes we have
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P. = Prob[C orC,orC_ or... orC or no acceptable paths at any length
F 1 2 3 Le-1—

L= lt]

= P_[C] +B[C)] +... +Pr[C£t'1] + P[E and E, and ... and Ezt]

= Pr [Cl] +Pr[C2] +..0 + Prlcﬂt-l] +Pr[Ezt]. (4. 18)

The average number of computations at length £ is upper bounded by two times the
average number of paths not rejected at le'ngth £ - 1, which in turn is upper bounded by

£

2. 281 1-B[C, ;1)

£-1

which assumes no rejection prior to length £-1. We have
£

Yool
N<2+2 zgz 27 (1-R[C, 1)

where the first two computations at the start of the encoding process are expressed
separately and not included in the summation on £ .

We now note from symmetry that the probability of finding a path in a randomly
chosen tree code "'close’ (in the distortion sense) to the zero sequence is the same as
the probability of finding a path close to any particular sequence. Since all source

sequences are equiprobable we have

RIE, ]

= probability that the minimum weight path in the tree has weight > 2£td*.
Notice also that Pr[C l] is upper bounded by the probability that all paths at length £ are

rejected assuming no previous rejection. This is the same as the probability that the

minimum weight path of length £ of a randomly chosen tree code has weight BI, or greater.
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Our analysis of this source encoding system depends now only on the distribution
function which we shall call PZ(W)’ which is the probability that the minimum weight
path of a randomly chosen tree code of length £ has weight w or greater.

If we picked 2 J binary sequences of independent random digits, each of length

2 £, we could write the probability ?l(w) that the minimum weight sequence has weight

W Or greater as

- 2‘8

Ppw) = [1-F ,(W)]
where Po z(w) is the probability of choosing a single sequence of length 24 which has
weight less than w. Po E(w) is a multinomial distribution function. P\B (w) is the distribu-
tion function for the minimum weight code word of a randomly chosen block code of
length 24 and 2Z code words.

This approach cannot be used for Pz(w) because the paths of a tree are not all
independent of one another. An alternate approach suggested by C. E. Shannon is to
develop a set of recursion relations for Pz(w). Suppose we know Pzn l(w) completely.
Let us form an augmented tree of length £ by adding a randomly chosen branch to the
beginning or first node of the tree of length £-1. (See Figure 4.3b) We can derive from
PE- 1(w) the distribution function QZ(W)’ the probability that the minimum weight path in

the augmented tree of length £ has weight w or more. In fact,
Q,w) = p B,_ W) +p B, (W-1) +p, P,  (w-2)
where R is the probability of the extra branch having weight i. In our case of equiprobable

binary digits, P, = 1/4, P, = 1/2, p, = 1/4. Theterm P, Pz_l(w) is the probability of a

tree of length £-1 having its minimum weight path with weight w or more, and adding an
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augmenting branch of weight zero. The explanation of the other terms follows
similarly. Knowing Q l(w), we choose independently at random another augmented
tree of length £, and join the ends of the augmenting branches to form a standard tree
of length £. (See Figure 4.3c) The probability that the new tree thus formed has its

minimum weight path of weight w or more is simply

P = [Q,)1°

because of the independence of the augmented trees.

These recursion relations have not been solved explicitly for Pz(w), but it is
reasonable to expect that there is some limiting form for PE(W) as £— <. Since these
recursion relations are easily programmed on a digital computer, the actual distributions
PE(W), £= 200, were thus calculated and studied. It turns out that the limiting form
for P E(w), which emerges distinctly at about £ =25, is such that the distribution function
does not change shape with increasing £ but merely changes its position along the w-axis.
The position of the Pl(w) = % point is located approximately at . 11 x 24. This is in
contrast to the multinomial distribution function P0 E(w) in which the position of the
P0 E(w) = % point is proportional to £ but the shape of the distribution spreads out as
2,

The distribution function Pz(w) of the minimum weight binary sequence of a
length 2/ block code behaves very much like P,Z(W) with respect to its limiting behavior
£— . The limiting form of P Z(w) also appeared to keep its shape constant and change
its position in proportion to £ . The limiting form of Pz(w) was slightly less spread
than the limiting form of PE(W)' An upper bound on Pz(w) shows the ‘PE(W) = % points

approximately take on the positions 24d , where d is defined by the solution of
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R@) = -;— (4. 19)
and R(d) is defined in Eq. 4.10. The approximate valueof d is 0. 11. In Figure 4.4 we
plot the envelope of the probability distributions pz(w) and p B(w) which correspond to the
distribution functions PZ(W) and P l(w) respectively.

A computer program for the IBM 7090 was written to compute Pz(w) and also to
compute the bounds on PF and N for tt = 100 for the sequential source encoding system
described here. A single number, d*, specifies completely the set of accept thresholds.
The set of reject thresholds Bl were programmed to take the form of a linear function
of £ with one break point. (See Figure 4.5.)

After some experimenting, a good reject threshold could be found which could be
set high enough to give a low probability of failure due to rejection of all paths at some
length (dependent upon Pr[CEI ), while still keeping the average computation down
(dependent upon 1 - Pr[CZ] ). Some performance figures for the encoding system are

given in Table 4. 1 for Zt = 100. In this table, N* is the average number of computations

to find an acceptable path when no reject threshold is employed by the encoder.

TABLE 4.1 (£ = 100)

* E 3
d Pr N N
0.14 0.359 1.07 x 105 4x10 28
-2 5 25
0.15 0.28 x 10 1.44 x 10 2x 10
0.16 0.52x 10”2 1.37 x 10° 2 x 10°°
0.17 0.61x 10'6 1.05x 10° 3x 10M4
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The bounds on both N and N* actually converge to a constant number independent
of I’t for large enough Zt, which indicates that there is a fixed amount of work on the
average to find an acceptable path with either scheme. Table 1 indicates that for
d*=0.14, ﬁt = 100 is not long enough to bring down the probability of failure PF' The

reject thresholds were chosen so that almost all of the contribution to PF in Eq. 4. 16

came from P [E  ].
r[ Zt]
According to the rate-distortion function, the best possible encoding scheme

with rate R =-;- could not give average distortion per letter less than 0. 11, as we saw
from Eq. 4.19. While PF and N converged well for d* = 0. 15 and Zt = 100, the probability

of failure converges much more slowly for d* = 0. 14, which is significantly closer to

the absolute limit for average distortion of 0. 11.

It is interesting to note that since PZ(W) only moves along the w-axis with increasing
n without changing shape, we can extrapolate safely the dashed line of Fig. 4.5 to obtain
the locus of the 10-4points of Pz(w) for large £ . Since we know the locus of the Pz(w) = —21-
points as approximately 0. 11 x 28 , we can also write the locus of the PZ(W) = 10-4 pcints
as Ko +0.11x 24, where Ko is some fixed constant. We can then estimate the code

length Et at which PF converges for any accept threshold 24d* by noting the value of Et

where 2£td* = Ko +0.11x th. As long as we choose the reject thresholds so that PF
given in Eq. 4. 18 is due mostly to Pr[E[ ], the suggested extrapolation of the Pﬂ(w) = 10 4
t

line gives a fair estimate of the code length required to have PF converge to an acceptable

level. Based on such an extrapolation of Figure 4.5, for d* = 0. 14 we find that PF

converges to a satisfactory level for Et = 180.
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In this connection we also notice that for any € > 0 we can always find an ﬁt
large enough so that PF will converge to a low value for an accept threshold 24 (0. 11 + €).
It would be of great interest then to actually calculate the exact rate at which the
limiting form of PE(W) moves along the w-axis with increasing £/. Knowing the exact
rate of propagation of P£ (w) with £, we could determine the limiting distortion d* for
which accept the threshold 24d* would allow PF to converge to zero. From the
experimental work done on the digital computer, it seems that»PF could be made to
converge for large enough Zt for any d* = d + €, where d satisfies Eq. 4.19. This
carries the implication that random tree codes may give the ideal rate-distortion
performance with a complexity which is strictly bounded independently of ﬁt. This,
however, remains to be strictly proved, although this special case provides a
reasonable basis for speculation.

The techniques used in the above analysis could obviously be applied in the
analysis of non-binary systems, more general randomly chosen tree codes, and
different code rates. The sequential encoding procedure could also be modified to use
a set of rejection thresholds BlZ’ B2£, etc. such as J. M. Wozencraft and B. Reiffen

(18)

describe in channel decoding" The source encoder would first attempt to encode

using the reject thresholds Bl X and if it failed to find an acceptable path it would then
go through the whole procedure again using the set 82 2 etc. This system gives a

slight reduction in the bound on N.

It is obvious that it is as difficult to instrument a random tree code as it is a
block code, and in the final results the average number of computations is very high

even with this elaborate sequential scheme. Our purpose in this chapter was not to
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produce an immediately workable scheme, but to explore the possible methods of
analyzing schemes to evaluate both average distortion and average number of computations
per encoded letter. We have presented several useful viewpoints in approaching such
problems and we aiso have produced some interesting results.

As P. Elias comments ®) (page 40) with regard to channel codes, it woﬁld be
completely consistent with the results of Chapter 2 if no code with any simplicity or
algebraic symmetry properties were a good source code. This first investigation shows
that this is fortunately not the case. We may speculate a bit more by adding that
perhaps the basic difficulties pointed out in this chapter are entirely mathematical

difficulties and we may find in future work that there are quite economical schemes

which perform as well as the optimum code.
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CHAPTER V

MISCELLANY

5.1 Maximum Allowable Letter Distortion as a Fidelity Criterion

The essence of the source encoding problem as we have discussed it in the pre-
vious chapters has been the coding of the source output to minimize the information
capacity required to transmit a facsimile of the source output to the information user
or sink. We were given a distortion measure with which to evaluate the facsimile of
the source output that is presented to the sink and we arbitrarily stated our fidelity
criterion, or the tolerable performance level, in terms of average distortion per letter.
We then found the rate-distortion function as the fundamental restriction on code rates
under the constraint of the fidelity criterion, namely, that the average distortion per
letter must be kept at or below some specified level. Another type of fidelity criterion
or constraint on tolerable distortion would naturally lead to a completely different rate-
distortion function.

In this section we will study a fidelity criterion other than average distortion per
letter. We will require that each individual source letter be transmitted to the sink
with not more than a certain amount of distortion, say D. This is a fidelity criterion
encountered quite commonly in practice. For instance, the specifications on an analog-
to-digital converter (a quantizer) for an analog signal source often state that the quanti-

zation error should not exceed a certain amount, say 0. 1 volts.
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All the information essential to the coding problem for the letter distortion as

fidelity criterion is contained in a line diagram such as Figure 5.1, in which a source
letter and an output letter are connected by a line if the distortion between these letters
is D or less. Letters connected by such lines will be called equivalent , and if two or
more source letters are equivalent to a single output letter, we refer to these source
letters as being adjacent. In the example of Figure 5.1, we see that letters a and B are
equivalent and a, b, and c are adjacent since they are all equivalent to letter B. A
source word is equivalent to an output word only if each concurrent letter pair of the
words is equivalent.

A block code will not be acceptable according to the maximum letter distortion
criterion unless the probability that any letter is transmitted to the sink with more than
D distortion is precisely zero. The line diagram of the mapping which describes an
encoder must be such that it can be superimposed upon the line diagram of equivalent
source and output words without adding any new lines to the latter diagram. We again
define the rate of a block code as R = % log M, but it is interesting to note that this
quantity does not now have the significance of the usual measure of information rate.

If we suppose that the source produces one letter per second, the rate of the block code
is R units per second. We cannot now use any transmission channel with ordinary
information capacity C nats per second, where C >R, because such a channel is only
guaranteed to transmit any one of M integers to the decoder with probability of error
approaching zero, in general. The fidelity criterion demands that each of the integers
representing a code word must be transmitted with probability of error precisely zero.

From this, we conclude that we must have a transmission channel with zero error
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A
a

B
b

C
c

D
d

E

Figure 5.1 Line diagram, showing equivalent source and output letters.

aa
ab
ac \ AC

ba

b B bb BB

bc
ca / CA

i
(@) / B

cb

CcC

(b)

Figure 5.2 (a) Line diagram of a 3-letter source.
(b) Acceptable encoder of length 2 with 3 code words.
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capacity C0 units per second(l3) where Co >R, in order to satisfy the fidelity criterion.
In Figure 5.1 we see that an acceptable block code of length 1 must consist of at least
three output letters, such as B, D, and F, and the rate of this code is log3.

From the example of Figure 5.1 we see that the source probabilities do not enter
into the coding problem for this fidelity criterion on letter distortion. In fact, all
sources with distortion measures which lead to the same line diagram can be encoded
in exactly the same way. We define Dmin as the smallest value of D for which each
source letter has at least one equivalent output letter. For D < Dmin we cannot satisfy
the fidelity criterion with any code because there exists at least one source letter which
is encoded with more than D distortion. The probability, PF’ of the occurrence of at
least one such letter in a sequence of length n which cannot be encoded properly by any
block code of iength n, for D < Dmin’ is then bounded away from zero by PF = 1~(l“pmin
where Pin > 0 is the minimum source probability.

For D = Dmin’ it is possible to encode the source output with letter distortica D
or less using codes with bounded rate. In view of the interpretation of the code rate, we

define the greatestlower bound of all rates that can be achieved with letter distortion D

or less to be the zero error rate of the source and will be denoted by R(D). If we let

MD(n) be the smallest number of code words in a code of length n giving letter distortion

D or less, then
~ 1
= g.l.b. - .1
R(D) g. 1. b o log MD(n) (5.1)
when n varies over all positive integers.

A simple example shows that, in general, we do not have RD) = log Nb(l), where

Nb(l) is the number of output letters in the smallest set of output letters for which each
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source letter has an equivalent letter. In Figure 5.2a we have a 3-letter source and a
line diagram for a certain D. MD(l) = 2 and so log MD(l) = log 2. We show in
Figure 5. 2b that three output letter pairs form an acceptable code, so MD(Z) = 3 and

the rate of this code is %log 3 =1log N3 <log 2. Therefore R(D) for this line diagram

is at most log N3,

If we have a line diagram for a particular value of D for a certain distortion
measure, we may be able to increase D to D+€, € > 0 and not change the line diagram,
implying RD) = R(D+¢) in this case. We may raise D tc some value Dl when the line diagram
suddenly changes, i.e. new lines appear with the original line diagram, implying a
relaxation of coding requirements and so f{(D) > f{(D 1). From this we can see that
f{(D) for D= Dmin is a positive, decreasing staircase function of D. If we define Dmax
as the smallest value of D for which a single output letter is equivalent to the entire
source alphabet, we see that R(D) = 0 for D= Dmax"
Since the important information in encoding for a fixed letter distortion is

contained in a line diagram, let us put this information in the form of an "equivalence’’

matrix where
1, if source letter i is "'equivalent'' to output letter j

E, (D)=
) 0, otherwise

when the tolerable letter distortion is D. Every line of a line diagram will have a
corresponding 1 in the equivalence matrix.

Theorem 5.1 f{(D) for a discrete source with a distortion measure is

bounded from below by

(D) = _ )
R(D) = max R(), P, =0, iZPi 1,

P,
i
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where R(d) is the rate-distortion function of the discrete source with letter probabilities
Pi and distortion measure dij in which
1, if Eij(Q =0

1 @, if B (D) =1

Proof From Chapter 2 we know that there exist no block codes with % log M
less than R(0) for which the probability of non-zero distortion is zero. The probability
of non-zero distortion with the source P]. and distortion measure dij can be interpreted
as the probability of a source letter being encoded as a non-equivalent output letter, in
the terminology of the letter distortion criterion.

Q.E.D.

We have shown the existence of block codes for which the probability PF of encoding a

source letter with more than D distortion is approaching zero, a relaxation of our
requirement that PF be precisely zero. Therefore we require block codes with rate at

least as great as R(0) in order to guarantee PF precisely zero.

Theorem 5. 2 R(D) for a discrete source is bounded from above by
RD) = - log max Z P E..(D)Q,
PQ. 1,5 =Y J
1755 ?
where Pizo,zi;Pi—*-l,szO,%)Qj:l. oo

Proof A random coding argument will be used in this proof. Consider the

ensemble of block codes with M code words of length n, each letter of each code word

chosen independently with letter probabilities Qj' If source words are now chosen at
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random by selecting letters of each word independently according to the probabilities
Pi’ we can find the probability over the ensemble of codes of finding a source word which

cannot be encoded with all letter distortions D or less.
Suppose we pick a source word and a block code at random. The probability

that the first letter of the first code word is equivalent to the first letter of the source

word is

PE.(D
Z .1 @) Qj
1,]
since this sum includes probabilities of pairs of letters for which Eij D)=1, i.e.
letters which are equivalent. The probability that the first code word is equivalent to
the source word is
n
E, (D) Q,)
1,)
and the probability that the first code word is not equivalent to the source word is

therefore

1- (Z P, E,; (D) Qj)n_
l’j

Since code words are selected independently, we may write the probability PF that no

code word is equivalent to the source word as

M
P, - [1- (iZjPiEij ®Q,) ] . 5.2)

Denote by A the quantity Z Pi Eij (D) Qj' Since for D = Dmin’ 0 <A <1, and we may
i,]
bound PF using an inequality from Appendix A,
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.= (1- AHM (5. 3)

From the above discussion we see that over the ensemble of random block codes
the average probability of choosing a source word which cannot be properly encoded
with a random block code is just PF' Therefore, there must exist at least one block

code for which the actual probability of choosing a source word which cannot be properly

encoded is as small as PF. If we define

Poin = n;1nPi>O

then there are at most PF/ pnmin source words of length n which cannot be properly
encoded. We need only add PF/ prrlnin code words to our block code in order to encode

every source word properly. Our augmented block code has M' code words, where

MA"
' n = -1 -
M M+PF/ Pmin M-i-pmin e . (5. 4)
Suppose we choose M so that
n? n_ 2o
M=—Aﬁ- or MA =n~“. (5.5)

Then Eq. 5.4 becomes

- n _
o (a2ean MO 0108 )

1 2 -n2+nlogA~nlogp .
An \n te mln) ' G.6)
We conclude that the actual code rate necessary to have all source words properly

encoded is

2
L og M =-logn+ % log n+e ™ TRIBA/ By G.7)

R= =
n
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A is a constant independent of n. We see that as n — *, the exponent in the second term
. . . 1
of Eq. 5.7 is essentially -n? which causes the second term to approach 0 log n2 . The

result is

= IOg A . (50 8)

1]

lim R

n-— [- o]
There exist block codes with rate - log A which properly encode the source. Therefore
RD)= - log A and we may now tighten this bound by maximizing A with respect to the

arbitrary probability distributions P]_ and Q..
‘ ! Q.E.D.

The bounds on R(D) are dependent only upon the matrix Eij(D) which is a function
of D. We see then that the upper and lower bounds on R(D) are decreasing staircase
functions with location of the steps along the D-axis coinciding with the steps of f{(D).
However, for sources with small alphabets, it will probably be easier to obtain ﬁ(D)
by construction of codes rather than by using the above bounds.

If we have a complicated source which can be decomposed into the product of
two sources, we may relate the R(D) function for the product source te the individual
sources. Let us first define a product source as one which produces a pair cf letters
(x 1 X 2) at a time. Supppse we have a sum distortion measure such that the distortion
between (xl, x2) and (yl, y2) is given by dl(xl yl) + d2 (x2 y2). The letters X1 X9 Vo
and y, may all be from different alphabets. In fact, we can treat the product source
as though it consisted of two single letter sources operating simultaneously.

Let us consider the source S 1 with its distortion measure dl(x Vi ) and zero

rate distortion function R l(D l) and the source S 2 with d2(x2y2) and R 2(D2)' Suppose we
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have a block code of length n, for Sl with M](:)l) code words which guarantees D] or less
1 3

letter distortion and a block code of length n for S 2 with Mg )
2

guarantees D2 or less letter distortion. Then we can clearly construct a code for the

product source with Mg) . M]()2 ) code words of length n which guarantees letter
1 2

distortion Dl + D2 or less. We can in fact define R 1 2(D), the zero error rate of the

code words which

product source, as

R @)= min  [R;(D})+R,(D-D))] (5.9)
0=D,=D -
1
since we can never get codes of lower rate that give D or less letter distortion, and by
actually combining existing codes for the two single letter sources we can realize a code
for the product source with this rate.

Even though the fixed letter distortion as a fidelity criterion seems simpler to
work with than the average distortion per letter criterion, this is not actually true. For
instance, it is more difficult to calculate R(D) than the rate distortion function for the
average distortion per letter criterion. Moreover, there are probably not very many
more interesting results that can be derived for the letter distortion criterion, whereas
the average distortion criterion could be pursued to obtain many and detailed results.

The theorems presented in this section of the chapter bear a close resemblance
1 . . (13)
to Shannon's theorems on the zero error capacity of a discrete, memoryless channel .
We have already mentioned the zero error capacity in connection with the interpretation

of the code rate for the letter distortion criterion. If we demand that each source letter

be transmitted to the sink with D or less distortion, then we must have Co > R(D), where
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C0 is the zero error capacity (per unit time) of the channel and R (D) is the zero error
rate (per unit time) of the source. The problem of finding codes which give letter
distortion D or less is a sort of dual tc the probliem of finding codes which give zero

probability of error with a discrete channel. A typical function R (D) is shown in

Figure 5. 3.

5.2 Sources with Side Information

Consider a discrete source which has a finite number of states, sj, sp, ..., Sp.
Before each source letter is chosen, a new state is chosen independent of previous states
and previous source letters, with probability P for state S, When in state S;s the
source selects a letter x € X according to the probability distribution Pi(x). A distortion
measure d(xy) is given and we again use the standard fidelity criterion of average
distortion per letter. We shall consider the situations in which the encoder, cr the
decoder, or both have the state of the source available as side information.

If we first suppose that both the encoder and the decoder are given the state of
the source in advance of each source letter, a different block code may be used for
each source state. Since both the encoder and information user know the state of the
source, they also know which block code is being used at any instant. Each block code
is governed by a rate distortion function Ri(d) for a discrete, independenr letter scurce
Pi(x) and the distortion measure d(xy). If we have biock codes with rate R_i,(dj) which
give average distortion di’ and if Z P, di = E, then we can encode the source with side

1

information with rate Z p; Rj(di) and average distortion d. The rate-distortion function
i

for the source with such side information is given by

h
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Zero Error Rate —

A

| J
D . D

min : max

Maximum letter distortion D —

Figure 5.3 A typical R(D) function.
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h

subject to the constraint that Z P, di = d. This situation is schematized in
1=]

Figure 5.4a.

A more interesting case arises when only the decoder has access to the side
information. (See Figure 5.4b) The encoder maps the source output into one of M
code words to be transmitzed to the decoder. If each code word is merely a sequence
of output letters, the decoder cannot take advantage of the state information since he
has no freedom to operate on the code words. The code words shouid be selected so
that there is some remaining freedom for the decoder to take advantage of the state
information in interpreting the facsimile of the source output. If the length of the block
code is n, in general, the decoder will use n functions, fl(m;g), f2(m;§), ceey fn(m;—s_),
where s = r 1 Foo ooes T is the sequence of source states corresponding tc the encoded
source sequence. In these functions m ranges over the integers from 1 to M and the r,
range over all possible source states. The functions themselves take on values in the
output alphabet. The decoder operates as follows. The encoder operates only on the
source sequence and encodes it as some code word denoted by an integer from 1 to M.
This integer m is transmitted without error to the decoder which presents the sink with
the letters y; = fi(m :5). We should notice that the decoder may base its operation on
the entire sequence of source states because the encoding operation cannot be completed

until the source sequence and hence the state sequence is completed.

Theorem 5.3 Suppose we have a discrete, independent letter source S
with a distortion measure d(xy), and suppose also the decoder only has available side
information, defined by P, and Pi(x), i=1, 2,..., h. The rate-distortion function for S

is identical to the rate distortion furction for a discrete, independent letter source S’
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with letter probabilities P'(x), distortion measure d'(xy), and without
side information. The source alphabet of S' is the same as that of S and

h

2 e
P(x) = ), P Px)
i=1
. h —

The output alphabet of S' has b~ letters y = (yl, Yos oo yh), where

the y; are in the output alphabet of d(xy). The distortion measure for
S'is

h
d'(xy) = Z p; d(xy;). oo
i=1

Proof We reduce the anaylsis of the source with side information to a source

with a different distortion measure and more output letters but without side information.
Codes derived for source S* can be used with S and the statistical properties of these
codes are identical with either source.

Let us discuss how a code for S’ could be used with S. The encoder for S is
identical to the encoder for S'. The encoder maps the source word into one of M code
words with letters y € Y, say the m'? one. The decoder for § is given the integer m and
from this and the sequence of source states, which it has stored, it must produce a
sequence of output letters y € Y to present to the sink. A particular letter y of the ¥
alphabet may be thought of as a function from the state alphabet to the output alphabet Y.
The whole alphabet Y consists of all bh such possible functions. The decoder merely

_ treats each of the letters ; of a code word as independent functions from the state

alphabet to the output alphabet Y. If the state is s, the decoder presents y| of the
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letter ; to the sink. For state k, the decoder decodes as Vi The translation is letter
by letter since there is no memory involved in the generation of source states and letters.
The codes for S’ are actually a specialized set of the decoding functions defined

h

above, where fi(m :5) is really a function only of m and of S, the it" state. In fact, the

encoder actually uses decoding functions as output letters in encoding the source output,
thus giving the decoder the freedom to decode using the side information. The average

distortion of such a code with S is exactly the same as the average distortion of the

code with S'. Q.E.D.

This result is an obvious adaptation of Shannon's analysis of a discrete,

(14) As in Section I

memoryless channel with side information at the transmitter only.
of this chapter, we have a scrt of dual to a channel coding problem.

The case of the source with side information available only to the encoder is
trivial. The uncertainty about source letters is the same as for a source with letter
probabilities Z p; Pi(x) = P(x), but merely broken down into two uncertainties, one aboiit
the state and the other about the actual source letter. The job of the encoder may be

aided with the state information but the actual block codes and their statistical properties

will be exactly the same as for the source P(x).

5.3 A Partial Ordering of Information Sources

Consider a discrete, independent letter source with letter probabilities P(x), and

a measure of fidelity p(xy) which gives the amount of fidelity (or the reward) involved in

reproducing source letter x as output letter y at the decoder. We restrict the value of

p(xy) to be non-negative. We define the average fidelity per letter between sequences

u=x, x2...xnandv=yly2.,. v, as
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=] P

n
pluv) = (H p(xiyi) ) )
i=1

which is the geometric mean fidelity per letter. For a block code of length n with M
code words Vi, Vg, ..., Ve and a partitioning of the source space into M disjoint

encoding subsets w;, We may write the geometric mean fidelity as

M
g.m.f. = ) ) P)p(uv,).
i=l w,

1

An exa.mpleJf in which a geometric mean fidelity criterion may be preferrred over the
usual arithmetic average distortion would be in comparing an encoder to a noisy trans-

mission channel. Suppose
p(xy) =exp - (x-y)’/2

for the case of source and output alphabets consisting of the integers from 0 to 10. The
measure of fidelity between a source and an output word then resembles the probability
that the source word results in the output word when transmitted directly through a
particular noisy channel. (The transition probabilities of the channel may not be properly
normalized in this interpretation.) A high fidelity corresponds to accurate reproduction
of the source word at the receiver. Notice that if any one letter of the source word is
reproduced giving zero fidelity, the fidelity measure in reproducing the entire source
word is zero. Low fidelity corresponds to poor reproduction of the source sequence,

and zero fidelity letter transitions are very costly, ruining the entire sequence fidelity,

and these transitions should be avoided.

l Suggested by B. Reiffen'in a private communication.
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We can carry out our upper and lower bounding techniques of Chapter 2 for the
geometric mean fidelity criterion and derive a rate-fidelity function for the source. The
only point to be mentioned in this connection is that we encounter probabilities such as
Pr [ puv) = Po | , Where u or both u and v are chosen at random. We merely

n
1
restate this as P.[ log p(uv) = log p, ], and since log p(uv) = 0 log p(xiyi), we have
i=1
only to bound a sum of the independent random variables log p(x;y;). In fact, if we

define p(xy) in terms of a given distortion measure d(xy) as

p(xy) = & 909,

the fidelity-distortion curve is merely the rate-distortion curve with a scale change

and reversal of the distortion axis.

Let us define the matrix 6(xy) for a source with a fidelity measure as
6(xy) = P(x) p(xy). (5. 10)

A block code of length 1 is merely a transformation T(x) defined on source letters into

input letters. The g.m.f. for a given code of length 1 is then

g.m.f. = ) P p(x,T®)) = ), 6(x, T(x)). (5.11)
X X

We can visualize the code of length 1 with the aid of the 6(xy) matrix. If we circle all
the 9(xy) elements with subscripts (x, T(x) ), the g. m.f. is then the sum of the circled
elements of 6(xy). Every row of 6(xy) must have one circled element in this representa-
tion of a block code. We can use this same representation for block codes of any length

h

n by merely using the n' order direct or Kronecker product of 6(xy) with itself.
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In Eq. 5.12 we have the © matrices of two different sources.

1
6 1 3 6 ) |
o, = 3 4 2 e, = (5.12)
3 2

1 2 5

Notice that comparing the columns of 92 with the columns of 91 with the last row
deleted, we see the first columns of©, and ©, are the same and the second and third
columns of © are both larger1L than the second column of ©,. This implies that we can
use any block code of length 1 for the two letter source to obtain a code for the three
letter source with at least as large a g.m.f. The circled elements of the ©, matrix
lead to circled elements in the first two rows of © 1 which sum to at least the g.m.f.
associated with ©,, and any elements circled in the third row of e 1 can only add to the
g.m.f. associated with ©;. Therefore, a code of length 1 for source No. 2 leads to a
code of the same rate for source No. 1 with at least the same g. m.f. as the code for
source No. 1 gives. This argument can be generalized to block codes of any length.
In a sense, we may think of source No. 2 in the above example as being included

in source No. 1. We are especially interested in generalizing the notion of adapting a
block code for one source for use with another source, giving at least as good a g. m.f.
We now present a definition of source inclusion which will lead to a useful coding
theorem.

Definition Consider the discrete memoryless source Sl with letter

probabilities Pl(xl) and fidelity measure p l(xlyl) , and source S2 with

Pg(xz) and pp(x9y,). We shall say that S} includes S, (Sl_:_)_S2 or Szg S1)s

T A column is considered larger than another column if every element of the first column
is larger than the corresponding element of the second column.
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if and only if there exist two sets of transition probabilities, p,,(xp le) and q (yllyz) ,
with

Py olx) = 0, ) p (xylx) =1,
X
2
and

a,,lv,)= o, ; 9,01y, =1,
1

and there exists

ga'aO, Zga= 1

a
with
a ’Xl’ Yl
where (5. 13)

6,(x,7) =Py(x)) p (x;y,), 6,(x,7,) = Py(xy) py(x,7,)-

We may think of the sets of transition probabilities Py (x2 Ix l) and qz(y 1 [yz) as
channels used in pairs, g, being the probability for the pair with subscript @ . Any
discrete channel may be interpreted as being composed of a weighted sum of pure
channels in which all transition probabilities are either 0 or 1. A pure channel carries
each input letter with certainty to some output letter. A pure channel may also be
thought of as a mapping of the input alphabet into a subset of the output alphabet. For
each «, this decomposition of the channels p ogxz [xl) and q, &y 1 !yz) may be carried out.
A more complete description of the decomposition of a channel into a weighted sum of

(16)

mappings is given by Shannon. In particular we wish to make the point that the

randomly chosen channel pairs can be decomposed into randomly chosen pairs of pure
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channels or transformations. In other words, source inclusion can be defined equivalently
to the above definition but with the added condition that P, (x2 [x l) and q, (8% l[yz) correspond
to pure channels.

The relation of source inclusion is transitive. If S 12_ S 9 and S 2__:2 SS’ then
Sl_:_)_ 53. In fact, if 8y Poz , Qa are the probabilities f for the first incluSion relation,

and gﬁ', Pl'?’ Q/'3 those for the second, then
aEBgagB (B B) 0 - (Q," Q) = oy,

where ° denotes the ordinary matrix product. If S 1_2_ S 9 and S 2_2 S 1> ve will say that

these are equivalent sources and write Sl = S..

9 We see that S 1= Sl always. Grouping

sources with fidelity measures into these equivalence classes, we have a partial
ordering of sources. A universal lower bound of all sources is the source with one
letter and © matrix (1 x 1) with entry zero.

The ordering relation is preserved under the source operation of multiplication.

That is, if Sl_g_ S'1 and 52; S' , then

S ><SZQSI><S2 ,

1

where X denotes the direct or Kronecker matrix product. A product of sources

corresponds to a source which produces letter pairs (x i X 2) with probability P‘1 (x 1) Pz(xz)
. . .. b = ]

and fidelity measure between (xl,xz) and (yl,yz) given by pfxly l) pz(xzy 2) Suppose

again 8y Poz s Qa are the probabilities of the inclusion relation S 1_2 S’1 , and gﬁ’, PI:D” 'B

are those of the relation S 2_2 5'2. Then it is easy to show

aZ gagl'3 (PaxPé) . (elxez) . (an Qé) = e’l X 9'2.

T i - (
Poz al}d Qa denote the stochastic matrices of the pure channels B, (x2|xl) and % Iyz),
respectively,
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Our chief reason for defining source inclusion as above is the following theorem

which relates the ordering to the coding problem for sources.

Theorem 5.4 Suppose Sl;)_ 82 and there is a block code of length n for

S 9 with M code words which gives g.m.{. f;. Then there exists for

source S1 a block code of length n and M code words which gives g.m.f. fI

*
Zfz' o0

Proof We have a block code for S 9 which may be represented by a transformation

T(uz) = V’E defined on all possible source words of length n of Sz. We may write the

g.m. f. for the encoder as

£ = ) Pylig) pyluy, Tw))) = )y 6, (v, .14
Uy Yz

By the preservation of the ordering under source multiplication, we know that we have

g, Py (UZIul)’ qa(vl|v2) such that
Lo 8y P @y lu) B o) 4y vylv)) = Py pylupv),  (5.19)
a,U.,V
IR
th

where P, (uzlul) and q, (VIIVZ) are pure, n-' power channels, Let us drive the

channel P, (uzlu 1) with the source Sll1 and let us also connect the output of this channel

to the input to the encoder for S P We also connect the channel qy (v l(vz) to the output
of the encoder for S Py For a particular «, P, (u2[ui) maps the output of source S 1 into

the input to the encoder for S, while q, (v lIvz) maps the set of M code words for S

2’ 2

into a set of M v 1 words, which then may be considered a block code for S 1° We then
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have defined a mapping of the source words of length n of S 1 into M output words V 1

for each @, and we then have an encoder for Sl for a block code of length n and M code

words.

Each of the encoders for S, for a particular & then gives a certain g. m.f., say

1

f;a' We may think of using the ensemble of encoders with S 1 choosing each encoder
with probability 8y° We may then write the g. m. f. for the ensemble of randomly

chosen encoders as

* = *
£ ; g, 1, - (5. 16)

We can calculate f "i as follows. The probability that the source word uy will be mapped

into output word v. by a randomly chosen set of transformations Paand Qoz is just

1

Piu) ), ) 8, Py @ylu)) q v lvd),
U2 o'

where vz is defined by the encoder for S 9 as T(uz) = V’E, When the source word u i

is mapped in this manner into Vi the fidelity is pl(ulvl) , hence, the g. m.f. over the

ensemble of randomly chosen encoders is given by

3 %1 ;l gzé g, Py W,lu)) (Pl(ul)pl(ulvl)) q, 0, 1v3)

u, a U

-2 Q7 ; 8o P G 10 0,67 ) 4,0,1v3))
2 1

=Ze(uv*)=f*
Uz222 2
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where we have used Eqs. 5. 10, 5. 15, and 5. 14. In view of Eq. 5. 16, there exists a
particular pair of transformations Pa , Qa such that f"ia =z f *1 = f’2". We have shown

the existence of a block code of length n and M code words for S 1 which giv-  g.m.f{.

f”‘2 or more,
Q.E.D.

In particular, we can conclude that if Sl;_ SZ’ the best possible code of length n
and M code words for S 9 could not give greater g.m. f. than the best possible code of
length n and M code words for Sl' It is possible to define the inclusion relation with an
inequality sign in Eq. 5. 13, thus making it more general, but this is not a basic change
from what we present here. Shannon(w) presented a partial ordering for discrete,
memoryless communication channels which looks very much like our source ordering
from a mathematical viewpoint. However, we find such an ordering only for a geometric
mean fidelity criterion and not for the more interesting arithmetic average distortion
criterion. We may conclude that there is a dual source problem to the partial ordering
of channels, but the duality involves the less practical geometric mean fidelity criterion,

and is thus not as useful as the channel ordering.
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CHAPTER VI

CONCLUDING REMARKS AND SUGGESTIONS FOR FURTHER RESEARCH

6.1 Summary and Conclusions

It was intended that this research consist of a general study of the problems
involved in attempting to encode an information source with a distortion measure. We
have presented several aspects of this general problem area from an information
theoretic viewpoint. Our results on the rate-distortion function elaborate on the

(15), whereas the other topics of i) binary source encoding,

previous work of Shannon
ii) sources with side information, and iii) the fidelity criterion on maximum letter
distortion are treated for the first time.

The upper and lower bounds on average distortion for block codes of fixed rate
were very useful in arriving at the rate-distortion function of a source. We optimized
the asymptotic form as n— * of the bounds on average distortion until the two bounds
were identical. This gave us a unique relation between rate and average distortion which
had the significance of Shannon's rate-distortion function. Moreover, this approach
gave an explicit method of computing the rate-distortion function by simply solving two
sets of linear equations. Cur results agreed completely with previous results even to
the extent of interpreting our parametric expressions for rate and average distortion

in terms of a test channel. The upper and lower bounds on average distortion were

shown to converge to their limiting values only as negative powers of n.
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The discussion of binary source coding gave some insight into the basic mathe-
matical difficulties involved in applying codes with algebraic structure to sources. We
showed the existence of group codes which gave rate-distortion performance as good as
the ensemble of random block codes, which is asymptotically ideal. The encoding
complexity in applying codes to the binary source was investigated for two sequential
encoding schemes. We presented a simple scheme for binary group codes of length n
and rate R which required only n R(1-R) computations per source letter to encode the
source output. The ensemble of random group codes together with this sequential
encoding scheme was shown to give an upper bound on average distortion which is useful
but weaker than the rate distortion function.

The analysis of a sequential encoding scheme for randomly chosen binary tree
codes of rate R = —;— gave an upper bound to average distortion which seemed to approach
the rate-distortion function. An upper bound on the average number of computations
per source letter to encode the source output was found to be independent of the length
of the code. While the upper bound on average computation was independent of the code
length, it indicated a large number of computations per source letter. It is not clear
whether the bound is weak or whether the average number of computations is, in fact,
high. It would be very desirable to analyze this sequential encoding scheme with

1
(18) » Which are extremely simple to store and generate.

convolutional codes
A logical and interesting extension of this study of source encoding would be the
study of group codes for use with non-binary sources and a more general class of

distortion measures. In analyzing codes with algebraic structure, we are usually faced

with the problem of finding the probability distribution of the smallest value obtained in
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several selections of some random variable. The statistical theory of extreme values
is well developed and may be of use in this aspect of the problem. In view of what we
present here, there is a reasonable chance that a good solution can be found to the
complexity problem in a fairly general class of source encoding problems.

The fidelity criterion on maximum allowable distortion per letter is interesting
in that it is used often in practice, but also because it is directly connected with a
problem in channel coding, i.e., the zero error capacity of a channel. The problem of
encoding a source according to this fidelity criterion is a sort of mathematical dual to
the problem of coding for a channel for zero probability of error.

Our work on sources with side information and a partial ordering of sources
again bring out the dual nature of problems in channel coding and source coding. Prior
to Shannon's work on coding sources according to a fidelity criterion, interest in sources
generally centered on finding expressions for source entropy and noiseless coding schemes
to give low probability of misrepresenting the exact source output. This research shows
clearly that the fidelity criterion generalizes the notions of source coding and produces
as many interesting facets of this newer problem as have been found in the general area
of channel coding. Even in the work on the rate-distortion function, we see that the
techniques used in getting upper and lower bounds on average distortion are quite
similar to those used in deriving bounds on the optimum probability of error for channel
codes.

It must appear to the reader as it certainly has to the author that the problems
in source coding are generally more awkward than their dual counterparts in channel

coding. We point out as examples the difficulty of analyzing codes with algebraic
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structure and our difficulties in obtaining a lower bound to average distortion for finite
code length. This awkwardness appears to be due in some degree to the sum distortion
measure which measures the distortion between sequences of letters as the sum of the
individual letter distortions. The simplicity of the results on the partial ordering for
sources for a geometric mean fidelity criterion leads one to believe that a product
distortion measure may be closer to the mathematical dual to channel coding problems.

However, the geometric mean distortion criterion seems much less useful as a measure

»

of the performance of a communication system.

6.2 Extension of the Theory to Markov Sources and Markov Distortion Measures

Throughout this work we have assumed the simplest of sources, one which
selects letters independently at random. It would certainly be of value to have a
method of calculating the rate-distortion function for a source with memory, i.e. random
letter selections dependent on the past history of the source. Perhaps the simplest
source with memory is the finite state Markov source, for which the entropy is already

“4)

well known'"’. It is clear that our general approach of analyzing the performance of
block codes for such Markov sources would be a logical first attempt to obtain the rate-
distortion function. We have shown that we needed probability bounds on a sum of
independent random variables which were exponentially correct to obtain the rate-distor-
tion function for independent letter sources. However, the analogous bounds on sums of
random variables generated by Markov processes do not yet exist, and this is the first
and main problem encountered in the extension of the theory to Markov sources.

The distortion measures that we have used were single letter distortion measures

in which the distortion was defined by concurrent source and output letters, i.e. d(xy)
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was the distortion when the source letter x was reproduced as output letter y. Shannon
discussed a local distortion measure(ls) in which the distortion was defined by con-
current blocks of source and output letters. (The length of the blocks was finite.) Let
us call a pair of successive source letters in a sequence a transition. For example,

if X1 and x, are the source letter produced at time t-1 and the succeeding letter,
respectively, we call X1 % the transition occurring at time t-1. A local distortion
measure with finite memory can be represented as a distortion measure which depends
only on concurrent source and output letter transitions, if we are willing to deal with
expanded alphabets consisting of sequences of source and output letters. A distortion
measure which depends only on source and output letter transitions, such as

d(x X yt_ 1 yt) is called a Markov distortion measure.

t-1°
We now discuss a simple example of a Markov distortion measure. Consider a
source which selects independently, with equal probability, one of A discrete wheel
positions numbered from 0 to A-1. Let us define the operations of addition and
multiplication of these source letters as modulo A. Suppose we are now faced with the
situation in which the information user or sink does not 'see’ the actual decoder output
directly, but has access to the data only after it has passed through an input device
which cannot be by-passed. (See Figure 6.1). The input device of the sink may be
characterized as a data processing system, possibly with memory. The distortion
measure may be defined in terms of the difference between what the sink receives when
the actual source output and the decoder output are passed through the sink input device.
The situation in which the sink has access to data only through a fixed input device is

not entirely academic, for a human being has access to optical and auditory stimuli only

through his eyes and ears.
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Figure 6.1 Block diagram showing a sink with a fixed input device.
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Let us suppose that we are given the distortion measure d(x'e y') which depends
only on the difference x' @ y', where x' is the response of the input device to the actual
source output x and y' is the response of the input device to the decoder output y. If we
now suppose that the input device is a linear system whose response depends only on

input letter transitions, the linearity allows us to write

d(x't (3] y't) d( (a1 X

t l$a0xt) © (al yt-lq;aoyt))

[}

d@,x 0y ;) ¢a e y))

d (xt—l eyt-l’ xt eyt)

where d' (xt sy X5 ¥

RURRARE yt) is a Markov distortion measure which depends only on the

transitions of the difference (mod A) between the source output and decoder output. We
can see that an irput device with memory and a distortion measure d(x,z) (using the
notation of Figure 6. 1) will lead to a local distortion measure d' between the X and Y
alphabets.

This particular case of the linear data processor can be analyzed, since the
distortion between source and output sequences depends only on the difference between
these sequences. The random coding argument was carried out for this example for the
ensemble of random codes with equiprobable and independent letters. The probabilities
P - [d(uv) = do] do not depend on the particular u and v sequences, and we need only
bound the probability Pr[d(w) = do] , Wwhere w =u e v and d(w) = ?1%—1— iq d(wi, wi-l)'

(10) i=2

R. S. Kennedy has derived exponentially correct bounds on P, [d(w) = d,] whenw

is generated by a finite state Markov process. These probability bounds enabled us to
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find the rate-distortion function for this special case of a Markov distortion measure.
The general Markov source with a Markov distortion measure requires very general

exponential bounds on Markov processes, which do not yet exist.

6.3 Fidelity Criterion on Several Distortion Measures

Suppose we have an independent letter source, P(x), and two distortion measures
d 1(xy) and dz(xy). We may have a fidelity criterion which requires that the average
distortion with respect to d l(xy) 18 d‘i or less while, simultaneously, the average
distortion with respect to d2(xy) is d’a or less. An example of such a situation would
be one in which dl(xy) is an ordinary single letter distortion measure while dz(y) is
merely a cost attached to the use of each output letter. We cauld also conceivable
encounter the situation in which d 1(xy) was a single letter distortion measure and
d2(xt_ 1 xt, yt-l’ yt) was a Markov distortion measure on letter transitions, which
would be somewhat analogous to having a fidelity criterion on the derivative of a
continuous waveform.

For the case where dl(xy) and dz(xy) are single letter distortion measures, the
necessary exponential bounds would not be difficult to derive. We conjecture that the
random coding bound on average distortion could be derived and that the asymptotic form
of this bound as n— * would lead to parametric functions Ru(t), d 1|J(t), dzu(t), t=0,
which have the following significance. There exist block codes with rate R > Ru(t) for

which the average distortions satisfy d_1 = dlu(t) and 52 (t), t = 0. A lower bound on the
U

average distortions would lead to a rate-distortion surface R(d 1,dz). A typical rate-

distortion surface has been sketched in Figure 6.2. A fidelity criterion on several
distortion measures seems to be an interesting extension of the theory with some practical
application, and it should be only slightly more involved than the single distortion measure

case.
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9

Figure 6.2 A typical rate-distortion surface R(dl, d2).
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6.4 General Remarks

The mathematical framework within which this research was done pertains only
to the simplest abstraction of a physical information source. Yet the present theory
does provide a useful way of looking at communication systems which attempt to reduce
transmission capacity requirements by encoding the output of an information source
before transmission to the receiver.

The most interesting applications of such a theory would obviously be with very
complex signal sources which would ordinarily demand a very large transmission
capacity without coding. Whenever subjective appreciation of the facsimile of the source
output is encountered, it is clear that this may be interpreted as the application of a
distortion measure to evaluate system performance. A good example of just such a
physical situation is an ordinary television system. The signal source is governed by
extremely complicated statistical constraints, and it is known that viewers do not
require very accurate transmission of pictures. Moreover, the eye is an input device
to the information user which cannot be by-passed. The visual acuity of the human eye
is such that only blocks of picture elements (as contrasted to individual picture elements)
can be resolved and that the average light intensity over a block of picture elements is
all that is important to a viewer. It seems that a local distortion measure with a
fidelity criterion on average distortion should be general enough to characterize this
situation.

One of the standard engineering approaches to encoding a television source has
been the experimental determination of the coarseness of quantization in picture element

intensities that renders a picture objectionable to viewers. Other standard approaches



130

attempt to encode pictures by first separating the signals that represent the light
intensities of the picture into several frequency ranges and then quantizing the signals
in each frequency range differently. More sophisticated methods of processing
television pictures attempt to exploit the resolution of the eye by scrambling the
quantization noise in adjacent picture elements so that the eye will average them out.
The latter technique is similar to scrambling signals for transmission through a rapidly
fading channel (a channel with memory) to remove correlation in errors in received
data. The channel decoder then processes the received data as if the channel was
memoryless. This technique is simple and it works to some extent, but it provides
little insight in learning the fundamental limitations on the performance of the system.

The information theory indicates that the statistical constraints governing the
operation of the information source must be studied and a suitable statistical m.odel
chosen to represent the source. The next key step indicated is the determination of
the distortion measure and the tolerable level of distortion used by the information user
to evaluate system performance. The job of modeling something as complex as a
television picture source is obviously an extremely difficult task because of the wide
variety of pictures that can occur. Likewise, the determination of the distortion measure
used by television viewers is complicated by the fact that the eye characteristics and
artistic tastes of different viewers implies that there are many distortion measures
actually in use simultaneously.

If a suitable source model and distortion measure could be found, and analyzed,
it would yield the limiting rate reduction that could be achieved by any encoding technique

with the given source and distortion measure. This would provide a yardstick with which
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to evaluate any proposed encoding scheme. Since the source encoder is the complicated
link in the system, the search for good codes would have to consider the complexity in
instrumenting proposed codes. The decoder at the various information users is much
less complicated than the source encoder, which is fortunate since there may be many
users of the encoded source output, e.g. in the television system example, there are
many, many information users interested in one signal source. The block diagram of
our proposed communication system is given in Figure 1. 2.

The actual detailed design of systems which attempt to reduce transmission
capacity requirements of complex signal sources will most certainly be influenced by
the information theory someday, but that day is a long way off. However, the theory
does at present provide a design philosophy by indicating the basic steps involved in

building signal processing equipment to conserve transmission channel capacity.
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APPENDIX A
PROOF OF THEOREM 2.1

Consider the situation in which the source P(x) has just generated a word u of
length n and we are about to choose a list of M code words of length n at random according
to PC (y). We want to get an upper bound to the average distortion that results after
choosing the code and encoding u for minimum distortion. We will study a non-optimum
encoding system to get the desired bound. We have a threshold dn and we start cal-
culating the distortion between u and each code word in the list of code words. The
source word u is mapped into the first code word v that we come to the list for which
d(uv) = dn. If the first M-1 code words in the list fail this test, we map u into the last
code word LYE

If any code word satisfies the d(uv) = dn test, the resulting distortion in encoding
u is upper bounded by dn. If none of the first M-1 code words satisfy the test, the
is just

average distortion in mapping u into VM

), PGOP()dxy) =d_ (A. 1)
XY
The upper bound on the average distortion in encoding u with the described
system, when averaged over ail u, is an upper bound on the average distortion over the
ensemble of random block codes with the best partitioning of U. We then get the bound
on E, the average distortion for the ensemble of block codes,

d =d(1-P)+d P =d +d P (A.2)
n (0] m O n m o :
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where Po is the probability that the source selects a sequence u and that none of the

first M-1 code words satisfy d(uv) = dn'

For the case of M = 2 we have only one code word to test so

P = _ZJ P(u) (1-P_ [d@v)=d_u]).

It follows that for M code words

P =), P (1-P [d)=d |u] M- (A.3)

U

We wish to next show the conditions under which P0 can be made to tend to zero
with increasing block length n so that the bound on dn Eq. A.2 tends to dn° For any
particular source word u we may count the number of times each letter of the X
alphabet appears. We denote by n(xk) the number of times letter X, appears in the u
sequence and we call the set of integers n(x), x € X, the composition of u.

The probability Pr [duv) = dnlu] depends on u only through the composition
of the u sequence. It is intuitively clear that the letter composition n(x) of very long
u sequences tends to n P(x) with high probability. We therefore divide the space U into
the subsets U* and ﬁ—;, the complement of U*. U?* is so defined that the composition
of u € U* is approximately n P(x), which defines Pr [duv) = dn]u e U*] within narrow
limits. The part of P0 involving the subset U* then depends on M and can be made to
vanish only by restriction of M. The subset U* has vanishing probability for very large
n.

We need a lower bound on Pr [duv) = dniu] in order to upper bound
exp (- (M-1) P [d(uv) = dniu] ) in P. R. M. Fano's lower bound® (pages 275-279)

is suitable for our purposes and is restated below in our notation.
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rn(U,t) - trl"l (u’t)

1.
P [d(uv) = dnlu] =K e ,t=0 (8. 125)

where u = ﬁ_ £

e e gn’ gi € X with composition n(x), and
i 2

v, () = log E P (y) H0) (8. 127)
Y -

Il
Tw,0=) 7, =) 0 %@ (8. 129)
=1 7

<

N b 2% L4
Yy (t)—-—x———at

n

I () = él Yé‘i(‘“% n(x) ¥.(t)

Qylx = By 0 %O (8. 128)
_a(-1)
K m=em ©  ep-(@+ltla+ Ty 0 @ar]n)t) e 1)

A =max d(xy) (larger than Fano’s A) (8. 130)
XY

The value of t is specifically chosen in (4) to satisfy
I‘n (u,t) = ndn, t=0 (8. 146)

but it can be seen from the derivation of this bound that we are free to choose any value
of t = 0 such that

I‘n (u,t) = ndn. (A.4)

-‘-
"The underlined equation numbers are from (4) to aid in comparing the different notations.
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We define y(t) and y'(t) as the mean values of ’yx(t) and 'y};(t), respectively con-
sidered as random variables with probability P(x). We see that the mean values of

I;I(U,t) and I‘I;(u,t) are ny (t) and ny'(t), respectively. Let us take the threshold

d=d+n (A.5)
n U

where d  is a constant. Then as n— %, dn —d . Now we may choose the value of t

independent of any usequence by

Y'@) = d, t 0. (A.6)

Also, we see from Eq. A.1 and the definition of y'(t) that

y©=d_ .7
Define the subset U* of u sequences such that
m(@) -0 =T @)
and ny'(t) - n# = I‘r'l (u,t) =ny'@t) + n¥#
For u € U*, we have from Eqs. A.5and A.6
I‘;l(u,t) <ny'(t) +n¥ = nd,

so that t is chosen to give a valid lower bound to Pr [d(uv) = dn iu] for u € U*. The

definition of U* is used to lower bound exp (II‘I(u,t) - %I‘;l {u,t))for u € U* so that we get

3 - ') - n ¥4 - 34
P [d@v)=d |ueU*] = K@) IV ® - ney'@) - n¥ - e n (A. §)

where K(n) differs from KL(n) in that each n(x) has been replaced by 1. This gives

KL(n) = K(n) and K(n) now has no u dependence.
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Eq. A.2 now becomes, using Eq. A.3,

i M-1

d=d +d_ (% P(u)+z* P (1B, [d@v) =dn/upMY) L (a.9)
o* U

Using Eqs. A.5, A.6, A.7, and the inequality for O0<p = 1,

(l-p)M-I - e(M-l) log (1-p) _ e-(M-l)p

we get
_ . o 3 .
d=d +d_ (pr[m] + {?* p) o M-DEId@) =d /ueU ])

— - - nlty' ©-yyn il
= ,Yl(t) + n- 1/4 +,Y|(0) <Pr[ U*]""‘ e (M 1) K(n) exp nfty (t) 'Y(t)“"ﬂ +lt|n 4])
(A. 10)

where we have upper bounded ZU* P(u) by unity.

From the definition of U* we see that the probability of U* is the probability of

the union of the three events

I‘n(u-,t) <ny() - n3/
T'(u,t) <ny'@) - nt

I‘n'(u,t) >ny'(t) + n¥4
which can always be upper bounded by the sum of the probabilities of the individual

events.
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P_1U*] = P_[T (1) < ny(®) - n®4 |
+P_ [T (u,t) < m'(©) - n¥* |
+P [T (u,t) > my'(t) + n¥*) (A.11)

Denote the distribution function for the random variable

T@,t)=T by £ (T')=P (I =TI'). We define the random variable
n n n r n

, = n-0Y
n '\f'n_'al

where y = y(t) and o': is the variance of 'yx(t).

The distribution function for z is then
- o |
%n(z)— £n('\/nol z+ny) (A.12a)

which implies

=y (L
LD =8 (=" (A. 12b)
1

and %n(z) has mean zero and variance one so that we may apply ordinary central limit

(1)

results. %n(z) can be estimated by using a theorem by Cramer' ’ (pages 77-78) with

the constant c in the theorem estimated by Cramer to be 3. (See comments of

Gnedenko and Kolmogorov(é) page 201.) Thus
En(z) < &(z) + Bln(z) (A.13)

where B, (z) = 3B3logn and B is the third absolute moment of £ . Then combining
In NI Giw,/a B n

Eqs. A.12b and A. 13,
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nl/4 nxA
) <@ (- (o4 )+Bln

P [T (u,t) <ny() - n = 8 (- 1 :

g _exp (-n/? / 26) +B . (A. 14)
NTT ni/s n

()

=

We have used a bound for &(-a), @ >0 given by Feller' ’(page 166, Eq. 1.8),

2 /¢
exp - a“/2
q,_a S_E____,a>0.
(-@) N2T o

In an entirely analogous manner we bound the other terms of Eq. A.11. Define
o‘; as the variance of the random variable 'y};(t), and [323 as the third absolute moment
of 'y)'((t). We get

o exp(n’® /26) | o (A.15)

" ' - %
B [Tgt) <ny'(©) -n¥] <« = m = 2n

i/

PrlI}'l(vht)>nv'(t)+n"“] =1-a( o, )+ By

n1/4
=¢ (- 3 ) +an

0, exp (-nl/z / 20%)
<% = 2>+ B, (A. 16)

3B.logn
where B = 23
n TTmof

Combining Eqs. A. 14, A.15, and A.16 in Eq. A. 10 gives Eq. 2.4 and proves
Theorem 2.1.  This bound on d is for any t = 0 and involves only n and functions of

P(x) and d(xy). Q.E.D.
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APPENDIX B

ASYMPTOTIC EXPANSION OF CERTAIN INTEGRALS
We wish to obtain an asymptotic expansion of integrals of the form
0 oz 0 oz
-0_! e d%n(z) and {o ze d%n(z)
where %Sn is the normalized distribution function for a sum of discrete, independent,
non-identical random variables. We shall assume that the random variables are non-
lattice, i.e., there are no numbers r and h such that all values of D(xy) can be expressed
(6)

as r+hn, n=0, +1,+2, ... From Esseen's theorem (Gnedenko and Kolmogorov

page 210), we may write 8n as

2
5 (2) = 82 - P3n (@-Dexp-2°/2 | e 4 B. 1)
6*\/?1"(;11'1')‘% NZ7 Nn

where ‘83n is the third absolute moment of the distribution Hn(z) given in Eq. 3.3. From

(1)

Cramer's work "~ it is clear that this theorem applies to sums of non-identical random
variables.

Denote the function

d'  exp - 22/2

oV = o = (B.2)
and the integral
O 6z @
L (a)= f e @ (z)dz. (B.3)

-00
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Since

(2 -exp-22/2 _ @ )
N2r

and dcp(l) (z) = cp(l+ 1) (z) dz, we see that the integrals we are interested in are Io(a)

and 13(a). Note that

9 ey = 260 @yase @ (8. 4)
i i(oz) —-w ze ¢ ' (z z-—Ji .

and we are interested in the integrals Jo(a) and Ja(oz) as well.
By completing the square in the exponent we find
I (@)= &(-a) exp a?/2 (B.5)
Integration by parts yields
13(01) =-1-a Iz(oz)
Iz(a) = - Il(a)
Il(a) =l-a Io(oz)
so that
L@)=-1+a’-a®1 (). (B.6)
3 o
By use of Eq. (B.4) we obtain from Eqs. B.5 and B. 6

1
J @)= -— + ad(-a)expa’®/2 (B.7)
° N2r

20

= -30%1 (@) -0’ (@) . (8.8)

Jj@) =
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(5)

From Feller ~ (page 179, Eq. 6. 1) we obtain an asymptotic expansion for &(-a), a>0.

a2
5(-a) ~-XP at/2 (_1__1 3 15...) (B.9)

+ -
;\’2" o ;3 CYS :Y_T

If we now use @ = |t| Nnp" together with Eq. B. 9 we obtain the asymptotic

expansion of the desired integrals as

1 1 1
L(@)~ 5= <|t|~/;ﬁ-'-' +o (UF))

1 3 1
Y@~ = (7 @)

1 1 1
WO ( le]2np o)

1 6 1
], (@) ~ + 0 (—75) . (B. 10)
3 N2r |tl2 (n,.t")"‘/2 n? )

The last term of Eq. B. 1 in the expansion of %n(z) yields integrals

0
= [ ™= ~ o ()
Np - Nn'o n
€ 0 az € 1 .
[ ze"%dz = - >~ o) - (B. 11)
Nn o - NI &

Now we may combine our results in Eqs. B. 10 and B. 11 to obtain
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0
[ e*%as @)~ 1 +o (1)
. o0 |t| N/Zﬂ-n#” '\/Fl-
. (B. 12)
f 2e%%d% (2) ~ - 1 +o(‘1‘)
- n N2r [t'znp" n
and from Egs. 3.12 and 3. 13 we obtain
-1 1
€1 7 2 » 4y =
Nom Je]© ut [e] N2mu™
(B. 13)
- 1 .
S o= - =—=— , d =1
1 Je] w 1

The case of a lattice random variable is substantially the same with the compli-

cation of one extra term in the expansion of E'Sn(z). Esseen's theorem on lattice dis-

(©)

tributions (Gnedenko and Kolmogorov' °, page 213) is used and the result for El/ d 1

is exactly the same as Eq. B. 13.
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