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Abstract—1In recent years, traffic congestion in transporta-
tion networks has grown rapidly and has become an acute
problem. The impetus for studying this problem has been
further strengthened due to the fast growing field of Intelli-
gent Vehicle Highway Systems (IVHS). Therefore, it is crit-
ical to investigate and understand its nature and address
questions of the type: how are traffic patterns formed? and
how can traffic congestion be alleviated? Understanding drivers’
travel times is key behind this problem. In this paper,
we present macroscopic models for determining analytical
forms for travel times. We take a fluid dynamics approach
by noticing that traffic macroscopically behaves like a fluid.
Our contributions in this work are the following: (i) We
propose two second-order non-separable macroscopic mod-
els for analytically estimating travel time functions : the
Polynomial Travel Time (PTT) Model and the Exponen-
tial Travel Time (ETT) Model. These models generalize
the models proposed by Kachani and Perakis [4] as they
incorporate second-order effects such as reaction of drivers
to upstream and downstream congestion as well as second-
order link interaction effects. (ii) Based on piecewise lin-
ear and piecewise quadratic approximations of the depar-
ture flow rates, we propose different classes of travel time
functions for the first-order separable PTT and ETT mod-
els, and present the relationship between these functions.
(iii) We show how the analysis of the first-order separable
PTT Model extends to the second-order model with non-
separable velocity functions for acyclic networks. (iv) Fi-
nally, we analyze the second-order separable ETT model
where the queue propagation term -corresponding to the
reaction of drivers to upstream congestion or decongestion-
is not neglected. We are able to reduce the analysis to a
Burgers equation and then to the more tractable heat equa-
tion.

Keywords— Dynamic Traffic Flow, Dynamic Travel Time,
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I. INTRODUCTION

he way flows circulate in traffic networks, the way

queues form and disappear, the spillback and the
shock wave phenomena, are striking evidence that traffic
flows are similar to gas and water flows. It is therefore nor-
mal to use physical laws of fluid dynamics for compressible
flow to model traffic flow patterns.

In 1955, Lighthill and Whitham [5], and in 1956,
Richards [17] introduced the first continuum approxima-
tions of traffic flows using kinematic wave theory. A variety
of dynamic traffic flow models have been proposed in the
literature that can be classified in two major categories:
microscopic models and macroscopic models.

Microscopic models, or car-following models, have the
ability to describe, at a level of detail, the network geome-
try, the traffic flow and its kinematics and the traffic con-
trol logic. Such models enable simulated tests of traffic flow

control strategies, and help design safety procedures by bet-
ter understanding the driver’s behavior. In 1950, Reuschell
[16] proposed the first car-following model. Pipes [14] and
Herman et al. [15] extended this model. Gerlough and
Huber [3], Bekey et al. [2], and Papageorgiou ([10], [11],
[9]) and references therein provide an extensive analysis of
these models.

On the other hand, analytical models usually possess
mathematical properties that are useful in understanding
the properties of a model and in designing solution algo-
rithms to solve instances of the problem. In an attempt
to improve modeling accuracy, the first-order model of
Lighthill and Whitham [5] was extended by Payne [12] and
Whitham [18].

The purpose of this paper is to address the question of
what is the travel time of a driver in traversing a network’s
link. Practictioners in the transportation area have been
using several families of travel time functions. Akcelik [1]
proposed a polynomial-type travel time function for links
at signalized intersections. The BPR function [8], that is
used to estimate travel times at priority intersections, is
also a polynomial function. Finally, Meneguzzer et al. [7]
proposed an exponential travel time function for all-way-
stop intersections. Our goal is to lay the theoretical foun-
dations for using these polynomial and exponential families
of travel time functions in practice. While most analytical
models in traffic modeling assume an a priori knowledge of
a driver’s travel time functions, in this paper, travel time
is part of the model and comes as an output.

To determine travel times, we examine and further ex-
tend the analytical model proposed by Perakis [13]. This
model provides a macroscopic fluid dynamics approach to
the dynamic network equilibrium problem. We also extend
the analysis performed by Kachani and Perakis [4] to ac-
count for second-order effects such as reaction of drivers
to upstream and downstream congestion, drivers’ reaction
time, as well as to account for second-order link interaction
effects.

II. NOTATIONS AND INTRODUCTION TO THE
HyprODYNAMIC THEORY OF TRAFFIC FLOW

In Subsection A, we summarize the notation that we
use throughout the paper. In Subsection B, we consider a
single link network and introduce the hydrodynamic theory
of traffic flow developed by Lighthill and Whitham [5].



A. Notation

The physical traffic network is represented by a directed
network G = (N, I), where N is the set of nodes and I
is the set of directed links. Index w denotes an Origin-
Destination (O-D) in the set W of origin destination pairs.
Index P denotes the set of paths and index P,, denotes the
set of paths between O-D w.

Path Uarzables

Zp position on path p;

L, length of path p;

Fp(zp,t) flow rate at time ¢ on path p at position z,;

F(0,t) vector of departure path flow rates;

Tp(Lp,t) travel time on path p departing at time ¢;
Link Uamables

T; position on link z;

L; length of link 4;

filzs, ) flow rate at time ¢ on link 7 at position z;;

f(o,¢t) vector of departure link flow rates;

Ti(L;,t) travel time on link 7 departing at time ¢;

ui(z;,1) speed on link ¢ at position z; at time £;

ui(k, Vk)

link densities’ gradients;

i (k) function of the vector of link densities;

ki(z;,t) density on link 4 at position z; at time ¢;

ulrer :  maximum traffic speed on link ¢;

kmaez maximum traffic density on link ¢;

Link-path flow variables:

ip link-path pair;

Oip = 1if link ¢ belongs to path p, 0 otherwise;

L length from the origin of path p until
the beginning of link i;

Tip(Lip, t) partial path travel time from the origin

of path p until the beginning of link ¢
departing at time ¢;

B. Hydrodynamic Theory of Traffic Flow on a Single
Stretch of Road

In this subsection, we describe the laws of fluid dynamics
for compressible flow in a single stretch of road. Lighthill
and Whitham [5] introduced these laws.

Let us consider a link of length L. We denote by 7 =
7(z,t) the travel time to reach position £ when departing
at time ¢. The three fundamental traffic variables of fluid
dynamics are the flow rate function f(z,¢+ 7), the density
function k(z, ¢+ 7), and the velocity function u(z, ¢+ 7) at
point z at time £ + 7.

Two relationships connect these three variables: f(z,f+
7) = k(z,t + 7).u(z,t + 7), and 2LHHT) 4 et _ g,
Vz,7. The latter expresses that there is conservation of
cars in a road with no exits.

If we knew the velocity function u(.), then the above
two laws would allow us to obtain the flow rate f(.) and as
a result the density k(.). In the mid-1950’s Lighthill and
Whitham [5] and independently Richards [17], proposed
an additional assumption, that is, that the velocity at any
point depends only on the density. In mathematical terms:
u = ulk).

The function % is empirically measured and is an input to
the model. Several models have been proposed in the liter-
ature for the velocity function %(.). Mahmassani and Her-
nan [6] proposed a linear model: @(k) = u™**(1 — ZE2).
Therefore, the free flow speed is the maximum speed:
u(0) = v™*, and at maximum density, the speed is zero:
u(k™e*) = 0.

III. GENERAL MODELS FOR TRAVEL TIME FUNCTIONS

In Subsection A, we propose a second-order non-
separable model (Model 1) for travel time functions that
incorporates the drivers’ reactions to upstream congestion
or decongestion as well as link interaction. This model gen-
eralizes the first-order model proposed by Perakis [13]. In
Subsection B, we propose two simplified versions of the gen-
eral model: the Polynomial Travel Time (PTT) Model and
the Exponential Travel Time (ETT) Model. The analysis
of these two models is the focus of the following sections.

A. A Second-Order Model

function of the vectors of link densities and The purpose of this subsection is to model the following

two traffic phenomena:

1- Drivers’ reaction to upstream congestion or deconges-
tion. In particular, when a driver realizes the formation of
a queue upstream, he/she starts slowing down. Similarly,
drivers start accelerating when the queue starts dissipat-
ing.

2- Effects on a link of densities as well as variations in den-
sities of neighboring links.

To account for the two phenomena, we replace the speed-
density relationship u; = #;(k) by u; = u;(k,Vk). The
variables k and V& contain the term 2% that allows us to
model the reaction of drivers to chang s in the link density.
They also contain the terms k; and kJ for the set of links
j in the neighborhood of link ¢, that allow us to effectively
model link interaction. We propose the following general
form of the velocity of link 4, at position z; and at time ¢:

i(k, VE) = ul**® — bi(u]**®)?ki(zs, t) —

Ni(z:) Oki(as,) "
i\ L)\ Z5,0 — A;s
ki(z;,t) Ox; +jezlaj($ )k](m] t ])+

Z ,8” CI}Z Ok; (CI}], A”)
ki(T;,t — Aij) oz, ’

1)

where o;;(2;) and 5;;(z;) are density correlation functions
between link ¢ and link j and depend on the position z; on
link ¢; T; is a fixed position of a detector of density on link
j and A;; is a propagation time between link ¢ and link j.

The term —k)‘((ww’g) g’; is borrowed from heat transfer
and accounts for the drivers’ awareness of upstream and
downstream conditions. The heat transfer term \;(z;) is a
positive term expressed in squared miles per unit of time.
The propagation term kﬂ(;—%% expresses the variation
in the speed induced by a variation in the density. For
instance, when a queue is expanding on link ¢, the term




Ai(Zi) Ok
T Ri(zi,t) Oz

u;(z;,t) decreases.
Model 1 can be formulated as follows:

Model 1
For allt € [0,T], p € P, and i € I, we have:

is negative and hence the velocity function

Tp(vat) ZzeIT(L17t+T1p(L1pv ))51'1)7 (2)
fi(zi,t) = ZpeP Fp(mlvt)élpv (3
u;i(zi,t) = ui(k, VE), (4)
fi(mh ) - k (CI}“ )ul(wl7t)7 (5)
Ofi(z:,T; Ok (z:,T3) _
Bihl + gl — o, (6)
dTid:ii’t = uLi’ (7)
T;(0,¢) = 0. (8)
When X;(.), o;;(.) and G;;(.) go to 0, the above
speed-density relationship becomes u; = u*** —

b; (uT*®)2k;(z;,t). The latter corresponds to the ﬁrst order
model proposed by Perakis [13].
Model 1 is very hard to analyze in its current form. For

this reason, in the following subsection, we consider two
simplified models of Model 1.

B. Two Simplified Second-Order Separable Models for
Travel Time Functions

Our goal in this subsection is to solve Model 1 and pro-
pose specific travel time functions. To achieve this, the first
step is to eliminate some of the variables involved in the
model. We eliminate the density variables by expressing
them as functions of the flow rates. This leads to propos-
ing two simplified versions of Model 1. We impose the
following assumptions:

Al u;(k,VEk) is a separable function of the density
k;. Further, w;(k,Vk) = ul**® — bi(u?‘“w)zki(mi,t) -
—k)‘((f’g) 73’93(:;”5), where b; is a constant.

A2 The term W << 1.

A3 The term \;(z;) g’; << 1.

A4 The link flow rate f;(0,¢ + ;) can be approximated
through a continuously differentiable function h(r;) of 7;.

Lemma 1: Under Assumption (A1), the link density as
a function of the link flow rate function and the queue
propagation term can be expressed as:

1 Ok;

b = g (= (L= (i + M) D). )

Proof: Since @(k;) = u*® — b;(u7®)%k;, combining the

speed-density and the ﬁow-speed-density relationships, we

derive f; = ul**®k; — b;(u"*®)2k? — \i(z;) 2. By solving

in terms of k; for stable flows, we obtain the result of the
lemma. Q.E.D.

B.1 The Polynomial Travel Time (PTT) Model

In this subsection, we consider an approximation of equa-
tion (9). This approximation enables us to describe the
conservation law of cars (6) only in terms of the link flow
rate functions.

Lemma 2: Under Assumptions (A1)-(A2), the link den-
sity as a function of the link flow rate function and the
queue propagation term can be expressed as:

fz+)\z($z)% (fl+)\ (mz)aw )

maz maz
U, U,

ki = (10)
Proof: From equation (9), k; = W(l — (1 —4b;i(f; +

Aiz;) gk })2). Assumption (A2) and the definition of b; in
Assumption (Al) imply that all the terms of order higher
than or equal to 3 in the Taylor expansion of the above
equation are negligible. That is, 1 — (1 — €}z = s+ % +
O(€®). The result of the lemma, follows. Q.E.D.

Using the above result, the following theorem provides
a partial differential equation that provides a new version
of the conservation law (6) described only by the link flow
rate functions .

Theorem 1: Under Assumptions (A1)-(A3) and equation
(10), the link flow rate functions f; are solutions of the
second-order partial differential equation:

ofi u**®  0f; i
et . A 11
o T anifiom @) G (11)

Assumption (A4) provides a boundary condition and, when
Ai(z;) is non-zero, fi(z;,0), for z; € [0,L;] and ¢ € I,
provides an initial condition.

Proof: Replacing the value of k; from 10 in the flow
conservation equation gives rise to:

0fi
&vi

1+ 2b;f; 0f; 1 32k‘i
ule® 9t ul"*® 9o, (Ai(z:)
g, T 20iNi(@i)fi) + 2:rulas) Oks Ofs

u**®  Ox; Ot

+2bi )i (z;)?

=0.

Differentiating the flow conservation equation with re-
Pk _ _0%f
otdz; 6:0? .

spect to z; leads to Replacing the

9%k;
f dtoz;

and using Assumptlon (A3) leads to
z;)+2b; Mi(23) fi 3 fz

umes
gives rise to the result of the theorem. Q.E.D.

Conservation law (11) is the basis of our analysis of the
PTT Model in the following sections.

above value o in the above second-order equation

% 1426 f; 0fi _
DL: + ures ot
142b; fi

umnez

= 0. Dividing each term by

B.2 The Exponential Travel Time (ETT) Model

In this subsection, we use a different approach. We first
eliminate the density variables through equation (9), and
use this to derive a conservation law. We then approximate
this equation to obtain a conservation law in the link flow
rate.

Theorem 2: Under Assumption (A1), the link flow rate
functions f; are solutions of the partial differential equa-
tion:

ofi
at

ki 1 0f; 9% f;
PP (L - 4l + M) )} T = (@) O




Furthermore, under Assumptions (A2) and (A3), the link
flow rate functions f; are solution of the second-order par-
tial differential equation:

8% fi

7 -
Ox;

afi
&vi

% + ugn‘”(l - 2bzfz)

5 = Xi(#;) (12)

Assumption (A4) provides a boundary condition and, when
Ai(z;) is non-zero, f;(z;,0), z; € [0, L;] and ¢ € I, provides
an initial condition.

Proof:  Under Assumption (Al), equation (9) holds.

Differentiating this equation with respect to t gives rise
af; Ai(e: 82k;

to 2k — 5e X (21) 5 oe Moreover, differen-

ot ok;

wpres (L—4bi (fi+ A (2:) goi)) 3
tiating the flow conservation equation with respect to

27, 2 .

z; leads to 3%3’;’, = —%w’;’. Therefore, it follows that
of; () 025 '

ok: _ oe N 5.

Substituting the above

ot

i
uae (1-4b; (fit+hi(2:) 522)) 2
value of 33’?' in the flow conservation equation leads to
Lofi _ i

)z T Ailzs) z

63? + uter (1 — 4b;(fi + Xi(z;) gi: oy

Assumption (A2) implies that all the terms of order
higher than or equal to 2 in the Taylor expansion of
the above equation are negligible. That is, (1 — €)z =

— £+ 0(€®). Assumption (A3) gives then rise to equation
(12). Q.E.D.

Conservation law (12) is the basis of our analysis of the
ETT Model in the following sections.

Our purpose is to reduce the analysis of the Second-
Order ETT Model to the analysis of a known problem in
fluid dynamics. This reduction will be achieved in two
steps. The first reduction consists of transforming the bot-
tleneck operation of the model to a Burgers equation. In
fluid dynamics, Burgers equations are considered to be the
simplest equations combining both nonlinear propagation
effects and diffusive effects. The second reduction consists
of a standard reduction of a Burgers’ equation to a heat
equation.

Equation (20) is a second-order partial differential equa-
tion in the link flow rate f;. Solving this PDE is the bottle-
neck operation in the solution of this model. The following
result achieves the two-stage reduction outlined above.

Theorem 3: (i) If Y; = u™** (1 — 2b; f;), then, Y; satisfies
661? +Y'6Yi = 8%y;

t9z; ¢ 9z? *

8z;
(ii) Let Z; be defined by Y; = (1 —2)\; BZ’”;'
reduces to a heat equation of the type

). Equation (20)

8Z; 8%Z;
=X 13
ot * dz?’ (13)
%
Note that f; = —2%(1 - 2u,f:im BZ’”;' ). Equation (13) is

a heat equation. The heat eqliation has been extensively
studied in the literature. The application of literature re-
sults to our specific problem is the subject of ongoing re-
search.

IV. ANALYSIS OF FIRST-ORDER SEPARABLE VELOCITY
FuNCTIONS

In this section, we derive and analyze the first-order Sep-
arable PTT and the ETT Models. This corresponds to the
case where the queue propagation term ;(.) is neglected in
Assumption (Al). In this case, the PTT and ETT models
can be viewed as two simplified versions of the model pro-
posed by Perakis [13]. We summarize the results of Kachani
and Perakis [4] and refer the reader to [4] for proofs of these
results.

In particular, in Subsection A, we examine the PTT
Model for piecewise linear and piecewise quadratic func-
tions h%(T;) (see Assumption (A4)). In Subsection B, we
examine the ETT Model by approximating the initial flow
rate with piecewise linear functions A%(T;). In Subsection
C, we show how the families of travel time functions we
propose in Subsections A and B relate.

A. First-Order Separable PTT Model

In the case where the queue propagation term is ne-
glected, the analysis of the PTT Model model in the pre-
vious section gives rise to the following formulation:

PTT Model
Forallt € [0,T],p€ Pand i€ I:

ofi u*®  8fi

or; T 7127 0z — 0> (14)
£i(0,t + T3) = hi(Ty), (15)
ki = o+ 2l (16)
dT;(z;,t)
feet) _ 1 (18)
Ti(07t) =0, (19)
Tp(va t) = Ziel Ti(Liv t+ Tip(Lipv t))‘sip- (20)

The following theorem provides an existence result for a
continuously differentiable solution of the PTT Model as
formulated above.

Theorem 4: [13] The PTT Model as formulated above
possesses a solution if and only if the first derivative of the
link flow rate function ht(T;) satisfies the following bound-
edness condition:

dhi(T:)
dT;

max
u;

T onL;

Special Cases:

1- Linear PTT Model: We assume that during a time pe-
riod [t,t + A], drivers make the approximation that the
departure link flow rate for subsequent times ¢ + T; is lin-
ear in terms of the travel time T;. That is, £;(0,t+ T;) =
hE(T;) = Ai(t) + Bi(t)T;. Over the time period [0, T7, this
results into a piecewise linear approximation of link depar-
ture flow rates.

Theorem 5: If equation (21) holds, then:
(i) The Linear PTT Model possesses a solution.



(ii) The link flow rate functions f;(z;,t + T;) are continu-
ously differentiable,
u;”‘” + 2blBl( Yo

filzi,t + o) = . (21)

(iii) The link travel time functions T;(z;,t) are given by:

Ai(t) 2b;iBi(t)zi 1
Bi) ((1+ ) 1).

2- Quadratic PTT Model: We now assume that during a
time period [¢,¢ + A], drivers make the approximation that
the departure link flow rate for subsequent times ¢ + T is
quadratic in terms of the travel time 7;. That is, f;(0,t +
T;) = hi(Ty) = Ai(t) + Bi(t)T; + Ci(t)(T3)2. Over the
time period [0,T], this results into a piecewise quadratic
approximation of link departure flow rates.

Leta_bBt bAianda_biCit

e Og = e
;

Z;
max
u;

max
u;

Theorem 6: Assume that
maw

u’L
[Bi(t) +203(6) (6 + A)| << 5,

(23)

Then, the following holds
(i) The Quadratic PTT Model possesses a solution.
(ii) The link travel time functions T;(z;,t) become

AOBO? s |

(mlv ) maw [(1 +Al(t)bl)ml - 2umaet i
()C()() Ai(t)Bi(t)” (b:)°
( ( znaw) 6(umaw) +
Bi(t)*Ci(t) (b:)°
(umaw)z )mz] (24)

B. First-Order Separable ETT Model
The analysis of the ETT Model in the previous section
gives rise to the following model in the first order case:

ETT Model
Forallt € [0,T],pe Pand i€ I:

8F tupras(1 - 2b;f;) 35 =0, (25)
fi(0,t 4+ T;) = hi( i): (26)

ki = e+ I (27)

ui = £, (28)

Mo = (29

T:(0,t) =0, (30)

Tp(Lp, 1) = Yoier TilLiyt + Tip(Lip, 1)) 0ip.  (31)

The following theorem provides an existence result for a
continuously differentiable solution of the ETT Model as
formulated above.

Theorem 7: The ETT Model possesses a solution if and
only if the first derivative of the link flow rate function
ht(T;) satisfies the following boundedness condition:

dhi(T:)
dT;

maz
U;

> — oL, (1 — 2b;RE(T;))>.

(32)

Special Case: Linear ETT Model

As in the analysis of the PTT Model, we assume that
during a time period [t,t + A], users make the approxi-
mation that the departure link flow rate for subsequent
times ¢ + T; is linear in terms of the travel time 7;. We
introduce variables 6; %, 0, = bu,'i—a(f and
0; = 14b6;A;(¢) _

maz
u;

1
u:-'““” (1—2bi A; (t)) °
Theorem 8: Assume that

ma:l:

2bL(

The following holds,
(i) The Linear ETT Model possesses a solution.
(ii) The link travel time functions T;(z;,) are given by

|Bi(8)] << — 2b;A;(t) — 2b:Bi(t)(t + A))%. (33)

ef2%i — 1
02

+ 91(171
92( maw)2

Ti(zi,t) = 05( (34)

(iv) If condition (33) holds, the link travel time functions
T;(z;,t) become

: (14 Ai(t)bi)zs — sz

maz 99, OT l]
i

(]

Equation (34) gives rise to an exponential family of travel
time functions. In the following subsection, we analyze the
relationship between the exponential family of travel time
functions from this subsection and the one we obtained
through the Linear PTT Model and the Quadratic PTT
Model.

C. Models Comparison

While the Linear PTT Model leads to the polynomial
family of travel time functions in equation (22), the Linear
ETT Model leads to the exponential family of travel time
functions in equation (34).

The relationship between these two families of travel time
functions will become clear after the following observation.
Equations (22) and (34) coincide when |B;(f)| << g: Zm
holds. This condition seems to suggest that the variation
of flow with time is small. Then, the travel time function

becomes:

oz [(1+ Ai(t)bi)zi — %TW

u; i

Ti(zi,t) = 7). (35)

This relationship shows that the assumptions made for
both the Linear PTT Model and the Linear ETT Model
are indeed reasonable.

V. AN EXTENSION

In this section, we extend the results of the previ-
ous section for the first-order separable PTT Model to
the second-order non-separable PTT Model. For the
sake of simplifying notation, we introduce J; 1+

Ok (z;,t—Aij) )

Z]EB(z) wmes (a” (2 )kj(jjvt - Am) + %; (ﬁ” (z:)

T t—Aj5) Oz;



Therefore, the Non-Separable Second-Order PTT Model
becomes:

Non-Separable Polynomial Travel Time Model
For allt € [0,T], p € P, and i € I, we have:

42

upes Lo Of 4 Bh — \i(2) 2K, (36)
(Ji+ 73 ) i
. i F2

ki = oy + 2k, (38)
u; = ,!:_, (39)

dT;(zi,t) _
# — u%-’ (40)
T(0,¢) = 0, (41)
(42)

Tp(va t) = Ziel Ti(Liv t+ Tip(Lipv t))‘sip'

We now consider that during a time period [t,t + A],
drivers make the approximation that the link flow rate for
subsequent times ¢ + T; is linear in terms of the travel time
T;. That is, that f;(0,t+T;) = hf(Tl) = A;(t) + B;($)T;.

We consider the case of linear density correlation functions.
That is, for every link j € B(), a;;(z;) = ai; + bijz;. In
addition to the acyclicity assumption we impose on the net-
work, we further assume that the influence of neighboring
links has only a first order effect. For every integer n, let
0;n = nzjeB(i) bijk‘j and vy, = ugnaw + nzjeB 9 aijkj.
The following result provides a linear ordinary differential
equation satisfied by link travel time functions 7; for the
case of linear density correlation functions.

Theorem 9: If B; > —U;ZJS holds, then:
(i) The Non-Separable Linearized PTT Model possesses a
solution,

(ii) The link travel time functions T;(z;, t) satisfy

dT; biBi(t) |

dz; iz + (0is + 26;Bi(t))zi

B 7&‘“‘51‘ ) + b; A; (t)ugnaw + ue® le _0

ugn‘”(ugn‘”Jf + 2b;z;B;(t)) e

If we further consider the case of constant density cor-
relation functions. That is, for every link j € B(3),
a;;(%;) = a;;, then we have the following result:

Theorem 10: [4] If B; > —u;nbazjs holds, then:
(i) The Non-Separable Linearized PTT Model possesses a
solution,
(ii) The link flow rate functions f;(z;,t + T;) are continu-

ously differentiable, and we have:

Bj(tyupesT; — Bl 4 g, (tyypos
U;:naw + 2biBiIi?t z; ?

filzi,t +T5) =

(iii) The link travel time functions T;(z;,t) are given by:
z; A;(t) @ 2biBi(t)3$i)% _1).

u® J; - By(t) ule® J;

Note that when the density correlation functions are set

to zero, we have J; = 1. The results of Theorem 10 then
reduce to the results of Theorem 4.

VI. CONCLUSIONS

Continuing this work, we intend to investigate the ex-
tension of our results in the case of non-separable velocity
functions as they apply to non-acyclic networks. We intend
to examine other fluid dynamics models. For example, we
can consider a different model for relating speed and den-
sity. Moreover, we plan to investigate alternate approaches
including queuing models. We wish to connect these mod-
els with the dynamic user-equilibrium problem. We plan
to investigate the solution to this problem and propose al-
gorithms for computing the solution to our models. We
also intend to perform a numerical study for realistic net-
works using the models and the analysis that we already
performed in order to show how a numerical solution ap-
proach compares to an analytical one.
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