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Abstract— Many optimization problems can be for-
mulated as second order cone programming (SOCP)
problems. Theoretical results show that applying
interior-point method (IPM) to SOCP has global
polynomial convergence. However, various stability
issues arise in the implementation of IPM. The stan-
dard normal equation based implementation of IPM
encounters stability problems in the computation of
search direction. In this paper, an augmented sys-
tem approach is proposed to overcome the stability
problems. Numerical experiments show that the new
approach can improve the stability.

I. Introduction

A second order cone programming (SOCP) problem
is a linear optimization problem over a second order
convex cone. In [4], an extended list of application
problems are shown to be SOCP problems. In par-
ticular, linear programming (LP) problems, and con-
vex quadratically constrained quadratic programming
(QCQP) are both subclasses of SOCP. SOCP itself is
a subclass of semidefinite programming (SDP). In the-
ory, SOCP problems can be solved as SDP problems.
However, it is far more efficient to solve an SOCP
problem directly. In the past few years, global poly-
nomial convergence results concerning the application
of interior-point methods (IPM) to SOCP have been
established [5]. But there is relative little published
research work on the implementation of IPM for solv-
ing SOCP. It has been reported [9] that the major
challenges in the implementation of IPM for SOCP
are the stable and efficient computation of search di-
rections in each iteration of the IPM. In this paper,
we address the issue of stable computation of search
directions. However, we are aware that the method
we proposed must also be computationally efficient.

Given a vector xi, we will write the vector as xi =
(x0
i ; x̄i) with x0

i being the first component and x̄i being
the vector consisting of the remaining components.
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We use a similar notation for zi. For xi, we define

Arr(xi) =


x0
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i · · · x
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i x0
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...
. . .

x
ni
i x0

i

 , (1)

and γ(xi) =
√

(x0
i )

2 − ‖x̄i‖2, where ‖x̄i‖ is the Euclidean
norm.

We consider the standard primal and dual SOCP
problems:

(P) min cT1 x1 + cT2 x2 + · · ·+ cTNxN

s.t. A1x1 +A2x2 + · · ·+ANxN = b

xi ≥K 0.

(D) max bT y

s.t. ATi y + zi = ci, i = 1, . . . , N

zi ≥K 0,

(2)

where Ai ∈ IRm×ni , ci, xi, zi ∈ IRni , i = 1, . . . , N , and
y ∈ IRm. The second order cone constraint xi ≥K 0
means that x0

i ≥ ‖x̄i‖.
For convenience, we define

A = [A1 A2 · · · AN ] , c = [c1 ; c2 ; · · · ; cN ] ,

x = [x1 ; x2 ; · · · ; xN ] , z = [z1 ; z2 ; · · · ; zN ] .

The KKT conditions of the above primal-dual sys-
tems are:

Ax = b (Primal Feasibility)

AT y + z = c (Dual Feasibility)

xi ◦ zi = 0, i = 1, . . . , N, (Complementary)

(3)

where xi ◦ zi = (xTi zi ; x0
i z̄i + z0

i x̄i).
In applying an IPM to solve an SOCP, one relaxes

the complementary condition in (3). That is, the orig-
inal complementary condition is replaced by the fol-
lowing condition:

xi ◦ zi = µei, (4)

where ei is the first unit vector in IRni and µ is a posi-
tive parameter that is to be driven to 0 explicitly. As



µ varies, the solutions to the relaxed KKT conditions
form a path (known as the central path) in the the
interior of the primal-dual feasible region, and as µ
gradually reduces to 0, the path converges to an opti-
mal solution of the primal and dual SOCP problems.

II. The augmented system and normal equation

In this section, we take a closer look at the system of
nonlinear equations solved in a typical IPM iteration.
For a given µ, the relaxed KKT condition is:

Ax = b

AT y + z = c (5)

Arr(x) Arr(z)e0 = µe0,

where e0 = [e1 ; e2 · · · ; eN ]. The matrix Arr(x) =
diag(Arr(x1), · · · ,Arr(xN )) is a block diagonal matrix
with Arr(x1), · · · ,Arr(xN ) as the diagonal blocks. The
matrix Arr(z) is defined similarly.

In order to construct a symmetric Schur comple-
ment matrix, a block diagonal scaling matrix (NT scal-
ing matrix) is applied to the relaxed complementarity
equation in (5) to produce the following equation:

Arr(Fx) Arr(F−1z)e0 = µe0, (6)

where F = diag(F1, · · · , FN ) is chosen such that Fx =
F−1z. For details about the conditions that F must
satisfy, we refer the reader to [5].

Let

fi =

[
f0
i

f̄i

]
=

1√
2[γ(zi)γ(xi) + xTi zi]

[
1
ωi
z0
i + ωix

0
i

1
ωi
z̄i − ωix̄i

]
,

where ωi =
√
γ(zi)/γ(xi). (Note that γ(fi) = 1.) The

precise form of Fi is given by

Fi = ωi

 f0
i f̄Ti

f̄i I +
f̄if̄

T
i

1 + f0
i

 . (7)

The Newton equation associated with the relaxed
KKT conditions (5) is given by A 0 0

0 AT I

Arr(F−1z)F 0 Arr(Fx)F−1

  ∆x

∆y

∆z

 =

 rp

rd

rc

 , (8)

where rp = b − Ax, rd = c − z − AT y, and rc = µe0 −
Arr(Fx)Arr(F−1z)e0.

The solution (∆x,∆y,∆z) of the Newton equation
(8) is referred to as the search direction. Solving (8)
for the search direction is the most computationally
expensive step in each iteration of an IPM. Observe
that by eliminating ∆z, the Newton equation (8) re-
duces to the so-called augmented system:[

−F 2 AT

A 0

] [
∆x

∆y

]
=

[
r

rp

]
, (9)

where r = rd − (Arr(Fx)−1F−1)−1rc.

The augmented system can further be reduced by
eliminating ∆x to produce the normal equation:

AF−2AT︸ ︷︷ ︸
M

∆y = ry := rp +AF−2r. (10)

The coefficient matrix M := AF−2AT is known as the
Schur complement matrix, and it is a symmetric pos-
itive definite matrix.

Currently, most implementations of IPM are based
on solving the normal equation (10). The advantage
of using the normal equation is that it is a smaller
system compared to the augmented system (9) or the
Newton equation (8). Furthermore, the Schur com-
plement matrix has the desirable property of being
symmetric positive definite. On the other hand, the
coefficient matrix in (9) is symmetric but indefinite
while that of (8) is nonsymmetric.

However, as we shall see later, the Schur comple-
ment matrix can be severely ill-conditioned when µ is
close to 0, and this imposes a limit as to how accurately
one can solve an SOCP. To analyze the conditioning of
the Schur complement matrix, we need to know the
eigenvalue decomposition of F 2 and we shall discuss
that in the next section.

III. Eigenvalue decomposition of F 2
and conditioning

of M

Recall that F = diag(F1, · · · , FN ). Thus to find the
eigenvalue decomposition of F 2, we need to find the
eigenvalue decomposition of F 2

i , where Fi is the matrix
in (7).

By noting that F 2
i can be written in the form

F 2
i = ω2

i I + 2(fif
T
i − eie

T
i ),

the eigenvalue decomposition of F 2
i can be found read-

ily. Without going through the algebraic details, the
eigenvalue decomposition of F 2

i is

F 2
i = QiΛiQ

T
i , (11)

where

Λi = ω2
i diag((f0

i − ‖f̄i‖)
2, (f0

i + ‖f̄i‖)2, 1, · · · , 1),(12)

Qi =

 1√
2

− 1√
2

0 · · · 0

f̄i√
2‖f̄i‖

f̄i√
2‖f̄i‖

q3
i · · · q

ni
i

 . (13)

Notice that the first eigenvalue is the smallest and
the second is the largest. The set {q3

i , · · · , q
ni
i } is an

orthonormal basis of the subspace {v : vT f̄i = 0}. To
construct such an orthonormal basis, one may first
construct the Householder matrix Hi associated with
the vector f̄i, then the last ni−2 columns of Hi is such
an orthonormal basis.

The normal equation can be solved by Cholesky
factorization efficiently. Although Cholesky factor-
ization is stable for any symmetric positive definite
matrix, the condition number of the matrix still ef-
fects the accuracy of the computed solution of the
normal equation. It is a common phenomenon that
for SOCP, the accuracy of the computed search direc-
tion deteriorates as µ decreases due to an increasingly



ill-conditioned Schur complement matrix. As a result
this loss of accuracy in the computed solution, the pri-
mal infeasibility ‖rp‖ typically increases when the IPM
iterates approach an optimal solution.

To analyze the conditioning of the Schur comple-
ment matrix, we will make the following assumption
on the SOCP problem:
Assumption 1. Strict complementarity holds at the

optimal solution.
Referring to (3), strict complementarity [1] means for
each ith pair of optimal primal and dual solutions x∗i
and z∗i , we have (a) either γ(x∗i ) = 0 or z∗i = 0; and (b)
either γ(z∗i ) = 0 or x∗i = 0.

Under the assumption that strict complementarity
holds at the optimal solution, we have the following
three types of eigenvalue structure for F 2

i when xi◦zi =

µei and µ is small. Note that xTi zi = µ.
Type 1: γ(x∗i ) = 0, γ(z∗i ) = 0. In this case, at the

current iteration, γ(xi), γ(zi) = Θ(
√
µ), and ωi = Θ(1).

This implies that f0
i , ‖f̄i‖ = Θ(1/

√
µ). Thus The largest

eigenvalue of F 2
i is Θ(1/µ) and by the fact that γ(fi) = 1,

the smallest eigenvalue of F 2
i is Θ(µ). The rest of the

eigenvalues are Θ(1).
Type 2: γ(x∗i ) = 0, z∗i = 0. In this case, γ(xi) = Θ(1),

γ(zi) = Θ(µ), and ωi = Θ(
√
µ). Also, f0

i , ‖f̄i‖ = Θ(1),

implying that all the eigenvalues of F 2
i are Θ(µ).

Type 3: γ(z∗i ) = 0, x∗i = 0. In this case, γ(xi) = Θ(µ),

γ(zi) = Θ(1), and ωi = Θ(1/
√
µ). Also, f0

i , ‖f̄i‖ = Θ(1),

implying that all the eigenvalues of F 2
i are Θ(1/µ).

In general, eigenvalue structure of Type 1 occurs
most frequently in practice. If the ith optimal dual
solution is at the origin of the ith cone, then Type 2
occurs. Similarly, if the ith optimal primal solution is
at the origin of the ith cone, then Type 3 occurs.

Assuming that the matrix A is well-conditioned,
then the worsening of the conditioning of the Schur
complement matrix is caused an increasingly ill-
conditioned F−2. Based on the above eigenvalue anal-
ysis, we see that if the optimal solution of the SOCP
problem is purely of Type 2 or purely of Type 3, then
the conditioning of M is will not be severely affected
by a small µ. However, if there are cones that lead
to optimal solutions of Type 1 or a mixture of Type
2 and 3, then the condition number of the M is likely
to grow like O(1/µ2).

In practice, it is reasonable to expect that an SOCP
has at least two types of cones mixed. Hence, accord-
ing to the above analysis, as µ decreases, then the
condition number of M will grow like O(1/µ2).

IV. Reduced augmented system approach

In this section, we present a new approach to com-
pute the search direction via a better-conditioned lin-
ear system of equations. Hence, the accuracy in com-
puted search direction can be expected to be better
than that computed from the normal equation when
µ is small.

In this approach, we start with the augmented sys-
tem in (9). By using the eigenvalue decomposition of
F 2 with F 2 = QDQT , where Q = diag(Q1, · · · , QN ) and
D = diag(Λ1, · · · ,ΛN ). We can rewrite the augmented
system (9) as follows.[

−D ÃT

Ã 0

] [
∆x̃

∆y

]
=

[
r̃

rp

]
, (14)

where Ã = AQ, x̃ = QT x, and r̃ = QT r.
Based on (14), we will apply splitting technique in

[7] to obtain a smaller indefinite system which is typ-
ically better conditioned than the original indefinite
system.

Let the diagonal matrix D be partitioned into two
parts as D = diag(D1, D2) with diag(D1) consists of the
small eigenvalues of F 2 and diag(D2) consists of the
remaining eigenvalues. We also partition the matrices

Q as Q = [Q(1) Q(2)]. Then Ã is partitioned as Ã =

[Ã1 Ã2] = [AQ(1) AQ(2)]. With such partitions, it is
shown in [7] that the system (14) is equivalent to:[
−D1E

−1
1 S

−1/2
1 ÃT1

Ã1S
−1/2
1 Ãdiag(S−1

1 , D−1
2 )ÃT

] [
S
−1/2
1 E1∆x̃1

∆y

]
=

[
S
−1/2
1 r̃

rp

]
, (15)

where E1 is a given diagonal matrix that is usually
chosen to be I and S1 = D1 + E1. Here ∆x̃1 =
(Q(1))T∆x. We call the system in (15) the reduced
augmented system. Note that once ∆y is computed,
∆x̃2 = (Q(2))T∆x can be computed from the equation

∆x̃2 = D−1
2 (Q(2))T (AT∆y − r). After that, ∆x can be

recovered from the equation ∆x = Q(1)∆x̃1 +Q(2)∆x̃2.
Observe that the (2, 2) block of the coeffi-

cient matrix of the reduced augmented system has
the same form as the Schur complement matrix

M = Ãdiag(D−1
1 , D−1

2 )ÃT . But for the (2, 2) block,

diag(S−1
1 , D−1

2 ) = O(1), whereas for M , diag(D−1
1 , D−1

2 ) =
O(1/µ). Because of this difference, the reduced aug-
mented system is expected to be better-conditioned
than the normal equation. Rigorous analysis on the
conditioning of the reduced augmented system can be
found in [7].

V. Numerical experiments

The reduced augmented system (15) is computa-
tionally more expensive to solve than the normal equa-
tions because it is larger in size. But if we use the ap-
proach suggested by K.D Anderson in [2] to solve the
reduced augmented system via the sparse Cholesky
factorization of the (2,2) block, in theory the cost
should not be much more expensive than that of solv-
ing the normal equation. But we have yet to imple-
ment this approach for solving (15).

The coefficient matrix of the reduced augmented
system (15) is a quasi-definite matrix [10]. Thus we
can also solve it directly via the LDLT factorization
proposed in [10] for a quasi-definite matrix. However,
efficient computation of such a factorization depends
heavily on careful handling of sparsity of the matrix.

As our goal in this paper is merely to demonstrate
that the reduced augmented system can produce more
accurate computed search direction, in our numerical
experiments, we use the standard sparse LU factoriza-
tion to solve (15). The experiments are based on the
IPM Matlab software SDPT3 [TTT99], [TTT01].

We compared the normal equation and reduced aug-
mented system approaches on 3 SOCP problems. The
first is a random SOCP problem, the second and third
are SOCP problems arising from antenna array design,
and they come from the library of mixed semidefinite-
quadratic-linear programs collected by G. Pataki and
S. Schmieta in the Dimacs Implementation Challenge
7 [PSD7]. In the tables presented below, the primal



and dual infeasibilities, ‖rp‖ and ‖rd‖, are denoted as
p-infeas and d-infeas, respectively. The duality gap
xT z is denoted as gap.

The numerical results show that the implementa-
tion based on the normal equation encounters sta-
bility problems that are manifested through deteri-
orating primal infeasibilities towards the end of the
IPM iterations. On the other hand, the reduced aug-
mented system approach demonstrated better stabil-
ity in the the primal infeasibilities do not deteriorate
significantly towards the end of the IPM iterations.

Random SOCP problem. Problem size: m = 5, N = 5,
ni = 3, i = 1 : N .

a) Implementation Based on the Normal Equation.
**********************************************************

Infeasible path-following algorithms
**********************************************************
it pstep dstep p-infeas d-infeas gap obj
----------------------------------------------------------
0 0.000 0.000 9.7e-001 1.7e+000 2.2e+001 3.935775e+000
1 1.000 1.000 5.0e-016 0.0e+000 2.7e+000 1.932067e+000
2 0.945 0.902 2.8e-016 7.2e-017 2.5e-001 1.600947e+000
: : : :
: : : :
7 0.985 1.000 2.9e-013 7.3e-017 1.6e-007 1.576568e+000
8 0.989 0.994 1.9e-013 7.2e-017 2.3e-009 1.576568e+000

Stop: max(relative gap, infeasibilities) < 1.00e-008
----------------------------------------------------
number of iterations = 8
gap = 2.28e-009
relative gap = 1.44e-009
infeasibilities = 1.93e-013

----------------------------------------------------------

b) Implementation Based on Augmented Equation
**********************************************************
it pstep dstep p-infeas d-infeas gap obj
----------------------------------------------------------
0 0.000 0.000 9.7e-001 1.7e+000 2.2e+001 3.935775e+000
1 1.000 1.000 5.0e-016 0.0e+000 2.7e+000 1.932067e+000
2 0.945 0.902 2.1e-016 1.2e-016 2.5e-001 1.600947e+000
: : : :
: : : :
7 0.985 1.000 1.2e-016 1.5e-016 1.6e-007 1.576568e+000
8 0.989 0.994 1.4e-016 1.1e-016 2.3e-009 1.576568e+000

Stop: max(relative gap, infeasibilities) < 1.00e-008
----------------------------------------------------
number of iterations = 8
gap = 2.28e-009
relative gap = 1.44e-009
infeasibilities = 1.35e-016

---------------------------------------------------------

Dimacs Challenge problem: nb. Problem size: m =
123, N = 793, ni = 3, i = 1 : N ; Linear block-4.

a) Implementation Based on Normal Equation
**********************************************************
it pstep dstep p-infeas d-infeas gap obj
----------------------------------------------------------
0 0.000 0.000 1.4e+003 5.8e+002 4.0e+004 0.000000e+000
1 0.981 0.976 2.6e+001 1.4e+001 7.8e+002 -1.423573e+001
2 1.000 0.989 3.7e-014 1.5e-001 2.7e+001 -1.351345e+001

: : : :
: : : :

13 0.672 0.775 2.4e-005 1.5e-008 2.4e-004 -5.059703e-002
14 0.227 0.754 2.8e-005 3.6e-009 1.9e-004 -5.061571e-002

Schur complement matrix not positive definite
----------------------------------------------------
number of iterations = 15
gap = 1.86e-004
relative gap = 1.86e-004
infeasibilities = 2.82e-005

---------------------------------------------------------

b) Implementation Based on Augmented Equations
**********************************************************
it pstep dstep p-infeas d-infeas gap obj
----------------------------------------------------------
0 0.000 0.000 1.4e+003 5.8e+002 4.0e+004 0.000000e+000
1 0.981 0.976 2.6e+001 1.4e+001 7.8e+002 -1.423573e+000
2 1.000 0.989 4.3e-014 1.5e-001 2.7e+001 -1.351345e+001
: : : :
: : : :

13 0.674 0.775 1.6e-012 1.4e-008 2.4e-004 -5.059720e-002
14 0.222 0.748 1.0e-012 3.6e-009 1.9e-004 -5.061568e-002
: : : :
: : : :

23 0.549 0.532 9.9e-011 1.9e-014 1.3e-008 -5.070309e-002
24 0.533 0.943 1.5e-010 1.4e-015 7.1e-009 -5.070309e-002

Stop: max(relative gap, infeasibilities) < 1.00e-008
----------------------------------------------------
number of iterations = 24
gap = 7.10e-009
relative gap = 7.10e-009
infeasibilities = 1.46e-010

---------------------------------------------------------

Dimacs Challenge problem: nb-L1. Problem size:
m = 915, N = 793, ni = 3, i = 1 : N ; Linear block-797.

a) Implementation Based on Normal Equation
**********************************************************
it pstep dstep p-infeas d-infeas gap obj
----------------------------------------------------------
0 0.000 0.000 1.0e+000 1.6e+002 2.2e+005 3.877983e+002
1 1.000 0.805 4.7e-014 3.1e+001 5.0e+004 3.545945e+003
2 1.000 0.958 7.1e-013 1.3e+000 3.3e+003 7.272815e+002
: : : :
: : : :

15 0.946 0.928 1.7e-006 2.4e-010 1.7e-004 -1.301225e+001
16 1.000 0.854 2.5e-005 3.5e-011 2.3e-005 -1.301227e+001

Stop: relative gap < 5*infeasibility
----------------------------------------------------
number of iterations = 16
gap = 2.30e-005
relative gap = 1.76e-006
infeasibilities = 2.47e-005

----------------------------------------------------------

b) Implementation Based on Augmented Equation
**********************************************************
it pstep dstep p-infeas d-infeas gap obj
----------------------------------------------------------
0 0.000 0.000 1.0e+000 1.6e+002 2.2e+005 3.877983e+002
1 1.000 0.805 4.7e-014 3.1e+001 5.0e+004 3.545945e+003
2 1.000 0.958 4.5e-013 1.3e+000 3.3e+003 7.271454e+002



: : : :
: : : :

15 0.944 0.924 4.9e-013 2.6e-010 1.8e-004 -1.301225e+001
16 1.000 0.760 1.1e-011 6.2e-011 4.1e-005 -1.301227e+001
: : : :
: : : :

24 1.000 0.506 5.8e-012 2.2e-013 2.0e-007 -1.301227e+001
25 1.000 0.506 7.1e-012 1.1e-013 1.1e-007 -1.301227e+001

Stop: max(relative gap, infeasibilities) < 1.00e-008
----------------------------------------------------
number of iterations = 25
gap = 1.05e-007
relative gap = 8.10e-009
infeasibilities = 7.14e-012

----------------------------------------------------------

VI. Conclusion and future work

The proposed reduced augmented system approach
can improve the stability of IPM for SOCP. However,
in our current implementation, we did not pay much
attention to the efficient computation of the search
direction. More work needs to be done to improve
the efficiency of the matrix construction, factorization
and solution of the reduced augmented system. In
particular, great cares need to be taken to preserve the
sparsity structure of the problem. Another important
issue is the efficient handling of dense columns under
the augmented system framework.
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