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Abstract

This thesis considers the performance implications of throughput optimal scheduling in
physically and computationally constrained data networks. We study optical networks,
packet switches, and wireless networks, each of which has an assortment of features and
constraints that challenge the design decisions of network architects. In this work, each of
these network settings are subsumed under a canonical model and scheduling framework.
Tools of queueing analysis are used to evaluate network throughput properties, and demon-
strate throughput optimality of scheduling and routing algorithms under stochastic traffic.
Techniques of graph theory are used to study network topologies having desirable through-
put properties. Combinatorial algorithms are proposed for efficient resource allocation.

In the optical network setting, the key enabling technology is wavelength division multi-
plexing (WDM), which allows each optical fiber link to simultaneously carry a large number
of independent data streams at high rate. To take advantage of this high data processing
potential, engineers and physicists have developed numerous technologies, including wave-
length converters, optical switches, and tunable transceivers. While the functionality pro-
vided by these devices is of great importance in capitalizing upon the WDM resources, a
major challenge exists in determining how to configure these devices to operate efficiently un-
der time-varying data traffic. In the WDM setting, we make two main contributions. First,
we develop throughput optimal joint WDM reconfiguration and electronic-layer routing al-
gorithms, based on maxweight scheduling. To mitigate the service disruption associated
with WDM reconfiguration, our algorithms make decisions at frame intervals. Second, we
develop analytic tools to quantify the maximum throughput achievable in general network
settings. Our approach is to characterize several geometric features of the maximum region
of arrival rates that can be supported in the network.

In the packet switch setting, we observe through numerical simulation the attractive
throughput properties of a simple maximal weight scheduler. Subsequently, we consider
small switches, and analytically demonstrate the attractive throughput properties achiev-
able using maximal weight scheduling. We demonstrate that such throughput properties
may not be sustained in larger switches.

In the wireless network setting, mesh networking is a promising technology for achiev-
ing connectivity in local and metropolitan area networks. Wireless access points and base
stations adhering to the IEEE 802.11 wireless networking standard can be bought off the
shelf at little cost, and can be configured to access the Internet in minutes. With ubiqui-
tous low-cost Internet access perceived to be of tremendous societal value, such technology
is naturally garnering strong interest. Enabling such wireless technology is thus of great
importance. An important challenge in enabling mesh networks, and many other wireless
network applications, results from the fact that wireless transmission is achieved by broad-
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casting signals through the air, which has the potential for interfering with other parts of
the network. Furthermore, the scarcity of wireless transmission resources implies that link
activation and packet routing should be effected using simple distributed algorithms. We
make three main contributions in the wireless setting. First, we determine graph classes
under which simple, distributed, maximal weight schedulers achieve throughput optimal-
ity. Second, we use this acquired knowledge of graph classes to develop combinatorial
algorithms, based on matroids, for allocating channels to wireless links, such that each
channel can achieve maximum throughput using simple distributed schedulers. Third, we
determine new conditions under which distributed algorithms for joint link activation and
routing achieve throughput optimality.

Thesis Supervisor: Eytan Modiano
Title: Associate Professor
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Preliminaries

Notation

We use R to denote the set of real numbers. We use R+ to denote [0, oc), the set of non-

negative reals. We use Z to denote the set of integers, and Z+ to denote the non-negative

integers. For a set S, and an integer n > 1, the set Sn denotes the n-fold Cartesian product

of S. Thus, R" is the n-dimensional real coordinate space, and R"+ is the positive orthant

in n dimensions. Scalar quantities are italicized, e.g., x. Bold symbols are associated with

vectors and matrices, e.g., x = (X,..., xn). For a vector x = (Xi,..., X) and an index

set I C {1,... , n}, we denote the subvector xI = (xi, i c I). The cardinality operator is

I - , with ISI representing the cardinality of the set S. The convex hull operator is conv(.),
where for the set A C R",

conv(A) = {aai + /a 2 : a,, a2 E A, a > 0, 0, a + = 1}.

An accumulation point of R C R" is such that there exist other points of R arbitrarily close

by. The closure of R is then given by the union of R and all its accumulation points [933.

The closure operator is cl(.). We use w.p.1 to represent the statement 'with probability 1'.

The indicator function is represented by I1.}, returning unity when its argument is true,
and zero when its argument is false.

7



8



Contents

Abstract 3

Acknowledgments 5

Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Preliminaries 7

N otation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7

1 Introduction 21

1.1 Research overview ....... ................................ 22

1.2 Related work ........... ...... ................. . 23

1.3 Contributions ....... ................................... 25

2 Network model, stability, and throughput maximization 27
2.1 Network queueing model for scheduling and routing . . . . . . . . . . . . . 27

2.2 Throughput optimality .................................... 29
2.3 Centralized throughput optimal scheduling and routing ... ........... 30
2.4 M odel extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.A Proof that A*h = conv(lIN) . . . . . . . . . .. . . . .. .. . . . . .. 32
2.B Proof of Theorem 2.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Dynamic reconfiguration and routing algorithms for WDM-based optical

networks 39
3.1 Network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Performance trade-off example . . . . . . . . . . . . . . . . . . . . . 40

3.1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.3 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Reconfigurable network model . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Scheduling under tuning latency, propagation delay, and distributed
control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Algorithms for asymptotic throughput optimality . . . . . . . . . . . . . . 46
3.3.1 Single-hop maxweight scheduling algorithm, for 3 = 0 . . . . . . . . 47
3.3.2 Multi-hop backpressure based algorithm, for 6 = 0 . . . . . . . . . . 48
3.3.3 Frame-based scheduling framework for J > 0 . . . . . . . . . . . . . 48
3.3.4 Additive bias-based scheduling framework . . . . . . . . . . . . . . . 51

9



3.3.5 Comments regarding frame-based scheduling

3.4 Delay performance studies . . . . . . . . .

3.4.1 Zero reconfiguration delay (6 = 0) .

3.4.2 Overview of algorithms tested . . . .

3.4.3 Circuit versus packet switching

3.4.4 Frame vs. bias-based algorithms

3.4.5 Random ring algorithms . . . . . . .

3.4.6 Access network . . . . . . . . . . .

3.5 Conclusions . . . . . . . . . . . . . . . . . .

3.5.1 Future directions . . . . . . . . . . .

3.A Proof of Theorem 3.3.1 . . . . . . . . . . .

3.B Alternative proof of stability of frame-based

3.C Proof of Theorem 3.3.2 . . . . . . . . . . .

3.C.1 Extending von Neumann's result . .

3.C.2 Building a bipartite graph . . . . . .

3.C.3 Translating a perfect matching on

activation matrix . . . . . . . . . . .

3.C.4 Proof of Theorem 3.3.2 . . . . . . .
3.D Proof of Corollary 3.3.5 . . . . . . . . . . .
3.E Proof of Lemma 3.3.1 . . . . . . . . . . . .

3.F Proof of Theorem 3.3.3 . . . . . . . . . . .
3.G Proof of Theorem 3.4.1 . . . . . . . . . . .

3.H Proof of Theorem 3.4.2 . . . . . . . . . . .

scheduling

the bipartite

4 Achieving 100% throughput in reconfigurable optical networks

wavelength case

4.1 Overview and summary of contributions . . . . . . . . . . . . ..

4.1.1 Simple motivating example . . . . . . . . . . . . . . . .

4.2 RWA decompositions . . . . . . . . . . . . . . . . . . . . . . .

4.2.1 The RWA problem . . . . . . . . . . . . . . . . . . . . .
4.2.2 Examples of RWA decompositions . . . . . . . . . . . ..

4.3 Capacity regions from RWA decompositions in single-wavelength

4.3.1 Single-hop capacity region . . . . . . . . . . . . . . . . .

4.3.2 Multi-hop capacity region . . . . . . . . . . . . . . . . .

4.4 Geometric properties of the capacity region . . . . . . . . . . .

4.4.1 Maximum uniform arrival rate matrices . . . . . . . . .

4.4.2 Maximum scaled doubly substochastic set . . . . . . . .

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.A The RWA optimization . . . . . . . . . . . . . . . . . . . . . .

4.B Proof of Theorem 4.3.1 . . . . . . . . . . . . . . . . . . . . . .

4.C Proof of Theorem 4.3.2 . . . . . . . . . . . . . . . . . . . . . .

4.D Proof of Theorem 4.4.1 . . . . . . . . . . . . . . . . . . . . . .

4.E Proof of Theorem 4.4.2 . . . . . . . . . . . . . . . . . . . . . .

The single-

networks

10

graph into link

53
54
54
55
55
57
58
59
60
61

63
64

66
66
67

68
69
70
70
71

72
74

r7
77
78
80
80
81

83
84

84

85
85
87

89
91

92

93
95

96



5 Achieving 100% throughput in reconfigurable optical networks: Exten-

sions 1

5.1 Computability of geometric properties .....................

5.2 Generalized traffic decompositions ..... .......................

5.3 Additional geometric properties . . . . . . . . . . . . . . . . . . . . . . . . .

5.4 Connecting the multi-wavelength and single-wavelength capacity regions . .

5.4.1 Scaling the single-wavelength capacity region: an example . . . . .

5.4.2 The w-wavelength capacity region . . . . . . . . . . . . . . . . . . .

5.5 C onclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.5.1 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.A Proof of Theorem 5.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.B Proof of Theorem 5.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.C Proof of Theorem 5.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.D Proof of Theorem 5.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 Greedy weighted matching for scheduling the input-queued switch 1

6.1 Overview and summary of contributions . . . . . . . . . . . . . . . . . . . .

6.2 Greedy maximal weight matching . . . . . . . . . . . . . . . . . . . . . . . .

6.2.1 Network model and scheduling algorithm . . . . . . . . . . . . . . .

6.3 Num erical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.4 Greedy matching achieves 100% throughput in the 2 x 2 input-queued switch

6.5 Beyond the 2 x 2 switch . . . . . . . . . . . . . . . . . . . . .

6.5.1 The 3 x 3 switch . . . . . . . . . . . . . . . . . . . . .
6.5.2 Larger switches . . . . . . . . . . . . . . . . . . . . . .

6.5.3 The 2 x n switch . . . . . . . . . . . . . . . . . . . . .
6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.6.1 Future directions . . . . . . . . . . . . . . . . . . . . .

6.A Proof of Theorem 6.4.1 based on fluid limits . . . . . . . . .

6.B Proof of Theorem 6.4.1 for Bernoulli arrivals using a Lyapunov

6.B.1 Case 1: Qu(t) > max{Q12(t),Q 21(t)} . . . . . . . . .
6.B.2 Drift analysis for a simple two queue system . . . . .

6.B.3 Case 2: Q11(t) = max{Q 12(t),Q 21(t)} . . . . . . . . .
6.B.4 Proof of Theorem 6.4.1 . . . . . . . . . . . . . . . . .

6.C Proof of Theorem 6.5.1 . . . . . . . . . . . . . . . . . . . . .

6.D Proof of Theorem 6.5.2 . . . . . . . . . . . . . . . . . . . . .

drift argument

01
101

102

103
104

104

105
107
108
109

109

11

114

17

[17

[18
[18
119

[21
121

121

122
[23
[23
124
L25
126
126

127
L29

133
[35
L38

7 Enabling distributed throughput maximization in wireless mesh networks:
A partitioning approach 141
7.1 Overview and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.2 M odel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.2.1 Extensions of the network model . . . . . . . . . . . . . . . . . . . . 146
7.3 Local Pooling conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.3.2 Channel allocation example . . . . . . . . . . . . . . . . . . . . . . . 148

11



7.4 A study of Local Pooling . . . . . . . .

7.4.1 Exhaustive numerical search . .

7.4.2 Constructive approach . . . . . .

7.4.3 Primary interference constraints

7.5 Channel allocation . . . . . . . . . . . .

7.5.1 Partitioning algorithms . . . . .

7.5.2 Capacity expansion algorithms .

7.6 Performance evaluation . . . . . . . . .

7.6.1 Partitioning algorithms . . . . .

7.6.2 Capacity expansion algorithms .

7.6.3 Comparison with other static cha

7.7 Conclusions . . . . . . . . . . . . . . . .

7.A Proof of Lemma 7.3.2 . . . . . . . . . .

7.B Proof of Theorem 7.4.2 . . . . . . . . .
7.C Proof of Theorem 7.4.3 . . . . . . . . .

nnel allocation

8 Distributed throughput maximization in wireless networks: Topology and

interference considerations
8.1 Overview and summary of contrib
8.2 Network model . . . . . . . . . .
8.3 Interference graphs satisfying loca

8.3.1 Perfect graphs . . . . . .
8.3.2 Non-perfect graphs . . . .

8.4 Local pooling under multihop inte
8.4.1 Interference graphs .

8.4.2 Network graphs . . .

Conclusions . . . . . . . . .

Proof of Lemma 8.3.1 . . .

Proof of Lemma 8.3.2 . . .

Proof of Lemma 8.3.3 . . .

Proof of Lemma 8.3.4 . . .

Proof of Lemma 8.3.5 . . .

Proof of Lemma 8.3.6 . . .

Proof of Lemma 8.3.7 . . .

Proof of Lemma 8.4.3 . . .

9 Distributed throughput
routing

177
utions . . . . . . . . . . . . . . . . . . . . 177

. . . . . . . . . . . . . . . . . . . . . . . . 1 7 8
1 pooling . . . . . . . . . . . . . . . . . . . 178
. . . . . . . . . . . . . . . . . . . . . . . . 1 8 0

. . . . . . . . . . . . . . . . . . . . . . . . 1 8 2
rference . . . . . . . . . . . . . . . . . . . 183

. . . . . . . . . . . . . . . . . . . . . . . . 1 8 3

. . . . . . . . . . . . . . . . . . . . . . . . 1 8 6

. . . . . . . . . . . . . . . . . . . . . . . . 1 8 7

. . . . . . . . . . . . . . . . . . . . . . . . 1 8 8

. . . . . . . . . . . . . . . . . . . . . . . . 1 8 8
. . . . . . . . . . . . . . . . . . . . . . . . 1 8 8
. . . . . . . . . . . . . . . . . . . . . . . . 1 8 9
. . . . . . . . . . . . . . . . . . . . . . . . 1 9 0

. . . . . . . . . . . . . . . . . . . . . . . . 1 9 0

. . . . . . . . . . . . . . . . . . . . . . . . 1 9 1

. . . . . . . . . . . . . . . . . . . . . . . . 1 9 2

maximization in wireless networks: Multihop

Overview and summary of contributions . . . . . . .

Network model . . . . . . . . . . . . . . . . . . . . .

Backpressure-based scheduling and routing . . . . .

Multihop local pooling conditions . . . . . . . . . . .

9.4.1 Preliminaries . . . . . . . . . . . . . . . . . .

9.4.2 Some examples . . . . . . . . . . . . . . . . .

193
. . . . . . 193
. . . . . . 194

. . . . . . 194

. . . . . . 194

. . . . . . 195

. . . . . . 196

12

152
152
154
156
158
159
161

164
164

164
169
173
175
175
176

algorithms

8.5
8.A
8.B
8.C
8.D
8.E
8.F
8.G
8.H

9.1
9.2
9.3
9.4

. . . . . . . . . . . . . . .



9.4.3 Stability of the backpressure-based framework . . . . . . . . . . . . . 198

9.5 Studying the OMLoP conditions . . . . . . . . . . . . . . . . . . . . . . . . 199
9.5.1 OLoP versus OMLoP . . . . . . . . . . . . . . . . . . . . . . . . . . 199

9.5.2 Graph classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

9.5.3 Exhaustive search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

9.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

9.A Proof of Lemma 9.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
9.B Proof of Theorem 9.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

9.C Proof of Lemma 9.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
9.D Proof of Theorem 9.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
9.E Proof of Lemma 9.5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
9.F C3 satisfies OMLoP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

10 Conclusions 213

References 214

13



14



List of Figures

1-1 Generic representation of the networking scenario. Arrivals at each node

can be destined to any other node in the network. The corresponding arrival

rate for source destination pair (i, j) is indicated with As,. Note that available

communication links are depicted as bidirectional, though this need not be

the case in general........................................ 22

3-1 Network architecture, with each edge node having the following features:

1-electronic inflows; 2-electronic outflows; 3-electronic packet switch; 4-

optical to electronic converter; 5-electronic to optical converter; 6-tunable

optical receivers; 7-tunable optical transmitters; 8-wavelength converter; 9-

optical switch; 10-optical multiplexer/demultiplexer; 11-incoming fiber; 12-

outgoing fiber; 13-controller. The network also includes all-optical nodes

providing switching/conversion services to incoming fibers. . . . . . . . . . . 40

3-2 Lightpath interconnections for 3-node rings on a line physical topology. . . 41

3-3 A reconfiguration interval is used to change the logical topology. The interval

consists of tp slots for propagation delay of the final packets of the last data

interval (slots labeled p), t, slots for passing control information in order to

decide on a new logical topology (slots labeled c), and tr slots to tune the

transceivers and establish the new logical topology (slots labeled r). Slots

labeled d are slots for packet transmission (corresponding to a data interval).

The top sequence of slots corresponds to a common time reference according

to which frame boundaries are set. The second and third sequences of slots

correspond to distinct nodes in the network. As illustrated, these slots need

not be synchronized to each other or to the common time reference. The

frame-based scheduling is depicted at bottom, with 6 used to indicate the

reconfiguration interval of duration 6, and data used to indicate the data

interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3-4 The regular on-off nature of the frame-based algorithm. . . . . . . . . . . . 49

3-5 The service intervals of the additive bias-based algorithm. . . . . . . . . . . 52

3-6 Average delay for a range of throughput levels. . . . . . . . . . . . . . . . . 56

3-7 Fraction of departed packets single-hopped per time slot. . . . . . . . . . . 57

3-8 Fraction of frames in which a reconfiguration was initiated. . . . . . . . . . 58

3-9 Frame/bias size versus average simulated delay. . . . . . . . . . . . . . . . . 59

15



3-10 Average delay (left) and fraction of frames in which a reconfiguration was
initiated (right) for a range of a/0 values. n = 6 nodes, 6 = 1000 time slots.
Each non-hub node has an average arrival rate of a + (n - 2),3 = 0.9 packets
per slot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3-11 Illustration of batch size process for a particular VOQ. . . . . . . . . . . . . 65

4-1 There are four maximal logical topology configurations for the unidirectional

three-node ring having a single wavelength per optical fiber. The logical
configurations are depicted as lightpath routings (straight-edge links with

corners) with corresponding logical topology graph overlaid (curved links). . 79

4-2 RWAs with and without wavelength conversion for traffic T. The physical

topology is a unidirectional ring (clockwise oriented). A dashed line indicates

an idle wavelength on the corresponding fiber links .. . . . . . . . . . . ... . 81

5-1 Network links considered in Section 5.4.1. Each 1 -+ 2 link interferes (shares

a fiber) with the 1 -+ 3 link, but never with the other 1 -+ 2 path. . . . . . 105

5-2 Towards an understanding of the 2-wavelength capacity region for the link

structure of Figure 5-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6-1 Average delay performance over a range of throughput levels for maximal size

matching, greedy weight matching, and maximum weight matching based

scheduling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6-2 The appearance of a 6-ring in the n x n switch, n > 3. (a) Marked entries

indicate VOQ's of interest. (b) The network graph of edges employed in

servicing these VOQ's is a 6-ring. . . . . . . . . . . . . . . . . . . . . . . . . 122

6-3 The appearance of an 8-ring in the ni x n 2 switch, ni, n 2  4. (a) Marked

entries indicate VOQ's of interest. (b) The network graph of edges employed

in servicing these VOQ's is an 8-ring . . . . . . . . . . . . . . . . . . . . . . 123

7-1 (a) A network graph GN, (b) the corresponding interference graph GI under

the primary interference constraints, and (c) the matrix M(V) of maximal

independent sets in GI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7-2 A 6-node ring network graph and its interference graph. . . . . . . . . . . . 149

7-3 Average aggregate queue backlog as a function of uniform arrival rate A, for

different partitioning strategies, when each strategy is used in conjunction

with maximal weight scheduling. . . . . . . . . . . . . . . . . . . . . . . . . 150

7-4 Sample paths of aggregate queue backlog for the unpartitioned and well-
partitioned 6-ring under Poisson arrivals. . . . . . . . . . . . . . . . . . . . 151

7-5 Average aggregate queue backlog as a function of uniform arrival rate A, for

the unpartitioned and well-partitioned 6-ring under Poisson arrivals. . . . . 152

7-6 7-node graphs that fail OLoP: (a) configurations where the induced graph
over the outer 6 nodes is a 6-ring (the dotted lines indicate edges that can
exist), and (b) the only 7-node graph that has no induced 6-ring subgraph
and fails SLoP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

16



7-7 An interference graph composed of two cliques and the corresponding tree of

cliques graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7-8 Example of a network graph whose interference graph satisfies OLoP. . . .. .157

7-9 A network graph for a K2,1 bipartite graph (2 x 1 input-queued switch) and

the corresponding interference graph. . . . . . . . . . . . . . . . . . . . . . . 158

7-10 Average number of channels in the optimal solution, the number required by

the BFS algorithm, and the upper bound. . . . . . . . . . . . . . . . . . . . 165
7-11 Channel assignments by (a) MCI (b) R-GREEDY (c) R-MAxD, and (d) R-

A V G D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7-12 Average and worst-case capacities. . . . . . . . . . . . . . . . . . . . . . . . 168
7-13 Average capacities given a fixed number of channels k. . . . . . . . . . . . . 168
7-14 Simulated trajectories of four schedulers under Poisson-distributed arrivals,

with uniform arrival rates A = 0.1, 0.2, 0.3, 0.4 packets/time slot. . . . . . . 170
7-15 Average aggregate queue occupancy versus average uniform arrival rate.

Each point is generated from a sample path of duration 250,000 time slots. 171
7-16 Maximum throughput for various channel allocation schemes. . . . . . . . . 172

8-1 (a) Undirected network graph GN, (b) the corresponding interference graph

G under primary interfernce, and (c) the matrix of maximal link activations. 178
8-2 The relations between the OLoP-Satisfying class and other graph classes: P

- perfect, P - non-perfect, WC - weakly chordal, Ch - chordal, CBip - chordal

bipartite, Bip - bipartite, Co - cograph, Co-Comp - co-comparability, Strip -
strip-of-cliques, Even - cycles Cn with n even and n > 6, Odd - graphs with

induced C, with n odd and n > 9. . . . . . . . . . . . . . . . . . . . . . . . 179
8-3 The structure of a strip-of-cliques. . . . . . . . . . . . . . . . . . . . . . . . 182
8-4 (a) 2-hop and (b) 3-hop interference graphs of a 6-ring network graph . . . 183

8-5 (a) A chordal 1-hop interference graph and (b) the corresponding 2-hop in-

terference graph that fails OLoP. . . . . . . . . . . . . . . . . . . . . . . . . 185
8-6 Demonstrating that the strip-of-cliques is a co-comparability graph, with (a)

a set of curves whose intersection graph is a clique, and (b) the introduction
of a neighboring clique, where the curves corresponding to the original clique

are thinner than the new ones. . . . . . . . . . . . . . . . . . . . . . . . . . 190

9-1 (a) Network graph GN, (b) the corresponding interference graph G1 under

primary interference, and (c) the matrix of maximal link activations. . . . . 194
9-2 (a) Network graph GN, (b) the subset E of network graph edges, with cor-

responding commodity sets labeled at each edge, and (c) commodity graphs

G, (left) and G, 2 (right) for a particular maximal service activation. . . . 197
9-3 Commodity graphs for commodity v1 , that are invalid based on the properties

of Lem m a 9.4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
9-4 The only simple connected network graphs of up to 5 nodes satisfying OMLoP.201
9-5 Graph G3 of edges carrying commodity j in the commodity collection JE. . 208

17



18



List of Tables

4.1 Maximum values Osh Imh for various physical topologies having a single wave-

length per optical fiber. The corresponding wavelength-unconstrained values

are listed under Qmax, along with the resulting throughput performance gap. 86
4.2 Maximum values ash amh for various physical topologies having a single

wavelength per optical fiber. Also listed for each topology is the single-hop

versus multi-hop performance gap, as well as the constrained versus uncon-

strained performance gap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1 Required values for a, r, k for different possible a - b, a - c values, such that

when Q(t) is as in (6.8), then the drift of the induced queues Z1, Z 2 is nega-

tive: d(n, i, k, a) < 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.2 Values of (+1 - required under the conditions of the Lemmas and Corollary

of Section 6.B .3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.3 Possible VOQ configurations that realize the maximum value h(t). Each

of the 25 configurations is numbered. Additionally, the number of distinct

configurations equivalent to the one depicted is provided for each configuration. 136

19



20



Chapter 1

Introduction

With the continuing growth in demand for data traffic, the existing network infrastruc-

ture will be strained in terms of both transport and processing requirements. Advances

in technology and hardware capability drive much of the progress in meeting increasing

demands, often at the expense of additional costs. It is natural and economically sound

that network designers and administrators will always seek cost-effective strategies for ad-

dressing the needs of their customers. Consequently, a great deal of interest inevitably

arises when low cost, high-performance communication solutions are proposed, particularly

when these solutions are compatible with or designed to be implemented using existing

technology. Recent examples of this phenomenon include the drive towards low cost WIFI-

based wireless mesh networks [1, 7,8,77,122], the intense interest in software and cognitive

radio [18, 20, 30, 50, 57, 70, 100, 101, 1593, and the incorporation of electronic aggregation

(grooming) and optical aggregation (wavebanding) techniques for efficient utilization of

bandwidth in optical networks [19,33,102,103,116,135,143,168].

The essential driver of data networking has been the steadily decreasing cost and minia-

turization of computing technology. As processing power improves, our communication

solutions can admit increasingly intelligent and sophisticated network control algorithms.

For example, small, inexpensive, mobile wireless devices can be made robust to channel vari-

ations, interference, and mobility, leading to effective solutions for cellular communication,
wireless ad-hoc networks, and mesh networks. In the optical network setting, configurable

components in combination with intelligent network control algorithms enable networks

that are adaptable and responsive to traffic variations.

In this thesis, we develop dynamic algorithms for routing and scheduling traffic in data

networks. In Chapter 2, we introduce the general network setting of interest. The remainder

of the thesis is dedicated to studying the algorithmic and performance implications of net-

working in various communication settings. Our network model encompasses wireless and

optical networks, as well as high-speed electronic packet switches. We study each of these

networking scenarios, focusing on enabling efficient network control algorithms given their
respective engineering constraints. For example, wireless networks are subject to co-channel

interference and cannot effectively admit centralized control policies [90]. WDM-based op-
tical networks have wavelength and port constraints, and incur non-negligible delays asso-
ciated with propagation of light, component configuration, and link synchronization [1211.
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Figure 1-1: Generic representation of the networking scenario. Arrivals at each node can
be destined to any other node in the network. The corresponding arrival rate for source
destination pair (i, j) is indicated with A. Note that available communication links are
depicted as bidirectional, though this need not be the case in general.

We address WDM-based optical networks in Chapters 3-5, where we introduce throughput-

optimal routing and scheduling algorithms and quantify achievable performance. We study

efficient switch scheduling in Chapter 6. Finally, we consider wireless networks in Chapters

7-9, and determine network topologies for which simple distributed algorithms maximize

throughput.

1.1 Research overview

Our study of network layer throughput properties in wireless and optical networks has a

common underlying network queueing model. The details of this model are presented in

Chapter 2. In this section, we introduce the key elements of this model.

Figure 1-1 depicts a generic representation of the networking scenario of interest. The

network consists of a set of nodes, representing users in the wireless setting, input and output
ports of a crossbar switch, or switching/router equipment in the optical setting. Network

links provide a means for establishing communication between nodes. In wireless networks,
a link exists between two users when their wireless communication channel is sufficiently

strong for reception. In crossbar switches, a link exists between every input/output port
pair. In optical networks, a link exists between any two nodes that can communicate all-
optically (without intermediate electronic processing) through the network.

Each network node is subjected to random exogenous arrivals of packets. These packets
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can be destined to any other network node, and often require routing between multiple

nodes of the network to reach their destinations.

Service of packets through the network is effected through activation of communication

links over the network. In the wireless setting, a communication link is always established

between nodes in direct communication with one another. This is not the case in opti-

cal networks however, where switching at the optical layer allows communication links to

optically bypass intermediate nodes. Multiple communication links can be simultaneously

active, subject to the physical communication constraints of the network. For example,
wireless communication is constrained by co-channel interference, while optical networks

are constrained by bandwidth (wavelength) and processing (transceiver and wavelength

conversion) capability.

Naturally, each network setting that we consider will have an order of precedence among

the various engineering considerations required to enable communication. For example,
distributed network control is an essential feature in many wireless networking applications,
while being unimportant in electronic switches, where the primary concern is to enable

efficient resource utilization using simple schedulers. In this thesis, we focus our attention

on the following general questions.

What network control algorithms maximize achievable performance?

Can we determine precise measures of performance?

How do network topology and architectural features affect perfor-

mance?

How do we effectively utilize resources in a distributed fashion?

Does distributed network control lead to a performance penalty?

Since we consider optical, wireless, and electronic switching applications, our emphasis

on these questions varies throughout the thesis. We determine algorithms for achieving

the maximum throughput in optical, wireless, and switch settings. We exactly quantify

throughput properties achievable in optical networks. We explore the stability properties

of low-complexity switch scheduling algorithms. We develop channel allocation algorithms

to enable efficient decentralized network control in wireless networks. We study network

topologies that are amenable to achieving the maximum throughput using simple distributed

schedulers.

1.2 Related work

The seminal work of Tassiulas and Ephremides underlies much of the existing literature in

the area of stability of data networks [1501. In that work, a backpressure-based algorithm for
scheduling multi-commodity packets in a general network setting was proposed and proved
to be throughput optimal. The general network setting that we consider in this thesis fits
into the framework of Tassiulas and Ephremides. In Chapter 2, we describe our general
network model as well as the algorithm of [150].
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In the design of traffic-adaptive networking algorithms, the maximum weight scheduling

discipline has received considerable attention [3-6,9,10,12,49,54-56,62-65,76,86,88,95-97,
111-115,125,126,138-141,146,148-151,163], owing largely to its application in algorithm

design and analysis in crossbar switch scheduling [3,4,6,49,63-65,73,76,88,95-97,138-140].
The first appearance of maximum weight scheduling for general networks was in [150].

In the context of switch scheduling, the maximum weight matching algorithm was first

enlisted and shown to be throughput optimal in [95-97]. Subsequent works on switch

scheduling focused on developing implementable algorithms by considering speedup [35,44,
49,80,88,118], randomization [64,76,138], approximate maximum weight scheduling [73,139],
variable-length packets [4], parallel techniques [65], multicast [3, 78], multiclass traffic [6],
and modified crossbar architecture [63, 167]. Additionally, delay performance of switch

scheduling algorithms was considered in [76,78,79,87,140]. Outside of switch scheduling,
maximum weight scheduling has been applied in wireless [55, 56, 111,113,114, 148-150],
satellite [115], and optical [26,27,74,154,155] network settings.

Fluid models are a standard tool for studying the stability of queueing networks [24],
where stability properties are investigated by studying the corresponding fluid limits [23,

24, 37, 38, 46-49,51,52, 98,107,130,140,141, 145,146]. The papers [37, 46,48,130, 145] are
largely responsible for introducing and establishing fluid limits as effective means of studying

stability. Rybko and Stolyar [130] studied a simple network, which was generalized by

Dai [46] (this is regarded as the main reference on fluid limits in the literature) and by

Stolyar [145]. The papers [5, 24,47, 98] considered the implications of instability in fluid

limit models upon corresponding queueing network stability.

Dai and Prabhakar [49] are responsible for the first treatment of fluid models and fluid

limits of input-queued switches, where they demonstrated the rate stability of the maximum

weight matching service discipline, as well as of maximal size matching under a speedup

of two. This analysis was extended to general switched networks in [9,146]. In [146], the

maximum weight scheduling discipline was proved to be throughput optimal, and to achieve

optimal delay performance when exactly one port is saturated. For the N x N input-queued

switch, the delay optimality of maximum weight scheduling was studied in [140] under

general saturated port loadings. The works of [12,140,146 restrict to non-negative service

at each queue, which precludes routing in the respective networks considered.

An alternative tool for studying the stability of queueing networks is the Lyapunov drift

technique [13], applied directly upon the discrete-time queueing model. This technique

was employed in the stability analysis of Tassiulas and Ephremides [150], and has been a

standard approach in subsequent works in the scheduling literature [3,4,54-56,63,64, 76,

81, 86-88,95-97,111-115,148,149,151].
The algorithm of Tassiulas and Ephremides [150] employs centralized maximum weight

scheduling, which is often considered too complex to implement on a slot-by-slot basis

in high-speed data networks [29, 35, 36, 39, 44, 49, 80, 88-90, 104, 118, 136, 160, 161]. In the

wireless setting, the design of distributed scheduling algorithms has attracted a great deal

of attention. Lin and Shroff [90] studied the impact of imperfect scheduling on cross-layer

rate control. Under primary interference constraints1 , they showed that using a distributed

'Primary interference constraints imply that each pair of simultaneously active links must be separated
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maximal matching algorithm along with a rate control algorithm is only guaranteed to

achieve 50% throughput. Similar results for different settings were also obtained in [36,39,
89,136,160,161]. Chaporkar et al. [36,136] characterize the stability region of a maximal

scheduling algorithm under arbitrary topologies and interference models. They show that

under secondary interference constraints, the stability region may be reduced to A*/8,
where A* is the stability region under a perfect (centralized) scheduler. A novel distributed

randomized approach that can achieve 100% throughput has been presented in [104].

An important work that we study at length in this thesis is Dimakis and Walrand [51].

They consider the performance of the Longest Queue First (LQF) scheduling algorithm (a

greedy maximal weight scheduling algorithm) in a graph of interfering queues, and present

sufficient conditions (called Local Pooling) for a maximal weight algorithm to provide 100%

throughput.

1.3 Contributions

Chapter 2 of this thesis introduces the queueing model that encompasses the network set-

tings considered in this thesis. Many of the important notations and queueing variables

are presented, as well as the formal definition of stability. The algorithm of Tassiulas and

Ephremides [150] is presented for the queueing model, and we provide a proof of its stability

based on the fluid limits technique.

Chapter 3 primarily introduces the optical networking framework, and two throughput-

optimal scheduling algorithms. These algorithms make maximum weight (maxweight) schedul-

ing and routing decisions. Important engineering aspects of the networking problem are

addressed, including link propagation delay, transceiver tuning latency, and link synchro-

nization delay. The delay associated with transmission of packets through the network is

studied for several algorithms and networking scenarios.

Chapter 4 focuses on quantifying the maximum throughput properties of WDM-based

optical networks, under a single-wavelength constraint. The chapter culminates in several

theoretical results that exactly quantify two geometric properties of the network stability

region in terms of the Routing and Wavelength Assignment problem. This enables us

to determine closed-form expressions for the network performance under many common

network topologies of interest.

Chapter 5 seeks to answer questions that arise naturally following the single-wavelength

analysis of Chapter 4. We study the computational complexity associated with determin-

ing the geometric properties studied in Chapter 4. Additionally, we extend the results of

Chapter 4 to the multi-wavelength setting.

Chapter 6 is motivated by the fact that implementing maximum weight scheduling may

be computationally cumbersome. This chapter looks at a lower complexity scheduling

algorithm, which makes link activation decisions based on maximal weight scheduling. We
consider the simple case of bipartite network graphs, which are commonly studied in the
context of input-queued switches. We present numerical results attesting to the attractive

throughput properties of maximal scheduling, and proceed to develop a theoretical result

by at least one hop (i.e. the set of active links at any point of time constitutes a matching) [36,68,90,104,1641.
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for the case of a 2 x 2 input-queued switch. For the 3 x 3 switch, although maximal weight

scheduling can have suboptimal throughput performance, we demonstrate that the network

only loses throughput on a set of arrival rates having measure zero. Finally, we study larger

switches, and find that maximal weight scheduling may result in throughput loss over a

non-negligible portion of the switch capacity region.

Decentralized scheduling in wireless networks is the focus of Chapters 7 through 9. Here

again, maximal weight scheduling plays an important role. In Chapter 7, we study certain

conditions known as Local Pooling conditions, under which maximal weight scheduling can

be shown to achieve maximum throughput. Under limited routing and interference mod-

els, we determine network topologies for which decentralized scheduling achieves maximum

throughput. We also develop network partitioning algorithms, based on matroids, to sep-

arate the network links into channels, each of which achieves maximum throughput. In

Chapter 8, we seek to loosen the restrictions imposed on the network in Chapter 7. In par-

ticular we greatly expand our knowledge of graphs that satisfy Local Pooling, and we study

the implications of multi-hop interference constraints upon network stability. In Chapter 9,
we extend the Local Pooling conditions to networks employing electronic routing.
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Chapter 2

Network model, stability, and

throughput maximization

In this chapter, we present the fundamental queueing network model used throughout this

thesis. We define the capacity region of the network and formalize the concept of a through-

put maximizing algorithm. We introduce an algorithm that maximizes throughput in the

network.

2.1 Network queueing model for scheduling and routing

We consider a general network structure, which we denote by N. N represents all physical

aspects of the network, including network topology, node architecture, and all communi-

cation mechanisms. The network consists of n nodes, physically interconnected in a graph

structure GN = (V, EN), where the vertex set V corresponds to the set of network nodes,
and the directed edge set EN corresponds to the communication links available in the net-

work. Clearly VI = n, and we denote IEN I = m. For a directed edge e, let a-(e) denote the

source (initial) vertex, and T(e) denote the terminal (destination) vertex.

The network consists in general of multiple sources and sinks of data. Hence, it is well

described as a multicommodity data network. Throughout the work, we will treat data

destined for a particular terminal node v e V as commodity v data.

For simplicity, we assume that time is slotted and that packets are of equal size, each

packet requiring one time slot of service across any network link. Each node i is equipped

with n queues, one for each possible destination of data traffic originating or passing through

node i. The queue corresponding to packets at node i destined to node j is denoted by Qjj,
with Qij(t) equal to the number of enqueued packets at the beginning of time slot t. The

differential backlog (backpressure) of commodity j packets across edge e G EN at time t is

Zej(t) = Qa(e)j(t) - QT(e)j(t). For link e G EN, the maximum backpressure at time t > 0 is

given by Z*(t) = maxacV Zej (t). For t > 0, denote

Q(t) = (Qij (t), i, j E V), Z(t) = (Zej(t), e C EN,j E V), Z*(t) = (Ze*(t), e C EN)

as the matrices of queue backlogs, link backpressures, and maximum backpressures, respec-
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tively. In some instances, we will refer to Q(t) as a vector instead of a matrix, where we
adopt the convention Q(t) = (Qc(e)r(e)(t), e c EN)-

Data traffic arrives for service through the network according to a stochastic process,

(Aj (t), t > 0), where Aij (t) represents the cumulative number of exogenous arrivals up
to the end of time slot t of packets to node i that are destined to node j. The arrival
processes are assumed to be general, in the sense that they can be temporally and mutually
correlated, with Aij equal to the long term rate of arrivals for each source/destination pair
i,j, where

Aij = lim w.p.1t-+oo t

We make the assumption that there is no self-traffic in the network, which is represented
symbolically with Agi(t) = 0 for all times t > 0 and all nodes i E V. Denote the arrival rate
matrix A = (Aij,i, j E V). Service of packets is effected through network link activation
and routing decisions for active links. Let IIN denote the set of available link activations in
the network graph GN: the vector 7r = (7re, e E EN) E HN is a nonnegative integer vector,
where ire equals the total number of active communication links from node -(e) to node
r(e). Each allowable link activation is subject to the physical communication constraints
of the network: a set of network links can be simultaneously activated depending on both
network topology and network node functionality.

Service is applied to the system at each time slot by activating a set of edges, and
routing a packet of a single commodity across each active link. We denote the corresponding
service activation matrix by S = (Se, e C EN, j C V). Here, Sej equals the number of
communication links from node a(e) to node r(e) used to service commodity j packets under
the activation S. Every feasible matrix S is an integer matrix. Note that an admissible
service activation matrix must have a valid underlying link activation belonging to IIN-
This property characterizes the set of admissible service activation matrices, S:

S = S E Zmxn: Z1: C HN} (2.1)

The set S places no restriction on which commodity is allowed to cross an active link. This
means that service activations belonging to S can correspond to multi-hop routing, where
packets are re-enqueued after transmission across a link. Thus, we will occasionally refer
to S as Smh, to emphasize this multi-hop capability. In this thesis, we will also deal with
networks in which single-hop routing is exclusively employed. In such a situation, the set
of admissible service activations is denoted Ssh, where S E Ssh must satisfy

Sej > 0 implies j = r(e). (2.2)

In words, the above statement means that a link can only be activated to service traffic
directly to its destination node.

The matrix S C S leads to packet transitions through the network. To model the queue
evolution implied by invoking S, we introduce for each commodity j C V the n x m routing
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matrix R3 = (Rh , i c V, e C EN), where:

1, if -(e) i

R3  -1 ifT(e) =iandi:j

0, else

Denote by dij (S) the service to queue Qij under activation matrix S. Using the above

routing matrix we can express dij(S) = Ek Rk Ski. Denote matrix d(S) = (dij(S),i, j E

V).

Denote by Dij (t) the total service applied to commodity j packets at node i up to the

end of time slot t. Finally for each S c S, denote by FS(t) the number of time slots up to

the end of time slot t in which service activation matrix S E S was active. The following

are the dynamics of the queueing system for t > 0:

Q3 .(t) = Qij(0) + Aij (t) - Dij (t), V(i, j) (2.3)

Di (t) = dij (S)Fs (t), V(i, j) (2.4)
SES

2 Fs (t) t, Vt (2.5)
SES

Fs is non-decreasing, VS E S (2.6)

In this thesis, we will only consider the case Qjj (0) = 0 for all i, j.

2.2 Throughput optimality

We are now prepared to define the stability region of the network.

Definition 2.2.1 (Admissible Rate Vector) An arrival rate matrix A = (Aij, i, j E V)

is admissible if it is non-negative and there exists a collection of service activation matrices

S' G S, 1 < 1 < L such that for all i, j C V,

L L

Aij . Z acld(e)r(e)(SI), where al 0 Vl and Zal < 1. (2.7)
1=1 =

The set of all admissible rate matrices is called the network capacity region and is denoted

by A*.

A scheduling algorithm at each time slot makes a link activation and routing decision

that is constrained to the set of available service activations S. Under an algorithm for

link activation and routing decisions, the queue backlogs evolve according to the process
(Q(t), t > 0). We next define the network capacity region, based on the notion of stability
usually referred to as rate stability [6,36,49].

Definition 2.2.2 (Stability Region) The network stability region under algorithm A,
AA, consists of the set of rate vectors A c A* such that any arrival process having rate
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matrix A induces a process (Q(t), t > 0) satisfying

lim = 0 w.p.1 Vij E V. (2.8)
oo t

When the queue backlog process satisfies (2.8), we say that the algorithm is stable
for arrival rates A. A throughput optimal algorithm or an algorithm that achieves 100%
throughput, is defined as follows.

Definition 2.2.3 (Throughput Optimal Algorithm) A scheduling algorithm A is through-
put optimal if AA = A*.

Note that the above definitions can all be understood for the case of single-hop routing
as well. Thus, given the set of single-hop service activations, 8Sh, a single-hop admissible
rate region, A*h, can be defined:

Definition 2.2.4 An arrival rate matrix A = (Al,, i, j E V) is single-hop admissible if it is
non-negative and there exists a collection of service activation matrices S' E Ssh, 1 < 1 < L
such that for all i, j E V,

L L

A ald(e)-r(e)(S), where al > 0 Vl and al < 1.
1=1 1=1

is satisfied. The set of all single-hop admissible rate matrices is called the single-hop capacity

region and is denoted by A*h-

It is simple to demonstrate (see Appendix 2.A) that

A*h = conv(IIN)- (2.9)

To clearly distinguish the single-hop and general multi-hop capacity regions, we will
refer occasionally to the multi-hop capacity region A* as A*.

2.3 Centralized throughput optimal scheduling and routing

Tassiulas and Ephremides developed a stable scheduling and routing algorithm that applies

in this setting [150]. The algorithm is presented as Algorithm 1 below.

In step 3, Algorithm 1 assigns a weight to each edge e E EN, equal to the maximum

backpressure across that edge. In step 4, the algorithm obtains a maximum weight link
activation based on the backpressure link weights. In step 5, the algorithm makes routing
decisions to service commodities achieving maximum backpressure. Note that the combi-
nation of steps 4 and 5, where link activation and routing decisions are respectively made,
implies the selection of a service activation matrix S E S.

Algorithm 1 is often referred to as a maximum weight (maxweight) scheduling algorithm.
In [150], it was proved that Algorithm 1 is stable over the network capacity region, up to a

set of measure zero. The result requires the following restrictions on the arrival processes:
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Algorithm 1 Backpressure-based maximum weight scheduling algorithm

1: for time t > 0 do
2: For each directed edge e E EN assign

Zej (t) <-(Qc(e)j(t) - Qr(e)j(t))

3: Assign Z*(t) <- maxj Zej(t)
4: Obtain a maximum weight link activation 7r* = (ir*, e C EN), where

7r* C arg max 7rT Z*(t) (2.10)

5: For each e c EN such that lr* > 1, choose a commodity j* E arg maxj Ze (t). Route
min{7r*, Q,(e)j* (t)} packets of commodity j* across e

6: end for

each traffic stream is i.i.d. with finite second moments, and the traffic streams are mutually

independent. The proof uses a Lyapunov drift argument, which implies that the state space

of queue backlogs can be partitioned into a set of states that are positive recurrent and a

set of transient states that the system departs from in finite time with probability 1.
The following theorem demonstrates that Algorithm 1 achieves 100% throughput in the

queueing network model of interest. The theorem is proved using the fluid limits technique,
as opposed to the Lyapunov approach of [150]. This proof is a valuable exercise, as we will

use the fluid limits approach to demonstrate stability of scheduling algorithms throughout

this thesis. A secondary motivation for providing a proof of this theorem is that although

it demonstrates a weaker notion of stability than that in [150], it covers a wider class of

arrival processes: none of the above-mentioned restrictions need to be explicitly assumed at

the outset. Finally, our weaker notion of stability allows us to conclude that the stability

region under Algorithm 1 equals the closed network capacity region A*, instead of asserting

equality up to a set of measure zero.

Theorem 2.3.1 Algorithm 1 achieves 100% throughput.

Proof: See Appendix 2.B. U

In the following chapters, we will specialize our treatment to particular networking set-

tings, which in each instance will require a characterization of the network GN and the

allowed service activation set S. We will see that network topology and physical communi-

cation constraints play an important role in determining these quantities.

2.4 Model extensions

One might suggest the assumption of error-free transmission as a limitation of the network-
ing model considered in this thesis. This model obviously abstracts away physical layer
communication impairments that can lead to errors. However, augmenting the model with
a finite probability of transmission failure is indeed trivial, and can be found in [150].
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Appendix

2.A Proof that A* conv(1IN)

We first show that conv(LIN) Ash. Consider A E conv(HN). Then there exist ir1 ,

1 <1 < L such that for all i, j,
L

ij= alr j-
i=1

Above, al 0 for all 1, and El al = 1. We construct corresponding single-hop service
matrices S1, 1 < 1 < L according to Algorithm 2, as follows. It is clear from the above

Algorithm 2 Constructing a single-hop service matrix Si = (Sej) from matrix 7r'

1: Assign Sei +- 0 for all ej
2: for all e E EN do
3: Assign Se) <- jro(e)r(e)
4: end for

algorithm that for all e E EN, S'. = 7r'(e)re), and further that Seg > 0 implies that

j = -r(e). Thus, S' E Ssh for 1 < 1 < L. For each e E EN, this single-hop property allows

us to express
L L

Ao(e)T(e) = alSeT(e) = j edo(e)r(e) (5).
1=1 1=1

Thus, (2.7) is satisfied, which implies A E A*h, as desired.

Next we show that A,*h conv(IIN)- Consider A E Ash, which implies that there exist

S' E Ssh, 1 <1 < L such that for all i, j (2.7) is satisfied. From the single-hop property of

each matrix S1, we have for each e E EN

L L L

Au(e)-r(e) alS a S 5 l7r I,
1 e=1 j =1

where we assign iri A ~Ej S' . Clearly 7r' = (7re) is by definition a valid link activation

vector. If we assign A13 = Aij for all i, j, then Algorithm 3 (below) obtains a decomposition

of A as a convex combination of link activation matrices.

At termination, we can express for all i, j Aij = Z' ca7rij, where al > 0 for all 1,
and without loss of generality E, al = 1 (since we can always associate additional weight
with the zero matrix, which is a valid logical configuration where no link is active). Thus,
A E conv(HN), as desired.

We conclude that A* = conv(flN).
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Algorithm 3 Translating the decomposition of A to a decomposition of A

1: n* <- L

2: for all e C EN do
3: if Za(e)r(e) = Ac(e)r(e) then
4: continue

5: end if
6: W - I a(e)r(e) - Ao(e)r(e)
7: n+ <_- 1
8: for all l E{ 1, ... ,n*} do
9: if 0 < al7ri(e)re) < w then

10: Tri~er(e)-r 010: 71 +-
or(e)-r(e)

11: w <- w - al7ri
12: if w = 0 then
13: break
14: end if

15: else if al7ri(e)T(e) > w then

16: ,n*+n+ +- 7ri
17: 7r*l (n ) <-f 0

18: an +n+ -al - W/17(e)(e)

19: a, +- w/7ri

20: n+ <_ n+ +
21: break

22: end if

23: end for

24: n* <- n* + n+ 1
25: end for

2.B Proof of Theorem 2.3.1

Recall from our definition that Qjj(t) is the number of commodity j packets enqueued at

node i at the beginning of time slot t > 0. For the purposes of our analysis, we extend

the queueing variables to the reals. For functions Aij, Qj, Zej, Ze*, we use the floor func-

tion, where Aij(t) is to be interpreted as Aij([t]), and similarly for the other functions.

For functions Dij, FS, linear interpolation is employed, where Di (t) = Di ([t]) + (t -
[t])(Di3 ([ti) - Di ([t])), and similarly for Fs(t). The linear interpolation is needed for its

continuity properties.

For each of the above functions, we define for any r > 0 the scaled functions

Aij (rt) r Dij (rt) _Qij(rt)A_ D. - Qr -
r r r

Z - Zej (rt) Z*r Ze* (rt) Fr Fs (rt)
ej - ze r FS- r

The following lemma demonstrates convergence properties of sequences of the scaled func-

tions, indexed by r. A sequence of functions {f'} where for each r, fr : R -* R converges
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uniformly on compact sets (u.o.c) if for each sequence {rk} there exists a subsequence {rk,}
and a function f: R -> R, such that for t > 0,

lim sup If rki (t') - f(t')I = 0.
l-00 0<t'<t

In order to demonstrate uniform convergence on compact sets, we will enlist the Arzela-
Ascoli theorem.

Theorem 2.B.1 (Arzela-Ascoli Theorem) Consider a sequence of functions {frk} de-

fined on closed interval [t, t 2 ]. If the sequence is uniformly bounded' and uniformly equicon-

tinuous2 , then there exists a subsequence {rk, } that converges uniformly.

We now proceed with a lemma concerning the convergence properties of the scaled
functions.

Lemma 2.B.1 The following statements hold with probability 1. For any sequence {rk},

there exists a subsequence {rk,} such that

(A (t), t > 0) -+ (Aij(t),t 0) u.o.c., Vij E V, (2.11)

(D (t), t > 0) -+(Di (t), t 0) u.o.c., Vij E V, (2.12)

(Qj (t),7 t >_ 0) -+(Qij (t), t _> 0) u.0. C., Vi, j E V (2.13)

(Fs (t),t > 0) -+ (Fs(t), t > 0) u.o.c., VS E S, (2.14)

(Ze;( -),t 0) (Zej(t), t > 0) u.o.c., Ve E EN, j E V, (2.15)

(Ze*rki (t),t 0) - (Ze*(t),t 0) u.o.c., Ve E EN, (2.16)

where the functions Aij , Djj, s are Lipschitz-continuous3 in [0, oo), and functions Qij, 2ej, 2*

'A sequence of functions {f'k }, where frk : [tl, t2] -- R is uniformly bounded if there exists M > 0 such
that Ifr(t)1 < M Vt E [ti, t2] and Vk. [1291

2A sequence of functions {f'k }, where f'k : [ti, t 2] -+ R is uniformly equicontinuous if for every e > 0
there exists 6 > 0 such that for all k and all t3 , t4 E [tl, t2] with It 3 - t4 < 6 we have Jf'k (t3 ) - frk (t4 )1 < 6
[129]

3A function f : R - R is Lipschitz-continuous if there exists K > 0 such that for all t1 , t 2 E R,
If(ti) - f(t2 ) _< Kjtj - t2 . [93]
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are continuous in [0, oc). Additionally, the following properties hold:

Aij (t) = Mt, Vi, j E V, t > 0 (2.17)

Dj3 (0) =0, Vij C V (2.18)

Ps(0) 0, VS C S (2.19)

Qiy(t) - Ai (t) - Dij(t), Vi, j E V, t > 0 (2.20)

)jj(t 2) - Dij(tl) = 3di(S)(Ps(t 2) - Ps(ti)), Vij E V (2.21)
SES

Zej(t) Qo,(e)j(t) - Qr(e)j(t), Ve c EN, j c V (2.22)

Z*(t) max Zej (t), Ve c EN (2.23)
jEV

Ps(t) is non-decreasing VS c S, and E Ps(t) =t, t > 0 (2.24)
SES

Proof: From the strong law of large numbers, we have

(A (t), t > 0) -+ (At, t > 0) u.o.c., w.p.1 Vi, j.

Equations (2.11) and (2.17), and the Lipschitz continuity of Aij for all i, j follow.

Note that for any 0 < ti < t 2 , we have

(minsEs dij(S)) (t2 - ti) < D (t2 ) - D (t1 ) < (maxsEs dij (S)) (t2 - t1 )

0 < Fsk (t 2 ) - Fsk (t1) < (t2 - t1)

Thus the sequence of functions {D } is uniformly equicontinuous, and since DJ (0) =0, the

sequence is also uniformly bounded. Similarly, the sequence {F F } is uniformly bounded and

uniformly equicontinuous. Consequently there must exist a subsequence of {rk} for which

(2.12) and (2.14) hold. Note also that the above equations imply the Lipschitz-continuity

of Dij, Ps-

Applying (2.4), for any fixed 0 < tj < t 2, and any i, j we have

D (t2)- D (ti)= dij(S)(Fk (t 2 ) -Frk(ti.

SES

Thus, there must exist a further subsequence of {rk} under which (2.21) holds. Since
D (0) - FSk(0) 0, we must have (2.19). Further, we have that Frk is non-decreasing,
with our linear interpolation providing ESES FSk (t) t, from which we conclude that (2.24)
holds. Since Q (t) - Ar (t) - D (t), we have in the limit (2.13) and (2.20). Finally, since

Ze ( e (t) Q rI (t) and Ze*k (t) = maxEv Ze(t), we have (2.15) and (2.16). Since
Aj, Di, Fs are Lipschitz continuous, the Lipschitz continuity of Qi3 , Zej, Z* also follows.

Note that under Algorithm 1 the following additional properties of the fluid limit func-
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tions can be inferred:

If 3j, j' E V with Zej (t) < Ze (t) then Fs(t) = OVS E S such that Sej > 0; (2.25)

If 3r, * E 11N with -T2*(t) < rT2*(t) then Fs(t) = 0VS E S such that Sj = 7r.

(2.26)

We are now prepared to present the proof of Theorem 2.3.1. Let h(t) = (1/2) E>j' Q? -(t).
Consider a regular time4 t > 0 for which h(t) > 0. Consider a fluid model solution satisfying
(2.17)-(2.26). Denote by S' the subset of S, where S E S' satisfies

Sej > 0 implies 2 ej (t) = Z*(t),

Sy 2*(t) = max 7FT Z(t)*

By properties (2.25)-(2.26) we must have

$Fs(t) =1. (2.27)
SES'

Then,

h(t) = Qi (t)Qij (t)
iji

= i Z M3 t (Aij - Di 3(W)
i~j

= Qi(t) (Ai - E dij(S)$s(t) -
i,j SES /

Recall the definition of an admissible arrival rate matrix from (2.7). Suppose that A =

(Aij, i, j E V) is admissible. Then, for some nonnegative vector (as, S E S), where

4A regular time is a point at which the system is differentiable. By the Lipschitz continuity of the fluid
limit, almost every time in [0, oo) is regular.
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SES as = 1, we have

h(t) (t) Edij (S) (as - Fs (t))
ij SES

= EQij(t)RJ.S.j (s - Fs(t)),
SES ij

= (.(t))T R3 S.j (as - Fs(t
SES

(2.j (t))T S.j (as - Fs(t)),
SES j

< (2*(t))T asS. - Fs(t)
SES j SES i

From (2.24) and (2.27), we obtain

N~~t)~ E (2() as S.j
SES

= (2*(t)) T  asS.j
SES

= as
sES

= as
SES

< 0.

- s(t) (2.j(t)) T S.3,
SES' i

- (Z*(t)) T  ZFs(t)S.j
SES' j

) SES'

- max
SES

S(t) ) Sj

((t)) TS. ,

Using the terminology of [49], we call the above fluid model with Q(O) = 0 weakly stable

if Q(t) = 0 for t > 0. Clearly, since h(0) = 0 and h(t) < 0 for every regular t at which

h(t) > 0, we have that h(t) = 0 almost everywhere. Then, we must have that Q(t) = 0
almost everywhere and the fluid model is weakly stable. (Similar conclusions are made

in [49, Lem. 1] and [146, Lem. 6(i), Thm. 2(i)-(ii)].) We draw the following result from [49]
to complete the proof.

Theorem 2.B.2 (Dai and Prabhakar [49, Thm. 3]) A network operating under a joint

routing and scheduling algorithm is rate stable if the corresponding fluid model is weakly sta-

ble.

By the weak stability of the fluid model, and using Theorem 2.B.2, we conclude that

the network is rate stable.
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Chapter 3

Dynamic reconfiguration and
routing algorithms for
WDM-based optical networks

In this chapter, we consider scheduling and routing in optical networks employing wave-

length division multiplexing (WDM). In particular, we consider the interaction of the elec-

tronic layer and the optical WDM layer. Since the electronic layer commonly employs the

Internet Protocol (IP) for packet routing, joint consideration of electronic and optical layers

is often called IP-over-WDM [61]. We establish a queueing model for the optical networking

architecture. We develop throughput-optimal algorithms, based on the backpressure-based

algorithm of Tassiulas and Ephremides [150], taking into account delay overheads. Finally,

we conduct numerical simulations to evaluate the delay performance of the algorithms.

3.1 Network architecture

We consider an optical networking architecture consisting of nodes having an electronic

router overlaying an optical interface, with the nodes interconnected by an optical trans-

port layer. Depicted at the top in Figure 3-1 is an example of our architecture with

electronic edge nodes interconnected by an optical transport network using optical fiber

links. This constitutes the physical topology of the network. Optical transceivers, multiplex-

ers/demultiplexers, wavelength converters, and optical switches allow individual wavelength

signals to be either dropped to the electronic routers at each node or to pass through the

node optically. The logical topology consists of the set of all-optical interconnections between

the electronic routers and is determined by the configuration of the optical interface at each

node [42].1 Future optical networks will make use of optical bypass, tunable transceivers,

optical switches, and wavelength converters in order to harness the full capacity of the op-
tical transport network. The interaction of these optical components with the electronic

interface is depicted at the bottom in Figure 3-1.

'Logical links are sometimes called virtual links, lightpaths, or MPAS tunnels. Essentially, these are
all-optical connections established for a sustained period of time.
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electronic layer

4 electro-optic
6 7 interface

8

optical layer
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Figure 3-1: Network architecture, with each edge node having the following fea-
tures: 1-electronic inflows; 2-electronic outflows; 3-electronic packet switch; 4-optical
to electronic converter; 5-electronic to optical converter; 6-tunable optical receivers; 7-
tunable optical transmitters; 8-wavelength converter; 9-optical switch; 10-optical multi-
plexer/demultiplexer; 11-incoming fiber; 12-outgoing fiber; 13-controller. The network
also includes all-optical nodes providing switching/conversion services to incoming fibers.

Tunable optical components introduce flexibility to optical networks by enabling logical

topology reconfiguration. As network traffic changes with time, the optimal logical topology

varies as well. Consequently, dynamic reconfiguration algorithms can be employed in order

to improve the throughput and delay properties of the network, as well as recover from

network failures. In essence, a trade-off emerges between lightpath reconfiguration at the

WDM layer and routing at the electronic layer. We explore this trade-off in the following

example.

3.1.1 Performance trade-off example

Consider a 3-node line network, with a single transceiver per node. The single transceiver

constraint implies that each node can source at most one lightpath at any given time and

can simultaneously terminate at most one lightpath at any given time. In this example, we

assume that transmission of each packet across a lightpath requires one time slot. There

are two possible logical configurations that are rings, as depicted in Figure 3-2. This figure

shows the lightpath interconnections over the WDM layer (on the bottom) and the resulting

ring configuration at the electronic layer (on the top). Note in Figure 3-2(a) that logical

link 3 -* 1 is established by optically bypassing node 2 at the WDM layer.

In an earlier study [109], Narula-Tam and Modiano considered the gains associated

with dynamic topology reconfiguration under changing traffic, and designed algorithms for

incremental logical topology reconfiguration to balance link loads. If the traffic matrix T
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(a) C1: Ring 1 2 -+1 (b) C2: Ring 1 -+3 -+2.

Figure 3-2: Lightpath interconnections for 3-node rings on a line physical topology.

(corresponding to transmission requests) is given by2

[0 1
T= 1 - 0,

0 1 -

then by routing the traffic along the clockwise ring, C1, each logical link experiences a load

of 2, while for the counterclockwise ring, C2, each logical link load is 1. Clearly, the gain

achievable by selecting C2 is a link load reduction by a factor of 2.

In the stochastic setting, where traffic variations are random processes, and the system

is subject to reconfiguration delay, packet service delays are affected by the joint algorithm

for WDM topology reconfiguration and IP layer packet routing. In this setting, the traffic

configuration is characterized by an arrival rate matrix A, where the entry on the i-th row

and j-th column represents the long-term rate of exogenous arrivals of packets to node i

destined for node j, in packets per time slot.

To demonstrate the important delay trade-off between incurring reconfiguration over-

head and additional load from IP layer routing, consider arrival rate matrix A, under the

3-node network of Figure 3-2,

0.2 0.5

Al= 0.5 - 0.2

0.2 0.5 -

Under A,, if we fix the topology to be C1, each logical link has long term arrival rate 1.2,
which exceeds the maximum service rate3 of 1.0 for each link. Thus under C1 , the system

becomes overloaded with unserviced traffic as time progresses. If C2 is employed, each

logical link experiences a long-term rate of arrivals of 0.9, which is sufficient to guarantee

the stability of the network.

It is not always possible to exclusively make use of a single logical topology configuration.

2We adopt the convention in this thesis of discarding all diagonal entries in traffic or service matrices.

This follows from our assumption of no self-traffic at any node in the network.
3 The maximum service rate arises because of the single transceiver constraint. Each logical link can

service at most one packet per time slot, and no node can source or terminate more than a single logical

link. Thus, the maximum service rate is 1.0 packets per time slot.
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Consider the following arrival rate matrix, A2 :

[ 0.4 0.5
A2 = 0.5 - 0.41.

0.4 0.5 -

If we service traffic exclusively on C1, all links experience a long-term arrival rate of 1.4,
while if C2 is exclusively chosen the link arrival rates are each 1.3. In either case, the system
becomes overloaded with unserviced traffic as time progresses. However, a TDM schedule
using only single-hop routes allocating at least 40% of its time to C1 and at least 50% of its
time to C2 is sufficient to guarantee that the network is stable, so long as the contiguous
service time allocated to each logical ring is adequately long to make the reconfiguration
overhead negligible. Because the TDM schedule employs only single-hop routes, this ensures
a long term service rate of at least 0.4 packets per time slot to buffers associated with C1

(buffers for source-destination pairs (1, 2), (2, 3), (3,1)) and a long term service rate of at
least 0.5 packets per time slot to buffers associated with C2 (buffers for source-destination
pairs (1, 3), (2, 1), (3, 2)).

It is clear that in order to ensure stability and provide excellent delay properties under
a broad class of traffic processes, it is essential to balance the idleness associated with
reconfiguration against the additional load incurred from multi-hopping along the IP layer.

3.1.2 Related work

The reconfigurable network architecture has been approached in the literature from several
angles. Many studies aim to achieve, in some sense, a balanced set of link loads [16, 83,
84,109]. The work of [83] considers a reconfigurable multi-hop WDM network subject to

deterministic non-uniform traffic. The goal of this study is to determine an algorithm for

joint reconfiguration and routing with desirable throughput properties. The authors suggest
that minimizing the maximum link load (a minimax formulation) is an effective means

of achieving strong throughput properties. A mixed integer program is provided for the

joint optimization, and a heuristic separating the reconfiguration and routing problems and

iterating between them is provided. In [84,109], branch-exchange algorithms are introduced
to incrementally adjust the logical topology towards a desired configuration. Here, [84]

approaches the problem essentially in a deterministic setting, by considering an initial WDM
configuration as well as a fixed target configuration, and seeking a suitable sequence of two-

branch exchanges4 to transition between the two configurations with little overall disruption

to the network. In [109], the problem is approached under dynamic traffic. This work
recognizes that two-branch exchanges may leave the logical topology disconnected, which

is undesirable under dynamic traffic, opting instead for three-branch exchanges, which are
guaranteed to maintain connectivity. The work of [161 associates for each time a cost for
reconfiguring the logical topology and a reward that depends on the degree of load balancing
for the current logical topology. An average reward dynamic program is then formulated

4A two-branch exchange tears down two existing logical links si -- di, s2 -+ d 2 and establishes the new
logical links si - d2,s2 - di.
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with the total reward at any time equal to a weighted sum of the cost and reward for that

particular time.

To the best of our knowledge, the study of stability properties of optical networks was

introduced in [127,128,158], where the authors considered optical burst scheduling under

dynamic traffic in time-domain wavelength interleaved networks. Subsequent work looking

at stability properties of optical networks includes: [26, 27], where scheduling algorithms

were introduced for joint electronic routing and WDM layer reconfiguration under a variety

of practical optical layer constraints; and [154,155], where the stability properties of optical

burst, flow, and packet switched architectures were compared.

In recent years, tremendous efforts have been made in the research towards so-called

"IP-over-WDM" networks. These studies aim to improve network performance through

increased electro-optical integration [58,61,119,134,153,165]. Several studies consider Op-

tical Burst Switching (OBS) as the mechanism for accessing the optical transport layer

[119,127,128,158,162,166]. Most solutions seek to integrate IP and Generalized Multipro-

tocol Label Switching (GMPLS) functionality. Our work differs from existing studies on

electro-optical integration in that we are not tied to a particular protocol suite, but rather

employ a "generic" architecture utilizing electronic packet switching along with a reconfig-

urable optical transport layer. Our approach is to determine the fundamental performance

characteristics achievable in general reconfigurable optical networks having varying topology

and processing functionalities.

3.1.3 Summary of contributions

In [1091, logical topology reconfiguration was initiated at regular intervals in order to deal

with changing traffic. Furthermore, the reconfigurations were incremental, and made no

guarantees about the stability of the system. In this chapter, we provide the first system-

atic approach to the dynamic reconfiguration and routing problem under stochastic traffic

in the presence of reconfiguration overhead. We determine stable algorithms employing IP

layer routing in order to elicit an understanding of the performance trade-offs between recon-

figuration at the optical layer and packet routing at the IP layer. Our major contributions

are:

1. We develop mechanisms for dynamically triggering WDM reconfiguration under stochas-

tic traffic. Our algorithms are based on maximum weight scheduling decisions, and

specify precisely when and how to reconfigure the WDM layer as well as the IP routing

employed between reconfigurations.

2. We demonstrate the asymptotic throughput optimality of our frame-based algorithms

in the presence of reconfiguration overhead.

3. For multiple transceivers per node, we demonstrate the stability region by providing
a novel algorithm extending Birkhoff-von Neumann matrix decompositions to this
setting.

4. Using delay as a performance metric, we employ simulations to demonstrate the im-
portant trade-off between WDM reconfiguration and IP layer routing. Our simula-
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tions point to the advantage of packet switching at low throughput levels and circuit

switching at high throughput levels.

3.2 Reconfigurable network model

Here we provide the details of the optical network model of interest. We will use the

variables and terminology introduced in Chapter 2.

We consider a reconfigurable WDM-based packet network N, consisting of n nodes (the

set of nodes is V). The network symbol N refers to all physical aspects of the optical

data network, including the physical topology of the network, the number of wavelengths

available in each fiber link, and the number of transceivers (or ports) at each node. We

assume that node v E V has P, transceivers. The network nodes are interconnected by

optical fiber, with each fiber having a single (usually bidirectional) wavelength available

for transmission of data. Let Gp = (V, Ep) be the directed physical topology graph of the

network N: if there exists a fiber between nodes V1, V2 E V along which data can travel

from node v, to V2, then the directed edge (v1, v2) belongs to Ep.

A direct optical communication link between two nodes is called a logical link or a

lightpath. Such a link consists of an all-optical path through the network N, connecting

the nodes, possibly traversing multiple intermediate nodes, with no intermediate electronic

processing (see for example the straight-edge links depicted in Figure 3-2). The edges of the

directed graph GN = (V, EN) represent the set of logical links that can be enabled in the

network. Denote m = JEN j. In general these logical links may not be able to be activated

simultaneously, but resources exist to at least allow each link to be active individually.

We assume that a lightpath can exist between any two nodes, which implies that GN is a

complete graph. At any time, the network may initiate a logical topology reconfiguration,
under which existing lightpaths are torn down and new ones are set up.

Since GN is a complete graph, for several symbols in our study it will be convenient

to alternate between understanding the symbol as representing a vector or a matrix. This

will always arise in the context of collections of symbols representing the possible source-

destination pairs in the network. For example, we denote the collection of queue backlogs

at time t > 0 as Q(t), which can be understood as a matrix, Q(t) = (Q,, (t), v, v' E V), or

as a vector, Q (t) = (Qe (t), e E EN). These definitions are interchangeable, since we attach

no meaning to diagonal entries of the matrix Q. The other symbol that we will treat in

this manner is A, the collection of exogenous arrival rates.

The set fIN denotes the collection of feasible logical topologies in the network: the

matrix 7r = (7rij, i, j E V) E HN is a nonnegative integer matrix, where 7ry is the number of

active logical links from node i to node j. Clearly, HN is constrained by the wavelength/port

limitations of the network. We refer to a WDM network as wavelength-unconstrained when

there exist sufficiently many wavelengths to allow any arbitrary logical interconnection of

nodes subject to the port constraints.

Example 3.2.1 Consider the case of a single port per node (P, = 1,Vv E V), and assume

that the network is wavelength-unconstrained. In this case, the set of n x n (sub)permutation

matrices (with discarded diagonal entries) is in one-to-one correspondence with U1 N- This
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follows because P, = 1 implies that no node can originate or terminate more than one

lightpath. Consider a n x n (sub)permutation matrix. By letting entry (i, j) of the matrix

correspond to a lightpath from node i to node j, we see clearly that at most one lightpath

can originate or terminate at each node.

We consider two levels of IP layer electronic routing capability: single-hop and multi-

hop routing. Each of these mechanisms has a different set of admissible service activations,
detailed in Chapter 2, and denoted Ssh, Smh, respectively, as well as single-hop and multi-

hop capacity regions, A, A*h , respectively.

As in Chapter 2, packets are assumed to have fixed size, with transmission duration of

one slot. This assumption is for simplicity of exposition and can be relaxed with appropriate

envelope algorithms [75]. The network allows a maximum of one packet to be transmitted

across any logical link during a slot. At any time, the network may initiate a logical topology

reconfiguration, under which existing lightpaths are torn down and new ones re-established

to form a new logical topology. Transceivers that are tuned are forced to be idle for the

reconfiguration time of 6 slots, while links that are unaffected may continue to service traffic

during reconfiguration. The queueing variables comprising the queue evolution equations

of (2.3)-(2.6) apply to this system without loss of generality.

3.2.1 Scheduling under tuning latency, propagation delay, and distributed
control

Since we are operating in a distributed mesh network environment, it may not be prac-

tical to assume that each node is synchronized to a common clock. A key aspect of the

reconfiguration and routing algorithms in our packet-based WDM network is that they

employ frame-based scheduling, where logical links are held fixed over data intervals, and

the logical topology is changed over reconfiguration intervals. A frame boundary occurs at

the instant when the network initiates the sequence of controls to reconfigure the logical

topology. This sequence includes: 1) the time for the final packets of the terminated frame

to arrive at their respective destinations, t, (can be taken as a fixed value if we bound

the delay over all possible logical links); 2) the time for information exchange in order to

make a decision about the new logical topology to configure, tc (this information exchange

may have occurred prior to the frame boundary, in which case t, = 0); and 3) the time for

tuning the transceivers to establish a new logical topology, tr. The value of t, depends on

the underlying fiber plant topology of the network, which in the case of WAN's is on the

order of 10's of milliseconds. The value of t, depends on the transceiver technology, with

current components requiring on the order of 10's of milliseconds for reconfiguration. Thus,
we designate the reconfiguration overhead 6 = t, + tc + tr.

Using tools from standard clock synchronization algorithms [99], each node can be made

aware of a common time reference. Rather than requiring that the electronics at each node
be synchronized to this common reference, the reference is used to make nodes aware of
frame boundaries. In the case of variable frame durations, this reference can be used to
establish agreement between the nodes about each successive frame boundary. The frame
boundary is initialized by having each node stop transmission of packets after the complete
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Figure 3-3: A reconfiguration interval is used to change the logical topology. The interval
consists of tP slots for propagation delay of the final packets of the last data interval (slots
labeled p), t, slots for passing control information in order to decide on a new logical topology
(slots labeled c), and t, slots to tune the transceivers and establish the new logical topology
(slots labeled r). Slots labeled d are slots for packet transmission (corresponding to a data
interval). The top sequence of slots corresponds to a common time reference according to
which frame boundaries are set. The second and third sequences of slots correspond to
distinct nodes in the network. As illustrated, these slots need not be synchronized to each
other or to the common time reference. The frame-based scheduling is depicted at bottom,
with 6 used to indicate the reconfiguration interval of duration 6, and data used to indicate
the data interval.

transmission of any packet being serviced at that time. We have illustrated the structure

of a reconfiguration interval in Figure 3-3.

3.3 Algorithms for asymptotic throughput optimality

In Chapter 2, we detailed a general version of the algorithm of Tassiulas and Ephremides,
originally introduced in [150]. The algorithmic description for scheduling in this network set-
ting involves maxweight decisions, where each network configuration has associated with it a
particular weight, and the maximum weighted configuration is chosen at each time. Here, we
introduce two versions of this algorithm, specialized to general reconfigurable WDM-based
networks. Our algorithms are valid under arbitrary wavelength/port constraints.

We begin by considering the case of no reconfiguration delay (6 = 0), and introduce

single-hop and multi-hop algorithms for joint WDM reconfiguration and electronic layer

routing. Subsequently, for 6 > 0, we prove that any stable algorithm for the case of 6 = 0
may be transformed into a frame-based algorithm that stabilizes the network. Furthermore,
we introduce a bias-based algorithm that makes reconfiguration decisions by taking into ac-

count the current logical topology of the network. These algorithms are a natural extension
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of maxweight scheduling algorithms to the case 6 > 0.

3.3.1 Single-hop maxweight scheduling algorithm, for 6 = 0

The single-hop maxweight scheduling algorithm (Algorithm SHMW) employs WDM recon-

figuration and single-hop electronic layer routing. In other words, if a directed logical link

exists connecting node i to node j at time t, then that link can only be used at time t to
service packets at node i that are destined for node j. At time t, the algorithm selects a
logical topology from HN whose inner product with the queue backlog vector Q(t) is max-
imum. This logical topology is used for single-hop routing of packets to their destinations.
Algorithm SHMW is detailed next.

Algorithm 4 Single-hop maxweight scheduling algorithm (SHMW)
1: for time t > 0 do
2: Obtain a maximum weight WDM logical configuration 7r* = (-7r*, e E EN), using

-r* EargmaxrFQ(t),
7rEHN

where Q(t) = (Q,(e),(e) (t), e E EN). Reconfigure the WDM network to this configu-
ration

3: Route min{7re, Qa(e)r(e)(t)} packets of commodity a(e) from node o(e) to r(e)

4: end for

Note in step 3 that the number of packets routed is the minimum of ire*, which is the

number of active logical links from node -(e) to r(e), and Qu(e)r(e)(t), which is the number

of packets in queue awaiting service across edge e. Our result concerning the throughput

optimality of Algorithm 1 can be applied to demonstrate that SHMW is stable over the

region A*h. We present this result next.

Corollary 3.3.1 Algorithm SHMW achieves the single-hop capacity region: ASHMW =

A*s.

Proof: This result can be derived as an immediate consequence of (146, Lem. 5]

and [49, Thm. 3]. Alternatively, our proof of Theorem 2.3.1 can be enlisted to demonstrate

this result, by redefining

Zej(t) = fQ(e).r(e)(t), if j = r(e),

l0, otherwise,

and assigning Ze*(t) = max, Ev Zej (t ).
Recall from example 3.2.1 that when the network has a single transceiver per node,

and no wavelength constraint, the set IIN is in direct correspondence with the set of per-

mutation and subpermutation matrices (with diagonal entries discarded). Thus, ASHMW
corresponds to the convex hull of the (sub)permutation matrices, which is identical to the
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doubly substochastic region:

A* A E Wf" : A kg 5 1, Vi, A j:5 1, V . (3.1)

For context, note that this is also the admissible region of an input-queued switch [97].

3.3.2 Multi-hop backpressure based algorithm, for 6 = 0

The multi-hop maxweight scheduling algorithm (Algorithm MHMW) employs WDM re-

configuration and multi-hop electronic layer routing. MHMW is equivalent to Algorithm 1.

We present MHMW below, only modifying some of the terminology from Algorithm 1.

Algorithm 5 Multi-hop maxweight scheduling algorithm (MHMW)

1: for time t > 0 do
2: For each available directed logical link e E EN assign

Zej (t) <- (Q7(eyj(t) - Qr(e)j ())

3: Assign Ze*(t) <- maxj Zej(t)
4: Obtain a maximum weight WDM logical configuration lr* = (ir*, e E EN), where

7r* G arg max7rT Z*(t),
irEHN

and reconfigure the WDM network to this configuration
5: For each logical link e where 7r* > 1, choose a commodity j* E arg maxj Zej (t).

Electronically route min{ir*, Q,(e) (t)} packets of commodity j* across the logical
links from node -(e) to r(e)

6: end for

Since MHMW and Algorithm 1 are technically identical, we can immediately conclude

that MHMW achieves 100% throughput.

Corollary 3.3.2 Algorithm MHMW achieves 100% throughput: AMHMW = A~m.

3.3.3 Frame-based scheduling framework for 6 > 0

Although algorithms SHMW and MHMW are specifically defined for the case 6 = 0, it is

intuitively clear that they can be adapted to the case of J > 0 using frame-based schemes,
where reconfiguration decisions are only made at frame boundaries. In this section, we

formalize this idea by providing a result showing that the stability region achieved by these

algorithms for 6 = 0 can be asymptotically achieved using frame-based versions of the

algorithms when 6 > 0. The frame-based scheduling framework makes use of a frame

interval If E Z+, with a WDM topology reconfiguration decision made every If time slots.

The frame-based scheduling framework alternates regularly between idle and service

intervals, as illustrated in Figure 3-4. The algorithm operates as follows: at each frame

boundary, under backlog matrix Q, the frame-based scheduling algorithm makes the same
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Algorithm 6 Frame-based scheduling framework applied to algorithm SHMW/MHMW

1: for time slots {kf, kI±f + 1,..., (k + 1)If - 1}, where k E Z+ do
2: At time kIf, make a WDM reconfiguration decision according to algorithm

SHMW/MHMW
3: Idle through the reconfiguration interval {kIf,..., kIf + 6 - 1}
4: At each time slot in {kIf + 6,... , (k + 1)If - 1}, make an electronic routing deci-

sion according to algorithm SHMW/MHMW, subject to the fixed WDM topology

configuration selected at time kif
5: end for

t

0 6 If If +6 2 Ij 2If +6

Figure 3-4: The regular on-off nature of the frame-based algorithm.

WDM reconfiguration decision that SHMW/MHMW makes under backlog Q. Note in step

3, the algorithm requires that the system remains completely idle while WDM reconfigura-

tion is conducted. This could be improved to allow packets to traverse links that are not

affected by the WDM reconfiguration decision. We do not consider this improved policy in

the following stability analysis. The remainder of the frame is devoted to servicing pack-

ets over the fixed WDM configuration according to the maxweight decisions of algorithm

SHMW/MHMW, whichever is being employed.

We next demonstrate the asymptotic throughput optimality of the frame-based schedul-

ing framework. Our proof makes use of the throughput parameter e*(A), defined as follows:

e*(A) =max 1 -as

\ SES /

subject to A Easdij(S), Vi,.j E V
SES

Eas - 1
seS

as;>0 VSES

The variable e* (A) can be considered a measure of the "distance" of the rate vector A from

the outer boundary of the capacity region. As an example, if A is organized as a rate matrix,
then if the network N has a single port per node and no wavelength constraint, e*(A) equals

the difference between the maximum row/column sum of A and 1:

e*(A) = 1 - max max Amax (3.2)iEV jEV jEV iEV
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Theorem 3.3.1 Consider arrival rate vector A E A*, and suppose e*(A) > 0. Then, the

frame-based version of algorithm MHMW is stable for any arrival process having rate vector

A, so long as the frame interval satisfies If > 6/E* (A).

Proof: See Appendix 3.A. Subsequent to the proof, Appendix 3.B provides a simple

alternative demonstration of stability, for a frame-based scheduler that employs a simple

batching algorithm. U

Since Theorem 3.3.1 applies for any A E A*h satisfying e*(A) > 0, we say that the

frame version of MHMW is asymptotically throughput optimal. The asymptotic throughput

optimality of the frame-based version of SHMW follows in a similar manner, just as the

stability of SHMW followed from that of MHMW under 6 = 0 in Corollary 3.3.1. As for

the case of the frame version of MHMW, define the single-hop throughput parameter e*h(X)

according to:

eh(A)=max as
SESsh

subject to Aij E asdij(S), Vi, j c V
SESsh

as < 1
SESsh

as > 0, VS E Ssh.

Similar to the multi-hop case, *h(A) provides a measure of the "distance" of A from the

outer boundary of the single-hop admissible region A*h-

Corollary 3.3.3 Consider arrival rate vector A E A*h, and suppose E*h(A) > 0. Then, the

frame-based version of algorithm SHMW is stable for any arrival process having rate vector

A, so long as the frame interval satisfies If ;> S6Eh (A).

Proof: The proof follows similarly to that of Theorem 3.3.1, only that service activa-

tions are limited to the set Ssh. The only necessary modification to the proof of Theorem

3.3.1 is to redefine

Ze (t) =fQo(e)-r(e)(t), if j = r(e),

0, otherwise,

and assign Ze*(t) = maxjEV Zej(t).
Recall that Example 3.2.1 focused on the case of no wavelength constraint, where there

are sufficiently many wavelengths available to allow configuration of any logical topology

subject to the port constraint. Our next result again looks at this scenario. We find that

the single-hop and multi-hop admissible regions are equal, which implies that when there is

no wavelength constraint, algorithms SHMW and MHMW both achieve 100% throughput.

The port constraint implies that the following set is the multi-hop admissible region Amh:

Amh= A E R"l" : Aij Pi Vi, Aij 5 P Vj
jEV iEV
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Theorem 3.3.2 For a WDM network having no wavelength constraint and port distribution

(Pv, v c V), the multi-hop admissible rate region A* equals the convex hull of the link

activation set UN: A* = conV (UN)

Proof: See Appendix 3.C. U

The following corollaries result immediately from Theorem 3.3.2 and its proof.

Corollary 3.3.4 For a WDM network having no wavelength constraint, the single-hop ca-

pacity region equals the multi-hop capacity region: A* = A*h. Consequently, algorithms

SHMW and MHMW both achieve 100% throughput when 6 = 0, and the frame versions of

algorithms SHMW and MHMW are both asymptotically throughput optimal.

Proof: From Theorem 3.3.2, we have that A*h conv(HN). The result then follows

because A* = conv(HN)-
The next corollary attempts to gain a sense of the frame interval required in stabilizing

implementations of frame versions of SHMW and MHMW, when the WDM network has

no wavelength constraint. Interestingly, we find that the single-hop and multi-hop through-

put parameters are equal in this case, which implies that the frame intervals sufficient for

stability in Theorem 3.3.1 and Corollary 3.3.3 are equal.

Corollary 3.3.5 For a WDM network having no wavelength constraint and port distribu-

tion (Pu,v G V), and given A G An,

Esh

Proof: See Appendix 3.D. U

While the maxweight scheduling mechanism we have proposed for WDM reconfiguration

and packet routing depends upon local traffic variations, the use of a deterministic frame

interval does not take traffic conditions into account. The focus of the next section is

on building a frame-based scheduling framework, where the frame interval is of varying
duration, based upon the local traffic conditions.

3.3.4 Additive bias-based scheduling framework

In this section, we introduce the additive bias-based scheduling framework, which provides
asymptotic throughput optimality for any 6 > 0. Here we assume that the dissemination

of control information across the network is sufficiently fast such that every node is aware
of the backlog matrix at each slot. Thus, this class of algorithms is also well suited for
scheduling crossbar switches with reconfiguration overhead.

The additive bias-based scheduling framework is provided below. The intuition behind
the algorithm is that every decision to reconfigure should be followed by some opportunity

to service packets under the logical topology selected (in essence, the algorithm has a built-
in hysteresis). Under the framework, WDM reconfiguration decisions are made at each time
slot. The only difference is that the weight associated with the existing logical topology prior
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Figure 3-5: The service intervals of the additive bias-based algorithm.

to the decision instant is biased additively by the constant number b. This bias is chosen in
such a way as to increase the expected time interval between WDM reconfiguration decisions
sufficiently to ensure stability of the system for 6 > 0.

Algorithm 7 Additive bias-based scheduling framework applied to algorithm
SHMW/MHMW

1: for time t c Z+ do
2: if the WDM layer is not in the process of reconfiguration then
3: Denote the existing logical configuration by ir(t). Select logical configuration 7r* E

IN according to

arg max b 1 ,=,(t)} + rTQ(t), for algorithm SHMW
r* E rE N

arg max bl {7=r(t)} + 7TZ*(t) for algorithm MHMW
rEnN

4: if 7r* = 7r(t) then
5: Route packets across the current logical configuration according to the rules of

the algorithm (SHMW or MHMW)
6: else
7: Initiate WDM reconfiguration to logical topology 7r*
8: continue
9: end if

10: end if
11: end for

Figure 3-5 illustrates the intervals associated with service and reconfiguration phases

of bias-based scheduling. As opposed to the frame-based scheduling policies, the service

intervals are of variable duration. We denote by k the k-th reconfiguration decision instant,
with (O A 0, and Xk k+ - k-

The following lemma establishes a sufficient condition for the stability of the bias-based

scheduling framework. The result makes use of the fluid limit function F(t) corresponding

to the process F3(t), which tracks the cumulative time up to and including time t spent idle

during reconfiguration intervals. This process was introduced in the proof of Theorem 3.3.1

in Appendix 3.A.

Lemma 3.3.1 Consider an arrival process with arrival rates A E Ash. If the fluid limit
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process F6(t) satisfies F6(t) < E*(A) for all t G R+, then the additive-based based version of

MHMW stabilizes the network.

Similarly, for an arrival process with arrival rates A G A*h, if the fluid limit process

F5 (t) satisfies F(t) < E*h(A) for all t G R+, then the additive-based based version of SHMW

stabilizes the network.

Proof: The proof follows similarly to that of Theorem 3.3.1. The details can be found

in Appendix 3.E. U

Note that for =_ 0, Lemma 3.3.1 immediately implies that the additive bias-based

versions of SHMW and MHMW are stable, since zero time is lost to reconfiguration and

thus F6(t) = 0 for all t. For 6 > 0 we now use Lemma 3.3.1 to prove the stability of

a network having a single port per node and no wavelength constraint, under any joint

Bernoulli arrival process.

Theorem 3.3.3 Consider a WDM network with a single port per node, and no wavelength

constraint, subject to a Bernoulli arrival process (not necessarily independent or identically

distributed in time or across VOQ's) with rates A G A*h, where E*h(A) > 0. If b is cho-

sen to satisfy b/n > 2 (5/E*h(A)) - 6, then the bias-based version of SHMW stabilizes the

reconfigurable queueing network.

Similarly, if A c A*h with E* (A) > 0, and b is chosen to satisfy b/n > 6(6/E* (A)) - 36,
then the bias-based version of MHMW stabilizes the reconfigurable queueing network.

Proof: See Appendix 3.F. U

3.3.5 Comments regarding frame-based scheduling

The fixed and variable frame-based scheduling frameworks we have proposed in this section
suffer a few drawbacks. First, our sufficiency conditions for stability are a function of the
traffic statistics, which in general are unknown. There are several approaches to dealing
with this issue:

1. the system's arrival rates can be estimated periodically, and the frame interval/additive
bias adjusted accordingly;

2. a selective packet dropping mechanism can be implemented at the input and output
ports, in order to guarantee a minimum value of e* or E*h-

A second drawback of frame-based scheduling was mentioned earlier: the system as
defined does not allow packets to transfer across links that are not torn down at frame
boundaries. Clearly, such a restriction need not apply in a true implementation of a fixed
or variable frame-based scheduling framework.

A third drawback of the system as we have modeled it is that packets are of fixed size.
Any true implementation would have to eliminate such an assumption. Fortunately, the
frame-based scheduling frameworks easily admit variable-length packets, by allowing trans-
mission of any enqueued data through to the end of the frame interval, possibly terminating
transmission early in the frame when there is no packet available that can be transmitted
in the remainder of the frame interval. Thus, a frame-based scheduler can be thought of as
an "envelope algorithm", much like that presented in [75].
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3.4 Delay performance studies

In this section, we compare the delay performance of algorithms under different traffic con-
ditions, reconfiguration overheads, and physical topologies. Our simulations demonstrate
that there exists a strong advantage to employing multi-hop routing at the IP layer under
certain conditions. In particular, when there is a single transceiver per node, multi-hop
routing is advantageous at low throughput levels. Also, we observe the tremendous advan-
tage of employing mutli-hop routing in an access network scenario, where a single hub node

has n transcievers and each of the other local nodes is equipped with a single transceiver.

When considering the system at the packet level, a relevant performance metric is the

average service delay experienced by packets in the system. Through a straightforward

application of Little's formula, the average service delay is tied to the time average aggregate

queue backlog. When the WDM network is subject to an arrival process with rates A, and

employs scheduling policy P, the time average delay is given by

T-1

1 lim sup _E E Qf(t),
EijAi T-+o T =0i~j 23

where QP(t) = (Qf(t), i,j E V) is the queue backlog matrix at time t under algorithm P.

It turns out that quantifying the average delay is difficult, because of the widely varying

collection of allowable traffics that have the same arrival rates. Using the theory of Lyapunov

stability, the authors of [87] derive bounds on average queue occupancy (and consequently

on average delay), that achieve varying degrees of tightness, depending on how correlated

different arrival streams are. For this reason, this section makes use of both theory and

numerical results to arrive at our conclusions.

In gigabit networks, reconfiguration delay intervals on the order of 6 = 1,000 to 6 =

50,000 time slots are reasonable values. In this section, we provide data for the case

6 = 1, 000, though our tests for larger values of 6 yield identical conclusions.

3.4.1 Zero reconfiguration delay (6 = 0)

For 6 = 0 it is unknown whether in fact there exists any benefit to IP layer routing. We

begin by showing that for n = 3, in the simple case of a single port per node, and no

wavelength constraint, each algorithm employing packet forwarding is no better than an

associated algorithm that never forwards packets.

Theorem 3.4.1 For a WDM network having n = 3 nodes, a single port per node, and

no wavelength constraint, any algorithm employing multi-hop routing has an associated

algorithm that does not multi-hop packets with an equal or lower average aggregate backlog

when 6 = 0, for any joint arrival distribution.

Proof: See Appendix 3.G. U

Essentially, we may conclude that for n = 3, when there is no reconfiguration overhead,
there is no benefit from treating such a system system as more than a switch. For n > 3,

it is not possible to generalize Theorem 3.4.1 directly to conclude that packet forwarding is
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not beneficial with respect to average delay. We leave this as an interesting open problem

for future study.

3.4.2 Overview of algorithms tested

We compare several algorithms for joint WDM topology reconfiguration and IP layer rout-

ing. The algorithms are frame or bias-based versions of the following:

1. SHMW;

2. MHMW;

3. Prioritized Backpressure: This algorithm makes decisions according to MHMW for

reconfiguration and routing, but priority is given to servicing packets single-hop across

active links;

4. MW Minhop: This algorithm makes WDM topology reconfiguration decisions identi-

cally to SHMW, and then applies minhop routing at the electronic layer.

The algorithms Prioritized Backpressure and MW Minhop have not been introduced until

now. They are heuristic algorithms that we devised in order to test the delay properties

of SHMW and MHMW. Prioritized Backpressure operates on the philosophy that once

MHMW has chosen a logical topology, it seems reasonable to transmit those packets that

are one hop from departure prior to the multihop packets scheduled by MHMW. Thus,
Prioritized Backpressure uses MHMW for joint logical topology reconfiguration decisions

and IP layer routing, with the caveat that any nonempty VOQ's one hop from departure

are serviced with priority.

Given 6, in our simulations we choose a frame size 10% in excess of the minimum value

required for stability, in order to mitigate the probability of large deviations in the queue

occupancies in our numerical simulations.

3.4.3 Circuit versus packet switching

It is certainly true that statistical multiplexing from packet switching makes efficient use
of link bandwidth. However, the additional link loads from multi-hopping data across a
network experiencing congestion can lead to oscillation and instability of data flows. Circuit

switching is an effective solution in this situation, because heavy loads can efficiently be

scheduled over the available capacity. Thus, it makes great intuitive sense that different

throughput levels are well served by different degrees of circuit and packet switching. In
this section we address this issue, by presenting simulation results demonstrating that our
stabilizing multi-hop algorithms naturally transition between circuit and packet switching

in order to achieve improved delay performance over the range of achievable throughputs.
For the simulation setup of this section, we consider a WDM-based optical network hav-

ing n = 6 nodes, with each node having a single transceiver, and no wavelength constraint.
We consider a range of throughput parameters in the interval [0,1]. At each through-
put level, we randomly draw 25 arrival rate matrices, where entries are chosen i.i.d. uni-
formly from the interval [0, 1], and normalize the maximum row/column sum to the desired
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Figure 3-6: Average delay for a range of throughput levels.

throughput level. (Recall from (3.2) that when there is no wavelength constraint, and a

single port per node, the throughput parameter is one minus the maximum row/column

sum of the arrival rate matrix.) Each matrix is used to generate a Bernoulli arrival process

that is simulated for 20 x 106 time slots, with an initial backlog of zero at each VOQ. Each

point on the plots of Figures 3-6-3-8 is the mean value over the 25 sample paths generated

for each arrival rate matrix.

Figure 3-6 shows the average delay for our algorithms under 6 = 1000. The single-hop

routing algorithm (SHMW) is outperformed by all other algorithms in the low throughput

regime. However, for increasing throughputs, SHMW is the algorithm with best delay

performance. MW Minhop is unstable outside of the low throughput regime where the

plot shows a significant jump in the delay associated with this algorithm. MHMW and

Prioritized Backpressure are stable across all throughputs, though underperforming SHMW

at moderate to high throughputs.

To understand the apparent performance trade-off between the circuit-centric approach

(WDM reconfiguration with little or no IP layer routing) and the packet-centric approach

(small amount of WDM reconfiguration with IP layer routing), we show in Figure 3-7
the average fraction of departed packets single-hopped in each time slot, and in Figure

3-8 the fraction of frames in which reconfiguration was triggered, for all algorithms. We

have truncated the data in Figure 3-8 because for higher throughputs all algorithms have

a fraction of approximately 1. At low throughput levels, the best performing algorithms
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Figure 3-7: Fraction of departed packets single-hopped per time slot.

employ a large degree of IP layer routing, with a small fraction of packets single-hopped.

Also, WDM layer reconfiguration is not triggered as often by the multi-hop algorithms,
which implies lower delay associated with reconfiguration overhead. At high throughputs,
all algorithms tend to depart more packets through single-hop routes, but the multi-hop

algorithms still employ a significant amount of IP layer routing, which leads to an overall
increased load and lack of performance compared to SHMW. All algorithms tend to employ

WDM layer reconfiguration at each frame boundary from a relatively low throughput level
and up.

We conclude that MHMW and Prioritized Backpressure are attractive algorithms, be-
cause of their ability to achieve significant gains through the use of packet routing at low

throughputs and an increased tendency towards WDM reconfiguration with single-hop rout-
ing at the IP layer at high throughputs. These algorithms effectively transition between
packet switching and circuit switching, and require no knowledge of the traffic arrival process

other than the value of 6.

3.4.4 Frame vs. bias-based algorithms

The intuitive motivation for introducing additive bias-based algorithms is that a reconfig-
uration algorithm that does not make decisions at fixed intervals may be able to better
adapt to actual traffic variations as they happen. Figure 3-9 provides simulation results
demonstrating the validity of this argument. The simulation scenario has 6 nodes, a uni-
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Figure 3-8: Fraction of frames in which a reconfiguration was initiated.

form arrival rate matrix of Ay = 0.04 Vi = j (low throughput scenario), and Bernoulli

arrivals, under algorithm MHMW. Since our algorithms are intended to be implemented at

a particular value of frame size If or bias size b, we note that for appropriately chosen bias

size, there is tremendous benefit to using the bias-based algorithm in lieu of the frame-based

scheme.

3.4.5 Random ring algorithms

In this section, we introduce and analyze a class of randomized algorithms from which the

switch scheduling algorithms of [21] are drawn. This section considers again the scenario

where there is no wavelength constraint, and a single port per node.

The class of random ring algorithms selects at each frame boundary a ring logical topol-

ogy randomly with equal probability. This class of algorithms includes all possible packet

routing schemes on top of the random logical topology selection.

Clearly a desirable feature of random ring algorithms is the low computational complex-

ity associated with choosing a logical topology. Unfortunately, this results in a throughput

penalty, as described in the following theorem.

Theorem 3.4.2 For WDM networks having a single port per node, and no wavelength

constraint, the class of random ring algorithms is not throughput optimal, in the sense that

the stability region of any random ring algorithm has smaller volume and is a strict subset
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Figure 3-9: Frame/bias size versus average simulated delay.

of the doubly substochastic region.

Proof: See Appendix 3.H.

3.4.6 Access network

Consider an access network, where n - 1 of the nodes (the local nodes) each have a single

transceiver, and one node (the hub node) has P = n - 1 ports. We assume there are n

wavelengths so that the only constraints on the allowable logical topologies come from the

port constraints. We consider arrival rate matrices A satisfying

0, ifi=j,

Ai={ a, ifi=1 and j :/i, or ifj=1 and i #j, (3.3)

0, else,

where a > 0 and 3 > 0. From Theorem 3.3.2, it is easy to see that a stabilizable rate

matrix for 6 = 0 simply must satisfy

a + (n - 2)0 < 1. (3.4)

Thus, for If or b chosen appropriately for their respective frame-based algorithms, we

may proceed to investigate the performance trade-offs of multi-hop versus single-hop routing
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for various a, 3 values.

Figure 3-10 plots the data corresponding to the access network under i.i.d. Bernoulli

arrivals for a range of a/,3 values. The plot at left of Figure 3-10 shows that the algorithms

based on MHMW are far superior to SHMW for a/0 > 1. We plot the average fraction

of frames where reconfiguration was triggered at right in Figure 3-10. It is clear that

reconfiguration is in fact unnecessary in this network when the traffic is largely targeted at

the hub node. Once the algorithms based on MHMW choose the logical topology directly

connecting each node to the hub node, pure IP layer routing is employed thereafter. Thus,
local traffic among nodes in the access network is easily served by the algorithms based

on MHMW, while SHMW suffers from having to reconfigure the logical topology in order

to directly service this local traffic. We have omitted the data corresponding to the MW

Minhop algorithm, because of its extremely poor performance (orders of magnitude worse)

next to SHMW.

3.5 Conclusions

We have studied algorithms for joint WDM reconfiguration and IP layer routing in IP-over-

WDM networks. The key algorithms, SHMW and MHMW, operate based on maxweight

scheduling, and are asymptotically throughput optimal in single-hop and multi-hop capable

networks, respectively. We found that optical layer overhead due to reconfiguration delay is
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mitigated by frame-based algorithms. We provided fixed frame and variable frame duration
algorithms and proved their stability properties. Our algorithms precisely dictate the control
decisions made at each slot at the IP and WDM layers, with the Differential Backlog
(MHMW) algorithm in general making use of both IP layer multi-hop routes and WDM
reconfiguration.

In terms of delay performance, there is a great benefit from employing algorithms that
tend to use multi-hop IP layer routes instead of WDM reconfiguration, when the additional
load incurred from these multi-hop paths is sufficiently small. At high system loads the
opposite is true, and WDM reconfiguration is preferable to additional load from multi-hop
IP layer routing.

We demonstrated theoretically that multi-hop routing is of no use when reconfiguration
delay is negligible, in the 3 node scenario. Further, we showed that simple algorithms
employing random ring selection at the WDM layer are not capable of achieving throughput
optimality.

3.5.1 Future directions

Our optical networking architecture, due to its general physical topology, and wavelength
and port limitations, cannot always be considered as wavelength-unconstrained. Thus, the
available configurations in the network do not correspond to matchings on a bipartite graph.
This points to the challenging nature of the maxweight decision problem, which is central
to SHMW and MHMW. An important future direction is to study and develop efficient
algorithms for selecting logical topology configurations under a maxweight scheduling rule.
There are many 0(n3) impementations of the maximum weighted matching algorithm for
bipartite graphs, including the Hungarian Method, the successive shortest path algorithm,
and the relaxation algorithm [2]. Since our architecture does not necessarily admit bipartite
configurations, one possible avenue is to develop new primal-dual algorithms for maxweight
scheduling. One can treat the maxweight scheduling as a special min-cost multi-commodity
integer flow problem, where link and port constraints are explicitly taken into account
in the optimization. If the feasible convex set (or polytope) of flows under this multi-
commodity integer flow problem has only integer corner points, then linear programming
algorithms can be applied directly to obtain maxweight schedules. These algorithms can
be combinatorialized to obtain efficient discrete routines (as in the development of the
Hungarian Method [117]). It is well established however, that the general multi-commodity
integer flow problem does not have exclusively integer solutions [2]. Consequently, one can
determine the network conditions under which the polytope of feasible multi-commodity
flows has exclusively integer corner points, and corresponding combinatorial algorithms to
obtain maxweight schedules. Under network conditions where the polytope does not have
integer corner points, one can develop relaxations on the multi-commodity integer flow
problem that yield efficient approximate maxweight scheduling algorithms.

The throughput maximizing algorithms that we have considered for single-hop and
multi-hop routing and reconfiguration are based on maxweight scheduling decisions. Max-
weight algorithms are inherently centralized, essentially requiring that each node is made
aware of all other nodes' traffic backlogs in order to make a decentralized scheduling decision.
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This large degree of communication complexity is a highly undesirable feature, especially

when considering the scalability of our network model. A very exciting and important re-

search opportunity exists in distributed scheduling. One candidate algorithm for reducing

the communication complexity in bipartite scheduling is greedy maximal weighted match-

ing [14,45,71]. We study this algorithm and its performance implications in the switching

and wireless settings in Chapters 6-8.

Another promising approach to achieving optimal maxweight schedules in a distributed

manner is through "belief propagation" (BP) algorithms. Such algorithms have been tremen-

dously successful in iterative decoding and computer vision, and have recently been demon-

strated to be successful in obtaining maximum weighted matchings in simple switches [17].

BP algorithms, such as the max-product algorithm, seek to determine the maximum a poste-

riori (MAP) assignment of a probability distribution described by a graphical model. These

algorithms are inherently local and thus distributed in nature. By developing an appropri-

ate graphical model for our network architecture, BP algorithms can be used to generate

optimal or approximate maxweight schedules. The challenging aspect of this problem is

that convergence of BP algorithms to optimal solutions can be difficult to prove in graphs

having multiple cycles, which is the case even in the simple scenario of an input-queued

switch [171.

It is important to explore the communication complexity of our distributed algorithms.

Maxweight scheduling and approximations thereof look at the scheduling problem as a

throughput optimization problem, with no regard to control information dissemination.

Distributed algorithms on the other hand attempt to make local scheduling decisions that

achieve low communication complexity. Fundamentally, it is of interest to explore the

trade-offs that must exist between communication complexity, delay, and throughput. One

potential approach to evaluating this trade-off is to consider various implementations of

primal-dual algorithms for maxweight scheduling, built with different degrees of communi-

cation complexity.

Recent results [140,146] point to delay optimality properties of maxweight scheduling

policies in the heavy traffic limiting regime. Since maxweight scheduling is at the heart of the

SHMW and MHMW algorithms, these results deserve further exploration in the context of

WDM networks with reconfiguration delays. Obtaining extensions of these results to WDM

networks holds promise, since the results of [140,146] essentially parallel our architecture

under single-hop electronic routing. Applying similar arguments to our general multi-hop

architecture should then lead to delay optimality results.

It is important to study the real-world performance implications of our joint reconfigu-

ration and routing algorithms. For example, it is well understood that backbone network

traffic is extremely aggregated, meaning traffic may be modeled as a random process with

slowly-changing mean and low standard deviation. On the other hand, metropolitan area

networks are subject to much more bursty traffics. These widely different traffic patterns

deserve attention, because they will surely require different algorithms for achieving optimal

delay performance.
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Appendix

3.A Proof of Theorem 3.3.1

The proof follows closely that of Theorem 2.3.1. Note that Lemma 2.B.1 from Appendix 2.B

holds true under the frame-based scheduling framework, except for the fluid model equation

(2.24). We augment the lemma by adding one process, F6 (t), which tracks the cumulative

time up to and including time t spent idle during reconfiguration intervals. The linearly

interpolated continuous-time version of this process can be scaled, using

F6(rt)
r

There must then exist a subsequence of the sequence found in Lemma 2.B.1 for which the

scaled functions converge uniformly on compact sets to the Lipschitz-continuous fluid limit

function PF(t). This function can easily be shown to satisfy the following properties:

Fj(0) = 0,
-L j

F6 (t) = -.
if

The fluid model resulting from the frame-based scheduling framework yields the following

analogue of (2.24):

P6 (t) and Fs(t)VS are non-decreasing, and F6 (t) + Z Ps(t) =t,
SES

t > 0.

Clearly also, equations (2.25)-(2.26) are unaffected by the frame-based scheduling frame-

work. Thus, we can summarize as in (2.27):

F6(t) + E Fs(t) = 1.
SES'

Using h(t) = (1/2) E Q? (t), we can then apply these results to reach the inequality

ht(t) 1 as
SES

= as
SES

(2*(t)) S.j) - Fs (t)
SES'

(Z*(t)) S.j

max (2*(t))T S.j
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Above, we assume that the non-negative vector a satisfies

Ai 3  >i asdij(S), Vi, j c V, (3.5)
SES

as 0, VS E S, (3.6)

Zas = 1-e*(A). (3.7)
SeS

Denote the normalized vector a'= (1/(1 - e*(A)))a, and suppose that If b/*(A). Then

we obtain

e*(A)) a' (*(t)) T  S-j _ max (Z*(t)) T Sj
SES 

I) ) (t (

) [ a' (*())T S.j - max (2*(t))T ( S.j
If sES

< 0.

The last inequality follows similarly to the final step of the proof of Theorem 2.3.1. It is

immediate from the fact that 6 < If by definition, and the non-negative vector a' sums to

one.

3.B Alternative proof of stability of frame-based scheduling

The proof of Theorem 3.3.1 makes use of the powerful fluid limit technique. In this section,
we demonstrate that although such a fundamental approach to proving stability is valid

and correct, it may not be entirely necessary, given that algorithms SHMW and MHMW

are proven to be stable for J = 0. In particular, we demonstrate that Corollaries 3.3.1 and

3.3.2 are sufficient to imply the stability of the frame-based scheduling framework.

For the purpose of simplicity, our study in this section employs a batching mechanism.

By this, we mean that when the frame interval is If, and a logical link e = (i, j) is active

for service through the frame interval, virtual queue VOQij will not service packets across

that link unless there are at least If - 6 commodity j packets enqueued at node i.

As an example, suppose that 6 = 1 and If = 4. Figure 3-11 shows how exogenous

arrivals for a particular VOQ are batched before being made available to that VOQ for

service. All exogenous arrivals are batched and are not available for service until the frame

boundary, when the maximum number of batched packets that are a multiple of If - = 3
are made available to the VOQ (here, we have 3 packets made available for service at time
2 J and 6 packets made available at time 3 If). Thus, the batch size process is nondecreasing

over the frame interval, and decreases by a multiple of 3 at the frame boundaries. Because

only 3 slots are allocated to servicing VOQ's within each frame, this ensures that the backlog

of packets available for service at each VOQ changes by an integer multiple of 3 over every
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Figure 3-11: Illustration of batch size process for a particular VOQ.

frame. Thus, the frame scheme looks at the system only at the frame boundaries and

considers the VOQ backlog processes divided by If - 6 = 3, and ties the resulting process

back to the stabilizing scheme for 6 = 0.

Theorem 3.B.1 Suppose algorithm P stabilizes the network for 6 = 0 for some class of

arrival processes A. Then for each 6 > 0, if there exists If such that the cumulative arrival

process (A(t), t c Z+) satisfies (A(t), t c Z+) c A, where

'(t) = f-

then P is frame-stabilizable. Specifically, a frame-based scheduler that makes a reconfigura-

tion and routing decision every If time slots, idles for 6 time slots, and subsequently services

packets according to the fixed reconfiguration and routing decision made at the beginning of

the frame, stabilizes the network.

Proof: The number of batched arrivals released to the system for service at each frame

boundary, kIf for k E Z+, is given by (If - 6)(A(k) - A(k - 1)), which is clearly an integer

multiple of (If - 6). Thus, since the frame version of algorithm P services queues in batches

of (If - 6) slots per frame, with the same control decision held over the duration of the

frame, we are guaranteed that every virtual queue has a backlog of packets available for

service that is an integer multiple of (If - 6).

Define the process (Q(t), t c Z+) with Q(t) equal to 1/(If - 6) times the backlog of

packets available for service at the beginning of slot tIf under the frame version of algorithm

P. The evolution of (Q(t), t E Z+) is defined according to the arrival process (A(t), t E Z+)

(which we assume to be a member of the set A), and scheduling decisions according to

algorithm P at each t. Thus, the process (Q(t), t E Z+) is equivalent to the backlog process

under P for 6 = 0 and exogenous arrival process (A(t), t E Z+). This implies the stability

of (Q(t), t E Z+) and consequently the stability of the queue backlog process under the

frame version of P.

Given Corollaries 3.3.1 and 3.3.2, Theorem 3.B.1 can be enlisted to infer the existence
of frame-based stable scheduling policies for any 6 > 0. Consider the frame version of
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algorithm SHMW. Consider the arrival process (A(t), t E Z+), having arrival rate matrix

A E A*h, with Eh(A) > 0. The class A of arrival processes of interest in this case is all

processes that have long term arrival rates belonging to A*h. Theorem 3.B.1 then asserts

the stability of frame-based scheduling if there is a frame interval If for which the process

(A(t), t E Z+) E A, where A(t) = _A(tIf)/(If - 6)]. The following sequence of equalities

establishes the long-term rate of the process (A (t), t E Z+):

A(T) 1 A( I
lim = lim 1- (~f

T-+oo T T-+ooT LIf - j

lim If A(TIf)
T-oo If - 6  TIf

= A, w.p.1

In order to satisfy (,(t), t E Z+) E A, it must then we then require that (If /(If - 5))A E

A*h, which follows if (If /(If - 6)) <_ 1/(1 - E*h(A)). This implies If 6 /eh (A). Thus, we
have proved that the frame version of SHMW is stable so long as If 6 /e* (A). A similar

proof follows for the frame version of MHMW.

3.C Proof of Theorem 3.3.2

The theorem proof is accomplished in several steps, in a similar manner as in [34, Prop. 1,
Prop. 2, Alg. 1, Alg. 2]. The goal of the proof is to demonstrate that any rate A E A*

can be expressed as a convex combination of link activations from fIN. Our approach is

as follows: First, given a matrix A E A*, we find a matrix A on the Pareto frontier of A*,
which we denote by A*:

AP A: Aj = PiVi, Aij = PI VJ

Second, an algorithm is derived for constructing a bipartite graph based on any matrix in

A*, with the property that the graph has a maximum matching that includes all nodes.

Finally, an algorithm for expressing any matrix in A* as a convex combination of valid link

activation matrices (from the set IIN) is provided.

3.C.1 Extending von Neumann's result

In [152], von Neumann demonstrated that any doubly substochastic matrix can be domi-

nated by a doubly stochastic matrix. Here, we provide a methodology for finding a matrix

in A* that dominates an admissible rate matrix matrix in A*.

Consider A E A*. If the summation over the elements of A is less than Ei P, then there

must exist k, 1 such that EZ Ak, < Pk and Ei Ail < P. This follows easily: suppose that

no such k can be found. Then Ej Akj Pk, Vk, which by the definition of A* implies that

Z, Akj = Pk, Vk. This implies that Ekj Ak, = Ek Pk, which violates our initial assumption.
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An identical argument applies to the value of 1. Thus, k, 1 must exist, and the entry Aki

should be increased to Akl + min{P - Ej Akj, P - Ei Ail}. Repeating this process at most

2n - 1 times (once for each row/column with the final entry completing both a row and a

column simultaneously), a matrix in A*, is achieved. The following lemma summarizes this

result.

Lemma 3.C.1 Given A E A*, the above methodology yields a matrix A = (Aij,i, j E V) E

A* that dominates A in all entries: ij ;> Aij, Vi, j.

3.C.2 Building a bipartite graph

Given matrix A e A*p, we now construct a corresponding bipartite graph for which Hall's

Theorem guarantees a maximum matching covering all nodes exists. This maximum match-

ing can subsequently be translated to a valid link activation matrix. Designate the nodes

of the two bipartitions by

si 2 P 1... P, s1 ... ,sP2, ... .. ,s },

1) 1 ) 2 2 n7 ...
1d 2 dP d . .P - d' .~Pd = d, dl;,...,d 1 7d2,...,; 2,...,d 7,..., 7 }.

Above, P, and Pd represent source ports and destination ports, respectively. Algorithm 8

establishes edges between the nodes of P, and Pd.

Algorithm 8 Generates a bipartite graph from matrix i E A*

Let = A
Associate with each vertex of the bipartite graph v a bin be, initially empty and having
maximum capacity 1
for each i, j c V do

while qij > 0 do
Obtain k = min{m : b,;n < 1}, and 1 = min{m : bdjm < 1}
Add an edge joining s to d. if no such edge exists
Obtain yij = min{#4o, 1 - bsk, 1 - bdi }
Set Oij <- oij - yij, bsk <- b8, + yij, and bdL <- bd., + yij

end while
end for

For a matrix A E A*, upon algorithm completion, it is simple to show that each bin

is at capacity: Suppose bk < 1. Then if there is no j such that #ij > 0, it must be true

that Ej A <; P - (1 - b8 ) < P. This follows because each time matrix entry element
#ij is decreased, one of the bins at source i (one of b,,, b ) is increased by the same

amount. Since we have assumed the entire i-th row of 4 is zero, then the sum over the
same bins must equal the initial i-th row sum of matrix 4, or equivalently E3 Aij. This
sum must be less than P since all source i bins are not full, which provides a contradiction
to our assumption that A E A*. The argument against a value bdi < 1 upon algorithm
termination follows similarly.

67

1:
2:

3:

4:

5:

6:

7:

8:

9:

10:



Alternatively, if bg < 1 and there exists j such that #ij > 0, then there must exist a value
1 such that bd' < 1. This follows because #ij has not been reduced to zero, which implies
that the full cjolumn sum of P has not been distributed over the P bins corresponding to
ports at destination j. Thus, the algorithm would have discovered source and destination
bins with which to reduce #ij further, which contradicts that the algorithm has terminated.

For each i, j E V, the algorithm reduces #ij to zero in at most 2 min{P, P} - 1 steps,
because this is the maximum number of times that the minimizing term yij does not have
to equal Oij. Thus, we have shown that the algorithm terminates, and that all bins are full
(at unit capacity) upon termination.

We now show that the bipartite graph constructed by the above algorithm satisfies the

condition of Hall's Theorem to guarantee the existence of a perfect matching (a matching
that covers every node of the graph). Take any set of source nodes P5, C P,. Then we
require that this set connects to at least IPl destination nodes in Pd.

A useful way of considering each bin in the algorithm is as a measure of the flow departing
(in the case of a source node bin) or arriving (in the case of a destination node bin) at that

port. As each link is added in the algorithm, an element of matrix < is reduced by some
amount, and the bins associated with the source and destination nodes of that link are
increased by the same amount. This captures the amount of flow serviced from the source

to the destination along that link.

Upon algorithm termination, each bin is at unit capacity, which equivalently means

that one unit of flow departs from each source node and arrives at each destination node.

Thus, since P, is the source of IP8 units of flow, at least IP8 units of flow must arrive

to the destination nodes. Further, since each destination bin has unit capacity, this flow

must arrive along at least P8,| links. Thus, we have that the set of neighbor nodes to P,

must have size at least 1P8 . Applying Hall's Matching Theorem [157], a perfect matching

is guaranteed. The following lemma summarizes this result:

Lemma 3.C.2 The bipartite graph generated by Algorithm 8 has a perfect matching.

3.C.3 Translating a perfect matching on the bipartite graph into a link
activation matrix

Beginning with n x n matrix 7r = 0, for each edge (st, d') in the perfect matching, increment

1rij by one. Once each edge has been considered, matrix 7r must have i-th row sum Pi for all

i and j-th column sum P for all j. This follows because the matching on the bipartite graph

is perfect, and thus source i is associated with P vertices having edges in the matching,
and destination j is associated with P vertices having edges in the matching. Thus r
corresponds to a valid logical topology under the port distribution (Pi, i E V), and given no

wavelength constraint. Finally, by the construction of Algorithm 8 it is clear that a nonzero

element in 7r implies that the corresponding entry of A is nonzero, and conversely. The

following lemma summarizes this result.

Lemma 3.C.3 For a bipartite graph obtained according to Algorithm 8, the graph may be

translated to a link activation matrix whose incidence matrix has i-th row sum equal to P

68



and j-th column sum equal to P (we refer to this as a perfect link activation). Furthermore,

this matrix has positive entries where A is nonzero.

3.C.4 Proof of Theorem 3.3.2

Given A E A*, Lemma 3.C.1 guarantees the existence of a matrix I C A* gp that is entry-

by-entry dominant over A. Applying Algorithm 8 to A, Lemmas 3.C.2 and 3.C.3 guarantee

the existence of a perfect link activation where each active link i --+ j implies nonzero

value Aij. Algorithm 9 (presented below) capitalizes on this to decompose A as a convex

combination of valid link activation matrices. This algorithm is the natural generalization

of the decomposition presented in [34].

Algorithm 9 Decompose A into a convex combination of link activations

1: Assign w <- A
2: k <- 0
3: while w $ 0 do
4: k <- k + 1
5: For matrix w, find a perfect link activation 7rk according to Algorithm 8 and Lemmas

3.C.2-3.C.3
6: Set ak = miniW /-irfy : r > 0,Vi, j E V}
7: Set w 4- (1/(1 - ak))(W - akl).
8: end while

Since the link activation found for an arrival rate matrix on the Pareto frontier of A*

is perfect, step k of the algorithm reduces the i-th row sum by akPi, and the j-th column

sum by akP. Thus, all row and column sums are reduced by a factor of 1 - ak at each

iteration. For this reason, the scale factor of 1 - ak is applied at each iteration to bring

the matrix back to the Pareto frontier of A*. Finally, since at each iteration, a is chosen

to reduce at least one matrix element to zero, with n elements reduced to zero at once in

the last step, the decomposition takes at most n 2 - n + 1 steps to complete. A may then

be expressed as
n2 -n+1 k-1

A = E 1ak 1 - aO) 7rk (3.8)
k=1 1=1

The fact that the weights in the above decomposition sum to unity is guaranteed by the

property that each link activation in the decomposition is perfect. Applying Algorithm 3,
we can translate the decomposition in (3.8) to a decomposition of A. The only modifications

to the algorithm are that initially we assign n* 4- n2 - n + 1, and instead of using weights

(ak) we use weights (0k), where 13k = ak Hkj(1 - al) for k =1, ... ,n 2 - n + 1.

At termination, we must have
n*

A =Zfkrk,

k=1

where E> k = 1, and 7rk a valid link activation for all k.
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3.D Proof of Corollary 3.3.5

The port constraints provide a lower bound on e* (A):

e*(A) > max mx 1 - ,) max (1 -. (3.9)

This follows because no node i can source or terminate more than Pi packets per time

slot, which means that any matrix in a decomposition of A has i-th row and column sum

bounded above by P. Let elower(A) denote the term on the right in (3.9). It remains to

demonstrate that e*(A) 6i~wer(A). We assert that the matrix A = (1/(1 - Ciower(A)))A
must belong to A*:

max tmax , maxj ,

whose k-th row sum satisfies the inequality

ZAk3  !5Akj Pk.

Since identical reasoning applies to any column sum, it must be true that A E A*. By

Theorem 3.3.2, we have that i E conv(IIN), with decomposition weights summing to one.

Consequently, A can be expressed as a weighted sum of link activation matrices, with the

weights summing to (1 - elower(A)). Thus, 6h(A) < Elower(A)- Since E*(A) esh(A), we

have that e*(A) e*i*,(A), as desired.

3.E Proof of Lemma 3.3.1

The formulation that was followed in the proof of

quently, we have that

Theorem 3.3.1 also follows here. Conse-

h(t) 5 1 jos
SES

SES

(Z*(t)) -s.)- E
SES'

(S,3 i

Ps(t) (Z*(t))

F6 (t)) max

(1 - e*(A)) a' (5*()) S.j - (I - F6 (t)) max (Z*(t)) T  S.)
SES SS=

Above, the vector a' = (1/(1 - e*(A)))a satisfies (3.5)-(3.7). It follows that h(t) < 0 when

F6 (t) e* (A). A similar proof follows for the bias-based version of algorithm SHMW.
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3.F Proof of Theorem 3.3.3

We begin by considering the bias-based version of algorithm SHMW. Let 7r((k) denote the

maximum weighted logical topology at time k. We will characterize the minimum time

needed for another logical topology ir : 7r( () to become the maximum weighted logical

topology and thus trigger a WDM reconfiguration. At time k, r(Wk) satisfies

* T Q () < -r T (k)Q( k ). (3.10)

After time k, logical topology 7r(Wk) will be effectively biased with b additional dummy

packets over ~r. Since the arrival process is Bernoulli, no more than a single packet may

arrive to any VOQ at each time slot. Suppose that a single packet arrives to each of

the VOQ's corresponding to logical topology ir at every slot, and *r does not have any

lightpaths in common with 7r(Wk). Further suppose that there are no arrivals to VOQ's

corresponding to 7r(Wk), and that at each slot at most one packet is removed from each of

the VOQ's corresponding to 7r(Wk). Then, in order to have a decision to reconfigure the

logical topology, the inter-reconfiguration interval xk must satisfy

*TQ((k W+ nXk > b + irT(k)Q((k) - n(xk - 6). (3.11)

Combining (3.10) and (3.11), we obtain

b 6
Xk > b + ~- (3.12)2n 2

Suppose b/n > 2 (6 /E*h(A)) - 6. Then, using (3.12), we have that Xk > 6 /e*h(A) for all

k, which means that irrespective of the backlog process, at least 6 /E*h (A) slots pass before

a reconfiguration decision. Thus, for r, > 0

F3(r(t + r-)) - F3(rt) < 6 , (3.13)

< re*h(A)r + 6. (3.14)

Dividing both sides of (3.14) by r, the right hand side of the inequality can be made

arbitrarily close to *h(A)K for sufficiently large integer r. This immediately implies that

F6 (t) < e*h(A), which is sufficient for stability.

The proof for the bias-based version of MHMW follows similarly, except that rather than

tracking the possible change in VOQ backlogs associated with each logical configuration,
we must track the change in maximum backpressure. Again, since the arrival process is

Bernoulli, no more than a single packet may arrive to any VOQ at each time slot. Suppose

that ire = 1, with commodity v c V maximizing backpressure across logical link e. Then

the differential backlog across e increases maximally at each slot when:

1. one exogenous commodity v packet arrives at node o-(e) in each slot;

2. one commodity v packet arrives internally at node -(e) in each slot;
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3. one commodity v packet is serviced away from node r(e) (and not back to node o-(e))

at each slot; and

4. there is no arrival of commodity v packet at node r(e) in each slot.

Further, suppose that 7re'(ak) = 1, with commodity V' E V maximizing backpressure across
logical link e'. Then the backpressure across e' decreases maximally when:

1. commodity v' uniquely maximizes backpressure across e', since maximum backpres-

sure across e' then only depends on service of commodity v' packets;

2. node V' 4 -r(e'), since backpressure decreases by two units at each service in this case;

3. node -(e') has no exogenous arrivals of commodity V' packets

4. node r(e') receives an exogenous arrival of one commodity V' packet

Thus, the weight associated with fr increases by at most 3n at each slot, and that associated

with 7r() decreases by at most 3n at each slot. Then, in order to have a decision to

reconfigure the logical topology, the inter-reconfiguration interval Xk must satisfy

irTZ*(4k) + 3 nXk b+ T(-r )Z*(k) - 3 n(xk - 3). (3.15)

Note that at time 'k, 7r() satisfies irTZ*((k) 5 7T( )Z*(k). Combining this fact with

(3.15), we obtain

k + (3-16)
6n 2

Thus, if we select b/n > 6(6/e* (A)) - 36, and follow the same steps as above for algorithm

SHMW, we can conclude that 6 (t) e* (A), which is sufficient for stability of the bias-based

version of algorithm MHMW.

3.G Proof of Theorem 3.4.1

The proof is by induction, using a stochastic coupling argument [147]. We begin with policy

Po = MHMW, and successively refine it to a policy employing single-hop routing, with no

worse average expected aggregate backlog. The recursion implies that a policy with no

multi-hopping produces smaller or equal average aggregate backlog. For this proof, at step

k - 1 of the induction, assume that arrivals under policies P_1 and Pk are coupled to the

same queues for all time. Quantities marked with a tilde symbol, such as Q, correspond to

policy Pk, while those without a tilde symbol correspond to policy P-,1 .
For convenience, we denote by ai (t) the number of exogenous arrivals to VOQij at time

t E Z+, and usj(t) as the cumulative service of packets (departed and internally arriving)

at VOQjj at time t c Z+. We collect these variables into vectors a(t), u(t), respectively.

Consider policy Pklj for k E Z+ and time slot k - 1. By the recursion, up to and

including time k - 1 policy P_1 does not multi-hop any packets. At time k, if Pkl does
not multi-hop any packets, then let Pk choose the same controls as Pk_1 for all subsequent
time slots. If Pk_1 does multi-hop one or more packets, let Pk choose the same controls
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as Pk_1 up to time k - 1. At time k, we must consider three cases. For all time after k,
let P attempt to mimic Pk_1 in its controls, only deviating from Pkl if there simply is

no packet in a queue under Pk where for the corresponding queue under Pk_1 a packet is

multi-hopped or departs the system.

Case 1. If Pk_1 multi-hops only a single packet, along link (a, b), then note that for any

link (a, b) there are only two possible logical topologies containing this link. These configura-

tions are {(a, b), (b, c), (c, a)} and {(a, b), (b, a)}. For either configuration, link (a, b) is being

used to multi-hop a packet from VOQac to VOQb,. Let Q(k-1) = (Qab, Qbc, Qca, Qac, Qc6, Qba)
be the queue backlogs at time k - 1. For the first configuration containing link (a, b), policy
Pk_1 results in the following queue occupancy at time k,

Q(k) = Q(k - 1) + a(k) + (0, -Ubc(k) + 1, -Uca(k), 1, 0, 0).

Since -ubc(k) + 1 > 0, it is sufficient to let Pk employ a logical configuration that allows
packets to depart from the VOQca and VOQac. This is clearly an allowable control, and
thus Pk results in the queue occupancy distribution

Q(k) = Q(k - 1) + a(k) + (0, 0, -Uca(n), -1,0, 0).

For the second possible configuration containing link (a, b), the queue occupancy distri-
butions at time k are

Q(k) - Q(k - 1) + a(k) + (0, 1, 0, -1, 0, -Uba(k)) ,

Q(k) = Q(k - 1) + a(k) + (0, 0, 0, -1, 0, -Uba(k)).

Here, Pk chooses the configuration that allows packets from the VOQac and VOQba to exit
the system.

For either case, it is clear that Pk has an improved or equal aggregate queue occupancy
at each time after k.

Case 2. If Pk_1 multi-hops two packets, there are three possible sets of links that are
used for multi-hopping: {(a, b), (b, c)}, {(a, b), (c, a)}, or {(a, b), (b, a)}. Note that each of
these sets of links forces the network to a particular configuration, because of the assumption
of a single port per node. We consider each of these cases in turn. If Pk_1 multi-hops packets
along links (a, b) and (b, c), then Pk_1 has enabled logical configuration {(a, b), (b, c), (c, a)}
for single-hop service. The queue occupancy distributions under the policies are then given
by

Q(k) Q(k - 1) + a(k) + (0, 1, -Uca(k) + 1, 1 0, -1) ,
Q(k) Q(k - 1) + a(k) + (0,0,0, -1, 0, -1).

Here, policy Pk chooses the switch configuration that allows packets from VOQa,c and

VOQb,a to exit the system.

If Pkl multi-hops packets along links (a, b) and (c, a), then Pk_1 has again chosen logical
configuration {(a, b), (b, c), (c, a)}. The queue occupancy distributions under the policies are
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then given by

Q(k) = Q(k - 1) + a(k) + (1, -ubc(k) + 1,0, -1, -1,0) ,

Q(k) = Q(k - 1) + a(k) + (0, 0, 0,-1, -1, 0).

Here, policy Pk chooses the logical configuration that allows packets from VOQc and VOQcb
to exit the system.

Finally, if Pk_1 multi-hops packets along links (a, b) and (b, a), then Pk_1 has chosen

logical configuration {(a, b), (b, a)}. The queue occupancy distributions under the policies

are then given by

Q(k) = Q(k - 1) + a(k) + (0, -1 + 1,0, -1 + 1, 0, 0),
Q(k) = Q(k - 1) + a(k) + (0, 0, 0, 0, 0, 0) .

Here, policy Pk does nothing because Pk_1 has effectively made no change to its occupancy

distribution.

It is clear that in all cases, Pk has an improved or equal aggregate queue occupancy at

each time after k - 1.

Case 3. If Pki multi-hops three packets then the logical configuration must be {(a, b), (b, c), (c, a)}

The queue occupancy distributions under the policies are then given by

Q (k) = Q(k - 1) + a(k) + (1, 1, 1, -1, -1, -1) ,

Q(k) = Q(k - 1) + a(k) + (0, 0, 0,-1, -1, -1).

Here, policy Pk chooses the switch configuration {(a, c), (c, b), (b, a)} to allow packets from

VOQac, VOQc,b, and VOQb,a to exit the system. Again, it is clear that Pk results in an

improved aggregate queue occupancy at each time after k - 1.

This completes the induction.

3.H Proof of Theorem 3.4.2

For this proof, we invoke the multi-hop parameters described in Section 3.2. The proof

follows for any 6 > 0. Denote by IF C H(V) the set of logical topology matrices corre-

sponding to logical rings of size n. Recall from Definition 2.2.1 that an arrival rate matrix

is stabilizable if there exists a subprobability measure (#s, S E S) such that

E s < 1, (3.17)
sEs

E Osdi (S) > AM3, i, j E V. (3.18)
SES

Since there are (n - 1)! different logical rings having n nodes, it is clear that under any

random ring algorithm, the long-term amount of time allocated to each ring is 1/(n - 1)!.
Thus, the subprobability measures (0s, S c S) achievable under a random ring algorithm
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are restricted to the form

where ES ksix = 1 for all -r E 1r, and OSI, > 0 only if S is an allowed activation matrix

under logical ring 7r.

For i, j E V, we may now express the left hand side of (3.18) as

Es n ) dij (S) = (ni) S S si1rdij (S). (3.19)

Now (#sl,, S c S) has no restrictions other than to be a subprobability measure restricted

to logical ring I. Consider the set of arrival rate matrices that are dominated by the inner

summation in (3.19), as we range over the compact set of feasible subprobability measures

(#si,, S E S). This set of arrival rate matrices must be equal to the stability region
corresponding to electronic routing over a fixed logical ring. Thus, the set of stabilizable

arrival rate matrices for the class of random ring algorithms has outer bound equal to the

average over the (n - 1)! fixed-ring stability regions. Since each fixed-ring stability region

clearly has smaller volume than the doubly substochastic region, the result follows.
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Chapter 4

Achieving 100% throughput in
reconfigurable optical networks:
The single-wavelength case

In this chapter, we continue our study of the optical networking architecture introduced in

Chapter 3. Chapter 3 focused on developing scheduling algorithms for addressing delays

associated with reconfiguration in networks with no wavelength constraints. In this Chapter,
we quantify the impact of wavelength constraints on the network throughput properties.

We determine the performance penalty associated with wavelength constraints, and we

characterize the performance gap between architectures that employ single-hop versus multi-

hop routing at the electronic layer.

4.1 Overview and summary of contributions

A major contribution of this chapter is a characterization of the capacity region for single-

wavelength optical networks through a linkage to the Routing and Wavelength Assignment

(RWA) problem for WDM networks. This characterization allows us to derive fundamental

geometric properties of the capacity region for optical networks of arbitrary topologies. In

this chapter, we primarily focus on single-wavelength optical networks. The single wave-

length topology is commonly used in traditional metropolitan and access networks operating

on one frequency (e.g. 1.3nm systems). Moreover, our single-wavelength treatment simplifies

the presentation considerably and can be extended, by appropriate scaling of the capacity

region, to multi-wavelength optical networks.

Our work is conceptually related to Birkhoff-von Neumann (BvN) decompositions, par-

ticularly as applied to switching theory [34,152]. The set of switch configurations (or service

configurations) available to an n x n input-queued switch is typically represented by the
set of permutation matrices of size n. The result of [150] implies that the convex hull of

these service configurations equals the capacity region of the input-queued switch. BvN

decompositions draw on these concepts to express any stabilizable rate matrix as a convex

combination of permutation matrices (service configurations) [34]. An alternative character-
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ization employs a result of Birkhoff [22] to state that the convex hull of the service matrices
(permutation matrices) equals the doubly substochastic region [97]. Like BvN decomposi-

tions for input-queued switches, our work seeks to express any stabilizable rate matrix as
a convex combination of service configurations. Unlike input-queued switches, our optical

networking architecture has physical constraints, such as port and wavelength limitations,
that affect the set of service configurations. For example, the set of service configurations

may not include the full set of permutation matrices, and may include non-permutation

matrices. Thus, while the work of [150] allows us to express the capacity region as the
convex hull of available service configurations, this description can have limited value in
providing an understanding of the geometric properties of the capacity region. This is in

contrast to the case of the input-queued switch, where a result of Birkhoff [22] has been
applied to demonstrate that the convex hull of the service matrices (permutation matrices)
equals the doubly substochastic region [97]. Recently, the study of [92] has developed or-
der bounds, based on uniform multi-commodity flow, for maximum achievable throughput

performance in general network settings. In this chapter, we develop a theory of RWA

decompositions that enables us to exactly elicit geometric properties of the capacity region
of single-wavelength optical networks having general topologies.

4.1.1 Simple motivating example

Consider a unidirectional ring network having 3 nodes, as depicted in Figure 4-1(a). Suppose

this network is restricted to a single wavelength per optical fiber, with lightpaths routed only

in the clockwise direction. These constraints restrict the network to four maximal logical

topologies'. These topologies are illustrated in Figure 4-1.

Consider the traffic matrix A, given by

. 0 0-
A=[0 - 0 (4.1)

0 0

where the (i, j)-th entry of A is equal to the average arrival rate of packets to node i destined

for node j. We wish to determine the maximum value of 0 that the network can support,
given that only one packet can be serviced along a logical link per time slot. If we restrict

the network to only use single-hop electronic-layer routes, the maximum value of 0 is 1/3.

This follows because logical links 1 -- 3, 2 -> 1, and 3 -- 2 each traverse two fibers, which

due to the single-wavelength constraint means that only one of these links can be served

at a time. Sharing time equally between the three links affords a maximum of 1/3 of the

proportion of time to service each link. Thus, 0 = 1/3 is the maximum value such that the

traffic rate matrix A can be supported.

Suppose instead that we allow the network to make use of multi-hop electronic-layer

routes. In this case, a simple policy that maintains logical topology -7rl (Figure 4-1(b)) for

all time and multi-hops packets along the electronic layer leads to a link load of 29 on each

'Every valid logical topology is either equal to, or has some subset of logical links from, one of the maximal
topologies.
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(iy 3

(a) Unidirectional ring physical topology

3

(b ir : 1 -+2, 2 - 3, 3 1

2

0 

3

(d) 7r : 2 - 3, 3 - 2

(c) r 2: 1 -2,2- 1

(e) 7r
4: 3 -> 1,1 -> 3

Figure 4-1: There are four maximal logical topology configurations for the unidirectional
three-node ring having a single wavelength per optical fiber. The logical configurations are
depicted as lightpath routings (straight-edge links with corners) with corresponding logical
topology graph overlaid (curved links).

logical link. Since no more than 1 unit of traffic per time slot can be supported on each

wavelength, this policy can support any 9 < 1/2. This is a clear improvement over the

achievable traffic rate matrix supported under single-hop routing. The value 9 = 1/2 is also

the maximum value achievable, which is easily seen by noting that each physical link has

20 units of traffic demand that it must service.

For comparison, consider the wavelength-unconstrained case [26,27,128], which in the

case of the 3-node unidirectional ring topology implies that there exist at least three wave-

lengths per optical fiber. The maximum value of 0 that is supported in this case is 9 = 1,
which is achievable by maintaining for all time the logical configuration 1 -+ 3, 2 -+ 1, 3 -+ 2.

This example highlights three important points. First, the wavelength constraint has

been shown to reduce the maximum throughput achievable under single-hop and multi-hop

routing. This is an example of the intuitively obvious fact that wavelength constraints

often lead to throughput penalties. Second, there is a throughput performance gap between

electronic layers employing multi-hop versus exclusively single-hop routing. Again, this is

intuitively obvious in light of the optical-layer constraints, but this is in contrast to the

case of unconstrained networks, where single-hop and multi-hop algorithms are identical in
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terms of throughput performance [26]. Finally, note that both the single-hop and multi-
hop cases have made use of service configurations that cannot be equated to permutation
matrices, where each input port is always connected to a single output port, each output
port is always connected to a single input port, and the connections are exclusively used
for single-hop service of packets. This points to the fact that a direct application of BvN
decompositions does not apply in constrained network scenarios. These observations suggest
three important goals of this chapter:

1. to develop a theory of generalized decompositions analogous to BvN decompositions
for port and wavelength constrained networks;

2. to explore the throughput penalty of constrained versus unconstrained optical net-
works; and

3. to determine the throughput gap between single-hop and multi-hop electronic-layer

routing algorithms.

4.2 RWA decompositions

In this section, we demonstrate that in any optical network having a single wavelength

per physical fiber link, the question of stability for a particular arrival rate matrix can
be directly tied to the RWA problem on the same physical topology graph. Note that
our work considers capacity properties of single-wavelength optical networks. Yet, we use
properties of the RWA for multi-wavelength optical networks to characterize the capacity
region of single-wavelength optical networks. We directly relate the RWA problem with
no wavelength conversion to the set of achievable rates using only single-hop electronic
routing, and the RWA problem with wavelength conversion to the set of achievable rates
using multi-hop electronic layer routes.

4.2.1 The RWA problem

The objective of the RWA problem is to minimize the number of wavelengths needed to

set up a certain set of lightpaths for a given physical topology. We consider two versions
of the RWA problem: RWA with no wavelength conversion capability and RWA with full
wavelength conversion capability.

Let T = (Tij) be a non-negative n x n integer lightpath demand matrix, where Tj is the
number of lightpaths, originating at node i and terminating at node j, that must be assigned.

In the case of no wavelength conversion capability, the RWA is subject to the wavelength
continuity constraint, which requires that no lightpath makes use of more than a single
color from its source to its destination. In this case, let W"c(T) be the minimum number
of wavelengths required to service the demands of matrix T with no wavelength conversion
(see Appendix 4.A for details). As an example, consider the 3-node unidirectional ring
physical topology having a single wavelength per optical fiber, and the lightpath demand
matrix T given in Figure 4-2(a). A valid RWA with no wavelength conversion is provided
in Figure 4-2(b), It is easy to see for this network that Wc(T) = 4.
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-. 0 2 2 2
T= 1 0

1 -1 3 1 3

(a) Demand matrix (b) Without (c) With

Figure 4-2: RWAs with and without wavelength conversion for traffic T. The physical topol-

ogy is a unidirectional ring (clockwise oriented). A dashed line indicates an idle wavelength
on the corresponding fiber links.

A network node having full wavelength conversion capability can transform any pass-

through lightpath, in the optical domain, from its incident wavelength to any other wave-

length. In this case, we define Wc(T) to be the minimum number of wavelengths required

to service the demands of T with wavelength conversion (see Appendix 4.A for details).

Since using a single color per lightpath is accommodated by the RWA with wavelength

conversion, it is clear for any physical topology that WC(T) WnC(T) for all T. For the

trivial case of T = 0, we define (for technical reasons) that WC(0) = WC(0) = 1. For the

traffic demand T of Figure 4-2(a), Figure 4-2(c) depicts the RWA employing wavelength

conversion. In this case, Wc(T) < Wnc(T) (the inequality is strict).

4.2.2 Examples of RWA decompositions

In the RWA problem, multiple single-wavelength logical configurations are multiplexed through

the use of frequency division (WDM). In our reconfigurable network setting, restricted to a

single wavelength per optical fiber, multiple single-wavelength logical configurations are mul-

tiplexed through the use of time division (by enabling logical reconfiguration and adjustable

electronic-layer routing over time). Through careful interchange of time and frequency, we

can conceptually link the RWA problem to the stability issue in our reconfigurable network.

Consequently, we will demonstrate how to transform a RWA for a particular wavelength

traffic demand into a sequence of arrival rate matrices belonging to the network capacity

region, when the network N has a single wavelength per optical fiber. We next demonstrate

this relationship with examples for both the single-hop and multi-hop scenarios.

Single-hop RWA decompositions

Consider the RWA with no wavelength conversion for traffic T in Figure 4-2(a). The RWA
of Figure 4-2(b) multiplexes the traffic demand T over 4 wavelengths. This RWA can be
expressed as a decomposition of T into a superposition of single-wavelength logical topology
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configurations (expressed in matrix form) as follows,

-0 1 -0 1 -0 0 -0 0
T= 0 - 0 + 0 - 0 + 0 - 0 + 1 - 0 , (4.2)

-1 0 -_ 0 0 .- -0 1 .- "0 0 ..

where the matrices from left to right represent the rings depicted in Figure 4-2(a) in order

of increasing radius. Note that each of the matrices in the decomposition of (4.2) is a valid

single-wavelength logical configuration.

Assuming there is a constant number W > 4 wavelengths available in each optical fiber,
then we can say that each single-wavelength logical configuration in the RWA utilizes a

fraction of 11W of the total available multiplexing resources in the network. The utilization

of the multiplexing resources is then given by 4/W < 1.

We also consider time as a multiplexing resource; however, since we consider the evo-

lution of our system over an infinite horizon, the time resource is normalized to unity.

Consequently, when a particular single-wavelength logical configuration utilizes a fraction

of the time resource, this is a measure of the long-term fraction of time spent servicing that

logical configuration.

Consider equation (4.2), the valid RWA for traffic matrix T on the physical topology

Gp, and re-interpret each wavelength configuration as utilizing 11W of the available time

resources in a single-wavelength network N. We have established that each wavelength

configuration from the RWA is a valid single-wavelength logical topology and that the

total utilization of multiplexing resources can be no more than 1. Consequently, we have

validly multiplexed time in the single-wavelength network N. The resulting rate matrix

corresponding to time sharing of service configurations is given for W > 4 by

-0 2

AW =-WT =- 1 - 0.
WW

Using (4.2), we have an explicit decomposition of Aw into a convex combination of valid

single-hop service matrices, subject to a single-wavelength per optical fiber,

-0 1 1 0 1 1 0 0 1 0 0 W - 0 0

Aw =- 0 - 0 +-W 0 - 0 +-- 0 - 0 +-W 1 - 0 + -- 0 - 0.

-1 0 - 0 0 - 0 1 - 0 0 - 0 0 -_
(4.3)

From the decomposition of (4.3), we can immediately conclude that Aw E A*h for W > 4

(this follows directly from the definition of A*h). In words, the arrival rate matrix Aw

belongs to the single-hop capacity region for any W > 4. We call this decomposition a

single-hop RWA decomposition of Aw. In summary, by interchanging frequency and time,
we have used a RWA for a particular wavelength traffic demand to produce a sequence of

arrival rate matrices belonging to the single-hop capacity region of N, when N has a single

wavelength per optical fiber.
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Multi-hop RWA decompositions

For the RWA with wavelength conversion, each wavelength routing can be considered a valid

single-wavelength logical configuration. The difference from the RWA with no wavelength

conversion is that lightpaths on a particular wavelength can have endpoints on that wave-

length, corresponding to the use of a wavelength converter. We can re-interpret the RWA

problem in our reconfigurable setting by noting that while the RWA problem uses wavelength

converters to take advantage of available resources at different frequencies (equivalently,
wavelengths), our reconfigurable network uses electronic-layer queues to take advantage of

available resources at different times. Thus, wherever RWA invokes a wavelength converter,
the reconfigurable network can be understood to terminate a lightpath at that node and

electronically enqueue the carried data for multi-hop transmission to its destination at a

different time.

We demonstrate multi-hop RWA decompositions in the following example. Consider the

RWA problem for the wavelength traffic demand T in Figure 4-2(a). We have established

that wavelength conversion can be used to service T with only 3 wavelengths, as depicted

in Figure 4-2(c). This RWA can be expressed as the following decomposition, with the

matrices successively representing the rings depicted in Figure 4-2(b) in order of increasing

radius,
-0 1 -- 1 1 -1 0

T = 0 - 0 + 0 - 0 + 1 - 0 .(4.4)

-1 0 -- 0 1 - 0 0 .-

The above decomposition can be interpreted as follows. The first wavelength fully services

demands {1 -+ 3,3 -+ 1}. The second wavelength services demand 1 -+ 3 and services

demand 3 -+ 2 only up to node 1. Consequently, the '-1' in the second matrix of (4.4)

represents the 3 -+ 2 traffic that is enqueued for multi-hop transmission at node 1. The

third wavelength services the remainder of demand 3 --+ 2 from node 1 to node 2 as well as

fully servicing demand 2 -+ 1.

Thus, for W > 3, the arrival rate matrix Aw = (1/W)T can be expressed using (4.4)

as a convex combination of valid single-wavelength multi-hop service matrices,

1 0 1 1 -1 1 1 1 0 W - 0 0

AW= 0 - 0 +- 0 - 0 +_ 1 - 0 + 0 - 0.
W 1 0 - -0 1 - -0 0 - -0 0-

We conclude that AW E A*h for W > 3.

4.3 Capacity regions from RWA decompositions in single-
wavelength networks

The examples of the previous section have shown how the RWA with and without wavelength
conversion for a single traffic demand T can be translated to a sequence of arrival rate
matrices belonging to the single-hop and multi-hop capacity regions, respectively. In this
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section, we will demonstrate that the single-hop and multi-hop capacity regions for single-
wavelength optical networks can be fully described by the RWA functions WC and W',
respectively.

4.3.1 Single-hop capacity region

We begin by considering the single-hop capacity region. In networks with no wavelength
constraints, this region is characterized in Chapter 3 and [26,27]. In [154,155], this region
is studied as the capacity region of general optical flow switched networks. Our charac-
terization, which is exclusive to single-wavelength networks, is useful in our subsequent
development of geometric properties of the capacity region. In particular, it allows us to
express the entire capacity region as a collection of limit points based on the solution to the
RWA problem.

The example of Section 4.2.2 provided a sequence of arrival rates belonging to A*h for
a single integer traffic demand matrix T in the RWA problem with no conversion. In this
section we consider all such arrival rates, gathered over all possible integer traffics T in the
RWA problem. Let Rn be the set of all such arrival rates,

lznc _ T: T E Zxn, W E Z+,W Wnc(T)}. (4.5)

Recall that we are restricting attention to joint optical reconfiguration and electronic

layer routing algorithms where the optical layer has only a single wavelength available in each
optical fiber. Consequently, A*h is the single-hop capacity region of the single-wavelength

network N.

For the set R, let cl(R) represent the closure2 of 1Z. We next establish that every matrix

in cl(Rnc) belongs to A*h, and conversely, that every matrix in A*h belongs to cl(lnc).

Theorem 4.3.1 A*h = cl(Rnc)

Proof: See Appendix 4.B. U

4.3.2 Multi-hop capacity region

The multi-hop capacity region is characterized in a similar manner. In [26,27], this region
is characterized for networks having no wavelength constraints, where it is shown that the

single-hop and multi-hop capacity regions are equal. In [154,155], a queueing model is en-
listed to study the throughput properties of optical packet switched networks (OPS). The
OPS capacity region of [154,155] is related to the multi-hop capacity region of our recon-
figurable optical network, with differences arising depending on the set of available optical
layer network configurations IIN. Our characterization in the single-wavelength setting is
tailored to our subsequent analysis of geometric properties of the multi-hop capacity region.

2An accumulation point of R is such that there exist other points of 1Z arbitrarily close by. The closure
of R is then given by the union of 7Z and all its accumulation points [93].
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Here, we gather all possible arrival rates generated by multi-hop RWA decompositions

over all possible traffic demand matrices T into the set R,

1z = A = 1T: T c Zxf W E Z+, W > WC(T)} (4.6)

Through similar steps as in the single-hop case, we can establish the following theorem.

Theorem 4.3.2 AMh = cl(RC)

Proof: The proof is similar to the proof of Theorem 4.3.1, and is provided, with

important details specific to the multi-hop scenario, in Appendix 4.C. U

4.4 Geometric properties of the capacity region

While the capacity properties of our dynamically reconfigurable electronic-over-optical net-
work are well characterized in the multi-hop and single-hop cases through equations (2.7)
and (2.9), respectively, these expressions do not easily yield simple geometric properties of

the capacity regions. This is in contrast to the characterization of the input-queued switch

capacity region of equation (3.1).
The remainder of this work is dedicated to extracting geometric properties of the single-

hop and multi-hop capacity regions in the wavelength-constrained WDM network setting.

In what follows, we will occasionally refer to the wavelength-unconstrained network
setting. From our assumption that node v E V has P, transceivers available, when the

network has no wavelength constraint, the capacity region (single-hop and multi-hop) equals
[26,27]

Aport {A : Ej Aij 5 Pi Vi, Ei Aij Pj}Vj (4.7)

4.4.1 Maximum uniform arrival rate matrices

In this section, we make use of RWA decompositions to establish geometric properties of
the single-hop and multi-hop capacity regions. Define J as the n x n matrix having (i, j)
entry equal to 1 if i 0 j:

We then seek to determine the maximum values 9 sh 0 mh such that 9shJ belongs to the
single-hop capacity region, and 9mhJ belongs to the multi-hop capacity region.

Theorem 4.4.1 For network N having a single wavelength per optical fiber, let OBh =

sup{9: OJ E A*}. Then,

6 sh - lim sup WnckJ) (4.8)
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Table 4.1: Maximum values 9 sh, 9 mh for various physical topologies having a single wave-
length per optical fiber. The corresponding wavelength-unconstrained values are listed
under 0', along with the resulting throughput performance gap.

nc (1j 1 s = 1m O 6xmh
Phy. topology Gp P, Vi WclJ) = W J) sh mh Imax Performance gap m

Tree T 1 1 max IAe,11 Ae,21 1/(max jAe, iIlre,21) 1/(n - 1) n'
e_ ET eET _ _Xe E |Ne,1|INe,21

Unidir. ring 1 ln(n - 1)/2 2/(n2 - n) 1/(n - 1) 2/n = 0(1/n)

Bidir. ring

n odd 2 l(n 2 - 1)/8 8/(n2 
- 1) 2/(n - 1) 4/(n + 1) = 0(1/n)

n even 2 [ln 2/81 8/n 2  2/(n - 1) 4(n - 1)/n 2 = 0(1/n)

2D Torus

R rows, C cols 4 [IRC(R + C)/161 16/(RC(R + C)) 4/(n - 1) 4(n-1) = 0(1/(R + C))

(R, C div. by 4)

Bin. hypercube log 2 n In/2 2/n (log 2 n)/(n - 1) 2(1 = 0(1/o10 2 n)

For the multi-hop scenario, let Omh sup{9 : J E A*h Then,

9 mh = lim SUP k (4.9)
k->+oo Wc (kJ )

Proof: See Appendix 4.D. U

Equations (4.8) and (4.9) essentially capture the maximum ratio of the uniform traffic

load 1 to the number of wavelengths needed to support that traffic demand. These values

are a measure of the most efficient way that the uniform traffic demand I can be packed

over network N, with or without wavelength conversion.

Theorem 4.4.1 allows us to draw on the literature regarding RWA algorithms for various

physical topologies to obtain geometric properties of the single-hop and multi-hop capacity

regions. As an example, consider the unidirectional ring having a single transceiver per node

(P = 1). In this case, it can be shown that the minimum numbers of wavelengths required

to service traffic lJ with or without wavelength conversion are equal: Wnc(lJ) = Wc(lJ) =

ln(n - 1)/2. Applying (4.8) and (4.9) we obtain a maximum uniform arrival rate of 6 sh =

9 mh - 2/(n 2 -n). Thus, there is no single-hop versus multi-hop performance gap for uniform

arrival rates under the unidirectional ring. However, noting in the wavelength-unconstrained

case (see (4.7)), the maximum uniform arrival rate is given by 6 ' = 1/(n - 1), we find a

constrained versus unconstrained performance gap of 2/n = 0(1/n).3

We draw the RWA values W"c(lJ), WC(lJ) from [41,131-133], and summarize the single-

hop and multi-hop maximum uniform arrival rates for several physical topologies in Table

4.1. The table lists the maximum uniform arrival rates achievable in the single-wavelength

setting, as well as the corresponding maximum uniform arrival rate achievable in the

wavelength-unconstrained case, 6 ', and the implied unconstrained versus constrained

3 We employ 0-notation to represent an asymptotically tight bound [45] on the performance gap.
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performance gap. For the tree topology T, denote Ke,1, Ne,2 as the node sets in the cut

corresponding to edge e E T.

A remarkable property evident from Table 4.1 is that for all physical topologies con-

sidered, there is no single-hop versus multi-hop performance gap with respect to uniform

arrival rates. This follows for all physical topologies considered in Table 4.1, because under

uniform traffic demand, RWA with and without wavelength conversion can achieve the same

minimum number of wavelengths. It is conjectured in [131] that this result holds generally

over all physical topologies.

Note that the geometric properties listed in the table are exact. For physical topologies

besides rings, trees, tori, hypercubes, and others where the solution to the RWA problem is

known, the exact characterizations of (4.8) and (4.9) can be approximated through evalu-

ation of the RWA functions over multiple all-to-all integer traffic demands. Techniques for

solving the integer RWA problem are well-studied in the literature. In [43], various RWA

methodologies are classified, based on their optimization criteria, and their approach to

solving the problem. Additional comments regarding the solution to the RWA problem can

be found in Appendix 4.A. The computability of Osh and 9 mh is explored further in Chapter

5.

4.4.2 Maximum scaled doubly substochastic set

In this section, we take advantage of RWA decompositions to derive bounds on the max-

imum scaling that can be applied to the set of doubly substochastic matrices, such that

every matrix in the scaled set is contained within the capacity region. For a mathematical

description of this property we require the following definitions.

Definition 4.4.1 For matrix A, let the maximum row/column sum of A be given by

I|Ajlmax:
IlAilmax = max fmaxi E Aij, max Ei Ai3 }.

Definition 4.4.2 Let the set D, denote the doubly substochastic region, scaled by factor s,

V8 = {A e RflX" : IlAlimax < s}.

We seek the maximum values ash , amh such that the sets Dsh, Damh are respectively subsets

of the single-hop and multi-hop capacity regions. We will demonstrate that there are cases
in which the multi-hop capacity region provides improved performance over the single-

hop capacity region, in terms of this geometric property. Consequently, we can conclude
that there are indeed cases in which multi-hop routing can provide a strict throughput

performance improvement over algorithms that exclusively employ single-hop routes. This

is in contrast to the case of a crossbar switch, where single-hop algorithms can achieve the
capacity region.

Definition 4.4.3 The integer matrix T = (Tij) E Z~nx is called k-allowable if it satisfies

|IT||max < k. Let lCk be the set of all k-allowable matrices.
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Let WC(k) be the minimum number of wavelengths required to service any k-allowable
traffic matrix in the RWA with no conversion: WC(k) = maxTErk Wnc(T). Similarly, let
the corresponding value with wavelength conversion be Wc(k). The RWA problem for k-
allowable matrices was introduced in [60] and subsequently studied in [41,131-133]. These
papers seek to understand the values of the quantities W (k), W (k) for various physical
topologies. The bidirectional ring with no wavelength conversion is considered in [60,133],
tree topologies with no wavelength conversion were considered in [60, 132], and ring and
torus topologies with wavelength conversion were considered in [41]. Additional results for
k-allowable traffics can be found in [131].

The following theorem establishes the quantity ash as the maximum scale factor on
the substochastic region, such that the scaled region is a subset of the single-hop capacity
region. The analogous result for the multi-hop case is also provided.

Theorem 4.4.2 Let ash = sup{a : Da g As . Then,

ash = lim sup k (4.10)
ka loo W (k).

Similarly, let amh = supla : Da 9 A*h}. Then,

amh = lim sup k (4.11)
k-40 Wc(k)

Proof: See Appendix 4.E.

Equations (4.10) and (4.11) provide the limiting ratios of k to the worst-case number of

wavelengths required to support any k-allowable traffic, in their respective RWA problems.
This is a measure of the most efficient way that the worst-case k-allowable traffic can be
packed over network N, in the limit of large k.

Applying Theorem 4.4.2, we can use results from the RWA literature [40,41,108,131-133]
to characterize the values ash, amh for various physical topology configurations. Consider

for example the bidirectional ring having an even number n > 8 nodes. For the RWA with

no wavelength conversion, the worst-case k-allowable traffic requires [kn/31 wavelengths,
resulting in a maximum scaling of ash = 3/n. The RWA with wavelength conversion requires

at most Fkn/41 wavelengths for any k-allowable traffic, yielding amh = 4/n. Consequently,
we have a single-hop versus multi-hop performance gap of 3/4, irrespective of the number of

nodes in the network. Designating the maximum scale value achievable in the wavelength-

unconstrained case by am, we note that the bidirectional ring has am' = 2, since the
architecture employs two transceivers per node (one for each incident fiber). This yields a
constrained versus unconstrained performance gap in the unidirectional ring of 2/n. Our
results for various physical topologies are summarized in Table 4.2. Note that the value
of WC(k) for a bidirectional ring when n is odd remains an open problem. Consequently,
Table 4.2 provides the tightest known interval in which this value resides [40], and the
interval in which amh resides. The lower limit of this interval is derived based on the next

theorem (see Theorem 4.4.3 and the subsequent discussion). Also note that for the tree
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Table 4.2: Maximum values ash Imh for various physical topologies having a single wave-
length per optical fiber. Also listed for each topology is the single-hop versus multi-hop
performance gap, as well as the constrained versus unconstrained performance gap.

Phy. topology Gp [ W"C(k) [_ash WC(k) 7 amh J sh /amh amh /max

Star k 1 k 1 1 1

Tree T kcT 1/CT kcT 1/CT 1 1/CT

Unidir. ring kn 1/n k(n - 1) 1/(n - 1) 1 - 1/n 1/(n - 1)

Bidir. ring (n > 7)

n odd [kn/31 3/n [k("i-) 5 Wc(k) <; [kn] 4- < a m < - < 3

n even rkn/31 3/n [kn/4] 4/n 3/4 2/n

network, throughput performance depends on the tree topology employed, and particularly

on the worst-case cut that maximizes the number of nodes on the smaller side of the cut.

We call this number Cr. Recalling our definition of Ne,i,Ae,42 as the node sets in the cut

corresponding to edge e, we have CT A maxeET min{INe,1I, 17Ie,2 I}.
Theorem 4.4.2 provides an exact characterization of the maximum scaled doubly sub-

stochastic region fully contained within A* . If an order bound is sufficient, then we can

use [92, Lem. 1] to provide the following connection between the geometric properties stud-

ied in this section.

Theorem 4.4.3 nomh/2 amh < (n - mh

Proof: Lemma 1 of [92] can be understood in our reconfigurable WDM network setting

as follows: if OJ E A*h, then Da C A*h when a < nO/2. The lower bound follows. The

upper bound follows since (amh/(n- 1))J E Damh _ Am, which implies 9 mh > amh

Theorem 4.4.3 allows us to obtain a refined bound on amh for the bidirectional ring

when n is odd. For this physical topology, Theorem 4.4.3 provides that amh > 4n/(n2 _ 1).

Based only on the fact (from Table 4.2) that [k(n - 1)/4] 5 WC(k) 5 [kn/4], we find that

4/n < amh < 4/(n - 1). However, since 4n/(n2 - 1) > 4/n for n > 2, we can obtain the

refined bound, 4n/(n2 - 1) < amh < 4/(n - 1).

A similar statement to Theorem 4.4.3 cannot be made for the quantity ash, because the

argument of [92, Lem. 1] is inherently a multi-hop result.

4.5 Conclusions

In this chapter, we have studied the optimal throughput performance properties of recon-

figurable WDM-based packet networks. We considered networks having arbitrary physical
topologies, and general node architectures.

In general, the capacity region of joint arrival rates that can be supported in a partic-
ular network is described as a convex combination of available service configurations (joint

routing and WDM configurations) in that network. However, this typical characterization
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provides little insight into the physical attributes of the capacity region, particularly of
important performance metrics.

We thus undertook a study of geometric properties of the capacity region in networks
having general topologies. The work of this chapter focused on networks having a single-

wavelength per optical fiber. We developed a theory of RWA decompositions that establishes

the entire capacity region under any physical topology in terms of the RWA properties of the

same physical topology graph. The RWA problem with no conversion was tied to the single-
hop capacity region of the reconfigurable network, while the RWA problem with conversion

was tied to the multi-hop capacity region.

This characterization enabled us to exactly determine certain geometric properties of the

capacity region under any physical topology, restricted to a single-wavelength per optical

fiber: the maximum all-to-all arrival rate and maximum doubly substochastic region that

can be supported by the network. We presented closed-form solutions for certain network

topologies such as rings, trees, and tori. For any other physical topology, the character-

ization of these geometric properties in terms of the RWA problem can be approximated

through numerical evaluation of the RWA problem.

These geometric properties provide a measure of the optimal achievable throughput un-

der any physical topology. Consequently, a network designer could use such a metric in com-

paring and evaluating network topologies and/or varying node functionality. For example,
we have exactly demonstrated the throughput performance gap between wavelength-limited

and wavelength-unconstrained networks having particular physical topologies. Additionally,
we have exactly characterized the throughput performance gap between networks employ-

ing exclusively single-hop routing and those employing multi-hop routing. In the case of

the bidirectional ring, we have observed a performance improvement of 33% of multi-hop

over single-hop enabled networks.

The contributions of this chapter are primarily theoretical in nature, but we have laid

out the essential considerations for network designers seeking to understand the performance

limits of future configurable optical networks. Naturally, the single-wavelength constraint

we adopted is not realistic in many practical settings. However, the development of multi-

wavelength capacity properties is quite similar to the single-wavelength case. We consider

multi-wavelength networks in the next chapter.
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Appendix

4.A The RWA optimization

The RWA problem with full wavelength conversion is an integer multicommodity flow prob-

lem, which can be formulated as follows [106]. Let T = (Tij) E Z'X+l represent the set of

lightpath demands, and let fg be a flow variable that represents the number of lightpaths

from node i to node j that cross the fiber link e. For physical topology graph Gp, let E' be

the set of edges originating at node v: E= {e E Ep (e) v}. Similarly, let Ev denote

the set of edges terminating at node v: Er {e Ep :r(e) v}.

min W (4.12)

s.t. W > Ei v fej, Ve Ep (4.13)

Ti v = i

f- fe = Tj V = Vv,i, j E V (4.14)
eEE eEE0 else

fe c Z+, Vi, j E V, e Ep (4.15)

The minimum value W reached by the optimization is WC(T).

The RWA problem with no wavelength conversion can be formulated through the ad-

dition of the following constraints in the optimization (4.12)-(4.15), which impose the

wavelength-continuity constraint on the RWA problem.

f= Wc=Z VijE V,e Ep

(>0 V i

c 7 - c!j <0 v=j Vv,i,jCV
eEEa eEETeVEV 0 else

c E {0, 1} Vi,j E V,e c Ep,w E {1,...,W}

The minimum value W reached by this optimization is W'(T).

Commonly, the RWA problem is solved in two stages, first by solving the lightpath

routing problem, followed by obtaining a wavelength assignment for the routing determined

in the first step [43]. The routing problem can be solved sequentially using shortest-path

algorithms, or through standard integer programming solution methods such as randomized

rounding. The wavelength assignment algorithm is typically studied as a graph coloring

algorithm, with common approaches to the problem including sequential assignment, genetic

algorithms, simulated annealing, and randomized rounding. See [43] and the references

contained therein for details.
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4.B Proof of Theorem 4.3.1

Here we divide the proof as follows. First we demonstrate that cl(Rnc) A*, and second

we prove A*h C cl(Znc).

Proof that cl(Rnc) 9 A*: Suppose A E RC. Then from (4.5) there must exist T, W

such that A = (1/W)T, with T E Z' and W > W"c(T). We establish a RWA decom-

position for A as a subconvex combination of W"C(T) matrices as follows. For each index

i = 1,..., Wnc (T), we construct the matrix *7r, corresponding to a valid single-wavelength

logical topology configuration: let ir2 = 1 if logical link k -> 1 is enabled on the i-th color of

the RWA of T employing W"C(T) wavelengths, and ir = 0 otherwise. Clearly fr is a valid

logical topology subject to the single-wavelength constraint, since the same configuration

had a valid routing on the i-th color under the RWA of T. Let the elements of 1 N be

indexed by 7r.,...,7rI'NI, where fIN| is the cardinality of HN. Thus, it must be true that

1 W"c(T)

j=1

INI W"r(T)

W'
i=1

INI

= a irt , (4.16)

where 1. is the indicator function and for all i,

Wnc(T)

at E lw ii /W.

By definition we have that ai > 0, Vi, and since W > Wnc(T), & < 1. We conclude

that A E A*h-

Next, suppose A E cl(Rlnc) \ lnc. By the definition of the closure of a set, there must

exist a sequence {Ak}, with Ak E 1Znc for all k, such that Ak -> A as k -+ oo. From (4.16),

each Ak has a RWA decomposition given by

IIN I
Ak = x: 7i.akrN

i=1

For each k, the vector (a, , a IN I) belongs to the compact set of non-negative real vec-

tors having L' norm no greater than one. Using this compactness property, the Bolzano-

Weierstrass Theorem [931 guarantees the existence of a vector (aL,... , alNI) and a subse-

quence {kj}1 with

a=
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To demonstrate that A = J; airi, we make use of the following chain of relations. Let

E > 0, and let be the L' norm operator.

A aZ&7rt A _ ±k Akj a 'r i

_ \Akf +ZE(a sa 7r i
i=1

< c. (4.18)

Equation (4.18) follows for j sufficiently large from the convergence property of the sequence

{Ak} and by (4.17). Finally, we have that a% > 0, Vk, i, and that EI a' < 1, Vk, from which
it must be true that the limiting quantities al,... IIINI satisfy a' _ 0,Vi, and a' < 1.
This implies A E Ash-

Proof that A* C cl(Rnc): Suppose A cl(nc). Then we must show that A V A*
Suppose A C A*h. Then there exist a1 ,..., aIN I such that A = E> ati . Define k4 to
be the value a' truncated to k decimal places. This truncation ensures that a% > 0, Vi, k,

Eri 1,Vk, and that ak -+ a t as k -+ oo for i = 1,... , IINI. For each k, define
Ak = Ej air, Tk = Ok,k and Wk = E, 1Oka'. Clearly Tk is an integer matrix for every
k. The decomposition property of Ak implies

Tk a1c47ri. (4.19)
i=1

Since 10ka' is an integer for all i, k, we may interpret (4.19) as a valid RWA for traffic
Tk using Wk 1 0 k wavelengths. This follows because each -7r can be routed on a single
wavelength. By definition, it must be true that Wk Wnc(Tk). Thus, Ak = Tk/Wk E 1nc
for each k. Since Ak -+ A, then A E cl(Rlnc), which is a contradiction.

4.C Proof of Theorem 4.3.2

Proof that cl(Rc) 9 A*h: Suppose A E RC, which by definition implies there must

exist T, W such that A = (1/W)T, with T E Z' and W > Wc(T). We establish a RWA
decomposition for A from the RWA for T using Wc(T) wavelengths as follows.

Suppose the RWA for T employs logical link j -+ k on wavelength i. Starting with m x n
matrix §' = 0, we build the service activation matrix corresponding to the i-th wavelength
as follows. Suppose index I corresponds to link j -+ k.

1. If j -> k is the terminal fragment of an end-to-end lightpath (whether or not wave-
length conversion occurs on the lightpath), then assign SIk +- 1.

2. If j -+ k is not a terminal fragment, and instead wavelength conversion at node k
is employed, with the ultimate destination of the multi-color lightpath being node v,
then assign <- +- 1.
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Applying this procedure to all logical links on all wavelengths i = 1,... , W 0 (T), we now

claim that the 9i are valid service activation matrices, subject to the single wavelength

constraint, and that the (j, k)-th element of T can be expressed as

WC(T) WC(T)

Tj Z R :k djk(5i). (4.20)
i=1 i=1

Since 52 is built from the RWA on wavelength i, 52 must be a valid single-wavelength service

activation matrix for each i. Consider the value Tk. We need only consider values I such

that S'k = 1. In this case, by the definition of matrix Rk, if the source node of link I is

j then Rk =1, and if the destination node of link l is j then M = -1, and otherwise

Rk = 0. Thus the quantity at right in (4.20) is equivalent to

Wc(T)

Equation (4.21) assigns unit weight to each logical link sourced at node j that is carrying

traffic destined to node k, and assigns weight negative one to each logical link that terminates

at node j and carries traffic destined to node k. Since this sum is carried out over all

activation matrices corresponding to the RWA of T, this ensures that only traffic sourced

at node j for node k is counted in the overall sum in (4.21). Since this holds for all j, k, it

must be true that (4.21) equals T, as desired. Thus, for W > Wc(T), the (j, k)-th entry of

matrix A can be expressed as

WC(T) 1

Zjk Wdk (S"),

smhJ W

W~s~e -dj(S%)

Smhl

a Z (Si), (4.22)
i=1

where for all i, fs = (1/W) Z T 1 {-s By definition we have that ai > 0, Vi, and

since W Wc(T), Zi < < 1. Consequently, (4.22) implies that A is an admissible arrival

rate matrix, and we conclude that A E Amh-

Next, suppose A c cl(R% c. By a similar argument used in the proof of Theorem 4.3.1,

there must exist sequences {Ak} and {(ac,..., am')} such that Ak -- A, and a' - a' for

i = 1, ... , I, as k -- oo. Furthermore, it can be shown that the limits of these sequences

satisfy Ajk = Ei aidjk(Si), for j, k E V. This establishes that A E Amh-

Proof that A* C cl(1Zc): Suppose A V cl(Rc). By a similar argument to the proof of

Theorem 4.3.1, if A E Amh, we can construct a decimal-truncated sequence of arrival rate

matrices {Ak}, satisfying Ak -- A. Defining Tk = 10kAk, Wk = >i 10kai, and making use
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of the decomposition property

ISmhl
T = 10a'd33 (S'), j, j' E V, (4.23)

i=1

where 1 0ka cis an integer for all i, k, it is clear that (4.23) is a valid RWA for traffic Tk using

Wk 10 k wavelengths. This follows because each S' can be routed on a single wavelength.

By definition, it must be true that Wk > WC(Tk). Thus, Ak = (1/W)Tk E RC for each k.

Since Ak -> A, then Ak E cl(Rc), which is a contradiction.

4.D Proof of Theorem 4.4.1

We consider the single-hop case only, since the multi-hop case follows similarly. Denote

0* = lim sup k/Wnc(k).
k->oo

From the definition of 0*, there must exist a sequence {ki} such that ki -+ oo as I -+ oo,
and

kI -+ 9*. (4.24)
Wnc(kiJ)

Define the uniform arrival rate matrix Al = kJ/Wc(klJ). From the definition of the set

R1cZ, we have that A' E R' for all 1. Due to the convergence property (4.24), it must be

true that 9*J E cl(nc). By Theorem 4.3.1 we then have that 9*J E A*h-

Conversely, suppose that A is a uniform arrival rate matrix, with uniform arrival rate

r > 0*, for which A E A,*h. Theorem 4.3.1 provides that A E cl(Rnc). Thus, there must

exist a sequence of matrices {Ak} such that Ak -+ A as k - oo, and Ak E Rnc for all

k. Consequently, by the definition of the set Z1'c, there must exist a sequence of traffics

{Tk} and integers {Wk} such that Ak - Tk/W with Wk > Wnc(Tk) for all k. Define the

sequence of traffics {ik}, with tk = (minijo T )J. Since A -> r for all i / j, it must be

true that (minj#j An) -+ r. This implies that Tk/Wk = (minij TI /W)J -> rJ. Clearly,
since the traffic kk is integer and fully dominated (entry-by-entry) by Tk, it must be true

that jk can be satisfied using Wk wavelengths. This follows by using the RWA for Tk using

Wk wavelengths in order to build a RWA for tk using Wk wavelengths. Since r > 0*, there

must exist k* such that when k > k*, for i - J, 'T /W > 0*. Since Wk wavelengths are

sufficient for a RWA with no conversion of traffic Tk, we must have that Wk > Wnc(tk).

Thus for all i f j, 'j /Wnc(Tk) >*, which implies by the definition of rik that for k > k*,

minio3 Tk
ii > 9*. (4.25)

Wnc((minioj TI )J)

For integer c > 0, the traffic ctk can be satisfied using cWk wavelengths, by simply repeating

the RWA for traffic tk a total of c times. Consequently, we must have Wnc (ctk) < CWk.
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Combining this fact with (4.25), we have for any k > k*, and any c > 1,

c minj#, Tk

Wnc(c(minijo T )J) > *

This violates the definition of 6* and provides a contradiction.

4.E Proof of Theorem 4.4.2

In this appendix, we focus on the single-hop quantity, ash. The proof for the multi-hop

quantity amh follows identically. Denote a* = lim supk,. k/Wnc(k).

Definition 4.E.1 Let the set D8 , denote the set of doubly substochastic matrices having

at least one row or column sum equal to s: aD,= { A c D, : IIAilmax = S}.

Proof that ash ;> lim suPk-, k /W"C (k) : Suppose A E Do., with A # 0 (since A = 0

has a trivial RWA decomposition). Define the sequence of integer traffic matrices {Tk},
such that for i / j,

T =(LA[jW"C(k) -/kJ).

Here, the operator (-)+ sets to zero any negative elements of its matrix operand, and [-J is

the floor operator. We seek to ensure that Tk E ECk, Vk. To this end, consider the following

series of relations. For sequence {k}, which we define subsequently, and k sufficiently large,

IITkjjmax =I(LAWnc(k) - 7lJj)Imax

1 (AW"c(k) - ?7kJ) max (4.26)

IAWnc(k)Ilmax - 71k (4.27)

< a*W"c(k) - 77k (4.28)

< k + EkWnc(k)-k, (4.29)

where for k E Z+,

__ *

Ek = sup - -a
k>k Wnc(k)

In (4.26), if we assume that 77k/Wnc(k) - 0 as k -- oo, then (4.27) follows for k sufficiently
large, since there is at least one non-zero element on the row/column having maximum sum

in A. Note that Wnc(k) increases at least linearly in k. Since A E Da*, (4.28) must follow.

By (4.10) we then have (4.29).

To ensure Tk E ECk, we simply choose 7?k = ekWVc(k). Clearly, 77k/W"C(k) --+ 0 as

k -- oo, since (4.10) implies that Ek -+ 0 as k -> oo. Next, define Ak = (1/Wnc(k))Tk. Since

Tk E Ek, it must be true that Ak E lZnc. To demonstrate that A has a RWA decomposition,
we need to show that Ak -+ A as k -+ oo. Since ?lk/(W"C(k)) -+ 0 as k -- oo, this is clearly

true. Thus, A E cl(7Znc), which implies by Theorem 4.3.1 that A E A*h. Since this holds for

all A C D*, it must be true that ash> a*.
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Proof that ash < liMsuPk-,-+k/Wnc(k) : Suppose there exists a > a* such that

Da 9 A*. Consider any positive integer u. Let AU,. Au,Ku be a finite set of matrices

belonging to OD, such that

Da U{A : A - A91 I 1/u, Vij E V}.
l:=1

In words, the set of points {A l, ... ,u,Ku} are the center locations of a set of (1/u)-balls

that cover the outer boundary 01D. The compactness of DV is sufficient to ensure the
existence of a covering such that Ku is finite-valued [93].

Since Au, E Va, and by our assumption that D, g A*, Theorem 4.3.1 provides that
there must exist a set of integer traffics {Tu', ... , Tu,K }, and a set of positive integers

{W i, ... ,W,Ku} such that for l = 1,...,Ku,

T e' {A = (Aij) : jA, - A !;j 1/u, Vij E V}. (4.30)

where WOA > Wnc(Tu 1) for all 1. Since Ku is finite and Tu, is an integer matrix for all 1,
there must exist integers nu,..., ru and k*, such that for 1 = 1,...,Ku,

4fj|T,'jmax = k*.

The integer traffic nuTul must have a RWA using ruWu'1 wavelengths. This RWA is
constructed by repeating the RWA for traffic TOJ, that makes use of Wul wavelengths,
a total of ri times over ruWu"' wavelengths. While the maximum row/column sum of
A", is a, that of (rs/Wu"l)Tu,1 is k*/Wu"l for each 1. Applying (4.30), we then have for
1 = 1,..., Ku,

a - __ _ < U (4.31)

Consider any traffic T E Kk*, with maximum row/column sum equal to ku*. Then
(a/k*)T E OD, which implies there exists l* such that for all i, j C V 7

a-T - A' <1 (4.32)
ku %3 &

Combining (4.30) with (4.32), we have

kT - <__ 2 (4.33)

Multiplying (4.33) through by rl".WuI* provides

ai. W" ,* ,U1* 2 .
k* - . . (4.34)
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Note that if a > 0, and lax-y c, then if ax -y > 0, we have x-y c/a+ ((1-a)/a)y,
and if ax - y < 0, we have x - y ((1 - a)/a)y. Consequently, equation (4.34) implies

Ur 2 ____ ______

Tij - .TUl iW W + J* T (k - 1

The difference between the integer traffic demand matrix T and the matrix i". Tu,'* can

then be bounded as

TiS - n T n(n - 1)n.WU, * + nk* k
ij U an".W an*.WU'

- wu,1*.

Then,
WU 1 2 k *

= n(n - 1)-+n -1 .
k* au anlW*

Applying (4.31), it is clear that wu,*/k* -+ 0 as u -> oo.

If each additional integer demand in traffic T over that in traffic u. TO1 * is serviced

using a unique wavelength, the value of wu,* can be used to infer an upper bound on the

minimum number of wavelengths required to service T. This holds, given the appropriate

choice for the index 1*, for any T E /Ck* having maximum row/column sum of k*, from

which we obtain,
WnC(k*) 5 max(nuWu,' + uj).

Thus, we obtain

k* > k*(4.35)
Wnc(k*) - maxi nu WO + maxi (435

Applying (4.31), the right side of (4.35) must converge to a as u -+ oo. Thus, there must

exist ii such that for u > U,

k* a + ash saU~s >>ash.

Wn(k*) - 2

Clearly, if k* - oo, this is in violation of (4.10), which provides a contradiction. Thus, it

remains to show that k* -+ oo as u -- oo. Suppose this is not true, and there exists integer I*
such that k* < k* for all u. We can then bound the cardinality of lK. as IK4. I (k*)n(n-1).
The number of distinct (1/u)-balls required to cover ODa must increase with u. This can be

seen as follows: consider any two neighboring (sharing the same face) non-zero vertices of

D,. The line segment joining these two vertices is completely contained in oDa. This line

segment is isomorphic to an interval of equal length on the real line, for which a covering

by (1/u)-balls clearly requires an increasing number of balls as u increases. Furthermore,
since the line segment is not collinear with the origin (this would violate that one of the end

points is a vertex of Da), the number of covering (1/u)-balls that exist such that no two

balls contain any matrices that are scaled versions of one another, is also increasing with u.

Consequently, for sufficiently large u, there must be more than (k*)n(n-1) traffics in the set
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{Tuj , ... , T} that are not scaled versions of one another. Since the line joining each of

these traffics to the origin has a unique direction, the common boundary that these traffics

will be scaled to (using the integers from the set {rK}) must contain more than (k*)n(n- 1)

integer matrices. This however, is in violation of our assumption that lICk* I < (k*)n(n~1 )

for all u. Thus, k* --+ c as u -* oc.
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Chapter 5

Achieving 100% throughput in
reconfigurable optical networks:
Extensions

In this chapter, we consider again the optical networking architecture introduced in Chapter

3. Chapter 4 focused on quantifying the throughput properties of single-wavelength WDM-

based packet networks. Here, we seek to understand the computability of the geometric

properties studied in Chapter 4, as well as to generalize those results to the multi-wavelength

scenario.

Our analysis begins by demonstrating that the uniform all-to-all geometric property

characterized in Theorem 4.4.1 can be determined efficiently in the multi-hop scenario, and

is likely to be difficult to compute efficiently in the single-hop scenario.

Subsequently, we generalize the mathematical characterizations of the capacity regions

as well as their geometric properties to multi-wavelength networks.

When every fiber link is equipped with w > 1 wavelengths, we seek to understand the

capacity region of the network in terms of the single-wavelength capacity region, charac-

terized in Chapter 4. We study the round-up property of fractional chromatic number, and

characterize the capacity region of multi-wavelength networks adhering to this property.

5.1 Computability of geometric properties

In Chapter 4, we characterized the maximum uniform all-to-all arrival rate matrix that can
be stabilized in single-wavelength networks. This geometric property was labeled 0 sh for

single-hop networks, and 9 mh for multi-hop networks, and serves as a natural measure for

assessing the throughput capabilities of single-wavelength networks. This property is linked

in Theorem 4.4.1 to the RWA problem, which is known to be NP-hard'. The following
theorems establish the computational complexity associated with determining 0 sh and 6 mh.

Theorem 5.1.1 0 mh can be determined in polynomial time. In particular, 1 /6 mh = Wc(j),

'See [421, where it is shown that the wavelength assignment problem, a subproblem of the RWA problem,
is NP-complete.
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where WC(J) is the solution to the relaxed version of the RWA problem with wavelength

conversion.

Proof: See Appendix 5.A. U

The importance of Theorem 5.1.1 is its implication that determining the maximum uni-

form arrival rate matrix supportable in the reconfigurable WDM network is computationally

feasible. Interestingly, the single-hop geometric property sh turns out to be computation-

ally difficult to obtain in general.

Theorem 5.1.2 Determining Osh is an NP-hard problem.

Proof: See Appendix 5.B.

The proofs of Theorems 5.1.1 and 5.1.2 suggest that the capacity regions AMh and Ash
have as natural counterparts the relaxed versions of the RWA with and without wavelength

conversion, respectively.

5.2 Generalized traffic decompositions

Our network model in Section 3.2 is sufficiently general that it applies much more broadly

than in WDM networks having a single wavelength per optical fiber. In particular, the

model can accommodate any number of wavelengths available in each fiber, and other

architectural assumptions that affect the logical topologies and electronic routing allowed

in the network. For such a network, designate by S the set of allowable service activation

matrices. Recall from Section 3.2 that every matrix belonging to S jointly represents a valid

logical topology and electronic routing. As in definitions 2.2.1 and 2.2.4, we designate by A*

the capacity region of arrival rates that can be rate stabilized when the service activation

set in network N is S.

The following definition generalizes the RWA functions WC, We to this more general

network setting.

Definition 5.2.1 For the non-negative integer matrix T = (Tij), let X(T) equal the mini-

mum number of service activation matrices belonging to S required to decompose T:

X(T) = min k : 3S1 ... ,Ske S, T < Ed(S)Vij( =1

The following theorem generalizes Theorems 4.3.1 and 4.3.2 to multi-wavelength net-

works. Its proof follows identically to the single-wavelength proof in Appendix 4.B, only

replacing the RWA function WnC with x.

Theorem 5.2.1 Define the set R as the set of integer traffic matrices scaled by their re-

spective x values,

R =A = T : T E Z, W E Z+, W > X(T)}.

Then A* = cl(R).
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While Theorem 5.2.1 broadens the class of networks to which generalized RWA decom-

positions can be applied to characterize network capacity properties, its key drawback is
that it relies on the function X, which does not in general tie to a well-studied optimization
problem. This is in contrast to the special case of single-wavelength networks, which we

studied in Chapter 4, where the capacity region was fully characterized in terms of the

well-known RWA problem.

5.3 Additional geometric properties

Theorem 4.4.2 can be extended to provide for any polytope the maximum scale factor
such that the scaled polytope remains within the capacity region. Define the set of integer

matrices in the scaled region kP as K :

KP = Zm n kP.
~k +~l P

Further, define the maximum value of the function x achieved over the set K as Wp(k):

W-p(k) = max X(T).

Finally, we call a set P C R+" Pareto, if for each X E 1, if A ; A (entry-by-entry
dominance) and A > 0, then A E P.

Theorem 5.3.1 Let P be a convex, compact, full-dimensional, Pareto subset of Rm , and
ap = sup{a: aA e A*, VA E P}. Then

k
ap = lim sup .

k-+oo Wp (k)

Proof: The proof methodology is similar to that of Theorem 4.4.2, though it requires
additional technical maneuvers. For completeness, the proof has been included in Appendix
5.C U

Theorem 5.3.1 can be used to recover the result of Theorem 4.4.1, as follows. Consider
the m-dimensional cube with edge lengths equal to unity, denoted by PbO,:

Pbox = {A E R : A3 <_ 1, Vi, j}.

Then, if we define Kbox = Zm n kPbox, it follows that

W"(0 (k) A max W"lC(T) = Wnc(kJ).
TEKIox

This is because kJ is entry-by-entry greater or equal to each element of Egb,. Consequently,
Theorem 5.3.1 implies that

a~pb = lim sup k/Wnc(kJ) = 0 s
k-+oo
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An identical result follows in the multi-hop case.

Similarly, Theorem 5.3.1 can be used to recover the result of Theorem 4.4.2, by employing

the set Pds = {A C RfXf : IlAlimax < 1}.

5.4 Connecting the multi-wavelength and single-wavelength
capacity regions

While the characterizations of the multi-wavelength capacity region and stability properties

of the previous sections are perfectly valid, they make use of the function X, which is not well

studied in the literature. This is in contrast to the single-wavelength scenario, where the

capacity properties can be tied to the classical RWA problem, with or without wavelength

conversion.

In this section, we take a different approach, and attempt to understand multi-wavelength

capacity properties in terms of the single-wavelength characterization, studied in Chapter

4. This provides a picture of how the capacity regions expand from the single-wavelength

scenario studied in Chapter 4 to the wavelength-unconstrained scenario studied in Chapter

3.
Intuitively, one might hope that the multi-wavelength case can be extended from the

single-wavelength case through simple scaling. Thus, if the single-wavelength capacity re-

gion (single-hop or multi-hop) is given by the set A*, the w-wavelength capacity region,
which we denote A*,, would be given by wA* = {wA : A E A*}. The set wAt turns out to

be an important element in the characterization of the w-wavelength capacity region. The

following section provides illustrative examples showing how the set wA* must be refined

in order to attain the w-wavelength capacity region.

5.4.1 Scaling the single-wavelength capacity region: an example

Consider the network links depicted in Figure 5-1. Here, there are two source-destination

pairs of interest: (1, 2) and (1, 3). The network admits a single logical link from node 1 to

node 3, and two logical links from node 1 to node 2. Each 1 -> 2 link shares a fiber with

the 1 --+ 3 link, but does not share a fiber with the other 1 -+ 2 link.

Consider first the case Pi = 3, P2 = P3 = 2, by which we mean that node 1 is equipped

with 3 ports (transceivers), while nodes 2,3 are equipped with 2 ports each. In the single-

wavelength case, the set of available service configurations is given by

{(0, 0), (0,1), (1,0), (2, 0)},

where configuration (a, b) indicates that a logical links are active from node 1 to node 2,

simultaneously with b links active from node 1 to node 3. The single-wavelength capacity

region At is then depicted in Figure 5-2(a). We now consider the case of w = 2 wavelengths

per optical fiber. Under the same port configuration, Figure 5-2(b) contains the scaled

region 2A*, along with the wavelength-unconstrained capacity region A*ort with a dashed

boundary. Clearly, the wavelength unconstrained case must serve as an outer bound on the

capacity region in the 2 wavelength scenario. The intersected region 2At n Aport turns out
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Figure 5-1: Network links considered in Section 5.4.1. Each 1 -> 2 link interferes (shares a
fiber) with the 1 -> 3 link, but never with the other 1 -+ 2 path.

to be the capacity region in this scenario, because the set of 2 wavelength configurations

that satisfy the port constraint is given by:

{(0, 0), (0,1), (0, 2), (1, 0), (1, 1), (2, 0), (2, 1)}.

These configurations are depicted as dots in Figure 5-2(b). Clearly, the convex hull of this

set is the intersected region 2A* f Ap0 f.

The intersection of the scaled single-wavelength region with the wavelength-unconstrained

capacity region does not completely characterize the capacity region, as the following exam-

ple demonstrates. Consider again the set of links depicted in Figure 5-1, with the following

port values: Pi = 5, P2 = P3 = 3. Once again, the single-wavelength capacity region A* in

this scenario is depicted in Figure 5-2(a). Figure 5-2(c) depicts the region 2A* along with

the port-loaded region Aport with a dashed boundary. In this case, the intersected region

contains a non-integer corner point, which clearly cannot correspond to a valid service acti-

vation. The set of valid configurations in this case is depicted as dots in Figure 5-2(c) and

is given by

{(0,0), (0,1), (0, 2), (1, 0), (1,1), (2,0), (2, 1), (3,0)}.

Thus, the 2-wavelength capacity region A2 is given by the convex hull of the integer points

contained in the intersected region 2A* n Apor. We next study the validity of this charac-

terization of the general w-wavelength capacity region.

5.4.2 The w-wavelength capacity region

The above example suggests that the integer points contained in the region wA* n Ap0 f
form the set of service configurations available in the w-wavelength scenario. In this section
we demonstrate the truth of this statement, subject to a property of the RWA function
W(-), which we call the round-up property. We deliberately avoid designating W(.) as
corresponding to wavelength conversion capability or a lack thereof, since the analysis in
either case follows identically.

Definition 5.4.1 The RWA function W satisfies the round-up property if for each T G
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(a) Single-wavelength capacity region A* for the links depicted in Figure 5-1.
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(b) 2 wavelength scenario under Pi = 3, P2 = (c) 2 wavelength scenario under P
P3 = 2. P3 = 3.

Figure 5-2: Towards an understanding of
structure of Figure 5-1.

the 2-wavelength capacity region for the link

Aport n Z,, there exists e > 0 such that

W(kT)_
W(T) - inf < 1 -E.

kcZ+ k

In words, satisfaction of the round-up property implies that for any non-negative integer

traffic matrix T, the number of wavelengths required in a static RWA for T should differ

from the number of wavelengths required in a static RWA for kT, normalized by k, by a

value strictly less than 1, for every integer k > 0.

The following theorem, assuming the round-up property, states that the w-wavelength

capacity region is given by the convex hull of the integer points contained in the intersected

region wA* n Aport.

Theorem 5.4.1 If the RWA function Wc satisfies the round-up property, then for any

integer w > 0 the w-wavelength single-hop capacity region, where the network has no wave-

length conversion capability, is given by

A*,sh = conV (wAsh n r n ZA)- (5.1)
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Similarly, if the RWA function W' satisfies the round-up property, the w-wavelength multi-

hop capacity region, where the network allows full wavelength conversion, is given by

AL,mh = conv (wA*h n Aport n Zm- (5.2)

Proof: See Appendix 5.D.

An immediate result of the proof of Theorem 5.4.1 is that in the general setting, namely

irrespective of the satisfaction of the round-up property, the w-wavelength capacity regions

can be bounded as follows.

A*,sh C cony (wA Aport n zm)

A*,mh C conv (wAmh A Aport n Z)-

The above analysis of the multi-wavelength capacity region characterizes the throughput

properties of the most and least capable joint electronic and optical systems. In particular,
Theorem 5.4.1 provides a characterization of the capacity region of a network having both

full wavelength conversion and multi-hop capability. The theorem also characterizes the

capacity region of a network having no wavelength conversion capability and employing

exclusively single-hop routing. Clearly, the capacity region of a network with single-hop

and partial/full wavelength conversion capabilities and that of a network with multi-hop

and partial/no wavelength conversion capability falls somewhere between the regions we

have characterized.

Clearly, in the above characterization of the w-wavelength capacity region, when w

becomes sufficiently large, we observe that the region Aport becomes the binding element

in each of the intersections wA*h n Aport and wAmh A A Thus, we can observe the
natural transition from the single-wavelength capacity region A* through to the wavelength-

unconstrained capacity region Aport.

5.5 Conclusions

In this chapter, we considered several natural avenues of research stemming from our
throughput study of single-wavelength reconfigurable optical networks of the previous chap-
ter. We demonstrated that the multi-hop maximum all-to-all traffic supported by the net-
work can be computed in polynomial time, through a relaxation of a multicommodity flow
optimization. Interestingly, we found that the computation of the corresponding single-hop
geometric property is in general an NP-hard problem.

Subsequently, we demonstrated how the results of Chapter 4 can be extended in a
straightforward manner to multi-wavelength optical networks. Rather than connecting the
multi-wavelength capacity region to the classical RWA problem, we defined an analogous
quantity (X) representing the minimum number of elements in a valid multi-wavelength
decomposition of any given traffic matrix.
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Finally, we set out to quantify the transition from the single-wavelength capacity re-

gion A*, characterized in Chapter 4 to the wavelength-unconstrained region Aport. To

that end, we studied the connection between the w-wavelength capacity region and the

single-wavelength capacity region. We demonstrated that when the network is subject to

a property called the round-up property, then we can provide an exact characterization of

this transition.

5.5.1 Future directions

In the single-wavelength scenario, there were only two relevant network settings whose

throughput properties we set out to quantify in Chapter 4: single-hop and multi-hop capa-

ble networks. When we consider multi-wavelength networks, there can be more grades of

functionality, with each grade achieving its own throughput performance. At the extremes

are: a network allowing only single-hop routes and employing no wavelength conversion;

and a network allowing any multi-hop routes and employing full wavelength conversion.

Simply alternating these combinations of conversion and hop capabilities introduces two

intermediate grades of network functionality. Our study in this chapter can only capture

the throughput gaps between the two extremes of network functionality. Thus, determining

the throughput performance capabilities of all grades of network functionality remains an

interesting problem of future study.

A related point concerns our discovery in Chapter 4 of a 33% performance gap between

single-hop and multi-hop capable algorithms for a particular network (the bidirectional

ring having n > 7, n even). An important question is: Can the throughput performance

gap between different grades of network functionality be arbitrarily large, or is there a

fundamental limit on this gap?

The round-up property may be an overly strict requirement in establishing an exact con-

nection between the single- and multi-wavelength capacity regions. An interesting question

is: Under what conditions, if at all, do equations (5.1)-(5.2) fail? We feel that it is probable

that there are networks in which these equations do fail to hold. The most likely avenue

for demonstrating this failure is to discover a network and traffic demand under which one

of these equalities fails. This remains an open question.
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Appendix

5.A Proof of Theorem 5.1.1

Note that 1 /Omh = lim infloo Wc(lJ)/l. Suppose WC(J) > 1 /mh. Then there exists an
integer I > 1 such that WC(lJ)/l < Wc(J). Thus, there exists an RWA for the traffic
demand lJ requiring fewer than lWC(J) wavelengths. For such an RWA, let fj be the
number of lightpaths originating at node i and terminating at node j, that traverse fiber
e. Then, dividing each quantity fe by 1, (fie/l, i, j E V, e E Ep) is a multicommodity flow
(MCF) that satisfies (4.13) and (4.14) with W = Wc(lJ)/l < fc(J). This contradicts
WC(J) as the optimal value to the relaxed version of the ILP (4.12)-(4.15).

Conversely, suppose Wc(J) < 1/0mh, with the MCF (fti, j E V, e E Ep) achieving

W(J) as the optimal cost of the relaxed version of the ILP (4.12)-(4.15). Thus for integer

k > 1, the MCF fk = (1Okfij,j E Ve E Ep) is feasible for the traffic demand 10kJ
in the relaxed ILP. For each source-destination pair ij, each path p through the network
from i to j carries some non-negative amount of the total 10 k units of flow satisfied by
fk. Let this flow associated with path p for traffic from node i to node j be p4. Clearly

E pp* = 1 0k*. Consider next the truncated flow L[PiJ for each path p. The floor operation

implies pi, - [p4J < 1. The integer flows described by ([piJ) directly translates to a MCF

(fe), according to fe = Zp:eEp [pJ. Clearly (ft) must be a feasible integer flow in

(4.13)-(4.15). Further, since no more than m! distinct paths exist in the network, then (fj)
must at least satisfy the demand matrix (10k - m!)J. We thus obtain

W,((10k - l) e m Z
eEEp

< max 10kfe(.)

= lokW(J) (5.4)

Above, (5.3) follows because

fg= Z [Pp; Z =1okf
{p:eEp} {p:eEp}

Since WC(J) < 1 / 6 mh, there must exist k* sufficiently large such that for all k > k*,
10k > m! and (10l/(iok - M!))Wc(J) < 1/ 9 mh. By (5.4), this implies for k > k* that
0 mh < (10k - m!)/WC((lOk - m!)J), which is a contradiction.

5.B Proof of Theorem 5.1.2

We begin with several definitions, and a useful theorem.

Definition 5.B.1 (Chromatic number [137]) A k-coloring of a graph G is an assign-
ment of one of k colors to each vertex so that adjacent vertices receive different colors. The
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chromatic number of G, denoted C(G), is the least k for which G has a k-coloring.

Definition 5.B.2 (Fractional chromatic number [137]) A b-fold coloring of a graph

G assigns to each vertex of G a set of b colors so that adjacent vertices receive disjoint sets

of colors. We say that G is a:b-colorable if it has a b-fold coloring in which the colors are

drawn from a palette of a colors. The least a for which G is a:b-colorable is denoted Cb(G).

The fractional chromatic number is defined as Cf(G) = liminfb-o, Cb(G)/b.

Theorem 5.B.1 ( [137, Thm. 3.9.2]) For every real number r > 2, the problem of de-

termining whether a graph G has Cf (G) < r is NP-complete.

To prove that determining 0 sh is NP-hard, we will show that determining whether a

graph G has Cf (G) r is polynomial-time reducible to the problem of determining 9 sh <

1/r.

Consider a graph G. From G, we will build a physical topology graph Gp. Associate with

each vertex of G a lightpath having fixed routing (there is no other available lightpath for

that source-destination pair through the network). In this construction, no two lightpaths

share any nodes in common. Each edge (vi, v 2) of G implies that the lightpaths represented

by vertices v1 , v2 share at least one fiber link. We assume that the lightpaths associated

with v, and v2 only share a single fiber, and that no other lightpaths traverse the same fiber.

Proceeding in this manner for all edges of G, we obtain a set of lightpaths whose incidence

with one another is represented by G. Let V be the set of nodes terminating the lightpaths

we have constructed thus far. For each directed pair of nodes v1 , v2 E V, if we have not

yet constructed a lightpath from v, to v2 , define a new fiber link from v, to v2 , and let the

lightpath from v, to v2 traverse the new fiber link. We have thus determined a physical

topology Gp and fixed lightpath routing associated with each possible source-destination

pair. This is clearly a polynomial-time operation.

It remains to show that Cf(G) < r if and only if Osh> 1/r. Consider the following set

of equality statements.

1/sh = limrinf Wnc(lJ)/l (5.5)

= liminf Ci(G)/l (5.6)
1-400

= Cf(G) (5.7)

Above, (5.5) follows from (5.6) because Wfc(lJ) = C1(G). To see why this is so, note first

that by definition, C1(G) > 1, and that any lightpath not associated with a node in G

has no overlap with other lightpaths, and thus requires exactly 1 wavelengths to satisfy I

units of demand. By definition, Wfc(lJ) is the minimum number of wavelengths to route

1 lightpaths between each source-destination pair in the network. Since each lightpath is

forced (by definition) to have fixed routing, we are assigning to each lightpath a total of 1

colors, so that no two lightpaths that overlap share any colors in common. This is clearly

equal to C (G), since any lightpath that overlaps with another lightpath is represented as

an edge in G. The equality (5.7) implies that Cf(G) < r if and only if 9 sh > 1/r, as desired.
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5.C Proof of Theorem 5.3.1

Denote a* = liM SUPk.o k/Wp (k).

Proof that ap limsupk-,m k/Wp(k) : Suppose A E a*P, with A = 0 (since A = 0

has a trivial RWA decomposition). Define the sequence of integer traffic matrices {Tk},
such that for i 5 j, T = (LA 'Wi(k) - qkj)+. We seek to define the sequence {71k} to
ensure that Tk C Kg, Vk. To this end, it is straightforward to demonstrate that

Ai j Wp(k) = -a*Wp(k)

a' -(k + EkWP(k)) (5.8)

where for k E Z+,

__ *

Ek = sup - -a
>k Wp(k)

To ensure Tk E K, we simply choose

) £kWp(k)
77k =Mc, x Aij ,

S3 a

To see why this is so, note that this choice of 77k ensures Tk < Aijk/a* for all i, j, as follows:

T = ([AijWp(k) - 7kJ)+

(AijWp(k) - 7k)+

k kWp(k)) -P( k) (5.9)

= (k - ekW(k)) - (mXAij) EkWP(k))+

= 'j k 
(5.10)

a*

Above, (5.9) follows from (5.8). Our assumption of A E a*P implies that (k/a*)A E kP.

By (5.10), we have that (k/a*)A dominates Tk, entry-by-entry, from which we can conclude

that Tk E kP. Finally, since Tk is an integer matrix, it must belong to K .

Clearly, 7k /WP (k) -- 0 as k -+ oo, since the limsup definition of a* implies that ek --+ 0
as k -+ oo. Next, define Ak = (1/Wp(k))Tk. Since Tk E K ', it must be true that Ak E R

To demonstrate that A has a RWA decomposition, we need to show that Ak --+ A as k --+ oo.

Since 71/WP(k) --+ 0 as k -+ oo, this is clearly true. Thus, A E cl(R), which implies by
Theorem 5.2.1 that A E A*. Since this holds for all A E a*P, it must be true that ap > a*.

Proof that ap 5 limsupk-c, k/Wp(k) : Suppose there exists a > a* such that

aP C A*. Denote by aP \ a*P the portion of region aP that is disjoint from a*P.

Since P is Pareto, aP c a*P. Consider any positive integer u. By Theorem 5.2.1, and
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since P is convex, compact, and full-dimensional, there must exist a non-negative integer

K., non-negative integer matrices T',1 . .. , T',Ku, and integers WU, ,... , WU,K,, such that

W'"1 > X(Tu"l) for all 1, (1/WUl)Tu"l G ai2P \ a 2P for all 1, where a > a, > a 2 > a*, and

ap \ a*P C U A : Aj - TI'/Wul < 1/u, Vi,j E V}. (5.11)
1=1

In words, the set of points {(1/WU"l)Tu', ... , (l/WuKu)TuK } are the center locations of

a set of (1/u)-balls that cover the region aP \ a*P. The compactness of P is sufficient to

ensure the existence of a covering such that Ku is finite-valued [93]. For 1 {1,... ,Ku

let u =[ H,. Wul. By definition we then have for any integer r > 0,

IT (E r u) (aiP \ a 2 P) 1r oa PW P \ [1Or 2 fl, Wu'J

Since a > a 1 > a 2 > a*, there must exist an integer r* > 0 such that for r > r*,

[10ra 1 JyWu < a10' Hy W'l, (5.12)

1[ra 2 7h[ Wu'IJ > a*lor HT WU'1  (5.13)

and such that any matrix on the Pareto boundary of A2' -r resides in the region

[lrai yW1 P \ [1iOa 2 FIT Wu,[] P. Denote k* [ [10'*oz, fI Wu']. Finally, observe

that for any integer r > 0, X(10rs,"T'l) i0r'W"1 , since the decomposition of Tu,' can

be repeated ,u times.

Consider any traffic T c PC. Let T be an integer matrix that dominates T, entry-by-

entry, and that resides on the Pareto boundary of K . Recall that we have selected k*

such that T E 1Or* a H WUl P \ [10U a 2 HTWuI] P. Applying (5.12)-(5.13), we must

have that

1 T EaP\a*P.
10* U H WU'

Applying (5.11), there must exist an integer 1*, where 1 < 1* < Ku, such that

T- ij < - IVij.
10r* HiyWuj WU'l* u

Multiplying through by iO*U f7, Wu,[ we obtain

T , 10 U H yWu"|Tj - or*0<u*".T <
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Summing over all indices i, j, we obtain

IT 1*Or~Ktu~ T n(n - 1)1Or* fl, Wuj( j T _ - o 1 * r i.

The above serves as an upper bound on the number of connection requests in T in excess

of those in the traffic 1Or n. Tul*. Thus, at worst each such excess request requires a single

service matrix in a valid RWA decomposition of T. Since T dominates T, entry-by-entry,
we can now upper bound X(T) as follows

X(T) 5 X(T) 5 X(TU,*) + n(n - 1)1jOr H WuL/u,

< r W + n(n - 1)10*' H1TWul/u,

= 1o4 (Hy WuJ) + n(n - 1)or (H10 UW) /u

It immediately follows that

Wp(k*) 1or (HywuJ) + n(n - 1)10r* (iT WuJ) /U.

Consequently,

k* 10r ai HyWi ]
Wn~ku*) or*k ~1±nu (n- WJ) + n(n - 1)10r (nyw Jt) /U

al

- 1+ n(n - 1)/u

> a*

where the final strict inequality holds for all u sufficiently large. It remains to show that
k* -- oo as u -+ oo. Clearly, Ku -+ oo as u -+ oo. Note that k* > Q1iH WuI'. Thus, it is
sufficient to demonstrate that

max W" --+ oo as u - oo.
1<l<Ku

We prove this assertion by contradiction. Suppose there exists an integer W such that
WOA < W for all 1,u. Then, since Ku tends to infinity with u, the set {T : X(T) 5 W}
must have infinite cardinality. To demonstrate that this is false, note that the set S is a
finite set of integer matrices, which implies that max max dj(S) < oo. Then clearly, by the

SES iJ
definition of X, we must have

{T E Z"xn: X(T) 5 W} C {T E Z"x": Tij! 5 Wmaxmaxdij(S)}.
SES i, N

Above, the set on the right clearly has finite cardinality, which provides the contradiction.
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5.D Proof of Theorem 5.4.1

Our proof follows for both the single-hop and multi-hop versions of the Theorem. Conse-

quently, we will not distinguish between these cases, except to clarify the manner in which

RWA decompositions are obtained. Additionally, the function W(.) will simultaneously

represent either Wnc(.) or Wc(.).

We begin by demonstrating that

A* C conv (wA* f Aport n Zm). (5.14)

Consider any corner point A of the region A*,. By the definition of the capacity region A* , A

can be expressed as a convex combination of w-wavelength service matrices. Namely, there

exists an integer L, non-negative coefficients ai, and service activation matrices S' E SW,

for 1 = 1, ... , L, such that E, al = 1 and A = El aid(S'). Here, Sw, is the set of available

w-wavelength service activation matrices. In the service activation S', if we consider each

wavelength as a separate single-wavelength service activation, and associate a rate of 1/w

with each wavelength, then we obtain a valid single-wavelength RWA decomposition for the

matrix (1/w)d(S'). In other words, we have that (1/w)d(Sl) E A*. To be clear, observe

that in order to obtain single-hop single-wavelength service activations at each wavelength

in this decomposition, each service matrix S E Sw must be a single-hop service matrix with

no wavelength conversion. For the case of multi-hop single-wavelength service activations,
the set of service matrices Sw can include multi-hop activations, as well as activations

employing wavelength conversion. By the convexity of A* as well as of A*, we must then

have

{(1/w)A : A E A*} A*,

which implies
A*,C wA*. (5.15)

Additionally, since Aport is the convex hull of all wavelength-unconstrained service config-

urations, Aport must contain the w-wavelength service configurations. This implies

A* Aport. (5.16)

Together, (5.15) and (5.16) provide that A* C wAt n Aport. Since A*, must have integer

corner points, these integer configurations must lie in the set wAt nAport. Thus, intersecting

the set wA* f Aport with the integer lattice Zm necessarily captures the corners of Aw, from

which (5.14) follows by the convexity of A*.
Note that the above proof does not assume the round-up property, from which we

conclude that (5.14) must be true in general.

Next, assuming the round-up property holds, we prove that

conv (wAt n Aport n Zm) 9 A*. (5.17)

Our proof will demonstrate that no integer point can belong to wAt without having a

corresponding w-wavelength service configuration. Consider any integer matrix T E Zm.
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By the round-up property, there exists e C (0,1) such that

k 1 1
sup k T = I -T < - 1 T. (5.18)

kEZ+ W(kT) infkEZ+ W(kT) T W(T) - 1 + E
k

By Theorem 5.3.1, (5.18) implies that

sup{Q: aT CA*}1 1()-I+6 (5.19)
~W(T)-1+e

Now, we seek the minimum integer scaling w* such that T belongs to w*Ai,

w* = min w.
WEZ+,TEwA*

Suppose w* < W(T) - 1. Then since T E w*AI, we obtain

1 T E A*
W(T)-1 '

which contradicts (5.19). We conclude that w* = W(T). Thus, for any integer traffic T,
T is an element of wA* only when T requires w or fewer wavelengths. Thus, every integer
point in wA* f Aport has a valid service configuration requiring at most w wavelengths,
implying (5.17) as desired.
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Chapter 6

Greedy weighted matching for
scheduling the input-queued switch

In this chapter, we study the throughput properties of a network control algorithm that is

computationally less complex than that of Tassiulas and Ephremides. In the optical network

setting of the previous two chapters, the computational and communication complexity

associated with control information dissemination was regarded as a small overhead. As

the number of network nodes increases however, this overhead naturally grows. While

this overhead is small with respect to the time scale of reconfiguration decisions in the

network, it is desirable to employ efficient algorithms to keep the queue information upon

with reconfigurations are based as recent as possible. In this chapter, we consider the simple

bipartite network graph structure, which is a typical model for input-queued switches, and

study the throughput properties of a maximal weight scheduling algorithm.

6.1 Overview and summary of contributions

We consider the scheduling problem for the n x n input-queued switch. It is widely held that

the 0(n3) computational complexity of maximum weight matching is overly burdensome

for implementation on a slot-by-slot basis in practical systems operating at high rates [80].
Many practitioners resort to suboptimal matching algorithms in conjunction with speedup
to provide optimal throughput performance. In this paper, we consider greedy maximal
weight matching as a suboptimal matching algorithm, and we make no use of speedup.

We conduct numerical and analytical studies to demonstrate the attractive throughput and
delay performance properties of greedy matching based scheduling.

The switch scheduling literature often takes advantage of the simple fact that a greedy
weighted matching on a weighted bipartite graph provides a 2-approximation to the weight
of the maximum weight matching, and thus that at least 50% throughput is achievable (see
e.g. [73]). Consequently, it is simple to demonstrate that 100% throughput is achievable
under greedy matching in conjunction with a speedup of two. Less can be found on the
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topic of greedy matchings with no speedup [82].

In this chapter, we pursue two important goals:

1. To develop numerical simulations that attest to the attractive throughput and delay

properties of greedy weighted matching based schedulers; and

2. To prove the throughput optimality of greedy weighted matching based scheduling in

the 2 x 2 input-queued switch.

6.2 Greedy maximal weight matching

A greedy maximal weighted matching on a complete weighted bipartite graph (S, T, E)

with |SI = ITI = n and weight function w : E -+ R+ selects sequentially the maximum

weighted edge in (S, T, E) while maintaining a matching. For edge e C E let a(e) C S and

r(e) E T denote the S and T vertices corresponding to edge e, respectively. Thus, a greedy

maximal weighted matching M C E under weight function w is given as follows. This

particular algorithm dates back at least to Reingold and Tarjan [123], where it was studied

in complete weighted graphs. In [73,74], the algorithm is considered in complete weighted

bipartite graphs, and is referred to as the CQ algorithm. Since the bipartite graph (S, T, E)

is complete, the algorithm clearly terminates.

Algorithm 10 Greedy maximal weight matching algorithm

1: Start with an empty matching, M = {}
2: repeat
3: Select e* C arg max w(e)

{eEE: a(e)oa(J), r(e)$-r(e) VEEM}
4: M+- MUe*
5: until |MI = n
6: return M

6.2.1 Network model and scheduling algorithm

We consider an input-queued switch employing virtual output queues (VOQs) for each

source-destination pair. Each queue contains fixed-size cells awaiting transmission to a

particular output port of the switch. We consider slotted time, with index t, and assume

that one time slot is required for transmission of any cell across the switch fabric. For t > 0,
we define by Q(t) the queue occupancy matrix at time t, with Qij(t) equal to the number

of cells in the queue at input port i destined to output port j at time t. The cumulative

arrival process is defined as A(t), with Ai 3(t) equal to the total number of cell arrivals to

input port i for destination port j by time slot t. We assume that VOQj3 has arrivals at

rate Ay for all i, j. The rate matrix A gathers each of these rates together. The set of

admissible arrival rate matrices A* is the doubly substochastic region:

A*= A 0: Ai i 1Vi, ZAij5 1Vj}.
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The greedy maximal weighted matching based scheduler is as follows. The algorithm is

equivalent to that employed in [73,74].

Algorithm 11 Greedy maximal weight matching scheduler for the n x n input-queued
switch

1: for each time t > 0 do
2: Obtain the complete weighted n x n bipartite graph (S, T, E) with edge weight w(e) =

QG(e)r(e)(t) for e E E
3: Obtain a maximal weight matching M using Algorithm 10
4: Configure the switch according to M
5: end for

6.3 Numerical study

Here we report the results of our numerical simulations of greedy weighted scheduling. In

addition to demonstrating the attractive throughput properties of the scheduler, we also

observe delay performance quite similar to that achievable under maximum weight matching

based scheduling.

Our simulation scenario considers n = 6,16, and a range of throughput levels for sim-

ulation. Each throughput level is given by the maximum row/column sum of the arrival

rate matrix. At each throughput level, 50 arrival rate matrices are generated randomly

and for each rate matrix, a sample path is simulated over 2.5 x 105 time slots, starting

at initial VOQ occupancies of zero. The average queueing delay over each sample path is

averaged over the 50 sample paths to generate an individual data point representing the

average delay at that throughput level. We present the simulation results in Figure 6-1.
The figures present average delay performance over a range of throughput levels for three
scheduling algorithms: maximum weight matching, maximal (greedy) weighted matching,
and maximal (size) matching. Briefly, a maximal size matching based scheduler greed-

ily selects edges for which any nonzero queue backlog awaits service. Thus, maximal size

matching can be likened to maximal weighted matching, where each edge weight is equal

to the corresponding VOQ backlog, taken to the power zero.

Note above that maximum weighted matching and the greedy algorithm maintain a close
level of delay over the entire range of throughput considered. Additionally, we observe that
greedy scheduling never suffers instability over the range of throughput levels. This points
to significantly improved throughput performance over the 50% level that can be trivially

shown to be sufficient (though clearly not necessary) under any 2-approximation algorithm
to maximum weighted matching. The maximal size matching algorithm in both figures
shows a throughput loss somewhere in the range of the 0.75 to 0.85 throughput level. These
simulations attest that when there is no speedup, maximal size matching demonstrates an
observable throughput loss, while maximal weight matching does not.

Given these attractive delay and throughput performance properties of the simulated
greedy weighted matching based scheduler, we next analytically pursue the maximum
throughput properties of the switch under the greedy algorithm. We begin by consider-
ing the 2 x 2 switch.
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Figure 6-1: Average delay performance over a range of throughput levels for maximal size
matching, greedy weight matching, and maximum weight matching based scheduling.
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6.4 Greedy matching achieves 100% throughput in the 2 x 2

input-queued switch

For the 2 x 2 switch, there are only two configurations that can be selected as greedy

matchings. In matrix form, they are given by

1 0 0 1

0 1 1 0

The main result of this section is provided next. It states that the greedy maximal

weighted matching based scheduler stabilizes any arrival process with rate matrix belonging

to the admissible region A*.

Theorem 6.4.1 For the 2 x 2 input-queued switch, greedy maximal weighted matching based

scheduling achieves 100% throughput.

Proof: The proof based on fluid limits is straightforward, and can be found in Appendix

6.A. A stronger stability argument for the case of Bernoulli arrivals is made in Appendix

6.B. 0
It is interesting to note that although the different proofs of Theorem 6.4.1 follow a

similar approach, the rate stability argument based on fluid limits is significantly less cum-

bersome.

6.5 Beyond the 2 x 2 switch

In this section, we seek to understand the throughput properties of n x n switches, where

n > 3, and of n x m switches.

6.5.1 The 3 x 3 switch

In [511, it was shown that the 6-ring (a cycle consisting of 6 edges) can potentially suffer from

throughput loss under certain traffic processes, namely a deterministic fluid process with

uniform load at each edge.' Here, we find that this 6-ring structure makes an appearance in

our analysis of the n x n switch, for n > 3. In particular, consider the marked entries in the

matrix in Figure 6-2(a), where entry (i, j) represents VOQj3 of the switch. Figure 6-2(b)
presents the network graph of edges that must be employed to service these marked VOQ's.

Clearly, two VOQ's share a vertex if they have and input or output port in common. Note

that the edges of the graph in Figure 6-2(b) form the graph C6 , the 6-ring.

The following theorem establishes that the 3 x 3 switch can only lose throughput on a
low-dimensional set of arrival rates. In other words, we can assert that maximal matching

based schedulers achieve the network capacity region A*, up to a set of Lebesgue measure

zero.

'We will study the work of [51] at length in Chapters 7 and 8.
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(a) .: (b)

Figure 6-2: The appearance of a 6-ring in the n x n switch, n > 3. (a) Marked entries
indicate VOQ's of interest. (b) The network graph of edges employed in servicing these
VOQ's is a 6-ring.

Theorem 6.5.1 The 3 x 3 switch is rate stable under greedy maximal weighted matching

for all arrival processes having rates belonging to the region A* \ A 3 , where

A3 = A* n ({A : A1 - A23 = A22 - A31 = A33 - A2}U

{A : All - A22 = A23 - A31 = A32 - A13}U
{A : A12 - A21 = A23 - A32 = A31 - A13 }U

{A : A12 - A23 = A21 - A32 = A33 - A1}U

{A : A13 - A22 = A21 - A33 = A32 - An}U

{A : A13 - A21 = A22 - A33 = A31 - A12})

The set A 3 has Lebesgue measure zero in R+.

Proof: See Appendix 6.C. U

6.5.2 Larger switches

Our result concerning the 3 x 3 switch is striking, and immediately calls into question the

case of the n x n switch, for n > 4. In particular, we wish to explore whether for n > 4

the measure zero property continues to hold for the set of arrival rates that cannot be

guaranteed stabilizable. Here we demonstrate that the n, x n 2 input-queued switch, where

ni, n 2  4, potentially suffers from throughput loss over a non-negligible portion of the

switch capacity region.

Consider the marked entries in the matrix in Figure 6-3(a). Figure 6-3(b) presents the

network graph of edges that must be employed to service these marked VOQ's. Recall that

two VOQ's share a vertex if they have an input or output port in common. Note that the

edges of the graph in Figure 6-3(b) form the graph Cs, the 8-ring.

In Chapter 8, we demonstrate that C8 fails Local Pooling. The implication of this result

is that we cannot conclude that maximal weight matching based scheduling is stable when

the set of maximum weighted network graph edges equates to Cs. In our input-queued

switch context, this implies that whenever a configuration of maximum weighted edges

equivalent to that depicted in Figure 6-3 arises, the network cannot be guaranteed stable.

In the 3 x 3 scenario above, the appearance of 06 raised a similar concern. Fortunately

though, the appearance of C implied that the arrival rates must belong to a very small,

indeed negligible, set within the switch capacity region. Thus, we could effectively dismiss

122



(a) (b)

Figure 6-3: The appearance of an 8-ring in the ni x n2 switch, ni, n 2 > 4. (a) Marked
entries indicate VOQ's of interest. (b) The network graph of edges employed in servicing
these VOQ's is an 8-ring.

all instances where C could potentially lead to instability. To emphasize the point, we
did not attempt to further analyze the stability properties of the switch in cases where C
arises, because such cases can only arise in a negligible subset of the capacity region.

It turns out that the appearance of Cs does not have this attractive property. The
following theorem demonstrates that Cs can arise in a subset of the capacity region having

non-zero measure. Consequently, we have no guarantee that the ni x n 2 switch is rate
stable under maximal weight matching based scheduling over the entire capacity region up
to a set of measure zero. Indeed, the result says that the set of suspicious arrival rates has
non-zero measure.

Theorem 6.5.2 The set of arrival rates under which C8 can arise as the network graph

of simultaneously maximum weighted queues has non-zero Lebesgue measure in the n1 x n2
switch capacity region, where ni, n 2 > 4.

Proof: See Appendix 6.D. The tools of this proof resemble the stability considerations
that arise in the paper of Dimakis and Walrand [51].

6.5.3 The 2 x n switch

Here we briefly mention a result that follows from our study of Local Pooling in the next
chapter. We have found earlier in this chapter that the 2 x 2 switch achieves 100% through-
put under maximal weight scheduling. In Chapter 7, we determine several graphs for which
Local Pooling is satisfied, and find as a corollary (see Corollary 7.4.2) that any 2 x n switch,
with n > 1, also achieves 100% throughput under maximal weight scheduling.

6.6 Conclusions

In this chapter, we have set out to consider an algorithm that lends itself to distributed im-
plementation in the network setting. Specifically, instead of employing maxweight schedul-
ing, we consider maximal weight schedulers, which can be implemented using localized
control algorithms.

This chapter has focused on the input-queued switch. We began by presenting numerical
results attesting to the excellent throughput properties of a maximal weight scheduler. For
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the 2 x 2 switch, we proved that maximal weight scheduling is throughput optimal. Finally,

for the 3 x 3 switch, we demonstrated that although the network cannot be guaranteed to

achieve 100% throughput, the set of arrival rates having suspicious stability properties is a

set of measure zero within the switch capacity region.

6.6.1 Future directions

The result of Theorem 6.5.2 does not complete the story regarding the n x n switch, when

n > 4. It only allows us to say that the set of suspicious arrival rates under which throughput

loss may occur has non-zero measure. To actually assert a throughput loss over a non-

negligible set of arrival rates, it must be shown that there exist arrival processes under

which rate stability fails under maximal weight matching based scheduling. Furthermore,
the set of arrival processes for which rate stability fails must have rates that constitute a

set of non-zero measure in the switch capacity region.
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Appendix

6.A Proof of Theorem 6.4.1 based on fluid limits

The proof begins with a characterization of the fluid limit functions Qj, Vi, j, Aij Vi, j,
Dij Vi, j, PS VS E Ssh (recall that we are considering a single-hop algorithm), identically as

in Appendix 2.B. It can be shown that the fluid model equations (2.17)-(2.24) hold.

Let h : R+ -+ R+ be defined according to h(t) = maxij Qij(t). Consider a regular time

t > 0 at which h(t) > 0. There are several cases of interest, which we will address in turn.
Suppose first that max{Q 1(t), Q22 (t)} > max{Q 12 (t), Q 21 (t)}. From (2.20) we have that

Qln(t) = Al - D (t), Q22 (t) = A 2 - D22 (t).

Because of our assumption, we must have that D 1 (t) = 1 if Q 1 1 (t) ; Q22 (t) and D 22 (t) = 1
if Qu (t) K Q22(t). To see why this is true, one must consider the scaled functions that
converge to the fluid limit functions, and note that in the locality of time t, the maximal

weight scheduling algorithm allocates service exclusively to configuration 7rI. Consequently,
we obtain

h(t) max{A, A2 2 } - 1

< 0,

where the second inequality follows by the assumption of a doubly substochastic arrival
rate matrix A. By symmetry, we can conclude that h(t) 5 0 if max{Qu (t),A2 2 (t)} <

Max{Ql2(W, Q21(W)}
The only remaining case to consider is where max{Qn(t), Q22 (t)} = max{Q12 (t), Q21 (t)}.

This case yields several subcases, as follows.

1. h(t) = Q11(t) = Q12(t) > {Q 21(t), Q22(t)}. Here, we must have Di (t) + D1 2 (t) = 1.
Further, because t is a regular time, we have that h(t) = All - D 1 (t) = A12 - D 12(t).
By algebraic manipulation, we obtain h(t) = i(A1 + A 2 - 1) 0.

2. h(t) = Qll(t) = Q12(t) = Q21(t) > Q22(t). Here, we must have D11(t) + D 12 (t) = 1.
Also we must have D 12 (t) = D 21 (t), which implies that this subcase cannot occur
unless A12 = A2 1. Similarly to the first case, algebraic manipulation provides h(t) 0.

3. h(t) = Q11(t) = Q12(t) = Q21(t) = Q22(t). Here, we must have Di (t) + D 12 (t) = 1.
Also we must have D I(t) = D 22 (t) and D1 2 (t) = D 21 (t), which implies that this
subcase cannot occur unless All = A22 and A1 2 = A21. Similarly to the first case,
algebraic manipulation provides h(t) < 0.

This set of subcases is complete, in that any other instance can be translated to one of the
above subcases through a relabeling of the switch ports.

We have demonstrated that at any regular time at which h(t) > 0, then h(t) 5 0.
Since h(0) = 0, we must then have that h(t) = 0 almost everywhere. Then, we must have
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that Q(t) = 0 almost everywhere and the fluid model is weakly stable. Consequently the

queueing system under greedy weighted matching is rate stable.

6.B Proof of Theorem 6.4.1 for Bernoulli arrivals using a
Lyapunov drift argument

The proof is carried out by demonstrating that the queueing system under the maximal

weight matching algorithm is weakly stable. We adopt the following characterization for

weak stability [87].

Definition 6.B.1 The Markov Chain (Q(t),t E Z+) is weakly stable if there exists a

Lyapunov function V such that for any e > 0, there exists B > 0 such that

lim P[V(Q(t)) > B] < e.t-+oo

We make use of the following Lyapunov function, V : R2 2 2 - R+. Let Q = (Qij) be a

2 x 2 matrix. Then V(Q) = maxij Qjj.
For the entire proof, we assume without loss of generality that VOQ1 1 has the maximum

number of cells: Q11 > Qij, Vi, j = 1, 2. Any other case can be trivially converted to this

scenario by relabeling the input/output ports. We divide the proof into two key cases: the

first case has ir, strictly dominating W2 under greedy matching, and the second case has

7ir equivalent to 7r 2 as greedy choices.

For the proof, we assume A E A* is strictly doubly substochastic:

Aij < 1, Vi Aij < 1, Vj.

6.B.1 Case 1: Qu(t) > max{Q 12 (t), Q21 (t)}

In this section we consider the simple case where there is no ambiguity about which con-

figuration is dominant. We assume without loss of generality that Qi (t) is strictly larger

than max{Q 12 (t), Q21(t)}-

Lemma 6.B.1 When the queue occupancy matrix Q(t) satisfies Qii(t) - 1 Q12 (t),

Qn(t) - 1 > Q21(t), and Q11(t) > Q22(t),

E [V(Q(t + 1)) - V(Q(t))IQ(t)] < -(1 - A1)(1 - A12 )(1 - A21 )(1 - A22 ).

Proof: Assume V(Q(t)) 1, with Q11(t) - 1 > Q12(t), Q11 (t) - 1 Q21(t), and
Q1 1(t) Q22 (t). Designating ag (t) as the number of arrivals to VOQjj at the beginning of
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time slot t, we have

Q11(t + 1) = Q11(t) - 1 + all(t + 1)

Q12(t + 1) = Q12 (t) + a12(t + 1)

Q21(t + 1) = Q21(t) + a21 (t + 1)

Q22(t + 1) = max{Q 22 (t) - 1, O} + a2 2 (t + 1)

We are interested in finding an upper-bound for the expression E [V(Q(t + 1)) - V(Q(t))IQ(t)1.
Since the quantity V(Q(t+l))-V(Q(t)) can only take on the value 0 or -1 in this case (due
to Bernoulli arrivals and the service restriction of one cell from each queue per time slot),
we must lower bound the probability of the event {V(Q(t + 1)) - V(Q(t)) = -1 1 Q(t)}.
Clearly, this occurs when Q1 I(t) - 1 = Q12 (t) = Q21 (t) = Q22 (t) - 1, since an arrival to any
VOQ at the beginning of time slot t + 1 results in V(Q(t + 1)) = V(Q(t)). The following
bounds are then evident, under the assumed Bernoulli-distributed arrivals.

P [V(Q(t + 1)) = V(Q(t))IQ(t)] 5 1 - (1 - A11)(1 - A12 )(1 - A21 )(1 - A22 ) (6.1)

P [V(Q(t + 1)) = V(Q(t)) - 1Q(t)] > (1 - A11)(1 - A12 )(1 - A21)(1 - A22 ). (6.2)

Since (6.1) and (6.2) completely characterize the difference V(Q(t + 1)) - V(Q(t)) in this
scenario, we have

E [V(Q(t + 1)) - V(Q(t))IQ(t)] = 0 -P[V(Q(t + 1)) - V(Q(t)) = 0Q(t)]

- 1 -P[V(Q(t + 1)) - V(Q(t)) = -1Q(t)]
< -(1 - A11)(1 - A12 )(1 - A21)(1 - A22 ).

The remainder of this section treats the case where the maximum element of {Qii(t), Q22(t)}
equals the maximum element of {Q12 (t), Q21 (t)}.

6.B.2 Drift analysis for a simple two queue system

In this section, we analyze a simple two queue system and characterize an important drift
property of the Markov chain describing the system's queue evolution. We will subsequently
(in Section 6.B.3) derive conditions on the 2 x 2 input-queued switch in order to take
advantage of the drift properties of the simple two queue system.

Consider a queueing system consisting of two queues, with respective backlogs at time
t equal to Z1 (t), Z2 (t). These queues are subject to Bernoulli arrivals with possibly time-
varying rates. Let A1 (t), A 2(t) be the cumulative arrivals to queues Zi, Z2 respectively, up
to and including time t. There is a single server that is only able to serve one of the two
queues at a time, with one unit of service at a queue resulting in a reduction in the queue's
backlog by one cell at the end of the time slot. The scheduling policy employed is longest
queue first (LQF), where the queue having maximum backlog is serviced at each slot, with
queue 1 chosen as the default queue for service in the event of equal queue backlogs. Suppose
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at time t, Zi (t) = Z 2 (t) = a > 0, and there exist -, k, such that the expected number of

arrivals to Z 1 and Z 2 are upper-bounded by r1 and r2, respectively, for each time slot in

the range t + T, ... , t + i + k. We are interested in understanding the expected drift of this

queueing system from time slot t through time slot t + r + k, given by

d(n,'r, k, a) = E[max{Z(t + -+ k), Z2 (t + I + k)} -max{Zi(t), Z2 (t)} Z(t) = (a, a)].

Above, we denote Z(t) = (Z 1(t), Z2 (t)).

The following lemma demonstrates that when IZi (t) - Z2 (t) 2, then after any number

of time slots, prior to the arrivals, Z1 and Z2 are within 1 unit of each other. For convenience,
we denote the queue backlogs prior to arrivals by

Z,(t) = Z,(t) - (A 1 (t) - A 1 (t - 1)) Z 2 (t) = Z 2 (t) - (A2 (t) - A2(t - 1)).

Lemma 6.B.2 When IZ1(t) - Z2 (t)I 5 2, then for k > 1, IZ,(t + k) - Z2 (t + k) 51.

Proof: Our proof is by induction. Assume JZI(t) - Z 2 (t)l J 2. Without loss of

generality, we assume that max{Zi (t), Z 2 (t) } = Zi (t), from which we can assume without

loss of generality that under LQF, queue 1 is selected for service at time slot t. Then,

Z1(t + 1) - 2 2(t + 1)1 < 1. For the inductive step, assume that I Z1(t + k) - Z 2(t + k)I < 1.
Thus it must be true that the arrivals at time slot t+k are such that IZI (t+k)-Z 2(t+k) < 2.

Under LQF, the service over time slot k is applied to queue i, where Zi(t + k) Z3 (t + k),
i 74 j. This implies 1Z1(t + k + 1) - 2 2 (t + k + 1)1 1 1, which completes the induction. *

The following lemma bounds the (7 + k)-slot drift in our two-queue system, when both

queue occupancies are initially equal.

Lemma 6.B.3 Consider the case Z 1(t) = Z 2(t) = a. Suppose there exist integers , k > 0

such that for each slot in the range t +f+1,... , t + f + k, the expected number of arrivals

to queues 1, 2 are upper-bounded by r1, r 2 , respectively. Then, when a > f + k,

d(t, r, k, a) < 3+ ri + r2 _ k(l - ri - r2) (6.3)
2 2 2

Proof: Let Z 1 (t) = Z 2 (t) = a > - + k. For time slots t, ... , t + 7, a maximum of 27

arrivals can occur in total to both queues. Over f slots, f total cells must be serviced from

the queues under LQF. By Lemma 6.B.2, Z1(t+7)- Z2(t+7) < 2. Thus, the total number

of cells in both queues at time t+7 is at most 2a+7, which implies max{Z1(t+), Z 2 (t+)}
a + T/2+ 1.

Subsequent to time t +r, assume for each time slot that the expected number of arrivals

to queues ZI, Z 2 is upper-bounded by ri, r 2 , respectively. We consider the sum total number

of arrivals to both queues from time slot t + f + 1 through time t + I + k - 1. Define

p(i, r, k) A P[A1 (t +r + k - 1) - A 1 (t + -r) + A2 (t +r 7+ k - 1) - A 2 (t +r) = i I Z(t)].
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From Lemma 6.B.2, it is clear that after k - 1 arrival opportunities and k service

opportunities to the queues Z 1 , Z 2 , irrespective of the manner in which the arrivals and

service occurred, the queue backlogs must be within 1 cell of one another. We can then

conclude that if i total arrivals occurred to the queues over time slots t+;i +1,..., t+;+ k,
the queue backlogs (in no particular order) are upper-bounded by

a + 2 ,k] a+ [±2 _k. (6.4)

To complete the characterization of the drift, we must account for the arrivals at time

slot t + ? + k. A sufficient bound is to assign probability 1 to the occurrence of an additional

arrival to the maximum-valued queue. The drift is then upper-bounded by

2k-2

d(t, -,Tk, a) :5 + 2+ 2 p(i, r-, k), (6.5)
i=O

3+ -k 1 2k-2

= 2 + Z ip(i, ,k),
i=O

3+ -k 1
= 2 + 2E[A1(t +r+ k 1) -A1(t+r)+A2(t+r 2(t+ )}

(6.6)

The limits of the sum in (6.5) account for up to 2(k - 1) total arrivals to the queues over

k - 1 time slots. The 1 in (6.5) corresponds to the additional cell whose arrival occurs with

probability 1 at time t + ;r + k, and the 1/2 term in (6.5) provides a bound on the ceiling

of (6.4). The expectation at right in (6.6) is effectively upper-bounded as follows,

E[A1 (t + - + k - 1) - A1 (t + ;r) + A2 (t + ;r + k - 1) - A 2 (t + r)]
k-2

= (E[AI(t + r + i + 1) - A1(t + r + i)} + E[A2 (t + r + i + 1) - A 2 (t + r + i)]),
i=O

< (k - 1)(ri + r2 ). (6.7)

Above, (6.7) follows because at each time slot, we have assumed that the expected number

of Bernoulli arrivals at queues Z 1 , Z2 are upper-bounded by ri, r 2 respectively. (6.3) follows
immediately. U

We have now established the necessary tools that will be used in our remaining devel-

opment of the stability of the 2 x 2 switch.

6.B.3 Case 2: Q11(t) = max{Q 12 (t), Q2 1(t)}

In this section, we return our attention to the 2 x 2 switch, and we deal with the more
interesting case of when both ir, and ir 2 are valid selections according to the greedy weighted
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matching algorithm. We assume without loss of generality that Q(t) has the form

a

b

a
C,

cJ
(6.8)

where a > b > 0 and a > c > 0.

We make use of the same notation as in the previous section, namely the queuing

variables Z1 and Z2. We will demonstrate how these variables fit naturally in the analysis

of Section 6.B.2. We study the probability of an increase in either Z1 (t + t') = max{Qul (t +
t'), Q22(t + t')} or Z2(t+ t') = max{Q12 (t +t'), Q21(t+t')} due to cell arrivals. Here, Z1, Z2

may be considered as a pair of induced queues corresponding to I1, W2 , respectively. We

shall study the conditions under which Z1 and Z2 satisfy the conditions of Lemma 6.B.3.

Given Q(t) of the form (6.8), the expected number of arrivals at Z1 at time t + t' is given

by

p1 (t + t') = (Al + A 2 - AllA 22)P[Qu1(t + t') = Q22 (t + t')IQ(t)]
+ AllP[Q 11 (t + t') > Q22(t + t')IQ(t)] + A22P[Q11 (t + t') < Q22(t + t')IQ(t)].

Similarly, the expected number of arrivals at Z2 at time t + m is given by

p2 (t + t') = (A2 + A21 - A12 A21)P[Q12(t + t') = Q21(t + t')IQ(t)]
+ Al 2P[Q12(t + t') > Q21(t + t')IQ(t)]+ A2iP[Q 12 (t + t') <

Define

Q21(t + t')fQ(t)].

= (1 - max{A, A22} - max{A12, A21})

If we can obtain the bound

(Al 1 + A22 - A11 A2)P[Qul(t + t') = Q22(t + t')IQ(t)] < y,

then we can conclude

1,(t + t') < 1 (1 - max{AiA, A\ 2} - max{A12, A21}) + max{A, A22}
1 3 1

= 1 + 3 max{Ai, A 2} - - max{A12 , A21}44 4
= r.

Similarly for A2 (t + t'), if

(A12 + A21 - A12 A21)P[Q 12(t + t') = Q21(t + t')IQ(t)] < -y,

(6.9)

(6.10)
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then we can conclude

A2 (t + t') < (1 - max{Aii, A2 2} - max{A12 , A21}) + max{A12 , A21}

1 1 max{A11, A22 } + 3 max{A12 , A21 }4 44
A
= r 2 .

In this section we will establish the upper-bounds ri, r 2 , implying that the induced queues

Z 1 , Z 2 will fit into the drift analysis of Section 6.B.2.

Define the constant

_ 3 -r, - r2+
1 - r, - r2l

such that Lemma 6.B.3 can be applied to induced queues Z1, Z 2 , with values I = 0, k =

0, a > 2 0 such that d(n, 0, o, a) < 0 when r1 + r 2 < 1.

Lemma 6.B.4 If a - c > 2 o and a - b > 2 0, and a > 20 +1, then

P[Ql (t + t') = Q22(t + t')IQ(t)] = 0, t' = 1,2,... , 0 (6.11)

P[Q1 2 (t + t') = Q21(t + t')IQ(t)] = 0, t' = 1,2, ... ,o (6.12)

Proof: Over time slots t, ... , t + o - 1, the greedy matching algorithm ensures Qu
decreases by at most 6o cells. The backlog Q22 cannot increase by more than 6o cells over
time slots t, .. ., t+. Then we must have that Qu(t + t') > a -6o and Q22(t+t') < a - o
for t' = 1,2,..., t + 60, from which (6.11) follows. The proof for (6.12) follows identically

and is omitted. 0
Lemma 6.B.4 ensures that (6.9) and (6.10) are satisfied over slots t,..., t + 6o. Thus

the drift of induced queues Zi, Z 2 in any switch state satisfying the assumptions of Lemma
6.B.4 is negative after 6o time slots.

Lemma 6.B.5 If a - c ; 260, then there exist F, 1 such that if a - b > 2(r- + 61) and
a > 260 + 26i + 2r- then

P[Q11 (t + t') = Q22 (t + t') Q(t)] < A ,At'= ;1 +, .... ,r1 + 61 (6.13)
All + A22 - A11A2

P[Q12 (t + t') = Q21(t + t')IQ(t)] = 0, t' = 1, ... ,?1 + 61 (6.14)

Proof: For any t' such that over time slots t,... ,t + t', neither VOQ 1 or VOQ 2 2
reaches zero occupancy, we have

Qll(t + t') - Q22(t + t') = a - c + (Al(t + t') - Al(t)) - (A 22(t + t') - A 22 (t)) . (6.15)

The expression (AI(t + t') - All(t)) - (A22 (t + t') - A 22 (t)) can be regarded as a summa-
tion of t' i.i.d. random variables, each of which take values from the set {-1, 0, 1}. Using
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(6.15), we have for any t' such that over time slots t,..., t + t', neither VOQ1 1 or VOQ 22
reaches zero occupancy that

P[Qnl(t+t') = Q22 (t+t')|Q(t)] = P[(An(t + t') - An(t)) - (A 2 2 (t + t') - A 2 2 (t)) = c-a].

We throw out the case of Al = A22 = 0, since in this case, Q1 1 (t) = 0,Q 22 (t) = 0,Vn almost

surely. For any other Al, A22 values, a simple normal approximation to the i.i.d. summation

guarantees the existence of i- such that for all t' > -raC ,

P[(Ai (t + t') - Al (t)) - (A 2 2 (t + t') - A2 2 (t)) = c - a] < . (6.16)
All + A22 - A11A22

Taking the maximum over all a - c values considered in this lemma, we obtain a common

value r1 such that after time t + -1 , (6.16) is satisfied: ;-1 max(a-c)Eo,...,2o F-. Note

ri is a constant derived only from the constants A,,, A22 .

Define the constant
3+ ~r1 - r1 - r2 +1

I - r, - r2I

Suppose a > 2(o + 2 1 + 2,1. Then since a - c < 2 o, we have c > 2(- 1 + 1). Thus, for

the first -j + 1 services to configuration 7r,, both Q11 and Q22 are reduced by one cell at

each service (since neither queue reaches zero occupancy). Since c > 2(7 1 + 1) guarantees

that Q11 (t) > 0 and Q22 (t) > 0 for time slots t, ... , t + t1 + 1, we conclude that (6.13) is

satisfied. Finally, assuming a - b > 2(-ri + 1), then following in a similar manner to the

proof of Lemma 6.B.4, there is no sample path on which the queue backlogs Q12 and Q21
coincide over time slots t, ... , t + -1 + 1, giving (6.14) as desired. 0

Lemma 6.B.5 provides that (6.9) and (6.10) are satisfied over slots t+ i, ... , + - +6.

We have defined 1 such that Lemma 6.B.3 can be applied to induced queues Z 1 , Z 2 , with

values i = r1 , k = 1 , a > 2 o + 2 1+ 2;- such that d(t, ~ri, a) < 0 when r1 +r 2 < 1. Thus

the drift of induced queues Z 1 , Z 2 in any switch state satisfying the assumptions of Lemma

6.B.5 is negative after 1 + ri time slots.

Corollary 6.B.1 If a - b < 2 0, then there exist T2, 2 such that if a - c > 2(f2 + 2) and

a > 2 o + 22 + 2f 2 then

P[Q11(t +t') =Q22(t +t')jQ(t)] = , t' =1, . ., r2 +6(

P[Q12 (t + t') = Q21 (t + t')IQ(t)] < y t' = -2 + , .... 2 + 2

Proof: The proof follows identically to the proof of Lemma 6.B.5. U

Note in Corollary 6.B.1 that 2 is the number of time slots required to ensure d(t, r2 , 2, a) <

0, when a ;> 2 + 2-r2 + 22. Thus the drift of induced queues Z 1 , Z 2 in any switch state

satisfying the assumptions of Corollary 6.B.1 is negative after 2 + r2 time slots.

Denote t3 = max{'t1, 2} and b = max{ 1 -
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Table 6.1: Required values for a, ;, k for different possible a - b, a - c values, such that when
Q(t) is as in (6.8), then the drift of the induced queues Zi, Z2 is negative: d(n, 'r, k, a) < 0.

a-b a-c a> I k

> 2 0 > 2 2 o 0 $O

> 2;-I + 1 < 2 0 2 o + 2 1 + 2f1 f1 1

:5 2 0 > 22+ 26 2  2 O+262f2 T2 2

2(~r3 + 3) 2 (3 + 3) 3(;3 + 3) t 3

Lemma 6.B.6 If a - b < 2(T3 + 3 ) and a - c < 2(r3 + 3) and a > 3(- 3 +- 3 ) then

P[Q11(t + t') = Q22 (t + t')IQ(t)] < y , t' = f3 + 1 .... ,T3 + 3 (6.17)
All + A22 -AlIA22

P[Q12 (t + t') = Q21(t + t')jQ(t)] < ,At' = Ar + 1 .... , -3 + 3 (6.18)
All + A22 -A11A22'

Proof: From Lemma 6.B.5 and Corollary 6.B.1, it is clear that r3 slots are sufficient
to ensure convergence of the expected number of arrivals to induced queues Zi, Z2 to less
than rl, r2, respectively. This entire discussion is valid so long as no queue reaches zero
occupancy over time slots t,... , t + 'r3 + 43 - 1. Clearly, restricting a > 3(r 3 + 3) and
b, c > T3 + 3 is sufficient to guarantee this condition. Thus (6.17) and (6.18) follow as

desired. a

Note in Lemma 6.B.6 that 3 is the number of time slots required to ensure d(t, ?3, 43, a) <
0, when a > 3?3 + 33. Thus the drift of induced queues Zi, Z2 in any switch state satisfying

the assumptions of Lemma 6.B.6 is negative after 3 + r3 time slots.

We have organized the results of this section in Table 6.1. The table shows the range

of a - b, a - c values accounted for by the results of this section. Since a > b, a > c, we

conclude that all possible values have been considered. We now have all the tools necessary

to prove Theorem 6.4.1.

6.B.4 Proof of Theorem 6.4.1

The proof is through a Lyapunov drift argument. We will determine a sequence of time slot
indices ((i,i E Z+) such that (o = 0, there exists M < oo such that (j+1 - (i < M, and

E[V(Q(Ci+l)) - V(Q(())IQ(()] < 0, V(Q((Q)) > v (6.19)
E[V(Q(Ci+ 1 ))IQ(Ci)] < oo, V(Q(()) < v (6.20)

for all i > 0.

Consider any integer i > 0. At time (j, suppose V(Q((i)) - 2$0 + 3(;3 + V3) v.
The system state Q((j) is accounted for by one of Lemmas 6.B.1, 6.B.4, 6.B.5, 6.B.6, and
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Table 6.2: Values of (j+1 - Ci required under the conditions of the Lemmas and Corollary
of Section 6.B.3

Case covered by_]<+i -

Lemma 6.B.1 1

Lemma 6.B.4 6

Lemma 6.B.5 '1 +1

Corollary 6.B.1 T2 +2

Lemma 6.B.6 f3 + 3

Corollary 6.B.1. For Lemma 6.B.1 to be valid, we require V(Q((j)) > 1, which is satisfied by
v. For Lemmas 6.B.4, 6.B.5, 6.B.6 and Corollary 6.B.1, the values are listed as restrictions

on the variable a in Table 6.1. Each of these are satisfied by v. Recall the condition for

achieving negative drift under the ;, k values listed in Table 6.1 is that r1 + r2 < 1. Under

this condition the values of ;, k in Table 6.1 will yield negative drift, with the values for

(j4+1 listed in Table 6.2. This completes the characterization of (6.19).

The only remaining case is when V(Q((i)) 5 v. In this case, we use (i+1 = (i +1. Then

it is clear under Bernoulli arrivals that IV(Q(C2+j)) - V(Q((j))j < 1, implying (6.20).

The above application of Lemma 6.B.1 requires only that 0 < A < 1,Vi, j. Further,
the above application of Lemmas 6.B.3, 6.B.4, 6.B.5, 6.B.6, and Corollary 6.B.1 holds for

any ri + r2 < 1. The following lemma connects this requirement to the admissible region

of rates.

Lemma 6.B.7 r1 + r 2 < 1 if and only if A is strictly doubly substochastic.

Proof: Suppose r1 + r 2 < 1. This is equivalent to

1 11
+ max{A11, A22} + <maxA12, A21} < 1. (6.21)
222

Rearranging, we obtain max{A11, A22 } + max{A 12 , A21} < 1, which implies A is strictly

doubly substochastic. Conversely, suppose that A is strictly doubly substochastic. Then

(6.21) is satisfied, and we conclude r1 + r 2 < 1.

Thus, our proof of stability will follow for any strictly doubly substochastic A. In order

to conclude that Foster's Criteria [13, Ch I, Prop. 5.3] are satisfied for positive recurrence

of the embedded Markov Chain (Q((i), i E Z+), it is necessary (and trivial) to demonstrate

that the embedded chain has a single irreducible class.

Since (Q((i),i E Z+) is irreducible, infQER2x2 V(Q) = 0, and by (6.19), (6.20), [13, Ch
I Prop. 5.3] implies (Q((i), i E Z+) is positive recurrent. As explained in [87], we may then

conclude that for any E > 0, there exists finite B1 > 0 such that

lim P[V(Q(()) > B] < .(6.22)
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Finally, we turn our attention to the weak stability of the queue backlog process,
(Q(t), t c Z+). Define n(t) as the maximum index j such that (j t: r'(t) = max{j

(j < t}. Also, define M = max{1, $o, T1 + 6,72 + 6,;T3 + 3}. Clearly M is a finite constant
providing an upper bound on (i+1 - (i for any i > 0. Then

V(Q(t)) = V(Q(i))) + (v(Q(t)) - V(Q((r(t))))

V(Q(44)) + M. (6.23)

Above, (6.23) follows by the fact that the maximum queue backlog in the system can only

increase by 1 cell at each slot, and that there are at most M slots between times n(t) and t.

Then it immediately follows that for B 2 > 0, P[V(Q(t)) > B 2] 5 P[V(Q((K(t)))+M > B 2].
Then we have the following series of equations,

lim P[V(Q(t)) > B2 ] lim P[V(Q(((t))) + M > B 2]t-.00 t-00o

= lim P[V(Q(Ct)) > B 2 - M]. (6.24)

Above, (6.24) follows since ,c(t) -- oo as t -> oo. Using (6.22), we conclude for any

B2 > B1 + M that limt-_. P[V(Q(t)) > B2] < E. Thus, we have the weak stability of the
queue backlog process as desired, for all stricly doubly substochastic arrival rate matrices

A. We conclude that greedy maximal matching achieves 100% throughput.

6.C Proof of Theorem 6.5.1

As in the proof of Theorem 6.4.1 (see Appendix 6.A), the proof begins with a characteriza-

tion of the fluid limit functions Qij Vi, j, AijVi, j, bijVi, j, FS VS E Ssh (recall that we are

considering a single-hop algorithm), identically as in Appendix 2.B. It can be shown that

the fluid model equations (2.17)-(2.24) hold.

Let h : R+ -> R+ be defined according to h(t) = maxij Qi(t). Consider a regular time

t > 0 at which h(t) > 0. We must consider all possible queue configurations that realize

the maximum value h(t). The unique configurations (up to isomorphism) are represented

in Table 6.3.
Cases 1, 3, 7. Note that every possible switch configuration that would be selected

by a maximal scheduling algorithm must service VOQ1 1 . Consequently, we must have

D 11(t) = 1. Since each of these cases has h(t) = maxij Qjj (t) = Q1 1(t), and t is a regular

time,

h(t) = Q11(t)

= All - 1

< 0.

The above inequality holds because A is an admissible arrival rate matrix (equivalently, A
is doubly substochastic).

Cases 2, 5, 6, 9, 10-12, 16, 17. Note that every possible switch configuration that
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Table 6.3: Possible VOQ configurations that realize the maximum value h(t). Each of the 25
configurations is numbered. Additionally, the number of distinct configurations equivalent
to the one depicted is provided for each configuration.

0 0 0 0 0 0 0 0 00

00 0 0

1: 9 equiv. 2: 18 equiv. 3: 18 equiv. 4: 6 equiv. 5: 36 equiv. 6: 36 equiv. 7: 6 equiv.

L 00 0L 00 L0 00 L0 000iL i

8: 36 equiv. 9: 9 equiv. 10: 36 equiv. 11: 36 equiv. 12: 9 equiv. 13: 36 equiv. 14: 9 equiv.

15: 36 equiv. 16: 36 equiv. 17: 9 equiv. 18: 6 equiv. 19: 36 equiv. 20: 36 equiv. 21: 6 equiv.

22: 18 equiv. 23: 18 equiv. 24: 9 equiv. 25: 1 equiv.

would be selected by a maximal scheduling algorithm in each of these cases must service

either VOQ 1 or VOQ 12 . Thus, D1 1(t) + D 12(t) = 1. Since h(t) = Q (t) Q 12 (t), and t

is a regular time,

2h(t) = Qll(t) + Q12 (t)

= All + A12 - D1 i(t) - D12 (t)

= All + A12 - 1

< 0

The above inequality holds because A is doubly substochastic.

Cases 4, 8, 13-15, 18-20, 22-25. Note that every possible switch configuration that

would be selected by a maximal scheduling algorithm in each of these cases must service

either VOQ1 1 , VOQ 12 , or VOQ 13 . Thus, Dll(t) + D 12 (t) + D 13 (t) = 1. Since h(t) =
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Q11(t) = Q12( = Q13 (t), and t is a regular time,

3h(t) = Q11(t) + Q12(t) + Q13 (t)

= Al + A12 + A13 - D11 (t) - D12(t) - D 13(t)

= A11 + A12 + A13 - 1

< 0

The above inequality holds because A is doubly substochastic.

Case 21. (This is the only remaining case.) Note that this case can be tied to the 6-ring
network graph, as in Figure 6-2. The following are the switch configurations (equivalently,

link activations) employed by a maximal scheduler when the following VOQ's have dominant

backlogs: VOQ11 , VOQ 12, VOQ 22 , VOQ23 , VOQ 33, VOQ 31-

7r 1 = {(1,1),(2,2),(3,3)}, 7r2 = {(1, 2), (2,3),(3,1)},

73 = {(1,1), (2, 3)}, i4 = {(1, 2), (3, 3)}, 7r5 = {(2, 2), (3,1)}

Denote by S' the single-hop service configuration matrix corresponding to link activation

set 7r for i = 1,... ,5. Then j= 1 Fsi (t) = 1. Consequently, we must have

D11(t) = Fs1+ F 3, D 12 (t) = Fs2+Fs4, D22 (t) = Fs1 + Fs5 ,

D23 (t) = Fs2 + F53 , D33 (t) = Fsi + Fs4, D31(t) = Fs2 + Fss. (6.25)

Since t is a regular time, and using h(t) = maxj Q2, (t),

h(t) = A11 - P5 1 - FS3 = A12 - FS2 - FS4 = A22 - F$i - F 55

= A23 - Fs2 - FS3 = A33 - Fs - FS4 = A31 -Fs2 - Fs (6.26)

Straightforward algebraic manipulation of the above equations provides

All - A23 = A22 - A31 = A33 - A 2. (6.27)

We obtain similar equalities by following the same procedure for each of the 6 distinct

patterns that are isomorphic to Case 21. This provides each of the sets that make up A3
Note that while the doubly substochastic region A* is full-dimensional in R+, equation

(6.27) corresponds to the intersection of three hyperplanes, which has at most dimension

m - 3. Thus, the set of arrival rates at which the configuration depicted as Case 21 must

be considered, is lower-dimensional and has Lebesgue measure zero.

We have considered every possible case of VOQ configurations that realize the maximum
h(t). The only case for which the derivative h(t) could not be proved to be upper bounded
by zero, was Case 21. We have demonstrated that Case 21 need only be considered for
arrival rates belonging to A 3 , which is a set of Lebesgue measure zero in RI+.

137



6.D Proof of Theorem 6.5.2

As in the proof of Theorem 6.5.1, suppose the following VOQ's have dominant backlogs

at the regular time t > 0: VOQ1 1 ,VOQ 1 2 ,VOQ 22 ,VOQ 23 ,VOQ 33 ,VOQ 34 ,VOQ 44 ,VOQ 4 1.
The following matrix then represents the possible configurations employed by a maximal

weight scheduler when these VOQ's are dominant. In particular, each column represents a

valid maximal link activation. The rows of the matrix are ordered according to the above

sequence of dominant VOQ's.

1 1 1 1 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0

1 1 0 0 0 0 0 0 1 1

0 0 1 1 1 1 0 0 0 0
M=

1 0 0 0 0 0 1 1 1 0

0 1 1 0 1 0 0 0 0 1

1 0 0 1 0 1 1 0 0 0

0 0 0 0 1 0 0 1 1 1

We can infer from matrix M that there are 10 maximal configurations corresponding to

this set of dominant VOQ's. Let the service activation matrices corresponding to these

configurations be labeled Sl, ... , S10 . Then Fj1= Fs = 1, and similar to (6.25), we obtain

SDI(t) Fsi

M.

D 4 1() Fs10

Above, the matrix on the left has entries appearing in order of the VOQ's listed at the

beginning of this appendix. Since t is a regular time, we have the following analogue to

(6.26).

Aul [Fsi

h(t)e= -M I

A4 1  FS10

Thus, the set of arrival rates under which this 8-ring configuration of VOQ's is dominant is

A4 ={A>0:A=Mv+ce, eT =1,

A < M , eTU = 1,

It 0, v > 0,c > 0} (6.28)
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Above, the constraints A ; Mfi, e Tyt = 1 ensure that the arrival rates belong to the
capacity region. We also require the constraint c > 0, because this forces us to discard
arrival rates for which h(t) cannot be positive. Such cases cannot consequently lead to
difficulty in concluding stability of maximal weight scheduling.

Consider the following quantities:

ft=0.5x(1,0,0,0,1,0,0,0,0,0), f/=0.125x(0,1,1,1,0,1,1,1,1,1)

Then, we observe that Mji = MP + 0.125e. These quantities imply that 0.5e E A4.
Furthermore, the value 0.125 corresponds to c in (6.28). Noting that c is a proxy for h(t),
this implies that we cannot guarantee that h(t) is nonpositive when A = 0.5e.

Consider the first constraint in (6.28): A = Mu+ce. We can add the constraint eTv = 1
by using the equation vi = 1 - 20 . Consequently,

A=M 2 + ce,

.V10 _

which, through algebraic manipulation, can be expressed as

1 0 0 0 -1 -1 -1 -1 -1 -1 1

0 0 0 0 1 1 1 1 0 0 1

1 -1 -1 0 -1 -1 -1 -1 0 0 1 V2

0 1 1 011 00 0 01:
A= + (6.29)

1 -1 -1 -1 -1 -1 0 0 0 -1 1 vio

0 1 0 1 1 0 0 0 0 1 1 c

1 -1 0 -1 -1 0 0 -1 -1 -1 1

0 0 0 0 1 0 0 1 1 1 1

Note that the 8 x 10 matrix in the above equation (which we denote by Md) has full rank2

Consequently, if the values v2, ... , vio, c are unconstmined, they can be chosen to realize
any desired value of A. In other words, they can be chosen to reach a non-negligible set of
arrival rates in R+. Clearly however, these values are constrained in (6.28). Nevertheless,
we next show that A4 is non-negligible. Consider the values v2,..., vio = 0.1 and c = 0.05
in (6.29), which provide A = 0.45e. Clearly A < 0.5e = Mi, and we have that A E A4.

2 The rank of a matrix equals the maximum number of linearly independent columns of the matrix. An
m x n matrix is said to have full rank when its rank equals min{m, n}. [11
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Now consider c = 0.05 + el and vi = 0.1 + ei for i = 2, ... ,10. In (6.29), these values yield

E2

A = 0.45e + Md
E10

. E1

Note that there exists e* > 0 such that when |e I < e* for all i, the following properties are

maintained:
10

A<0.5e, c>0, Zvi<1.
i=2

These are exactly the conditions required to ensure A E A 4 . Since Md has full rank, ranging

over the set of values el, ... , e10 whose absolute values are each less than E* must span a

subset of R8 having nonzero Lebesgue measure. Since the stability properties provide no

additional constraints concerning arrival rates of VOQ's that are not dominant, the set of

arrival rates under which rate stability cannot be guaranteed must have nonzero Lebesgue

measure in R 1 n2
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Chapter 7

Enabling distributed throughput
maximization in wireless mesh
networks: A partitioning approach

The consideration of simple maximal weight scheduling algorithms in Chapter 6 focused on

the case of bipartite network graphs. In this chapter, we seek to broaden our understanding

of the impact of maximal weight scheduling to more general network structures. In particu-

lax, we wish to understand the network structures under which maximal weight scheduling

algorithms maximize throughput. Since maximal weight scheduling is highly conducive to

being implemented in a decentralized fashion, we focus our attention on wireless networks,
where decentralized control is particularly important. For wireless mesh networks, we de-

velop network partitioning algorithms to enable efficient decentralized scheduling algorithms

to achieve maximum throughput.

7.1 Overview and contributions

Wireless Mesh Networks (WMNs) have recently emerged as a solution for providing last-

mile Internet access [7]. Several such networks are already in use, including testbeds and

commercial deployments. A WMN consists of mesh routers, that form the network back-

bone, and mesh clients. Mesh routers axe rarely mobile and usually do not have power

constraints. The mesh routers are usually equipped with multiple wireless interfaces op-

erating in orthogonal channels. Therefore, a major challenge in the design and operation

of such networks is to allocate channels and schedule transmissions to efficiently share the

common spectrum among the mesh routers. Several recent works focused on multi-radio

multi-channel WMNs (e.g. [1,8,77,122]). Specifically, [8,122] study the issues of channel

allocation, scheduling, and routing in WMNs, assuming that the traffic statistics are given.

In this chapter, we study the issues of channel allocation and scheduling but unlike most

previous works, we do not assume that the traffic statistics are known. Alternatively, we

assume a stochastic arrival process and present a novel approach that enables throughput

maximization by distributed scheduling algorithms.
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Joint scheduling and routing in a slotted multihop wireless network with a stochastic

packet arrival process was considered in the seminal paper by Tassiulas and Ephremides

[150]. In that paper they presented the first centralized policy that is guaranteed to stabi-

lize the network (i.e. provide 100% throughput) whenever the arrival rates are within the

stability region. The results of [150] have been extended to various settings of wireless net-

works and input-queued switches (e.g. [6,97,111], and references therein). However, optimal

algorithms based on [150] require repeatedly solving a global optimization problem, taking

into account the queue backlog information for every link in the network. Obtaining a cen-

tralized solution to such a problem in a wireless network does not seem to be feasible, due

to the communication overhead associated with continuously collecting the queue backlog

information, and due to the limited processing capability available to the nodes. On the

other hand, distributed algorithms usually provide only approximate solutions, resulting in

significantly reduced throughput.

In this chapter, we show that the multi-radio and multi-channel capabilities of WMNs

provide an opportunity for simple deterministic distributed algorithms to obtain 100% through-

put. Mesh routers are usually equipped with multiple radios (transceivers) and can transmit

and receive on multiple channels simultaneously [1,8,77]. Hence, channels have to be allo-

cated to the links and the transmissions on each link have to be scheduled to avoid collisions.

By allocating different channels to different links, several non-interfering subnetworks can

be constructed. We study which subnetwork topologies enable simple distributed schedul-

ing algorithms to achieve 100% throughput. Based on these results, we develop network

partitioning algorithms that decompose the network into such subnetworks.

Although in arbitrary topologies the worst case performance of simple distributed max-

imal scheduling algorithms can be very low, there are some topologies in which they can

achieve 100% throughput. This observation is based on a recent theoretical work by Dimakis

and Walrand [51] in which they study the performance of the Longest Queue First (LQF)

scheduling algorithm in a graph of interfering queues'. The LQF algorithm is a greedy

maximal weight scheduling algorithm that selects the set of served queues greedily accord-

ing to the queue lengths. We note that unlike a maximum weight (i.e. optimal) solution

a maximal weight solution can be easily obtained in a distributed manner. Dimakis and

Walrand [51] present sufficient conditions for a maximal weight algorithm to provide 100%

throughput. These conditions are referred to as Local Pooling (LoP) and are related to the

properties of all maximal independent sets in the conflict graph.

In this chapter we conduct the first thorough study of the implications of the LoP

conditions on the network performance. We start by presenting a motivating example

demonstrating that channel allocation algorithms that take into account LoP can enable

distributed throughput maximization while increasing the overall capacity. We then conduct

an extensive numerical study of the satisfaction of LoP by conflict graphs of up to 7 nodes.

We show that out of 1,252 graphs, only 14 do not satisfy LoP. It is an indication of the

strength of maximal weight scheduling for achieving 100% throughput regardless of the

network topology, aside from a few "bad" topologies. Due to computational limitations,

'A graph of interfering queues can be constructed from the network graph according to the interference
constraints and is usually referred to as an interference or conflict graph [721.
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exhaustively verifying the satisfaction of LoP in graphs with more than 7 nodes seems

infeasible. In order to be able to utilize larger graphs, we study what general properties

of conflict graphs assist or hinder the LoP conditions. For example, we show that cliques

(complete graphs) that are connected to each other in different manners satisfy LoP. On
the other hand, we show that all n node ring graphs (with n > 8) do not satisfy LoP.

These observations provide several building blocks for partitioning a graph into sub-

graphs satisfying LoP. In order to demonstrate this capability and for the ease of presen-

tation, we focus on scheduling under primary interference constraints2 (studied in [36, 39,
104, 136, 160, 164, 169]). For example, we show that a tree network graph, when subject

to the primary interference constraints, yields an interference graph which satisfies LoP.

Hence, in such a tree, maximal weight algorithms achieve 100% throughput. We also study

bipartite network graphs that provide insights regarding the number of required subgraphs.
For instance, we show that in any K 2,, bipartite graph (i.e. a 2 x n input-queued switch)
maximal weight matching algorithms achieve 100% throughput.

Building upon our observations, we design channel allocation algorithms. Similarly to [8]
and to the static channel assignment in [77], we assume that a channel is assigned to a radio

interface for an extended period of time. Under this assumption, using the minimum number

of channels requires a partitioning of the network into the minimum number of subnetworks

satisfying LoP. The general LoP conditions are extremely challenging to incorporate into a

channel allocation algorithm. Fortunately, our study provides some useful building blocks.
Since tree network graphs satisfy LoP, a possible approach (which we pursue) is to partition

the network into non-overlapping forests, such that each edge will be part of a single forest
and each forest will use a different channel. This problem is closely related to the matroid

intersection and matroid partitioning problems.

Given k channels, the problem of partitioning the graph into k forests such that the
number of edges included in the forests is maximized is referred to as the k-forest prob-
lem [591. A simple approach is to obtain an approximate solution by a Breadth First Search
(BFS) algorithm. Alternatively, since the k-forest problem is actually a specific case of a
Matroid Cardinality Intersection problem, an optimal solution can be found by the Matroid

Cardinality Intersection (MCI) algorithm of [85] (having polynomial complexity). We show
that the MCI algorithm can be adapted to take into account the scenario in which different
nodes have different numbers of radios. Using either the BFS algorithm or the MCI algo-
rithm enables a simple distributed scheduling algorithm to achieve the capacity region (i.e.
achieve 100% throughput). Yet, the capacity region itself may not be the best possible.
This results from the undesirable property that the sizes (number of edges) of the forests
are unbalanced. Therefore, and since the capacity of the largest forest may be significantly
lower than the capacity of the smallest forest, the network capacity may be affected.

We present three algorithms that aim to expand the capacity region, while maintaining

the LoP conditions in all the subnetworks. The main objective is to balance the number of
edges across channels and to reduce the node degrees in each channel. Two of these novel
capacity expansion algorithms make use of augmenting paths (in the spirit of the MCI

2 The approach can be extended to more realistic interference constraints and to joint routing and schedul-
ing.
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algorithm of [85]) to balance the node degree across channels. Thus, they can be viewed as

balanced Matroid Cardinality Intersection algorithms. We evaluate the performance of the
algorithms via simulation. We show that the MCI algorithm significantly outperforms the

BFS algorithms. We also compare the performance of the capacity expansion algorithms

and the MCI algorithm and show that a large capacity improvement can be gained by using

these algorithms. We conclude by exploring the tradeoffs between the capacities and the

algorithms' complexities.

The main contributions of this chapter are two-fold. First, we conduct a rigorous study
of the properties of network graphs satisfying Local Pooling. The second contribution is the

development of network partitioning (i.e. channel allocation) algorithms that generate sub-
networks with large capacity regions, while enabling distributed throughput maximization
in each of the subnetworks.

To the best of our knowledge, this is the first attempt to study the algorithmic implica-
tions of Local Pooling. This work is not only different from previous works on distributed

stability, due to the focus on partitioning mesh networks, but also different from previous

works on optimizing mesh networks that mostly rely on traffic statistics.

7.2 Model

We consider the backbone of a Wireless Mesh Network modeled by an undirected network

graph GN = (V, EN), where V = {1,. .. , n} is the set of nodes (mesh routers) and EN C
{(i, j) : i, j E V} is the set of bi-directional links, with m A IEN . Depending on the

context, we denote a link either by (i, j) or by ek. Note that unlike the scenario studied for

switching and optical network scenarios in previous chapters, GN need not be a complete

graph.

Different wireless technologies pose different constraints on the set of transmissions that

can take place simultaneously. For example, under primary interference constraints, the

set of possible transmissions is the set of all possible matchings on GN. More generally,
in many cases an interference graph (also known as a conflict graph) GI = (V, Ei) can

be defined based on the network graph GN [72]. We assign V A EN. Thus, each edge ej

in the network graph is represented by a vertex vi of the interference graph and an edge

(vi, vj) in the interference graph indicates a conflict between network graph links ej and

ej (i.e. transmissions on ej and ej cannot take place simultaneously). In graph theoretic

terminology, the interference graph resulting from primary interference constraints is called

a line graph [69]. For example, Figure 7-1 illustrates a network graph and the corresponding

interference graph under primary interference constraints (i.e. the line graph corresponding

to the network graph). We note that the model can be easily generalized to capture network
graphs with directional links. In such a case, link (i, j) may interfere with different links

than those link (j, i) interferes with. Accordingly, the interference graph will include a node
for each directional link.

We consider the application of Local Pooling to multi-radio multi-channel WMNs. Fol-
lowing the model of [8], we assume that each node v is equipped with R(v) interfaces

(radios). There are k available orthogonal channels and it is assumed that each of the R(v)
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V2 V5 1 1 0 0
e2 e5 0 0 1 0

(a) el (b) vi (c) M(Vi) = 0 0 0 1

e3 e4 1 0 1 0
V3 V4 0 1 0 1

Figure 7-1: (a) A network graph GN, (b) the corresponding interference graph GI under
the primary interference constraints, and (c) the matrix M(V) of maximal independent
sets in G1 .

interfaces operates on a different channel. Similarly to [8] and to the static model of [77], we

consider a static channel allocation model in which a channel is allocated to each interface

for an extended period of time. Such an approach enables the use of commodity 802.11
radios [8]. We note that the extension of the model for a dynamic channel allocation is

a subject for further research. We assume that transmissions in different channels cannot

collide. Therefore, once the different channels are allocated, k disjoint interference graphs

are generated.

For simplicity of presentation, we consider single-hop bi-directional traffic. Under this

assumption, the joint routing and scheduling problem reduces to a scheduling problem.

This is why GN can be treated as an undirected graph. Consequently, under the general

model of Chapter 2, we restrict the available service activations to the single-hop service

activation set, Ssh. Naturally, this implies that the network capacity region of arrival rates

is the single-hop region A*h. As mentioned above, the model can be extended to more

general scenarios. In this wireless setting, which remains the focus of the remainder of this

thesis, IIN denotes the set of all feasible link activations in the network graph GN, where
Jr = (7ri, (i, j) E EN) E fIN is a (0, 1) column vector representing a possible link activation.

Under primary interference constraints, 1 1 N includes all possible matchings, while in general,
it corresponds to all independent sets in the interference graph GI. Following the notation

of [51], we denote by M(V) the matrix that includes all the maximal independent sets in

GI (i.e. all the maximal elements of HN). For example, Figure 7-1(c) shows the matrix
M(V) for the interference graph GI in Figure 7-1(b).

Given the above model, Algorithm 1 (the algorithm of Tassiulas and Ephremides [150]) is
throughput optimal. However, the algorithm must find the maximum weight independent set

in GI at each time slot. Namely, it has to solve an NP-Complete problem in every time slot.

In the context of switch scheduling and primary interference constraints, this algorithm has

to schedule the edges of the Maximum Weight Matching at each time slot, where the edge

weights are the queue sizes. The maximum weight matching in any graph can be found in

0(n3 ) computation time, using a centralized algorithm [85]. However in wireless networks,
implementing a centralized algorithm is not feasible and distributed algorithms (e.g. [71])
can obtain only an approximate solution, resulting in a fractional throughput. Hence, even
under very simple transmission constraints, it is difficult to obtain 100% throughput in a
distributed manner. This motivates us to develop channel allocation methods that will
enable simple distributed scheduling algorithms to obtain 100% throughput. Therefore, we
provide a general definition of the Channel Allocation Problem below. In Section 7.5 we
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will develop algorithms for specific versions of this problem.

Definition 7.2.1 (Static Channel Allocation Problem) Given a network graph GN,

k channels, and R(v) radios at each node v G V, assign channels to links (i,j) V(ij) G EN

such that at most R(v) channels are used by links adjacent to v and simple (e.g. greedy)

distributed algorithms are stable in each subnetwork operating in a different channel.

Observe that the Static Channel Allocation Problem binds each network link to a single

(or possibly multiple) channels, and maintains that allocation for an extended period of

time. This is in contrast to a network that employs Dynamic Channel Allocation, where

the channel(s) assigned to each link can vary dynamically with time, possibly in response to

traffic variations. Dynamic channel allocation can be enabled at the expense of additional

negotiation between network elements [77]. Under static channel allocation, a network node

must only decide which link(s) it will send packets across, since the channel associated with

each link is fixed.

Since the configurations available to a network employing dynamic channel allocation

subsume those of a network employing static channel allocation, one would expect that the

throughput achievable under dynamic channel allocation is always equal or greater than

that under static channel allocation. Under maximum weight scheduling, this must indeed

be the case by Theorem 2.3.1, since the set of service activation matrices Sstatic C Sdynamic.

However, as we will show in Section 7.3.2, there exist specific instances where a distributed

maximal weight scheduler suffers throughput loss under dynamic channel allocation next

to a properly configured network employing static channel allocation. For general mesh

networks, our studies of random networks in Section 7.6 demonstrate that dynamic channel

allocation does indeed achieve equal or better throughput than static allocation in most

instances.

We stress that direct comparison of throughput performance between a network em-

ploying static or dynamic channel allocation cannot be considered fair, since a network

employing dynamic channel allocation is in essence significantly more capable than a net-

work employing static allocation. Nevertheless, the relative performance of static versus

dynamic channel allocation is of interest, and we attempt to quantify it in our numerical

studies.

7.2.1 Extensions of the network model

The focus of the wireless chapters of this thesis will be exclusively on wireless networks

in which a well-defined interference (or conflict) graph exists. Recent studies, notably

[105,144], suggest that a more appropriate model would have simultaneous communication

constrained by signal-to-interference-plus-noise-ratio (SINR). In an SINR-constrained net-

work, a link activation 7r can be used for communication if the SINR at each receiving node

exceeds a certain threshold. Consequently, there is a well-defined link activation set 1 1N
and service activation set S under an SINR-constrained system, which implies that such a

model remains within the framework of Tassiulas and Ephremides [150] (see [110,111] for

early applications of this connection). However, since there is no interference graph in this

setting, we cannot apply scheduling algorithms for finding maximal weight independent sets
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of an interference graph. Nevertheless, the Local Pooling principle can be extended to an

SINR-constrained system. We discuss this possibility in the conclusions at the end of the

chapter.

Another extension of the wireless network model is to links having nonzero probability of

transmission failure. This is also a feature of the Tassiulas and Ephremides framework [150],
and can easily be incorporated into our model.

7.3 Local Pooling conditions

7.3.1 Definitions

In this section we restate the definition and implications of Local Pooling (LoP) presented

in [51]. We also present and demonstrate a somewhat simpler set of definitions. Recall that

M(V) is the collection of maximal independent vertex sets on G, organized as a matrix

(an example appears in Figure 7-1). Denote by conv(M) the convex hull of the columns of

matrix M. We now provide the definition of LoP from [51]3.

Definition 7.3.1 (Local Pooling - LoP [51]) The set of nodes (queues) V C V satis-

fies local pooling, if there exists a nonzero vector a c R such that aT4/ is a positive

constant for all 0 c conv(M(V)). Local pooling is satised, if every V C V satisfies local

pooling.

In this chapter, we separate the definition of Local Pooling to two different definitions

and present a somewhat simpler definition for the satisfaction of LoP by a set of nodes.

We show that although this definition does not take into account the convex hull of M, it

is equivalent to the definition in [51]. Recall that e represents a vector having each entry

equal to unity. We deliberately avoid specifying its size, because it will be obvious by the

context of its use.

Definition 7.3.2 (Subgraph Local Pooling - SLoP) An inter-ference graph G satis-

fies Subgraph Local Pooling, if there exists a E R1" and c > 0 such that aTM(V) = ceT.

Lemma 7.3.1 The definition of Subgraph Local Pooling and the satisfaction of Local Pool-

ing by a set of nodes (Definition 7.3.1) are equivalent.

Proof: Suppose the set of nodes V C V satisfies local pooling as defined in Definition

7.3.1. Then, there exists c > 0 and a E R' 1 such that aTd = c for all 0 E conv(M(V)).

Clearly each column of M(V) belongs to conv(M(V)), which gives aTM(V) = ceT. Thus

the subgraph of G1 over nodeset V satisfies SLoP. Conversely, suppose that the subgraph

of GI over nodeset V satisfies SLoP. Then there exist c > 0 and a E R+ such that

aTM(V) = ceT. Now consider 0 E conv(M(V)), which must equal by definition M(V)3
for 0 E R|M(V)l with eT3 = Ej#j = 1, 3j ;> 0, Vj and IM(V)I equal to the number of

columns in M(V). Then, we have aT = aM(V)3 = ceTO = c. Note that this value is

3This statement of the LoP conditions can be weakened if certain restrictions are made on the arrival
processes [51].
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constant regardless of the choice of 4. Thus, the set of nodes V satisfies local pooling as

defined in Definition 7.3.1.

We can now define the notion of Overall Local Pooling which requires that Subgraph

Local Pooling (SLoP) will be satisfied in any subgraph of a given interference graph induced

by selecting a subset of the nodes.

Definition 7.3.3 (Overall Local Pooling - OLoP) Interference graph GI satisfies Over-

all Local Pooling if each induced subgraph over the nodes V C V satisfies SLoP.

We continue with the example of the interference graph GI and the corresponding matrix

M(V) depicted in Figure 7-1. We can see that GI satisfies SLoP since for a = (1, 1,1,1, 1),
aTM(VI) = 2eT. Similarly, the subgraph composed of the vertex set {2,3,4} satisfies

SLoP, since for a = (1,1,0), aTM({2,3,4}) = eT. It can be shown that all subgraphs of

GI satisfy SLoP, and therefore, GI satisfies OLoP.

We can now describe the stability of the system when the service in each time slot is

scheduled according to the Longest Queue First (LQF) algorithm. This algorithm is an

iterative greedy algorithm that selects the node of G with the longest queue, and removes

it and its neighbors from the interference graph. This process is repeated successively until

no nodes remain in the graph. When two queues have the same length a tie-breaking rule

has to be applied. The set of selected nodes is a maximal independent set in the interference

graph. Hence, since the nodes are selected according to their weights, we will refer to the

LQF algorithm as the Maximal Weight Independent Set algorithm. Such a greedy algorithm

can be easily implemented in a distributed manner. In [51] the following theorem is proved:

Theorem 7.3.1 (Dimakis and Walrand, 2006 [51]) If interference graph GI satisfies

the OLoP conditions, a Maximal Weight Independent Set scheduling algorithm achieves

100% throughput.

To conclude, the satisfaction of OLoP by an interference graph is a sufficient condition

for distributed maximal weight algorithm to be throughput optimal (i.e. in that case, there

is no need to obtain an optimal solution to (2.10) in each slot).

7.3.2 Channel allocation example

The following simple example demonstrates the application of the LoP conditions, presented

above, to a channel allocation (network partitioning) problem. We consider the 6-node

ring network graph, depicted on the left in Figure 7-2. Under the primary interference

constraints, this graph has a corresponding 6-node ring interference graph representation,
which is illustrated on the right in Figure 7-2. Under primary interference constraints,
the maximal weight independent set in the interference graph is equivalent to the maximal

weight matching in the network graph. A maximal weight matching can be obtained in a

distributed manner by the greedy algorithm of Hoepman [71].

If a single radio is located at each node of the 6-node ring illustrated in Figure 7-2(a),
then no two adjacent edges can be simultaneously active. The capacity region A* is then
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Figure 7-2: A 6-node ring network graph and its interference graph.

characterized by the following inequalities:

A12 + A23 < b, A23 + A34  b, A34 + A45 < b,

A45 + A56  b, A56 + A6 1  b, A61 + A12  b, (7.1)

where b = 1. This capacity region can be achieved by a centralized algorithm that finds a

maximum weight matching (i.e. obtains the optimal solution to (2.10)) in each time slot.

It was shown in [51] that in the 6-node ring, OLoP does not hold, and that in general a

maximal weight matching algorithm does not achieve 100% throughput in the 6-node ring4 .

According to [901, a maximal weight matching algorithm can only guarantee stability for

arrival rates that are 50% of the rates in the region above (A*). Hence, the guaranteed

distributedly achievable region is given by (7.1) with b = 0.5.

If we allow two channels to be used simultaneously, and provide two transceivers to

each node, then in every time slot a node can transmit two packets on the selected link

(similarly to a speedup of two, defined in [49]). Thus, the guaranteed achievable region

(using maximal weight matching) is again given by (7.1) with b = 1.

Alternatively, links (1,2), (2,3), and (3,4) can use one channel, while the remaining

links use the other channel. The interference graph on each channel is now a tree (e.g. the

line connecting V12 , V23 , and V34). Since [51] shows that the maximal weight independent

set algorithm is throughput optimal in tree interference graphs, the distributedly achievable

stability region is now given by

A12 + A23 5 1, A23 + A34  1,

A45 + A56 ! 1, A56 + A61 < 1. (7.2)

This provides a strict performance improvement over the region achievable by using two

channels (speedup of two) in the interference graph represented in 7-2(b). Yet, it is clear that

this channel allocation is not the best possible: the allocation in which links (1, 2), (3, 4),
and (5,6) use one channel, while the remaining links use the other channel can provide each
network link with a stable rate of one unit per time slot (i.e. A 1 V(i, j) E EN)-

4In [51], it was shown that under restricted arrival processes (subject to a variance constraint and a large
deviation bound), a maximal weight matching algorithm is stable in the 6-node ring. In this work the arrival
processes are not restricted in this way.
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Figure 7-3: Average aggregate queue backlog as a function of uniform arrival rate A, for
different partitioning strategies, when each strategy is used in conjunction with maximal
weight scheduling.

To supplement the above theoretical discussion, we have conducted numerical simu-

lations of the performance of the 6-ring under the different partitioning strategies. Our

first simulation subjected the network to deterministic fluid arrivals, with each edge hav-

ing a total load of A packets per slot. In Figure 7-3, the average aggregate queue backlog

is plotted as a function of A. Observe that the first proposed partitioning scheme (links

(1, 2), (2, 3), (3, 4) on one channel, and the remaining links on the other channel) becomes

unstable at A = 0.5. For the case of the unpartitioned network, we observe that the network

achieves approximately 85% throughput, which is better than the 50% lower bound we have

quoted above. The improved partitioning scheme ((1, 2), (3, 4), (5,6) on one channel, and

the remaining links on the other) does not destabilize below A = 1, and in fact maintains es-

sentially empty queues at all times. Figure 7-3 clearly demonstrates that the unpartitioned

network suffers throughput loss next to the well-partitioned network.

We have additionally considered the same network, subject to Poisson arrivals. Al-
though the result of [51] implies that the unpartitioned network will not suffer throughput

loss under this arrival process, we observe that the system does suffer a significant degra-

dation in delay performance relative to the well-partitioned network. In Figure 7-4, we plot

the aggregate queue backlog in the network as a function of time, for the unpartitioned and

well-partitioned networks, when each edge has a load of A = 0.98 packets per slot. The

unpartitioned network suffers significant variations in aggregate backlog, while the parti-

tioned network maintains a relatively steady level of backlog. This suggests that decoupling
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Figure 7-4: Sample paths of aggregate queue backlog for the unpartitioned and well-
partitioned 6-ring under Poisson arrivals.

neighboring edges through partitioning can lead to beneficial delay performance properties.

Figure 7-5 shows the average aggregate backlog as a function of uniform arrival rate A for

the partitioned and unpartitioned networks.

For a general network operating under primary interference constraints with a speedup

of two (similar to allocating two channels to each link), a greedy maximal weight algorithm

(implementable in a distributed manner) can achieve the network stability region A* [90].
Our example above shows for a particular network scenario that when two channels are
allocated such that each component satisfies OLoP, the stability region (that can be achieved

by a distributed algorithm) is strictly larger than the original stability region A*. The

following lemma shows that such a strict performance improvement can be obtained in any
network with primary interference constraints that can be partitioned into two non-trivial
components satisfying OLoP.

Lemma 7.3.2 Under primary interference constraints, if a network GN can be partitioned
into two subnetworks G1, G2 satisfying OLoP, the distributedly achievable joint stability re-
gion of G' and G2 is strictly larger than the stability region of GN (achievable distributedly
by a speedup of two).

Proof: See Appendix 7.A. U

The above example demonstrates that careful channel allocation taking into account
topologies that satisfy OLoP can provide provable and significant improvements over arbi-
trary channel allocation. Moreover, it shows that partitioning into different OLoP-satisfying

151



500C

' 4500-

c 4000-

8%3500-C
c.
= 3000-C.)

000
U2500-

(D

Cr 2000

1500 -

Co 1000

500

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Uniform arrival rate (packets/timeslot)

Figure 7-5: Average aggregate queue backlog as a function of uniform arrival rate A, for the
unpartitioned and well-partitioned 6-ring under Poisson arrivals.

components can result in different capacity regions. Thus, it provides the motivation to

study the characteristics of network topologies satisfying OLoP and to design channel allo-

cation algorithms that exploit such characteristics.

7.4 A study of Local Pooling

7.4.1 Exhaustive numerical search

We performed a numerical study in which we searched over all interference graphs of up to

7 nodes. We employed Mathematica to identify all simple graphs, and Matlab to determine

the maximal configurations (i.e. to obtain the matrices M(V)) and to verify the satisfaction

of the OLoP conditions for each interference graph. The OLoP conditions are based on the

SLoP conditions that were verified using the following linear program presented in [51].

c* = max c

s.t. M(VI)p ;>

eT t

eT V=

A, V E RTn

c E R

M(V)v + ce
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It has been shown in [51, Prop. 1) that the graph GI satisfies SLoP if and only if c* = 0.
In order to simplify the presentation of the numerical results, we first show that the

OLoP conditions are satisfied by the disjoint union of two graphs (not sharing any vertices
in common) satisfying the OLoP conditions. This allowed us to restrict our search to
connected simple graphs.

Proposition 7.4.1 A graph Gj = G' U G2 (disjoint union) satisfies OLoP, if and only if
G' and G2 satisfy OLoP.

Proof: Suppose GI satisfies OLoP. Consider all induced subgraphs restricted to the
vertices of G}. Then, any such induced subgraph satisfies the SLoP conditions by our
assumption that GI satisfies OLoP. Thus, G} satisfies OLoP. The same reasoning provides
that G2 satisfies OLoP.

Suppose that G1 and G2 satisfy OLoP. Then, any induced subgraph of GI can be split
into disjoint induced subgraphs on G1 and G . For the induced graph on G}, our assumption
provides that there exists nonzero ai ;> 0 that multiplies any maximal independent vector
on the induced subgraph to yield a constant c1. Similarly, there exists a 2 and c2 for the
induced subgraph on G2. Every maximal independent set of the induced subgraph of G
must be the disjoint union of a maximal independent set of the induced subgraph on GJ and
a maximal independent set of the induced subgraph on G2. Thus, the augmented vector

(aI, a 2) must yield a constant value of ci + c2 for all maximal independent sets of the
induced subgraph on G1 . U

We note that in the following section we will present several additional theoretical results
regarding LoP in general graphs. A specific case of one of the results that will be presented
there (Lemma 7.4.1) is that graphs that have a node with degree 1 satisfy SLoP. This
allowed us to restrict our search to graphs that do not have vertices of degree 1, thereby
significantly reducing the computation time. We first considered all connected interference
graphs having up to 5 vertices that do not have vertices of degree 1. There are 15 such
graphs. We obtained the following numerical result.

Numerical Result 7.4.1 All connected simple graphs of up to 5 nodes that do not have
vertices of degree 1 satisfy SLoP.

This immediately implies that all graphs having up to 5 vertices (there are 52 such graphs)
satisfy OLoP. Next, we considered graphs of 6 vertices (there are 61 such connected graphs
without degree 1) and obtained the following result.

Numerical Result 7.4.2 All graphs of 6 vertices except the 6-node ring satisfy SLoP.

Numerical Results 7.4.1 and 7.4.2 together imply that all graphs of up to 6 vertices except
the 6-node ring satisfy OLoP.

Finally, we considered all graphs of 7 vertices. We first removed from consideration all
such graphs having a 6-ring as an induced subgraph, since due to the failure of SLoP in
a 6-ring, OLoP fails in these graphs by definition. There are 12 such graphs, and their
general form is depicted in Figure 7-6(a). Among the remaining graphs of 7 vertices, we
can then guarantee that there are no induced subgraphs, having 6 vertices or fewer, that
fail the SLoP conditions.
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Figure 7-6: 7-node graphs that fail OLoP: (a) configurations where the induced graph over
the outer 6 nodes is a 6-ring (the dotted lines indicate edges that can exist), and (b) the
only 7-node graph that has no induced 6-ring subgraph and fails SLoP.

Numerical Result 7.4.3 There is one graph of 7 vertices which does not have an induced

6-ring on any subset of 6 nodes that fails the SLoP conditions. This graph is depicted in

Figure 7-6(b).

To conclude, almost all 1,252 graphs of up to 7 nodes satisfy OLoP (specifically, 14 fail

OLoP). All attempts at numerical evaluations for graphs of greater than 7 vertices suffered

computational difficulty. Therefore, in the following section we focus on generating large

graphs satisfying OLoP from small components.

7.4.2 Constructive approach

Our first observation is about connecting a graph and a clique (complete graph).

Lemma 7.4.1 If G1 satisfies OLoP, then the graph G*, which consists of G1 sharing a

single vertex with clique KI, I > 2, satisfies OLoP.

Proof: Assume that GI satisfies OLoP. Denote by v the vertex of GI that is shared

with clique K. We need only consider the induced subgraphs of G* containing a vertex

V* = v belonging to the clique KI, since all other induced subgraphs are subgraphs of GI and

satisfy SLoP by our initial assumption. Clearly, the maximal independent sets of any such

induced subgraph (whose vertex set is designated by V) either include vertex v or v*, but

never both vertices. Consequently, the vector a having all zero entries except at the indices

corresponding to vertices of K, where the entries are set to 1, yields aTM(V) = eT. Thus,
such a subgraph satisfies SLoP. This holds for all induced subgraphs of G* that include v*,

and we conclude that GI satisfies OLoP. E

From the proof of Lemma 7.4.1 it can be seen that a graph that has a node with degree

1 (such a graph can be viewed as a graph GI sharing a node with K 2 ) satisfies SLoP.

Recall that we have used this result in Section 7.4.1 to reduce the number of graphs in

our numerical search. Moreover, the observation in [51] that any interference graph that

is a tree (or forest) satisfies OLoP can be immediately obtained using Lemma 7.4.1. We

note that in Section 7.4.3 we will show that even under the simple primary interference

constraints, the only interference graph that can be a tree is a line. Therefore, we now

study more complicated interference graphs.

Lemma 7.4.2 Every complete graph satisfies OLoP.
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Figure 7-7: An interference graph composed of two cliques and the corresponding tree of
cliques graph.

Proof: Consider the complete graph GI = KI. Then clearly any subset of the nodes of
GI, labeled V, also generates a complete induced subgraph. Each maximal independent set
of a complete graph can only contain one vertex, from which we conclude that M(V) is the
identity matrix of size IVI. Thus, we can use a = e, which yields aTM(V) = eT for any
V, from which we conclude that every induced subgraph satisfies SLoP, and consequently

that GI satisfies OLoP. 0

We define a tree of cliques as follows (an example is provided in Figure 7-7) and derive

the following Theorem.

Definition 7.4.1 A tree of cliques is composed of cliques connected to each other in a tree

structure. Its nodes can be equated to cliques and its edges imply a shared vertex between

two adjacent cliques. No vertex can be shared by more than two adjacent cliques.

Theorem 7.4.1 A tree of cliques satisfies OLoP.

Proof: Consider any clique G} on the tree. By Lemma 7.4.2 this clique satisfies OLoP.

Then, consider any clique adjacent to G} in the tree of cliques, and denote the graph of the

two combined cliques GI. Since G} and the adjacent clique share only a single vertex, we

can apply Lemma 7.4.1 to conclude that G2 satisfies OLoP. By iteratively adding successive

cliques to the overall graph under consideration, we see that each resulting graph must

satisfy OLoP by Lemma 7.4.1. Thus, the overall tree of cliques must satisfy OLoP. U

The next theorem considers cliques connected by disjoint edges, where no two connecting

edges share any vertices in common. Consequently, at most min{li,1 2 } edges can connect

K, and K2 while maintaining an overall simple graph. The proof considers four possible

subgraph configurations and demonstrates SLoP for each type. The main idea is that

each clique usually contributes a single vertex to every maximal independent set of each

subgraph.

Theorem 7.4.2 If two cliques are connected by any number of disjoint edges, the combined

graph satisfies OLoP.

155



Proof: See Appendix 7.B. U

We now consider a generalized structure of the one defined in Definition 7.4.1, which we

term "tree-of-blocks". Here, we generalize the types of structures that can correspond to

each vertex of a tree. We have already shown that a clique is one such structure. We next

show that two cliques connected by any number of disjoint edges is another such structure.

As before, we require that two "blocks" can only share at most one vertex in common. The

proof of the following theorem is along similar lines as the proof of Theorem 7.4.2.

Theorem 7.4.3 A "tree-of-blocks", where each block is either a clique K 1, 1 > 2 or a pair

of cliques K 1,, K 2 , 11,12 1, connected by any number of disjoint edges, satisfies OLoP.

Proof: See Appendix 7.C.

7.4.3 Primary interference constraints

As mentioned above, the primary interference constraints yield an interference graph GI

which is the line graph of the network graph GN. In this section, we study the restrictions

imposed on such interference graphs. We begin by considering the only 7-node graph, which

does not have an induced 6-ring, that failed SLoP (depicted in Figure 7-6(b)).

Proposition 7.4.2 Under primary interference constraints, the interference graph pre-

sented in Figure 7-6(b) cannot correspond to any valid network graph.

Proof: According to [69] a graph is a line graph, if and only if it does not contain

any one of 9 specific induced subgraphs. In particular, the following graph is one of the 9

subgraphs, with vertices of Figure 7-6(b) labeled appropriately to show the correspondence.

V3 V2

V4 V6

V1 V7

We conclude that only the 6-ring leads to failure of the OLoP conditions in any network

graph having 7 edges or fewer. By similar arguments, we can show that other interference

graphs cannot exist under primary interference constraints. For example, we can show that

there is no network graph whose interference graph (line graph) is a tree having a node

degree greater or equal to 3. Any such tree has as an induced subgraph the complete

bipartite graph K 1 ,3 (also known as the "claw"). According to [69], the existence of such

an induced subgraph precludes the possibility that this interference graph is the line graph

of any network graph.

Although there is no interference graph that is a tree, a network graph that is a tree

can of course exist. It can be shown that the interference graph of such a network graph is
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Figure 7-8: Example of a network graph whose interference graph satisfies OLoP.

always a tree of cliques, defined in Definition 7.4.1. The following corollary is an immediate

result of Theorem 7.4.1. According to this corollary, maximal weight matching algorithms

are stable (provide 100% throughput) in trees. To the best of our knowledge, this corollary

provides the first non-trivial network structure in which simple distributed algorithms are

stable. The channel allocation algorithms that will be presented in Section 7.5 are based

on this observation.

Corollary 7.4.1 Under primary interference constraints, the interference graph of a tree

network graph satisfies OLoP.

Based on the results presented in Section 7.4.2, we can construct other non-trivial net-

works in which maximal weight matching algorithms are stable. For example, Theorem

7.4.3 implies that the network described in Figure 7-8 satisfies OLoP, and thus is stable

under distributed scheduling. Developing network partitioning algorithms that efficiently

take advantage of such topologies is a subject for further research.

We have obtained additional results that concern bipartite graphs. Although mesh net-

works are usually not bipartite, bipartite graphs provide insight regarding the performance

of our partitioning algorithms. Since input-queued switches are bipartite graphs with pri-

mary interference constraints, an additional byproduct is insight regarding switches. The

following corollary generalizes the result of Chapter 6 (presented in [28]) regarding the 2 x 2

input-queued switch.

Corollary 7.4.2 A maximal weight matching algorithm achieves 100% throughput in a K 2 ,1
bipartite graph (i.e. in a 2 x 1 input-queued switch).

Proof: A K 2 ,1 bipartite network graph is depicted on the left in Figure 7-9. Its

interference graph can then easily be shown to be two cliques of size I (K), connected by
I disjoint edges, as depicted on the right in Figure 7-9. The result is then directly derived
from Theorem 7.4.2. 0

It follows that a K 4 ,1 bipartite graph can be partitioned into two subgraphs, each of
whose interference graphs satisfies OLoP. In Section 7.5.2, we will use this observation to
evaluate the performance of our channel allocation algorithms.
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Figure 7-9: A network graph for a K 2 ,1 bipartite graph (2 x I input-queued switch) and the
corresponding interference graph.

7.5 Channel allocation

The Channel Allocation Problem, introduced in Definition 7.2.1, seeks to assign a channel

to every link such that each partition (operating in a different channel) can achieve 100%

throughput by a distributed maximal weight scheduling algorithm. In this section our

objective is to develop channel allocation algorithms that: (i) provide a large stability region

and (ii) allow simple distributed algorithms to achieve 100% throughput in this region. As

in Section 7.4.3, in order to demonstrate the presented concept, we assume that primary

interference constraints hold.

In terms of LoP conditions, we seek to partition the network edges into channels such

that the interference graph in each channel satisfies OLoP. The OLoP requirement is ex-

tremely challenging to incorporate into an optimization algorithm that generates a channel

allocation, because it seeks the SLoP property for every subgraph on each channel. How-

ever, Corollary 7.4.1 shows that network graphs that are trees satisfy OLoP. Thus, it is

sufficient to partition the edges of the network graph into channels such that each channel's

network graph is a forest. This is the basis for our channel allocation algorithms.

Our channel allocation problem is equivalent to a coloring problem on the network graph.

Namely, we seek to color the network edges such that edges of a single color do not compose

a cycle (i.e. each color composes a forest). The minimum number of colors is known as the

graph arboricity and can be found by an 0(m2 ) algorithm [59].

Initially, we assume that all nodes have the same number of radios and that this number

is equal to the number of channels (i.e. R(v) = k Vv E V). 5 When the number of available

colors (channels) k is fixed, the k-forest problem [59,85] seeks to find the maximum number

of edges of the graph that can be colored using only k colors without closing a single color

cycle. This problem can be formulated as a matroid6 partitioning or a matroid intersection

problem. In order to enable the development of capacity expansion algorithms, we focus on

the matroid intersection formulation. Under this formulation, the k-forest problem makes

use of two matroids: the graphic matroid and the partition matroid. In our setting, we

define these matroids by considering the graph Gk = (Vk, ), equal to k disjoint copies of

5 We will show below that this assumption can be relaxed.
6 A matroid is a combinatorial structure M = (E, I) in which E is a finite set of elements, and I is a

collection of subsets of E satisfying (i) 0 E I, and if I E I, then all proper subsets of I belong to I, and (ii)

if 11,12 E I with 1121 = I ,I+ 1, then there exists e E 12 such that I, U {e} E .
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the network graph GN. The graphic matroid MI = (E,I1) assigns to 11 all possible forests
in Gk. The partition matroid M 2 = (E,12) partitions E into m =A IENI sets, where the
i-th set, Ei, contains all k copies of edge i. The collection 12 contains all sets of edges that
have no more than a single element in any set of the partitions: I E 12 implies |I n Ei I < 1
for i = 1, ... , m. By associating with each copy of GN in Gk a unique color, it can be

seen that the sets belonging to I1 n 12 can be equated to colorings, where each subgraph
of a particular color is a forest. This directly corresponds to a valid channel allocation,
where each channel's network graph is a forest. The k-forest problem is to find for a given
k the largest set of edges belonging to the matroid intersection of the graphic and partition
matroids.

7.5.1 Partitioning algorithms

Our first algorithm for the k-forest problem is the suboptimal Breadth-First Search (BFS)
algorithm. Such an algorithm was used in [120] as a heuristic solution to this problem. Its
major advantage is its low complexity of O(k(m + n)). Yet, in Section 7.6 we will show that
there is a large gap between the BFS solution and the optimal solution.

Therefore, we selected an optimal algorithm as a basis for developing our capacity expan-
sion algorithms. The optimal solution to the k-forest problem can be found in polynomial
time [59,85] by several algorithms. One of these algorithms is the Matroid Cardinality Inter-
section (MCI) algorithm of Lawler [85]. We present the MCI algorithm below, specialized to
the k-forest problem of interest here. Given a valid coloring I E Ii n 12, the MCI algorithm
searches for an augmenting path, consisting of an alternating sequence of edges not in I and
edges in I, such that when the edges of the path belonging to I are removed from I and
those not belonging to I are added, the resulting coloring (channel allocation) belongs to
11 n 12 and its cardinality has increased by 1 (for more details see [85]). The complexity of
the MCI algorithm is O(km 2n'+ k2 mn(n')2), where n' = min{n, m/k}. In the description
of the following algorithms, we refer to two copies of the same edge on different colors in
Gk as parallel edges.

Our channel allocation framework admits the practical situation where each node v is
equipped with R(v) radios (interfaces). Namely, different nodes have a different number of
radios. In the formulation of the matroid intersection problem, we define the graph Gk as
the disjoint union of k identical copies of the network GN. This corresponds to the case,
where each node is equipped with exactly k radios. Essentially, rather than generating k
copies of each network graph edge, each network link should only have an edge represented
in the i-th copy of the network graph GN when there is a radio for that link available for
use of the i-th channel. 7 Without loss of generality we refer to any graph defined in this
manner as G' = (Vk, E). The matroid intersection properties, the MCI algorithm, and the
algorithms described in Section 7.5.2 can then be applied to Gk.

Once the channel allocation is performed, at each time slot, one can use the distributed
approximation algorithm of [71) that finds the maximal weight (greedy) solution, thereby
providing 100% throughput. The (local) computational complexity of this algorithm is O(1),

7 When different nodes have a different number of radios, the specific allocation of the links to the different
copies may affect the capacity region. An efficient allocation algorithm is a subject for further research.
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Algorithm 12 Matroid cardinality intersection (MCI) [85]

1: Let the initial edge set be 'mci = 0
2: repeat
3: Remove all labels associated with every edge
4: Label '+' on every edge e such that Imci U {e} c 11
5: while e = [edge with oldest unscanned label] $ 0 do
6: if e is labeled '+' and Imci U {e} E 12 then
7: (augmenting path has been found)
8: break the while loop
9: else if e is labeled '+' then

10: ('mci has an edge parallel to e)
11: Label '-' on the edge in 'mci that is parallel to e (if the edge is unlabeled)

12: else
13: (e is labeled '-')
14: Label '+' on each unlabeled edge in the unique cycle in (Vk, Imci U {e})
15: end if
16: end while
17: if e / 0 (3 augmenting path) then

18: Trace the alternating path of '+' and '-' labels that lead to the '+' label at e by
assigning the edges labeled '+' to Ii and those labeled '-' to 12

19: Imci +- (Imci \ 12) U Il
20: end if
21: until e = 0

which is low relative to the O(n3 ) complexity of a centralized optimal algorithm required

to solve (2.10) [85]. In addition, the centralized algorithm has to collect queue backlog

information from all nodes at each time slot (for an extended comparison see [104]).

In the realistic situation where the number of channels k is fixed and insufficient to

partition all the network edges into k forests, we apply the MCI algorithm (or BFS) to

generate an initial allocation that is a k-forest, and assign the unallocated network edges

to the k-th channel. Thus, the first k - 1 channels are guaranteed to satisfy OLoP, while

the k-th channel operates at a worst-case 50% throughput.

A (theoretical) optimal solution will partition the graph into the minimum number

of OLoP satisfying components, whereas our algorithms partition into forests. In order

to evaluate the performance of our algorithms, we consider complete bipartite graphs. It

can be shown that two channels are necessary and sufficient to guarantee the satisfaction

of OLoP in K 3,3 . Applying MCI, we find that the arboricity of K 3,3 is 2 and conclude

that MCI achieves the minimum number of channels to guarantee OLoP. This and similar

results point to the strong performance of the MCI algorithm in partitioning the network

into a small number of channels satisfying OLoP. Yet, the following lemma provides a lower

bound on the performance in general. Define r.*(GN) as the minimum number of channels

necessary to partition the edges of a network graph GN such that the interference graph of

each partitioned subgraph satisfies OLoP.

Lemma 7.5.1 For e > 0 there is no approximation algorithm that partitions a network
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graph GN into ri(GN) forests, where

l,(GN) !5 (1-5 - 6)/*(GN),VGN-

Proof: Consider a K4,4 bipartite network graph. It can be partitioned into two K 2,4
network graphs. According to Corollary 7.4.2, under primary interference constraints, an
interference graph of K 2,4 satisfies OLoP. Therefore, 2 channels are sufficient to guarantee
the satisfaction of OLoP in K 4,4. Namely, i*(K 4,4) = 2. Since K 4,4 has 8 nodes, any forest
in such a graph can have at most 7 edges. Since K 4,4 has 16 edges, its arboricity must be at
least 3 (i.e. ii(K 4,4) = 3). Hence, there exists a graph GN for which K(GN) = 1.5K*(GN)-

U

7.5.2 Capacity expansion algorithms

An important undesirable feature of the MCI and BFS algorithms is that each successive
channel has a maximal number of network edges assigned to it, given the assignment to the
previous channels. We wish to balance the trees in order to expand the capacity, thereby
expanding the achievable throughput.

We present three algorithms for improving the network capacity properties. Since the
admissible region restricts the summed throughput of all edges incident on the same vertex
in the network graph to 1, it is desirable to minimize the maximum vertex degree over the
network graphs on each channel. The first algorithm is called R-GREEDY, and it operates
by greedily selecting edges incident on vertices of maximum degree and seeking any channel
that they can be reallocated to, such that the new allocation belongs to 11 n I2 and the
allocation has an improved maximum degree. We note that e = (vi, vj) implies that vi E e
and vj E e. The algorithm makes use of the function TF1(1), which returns a negative value
when the maximum degree or number of vertices at maximum degree under allocation I
improves upon that of a reference allocation, 10.

TF1(I) = - A O + l{A*;a} {Ai(v)=A}} - 1{AO(v)=Az ) .

Above, AI(v) denotes the degree of vertex v in graph (Vk, I), A* indicates the maximum
vertex degree in graph (Vk, I), and 11.j is the indicator function. The complexity of the
R-GREEDY algorithm is O(dnmkn'), where d is the maximum vertex degree in GN-

Algorithm 13 Greedy Reallocation (R-GREEDY)

1: begin with any edge set I E 11 n I2 (this could be the output of BFS or MCI)
2: repeat
3: 1<-I
4: if Be1 E I, e2 V I such that B E el, AI (v) = A*, TF1 ((I \ {ei}) U {e2}) < 0 then
5: 1 <- (I \ {ei}) U {e2}
6: end if
7: until I equals 10
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Our second and third capacity expansion algorithms search for capacity improvements

by directly attempting to balance the vertex degrees over all channels. They make use of

augmenting paths in the spirit of the MCI algorithm to find new locations for edges that

are incident on heavily-loaded vertices. The maximum degree reallocation algorithm (R-

MAxD) seeks to minimize the maximum degree over vertices in all channels. It proceeds by

disabling edges incident on maximum degree vertices and searching for augmenting paths

that do not use such edges. The algorithm uses the function TF 1 for evaluating channel

allocations, and the function ESF (I) for selecting candidate edges to disable. ESF (I)

returns all edges incident on vertices having maximum degree in graph (Vk, I),

ESFO(I) = {e c I : v E e, AI(v) = A*}.

The average degree reallocation algorithm (R-AvGD) seeks to reduce any vertex degree

in the graph so long as the reduction does not lead to higher vertex degrees or more vertices

of maximum degree elsewhere in the graph. R-AvGD employs the performance evaluation

function TF2 ,

TF2(I) = 2'sign S1{A-(V)=i}- l{AI(v)=i})
i=1 (V

Above, the function sign(x) = -1 if x < 0, sign(x) = 1 if x > 0, and sign(0) = 0. The

function TF 2 (I) returns a negative value when the first entry at which the degree sequence8

of (Vk, I) differs from that of (Vk, lo) is lower in the sequence of (Vk, I) than that in

(Vk, Io). This function encourages trading higher degree vertices for more vertices of lower

degree. R-AvGD also makes use of the function ESF"(I), which returns all edges incident

on vertex v in I,
ESF2(I) = {e E I: v E e}.

We simultaneously present both algorithms as Algorithm 14, making use of the parameter

PARAM, with PARAM1 = {O}, and PARAM2 = Vk.

Algorithm 14 Maximum Degree/Average Degree Reallocation algorithms (R-MAxD [i =

1]/R-AvGD [i = 2])
1: begin with any edge set I E 11 n 12
2: repeat
3: 10 <-I

4: for v E PARAMi do
5: I <- argminy{TFj():

I = CE-MCI(I,{e},ESF',TF,1), e E ESFY(I)}
6: end for
7: until I equals I0

R-MAxD and R-AvGD employ the recursive procedure CE-MCI that successively dis-

ables edges until an improved augmenting path is found, or all possible configurations are

exhausted. CE-MCI takes as input the initial channel allocation I, the set of edges E0 to

8 The degree sequence of a graph G is a nondecreasing sequence of the vertex degrees of G.
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Algorithm 15 CE-MCI(Io,Eo,ESF,TF,Depth)

1: I= {Io \ Eo}
2: while 3I E I with Il < m do
3: +-.I \ {I}
4: remove labels from all edges; assign I+ = L <- 0
5: label '+' on every edge e such that I U {e} E 11 and e n Eo = 0
6: while e = [edge with oldest unscanned label] 7L 0 do
7: if e is labeled '+' and I U {e} E 12 then
8: trace the alternating path of '+' and '-' labels that lead to the '+' label at e by

assigning edges labeled '+' to I+ and those labeled '-' to I_
9: T <- I U {(I \ I-) U I+}

10: else if e is labeled '+' then
11: label '-' on the edge in I that is parallel to e (if the edge is unlabeled)
12: else
13: label '+' on each unlabeled edge in the unique cycle in (Vk, I U {e})
14: end if
15: end while
16: end while
17: 1 <-- I U {IO}; Irmci +- arg minjc-r TF(I)
18: if TF(Irmci) = TF(Io) then
19: (failed to generate an improved augmenting path)
20: if Depth < D..MAX then
21: Irmi <- arg min,{TF(I):

I = CE-MCI(IoEo U {e},ESF,TF,Depth+1),
e E ESF(Io \ Eo)}

22: else
23: Irmci 4-- 10
24: end if
25: end if
26: return Irmci

exclude when it attempts to search for augmenting paths, the functions ESF and TF, and
an integer to track the depth of the recursion. The maximum depth of the recursion can be
set using the constant DMAX. While the MCI algorithm modifies the channel allocation
at each iteration upon the discovery of its first augmenting path, CE-MCI labels over the
entire graph and selects the best augmenting path available between all such paths found, in
terms of the function TF.

The complexity of the algorithms is a function of the complexity of the MCI algorithm,
which we denote by c(MCI). The complexity of R-MAxD is O(dnmD-MAXc(MCI)) and
of R-AVGD is O(dD-MAxnmc(MCI)). As long as the search depth DMAX is low, the
complexity is reasonable. In the following section, we will see that significant capacity
improvement is achieved for D..MAX = 2.
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7.6 Performance evaluation

The partitioning and capacity expansion algorithms presented in Section 7.5 were imple-

mented in Matlab and tested on numerous randomly generated networks. In this section

we briefly describe the numerical results obtained for a number of representative cases. All

presented results have been obtained for randomly generated instances in which the nodes

are uniformly distributed in a plane of size 1000m x 1000m, with a link existing between

two nodes if the distance between them is at most 250m. We intentionally present results

regarding relatively dense networks, since in very sparse networks the partitioning solution

is often trivial and does not shed light on the tradeoffs involved in capacity expansion.

As in the previous sections, we assumed that primary interference constraints hold. The

presented results were obtained assuming that the number of radios equals the number of

channels and is the same for all nodes (i.e. R(v) = k Vv). As described in Section 7.5.1,
this assumption can be easily relaxed.

7.6.1 Partitioning algorithms

Figure 7-10 compares the average number of channels (k) required by the BFS and the MCI

algorithms. The results are presented as a function of the number of nodes in the network

(n), where for each value of n, the average was obtained over 100 different random instances.

Over all cases tested, the BFS algorithm required on average 32% more channels than the

optimal MCI algorithm. Such a performance gap was observed throughout our numerical

studies. Consequently, it seems that despite the higher computational complexity, using a

matroid intersection algorithm is beneficial. This is one of the reasons the MCI algorithm

was chosen as the basis for our capacity expansion algorithms.

Figure 7-10 also presents an upper bound on the edge chromatic number, which is the

minimum number of colors (channels) such that an edge coloring exists having no two

equally colored edges incident on the same vertex. According to Vizing's Theorem, the

edge chromatic number is bounded above by A* + 1, where A* is the maximum vertex

degree in the network [69]. The large gap between the optimal solution and the edge

chromatic number upper bound arises because under edge coloring, all edges can be active

simultaneously, while MCI creates trees on which transmissions still have to be scheduled.

Hence, by using edge coloring, the capacity region is enlarged to \ <; 1 V(i, j) E EN. In

many network instances, such a large capacity expansion requires numerous channels.

7.6.2 Capacity expansion algorithms

We now demonstrate the operation of the different capacity expansion algorithms on a

specific randomly generated network with 20 nodes. Figure 7-11 illustrates an example of the

channel allocations performed by the different algorithms in a network in which the required

number of channels is 4. The figure presents the network and then, for each algorithm, the

4 forests. Figure 7-11(a) presents the solution obtained by the MCI algorithm. It can

be seen that the leftmost forest is relatively dense, while the rightmost tree is sparse (it

includes only a single edge). The capacity is not efficiently allocated in this solution, since

most of the nodes do not use the fourth channel, while the first channel has to be shared
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Figure 7-10: Average number of channels in the optimal solution, the number required by
the BFS algorithm, and the upper bound.

by many links. Figure 7-11(b) presents the allocation performed by algorithm R-GREEDY,
using the MCI solution as input. It can be seen that several edges have now been migrated
to the fourth (rightmost) channel. Figure 7-11(c) presents the allocation performed by
algorithm R-MAxD, using the R-GREEDY solution as input. The R-GREEDY solution had
two vertices of degree three, and R-MAxD manages to manipulate the allocation such that
only a single vertex has degree three. Finally, the solution from R-MAxD is used as input in
R-AvGD to obtain the channel allocation of Figure 7-11(d). Though the maximum vertex
degree remains at three, lower degree vertices have had their degrees improved, with many
more edges in this allocation entirely disconnected.

The example above demonstrates the operation of the capacity expansion algorithms.
We now quantitatively evaluate their performance. Given a specific channel allocation it is
not straightforward to represent the capacity region. This results from the fact that it is
a polytope in R+. Yet, in order to obtain some insight, we make the following simplifying
assumption regarding the capacity allocation that takes place once the channels are assigned
to the links. We assume that some degree of fairness exists, and therefore, if possible, all
edges connected to a node receive an equal share of the node capacity. This is sometimes
impossible, due to a capacity limit resulting from the other node connected to an edge.
Consequently, under this assumption the throughput on an edge (i, j) operating in channel
k will be at least (max(Ai,k, A,k))- 1 , where Ai, is the number of edges adjacent to node
i that use channel k.

Accordingly, the first performance measure is Average Capacity, which is the average
over all edges (i, j) E EN of the above value. The second performance measure is the

Worst-Case Capacity, which is the lowest capacity allocated to a link in the network. This
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is inversely proportional to the maximum node degree over all nodes and all channels. Using

the above notation, it is equal to (maxi,k Ai,k)~1 .

Figure 7-12 illustrates these performance metrics for random networks with different

numbers of nodes (n). For each value of n, the results were averaged over 50 different ran-

dom network instances. It can be seen that both for the worst case and the average case,
R-GREEDY provides significant throughput improvement over the MCI algorithm (average

improvement of 29% and 40% in the average and worst-case capacity, respectively). This

is notable, since the complexity of the greedy capacity expansion algorithm is small rela-

tive to that of MCI. When using the R-MAxD and R-AvGD, we employed a maximum

search depth of D-MAX = 2. This implies that the complexities of R-MAxD and R-AvGD

are respectively O(dnm2 ) and O(d2nm) times the complexity of MCI. Despite the higher

complexities, the value of these algorithms is evident from their ability to significantly im-

prove the performance metrics. Relative to the MCI solution, R-MAxD achieves average

improvements of 36% and 56% in the average and worst-case capacities, respectively, while

R-AVGD achieves 45% and 56%, respectively.9 There is an evident tradeoff between com-

plexity and performance. Since the channel allocation problem is solved in a different time

scale from the scheduling problem, it seems beneficial to use R-MAxD or R-AvGD.

In realistic situations the number of channels and radios is bounded. Figure 7-13 depicts

the average capacity metric versus the number of available channels (k) for a network with

20 nodes. For each value of k, the results were averaged over 50 different random network

instances. Given a fixed k, the MCI, R-GREEDY, R-MAxD, and R-AvGD algorithms were

enlisted to obtain and expand the capacity of k-forests. In instances where there were edges

that could not be included in a valid k-forest, these edges were added to the last generated

forest (at channel k). As explained in Section 7.5.1, the first k - 1 channels are guaranteed

to satisfy OLoP, while the k-th channel operates at a worst-case 50% throughput. If there

was a cycle in the k-th channel, we assumed that the edges in the k-th channel achieve only

50% throughput when calculating the average capacity. Algorithms R-GREEDY, R-MAxD

and R-AVGD provide significant improvement over the MCI algorithm alone.

9Note that the plots of the worst-case capacity for R-AvGD and R-MAXD overlap.
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7.6.3 Comparison with other static channel allocation algorithms

Thus far, our simulation studies have provided absolute measures of the performance of
our proposed channel allocation algorithms. In this section, we compare the static channel
allocation generated by our algorithm next that of (77]. We find that our rebalanced channel

allocations are typically superior, in terms of maximum achievable throughput, than those
generated by the algorithm of [77].

In [77], the authors consider the joint problem of determining multi-hop routes and
channel allocation in wireless mesh networks. The authors solve the routing problem using

a linear program, and subsequently use the implied link loads to determine an effective chan-
nel allocation (the algorithm can be found in [77, Figure 5]). Essentially, each (link,channel)
combination is provided with a weight, and the algorithm successively determines the min-
imum weighted link and assigns a channel to that link. This algorithm has one ambiguity:
it does not provide a tie-breaking condition for allocating a channel to a link, when mul-
tiple channels have the same weight. In our numerical studies, we find that the choice
of tie-breaking condition has an effect on throughput performance, so we distinguish two
versions of the algorithm: 1) ties are broken by selecting the channel with lowest index (KN
scheme); 2) ties are broken by randomly selecting amongst equally weighted channels (KN
scheme with random tie-break).

Note that the static channel allocation algorithm of [77] is intended to be used in con-
junction with a time-division multiplexing (TDM) scheduler. This is because the traffic
is assumed to be known and deterministic, in which case a fixed TDM schedule can be

implemented for servicing the link loads. Recall that our scheduling objective is to service
packets that arrive stochastically. Thus, for our simulations we cannot assume that the
link loads are known in advance. Consequently, our simulations employ maximal weight
scheduling, in order to dynamically adjust service rates based on traffic variations, with
no assumptions made regarding the rate vector A. However, A is explicitly considered an
input to the channel allocation algorithm of [77]. In order to compare the performance of
the channel allocation of [77] with our proposed allocation, we provide the algorithm of [77]
with the true value of the long-term arrival rate vector A, and employ maximal weight
scheduling for servicing packets that arrive to the network stochastically.

In order to measure throughput performance, we will consider uniform arrivals: A = A
for all i, j. We will refer to the maximum value of A in which the queues in the network
remain stable (i.e. do not grow without bound) as the maximum achievable throughput of
the network.

For our simulations, we consider k = 3 channels available at each edge, with 3 radios at
each node, and require that at most one channel can be allocated to any edge. We present
results relating to four channel allocation methods: 1) Our proposed static allocation,
where we apply the MCI algorithm, the greedy rebalancing heuristic, the maximum degree
rebalancing algorithm, and the average degree rebalancing algorithm in sequence, followed
by assigning any unallocated edges to the lowest channel index; 2) the KN static channel
allocation; 3) the KN static channel allocation with random tie-break; and 4) dynamic
channel allocation, where links are not bound to channels, and (link,channel) combinations
are activated at each slot based on maximal weight scheduling. Note that the dynamic
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Figure 7-14: Simulated trajectories of four schedulers under Poisson-distributed arrivals,
with uniform arrival rates A = 0.1, 0.2,0.3,0.4 packets/time slot.

channel allocation method (point 4 above) has the advantage of being allowed to modify its

channel allocation at each time slot. Consequently, one might expect that its performance is

superior to any static allocation scheme.10 Nevertheless, the throughput gap between static

and dynamic channel allocations is of interest, since it clarifies the trade-off of performance

against scheduler complexity.

Figure 7-14 shows several simulated trajectories for the various channel allocation meth-

ods described above. In each case, the system is subject to Poisson arrivals, and maximal

weight scheduling is always employed. As in previous simulations, this study is based on

a single placement of 25 users in a 1km x 1km field. Observe that the lowest throughput

performance is incurred by the KN scheme, where the queue backlog grows without bound

at the uniform arrival rate A = 0.2 packets per slot. The next lowest throughput perfor-

mance is incurred by the KN scheme with random tie-break (unstable at A = 0.3 packets

per slot), followed by our proposed method and the dynamic channel allocation algorithm

(both unstable at A = 0.4 packets per slot). Observe that at A = 0.4 packets per slot,
none of the four channel allocation schemes enables stability of maximal weight scheduling.

Figure 7-15 plots the average aggregate queue occupancy versus the uniform arrival rate A

l 0This is not always the case under maximal weight scheduling: recall the example of Section 7.3.2 where
static channel allocation was shown to be superior to dynamic allocation in the 6-ring.
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Figure 7--15: Average aggregate queue occupancy versus average uniform arrival rate. Each
point is generated from a sample path of duration 250, 000 time slots.

experienced in the same network under the various channel allocations. This plot clarifies
the relative throughput performance of the four channel allocation algorithms: The maxi-
mum throughput achievable under KN, KN with random tie-break, the proposed scheme,
and the dynamic channel allocation are respectively: 0.15, 0.25, 0.325, and 0.375 packets
per slot.

We considered 25 randomly generated mesh networks, each subject to uniform arrival
rates. Figure 7-16 presents the maximum throughput performance of the different channel
allocation algorithms in each of these networks. It can be seen that our channel allocation
algorithm usually outperforms the other static channel allocations, with only two instances

(network indices 15 and 17) in which one of the KN schemes achieves higher throughput.
Overall, our channel allocation outperforms the best KN scheme by an average of 25%.
Additionally, randomly breaking ties in the KN scheme usually leads to improved through-
put performance over the simple KN scheme, with an average throughput performance
improvement of 15%. Finally as expected, dynamic channel allocation always outperforms
static allocation, with an average throughput performance improvement of 33% over the
best static allocation.
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Figure 7-16: Maximum throughput for various channel allocation schemes.
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7.7 Conclusions

In this chapter we have applied techniques stemming from stability theory and matroid
theory to obtain novel results regarding the design of Wireless Mesh Networks. The ap-
plication of these theories allows us to develop algorithms for partitioning a mesh network
into a number of high capacity subnetworks such that in each of the subnetworks simple
distributed algorithms can obtain 100% throughput.

We have performed a study of the implications of Local Pooling on network design and
shown that although the notion of Local Pooling is rather abstract, its implications are quite
powerful. Based on some of our observations, we developed matroid intersection algorithms

for efficient network partitioning. In Section 7.6 we have shown that these algorithms

perform very well in terms of capacity. We note that the scope of this work spans more
than multi-radio multi-channel WMNs. It seems to be relevant to any wireless network

with stochastic arrivals in which transmissions can be differentiated in the time domain

(i.e. scheduling) as well as in other domains (frequency, code, etc.).

This chapter primarily provides a theoretical contribution that lays the foundation for
developing practical algorithms. Hence, there are still many problems to deal with. For ex-

ample, a future research direction is to allow dynamic channel allocation. This will require
to tailor the channel allocation algorithms for online and perhaps distributed operation. In
addition, Lemma 7.5.1 indicates that partitioning into trees may be suboptimal. There-
fore, we would like to develop matroid intersection algorithms that will partition into other
components similar to the ones identified in Section 7.4. In general, we would like to de-

velop algorithms that partition the network to the minimum number of OLoP-satisfying

components. It seems that this may be done by utilizing connections between the maxi-
mal independent sets in the interference graph and the characteristics of the graphic and
partition matroids.

In Section 7.2.1, we mentioned SINR-based interference models as a useful (and perhaps
more realistic) alternative to the graph-based models we consider in this chapter, as well
as through the remainder of the thesis. Although an SINR-based interference model does
not admit the use of an interference or conflict graph in obtaining maximal weight link
activations, one could propose distributed scheduling techniques that arrive at valid SINR-
constrained link activations. Given such a scheduling algorithm, it is not difficult to adapt
the Local Pooling results of [51] into this setting. In particular, when we consider maximal
weight scheduling in a network having a well-defined interference graph, the essential rea-
soning is that among the maximum weighted vertices of the interference graph (equivalently
edges of the network graph), a maximal independent set must always be selected. Conse-
quently when the set of vertices V C V have dominant weights in the interference graph,
the scheduler must exclusively select independent sets in the interference graph that are
maximal over the vertex set V. For this reason, the maximal matrix M(V) appears in the
Local Pooling definitions. In order to extend the Local Pooling analysis into other schedul-
ing settings, such as an SINR-constrained network, we must simply understand what are the
different regimes of network operation, and what are the possible link activations available
to the scheduler in each regime. In the model containing an interference graph, the regimes
consist of all possible sets of network edges (or vertices of the interference graph) that can
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simultaneously have maximum weight, and the possible link activations are contained in the

matrix M(V). Thus, for scheduling in an SINR-constrained network, or given a different

scheduling algorithm, a Local Pooling analysis can still be conducted. It is only necessary

to identify the different service regimes, and the possible link activations corresponding to

each regime.
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Appendix

7.A Proof of Lemma 7.3.2

Based on Edmonds' Theorem [53] and the analysis of [68] and [169], in such networks the

arrival rates should satisfy the following constraints:

Z Aij <1 Vi E V (7.3)
(i,j)EEN

E Aij UI/2J V U C V, IUIodd (7.4)
(ij)EL(U)

Aij 0 V(ij) E EN. (7.5)

where L(U) g EN is the collection of links connecting nodes in U. Using a maximal

weight matching algorithm along with a two speedup (using two frequencies on each link)

achieves the region defined in (7.3)-(7.5). Alternatively, assume that the network can be

partitioned into two subnetworks with non-overlapping edges (denoted by G1 = (V 1 , Ek1)

and G2 = (V 2 EN2 )) such that their interference graphs satisfy OLoP. In that case, the

distributedly achievable stability region is defined by the following constraints that should

hold for k = 1, 2:

Aij 1 Vi E Vk
(ij) E N

AZj [UI/2 VU C Vk, IUI odd
(ij)EL(U)

Aij 0 V(i, j) E Ei.

This region is larger than the region in (7.3)-(7.5).

7.B Proof of Theorem 7.4.2

Designate the two cliques G' = (V, E)) and G2 = (V 2 , E2), where Vj n V = 0 and
EJ n E2 = 0. Further, let Ed be the set of disjoint edges connecting G1 and GI. We then
have GI = (VI, EJ), where V = V1 U V2 and E- = EJ U E2 U Ed. Consider the induced

subgraph over the vertex set V C V. If VfnV,' = 0 or VfnV 2 = 0, then Lemma 7.4.2 implies
that V satisfies SLoP. If IV n VjI = 1 and there exists v E V 2 such that (V n V1 , v) E Ed,
then Lemma 7.4.1 ensures that SLoP is satisfied for V. If IV n V, I = 1 and there is no
v E V such that {V nV , v} E Ed, then the induced subgraph over V consists of the disjoint
union of two cliques, which satisfies SLoP by Lemma 7.4.2 and Proposition 7.4.1. The same
reasoning applies when IV n V2 = 1. Finally, when IV n VI > 1 and IV n VII > 1, we claim
that every maximal independent set of the induced subgraph of vertices V in GI contains
two vertices. Denote by G} the induced subgraph over G} and G that over GI. Since both
G} and G2 are cliques, no more than two vertices can belong to any independent set, one
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in each clique. Suppose a maximal independent set contains one vertex, v, without loss of

generality this vertex belongs to G'. By definition of the set Ed, v can only share an edge

with a single vertex of G. Then, if no vertex of G' can be added to the independent set,
G' must be K 1 , since otherwise any vertex of G' not incident on v could be added. This is

a contradiction. Consequently SLoP must be satisfied on such a subgraph. Thus, we have

that SLoP is satisfied on any subgraph of GI, which implies that OLoP is satisfied.

7.C Proof of Theorem 7.4.3

Note that any connected subgraph of a tree of blocks is tree of blocks or a forest of blocks.

Thus, we only need to consider satisfaction of the SLoP properties of any tree of blocks,
which will provide the satisfaction of OLoP for any tree of blocks. If the tree of blocks

G (V, E) has any clique K, I > 2 associated with a leaf of the tree, then one vertex of this

clique must belong to every maximal independent set of the tree of blocks. Consequently

setting ai = 1 for any vertex corresponding to this clique and ai = 0 otherwise provides

aTM(V) = eT and we conclude that SLoP is satisfied.

It remains to consider the case where every leaf of the tree of blocks corresponds to

two cliques connected by any number of disjoint edges. Consider any such block and in

particular we focus on the clique that has no other blocks sharing a vertex with it. Then

it is clear that the proof of Theorem 7.4.2 applies to this clique, in that there must exist a

vertex of this clique in every maximal independent set of vertices in G. Thus, SLoP must

be satisfied for this configuration.

Since SLoP is satisfied for any tree of blocks, and each subgraph of a tree of blocks is a

forest of blocks, we conclude that OLoP is satisfied for any tree of blocks.
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Chapter 8

Distributed throughput
maximization in wireless networks:
Topology and interference
considerations

In Chapter 7, we found several simple graph classes in which distributed maximal weight

schedulers achieve 100% throughput. We proceeded to use these results to develop channel

allocation algorithms that provide attractive throughput properties under primary interfer-

ence. In this chapter, we deepen our understanding of graphs that satisfy Local Pooling

(LoP). Furthermore, we consider more general interference conditions than simple primary

interference.

8.1 Overview and summary of contributions

Identifying specific network topologies that satisfy LoP enables the design of algorithms that

either partition a wireless network into subnetworks with such topologies (e.g. via channel

allocation) or add artificial interference constraints that create such topologies. Hence,
in Chapter 7, a few interference graphs satisfying LoP were identified and it was proved

that under primary interference constraints, tree network graphs yield interference graphs

that satisfy LoP. Although some knowledge about LoP has been acquired, [511 provides

abstract conditions, while Chapter 7 focuses on primary interference constraints. Despite
the fact that these constraints may hold for specific technologies, they are not realistic in

most practical settings. Therefore, in order to allow the development of algorithms that

take advantage of LoP, in this chapter we focus on identifying topologies of interference

and network graphs that satisfy the LoP conditions, and studying the effect of multihop
interference on these topologies.

We first use the LoP conditions to identify several new classes of LoP-satisfying graphs.
It is shown that within the class of perfect graphs, chordal graphs, chordal bipratite graphs,
cographs, and a subgroup of co-comparability graphs all satisfy LoP. These observations
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Figure 8-1: (a) Undirected network graph GN, (b) the corresponding interference graph GI
under primary interfernce, and (c) the matrix of maximal link activations.

increase the number of graphs that are known to satisfy LoP by a few orders of magnitude.

We emphasize that despite the fact that in these graph classes a distributed maximal weight

independent set algorithm usually does not achieve the optimal (maximum weight) solution,
it achieves 100% throughput. We also show that all odd rings with at least 9 nodes and all

even rings with at least 6 nodes do not satisfy LoP. Using the latter observation, we show

that all bipartite graphs that are not chordal bipartite do not satisfy LoP.

We use the acquired knowledge about graph classes that satisfy and fail LoP to study

the effect of increased interference on LoP. We focus on a generalization of the primary (1-

hop) and secondary (2-hop) interference models to a k-hop interference model {142], where

k is termed the interference degree. We show that in many cases, as k increases, it is more

likely that the LoP conditions hold, and thereby, it is more likely that simple distributed

algorithms achieve 100% throughput. Moreover, for every network topology, there is an

interference threshold k*, above which the corresponding interference graphs satisfy LoP.

At first glance, it seems that since it is known that the worst case performance deteriorates

as the interference degree increases [36, 91, 161], the results are counter-intuitive. Yet,
the actual meaning of the results is that in many topologies, as k increases, the resulting

interference graph is such that distributed maximal weight scheduling achieves the maximum

throughput instead of the worst case throughput.

To summarize, this chapter focuses on identifying properties of network topologies satis-

fying the Local Pooling conditions. The main contributions are two-fold. First, we identify

several graph classes that satisfy Local Pooling. Second, we show that due to Local Pool-

ing, as the interference degree increases, it is more likely that simple distributed algorithms

achieve 100% throughput. The obtained results can serve as a basis for the development of

Local Pooling based algorithms.

8.2 Network model

We maintain the same network model as employed in Chapter 7 (see Section 7.2). To

reiterate the undirected network graph and its interference properties, Figure 8-1 depicts an

undirected graph and presents the corresponding interference graph and matrix of maximal

link activations.

8.3 Interference graphs satisfying local pooling

The OLoP properties of graphs are only beginning to be understood. In Chapter 7, small

graphs were studied by exhaustive search. Additionally, structural properties were used
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P

Figure 8-2: The relations between the OLoP-Satisfying class and other graph classes: P -
perfect, P - non-perfect, WC - weakly chordal, Ch - chordal, CBip - chordal bipartite, Bip -

bipartite, Co - cograph, Co-Comp - co-comparability, Strip - strip-of-cliques, Even - cycles

C, with n even and n > 6, Odd - graphs with induced Cn with n odd and n > 9.

in [51] and Chapter 7 to show that the following interference graphs satisfy OLoP: trees,

forests, clique trees, where each pair of cliques shares at most a single vertex, and a pair-of-

cliques connected by disjoint edges.

Definition 8.3.1 (OLoP-Satisfying) The collection of graphs for which OLoP is satisfied

is called the OLoP-Satisfying class.

In order to better understand the effect of interference on LoP, we use structural prop-

erties to identify various graph classes that satisfy OLoP. We identify known graph classes

that are included within the OLoP-Satisfying class or intersect with it. It turns out that

all the graph classes we identify using structural properties are subclasses of the class of

perfect graphs. On the other hand, some of the graphs identified by the exhaustive search

of Chapter 7 are not perfect graphs. Hence, in the following discussion we differentiate

between perfect and non-perfect graphs. Our investigation leads to the taxonomy of graph

classes depicted in Figure 8-2, showing the relationship of the OLoP-Satisfying class to the

graph classes considered here.

We will make use of the following graph properties and definitions. For graph G =

(V, E), the induced subgraph over vertex set V' C V is the graph G' = (V', E'), where E'

is the set of edges in E whose endpoints are in V'. The complement G = (V, P) of graph

179

P

Even Co-Comp

Bip 
Strip

CBip

Co

OLoP
Trees

Ch

WC

6-wheel

C5

C7

Odd



G = (V, E) is defined by

E= {(u,v): u,vE V, u hv and (u,v) VE}.

A chord of a cycle (path) is an edge between two vertices of the cycle (path) that is not an

edge of the cycle (path). A cycle (path) is chordless, if it contains no chords. We denote

by C, and P, a chordless cycle and a chordless path, respectively, of length n. We denote

by Kn a clique (complete graph) of n nodes. The set of neighbors of node v is denoted by

N(v).

8.3.1 Perfect graphs

A graph is perfect, if for each induced subgraph the size of the largest clique equals the

chromatic number1 . Several classical graph classes such as bipartite graphs, chordal graphs,
comparability graphs, and their complements are perfect [25]. Here, we will identify a

number of important classes of perfect graphs that are also subclasses of the OLoP-Satisfying

class. We will show that all of the graphs identified in [29], [51] are simple special cases in

these classes. The following graph classes are of particular interest.

Definition 8.3.2 (Chordal [25]) A graph G is chordal if each cycle in G of at least 4

nodes has at least one chord.

Definition 8.3.3 (Weakly Chordal [25]) A graph G is weakly chordal if G and G con-

tain no induced chordless cycle Cn, n > 5.

Definition 8.3.4 (Chordal Bipartite [25]) A bipartite graph B is chordal bipartite if

each cycle in B of length at least 6 has a chord.

Definition 8.3.5 (Cograph [251) A graph is a cograph if it does not contain the path

graph P4 (depicted in Figure 8-1(a)) as an induced subgraph.

Notice that the chordal bipartite class is the intersection of the weakly chordal and

bipartite classes. The following series of lemmas concern the OLoP properties of several

large graph classes.

Lemma 8.3.1 Every chordal graph satisfies OLoP.

Proof: See Appendix 8.A.

Lemma 8.3.2 Every chordal bipartite graph satisfies OLoP.

Proof: See Appendix 8.B. U

Lemma 8.3.3 Every cograph satisfies OLoP.

'Recall that the chromatic number is the smallest number of colors needed to color the vertices of a graph
so that no two adjacent vertices share the same color.
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Proof: See Appendix 8.C.

Lemma 8.3.4 Every even cycle Cn with n > 6 fails SLoP.

Proof: See Appendix 8.D. U

Corollary 8.3.1 Every bipartite graph that is not chordal bipartite does not belong to the

OLoP-Satisfying class.

Proof: By definition, if a bipartite graph is not weakly chordal (i.e. not chordal

bipartite), it includes an even cycle Cn with at least 6 vertices. This cycle is an induced

subgraph that, according to Lemma 8.3.4, fails SLoP. Hence, OLoP fails in bipartite graphs

that are not weakly chordal. M

Figure 8-2 illustrates the inclusion of the chordal, chordal bipartite, and cograph classes

within the OLoP-Satisfying class. The class of chordal graphs has a few notable subclasses

(i.e. classes of special graphs that are known to be chordal), including the strongly chordal,
split, interval, threshold, and tree classes (additional subclasses are documented in [25]).

Lemma 8.3.1 implies that all these subclasses satisfy OLoP. Therefore, the observation

of [511 that trees satisfy OLoP immediately follows, as does the observation of Chapter 7

that every clique tree satisfies OLoP, since clique trees are chordal. Lemma 8.3.2 implies that

all subclasses of chordal bipartite graphs satisfy OLoP, including the convex and bipartite

n distance-heriditary classes.

The contribution of Corollary 8.3.1 is its characterization of a sharp boundary separat-

ing the chordal bipartite graphs (OLoP-satisfying) from the bipartite graphs that are not

chordal bipartite (not OLoP-satisfying). This boundary is depicted as a thick line in Fig-

ure 8-2. This result follows directly from the failure of the OLoP conditions in even cycles

Cn with n > 6. Hence, any graph class that includes the bipartite graphs as a subclass

cannot be fully included within the OLoP-Satisfying class. This allows us to exclude many

of the major classes of perfect graphs (e.g. preperfect, strongly perfect, quasi-parity, and

bip* [25]) as subclasses of the OLoP-Satisfying class.

We note that there exist other specific perfect graphs that are not bipartite and fail

OLoP. For example, according to the exhaustive search of [29], a graph known as the 6-

wheel [69] fails OLoP. In Figure 8-2, this graph appears outside the OLoP-Satisfying class.

Two major classes that have not been excluded as subclasses of the OLoP-Satisfying

class are the weakly chordal graphs and the co-comparability graphs, defined next.

Definition 8.3.6 (Co-comparability [67]) A graph is a co-comparability graph if it is

the intersection graph of a set of curves2 between two parallel lines in the plane, where

every curve has one endpoint on each of the lines.

In Figure 8-2 we have shaded portions of the weakly chordal and co-comparability classes

to indicate the uncertainty of their inclusion relations with OLoP-Satisfying. Determining

the nature of these shaded regions (whether or not they exist) remains an open problem.
2The intersection graph of a set of curves is a graph G = (V, E), where V is in one-to-one correspondence

with the curves, and there exists an edge (u, v) E E if and only if the curves corresponding to u and v
intersect [94].
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Figure 8-3: The structure of a strip-of-cliques.

We now present a subclass of the co-comparability class that we call a strip-of-cliques.

A graph is in this class, if it is composed of an ordered set of cliques 1,...,j, where two

adjacent cliques i, i + 1 are connected by any number of disjoint edges, and cliques that are

not adjacent are not connected directly. Figure 8-3 illustrates such a graph. Notice that

the pair-of-cliques presented in [29] is a specific case of a strip-of-cliques. The following

lemmas show that a strip-of-cliques graph satisfies OLoP and that any such graph is a

co-comparability graph.

Lemma 8.3.5 Every strip-of-cliques graph satisfies OLoP.

Proof: See Appendix 8.E. U

Lemma 8.3.6 Every strip-of-cliques graph is a co-comparability graph.

Proof: See Appendix 8.F.

Figure 8-2 depicts the strip-of-cliques class partially overlapping several graph classes.

For example, C4 is chordal bipartite, and can also be viewed as two K 2 's connected by

parallel links. As another example, consider the graph composed of two K 3 's connected by

2 disjoint links. This graph is clearly not bipartite, but is weakly chordal. Finally, consider

two K 3 's connected by 3 parallel links. This graph is the complement of C6 , denoted C 6 ,

and consequently not weakly chordal.

Finally, we note that the strip-of-cliques class can be generalized to a larger OLoP-

Satisfying class by connecting cliques in a tree structure such that pairs of cliques are

connected by any number of disjoint edges, and the intersection graph of the cliques has no

cycle. Proving that such a structure satisfies OLoP can be done using similar arguments to

the ones used in the proof of Lemma 8.3.5.

We finish this section by providing some context regarding the magnitude of the results.

Consider the set of simple graphs having 7 nodes, of which there are 1,044 distinct graphs.

Of these graphs, 393 are chordal, and 180 are cographs, with some overlap between these

two classes. These numbers can be compared to the 37 forests and 11 trees that were known

to satisfy OLoP. Similarly, when considering the set of simple 11 node graphs, the number

of chordal graphs is 1,392,387, compared to 710 forests and 235 trees. To summarize, our

understanding of the OLoP-Satisfying class has expanded significantly beyond the trees and

forest graphs. However, note that the number of chordal graphs is small relative to the total

number of simple graphs in this case (1, 018,997,864).

8.3.2 Non-perfect graphs

The OLoP-Satisfying class includes graphs that are not perfect. We first use the numerical

observations of [29] to identify non-perfect graphs that satisfy OLoP. The graph C5, which
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(a) (b)

Figure 8-4: (a) 2-hop and (b) 3-hop interference graphs of a 6-ring network graph

is the only non-perfect graph having 5 vertices, satisfies OLoP. Moreover, since all graphs

with 6 vertices except C satisfy OLoP, all non-perfect graphs having 6 vertices must satisfy

OLoP. Finally, all graphs with 7 vertices satisfy OLoP besides a specific one illustrated

in [29, Figure 3] and those that have an induced C6 , which leads us to the observation that

134 out of the 138 non-perfect graphs with 7 vertices satisfy OLoP. In Figure 8-2 all these

graphs appear in a single class (containing C and C7 ) within the OLoP-Satisfying class.

We now show that all non-perfect graphs that have an induced Cn with n odd and n > 9

fail OLoP (these are represented as the Odd class in Figure 8-2).

Lemma 8.3.7 All odd cycles C, with n > 9 fail SLoP.

Proof: See Appendix 8.G.

8.4 Local pooling under multihop interference

In this section, we show that counter-intuitively, more interference often assists the operation

of distributed algorithms. Denote the stability region under k-hop interference by A*. It is

clear that A* cannot increase with k (and often decreases with k), as interference between

the links of the network can only increase. Thus, although an increase in k can lead to

a smaller stability region, such an increase makes it more likely that the OLoP conditions

hold, and thereby more likely that simple distributed algorithms will achieve A*.

8.4.1 Interference graphs

We first demonstrate the intuition on which the above observation is based. Consider the

network graph C (a 6 node ring), whose interference graph under primary interference is

also C6 . According to [51], C6 does not satisfy OLoP and, in general, a MWIS algorithm

does not achieve 100% throughput. The best known result then provides that a MWIS algo-

rithm guarantees 50% throughput [90]. Under 2-hop interference, the interference graph has

6 more edges (see Figure 8-4(a)). According to [29], this specific graph satisfies OLoP, and

therefore, a MWIS algorithm achieves 100% throughput. Under 3-hop (or higher) interfer-

ence, the interference graph becomes a clique (see Figure 8-4(b)) which satisfies OLoP [29].

Hence, although under 1-hop interference, a maximal weight algorithm guarantees 50%
throughput, under k-hop interference (k > 2) 100% throughput is guaranteed.
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Under k-hop interference, the interference graph becomes an OLoP-Satisfying clique

when k equals the network diameter. It seems reasonable to expect that for many network

graphs, as the interference degree increases, there exists an interference threshold above

which OLoP is satisfied. We tested this property by considering small graphs. In [29] it

was shown that out of 1,252 simple interference graphs of up to 7 nodes, 14 fail OLoP.

The following observation is obtained by exhaustively considering the corresponding k-hop

(k > 2) interference graphs.

Observation 8.4.1 All k-hop (k 2) interference graphs corresponding to network graphs

with up to 7 edges satisfy OLoP.

Applying our acquired knowledge from Section 8.3 regarding the OLoP-Satisfying class,
we will now proceed to study multihop interference properties of graphs. We focus on graph

classes that appear in Figure 8-2.

First, we indicate that due to Observation 8.4.1, a number of 1-hop interference graphs

outside the OLoP-Satisfying class yield k-hop interference graphs that are OLoP-Satisfying.

These graphs are the 6-ring, the 6-wheel, and the four non-perfect 7-node graphs outside

the OLoP-Satisfying class.

We next introduce the Strongly Chordal class, a subclass of the chordal graphs, which

exhibits an interference threshold property.

Definition 8.4.1 (Strongly Chordal [25]) A graph G is strongly chordal if G is chordal

and each cycle in G of even length at least 6 has an odd chord (a chord (i, j) is odd if the

distance in the cycle between i and j is odd).

Denote by Gk the k-th power of G: Gk has the same vertex set V as G, and u, v E V

are adjacent in Gk, if the minimum path length between u and v in G is at most k. Given

a 1-hop interference graph G, the corresponding k-hop interference graph is Gk.

Since the strongly chordal graphs belong to the chordal class, Lemma 8.3.1 implies that

strongly chordal graphs are OLoP-Satisfying. A property of the the strongly chordal class

is that it is strongly closed under power. Namely, if an interference graph Gi is strongly
chordal, then Gk+3 is strongly chordal for all j > 1 [25]. Therefore, even if the 1-hopI_

interference graph is not strongly chordal, once an interference graph becomes strongly

chordal (and thereby OLoP-Satisfying), increased interference degree will generate OLoP-

Satisfying graphs. Based on this property, the following theorem establishes that every

graph has an interference threshold k* above which all interference graphs satisfy OLoP.

Theorem 8.4.1 There exists a k* such that for k > k*, Gk satisfies OLoP.

Proof: For any finite interference graph G, there exists an interference degree at

which every component of the interference graph is a clique, which is strongly chordal. The

theorem follows, since every strongly chordal graph is strongly closed under power. 0

The following lemmas show that certain graphs, identified in Section 8.3.1, exhibit in-

terference threshold k* = 1 (Lemma 8.4.1 immediately follows from the above mentioned

property of the the strongly chordal class).
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(a)

Figure 8-5: (a) A chordal 1-hop interference graph and
ference graph that fails OLoP.

(b) the corresponding 2-hop inter-

Lemma 8.4.1 If the 1-hop interference graph G' is a strongly chordal graph, such as a tree

or a clique tree, then Gk satisfies OLoP for every k> 1.

Lemma 8.4.2 If the 1-hop interference graph G} is a cograph, then Gk satisfies OLoP for

every k > 1.

Proof: According to [25] every connected subgraph of a cograph has diameter of at

most 2. Therefore, the corresponding Gk V k > 2 is a clique and according to [29] satisfies

OLoP.

Lemma 8.4.3 If the 1-hop interference graph GJ is a strip-of-cliques, then Gk satisfies

OLoP for every k > 1.

Proof: See Appendix 8.H. U

When we study the transition from Gk to G 1 , we find that there are cases where
increasing the interference degree can result in a graph that fails OLoP. Namely, although
any interference graph has an interference threshold, the transition to this threshold may
not be smooth. Namely, below the interference threshold, the interference graphs may
alternate between being OLoP-Satisfying and OLoP-Failing for different values of k. The
following lemma summarizes this result.

Lemma 8.4.4 There are OLoP-Satisfying k-hop interference graphs for which OLoP is
not satisfied in a corresponding j-hop (j > k) interference graph.

Proof: Our proof is by example. Consider the 1-hop interference graph GI in Figure 8-
5(a). This is a chordal graph, and therefore, according to Lemma 8.3.1 it satisfies OLoP.
The corresponding 2-hop interference graph G' appears in Figure 8-5(b). The subgraph
induced by the white nodes is a 6-ring, which fails SLoP. Therefore, OLoP fails in the 2-hop
interference graph. 0
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8.4.2 Network graphs

Thus far, we have studied the LoP properties under multihop interference for most graphs

represented in Figure 8-2. We next turn our attention to particular network graph struc-

tures. An example of an interference graph G' resulting from 1-hop interference is given in

Figure 8-1.

A second example is the ring network graph Cs, whose 1-hop interference graph is also

Cn. Recall from Section 8.3 that Cn fails OLoP for n = 6 and n > 8. Our numerical tests

show that the 2-hop interference graph of any Cn with n < 8 satisfies OLoP. Hence, we

observe that rings are network graphs that benefit from additional interference degrees.

Clearly, any network graph whose corresponding interference graph is one of the struc-

tures indicated in lemmas 8.4.1, 8.4.2, and 8.4.3 satisfies OLoP for any k > 1. In particular,
we can derive the following result.

Theorem 8.4.2 Distributed MWIS algorithms achieve 100% throughput in a tree network

graph under any interference degree k.

Proof: The interference graph GI of a tree network graph is a clique tree. According

to Lemma 8.4.1 for such an interference graph, the corresponding Gk satisfies OLoP for any

k > 1. U

The 2-hop interference model is important, since it represents the IEEE 802.11 trans-

mission constraints [15,142,161]. We obtain the following result that applies to this model

by using results regarding squares of line graphs3 studied in [31,32].

Theorem 8.4.3 Distributed MWIS algorithms achieve 100% throughput in a chordal net-

work graph under a k-hop interference model, with any even k.

Proof: According to [31], given a chordal network graph GN, the corresponding 2-hop

interference graphs G2 is chordal. According to Lemma 8.3.1, OLoP is satisfied in a chordal

interference graph, and therefore, distributed MWIS algorithms achieve 100% throughput.

It was shown in [25] that if Gk is chordal, then Gk+ 2 is chordal but it is not guaran-

teed that Gk+1 is chordal. Therefore, if the 2-hop interference graph G2 is chordal, the

corresponding k-hop interference graph GI, with any even k, satisfies OLoP. M
Several subclasses of chordal graphs have the potential to allow a MWIS algorithm to be

throughput-optimal under a k-hop interference model, with even k. One of the subclasses

is the class of interval graphs [25,32]. For that class the following stronger result holds.

Lemma 8.4.5 Distributed MWIS algorithms achieve 100% throughput in an interval net-

work graph under a k-hop interference model, where k > 2.

Proof: According to [32], given an interval network graph GN, the corresponding

2-hop interference graph G2 is an interval graph. Interval graphs are strongly chordal [25],
and therefore, the corresponding k-hop (k > 2) interference graphs Gk are strongly chordal

and OLoP-Satisfying.
3 In graph theoretic terminology, the interference graph resulting from 1-hop interference is called line

graph [69].

186



8.5 Conclusions

The consideration of Local Pooling has the potential to enable efficient distributed oper-

ation of wireless networks. However, since previous works focused mostly on deriving the

LoP conditions [511 and on networks with primary interference (Chapter 7, in this chapter

we focused on the graph implications of the conditions and on multihop interference. We

identified several graph subclasses of the OLoP-Satisfying class and increased the number

of known graphs that satisfy LoP by a few orders of magnitude. Using these observations,
we showed that increasing the interference degree usually has a positive effect on the perfor-

mance of simple distributed algorithms. For example, it was proved that under secondary

interference constraints, a maximal weight scheduling algorithm achieves 100% throughput

in chordal network graphs.

We emphasize that our objective in this chapter is to obtain a better theoretical under-

standing of LoP that will assist the development of future algorithms. Hence, although a

theoretical contribution has been made, there remain many algorithmic open problems. For

example, LoP-based algorithms can partition the network into LoP-satisfying subnetworks

or add artificial interference constraints to generate a LoP-satisfying network. Our identi-

fication of several LoP-satisfying graph classes that can serve as building blocks for these

networks, and the understanding of multihop traffic and interference effects are advances

toward such algorithms. For instance, one can now develop algorithms that add artificial

edges to the interference graph to yield a chordal graph.

Moreover, there are a number of theoretical issues that remain unresolved. For exam-

ple, Lemma 8.4.4 demonstrates that further study is necessary to determine the general

evolution of the LoP property with varying interference degree. Additionally, the com-

plete characterization of the OLoP-Satisfying and the OMLoP-Satisfying graph classes is a

subject for further research.
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Appendix

8.A Proof of Lemma 8.3.1

It was shown in [94,124] that any graph G that is a chordal graph, or an induced subgraph

of a chordal graph, has at least one vertex v for which the vertices in the set N(v) induce

a clique in G. Such a vertex is called a simplicial vertex. We claim that G satisfies SLoP.

Since the vertices in N(v) induce a clique in G, any maximal independent set in G will

include either the simplicial vertex v or exactly one of the vertices in N(v). Consequently,
the vector a having all zero entries except at the indices corresponding to the simplicial

vertex v and corresponding to the vertices in N(v), where the entries are set to 1, yields

QTM(V) = eT. Thus, G satisfies SLoP. Since this applies to any chordal graph or an

induced subgraph of a chordal graph, it must follow that any chordal interference graph

satisfies OLoP.

8.B Proof of Lemma 8.3.2

If graph B = (V, E) is bipartite, the edge (u, v) E E is called bisimplicial if the vertices in

N(u) U N(v) induce a complete bipartite subgraph in B [25]. It was shown in [66] that if

graph B is chordal bipartite, any induced subgraph B' of B has a bisimplicial edge. Let (u, v)

be a bisimplicial edge of B' and assume that there exists a maximal independent set in B'

that does not include either vertex u or v. Such an independent set must include a neighbor

of u and a neighbor of v, since otherwise, either u or v could be added to the independent

set, which violates that the independent set is maximal. However, since N(u)UN(v) induces

a complete bipartite subgraph, an independent set cannot include vertices from both N(u)

and N(v), which provides a contradiction. Therefore, every maximal independent set must

include either u or v, but not both vertices. Consequently, the vector a having all zero

entries except at the indices corresponding to the vertices of the bisimplicial edge (u, v),
where the entries are set to 1, yields aTM(V) = eT. Thus, SLoP is satisfied for B'. Since

B' is either chordal bipartite or an induced subgraph of a chordal bipartite graph, we must

have that OLoP is satisfied for any chordal bipartite interference graph.

8.C Proof of Lemma 8.3.3

In every induced subgraph of a cograph, the intersection of any maximal clique and any

maximal independent set contains precisely one vertex [25]. Hence, consider any maximal

clique of the graph. By the above property, every maximal independent set of the graph

contains precisely one vertex in the clique. The vector a having entries of one at the

indices corresponding to nodes in this clique and having entries of zero otherwise, yields

aTM(VI) = eT. Therefore, SLoP holds for all the induced subgraphs of a cograph, which

implies that OLoP holds for any cograph.
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8.D Proof of Lemma 8.3.4

For the interference graph CQ = (V6, E6 ), it was shown in [51] that there is no a > 0, c > 0

such that aTM(V6 ) = ce T. Consider n > 8, with n even. Denote C = (Vn, En), using

node labels vi, v2,... , vn. Then, the following are valid maximal independent sets

{01, V3, V5, . ..- , Vn-7, Vn-4, Vn-2} (8.1)

{vi, V3, V5,... , n-7, Vn_4, Vn.1} (8.2)

{V2, v4, v6, ... , Vn-., Vn-4, Vn-2, vn} (8.3)

{v2 ,v4,v6, ... ,Vn-6,Vn_4,Vn1} (8.4)

{V2, V4,V,... , Vn6, Vn-3, Vn1} (8.5)

{V2, V4, V,. .. , n, n-3, Vn} (8.6)

From the requirement of aTM(Vn) = ceT, we draw the following conclusions. Equations

(8.1) and (8.2) imply an- 2 = an-,. Combining this fact with (8.3) and (8.4) yields an = 0.
Finally, combining the fact that an = 0 with (8.5) and (8.6) provides an_1 = 0. Thus, it

is without loss of generality that we discard the two rows of M(Vn) corresponding to nodes

Vn-1, Vn-

We now claim that the remaining rows of M(V) provide all the constraints corresponding

to interference graph Cn- 2. Consider any maximal independent set of C containing node

v, and node Vn-1. Note that this configuration mimics Cn-2 by disallowing node Vn-2 to
be active simultaneously with v1 . Thus, all maximal independent sets of this type in Cn

are maximal in Cn-2, and it can be easily seen that all maximal independent sets in Cn-2

containing v, yield maximal independent sets in Cn when vn_ 1 is active. Further, consider

any maximal independent set of Cn containing node v2 and node vn. Similar reasoning to

above provides that all maximal independent sets in Cn-2 containing v2 are represented

under this configuration. Finally, consider any maximal independent set of Cn containing

nodes v3 , Vn-2, vn. Again, it can be easily shown that all maximal independent sets in

Cn-2containing v3 and Vn-2 are represented. This completes the characterization of all

maximal independent sets of Cn-2, since each independent set in Cn-2 contains either v,

or V2, or contains both v3 and Vn-2. Thus, it must be true that the matrix of maximal

independent sets of Cn-2, M(Vn- 2 ), is a submatrix of that of C, M(Vn).

Since an-1 = an = 0, the existence of a > 0 and c > 0 such that aTM(V) = ceT

implies that

(a 1 , ... ,an-2)M(Vn-2) = ceT.

Applying this reasoning inductively, if the SLoP condition for Cn, where n > 8 and n

is even, is satisfied, then SLoP must be satisfied for C6. This is a contradiction and we

conclude that every Cn fails SLoP for n > 8 and n even.
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Figure 8-6: Demonstrating that the strip-of-cliques is a co-comparability graph, with (a) a
set of curves whose intersection graph is a clique, and (b) the introduction of a neighboring
clique, where the curves corresponding to the original clique are thinner than the new ones.

8.E Proof of Lemma 8.3.5

It is clear that every connected induced subgraph of a strip-of-cliques is a strip-of-cliques.

If the induced subgraph is disconnected, each component is a strip-of-cliques. According to

Proposition 7.4.1, if each component satisfies SLoP, then the combined graph satisfies SLoP.

Thus, OLoP is satisfied for any strip-of-cliques if every connected strip-of-cliques satisfies

SLOP.
Consider any connected strip-of-cliques graph. If the graph is a clique, then according to

Lemma 7.4.2, it satisfies SLoP. Otherwise, designate one of the two cliques that connected

to only a single clique as an edge clique. For example, in Figure 8-3 K,1 is an edge clique.

If the edge clique includes only a single vertex v, then it is connected by an edge to a

vertex u in the neighboring clique. Either u or v must belong to every maximal independent

set. Therefore, the vector a having all zero entries except at the indices corresponding to

the vertices v and u, where the entries are set to 1, yields aTM(V) = eT. If the edge

clique includes more than one vertex, exactly one vertices in the edge clique will be active

in every maximal independent set. Therefore, the vector a having all zero entries except

at the indices corresponding to the vertices of the edge clique, where the entries are set to

1, yields QTM(V) = eT. Hence, the connected strip-of-cliques satisfies SLoP, as desired.

8.F Proof of Lemma 8.3.6

According to Definition 8.3.6, if the strip-of-cliques is a co-comparability graph, then each

vertex of the strip-of-cliques can be represented as a curve joining two parallel lines. An

edge exists between two vertices in the strip-of-cliques if and only if the corresponding

curves intersect at some point. We will describe a procedure for constructing the curves

that represent an arbitrary strip-of-cliques.

Begin with the leftmost clique, having ni vertices. Cascade n, curves as shown in

Figure 8-6(a), making sure that each of the curves is exposed on the right, in a staircase

fashion. Clearly, each of the curves intersects with all others, which implies a clique inter-

section graph, K, 1 .
We next demonstrate how to introduce the i-th clique in the strip-of-cliques, i > 2.

Consider the curves that represent the (i - 1)-th clique, in order, by descending the staircase
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on the right. If the vertex v, corresponding to one of these curves shares an edge with a

vertex v 2 in the i-th clique, then a curve is drawn to represent v 2 , by intersecting with

the stair corresponding to v1 . This is depicted in Figure 8-6(b), where the first, third, and

last curves on the staircase intersect with curves corresponding to the adjacent clique. Any

remaining vertices in the i-th clique that do not intersect vertices in the (i - 1)-th clique are

simply included as curves that do not intersect the staircase of the (i - 1)-th clique. There

are two such curves in Figure 8-6(b). Note that the curves corresponding to the i-th clique

are once again organized to form a staircase on the right.

This procedure can be repeated iteratively until the entire strip-of-cliques is represented

as an intersection graph of curves between two parallel lines. Consequently, the strip-of-

cliques is a co-comparability graph.

8.G Proof of Lemma 8.3.7

In Lemma 8.3.4 it was shown by contradiction that every C, fails SLoP for n > 8 and n

even. The proof for C, = (Vn, En), n > 9 and n odd is based on a similar idea. First, the

matrix of maximal independent sets for C9 = (VI, En) is characterized:

1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 0 0

1 1 1 0 0 0 0 0 0 0 1 1

0 0 0 1 1 1 1 1 0 0 0 0

M(V) = 1 0 0 0 0 0 0 1 1 1 0

0 0 1 1 0 1 1 0 0 0 0 1

1 0 0 0 1 0 0 1 1 0 1 0

0 1 1 1 0 1 0 0 0 1 0 0

0 0 0 0 0 0 1 1 1 0 1 1

Using the same node labeling described above, we study the equation aTM(V) = ceT.

Columns 1 and 2 of M(V) imply a 7 = a8 . Columns 2 and 3 imply a5 = a6. Columns 3
and 4 imply a 3 = 4. Columns 4 and 6 imply a, = a2. Columns 6 and 7 imply a8 = a9.
Columns 7 and 8 imply a 6 = a7. Columns 8 and 9 imply a4 = a 5 . Columns 9 and 11
imply a2 = a3. Thus, all values ai must be equal. But, note that columns 11 and 12 imply

a 5 + a7 = a 6 , which must give a5 = 0, and consequently ai = 0 for all i. We conclude that
C9 fails SLoP.

The remainder of the proof demonstrating that all rings Cn, for n > 9 with n odd, fail
SLoP follows identically to the even case considered in Lemma 8.3.4, by reducing any such

case to the C9 SLoP condition, which cannot be satisfied.
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8.H Proof of Lemma 8.4.3

We adopt similar terminology to that used in the proof of Lemma 8.3.5. According to

Lemma 8.3.5, if G' is a strip-of-cliques, it satisfies OLoP. The interference graph Gk is

composed of cliques that share some vertices with their neighboring cliques. In particular,
consider the maximum clique containing all vertices belonging to the edge clique of G}. We

refer to this clique as the k-edge-clique.

If the k-edge-clique equals Gk, then clearly Gk satisfies OLoP. Otherwise, there are

vertices of the G} edge clique that are not shared with neighboring cliques. In that case,
one node of the k-edge-clique will be active in any independent set. Therefore, the vector

a having all zero entries except at the indices corresponding to the vertices of the k-edge-

clique, where the entries are set to 1, yields aTM(V) = eT. Hence, the interference graph

Gk satisfies SLoP. Using a similar reasoning it can be shown that any subgraph of Gk

satisfies SLoP, and therefore, Gk satisfies OLoP.

192



Chapter 9

Distributed throughput
maximization in wireless networks:
Multihop routing

An important challenge in the design and operation of wireless networks is to jointly route

packets and schedule transmissions to efficiently share the common spectrum among links

in the same area. In Chapter 7 we presented an overview of the work of Dimakis and

Walrand [51] where it was shown that there exist network topologies in which distributed

scheduling algorithms achieve 100% throughput. In Chapter 8 we studied interference and

network graphs that satisfy LoP, thereby deepening our understanding of LoP from the

cursory study of Chapter 7. In this chapter we develop sufficient conditions and study

topologies in which simple distributed joint routing and scheduling algorithms achieve 100%

throughput.

9.1 Overview and summary of contributions

Networks with multihop traffic have been studied in [160,161], where it was shown that, in

general, only a fraction of the throughput is attainable when using distributed algorithms.

Since the LoP results of [51] and Chapters 7 and 8 have been constrained to single-hop

traffic, it is desirable to identify specific topologies in which distributed algorithms can

obtain 100% throughput in the multihop network setting.

In this chapter, we show that the single-hop LoP conditions introduced in [51) are in-

sufficient to guarantee stability in the multihop routing environment. Therefore, we study

the LoP properties of a distributed routing and scheduling framework which is based on the

backpressure mechanism of [150]. In this framework the edge weights are obtained by the

backpressure mechanism but unlike in [150], a distributed maximal scheduling algorithm

is used to determine which edges should be activated. We derive new multihop LoP con-

ditions that are sufficient for guaranteeing that a distributed joint scheduling and routing

mechanism employing maximal weight link activation achieves 100% throughput. Then,
we present network topologies that satisfy the multihop LoP conditions, and show that the
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Figure 9-1: (a) Network graph GN, (b) the corresponding interference graph GI under
primary interference, and (c) the matrix of maximal link activations.

class of topologies satisfying these conditions is strictly included within the class of single-

hop LoP-Satisfying graphs. Consequently, the single-hop LoP conditions introduced in [51]
are insufficient to guarantee stability in the multihop routing environment.

9.2 Network model

We adopt the same network model employed in Chapter 7 with a few changes to aid in

our pursuit of multihop properties of Local Pooling. In particular, the wireless network

GN = (V, EN) is treated in this chapter as a directed graph. In GN, if two nodes v 1 , v2 E V
are within communication range, then the directed edges e 12 = (v 1 , v2 ) and e21 = (v 2 , v)
both belong to EN. To clarify the notion of an interference graph when the network graph

is a directed graph, we provide in Figure 9-1 a network graph GN and the corresponding

interference graph GI under primary interference constraints.

9.3 Backpressure-based scheduling and routing

Recall from Algorithm 1 that the optimal centralized scheduler (2.10) makes maximum

weight service decisions based on backpressure link weights. In our framework we consider

the distributed Maximal Weight Independent Set (MWIS) algorithm used in the single-hop

setting, but change the link weights to backpressure link weights. Thus, the MWIS algo-

rithm operates on the interference graph with node weights derived from the backpressure

link weights. This enables scheduling decisions for joint link activation and packet routing.

As in the single-hop case, which we have considered in Chapters 7 and 8, the framework is

independent of the global network topology and traffic statistics.

In step 4, the framework uses the MWIS algorithm to select a maximal weight link acti-

vation based upon maximum link backpressures, obtained in step 3. In step 5, the framework
makes routing decisions to service commodities achieving maximum backpressure.

9.4 Multihop local pooling conditions

In this section, we derive the multihop local pooling conditions that are sufficient for stability
of the backpressure-based scheduling framework.
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Algorithm 16 Backpressure-based MWIS scheduling framework
1: for time index t = 1, 2,. .. do
2: For each directed edge e E EN assign

Zej (t) <- (Qa(e)j (t) - QT(e)j (t))

3: Assign Ze*(t) = maxj Zej (t)
4: Obtain a maximal link activation 7r*(t) G IIN using a decentralized MWIS algorithm,

based on the edge weight vector Z*(t) = (Z*(t), e E EN)
5: For each e E EN such that 7re*(t) = 1, choose j* E arg maxj Zej (t). Route

min{1, Qo(e),* (t)} packets of commodity j* across e
6: end for

9.4.1 Preliminaries

Recall that the OLoP conditions consider all possible vertex subsets of the interference

graph, V C V. By the definition of the interference graph, the node set V corresponds

to a subset of the network graph edges, E C EN. Thus, the OLoP conditions effectively

consider every subset of network graph edges E C EN. In the multihop routing scenario,
we must again consider each set of network graph edges E C EN. Since routing across

network graph edges is not unique in the multihop scenario, we must additionally consider

various combinations of commodities associated with network graph edges. We formalize the

possible edge/commodity combinations by introducing the Maximum Commodity Family.

Definition 9.4.1 (Maximum Commodity Family - JE) The Maximum Commodity Fam-

ily for E C EN, E # 0, is given by JE= (J, e E EN): E QE, 0}, where

QE = f((ij, ij E V, i 7 j) : Qij E R+Vij, E = arg maxmax(Qa(e)j - Qrte)},
e 3

JQ = {j E V : j = o(e), Qa(e)j - Qir(e)j Qea(e)j' - Qr(e)j' Vj' E V}.

The above definition relates closely to the fluid limit model for the queueing system. In
order to better understand the Maximum Commodity Family, we next explore some of its
properties. To this end, we introduce for each commodity j E V the directed commodity
graph Gj = (V, Ej), where Ej = {e E : j E Je}.

Lemma 9.4.1 For E C EN, E $ 0, the commodity collection J = (Je,e E EN) E JE

satisfies:

1. Je$ 0, Ve E EN.

2. Je 9 V \ {o-(e)}.

3. For j E UeEEJe, G3 has no directed cycles.

4. If Gj has a directed path between vertices v1,v 2 E V of length L, then
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(a) the minimum length path between v1 and v2 in the network graph GN is L, and

(b) the edges of all paths in GN between v, and v2 of length L are in Gj.

5. If Gj has a path of length L originating at vertex v, then

(a) GN has no paths of length less than L originating at vertex v and terminating at

vertex j, and

(b) the edges of all paths of length L in GN, originating at vertex v and terminating
at vertex j belong to Gj.

Proof: See Appendix 9.A. U

Under the backpressure framework, when the set of directed edges E C EN have back-

pressures exceeding those of the other edges in the graph, there must exist a commodity

collection (Je, e E EN) G JE for which Je is the set of commodities maximizing differential

backlog across e C EN. In this case, a MWIS algorithm must select a link activation 7r*

that is maximal among the edges in E: i.e. r* E M(E). Additionally, the commodity j
that is routed across edge e E EN must belong to Je. These properties characterize the

Maximal Service Activation Set (an example is given in Section 9.4.2):

Definition 9.4.2 (Maximal Service Activation Set - SE,J) For E C EN and J

(Je, e c EN) c JE,

SE,J= SCS :ESEjEM(E),Sej=1 impliesjEJe wheneCEN

In order to characterize the stability properties of the backpressure framework, we will

track the dynamics of the link differential backlogs. Hence, we must understand how each

service matrix S E S affects the distribution of commodity backpressures over the network

links. We next introduce the Backpressure Service Vector. Recall from Chapter 2 that

dij (S) is the service to queue Qij under activation matrix S E S: dij (S) = Ek RkSkj-

Definition 9.4.3 (Backpressure Service Vector - UE,J(S)) For E C EN, J = (Je,e e

EN) c JE, and service matrix S c S, the vector uE,J(S) = (uej(S), e E E, j E Je) contains

the decrease in differential backlog of commodity j across link e under service matrix S for

every edge/commodity pair (e, j) where e E E, j G Je: uej(S) = d,(e)j(S) - dr(e)j(S).

9.4.2 Some examples

In this section, we consider the network graph GN of Figure 9-2(a), with the convention

that the directed edge from node vi to vj is labeled eij.
We begin by considering a specific feasible combination of edges and commodities. In the

next section we will show that certain conditions have to hold for each such combination.

The subset E of network edges of interest is E = {e 32 , e3 5 , e4 2 , e53 , e 54 }, as depicted in

Figure 9-2(b). Each edge in E has associated with it a set of commodities: Je32 = {v1, V2},

Je3 5 {V2}, Je4 2 = {V1}, Je5 3 {v 1}, Je5 4 = {v1}. These commodity sets are elements
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Figure 9-2: (a) Network graph GN, (b) the subset E of network graph edges, with corre-
sponding commodity sets labeled at each edge, and (c) commodity graphs Gv, (left) and
Gv, (right) for a particular maximal service activation.

of commodity collection J = (Je, e E EN). This collection is a member of the Maximum

Commodity Family.

Assuming primary interference constraints, the Maximal Service Activation Set SE,J is

summarized by the following table of valid edge/commodity pairs. For example, activation
(e32 , v1 ) means that commodity vi is sent over link e32 . Additionally, each activation S is
translated in the table below to backpressure service vectors UE,J(S). The service vectors are

ordered by (link, commodity) pairs as follows: (e32 , vi), (e42 , v1), (e53 , v1 ), (e 54 , v1 ), (e 32 , v 2), (e35 , v2 ).

Consider the third service activation from the table, which activates edge e3 2 for service
of commodity V2, and edge e54 for service of commodity v1 . We have depicted in Figure
9-2(c) the active link for servicing commodity vi packets in the graph on the left, and
the active link for servicing commodity v2 packets in the graph on the right. At each
node of the graph, we indicate the number of packets departed from that node under that
service activation. The backpressure service for each edge/commodity combination (e, j),
where e E E and j E Je, is then obtained by calculating on the graph corresponding to
commodity j the difference between the quantity indicated at the source node of e and
that indicated at the destination node of e. Edge e54 has a +1 at its source and a -1
at its destination in the graph for commodity vi, which indicates a backpressure service
of 2 commodity v, packets. Through similar computation, we find that edge e32 sees
a backpressure service of 1 commodity v2 packet. Note that although no other edge is
active, some inactive edges do incur service under this service activation: edge e5 3 sees a
backpressure service of 1 commodity v, packet, while edge e42 sees an increase of commodity
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Service activation S Backpressure service vector UE,J(S)

{(e 32 ,V1), (e54,V1)} (2, 0,0, 2,0, 0)

{(e42, v), (e53, v)} (0,2,2, 0,0,0)

{(e 32 , v2), (e54,V1)} (0, -1, 1, 2, 1, 1)

{(e 35 , v2), (e42 , v1)} (1, 2, 0, -1, 1, 2)



(a) (b) ()(d) (e)

Figure 9-3: Commodity graphs for commodity vi, that are invalid based on the properties
of Lemma 9.4.1.

vi backpressure of 1 packet (this implies -1 units of backpressure service). Finally, edge

e35 sees a service of 1 commodity v2 packet. No other edge/commodity pairs (e, j) where

e c E and j E Je, see service. Thus, we have determined each entry in the backpressure
service vector corresponding to this particular service activation.

We next provide examples to illustrate the properties of Lemma 9.4.1. Figs. 9-3(a)-9-3(d)
show graphs that are inadmissible as the commodity vi graph, GI, for the network graph

depicted in Figure 9-2(a): Figure 9-3(a) fails Property 3 because Gv, contains a directed

cycle; Figure 9-3(b) fails Property 4a since edge e53 provides a shorter path between vertices

V5 , v3 ; Figure 9-3(c) fails Property 4b since edges e53 , e32 are not included in Gv,; Figure

9-3(d) fails Property 5a since the path v2 - V3 -+ v5 belongs to Gv1, while path v 2 - V
belongs to GN; and Figure 9-3(e) fails Property 5b since edge e21 does not belong to Gv.

9.4.3 Stability of the backpressure-based framework

Here, we derive new LoP conditions that are sufficient for stability of the backpressure-

based scheduling framework. Recall that the quantity dij (S) is the amount of service at

queue Qjj resulting from applying service activation S for one time slot. Denote vector

d(S) = (dij (S), i, j E V).

Definition 9.4.4 (Subgraph Multihop Local Pooling - SMLoP) The directed network

graph G = (V, E) with commodity collection J E JE satisfies SMLoP if there exist vectors

a, 3 > 0 with a 4 0, and a constant c >0 such that

a TUE,J(S) ±,3Td(S) < c, VS c S, (9.1)

aTUE,J(S) > c, VS E SE,J. (9-2)

The SMLoP conditions associate with each link/commodity pair (e, j) a non-negative

weight aeJ, where e E E, j E Je. Further, for each node/commodity pair (v, j), the condi-
tions associate a non-negative weight ! 3vj, where v, j E V.

Definition 9.4.5 (Overall Multihop Local Pooling - OMLoP) The network graph GN

(V, EN) satisfies OMLoP if SMLoP is satisfied by each subgraph G' = (V, E) with com-

modity collection J E JE, where E C EN.

We next state the main theorem regarding the stability of the backpressure-based frame-

work.
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Theorem 9.4.1 If network graph GN satisfies OMLoP, then the MWIS backpressure-based

scheduling framework achieves 100% throughput.

Proof: The proof demonstrates that stability can be inferred if there exists no convex

combination of backpressure service vectors that exceeds any convex combination of max-

imal backpressure service vectors for each set E and commodity collection JE ( JE. For

each E ; EN, JE E JE, this condition can be expressed as a linear program whose dual

can be translated to the SMLoP conditions. The full proof can be found in Appendix 9.B.

U

Theorem 9.4.1 demonstrates the sufficiency of the OMLoP conditions for stability under

the backpressure-based framework. In the next section, we consider natural questions that

arise out of these conditions.

9.5 Studying the OMLoP conditions

We now seek to understand graph properties of the OMLoP conditions. We find that

the OMLoP conditions are distinct from the single-hop LoP conditions studied in [51] and

Chapters 7 and 8. We also demonstrate stability for a specific class of networks.

9.5.1 OLoP versus OMLoP

We begin by demonstrating that the class of network graphs that are OLoP-Satisfying

contains all OMLoP-Satisfying graphs.

Lemma 9.5.1 If GN fails OLoP, then it also fails OMLoP.

Proof: See Appendix 9.C.
In terms of Figure 8-2, Lemma 9.5.1 implies that the class of graphs that are not OLoP-

Satisfying can not contain OMLoP-Satisfying graphs. Namely, all network graphs having

interference graphs with induced subgraphs that are bipartite and not weakly chordal, or

induced Cn when n = 6 or n > 8 must fail OMLoP.

The next theorem demonstrates that the OMLoP conditions are in fact more restrictive

than their single-hop counterparts. Thus, the family of OMLoP-satisfying graphs is strictly

smaller than that depicted in Figure 8-2. It was indicated in Section 8.3.2 that C4 satisfies
the single-hop OLoP conditions. Here we show that OMLoP fails for C4 .

Theorem 9.5.1 C5 (the 5-ring) fails OMLoP.

Proof: See Appendix 9.D. U

9.5.2 Graph classes

We now verify that the OMLoP conditions hold for a class of graphs in which the backpressure-
based framework is known to achieve 100% throughput. This class is the forest of stars,
where every connected component of the network graph is a star graph, consisting of a

199



central node vo, connected to one or more vertices of degree 1. Under any k-interference

model, the star's interference graph is a clique (appearing in Figure 8-2 within the inter-

section region of the chordal and cograph classes). Therefore, only one edge can ever be

active at once. Accordingly, a maximal weight edge activation is identical to a maximum

weight edge activation, thereby achieving 100% throughput. The following lemma shows

that OMLoP is satisfied in such graphs.

Lemma 9.5.2 The star network graph satisfies OMLoP.

Proof: See Appendix 9.E. U

Applying the multihop analogous result to Proposition 7.4.1, we have the following

corollary.

Corollary 9.5.1 Every forest of stars satisfies OMLoP.

In Chapter 8, we completely characterized the LoP properties of cycle graphs, Cn for

n > 3. By Lemma 9.5.1, we can conclude that under primary interference, every network

graph Cn, where n = 6, or n > 8 fails OMLoP. The following theorem completes the

characterization of the OMLoP properties of network graphs that are cycles.

Theorem 9.5.2 C3 is the only cycle network graph satisfying OMLoP under primary in-

terference.

Proof: The proof that C4 and C7 fail OMLoP follows similarly to the proof of Theorem

9.5.1, and is omitted. The proof for C3 is provided in Appendix 9.F. U

The above results are reassuring, since clearly maximal weight matching in stars as well

as in C3 provides the maximum weight solution. This follows because these graphs yield

complete interference graphs. Consequently, Theorem 2.3.1 guarantees that the algorithm

achieves 100% throughput. The results of this section do not however provide any indication

of the OMLoP properties of general graphs, particularly in cases where maximal weight

solutions do not equal the maximum weight solutions. We seek to explore such graphs

next.

9.5.3 Exhaustive search

Similarly to Section 7.4.1, we now report the results of numerical studies of the OMLoP

conditions. We identified all simple, connected graphs of up to 5 nodes from [156]. We
treated each of these graphs as network graphs and investigated their OMLoP properties.

We employed Matlab to identify all maximal configurations, (i.e. to obtain matrices M(E)),
and to test the OMLoP conditions for each network graph. To test the OMLoP conditions

for network graph GN = (V, EN), we considered every possible subset of edges E C EN,
as well as every possible commodity collection in JE E JE. We identified commodity
collections, by considering any collection J c {(Je, e E EN) :e C VVe E ENI- To
ensure that J belongs to JE, we tested the feasibility of the following linear program. Let
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P1  P2  C3  K1,3  K1,4  K 1,5

Figure 9-4: The only simple connected network graphs of up to 5 nodes satisfying OMLoP.

Ej= {e E E: e E Je}.

7j = min y

s.t. qa(e) - qr(e) = 7, Ve E Ej

qa(e) - gr(e) It7 - 1, Ve V Ej

qj = 0

qi 2 0, Vi

If the above linear program has a solution for each j E V, then we conclude that the

commodity collection J belongs to JE. This follows because the solutions for all j can be

translated to a matrix Q satisfying the conditions of Definition 9.4.1.

To test the OMLoP conditions, we evaluated for each E C EN and J E JE the following

linear program.

c* = maxc

s.t. E /LSUE,J(S) SUE,J(S) + ce
SES SESE,J

eTy 1

Epsd(S) > 0
SES

eTiV = 1

ps 20o VSES

vS ! 0 VS E SE,J

In the proof of Theorem 9.4.1 (specifically in Lemma 9.B.1), it was shown that if c* < 0

then the network graph G = (V, E) with commodity collection J satisfies SMLoP.

Applying these optimizations in Matlab, the following numerical result was obtained.

Numerical Result 9.5.1 All connected simple network graphs of up to 5 nodes, subject

to primary interference, fail OMLoP, except P1 , P2, C3 , K 1,3 , K 1,4 , K 1 ,5, depicted in Figure

9-4.

This result tells us that the only graph components having at most five nodes that
satisfy OMLoP under primary interference are those that have interference graphs that are
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cliques. Although this result provides a very limited sense of the general OMLoP properties

of graphs, it provides a significant indication that the OMLoP-Satisfying class is a very

small graph class.

9.6 Conclusions

This chapter came about from the recognition that many networking environments demand

the use of multihop routing, particularly in scenarios where direct wireless links between

each pair of nodes nodes do not exist. This is clearly the case in many wireless networks,
where physical communication impairments, particularly pathloss, can lead to arbitrarily

interconnected networks.

Consequently, we obtained the LoP conditions for networks with multihop traffic (OM-

LoP), and showed that they are distinct from the single-hop conditions, derived by Dimakis

and Walrand [51]. We showed that the class of graphs satisfying the OMLoP conditions is

a strict subclass of the OLoP-Satisfying class.

Much remains to be understood about the OMLoP conditions. The most important

question is: Just how restrictive are the OMLoP conditions, and what are the graphs

contained within the OMLoP-Satisfying class?
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Appendix

9.A Proof of Lemma 9.4.1

Let E C EN, with E 5 0. Consider any JE E JE, and suppose JE = (Je, e E EN)

for Q E QE. Item 1 follows because the set JP can never be empty. Item 2 follows
by the definition of JP. For Item 3, suppose that graph G contains a directed cycle,
V1 -+ V2 -+ --- + VL -> v1. Then since Q E QE, it must be true that Q i strictly decreases
across each edge in the cycle. This is clearly a contradiction. For Item 4a, suppose vertices
vi, v2 are joined by a path of length L in Gj, and there exists a shorter path between v1 , v2
in GN. Then there must exist an edge e on this shorter path for which Qa(e)j - Q-r(e)j
exceeds the corresponding value across edges in the path joining Vi, v2 in G. This violates
that Q E QE, which provides a contradiction. Item 4b follows similarly: suppose there
exist two paths of length L in GN, with every edge in the first path belonging to Gj. By
definition, every edge e in the first path must have equal values Qa(e)j - Q T(e)j. If this is

not the case for the second path, then there must exist some edge e' whose corresponding
value exceeds that of the edges in the first path. This violates that Q E QE, which provides
a contradiction. Item 5a follows by noting that Q33 = 0, which implies that the differential
backlog of commodity j along at least one edge on the shortest path from v to j exceeds
that of the edges along the path of length L originating at v. This contradicts the set E.
Item 5b follows similarly.

9.B Proof of Theorem 9.4.1

The proof of stability makes use of the fluid limit technique. We consider a countably
infinite sequence of queueing systems, indexed by r, subject to the same arrival process,
Aij (t), i, j E {1, . . . , n}, for t > 0. The queueing variables of the r-th system are given by
Q -(t), A(t) = Ass(t), Ur(t) for all i,j E {1,...,n}, and Fr(t) for all S C S. At time t = 0,
the r-th system is assumed to contain zero packets in every queue. The following are the
queue evolution properties of the r-th system:

Q 3(t) = A-(t) - Ur,(t), t > 0

Uirj(t) = 1] dij (S) Fjr(t), t > 0
SES

Fs(t) = t, and Fs is non-decreasing, t > 0
SES

A (0) = 0, Ur(0) = 0, Vij, Fr(O) = 0, VS E S

We extend the queueing variables to the reals using Y(t) = Y([tJ) for Y = Qr, Ar, Urj, Fr.
Now each of these processes is scaled according to qi (t) = Q (rt)/r. We obtain the scaled
processes qj, ar, ur, fr. As in [9], we can infer the convergence with probability 1 of the
scaled processes over some subsequence of system indices {rk} to a fluid limit (qij, aij, uip, fs)
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having the following key properties:

qij (t) = aij (t) - ujj (t), t > 0

aij (t) = Aijt, t > 0

uij (t) = E dij (S) fs (t), t > 0
SES

fs(t) = t, and fs is non-decreasing, t > 0
SES

aij (0) = 0, Ui, (0) = 0, Vi, j, fs(0) = 0, VS E S

The convergence of each process is uniform on compact sets for t > 0, and it easily follows

that the limiting processes qij, agj, uij, fs are Lipschitz-continuous in [0, cc).

Consider Ze (t) = qa(e)j (t) - qr(e)j (t), the fluid differential backlog of commodity j across

the directed link e. Define the function h : [0, oo) --+ [0, oo) where h(t) = maxe,j Ze (t).

Consider a regular time' t > 0, at which h(t) > 0. Assign

E = {e C EN : 3j such that zej(t) = h(t)}, (9.3)

and for e E EN, assign Je = arg maxj zej (t). Note that using Q = (qij(t), i, j E VN), we

have J - (Je, e E EN) E JE. Under the backpressure-based algorithm, it is simple to

demonstrate that no link activation outside of SE,J can have an increasing value fs(t).

Thus we have,

ms(t)=1.
SESE,J

Assuming an admissible arrival rate vector A = (Aij, i, j E VN), we have for e E E and

j E Je,

ze,j(t) = Ao(e)j - Ar(e)j - I !s(t)(do(e)j(S) - dr(e)j(S))
SESE,J

= I ks(do(e)j(S) - dr(e)j (S)) - s (t)(do(e)j(S) - dr(e)j(S))
SES SESE,J

- OSuej(S) 5 fs(t)luej(S) (9.4)
SES SESE,J

for some 0 = (Os, S E S) satisfying Os 0, ZSES Os < 1. The following lemma provides

a condition under which the fluid differential backlogs are guaranteed to be non-increasing

at any regular time. Recall our notation that e denotes the all-ones vector.

Lemma 9.B.1 Let t > 0 be a regular time at which h(t) > 0. Let E C EN satisfy (9.3)

and Je = arg maxj Zej (t) for each e E EN. Suppose that the solution 0* to the following

'A regular time is a point at which the system is differentiable. By the Lipschitz continuity of the fluid

limit, almost every time in [0, oo) is regular.
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optimization problem is 0* < 0:

Maximize 9 (9.5)

Subject to E pSUE,J(S) VSUE,J(S) + Ge
SES SESE,J

eTy1 < 1

E psd(S) > 0 (9.6)
SES

eTv = 1 (9.7)

Ls O VSES

vs 0 VS E SE,J (9.8)

Then h(t) < 0.

Proof: Suppose 9* < 0. For an admissible arrival rate vector A = (A, i, j E VN),
we have Aij = ESES qsdij(S) 0, where Os 0VS, and Eses S < 1. Furthermore,

ZSESE,J fs(t) = 1 and fs(t) > OVS. Thus, the vectors (Os, S E S) and (fs(t), S E SE,J)
are feasible as vectors p, v respectively, in the linear program (9.5). The solution 0* < 0 in

the optimization clearly implies that there must exist e E E and j E J, such that

EOSUej(S) - 1 s(t)ues(S):5 0. (9.9)
SES SESE,J

By (9.4), equation (9.9) implies that ice(t) < 0. Since t is a regular time, iej(t) = h(t),
which provides h(t) 0, as desired. 0

It only remains to demonstrate that the multihop local pooling conditions (9.1)-(9.2)
are sufficient for stability. The following lemma demonstrates this property by studying the

dual optimization problem to that in (9.5).

Lemma 9.B.2 Consider graph G = (VN, E), where E C EN . Then G satisfies SMLoP
under commodity collection J E JE if and only if the corresponding optimization problem
(9.5) has solution 0* < 0.

Proof:

Suppose that the optimization (9.5) has solution 0* < 0. This implies that there exists
a dual solution and complementary slackness conditions hold. It is a simple exercise to
demonstrate that the dual problem to (9.5) is:

Minimize ci + c2 (9.10)

Subject to cTuE,J(S) ± f3Td(S) cl, VS c S

a TuE,J(S) 2 -c 2 , VS E SEj
eTa = 1

a,3, c1 > 0
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Since the solution to (9.5) is 0* < 0, the dual solution is attained at the point (a*, /*, c*, c*),

where cl + c2 < 0. Then the values a = a*, 13 = 3*, c = ct satisfy the SMLoP conditions,
as desired.

Conversely, suppose that the SMLoP conditions are satisfied, with values (a,/3, c) 0,
where a = 0. Then, the point (a/(eTa), 3, c, -c) is a feasible point in the dual optimization

problem (9.10). This feasible point has cost 0. By duality, this implies that the primal

problem must attain a solution 0* < 0, as desired. M

Combining Lemmas 9.B.1 and 9.B.2, we conclude that if SMLoP is satisfied for any

E ; EN, with any commodity collection J E JE, then h(t) < 0 for any regular time t at

which h(t) > 0. Noting that h(0) = 0, and applying [49, Lemma 1], Lemma 9.B.1 allows us

to conclude that h(t) = 0 for almost every t > 0. This immediately implies that qij(t) = 0

for almost every t > 0, which gives the rate stability of the backpressure based algorithm.

Thus the OMLoP conditions are sufficient for stability, as desired.

9.C Proof of Lemma 9.5.1

Suppose GN fails single-hop OLoP. Then, there exists a set of edges E of GN for which the

single-hop SLoP conditions fail. E can be considered without loss of generality as a set of

directed edges, each of arbitrary directionality between its end nodes.

To demonstrate that SMLoP fails, consider the set of directed edges E, and commodity

sets Je = {r(e)} for e E EN. It can be seen that J = (Je, e E EN) E JE. By definition,
any active edge in a service activation S E SE,J must be employed for single-hop service.

This implies for each S E SE,J that vector )3 can only lead to nonnegative contributions

on the lefthand side of (9.1), as follows: each active edge has a value 1 associated with its

origin vertex and a value 0 associated with its destination vertex, for the commodity being

single-hopped across it. Since we require / 0, this implies that we can at best treat the

second term on the left in (9.1) as zero for every S E SE,J-

Thus we must find nonzero a > 0, c > 0 such that aTuE,J(S) = ceT for each S C SE,J-

For any such S, each active edge e services a packet to vertex r(e), leading to a backpressure

reduction across e of a single commodity r(e) packet. Because each edge services a different

commodity, all inactive edges in E see no change in the backpressure of their respective

single-hop commodities. This implies uE,J(S) E M(E). Since all maximal activations over

the edge set E are included in SE,J, the set of backpressure service vectors over SE,J must

then equal M(E). But M(E) fails the SLoP conditions: there does not exist nonzero a > 0,

c > 0 such that aTM(E) = ceT. Finally, c = 0 is invalid, because by its definition as the set

of maximal link activations, each row of M(E) is nonzero, which means the inner product

of any nonzero a > 0 with some column of M(E) exceeds c = 0. Thus GN fails OMLoP.

9.D Proof of Theorem 9.5.1

Consider the network graph GN depicted on the left below, and the subset of edges E

depicted on the right. We denote by ei the directed edge from vertex vi to v3 .

206



V2

V1

*4

V5

V4

V1

We consider the commodity collection J = (Je, e E EN), where for e C EN, Je = Je and

0 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

It can be seen that Q E QE, which implies that J is
family JE.

a member of the maximum commodity

Each of the following edge/commodity activations is represented in the maximal service

activation set SE,J:

{(e 2 1,v),V(e45,vl)}, {(e51 ,vi),(e 32,vl)}.

When we consider the backpressure service vectors associated with these activations, the

second set of SMLoP conditions (9.2) require the existence of a, c > 0, a 0 0, such that

aTMl > c, where

M1 - 1

Since c is required to be nonnegative, this immediately implies that c = 0.

Each of the following edge/commodity activations is represented in the set S:

{(e21, v1), (e54,V1)},
{(e21 , v1), (e34 , v1)},

{(e 32 , v1), (e4 5 , v)},

{(e5l, vI), (e23, vl)},

{(e51, v1), (e34, v1)},
{(e32 , V1)}, {(e45 ,v1)}.

When we consider the backpressure service vectors and queue backlog service associated
with these activations, the first set of SMLoP conditions (9.1) require the existence of
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Figure 9-5: Graph Gj of edges carrying commodity j in the commodity collection JE.

a,/3 0, a #0, such that aTM2 +1 3TM3 < 0, where

M2 11 -1-1 0

11 0 1 -1 0 -1

0 0 0 0 0 0 0

1 1 1 0 -1 -1 0

M 3 = 0 -1 1 1 1 1 0

-1 0 -1 -1 1 0 1

1 1 0 1 -1 0 -1

Simple algebraic manipulation (which we forgo) can be used to demonstrate that there

exists no such a, 3. Thus, C5 fails SMLoP under edge set E and commodity collection J,
which implies that C5 fails OMLoP.

9.E Proof of Lemma 9.5.2

Consider a set of edges E C EN and the commodity collection J = (Je, e E EN) E JE.

Consider the commodity graph Gj = (V, Ej), where Ej = {e C E : j E Je}. By the

definition of JE, there can not exist two oppositely directed edges (v, v'), (v', v) in E for

all j. Graph G = (V, Ej) is a star having k > 0 edges facing outward from vo and I > 0

edges facing inwards to vo, with k + I > 1, as depicted in Figure 9-5.

For the proof, we will use the value c = 1. Recall that only a single edge in the star

can ever be active at one time. Thus, if we arrange in a matrix the backpressure service

vectors corresponding to all S E S, the columns of the matrix can be arranged to yield

a block diagonal matrix U, with each block corresponding to service activations involving

different commodities. We will consider each commodity j E UeEEJe in turn and determine

the required assignment of the elements of a for j.
Consider commodity j E UeEEJe:
Case 1. Suppose that vo = j. Then by the definition of JE, we must have k = 0.

In this case, if edge e E Ej is selected for service of commodity j, link e sees a decrease

in backpressure of 1 commodity j packet, and no other of the 1 links sees a change in
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backpressure, since the packet departs at vo. If any other edge not in Ej is selected for

service of commodity j packets to vo, no change in backpressure occurs for any of the I links.

Thus, the non-zero component of the block-diagonal matrix corresponding to commodity j
is an identity matrix. In this case we assign ae,j = 1 for all (e, j) where e C Ej. We also

assign 0,,j = 0 for all v.

Case 2. Suppose that vo $ j and that none of the k outward-facing links terminates at

node j. In this case, if an outward-facing edge e E Ej is selected for service of commodity

j, e sees a service of 2 units, each of the other outward facing edges in Ej sees a service

of 1 unit, and each of the 1 inward-facing edges sees a service of -1 units. Similarly, if

an inward-facing edge e E Ey is selected for service of commodity j, e sees a service of 2

units, each of the other inward-facing edges in Ej sees a service of 1 unit, and each of the

k outward-facing edges sees a service of -1 units. If any other edge e not in Ej is selected

for service of commodity j, this leads to a service of 1 at all links facing vo in the same

direction as e and a service of -1 at all links facing vo in the opposite direction to e. The

non-zero component of the block-diagonal matrix corresponding to commodity j has the

form,

Ik + ek,k -ek,l ek,1 -ek,1 (9.11)

-el,k I1 + eijl -el,1 e1

where I, is the identity matrix of size p, and ep,q is the p x q matrix of ones. The separator

in (9.11) separates the activations in SE,J (at left) from the remaining commodity j edge

activations (at right). The rightmost two columns of (9.11) may or may not exist and there

may be multiple copies of either column. Also these columns can dominate other inferior

service vectors. In this case, we set aeJ = (21+1)/(k+l +1) for each e E E facing outwards
from vo, and set ae,j = (2k + 1)/(k + 1 + 1) for each e E Ej facing inwards to vo. It can be
verified that for k, l > 0 with k + I > 1, the inner product of a with the leftmost columns
before the separator in (9.11) yields 1, while the remaining nonzero columns result in values
less than 1. We assign 3,,j = 0 for all v.

Case 3. Suppose one of the k outward-facing links terminates at node j. Through
similar analysis as above, we obtain the non-zero component of the block-diagonal matrix
corresponding to commodity j as,

Ik' + ek',k' ek',1 -ek,l ek',1 -ek',1

ei,k, 1 -ei,j 1 -1 , (9.12)

el,k' e1,1  Iii + ej,l -etj e, 1

where k' = k - 1. Note that (9.12) only differs from (9.11) in one column to the left of the
separator, where the 2 is replaced by a 1. This corresponds to the edge whose destination
is j. We assign a,, = 2 for each of the inward-facing links, and ae,j = (1+21)/k for each of
the outward-facing links. In this case, the inner product of a with the first k - 1 columns
of (9.12) yields 1 + (1 + 21)/k, and the remaining columns to the left of the separator yield
1. Since we seek the value c = 1, the values 1 + (1 + 21)/k are too high to satisfy (9.1).
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Consequently, we assign fhj = (1+21)/k for all vertices v terminating the k outward-facing

edges. Thus, activation of any one of these edges leads to a contribution of the 3 term in

(9.1) of -(1 + 21)/k, leading to satisfaction of (9.1) as desired.

For every commodity j not belonging to UeEEJe we assign a,,j = 0 for all e, and $,j 0

for all v. The vectors a,,3 are then guaranteed to satisfy SMLoP, as desired. Since this

holds for any E E EN, and any J E JE, OMLoP is satisfied.

9.F C3 satisfies OMLoP

We need only consider each commodity graph individually. By the symmetry of C 3 , this

yields only three cases to consider.

Case 1. Suppose commodity graph Gj is the following graph.

V2

V1

U3

In this case, it is straightforward to demonstrate that the only service activation be-

longing to SE,J relevant to this commodity is edge e2 1 activated for commodity v1 . The

SMLoP condition requires that there exists a > 0, c > 0 such that a > c. The set

S contains the following edge/commodity activations, which are relevant to this case:

{(e21, v)}, {(e31, vl)}, {(e 23 , vl)}, {(e32, vl)}. Thus, denoting

M 1 = 1 0 1 -1,

1 0 1 -1
M2 =

0 1 -1 1

the SMLoP conditions require the existence of 8 0 satisfying aM1 +6 /TM 2 < c. Clearly,
the values a = 1, J3 = (0,1), c = 1 satisfy these conditions.

Case 2. Suppose commodity graph Gj is the following graph.

V2

V1 <

Here, the relevant service activations belonging to SE,J for this commodity are: { (e21 , v1 )},
{(e31, v 1)}. Thus, the SMLoP conditions require the existence of nonzero a > 0 and c > 0
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such that aTM 3 > (c, c), where

1 0
M3 = .

0 1

The set S contains the same relevant edge/commodity activations as in Case 1 above.
Denoting

1 0 1 -1
M4 = M5 = }

0 1 -1 1

the SMLoP conditions require the existence of 8 0 satisfying aTM4 + 3TM 5 < c. The
values a = (1, 1),13 = (0, 0), c = 1 satisfy these conditions.

Case 3. Suppose commodity graph G is the following graph.

V2

V3

Here, the relevant service activations belonging to SE,J for this commodity are: { (e21, V1)
{(e23, vi)}. Thus, the SMLoP conditions require the existence of nonzero a > 0 and c > 0
such that aTMe (c, c), where

M6=[i
1 2

The set S contains the same relevant edge/commodity activations as in Case 1 above.
Denoting

1 1 0 -1
M7 = ,

1 2 -1 -2

1 1 0 -1
M8 = ,

0 -1 1 1

the SMLoP conditions require the existence of /3 0 satisfying aTM7 +'3TM 8 <c. The
values a = (1, 0),,6 = (0, 0), c = 1 satisfy these conditions.

211



212



Chapter 10

Conclusions

We have considered algorithms for scheduling and routing in switched data networks. An

important feature of any such network is that there are a finite number of ways in which

the network links can be simultaneously activated for transmitting data. Throughput op-

timal algorithm design for this general network setting was first analyzed by Tassiulas and

Ephremides [150]. This thesis, as well as a range of results in the wireless and switching con-

texts, is a testament to the importance of this model in the design and analysis of modern

data networks.

We have applied this networking model to design algorithms and to analyze the perfor-

mance of optical and wireless networks, and of input-queued switches. Remarkably, though

each networking environment potentially leads to a different set of available link activations,
our common underlying model implies that each of these environments can be studied in

the same framework. This has led us to propose joint WDM reconfiguration and elec-

tronic layer routing algorithms for achieving throughput optimality in configurable WDM

networks. Building upon the characterization of throughput optimality in the general net-
work setting, we used properties of optical networks to determine analytical performance

measures of reconfigurable WDM networks. In the context of input-queued switches, we
demonstrated the attractive throughput properties of reduced-complexity scheduling algo-
rithms. For wireless networks, we developed algorithms to allocate links to channels in
order to maximize on the achievable throughput under distributed scheduling algorithms.

We additionally studied graph properties that are amenable to achieving throughput opti-
mality under distributed schedulers, we determined the implications of interference on the
performance of distributed schedulers, and we determined conditions for the throughput

optimality of distributed joint scheduling and routing algorithms in wireless networks.
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