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Abstract

In this thesis, we analyze state-of-art techniques for analog circuit sizing and com-
pare them on various metrics. We ascertain that a methodology which improves the
accuracy of sizing without increasing the run time or the designer effort is a contribu-
tion. We argue that the accuracy of geometric programming can be improved without
adversely influencing the run time or increasing the designer's effort. This is facil-
itated by decomposition of geometric programming modeling into two steps, which
decouples accuracy of models and run-time of geometric programming. We design a
new algorithm for producing accurate posynomial models for MOS transistor param-
eters, which is the first step of the decomposition. The new algorithm can generate
posynomial models with variable number of terms and real-valued exponents. The
algorithm is a hybrid of a genetic algorithm and a convex optimization technique. We
study the performance of the algorithm on artificially created benchmark problems.
We show that the accuracy of posynomial models of MOS parameters is improved by
a considerable amount by using the new algorithm. The new posynomial modeling
algorithm can be used in any application of geometric programming and is not limited
to MOS parameter modeling. In the last chapter, we discuss various ideas to improve
the state-of-art in circuit sizing.
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Chapter 1

Circuit Sizing: An Introduction

1.1 Approaches to Circuit Sizing

Automatic sizing of analog circuits continues to be a research focus for the EDA

industry. An analog circuit has 10 to 200 real-valued parameters that must be set in

order to meet its specifications (between 2 to 20 in number). The process of setting

these parameters is called circuit sizing. For instance, a simple two-stage opamp has

around 12 parameters, which includes the width and length of all transistors and

passive component values which have to be set to achieve around 10 specifications

such as gain, bandwidth, power, area, noise, CMMR (common-mode-rejection-ratio),

offset, settling time, slew rate and power supply rejection ratio.

For SOC (System-On-Chip) design, digital synthesis is automated to a large ex-

tent. However, the manual sizing of analog blocks is a bottleneck and governs the

time-to-market. The technology evolution is guided by digital circuits (lower area and

power) and the behavior of the transistor with respect to efficiency in analog design

is somewhat ignored as technology is scaled. The analog designer has to live with

and learn to design circuits with new unrelenting transistor models. Automatic sizing

frees the designer to work on new architectures and study system-level tradeoffs. It

aims for bet'ter designs and shorter time to market.

Several techniques for sizing have been proposed and implemented. In the late

80's, knowledge based approaches [1,2] were proposed. These techniques captured



the expert knowledge of a designer and translated it into a set of rules which then

automatically sized a circuit for a given set of specifications. These approaches were

not very useful, since for every new circuit topology and technology, a new set of rules

had to be created by manual labor.

More recently, circuit sizing has been cast as an optimization problem. As it is

well-known, casting any design problem into an optimization problem has two aspects:

Modeling the design problem as an optimization problem and solving the modeled

problem. These steps are not independent and influence each other, for instance, the

model of the problem will decide the optimization method that can be used. One

could also look at it in another way, where the problem is molded is fit into a template

in a way so that it could be easily solved.

In the context of circuits, the accurate performance of circuits is that which is

measured when the circuit is fabricated on silicon. Since the designer does not have

access to this during the design process, the designer relies on a simulator which

models the characteristics of the silicon elements and runs numerical algorithms to

calculate circuit performance. The widely accepted simulator is SPICE [37], which is

the standard in industry and academia. Therefore, with respect to sizing, the final

check-point is SPICE correctness. The most accurate model that can be used for

optimization is using SPICE as a blackbox evaluator, where one feeds in the circuit

parameters and gets the circuit specification values.

Apart from SPICE, the circuit designer also has access to circuit equations. These

equations can be derived by symbolically parsing the circuit with some assumptions

with regard to the transistor behavior. Humans derive these equations to under-

stand the circuit better [24], while there are programs which automatically derive

these expressions as well [16]. These expressions can be used to derive circuit perfor-

mances much faster than SPICE. However they aren't as accurate as SPICE, since

the assumed transistor behavior is not accurate and also, approximations are made

in circuit analysis.

These two models are available for evaluating circuit performance specification.

However, modeling the circuit optimization problem does not only include how the



performance specifications are measured, but also how the optimization problem is

set up. There could be many variations to this such as the optimization problem

can have multiple objectives and multiple constraints; one objective and multiple

constraints; a series of optimization problems with one objective and multiple con-

straints; transformations in problem to make it convex.

Recently three approaches have been popular for circuit optimization. Table 1.1

summarizes the modeling approach and optimization algorithm related to each of this

approach.

Name of Ap- Optimization Model Optimization Algorithm
proach

SPICE Evaluation Blackbox Optimization Algo-Simulation based
rithm, e.g.,

Single objective, multiple con- Simulated Annealing,
straints [34, 36] Stochastic Pattern search
Multiple objectives, multiple Multi-objective Genetic Algo-
constraints [40] rithms

Equation based Equation-based Evaluation Blackbox Optimization Algo-
rithm, e.g.,

Single objective, multiple con- Simulated Annealing
straints (Chapter 9 in [16])
Multiple objectives, multiple Multi-objective Genetic Algo-
constraints rithms

Geometric Posynomial equations with Convex Optimization:
Program.ming log-log transformation:

Single objective, multiple con- Geometric Programming
straints [23, 31]
Series of single objectives, Reverse geometric program-
multiple constraint problems ming
[13]

Table 1.1: Different Approaches for circuit optimization

As shown in Table 1.1, the Simulation based Approach and Equation-based Ap-

proach use black-box optimization algorithms, while they differ in the way circuit

performance is evaluated, the former using SPICE simulations and the latter circuit

equations. On the other hand, Geometric Programming uses circuit equations in

posynomial form [7], transforms them in a certain way (log-log transform) to derive a

convex problem, which can then be solved efficiently as a geometric program. For the



equation-based approach and Geometric Programming approach the way of evaluat-

ing circuit performance is same, however the optimization problem formulation and

way of optimization is different. In practice, the distinctions made in the table have

weak boundaries and there have been approaches which draw from more than one

of the approaches described, e.g., ASTRX/OBLX uses equations for high-simulation

time specifications and simulators for measure the others [34]; Some geometric pro-

gramming approaches [10] use simulation data to find equations for some specifications

and hand-written equations for others.

It may be noted that the popular names of these approaches are incomplete and

confusing. While the first two approaches (in the order of mention in Table 1.1) derive

their name according to the way circuit performance is evaluated, the latter derives

its name from the approach to problem formulation and optimization. The reasons

for this are historical. When circuit sizing was first cast as an optimization problem,

all popular methods used black-box optimization methods and thus the names just

distinguished them in terms of how performance was evaluated. Later, when geomet-

ric programming was applied to circuit sizing [23, 31], for distinction, it was named

according to the name of the optimization method. In principle, the names of the ap-

proach should include both the modeling approach and the optimization method. The

approaches can thus be called, 'Simulation-based Black-box Optimization Approach',

'Equation-based Black-box Optimization Approach' and 'Equation-based Convex Op-

timization Approach' in order.

Currently, the simulation based approach and geometric programming are most

popular within the academia and industry. They both have pros and cons which are

discussed in the next section.

1.2 Comparison of Sizing Approaches

Geometric Programming and simulation-based approaches have both found accep-

tance in academia and industry, however the purpose and methodology to use them

have been different. In this section, we first compare them based on various metrics.



We then explain how they are useful in different scenarios based on these comparisons.

1. Accuracy: In geometric programming, though the optimization method finds

the global optima, inaccuracy creeps in due to the inaccuracy of the equations.

There are two reasons for this inaccuracy. First, the derived equations use

approximate circuit analysis. Second, the equations need to be in posynomial

form and not all circuit equations can be modeled as posynomials (for e.g.,

saturation constraints [23]). On the other hand, the optimization approach,

i.e. geometric programming tranforms the problem into a global optimization

problem and guarantees global optima.

In the case of simulation-based approaches, the modeling is accurate, since

SPICE is used for performance evaluation. However the optimization method

provides no guarantee of finding the global optima. The popularly used tech-

niques of simulated annealing, evolutionary algorithms, etc. provide no mathe-

matical guarantee of finding the actual optima and the optima within an error

bound. There are empirical results of convergence [12, 45], but there haven't

been any studies to test these convergence results for circuit optimization prob-

lems or test problems of similar size. For instance, NSGA-II used in [9, 41]

has been only benchmarked for 10 dimensional problems and two objectives

[12], where it is shown to be able to find the global optima. However, a simple

folded-cascode opamp has more than 20 parameters to be optimized and several

objectives. Possibly, sub-optimal optimization results create inaccuracy in the

optima found by simulation-based approach.

2. Effort: The effort spent by the designer to use a tool based on the simulation-

based approach is moderate. The designer has to set up SPICE files for mea-

suring different performance measures, select parameters to be optimized and

set their ranges. The most time-consuming part here is that of setting the

SPICE files. However, this effort can be reused across circuits with the same

functionality. On the other hand, the effort spent in setting up a geometric

program is much higher. In the tools released by commercial entities such as



Barcelona Design, the designer had to write equations for objectives and con-

straints themselves, which was cumbersome. Furthermore, the equations need

to have posynomial form (in some recent commercial tools, this condition has

been relaxed). This has to be done for each circuit topology. Though there

has been some work in automatically deriving these equations, it hasn't yielded

good results due to the inaccuracy and poor scalability of these approaches,

the resultant expressions are not well-suited for optimization. No commercially

available tool offers automatic modeling of equations to our best knowledge. In

personal conversations, the author hasn't found designers forthcoming to write

equations. They aren't sure whether they know accurate equations for each

specification and claim to use what they call 'design intuition' to size circuits.

Given a choice between writing equations and sizing the circuit themselves, the

designer chooses the latter.

3. Time: The time component for the circuit-sizing comprises of two durations.

First, the time to setup the optimization problem. Second, the time taken by

the optimization algorithm to size the circuit. In geometric programming, as

discussed before, the time spent in setting the circuit optimization problem is

high. The designer may take any amount of time to write the equations and

usually must iterate because getting equations first time correct is not easy.

Thus the time may include a debug cycle. Also, the time increases with the size

and complexity of the circuit. The second component of time, i.e. optimization

time is low for geometric programming. A GP with 1000 variables and 10000

constraints is solved in less than a minute on a small desktop computer [7].

In case of Simulation-based approaches, the time to setup the optimization

problem is low and there is high potential of reuse of scripts. However, the

time of optimization is much higher due to two reasons. Firstly, SPICE is used

for evaluation in optimization and thus the time of optimization is limited by

time of simulation, which is very high for transient specifications. Secondly,

blackbox optimization methods are weak methods and not specific to properties



(or structure) of the optimization problem. Their advantage is that they work

moderately well on a high number of problems, but in trade-off, their time of

run is high. The most popular algorithms used for circuit optimization are

population-based (evolutionary algorithms, stochastic pattern search), which

gives the advantage of natural parallelization on clusters for fast execution.

This has been successfully implemented in industry [22]. For instance, a 20

parameter Power Amplifier took 10 hours to optimize when run on 16 300MHz

Sun-Ultra 10's and 4 300MHz dual-processor Ultra 2's [36].

4. Suitability for system Level design: Automated system-level design remains a

cherished dream for the analog CAD community. In general, when we talk

about circuit sizing we refer to cells. These cells together compose a system.

For instance, an Analog-to-Digital converter is a system which is composed of

multipliers, filters, comparators, summers, etc. which are cells. A system-level

design problem is much harder given that it has a much larger size (number

of parameters to be set), is more complex (leading to complex equations) and

has much higher simulation time. It is not feasible to solve the system-level

design problem all at once. In general, the approaches toward it first break the

problem into smaller pieces (such as design of cells), solve them in individually

and then combine the solutions to solve the system level problem. Though

there are approaches for automated system-level design, the CAD community

is often accused of over-simplification and neglecting some of the 'real issues',

when addressing system-level design!

Geometric programming has been used for system level design [10, 13]. The

advantage of geometric programming is its speed and accuracy in solving large

problems [7]. Given this advantage, the system-level problem if modeled cor-

rectly could be solved all at once by geometric programming.1 This has been

shown for a PLL [10]. Also, GP can be used to solve cell-level problems, which

can then be combined to solve the system-level problem. In [13], a set of sev-

'It has to be kept in mind that formulating a system level problem correctly by using equations
is not easy and will be, in general, inaccurate



eral geometric programming problems are used to enumerate the design space

(or trade-off curve) for a cell, which can then be used for efficient system-level

design. The low optimization time of geometric programming and the guaran-

tee of an optimum with even large problems (provided the model is accurate)

makes it extremely attractive for system-level design. However, the modeling

component is of concern.

Simulation-based approaches have been used in more than one way for system-

level design. They cannot and have never been used to solve the system-level

problem all at once. This is not only due to the high simulation time of the sys-

tem, but also due to the unknown scaling properties of black-box optimization

algorithms with the size of problem. General experience says that these algo-

rithms scale badly with the size of problem. A simulation-based approach for

system-level design uses a hierarchical approach. It breaks the problem into cell-

level problems, solves these individually and combines the solutions to solve the

system-level problem. The approach may also require iteration between solving

the system-level and cell-level problem. A survey of some of these approaches is

given in [19]. Some recent approaches produce trade-off curves for cells, which

are combined to find the optimal solution [40, 15]. These approaches are fun-

damentally limited by the time needed to generate the trade-off curve for each

cell of the system, which is high. There have been some claims of reusability,

however reusability is under question given that the constraints change for cells

in different designs. There has been reasonable success in system-level design

using stochastic optimization, but there are still a lot of open questions.

5. Suitability for robust design: Robust design refers to design of circuits which

guarantee to function well in case of environmental variations, inter-die and

intra-die variations in process. Earlier, corner-analysis was used to ascertain

robustness of the circuit, however more recently, statistical measurement of vari-

ation has been emphasized [44]. With regard to simulation-based approaches,

ascertaining robustness of a circuit requires multiple simulations (monte-carlo



analysis) and adversely effects the run-time of the algorithm (possibly 2 to 3

orders of magnitude). Researchers have focused on designing techniques which

require a small number of samples to ascertain robustness as opposed to a com-

plete monte-carlo simulation ([39], Solido Design Automation). Also, there has

been design of heuristics which do robustness estimation for only a few circuit

visited in the optimization [41], however the accuracy of these approaches is

questionable.

With regard to geometric programming, the challenge is to model the distri-

bution of variation parameters in a form which can be efficiently optimized.

Secondly, the MOS transistor has to be expressed as a posynomial in terms of

the variation parameters (Discussed in Chapter 2). There is no physical basis to

suggest that the distributional properties of the variation parameters shall yield

to convex optimization. In [44], the authors have shown that geometric pro-

gramming can be used for robust optimization by making certain assumptions

about the distribution of the random variables. The formulation of a robust GP

doesn't guarantee global optima, however works well in practice. The advantage

of geometric programming is that it optimizes lightning fast and is not limited

by simulation time as in Simulation-based approaches. If the model for robust-

ness is correct, geometric programming scales very well to handle a very high

number of variation parameters. Evidence for this has already been shown in

[44]. In summary, with regard to robustness, simulation-based approaches are

prohibited by their high simulation time, while geometric programming faces

the challenge of accurate modeling.

Table 1.2 summarizes how Simulation-based Approaches and Geometric Program-

ming compare on various metrics of concern. In a broad-sense, geometric program-

ming is useful to solve large problems quickly, needs high effort and time in optimiza-

tion problem modeling and is promising for robust and system level design. On the

other hand, simulation-based approaches are not well suited for large problems (when

not decomposed), need low effort and time in setup and have shown some success in



Metric Geometric Programming Simulation based Approaches
Inaccuracy in process and cir- Accurate circuit models since
cuit modeling SPICE is invoked in-loop
Accurate global optimization Inaccuracy or no guarantee in

on given models stochastic optimization.
Effort High designer effort in writing Little effort by designer

accurate equations needed for setting SPICE
scripts for specification
measurement and choosing
variables to be optimized.

High time in optimization Little time needed in problem
problem formulation: Time formulation
spent in analyzing circuit and
writing equations.
Very fast optimization by High time of optimization be-
interior-point methods cause i. SPICE is invoked in

loop of optimization, ii. Weak
algorithm and not circuit spe-
cific

Suitability for By generating fast trade-off Multi-objective approaches
system level curves for cells and their use allow trade-off generation,
Design for system-level optimization which can be used for hier-

archical bottom-up synthesis
[9].

By combining cell-level equa-
tions to form system-level
equations and optimizing the
whole system.

Suitability for Challenges in inclusion of ro- Challenges in decreasing num-
robust bustness in a form optimizable ber of SPICE simulations
optimization by convex techniques needed for robustness mea-

surement.
Fast optimization on model-
ing

Table 1.2: Comparison of Simulation-based Approaches and Geometric Programming
on various metrics



system level and robust design.

These differences have interestingly resulted in different scenarios and ideology

for use of these two approaches. Given the low time and effort of setup and general

usability for any circuit, simulation-based approaches are used in sizing tools. These

sizing tools are used by designers for doing cell-level optimization. Given the high run

time, a popular model is to set up the optimization in evening and let the computer

do the work, when humans sleep! The designer gets the results in the morning. The

tools may give approximately good results, which can be used as starting points by the

designer. Another popular feature of these tools is to show trade-off curves between

important performance measures (such as power and area), which are not accessible

by manual approaches. In this scenario, the tools don't directly address system-level

design(however, may do so in consultancy models). Analog Design Automation and

Neolinear Inc. commercialized such tools and were subsequently bought by Synopsys

and Cadence.

On the other hand, geometric programming needs high effort and time in modeling

the circuit and setting up the optimization problem, but gives quick and accurate

optimization given the model is good. To suit this trade-off, geometric programming

is used in a library-based model and an IP-based model.2 In the first model, the CAD

company provides libraries containing already setup optimization problems for some

of the most commonly used and important analog circuit topologies. The designer can

then size these blocks lightning fast and accurately. However the designer is limited

to the topologies provided by the CAD vendor and cannot size a newly designed

topology. This becomes more complicated given that the new topologies are generally

proprietary and cannot be disclosed to the CAD vendor. In the IP model, the IP

is sold and not the CAD tool. Generally these IPs are at the system-level. The

vendor studies and models some of the most important IPs (such as PLLs) as a

geometric program, which could then be synthesized very fast. Given the customer

specifications, the vendor can very quickly size the IP using geometric programming.

2Ip is abbreviation for Intellectual Property here. In the semiconductor industry, IP refers to
synthesized block, which can be a circuit, a digital block or a processor.



This decreases the time to market and ensures the design is well-optimized. The IP

approach is ideal to address the system-level design problem, but is again limited to

the few topologies mastered by the vendor. Both these models can be extended to

consultancy models, but they could run into issues of confidentiality. Sabio Labs and

Barcelona Design has experimented with both the library and IP model (and also the

not-so-good tools model!).

Given the presented scenario, we discuss our approach to research in the field of

analog CAD.

1.3 Research Approach and Problem Statement

We are interested in enhancing the state-of-art in circuit optimization by improving

the current methodologies and designing new ones. Given the trade-offs enumerated

between the different approaches above, it will be a contribution if we can improve

the accuracy of optimization or decrease its time without increasing (or minimally

increasing) the effort spent by the designer. We want our new techniques to be

suitable for extension to robust circuit optimization and system-level design.

In this thesis, we will improve the accuracy of the geometric programming flow

without increasing the effort spent. Our approach will accommodate system-level

design and robust optimization. As will be explained in detail later, the geometric

programming flow proposed by Hershenson and Mandal (independently) has a step

which encapsulates process model into the circuit design equations to get the final

model for optimization. The inaccuracy in geometric programming is due to two rea-

sons: i. Inaccurate Process (transistor) Models, ii. Inaccurate design equations. We

are interested in exploring how we can address the former, i.e., design more accurate

posynomial process models. We use a hybrid of genetic algorithm and convex opti-

mization technique (linear programming or quadratic programming) for this purpose.

Since these models are reusable with any circuit, this technique improves geometric

programming accuracy without compromising the time or effort required. The tech-

nique will also be useful to build accurate process models with multiple statistical



parameters for robust optimization.

The proposed technique is a general technique to build posynomial models with

real-valued coefficients, exponents and variable number of terms. It is not just limited

to circuits. It can thus be used for modeling of various applications for which geomet-

ric programming may then be used for optimization. We will also discuss in future

work, how the technique can be used to lower the effort in geometric programming

approaches and make it more accurate by addressing the second modeling step, i.e.

of design equations.

In Chapter 2, we will discuss and compare the approaches used to cast circuit

sizing as a convex optimization problem. We will motivate the idea of reuse in circuit

optimization. In chapter 3, we will discuss the state-of-art posynomial modeling

techniques, their deficiencies and describe in detail our algorithm for posynomial

modeling. In Chapter 4, we will quantitatively show that our technique outperforms

the state-of-art techniques. Chapter 5 will discuss future work.





Chapter 2

Circuit Sizing as a convex

Optimization Problem

In this Chapter, we will discuss the different approaches to express an analog circuit

sizing problem as a convex optimization problem, primarily a geometric program.

There are two basic approaches to do this. Based on the terminology of naming circuit

sizing approaches introduced in Chapter 1, we name these two approaches henceforth:

Equation-based Convex Optimization and Simulation-based Convex Optimization.

In Section 2.1, we will discuss the form of a geometric program and how it can be

converted to a convex optimization problem. In Section 2.2 and 2.3, we will discuss

two methodologies for analog circuit sizing using geometric programming. In Section

2.4, we will provide a perspective on these two approaches and in Section 2.5, we will

discuss how we improve the accuracy of one of these approaches without sacrificing

run-time or increasing effort of designer.

2.1 Geometric Programming

A geometric program is a non-linear optimization problem, which can be transformed

into a convex form and solved efficiently [7]. It should be noted that a geometric

program is not convex, i.e. its objectives and constraints may or may not be convex.

However, by using a log-log transformation it can be converted into a convex form.



To represent a geometric program, we first define a posynomial function. Let T

be a vector of n real positive variables. A function f is called a posynomial function

of z if it has the following form:

f (x,I..., x,) =Cckxlk ... Xank, cj >O, aij, ER
k=1

Posynomials are like polynomials, but differ in two ways. First they can have frac-

tional exponents and second, they have only positive coefficients for all terms. When

t = 1, i.e. a single term posynomial is called a monomial. Geometric programming

solves an optimization problem of the following form:

minimize fo(x)

subject to fi(-) < 1, i= 1,...,m,

9i(y) = 1, i=1,...,p,

xi > 0, i= l,...,n

Here fi and fo are posynomials while gi are monomials. A geometric program can

be converted to a convex optimization problem with the following transformations.

The original variables, xi are replaced with their logarithms, yi = logxi (xi = evi). The

logarithm of the objective fo is minimized instead of fo. The constraint fi(X) < 1 is re-

placed with log(fi(T)) _ 0 and the constraint gi(T) = 1 is replaced by log(gi(T)) = 0.

Since we take log of both the input variables and each posynomial function (con-

straints and objectives), this transformation is called log-log transformation. The

constraints xx > 0 are implicit in the log-transformation. The log-transformations

are valid since logarithm is a monotonic function.

On doing a log-log transformation, posynomial functions become convex, while

monomials become linear. This makes the objective and inequality constraints convex

and the equality constraints linear. This is the classical form of a convex program

and can be solved efficiently for the global optimum. A geometric program with 1000

variables and 10000 constraints is solved in less than a minute on a small desktop



computer [7].

2.2 Equation-based Convex Optimization

The first approach to use geometric programming for circuit optimization was in-

vented by Hershenson and Mandal [31, 23]. It was observed that hand-written circuit

equations with the MOS transistor abstracted by the square-law yielded posynomial

expressions for circuit specifications. There were some exceptions to this, such as

expression for saturation constraints. However work-arounds and approximations

were designed to express these as posynomial to formulate the circuit as a geometric

program. This yielded very quick optimization for circuits.

However, it is well-known that the square-law is inadequate to model the transis-

tor, more so with shrinking technology. Currently, the very complicated BSIM model

is used to model transistors for SPICE with parameters learnt from actual fabrication

data. In fact, the transistor behavior has become so complicated, that fab delivered

models for sub-micron technology nodes use several different BSIM models for differ-

ent operating range of the transistor, since one model is inadequate to capture the

behavior for the whole range accurately.'

Given this scenario, the square-law approximation is inappropriate for optimiza-

tion formulation. To address this, a hierarchical decomposition of the circuit equations

was identified.2 This decomposition is shown in Figure 2-1.

The optimization formulation goal is to express the circuit constraints and spec-

ifications as a function of circuit parameters, such as the width and length of the

transistors and value of passive components or various other choice of design vari-

ables [28]. This formulation is decomposed in two-steps as follows:

1. The MOS transistor parameters are expressed as function of the transistor de-

sign variables. One choice for design variables is width, length, gate-source

'Specific details are omitted due to intellectual property issues!
2Though this decomposition is apparent in the works done by Hershenson, et.al., it hasn't been

explicitly stated and discussed as a general principle with its implications in the CAD community!
We will talk about these implications in a Section 2.4.



Circuit Design Parameters
(Wi, Li, Id, Rz, Cc)

MOS parameters
gm, gds, Cgd, Cgs, Cdb, ro, Vt, Veff

Model 2
Topology dependent

Specs in terms of equations, e.g. gain
G = gi2 * gin5

(gds 2 + gds4)(gds5 +gds, )

Figure 2-1: Circuit specifications as a function of circuit parameters: A
two-step decomposition



voltage and drain-source voltage. Alternatively, gate-source voltage could be

replaced by drain current. The modeled transistor parameters include small-

signal parameters and large signal parameters. A simplified small-signal model

and parameters are shown in Figure 2-2. For simplicity, it is assumed that the

body and source are connected. The small signal parameters comprise of the

various transconductance like gm, gds, etc., resistances, ro and various capaci-

tances. The large signal parameters are various voltages like threshold voltage

(Vt), saturation voltage (Vat), effective voltage (Veff) and the drain current

(Id). :Depending on whether the drain current or gate-source voltage has been

considered as a design variable, the other could be modeled as a parameter.

2. The circuit specifications are expressed as a function of MOS transistor param-

eters by hand-written equations. As an example, in Figure 2-1, gain of a simple

two-stage opamp is expressed as a function of the transconductance of various

transistors which compose the circuit.

gate (g) Cgd drain (d)

=1/gds
source (s)
(body (b))

Figure 2-2: A simplified small-signal model of the MOS transistor

This decomposition liberates the optimization formulation from dependence on

the square law. The transistor parameters are learnt from actual simulation data



for a given technology and are not based on the square law. In [23, 10, 13, 8],

monomial models were learnt for transistor parameters as a function of MOS design

variables. Then, these models were used to replace the transistor parameters in

hand-written equations for all specifications. Since monomials yield posynomials

on addition, multiplication and division, this results in posynomial objectives and

constraints. This encapsulation allows the expressions of specifications as posynomials

of design variables. All details of how exactly the optimization problem is formulated

for a simple opamp is given in [23].

To summarize, the Equation-based Geometric Programming approach uses sim-

ulation data to derive models for transistor parameters in terms of design variables

and uses hand-written equations for expressing specifications as functions of transis-

tor parameters. The learnt models for transistor parameters are plugged in to the

specifications to form a geometric program.

2.3 Simulation-based Convex Optimization

The second approach first used by Daems, et.al. [11] and later used in [29] follows

a different strategy to cast a circuit as a geometric program. This approach has the

following flow:

1. All design variables for the circuit are enumerated and ranges are set for all

these variables.

2. Many sets of values of design variable are chosen which represent the complete

design space well statistically. In [11], this was done by using Design of Exper-

iments (DOE) [26]. The circuit is simulated using SPICE at all these sets of

design variables to find value for all specifications.

3. Given this data, a posynomial expression is derived for each specification in

terms of the design variables. This derivation is done using black-box regression

techniques.

4. This results in a geometric program, which is then solved.



This approach uses simulation of the whole circuit for deriving posynomial expres-

sions for circuit specifications. It doesn't use hand-written equations or any encapsu-

lation of models to derive the final expressions. It should be noted that this approach

doesn't use any assumption (Square law or otherwise) about the MOS transistor

behavior and doesn't suffer from inaccuracy in that regard.

2.4 A perspective on the Approaches

In the last two sections, we have discussed two approaches to geometric programming.

Though both these approaches use convex optimization, the methodology to setup

the optimization problem makes a big difference in how they compare on various

metrics of concern. In this section, we will compare these approaches and provide

a perspective on how the former could be improved. We will show how the two

step decom:position done in Equation-based Convex Optimization approach has far-

reaching consequences on the run-time of the methodology, which in turn influences

the scalability and suitability for robustness.

Both the approaches suffer from the fundamental limitations of geometric pro-

gramming, i.e. the need for posynomial models for specifications. Some of the circuit

specifications and transistor parameters are not posynomials, which leads to inaccu-

racies. The second level of inaccuracy creeps in depending on the question as to how

accurately can we identify the posynomial representing the specification, assuming

that it indeed has a posynomial expression. This depends on the technique to fit

posynomial models and also has repercussions on the run time of the methodology.

Thus it isn't easy to discuss the run time and accuracy of the approaches separately

and we will discuss them here together. We will finally argue that run time and

accuracy can indeed be decoupled for Equation-based Geometric Programming.

The Simulation-based Geometric Programming approach builds posynomial mod-

els for the circuit specifications directly in terms of the circuit parameters. This

approach seemingly gets rid of the inaccuracies of the hand-written equations. How-

ever there are significant problems with this approach. Firstly, the posynomial models



comprise all design variables of the circuits, which results in a very high dimensional

fitting problem (circuit design variable count goes anywhere between 10 to 100). The

higher dimensionality of the problem makes it harder to get accurate models that will

generalize well throughout the space. To address this, in [11], second order posyno-

mial models with integer-valued exponents were used. There isn't an intuition why

second order models will generalize well. In fact, the first order expression for gm

involves square-roots.

Secondly, to get good models for a high-dimensionality problem, a high number

of design points need to be sampled. As the size of the circuit increases, the dimen-

sionality of the problem increases leading to a need of exponentially more number

of modeling points for accurate models due to the 'curse of dimensionality' [21]. An

exponentially increasing sample set implies an exponentially scaling time of simula-

tion. Thus the use of simulations for modeling the optimization problem renders bad

scaling properties. With bigger problems, it will also be more difficult to derive ac-

curate models. Again, for modeling variation for robust optimization, similar scaling

issues will be encountered. This makes the Simulation-based Convex Optimization

approach similar to Simulation-based black-box optimization approaches with regard

to accuracy, run-time and scaling.

The Equation-based Geometric Programming approach uses simulation data to

derive transistor models and relies on hand-written equations for specifications. The

current approaches [23] express transistor models as monomials, whereas more ex-

pressive posynomial models may be used. This may lead to inaccuracies. The second

source of inaccuracy lies in the hand-written equations, which are generally approxi-

mate. This inaccuracy becomes more of an issue with expressions for transient speci-

fications like settling time, which are highly non-linear and hand-written expressions

are not sufficient. The modeling time comprises the time to build models for the

transistor and designer time in writing equations.

The decomposition used in this approach leads to decoupling between run-time

and accuracy and also has very nice scaling properties. This will be now discussed. It

should be noted that the first step, i.e. of building transistor models is independent of



the topology of the circuit that is optimized. It just depends on the technology node.

Therefore, once this model is derived, it can be used for any circuit designed in the

given technology. This facilitates reuse of the same model over several circuits. This

in turn implies that one can amortize a lot of one time effort in deriving very accurate

models for the transistor without adversely affecting the run-time of optimizing any

circuit. This decouples accuracy of models and run-time of optimization. This is also

attractive from the point of view of robust optimization, since the effort will be only

spent on modeling the transistor as a function of variation parameters.

Secondly, the models for circuit specifications in terms of transistor parameters

are independent of the technology node and only depend on the topology.3 Again,

the time and effort spent on deriving accurate expressions for a topology can be

re-used for the circuit several times on various technology nodes. This works well

for large circuits, since once their model is derived, it can be reused leading to very

good scaling. It should be noted, that this modeling is not fundamentally limited by

simulation time unlike all Simulation-based Approaches. This fits well with the library

based model and IP model for geometric programming discussed in the Chapter 1.

In summary, for Simulation-based Convex Optimization the accuracy and run-

time of optimization are coupled, whereas for Equation-based Convex Optimization

accuracy and run-time of optimization are decoupled due to the potential of reuse of

models.

2.5 Our Approach

In the last section, we motivated that improving the accuracy of Equation-based Con-

vex Optimization Approach does not sacrifice the run-time or scaling of the approach.

This improvement can be accomplished by improving the accuracy of either or both

of the two decomposed steps of the optimization modeling. In this thesis, we will de-

velop new techniques to derive accurate posynomial models for MOS transistor. This

3This holds true for the small signal and DC specifications, but not necessarily transient specifi-
cations. We shall come back to this in Chapter 5: Future Work.



approach remains loyal to our goals set in Chapter 1, i.e. improve the time or accu-

racy of the circuit sizing flow without adversely influencing the effort spent. In the

next Chapter, we will discuss various state-of-art posynomial modeling approaches

and describe our algorithm for posynomial modeling.



Chapter 3

Algorithm to model posynomials

In this Chapter, we describe our algorithm for deriving posynomial models for a given

set of data. In Section 3.1, we will present the problem of posynomial modeling. In

Section 3.2, we will discuss the various state-of-art methods for posynomial modeling.

In section 3.3, we will discuss our approach to solve the posynomial modeling problem.

In Section 3.4 and consequent sections, we will discuss our genetic algorithm to solve

posynomial modeling problem.

3.1 Problem Statement

Assume a functional space, where T is the input vector and y is the corresponding out-

put values. A set of data which samples this space at various input vector values and

corresponding output values is given. The problem is to find a posynomial mapping

between X and y. The posynomial expression generated should be representative of

the actual underlying mapping between the input. The exponents of the terms of the

posynomial expression and coefficients belong to the real and positive-real domain

respectively. This problem can be expressed as minimization of the error between

the output values predicted by the generated posynomial and the actual outputs. A

function such as the mean-square error, mean-absolute error, max absolute error, etc

can be used as the error metric. The formulation of these different error metrics has

been tabulated in Table 3.1.



Abbr. Name Expression Solver

RMSE Root Mean Square Er- N Quadratic Program
ror

MeAE Mean Absolute Error NI(_)-__ 1 Linear Program
MaAE Max Absolute Error maxi If(Y) - y4I Linear Program
RMRSE Root Mean Relative (Ei ( ())/N)o 0 5 Quadratic Program

Square Error
MeRAE Mean Relative Absolute E >i -II/N Linear Program

Error
MaRAE Max Relative Absolute maxi -y)i  Linear Program

Error

Table 3.1: Different error-metrics and the technique to optimize them
Specifically in the circuit context, each MOS transistor parameter modeled will

constitute a separate problem. In each of these problems, MOS transistor design

variables will be -. These will be chosen as width, length, current and drain-source

voltage. Also, gate-source voltage may be used instead of drain current. The output

variable y in each of these problems will be one of the following parameters of the

MOS transistor: gm, gds, ro, Veff, Vt, Vdsat, Cgs, Cgd, Cgs.

3.2 Current posynomial modeling Approaches

In this section we enumerate previously published methods used for designing posyn-

omials. We also include a method to generate a max-monomial which is convex in

log-log space and can be used in optimization formulation:

1. Monomial Fitting algorithm: In [7], an algorithm for generating a monomial

fit is presented. A monomial becomes a hyperplane on log-log transformation.

This observation is used to convert the monomial fitting problem into a linear

regression problem. This is expressed mathematically as follows:

Y = cxl...x n

log(y) = log(c) + allog(xi) + ... + ao0og(x,)

log(y) is a linear function of log(xj). A linear regression can be done to find c

and ai to minimize RMSE (and other metrics too) in the log-log domain. Note



that optimal RMSE in log-log space does not translate to optimal RMSE in

real space. Mean square error in log-log space approximately corresponds to

RMRSE in real space.

In [7], the author also recommends to use the monomial generated by log-log re-

gression to generate a posynomial heuristically. Monomial terms for the posyn-

omial may be generated by tweaking the exponents of the initial monomial. A

gradient descent algorithm may then be used to find the optimal coefficients for

the terms of the posynomial. It should be noticed that this method is local and

searches in the space around the best-fit monomial. It gives no guarantees of

optimality.

2. Quadratic Posynomial fitting: In [11], a method to find quadratic posynomial

models is presented. The author presents three methods which are now de-

scribed. The first method called, 'Indirect Fitting Method', fits a quadratic

polynomial to the function by linear regression. It then approximates the terms

with negative coefficients with terms with positive coefficients and negative ex-

ponents (for exact transformation, see [11]). The second method called, 'Direct

Fitting Method without Template Estimation', fits a second order posynomial

(with negative exponents as well) to the data. They invent a new algorithm

to do this, however, the same problem can be solved with quadratic program-

ming since it has a convex objective function and linear constraints. The third

method, 'Direct Fitting Method with Template Estimation' does an initial fit

with a, polynomial with few terms. It estimates new monomial terms from terms

with negative coefficients. Once, it has estimated all terms, it re-fits the coeffi-

cients by the constrained optimization approach to be all positive. The authors

recommends to use this approach due to the explosive computational complexity

of the 'Direct Fitting Method without Template Estimation' with the number

of input variables. In [29], a new approach for fitting of quadratic posynomials

is presented. It uses a projection based method to reduce the computational

complexity of the 'Direct Fitting Method'.



All these methods fit only quadratic posynomials and also, cannot have real-

valued exponents. In [14], a method for fitting posynomials with real-valued

exponent is published, however it simply does a gradient descent to re-tune

exponents of the quadratic exponent. The method is essentially local.

3. Max-Monomial (MaxMon): In [30], a method to fit max-monomials is presented.

Max-monomials are piecewise linear (and convex) in log-log space (Note: Posyn-

omials are convex in log-log space, not necessarily piece-wise linear). They can

also be used in convex optimization [7], however may have issues with sharp

transitions. The method in [30], starts with an initial set of partitions of the

space and fits monomials to each partition using log-regression. It uses a heuris-

tic to expand and contract partitions depending upon the errors of the fit in

each partition. The method is a heuristic and doesn't claim global optimality.

We know that first order MOS models have fractional exponents for design vari-

ables (consider gm). However, none of the published methods address the problem

of fitting posynomials with real-valued exponents. The two approaches for the same

[7, 14] are local in nature: the first one doing a local search around the best fit mono-

mial; the second one being local to integer-valued exponents in the range [-2, 2].

There is nothing that suggests that the posynomial underlying the data is quadratic

or local to a quadratic posynomial. Neither are there suggestions that the two terms

constituting a posynomial have to be local to each other. The Max-Monomial method

is useful and global in nature. It fits max-monomials instead of posynomials, which

could be used for optimization as well (though with limitations). We shall compare

our technique with this method. We will also compare our technique to a degenerate

two term posynomial (POSY-2) learnt from the monomial generated by the log-log

regression (first in order in above list). We fix the exponents of the monomial model,

however re-learn the coefficient of the monomial and an extra constant by a QP

formulation (constrained linear regression). This generates a two term posynomial

(POSY-2), a monomial term and a constant term.



3.3 Solution Approach

The problem of posynomial modeling may seem to be a typical regression problem.

This indeed is the case if the model is constrained to have integer-valued exponents

for all design variables and the exponents are limited in a range. In this case given

the exponent ranges all possible terms can be enumerated combinatorially. Then

the problem can be solved for minimizing RMSE using a quadratic program or a

lagrangian approach with the constraint that all coefficients should be more than

zero [21].

Simple as this may seem, it becomes tricky due to the combinatorial explosion

in the number of terms even for a modestly large range of exponents and number of

design variables. This creates two problems: a. The problem becomes computation-

ally very expensive to solve (intractable in some cases), b. It leads to the problem

of overfitting. These can be solved using techniques like Support Vector Machines,

subset selection, etc. and other regularization techniques [21]. Variations of these

techniques were used in [11] to design quadratic posynomial models.

However, given the fact that posynomials for MOS parameters will have fractional

exponents, we want to develop a modeling approach where the exponents can be

real-valued. This largely changes the scenario. For any given range of exponents,

the number of possible terms are now infinite and not countable. They cannot be

explicitly enumerated in a combinatorial way as done before.

We can still bound the number of terms by explicitly setting the maximum num-

ber of terms in the posynomial. This reduces the problem to search for exponents

and coefficients from the real-domain to get the best-fit posynomial. This can be

formulated as an optimization problem in the following way:

Zopt, copt = arg mi n (f (X, a, -) - yi) 2  (3.1)
ajk,cmVj,k,m i

t

f(s, a, ) = CkX o'~k XI2,k ... Xn, (3.2)
k=1

41



Unfortunately this problem isn't convex and there are no efficient ways to solve it

deterministically. We therefore decided to solve it heuristically. We wanted to design

an approach which could exploit in some way the structure of the problem than doing

a straight black-box optimization treating all optimization variables the same way.

Such an approach will be inefficient.

Given the setup of the problem, one could observe that given the exponents of all

terms, the problem reduces to a regression problem (with constraint, ci > 0) which

can be efficiently solved using a quadratic program. This fact could be exploited to

decompose the problem in two parts: a. A heuristic which searches for the exponent

values of all posynomial terms, b. A quadratic program which finds the coefficients

given the exponent values found by the search. This is depicted in Figure 3-1.

Proposal for exponents of posynomial terms

Genetic Quadratic
Algorithm Programming

Coefficients for posynomial terms and error value

Figure 3-1: Decomposition of posynomial fitting problem into two parts,
one that searches for exponents and the other that searches for coefficients
given exponents.

One still needs to design the heuristic for the first part and piece these two parts

into an algorithm. We decided to use a genetic algorithm which serves the purpose

of searching for the exponents and simultaneously pieces the two parts together. We

shall describe the algorithm in detail in later sections. Combining genetic algorithm

~CI~ ~IL~



with another optimization algorithm has been generally termed as Hybrid Genetic

Algorithms or Memetic Algorithms. [42, 33]

Instead of the genetic algorithm, simulated annealing, tabu search or other adaptive-

search methods could also be used. This step remains replaceable and the operators

developed in this thesis for genetic algorithms are transferable to other approaches.

Our choice of algorithm was motivated by the better convergence properties of genetic

algorithms compared to these techniques. Genetic programming has also been used

for evolving terms of the kind required here using tree structures (known as symbolic

regression in the Genetic Programming community) [25]. Genetic Programming is

useful when the requirement is to find any function which fits the data well, such as

functions containing logarithms, exponents of input variables, multiple fractions, etc.

These cases cannot be handled by conventional techniques. In these cases too, it is

not clear whether the tree structure of GP and corresponding tree operators actually

do meaningful operations or are just random. We didn't see any rationale for using

a tree-structure or usefulness of its operators for evolving terms for the posynomials.

Posynomial terms have a well-constrained form and Genetic Programming would be

an overkill for it. We instead designed modular operators (to be discussed later) for

our genetic algorithm that are well suited to the posynomial modeling problem.

To summarize, our approach is to design a genetic algorithm which searches for

exponents of posynomial terms and works in tandem with an efficient solver for coef-

ficients given the sought after exponent values. Additionally, we design GA operators

specially suited for the posynomial modeling problem. These operators are transfer-

able to other heuristic approaches.

3.4 Genetic Algorithms

Genetic algorithms [32] are a class of algorithms inspired by natural evolution. They

have been widely used in analog CAD for real-valued optimization [40, 9, 41]. How-

ever, they are much broader than this and have been used for solving traveling sales-

man problem, combinatorial optimization and structural synthesis of circuits [6].



Genetic algorithms have been considered weak methods and the argument has been

"backed-up" by the No-Free-Lunch-Theorem (NFLT) [43]. The author doesn't agree

to this. This is so because in the author's view a genetic algorithm is not a single

algorithm, but a paradigm to design algorithms to solve different problems. A genetic

algorithms can be abstracted to 4 steps shown in Figure 3-2 and described as follows:

The algorithm builds an initial population of possible solutions, i.e. genotypes. It

evaluates the performance of each and assigns it a corresponding value referred as

fitness. It then selects the better solutions from the population, applies variation

operators to them to create a new population for the next generation and iterates.

1. Initialization

4. Variation I

Vary solutions to form
new solutions

Figure 3-2: The typical Genetic Algorithm flow

This abstraction is not a complete algorithm in itself, since the variation operators

are not concretely defined.' Algorithms which use some universal operators to go

with this abstraction to solve any problem are indeed weak, for instance, mechanical

'The selection method is also not defined, but in the author's view the choice of the selection
method doesn't strongly correlate with the problem being solved (in general).



use of one-point, two-point or uniform crossover, random mutation [20], operators of

evolutionary strategy [5], etc. Instead, these algorithms can be tuned to the problem

which is being solved by designing operators well suited to the structure of the problem

(construed by some as providing an evolutionary path to the solution [1]). This

independence makes genetic algorithms more of a paradigm to generate algorithms

well-suited to different problems than an algorithm in itself. The resultant algorithms

need not be weak and instead are well-suited to the problem at hand. This also

liberates genetic algorithms from the argument of NFLT, since there isn't a claim of

a universal algorithm which solve all problems efficiently.

In the next sections, we will discuss how the genetic algorithm paradigm was

used to design an algorithm for evolving posynomials. The algorithm is depicted

in Figure 3-3. In the following sections, we will describe in detail the representa-

tion of solution, the variation operators 2 and method of fitness evaluation. Fitness

evaluation encapsulates the quadratic programming step previously discussed.

3.5 Posynomial Representation: Genotype to phe-

notype mapping

Genotype refers to the representation used for the solution in the genetic algorithm,

while phenotype is the solution itself. Our phenotype is the posynomial expression.

The genotype is a matrix of real numbered values as shown in Figure 3-4 (the figure

depicts the situation when posynomial models of the MOS transistor parameters are

being designed with the input variables, W, L and I). Figure 3-4 also shows the

mapping of genotype to phenotype. Each row represents a term of the posynomial.

The number of rows is fixed. A choice parameter associated with each row decides

whether the row is actually used or not (1:used, 0:don't care). This allows us to have

posynomials with varying number of terms in the population. The number of rows

2Variation operators and solution representation don't have an independent meaning as far as
the algorithm dynamics are concerned. This decomposition and separate description is used for
human-understandability and ease of programming.
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is equivalent to the maximum number of possible terms in the posynomial. Each

column is associated with one of the input variables. The value in a cell encodes the

exponent of the variable (represented by the column) for the term (represented by

the row). All cell values are in a specified range [minVal, maxVal]. The coefficient

of each term is not a part of the genotype.

choice L W I

1 a,, a 12  a 13

0 a21 a 22  a23
1 a31  a32  a33

Genotype

,a
+ a,*L all VVa1

2 
* I a13

+ a3*L a31 * wa3
2 i a33

1+ ...

Phenotype
(Only terms with choice=1 included)

Figure 3-4: GA genotype to phenotype mapping

This genotype might be interpreted to state that the value of the choice parameter

helps exploration of posynomials with different number of terms. This is not suffi-

cient due to high possibility of bloat. Bloat has been discussed in context of genetic

programming and variable-length genomes [27]. Bloat is the phenomena of evolution

of larger and larger genomes as the evolutionary algorithm progresses. The primary

reasons for this is a fitness bias observed for the higher-length genomes for many

problems. The genome for our GA could be considered as a variable row genome

with a bound on the maximum number of rows. It also has a fitness advantage if it

has more rows with choice parameter 1 (equivalent to more number of terms), since it

provides more degrees of freedom to fit the function. Thus, even if we use the choice

parameter, in absence of a second regulatory process, one would observe that in very

early generations itself, the evolution selects and propagate solutions with all choice

parameters as 1.



Our regulatory process to balance the likeliness of the system to bloat emerges

implicitly from the way we do fitness evaluation. Because of how we determine the

coefficients (that are not in the genotype), a coefficient may become zero valued. This

incorporates automatic feature selection (term selection) [21] in the algorithm. The

determination of coefficient values and how the number of terms of the posynomial

varies will be discussed in terms of fitness evaluation in Section 3.6.

In the current representation, we haven't included a bias to set any exponents to

explicit zero. This could be included and can be potentially useful when the number

of input variables are large. Also, the same representation can be modified to use

only integer-valued exponents.

Note: We had previously claimed that representation and variation operators do

not have independent meaning. This can be illustrated in the present context. We

have described a matrix representation for the posynomial. But given the fact that

it is stored as a matrix or a vector (all rows could be put side to side in a single

row) doesn't imply any difference to the performance of the algorithm. The matrix

is probably more intuitive for representing the posynomial, but it could be stored

as a matrix or a vector without making much difference. The representation will

become meaningful when we define the variation operators on it. Again, the same

variation operators can be implemented with a vector representation. However, the

variation operators will be easier to implement and make cognitively more sense with

the representation shown. In summary we imply that representation doesn't mean

anything whatsoever, it is representation and variation operators together that have

a meaning 3 Thus, one should beware of being hoodwinked by stylish representations

if the variation operations don't match the style!

3Since representation has to be defined for describing the variation operators, once can claim
that representation is inherent in the variation operators and there is no need for a separate section
on representation. We lend support to such a view!



3.6 Fitness Evaluation

Fitness evaluation implies providing a number to each solution in the population

a measure of how good it is. For posynomial modeling, one of the error-metrics

mentioned in Section 3.1 could be used. The lower the value of the error, the better

is the individual. The better individuals are then propagated with a higher probability

by the selection step. For the discussion ahead, we will assume the RMSE metric.

The discussion remains valid for other error metrics described in Section 3.1 as well.

The GA evolves the exponents of all variables for each term of the posynomial.

To determine the complete posynomial form of the candidate solution, the coefficient

of each terra must be determined. The optimal coefficients to minimize the mean-

squared error is found by formulating a Quadratic program. The objective of the

problem is to find the coefficients to minimize the mean square error. This is quadratic

and convex in the coefficients. The constraint is that all coefficients have to be greater

or equal to zero. These are linear constraints. The minimum value of the error

(minimum MSE) is the fitness of the individual. All the error metrics mentioned in

Section 1 can be solved globally and efficiently using a linear or a quadratic program.

The corresponding solving technique for each error-metric is tabulated in Table 3.1.

As mentioned before, the fitness calculation yields some coefficients as absolute

zero. This happens because of two reasons: a. The structure of the constraints, i.e.

all coefficients have to be more than zero leads to optimal coefficients having many

zeros; b. Since the problem is convex, we can efficiently solve it and find the optima.

If it wasn't efficiently solvable, even though the optimal solution had some dimensions

as zero, we may not have found them. 4 These effects is now discussed.

The quadratic programming problem can be visualized as an optimization problem

with feasible space constrained by hyperplanes which bound the a single quadrant of

the space. Each hyperplane has value of one of the coefficients as zero everywhere on

it. The intersection of the hyperplanes have more than one coefficient equal to zero.

4This would have happened if we did not decompose the problem into two separate searches for
exponents and coefficients as we have done now and instead used a black-box optimization algorithm
to solve the whole problem.



The solution of the QP problem (and LP in case of other error metrics) in many cases

lie on one of the constraining hyperplanes or their intersection. This yields some of

the coefficients to exact zero. This implicitly performs feature selection on the evolved

terms by setting the coefficients of useless terms to zero. This balances the tendency

of bloat, since even though the choice parameter is 1, the coefficients of terms being

zero eliminates them from the expression. The exploration of variable length genomes

or posynomials with variable number of terms is primarily achieved through the way

fitness is evaluated and not the choice parameters.

Managing large data sets: The use of QP (or LP) for each individual may

become computationally very expensive if the data set is large. This was the case with

transistor parameter modeling, where in some instances, we were modeling 70, 000

points. To address this, we use a small uniformly sampled fraction of the data-

set.5 Using this smaller fraction requires that the evolved model does not overfit the

sampled points. To ensure this, we use 2-fold cross validation on the sampled data

set and use the cross validation error as the fitness of the individual [21]. This biases

the search to propagate models which when trained on one set of data generalize well

on a different set.

At each generation, we fit the coefficients of only the best-of-generation solution on

the entire data-set and calculate its error. This allows us to choose the solution with

the best error at end of the run. This error value doesn't play any role in determining

the fitness of the individual.

Availability of data and generalization: It is worth noting here, that the

problem of building models for MOS parameters and models for other applications of

geometric programming has some differences from a typical Machine Learning (ML)

model building problem. In ML problems, a limited amount of training samples are

available and one has to deliver a model which best generalizes to the phenomena

underlying the data. In our scenario, we have a blackbox for the underlying function

already available and we are modeling it as a posynomial. We have the independence

to use as large an input data set as we need (provided the computational cost to

5There are other ways to do this such as dynamic subset-selection [18], etc.



sample the blackbox is not high, as in case of MOS parameters). We use a fraction

of the data and cross-validation, not because the data isn't available but due to the

computational concerns of the algorithm. However we have much more independence

than a ML problem scenario, since we can use the complete data set should the need

arise, for instance, to implement things like dynamic subset selection or fitting the

best-of-generation individual to the entire data set. Interestingly, our algorithm can

be used for posynomial model-building also in the ML scenario, since it implements

cross-validation, which takes care of generalization. A second validation set can be

used to track when the algorithm starts overfitting [17].

3.7 Variation Operators

Variation is the step which derives new solutions from the current set of selected

solutions, some of which will be fitter and hence drive the search ahead. The operators

which modify the current set of solutions to form the new solutions are called variation

operators. The purpose of the variation operator is to modify the current solution in a

way which preserves locality in the fitness space. Given the locality, some individuals

will have worse fitness and some (hopefully) better, driving the search ahead. The

variation operator is thus a modifier in the genotype space, which provides locality

in the fitness space." The second requirement of the variation operator is the need to

be global in the genotype space (as opposed to local in fitness space!), such that it

samples the solution space well. These two orthogonal requirements are balanced by

some magic numbers decided on the basis of available computational resources.

The two customary operators in genetic algorithms are crossover and mutation.

In the most abstract sense, crossover is an operator which combines two individuals

6The Estimation-of-Distribution algorithms [35] suggest the need of a more restricted property in
variation. They look for structure which is present in the selected or better solutions and propagate
that. According to our perspective, they propagate structure possessed by individuals with similar
fitness value (better in their case), thus they indeed preserve fitness locality. Since selection finds the
better individuals, operators preserving fitness locality are enough. If there is a different structure
in higher fitness and lower fitness individuals, then it can be beneficial to use the structure in fitter
solutions and thus the EDA algorithms use it. For our purposes, we have found a general structure
valid throughout the space.



in some way to generate a new individual. Mutation modifies a single individual

in some way to create a new individual. Crossover and mutation are applied to an

individual by a probability, p~cro and pmut respectively. We now discuss how these

operators were devised.

Crossover Operator: Given two individuals i.e. real-valued matrices, they can

be combined in a number of different ways, only limited by the imagination of the

designer. They can be sliced horizontally and the sliced parts can be exchanged;

multiple vertically sliced parts can be exchanged; diagonally sliced parts can be ex-

changed, so on and so forth. Routine crossover operators such as one-point, two-point,

uniform-crossover could be somehow be modified for a matrix and used.

How does one decide? The two ideas to bring together are firstly preservation of

fitness locality and secondly exploitation of the problem structure to hypothesize a

transformation in the genotype space to facilitate this. We know that the solution has

a sum-of-product form. Each product term contributes (is correlated) to the output

variable and additively compose the solution. An operator which exchanges some of

these terms to create new solutions shall preserve fitness locality to a good extent due

to the additive nature of the terms. The effect is amplified due to automatic tuning

of term coefficients by the fitness evaluation step. The second feature of this operator

is that it is fairly global in nature in the genotype space, which is also a requirement.

The operator makes much more sense than slicing and exchanging parts of the matrix

in a different way or just randomly, which would indeed be global in the genotype

space, but not local in the fitness space.

Concretely, the crossover operator takes two individuals (parents) and creates

two new individuals by choosing each row of the new individuals from one of the

two parents with a given probability. The operator is depicted in Figure 3-5. The

fraction of rows which are exchanged between the parents is called the mixing ratio.

The operator can be thought of as row-wise uniform-crossover operator [20]. The

crossover operator thus designed is a coarse operator in the sense that is coarse in its

search in the genotype space, while reasonably local in the fitness space.

Mutation Operator:: The mutation operator modifies some cells of the geno-
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type matrix. We ask the question: Which cells of the matrix should be modified to

preserve fitness locality?

To answer this question, we use two pieces of information. First, the idea that

each row additively contributes to the solution and preservation of a row leads to

preservation of locality in fitness (as used in crossover). Secondly, a row with a zero

coefficient (as learnt by LP or QP) does not add towards the solution and thus its

modification doesn't adversely effect fitness locality.7 It should be however noted

that even though a row may have a zero coefficient in one individual, it can learn a

non-zero value in a different individual. This may happen because the coefficient of a

row (monomial term) is not independent of the other rows (monomial terms) in the

individual. Thus, it may not be a plausible idea to always modify a row which has

a zero coefficient in an individual, since it can be useful to another individual when

inherited due to crossover.

We use these two pieces of information in devising a row-wise mutation operator

in the following way. A row with a zero coefficient is mutated by a probability

(Pzero), while a term with a non-zero coefficient is mutated by a different probability

(Pnon_zero). By doing a row-wise mutation, the mutation operator preserves some rows

as it is, leading to fitness locality. Secondly, Pzero is higher than Pnonzero. This allows

for higher exploratory power (global search) in genotype space without sacrificing

locality in fitness space. The operator is depicted in Figure 3-6.

To further support the global search element, whenever a row with zero coefficient

is chosen for mutation, all cells (exponents) are randomly re-initialized. In case a row

with non-zero element is chosen for mutation, all cell values are not modified. A cell

in the given row is chosen for mutation by a probability, p,,e. The average number

of cells chosen for variation in a row is Pceu * (numberlnputVariables). The value

of Pcelu can be used to control locality in genotype space. Once a cell is chosen for

mutation, it is randomly reinitialized by a probability of Pce,,reinit. By a probability

of Pcellperturb (equivalent to 1 -- Pcellreinit), a normal distribution centered at zero with

7In [2], we devise an operator which doesn't use this second piece of information and show that
it performs worse than the operator reported in this thesis.
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a given variance (A) is added to the value in the cell. The variance of the gaussian can

be used to control genotype locality (correlated to fitness locality). We adaptively

decrease the variance (A) with generations to let the algorithm be global in genotypic

search in initial generations and local in it in latter generations.

This formulation of the mutation operator gives it nice properties of global search

in genotype space, while preserving fitness locality. The different probability values

provide knobs to trade-off one for the other. Our philosophy of a genetic algorithm

design is to allow for more global search in genotype space in earlier generations,

while bias towards fitness locality (leading to genotypic locality in some cases) in the

later generations.

This concludes the discussion of our algorithm for posynomial modeling. We

propose a hybrid of a genetic algorithm and convex optimization technique (linear

programming or quadratic programming) to generate posynomials with real-valued

exponents and variable number of terms. We use properties of posynomials in devising

specialized variation operators for our algorithm. In the next chapter, we compare

our technique with other state-of-art posynomial modeling techniques.





Chapter 4

Results and Discussion

To test the developed algorithms, we did two sets of experiments. The first set

of experiments tests the efficiency of the algorithm to derive posynomial models for

data actually generated from posynomial functions. We hand-write posynomials with

different characteristic features and sample data from these models. We then learn

posynomial models for this data set using various algorithms and compare. We show

that our algorithm does fairly well in discovering the underlying posynomial structure

and outperforms other algorithms. In the second set of tests, we use the algorithm

to derive models for MOS transistor data.

4.1 Algorithms

We built models using two error-metrics: Root Mean Square Error and Root Mean

Relative Square Error (Refer Chapter 3, Table 3.1). The first metric is the conven-

tional metric used in machine learning problems. The second error metric will be

motivated in discussion of results of experiments with RMSE.

For comparing the posynomials generated by our algorithm, we used two previ-

ous algorithms for generating models. In the first method (Posy-2), a monomial is

generated using log-log regression [7]. We fix the exponents of the model, however

re-learn the coefficient of the monomial and an extra constant by a QP formulation

(constrained linear regression). The QP is formulated for RMSE or RMRSE, as re-



quired. The second method [30] (MaxMon) generates a max-monomial that fits the

data. A max-monomial is piecewise linear in log-log space. Max-monomials can also

be used in convex optimization [7], however may have issues with sharp transitions.

We set the parameters of the algorithm as recommended in [30]. We use an initial

partition size range from 1 to 20 and give 10 trials for each of these setting. This is as

recommended in [30]. We report the model with the least error (RMSE or RMRSE)

as the resultant model from the algorithm.

The parameters for our genetic algorithm (GA-Posy) are given in Table 4.1. The

genetic algorithm was run 4 times for each parameter and the posynomial with least

error was reported. Each genotype of generation 0 is initialized using a uniform

random distribution bounded by [-3, 8] for each cell element. The number of rows

in the genome is 6. The choice parameter is randomly initialized to 1 or 0 such

that the average number of terms per individual in the initial generation is 4. We

use a generation based GA with tournament selection [32] . The population size is

100, number of generations is 1000 and tournament size is 6. The genetic algorithm

parameters are given in Table 4.1.

Parameter Value
Initial A 5
A rate Halved every 75 generations
Pcrossover 0.3
Mixing Ratio 0.7
Pmutation 1

Pzeroterm 0.7

Pnonzero-term 0.3
Pell 0.5
Pcell-reinit 0.65

Pcell-perturb 0.35

Table 4.1: GA-Posy Parameters



4.2 Design of artificial posynomials

We needed to generate posynomials with different characteristics to test whether our

algorithm can fit each of these families of posynomials. To design these posynomials,

a few insights into their structure are useful. These are as follows:

1. Posynomials are always convex in log-log space (equivalent to log-log transfor-

mation, Refer Chapter 2). They can be non-monotonic, but with only one sign

change from positive to negative. In real space, they can be convex or concave;

non-monotonic with one sign change.

2. Monomials are linear (linear functions are both concave and convex) in log-log

space. They are always monotonic, globally increasing or decreasing, in both

real and log-log space.

Name Property Expression
MON Linear in log-log space 521-

POSY-NL Convex, Non-linear in 10-1s(10 6(10x 'o. 82 + 5x7 23) + x92 95)
log-log space

POSY-NM Convex, Non- 10- * (x " + 10000 * (x-1'4))
monotonic in log-log
space

-x:
FUNC- Concave monotonic in 1- e'-
CAVE log-log space

Table 4.2: Expressions and characteristics of designed posynomials in one variable

Given these structural properties, we define four categories of functions in one-

variable. The expressions are tabulated in Table 4.2 and their graphs are shown in

Figure 4-1 and Figure 4-2. They are described as follows:

1. MON: A one-term posynomial which is linear in log-log space.

2. POSY-NL: Posynomial which is non-linear in log-log space. A monomial cannot

fit this accurately. The modeling approach should be capable of evolving a two-

term posynomial to be able to fit this. We illustrate this family by a three term

posynomial in Table 4.2.



3. POSY-NM: A posynomial which is non-monotonic in log-log space (non-monotonicity

in real space is implied). Again, non-monotonic characteristic cannot be ex-

pressed by a monomial. A non-monotonic posynomial requires at least two

terms with at least one variable exponentiated to a positive exponent in one

term and a negative in the other.

4. FUNC-CAVE: This is a function which is concave in log-log space, however it

is monotonic. This cannot be fit by a posynomial. We use this function to

investigate, how well a learned posynomial can fit this function. The particu-

lar choice of concave-monotonic function is inspired by characteristics of some

MOS parameters. It is argued in [4], that all MOS parameters have monotonic

characteristics. It was also shown that some of them, for instance gm and gds

are concave with drain current [38].

The first three functions represent the different distinguishing features of posyn-

omials, where the fourth function cannot be represented by a posynomial. Though

useful for understanding, these functions are over-simplistic since they are single-

dimensional. All of these were effortlessly found by the algorithm. To test the

algorithms, we designed more complicated posynomials by combining the single-

dimensional posynomials. These set of posynomials are two dimensional and combine

the alluded characteristics in different ways. These are tabulated in Table 4.3 and

shown in Figure 4-3

The first posynomial here has a single term (monomial), the next two have 4

terms each while the last one is not a posynomial. The chosen range for the two

input variables is [1, 100]. It can be observed in the Table 4.3 that the range of each

posynomial sweeps several orders of magnitude. The algorithms were tested on these

posynomials. Each input variable was sampled in the range [1, 100] with a step size

of 3. This results in total 1156 points.
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Table 4.3:
variables

Characteristics, expression and range for artificial posynomials in two

4.3 Artificial Posynomials: Results and Discussion

4.3.1 Root Mean Square Error

The Root Mean Square Error of all generated functions is tabulated in Table 4.4. The

evolved posynomial expressions for these functions are in Appendix A.1. It is clear

that the GA outperforms the other two algorithms with respect to the MSE of the

generated expressions for all functions except the monomial. The error of the GA is

several magnitudes higher than the other two approaches for the monomial (MON).

However the error of the expression evolved by GA is three orders of magnitude lower

the minimum value of MON (3.98 * 10-5). For all practical purposes, the expressions

generated by the three algorithms are equivalent. The first two algorithms have very

low error value because they do a deterministic fit in the log-log space. Given that

the generated data is a monomial, this results in finding the exact exponents and

coefficient. In fact, the error of their expressions is zero and the observed error is due

to numerical errors. The current situation will arise only when the data is generated

from an exact monomial. Since the GA does a numerical search for exponents and

coefficients, it cannot find the exact coefficients and exponents and thus have a finite

Name Property Expression Range
MON Linear in log-log y = X0.45X2 2 2  [3.98 * 10-- , 7.94]

space
NL-NL Convex, Non- 10-7 * (.82 + 5* 10- 8x .2 3)(x2 + 5 [10 - , 7224]

linear in both 10-sx2)
dimensions in
log-log space

NL-NM Convex, Non- 10-6(xl + 5 10- 8 x7)(x-1 + [4.94 10-4,79325]
linear in xl and 10000x2 1.4)
non-monotonic
in x2 in log-log
space

NL- Non-linear in xl y = 10-2(x + 5 O- 10x)(1 - e- 2) [6.3e - 3 5001]
CAVE and concave in x2

in log-log space



error. One can use smaller mutation step size for getting an even lower error, but as

noted before, for all practical purposes the error is 0.

Function Posy-2 MaxMon GA-Posy Imp %
MON 2.13e -  2.34e - 16  3.12e -  -

NL-NL 2.31e 1.05 5.50e -  99.5
NL-NM 5.00e 3  21.11 6.37e -  99.7

NL-CAVE 3.23e 705 691 1.98

Table 4.4: Comparison of RMSE for different models. Posy-2: Two-term posyno-
mial, MaxMon: Max-monomial, GA-Posy: Evolved Posynomial, Imp %: Percentage
improvement of GA-Posy with respect to the better of Posy-2 and MaxMon

We can get more insight into the results by visualizing how the fits look. We show

the POSY-2 plots in both real and log-log space for NL-NL and NL-NM functions

in Figure 4-4. In all figures, green represents the actual posynomial function and

blue represents the fitted posynomial function. The algorithm fits hyperplanes in

the log-log space. It cannot express the non-linearity or the non-monotonicity of the

functions. This skews the results in the real-space as well, which is perceptible in

Figure 4-4.

With regard to MaxMon and GA-Posy, the plots for monomial fit are not inter-

esting, since they are exact fits. For NL-NL and NL-NM, there is no perceptible

difference between the function and fit in the real-space. The fits for NL-NL and

NL-NM functions in log-log space are shown for both MaxMon and GA-Posy in Fig-

ure 4-5.

It is interesting to note that though the GA posynomial has a lower RMSE, they

look worse in the log-log space as compared to MaxMon. Why does this happen?

Before we explain this, note that neither of the two algorithms can find the exact

posynomial. For MaxMon, this is so because the functions (NL-NL and NL-NM) are

not actually piecewise monomials, but they are posynomials. On the other hand, in

the case of GA, though the evolved expression are posynomials, since the exponents

are real and the GA does a numerical search, it cannot find the exact exponents.

The good fits of MaxMon expressions in log-log space is obvious. This is so

because MaxMon actually transforms all data in to log-log space and then fits it.
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This gives it good fit in log-log space at the expense of the real-space error. Also,

note that MaxMon cannot find the exact fit in log-log space because it approximates

a posynomial with a max-monomial.

In case of the GA, observe that the error in the log-log space is higher when the

values of the output is lower and lower when the values of the output is higher. It

is known that error in the log-log space between two points roughly corresponds to

the relative error in the real-space [7]. Therefore, the error we perceive in the log-log

space is actually a depiction of the relative error in the real space. Why is the relative

error higher for low-valued points? The answer to this becomes clear if we express

RMSE in terms of relative error at each point:

RMSE = (E(f () - y )2 0.5

=> RMSE (EZ y( Yi )2 N0.5
=> RMSE (E= y• * RE/N)o

Here, REi is the relative error at the ith point, the perceived error in the log-log

plot. Thus, RMSE can be seen as root of weighted mean of squared relative error at

each point, where the weight is the square of the value at the given point. Clearly

the weight for relative error (RE) of points with high value is higher than those with

low value. Thus, the RMSE metric sacrifices the relative error of lower valued points

for better relative error of higher valued points (since their weights are higher). This

difference becomes perceptible when we plot the fits in log-log space.

It is thus interesting that different mechanisms of the MaxMon and GA-Posy

lead to different error patterns. Both algorithms are incapable of finding the exact

posynomial. MaxMon gets a good fit in the log-log domain at expense of the error

values in real space. It does a good job in balancing relative errors of all points. On

the other hand, GA-Posy optimizes in the real space and sacrifices the relative error of

low valued outputs to get a better relative error for high-valued outputs providing an

overall lower RMSE than MaxMon. Thus given that the requirement of the modeler

is a lower RMSE, GA-Posy outperforms MaxMon.

NL-CAVE is interesting from the point of view of concavity with respect to x2.



The plots for the expressions of MaxMon and GA-Posy both in real and log-log space

are shown in Figure 4-6. It can be seen that the fits are perceptibly very different

from the functions in real space. In the log-log space, MaxMon fits a convex function

(with respect to x2), while GA-Posy fits a straight line. It is proved in [38], that the

best fit for a concave function by a posynomial will be a hyperplane in log-log space.
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Figure 4-6: Posynomial fits for NL-CAVE, a. GA-Posy log-log, b. GA-Posy
real, c. MaxMon log-log, d. MaxMon real

The results can be thus be summarized as follows:

5



1. The GA outperforms or equals the other methods on all functions for RMSE.

2. The monomial generating algorithm has the least expressive power and performs

worst.

3. Neither MaxMon nor GA-Posy can find the exact posynomial. The GA sacrifices

relative errror of lower valued outputs to get a lower RMSE. MaxMon does a

good log-log fit at cost of the real domain fit.

4. The concavity is approximated by a line and a convex function by GA-Posy and

MaxMon respectively.

Given this discussion, one realizes that the modeler might be interested in minimiz-

ing RRMSE. Given that the output ranges several orders of magnitude, minimizing

the sum of percent (or relative) error makes sense, more so, from the point of view of

optimization. It will also be interesting to observe how the two algorithms compare

with this error metric.

4.3.2 Root Mean Relative Square Error

The comparison of the MaxMon and GA-Posy expressions with respect to RMRSE is

given in Table 4.5. The evolved expressions are recorded in Appendix A.2. The GA

outperforms MaxMon for all functions (for MON, they are equivalent, as discussed

before). For NL-NL, the MaxMon error is 2.27%, while the GA Posy has an error

of 0.091% (more than an order decrease in error). For NL-NM, the GA posy has

half the error as MaxMon. For NL-CAVE, the GA does slightly better. It can be

observed that the percentage improvement in error by GA-Posy is lesser in RMRSE

as compared to that in RMSE.

The plots for these fits are not very interesting, since there isn't a perceptible

difference between the function and the fits for the first three expressions. We show

the fit of GA-Posy for NL-NM both in log-log space and real space (Figure 4-7).

The GA now does a good job of fitting in the log-log space. At higher values of

function, one can perceive some difference in value of function and fit in real-space,



Function MaxMon GA Posy Imp %
MON 7.93e -1  1.17e - 4  -

NL-NL 2.27 0.091 95.9
NL-NM 2.19 1.1 49.7

NL-CAVE 6.64 6.47 2.6

Table 4.5: Comparison of RMRSE (%)
monomial, GA-Posy: Evolved Posynomial,
with respect to MaxMon error.

for different models. MaxMon: Max-
Imp %: % Improvement of GA-Posy error

which confirms our hypothesis. Thus even with RMRSE, the GA does a better job

in providing a fit for the function than MaxMon. Now, perceived fit in log-log space

is also better. This confirms the superiority of our approach for both measures.
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Figure 4-7: GA fit for NL-NM function, a. log-log Space, b. Real Space

Note: To confirm that the posynomials evolved by minimizing RMRSE have a

worse RMSE than those evolved for minimizing RMSE, we have reported RMSE for

MaxMon and GA Posy in Table 4.6. It can be observed that RMSE for all expressions

are worse than those reported in the last Section.

x



Function MaxMon GA Posy
MON 1.43e -1" 4.14e -

NL-NL 6.88 5.63
NL-NM 60.11 78.84

NL-CAVE 716.19 757

Table 4.6: Comparison of RMSE for models generated by optimizing RMRSE. Max-
Mon: Max-monomial (MaxMon), GA Posy: Evolved Posynomial (GA-Posy)

4.4 MOS Modeling

We design models for 10 MOS parameters: GM, GDS, CDB, CGSR, VT, VDSATk

RO, CGD, VGS, INVGM (GM- 1). 1 The design variables were W, L, Id and Vds.

We optimized the models for RMRSE. The data generation and results for these

parameters is now discussed.2

4.4.1 Data Generation

We created posynomial models for parameters of MOS technology TSMC 0.18u and

voltage 1.8V. The value of the 10 MOS parameters for an NMOS transistor were

simulated in SPICE and logged. The ranges and step size for design variables were

same as in [38]. Only, in-saturation points were used. A total set of approximately

900 points was used for modeling.

4.4.2 Results and Discussion

The results for various MOS parameters are tabulated in Table 4.7 and also shown

in Figure 4-8. MaxMon outperforms GA-Posy for Cdb, Vt, Cgd and InvGm. The

difference in error for Cdb, Vt, Cgsr and Cgd is very low and the two algorithms

can be considered equivalent. For InvGM, MaxMon does considerable better than

GA-Posy for InvGM. For the rest 5 parameters, GA-Posy outperforms MaxMon. In

1These parameters are described in Chapter 2.
2We also conducted a separate experiment where models were built as a function of W, L and Id.

We show in [3], that our algorithm outperforms Max-MON for all but one parameter with respect
to RMSE.



summary MaxMon and GA-Posy gives equivalent results for 4 parameters, GA-Posy

outperforms MaxMon for 5 parameter, while MaxMon is better for one parameter.

Parameter MaxMon GA-Posy Alg Imp %
gm 39.77 32.18 GA-Posy 19.08
gds 105.21 52.72 GA-Posy 50.5
Cdb 1.93 1.97 Equal -2.03
Cgsr 4.79 4.70 Equal 1.87
Vt 0.64 0.65 Equal -1.50
Vdsat 43.90 34.60 GA-Posy 21.18
Ro 52.56 38.36 GA-Posy 27.01
Cgd 3.14 3.16 Equal -0.63
Vgs 22.78 20.67 GA-Posy 9.26
InvGM 2.57 4.15 MaxMon -61.1

Table 4.7: RMRSE (%) for MOS parameters: MaxMon: Max-monomial, GA Posy:
Evolved Posynomial, Alg: The algorithm which performs better. Incase, both perform
similarly, we use the label 'Equal'. Imp %: % Improvement of one algorithm with
respect to the other. Negative sign indicates MaxMon is better than GA-Posy

It should be noted that GA-Posy provides substantial improvement for gm (19.08%),

gds (50.5%), Vdsat (21%) and Ro (26.8%). The improvement in Vgs is also not triv-

ial. Though, MaxMon does considerably better than GA Posy for InvGM, it should

be noted that both methods have a considerably small error for InvGM. Also to

note is that the error values are very high for gm, gds and Ro. The reason for this

is explained in [38], where it is observed that gm is concave in Id, while gds and Ro

have both concave and convex characteristics in different parts of the space. This

explains why InvGmn provides a good fit, since it becomes convex with Id.

These results show that our approach is useful in deriving accurate posynomial

models for MOSFET parameters. The improvement is non-trivial and it performs

worse than Max-Mon only for one parameter, InvGm. In the geometric programming

flow, one can use a max-monomial for InvGM instead of our posynomial. Also, the

InvGm max-monomial can be used as a starting point in our algorithm to derive a

better posynomial.
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Figure 4-8: Comparison of RMRSE (%) of MaxMon and GA-Posy for MOS
parameters
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4.5 Conclusion

We have shown that our algorithm can fit posynomials with good accuracy and out-

perform the state-of-art approaches for monomial and max-monomial fitting. Our

algorithm provides better results than MaxMon for both RMSE and RMRSE. We

also show that our methods provides substantial improvement in deriving more ac-

curate posynomial models for MOS parameters.





Chapter 5

Future Work

In this thesis, we developed a new algorithm for generating posynomial models with

variable number of terms and real-valued exponents. The algorithm is a hybrid of a

genetic algorithm and a convex optimization technique. This algorithm outperforms

the state-of-art algorithms on benchmark problems. We also showed that the accuracy

of posynomial models of MOS parameters is improved by a considerable amount by

using this method. This improvement in MOS model accuracy leads to improvement

in accuracy of the geometric programming flow.

We also argued that the accuracy of geometric programming can be improved

without adversely influencing the run time or increasing the designer's effort. This

is facilitated by decomposition of geometric programming modeling into two steps,

one being technology dependent, while the other being topology dependent (Refer

Chapter 2). This decomposition leads to reuse of the models generated for these two

steps, which decouples accuracy of models and run-time of geometric programming.

With regard to the MOS modeling problem, this work can be extended in the

following ways:

1. A qualitative study of the MOS parameter data can be done to understand why

the error in modeling is very high for parameters like gm and gds. (Taken up

in [38])

2. The technique can be extended to other error-metrics such as Maximum Rel-



ative Absolute Error (Refer Section 3.1). The lowest MRAE of the models

provide an upper-bound on the error in the optimized solution of the geometric

programming flow. (Taken up in [38])

3. The transistor models generated by the new algorithm should be instantiated

in the geometric programming flow of optimization to measure the percentage

improvement in optimization accuracy due to these new models.

4. The proposed technique can be used for building models for MOS transistors

which account for statistical variation using modeling parameters such as to0

[44].

With regard to the identified decomposition possible in circuit equation expres-

sions, the following could be pursued in future:

1. One could pursue improving the accuracy of the second step of the decomposi-

tion, i.e., the expressions for circuit specifications in terms of MOS parameters.

Till now, these expressions have been written by hand or symbolic analysis

techniques [16] have been used to automatically generate them. Both these

techniques are limited due to bad scaling properties and accuracies. Instead,

statistical model building techniques can be used to address this step. The

posynomial generating algorithm proposed in this thesis can be used to gener-

ate models for circuit specifications in terms of MOS parameters.

2. The 2 step decomposition is valid only for small-signal specifications. The-

oretical work to extend this to transient specifications can be taken up. The

literature of digital CAD could be helpful in this regard, given their requirement

for measuring delays and other transient characteristics for large systems.

3. The 2 step decomposition's usability is not limited to geometric programming.

It can be used in 'Equation-based blackbox optimization' Approaches. This

shall liberate the models for either steps to be posynomials.

The proposed posynomial modeling algorithm could be used for other applications

of geometric programming as well.



Appendix A

Evolved Posynomials

A.1 Models for RMSE

The posynomial models generated by running the genetic algorithm with RMSE error

metric are shown here. The following information is provided: RUN and Generation

from which the model was extracted; the RMSE for the model. The genotype for the

model is presented. The first column is the choice parameter, the second column is

the coefficients of monomial terms and the last 2 columns represent the exponents of

x, and x2 respectively. The last row is the constant term.

MON

Best Run Number: 3 Best Generation: 769

Best mean RMSE: 3.122565e-08

1.000000 1.212778e-01 4.495413e-01 -2.196054e+00

1.000000 8.778498e-01 4.500603e-01 -2.200553e+00

1.000000 0.000000e+00 0.000000e+00 0.000000e+00

1.000000 0.000000e+00 4.843562e+00 1.775476e-01

1.000000 0.000000e+00 0.000000e+00 0.000000e+00

1.000000 8.725624e-04 4.529428e-01 -2.192972e+00

0.000000e+00



NL-NL

Best Run Number: 2 Best Generation: 965

Best mean RMSE: 5.506506e-03

0.000000 0.000000e+00 -1.492885e+00 -1.341616e+00

1.000000 4.802766e-12 7.282495e-01 4.533393e+00

1.000000 4.900602e-15 7.234932e+00 9.991426e-01

1.000000 2.496761e-22 7.229562e+00 6.000364e+00

.1.000000 1.951359e-21 6.537381e+00 3.868463e+00

1.000000 2.964506e-25 7.499710e+00 5.798311e+00

0.000000e+00

NL-NM

Best Run Number: 2 Best Generation: 975

Best mean RMSE: 6.378945e-02

1.000000 4.993011e-10 6.999807e+00 -1.399499e+00

1.000000 1.463183e-12 6.947625e+00 -1.679339e+00

1.000000 4.997644e-14 7.000052e+00 2.100047e+00

1.000000 2.988460e-04 3.421412e-01 1.011540e+00

1.000000 4.667265e-08 9.113333e-01 2.756229e+00

1.000000 1.616901e-10 3.803649e+00 1.229604e+00

0.000000e+00

NL-CAVE

Best Run Number: 4 Best Generation: 579

Best mean RMSE: 6.911850e+02

1.000000 0.000000e+00 0.000000e+00 3.210539e+00

1.000000 7.903235e-07 3.478263e+00 4.003187e-02

0.000000 0.000000e+00 4.795973e+00 3.981057e-02

0.000000 0.000000e+00 0.000000e+00 -2.450131e+00



1.000000 4.277035e-10 7.000675e+00 3.904043e-02

0.000000 0.000000e+00 0.000000e+00 7.761098e+00

0.000000e+00

A.2 Models for RRMSE

The posynomial models generated by running the genetic algorithm with RRMSE

error metric are shown here. The information and format is same as last section.

MON

Best Run Number: 3 Best Generation: 997

Best mean RRMSE: 1.177889e-06

1.000000 9.986456e-01 4.500392e-01 -2.200024e+00

1.000000 -8.680759e-23 -2.897331e+00 6.065083e+00

1.000000 3.409851e-23 6.352068e+00 0.000000e+00

1.000000 -7.677031e-19 -3.586161e-01 4.344559e+00

1.000000 0.000000e+00 -1.519497e+00 5.190007e-01

1.000000 1.352850e-03 4.202694e-01 -2.181548e+00

0.000000e+00

NL-NL

Best Run Number: 4 Best Generation: 982

Best mean RRMSE: 9.142265e-04

1.000000 2.488048e-22 7.231608e+00 5.999647e+00

1.000000 4.918507e-15 8.207012e-01 6.003693e+00

1.000000 -8.040154e-12 2.661716e+00 -1.557506e+00

1.000000 5.066994e-15 7.227278e+00 9.988577e-01

1.000000 1.002136e-07 8.200427e-01 9.979625e-01



1.000000 3.479528e-11 4.575147e-01 2.019477e+00

-2.591414e-10

NL-NM

Best Run Number: 3 Best Generation: 977

Best mean RRMSE: 1.098479e-02

1.000000 2.391279e-14 7.572042e+00 8.478811e-01

1.000000 9.182111e-07 1.004891e+00 2.117475e+00

1.000000 5.916723e-10 6.964097e+00 -1.432680e+00

1.000000 2.976275e-03 1.027264e+00 -1.056519e+00

1.000000 3.990888e-14 6.988372e+00 2.158454e+00

1.000000 8.010427e-03 9.038068e-01 -1.699354e+00

0.000000e+00

NL-CAVE

Best Run Number: 1 Best Generation: 946

Best mean RRMSE: 6.216804e-02

1.000000 7.161940e-03 1.036713e+00 6.163797e-02

1.000000 0.000000e+00 -6.947550e-01 -2.009450e+00

0.000000 0.000000e+00 4.031503e+00 4.308821e+00

1.000000 3.924691e-10 7.000140e+00 6.129915e-02

1.000000 0.000000e+00 1.430573e+00 7.757254e-01

1.000000 -9.726498e-04 -2.573898e+00 -1.011068e+00

9.840537e-04
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