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Abstract

Solid state NMR can probe structure and dynamics on length scales from the atomic to
the supramolecular. However, low sensitivity limits its application in macromolecules.
NMR sensitivity can be improved by dynamic nuclear polarization (DNP), in which
electron polarization is transferred to nuclei. We present applications of magic angle
spinning NMR that demonstrate its utility for the determination of structure at atomic
resolution. We then present new techniques and instrumentation for DNP that permit
these methods to be applied to larger systems such as membrane proteins.

These applications rest on several advances in instrumentation: millimeter-wave
sources and conduits of power to the sample; low-temperature MAS probes incorporating
millimeter-wave transmission; cryogenics and pneumatic control systems. We describe a
380 MHz DNP spectrometer incorporating a 250 GHz gyrotron oscillator and present the
theory and operation of a 460 GHz gyrotron at the second harmonic of electron cyclotron
resonance.

We have applied DNP to study trapped photocycle intermediates of the archael
membrane protein bacteriorhodopsin, a light-driven transmembrane ion pump. We have
observed the K photointermediate for the first time by NMR and found unexpected
conformational heterogeneity in the L intermediate. With multidimensional correlation
spectroscopy, we have assigned active site resonances in conformational mixtures of
photointermediates of [U-13C,'SN]-bR with high sensitivity. By using non-linear sampling
of indirect dimensions, we have observed transient product of K accumulation. We
present frequency-selective experiments for amino acid-selective assignments and the
measurement of heteronuclear distances and torsion angles in [U- 13 C, 15N]-bR and discuss
the relevance of these results to its photocycle.

In addition, we describe several applications of solid state NMR, including a
study of dynamic and structural phase transitions in peptides and proteins near the
canonical glass transition temperature. We present resonance width experiments that can
be used to measure homonuclear and heteronuclear dipolar couplings in uniformly
labeled solids.

Finally, we discuss applications to amyloid fibrils, which are protein aggregates
that are implicated in diseases of protein misfolding. We report the atomic resolution



structure of the disease-associated L 111M mutant of TTR10 5-115 in an amyloid fibril, and
information about the supramolecular structure of fibrils from WT TTRos0 5 115.
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the tl dimension, and the DNP enhancement was approximately 17. In
(c) and (d), we show one dimensional 13C MAS spectra obtained with
and without DNP, respectively, using SPC5 recoupling with a double
quantum phase cycle; (e) and (f) are CP spectra with and without DNP.
The apparent intensity differences between the spectra in (c) and (e) are
due to recoupling dynamics at short excitation times.

4-1 250 GHz transmission line layout for DNP experiments. 207

4-2 Calculated coupling efficiency of an elliptical Gaussian beam of 10.04 x 209
13.76 mm waist cross section to a circular waveguide HE 1, 1 mode.

4-3 Design of the directional coupler fabricated from two corrugated 210
waveguide corners that mate along the diagonal to hold the
beamsplitter. One corner with a flat mirror along the diagonal would
make a 900 waveguide miter bend.

4-4 Scattered radiation patterns (P,/Po x 103) at 250 GHz by (a) one wire 212
(36 gauge) and by (b) a ten wire array. The wires are arrayed with a
spacing of 1/4 X along the vertical axis of this figure with the wire axis
normal to the figure plane. The incident beam is 450 from normal to the
wire array plane with a HEI,I beam profile corresponding to corrugated
waveguide with ka = 58.

4-5 View of 10-wire, gauge 36 beamsplitter stretched across the diagonal 214
face of the corrugated 4-port directional coupler block.

4-6 The 248 GHz heterodyne receiver used for cold test measurements. 216

4-7 Cold test transmission measurements of the 22 mm diameter corrugated 217
waveguide without and with two versions of the directional coupler.

4-8 Calculated quartz (n=1.955) beamsplitter reflectivity for a beam 218
incidence at 450 for the two orthogonal polarization cases and two
thicknesses.

4-9 Three hour CW test of the quartz directional coupler stability, (a) 222
normalized ratio of forward coupled signal and gyrotron power shown
in (b).



5-1 Nomenclature of 13C sites of the retinal chromophore and Lys 216 side 235
chain to which it is covalently attached. The arrow indicates that during
the bR photocycle there is isomerization about the C13-C14 bond. In
bR568 the retinal is in an all-trans conformation and the Schiff base
nitrogen is protonated, whereas in bR555 (dark adapted bR) there are
three retinal conformations present as shown by the DNP enhanced
spectra in Figure 5-2.

5-2 bR photocycle 235

5-3 Pulse sequence for a 2D 15N-13C-'3C heteronuclear correlation 236
experiment incorporating DNP. The EPR spectrum is continuously
irradiated yielding a steady state enhanced 'H polarization that is
replenished during the recycle delay of the NMR experiment.
Following 'H-15N cross-polarization, magnetization is labeled with the
15N chemical shift and then transferred to the 13C spins using band-
selective 15N-1 3C cross polarization. Further homonuclear mixing is
accomplished with a dipolar recoupling sequence such as RFDR or by
proton-driven spin diffusion in the presence of an R3 recoupling field
(DARR/RAD)

5-4 One dimensional 'H decoupled ' 5N MAS spectra of light adapted ý-'5N- 238
Lys-bR. Top: Spectrum acquired on a 317 MHz spectrometer using a 5
mm rotor with a 160 gL sample volume, 10,000 scans, 3.5 days (-5000
min) of data acquisition, T=200K Bottom: Spectrum acquired with
DNP - 250 GHz microwave irradiation using a 4 mm rotor, 40 gL,
T=90K, 384 scans, 30 minutes of data acquisition.

5-5 Schiff base region of 2D Lys-Ný -Ret.-C15-CX correlation spectrum of 240
[U-13C, 15N]-bR in the light adapted state. Multiple chemical shift
assignments result from a single experiment.

5-6 [left] lD spectra of -' 5sN-Lys-bR in the dark adapted state (bR5ss5 / 240
bR568) with Schiff base region shown in the inset. [right] 2D Lys-Ný -
Ret.-C15-CX correlation spectrum obtained from [U-13C, 15N]-bR in the
dark adapted state. Note the presence of multiple conformers of bR 555
that are not visible in the lD spectra and partial resolution of the J-
doublet in C15 of bR568.

5-7 (a) Schematic representation of the 250 GHz gyrotron, corrugated 243
transmission system, and 380 MHz NMR probe. (1) 250 GHz gyrotron
oscillator (2) Corrugated waveguide (22 mm i.d.). (3) Beam splitter; (4)
Forward power detector; (5) Reflected power detector; (6) Focusing and
reflecting mirror optics; (7) Helically corrugated waveguide (8 mm i.d.);
and (8) Miter mirror.
(b) Side-view of the 250 GHz DNP spectrometer.
(c) Composite photograph of the system illustrated schematically in
Figure 5-7(a) [left] 250 GHz gyrotron the gyrotron tube is shown with



vacion pumps in the gray superconducting magnet, [center] corrugated
transmission system with the directional coupler visible in the center of
the photograph, and [right] 380 MHz NMR magnet is visible on the
edge of the photo. The NMR probe is not visible since it is under the
magnet. The view in this photo is from above the gyrotron and
waveguide looking down.
(d) Photograph of the 250 GHz quasi-optical directional coupler.
Forward power is coupled to the detector diode by means of a short
dielectric taper, dielectric horn, and a circular-to-rectangular transition.
An attenuator allows the power to be adjusted to the linear range of the
diode. The detection circuit has been designed with high loss to avoid
reflections across the beam splitter.

5-8 Schematic representation of the four major sections of a gyrotron tube 245
that resides in the bore of a superconducting solenoid (see Figure 5.9).
The central figure illustrates the assembled gyrotron tube and the four
panels the function of each of the major sections. (A) shows the annular
cathode of the electron gun from which the electrons are emitted and the
cyclotron motion they undergo in the presence of the magnetic field.
The red dots represent cross sections of the beam and a given point in
time. In addition, the magnetic field adiabatically compresses the
electron beam that it reaches the cavity with a radius optimized to
interact with the cavity mode. (B) illustrates the cavity region where
electron bunching leads to microwave generation. The electrons are
depicted in the initial stage of the dephasing process. (C) shows the
quasi-optical mode converter (consisting of a step-cut waveguide and
steering mirror) that extracts the microwave beam and directs it an angle
of 900 through the cross bore of the magnet and into the waveguide for
sample irradiation. Note the energetic electron beam continues through
the tube to the collector region. In (D) the electron beam is collected in
a water-cooled collector.

5-9 Left: photograph of the 250 GHz gyrotron and the superconducting 247
magnet power supply. The high voltage/heater power supply and
control electronics are hosted in an additional rack similar to the magnet
power supply. Right: Schematic of a gyrotron tube indicating the key
components. (1) cathode; (2) anode; (3) drift tunnel; (4) microwave
absorber; (5) cylindrical resonant cavity; (6) quasi-optical mode
converter; (7) output window; (8) high voltage ceramic insulator; (9)
electron beam collector; (10) persistent superconducting magnet; (11)
electromagnet.

5-10 The uncoupled dispersion relations for the electron beam (cyclotron 254
mode) and the waveguide mode (waveguide dispersion). Cyclotron
maser emission can occur when the two modes coincide, as shown in
the figure by the arrow at gyrotron resonance.

5-11 The energy spectrum of a relativistic gyrating electron showing the 255



nonuniform spacing of the energy levels.

5-12 The energy absorption, E0 , (in arbitrary units) of an electron passing 257

through a uniform resonator, as a function of the detuning from
resonance. The plots are shown for different values of the parameter F.
Significant energy emission (E <0) requires a value of F-2. F
increases with both the electron energy (electrons that are more
relativistic) and the number of cyclotron orbits in the interaction region.

5-13 Schematic of the crosssection of a gyrotron interaction region at the 258
resonator, showing the annular electron beam of radius rb, consisting of

electron beamlets of radius rL . r specifies the radius of the resonator

and 0 is the azimuthal electric field.

5-14 The sequence of bunching, its evolution and eventual energy extraction 259
in a gyrotron.

5-15 (a) Frequency and power of the operating TE0 ,3,2 mode as a function of 262
magnetic field. (b) Power in the TE0 ,3,2 mode as a function of beam
current. Power measurements were performed with a Scientech laser
calorimeter that has been calibrated for millimeter waves.

5-16 Frequency pulling in the TE0, 3,2 mode as a function of (a) the main 264
magnetic field, (b) the gun magnetic field, and (c) the beam voltage.
Simulations were conducted in MAGY.

5-17 (a) Linewidth measurement of the operating TE0, 3,2 mode using the 266
heterodyne frequency measurement system. (b) Homodyne
measurement in TE0 ,3,2 mode. The offset panel illustrates the natural
emission linewidth.

5-18 Radiated intensity of the gyrotron output while operating in the TE0, 3,2  271
mode as recorded on liquid crystal media for (a) at the gyrotron bore
and (b) after 120 cm of waveguide and (c) after 200 cm of corrugated
waveguide as described in the text.

5-19 Planar section of the radiation intensity as recorded by a pyroelectric 273
camera. (a) is the intensity 190 cm along the waveguide axis (b) is a
Gaussian fit of the intensity data and (c) is the residual of the fit. The
intensity is described on a linear scale in arbitrary units.

5-20 Stability of the TE0, 3,2 operating mode over a representative hour of a 275
long experiment. (a) beam voltage and control input, (b) heater voltage
and current, (c) pressure, and (d) power and frequency. These
parameters were measured with the directional coupler shown in Figure
5-7(d) as described in the text.

5-21 (a) Statistical analysis of power fluctuations from setpoint. The solid 276
line is a Gaussian fit to the data. The control system was set to maintain
the output power within a 1% tolerance. (b) Frequency-domain analysis



of power fluctuations from the setpoint.

5-22 Representative transient response of the gyrotron to (a) positive and (b) 278
negative step in the control voltage. The dashed line is a sigmoidal fit to
the data from which optimal PID parameters were estimated. Note
oscillations in the output power which persist even though the system is
not under proportional regulation for these measurements. (c) Response
of the system to termination of running power supplies following
thirteen hours of CW operation.

5-23 Summary of experimental starting current data recorded for resonant 281
cavity modes from 5.8 to 9.2 T and up to 120 mA. Open symbols
denote fundamental modes and solid symbols denote second harmonic
modes.

5-24 Summary of experimental frequency tuning data recorded for resonant 282
cavity modes from 5.8 to 9 T near their starting currents. Open symbols
denote fundamental modes and solid symbols denote second harmonic
modes.

5-25 Starting currents for the second harmonic TE3,4,1 mode using linear and 285
non-linear theory and for the case of the design cavity (lines) and with
an iris added before the output uptaper (dotted lines). The percentages
indicate the velocity spread simulated.

5-26 Cold cavity simulation showing the cavity and RF profile for the 250 285
GHz gyrotron cavity (a) without and (b) with an iris.

5-27 Block diagram illustrating major components of the 250 GHz gyrotron 287
control system.

5-28 State machine indicating common processing functionality of the 250 288
GHz control system. Transitions between blocks occur in response to
events passed through a global message queue and are not explicitly
illustrated. Each block has access to a global variable space and
message queue, and concurrent execution blocks are indicated. Analog
I/O is blocking.

6-1 Cross-sectional schematic of the cylindrically symmetric 460 GHz 303
gyrotron tube, not shown to scale, indicating key components. The
gyrotron tube is approximately 1.4 m long and the magnet bore
diameter is 7.62 cm.

6-2 Simulation of the evolution of the transverse and axial velocities of the 305
electrons accelerated at 12 kV in the 460 GHz gyrotron experiment
using the EGUN electron optics and gun design program. (a) The
electron trajectories, equipotential lines, cathode and anode geometries,
and applied magnetic field of the gun region. (b) Velocity pitch factor
and (c) transverse velocity spread for the low-voltage, diode-type gun
used in the 460 GHz gyrotron experiment. Each curve is derived from



EGUN simulations of the gun geometry conducted as a function of
voltage and magnetic field.

6-3 Cross-sectional schematic, not drawn to scale, of the 460 GHz gyrotron 306
cavity with the axial radiation field profile for the second harmonic
TE0 ,6,1 resonator mode.

6-4 Oscilloscope microwave signal, beam voltage and collector current 312
traces of the fundamental TEo, 3,1 mode at 237.91 GHz and main
magnetic field of 8.58 T. The RF signal is recorded with. a broadband
WR-3 (220-325 GHz) detector diode. The voltage and current traces
are measured through inductively couples probes (Rogowsky coils).

6-5 Summary of experimental starting current data recorded for resonant 313
cavity modes from 5.6 to 9.2 T and up to 15 kV and 160 mA. Open
symbols denote fundamental modes and filled-in symbols denote
second harmonic modes.

6-6 Contour plot of (a) measured peak power data of the fundamental TEO,3,q 314
modes in watts as a function of beam current and magnetic field using a
pyroelectric detector. The electron gun was pulsed for several
microseconds at a repetition rate of approximately 30 Hz with 9 kV.
The power level was calibrated using a calorimeter. (b) MAGY
simulated power at experimental conditions.

6-7 Second harmonic TE2,6,1 and TE0, 6,1 start oscillation current data (points) 316
compared with linear theory (solid lines) at 13.1 kV.

6-8 Summary of experimentally measured frequency vs. magnetic field for 319
the modes in Fig. 6-5.

6-9 Start oscillation currents and frequency tuning normalized to the 320
frequency at the minimum start current versus magnetic field
normalized to the field at the minimum start current of fundamental
modes from 7.8 to 9.2 T.

6-10 Linear theory (solid circles) and MAGY simulation (solid triangles) 322
using EGUN calculated parameters of the frequency tuning of the
TE5,2,q modes compared to the experiment (+). The dotted line is the
relativistic cyclotron frequency.

6-11 Self-consistent axial field profiles for TE5,2,q modes with q > 1 as 323
calculated from MAGY. The cavity geometry is indicated above each
column, and we have displayed the normalized voltage amplitude. The
frequency increases from 246.0 GHz in (a) to 248.1 GHz in (h).

7-1 Cross-sectional schematic of the cylindrically symmetric 460 GHz 329
gyrotron tube, not shown to scale, indicating key components. The
gyrotron tube is approximately 1.4 m long and the magnet bore
diameter is 7.62 cm.



7-2 Mode map for the design mode and nearby competing fundamental 331
TE2,3 mode for the cavity and cathode magnetic fields operating CW at
12.4 kV and 100 mA.

7-3 CW output power in the TEo0 ,6 second harmonic mode as a function of 332
(a) beam current, (b) main magnetic field, (c) voltage, and (d) cathode
magnetic field. The magnetic tuning (b) is compared with nonlinear
theory from MAGY simulations, and in (a), (c), and (d) the lines are
added as a guide.

7-4 EGUN simulations for varying cathode magnetic fields at 12.4 kV and 334
100 mA.

7-5 Frequency tuning of the TE0,6 second harmonic mode with (a) beam 336
current, (b) main magnetic field, (c) voltage, and (d) cathode magnetic
field. The magnetic frequency tuning (b) is compared with nonlinear
theory from MAGY simulations, and in (a), (c), and (d) the lines are
added as a guide.

7-6 Homodyne measurements of the technical noise for the second 340
harmonic TE0, 6,1 mode.

7-7 Planar section of the 460 GHz radiation intensity as recorded by a 343
pyroelectric camera. (a) is the intensity 66 cm along the waveguide axis
(b) is a Gaussian fit of the intensity data and (c) is the residual of the fit.
The intensity is described on a linear scale in arbitrary units.

7-8 Linear radiation intensity patterns of the mode-converted (a) TEo0,6 (b) 344
TE 2,6 (c) TE2,3 and (d) TE2,2 modes captured by a pyroelectric camera.

7-9 Three separate one hour duration stability tests of the (a) power, (b) 347
pressure, (c) beam voltage, (d) filament current, (e) beam current, and
(f) gun coil current for the TE0, 6,1 second harmonic mode at 459 GHz
using a diode (left) and calorimeter (center) and for the TE 2,3,1
fundamental mode at 233 GHz using a diode (right) to monitor the
output power. The dotted lines on (a) represent 1% stability.

7-10 Statistical analysis of power fluctuations from set point for the diode 348
controlled TE0, 6 ,1 hour long run. The solid line is a Gaussian fit to the
data.

8-1 Mode excitation regions for two second harmonic modes (TE 2,6 and 357
TEO, 6) and nearby fundamental harmonic mode (TE 2,3) over beam
voltage, cavity, and, implicitly, cathode magnetic fields.

8-2 CW output power in the TE 2,3,1 mode as a function of beam current at 358
3.5 kV and 8.38 T.

8-3 Electron gun simulation using EGUN electron optics code of the 359
velocity pitch factor (solid line) and transverse velocity spread (dashed
line) for 10 mA, 3.5 kV, and 8.38 T.



8-4 CW start current data in the TE2,3,q series of axial modes at 3.5 kV 360
compared to linear theory using a equal to 2 and 5 and with 12%
transverse velocity spread.

8-5 Contour plot of measured CW power data of the fundamental harmonic 361
TE2,3,q modes in watts as a function of beam current and magnetic field
for an electron beam voltage of 3.5 kV.

8-6 CW output power and frequency in the TE2,3,q modes as a function of 362
magnetic field for 50 mA and 3.5 kV.

9-1 The ion-motive photocycle of bacteriorhodopsin. The subscript on each 367
photocycle intermediate indicates wavelength of maximum visible
absorbance.

9-2 Retinal configurations in the early photocycle intermediates of 367
bacteriorhodopsin.

9-3 15N spectra of photocycle intermediates of [15N]lys-bR. Insets expand 374
the regions between the dashed blue lines and the red dashed lines
clarify the relationships between the signals shown in the insets. All
intermediates are accumulated by irradiation or thermal relaxation at the
temperature of maximum yield, as indicated in the figure, and then
trapped at 90K for sensitivity-enhanced detection with DNP: (a) dark-
adapted thermal equilibrium mixture of bR555 and bR568; (b) light-
adapted mixture produced by irradiation of the species in (a) with 532
nm green light at 275 K; (c) a mixture of the K intermediate with bR568,
produced by irradiation of bR568 with 532 nm light at 90 K; (d) a
mixture of the L1 and L2 states with bR568, generated by direct excitation
of bR568 with 640 nm (red) light at 150 K; (e) the early M intermediate
of bR, produced by irradiation of bR568 with 532 nm (green) light at 210
K; (f) the late M photointermediate, produced by relaxation of the
species in (e) at 260 K; (g-i) the products of the relaxation of the
species in (c) at 150K, 160K, and 170K include intermediates L1 and L2
in proportions that reflect their order in the bR photocycle.

9-4 15N chemical shifts and wavelengths of maximum visible absorption for 377
the Schiff base in halide salts of 13-cis,15-anti retinylidene model
compounds (0) and in the early photocycle intermediates of
bacteriorhodopsin (0). The dashed line is a linear fit to the halide series
data. For the L substates, we assign the reported wavelengths of
maximum visible absorbance for the early, minor component and the
major, late component to our species L1 and L2, respectively.

10-1 Pulse sequence for multidimensional, band-selective heteronuclear 390
correlation experiment. Following 'H- 15N cross-polarization, the Schiff
base resonances are selected by a soft, band-selective 15N pulse from the



"E" family of selective excitation pulses optimized for solid state NMR.
Signals corresponding to the Schiff base are along the z-axis, and all
other signals are allowed to dephase. Following rotation to the
transverse plane, the 15N magnetization arising from the Schiff base
resonances evolves under the 15N chemical shift during tl and then is
transferred selectively to retinal-C15 or K216-Cs by SPECIFIC CP.
The 15N and 13C fields are chosen to provide spectrally selective,
chemical-shift dependent transfer to either directly bonded carbon,
while a ramp of 5-6% in the 13C RF field results in quasi-adiabatic
transfer with improved efficiency. Following an optional t2 evolution
period under the 13C chemical shift, further correlations are established
by homonuclear mixing using proton-driven spin diffusion with an R3

recoupling field or RFDR recoupling. Parameters were optimized using
simplex optimization implemented in home-built NMR acquisition
hardware and software (D. Ruben).

10-2 Ný-C15-Cx heteronuclear correlation experiments for the retinylidene 390
chromophore in the early photocycle intermediates of bR. Each row is
the result of a single 2D experiment. (A) dark adapted state (.... H
acquisition) (B) light-adapted state (12 h acquisition); (B) the K
intermediate with residual bR 568 (12 h acquisition); (C) the L
intermediate with residual bR568 (48 h acquisition).

10-3 (A) Ný-C15 and (B) NQ-Ce-Cx heteronuclear correlation experiments 391
for the L intermediate. The spectrum in (B) provides resonance
assignments of K216 through magnetization transfer along its side
chain.

10-4 13C chemical shift of the C12 of retinal in the photocycle intermediates 394
of bR (open circles denote previous measurements in selectively labeled
samples).

10-5 (a) Schematic representation of the 250 GHz gyrotron, corrugated 397
transmission system, and 380 MHz NMR probe. (1) 250 GHz gyrotron
oscillator (2) Corrugated waveguide (22 mm i.d.). (3) Beam splitter; (4)
Forward power detector; (5) Reflected power detector; (6) Focusing and
reflecting mirror optics; (7) Helically corrugated waveguide (8 mm i.d.);
and (8) Miter mirror.
(b) Composite photograph of the system illustrated schematically in
Figure 10-4(a) [left] 250 GHz gyrotron the gyrotron tube is shown with
vacion pumps in the gray superconducting magnet, [center] corrugated
transmission system with the directional coupler visible in the center of
the photograph, and [right] 380 MHz NMR magnet is visible on the
edge of the photo. The NMR probe is not visible since it is under the
magnet. The view in this photo is from above the gyrotron and
waveguide looking down.

10-6 NQ-C15 heteronuclear correlation experiments provide assignments of 397
the K216-Nc and retinal-C15 resonances in bR. (A) dark-adapted state ;



(B) light-adapted state ; (C) the K intermediate with residual bR568 and
a short-lived side product with a 15N chemical shift like that of bR568;
(D) the L intermediate with residual bR568; (E) the Mo state. . This
spectrum in C was acquired in 45 minutes with a non-uniform sampling
of tl to capture the signal of the side-product of K formation that decays
within 1-2 hrs at 90K. Details of this approach and the reconstruction
of the spectrum will be provided in a separate publication.

10-7 Ný-C15 heteronuclear correlation experiments which trace the 398
connectivity of resonances in the retinal chromophore of bR. (A) dark-
adapted state ; (B) light-adapted state ; (C) the K state with residual
bR568; (D) the L state with residual bR568; (E) The Mo state.

10-8 Ný-Cs-Cx heteronuclear correlation experiments which trace the 399
connectivity of resonances in K216 by magnetization transfer along its
side chain. (A) light-adapted state; (B) the K state with residual bR568;
(C) the L state with residual bR568; (D) The Mo state.

10-9 Sampling schedule used in non-linearly sampled 2D Ný-C15 405
heteronuclear correlation experiment in the K photostate.

10-10 2D Ný-C15 heteronuclear correlation experiment in the K photostate. 405
Note the presence of a transient photoproduct of K accumulation which
decays within an hour.

10-11 Pulse sequence for selective TEDOR transfer. 407

10-12 Application of fs-TEDOR experiment in asparagine. 408

10-13 2D heteronuclear correlation experiment of arginine side chain region of 409
bR.

10-14 Sequence for selective 3D HNCH tensor correlation experiment. 410

10-15 The relationship between 3D HNCH experiments in peptides and the 411
3D Selective HNCH experiment used in bR.

10-16 Recoupled dipolar lineshape for H-Ný couplings in [U-13C,15N]-bR (L 412
and LA).

10-17 HNg-C 15H torsion angle experiment conducted in [U-13C, 15N]-bR in the 412
L state. These data resulted from only 72 hours of acquisition time.
The torsion angle is fit to 178±80 for bR568. (right) the spread of torsion
angle data in crystallographic studies of light-adapted bR.

11-1 Lattice structure off-MLF-oMe crystals. Panel (a) shows a 'top-down' 423
view of the crystal lattice. Panel (b) shows the steric crowding and
relative orientation of the phenylalanine side chains, allowing aromatic
a--i interactions.

11-2 Representation of dynamical motions accessible to MLF. These 424
motions include flipping of the phenylalanine ring about its symmetry



axis, librational motions of the methionine side chain, rotamer
interconversion of the leucine side chain, and three-fold hopping motion
of the methyl groups.

11-3 Room temperature 1D spectra and assignments. Panels (a)-(c) show the 427
13C spectra of natural abundance f-MLF-OH, unlabeled f-MLF-OH with
a 2H-labeled side chain (Phe-d5), and unlabeledf-MLF-OMe. Panels (d)
and (e) contain the 15N spectra of for-[U-13C, 1'5N]MLF-OH and natural
abundance f-MLF-OMe. Assignments for f-MLF-oMe are based on
analogy with f-MLF-OH, with particular uncertainty in the italicized
labels.

11-4 Variable temperature 1D spectra of unlabeled f-MLF-oMe, showing 13C 428
(a-d) and ' 5N (e-h) measurements 298, 190, 155, and 95 K. Data were
acquired at 380 MHz 1H frequency and 6.25 kHz MAS. Arrows indicate
Leu methyl resonances that are most strongly attenuated at low
temperature.

11-5 Variable temperature 1D spectra of unlabeled f-MLF-OH. Column (a) 429
shows the coarse temperature dependence from room temperature down
to 90K. The spectra on the right (b) illustrate the spectral changes
indicative of a transition between 200K and 90K.

11-6 Variable temperature 15N spectra of 10% [U- 13 C, 15N] f-MLF-OH. 430
Column (a) shows the change occurring upon cooling from room
temperature to 83K. Column (b) shows spectra obtained upon heating
from 90K back to room temperature.

11-7 13C- 13C correlation spectra of 10% 13C,15N labeled f-MLF-OH at 298K 431
(a), 175K (b), and 90K (c). A DARR/RAD mixing time of 10ms
resulted in mostly single bond, and weaker two-bond correlations. The
top and bottom panels show aliphatic-aliphatic and carbonyl-aliphatic
cross-peaks, respectively. The novel form seen at 175K is highlighted in
red.

11-8 13C- 13C correlation spectra of 10% 13C,15N labeled f-MLF-OH as in 432
Figure 11-7. The panels show correlated changes in the Ca-Cp3 region
and establish unambiguously that the line broadening in 1D spectra is
actually due to a second structural form of MLF.

11-9 13C-13C correlation spectra of 10% '3C,15N labeled f-MLF-OH as in 433
Figure 11-7. The top panels highlight changes in the C-Ca region, and
the lower panels highlight changes in the aromatic region of the
spectrum. Note that aromatic crosspeaks are completely absent at room
temperature due to interfering dynamics and become visible at lower
temperatures, where the dynamics are attenuated.

11-10 2D 15N- 13C NCACX-type correlation spectra which result in complete 433
assignment of all resonances in MLF at 175K. Following 1H- 15N cross
polarization, the magnetization evolves under the 15N chemical shift and
then is transferred to the 13Ca using band-selective cross polarization



(SPECIFIC CP). Aliphatic cross-peaks are generated by proton-driven
spin diffusion with an R recoupling field (DARR).

11-11 CHHC experiment in 10% [U-' 3C,15N]-MLF, which was subsequently 436
used for experiments designed to measure structural parameters. The
absence of intermolecular cross peaks at long mixing times
demonstrates that all structural constraints measured in these
experiments are not influenced by intermolecular packings in the diluted
sample.

11-12 3D TEDOR experiment use for ' 5N-'3C distance measurements in MLF, 437
in which transferred echo double resonance is used to produce
quantitative heteronuclear polarization transfer in the context of a
chemical shift correlation experiment.

11-13 Projection of dipolar dimension of 3D TEDOR experiment in MLF (175 437
K). The intensity of each cross peak was fit as a function of the mixing
time to obtain an accurate estimate of the heteronuclear distance.

11-14 Projection of dipolar dimension of 3D Rotational Resonance Width 438
experiment in MLF (175 K). With the exception of Ca and CO3 atoms,
the intensity of each cross peak was fit as a function of the spinning
frequency to obtain an accurate estimate of the homonuclear distance.
Not all cross peaks are visible in this projection.

11-15 (left) Example of fitting of long distances in TEDOR experiments. 438
(right) The N-form of MLF (MLF-1) has systematically longer
distances than the O-form, which closely resembles both the room
temperature and 90K MLF structures.

11-16 3D HNCH experiments for measurement of backbone (p torsion angles 439
in uniformly labeled peptides. Heteronuclear couplings are
reintroduced using constant-time TMREV recoupling se uences which
are synchronously incremented during 'H- 3 C and 'H-' N recoupling
periods. A similar experiment to measure the y torsion angle instead
involves correlation of the 1H-15N(i+l) dipolar tensor with the 'H-13Ca
tensor.

11-17 Experimental data for HNCH tensor correlation experiment designed to 440
measure the 9 torsion angle in MLF at 175K. Note that there are
differences in the experimental dephasing trajectories for the
methionine and phenylalaine residues between the two forms of MLF
but minimal differences for the leucine.

11-18 Experimental data for HNi+1CiH tensor correlation experiment 440
designed to measure the yV torsion angle in MLF at 175K. No
constraints on the phenylalanine residue can be obtained from this
experiment. The results suggest only minimal differences in this
backbone w torsion angle between the N-form and O-form of MLF.
The HNCH V measurements were supplemented with an NCCN dipolar
correlation experiment that constrains the same torsion angle.



11-19 3D HCCH experiments for measurement of side chain X, torsion angles 441
in uniformly labeled peptides. Double quantum coherence is created
using the band-selective SPC-53 recoupling sequence and allowed to
dephase under the 'H- 13 C dipolar interactions, reintroduced by TMREV.

11-20 Experimental data for HCCH tensor correlation experiment designed to 442
measure the X, torsion angles in MLF at 175K. The results show
significant differences in side chain conformation between the two
forms of MLF which co-exist at 175K.

11-21 Examples of data fitting and resulting solution surfaces for the 443
backbone torsion angles of Leucine in N-form (red) and O-form (black)
f-MLF-OH as measured in HNCH (p), HNi+1CiH (w), and NCCN (y)
tensor correlation experiments.

11-22 Powder diffraction pattern of f-MLF-OH sample used in NMR studies. 445
The unit cell parameters (P2 12121, a=21.9, b=20.7, c=5.3) were obtained
through indexing in CRYSFIRE and rigid body refinement in the
program UNITCell.

11-23 TMREV experiment to probe averaging of 1H- 13 C dipolar couplings as 446
a function of temperature.

11-24 Span of recoupled dipolar interaction as a function of temperature. The 447
second dimension is generated from a fourier transform of the dipolar
dephasing curve under TMREV recoupling. Note the increase in
apparently methyl group dipolar couplings as the temperature is
reduced.

11-25 Span of recoupled dipolar interactions in TMREV experiments as a 448
function of temperature. The dramatic change in the dipolar lineshape
of the aromatic carbons clearly indicates a change in their dynamics
with temperature.

11-26 Effective (scaled) dipolar couplings for two methyl groups as a function 449
of temperature. The methionine Cc methyl appears to be in a less
hindered environment than the Leu C81, though both experience an
apparent loss of dynamics near the glass transition temperature.

11-27 Deviation in heteronuclear distances in two forms of MLF at 175K from 451
their room temperature values (indicated by red line at y=0). The N-
form of MLF has systematically longer distances than the O-form,
which closely resembles both the room temperature and 90K MLF
structures.

11-28 Density of structural constraints for N-form of MLF superimposed on 452
MLF structure.

11-29 Preliminary refinement of MLF structures on the basis of experimental 453
data at 175K. It is anticipated that inclusion of additional side-chain
torsion angle data in the refinement data set will improve the ensemble.
Differences between the O-form and N-form structures are most



pronounced in the side chains. The ensembles are generated by
selecting the five structures which represent the conformational space
spanned by the 100 lowest energy conformers in the refined ensembles.
Alignments are generated to all heavy atoms.

11-30 Superposition of 298K, N-form, and 0-form MLF average structures as 453
determined by solid state NMR. Structural coordinates were averaged
and then subjected to minimization in Cartesian coordinates (in X-
PLOR-NIH) to eliminate inappropriate geometries and steric clashes.

11-31 Homonuclear 13C-13C correlation experiment in nanocrystalline protein 458
GB1 recorded at 700 MHz with DARR. The protein was prepared
through precipitation in polyethylene glycol. Note the excellent
resolution, which is typical of microcrystalline proteins.

11-32 Heteronuclear 13C- 15N NCACX-type correlation experiment in 459
nanocrystalline protein GB 1 recorded at 700 MHz.

11-33 Heteronuclear 13C- 15N NCA-type correlation experiment in 460
nanocrystalline protein GB 1 recorded at 700 MHz.

11-34 A comparison of homonuclear correlation spectra of protein GB1. (left) 461
PEG-precipitated sample of GB1 at 700 MHz, 273K; (middle)
homonuclear correlation spectrum of a sample of GB 1 precipitated from
PEG and cryoprotected with glycerol, recorded at 380 MHz; (right) the
same sample, cooled to 100K.

11-35 1D 15N spectra of U- SN-MLF microcrystals prepared by precipitation 461
in MPD. Note the loss of resolution at lower temperatures.

12-1 Pulse sequences for 3D-R2 W experiment. Solid rectangles represent R/2 474
pulses. (a) Represents a general 13C-1 3C correlation experiment
performed as a function of spinning frequency with the following phase
cycling scheme: q(p=l, p2 =1313, (p3= 2 , (p4=1122 3344, (prec=1324 3142
3142 1324. (b). In this scheme a selective Gaussian flip-up pulse is
employed to select the carbonyl region of the spectrum. The following
phase cycles were employed: qpI=8xl, 8x3; ýp2 =1; (p3=8x2, 8x4; (p4=1;
qps=4x3, 4x1; (p6= 1234; (prec=1234 3412 3412 1234 3412 1234 1234
3412. The labels 1,2,3,4 correspond to the phases x,y,-x,-y respectively.
In all the above experiments the phase of the 'H-CP pulse was fixed
along the y-axis and the dipolar mixing time (tmix) was 30 ms.

12-2 Diagram of the peptide N-Ac-Val-Leu derived from the crystal 483
structure. The nomenclature used to label measured distances in the text
is indicated.

12-3 Representative two-dimensional slices from the 13C-13C R2 W 484
experiment in N-Acetyl [U- 13C, 15N]L-Val-L-Leu recorded on 360 MHz
spectrometer at (a) or/2n=6.95 kHz and (b) or/2 n=7.05 kHz. The pulse



sequence of Figure 12-1(b) was used with the mixing time of 30 ms.
Different cross peaks appear at different spinning frequencies, thereby
demonstrating the selectivity of the polarization transfer. In (a) cross-
peaks corresponding to the medium range V'-Vyl dipolar coupling
(R=3.879 A according to the crystal structure) appear in the spectrum,
along with long-range couplings between the L'-L81 (R=4.675 A) and
L'-L82 (R=4.872 A). These cross peaks are not present in (b) (note that
the spinning frequency changes by just 100 Hz), but two additional
cross-peaks appear between L' and Vyl (R=6.464 A) and V' and Vy2
(R=2.969 A).

12-4 Representative plots of the cross peak intensities as a function of the 486
spinning frequency for the L'-L82 and V'-Vyl rotational resonances,
and corresponding graphs of the model estimator in which contour
levels are confidence intervals determined from an F-test. The volume
intensities of the cross-peaks are given relative to the corresponding
carbonyl peaks. The parameters in the best fit simulations were as
follows. For L'-L82: Tf = 4.0 ms, R=5.0A. For V'-Vyl: Tz = 8.9 ms,
R=4.25 A. The confidence limits of the contour levels are indicated on
the figure.

12-5 Comparison of 13C_13C distances measured by using X-ray diffraction 487
and R2W experiments. NMR results account for random errors.

12-6 Pulse sequence for 3D CPRW experiment. Following polarization 495
transfer from the 1H to '5N spins, the magnetization evolves under the
'5N chemical shift during tl and is then transferred to the 13C spins
through a constant-time Hartmann-Hahn cross polarization period. A
pseudo-3D experiment is conducted as a function of the '3C RF field.

12-7 Accuracy of distance measurements in the presence of chemical shift 496
overlap. The matching conditions which result in Val yl-VN and Val y
2-VN cross peaks are fulfilled nearly simultaneously, but the two-spin
approximation still gives an accurate estimate of the internuclear
distance.

12-8 Comparison of distances determined in [U-13C,15N]-Val-Leu by CPRW 496
and x-ray crystallography.

12-9 Agreement of analytical approximation treatment with two-spin 497
numerical approach. The agreement is good over the entire range of
relevant distances and relaxation parameters.

12-10 Kinetic approach for estimating weak couplings in the presence of a 498
strong coupling with partial resonance overlap.

12-11 Attenuation of magnetization transfer for weak coupling (4.0 A) in the 498
presence of an additional overlapping resonance (5.5, 4.5, 2.5 A).

12-12 The effects of CSA under conditions where the transverse CSA 499



elements are not minimized. CSA parameters corresponding to amide
15N and 13Cp were assumed.

12-13 Accuracy of the distance estimation when the experiment is conducted 517
near the CSA recoupling condition. The data are fit using a second
order MMFT treatment which takes into account the CSA.

12-14 Comparison of distances determined in [U-13C, 15N]-f-Met-Leu-Phe by 517
CPRW and x-ray crystallography.

12-15 Pulse sequence for 3D quasi-adiabatic CPRW experiment. The 13C RF 519
field is ramped linearly through all recoupling conditions for aliphatic
spins of interest.

12-16 Pulse sequence for quasi-adiabatic DQ R2TR/HORROR experiment for 519
homonuclear distance measurements. Following selection of the initial
magnetization, the system evolves under the '3 C chemical shift during
T1. Magnetization is then transferred using a ramped radiofrequency
field selected to span the HORROR or n=l/n=2 R2TR DQ matching
conditions for the spins of interest, depending on the chemical shift
separation of the carbons involved, and detected in T2 following an
echo.

12-17 Spin dynamics during the ramp for several values of the CSA and (b) T2  519
relaxation parameter. Quasi-adiabatic polarization transfer during the
ramp is less influenced by the CSA and DQ relaxation than the
equivalent "sudden" experiment.

12-18 Plot of intramolecular and intermolecular distances in [U- 13C,15N]-Val. 520
Leu measured using 3D quasi-adiabatic CPRW.

12-19 DQ HORROR spectrum in which magnetization from the methyl 521
groups (Met-CE, Leu-C61, and Leu-C62/Cy) is selected and transferred
to other aliphatic resonances.

12-20 A plot of distances obtained by fitting exchange trajectories to a simple 521
two-spin model which neglects relaxation.

13-1 Samples used for solid state NMR measurements in L 111M TTR. Two 531
segmentally [U-' 3C, 15N]-labeled samples were prepared by solid phase
synthesis.

13-2 Ribbon diagram of native transthyretin monomer backbone. The 531
segment corresponding to the native structure of residues 105-115 is
highlighted in blue.

13-3 Negative stain TEM image of amyloid fibrils prepared from peptides of 533
L111M TTR1 05-115. The predominant morphology is that of a twisted
ribbon.

13-4 AFM image of mature amyloid fibrils from prepared from L111M 534
TTR 105-115. The sample was dehydrated and imaged on the surface of



freshly cleaved mica substrate.

13-5 The range of fibril polymorphism represented in samples of WT 534
TTR 105 -115. Sample morphology observed during maturation and in
mature fibrils ranges from rope-like extended fibrils to ribbon-like
fibrils which appear to have a hollow core. Laterally associated
protofilaments are also visible in some samples. NMR samples are
inspected to confirm that one morphology dominates prior to NMR
experiments.

13-6 The kinetics of amyloid fibril formation in WT TTRI0 5-115 and its 535
L111M monitored by 'H solution state NMR (spectrum in (a)) (10% d-
acetonitrile in D20; 4 scans with presaturation for solvent suppression).
Because the NMR spectra change only in intensity, we assume that any
intermediates of fibril formation are too dilute or short-lived to be
observed. The results demonstrate dramatic differences in the kinetics
of amyloid fibril formation in the WT and L 111M peptides.

13-7 One-dimensional 13C and '5N NMR spectra of the two segmentally 538
labeled peptide samples used in this study. The spectra demonstrate
that the sample is microscopically well-ordered. Differences in the
aromatic line intensities are due to different aromatic ring dynamics
experienced by the N and C-terminal tyrosines.

13-8 Pulse sequence for 2D 13C-' 3C homonuclear correlation spectroscopy 539
through proton-driven spin diffusion with the application of a 'H R3

recoupling field (DARR).

13-9 Two-dimensional 13C-13C correlation experiments in L 11M TTRo10 5 115. 539
The spectra demonstrate that the samples are microscopically ordered.
All '3C sites can be assigned on the basis of a single 2D correlation
experiment in each sample.

13-10 Aromatic region of 2D 13C-13C correlation experiment in YTIAAL- 540
labeled sample of L111M TTR 105-115. Since the timescale of the
aromatic ring dynamics for the C-terminal tyrosine does not interfere
with the decoupling or magic angle spinning, nor does it render ring
carbons equivalent through conformational exchange, it is possible to
obtain a complete set of assignments for its 13C sites.

13-11 Pulse sequence for 2D '5N-13C homonuclear correlation spectroscopy. 541
Following 'H-' 5N cross polarization, magnetization evolves under the
' 5N chemical shift during Tl and then is transferred to the '3Ca or 13C'

via band-selective cross polarization (SPECIFIC CP). Aliphatic
homonuclear mixing is accomplished through proton-driven spin
diffusion with the application of a 1H R3 recoupling field (DARR).

13-12 Two-dimensional '5N-13C correlation experiments in L111M TTR105-115. 542
Complete sequential assignments have been obtained through 2D
NCACX and NCOCX-type correlation spectra, shown above for each
sample.



13-13 2D planes from 3D TEDOR experiment in YTIAAL-labeled L11 M 543
TTR 105-115 sample corresponding to 1 ms (top) and 10 ms (bottom)
TEDOR mixing times. The intensity of each cross peak as a function of
the mixing time can be fit to obtain the heteronuclear dipolar couplings.

13-14 2D plane from 3D TEDOR experiment in ALMSPY-labeled L111M 544
TTR 105-115 sample corresponding to a 10 ms TEDOR mixing time. The
intensity of each cross peak as a function of the mixing time can be fit
to obtain the heteronuclear dipolar couplings.

13-15 Example of data fitting for I107Cy2 13C- 15N cross peaks to I107N and 544
T106N. The modulation of TEDOR intensity at long mixing times is
due to the J-coupling. Experimental data extends to 16 ms.

13-16 Experimental constraints on backbone torsion angles of Threonine 106 546
from HNCaH (cp), HNi+1CaH (wy), and NCCN (y) tensor correlation
experiments. Fits as a function of mixing time are indicated on the left,
and the solution surfaces are plotted on the right.

13-17 Representation of the density of structural constraints used in the 550
refinement of the L111 M structure. Note the lower density of
constraints in the N-terminal tyrosine and on the C-terminus, which was
not labeled due to the expense of attaching labeled, protected, Serine to
the resin.

13-18 Representative members of the L11 M structural ensemble. These 550
conformers span the conformational space defined by the 100 lowest
energy structures in the minimization.

13-19 Ramachandran plot formed from the ensemble depicted in Figure 13-18. 551
All residues lie within the favored, P-sheet region of the conformational
space.

13-20 Comparison of the WT TTR structure with the structure of L111 M TTR 553
(two views).

14-1 Electron micrograph (negative stain) of amyloid fibrils from TTR 105-115. 564

14-2 Structural hypothesis for fibril assembly. The protofilament (left) 564
consists of parallel or antiparallel n-sheets which are held together by
hydrophobic association or side-chain hydrogen bonding. The fibril is
formed from protofilaments which wind together along the longitudinal
axis. (images courtesy of A. Fitzpatrick).

14-3 Length scale of experimental methods used in the TTR structure 565
determination.

14-4 Strategy of hierarchical structure determination of TTR amyloid fibrils. 566

14-5 Several possibilities for 3-sheet registry in amyloid fibrils. 567

14-6 Antiparallel model of TTR10o5. 115 amyloid fibrils showing key backbone- 569



to-backbone heteronuclear distances.

14-7 Analytical simulations of REDOR dephasing corresponding to spin 570
geometries in TTR10 5-115. (black) spin pair, 4.7 A; (red) spin triplet,
4.7 A; (blue) six spins, 4.7 A.

14-8 Summary of REDOR measurements designed to test the hypothesis of 571
antiparallel 3-sheet packing. The dashed red lines correspond to
simulations of the dephasing in a spin pair separated by 4.7 A and a
cluster of four spins with two inequivalent distances of 4.1 A and 5.6 A
respectively. (A) Alal08-15N-Leul 1 l-13C', antiparallel -1 register;
(B) Alal09- 15N-Leul 11 -13C', antiparallel and in register; (C) Ala108-
15N-Serl 12-13C', antiparallel and in register; (D) Leull0- 15N-
Leul1 -'3C', antiparallel +1 register. The expected dephasing is not
observed in these experiments.

14-9 REDOR measurements in Alal08-' 5N--Leul 1 l-13C' spin pair sample 572
and in a mixture of Ala108-' 5N and Ala10911 1-13C' labeled peptides
designed to probe parallel strand packing. The dephasing in the mixed
sample has been adjusted to account for the 50% dilution of all
intermolecular couplings. In both absolute and scaled terms, the
dephasing is greater in this sample. A four-spin model with two
unequal couplings fits the data in agreement with the hypothesis of
parallel, in register packing, subsequently verified in other experiments
(see below).

14-10 Peptide geometry corresponding to parallel P-sheet packing. Note that 575
antiparallel+2 and antiparallel+3 packing produces some carbonyl-
carbonyl distances which are similar to those in a parallel strand.
(below) DQ DRAWS spin dynamics for spin geometries found in TTR.

14-11 Numerical simulation of DQ DRAWS experiment in linear spin clusters 578
with a topology similar to that of a parallel P-sheet. Note the lack of
convergence as a function of the number of spins. No T2 relaxation has
been included in these simulations, but the CSA is explicitly included.
(bottom) the DQ DRAWS pulse sequence used in these experiments.

14-12 Numerical simulation of DQ DRAWS experiment in clusters of spins 579
with a periodic boundary condition that renders all spins equivalent.
The simulations rapidly converge in the initial rate regime (< 10 ms).
No T2 relaxation has been included in these simulations, but the CSA is
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14-13 The dependence of DQ DRAWS efficiency on CW decoupling power 579
during the mixing. Because damping of DQ coherences by CSA-
induced dynamics is implicitly accounted for in the numerical
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relaxation parameter. The model results in an unambiguous fit of the
distance and the relaxation parameter.

14-14 Expected DQ DRAWS build-up trajectory for spin geometries 580



corresponding to parallel, parallel+l, and parallel+2 f3-sheets. Note that
out of register parallel b-sheets have inequivalent sets of intermolecular
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14-15 DQ DRAWS experimental data, theoretical fits, and probability 582
surfaces for (a,b) 1,4- 13C-succinate model compound, fit using a two-
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TTR1 0 5-115 fit in the same way.
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Chapter 1 A Survey of Solid State NMR for Applications in
Structural Biology

In contrast to widely employed techniques based on x-ray diffraction, spectroscopic

probes of biological structure and dynamics do not require macroscopic order [1]. As

such, they are routinely applied in a wide variety of noncrystalline samples, ranging in

size from small peptides and proteins [2-21] to intact cells and living organisms (Figure

1-1). Spectroscopy in the condensed phase is nevertheless complicated because the

Hamiltonian is generally characterized by a multitude of noncovalent and anisotropic

interactions which, in the absence of some averaging process, render the spectra broad

and featureless [22]. Within nuclear magnetic resonance, however, there are several such

processes through which these complications can be circumvented: as will be described

briefly, they include rapid molecular reorientation, in solution, and uniaxial alignment, or

magic angle spinning (MAS), in solids. This thesis broadly concerns the application of

MAS NMR methods to probe the structures of increasingly large biological molecules in

the solid phase. Here, we will briefly review the process of structure determination by

NMR.

nanocrystalline amyloid membrane living
peptide fibril protein cells

Figure 1-1: The range of samples to which solid state NMR methods can be applied.



Structure determination by solid state NMR benefits tremendously from the long history

of solution state NMR in biology and biophysics. When a molecule is dissolved in

solution, it can experience molecular reorientation on the timescale of the NMR

experiment. If the motion is rapid enough, anisotropic interactions are averaged to their

trace values, which are either zero (as in the case of the dipolar tensor, in Figure 1-4) or

some finite isotropic value (as in the case of the chemical shift anisotropy, in Figure 1-3)

[23]. The resulting spectra are characterized by narrow resonance linewidths. Indeed, in

a dissolved protein consisting of thousands of unique resonances, it is generally possible

to uniquely resolve and assign each one [24]. This, in large measure, is the responsible

for the success of solution state NMR in structural biology. Where sample dissolution is

impossible, the sample can be mechanically oriented along a single axis with respect to

the external magnetic field, resulting in orientation-dependent values for the chemical

shift and dipolar interactions. This approach has been applied extensively by Opella and

co-workers for the structure determination of membrane proteins oriented in lipid

bilayers or magnetically aligned bicelles [10-12, 25-27]; in the context of weak

alignment, it has also been used by solution state NMR spectroscopists to measure

residual dipolar couplings (RDCs) which supplement conventional interproton NOE

restraints [28]. In the case of a static solid sample without uniaxial alignment, the full

anisotropy of all interactions in manifest, and the spectra are generally broad and

featureless. NMR spectra that result from these samples are illustrated in Figure 1-2.
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dipolar coupling in solid-state

In powder samples, nuclear spin interactions which are inhomogeneous in the

nomenclature of Maricq and Waugh [29, 30] can be averaged to isotropic values by fast

spinning of the entire sample along one or more axes inclined with respect to the static

magnetic field [31]. For second rank tensors such as the dipolar coupling and chemical

shift anisotropy, this angle is the so-called magic angle of -54.7', and the experiment is

called Magic Angle Spinning. Its effects on powder spectra are illustrated in Figure 1-5.

In biomolecular solid state NMR applications, MAS is generally sufficient to give high

isotropic liquid

3N"
(0.'

single



resolution, isotropic spectra of low-y nuclei such as 13C and '5N, at least at currently

employed field strengths up to 20 T [32, 33]. Magic angle spinning instrumentation has

been developed with capabilities exceeding 70 kHz, and this technology has promising

applications in the spectroscopy of abundant, high-y nuclei such as 1H, for experiments

conducted at very high magnetic fields, for applications in paramagnetic molecules such

as catalysts and metalloproteins, and for certain experiments at low or moderate magnetic

fields [34-37]. For spatial averaging of tensors of higher rank, double-angle spinning

methods have been developed; they have interesting applications in the spectroscopy of

quadrupolar nuclei [38-40]. Finally, methods analogous to MAS but which instead

involve electrical or mechanical turning of the magnetic field have recently been

proposed for applications in low-field imaging and materials science [41].

-00'3C- 13 CH2-NH3+

chemical shift + dipolar chemical shift

CO Ca

1 kHz

5 k-tz

10 kHz

20 k L z

-10 0 10 -10 0 10

Frequency(kHz)
Figure 1-5: The effects of Magic Angle Spinning (MAS) on the NMR spectra of a powder.

Though MAS has the beneficial effect of producing isotropic, solution-like spectra which

can lead to site-specific assignments, it also removes the structural information that is



encoded in anisotropic nuclear spin interactions. Dipolar couplings, in particular,

indicate internuclear proximity through their -~r3 dependence on the distance between

interacting atoms. In solution state NMR experiments, the proximity of nuclei is

monitored indirectly through experiments based on cross-relaxation; while this is possible

in solid state NMR, it is better to reintroduce dipolar couplings in order to directly and

accurately measure structural distances [42]. The selective reintroduction of spin

interactions averaged by MAS is called "recoupling." Recoupling experiments generally

depend on a modulation of the spin part of the Hamiltonian by RF pulses. In a simple

analogy, illustrated in Figure 1-6, periodic manipulation of the spin part of the

Hamiltonian can interfere with the modulation imposed by MAS, resulting in a time-

averaged non-zero value of the coupling of interest. A multitude of homonuclear and

heteronuclear recoupling sequences have been developed [43-56], and many can be

described by a formalism which considers the symmetry of the RF pulse sequence

involved and the rotational symmetry properties of the recoupled spin interactions [43,

57, 58] to simplify calculation of the effective Hamiltonian.

STATIC SLOW SPINNING FAST SPINNING STROBOSCOPIC
EXCITATION

rotation

illumination JJ
Figure 1-6: The effects of recoupling in magic angle spinning experiments.



In a spinning powder sample, it is therefore possible to manipulate the nuclear spin

Hamiltonian and reintroduce spin interactions in a controlled manner, preserving both the

resolution of isotropic spectra and the information carried by the anisotropic couplings.

Following this approach, solid state NMR experiments have been developed to measure

internuclear distances and torsion angles, in the latter case by the correlation of two

anisotropic interactions whose orientation in the molecular frame are known a priori [59-

66]. A multitude of applications in samples which are isotopically labeled at one or a few

sites have been reported in the literature [67-72], and this has firmly established solid

state NMR as a tool to probe the structures of arbitrarily large molecular complexes.

Selective U-13C,15N
Labeling Labeling

* Fewer samples required
* Label scrambling possible

* High information content** Multiple samples required
* multiple interactions

* Measure specific constraints
* Chemical Shift Resolution

* Experiments well-established
* Dipolar Truncation: frequency-" Simple analytical treatments
selective or commuting Hamiltonian

Figure 1-7: A comparison of selectively and uniformly labeled samples for solid-state NMR
measurements.

The development of solid state NMR as a tool for the determination of total molecular

structure, however, has required methods to measure constraints in samples which are

multiply or uniformly isotopically labeled. As illustrated in Figure 1-7, it is possible to
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simultaneously measure multiple constraints in a single uniformly labeled sample, albeit

at the expense of increased complexity in the experiments and the spin dynamics they

produce. Following successful approaches in solution state NMR, these solid state NMR

methods must incorporate multidimensional chemical shift correlation periods.

Correlation experiments, described in Figure 1-8, were first proposed by Jeener and later

developed by Ernst and co-workers [73]. They involve creating one or more

incrementable time dimensions, generally labeled tl, t2,... tU-1, during which the system

evolves under the chemical shift interaction of specific species. The evolution during

successive tn periods are correlated using "mixing" sequences, and finally the signal,

carrying a phase corresponding to all previous evolution periods, is detected. Phase-

sensitive detection is accomplished using one more schemes which involve orthogonal

phase changes in the pulse sequence elements preceding or following each evolution

period [74]. In the data processing step, the correlation between different periods is

uncovered through n-dimensional Fourier transformation. Where the mixing sequences

produce correlations through 1-bond dipolar couplings or J-couplings, the Fourier

transform map traces the covalent topology of the molecule of interest. This can be

applied, for example, to produce a spectrum in a 15N, 13C-labeled protein which correlates

all the amide 15N chemical shifts with those of the side chain carbons [24]. This so-called

NCACX correlation experiment typically yields highly resolved solid state NMR spectra,

even in proteins of > 100 residues [33, 75]. As illustrated in Figure 1-9, it is frequently

applied in the process of assignment, in which chemical shifts of a protein are resolved

and labeled in a site-specific manner through their correlations in multiple dimensions.
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Figure 1-8: Schematic illustrating the principles of multidimensional chemical shift correlation.
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signments

Figure 1-9: Chemical shift assignment through two-dimensional correlation spectroscopy.

Nearly complete chemical shift assignment is usually a prerequisite for the measurement

of a set of constraints, in the form of distances and torsion angles (Figure 1-10), which

are sufficient to refine a structure. In experiments intended for use in uniformly labeled

samples, anisotropic interactions periods are added to chemical shift correlation

experiments, but the Fourier transform is calculated only with respect to phase-sensitive

dimensions. The result is a pseudo-nD spectrum in which the anisotropic spin dynamics

are encoded in the time-varying cross peak intensities. A typical solid state NMR

experiment of this type is shown in Figure 1-11, and most experiments presented in this
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thesis follow its archetype. In the first stage, called "preparation", an initial traverse spin

state is created on through polarization transfer from the 1H via the cross polarization

pulse sequence. The signal then evolves, during ti, under the chemical shift of Spin 1; a

recoupling sequence is then applied to reintroduce the dipolar interaction between Spin 1

and Spin 2, and the signal evolves during tmix under the dipolar coupling. Finally, the

signal evolves under the chemical shift of spins 1 and 2 during the detection period, t2.

The resulting multidimensional interferogram, if Fourier transformed with respect to t2

and tl yields a series of 2D planes in which the intensity of the cross peaks between Spin

1 and Spin 2 is modulated by the recoupled dipolar coupling. These intensities can be

extracted by integration, and the resulting dipolar mixing trajectories can be fit to a model

that includes the dipolar coupling as one of its parameters.

Assignments Distances Torsion Angles

I

Measure isotropic Measure relative
chemical shiftsmagnitudes orientations

and CSAs of dipolar tensors

Figure 1-10: The variety of constraints measured in typical solid-state NMR experiments.
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Figure 1-11: Components and modules of a typical solid-state NMR experiment.

The aim of these experiments, then, is to record enough constraints with sufficient

accuracy to refine a detailed structure of the protein under study. To be precise, structure

can be described at many levels: the global structure of a protein involves its backbone

fold and the orientation of all partners in a multimeric complex. As is intuitively clear,

short distance constraints between sites which are distant in primary structure are

particularly valuable in fixing the global fold of a protein, and, for that reason, a number

of solid state NMR methods have been developed which yield very many approximate

constraints of this sort with high sensitivity [76-81]. They have been applied to

determine the backbone fold of several microcrystalline systems [82-84]. However, the

work presented in this thesis involves structure determination of peptides and peptide

complexes or the measurement of chemically interesting parameters in a protein active

site, and it is therefore more concerned with accurate local structure. The local

conformational flexibility of a protein is usually expressed in terms of its internal heavy



atom coordinates: the 4,N, and co backbone torsion angles and X1, X2 ... Xn angles

describing the side chain. Internuclear distances can constrain one or more internal

degrees of freedom, while torsion angle measurements are generally designed to measure

one angle. If enough distances and torsion angles are recorded, the structure can be

refined by a global optimization algorithm such as simulated annealing. As illustrated in

Figure 1-11, NMR structures result from global optimization of a model that describes

many local parameters, and this is an important advantage in some application over

approaches based on diffraction. For example, in applications to trapped photocycle

intermediates of the membrane protein bacteriorhodopsin, NMR is able to resolve and

specifically measure structural parameters in the individual components of

conformational mixtures. Diffraction measurements, in which each measurable

parameter (a reflection) is a global observable of a macroscopic sample, cannot as easily

be applied to samples which are locally disordered or which exist in a mixture of local

conformations.
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Figure 1-12: Structure determination by diffraction and NMR.
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A number of examples illustrate the success of high-resolution solid-state NMR methods

for atomic resolution structure determination. These include the refinement of a

tripeptide structure [85], a recent structure of an amyloid fibril [86] and, in this thesis, the

refinement of structures adopted by peptides at low temperatures, and finally the structure

of a related amyloid fibril. These applications demonstrate that the protocols for structure

determination in solid state NMR are now well established for systems of moderate size.

The extension of these methods to larger systems, however, is not straightforward. In

larger systems with many more unique chemical sites, the sensitivity per site decreases

dramatically. A comparison of the sensitivity of solid-state NMR spectra recorded in a

moderately sized system and a larger one, shown in Figure 1-13, clearly illustrates the

problem. Since the experiments used to constrain the structure of the 11-residue amyloid

fibril whose spectra are shown in Figure 1-13 can typically last -7 days, their extension

to a system with two orders of magnitude worse sensitivity is clearly impractical. This

suggests that NMR sensitivity must be improved by one or two orders of magnitude in

order for this successful protocol for structure determination to be applied routinely in

macromolecular targets. Much of this thesis, then, is concerned with the development

and initial applications of a sensitivity enhancement technique called Dynamic Nuclear

Polarization, which can enhance NMR signals by two or three orders of magnitude

through polarization transfer from electrons to nuclei.
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Figure 1-13: A comparison of the sensitivity of solid-state NMR acquisition in a system of
moderate size (11-residues) and a large system (26 kDa membrane protein).

In Chapter 2 of this thesis, we review the major mechanisms of Dynamic Nuclear

Polarization in high magnetic fields and describe the instrumentation required to perform

DNP experiments, including the physics of microwave-generating vacuum electron

devices. Chapters 3-5 deal with the development and controlled operation of a 250 GHz

gyrotron oscillator and DNP/NMR spectrometer in the highest field DNP experiments

performed to date. In Chapters 6-8, we describe the extension of this technology to even

higher fields (corresponding to 700 MHz 1H) through the development of a second

harmonic gyrotron oscillator operating at 460 GHz. In Chapter 9, we describe initial

biophysical applications of DNP to the study of photocycle intermediates of

bacteriorhodopsin, including those which have not been previously observed by any

technique. The work presented in Chapter 10 extends this methodology to uniformly

'3C,'SN-labeled bacteriorhodopsin: we have made active site assignments even of the

minor components of conformational mixtures of bR photocycle intermediates using

DNP-enhanced multidimensional NMR and then used this information to perform
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experiments which yield conformational constraints. Further, we show how the

combination of non-linear sampling with DNP can be applied to study transient products

of the bR photocycle. In Chapter 11, we study the protein glass transition using a model

peptide whose high resolution structure is refined on the basis of solid state NMR

restraints taken at low temperature. Chapter 12 discusses a family of experimental

methods, collectively called "resonance width" measurements, in which homonuclear and

heteronuclear dipolar couplings can be measured precisely and in a manner that accounts

for the effects of relaxation. In Chapter 13, we present the atomic-resolution structure of

of the L11 1M mutant of a peptide segment of transthyretin in an amyloid fibril. Finally,

Chapter 14 describes experiments which probe the supramolecular architecture of an

amyloid fibril on length scales ranging from the atomic to the microscopic.
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Chapter 2 Dynamic Nuclear Polarization Of Biological
Systems At High Magnetic Fields

Nuclear magnetic resonance in the solid phase is a powerful tool for the elucidation of

local chemical environment; in combination with magic angle spinning (MAS), solid

state NMR is also capable of delivering site-specific information about molecular

topology and internuclear proximity. In favorable cases, the information derived from

these experiments is sufficient for the total structure determination of biomolecules

including peptides and proteins in the solid state. Nevertheless, a critical factor limiting

the general applicability of these techniques is the inherently low sensitivity of the NMR

experiment. Here, we review the application of dynamic nuclear polarization (DNP), a

technique in which the greater spin polarization of the electrons is transferred to the

nuclei, to enhance the sensitivity in solid state NMR spectroscopy of biomolecules in

high magnetic fields.

2.1 Introduction: Sensitivity In Solid State NMR

Magnetic resonance has now emerged as a powerful and complementary technique to x-

ray crystallography for the elucidation of molecular structure in atomic detail. In

particular, nuclear magnetic resonance (NMR) in the solution state is an established and

successful tool in structural biology, and recent methodological developments permit its

application to systems of ever larger molecular weight [1][2]. Nevertheless, there are a

number of interesting systems which can neither be readily crystallized for diffraction

studies nor dissolved in sufficient concentrations for solution state NMR. Examples of

particular importance include integral membrane proteins [3][4][5][6][7][8] [9], protein



complexes or aggregates [10], amyloid fibrils [11][12][13][14][15], molecules in the cell

wall or extracellular matrix [16], and natural or synthetic biomaterials [17][18]. For all

these cases, solid state NMR methods can provide information about molecular geometry

in the native biological or functional milieu, free from the requirement of crystallinity

imposed by diffraction methods, and free from the requirements of solubility and

molecular weight imposed by solution state NMR.

In order for an NMR spectrum to provide meaningful information at an atomic scale,

each of its component resonances must be unambiguously assigned to a constituent

nucleus of the molecule under study. For a molecule with multiple NMR-active sites, the

extent to which this is possible is determined largely by the degree to which the

transitions associated with the NMR Hamiltonian are mutually resolved. In general, the

Hamiltonian is the sum of internal and external interactions which are anisotropic and

whose magnitudes thus depend upon the orientation between interacting centers and the

external magnetic field. The spectrum of a polycrystalline powder sample, in which all

such orientations are represented, is therefore broad, unresolved, and generally devoid of

site-specific information.

Molecules dissolved in solution typically undergo rotational diffusion which is fast on

the time scale of NMR interactions. When this molecular reorientation is rapid and

isotropic, many anisotropic elements of the spin Hamiltonian are either averaged to zero

or to a finite trace, resulting in highly resolved NMR spectra. However, increased

resolution is not the only result; since the width of resonance lines is reduced by at least

three orders of magnitude by this process, the signal intensity and signal to noise ratio

also increase by a similar factor. Because the spectra of abundant, high gyromagnetic



ratio nuclei (e.g. 1H in biopolymers) are also well-resolved, it becomes possible to detect

the spectra of dilute, low-gyromagnetic ratio nuclei such as 13C and '5N indirectly

through their influence on the 'H spins, resulting in even further improvements in signal

to noise. Due to this degree of sensitivity, experiments involving three or four correlated

dimensions are now routine. The latter fact in combination with techniques for uniform

isotopic enrichment of samples has proven essential for the application of solution state

NMR to the study of biological macromolecules.

Isotropic molecular reorientation is absent in the solid state, and the full anisotropy of

the NMR Hamiltonian is manifest. Site-specific resolution of resonances in a solid state

NMR spectrum is possible only in samples that are oriented with respect to an external

director or in polycrystalline powders during magic angle spinning (MAS). In the first

case, uniaxial orientation of the sample with respect to the static magnetic field has the

effect of collapsing spatially anisotropic elements of the nuclear spin Hamiltonian to

single, orientationally-dependent values [19]. Angular orientational constraints are then

recovered through dipolar and chemical shift spectra which are typically recorded in a

correlation experiment [20][21][22]. Because of this line-narrowing effect, spectra of

oriented samples also exhibit far better sensitivity than those of the unoriented powder.

A more general route to high resolution NMR in the solid state is magic angle

spinning, a technique in which the sample is tilted with respect to the static magnetic field

and rotated rapidly about this tilted axis [23]. For the appropriate choice of tilt angle and

in the limit of fast spinning, several anisotropic terms in the Hamiltonian such as the

chemical shift and the dipolar coupling collapse to their trace, resulting in isotropic

spectra which resemble those obtained in the solution state. However, this averaging is



not complete; for low gyromagnetic ratio nuclei, resonance lines in even microcrystalline

samples exhibit inhomogeneous broadening, and, for abundant high-y nuclei (such as 'H),

the homogeneous dipolar couplings continue to broaden the spectra. As a result, indirect

detection experiments are not currently possible in the solid state, and signal to noise is

often three orders of magnitude lower than in a comparable solution state experiment.

This limits, in particular, the application of high-dimensionality pulse sequences, which

are required to obtain assignments or multiple conformational constraints in multiply

labeled samples [24][25][26][27] to systems which exhibit good sensitivity.

One technique which promises to alleviate this limitation is dynamic nuclear

polarization (DNP), an experiment in which the greater polarization of the electrons is

transferred to the nuclei prior to acquisition of an NMR spectrum. Previously applied to

the problem of producing polarized targets for nuclear scattering experiments, DNP has

recently been applied to solid-state NMR experiments both in static and spinning

samples. Through a variety of polarization transfer mechanisms which depend on fixed,

mobile, or transient paramagnetic centers and strong microwave irradiation, signal

enhancements of up to three orders of magnitude have been reported. Many of these

polarization transfer mechanisms depend on non-secular interactions which are strongly

truncated at the high magnetic fields that are commonplace in biomolecular NMR, with

the result that applications of DNP at high fields have been limited. Nevertheless, a

variety of recent developments now permit the routine application of DNP as an adjunct

to MAS in NMR experiments, even at elevated magnetic fields. The combined

MAS/DNP experiment rests on two technologies: stable magic angle spinning at

cryogenic temperatures and high microwave power output at millimeter or submillimeter



wavelengths. The latter requirement, in particular, has necessitated the development of

cyclotron resonance masers (gyrotrons), which are capable of producing 10-50 W of

microwave power at frequencies up to 460 GHz. Here, we briefly review the

mechanisms responsible for electron-nuclear polarization transfer and discuss the

instrumentation required to make use of this effect for sensitivity enhancement in solid

state NMR.

2.2 Electron-Nuclear Polarization Transfer in Solids

Like most high-field EPR experiments, DNP is currently performed with radiation fields

that are weak compared to the internal interaction Hamiltonian. The inhomogeneous

interaction width can therefore be much larger than the available excitation bandwidth,

and most experiments must be conducted with continuous wave (CW) radiation. Further,

because the energies of EPR and NMR transitions differ by nearly three orders of

magnitude, non-secular elements of the Hamiltonian which may be safely neglected for

the electrons still contribute to the dynamics on a nuclear energy scale.

These factors complicate the treatment of electron-nuclear polarization transfer in

solids; the problem has been approached from a variety of mathematical viewpoints, none

of which provide an entirely satisfactory description of the phenomena involved. For

historical reasons, DNP experiments based on continuous microwave irradiation (solid

effect and thermal mixing) are generally discussed within the framework of spin

temperature theory, which is a thermodynamic analog of perturbation theory

[28][29][30][31][32][33][34][35][36][37]. Here, each constant of the motion in an

unperturbed Hamiltonian is identified with a unique thermodynamic reservoir having a

well-defined spin temperature. Small interactions which might otherwise be regarded as



perturbations then mediate temperature equilibration among these reservoirs. In this

picture, dynamic nuclear polarization is a kind of Carnot cycle; the nuclear Zeeman

reservoir is cooled by a direct or indirect interaction that transfers heat to the electron

Zeeman reservoir. The enhancement is thus related to the heat capacity of the reservoirs,

their initial temperatures, and the reversibility or adiabaticity of the polarization transfer

process [38]. These treatments are in phenomenological agreement with experiment but

afford little insight into the basis of the effect in terms of molecular parameters.

Conversely, more recent DNP experiments involving transient irradiation of the electron-

nuclear spin system resemble Hartmann-Hahn experiments in IS nuclear spin pairs and

are therefore best understood entirely in the quantum mechanical picture

[39][40][41][42]. These experiments require pulsed frequency and phase modulated

microwave radiation; due to a lack of suitable sources at sub-terahertz frequencies, they

have not been substantially applied at high magnetic fields.

A summary of the DNP experiments which are most relevant for existing and future

applications in biomolecular solid state NMR appears in Figure 2-1.
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Figure 2-1. Pulse sequences for dynamic nuclear polarization (DNP) described in the text.
Matching conditions are indicated for the microwave field, ols, RF field, oli, nuclear frequency,
"o, and electron resonance offset, ns.

2.2.1 Spin Thermodynamics in Paramagnetic Systems

Spin temperature theory is an approximate description of the quantum dynamics of an

ensemble of interacting spins. It is valid only in the thermodynamic limit and is not

concerned with the coherent properties of one or a few spins, but rather the average

expectation values of observables over the entire ensemble. In this sense, the idea



follows directly from the concept of a density matrix.' For a large spin system defined by

the Hamiltonian, H, and density matrix, a, the entropy is

S = -kTr(aln ). (2.1)

The distribution of states at equilibrium is one in which the entropy (2.1) is maximized.

This maximization is subject to the constraints that both the total number of particles and

total energy must be conserved, which leads to the variational formula,

6S = -kln - k - A -gH = 0, (2.2)

in which X and g are Lagrange multipliers which enforce these constraints. The solution

to this optimization problem is the canonical (Boltzmann) ensemble [43],

S= e. J (2.3)
Tr exp -YH J}

If we identify g = 1/T as the inverse temperature, then (2.3) can be approximated to first

order, as

H

kT (2.4)
= 1- uH.

This is the so-called "high temperature limit."2 Suppose now that we have a S = V2

system whose Zeeman level populations, n+ and n., are defined by the polarization,

P = n -n .

If there is a Boltzmann equilibrium, then

1 A more rigorous discussion of this connection is presented in Ch. 1 of [36].
2 A normalization constant is required in (2.4), but it can be carried implicitly in the calculation of the trace.

(2.5)



n E -E_n--=ex -E j , (2.6)
nk

which gives

P = tanh yhBo

SkTs ) (2.7)
yhBo

kTs

in the high temperature limit. In other words, the probability of finding the ith state is

proportional to e- E, , where T, is the spin temperature of the system. The idea of a spin

thermodynamic reservoir having a temperature which is distinct from the lattice can only

be valid if the processes establishing equilibrium within it are faster than those destroying

it. Since many NMR experiments can produce non-equilibrium states which slowly

reach equilibrium with the lattice, this criteria is often easily met. In fact, since spin

systems can have complex interaction Hamiltonians, particularly where multiple spin

species are involved, several independent Boltzmann equilibria might be satisfied on a

limited time scale. More formally, suppose we have a Hamiltonian defined by several

secular, mutually commuting terms which are constants of the motion on the time scale

of spin-lattice relaxation. In that case, we would solve (2.2) subject to a Lagrange

multiplier, ki, for each quasi-constant term. For example, a system consisting of an

electron (S) and nuclear (I) spin together with the secular dipolar interaction between

them HD) is defined by

H = OsS + wI•l+ HD (2.8)

a _ 1- aSz +w oIz+ yHD.



In this case, there are three inverse spin temperatures, a, P3, and y, corresponding

respectively to the temperatures of the electron Zeeman, nuclear Zeeman, and electron

spin-spin thermodynamic reservoirs. Analogous spin temperatures can be derived in the

interaction representation of the Hamiltonian, in which case they are called spin

temperatures in the rotating frame [44]. The tendency for each to reach an equilibrium

temperature with the lattice is described by

a= - (a- ao) (2.9)

Tn--(P -a 0 )

11 7(Y1'o).
TID

Spin-lattice relaxation is not the only mechanism which can result in change of spin

temperature. In particular, we have neglected terms in (2.8) such as the non-secular

dipolar interaction, which might produce matrix elements that couple these

thermodynamic reservoirs (e.g. through the action of so-called "flip-flop" terms). To

illustrate how these effects can lead to enhanced nuclear polarization, we will consider

two examples: an electron-nuclear spin system consisting of electron and nuclear

Zeeman thermodynamic reservoirs and an electron-electron-nuclear three spin system in

which an additional spin temperature is introduced to account for interactions between

the electrons. In both cases, it is straightforward to show that the electron and nuclear

Zeeman reservoirs are coupled in such a way that the temperature (and hence

polarization) of the nuclear spin system can be influenced by irradiation at or near the

electron Larmor frequency. A diagram of these interaction reservoirs and the matrix



elements or relaxation mechanisms responsible for establishing equilibrium between

them appears in Figure 2-2. Though it is in principle possible to estimate the DNP

enhancement, the spin thermodynamic model incorporates many adjustable parameters

which are difficult or impossible to measure at elevated magnetic fields, and therefore

such estimates are of limited utility.

Figure 2-2. Spin thermodynamic description of coupled electron-nuclear multi-spin system.
Matrix elements and/or relaxation processes responsible for spin temperature equilibration are
labeled. Adapted from [33].

2.2.2 Solid Effect

In the simplest case, the non-secular hyperfine coupling between an electron and a

nucleus can give rise to so-called "forbidden transitions" which involve coupled electron-

nuclear spin flips. The relevant Hamiltonian for the electron-nuclear system is

H = sS + C I + CS I + C*SzI ,  (2.10)

where



3 y2 2
C= 3 sinOcosOe-', (2.11)

2 r3

and (r,6,0) defines the relative orientation of the electron and nucleus. In the absence of

the hyperfine coupling, the basis states of this system are product states such as

I+ +)= +) +), and similarly for [+-), - +), and -- ). To first order, the hyperfine

coupling results in an eigenstate mixing defined by,

1)= + +) + q+ - (2.12)

2) = -+ -) + q +),

14) = - + q - ,)

where the mixing coefficient is given by

q - (2.13)

This implies that there will be two new transitions, 12) - 13) and I1) +4 4), which are

forbidden in the absence of the perturbation. The first transition corresponds to an

electron-nuclear flip-flop and occurs at (COs - oi), while the second involves a two-spin

flip and occurs at a frequency (aOs + w9). If one of these transitions can be selectively

excited, the nuclear system will be polarized above thermal equilibrium. If the transition

rate for the allowed transitions I1) <- 13) and 12) <- 4) is Wo, then that for the forbidden

transitions will be qq* Wo, which is much smaller than Wo at high magnetic fields.



In the thermodynamic picture, these transitions couple the electron and nuclear

thermodynamic reservoirs. Goldman has derived rate equations for the spin temperature

of the electron Zeeman reservoir (in the rotating frame), nuclear Zeeman reservoir, and

spin-spin interaction reservoir [36] which describe this process. For radiation near o =

(ws - wo) exciting transition 12) <- 3) with probability W+, or for radiation near o = (os

+ Co) exciting 1) <- 14) with probability W_, these are:

a= W+ [TaA + P(1 - (F )]- (a - a) (2.14)
= - + -

O TIn

F 1
=-W+ -±FaA + o, -y(+)]- I(y --O-0

-D TID

where

F+ =o - os + (t (2.15)

F_ = )1 + ws - ,

and A =s - co), Cs = Ns / (Ns + NI), CI = NI / (Ns + Ni), and Ns and NI are the number of

electron and nuclear spins, respectively. 3 The parameter D is a local frequency given by

D = Tr(HD) / Tr(S/) . If w = (os ± owI), then F± = 0, and the terms in (2.14) involving the

temperature of the spin-spin interaction reservoir are removed from the dynamics. At

steady-state conditions (where d = P = 0), and in the limit CsTW, >> 1, the polarization

3 This is valid for the I= /2, S= /2 case.



becomes P1 = T Ps. Hence, the nuclear polarization can be as large as the electron

polarization, but potentially of the opposite sign.

The forbidden transition probabilities responsible for the solid effect have also been

estimated by Weis and co-workers [42] based on a derivation by Jeschke and Schweiger

[45] in the context of coherence transfer in electron-nuclear spin systems. For the

electron rotating frame Hamiltonian including secular, A, and non-secular, B, parts of the

hyperfine coupling,

H = QS, + wII + ASIZ + BSZI, (2.16)

the eigenvalues are

E1/2 +- I.(I + -1-  cos(Ta) T - Bsin(r7,) (2.17)

0 1 -1 ) A1-(1· B sn(17 )
E3/4 = 2-• +2 cos 1) -osin(4),

where

-B
S= tan- +-B (2.18).A + 2a i

-B
4 = tan- jA -2oi

To explain the effects of microwave radiation, the Hamiltonian (2.16) including

microwave excitation, Hmw = Wos Sx, is diagonalized by the unitary transformation

U = exp[-i (aSaI + I Sf Y )],4 to give

H = QsSZ + mIZ + ASIZ + 01, cos()Sx + 2co, sin(z7)SYIY, (2.19)



where 1l = (rld- jrl)/ 2 .

The last two terms of (2.19) arise from the microwave excitation and are responsible

for allowed and forbidden transitions, respectively. To make this more explicit, they can

be re-written as

1 ir+I_ S ] 1 sin(r/)[S+i+ + S+I+
Hmw = 0 1 cos(rl)Sx+- 2  sin(r/) + S - sin( + SI]. (2.20)

2 2

The probability of an allowed transition is proportional to cos2(ir) and that of either

forbidden transition to sin 2(r1); the probability of exciting a forbidden transition therefore

also declines approximately as B02, which is in quantitative agreement with experimental

results [42] [46].

In order to achieve the theoretical solid effect enhancement, zero quantum and double

quantum transitions at (Os + co) and (cs - coi) must be mutually resolved, which implies

that the EPR line width must be much smaller than oi. At high magnetic fields, EPR

lines are inhomogeneously broadened due to the g-anisotropy, with the result that this

condition does not hold for most radicals. Since the A(M) = ± 2 and A(M) = + 1

transitions result in a polarization of equal magnitude but opposite sign, they will tend to

cancel and limit the overall enhancement ("unresolved solid effect"). Experiments such

as the integrated solid effect (ISE) [41], in which polarization transfer is accomplished by

fast passage with an adiabatic magnetic field sweep, recover some of this lost

enhancement at moderate magnetic fields. Even in radical systems which are not

inhomogeneously broadened at elevated magnetic fields, the polarization transfer process

will be slow due to its inverse dependence on B2. This implies that it will compete with

4 The polarization operators are Sa,b = I (1 - S ).



nuclear spin-lattice relaxation, and so the experiment is ideally conducted at cryogenic

temperatures (where spin lattice relaxation is slow even in paramagnetically doped

compounds). For these reasons, the solid effect is not the preferred mechanism of

dynamic nuclear polarization in high fields.

2.2.3 Thermal Mixing

Thermal mixing is another DNP process which becomes operative exactly in the case

when the EPR linewidth approaches or exceeds the nuclear Larmor frequency. However,

the spin thermodynamic formalism of thermal mixing DNP requires either that the line

broadening be entirely homogeneous in character or that fast electron-electron cross

relaxation (spectral diffusion) within an inhomogeneously broadened line renders it

effectively homogeneous on the time scale of spin-lattice relaxation [28][30][47]. In

either case, the nuclear and electron Zeeman reservoirs are indirectly coupled by their

mutual interaction with a reservoir corresponding to the secular part of the dipolar

interaction Hamiltonian. Cooling of this latter reservoir can then result in increased

nuclear polarization.

The concept of thermal mixing is closely related to the classical treatment of nuclear

relaxation in paramagnetically doped solids. In such a solid, nuclear relaxation is greatly

enhanced due to the coupling of the nuclei to paramagnetic centers which relax much

more quickly. The element which almost entirely explains this relaxation process is the

S I± term of the hyperfine interaction [34]. This is because transitions brought about by

this coupling involve only a quantum of energy at the nuclear Larmor frequency, while

other terms in the bilinear coupling S -I also involve energies on the scale of the electron

Zeeman interaction. Suppose that the operator Sz fluctuates due to electron spin-lattice



relaxation with a correlation time of Tie. Using semi-classical relaxation theory,

Abragam has shown that [34]

1 02T
= 4(q2)  ne, (2.21)T, 1+ o2T '

4(In n le

where q has been previously defined in (2.13).

If the concentration of electrons is very high, fluctuations in S_ can also occur due to

electron-electron "flip-flops", which occur at a rate T2e. If this is the dominant relaxation

process, then Goldman [37] argues that it is correct to replace Tie in (2.21) with T2e,

giving

S=4(q+2 2 T 2  (2.22)
TIn n 2e

Since q2 oc 1 / Bo, this relaxation rate is dependent on the magnetic field. It is not,

however, a mechanism for spin-lattice relaxation, as it serves only to couple the nuclear

spins to the electron dipolar reservoir. Equation (2.22) does not consider the fact that

two electrons involved in a T2-type "flip-flop" process which then gives rise to a nuclear

transition must differ in energy by the nuclear Larmor frequency in order for the total

energy to be conserved. Wind [32] and Wenckebach [29] have suggested the following

better estimate for this relaxation rate which explicitly accounts for energy conservation:

1 2 ~~nT2e g(W)g(w-- q - "n dA (2.23)
TM 1+ T22e g(O)

Here, g(o) is an EPR lineshape function.

In the context of the spin thermodynamic picture, this process couples the reservoir

corresponding to the secular part of the dipolar interaction to that corresponding to the



Zeeman interaction of the nuclei. The rate of this heat transfer process is given by 1/TTM

in (2.23). The existence of this equilibrium implies that, if the dipolar interaction

reservoir can be cooled, the nuclear reservoir will then also be cooled (and hence its

polarization increased). Provotorov [48] has already defined the experimental conditions

which can bring about a cooling of this reservoir. Under saturating microwave

irradiation, there is an equilibrium between the electron Zeeman reservoir (in the rotating

frame) and the dipolar reservoir, defined by the Provotorov equations,

d = -W(a - y) (2.24)

?=-W A a),
L

where oL is the local resonance frequency, W = 7co g(A) , g(A) is an electron lineshape

function, and A = (ce - o). Combining (2.24) and (2.23) results in a system of

differential equations which governs the evolution of spin temperature in the coupled

electron-electron-nuclear system. Neglecting spin-lattice relaxation, these are:

a = -W(a - y) (2.25)

=-W -7(P- a) - T n-nT0) w2C 2 T
COL L T

The physical interpretation of (2.25) is that off-resonance irradiation of the system can

result in a cooling of the spin-spin interaction reservoir. This reservoir is then coupled to

the nuclear Zeeman reservoir by an energy conserving three-spin process in which two



electrons differing in energy by hc~, "flip-flop" and bring about a nuclear transition. The

net result is dynamic nuclear polarization.

The dependence of the DNP enhancement on the electron resonance offset is

diagnostic of the thermal mixing DNP mechanism. In particular, since irradiation is

required only at the frequency of allowed transitions, the position of maximum DNP

enhancement should occur within the EPR lineshape; in the solid effect, by contrast,

maximum enhancement should be obtained for resonant radiation of either the zero

quantum or double quantum forbidden transitions, which occur at ((Os + 0j). Figure 2-3 is

an example of the field dependence of the thermal mixing DNP enhancement in a

nitroxide-doped system at 250 GHz.
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Figure 2-3. Magnetic field dependence of the thermal mixing DNP enhancement at 250 GHz in a
static sample of [U-' 3C]-glycine at 90 K, doped with 60 mM TEMPO. Adapted from [49].



2.2.4 Thermal Mixing at High Magnetic Fields

At high magnetic fields, the EPR lineshape in most organic radicals is dominated by the

g-anisotropy; as such, the line broadening is inhomogeneous in nature, and Provotorov's

treatment does not directly apply. Strong microwave irradiation in such systems will tend

to produce non-uniform excitation of a single spin packet which is resonant with the

microwave field ("hole burning") rather than uniform excitation. Nevertheless, signal

enhancements of up to two orders of magnitude are still possible through a thermal

mixing-like DNP mechanism at frequencies of up to 250 GHz [49]. As mentioned

previously, Borghini [30], Atsarkin [47], and Abragam and Goldman [35] have suggested

that fast electron-electron spectral diffusion can render the EPR line effectively

homogeneous on the time scale of the relaxation processes which are responsible for

DNP. However, it is unclear if these arguments apply at very high magnetic fields or in

the moderate temperature regime, where spin-lattice relaxation is fast.

In order to investigate the role of spectral diffusion in DNP using inhomogeneously

broadened radicals as the polarization source, Farrar and co-workers performed an

electron-electron double resonance (ELDOR) experiment using a high-power 140 GHz

gyrotron oscillator as a pump source and a pulsed, 139.50 GHz Gunn diode to generate

the probe [46]. The results of these experiments (cf Fig. 2-4) illustrate that cross-

relaxation is significant at the radical concentrations which are required for high-field

DNP experiments. By contrast, no cross relaxation is observed at radical concentrations

which do not yield a DNP enhancement.
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Figure 2-4. Results of 140 GHz ELDOR experiments for 1 mM (blue line) and 40 mM (red line)
solutions of 4-amino-TEMPO in an aqueous medium, superimposed upon echo-detected EPR
spectrum of the nitroxide radical. Note that electron-electron cross relaxation processes are
significant at high radical concentrations. Adapted from [46].

These results suggest a phenomenological kinetic model for thermal mixing DNP at high

magnetic fields, which is illustrated in Figure 2-5. Its principal feature is that the

thermodynamic system corresponding to the electron Zeeman interaction is divided into a

series of subsystems, each of which has a distinct spin temperature. These

thermodynamic subsystems are in equilibrium through a distinct spectral diffusion or

cross-relaxation process. Since there is no basis a priori to set the number of subsystems,

this is an additional adjustable parameter of the model. As well, the "bin-to-bin"

relaxation rate must be determined in a separate ELDOR experiment. In cases where

these parameters of the model can be measured or estimated with good certainty, the

DNP enhancement at high magnetic fields can be effectively simulated [50]. Since there

is currently no theory to adequately account for the many parameters on which the model

depends, it is less useful for the design of experiments or novel polarizing agents.



Nevertheless, the model provides insight into the dynamics of thermal mixing DNP, and

it justifies the experimental conclusion that manipulation of radical concentration and

sample temperature can result in large enhancements at high magnetic fields.

Electron-Electron
Cross-Relaxation

Figure 2-5. Phenomenological model of thermal mixing DNP at high magnetic fields. The
dipolar interaction reservoir has been subdivided into a series of reservoirs, each having a unique
spin temperature; fast electron cross-relaxation renders the dipolar system homogeneous on the
time-scale of relaxation processes which give rise to dynamic nuclear polarization. Adapted from
[46].

2.2.5 Cross Effect DNP[130]

Of the four commonly discussed DNP mechanisms-the Overhauser effect (OE), the solid

effect (SE), the cross effect (CE), and thermal mixing (TM) [131, 132] - only the cross-

effect and thermal mixing have proven useful for applications in high magnetic fields.

The CE and TM are differentiated by whether or not the width of the EPR spectrum is

governed by inhomogeneous broadening from the g-anisotropy and electronic cross



relaxation or by homogeneous broadening from the electron-electron dipolar coupling,

respectively. As is clear from the preceding discussion, however, the basis for CE DNP

effects in not adequately treated by approaches based on spin thermodynamics. Quantum

mechanical approaches to the three-spin problem based on perturbation theory have been

developed by Hu and co-workers [133] and will not be discussed. Our intention here is

to summarize recent experimental evidence for aspects of the cross-effect DNP

mechanism in mixtures of TEMPO and TRITYL radicals [130].

Both the CE and TM mechanisms rely on a three-spin electron-electron-nucleus

process. Briefly, the microwave radiation flips an electron at cole in the EPR spectrum

that is coupled to a second electron at 02e. If the frequency separation satisfies the

condition 102e - ciel = -on then a nuclear spin flip occurs concurrently, and the

polarization of the nuclear spin reservoir is enhanced. Not surprisingly, the primary

parameters that facilitate this three-spin process are the magnitude of the electron-

electron dipolar coupling and the population of the electrons in the sample that satisfy the

constraint |o2e - Oiel = %o. To satisfy the first requirement, Hu and co-workers recently

introduced biradical polarizing agents [134, 135] in which they tethered two TEMPO

molecules with a chain of carbon atoms increasing the electron-electron dipolar coupling

from -1 MHz to 25 MHz [134]. In order to satisfy the frequency matching condition,

they rely on the fraction of molecules in the sample that have correct relative orientation

of the two TEMPO moieties that fortuitously leads to the correct g-tensor orientations.

These biradicals exhibit improved DNP efficiency, the enhancement factors are a factor

of 3-4 larger than observed with TEMPO (165 as opposed to 45), and they yield this



enhancement at an electron concentration (-10 mM) that is a factor of four lower than

commonly used for TEMPO (40 mM).

There is another approach to satisfying the frequency matching condition

mentioned above. It follows from the discussion above that the ideal polarizing agent for

CE DNP experiments consists of two radicals with isotropic g-values separated by IWel -

Oe2 1 = )n. At the moment we are not aware of two radicals that rigorously satisfy this

condition, but using a narrow line radical such as trityl or BDPA together with TEMPO is

a reasonable approximation. In the case discussed here, the pseudo-isotropic line from

trityl (Figure 2-6) is separated by 225 MHz (-80 Gauss) from the gyy component of the

TEMPO powder pattern that contains the maximal spectral intensity. This closely

matches the 1H Larmor frequency of 211 MHz and therefore the mixture serves as an

excellent polarizing agent. Note that this separation will scale with on and thus will also

function at higher magnetic fields. Thus, this is a new avenue for designing better

polarizing agents for high-field DNP.

(a) (b)

NaC Na H

HO,

COONa
Figure 2-6. Molecular structures of (a) the trityl radical (molecular weight = 1080), which has
principle g-values of gx = 2.0034, gyy = 2.0031, and g,, = 2.0027 [136], and (b) the 4-hydroxy-
TEMPO radical (molecular weight = 172), which has principal g-values of gxx = 2.0090, gyy, =
2.0061, and g, = 2.0021, and principal hyperfine A-values (' N) of Axx = 6.63 G, Ayy = 6.75 G,
and A,= 36.63 G [137].



The upper traces of Figure 2-7 show the echo-detected EPR spectra (normalized)

of 1 mM trityl, 1 mM TEMPO and a mixture of 0.5 mM trityl and 0.5 mM TEMPO in

frozen 2 H6-DMSO/2H20 60:40 w/w solutions. The EPR spectra corresponding to the

frequency of the gyrotron (139.66 GHz) was obtained from shifting the recorded spectra

(at 139.50 GHz) along the field axis by 57 G (160 MHz). The EPR spectrum of trityl had

a peak at 49815 G and a line width (8) of 15 G (42 MHz), reflecting the small axial

asymmetry of the g-anisotropy at the radical center. Note the fact that the spectrum is not

axially symmetric indicates that there is less than threefold symmetry at the central

carbon. In contrast, TEMPO yielded a broad EPR line shape resulting from both g-

anisotropy and anisotropic hyperfine interaction with the 14N (I = 1) nucleus. The EPR

spectrum, corresponding to 139.66 GHz irradiation, has a maximum at 49735 G,

spanning 220 G (or 616 MHz) and featured three hyperfine steps on the high-field edge.

The lower panels of Figure 2-7 show the field-dependent 'H enhancement profiles

with 40 mM trityl radical, 40 mM TEMPO radical, and a 40 mM mixture of 50:50

trityl/TEMPO, respectively. Trityl, with 8 (27 MHz) < con (211 MHz for 'H), leads to a

SE polarization mechanism and well-resolved maxima and minima in the '3C detected 'H

enhancements at 49891 and 49740 G, respectively. These field positions were ±75 G (or

±212 MHz, the 'H Larmor frequency) from the EPR peak. The maximum 'H

enhancement from trityl was -15, which is relatively small and consistent with the cn-2

dependence of the SE enhancement. In contrast TEMPO has 8 > on and this leads to the

TM mechanism dominating the polarization process with maximum positive and negative

'H enhancements at 49798 and 49683 G, or ±161 MHz rather than te ± cn. As can be



seen from the figure the maximum 'H enhancement from TEMPO was -55, almost

fourfold higher than that with trityl.

As expected, the 'H enhancement profile changed drastically when half of the 40

mM TEMPO radicals were replaced by trityl. This sample yielded an even larger

enhancement of -162, which is threefold higher than with pure TEMPO. The positive

enhancement peak was located at 49815 G, corresponding to the EPR peak of trityl. A

smaller negative enhancement peak was found at 49740 G, corresponding to the EPR

peak of TEMPO. The displacement of 76 G between the positive and negative

enhancement peaks matched the 'H Larmor frequency and is consistent with the CE

mechanism. The field-dependent enhancement profiles for the SE and TM were

simulated based on published theory [131, 138].
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Figure 2-7. The pulse-echo-detected EPR spectra (upper traces) and proton DNP enhancement
profiles (lower panels) at 139.66 GHz measured from (a) trityl (b) TEMPO and (c) TEMPO and
trityl mixture (50:50). The EPR spectra represented a total radical concentration of 1 mM in
frozen 2 H6-DMSO/ 2H20 60:40 w/w solutions at 20 K, whereas the DNP profiles were obtained
from a total radical concentration of 40 mM in frozen 2H6-DMSO/2H20/H20 60:34:6 w/w/w
solutions at 90 K. The enhancement profiles are characteristic of the SE, TM, and CE
mechanisms with paramagnetic species of trityl, TEMPO, and the mixture, respectively. The red
line is a simulation of the experimental data.

Figure 2-8 illustrates the growth of the 13C detected enhanced 1H polarization

during microwave irradiation at the optimal magnetic field (49815 G). The NMR signal



intensity grows exponentially with a time constant, tDNP " 5 s and a steady-state 1H signal

enhancement, e = 162 ± 20. The random error arises from the low sensitivity of

measurements conducted without DNP, which are required to calculate the DNP

enhancement.
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Figure 2-8. DNP-CPMAS 13C-NMR signals of 13C-urea with 40 mM 50:50 TEMPO/trityl
mixtures with increasing length of microwave irradiation (139.66 GHz, ~1 W) at 49815 G. The
asterisks indicate the spinning sidebands and the dagger marks the solvent peak. The growth of
nuclear polarization is characterized by a time constant of -5 s and a steady state 'H enhancement
of 162 ± 20.

Figure 2-9 illustrates the influence of the total electron concentration ( [TEMPO]

+ [trityl] ) on the DNP enhancement with 50:50 TEMPO/trityl mixtures at the magnetic

field corresponding to the maximum enhancement. Not unexpectedly, the size of e

increases with the radical concentration, while the value of tDNP decreases. Beyond -40

mM of radicals, the resulting paramagnetic broadening begins to eliminate a substantial

number of the nuclei from observation, as evidenced by the attenuation of unenhanced

NMR signals.

t

L-tIL



160

120

I 80

40

16

12.

8 z

4

n
10 20 30 40

[e] (rrM)
Figure 2-9. Radical concentration dependence of the measured proton enhancement ('H E) and
buildup time constant ('rDNP) from the 50:50 TEMPO/trityl mixture at 49815 G and 90 K.

The polarization mechanisms that dominate DNP processes in insulating solids-

the SE, TM, or the CE-depends on the EPR line width of the paramagnetic species

relative to the Larmor frequency of the nuclei being polarized. This behavior is well

established in many previous experiments [131, 132, 139] and is illustrated again in

Figure 2-7. In general, the SE dominates when 8 < %a (e.g., with trityl) and in samples

where the EPR spectral width 8 > %a (TEMPO, biradicals and TEMPO/trityl mixtures)

the TM and CE provide the polarization mechanism. The TM and CE mechanisms are

further distinguished by whether the EPR spectrum is broadened by homogeneous or

inhomogeneous interactions, respectively. The polarizing mechanism with TEMPO is

thought to be TM or the CE depending on the radical concentration used. Although

TEMPO presents an inhomogeneously broadened EPR spectrum at high fields, the

electron dipolar bath for TM can be established via electron-electron cross-relaxation at

high radical concentrations used in DNP experiments 30. In contrast, low TEMPO



concentrations should limit the polarizing mechanism to the CE. For both the CE and

TM, the required EPR frequency separation IO•2e- co1l = on is satisfied when the g-tensor

orientations of two dipolar coupled molecules in the sample randomly have the correct

mutual orientations.

Our [139-141] and other [131] experiments have demonstrated that in high

magnetic fields (>5T) the TM and CE mechanisms are more efficient than the SE and

that the two class of mechanisms scale approximately as oo-' and o00-2, respectively. They

also depend on the available microwave power and the electronic and nuclear relaxation

times; consequently, high field DNP experiments employ high microwave powers

available from gyrotron sources and are conducted at cryogenic temperatures, where the

relaxation times are longer.. In principle, EPR frequency separations can be manipulated

by controlling the orientations and principal values of the g-tensors of the dipolar coupled

electrons. While the control of orientations is straightforward in single crystal systems, it

is impossible to control orientation in powder samples where the relative orientation of g-

tensors is a function of crystallite orientation. However, using mixtures of two radicals

with maxima in their EPR spectra that correspond to the correct frequency separation is

another approach to satisfying the CE matching condition. Thus, mixtures of TEMPO and

trityl yield large improvements in the DNP e since the desired g-value difference is

achieved by the fact that one radical species with a small g-anisotropy and therefore a

sharp EPR line is separated from the gyy maxima in the TEMPO powder spectrum by the

proper frequency.

The increase in e with increasing concentration of TEMPO/trityl mixtures shown

in Figure 2-9 illustrates the other requirement for an efficient three-spin process; in



particular, the average electron-electron dipole interaction needs to be strong for efficient

DNP and it is reduced by the larger inter-radical distance that accompanies dilution. In

the contrasting regime - at a higher radical concentration - the electron-nuclear

paramagnetic broadening will not only reduce the resolution of NMR spectra, but will

also diminish the number of observable nuclear spins, and therefore decrease the overall

signal intensity. The electron-electron interactions at a low radical concentration could be

optimized by chemically linking TEMPO and trityl radicals. The use of molecular linkers

has proven successful for increasing the CE enhancement with two tethered TEMPO

moieties from -50 to -165-290 depending on the experimental circumstances [134, 135].

Therefore, additional improvement of the DNP enhancement beyond the current

maximum value of 162 observed with trityl-TEMPO mixtures is expected when these

two species are successfully coupled.

The ideal polarizing agent for the CE consists of two dipolar-coupled electrons

with narrow EPR spectra separated by on. The CE from a broad inhomogeneous EPR

spectrum may be attenuated by cancellation between electron pairs with EPR frequency

separations of wo and -on, similar to the attenuation that occurs in the differential solid

effect [142]. This differential effect limits the average DNP enhancement produced by

participating electrons. In addition, because the microwave irradiation occurs at a fixed

frequency and has a finite bandwidth, only a portion of the electrons under the broad EPR

line shape participate in the CE process; the remainder contribute to paramagnetic nuclear

relaxation and broadening. Combining TEMPO and trityl as the polarizing agent partially

resolves the problems with differential CE enhancements and with non-participating

radicals. Despite the broad EPR spectrum of TEMPO, the trityl resonance in the up field



part of the EPR spectrum of TEMPO caused the electron pairs to yield positive CE

enhancements. Moreover, the narrow EPR line width of trityl increases the effectiveness

of the microwave excitation at the trityl EPR transitions.

The choice of radical pairs that provide the desired EPR frequency separation for

the CE is not limited to TEMPO and trityl, especially when a nuclear Larmor frequency

different from 'H is involved. For example, a hyperfine splitting ('3C, 15N, 14N, etc) could

result in two narrow lines and the external magnetic field could be adjusted to match a

nuclear Larmor frequency to this separation. However, hyperfine splittings are field

independent so polarizing agents designed in this manner would be specific to a

particular field and nucleus. In contrast, matching the nuclear Larmor frequency through

g-value differences is independent of the external magnetic field and presents the

possibility of an efficient, universal polarizing agent.

2.2.6 Spin Diffusion in Paramagnetically Doped Solids

Regardless of the DNP mechanism in question, our tacit assumption has been that the

enhanced nuclear polarization is uniformly distributed throughout the sample. Were this

not the case, the technique would be of limited utility for biomolecular NMR

spectroscopy, as the polarizing agent is not expected to reach the hydrophobic core of a

protein in the same concentration as exists in the bulk solvent. The spin diffusion

mechanism is principally responsible for this transport of enhanced magnetization.

In organic solids, the protons form a homogeneously coupled network due to their

high abundance and strong dipolar couplings, which are not significantly averaged at

currently accessible MAS rates. In the context of a spin thermodynamic picture, this

implies that the protons have a homogeneous polarization at long time scales. Local



perturbations in the proton polarization therefore propagate to the bulk with a

characteristic time constant, a situation which is reminiscent of fluid-dynamical diffusion.

Experimental evidence to support these ideas arose from the study of solids doped with

fixed paramagnetic centers. As previously discussed, in these systems, the hyperfine

interaction term SJ,+ serves to couple electronic and nuclear spin-lattice relaxation;

electronic spin-lattice relaxation causes fluctuations in S,, which in turn brings about

nuclear transitions. Since the dipolar interaction depends strongly on the distance

between interacting centers, it is reasonable to assume that protons closest to the radical

will relax very quickly, and those very far away from it will hardly feel its influence.

However, this contradicts the experimental observation that even an exceedingly low

concentration of paramagnetic spins can change the relaxation properties of all nuclei in

the sample;5 further, spin-lattice relaxation for all protons in such a sample is still

characterized by monoexponential decay, albeit at a greatly accelerated rate in the

presence of the impurities than in their absence.

In order to explain this, Bloembergen [51] proposed that proton magnetization, p, in

such a solid obeys a diffusion equation,

ap = DV2p - C 1P), (2.26)
at Ir-r I•6

in which D is the diffusion constant, C is a term which arises from a correlation integral

governing transitions caused by the SzI+ term of the dipolar coupling, Ir - rj is the

distance between the nth nucleus and the paramagnetic center, and the sum is over all

nuclei.6 In the context of dynamic nuclear polarization, (2.26) implies that, even if only

5 This applies particularly to abundant, tightly coupled nuclei such as 'H.
6 The equation is, of course, valid only for length scales on the order of several lattice spacings.



the nuclei which are close to a radical center are polarized, their polarization will rapidly

diffuse to the bulk nuclei which are not coupled to the radical center.

According to this theory, there should also be a region close to the paramagnetic

center in which no spin diffusion can take place. This "diffusion barrier" exists for those

nuclei whose hyperfine coupling to an electron generates a resonance frequency shift

which is large enough to remove them from the continuum of coupled nuclei in the bulk.7

Though the idea of the diffusion barrier is reasonable even on quantum mechanical

grounds, the experimental evidence for its existence is contradictory. Goldman [52] and

other authors have obtained results which are clearly consistent with its existence, but

King and co-workers [53] were able to demonstrate by direct observation that even nuclei

which are very near to a paramagnetic center participate in spin diffusion processes with

the bulk. Further, Jeschke et al. [45][54] and Weis and co-workers [42] (vide infra)

suggest that strong hyperfine decoupling might exist in electron-nuclear spin systems

which are irradiated in the vicinity of certain matching conditions. In the context of DNP

applications, the existence of a spin diffusion barrier implies that some (abundant) proton

spins will be removed from the spin diffusion network, and that some (dilute) spins of

interest might not be observed in cross polarization experiments.

7 This diffusion barrier can only exist if electronic spin lattice relaxation is slow.
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Figure 2-10: Calculated (a,d) and experimental (b,c and e,f) 15N and 31P powder spectra offd-
bacteriophage. Spectra in (b) and (e) are DNP-enhanced, while those in (c) and (f) were recorded
without microwave irradiation; both were recorded with 'H- 13C cross polarization. A signal
enhancement of -26 was observed in both cases, indicating that enhancements in the interior and
exterior of the phage particle are identical. Parameters of the simulation and experiment are
described in [55].

In practice, DNP experiments in biological systems are conducted with stable, soluble

radicals that do not penetrate the hydrophobic core of a protein in appreciable

concentrations. Spin diffusion from polarized nuclei to the bulk protons is therefore

necessary for the success of these experiments, while the size or existence of a diffusion

barrier is less material to their success. In order to test if spin diffusion continues to be

effective in inhomogeneously broadened systems at high magnetic fields, Rosay and co-

workers [55] designed an elegant experiment in an intact particle of fd-bacteriophage.

Bacteriophage consists of a '5N-containing protein capsid which surrounds a 31P-rich

nucleic acid core. The local proton magnetization inside and outside the core can

therefore be detected indirectly through cross polarization from protons to 31P and 15N

100



respectively. 8 The result of such an experiment in a static sample offd-bacteriophage is

shown in Figure 2-10. The fact that proton enhancements detected inside and outside the

particle are identical strongly suggests that spin diffusion continues to be effective in this

system, although it is possible that the polarizing agent itself may have penetrated the

viral core. In subsequent DNP experiments conducted with magic angle spinning in the

soluble protein x-lytic protease and the membrane protein bacteriorhodopsin, resonances

which can be unambiguously assigned to the interior of the protein are polarized to the

same extent as those which are exposed to solvent.

No theory yet exists which adequately incorporates spin diffusion with DNP

experiments at high magnetic fields. Using a theory which is strictly applicable only at

low magnetic fields, Wind and co-workers have estimated the maximum enhancements

that can result from the thermal mixing and solid effect DNP mechanisms [33]. These

estimates are valid only under the assumption of a homogeneous EPR line shape

characterized by a single line width, 8, and in the limit of fast proton spin diffusion. For

the solid effect, the maximum enhancement is governed by

2

E oc b B0  (2.27)

and, for thermal mixing,

e (2.28)TM b3h 2  Bo (2.28)

where b is the radius of the spin diffusion barrier, Ne is the radical concentration, and all

other parameters have been previously defined. Since these formulae depend on

8 Nuclear cross polarization can be explained by quantum mechanical models in which only strongly coupled protons
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parameters which cannot currently be measured at high magnetic fields, their complete

validity is difficult to assess. However, the idea that solid effect enhancements scale

more poorly with increasing magnetic field than those originating from a thermal mixing

mechanism appears to be in qualitative agreement with experiment.

2.2.7 Thermal Mixing DNP with Magic Angle Spinning

The combination of thermal mixing DNP and magic angle spinning is so far the most

promising method for signal enhancement in high resolution, multidimensional

spectroscopy of biological systems. Its unique experimental requirements - both in the

area of microwave radiation sources and cryogenic MAS equipment - are discussed in

the second section of this review.

While MAS yields high-resolution spectra through averaging of anisotropic

interactions such as the dipolar interaction, it does not appear to significantly disturb

those interactions which are responsible for DNP; at the same time, paramagnetic line

broadening is greatly reduced even at moderate MAS rates, with the advantage that high

radical concentrations can be used. In glassy preparations of small molecules doped with

the nitroxide radical 4-amino-TEMPO in concentrations of 40 - 60 mM, the predominant

source of line broadening during MAS is inhomogeneous and arises from the

conformational heterogeneity of the small molecule [58][49]. Though this form of

inhomogeneous broadening cannot be eliminated for small molecules in glassy matrices,

it has not been observed for adequately cryoprotected proteins at low temperatures [59].

Thermal mixing DNP is therefore a very general approach that should be effective in a
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wide variety of systems with optimization of the polarizing agent and cryoprotection

conditions.

200 150 100 50 0 -50
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Figure 2-11: DNP-enhanced MAS spectrum of arginine doped with 40 mM 4-amino-TEMPO,
taken at 55 K. The microwave source was a 140 GHz gyrotron oscillator developed at MIT.
Adapted from [60].

At 140 GHz, using the thermal mixing DNP mechanism, Hall and co-workers have

obtained large DNP enhancements (Fig. 2-11) in small molecules during magic angle

spinning at the temperatures of liquid helium [60]. For experiments lasting longer than a

few hours, however, stable magic angle spinning cannot currently be maintained using

helium as the cooling source. Following the work of Rosay and co-workers [58][61],

thermal mixing DNP is now conducted with cooled nitrogen gas at temperatures in the

range 80 - 100 K, which results in stable experimental conditions at the expense of

smaller signal enhancements. In 1D MAS experiments conducted at -90 K using a 140

GHz gyrotron oscillator as the microwave source and the thermal mixing DNP

mechanism, Rosay and co-workers have reported signal enhancements as large as 60
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[58]. In MAS experiments of higher dimensionality, however, operating limitations of

the 140 GHz gyrotron and cryogenic equipment have limited the enhancement to

approximately 9-10 [61].

Quantitative MAS experiments which incorporate dipolar recoupling for the

measurement or correlation of anisotropic interactions require reference stability of the

DNP experiment of several percent at worst. Using a 250 GHz gyrotron-based DNP

system designed for thermal mixing DNP experiments, we have recently demonstrated

stable integration of DNP into magic angle spinning experiments where the variables of

the experiment are controlled to high tolerances. In particular, Figure 2-12 illustrates the

successful application of DNP for sensitivity enhancement in 2D correlation spectroscopy

of the amino acid proline. Here, correlations were established both by proton-proton spin

diffusion and by the dipolar recoupling sequence SPC5 [62]. The latter incorporates a

double quantum coherence-selective phase cycle and therefore imposes strict demands of

instrumental stability. In both cases, enhancements of 17-19 were obtained [49], and the

result demonstrates the general applicability of this technique. Recent improvements in

microwave delivery to the sample and in new polarizing agents have resulted in

enhancements of -40.
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Figure 2-12: Two-dimensional 13C- 13C correlation spectra of [U-13C, '5N]-proline. In (a), the
SPC5 dipolar recoupling sequence was applied during a 1.33 ms mixing period. In (b),
correlations were established by proton-driven spin diffusion for a mixing time of 10 ms. The
DNP enhancement is approximately 17. In (c) and (d), we show one-dimensional 13C MAS
spectra obtained respectively with and without DNP, using SPC5 recoupling with a phase cycle
that is selective for double-quantum coherence. Spectra in (e) and (f) are recorded with and
without DNP respectively. Adapted from [49].

2.2.8 Rotating Frame DNP Methods

The exclusive use of laboratory frame mixing sequences for DNP experiments at high

magnetic field imposes several experimental difficulties. First, since the polarization

transfer process is slow, the experiment must be conducted at low temperatures in order

to attenuate nuclear spin-lattice relaxation, which would otherwise compromise the
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polarization transfer efficiency. Second, since these polarization transfer schemes rely on

non-secular elements of the hyperfine Hamiltonian, we can expect that their efficiency

will continue to decline at high magnetic fields.

In analogy to successful approaches for polarization transfer between high and low

gyromagnetic nuclei in solids, several authors have attempted to apply analogs of

Hartmann-Hahn double resonance to the problem of electron-nuclear polarization

transfer. It is possible to conduct an ordinary DNP experiment in the presence of a strong

nuclear spin lock, in which case the experiment is called "rotating frame DNP" [63][46],

but still involves forbidden transitions. Next, Fritsch and co-workers [40] along with

Henstra [41] have introduced experiments in the context of polarization transfer from

photoexcited triplet spins in which DNP occurs by irradiation of allowed EPR transitions

only, although the polarization transfer is still mediated by matrix elements which do not

scale with the magnetic field. Finally, Weis and co-workers [42] have presented a DNP

experiment requiring simultaneous off-resonance microwave and nuclear radiation

satisfying a matching condition in an electron dressed state; these experiments can also

be interpreted in analogy to experiments for chemical-shift selective polarization transfer

between nuclei in solids [64][65][66]. They do not depend on anisotropic elements of the

hyperfine Hamiltonian and therefore should be applicable at arbitrary magnetic fields

with the appropriate instrumentation.

2.2.9 DNP in the Nuclear Rotating Frame

Both the thermal mixing DNP mechanism and the solid effect operate in the presence of a

nuclear spin lock field; in this case, the enhanced nuclear polarization evolves along the

quantization axis defined by the spin lock rather than I,, and the thermal contact is said to
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occur in the nuclear rotating frame [63]. This experiment originally arose from NMR

studies of coal, in which cross-polarization dynamics tend to distort the 13C line shapes

due to a large distribution in Tip for different sites. Wind et al. realized that this

distortion could be avoided if the natural paramagnetic impurities in coal were used as the

ultimate polarization source in a nuclear rotating frame DNP experiment [63].

The nuclear rotating frame DNP (NRF DNP) experiment can be analyzed as an analog

of the solid effect or thermal mixing. The degree of eigenstate mixing in a coupled

electron-nuclear spin system in the nuclear laboratory frame [as in (2.13)] is proportional

to a mixing coefficient,

3 Yey, h 1
q, 4 3 Y -ysin cos6e- 'e, (2.29)

n

and, in the nuclear rotating frame, to

yRh 1 (1 - 3cos 2 0). (2.30)q 4 (rot r
n

Since lo >> CO, , the transition probability for forbidden transitions in the nuclear

rotating frame will be greater than that in the laboratory frame; it should also depend far

less on the magnetic field. Further, the kinetics of polarization build-up will be governed

by the nuclear Ti, rather than the TI, and so the experiment can be recycled very quickly,

resulting in a larger signal enhancement per unit time.

In order to explore potential applications of this technique at high magnetic fields,

Farrar and co-workers [46] performed NRF DNP experiments at a magnetic field of 5 T.

Here, the polarization source was the symmetric trityl radical, and microwave power was

delivered by a Gunn diode without any kind of resonant structure, resulting in
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approximately 1 - 5 mW of power at the sample. Though an enhancement of 0.89 (i.e.

less than unity) was obtained, the time-averaged enhancement,

Son T (2.31)

Tn
Soff II

with T, = 27 ms and T," of several minutes at a temperature of 11 K, was ~197. In spite

of this apparently large enhancement, the NRF DNP experiment has so far not been

employed in high field DNP applications. This is mainly because it is impractical to

recycle the experiment at a rate governed by Ti, due to probe heating and other factors.

Nevertheless, NRF DNP might have advantages over thermal mixing at extremely high

magnetic fields.

2.2.10 Nuclear Orientation via Electron Spin Locking: Polarization
Transfer from the Photoexcited Triplet State

In the context of studies of the polarization transfer process between photoexcited triplet

states and nuclei, Fritsch et al. [40] and Henstra et al. [41] independently proposed an

experiment based on Hartmann-Hahn transfer between electrons in the rotating frame and

nuclei in the laboratory frame. The experiment has been called nuclear orientation via

electron spin locking ("NOVEL") by the latter authors. Though the polarization transfer

is necessarily fast, the experiment is not directly applicable at arbitrary magnetic fields; it

depends on the non-secular, anisotropic hyperfine coupling and involves a matching

condition Ohw = coH, which requires unreasonable microwave field strengths at elevated

magnetic fields. It nevertheless has motivated subsequent experiments which do not

suffer from these limitations.
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More importantly, the experiments have demonstrated that fundamental

thermodynamic limits on the DNP enhancement can be overcome in an appropriately

prepared system. The ultimate limitation on the enhancement arises from the Boltzmann

polarization of the electrons. A second and somewhat related limitation arises from the

fact that paramagnetic impurities, even in low concentrations, are an efficient mechanism

for nuclear relaxation and also result in significant nuclear line broadening. As first

suggested by Abragam, these limitations can be removed if the polarization source is a

molecule which is paramagnetic only in its photoexcited triplet state and which relaxes

rapidly to a diamagnetic ground state on a time scale which is long enough for the

polarization transfer process to occur.

Triplet formation occurs by intersystem crossing from the first excited singlet state (cf

Fig. 2-13). At zero field, the Hamiltonian is then dominated by the magnetic dipole

interaction between the electrons; it is generally written in a form which involves

operators of total spin angular momentum, S = S1 + S2, and is called the "zero-field

splitting,"

H s = S-DS. (2.32)

The eigenstates of (2.32) are:

1
T = (ff2 -aa2) (2.33)

T, = (f,8fp2 + aa2) (2.34)
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1
T= - (a/3 p l 2a, (2.35)

where a and P3 are eigenfunctions of Sz.

Due to symmetry selection rules, these triplet sublevels are not populated according to

the Boltzmann equilibrium after the triplet state is created, and the decay of the excited

state to the ground state is also prevented (it is metastable). This means that there are two

separate time constants that must be considered in such a system: one defining the decay

of the triplet state and another defining the relaxation of the triplet state spin levels to

reach thermal equilibrium with the lattice. In a sample subject to continuous light

excitation, the triplet spin polarization will therefore be very high only if the triplet

lifetime is considerably shorter than its spin-lattice relaxation time (or the time for

polarization transfer). If the reverse is true, the average polarization will be dictated by

the Boltzmann equilibrium, but the transient properties of the triplet state can still be

exploited.

The system is also subject to the Zeeman interaction, which will define the

quantization axis of the spin system at magnetic fields which are high enough for it to

dominate the zero-field splitting. The Hamiltonian can be written (in fundamental units)

as

H = S -D S + Bo g -S, (2.36)

where g is the g-anisotropy.
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Figure 2-13: Triplet formation by intersystem crossing from the first excited singlet state, in (a),
and the change in quantization axis of the spin Hamiltonian with increasing magnetic field in (b).
In (b), note the region of near level-crossing in which low-field optical nuclear polarization can
take place.

In the PAS of the ZFS tensor (i.e. the frame in which it is diagonal), the Zeeman

interaction makes an off-diagonal contribution,

X -igBoz igBy 1
H= igBoz Y -igBox , (2.37)

-igBoy igBox Z

where X, Y, and Z are the principal elements of the zero-field splitting tensor. Because of

this fact, there will be an eigenstate mixing as the static magnetic field Bo is increased;

equivalently, the quantization axis of the nuclear spin Hamiltonian will gradually shift to

that of the Zeeman interaction (i.e. the external magnetic field). At high magnetic fields,

it is clear that the eigenstates of this Hamiltonian are, to a good approximation, those of

the Zeeman interaction,

T = (ala2 )  (2.38)

1
To  (a1 2 P 31a2 ) (2.39)

T, = (0f82) (2.40)
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Three processes can transfer polarization to nuclei which are hyperfine coupled to the

triplet. First, at intermediate magnetic fields, eigenstate mixing results in a complex

energy spectrum; evolution of the spin system under this Hamiltonian after the creation

of the triplet state can directly lead to nuclear polarization, an effect which has been

called "optical nuclear polarization" (ONP) [67][68][69]. It is also possible to directly

excite forbidden transitions with a resonant microwave field and produce a solid effect-

like DNP process within the triplet state manifold. Such experiments have been reported

by van Kesteren [39], by Hausser [69][70][71] and by Wenckebach and co-workers

[41][72][73], where the mechanism has been called "microwave-induced optical nuclear

polarization" (MI-ONP) by these authors. In single crystal guest-host complexes, large

enhancements have been obtained using these mechanisms. However, a third and much

more general technique involves polarization transfer using a modified Hartmann-Hahn

condition. As mentioned previously, this experiment has been introduced in single

crystals by Hausser [40] and Henstra [41] under the name "NOVEL" and has recently

been extended to polycrystalline powders [74].

To demonstrate the existence of this phenomenon, Fritsch and co-workers [40]

consider selective excitation of one transition within the triplet manifold. Since the width

of the ESR spectrum is much larger than the available microwave excitation bandwidth,

the S = 1, I = /2 spin system under selective excitation behaves like a S = '/, I = / spin

system, where S is a fictitious spin operator as introduced by Vega [75]. The experiment

should therefore also be applicable to ordinary electron-nuclear spin pairs, where the

radical is in a paramagnetic ground state. The Hamiltonian for the fictitious electron spin
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(S) which is hyperfine coupled to the nuclear spin (1) and subjected to microwave

radiation orthogonal to the static magnetic field is:

H= tosSZ + o, +4C1 cos(ost)S + HHF, (2.41)

where HHF arises from the hyperfine coupling and is given by

HHF =-C 1C2AI + 2C1ASx + 2C2Ay,S , + 2C1 C2Az.SI. (2.42)

In (2.42), i = {x,y,z} and summation over the repeated index is implied. The constant

terms are:

az = (Y- X)2+4 (g~hB0 2 (2.43)

1 1Y-X

F2 az

S1 Y-X
C2 = 1+E .

2 a z

Finally, h oos = Em - El, where E, and El are eigenvalues of the full triplet Hamiltonian

(see Pratt [76]). In the interaction representation defined by a frame rotating at cs about

z, and after truncation of oscillatory terms, (2.41) becomes:

H = QSZ + o0I/ + 2CltwlsSx

H,, = CIC2(2AZSI - AZLI).

(2.44)

(2.45)

The spin dynamics are best analyzed in a titled frame defined by

Os = arctan 2Cl (2.46)

In this titled frame, the effective fields for spins S and I are given by
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Qef = S + W2C1wlS 2 (2.47)

ef~ = .o, + CC2A, .  (2.48)

Equating (2.47) and (2.48) yields the Hartmann-Hahn condition,

S + (2CWlS 01 + CIC 2AZ, (2.49)

which implies Ois =- roo.

Using the effective Hamiltonian Hartmann-Hahn matching, Fritsch et al. [40] also

follow the time evolution of the density matrix to determine the proton polarization, pi(t),

P,(t) = p,(0) + sin2()[1 - cos(Qt)][•P - p,(0)], (2.50)

where 0 and D are factors that depend on the hyperfine elements Az and A,. As is the

case with nuclear cross-polarization, the proton magnetization is an oscillatory function

whose period is set by the coupling strength. In this case, however, the coupling

elements responsible for the polarization transfer are proportional to S, Ix and Sz Iy.

Because these elements are non-secular, the transfer efficiency will decrease with

increasing magnetic field; because they are anisotropic, NOVEL should also not operate

in liquid solutions.

Further, the Hartmann-Hahn condition in (2.49) requires that the microwave field

strength (in frequency units) be approximately equal to the nuclear Larmor frequency, a

requirement which cannot be met for protons in elevated magnetic fields. At low

magnetic fields (-100 mT), Fritsch and co-workers [40] have reported proton polarization

as high as 30% in HHCP experiments from the photoexcited triplet state of

dichlorobenzophenone. At the magnetic field of these experiments, the kinetics of the
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optical pumping cycle are comparable to the polarization transfer time, allowing both to

be repeated many thousand times within the nuclear T1. It is clear that new polarization

transfer schemes will be required for similar experiments to be conducted at higher

magnetic fields.

2.2.11 Dressed State Solid Effect and Electron-Nuclear Cross
Polarization

In applications at high magnetic fields, all the DNP mechanisms discussed so far

suffer from one or two intrinsic limitations. First, nonsecular coupling elements are

responsible for the polarization transfer, with the result that the polarization transfer

becomes less efficient with increasing magnetic field. Second, the nuclear polarization

evolves at a rate of Tin; this implies, on the one hand, that the time-averaged sensitivity is

lower than it might be if the process could occur with faster kinetics in the rotating frame

and, on the other, that the Tin must be reduced by manipulation of the sample temperature

in order to attenuate spin-lattice relaxation processes which would otherwise limit the

enhancement.

In fact, this situation is entirely analogous to the detection of spectra of dilute nuclei

(e.g. '5N, '3C) in solid state NMR, which are insensitive both due to their low

gyromagnetic ratios and long T1. The solution to this problem in the domain of solid

state NMR has involved pulsed cross-polarization. Here, a Hartmann-Hahn match is

achieved in a doubly-rotating frame, resulting in rapid polarization transfer between

protons and heteronuclei which depends only on the secular part of their dipolar coupling.

For the case of off-resonant radiation of one or both spin species, a match between
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effective fields can occur with diminished B1 field requirements, albeit at the expense of

introducing chemical shift dependent dynamics into the polarization transfer process. 9

Weis and co-workers have made preliminary steps in applying similar concepts to the

problem of electron-nuclear polarization transfer by near-resonant radiation of both the

electrons and nuclei [42]. These experiments can be described either as a solid effect

within an electron spin state that is dressed by the microwave field, or by using the

conventional framework of cross-polarization in solids. The electron-nuclear cross-

polarization experiment does not depend on the non-secular hyperfine coupling and can

be repeated at a rate comparable to the electron T1. Because it does not depend on the

anisotropic hyperfine coupling, the experiment should also be applicable in liquid

solutions, in which only the isotropic or Fermi contact component of the hyperfine

coupling survives. In addition, Weis et al. have shown [42] that significant hyperfine

decoupling occurs near this resonant matching, with the result that even protons relatively

near the radical center can participate in bulk spin diffusion.

The mathematics of this process follows closely those of the laboratory-frame solid

effect. The Hamiltonian in the electron rotating frame (2.16) is diagonalized as in (2.19).

The microwave field in this frame is therefore given by (2.20). Since we are interested in

the dynamics only at high magnetic fields, we can make the approximation TI= 0 and

diagonalize that part of the Hamiltonian which describes allowed EPR transitions only

using the unitary transformation [45],

U = exp[-i(6 Sya + OasIs)f, (2.51)

where

9 The narrow-band and band-selective sequences which result have been exploited in solid state NMR for spectral
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-2o

a = _2o s 'e= A + 2-0S,.

19 = 2- -A)
S

a -2os X
0 A + 20s

-2c A
2M -A A

S-(,1

(2.52)

202 - A 0

A + 2Ms < 0

2 s - A < 0.

The truncated Hamiltonian (r1 = 0 and taking only components of the microwave field

which result in allowed transitions) then becomes

H s= QfSz + ,Iz + AffSZI + BSzIx + wIsSx,

, = - C

sf = 1[os + lcos(oa) - Ols sin(Ea)

+ Os - Jcos(E) - ois sin(9 )
2--( 2) ,,

(2.53)

(2.54)

(2.55)

A•ff ( s + A cos(a) - Is sin(Oa)
2)O(t) -OI

(2.56)

A 2s 2 c - (Os sin(e ).

With these definitions, the eigenvalues of the (dressed) Hamiltonian are:

,-.ffe f

E = + S• +I1/2 2

assignments [77][78][79].
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E3/4 eff - 0 Aeff
3/4 2 2 4

It is now straightforward to demonstrate that simultaneous nuclear irradiation can bring

about transitions between these states. The form of the RF Hamiltonian, HRF = wlIx, in

the diagonal frame defined by (2.51) is:

H = (= 0, cos(0)I x + sin(0) S+I- S-I + -[S+I+  S-I-, (2.58)

where 0 = (Oc- Op) / 2. According to (2.58), there is then a close analogy between the

effects of the microwave field and non-secular dipolar coupling, in the case of the

laboratory frame solid effect, and the effects of radiofrequency irradiation in the

truncated interaction frame which defines the electron dressed state. Specifically,

irradiation of the nuclear spins can bring about zero-quantum and double-quantum

transitions in the dressed state manifold; unlike in the laboratory frame case, however, the

transition probabilities depend on experimental parameters and can therefore be adjusted

to maximize the DNP effect. As with the conventional solid effect, the zero-quantum and

double-quantum transitions give rise to polarization of the opposite sign and therefore

must be selectively excited in order to yield a net gain in nuclear polarization. By

following the evolution of the density matrix under the effective Hamiltonian, Weis et al.

further demonstrate that the polarization resulting from either pathway is an oscillatory

function of the mixing time, tsl, with a frequency of o3l cos(Oa) [42]. Finally, one

interesting consequence of this theory is that the microwave radiation partially decouples

the hyperfine interaction. In the limit A,B B cols, the nuclear transition frequencies are

entirely independent of the hyperfine coupling. This implies that enhanced protons will
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participate in free proton-proton spin diffusion to the bulk, since their resonance

frequencies will not change dramatically due to the hyperfine interaction.

It is also worth mentioning that the same experiment can be described within the

broader mathematical framework of Hartmann-Hahn cross-polarization. Unlike for

NOVEL, in this case the polarization transfer dynamics are best treated in a doubly-

rotating and titled frame defined by the electron and nuclear resonance offsets and

excitation field strengths. For weakly coupled nuclei, the treatment is entirely analogous

to that of narrow-band and band-selective "SPECIFIC CP" introduced by Baldus and co-

workers [64] and Petkova et al. [65]. Hartmann-Hahn matching then occurs because of

eigenstate degeneracy in the doubly-tilted Hamiltonian, where the matrix elements

responsible for the process are now those of the hyperfine coupling rather than the

heteronuclear dipolar coupling. Weis et al. have shown the relevant matching condition

to be [66]

I, = +Q/ + NS Sz _ +s , (2.59)

and argue that, since QI > wis, the nuclear effective fields will be quantized

approximately along the Zeeman axis, and so the nuclear polarization will evolve as hI.

The dynamics of the polarization build-up are largely governed by the nuclear spin lock

field, coil; however, in the limit of very large microwave field strengths, significant

hyperfine decoupling effects will result in very long polarization transfer times.

The dressed state solid effect has not yet been observed directly in a DNP experiment.

Due to experimental restrictions that are the focus of the second half of this paper, it has

thus far only been practical to implement the experiment using a low-power solid-state

microwave source in conjunction with a high-Q microwave cavity. The restricted sample
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sizes in this experiment have complicated the detection of a useful NMR spectrum, and

so Weis and co-workers instead chose to detect loss of electron magnetization rather than

nuclear polarization [42][66]. The results of these experiments appear in Figure 2-14.

Due to the potential experimental advantages of this technique, we anticipate that further

experiments using DSSE/CP will become routine as high power gyroamplifiers become

available.

4-,
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Figure 2-14: Modulation of EPR Echo intensity due to DSSE/CP effects in a sample of
perdeuterated BDPA in a polystyrene matrix. In this experiment, the strength of the microwave
spin lock field and nuclear spin lock were varied for a spin lock time of 3 gs. Adapted from [42].

2.3 Microwave Devices

With the exception of very specialized phenomena which occur in transiently coupled

spin systems, electron-nuclear polarization transfer requires coherent microwave

radiation at or near the electron Larmor frequency. For high field dynamic nuclear
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polarization, the microwave B1 field strength must also be on the order of a few

megahertz. This necessitates either the use of a high power microwave source or a low

power source in conjunction with a microwave cavity or other high-Q resonator. The

latter requirement is not easily met for macroscopic samples undergoing magic angle

spinning, and so current successful efforts have been directed towards fulfilling the

former. DNP experiments based on analogs of Hartmann-Hahn polarization transfer

impose the further requirement of coherent phase switching and pulse formation on the

nanosecond timescale. This can be accomplished, in principle, either by gating of a high

power source in combination with a network of delay lines and circulators to generate

orthogonal phases, or by the amplification of a low power signal which has already been

modulated using conventional microwave circuits operating at low powers.

For moderate frequency ranges (9-95 GHz), solid state devices exist which can satisfy

these requirements [80]. The most useful example of these are two-port microwave

diodes which convert a DC bias to RF power in the presence of a microwave cavity,

examples of which include the Gunn diode and IMPATT diode. IMPATT oscillators, in

particular, are capable of producing usable output power across a portion of the

millimeter wave frequency band, but their output power in the submillimeter wave

regime is limited. They will nevertheless continue to be useful as low power microwave

sources for amplifiers operating at or below 140 GHz. Conversely, lasers operating in the

near infrared have high peak output powers at extremely high frequencies, but they

cannot efficiently produce the 5-10 W of power that is required for DNP in the moderate

140 GHz - 1 THz frequency range. In fact, the only suitable approaches for microwave

generation satisfying these power and frequency requirements all involve vacuum
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electron devices in which the kinetic energy of a beam of accelerated electrons is coupled

to the radiation field, resulting in the emission of microwave radiation (cf Fig. 2-15).

High power microwave tube technology is routinely applied in communications [81],

radar and radar countermeasures [82], plasma heating [83] and diagnostics [84], and more

recently, electron spin resonance (ESR) [85].
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Figure 2-15: State-of-the-art in microwave sources, oscillators and amplifiers, including vacuum
electron devices and solid-state devices.

The devices in Figure 2-15 consist of vacuum electron devices (VED), such as the

traveling wave tube (TWT), klystron, backward wave oscillator (BWO), orotron,

gyrotron, and free electron maser (FEM), and solid state sources, such as the Gunn diode

and IMPATT diode. Of the VED's, the gyrotron and FEM are so-called "fast-wave"

devices in which the wave phase velocity equals or exceeds the speed of light; the other
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VED devices are "slow-wave" devices, for which the phase-velocitylo is less than the

speed of light. In slow-wave variants, the microwave interaction structure has

dimensions comparable to the wavelength, while in fast-wave devices, the interaction

occurs on a length scale much larger than the wavelength. For a constant output power,

the energy density will increase as the wavelength decreases; since the high energy

electron beam must travel close to the slow-wave microwave interaction structure,

thermal loading will prevent the operation of these devices at high frequencies and high

output powers. On the other hand, fast-wave devices such as the gyrotron (a type of

cyclotron resonance maser) [86] do not suffer from this limitation and can continue to

deliver high output powers into the sub-terahertz frequency band. Gyrotron oscillators

have been successfully operated at frequencies as high as 889 GHz by Idehara and co-

workers [87] and are shown in Figure 2-15.

One limitation of the gyrotron oscillator is that both the instantaneous bandwidth and

the absolute frequency range are bounded. It arises from the fact that radiation is

produced by coupling to a particular mode of a cavity or other interaction circuit, which

has a well-defined frequency and a (usually high) Q. By consequence, the static

magnetic field at the sample must be swept to change the electron resonance offset. This

may be ameliorated by building tunable gyrotron resonators in which the cavity

dimensions can be modulated in order to tune the frequency [88]. A more general

solution might involve gyro-amplifiers based on traveling wave tubes, which do not

suffer from this limitation. Further, their instantaneous bandwidth in pulsed mode is

0o The phase velocity is the velocity with which a detector must move in order to measure a constant phase for a wave
moving through the interaction structure after steady-state conditions have been reached. For a traveling
electromagnetic wave, characterized by cos (cot - kz), the phase velocity is given by m/k.

123



sufficient to excite the full breadth of the nitroxide EPR spectrum at moderate operating

frequencies.

Finally, free electron maser (FEM) microwave sources have been built which are

capable of short pulse operation with continuous tuning over a wide frequency range

[89][90]. Conventional FEMs generally require highly relativistic electron beams and so

are more expensive and much more complex than other sources, particularly for

continuous-wave (CW) operation. By contrast, the orotron (or "ledatron") [91][92] is an

FEM variant VED based on the Smith-Purcell effect, in which the transit of an electron

beam close to a periodic grating generates a charge on the grating surface which interacts

with the incident electron beam to produce radiation. In order to yield coherent radiation,

the effect is generally produced within a reflective Fabry-Perot cavity in which a flat

mirror is imprinted with the periodic grating. Orotrons have been successfully employed

for spectroscopy applications in the submillimeter wave regime, where they can produce

output powers of a few tens of milliwatts for pulse durations on the order of 100 ns [93].

Due to the limitations of FEMs and conventional slow-wave devices, we anticipate that

gyrotrons operating at the fundamental cyclotron resonance frequency or its second

harmonic will continue to be utilized in future DNP experiments. The closely related

gyro-amplifier will also be useful in cases where coherent control over frequency and

phase is required, but where the capability of CW operation must be preserved.

2.3.1 Solid State Microwave Oscillators and Amplifiers

The Gunn diode and the IMPATT diode are compact and efficient solid state sources

which are useful throughout much of the microwave spectrum; however, above 95 GHz,

their average power is limited (cf Fig. 2-15) due to device size and properties of the
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substrate. Both devices utilize carrier transit-time effects to achieve a negative resistance

which, in combination with a tuned microwave circuit, can lead to oscillation or

amplification. While IMPATT diodes can generally produce greater power, Gunn diodes

have superior stability and noise properties, and so are extensively used in receivers and

broadband amplifiers.

2.3.2 Gunn diodes

The unique band structure of compound semiconductors such as GaAs and InP gives rise

to a negative differential mobility (NDM) effect in the presence of a strong electric field.

In particular, the first conduction band occurs in a region of atypically low effective

mass, and therefore high carrier mobility. At room temperature and in the absence of an

electric field, most electrons lie in this low energy, high mobility conduction band. As

the electric field is increased, the electron kinetic energy becomes comparable to the

energy difference between the high and low mobility regions, and the adjacent

conduction bands become populated (cf Fig. 2-16). Above a certain threshold, the

electron drift velocity begins to saturate in conventional semiconductors such as silicon.

In GaAs, however, the drift velocity does not saturate and instead can decrease with

increasing electric field, due to the population of low-mobility energy states. To see how

negative resistance can arise, we note that current is related to the differential mobility, I,

by

J = qnuE, (2.60)

where q is the charge, n is the number of charges per unit volume, E is the electric field,

and the differential mobility is g = dv/dE. Since the electron drift velocity, v, is
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decreasing with increasing electric field, g is negative. The expression in (2.60) therefore

requires that the current will decrease with an increasing electric field, which is

equivalent to a negative resistance. The linear region of negative resistance is illustrated

in Figure 2-17. A further consequence is that the space-charge distribution in a

semiconductor operating above the threshold of NDM is fundamentally unstable.

Consider a spatially localized perturbation (at point i), 8p, to the carrier density, p, at t =

0. At a later time,

Sp,(t) = 6p(0)e- ' T , (2.61)

where the relaxation time is given by tr = s/qng and e is the permittivity. In a NDM

semiconductor, g is negative, and so the exponent t, is negative, and therefore the

perturbation 8p will increase as a function of time instead of decaying. The degree to

which this perturbation can grow is limited by the transit time through the semiconductor.

wU

p
Figure 2-16: The band structure of direct-gap semiconductors such as GaAs or InP is
characterized by a high mobility region (A) and a low mobility region (B) of higher effective
mass.
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These effects can be exploited (albeit with low power conversion efficiency) in the

transit-time configuration of a Gunn diode [94][95], illustrated in Figure 2-17. Here, the

operation of a Gunn diode in the region above the NDM threshold voltage results in the

formation of a dipole domain for which carriers accumulate on one side and are depleted

on the other. This dipole domain migrates across the device with a period approximately

equal to the transit time, and then forms again at the cathode. A diode operated in this

configuration can thus serve as an oscillator at a frequency which is fixed approximately

by the inverse transit time. In practical circuits, however, the Gunn diode is coupled to a

resonant circuit whose frequency is considerably greater than the inverse of the transit

time. When operating in this mode, no dipolar domains form, and the Gunn diode

behaves as a pure negative resistance.
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Figure 2-17: Schematic and electric field distribution of [left] the transit time configuration of a
Gunn diode and [right] a typical IMPATT diode.

127



The Gunn diode has been successfully applied for DNP studies in conjunction with a

high-Q resonator at 140 GHz for samples contained in microcapillary tubes [96] (cf Fig.

2-18). Though the technique is not suitable for magic angle spinning studies,

enhancements as high as 400 have been recovered at liquid helium temperatures.

.....- '...: Adiustable
nger

12.7mm

mm 2.7 mm

I Sample I

Active Cavity

Figure 2-18: Resonator for DNP and ENDOR studies at 140 GHz. The resonator is tuned by
means of an adjustable plunger. Adapted from [96].

2.3.3 IMPATT diodes

The impact-ionization avalanche transit time (IMPATT) diode [94][95] is a two-port

microwave device in which transit time effects are utilized to produce a negative

resistance. The simplest p+nin+-type"1 IMPATT diode is illustrated in Figure 2-17.

When the diode is reverse-biased to near breakdown, avalanche multiplication effects in

the region of a p+n junction result in dramatically increased carrier density and a

corresponding increase in current. In a typical configuration for an oscillator, an

IMPATT diode is biased to very near breakdown, and then additionally biased with a

small oscillating RF field. For some part of the RF cycle, avalanche breakdown will

occur, and a current pulse will propagate through the device with a time constant that is

11 Here, "i" refers to an intrinsic semiconductor region.
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largely determined by the transit time in the intrinsic semiconductor region. If this transit

time is long, the current can fall behind the voltage by a large phase, which is equivalent

to a negative real resistance. Like the Gunn diode, then, the IMPATT diode can be used

in a microwave resonant circuit to produce a microwave oscillator; unlike the Gunn

diode, the IMPATT is an extremely noisy device. Though the IMPATT can produce

significant power in the millimeter wave regime,' 2 its efficiency declines steeply with

frequency. We therefore do not anticipate its continued utility for DNP experiments

above 140 GHz.

2.3.4 Gyrotron Theory

The gyrotron is a vacuum electron device which produces coherent microwave

radiation with high efficiency through the unstable interaction of an electron beam and an

electromagnetic field in a magnetic field. The theory of coherent radiation from an

ensemble of relativistic electrons has been developed along quantum mechanical

[97][98][99][100] and classical [100][101][102][103][104] lines. While the quantum

theory of cyclotron resonance affords physical insight into the nature of the interaction,

practical device design is greatly simplified by a classical fluid-dynamical theory, in

which the electron beam is treated as a plasma, or by numerical solution of relativistic

kinematical equations of motion for a number of test charges (so-called "ballistic"

theory). Here, we will briefly review the salient physics of the gyrotron in both cases and

discuss the practical consequences for the design of gyrotron oscillators operating in the

millimeter and submillimeter wave bands.

12 Commercially available single IMPATT sources can produce 50 mW at 150 GHz [80], and they can be combined in
arrays for even greater output.
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2.3.5 Quantum Mechanical Basis of the Cyclotron Resonance Maser

The gyrotron is an example of a cyclotron resonance maser; as suggested by its name,

radiation occurs by stimulated emission within the quantized eigenspectrum of the

electron in a magnetic field. The motion of a charged particle in a magnetic field has

been treated first by Landau [105]. Briefly, the magnetic field, B(r), is defined up to the

gradient of an arbitrary function through the vector potential, A(r),

B(r) = V x A(r). (2.62)

The Hamiltonian operator and the operator for the particle velocity are then given in

(2.63) and (2.64):

H = -(P- eA)2  (2.63)2m

V =I(P-eA), (2.64)
m

where m is the mass. For B(r) = iBz and motion perpendicular to the magnetic field,

(2.63) becomes

H= (M 2 + V2 . (2.65)

Commutators of elements of the velocity operator can be derived from canonical

commutation relations; for the problem constructed, they are given in (2.66) and (2.67):

IV ,V]= V V] = 0 (2.66)

[VV ]= -i , (2.67)

in which i2c = eBz Im is the classical cyclotron resonance frequency.
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The eigenspectrum of (2.65) can be obtained by analogy to the one-dimensional

harmonic oscillator. In particular, we define

X= - V (2.68)

P' = V (2.69)

such that the operators X and P' now obey

[X,P'" = -i, (2.70)

and the Hamiltonian (2.65) is now identical to that of the one-dimensional harmonic

oscillator,

H=--(x + p ,2). (2.71)

The eigenvalues of (2.65), defining motion in the plane orthogonal to the magnetic

field, are

E = n+ IhM2. (2.72)

This harmonic quantization of the energy of a charged particle moving in a homogeneous

magnetic field is named for Landau [105]. We now consider the possibility that an

ensemble of initially monoenergetic electrons can lose energy to an electromagnetic field

in the presence of a strong magnetic field, a situation corresponding to stimulated

emission. The energy absorbed by an electron from the radiation field over the

interaction time, t, is

W = CO lP, - Oj IP -1). (2.73)( n,n+1 n n+1 n,n- n n1
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The transition probabilities, Pn,n+1 and Pn,n-1, which appear in (2.73) are given by

expressions of the form

E2t2

Y2 +.(On,n+l (2.74)

where .n,n+1 is the transition dipole moment for the harmonic oscillator, Eo is the

magnitude of the electric field, and g.(ow,,+l) is an approximate lineshape function, given

by

sin 2 [(n,n+1 - o)t/2]
g. (0),n+) c)t/] 2 ]2(2.75)

where in (2.75), we have neglected the counter-rotating component of the electric field.

Substituting (2.75) into (2.73), we can obtain an expression for the total energy absorbed

by the electron in terms of fundamental parameters of the system:

W_ e 2tn , ,o ) - (nn-1)nn+ . (2.76)
2m

From (2.76), it is clear that energy can only be given up to the field if the quantity

[gc~O~(n,n+1) - g(on,n-1)] is negative. However, we have already shown in (2.72) that the

eigenvalues of the electron in a magnetic field are evenly spaced, hence g,(o),n+) =

g,(on,,-1) = g,(Qc), which implies that W is purely absorptive. By this reasoning, there

can be no loss of energy to the field and no cyclotron resonance maser effect unless the

eigenspectrum of the electron in a magnetic field is anharmonic. Fortunately, such a

situation can arise for a relativistic electron in a homogeneous magnetic field

[97][98][99][100][106]. In this case, the electron obeys the Dirac equation,
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yU U + M • = 0, (2.77)

which, in the presence of an electromagnetic field, becomes

U- he A Y y • + Yf = 0. (2.78)

In (2.78), we have made the usual Gauge-invariant, Lorentz-covariant substitution for the

electromagnetic field in the form -ih u - -ihay - eA / c. In the correct gauge and

using appropriate explicit representations of the matrices y,,, the problem in (2.78) can be

solved in analogy to the Schr6dinger harmonic oscillator using transformations very

similar to those defined in (2.68) and (2.69) for the non-relativistic case. The solution to

(2.78) requires that the kinetic energy of the electron be quantized according to

E moc21+2 n 2 + - mOC2, (2.79)

where mo is the electron rest mass and all other parameters have been defined in the non-

relativistic solution. The important consequence of this result is that the energy levels of

the relativistic electron are not evenly spaced, and hence we can expect stimulated

emission as defined in (2.76). Since nhlc/mo c2 is less than unity, (2.79) reduces to

eB

En+1 En = = (2.80)

where y = 1 + En/moc2. For our purposes, this means that radiation can be produced from

even a weakly relativistic beam of electrons, as shown in Figure 2-19. The gyrotron

oscillator is one realization of a cyclotron resonance maser based on this effect.
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Figure 2-19: Cyclotron resonance for varying values of the parameter k = nhf 2 / 2mc2

according to equation (2.76), where terms of order -(h~2c/moc) 2 have been neglected. Note that
for a low energy beam, in which n is small, the non-relativistic limit (k =_ 0) is recovered in which
pure absorption, and no gain, occurs.

2.3.6 Classical Description of the CRM Interaction

A gyrotron oscillator is a vacuum electron device in which a weakly relativistic

electron beam is arranged to interact with transverse electric (TE) modes of a microwave

resonant circuit in the presence of a strong magnetic field. The quantum mechanical

approach we have previously introduced is insufficient to correctly describe the operation

of this device; in particular, it is based on a time-dependent perturbation approach which

does not account for non-linear interactions. Where n in (2.79) is large, we can apply the

more convenient classical theory.
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Figure 2-20: Schematic cross-section of a typical low-power gyrotron oscillator. (A) An annular
electron beam leaves the cathode, accelerates towards the anode, and is compressed by the
increasing static magnetic field. (B) Gyrating electrons interact with a mode of the interaction
structure. (C) Microwave radiation is launched from a slotted waveguide, focused to a Gaussian
beam, and steered toward a side vacuum window while the electron beam continues unimpeded.
(D) The electron beam expands in the inhomogeneous stray field of the superconducting magnet
and is intercepted (collected).

A schematic description of a typical gyrotron oscillator used for DNP appears in

Figure 2-20. At one end of the vacuum tube, an annular electron beam is produced by a

magnetron injection gun, and the beam is radially compressed as it enters the

homogeneous region of the magnetic field. At the beginning of the interaction region

(e.g. the cavity in a gyrotron oscillator), the electron beam is annular; it is initially

unbunched and its constituent electrons are uniformly distributed azimuthally. A charged
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particle moving through a magnetic field, B, with a velocity, v, experiences a Lorentz

force,

F = -ev x B = dp
dt

(2.81)

where p = ymv. The charged particle then obeys the following parametric equations of

motion:

x= x +r cos (ct+ ) (2.82)

y=yo + r sin(Oct +)

z =Z0 + vJ.

Qualitatively, the particle traces out a helical path of radius rg about a guiding center.

The electrons in the annular beam gyrate at the cyclotron frequency (gyrofrequency),

eB
ym

(2.83)

where m and e are, respectively, the mass and charge of an electron, 7 is the relativistic

factor,

1

1- v2 c2
(2.84)

and v is the electron velocity. The radius of this gyration is the gyro-radius, rg, given by

(2.85)g =-
r

We can understand the (fundamental) cyclotron resonance maser (CRM) interaction by

examining the electrons in the phase space as a function of time. In order to do so, we

regard the electron beam as a charged fluid or plasma, following the treatments in
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[95][104]. Since the full development of this theory is beyond the scope of the present

review, we will only travel far enough to illustrate the correspondence between classical

and quantum mechanical pictures of the cyclotron resonance interaction. First, we

observe that electrons obeying the equations of motion (2.82) have a velocity which is

separable into an angular component orthogonal to the beam axis,

v = v (r,p), (2.86)

and one parallel to it,

vZ = V,1. (2.87)

In this frame, both are constants of the motion and it is usually arranged that v, > vii.

When the electron beam reaches the interaction region, it encounters the electric field

of the resonator. Power transfer between the field and the beam is then related to the

current density, J, and electromagnetic field, E, as

P = -1 Re IE -J dr}. (2.88)
2

It is useful to briefly consider the properties of the electron plasma which are necessary to

produce stimulated emission. For the kth electron located at (r, 0o + Ot, 0) and moving

with v1 at t = 0, the electron current is spatially localized according to

J, = -ev (r - ro) [ -(0 + t)](z). (2.89)

Re-writing (2.89) as a Fourier series with respect to 0 gives

J =ev - l~ (r - ro  (z) I e .  (2.90)

The beam contains a large number, N, of electrons which are uniformly distributed in

phase. In this case, (2.90) becomes
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J= ev( 8r -r•(z) e I e-'k. (2.91)
2 .n=ý k=1

This expression contains factors oscillating at the cyclotron frequency and its n

harmonics. In order to evaluate (2.88) in this context, the integral must be taken over the

entire phase space, which amounts to taking an ensemble average over all electron orbits.

If the electrons are uniformly distributed in phase space, this integral will be zero over

this domain. Thus, there can be no growing microwave field under these conditions.

As in the quantum mechanical case, it is a relativistic interaction which produces a

non-uniform electron distribution and permits the generation of an oscillating RF field;

however, in the classical theory, the electrons are distributed non-uniformly ("bunched")

in their phase space, while, in the quantum theory, the eigenspectrum of a relativistic

electron in a magnetic field is anharmonic.

In particular, the phase space of which we are now speaking is defined in the reference

frame of the RF field (e.g. TE modes of an interaction cavity) (cf Fig. 2-21). The

electrons entering the cavity have an initially uniform azimuthal phase distribution and

gyrate at the cyclotron frequency, 92c. Since the cyclotron frequency depends on the

relativistic factor, y, through (2.83), the electron will either gain or lose energy depending

on its phase with respect to the RF field. Those electrons which are accelerated by the

field gain energy, rotate at a lower frequency, and lag behind in phase; conversely,

electrons which are decelerated by the field lose energy, rotate faster, and gain in phase.

After a certain interaction time, the electrons are no longer uniformly distributed in

phase. If the frequency of the RF electric field tuRF is slightly larger than the electron

cyclotron frequency 9, the electrons give their rotational energy predominantly to the
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growing RF field (Fig. 2-21). Practically, this condition can be met by tuning Bo and the

cavity radius. In the reverse case of ,c > CORF, the wave loses energy to the electrons, an

effect which can be productively exploited to produce a gyrotron amplifier. After the

energy is extracted from the electrons, they are no longer in phase (they lose their

synchronism) with the RF wave, c, has increased, and the interaction saturates.
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Figure 2-21: Simulation of a non-uniform electron phase distribution which occurs due to the
interaction of a relativistic electron beam with a transverse electric field E, situated in a static
magnetic field Bo. The beamlets, with Larmor radius rL, are instantaneous slices in phase space
corresponding to axial positions along the interaction structure.

A practical treatment of power transfer from the bunched electron beam to the RF

field is complicated even in the small-signal limit. Straightforward evaluation of (2.88)

involves the solution of Maxwell's equations for the electric field and the solution of

relativistic-kinematic equations of motion for a series of test electrons to obtain electron

trajectories, which give rise to a spatially-varying current density. This is called a

"ballistic" theory of the gyrotron. In the more useful treatment of Chu and Hirshfield

[103], Maxwell's equations still describe the electromagnetic field, but the electron beam

is described by the relativistic Vlasov-Boltzmann equation, which is a distribution

function for the electron velocity. The power transfer is then governed by

P =-- Re{ f eE. vf(r,p,t) dr dp. (2.92)

wheref(r, p, t) is a distribution function for the electron velocity.
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Several other features of the gyrotron follow simply from this analysis. For example,

any interaction circuit will have a finite Q which is related to its diffractive (Qdiff) and

ohmic components (Qohm),

1 1 1- = - + - (2.93)
Q Qei Qohm

The existence of a Q implies that dissipative processes will not permit a growing

microwave field unless the electron beam current lies above a certain threshold. This

threshold, called the "starting current," is obtained on energy conservation grounds by

equating the relationship in (2.92) to that in

-RePj = , (2.94)

where E is the energy of the mode, and for a Gaussian axial field distribution in a

cylindrical cavity of effective length L is given by [107] [108]

start = 4.2 x 103 0 7rcV 2 (2.95)
Q on J ±n (Ikireo

Here, n is the harmonic number, I0 is the normalized current parameter, vmp is the pth zero

of ",, m and p are the azimuthal and radial TEmp cavity mode eigenvalues, reo is the

electron beam radius in the cavity, and k, is the cutoff wavenumber.

The results of such a linear calculation for a cylindrical cavity designed for a second

harmonic 460 GHz gyrotron oscillator are shown in Figure 2-22. In a high frequency,

low power gyrotron, it is generally desirable to have a high cavity diffractive Q to avoid

competition between the many cavity modes and to produce a low starting current. This

is particularly critical for harmonic gyrotron operation, where the design must take into
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account competition with fundamental interaction modes that occur at lower starting

currents. At the same time, a high diffractive Q will limit the efficiency, ri, as

S Qohm (2.96)
Qdiff + Qohm

In a cylindrical cavity, the ohmic Q, Qohm, is approximately related to the cavity radius,

ro, and the skin depth, 6s = (7cfoo)-2, by

2ohm ocro (2.97)

where 0O is the permeability of free space and a is the electrical conductivity.

Nevertheless, gyrotrons operate with high efficiency well into the submillimeter wave

regime.
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Figure 2-22: Mode plot (from linear theory [109]) for the cylindrical cavity employed in the 460
GHz gyrotron oscillator experiment. The second harmonic TE0, 6,1 mode is the desired mode of
operation, and the TE2,6,1 mode is the only other labeled second harmonic mode. Note that
starting currents are higher for harmonic modes and those with higher axial numbers.

In summary, we have outlined the quantum mechanical and classical basis of electron

cyclotron resonance and qualitatively discussed the principles which govern the operation
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of CRM devices in the small amplitude limit. The design of actual microwave devices

requires the careful consideration of non-linear effects which occur outside the limits

assumed in the small amplitude theory. These effects are beyond the scope of this

review, and the theory presently developed is sufficient to explain the design of a series

of gyrotron oscillators (140-460 GHz) employed in DNP studies at MIT.

2.3.7 Gyrotron Engineering

The components of a typical gyrotron oscillator used for dynamic nuclear polarization

studies at MIT are depicted in Figure 2-23. Here, the electron source is a magnetron

injection gun, and the interaction circuit is always a tapered cylindrical cavity (though

other designs are possible). In addition to these components, operation of the gyrotron in

an ultrahigh vacuum for continuous duty cycles has required careful attention to electron

beam collection, cooling, pumping efficiency, and control stability. The combination of

these factors has resulted in the present dual-bore magnet design of Kreischer and co-

workers [110][111], in which the microwave power is extracted in a Gaussian mode

along an axis orthogonal to the direction of the electron beam propagation, while the

electron beam is collected in a configuration that maintains continuous pumping

efficiency in the region of the electron beam collector. The microwave power is

monitored directly or indirectly through the electron beam current, and the electron gun

heater is adjusted to keep it constant. It is transmitted by means of a smooth or

corrugated waveguide and coupled optically to the NMR sample. A variety of ancillary

control circuits are employed to guarantee the safe and unattended operation of the

gyrotron for extended periods, which is a requirement for solid state NMR studies of

biological systems. Finally, it is worth mentioning that what we will discuss here reflects
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the current operating characteristics of MIT DNP gyrotrons; finding these operating

conditions involves the experimental and theoretical exploration of many degrees of

freedom, and the characteristics of the gyrotron during this "activation" phase improve

with time.
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Figure 2-23: Pictorial cross-section of a typical gyrotron oscillator used for DNP.

2.3.8 Electron gun

The electron gun must produce an approximately monoenergetic beam of high energy

electrons, and its characteristics influence all the operating parameters of the gyrotron.

The gun is usually a magnetron injection gun (MIG), which is a thermionic device that
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produces a hollow annular electron beam using a cylindrical cathode. Diode and triode

MIG configurations have one or two anodes, respectively. When the temperature of the

cathode is raised through the application of a small heating current, the electrons gain

sufficient thermal energy to overcome the work function barrier. The cathode is biased

with a high negative voltage relative to the anode, with the result that electrons ejected

from the surface of the cathode are accelerated towards the anode at mildly relativistic

velocities. At the same time, the electrons encounter the increasing axial magnetic field

generated by the main magnet and auxiliary gun magnet; instead of impacting the anode,

the electron beam is radially compressed and is free to propagate beyond the gun

structure. The homogeneity of the electron beam is thereafter maintained due to the

strong magnetic field, which also serves to convert most of the beam energy from axial to

rotational degrees of freedom for reasons that have been previously discussed. The

electron beam radius is minimal at the point of greatest magnetic field, Bo, which is

arranged to coincide with the position of the microwave interaction structure. The

minimal electron beam radius, reo, is then determined by the product of the cathode

radius, rK, and magnetic compression ratio,

r =r K (2.98)eo = K BL

where BK is the cathode magnetic field. The nature of the electron beam is a critical

variable in the operation of the gyro-device. Important metrics of electron beam quality

include the a, which is the ratio of transverse to axial velocity, and the homogeneity of

the electron velocity distribution. A large beam a is desirable, since it is only the

rotational degrees of freedom which yield their energy to the microwave field, but it
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should not be so large that the electrons do not have sufficient axial energy to propagate.

In practical circuits, the electron gun is operated in a temperature-limited (saturated)

emission regime. The beam current can be changed over a wide range by varying the

temperature of the cathode. This feature allows for control of the microwave power

independent of other variables of operation and is the principal mechanism by which

output power is held constant in MIT DNP gyrotrons operating in continuous duty.

2.3.9 Interaction Cavity

The gyrotron interaction structure is the component in which rotational energy of the

electron beam is converted to electromagnetic radiation. As such, the cavity must

support one or more modes which are solutions to a wave equation for the

electromagnetic field, subject to the appropriate boundary conditions. For a metallic

cylindrical open resonator cavity [112], the principal boundary conditions are fixed by

the cavity radius and nature of the input and output coupling, for which the most common

configuration involves a downward taper at the input and an upward taper at the output.13

This cavity configuration produces standing wave-like transverse electric (TE) modes

whose electric and magnetic field components are characterized in the separable

cylindrical solution space by a triplet of integers, TEm,p,q, specifying their azimuthal,

radial, and axial eigenvalues respectively. For example, the TE01q modes have no

azimuthal variations and one radial variation, and so resemble a hollow circle; as with all

TE modes, the electric field remains transverse to the direction of propagation. Gyrotron

cavities are generally overmoded, as the wave equation will have many TE-type solutions

13 These boundary conditions are an evanescent wave at the input, propagating wave at the output, and vanishing
tangential electric field at the cavity wall.
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which fulfill the boundary conditions of the resonator. However, when operating near the

cut-off of a desired TE mode, the gyrotron frequency depends very simply on the cavity

radius and mode of operation, as

O cmp , (2.99)
ro

where vp is defined as in (2.95), and ro is the cavity radius.

Since the cavity cannot be made arbitrarily small to operate on the lowest order mode

due to the thermal load of its interaction with a high energy electron beam, competition

between parasitic modes and the design mode must be addressed explicitly in the design.

Ideally, the electron beam should be placed at a position of maximum coupling to the

electric field of the selected cavity mode in order to minimize the coupling to unwanted

modes. In practice, however, the design of the cavity is a compromise involving ohmic

losses in the cavity walls, mode competition, mode conversion, and starting current. This

compromise is numerically addressed by solution of the axial wave equation [113],

d E(z)+ k, (z)E(z) = 0, (2.100)
dz2

for the RF field profile and the eigenfrequency, with the propagation factor

k (z) = - k (z) (2.101)

subject to the appropriate boundary conditions for the electric field at the cavity inputs

and walls. This treatment yields the diffractive Q as

Re(w)
f = Re(o)) (2.102)S 2 Im(co)'

from which the efficiency and starting current for each mode can be estimated.
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Several relevant conclusions follow from this analysis. First, since the mode plot of a

typical resonator (cf Fig. 2-22) is quite complicated, one might expect that the operating

frequency can be effectively tuned simply by finding operating conditions for a series of

modes which are distributed across the desired operating range [114]. However, since

many parameters of operation, including the starting current, efficiency, magnetic field,

and even the physical alignment of the resonator with respect to the electron beam,

depend upon the choice of mode, this method of operation is inappropriate for DNP

studies. A continuously tunable oscillator [88] has been designed based on mechanical

modulation of a longitudinally split cavity during the experiment, but it remains to be

seen if these approaches can be adapted to the requirements of DNP.

Second, it is clear that a gyrotron operating at the fundamental cyclotron resonance

must produce a magnetic field which sets the electron cyclotron frequency very near to

that of the microwave field. This implies that only second or higher harmonic designs

will be practical at frequencies exceeding 500 GHz; indeed, though a 20 T magnet is

commercially available, the prohibitive cost of such an instrument together with the

desire for a general approach led to the design of a 460 GHz second harmonic gyrotron

for MIT's high field DNP experiment. Operation at a higher harmonic mode further

complicates the design when a conventional cylindrical cavity is used, because

competition with fundamental modes must also be considered and avoided. Novel cavity

designs based on analogs of optical photonic band-gap (PBG) structures [115] produce

resolved, TE-like mode patterns, and it may be appropriate to consider them in future

applications. Confocal cavities are another promising design, but as of this writing they
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have not yet been successfully applied in higher harmonic gyrotron oscillators at MIT

[116].

2.3.10 Gyro-amplifier

Pin Pout
.*4 .. .. .. . U

Figure 2-24: Cross-sectional schematic of a typical gyro-amplifier. In this design, the drive
power is coupled into an input cavity and the amplified power is coupled out of a side cavity.

As we have mentioned previously, analogous considerations apply to the design of a

gyrotron amplifier. In a gyro-amplifier, an additional drive input consisting of the signal

to be amplified is coupled into an extended interaction region and allowed to modulate

the electron beam. This requires either a physically longer interaction circuit (e.g. gyro-

TWT) or one consisting of multiple cavities (e.g. gyro-klystron). In each case, the

electron beam is involved in two sequential interactions: the first in which it takes energy

from the input field, and a second in which it yields its rotational energy to the output

field. Amplification is produced because the imprint of the first interaction modulates the

output of the second. Gyrotron amplifiers can have much larger instantaneous and

absolute bandwidth than gyrotron oscillators. As such, we anticipate that they will be

extremely useful for time-domain DNP experiments based on analogs of Hartmann-Hahn
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cross-polarization, and further that they will free the experiment from the requirement of

a tunable static magnetic field. However, current gyro-amplifier designs will require a

stable input drive signal source of approximately 100 mW to produce suitable output

power in the 1-100 W range suitable for DNP studies. Such solid state and vacuum drive

sources are not available above 140 GHz, nor are the switches and other components

required to form a phase modulated network. Due to considerable academic and

industrial interest in exploiting the radiation in the 0.3-10 THz regime for spectroscopy,

film metrology, materials processing, remote sensing, and telecommunications, we

believe that low power driver sources will be available in the future.

2.3.11 Microwave Extraction

The microwave field produced in the interaction cavity is rarely in an optimal form for

transmission in a waveguide. As such, it is almost always necessary to transform the

mode one or more times using waveguide or quasi-optical mode converters. The

waveguide mode converter is usually a periodic structure; the effects of the periodicity in,

for example, the radius of a waveguide are analyzed using a perturbation theoretical

approach. The quasi-optical mode converter, by contrast, generally consists of a launcher

and one or more focusing or correcting mirrors. It may be understood in terms of

geometrical optics, but detailed designs require diffraction theory.

2.3.12 Quasi-optical mode converter

An elegant design of a quasi-optical mode converter consists of a step-cut waveguide

antenna and a cylindrical parabolic mirror (cf Fig. 2-25). This design is currently

employed as an internal mode converter in both the MIT 250 GHz and 460 GHz gyrotron

149



experiments. For the appropriate slot length, the step-cut waveguide antenna, or the

Vlasov-type launcher, radiates the TEo0p waveguide mode as a linearly polarized beam.

The parabolic reflector then focuses the beam into a Gaussian shape.

(a)

I I

Figure 2-25: Sketch of the (a) side and (b) front view of a quasi-optical mode converter used in
the 250 GHz and 460 GHz MIT DNP gyrotrons. Operation of the device is illustrated through
geometric optics; test rays are launched from the slotted waveguide and then focused by a
parabolic mirror. The slot length LB = 2 rwg cot OB is chosen such that the bounce angle 08 = sin
l(k./k) is determined by the TEmp waveguide mode, k is the wavenumber, and rwg is the
waveguide radius [ 117][118].

2.3.13 Waveguide mode converter

Efficient mode conversion can also occur in periodically perturbed waveguide

structures [119]. In the case of a small perturbation, the wave equations remain

cylindrically separable and a perturbation-theoretical treatment is sufficient. For

example, to convert from the TE02 to the TE01 mode, only radial perturbations are needed,

since the azimuthal mode number remains the same while the radial mode number is

reduced. However, in order to achieve a TEo1 to TE 11 mode conversion, in which the

azimuthal mode number is increased, the perturbations must have an angular component.

A purely angular perturbation will not discriminate between modes which differ only in

the radial direction. In general, a periodic repetition is therefore required to reinforce the

desired mode. An example of a TEo0 to TE 11 mode converter operating on this principle
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is shown in Figure 2-26. Due to its serpentine appearance, this device is colloquially

referred to as a "snake" mode converter.

(a) •. d _

TE01 TE11 a

Figure 2-26: (a) Schematic of the TE 01- TE11 snake mode converter, where a is the waveguide
radius, 8 is the perturbation, r(z) = a + 8(z), d is a period, and L is the total length (b) close-up of
one period. [120]

2.3.14 Output window

A variety of windows are employed in a typical installation to isolate different

components of the DNP apparatus which would otherwise be linked through the

microwave transmission system. They must be durable enough to handle high

microwave powers and environmental exposure, including, in the case of a gyrotron

window, ultrahigh vacuum conditions and, in the case of the probe window, cryogenic

temperatures. The window must also transmit microwave power with minimal reflection

and absorption. These criteria effectively limit the choice of window materials

essentially to sapphire, quartz, diamond, and Teflon. For a material of known dielectric

properties, transmission and reflection can be calculated according to simple Gaussian

optical formulae at high frequencies. The thickness of the window is then chosen to

optimize transmission by a quasi-optical model in which the window is regarded as a

Fabry-Perot-type interferometer. The Fabry-Perot interferometer has a frequency-

dependent transmission of power at normal incidence [121],
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[ 1-1T = +4R sin2 2z (2.103)
(1 -R)' 2 ý -

where R is the reflection coefficient given by (n-1)2/(n+1)2 , n is the index of refraction, d

is the thickness of the window, and k is the wavelength in the medium or c/nf

2.3.15 Electron Beam Collection and UHV

Only a fraction of the electron beam energy is transformed into that of the microwave

field. The spent electron beam is therefore still energetic and must be kept away from

fragile structures. At the same time, the beam must be collected in order to complete the

high voltage circuit. Collection occurs because the electron beam expands as it enters the

weakening stray field of the magnet and hence encounters the gyrotron tube wall. The

mechanism of collection must take into account the thermal load of the interaction

between the high energy electron beam and the wall, and also the need to maintain

effective vacuum pumping efficiency in the region of the collector. In conventional

gyrotron designs, the microwave power is extracted in a direction which is parallel to the

direction of the electron beam. This implies that the linear distance between the cavity

and the microwave output window must be very large in order to guarantee that the

electron beam has been efficiently collected before the microwave beam encounters the

fragile window. A consequence of this design is that the pumping efficiency in the

neighborhood of the cavity and collector is very poor, and hence continuous duty

operation is difficult.

The 250 GHz gyrotron oscillator designed by Kreischer and co-workers for DNP

studies at 380 MHz overcomes these difficulties. Here, the microwave beam is extracted

in a direction orthogonal to the electron beam by means of a reflector situated outside of
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the electron beam path. The electron beam then immediately enters the stray field of the

superconducting magnet and is efficiently collected in a short, water-cooled collector

region. Two chemi-absorptive ion-pumps are located at a short linear distance from both

the cavity and this collector region, and so very high pumping efficiency is maintained

under all operating conditions. Indeed, a pressure less than 1 x 10-8 Torr can be

maintained even during periods of CW operation lasting up to 120 hours. This

innovation has therefore been critical to the successful application of gyrotron oscillators

for DNP studies.

2.3.16 Magnetic Field

The gyrotron magnet must be chosen according to three considerations: first, the

magnitude of the magnetic field must be such that the electron Larmor frequency is

nearly equal to the desired microwave frequency or one of its sub-harmonics. For high

frequency gyrotrons, this requires the use of a superconducting magnet. Second, the

homogeneous region of the magnetic field must extend only to the dimensions of the

interaction structure. Third, the field must become inhomogeneous in a controlled way in

either direction from the position of the microwave cavity. In the input direction, it is the

axial compression of the electron beam by the increasing magnetic field which is

responsible for the successful operation of the electron gun; in the output direction, the

distance over which the magnetic field becomes inhomogeneous determines the

properties of the electron beam collector. For MIT gyrotron designs, in which the

microwave power is extracted along an orthogonal axis, the magnet must have a second

half-bore which lies slightly above the region of the magnet in which the cavity is

situated. Finally, the field homogeneity and drift requirements are comparable to those
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imposed by an NMR experiment. Just as in an NMR magnet, typical gyrotrons have

auxiliary room temperature shimming solenoids which serve to tune the magnetic field in

the region of the electron gun.

2.3.17 Microwave Waveguide Systems

The coupling of high power and high frequency microwave radiation to a sample is

similar in principle but different in practice from the related problem of transmitting

radiofrequency power to a load. In the latter case, even flexible coaxial transmission line

can be used up to 30 GHz with relatively low loss; in the millimeter wave regime,

however, propagation of power over a distance can only occur through guided structures.

At high microwave frequencies (250 GHz and above), it is often possible to rely on

quasi-optical radiation modes either in free space or through confined structures such as

dielectric or corrugated waveguides which support them. Quasi-optical transmission has

the additional advantage that microwave power can be manipulated using Gaussian-type

optics such as focusing or reflecting mirrors and even lenses. Indeed, the use of hybrid

optical and waveguide microwave transmission circuits has greatly simplified the design

of magic angle spinning DNP probes at high microwave frequencies. As has been

previously discussed, the gyrotron cavity output field is typically not in a Gaussian mode,

which means that internal or external mode conversion is usually required. The design of

an effective microwave transmission circuit will therefore require consideration of mode

conversion efficiency, alignment tolerances, and effective coupling to a sample whose

size is generally comparable to the wavelength. For reasons that we will now discuss, all

these factors also argue in favor of a Gaussian transmission mode.
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2.3.18 Attenuation in Cylindrical Waveguide

A useful waveguide must deliver power from source to load with minimal attenuation.

If the waveguide is further coupled to an optical transmission section, then it must be free

from mode conversion effects which would otherwise transform an initially quasi-

Gaussian radiation field into a mixture of modes that would not propagate in the desired

direction in free space. The theoretical loss of any straight, overmoded waveguide is

almost completely ohmic. In experimental circumstances, power loss occurs through

errors in the mechanism of input and output coupling, diffraction in components such as

miter bends, and misalignment.

Specifically, power flow in a simple waveguide is of the form

PT = Poe -2 a z ,  (2.104)

where a is an attenuation coefficient. On grounds of energy conservation, the rate of

decrease of PT must equal the time average power loss, PL, per unit length,

dP
P = = 2aP. (2.105)L dz "

The attenuation constant is defined as [122]

power lost per unit length PL
2 (power transmitted) 2P,

S R flI H 12dS (2.106)

2[iffRe(ExH* >-dA]

where the surface resistivity, R,, is given by R, = l/oa8, Ht is the tangential component

of the magnetic field at the surface, s is the waveguide contour, and A is the area
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transverse to z, the waveguide axis. From the form of (2.106), it is immediately apparent

that the loss in a waveguide is proportional to the square of the tangential component of

the magnetic field at the waveguide wall. After all, it is only through the interaction with

the waveguide wall that the microwave field can lose energy in this analysis. According

to this argument, waveguide modes which concentrate power away from the walls will

suffer less from ohmic losses than those which do not. Consider a hypothetical Gaussian

mode: radiation in this mode is concentrated in the center of the waveguide and falls

smoothly to zero in the radial direction away from it, and so it will have the lowest

possible attenuation. This can be derived from a straightforward evaluation of (2.106)

according to solutions for the field presented in Table 2.1, but we will only state the

results here.

For TE modes, the attenuation constant is given by [122]:

2

R 2 P2 _m 2

a = s (2.107)
770 V2

a 1l- P 2

For TM modes the corresponding expression yields:

R 1
a = (2.108)

alo 11- 2mp

where 110 is the characteristic impedance (-377 2), the wavenumber is k = m/c, the cutoff

wavenumber is kc = vmpa, Vmp for the TE and TM fields is the pth zero of Jm and Jm,

respectively, and a is the waveguide radius.
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Table 2.1: TE and TM fields in cylindrical smooth wall metallic waveguides [122]

TEmp TMMp

Hz k 2J (kr) cosmO 0
SkJ (kcr )Cos m

H, -ypkcJ'm(kr)cosmn -i•• lJ m(kr) sin m

rJ 0kr
H ymp m(kr)sim - ikk J'm/kcr)cosmp

Er ik77mr J (kcr)sin mP -,mpk J'm(kCr)cosmO

E, ik7okJ',(kr)cosmd mpmr Jm (kcr)sin mn

Solutions for the TE11 and TM 11 modes are presented in Table 2.2 and compared to an

HEll quasi-Gaussian mode, which is found to have lower loss. In actuality, a smooth-

walled metallic waveguide cannot support a Gaussian mode. Instead, solutions to the

wave equation subject to Gaussian-like profiles give rise to complicated mode

distributions which are approximate linear combinations of TE and TM-like modes which

propagate in the z direction. Since the attenuation of TE and TM modes differ, this

implies that the true mode composition will depend on the length of the waveguide. If

these effects are considered, the amount of power which can be transmitted in a

Gaussian-like mode through a smooth wall waveguide will depend periodically on the

length of the waveguide.

Table 2.2: Attenuation of modes in 1" OHFC copper cylindrical waveguide at 250 GHz
TEBI TM 1  HE,1

Waveguide type Smooth Smooth Corrugated
Vmp 1.841 3.8317 2.405
a [nepers/m] 1.4 x 10-2  3.3 x 10-2  2.1 x 10-5

a [dB/m] 1.2 x 10-' 2.9 x 10-1 1.9 x 10-

Dielectric and corrugated waveguides, by contrast, directly support the quasi-Gaussian

HE 11 mode and thus do not suffer from these limitations. Waveguide fields can be
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viewed as superpositions of plane waves propagating at an angle 0 relative to the

waveguide axis. The electric and magnetic field components along the waveguide axis

(Ez and Hz) are proportional to sin 0, which is in turn proportional to Vla. It follows then

that Ez and H, become very small at high frequencies or large diameters. It is not correct

to conclude, however, that the diameter of the waveguide can be made arbitrarily large.

As we will show shortly, the diameter of the waveguide must be chosen carefully to

guarantee loss-free coupling of radiation at the input end.

Fortunately, the tangential magnetic field can be eliminated by periodic linear or

helical corrugation of the waveguide walls. Here, wall corrugations act like shorted

radial transmission lines for a corrugation depth of V/4, provided that the spacing between

them is a fraction of the wavelength. Solutions to the wave equation subject to boundary

conditions for a corrugated surface then give rise to quasi-Gaussian HE 11-type modes,

which have very low fields at the waveguide walls and correspondingly low attenuation.

The attenuation of the HE 11 mode in corrugated waveguide of radius a is given by [123]

0.00767R
a k2a3 (2.109)

The optimal radius for such a waveguide for coupling a given free-space Gaussian

beam can be determined by calculating the efficiency of coupling the Gaussian beam, EG,

into the cylindrical waveguide by evaluating a simple geometrical overlap integral,

rl = ,wg , (2.110)
JE dA E2 'g

where Ewg is the waveguide field and, for the corrugated case, Ewg = E . The coupling

efficiency is optimized (-98%) for a Gaussian beam with a waist that is 0.64 of the
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waveguide radius, where the Gaussian beam waist is defined as the radius at which the

peak intensity has dropped by 1/e2.

As a practical matter, corrugated waveguides can be constructed which are nearly free

from attenuation even up to very high frequencies. The predominant sources of power

loss are then misalignment or imperfection in other components of the transmission

circuit.

2.3.19 Microwave Power and Mode Pattern Measurements

In order to align and calibrate microwave structures, reliable measurements must be made

not only of the power of the radiation field, but also of its spatial variation. Even in the

absence of direct information about the phase, such measurements can be combined with

various reconstruction techniques to yield reliable estimates of the mode content of a

microwave field. Absolute power measurements are generally made with a laser

calorimeter; though the calorimeter absorption in the millimeter and sub-millimeter wave

regime is limited, it is enhanced by the application of a microwave-absorbing paint, and

the measured powers are corrected to account for its diminished absorbance. Radiation

pattern measurements are made by automatic scans with a microwave diode detector

through a lattice of points in three dimensional space [124]. Since the response of the

diode is inherently non-linear, relative power is determined at each point by the automatic

adjustment of a motorized attenuator to maintain a constant detector signal level. The

degree of attenuation required is then a measure of the microwave power at that point.

Sensitivity in such measurements can be improved by phase-sensitive lock-in detection,

either by pulsing of the microwave source or by modulation of the microwave beam

using a rotating blade ("chopper"). A scan of the TEo1-like mode pattern of the MIT 140
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GHz gyrotron obtained using this technique is shown in Figure 2-27. As an alternative to

such time-consuming schemes, an infrared camera can be used to image an irradiated

substrate, albeit at a reduced signal to noise level. The spatial variation of IR irradiance

across this substrate can then be related to temperature, and hence to the rate of energy

absorption from the microwave beam.
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Figure 2-27: (a) E-field of theoretical TEo1 mode pattern (b) a TEo0 -like mode pattern radiated
5.08 cm from the output of the 140 GHz gyrotron oscillator and mapped using the automatic
diode-detection scanner. Adapted from [125].

For the case of Gaussian beams, such radiation patterns can be readily interpreted in

terms of simple geometric or Gaussian optics. However, the most general interpretation

requires elaborate phase retrieval algorithms, some of which are described in [126][127].

In both cases, the result of such an analysis is a summation of radiation modes with

appropriate phases and weights which give rise to the observed radiation pattern.

2.3.20 Gyrotron Control Systems

The application of dynamic nuclear polarization to quantitative measurements of

internuclear distances and torsion angles requires reference stability of the DNP/MAS
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signal of at least a few percent. A number of experimental variables can influence the

stability of these experiments, but all data indicate that the instability is completely

correlated with variations in the output power of the gyrotron and temperature variability

in the sample chamber. At the same time, the gyrotron depends on a number of relatively

complex systems for its safe operation; these include high voltage and potentially high

current power supplies, ultrahigh vacuum systems, and water or air cooling. Even when

these components are operating appropriately, the gyrotron can enter an unsafe mode of

operation if its adjustable parameters fall outside safe limits. These parameters include,

for example, the electron beam current and voltage, microwave output power, and,

indirectly, the degree to which the beam is inappropriately intercepted by regions other

than the collector. The control system must therefore automate the initialization, allow

safe shutdown, and be capable of stable operation of the gyrotron over extended periods

of, in the case of DNP studies, largely unattended operation.

In the case of MIT's 250 GHz and 460 GHz gyrotron oscillators, these objectives have

been accomplished by a hybrid control system consisting of computer control of all

power supplies and auxiliary systems involved with the gyrotron operation, together with

safety interlocks that are electromechanical in nature and therefore independent of

computer control. In addition to digital feedback from attached controlled devices, inputs

to the control system include signals which are correlated to the collector current, body

current (i.e. fraction of the electron beam current which does not reach the collector),

pressure, microwave output power, thermal loads on critical components, and

environmental temperature and humidity monitors. In the current implementation,

initialization of the gyrotron is entirely automated. After emission commences, the



electron gun heater temperature is controlled to maintain a constant electron beam

current, which in turn maintains a constant microwave power in the region of operation.

In an alternate mode of operation, the microwave power is directly monitored through

a quasi-optical directional coupler and this is used as a control signal. Critical metrics of

the tube condition during sustained operation include the pressure, efficiency, and

thermal loads. If any of these parameters exceed safe limits or if other catastrophic

failure occurs, the control system is capable of automatic and safe shutdown of the

gyrotron. In practice, the 250 GHz gyrotron has operated in continuous duty for periods

of up to 120 hours, during which time the tube pressure reaches a steady state and no

deterioration of the microwave beam parameters has been observed. As an example, we

show the stability of the gyrotron pressure and power in Figure 2-28 during sustained CW

operation.
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Figure 2-28: Stability of gyrotron pressure [left] and output power [right] during sustained CW
operation.

2.3.21 Gyrotrons used in dynamic nuclear polarization

The previous discussion of gyrotron engineering principles is largely based on the design

and successful operation of gyrotron oscillators for DNP studies at MIT; another product
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of these studies is a gyrotron amplifier which is currently in an initial design phase. The

operating characteristics of these gyrotrons are summarized in Table 2.3.

Table 2.3: Operating and design characteristics
140 GHz 250 GHz
oscillator oscillator

requency (GHz) 140 250
armonic 1 1
ower - average (W) 10 25
)wer - peak (W) 10 100
ain (dB) - -
andwidth - 150 kHz
ilse length 2 min. CW
epetition rate (kHz) - -
uty factor 0.5 1
[ode TE03  TE03
oltage (kV) 14 12
[agnetic field (T) 5 9

of MIT DNP gyrotrons
460 GHz 140 GHz
oscillator amplifier

design design
460 140

2 1
50 100
50 100
- 40
- >1 GHz

CW 2 ns
- 1

1 1
TE 06

12 12
8.2 5

2.3.22 140 GHz gyrotron oscillator

The 140 GHz gyrotron oscillator (Fig. 2-30) is a first generation design capable of

operating in long pulse (-60-120 s) operation for duty cycles approaching 50%.

Internally, the gyrotron produces TE03 mode radiation which is converted to TE02 and

then to TEo0 , which is launched (cf Fig. 2-29); an external snake-type mode converter

(Fig. 2-26) is then used to produce TEll-mode radiation, which is transmitted through a

smooth-wall metallic waveguide structure. After a series of conversion steps, radiation

reaches the sample eventually in fundamental mode waveguide.

The 140 GHz gyrotron oscillator has operated reliably in a variety of DNP

experiments. However, the recent requirement of continuous duty (CW) operation for

MAS/DNP experiments has suggested several design modifications which have been

incorporated in a subsequent 250 GHz gyrotron oscillator. The principal shortcoming of
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the 140 GHz design with respect to CW operation is the largely linear topology of the

microwave tube, which results in low pumping efficiency. Since the collector region

occurs before the radiation is extracted and at a large distance from the ion pumps, local

increases in pressure appear to limit device operation. The device is therefore operated in

a quasi-continuous mode involving pulses of 30-60 seconds at duty cycles approaching

50-60%.

to ion TEo2 - TEol
converter microwave

5 T superconducting magnet

ca

[%J VI a aivL LtU 1Ul PUMPII

Figure 2-29: Cross-sectional schematic of the MIT 140 GHz DNP gyrotron oscillator.

Figure 2-30: Photographs of the MIT 140
oscillators.

GHz [left] and 250 GHz DNP [right] gyrotron
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2.3.23 250 GHz gyrotron oscillator

In the period 1997-2000, Kreischer and co-workers designed and constructed a novel

gyrotron oscillator for use in dynamic nuclear polarization studies [110][111]. This

gyrotron operates at 250 GHz with a continuous duty cycle and peak output powers of

100 W. In conjunction with a control system incorporating various safety interlocks as

has been previously described, this system has operated continuously for periods of up to

120 hours. Principal features of this design are depicted in Figures 2-23 and 2-30. These

include a novel cross-bore topology in which the microwave power is extracted along an

axis orthogonal to the electron beam propagation and prior to the electron beam

collection. This allows for the location of fragile microwave circuits, such as the optical

window, far from the energetic electron beam. At the same time, the beam can be

collected in a compact, water-cooled collection region which is situated in a region of

maximum pumping efficiency. As a result, the gyrotron is physically more compact and

capable of higher duty cycle operation than its 140 GHz predecessor. Finally, the

microwave transmission circuit is simpler: a single, quasi-optical internal mode

converter produces a Gaussian microwave beam which can then be directly coupled to an

overmoded smooth or corrugated waveguide structure.

2.3.24 Design of a 460 GHz gyrotron oscillator

The 460 GHz gyrotron oscillator design [125][128] is based largely on the previous 250

GHz gyrotron oscillator, which is in active use. A fundamental point of difference is that

this gyrotron will operate at the second harmonic of cyclotron resonance, which has

involved modifications in nearly all operating components and parameters. The gyrotron

will operate in the TE 06 mode; like the 250 GHz oscillator, an internal mode converter
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will produce a Gaussian mode that will be coupled directly to a corrugated waveguide

transmission system. Design parameters are listed in Table 2.3, and the characteristics of

the interaction circuit have been previously addressed (cf Fig. 2-22). More recent results

from this gyrotron are presented in later chapters of this thesis.
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Figure 2-3 1: Short pulse operation of 460 GHz gyrotron in a fundamental mode.

2.3.25 Future Directions

A critical experimental deficit arises from the lack of coherent phase and frequency-

switched radiation at submillimeter wave frequencies. In the context of DNP, it prevents

the use of transient electron-nuclear cross-polarization techniques which do not rely on

non-secular elements of the hyperfine Hamiltonian. A gyro-amplifier can satisfy this

requirement. Due to its large intrinsic bandwidth, it will also be possible to tune the

gyro-amplifier carrier frequency to optimize the DNP enhancement, a task which is

currently accomplished by sweeping the static magnetic field. We plan to design and

build a gyro-amplifier for DNP studies at 140 GHz (211 MHz 1H). Preliminary

parameters of this design are described in Table 2.3. Given the present lack of low power

driver sources above 140 GHz, a complementary approach involves the design of a 330
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GHz tunable gyrotron oscillator for DNP experiments at 500 MHz ('H). This will not

produce pulsed microwave radiation, but it will allow the DNP experiment to be

performed with NMR magnets that do not incorporate sweep coils for large adjustments

to the magnetic field.

2.4 Magic Angle Spinning

The routine incorporation of DNP into magic angle spinning (MAS) experiments

introduces new challenges for probe design, as it becomes necessary to provide fast

sample spinning at cryogenic temperatures along with high power RF irradiation at two

or three frequencies and microwave irradiation near the electron Larmor frequency. At

cryogenic temperatures, it is no longer possible to use room temperature air to drive

pneumatic rotation of the sample, and instead cooled nitrogen or helium gas must be

used. The MAS frequency and the temperature of the gas, and hence that of the sample,

must be tightly regulated if quantitative NMR experiments are to be recorded. Finally,

experiments in photoactive proteins such as bacteriorhodopsin require light excitation of the

sample. Here, we briefly describe the 380 MHz Low Temperature MAS system developed for

DNP experiments at 250 GHz. A complete description will be provided in a future publication.

2.4.1 Multiply Tuned Transmission Line DNP/MAS Probes

At 380 MHz / 250 GHz, MAS/DNP experiments are conducted with a remotely tuned

probe which incorporates an air-dielectric coaxial transmission line [129]. The

transmission line outer conductor is made from stainless steel to minimize thermal

conduction, but is silver plated for improved electrical efficiency; a gold flash is applied

to resist corrosion. The inner conductor has been assembled in several sections: nearest
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the base of the probe, there is a stainless steel section, followed by a copper section in the

region of the probe head whose purpose is to minimize the number of potentially

ferromagnetic components near the coil. The coil is contained in a modified Varian, 4

mm stator. The probe is currently triply tuned for 1H (380 MHz), 13 C (95 MHz) and 15N

(38 MHz) frequencies; the 13C channel meets the main transmission line at a 'H

impedance node through a rigid coaxial line, the length of which is chosen to provide an

inductive impedance in a convenient range to allow capacitive tuning and matching at the

13C frequency. This probe design isolates the tuning and matching components of the

probe from the cryogenic temperatures encountered at the sample coil. Further, with

careful tuning of the electrical lengths, it provides greater than -30 dB isolation between

all channels.

Figure 2-32: Photograph of assembled 250 GHz MAS probe with probe cap and dewar removed.
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Figure 2-33: Probe schematic (left) and disassembled probe base showing transmission line
elements which produce isolation between each channel.

Microwave power coupling is accomplished by a entirely quasi-optical transmission

system. The transmitted microwaves reach the probe from the gyrotron through a

corrugated HE11-mode waveguide. At the base of the probe (Fig. 2-34), power is

launched in a Gaussian mode, where it is focused by a parabolic reflection mirror and

then steered to the RF center conductor by means of a flat mirror. The inner conductor of

the RF transmission line also serves as a corrugated HE 1 -mode waveguide for 250 GHz

microwave radiation. Power reaches the sample after a miter bend (Fig. 2-34) which

incorporates a microwave window made from a Teflon membrane whose thickness was

chosen according to considerations in (2.103).

Next, cryogenic operation is achieved by cooling of both the drive and bearing gas.

The cryogenic components of the probe itself are kept in a vacuum dewar, and the drive,

bearing, and gas exhaust lines are vacuum jacketed. The vertical sections of the cold gas

transfer lines enter the probe head in a region close to the coil. To minimize lineshape

artifacts due to magnetic susceptibility, ferromagnetic contamination of the stainless

steel, or work-induced ferromagnetism in the metal, these sections were constructed from

composite fiberglass (G10) tubing. Insulation surrounds the probe components to
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minimize convective coupling between the cold probe can and the warm probe base.

During normal operation, the probe base remains near room temperature and the tuning is

indefinitely stable.

Adjustment Parabolic Flat
shaft mirror mirror

Corrugated miter
mirror assembly

Figure 2-34: Photograph of the 250 GHz/380 MHz MAS probe. [left] In the base of the probe,
the microwave beam enters through waveguide on the right-hand side. It is then focused by a
concave mirror and steered into the vertical center conductor of the RF transmission line, which
also serves as a waveguide. [right] The microwave beam reaches the sample through a corrugated
miter bend at the complement of the magic angle. The sample is housed in a sapphire rotor, and
no resonant cavity is used.

4mm stator
Miter mirror

Corrugated waveguide/
RF transmission line

Outer conductor
Figure 2-35: Photograph of the 250 GHz/380 MHz
microwave beam to the stator.

DNP probe which illustrates coupling of the
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As mentioned previously, one of the initial applications of DNP involves the study of

trapped photocycle intermediates of bacteriorhodopsin, as will be detailed elsewhere in

this thesis. These experiments require cryogenic operation both to trap photocycle

intermediates and for DNP; further, these intermediates are produced by irradiation of the

sample at various visible wavelengths. Because the photointermediates decay rapidly in

some cases, it is desirable to produce them in situ, which we accomplish by delivering

laser light directly to the spinning sample through a multimode delivery system,

illustrated in Figure 2-36. Variable wavelength light is produced using a dye laser which

is pumped by a DPSS laser, as shown in Figure 2-37.

Figure 2-36: Photograph of the 250 GHz DNP probe head which illustrates coupling of laser light
to the spinning sample through a multimode optical fiber.
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Figure 2-37: System employed for variable-wavelength light irradiation of samples. It consists of
a Coherent Verdi DPSS laser (6W, 532 nm) which pumps a Coherent 599 dye laser to produce
longer wavelength red light.

2.4.2 Cryogenic MAS Control System

Since low temperature operation is achieved by cooling of the drive and bearing gas,

cryogenic systems for MAS/DNP experiments must regulate both the gas pressure and

temperature with sample temperature and spinning frequency being the critical control

inputs. In the 90 K temperature range, the DNP enhancement is extremely sensitive to

temperature variations, and so the temperature must be controlled to within 0.5 K. In

Figure 2-38, we illustrate, in schematic form, the control system which has allowed us to

meet these tolerances for extended experiments. Here, spinning is accomplished by dry

nitrogen gas which originates from vaporized liquid nitrogen. The drive and bearing gas

streams are then taken through a heat exchanger which is immersed in liquid nitrogen.

Prior to the heat exchange process, the drive and bearing gas pressures are independently

controlled by a pneumatic controller; after the heat exchange process, cold drive and
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bearing gases travel to the probe through transfer lines which incorporate integral 50 W

heaters and temperature sensors. Thus, both the temperature and the pressure can be

controlled for the drive and bearing gas lines independently. Since changes in the gas

temperature can cause fluctuations in gas volume and hence perturb the MAS frequency,

both the air pressure and temperature are controlled in software using a model which

empirically accounts for the effects of this interplay. This approach has allowed us to

conduct experiments of indefinite length.

Figure 2-38: Cryogenic and MAS control system for 380 MHz/ 250 GHz DNP experiment at
MIT.
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Figure 2-39: Photograph of cryogenic MAS system.
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Figure 2-40: Photographs of heat exchanger used in cryogenic MAS experiments. (top) heat
exchanger in dewar; (middle) heat exchanger internals are visible; (bottom) heat exchanger is
connected to transfer lines during cryogenic MAS experiment.
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2.4.3 Sample preparation

Sample preparation heavily influences the efficacy of the DNP process in biological

samples. At short microwave wavelengths, ordinary rotor materials such as zirconia

have high indices of refraction and tend to absorb power; at the same time, the

conductivity of frozen biological preparations is still high enough for skin depth effects to

be important. Thus, the properties of the rotor material as well as its size can limit the

DNP enhancement. In practice, rotors made from crystalline sapphire have superior

microwave properties as compared to zirconia, and superior physical properties for

cryogenic use as compared to fused silica.

In Figure 2-41, we illustrate the typical sealing procedure for rotors which is

performed prior to DNP experiments. Here, an ordinary vespel drive tip is modified with

a small groove, approximately five thousandths of an inch deep, which serves as a

channel for adhesive bonding of the drive tip to the rotor wall. The appropriate adhesive

must be chosen empirically, but Hysol-type adhesives intended for use in aerospace

applications have worked well in experiments conducted in the 77-100 K temperature

range.

Ordinary sample spacers, which can be freely inserted into the rotor at room

temperature, generally do not suffice. Instead, spacers are made whose dimensions are

such that they must be cooled to liquid nitrogen temperatures prior to insertion into the

rotor. In this way, they continue to fit tightly even at the low temperatures of these

experiments. Of these, the top spacer is made with a cylindrical air hole that allows it to

be inserted even after the opposing end of the rotor has been sealed by the drive tip,
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bottom spacer, and sample. A small vespel screw is then driven into the hollow spacer to

seal it.

vespel drive tip\I'm
adhesive
notch sample vespel screw

//

I
I

bottom spacer sapphire rotor
/

hollow top spacer
Figure 2-41: Procedure for sealing of sapphire rotors prior to DNP experiments.

The preparation of the biological sample itself involves cryoprotection to minimize

inhomogeneous broadening. For soluble proteins, the cryoprotectant can be added

directly, while, for membrane proteins, it has been incorporated by repeated cycles of

resuspension and centrifugation. The optimization of cryoprotection conditions for DNP

experiments is an area of current research.
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Chapter 3 Dynamic Nuclear Polarization at 9 Tesla Using a
Novel 250 GHz Gyrotron Microwave Source

This chapter appears in the following publication:
V. S. Bajaj, C. T. Farrar, M. K. Homstein, I. Mastovsky, J. Vieregg, J. Bryant, B. Elena,
K. E. Kreischer, R. J. Temkin, and R. G. Griffin, "Dynamic nuclear polarization at 9
Tesla using a novel 250 GHz gyrotron microwave source," Journal of Magnetic
Resonance, vol. 160, no. 2, pp. 85-90, Feb. 2003.

In this communication, we report enhancements of nuclear spin polarization by Dynamic

Nuclear Polarization (DNP) in static and spinning solids at a magnetic field strength of 9

Tesla (250 GHz for g=2 electrons, 380 MHz for 'H). In these experiments, 'H

enhancements of up to 170+50 have been observed in 1-13C-glycine dispersed in a 60:40

glycerol/water matrix at temperatures of 20 K; in addition, we have observed significant

enhancements in '5N spectra of unoriented pfl-bacteriophage. Finally, enhancements of

-17 have been obtained in two-dimensional 13C-13C chemical shift correlation spectra of

the amino acid U-13C, 15N-proline during Magic Angle Spinning (MAS), demonstrating

the stability of the DNP experiment for sustained acquisition and for quantitative

experiments incorporating dipolar recoupling. In all cases, we have exploited the thermal

mixing DNP mechanism with the nitroxide radical 4-amino-TEMPO as the paramagnetic

dopant. These experiments are the highest frequency DNP experiments performed to

date and indicate that significant signal enhancements can be realized using the thermal

mixing mechanism even at elevated magnetic fields. In large measure, this is due to the

high microwave power output of the 250 GHz gyrotron oscillator used in these

experiments.
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3.1 Introduction

During the last decade, a considerable variety of NMR techniques have been developed

to constrain molecular structure in the solid state. In order to obtain site-specific

resolution, these involve either uniaxial orientation of the sample with respect to the static

magnetic field [1] or magic angle spinning (MAS) [2]. In the latter case, anisotropic

dipolar and chemical shift interactions which encode structural parameters are modulated

by the sample spinning and must be re-introduced to yield useful information. In

particular, there are now a multiplicity of well-developed homonuclear and heteronuclear

dipolar recoupling techniques [3], [4] useful as mixing sequences in chemical shift

correlation spectroscopy [5], for distance measurements [6], and for the determination of

torsion angles [7-11]. Recently, a complete atomic-resolution structure determined using

these techniques has been reported in the literature [12].

In all cases, the applicability of these methods to larger systems and those in low

abundance is currently limited by the necessity to directly observe signals of low

gyromagnetic ratio (y) nuclei, such as 13C, 15N, and 31P, whose spectra are well-resolved.

The indirect detection of dilute spin spectra through the more sensitive 1H spins has not

yet become generally practical in the solid state, due to strong homonuclear couplings

among the protons [13-15]. As a result, solid state NMR is less sensitive by two or three

orders of magnitude per unit time than solution state NMR. This inherent low sensitivity

is a limiting factor in the application of multidimensional NMR methods to biological

systems.

As a means to increase the sensitivity of these experiments, we have previously

employed dynamic nuclear polarization (DNP) to enhance NMR signals in both static and
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rotating solids at 5T [16-19]. DNP involves the irradiation of a coupled electron-nuclear

spin system in the neighborhood of the electron Larmor frequency. According to a variety

of polarization transfer mechanisms which rely on electron-nuclear hyperfine couplings

alone (e.g. solid effect), or electron dipolar couplings in addition to hyperfine couplings

to the nuclei (e.g. thermal mixing), nuclear signal enhancements on the order of Ye/YN

(-660 for 1H nuclei and -2600 for '3C nuclei), are possible. In general, these

experiments are conducted at low temperatures in order to attenuate competing spin-

lattice relaxation processes which would otherwise compromise the polarization transfer

efficiency. In earlier work, we have achieved 1H signal enhancements ranging from 50-

400 at a magnetic field of 5 T. However, it is desirable to apply DNP at higher fields (9-

18 T) where NMR is commonly performed.

In this communication, we present preliminary results which illustrate the

successful application of DNP at a magnetic field of 9 T in both static and rotating solids.

In all cases, samples were dissolved or dispersed in frozen solutions of 60% glycerol and

40% water, and the source of electron polarization was the nitroxide radical 4-amino-

TEMPO. We have obtained static 1H thermal mixing DNP enhancements of up to

170±50 for the amino acid 1-'3C-glycine at 20 K, and an enhancement of -40 in an

unoriented sample of U-'_N-pfl-bacteriophage. Further, we have recorded two-

dimensional '3C-'3C chemical shift correlation spectra of U-'3C, 15N-Proline in magic

angle spinning dipolar recoupling experiments at 98-100K, with a DNP enhancement of

17.
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3.2 Thermal Mixing DNP at High Fields

For systems in which the homogeneous EPR line width approaches the magnitude of the

nuclear Larmar frequency, an energy conserving three-spin process is operative. Here, an

allowed electron-electron mutual spin flip is accompanied by a nuclear spin flip; for the

case of a non-equilibrium polarization among the electrons, this mode of relaxation can

lead to the generation of enhanced nuclear polarization, a process which is referred to as

thermal mixing. Thermal mixing is conventionally treated by a spin thermodynamic

formalism in which the Hamiltonian for the coupled three-spin system is decomposed

into several quasi-invariants of the motion, each of which has a distinct spin temperature.

These are: the electron Zeeman spin reservoir (in the rotating frame), the electron spin-

spin interaction reservoir, and the nuclear Zeeman bath. As shown by Provotorov [20],

the electron Zeeman and spin-spin interaction reservoirs are in thermodynamic

equilibrium when microwave radiation is applied. Off-resonance irradiation of the EPR

line produces a non-equilibrium polarization state, which is equivalent to cooling of the

electron spin-spin interaction reservoir. This spin-spin interaction reservoir is in thermal

contact with the nuclear Zeeman system through the aforementioned three-spin process

involving two electron spins and one nuclear spin, and so off-resonance irradiation of the

EPR line can also produce a cooling of the nuclear Zeeman reservoir.

Treatments based on perturbation theory or a relaxation approach [21,22] both

require that the homogeneous EPR line width (8) be greater than the nuclear Larmor

frequency (con) for the thermal mixing DNP enhancement to be appreciable. If the

enhanced nuclei are protons in an organic solid, the polarization is redistributed across

the sample by spin diffusion which is fast on the time scale of the DNP experiment. In
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the limit of fast spin diffusion and under the approximation of a homogeneous electron

line shape, Wind et al. [23] have derived an expression for the dependence of the

enhancement (e) on the various experimental parameters, given by Equation (3.1).

ye Ne B2n 2 B n0 ile (3.1)

Here Ble is the microwave field strength, Bo is the static magnetic field strength, Ne is the

concentration of electrons, 8 is the homogeneous EPR line width, and TI, and Tie are,

respectively, the nuclear and electron spin-lattice relaxation times.

The assumptions inherent to this formulation are not satisfied under the conditions

of the experiments described here. In particular, at high magnetic fields (e.g. 9 T), the

EPR spectra of the nitroxide radicals used as polarizing agents in DNP experiments are

inhomogeneously broadened by the g-anisotropy. The result is that there cannot be a

single Zeeman spin temperature assigned to the electrons, and that equilibration of the

nuclear and electron Zeeman reservoirs does not necessarily proceed through the dipolar

system of the electrons. Farrar et al. [24] have recently presented a phenomenological

interpretation of thermal mixing DNP at high fields which relaxes these assumptions. In

the limit of a large electron concentration, this treatment suggests that electron cross

relaxation, which is fast compared to the spin-lattice relaxation, can indirectly mediate

spin temperature equilibration, effectively rendering the electron interactions

homogeneous on the time-scale of the experiment. This treatment together with

experimental data demonstrate that (3.1) is qualitatively valid. Although (3.1) suggests

an inverse dependence of the DNP enhancement on the static magnetic field, we have

been able to compensate for this dependence in our experiments, as follows:
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1. Far from saturation, the DNP enhancement qualitatively scales as Ble and so the

high output power of the 250 GHz gyrotron oscillator used in these experiments results in

a large enhancement.

2. Through manipulation of the sample temperature, nuclear spin-lattice relaxation

has been attenuated. Thus, significant enhancements can be realized at temperatures of

10-20K. Although the MAS experiments are currently conducted near 77K, significant

signal enhancements are also observed in that regime.

3. A large radical concentration (60mM) was used in these experiments, with the

result that electron-electron cross-relaxation is enhanced, and the thermal mixing DNP

efficiency improved accordingly.

3.3 250 GHz Gyrotron Oscillator

In all experiments presented here, the source of microwave irradiation was a 250 GHz

gyrotron (cyclotron resonance maser) designed for DNP experiments [25]. This

instrument is capable of sustained (72-96 hr) operation at output powers of 10-15W,

which results in approximately 3-4W of microwave power at the sample. The output

power of the gyrotron is regulated to within 1% through a proportional control loop.

In a probe designed for static DNP experiments, microwave power from the 250

GHz gyrotron oscillator is coupled to the sample directly through an over-moded circular

waveguide immediately below the NMR coil; no microwave resonant structure was used.

Low temperature operation is achieved through a continuous flux of either nitrogen or

helium gas near their respective boiling points. In the case of helium gas, dielectric

breakdown limited the strength of 1H decoupling which could be applied. MAS

experiments were performed using a triple-channel transmission line probe incorporating
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a microwave waveguide and a 4mM stator. Cryogenic operation was achieved by

passing the drive and bearing nitrogen gas through a heat exchanger operating at liquid

nitrogen temperatures. The temperature and pressure of the drive and bearing gas are

actively regulated using multiple control loops implemented in software, with the result

that the temperature is stable to within 1 K and the MAS frequency to within 5 Hz for

extended operating periods. Finally, data acquisition and processing were accomplished

using a custom-designed spectrometer and processing software (courtesy Dr. D.J.

Ruben). Further details of the gyrotron and DNP spectrometer will be provided in a

subsequent publication.

3.4 DNP CP of Static Samples

In the case of static samples, the sample and paramagnetic dopant were dissolved in a

solution of glycerol and water and transferred to a 4mm quartz tube without further

degassing. Provided that freezing is sufficiently rapid, the matrix forms a glass at the

temperature of these experiments.

1H CP TPPM

13C/ 15N

Figure 3-1: Cross-polarization with continuous microwave irradiation. In all cases, the resonance
offset was set to maximize the 1H enhancement.

195

I c



600 400 200 0 -200
13C Chemical Shift (ppm)

Figure 3-2: DNP CP spectra of static 1-13C-glycine (0.39 M) dispersed in a 60:40 water/glycerol
solution containing 80 mM 4-amino TEMPO at 20 K recorded with (solid trace) and without
(dashed trace) microwave irradiation. A 'H DNP enhancement of 170 ± 50 was observed with
-1.0 W of microwave power incident on the sample. Eight transients were recorded.

Experimental data were acquired using cross-polarization with continuous

microwave irradiation (Figure 3-1). The offset from resonance (vide infra) was set to

maximize the 'H thermal mixing DNP enhancement. Accordingly, the reported

enhancements are enhancements of the 'H polarization detected indirectly through the

dilute spins (13C or 15N). Previous results at 5 T demonstrate that proton polarization is

homogeneously distributed through the sample by rapid proton spin diffusion on the

timescale of the experiment [26]. Further, we have observed in these studies that the

directly and indirectly detected 1H enhancements are identical. A representative static

spectrum of 1-'3 C-glycine is shown in Figure 3-2. The DNP enhancement of 170 ± 50 at

20K was achieved with a radical concentration of 80mM, and an enhancement of

approximately 40 was also obtained in a sample of pfl-bacteriophage doped with
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TEMPO at 60mM concentration (not shown). The enhancements obtained at 9 T from

the glycine sample (Figure 3-2) are in the same order of magnitude as previous results

obtained at 5 T [16], indicating that the inverse dependence of the thermal mixing

enhancement on the static magnetic field has been overcome under the conditions of

these experiments.

r-
C:

E

C
LU¢-
ca

89000 89100 89200 89300 89400 89500

Field (G)

Figure 3-3: Dependence of the DNP enhancement (solid circles) on resonance offset,
superimposed on the simulated 4-amino TEMPO EPR spectrum (solid trace). Because the
gyrotron oscillator frequency is fixed, the static magnetic field was swept in this experiment.

In general, the DNP enhancement is strongly dependent upon the position of

irradiation relative to the electron resonance. Since the gyrotron oscillator is fixed in

frequency, the static magnetic field was swept from 89000 G to 89500 G (a Zeeman

range which encloses the entire EPR line shape) in order to maximize the enhancement.

In Figure 3-3, we show the field dependence of the DNP enhancement in a static sample
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of 1-13C-glycine doped with 60mM 4-amino-TEMPO at 90K together with a simulated

EPR spectrum at 250 GHz. Since these spectra were acquired at a higher temperature

and lower radical concentration than those in Figure 3-2, the DNP enhancement is lower.

On the basis of these results, we have assigned the DNP effect observed here to the

thermal mixing mechanism. In particular, the maximum DNP enhancement occurs

within the EPR line shape, a fact which is consistent with the excitation of allowed EPR

transitions and not forbidden ones.

3.5 DNP MAS Experiments at 9 T

A variety of techniques have been successfully applied to produce sensitivity

enhancements in MAS spectra. These are based upon indirect detection of low y nuclei

during fast MAS [13,14], improved multiple pulse decoupling [15], or a combination of

both [27]. Thermal mixing DNP is complementary to these methods, as the dynamics of

electron nuclear polarization transfer do not involve any coherent manipulation of the

nuclear spins. Further, DNP can produce signal enhancements of several orders of

magnitude, albeit at the expense of considerable experimental complexity relative to

other approaches. For the DNP/MAS experiments presented here, the sample, consisting

of U-'3 C, 15N-Proline in a 60% glycerol matrix doped with 60mM TEMPO, was loaded

into a 4mM sapphire rotor while still in the liquid state and frozen in situ. In Figure 3-5,

we show two-dimensional chemical shift correlation spectra of proline taken using SPC5

homonuclear double-quantum mixing [28] (a) and proton-driven spin diffusion (b) (see

Figure 3-4). In both cases, the DNP enhancement was approximately 17, and the

microwave output power was stable to within 1%.
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Figure 3-4: Sequences for two-dimensional homonuclear chemical shift correlation spectroscopy.
Following cross polarization from 'H-13C, the system evolves under the 13C chemical shift for a
period tl. Correlations are established using mixing via (a) proton-driven spin diffusion or (b)
SPC5 homonuclear double-quantum mixing as described elsewhere [28,31], and detected during
t2.
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Figure 3-5: Two-dimensional 13C- 13C correlation spectra of U-'3 C,15N-proline, in (a), the SPC5
dipolar recoupling sequence was applied during a double quantum mixing period. The MAS
frequency was 6 kHz, the mixing time was 1.33 ms, and the temperature was regulated at 97 ± 0.8
K. In (b), correlations were established by proton-driven spin diffusion for a mixing time of
10ms. The MAS frequency was 7 kHz, and the temperature was unregulated but remained within
the range 98-101K. In both cases, 16 transients were acquired for each of 128 increments in the
tl dimension, and the DNP enhancement was approximately 17. In (c) and (d), we show one
dimensional 13C MAS spectra obtained with and without DNP, respectively, using SPC5
recoupling with a double quantum phase cycle; (e) and (f) are CP spectra with and without DNP.
The apparent intensity differences between the spectra in (c) and (e) are due to recoupling
dynamics at short excitation times [3].

3.6 Conclusions

Using a 250 GHz gyrotron microwave source, we have obtained signal enhancements of

up to 170 ± 50 at a magnetic field strength of 9 T. These results illustrate that it is
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feasible to manipulate experimental conditions including temperature, concentration and

nature of paramagnetic dopant, and microwave power to obtain large enhancements of

nuclear spin polarization even in elevated magnetic fields. A detailed study of these

experimental parameters is currently in progress, and we are currently constructing a 460

GHz second harmonic gyrotron oscillator for DNP experiments at 16.5T (700 MHz 'H)

[29]. Finally, the routine incorporation of DNP into multidimensional correlation

experiments, and, in particular, dipolar recoupling experiments, is now possible, and we

are currently pursuing applications to the quantitative spectroscopy of biological systems.
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Chapter 4 Corrugated Waveguide and Directional Coupler
for CW 250 GHz Gyrotron DNP Experiments

This chapter appears in the following publication:
Paul P. Woskov, Vikram S. Bajaj, Melissa K. Homstein, Richard J. Temkin, and Robert
G. Griffin, "Corrugated waveguide and directional coupler for CW 250 GHz gyrotron
DNP experiments," IEEE Transactions on Microwave Theory and Techniques, vol. 53,
no. 6, pp. 1863-1869, June 2005.

A 250 GHz corrugated transmission line with a directional coupler for forward and

backward power monitoring has been constructed and tested for use with a 25-watt CW

gyrotron for dynamic nuclear polarization (DNP) experiments. The main corrugated line

(22 mm internal diameter (i.d.), 2.4 m long) connects the gyrotron output to the DNP

probe input. The directional coupler, inserted approximately midway, is a 4-port crossed

waveguide beamsplitter design. Two beamsplitters, a quartz plate and 10-wire array,

were tested with output coupling of 2.5% (-16 dB) at 250.6 GHz and 1.6% (-18 dB),

respectively. A pair of mirrors in the DNP probe transferred the gyrotron beam from the

22 mm waveguide to an 8 mm helically corrugated waveguide for transmission the final

0.58 m distance inside the NMR magnet to the sample. The transmission line

components were all cold tested with a 248 ± 4 GHz radiometer. A total insertion loss of

0.8 dB was achieved for HE1,1 mode propagation from the gyrotron to the sample with

only 1% insertion loss for the 22 mm diameter waveguide. A clean Gaussian gyrotron

beam at the waveguide output and reliable forward power monitoring were achieved for

many hours of continuous operation.

4.1 Introduction

The recent availability of multiwatt CW power at 250 GHz for dynamic nuclear

polarization (DNP) [1] and other diagnostic applications has created a need for efficient,
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moderate power transmission line and directional coupler components. Fundamental

mode WR-03 waveguide components (0.86 x 0.43 mm inside dimensions) are not

practical due to high insertion losses of > 8 dB/m. High transmission efficiencies at 250

GHz can be achieved by using overmoded waveguide (cross section dimensions greater

than a wavelength) or optical components. The most efficient overmoded waveguide

mode is the HE1,1 mode in corrugated waveguide [2]. This mode also ideally couples to a

free space Gaussian beam, which is optimum for achieving the smallest possible

diffraction limited spot sizes for maximizing power concentration or spatial resolution in

an experiment.

Corrugated waveguide transmission lines are a well-established technology

widely used with gyrotrons at lower frequencies. Some examples are the transmission

lines at 110 GHz on the DIII-D tokamak [3], at 140 GHz on the ADSEX-Upgrade

tokamak [4], and at 84 and 168 GHz on the Large Helical Device (LHD) stellarator [5].

In this report we extend this technology to 250 GHz.

In addition to efficient transmission, a directional coupler is required in most

experiments to monitor forward and reflected power. In high power gyrotron

transmission lines at lower frequencies this is typically accomplished with small coupling

holes in the mirror of a miter bend. Practical considerations due to the high power levels

and requirements for heat dissipation limit the coupling holes to linear arrays as used in

the transmission lines at 110 GHz on DIII-D [6] and at 140 GHz on the Frascati Tokamak

Upgrade [7]. To overcome the power coupling variations of a linear array when multiple

modes are present in the transmission line, experiments with a two-dimensional array of

holes in a copper film on a diamond substrate for heat dissipation have also been carried
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out [8]. In the work presented here a quartz optical beam splitter, which is practical at

moderate power levels, was implemented inside a straight section of corrugated

transmission line to provide full beam cross section coupling of both forward and

reflected power. Thin wires stretched across the waveguide aperture in place of the

quartz were also tested as an alternative beamsplitter.

54.7" miter mirror
22 mm ----. . J, Sample

waveguide ---------- Window >

dFewor
detedorr \waveguide

Direcional Mior
Backward opbtcs box
detector

Figure 4-1: 250 GHz transmission line layout for DNP experiments.

4.2 Component Design

The layout and principal components of the 250 GHz transmission line for DNP

experiments are illustrated in Figure 4-1. From the gyrotron the transmission line starts

with a 22 mm diameter, 2.44 m long corrugated waveguide with a beamsplitter

directional coupler near the middle. At the output of this waveguide a two-mirror optics

unit focuses and directs the gyrotron beam into a smaller 8 mm diameter, 0.58 m long

helically tapped corrugated waveguide. The two mirrors consist of a spherical 50 mm

diameter, 50 mm focal length focusing mirror, and a 25 mm square flat steering mirror.

At the sample end of the 8 mm waveguide a flat mirror, 54.70 mitered waveguide bend

directs the beam to the cryogenically cooled sample. A PTFE (Teflon) window is located

in the 8 mm straight waveguide just before the miter bend. The 8 mm waveguide and
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sample are inside the bore of the magnet (not shown) for the DNP experiments. The 8

mm waveguide also serves the dual purpose of the central conductor of the coaxial line

for the 30-300 MHz RF.

4.2.1 Waveguide

The choice of the main waveguide diameter was based on an analysis of the gyrotron

output. An internal Vlasov converter inside the gyrotron transforms the TEo,3 mode to a

near Gaussian beam, launching it through a quartz window. Ray tracing analysis of the

Vlasov coupler predicts a slightly elliptical beam waist at the window with minimum and

maximum diameters of 10.04 and 13.72 mm. A calculation of coupling such an elliptical

beam to a circular corrugated waveguide HE1, 1 mode as a function of waveguide diameter

is shown in Figure 4-2. The coupling efficiency is optimal with a waveguide diameter of

about 18 mm. A somewhat larger waveguide diameter of 22.2 mm (7/8 inch) was finally

chosen after initial gyrotron output power measurements immediately outside the magnet

dewar side bore showed greater power output coupling using a larger diameter waveguide

due to the presence of higher order modes. The compromise for the calculated coupling

to the HEI,1 mode at this larger waveguide diameter is not significant, dropping only from

95% to 91%.

The 22 mm diameter corrugated waveguide was fabricated from many short

aluminum tube sections with a wall thickness of 3.2 mm (1/8 inch). The circumferential

wall corrugations were 0.3 mm (0.25 X) deep and wide with a period of 0.4 mm (0.33 X).

Two 0.254 m long and fifteen 0.124 m long waveguide sections and one 0.064 m long

directional coupler block were assembled with outer diameter clamps to achieve the

desired waveguide length.
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Figure 4-2: Calculated coupling efficiency of an elliptical Gaussian beam of 10.04 x 13.76 mm
waist cross section to a circular waveguide HE1 ,I mode.

The 8 mm waveguide was fabricated from copper tubing with a short section of

stainless steel tubing welded in the middle to act as a cryogenic thermal break. The

internal corrugations were machined with a rifling tap having a pitch of 2.5 grooves per

mm (3 per X). The triangular groove depth was estimated to be between 1/4 X and 1/8 X.

The total polarization rotation for propagating a 250 GHz beam through this waveguide

due to the helical groove was estimated to be < 30 using equation (2) in [9]. After

machining, internal and external surfaces of this waveguide were flash coated with silver

and then gold to provide good electrical conductivity to the RF and protection from

corrosion.

4.2.2 Directional coupler

The directional coupler design, illustrated in Figure 4-3, uses crossed corrugated

waveguides that are split along a diagonal of the crossed waveguide intersection to
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accommodate a beamsplitter. The beamsplitter thickness and index of refraction

determine the degree of reflective coupling from the main waveguide direction to the side

waveguide ports. The reflectivity of a beamsplitter, assuming no absorption, is given by

the standard formula [10]:

Corrugated waveguide Beamsplitter

/

Figure 4-3: Design of the directional coupler fabricated from two corrugated waveguide corners
that mate along the diagonal to hold the beamsplitter. One corner with a flat mirror along the
diagonal would make a 900 waveguide miter bend.

4psin2

9R = 2 (4.1)

(1- p)2 + 4psin2 -
2

where p is the surface reflection given by the Fresnel equations and 8 is the phase

difference between the beamsplitter front and back surfaces given by:

4r<
=- nh cos 6, (4.2)

For the two orthogonal E-field polarizations parallel and perpendicular to the plane of

incidence (the plane of Fig. 4-3):
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t an (Oi, - 2  (4.3)p , ;I= (4.3)
tan(Oi + o,)j

P i - ,T  (4.4)
P= sin(O, + 8,)

where in the above equations Oi and Ot are the angle of incidence and transmission,

respectively at the beamsplitter as related by Snell' law of refraction sin Oi = n sin Ot, n is

the beamsplitter index of refraction, h is its thickness, and X is the gyrotron beam

wavelength in vacuum.

A low coupling factor is achieved by a beamsplitter minimum in reflectivity. At

250 GHz fused quartz has an index of refraction of 1.955 [11] and for an incidence angle

of 450 has a reflection minimum for a thickness of approximately 1 mm. Common

microscope slides with this thickness and sufficient area (25 x 50 mm) to cover a 22 mm

aperture at 450 are readily available and were used in the present experiments. Another

advantage of this beamsplitter is that a visible laser beam can be introduced through a

side port and its reflection off the beamsplitter can be aligned with the waveguide axis,

facilitating downstream alignment of the transmission line and microwave optics.

A disadvantage of using a dielectric beamsplitter for signal coupling is that it is

narrowband. Narrowband operation is not a limiting factor in this 250 GHz DNP

experiment, since only the narrow gyrotron frequency is transmitted, but stability is

important for monitoring power. Small changes to the beamsplitter parameters, for

example due to thermal changes, could cause the coupling factor to drift. To overcome

this potential limitation, experiments were carried out with thin wires stretched across the

waveguide aperture as an alternative broadband beamsplitter approach.
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4.2.3 Coupler with wires

lent

(b)

Figure 4-4: Scattered radiation patterns (Ps/Po x 103) at 250 GHz by (a) one wire (36 gauge) and
by (b) a ten wire array. The wires are arrayed with a spacing of 1/4 X along the vertical axis of
this figure with the wire axis normal to the figure plane. The incident beam is 450 from normal to
the wire array plane with a HEI,1 beam profile corresponding to corrugated waveguide with ka =
58.

The power scattered by a wire can be expressed as the product of its scattering cross

section and the incident power density as:

Ps = (TPD (4.5)

where a has units of area and PD has units of power per unit area. In the following

analysis we will only consider the electric field polarization normal to the wire axis

because the scattering cross-section is smaller for this orientation and we desire a small

coupling factor. For an infinitely long, small radius, a, wire such that the condition ko a

<< 1 is true the scattering cross-section is given by [12]:
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COS2 T

where T is the angle between the incident beam and the normal to the wire axis and 0 is

the angle between the direction of the scattered signal and the plane containing the

incident beam and wire. In our present coupler design for a wire stretched across the

waveguide aperture perpendicular to the plane in Figure 4-3, T=0o and 0=90o. A 36

gauge wire with a = 63.5 pm has a value 0 = 5.8 x 103 mm 2 at 250 GHz (ko=5.24mm').

The power density of the HEl,I mode inside a circular waveguide is best

expressed in terms of the electric field density, ED, as:

1
PD E2Z (4.7)

where Zo = (go0 /s)'1 2 is the impedance of free space and the electric field density is given

by [2]:

r
JO 2.405 -

E 2PoZ 1 0 A (4.8)
rA J (2.405)

where Po is the power of the gyrotron beam, A is the waveguide radius, r is the radius

coordinate inside the waveguide, and Jo and Ji are Bessel functions.

According to (4.6), one wire will primarily backscatter the incident radiation (see

the top of Figure 4-4). An array of wires is needed to impart directionality to the

scattered signal away from the backward direction. The sum of the scattered electric

field for an array of wire scatters can be calculated with the aid of the grating equation

[13].
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where 4 is given by the grating equation as:

E = kod(sinOi + sinO )

and d is the spacing of the wires and

r, = nd for n odd or zero

r = n+! + j for n even.

(4.10)

(4.11)

(4.12)

Figure 4-5: View of 10-wire, gauge 36 beamsplitter stretched across the diagonal face of the
corrugated 4-port directional coupler block.

The wire spacing needs to be less than the wavelength to minimize the number of

side lobes in the radiation pattern. The radiation pattern for ten wires with a spacing of

0.25 k is shown in the lower part of Figure 4-4. The strongest radiation lobe is at about

83o to the incident beam with a scattering fraction of 0.0072 (-21.4 dB). The other strong
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radiation lobe is in the forward direction and does not contribute to the output coupling

into the side port. The 10-wire side port coupling is not as optimal as with the quartz

beamsplitter due to the slight angular offset, but it would be broadband. Figure 4-5

shows the 10-wire beamsplitter implemented on the diagonal face of the split 4-port

corrugated block for measurements described below.

4.3 Cold Tests

A 248 GHz heterodyne radiometer was used to test the transmission efficiency of the

waveguide components with broadband thermal radiation. The radiometer obtained from

Millitech used a tripled 88.67 GHz Gunn local oscillator (LO) that was frequency

stabilized to a 100 MHz crystal quartz reference. The intermediate frequency (IF)

amplifiers covered the 2-4 GHz range. A corrugated horn with an internal semi-angle of

2.50 and an output aperture of 18 mm provided an HEI,I mode field-of-view that was

coupled to a 6.35 cm long 22 mm diameter corrugated waveguide section by a hollow

acrylic plastic conical transition with an internal semi-angle of 4o. A second 12.4 cm

long 22 mm diameter waveguide section was fixed relative to the first with a gap of about

1 cm for insertion of a chopper. A photograph of this setup is shown in Figure 4-6. The

chopper permitted operation as a Dicke receiver [14] with lock-in amplifier phase

sensitive detection. The double sideband (DSB) noise temperature was measured with a

liquid nitrogen cooled thick (30 mm) pyramidal surfaced Eccosorb black body to be

approximately T, = 11,000 K past the chopper at the end of the 22 mm diameter

waveguide. Though the theoretical measurement precision with this receiver as given by

Tr/(B t)"l [15] is 0.2 0C for one second integration time (t = 1 s) and the full receiver DSB

(B = 4 GHz), in practice it was at least several degrees due to electronics drift.
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Figure 4-6: The 248 GHz heterodyne receiver used for cold test measurements.

The transmission efficiency of the 250 GHz corrugated waveguide components

was determined by measuring the increase in receiver noise temperature as the

components were added to the end of the receiver-chopper assembly. The results for the

22 mm waveguide and the two versions of the directional coupler are shown in Figure 4-

7. The top plot (open circles) shows the transmission efficiency of the straight

waveguide sections as they were built up to the full 2.4 m length without any directional

coupler. A small linearly increasing insertion loss was observed that totaled 1% for the

complete waveguide. This is probably an upper limit for HEI,I mode transmission

efficiency, since it is likely that the receiver beam may have had some higher order mode

content due to the acrylic transition and chopper waveguide gap.

In the next lower trace (solid circles) of Figure 4-7, a directional coupler using a

10-wire beamsplitter as described above was inserted into the 22 mm waveguide 1.37 m
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from the receiver assembly. The measured loss of this coupler at the insertion location

was 2.6%. In the lower trace (open squares) a directional coupler with a 1 mm thick

quartz beamsplitter was inserted in the same position and measured a 6.8% insertion loss.

Measurements of the noise temperature to the side port of the coupler for forward power

coupling corresponded to 1.6% and 6.3% coupling fraction for the wire and quartz

beamsplitters, respectively. Therefore some of the observed insertion loss is not coupled

out to the monitoring port. A further measurement was made of the 4-port corrugated

waveguide block without a beamsplitter and was found to have an insertion loss of about

0.5%. Consequently, the difference between the observed insertion loss and side

coupling can be accounted for by the discontinuity of the crossed waveguide in the 4-port

block.

1.00

0.95

E
Co 0.90
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Figure 4-7: Cold test transmission measurements of the 22 mm diameter corrugated waveguide
without and with two versions of the directional coupler.
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Figure 4-8: Calculated quartz (n=1.955) beamsplitter reflectivity for a beam incidence at 450 for
the two orthogonal polarization cases and two thicknesses.

The measured coupling fraction of 1.6% (-18 dB) with the 10-wire beamsplitter is

3 dB larger than the calculation above. This difference may be due to the approximate

nature of the calculation for ko a << 1 where for the present case ko a = 0.33.

The results for the coupler with the quartz beamsplitter can be understood with

the aid of the calculations shown in Figure 4-8. The quartz reflectivity is a sensitive

function of frequency and thickness. The beamsplitter thickness was measured to be 0.94

± 0.02 mm, one of the cases plotted in Figure 4-8. Integrating the beamsplitter

reflectivity over the detection bands of the receiver results in a reflectivity of 3.8 E 2%

for parallel polarization, the upper limit of which is close to the observed value. Rotating

the quartz beamsplitter 900 on the waveguides axis to couple with the perpendicular

polarization increased the measured coupling to 22%, which is also in agreement with the

calculation of 22.2 ± 3% for a 0.94 mm thick beamsplitter. For comparison, the case for
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a beamsplitter with a thickness of exactly 1 mm is also shown, which has a calculated

parallel and perpendicular coupling of 0.24% and 1.7% respectively. Polishing the quartz

beamsplitter to a precise thickness can be used to achieve almost any desired coupling

factor less than -3 dB at a specific frequency.

Table 4.1: Cold test insertion loss measurement results with 248 ± 4 GHz radiometer

Component Insertion Loss
22 mm waveguide, 2.44 m long 1%
Quartz coupler (6.3% coupling) 6.8%
10-wire coupler (1.6% coupling) 2.6%
4-port block w/o beamsplitter 0.5%
Transfer mirrors and 8 mm waveguide 15 ± 3%

The insertion loss of the two mirrors that transfer the millimeter-wave beam from

the 22 mm waveguide to the 8 mm waveguide and the 8 mm waveguide was also

measured and found to be 15 + 3%. It is likely that most of this loss can be accounted for

by non-optimal threaded groove parameters and an elliptical distortion of the millimeter-

wave beam caused by the spherical focusing mirror that is used at about 300 off axis.

Table 4.1 summarizes the cold test insertion loss measurements.

4.4 Measurements with Gyrotron

The 22 mm diameter corrugated waveguide with the quartz 4-port directional coupler was

tested with the CW gyrotron beam. Power was measured with a Model 362 Scientech

calorimeter and mode patterns were obtained with thermal bum paper backed by a flat

sheet of Eccosorb to enhance absorption. The power measurements were not corrected

for the actual millimeter-wave absorption by the calorimeter detector element [16]. Table

4.2 summarizes the results. The gyrotron power output was set to about 5 watts for these

measurements, which is adequate for the DNP experiments and allows very stable
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operation for periods of over 10 days. Operation with output power up to 25 watts is

possible when long-term drift is not important.

Table 4.2: 250 GHz gyrotron beam measurements

Distance from
Gyrotron Bum Pattern Power (W)

Window (cm)

30
wavl\ ui .... 4 18mm

38 4.5
18mm -

100 K-
12 mm

132
(after quartz I

coupler) 7 mm
short long

exposure exp.

244 4.1

3 mm

The top burn pattern was taken without any waveguide immediately outside the

gyrotron magnet side port, about 30 cm from the gyrotron window. The irregular

appearance of the beam indicates the presence of higher order modes. However, the

nonlinear absorption properties of the thermal paper may exaggerate the content of higher

order modes. In the next entry, a 38 cm long section of the 22 mm waveguide was

brought into near contact with the gyrotron window and aligned to maximize the power

output. At this point the beam is significantly distorted and elongated in the horizontal

direction. The next measurement was made after 1 m of waveguide was added to the

output of the gyrotron window. The beam now has evolved to two vertically separated
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hot spots. In the next entry, with 132 cm of waveguide including the directional coupler

the beam has become a smaller elliptically elongated spot. Finally, at the output of the

full waveguide we have a single circular spot. Here two burn paper exposures are shown.

The short exposure shows a small circular spot. In the longer exposure, the small circular

spot has been burned from black to a lighter shade of gray making the outer regions of

the beam visible, showing that the beam is circular over a large dynamic range. This

suggests that the higher order gyrotron modes have been filtered from the beam by the

2.4 m long transmission through the corrugated waveguide. A power measurement of 4.1

watts was made at the waveguide output. This corresponds to an 11% loss relative to the

first measurement of 4.5 watts near the gyrotron output.

The forward output coupling of the quartz directional coupler was also tested with

the calorimeter. A coupled fraction of 2.5% was measured. This is lower than the cold

test result because the quartz beamsplitter has a smaller reflectivity at the 250.55 GHz

gyrotron frequency versus the two IF bands of the cold test receiver (cf Figure 4-8). The

gyrotron frequency was accurately established by harmonically mixing with a frequency

counted and PLL-regulated Gunn oscillator and performing a Fourier transform

measurement of the IF frequency on a digital oscilloscope.
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Figure 4-9: Three hour CW test of the quartz directional coupler stability, (a) normalized ratio of
forward coupled signal and gyrotron power shown in (b).

A 3-hour test of the directional coupler was also carried out to determine thermal

stability with the gyrotron beam. A detector diode in WR-3 waveguide was matched to

the forward power monitoring port with a 2.50 corrugated horn from Millitech, a 40

hollow acrylic taper, and a short section of 22 mm dielectric waveguide similar to the

setup of the 248 GHz radiometer described above. A thick pyramidal surfaced Eccosorb

dump blocked the reflection monitoring port opposite the forward port for this test. The

harmonic frequency measurement receiver was used to simultaneously monitor the

gyrotron power in the main beam after the directional coupler by intercepting a small part

of the beam at a distance. Figure 4-9 shows the results. The measured power levels are

shown in Figure 4-9(b) and the normalized ratio of these signals is plotted in Figure 4-

9(a). The coupling factor remains relatively stable over the three hour period. Drifts in
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the detection electronics can explain the observed deviation of 0.8% in the coupling

factor.

This directional coupler design will require careful matching of the detector

diodes and/or isolation when both forward and backward detectors are simultaneously

implemented because they view each other cross the beamsplitter.

4.5 Conclusions

A corrugated waveguide with a full cross-section directional coupler for use with a

moderate power CW 250 GHz gyrotron for DNP experiments has been fabricated and

successfully tested. Precise measurements of small insertion losses and coupling factors

were made possible with the use of a wide bandwidth radiometer, 248 ± 4 GHz, for cold

testing rather than a coherent source that would have had standing wave inaccuracies.

The total transmission loss for an HE 1,1 mode from the gyrotron to the sample was found

to be about 0.8 dB over a total distance of 3 m with a directional coupler, an optical

change in waveguide diameter, a Teflon window, and a miter bend. The actual loss was

about 1.1 dB due to the presence of higher order modes in the gyrotron beam. However,

with 5 watts output at the gyrotron 4 watts can be readily coupled to the sample, more

than adequate for the DNP experimental requirements. Most of the insertion loss of

about 0.7 dB occurs in the 0.58 m long, 8 mm diameter waveguide inside the DNP

magnet probe and the associated two mirrors that transfer the gyrotron beam from the 22

mm diameter waveguide. Future improvements in the performance of this section of the

transmission line system are possible by replacing the spherical mirror with an off axis

parabolic mirror and improved corrugation parameters. The main 22 mm diameter, 2.44
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m long waveguide with optimum corrugations was found to have an upper limit for HE 1,1

mode transmission losses of only 1%.

The problem of monitoring forward power was solved with a 4-port crossed

corrugated waveguide with a beamsplitter. Two types of beam splitters were tested, a

narrow band thin quartz plate and a broadband 10-wire scattering array. The quartz plate

has the advantage that a visible laser beam can be superimposed on the millimeter-wave

beam for alignment, but it has a disadvantage that it may be susceptible to frequency drift

of the coupling factor under thermal loading by the gyrotron beam. The 10-wire

scattering array is broadband and the wires are good thermal conductors, potentially

making the 10-wire array coupling factor more stable at higher power. Both

beamsplitters cold tested about as predicted and in the present -5 watt CW gyrotron tests

the quartz beamsplitter did not reveal any problem with thermal drift. This directional

coupler design along with the corrugated waveguide demonstrated here provide an

efficient solution to the problem of transmitting and monitoring millimeter-wave beams

at a frequency of 250 GHz.
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Chapter 5 250 GHz CW Gyrotron Oscillator for Dynamic
Nuclear Polarization in Biological Solid State NMR

This chapter will appear in the following publication:

Vikram S. Bajaj, Melissa K. Hornstein, Kenneth E. Kreischer, Jagadishwar R. Sirigiri,
Paul P. Woskov, Melody L. Mak, Judith Herzfeld, Richard J. Temkin, and Robert G.
Griffin, "250 GHz CW gyrotron oscillator for dynamic nuclear polarization in biological
solid state NMR", Journal of Magnetic Resonance, (submitted).

We describe the parameters and control characteristics of a gyrotron oscillator operating

at 250 GHz for periods of up to 21 days with a 100% duty cycle. The 250 GHz gyrotron

is the first gyro-device designed with the goal of seamless integration with an NMR

spectrometer for routine dynamic nuclear polarization (DNP)-enhanced NMR

spectroscopy. Multidimensional correlation spectra of the membrane protein

bacteriorhodopsin recorded with DNP yield chemical shift assignments for several active

site resonances and demonstrate the capabilities of this system in quantitative NMR

experiments. Under extensive computer control, the gyrotron operates in continuous

with a power stability of 1% and a frequency stability of better than 400 kHz. Power

output is regulated through feedback control, which we have implemented by sampling

the forward and reflected beam power using a quasi-optical directional coupler in

overmoded corrugated waveguide. Radiation intensity patterns from the corrugated

waveguide were measured using three techniques to confirm pure HE1,1 mode content:

thermal paper; a thermometric approach based on the temperature-dependent color of

liquid crystalline media applied to a substrate; and, finally, imaging with a pyroelectric

camera. Exploration of the operating characteristics of several fundamental modes

reveals broadband continuous frequency tuning of up to 1.8 GHz as a function of the

magnetic field alone. Oscillation of the 250 GHz gyrotron at the second harmonic of
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cyclotron resonance begins at extremely low beam currents (as low 12 mA) at

frequencies between 320-365 GHz. The low starting currents were attributed to an

elevated cavity Q, which is confirmed by cavity thermal load measurements.

5.1 Introduction

Due to the excellent resolution in nuclear magnetic resonance (NMR) spectra, NMR has

become the preferred spectroscopic approach for the solution of problems in many areas

of physics, chemistry, biology, materials science, and more recently medicine. Its

excellent resolution is a consequence of long nuclear relaxation times that are in turn a

due to the small magnetic moments of the nuclear spins that couple weakly to the

surrounding lattice. However, an additional effect of the size of these magnetic moments

is that the sensitivity of NMR experiments is low when compared to other spectroscopic

approaches. Further, since both high resolution solid state and solution NMR are utilized

with increasing frequency in structural studies of macromolecular biological systems

sensitivity continues to be an issue of paramount importance in the successful application

of the technique.

Approaches to improving the sensitivity of NMR experiments have followed two

avenues: innovations in instrumentation and in spectroscopic methodology. Outstanding

examples of the former date from as early as the 1960's, when the appearance of

laboratory computers enabled the implementation of Fourier transform NMR techniques

resulting in signal-to-noise increases of 10-100 [1]. More recently, the development of

superconducting magnets that operate at increasingly higher fields has improved

sensitivity significantly, since the signal-to-noise per unit time scales as -wo03. Finally, in

the last few years, cryogenically cooled probes with higher Q's in the r.f. coil and lower
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noise figures in the detection r.f. preamplifiers have become routinely available,

improving the sensitivity by a factor of 1.5-3 depending on the conductivity of the sample

[2].

Examples of innovations in spectroscopic methodology that have improved

sensitivity are also numerous. Some of the most successful approaches involve

polarization transfer techniques, including cross polarization (CP) in solids [3, 4] and

INEPT [5] transfers in solution, in which the polarization of a spin with a large magnetic

moment is transferred to one with a smaller moment. Today, CP is an integral part of

high resolution magic angle spinning (MAS) experiments in solids [6] and multiple

INEPT transfers are present in essentially every biological solution NMR experiment [7].

In these approaches, the sensitivity is enhanced by a factor of (y7lys) or about 4 for I='H

and S='3C and 10 when S=15N. Another, and in fact the original, example of a

polarization transfer experiment was proposed by Overhauser [8] and involved transfer of

conduction electron polarization to nuclear spins in metals. Carver and Slichter [9, 10]

verified Overhauser's hypothesis that such transfers and signal enhancements were

possible with low field (3.03 mT) experiments performed on samples of Li metal and

other materials with mobile electrons. During the 1970's the analogous nuclear

Overhauser effect (NOE) was used extensively to increase sensitivity in spectra of low-y

species and is currently employed to estimate distances and to determine structures in

solution NMR experiments.

Extension of electron-nuclear and other high polarization transfer experiments

involving noble gases, para-hydrogen, semiconductors, or photosynthetic reaction centers

[11-23] to contemporary solid state and solution experiments is very appealing, since it

229



could significantly enhance the sensitivity in a variety of NMR experiments. In

particular, the theoretical enhancement for electron-nuclear polarization transfers is

approximately -(Ye/yI), where now the ratio is -660, because of the large magnetic

moment of the electron relative to the 'H, making the theoretical gains in sensitivity

large. Accordingly, during the 1960's and 1970's, there were extensive efforts to

perform electron-nuclear polarization transfer in liquids [24, 25] and solids [26, 27],

experiments that are collectively known as dynamic nuclear polarization (DNP). All of

these experiments require that the electron paramagnetic resonance (EPR) spectrum be

irradiated with microwaves that drive the exchange of polarization between the electrons

and the nuclear spins. In the case of liquids, these are Overhauser effect transitions and

in solids other mechanisms - the solid effect (SE), thermal mixing (TM) or the cross

effect (CE) - dominate the polarization transfer process. Since DNP experiments require

irradiation of the EPR spectrum, however, they were confined to relatively low magnetic

fields because of the paucity of high frequency microwave sources. In particular, the

microwave sources used in both the liquid and solid-state experiments were klystrons that

operate 5 40 GHz, constraining DNP-MAS experiments to 5 60 MHz 'H frequencies.

Thus, if DNP was to move to higher fields employed in contemporary NMR experiments,

then new instrumental approaches to producing microwaves were required.

To satisfy these requirements, we initiated efforts utilizing gyrotrons, a type of

cyclotron resonance maser, as microwave sources for DNP experiments [28-30]. This

choice was motivated by the fact that gyrotrons are fast wave devices [31], with

interaction structures whose dimensions are large compared to the operating wavelength,

and as such are capable of generating high powers (10-100 watts CW) for the extended
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periods typical in acquisition of multidimensional NMR experiments. Because the

gyrotron interaction involves a resonance between the r.f. modes of an electromagnetic

cavity and an axial magnetic field, the gyrotron frequency can in principle be increased

up to the available magnetic field strength. Further, the cavity can be much larger than

the operating wavelength, so the power density does not increase with the gyrofrequency,

resulting in long lifetimes and high reliability. We anticipate that gyrotrons will be used

to at least the 1GHz 1H NMR frequency regime (-660 GHz for electrons) or higher. A

gyrotron was recently operated in pulsed mode at a frequency of a 1.03 THz [32].

In order to demonstrate the feasibility of employing gyrotrons in DNP

experiments, we initially constructed a 140 GHz gyrotron oscillator that operates with a

211 MHz NMR spectrometer [30, 33]. This system permitted us to demonstrate DNP at

5T fields and to explore many important features of the experiments. For example, we

established that cross effect DNP using biradical polarizing agents is the optimal

mechanism [34-41] for high field experiments involving CW microwave radiation.

Traditional approaches, based on the solid effect and thermal mixing, yield enhancements

that are an order of magnitude smaller [38] or require high concentrations of polarizing

agents that lead to electron-nuclear dipolar broadening [42]. In addition, the 140 GHz

system permitted us to develop and refine a number of experimental techniques, for

example MAS at 90 K and lower temperatures [42, 43]. Finally, over the last few years,

research with the 140 GHz system led to increases in DNP enhancements from -10 to

-300 [28, 35]. Nevertheless, this spectrometer is operating at a 5 T field, and as such is

a low frequency instrument by present day NMR standards.
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In order to move DNP experiments to higher fields, we have built two additional

gyrotron oscillators operating at 250 and 460 GHz, corresponding to 380 and 700 MHz

for 'H NMR, respectively. A cursory description of the 250 GHz oscillator, initially

designed and constructed by one of us (KEK), appeared elsewhere [44] and the 460 GHz

oscillator is described in detail in other publications [45]. However, since the appearance

of the brief description of the 250 GHz gyrotron, we have implemented many important

changes to the system. In this paper we characterize the operation of the 250 GHz

gyrotron oscillator with extensive measurements of several important operating

parameters. We introduce two novel methods for imaging the millimeter wave beam and

quantitatively determining its spectral purity. We have also demonstrated for the first

time that the operating parameters of a gyrotron can be regulated under feedback control

for indefinite and stable operation. For example, this is the first gyrotron for DNP that

operates continuously (in true CW mode), and we have achieved uninterrupted and

regulated CW operation for a period of 21 days, a record for any instrument operating in

this frequency regime. In addition, we have integrated the device into a low temperature

solid-state NMR spectrometer so that it now routinely performs multidimensional solid

state NMR experiments on biological systems. Thus, the two of the primary goals of this

paper are to provide a detailed description of this new piece of instrumentation for

enhancing sensitivity in solid state NMR experiments - the 250 GHz gyrotron - and to

provide examples illustrating the scientific possibilities with the enhanced sensitivity

available with this equipment. For the latter goal we present in this paper DNP enhanced

MAS spectra of the bacteriorhodopsin (bR) which is a 26 kD membrane protein

embedded in a lipid bilayer that is a challenging test case for the DNP method. We chose
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bR spectra, rather than spectra of a model compound such as urea or proline that we have

used extensively in other papers demonstrating DNP [36, 46, 47], since it is a biologically

important system that poses outstanding scientific questions and therefore addresses the

applicability of DNP experiments to real systems. An additional important aim is to

familiarize members of the magnetic resonance community with this instrumentation. In

particular, while gyrotrons are well known in the microwave community, they are

virtually unknown in the magnetic resonance community. Thus, the contents of this

paper will serve to familiarize NMR and EPR community with the rudiments of gyrotron

technology and facilitate propagation of the instrumentation to other laboratories.

An outline of the paper is as follows. In Section 5.2 we present DNP enhanced

MAS NMR spectra of the membrane protein bacteriorhodopsin (bR) which demonstrate

what is currently achievable with high frequency DNP experiments, including the first

multidimensional spectra of a biological system acquired with DNP. The examples

illustrate that it is possible to acquire spectra that are simply not accessible in the absence

of DNP. Section 5.3 contains a brief discussion of the rf and microwave components of

the 250 GHz/380 MHz DNP NMR spectrometer. This includes a mention of the

millimeter wave transmission line, low temperature MAS probe, and cryogenics required,

although we defer a complete description of these three components to other manuscripts.

Section 5.4 provides a discussion of the theory of the operation of gyrotrons and a

detailed description of eleven major components of the 250 GHz gyrotron and their

function. Section 5.5 contains data on the operation of the gyrotron including power

output as a function of beam current, spectral purity and quality, frequency pulling as a

function of the magnetic field, and frequency and power output stability as a function of
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several parameters. We also characterize the radiated mode of the microwave beam using

two measurement techniques based on liquid crystal displays and pyroelectric camera

technology. Finally, in Section 5.6 we consider the possibility of second harmonic

operation in which the gyrotron frequency is twice that of the fundamental frequency in

the same magnetic field. This is a feature of the 460 GHz system mentioned above and is

important since generalization of second harmonic generation will reduce the cost of the

magnet associated with future high frequency gyrotrons.

5.2 DNP Experiments on the Membrane Protein Bacteriorhodopsin

Two research areas where high resolution MAS experiments have proved especially

successful are in studies of amyloid fibrils [48-50] [37, 51-54] and membrane proteins

[42, 55-72], and in both of these cases low sensitivity currently limits the information that

can be gleaned from the spectra. Accordingly, we recently demonstrated the use of DNP

to enhance signal intensities in MAS spectra of amyloidiogenic nanocrystals [37] and we

are currently utilizing DNP to improve the sensitivity of MAS spectra of the membrane

protein bacteriorhodopsin (bR) [42]. In order to motivate the reader's interest in DNP,

we present in this section DNP enhanced spectra of bR that illustrate some of the

scientific experiments that are possible with the increased sensitivity that is currently

available, and, as mentioned above, to address the issues of the applicability of the DNP

technique to scientific questions involving membrane proteins.

Bacteriorhodopsin is a 248-residue integral membrane protein that functions as a

light-driven proton pump. The protein encapsulates an all-trans, 6-s-trans retinylidene

chromophore attached to the protein via a Schiff base linkage to Lys216 as it illustrated in

Figure 5-1.
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Figure 5-1: Nomenclature of 13C sites of the retinal chromophore and Lys 216 side chain to which
it is covalently attached. The arrow indicates that during the bR photocycle there is isomerization
about the C13-C14 bond. In bR568 the retinal is in an all-trans conformation and the Schiff base
nitrogen is protonated, whereas in bR555 (dark adapted bR) there are three retinal conformations
present as shown by the DNP enhanced spectra in Figure 5-2 (vide infra).

The photoisomerization of the chromophore about the C13-C14 double bond initiates a

vectorial proton transport process whose mechanism involves several discrete photocycle

intermediates depicted in Figure 5-2. A knowledge of the precise molecular structure of

the chromophore and the location of the adjacent amino acid sidechains in these

intermediates could lead to a detailed understanding of the mechanism of proton

translocation. Thus, the goal of the DNP enhanced MAS experiments is to provide the

structures of these photointermediates.

z
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Figure 5-2: bR photocycle
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In order to study a particular photocycle intermediate, the sample is irradiated with a

wavelength of light that maximizes its yield. The sample temperature is then lowered to

-90 K, a temperature that inhibits conversion of one intermediate to another and one

where DNP is efficient. Information about the sample preparation and conditions used to

generate and trap specific photocycle intermediates is provided elsewhere [59, 73-75]

[47]. Subsequently, one of a variety of dipolar recoupling experiments is performed

using DNP to enhance the sensitivity. At present we are observing enhancements of -40

in the 'H polarization at 250 GHz/380 MHz and this enhanced polarization is

subsequently transferred to '3C or 15N.

Typical pulse sequences for DNP enhanced MAS experiments are described in

several papers [29, 43, 46, 47] and the current generation experiment used to acquire the

multidimensional spectra presented here is illustrated in Figure 5-3.

250 GHz CW piwaves

H CP R TPPM CW TPPM CW TPPM

13C

15N t1 C P
Figure 5-3: Pulse sequence for a 2D '5N- 3C_13C heteronuclear correlation experiment
incorporating DNP. The EPR spectrum is continuously irradiated yielding a steady state
enhanced 'H polarization that is replenished during the recycle delay of the NMR experiment.
Following 'H- 5N cross-polarization, magnetization is labeled with the 15N chemical shift and
then transferred to the 13C spins using band-selective 1sN- 3C cross polarization. Further
homonuclear mixing is accomplished with a dipolar recoupling sequence such as RFDR or by
proton-driven spin diffusion in the presence of an R3 recoupling field (DARR/RAD) [76, 77]
[78] [79]
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Presently, all of our DNP experiments involve either pre- or continuous

microwave irradiation, with the microwave frequency and/or magnetic field position in

the EPR spectrum chosen to optimize the transfer of electron polarization to the 'H spins.

In the 140 GHz system mentioned above and the 250 GHz system considered here, the

optimization is accomplished with a superconducting sweep coil, but in the future tunable

gyrotrons [80] will likely become available. In the case of the 140 GHz/211 MHz

system described previously, we generally employ long (-15-30 s) microwave pulses

since the vacuum system in that gyrotron was not designed for true CW operation [30,

33] and the 1H polarization appears in 3-5 Ti's [34, 37]. In contrast, the 250 GHz

gyrotron operates in true CW mode - for example, it has operated continuously for a

period of 21 days, but more typically we operate it for -7 days continuously. Thus, in

this case we apply microwaves continuously to maintain a steady state 'H polarization.

Subsequently, as illustrated in Figure 5-3, the enhanced 1H polarization is transferred to

the '3C, 15N, etc. spin reservoirs via cross polarization. We note that it is also possible to

polarize the low-y spins directly [27, 28, 81], but, because of the lower-y the transfer

process is slower and the slower spin diffusion among the low-y nuclei limits the sphere

of polarized nuclei to the vicinity of the paramagnetic center. Nevertheless, direct

polarization of low .spins presents interesting scientific opportunities that have not yet

been fully exploited.

Some typical DNP enhanced spectra obtained from bR are shown in Figures 5-4,

5-5 and 5-6 and illustrate the dramatic effect the increased signal to noise has on our

ability to address scientific questions. In Figure 5-4 we show 1D '5N spectra of _-'5N-

Lysine-bR in the bR568 state that illustrate that DNP results in dramatically improved
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signal-to-noise and reduced acquisition times, even with smaller sample quantities. As

discussed elsewhere [55, 82][83] the chemical shift of the Schiff base is extremely

sensitive to its local electrostatic environment, and therefore ID spectra of a ý-15N-

Lysine-labelled bR sample allow unambiguous assignment of each photocycle

intermediate shown in Figure 5-2, even where multiple intermediates co-exist. Thus,

spectra such as those illustrated in Figure 5-4 are of considerable interest. In the top trace

we show the spectrum acquired at 200 K on a 317 MHz spectrometer without DNP using

160 gL of sample in a 5 mm rotor. The spectrum acquired, even after an extended period

of data acquisition (10,000 scans, 3.5 days), illustrates the acute signal-to-noise problem

that is present in MAS structural studies of membrane (and amyloid) proteins and why

most of these experiments have been limited to 1D spectroscopy. In contrast, the lower

spectrum was acquired at 90 K in a much shorter time period (384 scans, 30 minutes)

from a 40 gL sample and displays excellent signal-to-noise suggestive of the possibility

of multidimensional spectroscopy. The signal-to-noise enhancement for this spectrum

bR56

no DNP
317 MHz

with DNP
380 MHz

250 150 50
15N Chemical Shift (ppm)

Figure 5-4: One dimensional 'H decoupled 15N MAS spectra of light adapted -'15N-Lys-bR. Top:

Spectrum acquired on a 317 MHz spectrometer using a 5 mm rotor with a 160 ptL sample
volume, 10,000 scans, 3.5 days (-5000 min) of data acquisition, T=200K Bottom: Spectrum
acquired with DNP - 250 GHz microwave irradiation using a 4 mm rotor, 40 tLL, T=90K, 384
scans, 30 minutes of data acquisition.
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due to microwave irradiation is -40 when compared to the spectrum obtained at 90 K

without microwaves. However, since it was acquired at 90 K (as opposed to 200 K), the

total enhancement, which we define as Et, compared to the 317 MHz spectrum must also

account for the increased polarization due to the Boltzmann factor [35]. Thus,

E = (200/90) x 40 = 90 as compared to the spectrum acquired on the 317 MHz

spectrometer. This large signal enhancement permits us to record multidimensional

spectroscopy with good signal-to noise in reasonable acquisition periods.

Figure 5-5 is an illustration of one of the initial 2D '5N-' 3C spectra obtained with

the pulse sequence illustrated in Figure 5-3. As mentioned above the '5N Schiff base

signal is a sensitive reporter of the local electrostatic environment involved in proton

translocation and its signal is well separated from the remainder of the 15N signals in the

spectrum of the protein. Thus, it is possible to selectively excite this resonance with a

Gaussian pulse as it illustrated in Figure 5-3 and to subsequently transfer that

magnetization to 13C's in the retinal and lysine sidechain. Thus, following 1H-15N cross-

polarization, magnetization is labeled with the 15N chemical shift and then transferred to

the '3C spins using band-selective '5N-13C cross polarization. Subsequent homonuclear

mixing is accomplished with a dipolar recoupling sequence such as RFDR or by proton-

driven spin diffusion in the presence of an R3 recoupling field (DARR/RAD). This

procedure yields the spectrum shown in Figure 5-5 where we observe cross peaks

between the '5N Schiff base and C-15, C-14, C-13 and the methyl at C-20 on the retinal.

By changing the offset frequency in the 15N- 13C step we can transfer magnetization to the

K216-Ce and K216-C. The spectrum in Figure 5-5 was recorded in approximately 12
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hours and would not have been possible without the factor of -90 signal enhancement

over our previous experiments mentioned above.

160216N-160 Ret.C13

-,: , 170' K216N1-
o 175. Ret.C15
z n 180

185
170 165 160

Figure 5-5: Schiff base region of
bR in the light adapted state.
experiment.

K216Nýr-
Ret.C14

K216N - K216N;- K216N;-
K216CE K216C8 Ret.C20

130 125 65 60 55 35 30 25 20
13C Chemical Shift (ppm)

2D Lys-Ný -Ret.-C15-CX correlation spectrum of [U-13C, 15N]-

Multiple chemical shift assignments result from a single

As illustrated in Figure 5-2, bR undergoes a photocycle in response to absorption

of light and we are currently studying the spectra of the K, L and M intermediates with

the goal of determining their structure, results that will be described in detail elsewhere.

Also illustrated in Figure 5-2 is the fact that if bR is kept in the

Schiff
base

SI .---

AK
170-C

S175
Zu,

350 250 150 50 -50
15N chemical shift

167 165 163 161 159

13C Chemical Shift

Figure 5-6: [left] ID spectra of _-'1N-Lys-bR in the dark adapted state (bR555/ bR 568) with Schiff
base region shown in the inset. [right] 2D Lys-Ný -Ret.-C1 5-CX correlation spectrum obtained
from [U-13C, 15N]-bR in the dark adapted state. Note the presence of multiple conformers of
bR 555 that are not visible in the 1 D spectra and partial resolution of the J-doublet in C 15 of bR 568.
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dark an equilibrium mixture two species - bR555 and bR568 --forms. We initially reported

the ID 15N spectrum of the bR 555 / bR568 mixture [55] such as is shown in Figure 5-6

(left) and assigned the Schiff base line at 172 and 165 ppm to bR555 and bR568

respectively, based on their -60:40 intensity ratio. Recently, it was suggested that

bR555/bR568 is heterogeneous and the three components of the bR trimer that exists in the

bilayers may be inequivalent. The evidence for this suggestion is the observation that

retinal binds with two different rates [84]. Thus, although the lD spectrum of Figure 5-6

does not permit us to resolve this issue, the 2D 15N- 3C spectrum shown in Figure 5-6

(right) that can be acquired with sensitivity enhanced DNP experiments clearly reveals

two lines associated with the bR555 component of the mixture in agreement with the idea

that the components of the trimer are inequivalent. There is also a splitting in the bR568

cross peak that may be due to heterogeneity, but it is also possible to interpret this as a

'3C-1 3 C J-coupling. In the K and L photointermediates we also observe conformational

heterogeneity that may be of a different type.

In summary, the DNP enhanced MAS bR spectra presented illustrate that signal

enhancements E -90 over spectra that we have published previously. This increase in

sensitivity permits us to obtain 2D spectra of bR in a routine manner and to address

interesting scientific issues such as the heterogeneity of the bR lattice. Finally, we

emphasize that the spectra offer convincing evidence that cross effect DNP experiments

using biradical polarizing agents provide significant enhancements in experiments

involving a real membrane protein rather than a small molecule model system.
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5.3 DNP/NMR Spectrometer

The 250 GHz/380 MHz DNP/NMR spectrometer is comprised of two collections of

components belonging to the NMR and the microwave sections. This NMR components

consist of a conventional triple resonance NMR console and a triple resonance

transmission line probe based on the original design of McKay and Schaefer [85, 86]

with an important exception discussed below. The console currently in use is from

Cambridge Instruments and was designed by D.J. Ruben. The microwave section is

composed of the gyrotron oscillator operating in a 9 T superconducting magnet, a

corrugated waveguide that delivers the microwave power from the gyrotron to the probe,

and a directional coupler for sampling the forward and reverse power. Finally, the NMR

probe uses an air dielectric transmission line and the inner conductor of the line is a

corrugated waveguide that ultimately transmits the microwaves to the sample. The DNP

enhanced NMR experiment is performed in a second 9 T NMR magnet, located 2.4 m

from the gyrotron magnet to minimize the overlap of the two fringe fields. The MAS

probe typically operates at 90 K for the duration of the experiment, typically a few days.

Figure 5-7(a) schematically illustrates the microwave components of the spectrometer

that are clearly labeled, and in Figures 5-7(b) and 5-7(c) we show photographs of the

equipment. In both photos the gray gyrotron magnet is visible on the left, the aluminum

corrugated transmission line, supported on an inexpensive optical rail, can be seen

running from the gyrotron towards the large NMR magnet located on the right side of the

photo. The directional coupler is visible in this figure and is shown in more detail in

Figure 5-7(d), and is discussed elsewhere [87]. The details of the construction of the
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NMR probe will appear in separate publication. In this paper we focus on the design and

operation of the gyrotron which is the major microwave component.

Quasi-optical directional coupler

0
250 GHz
gyrotron

I- -- -

UINr proce

-I

Figure 5-7(a): Schematic representation of the 250 GHz gyrotron, corrugated transmission
system, and 380 MHz NMR probe. (1) 250 GHz gyrotron oscillator (2) Corrugated waveguide
(22 mm i.d.). (3) Beam splitter; (4) Forward power detector; (5) Reflected power detector; (6)
Focusing and reflecting mirror optics; (7) Helically corrugated waveguide (8 mm i.d.); and (8)
Miter mirror

Figure 5-7(b): Side-view of the 250 GHz DNP spectrometer.

Figure 5-7(c): Composite photograph of the system illustrated schematically in Figure 5-7(a)
[left] 250 GHz gyrotron the gyrotron tube is shown with Vacion pumps in the gray
superconducting magnet, [center] corrugated transmission system with the directional coupler
visible in the center of the photograph, and [right] 380 MHz NMR magnet is visible on the edge
of the photo. The NMR probe is not visible since it is under the magnet. The view in this photo
is from above the gyrotron and waveguide looking down.
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Figure 5-7(d): Photograph of the 250 GHz quasi-optical directional coupler. Forward power is
coupled to the detector diode by means of a short dielectric taper, dielectric horn, and a circular-
to-rectangular transition. An attenuator allows the power to be adjusted to the linear range of the
diode. The detection circuit has been designed with high loss to avoid reflections across the beam
splitter.

5.4 Gyrotron Oscillator

5.4.1 General Background

In this section, we provide a brief introduction to the design, theory, and operation

of the 250 GHz gyrotron used in the DNP experiments described previously. We begin

with an overview of the design and principles of operation of a gyrotron, and then

consider the construction of the 250 GHz oscillator in detail. We subsequently discuss

the theory of the operation of gyro-devices, from both quantum mechanical and classical

perspectives. For more detailed and complete discussions of gyrotron principles and

technology we refer the reader to one of the excellent introductory texts or review articles

on this topic [31, 88-93].
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Figure 5-8: Schematic representation of the four major sections of a gyrotron tube that resides in
the bore of a superconducting solenoid (see Figure 5.9). The central figure illustrates the
assembled gyrotron tube and the four panels the function of each of the major sections. (A)
shows the annular cathode of the electron gun from which the electrons are emitted and the
cyclotron motion they undergo in the presence of the magnetic field. The red dots represent cross
sections of the beam and a given point in time. In addition, the magnetic field adiabatically
compresses the electron beam that it reaches the cavity with a radius optimized to interact with
the cavity mode. (B) illustrates the cavity region where electron bunching leads to microwave
generation. The electrons are depicted in the initial stage of the dephasing process. (C) shows the
quasi-optical mode converter (consisting of a step-cut waveguide and steering mirror) that
extracts the microwave beam and directs it an angle of 900 through the cross bore of the magnet
and into the waveguide for sample irradiation. Note the energetic electron beam continues
through the tube to the collector region. In (D) the electron beam is collected in a water-cooled
collector.

A gyrotron is a vacuum electron tube that operates in a strong, static magnetic

field. It functions as an electron cyclotron resonance maser that emits coherent radiation

at the electron cyclotron frequency,

eBS
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or its harmonics (so), with s an integer greater than one). Here e is the electron charge, m

the electron mass, y a relativistic mass factor (see below), and Bo is the external DC

magnetic field generated by a superconducting magnet. When other experimental

constraints are satisfied, the frequency of the radiation, o)e, is determined primarily by the

strength of the magnetic field. An overview of the principal components of the gyrotron

is shown schematically in Figure 5-8. An electron gun (A) contains a cathode which

emits electrons that are accelerated by a voltage (-10-30 kV) applied between the anode

and the cathode, moving them through the magnetic field where they precess in cyclotron

motion. In the cavity region (B) a phenomenon referred to as bunching, described in

more detail below, leads to the generation of microwaves. In (C) the microwaves are

extracted by a mode converter through a cross bore in the magnet dewar and directed to

the NMR sample through a waveguide. Finally, (D) shows the energetic electron beam

impinging on a water-cooled collector.

The actual physical layout of the 250 GHz gyrotron oscillator is shown in Figure

5-9. While this gyrotron is constructed in a manner that is very similar to other

demountable tube gyrotrons used in academic research, our desire to make it compact and

compatible with operation in close proximity to an NMR spectrometer necessitated

special design considerations.

Superconducting Magnet

A gyrotron operating at 1 GHz requires a peak magnetic field of 0.036y Tesla, where y is

the relativistic mass factor defined below, and the magnetic field scales linearly with

increasing frequency. Electrons accelerated in a potential of 10-100 kV are only
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moderately relativistic (i.e. their energy is much smaller than the electron rest mass of

I i i

SI1
i ;

-- - ------------------ --
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Figure 5-9: Left: photograph of the 250 GHz gyrotron and the superconducting magnet power
supply. The high voltage/heater power supply and control electronics are hosted in an additional
rack similar to the magnet power supply. Right: Schematic of a gyrotron tube indicating the key
components. (1) cathode; (2) anode; (3) drift tunnel; (4) microwave absorber; (5) cylindrical
resonant cavity; (6) quasi-optical mode converter; (7) output window; (8) high voltage ceramic
insulator; (9) electron beam collector; (10) persistent superconducting magnet; (11)
electromagnet.
511 kV), and so y-1. In this limit, the gyrotron operating frequency is -28 GHz/Tesla.

Therefore, production of-250 GHz microwaves requires a -9 T gyrotron magnet.

The requirements for a gyrotron magnet are quite modest when compared to those

of an NMR magnet. Most notably, the gyrotron oscillator requires that the cavity be

located in a region spanning 10-30 free space wavelengths of the operating frequency and

that the homogeneity over this region be ± 0.1 %. Outside of this "flat field" region of

the solenoid, the magnetic field should decay with a -1/z 3 (dipole) dependence, where z
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is the distance along the solenoid axis. This dependence is especially important near the

electron gun region for generation of a high quality beam. Thus, a typical actively

shielded NMR magnet, which exhibits an abrupt decrease in the magnetic field outside

the flat field region, is not compatible with a traditional gyrotron electron gun design. A

partially shielded magnet with more radial than axial shielding or an unshielded magnet

is desirable in a gyrotron system. The second critical specification for the magnet is field

drift, and, typically, the frequency drift of a gyrotron operating in a TEmpi mode (see

below) is at least of an order of magnitude lower than the magnet field drift rate.

Nevertheless, with current technology a drift rate of -0.01 ppm/hr is easily obtained in

NMR magnets fabricated from NbTi and Nb3Sn conductor, and therefore matches the

drift of the gyrotron to the drift of the NMR magnet. This is most desirable for

applications of gyrotrons to DNP experiments where it is desirable to maintain a stable

irradiation position in the EPR spectrum.

Electron Gun

The electron beam is generated in a diode electron gun with an annular thermionic

emitter and a hollow anode. In order to avoid poisoning of the emitter when the tube is

operated in true CW mode, it is necessary to maintain the vacuum at a base pressure <10-

9 Torr. The electron beam is born at a finite magnetic field generated from the decaying

field of the main superconducting magnet and a local room temperature copper solenoid

(10 and 11 respectively, in Figure 5-9). The electron gun is very similar to that used in a

magnetron tube and hence is referred to as a magnetron injection gun (MIG). The 250

GHz gyrotron uses a diode electron gun because it is simple to fabricate and requires a

single power supply, but it is not unusual to have a triode electron gun for more precise
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control of the electron beam properties. The electron beam is adiabatically compressed as

it traverses up the magnetic hill created by the main superconducting magnet and

achieves the final beam radius in the resonator which is appropriate for exciting the

desired interaction mode. The section through which the electron beam drifts during its

compression is called the beam tunnel (3 in Figure 5-9) and is designed to suppress the

generation of any spurious interaction modes that can compromise the beam quality. For

this purpose, the beam tunnel has slotted tubes and rings of lossy ceramics to lower the

quality factor and prevent excitation of spurious oscillations.

Cavity Resonator

The heart of the microwave generation system is a cavity resonator formed by a profiled

cylindrical waveguide open at both ends. The simplest manifestation of the resonator is a

straight cylinder with a downtaper through which the electron beam enters the resonator

and an uptaper through which the electron beam and the generated microwave radiation

exit. The cavity operates in a TEmpq mode where m, p and q are the number of azimuthal,

radial and axial variations of the mode respectively. Gyrotrons typically operate in a

TEpi mode, which has a single axial variation of the field and results in high efficiency

microwave generation and a stable output frequency. The frequency is determined by the

radius of the straight section of the cavity and is only weakly dependent on the operating

voltage, current or magnetic field. Hence, the operating mode is often designated as TEmp

with the understanding of one axial variation (q=1). The 250 GHz gyrotron operates

typically in the TE032 mode because the TE032 mode frequency in this case is closer to the

desired electron excitation frequency corresponding to 380 MHz 1H frequency.
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Mode converter

The microwave radiation is generated in a high order cavity mode such as the TE03 which

cannot be easily extracted from the gyrotron tube and most importantly cannot be

transmitted over a simple waveguide transmission line which may involve switches,

bends, directional couplers and other elements. Hence, the operating mode is transformed

into a linearly polarized free space TEMoo Gaussian beam in the tube using an internal

mode converter (6, in Figure 5-9) and then extracted from the tube. The mode converter

is designed using quasioptical techniques and consists of a launcher which in this case is

waveguide with a step-cut to radiate the operating mode in the radial direction. The

radiation is collected by a parabolic reflector that focuses it on another mirror or a series

of mirrors that direct the beam out of the gyrotron tube radially through a vacuum

window. In the 250 GHz tube, the mode converter has two mirrors that include the

parabolic reflector facing the launcher. A second crucial function performed by the mode

converter is the separation of the electron beam from the microwave radiation. This

allows the electron beam to be collected in a simple collector that is described in the next

section.

In many gyrotron designs the collector and output window are located above the

magnet dewar and therefore the mode converter requires multiple mirrors - sometimes

four or more - to eventually direct the radiation out of the tube over the top of the

superconducting magnet dewar. To reduce the number of mirrors in the 250 GHz

gyrotron a cross bore as shown in Figure 5-9 (left). The cross bore simplifies the mode

converter design while allowing the magnet dewar to have sufficient volume to satisfy

the helium hold time requirements. However, the cross bore requires precise alignment
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of the tube and the internal mode converter to extract the radiation out through the narrow

opening, but it has been used successfully in the 250 GHz gyrotron considered here and

in the 460 GHz device described elsewhere.

Collector

The spent electron beam exiting the cavity is separated from the microwaves by the

internal mode converter and is allowed to expand adiabatically in the decaying field of

the superconducting magnet. After the beam radius is sufficiently large, it is collected on

a water-cooled collector. The beam is allowed to expand in order to maintain the thermal

load on the collector at <100 W/cm 2. Since the gyrotron typically operates at -5%

efficiency, the remaining power in the beam (12 kV x 20 mA -250 watts) is dissipated in

the collector, where a water flow rate of few gallons per minute is sufficient to extract the

generated heat. The ceramic break (8, in Figure 5-9) allows independent measurement of

the collector current from any body current which can be generated due to premature

beam interception.

Control System

The control system consists of both electromechanical and digital controls and interlocks.

Electromechanical interlocks involving the gyrotron tube pressure, coolant flow, and

ambient temperature and humidity are implemented using power control hardware which

also controls uninterruptible power (UPS) service to critical aspects of the experiment.

Digital controls and interlocks are implemented in a combination of LabVIEW interface

elements (National Instruments Inc.) operating under a Windows PC environment and,

for some functions, in C++ programs. Digital I/O occurs via UDP over ethernet network
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or through RS-232C/GPIB terminal servers (National Instruments Inc.). Analog I/O is

accomplished through integrated data acquisition boards (Computerboards Inc.; National

Instruments Inc.). Analog signal conditioning is limited to high-voltage isolation,

amplification of signals, and low-pass audio filtering; further signal conditioning and

parameter estimation is performed in software. Finally, standard microwave components

such as video detectors, attenuators, and scalar horns etc. were purchased from Millitech

Inc., Pacific Millimeter, and Aerowave and incorporated into the system. The

transmission line has other specialized components that are described in the later

sections.

5.4.2 Theory

As mentioned above the gyrotron can operate either as an oscillator or amplifier

and it functions by converting the transverse kinetic energy of a moderately relativistic

electron beam into electromagnetic radiation. Specifically, when the beam current in the

device exceeds threshold (the starting current of the oscillation), then the resonant

interaction of the cyclotron mode of the electron beam and the electromagnetic mode of

the cavity resonator leads to energy exchange.

Cyclotron Mode: The electron beam supports cyclotron modes that obey the

dispersion relation,

SO)
co = VZk + C (5.2)

where o is the radiation frequency, kz is the wave vector, v_ is the axial electron velocity,

s is the cyclotron harmonic number, and y is the relativistic mass factor,
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1
7=\ (5.3)1-v 2 /c 2  (5.3)

Here v = v2 + V+ v2 + 2 i the total electron velocity. The beam pitch factorx y z I z

a = (v, / Vz) determines the transverse energy in the electron beam, where v. and vz are

the parallel and perpendicular velocities respectively of the electron beam with respect to

the external DC magnetic field Bo. Specifically, (5.2) and (5.3) are a statement that the

radiation frequency o lies near to the cyclotron frequency, but that it is upshifted by the

Doppler term, vzkz. The Doppler term arises because the synchronous precession of the

electrons is in turn perturbed by the oscillating electromagnetic field. While the Doppler

term in the resonance condition indicates that the radiation frequency can, in principle, be

much higher than the cyclotron frequency, gyrotrons typically operate in the regime

kzv z << c . This prevents velocity spread of the electron beam from broadening the

width of the output radiation and reducing the gain. In addition, we note from (5.2) and

(5.3) that as v -- c (as the energy increases) then y increases and the frequency of the

radiation w decreases. This leads to bunching and the conversion of beam power to

microwaves (see below).

Waveguide Mode: The cavity resonator used in a gyrotron supports a transverse

electric (TE) electromagnetic wave with the following dispersion relation:

= k2 = k2 +k (5.4)
2 1 z

where k = Vmp / R, R is the waveguide radius, c is the speed of light, vmp is the pth root

of J (x) = 0, Jm(x) is the Bessel function of order m, and kz is the axial wave number of
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the TEmpq mode in the waveguide. For a simple right circular cylinder resonator, k, =

q7/L, where q is an integer and L is the cavity length. For a more general cavity shape, kz

is obtained by solving for the appropriate cavity eigenmode.

The condition for excitation of the electron cyclotron maser instability requires

simultaneously satisfying both the resonance condition and the wave equation, that is

(5.2) and (5.4) above, and this is illustrated graphically using the uncoupled o-k diagram

in Figure 5-10. In the figure, the dispersion relations of both the waveguide mode and the

cyclotron resonance mode are shown. The gyrotron instability is excited near the point of

intersection of the beam-wave and waveguide dispersion relation.

(0

Cycl
(t=

2

Figure 5-10: The uncoupled dispersion relations for the electron beam (cyclotron mode) and the
waveguide mode (waveguide dispersion). Cyclotron maser emission can occur when the two
modes coincide, as shown in the figure by the arrow at gyrotron resonance.

Quantum Theory of Gyrotrons

The gyrotron interaction can be explained understood quantum mechanically by

considering the energy levels of an electron placed in a homogeneous magnetic field. For

a nonrelativistic electron, the energy levels in a DC magnetic field were solved by

Landau and are harmonically quantized according to [94, 95]
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1
En =(n+ l)h , (5.5)

2

where n is the quantum number. These levels are evenly spaced and do not yield

stimulated emission. On the other hand, a solution of the Dirac equation for an electron in

a homogeneous magnetic field shows, in the weakly relativistic limit, that the energy

eigenspectrum is given by:

E = mc 2[1+ (2n + 1)( )]1/2 - mc 2  (5.6)

[96, 97] As shown in Figure 5-11, these levels are not harmonic, because the relativistic

cyclotron frequency (oc/y) decreases with increasing energy (i.e., v-->c and y increases).

Stimulated emission is possible in a manifold of unequally spaced states, and this is the

gain mechanism of the gyrotron oscillator.. The emission frequency is slightly higher

than the cyclotron frequency as shown in the example below.

n+m

n+2 AE=h(On,n+m
+l 4

ItI
T 

I

n

n-1

Induced absorption

Induced emission

AE=hon,n.-m
n-2

n-m

Figure 5-11: The energy spectrum of a relativistic gyrating electron showing the nonuniform
spacing of the energy levels.

Following the approach of Robinson [97], one can show the net energy absorption of

weakly relativistic electrons to be
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SNnq t2 sin2(r) + nhw2t 1 2sin2(r) sin(2})
2m 12 2moc 2  r2 F 2

where Nn is the number of electrons in the nt h state, q is the charge of an electron, ýo is

the amplitude of the electromagnetic field in a uniform resonator of length L, t is the

interaction time (equal to L/vz), m is the rest mass of an electron and F is half of the

relative phase shift of the electrons with respect to the electromagnetic wave, defined as

I = (o),,+ - om)t / 2. (5.8)

In Fig. 5-12 the absorption (W) is plotted as a function of F for different values of the

factor F defined as

Snhw2  hcF C2 2 - ct) (5.9)

In this equation for F, the quantity in parentheses can be identified as the ratio of the

electron kinetic energy to the electron rest mass energy and the second term in the

parentheses is 2n times the number of cyclotron orbits in the resonator. The condition for

emission, as shown in Fig. 5-12, is that the value of F be large compared with unity. This

can occur when the weakly relativistic electrons execute many orbits in the gyrotron

resonator (N = (coct) >> 1).
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Figure 5-12: The energy absorption, E0 , (in arbitrary units) of an electron passing through a

uniform resonator, as a function of the detuning from resonance. The plots are shown for
different values of the parameter F. Significant energy emission ( E < 0 ) requires a value of F-2.
F increases with both the electron energy (electrons that are more relativistic) and the number of
cyclotron orbits in the interaction region.
For moderately relativistic electrons (F>0), a proper choice of F, which is related to the

detuning as [F/2 = (oc -o)t] can lead to negative absorption or gain. In practice, for a

resonator mode, the frequency o is constant and the magnetic field is changed to vary oc

and satisfy the beam/wave resonance condition.

However, we note that a 10 to 100 keV electron possesses an energy -10 8 times

the energy of the cyclotron photons (100 GHz = - 4 x 10-3 eV). Since the energies are

large compared to the photons, the gyrotron can also be understood with classical theory,

especially for the nonlinear regime.

Phenomenological Description of Gyrotron Interaction

The gyrotron interaction can also be described as a typical process in a vacuum electron

device (microwave tube), where, under the force of the electromagnetic field, the
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phenomenon of electron bunching occurs in phase space. In this process, the electrons,

whose phases are initially randomly distributed,, either acquire or lose phase because of

the non-uniform perturbation of the oscillating electromagnetic field. Thus, the bunched

electrons are eventually decelerated to generate electromagnetic radiation. Let us

consider a hollow annular gyrating electron beam drifting through a waveguide

supporting a TEo0 mode and immersed in a static background magnetic field as shown in

Figure 5-13.

beam

Figure 5-13: Schematic of the cross-section of a gyrotron interaction region at the resonator,
showing the annular electron beam of radius r , consisting of electron beamlets of radius rL.

r specifies the radius of the resonator and 0 is the azimuthal electric field.

The gyrating electrons with Larmor radii of rL = v, / ( c / y) are located on a circle of

radius rb (the electron beam radius). The electrons are initially emitted from a cathode of

much larger radius, but in passing from the electron gun, situated in a lower magnetic

field region, to the resonator, in a higher field region, they are adiabatically compressed

to a final radius of rb , as shown in Figure 5-8 and 5-13 and also discussed below. When

they enter the interaction region the electrons are initially randomly distributed in phase

space. But, due to relativistic effects the cyclotron frequency of the electron decreases as
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they gain energy and increases as they lose energy, resulting in bunching as shown in

Figure 5-14.
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Figure 5-14: The sequence of bunching, its evolution and eventual energy extraction in a
gyrotron. (from J. Sirigiri, PhD thesis MIT, 2002).

Each panel of this figure shows a snapshot of the electron distribution at a series of time

steps taken at an integer multiple of the E- field oscillation so that the E- field appears

stationary. The dots in the panels show the electrons within one of the beamlets shown in

Figure 5-13. In (a) the electrons are initially randomly distributed in phase space and

have equal Larmor radii. In (b) and (c) the electromagnetic field accelerates half the

electrons , and they gain energy and are retarded in phase space due to the decrease in

cyclotron frequency due to their increased relativistic mass. The other half are

decelerated by the electric field, lose energy and are accelerated in phase space due to an

increase in their cyclotron frequency. Furthermore, the Larmor radii of the faster gyrating

259



electrons decrease, while those of the slower gyrating electrons increase, resulting in a

change in the shape of each beamlet as shown above. The bunch continues to grow as the

electron beam traverses the cavity as shown in (c). If the frequency of the

electromagnetic field is slightly higher than the cyclotron frequency the bunch slips in

phase with respect to the wave and eventually ends up in the decelerating phase of the

electromagnetic field (where the bunch is moving parallel to the electric field) as shown

in (d). The electrons end up as a bunch in the decelerating phase, giving up their energy

to the electromagnetic field, resulting in energy extraction.

5.5 Characterization of the 250 GHz Gyrotron

In multidimensional magnetic resonance experiments it is important to have the

experimental variables such as rf power levels stable to 1% since signal averaging

requires that the spectrum must be reproducible from scan to scan. Similarly, in an

experiment incorporating DNP, the enhancement depends on the power output, the

frequency stability, and spectral purity of the gyrotron radiation and this places

constraints on the operational stability of the device. In order to understand the manner

in which these three parameters vary, we have systematically investigated the

performance of the 250 GHz oscillator under a variety of test conditions. In particular,

we have measured the power output as a function of voltage, current, magnetic field, and

temperature, and observed the fluctuation of the power as a function of time. The stability

of the frequency is monitored simultaneously in these experiments. The spectral purity of

the radiation was measured with a combination of heterodyne and homodyne techniques

that assess the average and instantaneous purity of the gyrotron emission. The results

demonstrate that the gyrotron can operate safely under feedback control with a power
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stability <1%, typically for periods of 10 days. The spectral purity is excellent, showing

a bandwidth of <10 ppm determined by the local oscillator bandwidth in the heterodyne

experiments and no strong contaminating resonances in the homodyne experiment.

5.5.1 Power and Frequency Stability

Figure 5-15 illustrates the output power of the 250 GHz gyrotron as a function of

magnetic field and beam current and in Figures 5-15(a) and 5-16 we show the frequency

as a function of magnetic field, gun field and applied voltage. Normally the gyrotron

operates in the TEo,3,2 mode (to be discussed further below) with a beam voltage of 12.2

kV and beam current of 15-30 mA. The operating mode corresponds to the output

frequency that maximizes the DNP enhancement for a 1H NMR frequency of 380 MHz,

but operation in other modes is possible. In addition, the oscillation appears at a low

current and generates a sufficient amount of output power for DNP. Figure 5-15

illustrates that the power output does not vary dramatically with magnetic field, and thus

with a stable superconducting magnet (drift < 0.01 ppm/hr) the power output should not

be affected by changes in the magnetic field. Nevertheless, in our particular system the

accumulated magnet drift necessitates the adjustment of the magnetic field every few

months.

Figure 5-15(b) depicts the variation of the output power of the TEO,3,2 operating

mode with beam current. In this regime, the output power is a linear function of the

beam current, suggesting that feedback control of the beam current could be sufficient to

regulate the output power. However, fluctuations in other gyrotron operating parameters

over long time scales modify this linear correlation, and so regulation of the beam current

alone is insufficient to guarantee stable output power. In Figure 5-15(b) we show a
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maximum CW output power of 7 W that is achieved at beam parameters of 26 mA and

12.2 kV, yielding an efficiency of 2.2%. Output powers of up to 25 W have been

observed in the TE0, 3,1 mode (beam voltage and current of 11.8 kV and 49 mA,

corresponding to 4.4 % efficiency) during hour-long CW operation [44].

(A)

(B)

Power

Frequency

9.14 9.145 9.15 9.155
Magnetic field (T)

Current (mA)
Figure 5-15: (a) Frequency and power of the operating TEo,3,2 mode as a function of magnetic
field. (b) Power in the TE0 ,3,2 mode as a function of beam current. Power measurements were
performed with a Scientech laser calorimeter that has been calibrated for millimeter waves.

5.5.2 Frequency Pulling

The dependence of the gyrotron frequency on experimental parameters is of interest for

two reasons. First, it is important to have the frequency stable in the CW DNP

experiments discussed here since the enhancement in solid effect, thermal mixing and

cross effect experiments [38] is strongly dependent on the position of irradiation in the

EPR spectrum. Second, it would be useful to be able to tune a gyrotron oscillator across
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the breadth of the EPR spectrum, a feature that is discussed elsewhere [45] and

mentioned in Chapter 6, Section 6.4. Here we discuss relatively small variations of the

output frequency, which we term frequency pulling, that describe the variation of

frequency as a function of beam voltage, cathode parameters, and magnetic field while

the gyrotron is operating in the TE0, 3,2 mode. These effects were observed and discussed

previously [98-100]. As illustrated in Figures 5-15(a) and 5-16(a,b,c) the gyrotron

operating frequency (and the microwave power output) is sensitive to variations in the

main or auxiliary magnetic fields, the beam voltage, or beam current, and the cavity

temperature (data not shown). Measurements of the frequency pulling characteristics of

the 250 GHz gyrotron were performed using a heterodyne receiver system consisting of a

WR-3 harmonic mixer and a K-band local oscillator (18-28 GHz) along with signal

conditioning and data acquisition instruments. The local oscillator is stabilized to within

1 Hz using a phase-locked loop (PLL), and these measurements used the 1 1th harmonic of

the oscillator and are limited only by the phase noise of this source.

The data in Figure 5-16 show that when the gyrotron is operating in the TEo, 3,2

mode, we observe that changes in the main magnetic field by 0.02 T, the cathode

magnetic field by 20 gauss, and the beam voltage by 250 V result in frequency pulling

while still maintaining acceptable power output. Individually tuning the beam voltage

and gun magnetic field in these ranges resulted in 14 and 25 MHz of frequency tuning,

respectively, while the main magnetic field yields the widest tuning amounting to 118

MHz. This wider tuning range is a result of the use of the second longitudinal mode as

the operating mode. In Figure 5-16(a), the experimentally observed magnetic tuning is

compared to nonlinear theory simulated in MAGY using experimental parameters with
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good agreement. The dependence of the operating frequency on external parameters is

summarized in Table 5.1. We also examined the effects of changing the cavity

temperature assuming it to be that of the thermally regulated coolant at the cavity inlet.
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Figure 5-16: Frequency pulling in the TEO,3,2 mode as a function of (a) the main magnetic field,
(b) the gun magnetic field, and (c) the beam voltage. Simulations were conducted in MAGY
[101].

Table 5.1: Dependence of frequency on operating parameters
Parameter Sensitivity

Magnetic field 5.3 GHz/T
Beam voltage 86 MHz/kV

Cathode magnetic field 12.3 GHz/T
Cavity temperature <1.0 MHz/0C

These results demonstrate that the gyrotron operating frequency is most sensitive to

variations in the magnetic field. At this frequency, DNP typically requires frequency

stability of less than 1 MHz for experiments lasting up to ten days, which limits the
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maximum permissible magnetic field drift to 0.08 ppm/hr under these operating

conditions. To achieve these magnetic field control tolerances, the superconducting

magnet must operate in persistent mode, and, in the 250 GHz DNP installation, the

magnet must be recharged approximately monthly to counteract its intrinsic drift.

Currently, the magnet drift and the capacity of the magnet cryogenic dewar are the only

factors which limit the length of continuous operation.

5.5.3 Spectral Purity

In magnetic resonance experiments it is important to have not only a source with

excellent frequency stability over time, but also one that is spectrally pure. For example,

if the local oscillator in an NMR spectrometer is noisy then it will degrade the signal to

noise of the instrument. In the case of DNP experiments, if the noise bandwidth of the

gyrotron is comparable to the EPR linewidth, then it may comprise experiments that

depend on frequency selective excitation. Thus, it is important to know the spectral

purity of the 250 GHz oscillator, and, accordingly, we have performed two experiments

to investigate its bandwidth. These experiments are similar to other investigations of the

spectral linewidth in gyrotrons discussed earlier [102, 103]. The radiation produced by

the gyrotron has a finite linewidth that can be attributed to both intrinsic and extrinsic

sources [104, 105]. The intrinsic linewidth arises from the natural emission line width,

shot noise, which is white noise, and flicker noise, which has a 1/f power spectrum.

Extrinsic sources of noise are those coupled into the system by variations of external

operating parameters such as the beam voltage, magnetic fields, or coolant circuit

temperature. We have analyzed the spectral purity of the CW gyrotron emission using a

combination of heterodyne and homodyne measurements. During these measurements,
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the gyrotron operated in CW mode with feedback regulation of the beam current rather

than the microwave power.

The gyrotron linewidth in the TEo, 3,2 operating mode was measured using the

phase-locked K-band oscillator and heterodyne receiver system used to measure the

frequency stability together with a spectrum analyzer as a detector. The data shown in

Figure 5-17(a), are an average of 32 frequency sweeps lasting 0.5 s each and yield an

estimated linewidth of -300 kHz, which is close to the detection limit set by the phase

noise of the local oscillator circuit at its 1 1th harmonic. This is comparable to the

linewidths reported in other measurements [102].

(A)

(B)

0

Frequency (MHz)

Frequency (kHz)
Figure 5-17: (a) Linewidth measurement of the operating TE0,3,2 mode using the heterodyne
frequency measurement system. (b) Homodyne measurement in TE0, 3,2 mode. The offset panel
illustrates the natural emission linewidth.
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While the heterodyne measurement is sensitive to the time-averaged absolute line

width, the instantaneous modulation of a high frequency signal is best detected by

demodulation using a homodyne technique [106] . We have measured the homodyne

emission spectrum of the 250 GHz gyrotron using a diode detector and an oscilloscope

(LeCroy, Model LT354) capable of sampling for several tens of seconds of acquisition.

Typical data, shown in Figure 5-17(b), are processed by zero-order baseline correction in

the time-domain to eliminate any DC level artifacts and then Fourier-transformed without

further apodization. All contaminating sidebands in the homodyne spectrum are less than

1% of the intensity of the DC component. Specifically, there is a manifold of signal

sidebands with 7 kHz periodicity that arises from the switching frequency of the power

supply, and a manifold of sidebands at 60 Hz that arises from AC line modulation of

either the detector or the gyrotron beam. Thus there is no low frequency noise in the

frequency spectrum of the radiation that is <300 kHz. The heterodyne measurement of

the gyrotron linewidth is therefore limited either by the phase noise of the local oscillator

circuit or by extrinsic fluctuations in the operating parameters on the long time scale of

the heterodyne measurement. Neither measurement shows the presence of significant

parasitic modes or oscillations. We note that homodyne measurement is an approach to

detect these oscillations and they have been detected at -400 MHz in the operation of the

460 GHz gyrotron [107].

5.5.4 Radiation Patterns

Millimeter wave power is produced in the gyrotron cavity where it exist in a confined

transverse electric (TE) mode. By contrast the propagation of the millimeter beam in free

space is convenient only for a Gaussian beam. Therefore, a type of antenna, called a
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mode converter, is used to efficiently couple radiation in the cavity mode to a free space

Gaussian mode. The mode converter, consisting of a step-cut waveguide launcher and a

cylindrical focusing mirror, also serves to separate the millimeter wave power from the

energetic electron beam as is illustrated in Figure 5-9(a), thus protecting fragile structures

such as the millimeter wave output window. The Gaussian beam is then directly coupled

to an overmoded HE 1,1 corrugated waveguide [87] which contains a quasi-optical

beamsplitter that acts as a directional coupler (See Figure 5-7 for details). At the

terminus of the waveguide, the millimeter wave beam propagates again in free space and

is optically focused into a smaller corrugated waveguide for delivery to the sample. A

miter bend at the complement of the magic angle (35.30) is located at the end of the

corrugated waveguide and allows for efficient coupling of the radiation into the sample

[® in Figure 5-9]. Because the HE 1,1 mode in corrugated waveguide couples efficiently

to free space Gaussian propagation, HE1 ,1 mode purity is essential to efficient power

delivery in this system. The presence of parasitic higher-order modes may otherwise

compromise the experiment by introducing additional sensitivity to misalignment or

vibration in the base of the NMR probe. Finally, the directional coupler that uses a beam

splitter will only operate correctly for HEI,I mode. For these reasons, we have analyzed

the mode purity of the 250 GHz transmission system using three techniques: thermal

paper, temperature-dependent liquid crystalline media, and a pyroelectric camera. The

analysis of thermal bum patterns and calorimeter power measurements is discussed

elsewhere [87] and suggests that initial higher order mode content amounts to 10% of the

total coupled millimeter wave power but is filtered by the waveguide, resulting ultimately

in a Gaussian-like beam at the waveguide terminus.
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Millimeter wave mode patterns are most accurately mapped with motorized

scanning devices, but these are difficult to use in the presence of the large fringe field of

the 9 T wide-bore NMR magnet. Therefore, we have employed the temperature-

dependent color of liquid crystalline media applied to a substrate transparent to

millimeter waves as an indirect calorimetric measurement of the radiation pattern [108].

This method does not require any magnetic or moving components such as optical

choppers or positioning motors and is easily scaled to arbitrary beam dimensions. With

proper calibration, liquid crystal thermometry can provide sub-micron resolution and

temperature accuracy approaching 0.1°C [109, 110]. In these experiments, we used a

commercially available (Edmund Optics, Barrington, N.J.) liquid crystalline formulation

that is sparsely applied to a thin polyethylene substrate. Since the substrate is nearly

transparent at 250 GHz, while the encapsulated liquid crystalline particles are not, the

measurement samples the millimeter wave radiation without perturbing the field structure

and without excessive bleeding due to background absorption. Liquid crystal

formulations that are sensitive to different temperature ranges can be combined in

separate measurements to improve the overall dynamic range of the method. We

employed a cross-polarized illumination and detection system to minimize optical

reflections from the surface of the substrate. Collinear alignment of the substrate and

camera was accomplished with the aid of a laser beam injected through the directional

coupler and therefore aligned along the axis of the waveguide. Detection was

accomplished through the use of an RGB-mode camera operating at 30 frames per second

with a resolution of 640 x 480 pixels (Logitech, Inc.) arranged coaxially with the

millimeter wave beam and normal to the surface of the LC substrate. Data were
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processed by first subtracting dark frame images to remove systematic artifacts and then

averaging video frames over 333 ms to improve the sensitivity of the measurement.

White light color calibration was accomplished through subsequent measurement of a

white reflective paper. Finally, the images were converted from the RGB to an HSI color

space and the incident power at each pixel was extracted by integrating images taken at

different times.

In total, 16 seconds of video were taken at each of three positions (see Figure 5-

18) along the axis of the waveguide: (a) at 30 cm from the gyrotron window; (b)

immediately before the directional coupler (120 cm from the gyrotron window); and, (c),

between the directional coupler and the waveguide terminus (200 cm from the gyrotron

window). In Figure 5-18(a), the gyrotron radiation is captured at the cross-bore exit

unguided, resulting in some interference with the beam propagation. Figure 5-18(b)

shows that the beam contains a small sidelobe, which is also seen in the pyroelectric

measurements, and Figure 5-18(c) demonstrates that a relatively pure Gaussian mode is

coupled to the NMR probe at the waveguide terminus. The Gaussian beam widths

recovered in these measurements are systematically 5-8% higher than those obtained on

the basis of pyroelectric measurements, partly because the measurement plane was 1.5"

from the terminus of the waveguide. In both cases, the experimental errors were assumed

to be normally distributed; the values are reported at the 95% confidence interval, and the

intervals were recovered from the covariance matrix of the fit.
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(A)

(B)

(C)

Os 4s 8s 12s 16s
Figure 5-18: Radiated intensity of the gyrotron output while operating in the TEO,3,2 mode as
recorded on liquid crystal media for (a) at the gyrotron bore and (b) after 120 cm of waveguide
and (c) after 200 cm of corrugated waveguide as described in the text.

Pyroelectric camera

We have also used a pyroelectric camera to image the mode pattern. The advantage of

this approach is its simplicity and linearity and therefore it is a well established technique

in laser mode pattern measurements. The major disadvantage is that a magnetic motor is

required to power the chopper and the small detector size which does not permit complete

imaging of the beam. We employed a pyroelectric camera (Spiricon Pyrocamera III,

Model No. PY-III-C-B, Serial No. 30507) consisting of a 124 x 124 element pyroelectric

array with a 12.4 mm x 12.4 mm active area to measure the radiation pattern 190 cm

along the waveguide axis. During these measurements, the gyrotron was operating in

CW mode with an output power of less than 2 W to avoid damaging the detector. The

CW beam was modulated at 24 Hz with an optical chopper integrated into the

pyroelectric camera. The chopper motor and other magnetic components within the

camera restricted its use to locations with an acceptable fringe magnetic field. The

camera body was aligned with the millimeter wave beam using a laser beam injected into

the waveguide through the directional coupler, and the detector element was assumed to
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be aligned with respect to the camera enclosure. The detector element is recessed 0.6"

from the enclosure, which was aligned with the terminus of the waveguide in these

measurements. Since the detector area does not cover the entire aperture of the

waveguide, the detector gain was set near the threshold of saturation to maximize the

dynamic range of the measurement. All measurements were conducted in the absence of

daylight to reduce background levels of infrared radiation. Data were processed by

subtraction of a separately recorded dark frame to eliminate systematic dead pixel

artifacts and background noise, followed by averaging of 32 captured frames to improve

the sensitivity of the measurement. Near wavelengths corresponding to the pixel spacing

(-0.1 mm), a rectilinear diffraction pattern becomes visible. Comparative measurements

of another gyrotron oscillator operating in several modes from 150-460 GHz confirm that

this is an artifact of the pixel spacing [111], and fitting of the images with and without

image processing to eliminate these artifacts gives identical results for the case of a

nearly Gaussian beam. These results are summarized in Figure 5-19, where Figure 5-

19(a) is of the raw data, Figure 5-19(b) is a plot of the best-fit Gaussian, and Figure 5-

19(c) is the fitting residual. The measurements indicate a small sidelobe and a slightly

elliptical beam (cf Table 5.2), in good agreement with the liquid crystal data and close to

theoretical expectations.

Table 5.2: Gaussian parameters of the radiation field from Figures 5-18 and 5-19.

Measurement LC LC plane Pyroelectric Camera plane Beam
parameter method (theoretical camera (theoretical waist

width) width) (theory)
x Il/e 7.7 ± 0.2 7.29 7.25 ± 0.02 mm 7.04 6.99 mm
y 1/e2  7.0 ± 0.1 7.29 6.60 ± 0.02 mm 7.04 6.99 mm
Ellipticity (y/x) 0.90 - 0.91 - -
Ellipticity (%) 9% - 9% -
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Figure 5-19: Planar section of the radiation intensity as recorded by a pyroelectric camera. (a) is
the intensity 190 cm along the waveguide axis (b) is a Gaussian fit of the intensity data and (c) is
the residual of the fit. The intensity is described on a linear scale in arbitrary units.

5.5.5 CW Long-term Stability and Control

Long term signal averaging is an essential feature of most magnetic resonance

experiments, including experiments involving DNP. Thus, it is important that the

gyrotron be capable of functioning for extended periods of unattended operation. During

this period the power stability and therefore the fluctuations in the DNP enhancements

should be < 1% in order for multidimensional experiments to function properly.

Accordingly we have assembled a control system described in detail in Appendix 1 that

permits operation for periods of > 10 days with the output stability specified above. At

the present time the length of an experiment is limited by the intrinsic drift of the

superconducting magnet and the volume of the cryogen dewar, which must be refilled

approximately every 10-11 days.

Data from a representative 10-day CW run using 4.5 W of output power are

contained in Table 5.3 and illustrated in Figure 5-20. During the period all metrics of the

gyrotron operation remained within acceptable tolerances for DNP experiments. The
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electron beam parameters and vacuum parameters are those reported by the high voltage

gun and ion pump power supplies, respectively, and the heater parameters are reported by

a low-voltage power supply integrated into the high voltage gun supply. Power is

coupled into the millimeter wave diode using the directional coupler apparatus depicted

in Figure 5-7(d), and the measured values are corrected for the DC offset of the

amplification and signal conditioning circuit. The proportionality of the sampled

millimeter wave power and the absolute power over long time scales was demonstrated in

[87] and was verified in this experiment by monitoring with a second calibrated diode

which externally sampled the millimeter wave beam power at a high data rate to facilitate

the analysis. The millimeter wave frequency was measured using the phase-locked

heterodyne detection system discussed earlier.

Table 5.3: Stability of the 250 GHz operating parameters during CW operation

Technical parameter Average value Standard deviation (%)
Filament voltage (V) 3.274 0.004 0.1
Filament current (A) 4.515 0.008 0.2
Beam voltage (kV) 12.090 0.047 0.4
Pressure (10-9 Torr) 3.430 0.019 0.5
Frequency (GHz) 250.559348 0.000359 0.000143
Power (diode units (mV)) 229.75 1.94 0.8

Note from Table 5.3 that the power was stable to -0.8% and the other parameters were

well below this level including the frequency which showed a stability of 1.6 ppm.
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Figure 5-20: Stability of the TE0,3, 2 operating mode over a representative hour of a long
experiment. (a) beam voltage and control input, (b) heater voltage and current, (c) pressure, and
(d) power and frequency. These parameters were measured with the directional coupler shown in
Figure 5-7(d) as described in the text.

275

FrDiode (GHz)

Frequency (GHz)
•"q'vrwu " '·L q•'W "w •~t-~ - lry-L' 1 • ,•· m-wLp- , -tw i'" - -• rr w I

• r
r,- ll-r

..

Beam V~ltg (W))

h



2000- A)

S1500-

"L 1000-

00-

·40-

E 30-

S20-

S10-

0-
0.92 0.96 1.00 1.04 1.08 0 20 40 60 80 100

Normalized Microwave Power Frequency (milliHertz)
Figure 5-21: (a) Statistical analysis of power fluctuations from setpoint. The solid line is a
Gaussian fit to the data. The control system was set to maintain the output power within a 1%
tolerance. (b) Frequency-domain analysis of power fluctuations from the setpoint.

After a period of thermal equilibration of the heater, initial operation of the

gyrotron at constant power requires higher heater voltages and produces higher tube

pressures than is observed at equilibrium. Approximately two hours after initial CW

emission with regulation of the output power, the operating parameters and tube pressure

stabilize to a steady-state value about which there are only minor fluctuations.

Uncontrolled operation of the gyrotron, on the other hand, results in oscillations of the

output power with an overall increase in the output power after a period of equilibration.

For this and other reasons, the correlation between beam current and output power is not

precise, and therefore regulation of the beam current alone is sufficient to guarantee

regulation of the output power only on very short time scales. Finally, while the

measured tube pressure rapidly returns to its base resting value after termination of an

experiment [Figure 5-22(c)], the gyrotron remains extremely sensitive to its operating

history. We have found that regular operation of the gyrotron reduces the length of the

initial equilibration period and improves the stability of operation.

Three factors limit the controlled operation of the gyrotron oscillator. First, the

speed of the control circuit is currently limited by the need to perform signal conditioning
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and parameter estimation in software for a number of synchronously monitored analog

signals including those involved in the safety interlock circuits. This effectively limits the

cycle rate of the control circuit to 0.1 - 0.2 Hz with acceptable interactive performance

and interrupt handling on our hardware. Next, the minimum increment and gain of the

heater power supply limits control accuracy. Finally, the transient response of the heater

circuit limits the degree to which rapid changes in the millimeter wave output power can

be regulated by changes in the cathode heater. Figure 5-22 shows typical response curves

for a sudden positive or negative step in the heater voltage (from 3.6 V to 3.7 V or the

reverse). Note that there is a small-amplitude oscillatory modulation of the output signal

on a 1-10 s time scale even in the absence of feedback regulation, which suggests that

this noise is the result of power supply fluctuations or fluctuations in the pulsatile chiller

circuit. The transient response of the cathode heater is characterized by a process dead

time of 57 ± 8.5 s and a time constant of nearly 120 s, while we wish to regulate the

gyrotron output power on the 1-10 s time scale. Proportional control alone results either

in a long settling time and a large error at steady state or in highly oscillatory behavior

with respect to fluctuations in the process variables. In order to achieve effective control

with this transient response, we implemented a heuristic three-term error controller that

gives the standard transfer function, G(s), of the form

G(s)= K3S 2 + K2S+ K (5.10)
s

where the K, are parameters determined pseudo empirically and s is the transform

variable. We have implemented a process signal prefilter (bandpass filter) whose

transfer function is
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Fb (s) (5.11)s2 + 02

when the signal is outside a confidence band around the setpoint. Here b is the

bandwidth and wo is the center frequency, while Ao is chosen to give the control

parameters convenient units. The error signal is set to zero when the power lies within

the confidence band, resulting in no change to the controller output.

(A)5S
t 1.8

1.4

- 1UU 20UU 300

Time (s)

S1.8 Negative step
c (3.7V - 3.6V)

• --- Sigmoid fit
o 1.4

0 100 200 300
Time (s)

(C) E 25
o 20

o 15
10

0 1000 2000
Time (s)

Figure 5-22: Representative transient response of the gyrotron to (a) positive and (b) negative step
in the control voltage. The dashed line is a sigmoidal fit to the data from which optimal PID
parameters were estimated. Note oscillations in the output power which persist even though the
system is not under proportional regulation for these measurements. (c) Response of the system to
termination of running power supplies following thirteen hours of CW operation.

The initial parameters, Ki , of the three-term controller were estimated using a

Ziegler-Nichols PID tuning rule from the transient response data in Figure 5-22 without

need for further empirical optimization. Automatic, on-line re-tuning of the control
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coefficients was triggered whenever the steady-state error exceeded a user-selectable

threshold, thus allowing the control system to adapt to changing operating conditions.

The bandpass prefilter was implemented in software, and its parameters were chosen to

eliminate aliasing artifacts and line noise. The confidence band around the setpoint was

set to account for minor oscillations in the signal amplitude at short time scales which are

apparent in Figure 5-21(a) and (b); the confidence band also serves to limit control

changes so that the power can be controlled within a preset tolerance even with the long

cycle times of this control system. A statistical analysis of excursions of the process

variable from its setpoint over the 10-day experiment, shown in Figure 5-21(a), shows

that power fluctuations are normally distributed and that the tolerances of the DNP

experiment are met by the control system. The distribution of data reflects the

confidence interval, which, in this case, was set to 1%. A frequency-domain analysis,

shown in Figure 5-21(b), also suggests that the residual error is time-dependent with a

frequency of approximately 28 mHz, a fact which is clearly visible by inspection of

Figure 5-20(a) and (d).

The optimal control parameters are extremely sensitive to operating history of the

device, and regular operation of the gyrotron is required to avoid the need for periodic

recalibration.

5.6 Second Harmonic Operation

By far the most expensive component of the 250 GHz and other gyrotrons is the

superconducting magnet, and, as DNP experiments proceed to higher frequencies, the

cost of the magnet for an oscillator operating in fundamental mode increases

dramatically. In particular, at millimeter wave frequencies of <263 GHz (corresponding
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to <400 MHz NMR frequencies) it is possible to use magnets constructed from NbTi

conductor that are relatively inexpensive. However, the successful experiments described

in Section 2 above suggests that it would be desirable to move DNP/NMR to higher

fields to take advantage of the increased resolution. Thus, we anticipate that DNP

experiments in the 700-900 MHz regime, corresponding to millimeter wave frequencies

of 460-591 GHz, will become desirable in the immediate future and this could require a

magnet based on Nb 3Sn where the conductor cost are much higher. Thus, the most

economical approach to generating millimeter wave power at these frequencies would be

to employ an oscillator in which the frequency is doubled and in this case for all 1H NMR

frequencies <800 MHz it should be possible to use NbTi based magnets. Second

harmonic operation has recently been demonstrated in a 460 GHz CW gyrotron oscillator

for DNP, which operates in a 9 T magnet [107, 111] .

This argument provided the rationale for us to performed a parametric study of

mode excitation in the 250 GHz DNP gyrotron in order to optimize the efficiency of

fundamental mode operation and to verify the potential for operation at the second

harmonic of cyclotron resonance. For this study, the Gamma high voltage gun power

supply was replaced by a pulsed modulator, and the gyrotron operated with 1-3 gs pulses

with a frequency of approximately 1 Hz. Operating parameters including the cavity and

gun magnetic fields, beam current, and beam voltage were varied to map out the

operating characteristics of several second harmonic modes and fundamental modes in

their vicinity. The electron beam voltage and current were varied up to 15 kV and 120

mA while the main magnetic field was varied up to 9.2 T and the gun magnet up to ±8.5

x 10-2 T with respect to the cathode field.

280



Four unique transverse second harmonic modes were observed from 5.8 to 6.6 T

with starting current as low as 12 mA. The oscillation frequency at a given magnetic

field and voltage along with the starting currents for the TEo,4,1, TE 2,4,1, TE3,4,1 (and

TE 3,4,2), and TE1 ,5,1 modes are enumerated in Table 5.4. Figure 5-23 summarizes the

experimental starting current data as a function of magnetic field recorded for resonant

cavity modes from 5.8 to 9.2 T and up to 120 mA beam current (open symbols denote

fundamental modes and filled symbols denote second harmonic modes). It is of

particular interest that the three harmonic modes detailed in the experiment, the TE 2 ,4 ,1 ,

TE0 ,4,1, and TE 3,4,1, begin to oscillate at unusually low currents between 12-15 mA, and

that the TE3,4,2 second harmonic mode begins to oscillate at 47 mA.

Table 5.4: Second harmonic modes observed in the 250 GHz gyrotron.

Mode Frequency Magnetic Voltage Start current
(GHz) field (T) (kV) (mA)

TE2,4,1  323.67 5.84 7.3 12
TE0 ,4,1  327.41 5.90 7.8 15
TE3,4,1  358.42 6.48 8.6 15
TE3,4,2  358.81 6.50 8.6 47
TE1,5,1  365.26 6.60 8.8 -

120 .........

100
S80T +4E TE8 1

- 60 TE20 2 TE3,4.2 TE3 TE3.2

20
' TEO,4  TE3 4 1  ,

5.8 5.9 6 6.4 6.5 6.6 8.7 8.8 8.9 9 9.1 9.2
Magnetic field (T)

Figure 5-23: Summary of experimental starting current data recorded for resonant cavity modes
from 5.8 to 9.2 T and up to 120 mA. Open symbols denote fundamental modes and solid symbols
denote second harmonic modes.
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As has been reported previously for the fundamental modes of a 460 GHz second

harmonic gyrotron oscillator [45], we observe broadband continuous frequency tuning

with variation of the magnetic field alone. Figure 5-24 summarizes the experimental

frequency tuning as a function of magnetic field recorded near the starting current for

resonant cavity modes from 5.8 to 9 T (open symbols denote fundamental modes and

filled symbols denote second harmonic modes). Data for the TE2,4,1, TEo,4,1, TE3,4,1, and

TE3,4,2 second harmonic modes is shown in addition to the TE 2,2 , TE8 ,1, and TE2,3

fundamental modes. Table 5.5 summarizes the frequency tuning of the modes shown in

Figure 5-24, where, notably, 1.8 GHz tuning has been observed in the TE2,2 mode and 1.4

GHz in the TE8,1, and only tens of megahertz of tuning in the second harmonic modes.

The magnetic frequency tuning of the fundamental modes has been previously analyzed

in detail [45].

324 T 327.6 358.8 TE3A,2' 239 --

2:4 327.2 358.4 TE3,4.* 246

S238 0

166 TE.2v, TE2.3 O
, TE8. "o 245,

LL

165
5.8 5.9 6 6.1 6.2 6.3 6.4 8.6 8.7 8.8 8.9 9

Magnetic field (T)
Figure 5-24: Summary of experimental frequency tuning data recorded for resonant cavity modes
from 5.8 to 9 T near their starting currents. Open symbols denote fundamental modes and solid
symbols denote second harmonic modes.
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Table 5.5: Frequency tuning for the observed modes between 5.8 and 9 T in the 250 GHz
gyrotron.

TEm,p,q Harmonic Af(GHz)
TE2,4,1  2 0.05
TE0 ,4,1  2 -
TE 2,2,1  1 1.77
TE3,4,1  2 0.02
TE3,4,2  2 -
TE8s,, 1  1 1.36
TE 2,3,1  1 0.77

The expected starting currents for the 250 GHz gyrotron second harmonic modes

and the TE8,1 fundamental mode calculated using linear theory, in Table 5.6, are much

higher than the experimentally observed starting currents shown in Figure 5-23, while the

experimental oscillation frequencies are nevertheless close to those obtained from cold-

cavity simulations. There are several possible explanations for this phenomenon. First,

the performance of the diode-type electron gun used in these experiments, which has

been previously analyzed in detail [45], is characterized by large changes in the beam

pitch factor and velocity spread as a function of beam voltage and magnetic field.

However, linear theory and non-linear simulations using MAGY, shown in Figure 5-25,

suggest that the effects of velocity spread alone cannot account for the lower starting

currents. Second, we consider potential effects on the starting current of coupling to an

off-axis beam, which may optimize the coupling coefficient for some modes, and was

first contemplated due to the location of the oscillator magnet within the fringe field of a

9 T NMR magnet. The design beam radius of 1.018 mm effectively couples the electron

beam to the second radial maximum of the TEo, 3 mode.
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Table 5.6: Minimum start current, and magnetic field and frequency for minimum starting current
of q=1 modes from linear theory [112] vs. experiment.

Experiment Theory
TEmp,q Bo (T) I, (mA) f(GHz) Bo (T) Ist (mA) f(GHz)
TE2,4,1  5.84 12 323.67 5.85 272 323.537
TEo, 4,1  5.90 15 327.41 5.92 361 327.301
TE22,1  5.93 7 165.00 5.95 15 164.889
TE3,4,1  6.48 15 358.42 6.49 226 358.286
TE3,42, 8.66 17 237.19 8.66 252 237.062
TE8,1,1  8.89 5 245.07 8.93 9 244.966
TE2,3,1  9.06 13 250.10 9.12 9 249.973

The coupling to the experimentally observed TEs, 1 whispering gallery mode should be

poor except for interaction with electrons in the vicinity of the cavity wall, but, in the

experiment, the mode has a low starting current. An analysis of all the starting current

data and a geometrical analysis of coupling factors in the presence of beam offset shows

that no single beam offset can explain all the starting current data and, further, the

magnitude of the beam offset required to optimize the coupling factors would result in

beam interception at the cavity down-taper or in the ceramic drift region which precedes

it. A third possibility is that the cavity diffractive Q is elevated over the design value,

either through a manufacturing defect or another mechanism. In order to explore this

possibility, we have measured the RF efficiency of the 250 GHz gyrotron through

thermal load measurements of the cavity coolant loop (see Table 5.7). Using a cavity

diffractive Q of 6,000, which was obtained from cold cavity simulations, and assuming

that the conductivity of the electroformed cavity is half that of ideal copper, the expected

RF efficiency for the 250 GHz TE0, 3,1 mode is approximately 62%. In fact, according to

the thermal load measurements in Table 5.7, the actual RF efficiency is closer to 21%,

suggesting that the conductivity of the cavity has been overestimated by a factor of 25

(which is unlikely) or that the diffractive Q is six times higher than the design value.
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Table 5.7: Thermal load measurements of the 250 GHz gyrotron in the TEO,3, mode.
Beam power Cavity load Collector load Calorimeter RF efficiency

(W) (W) (W) (W) (%)
48 0 37 0
96 0 85 0
144 11 127 3 21.43
192 24 150 5.7 19.23
240 31 189 8.4 21.38
288 37 221 10.3 21.75
336 47 260 12 20.34
384 51 292 13.9 21.37

Ccn
tr

400

300

200

100

n
6.48 6.49 6.5 6.51 6.52

Magnetic field (T)
Figure 5-25: Starting currents for the second harmonic TE 3,4,1 mode using linear and non-linear
theory and for the case of the design cavity (lines) and with an iris added before the output uptaper
(dotted lines). The percentages indicate the velocity spread simulated.

We note that a broad family of manufacturing defects commonly encountered at

discontinuities in the cavity mandrel radius can increase cavity diffractive Q, particularly

for second harmonic modes, while leaving the resonant mode frequencies largely

unchanged. These effects are illustrated in Figures 5-25 and 5-26.

(A) (B)
.1
U-

Figure 5-26: Cold
cavity (a) without

Q= 6,000 Q=38,000

Resonator Axis Resonator Axis
1 cavity simulation showing the cavity and RF profile for the 250 GHz gyrotron
and (b) with an iris.
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5.7 Conclusions

A computer-controlled stable CW source, the 250 GHz gyrotron was the first

gyro-device specifically designed with the purpose of seamless integration into an NMR

spectrometer [44, 47]. During the course of this work, the 250 GHz gyrotron has been

operated continuously for a period of 21 days yielding a power stability of <1% and

frequency stability of better than 400 kHz (1.6 ppm). The gyrotron output power is

controlled through feedback regulation of power sampled through a quasi-optical

directional coupler implemented in an overmoded corrugated waveguide. We have

mapped radiation patterns at various locations along the axis of the waveguide and

demonstrated using two techniques that a pure Gaussian mode is effectively coupled to

the sample. Further, a parametric study of mode excitation in the 250 GHz gyrotron

oscillator has revealed broadband continuous frequency tuning of up to 1.8 GHz through

variation of the main magnetic field alone. Several second harmonic modes were

observed in the range 325-365 GHz, and they are characterized by unusually low starting

currents (as low as 12 mA). The low starting currents were attributed to an elevated

cavity Q, a fact that is also suggested by cavity thermal load measurements.

The performance of the gyrotron control system is currently limited by the cycle

time of the hardware, which is dominated by the need to synchronously sample multiple

analog signals. Improvements in this approach, involving asynchronous digital sampling

of slowly-varying signals and asynchronous sampling of analog signals, have been

demonstrated in a 460 GHz gyrotron control system [111].
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5.8 Appendix

As mentioned in Section 5.5 the gyrotron is employed in 3D DNP/NMR experiments and

requires a control system to maintain the power stability for the extended periods

involved. In this Appendix we provide detailed block diagrams of the control system

developed for this purpose.

The major components of the 250 GHz gyrotron control system are illustrated in

schematic form in Figure 5-27 aspects of the event-driven architecture of the software

control system are illustrated in Figure 5-28. Its principal function is to regulate the

microwave output power by changing the heater voltage.
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Figure 5-28: State machine indicating common processing functionality of the 250 GHz control
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queue and are not explicitly illustrated. Each block has access to a global variable space and
message queue, and concurrent execution blocks are indicated. Analog I/O is blocking.
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Chapter 6 Second Harmonic Operation at 460 GHz and
Broadband Continuous Frequency Tuning of a Gyrotron
Oscillator

This chapter appears in the following publication:
Melissa K. Homstein, Vikram S. Bajaj, Robert G. Griffin, Kenneth E. Kreischer, Ivan
Mastovsky, Michael A. Shapiro, Jagadishwar R. Sirigiri, and Richard J. Temkin, "Second
harmonic operation at 460 GHz and broadband continuous frequency tuning of a gyrotron
oscillator," IEEE Transactions on Electron Devices, vol. 52, no. 5, pp. 798-807, May
2005.

We report the short pulse operation of a 460 GHz gyrotron oscillator both at the

fundamental (near 230 GHz) and second harmonic (near 460 GHz) of electron cyclotron

resonance. During operation in a microsecond pulse length regime with 13 kV beam

voltage and 110 mA beam current, the instrument generates several watts of power in two

second harmonic modes, the TE 2,6,1 at 456.15 GHz and the TE0 ,6,1 at 458.56 GHz.

Operation in the fundamental modes, including the TE 0,3,1 mode at 237.91 GHz and the

TE2 ,3,1 at 233.15 GHz, is observed at output powers up to 70 W. Further, we demonstrate

broadband continuous frequency tuning of the fundamental modes of the oscillator over a

range of more than 2 GHz through variation of the magnetic field alone. We interpret

these results in terms of smooth transitions between higher order axial modes of the

resonator.

6.1 Introduction

The terahertz or submillimeter band of the electromagnetic spectrum, corresponding to

frequencies between 300 and 3,000 GHz, is of considerable interest for applications in

spectroscopy,, communications, high-resolution RADAR, and imaging [1], [2]. Potential

applications are nevertheless frustrated by a historical dearth of sources that yield
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appreciable powers in this frequency regime. On the one hand, near-infrared lasers are

capable of delivering moderate peak power at very high frequencies, but they do not yet

scale to intermediate frequencies; on the other hand, conventional vacuum electron

devices such as the klystron and traveling wave tube (TWT) operate at very high output

powers in the tens of gigahertz, but the physical dimensions of their interaction structures

(i.e. the region of interaction with the electron beam) necessarily scale with the

wavelength. The resulting increase in power density with increasing frequency limits the

reliability and utility of these devices above 140 GHz.

Gyrotrons, by contrast, do not suffer from these limitations. Unlike so-called

"slow-wave" microwave devices, "fast-wave" devices such as gyrotron oscillators and

amplifiers rely on a resonance between the modes of an interaction structure (such as the

transverse electric modes of a cylindrical cavity) and the electron beam in a magnetic

field. The resonator can be overmoded and, as such, can have physical dimensions which

are much larger than the operating wavelength. This permits high peak and average

power operation even at elevated frequencies without risk of damage to the interaction

structure [2]. Indeed, gyrotrons routinely achieve megawatt power levels at frequencies

between 100 and 170 GHz, where plasma heating for fusion is the driving application [4].

The highest frequency achieved by a gyrotron oscillator to date is 889 GHz at Fukui

University in Japan [5]. At the University of Electronic Science and Technology of

China in Chengdu, a gyrotron successfully produced the third harmonic at 35 GHz [6].

Second harmonic operation of a Soviet gyrotron was demonstrated at 326 GHz with the

power level of 1.5 kW at continuous duty [7]. More recent applications in spectroscopy,

such as high field dynamic nuclear polarization (DNP) [8] and electron paramagnetic
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resonance (EPR) require lower peak power, but high average power continuous duty (7-

10 days CW) operation and high stability of the frequency and output power.

Superconducting magnet technology is one limiting factor in high frequency

gyrotron design. At fields up to 10 T, magnets which have wide room temperature bores

generally employ the NbTi superconducting technology; from 10 T to 22 T

(corresponding to a range of fundamental electron cyclotron frequency from 280 to 616

GHz), it is necessary to use the Nb3Sn conductor which elevates the cost of the

superconducting magnet. This limitation can be alleviated by operating the gyrotron at a

harmonic of electron cyclotron resonance, for which the nth harmonic will deliver n times

the fundamental frequency for a given magnetic field. However, the harmonic interaction

is inherently less efficient than the fundamental interaction due to elevated ohmic losses.

It also suffers from the additional complication of mode competition and requires much

higher beam currents in order to initiate oscillation. To a large extent, these difficulties

can be reduced through appropriate design.

In this work, we report microsecond pulsed results from a 460 GHz gyrotron

oscillator designed to operate continuously at the second electron cyclotron harmonic at

low voltages and output powers of between several watts and several tens of watts.

Further, we have demonstrated that continuous tuning of the gyrotron oscillator over a

range of nearly 2 GHz at constant output power is possible by changing the magnetic

field and implementing feedback control on the beam current. The gyrotron oscillator

design will also permit the precise control of the output power and frequency that is

necessary for applications to sensitivity-enhanced magnetic resonance spectroscopy

through dynamic nuclear polarization (DNP). Originally employed to produce spin
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polarized targets for nuclear scattering experiments, DNP is a technique through which

the greater Zeeman polarization of the electrons is transferred to the nuclei, in this case to

enhance the sensitivity of a subsequent NMR experiment by up to two orders of

magnitude. DNP requires irradiation of the sample with 1-10 W of power near the

electron Larmor frequency (which is close to the electron cyclotron frequency) [8]. This

technology will extend the applicability of DNP techniques to frequencies much higher

than was previously possible.

6.2 Gyrotron design considerations and construction

The design of the 460 GHz gyrotron oscillator is based on a previous 250 GHz oscillator

built at MIT for DNP experiments [9]-[11], with the additional goal that it operate at the

second electron cyclotron harmonic. This design is described in [12] and [13].

Challenges associated with second harmonic operation were addressed with novel

designs for many components of the tube. Critical operational features of this design

include the ability to efficiently generate second harmonic radiation at relatively low

voltages and currents, low starting currents, reduced ohmic losses for higher efficiency,

and isolated excitation of a second harmonic mode without competition from

fundamental modes.

Table 6.1: Gyrotron design parameters

Frequency 460 GHz Perp. velocity spread 4%
Magnetic field 8.4 T Velocity pitch factor 2
Harmonic number 2 Magnetic compression 28
Mode TE0, 6,1  Electron beam radius 1 mm
Accelerating voltage 12 kV Cavity diffractive Q 31,100
Beam current 100 mA Cavity ohmic Q 19,400
Cathode radius 5.4 mm Total cavity Q 12,000
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Figure 6-1: Cross-sectional schematic of the cylindrically symmetric 460 GHz gyrotron tube, not
shown to scale, indicating key components. The gyrotron tube is approximately 1.4 m long and
the magnet bore diameter is 7.62 cm.

A schematic of the 460 GHz gyrotron system is shown in Fig. 6-1. The axis of

the gyrotron tube and electron beam lie along the vertical bore of a 9.2 T superconducting

magnet, while the microwave power is extracted via a quasi-optical mode converter

through an auxiliary, horizontal, room temperature bore which intersects with the main

bore above the main coil of the superconducting magnet. The dual-bore arrangement

allows for efficient separation of the microwave beam from the electron beam, resulting

in increased vacuum pumping conductance to the lower portion of the tube, a feature
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which is critical for continuous duty operation. It also reduces ohmic losses in the output

waveguide, simplifies the window design, and allows the spent electron beam to be

collected in a highly compact and water-cooled collector region which is far from any

fragile microwave or waveguide structure. The total length of the gyrotron tube is

therefore only 1.4 m. Sets of two-axis horizontal alignment stages are located both under

the electron gun and around the collector and are used to align the gyrotron tube with

respect to the magnetic field of the superconducting magnet thereby aligning the electron

beam.

The experiment employs a low voltage, diode-type electron gun whose design is

modeled after the gun employed in a successful 250 GHz gyrotron experiment [11]. The

low operating voltage of less than 15 kV eliminates the need for cumbersome oil cooling

and high voltage insulation and reduces the possibility that ionizing radiation will be

produced. The reduced complexity of this gun design is achieved at the expense of an

increased sensitivity of the electron beam velocity pitch factor and velocity spread to the

exact operating parameters. For that reason, characteristics of the electron gun were

studied using the EGUN electron optics and gun design program [14] and optimized for

the intended operating regime. Figure 6-2(a) depicts a typical simulation of the

trajectories followed by electrons accelerated by a 12 kV potential in a gently tapered

magnetic field reaching a maximum of 8.4 T in the cavity. The transverse rms velocity

spread and beam x reach 4% and 2, respectively, in the region of the cavity for the design

parameters optimized for second harmonic operation. For operating parameters

corresponding to excitation of fundamental modes observed in this experiment, EGUN

simulations predict large variations in the velocity spread and velocity pitch ratio with

304



changes in the beam voltage and the magnetic field. The results of an EGUN study of

this gun over a broader range of operating voltages and magnetic fields are shown in

Figure 6-2(b) and (c).
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Figure 6-2: Simulation of the evolution of the transverse and axial velocities of the electrons
accelerated at 12 kV in the 460 GHz gyrotron experiment using the EGUN electron optics and
gun design program. (a) The electron trajectories, equipotential lines, cathode and anode
geometries, and applied magnetic field of the gun region. (b) Velocity pitch factor and (c)
transverse velocity spread for the low-voltage, diode-type gun used in the 460 GHz gyrotron
experiment. Each curve is derived from EGUN simulations of the gun geometry conducted as a
function of voltage and magnetic field.
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In practice, the electron beam parameters such as the velocity pitch factor and

velocity spread can be experimentally tuned by an electromagnet shim coil situated

around the electron gun through changing the magnetic compression, the ratio of axial

magnetic field at the cavity and cathode. Also known as the "gun coil", it reaches a

maximum magnetic field of 8.5 x 10-2 T on axis and serves to fine tune the electron beam

characteristics.

4

V

1.
mr

A

m 20.5 mm 12.3 mm 24.6 mm

Figure 6-3: Cross-sectional schematic, not drawn to scale, of the 460 GHz gyrotron cavity with
the axial radiation field profile for the second harmonic TE0, 6,1 resonator mode.

The resonant gyrotron interaction structure is a tapered cavity that was optimized

for the TE0, 6,1 second harmonic eigenmode at 460 GHz using a cold cavity (electron beam

absent) simulation code described in Section 6.4.2 [15]. Figure 6-3 is a cross-sectional

schematic of the tapered cavity, consisting of a straight section of length 20.5 mm and

circular cross-section of radius 2.03 mm joined to a linearly uptapered section at three

discrete slopes at the exit (0.25, 0.56, and 1.3Y) and a linearly downtapered section at the

entrance of 4.70, showing the axial profile of the design mode. Mode conversion in the
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input taper was not detected by simulation. The gyrotron cavity was electroformed from

OFC copper using an aluminum mandrel precision machined to a 5 gm tolerance and 0.2

gm finish.

The quasi-optical mode converter, optimized for the TEo, 6 mode, serves to convert

the waveguide radiation into a free-space Gaussian beam in addition to separating the

electron beam from the RF beam. The mode converter consists of a step cut waveguide

launcher, a focusing mirror, and a flat reflecting mirror.

Table 6.1 summarizes the gyrotron and cavity design parameters. Notably, the

gyrotron was designed for low voltage and current (12 kV, 100 mA) operation in a single

second harmonic higher order mode. The DNP experiment requires moderate peak

powers but continuous duty cycle operation for periods lasting 7-10 days, during which

the output power and frequency must be stable to within 1% and at least 5 MHz

respectively. We selected the TE0 ,6,1 design mode on the basis of its isolation from

competing fundamental modes and because the electron gun can easily generate a 1 mm

beam radius in the cavity, which couples to the third maximum of the transverse field

distribution.

Auxiliary equipment includes a recirculating chiller with three separate channels

to water cool the electron beam collector, gun coil, and to maintain a constant cavity

temperature, which is required for gyrotron frequency stability.

6.2.1 Theory

The electromagnetic radiation in a gyrotron is produced by the interaction of a mildly

relativistic gyrating electron beam and transverse electric (TE) wave near cutoff in an
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overmoded cavity resonator situated in a DC magnetic field. The oscillation frequency o

of a TEm,p,q mode of a cylindrical cavity of effective length L and radius r0o is given by

2

=k2 =kI +k (6.1)

where k1 (= Vmp/ro) and kz (qrt/L << k1 ) are the transverse and longitudinal propagation

constants of the TEm,p,q wave, C is the velocity of light, vmp is the pth root of J'm(x), and m,

p, and q are, respectively, the azimuthal, radial, and axial mode numbers. The resonance

condition for the excitation of the cyclotron resonance maser instability is satisfied when

03 and k, in (6.1) satisfy the beam mode dispersion relation,

(9-k'Pzo = nco (6.2)

where oco (=eBo/y me) is the relativistic cyclotron frequency, 7y = (1 -I0 2 - f 102- 1 /2 is the

relativistic mass factor, me and e are the electron rest mass and charge, ,_o and fzo are,

respectively, the transverse and longitudinal velocities of the electrons normalized to the

velocity of light, n is the cyclotron harmonic number, Bo is the magnitude of the static

axial magnetic field, and the subscript "O" denotes that the value is taken at the start of

the interaction region.

The starting current is defined as the minimum electron beam current needed to

overcome the dissipative processes in the cavity and excite a given transverse electric

mode. This threshold is obtained on energy conservation grounds by equating the

dissipative relationship implied in

toWP = (6.3)
Q

with the beam-wave power transfer governed by
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P =- Re f E . J dr dpj (6.4)

where W is the stored energy of the mode, E is the cavity electric field, J (= e v f(r,p,t))

is the current density, and f(r,p,t) is the electron distribution function. For both the

fundamental and second electron cyclotron harmonic, the starting current, in amperes, for

a Gaussian axial field profile with a single axial maximum, as a function of the magnetic

field detuning is given by [16]:

Istart(A,/) = 8.56 104 2(3-n) -2 (6.5)
P , 2 A - 4n) Q '0 m

where the length parameter g is defined by

7 Lo L (6.6)

the magnetic field detuning A is given by

A= l 1- nc (6.7)

the beam-wave coupling factor C2m,p is given by

= mJ±n (kiRe) (
S(Vp--m2)JVmp) (6.8)CmP 2 2 2(.0)

and Re is the electron beam radius. The "±" sign in (6.8) refers to the counter- and co-

rotating TEm,p waves, respectively.

A similar theory, derived for the case of fixed sinusoidal axial field profiles, can

be applied to calculate linear starting currents for higher order axial modes [17].
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6.2.2 Operation at the second harmonic

Operation of a gyrotron at the second harmonic of the electron cyclotron resonance,

which results in approximately twice the fundamental frequency for a given magnetic

field, is attractive even when magnet technology is not a limiting factor. Nevertheless, it

suffers from three principal challenges: high ohmic losses, which reduce the efficiency,

high start currents, which require higher beam power than our experimental design

allows, and finally, mode competition. Of these, mode competition from fundamental

modes whose starting currents are inherently lower is the primary concern. Due to the

density of the mode structure in an overmoded resonator, particularly when higher order

longitudinal modes are included, mode competition must be explicitly addressed in the

design [18].

The ratio of the second electron cyclotron harmonic, I2,, to the fundamental

starting current, Iw, can be approximated from (6.5) as follows;

22 2

12 (L/)• • x ý 2x (6.9)
I0 (L/A)20, L Q2 , (Cm, p)2

where the subscript mc denotes the fundamental mode quantities and 2mc the second

harmonic. The first term is approximately 1/4 since the number of wavelengths in a

cavity of fixed length L is approximately twice as large at second harmonic as at the

fundamental. Due to the low voltage used to accelerate the electrons, the second term,

which incorporates the normalized transverse velocity of the electrons, is large; it is about

25 for velocity pitch factor equal to 2 at 12 kV. In practice, this can be mitigated through

a design in which the second harmonic Q is large with respect to the competing

fundamental mode. In this experiment, the value of the third factor is about 1/3. The
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fourth factor is the ratio of beam-wave coupling factor C2m,p of the modes and depends on

the beam radius. It is generally greater than unity because the v,mp 2 term is smaller at the

fundamental than at the second harmonic. In summary, the minimum starting current for

the second harmonic modes is generally at least several times higher than the minimum

starting current for the fundamental modes.

In lowering the start current through lengthening the cavity, we encounter an

elevated diffractive Q,

Qdiffractive oc (6.10)

which directly leads to increased ohmic losses in the cavity by

Qohmic
rl7 (6.11)

Qdiffractive+ Qohmic

where rl is the total efficiency. In reality, the cavity design must be a compromise

between several factors.

6.3 Second Harmonic Experiment

The initial experiments were performed using pulses with duration of approximately 3 gs.

The free parameters of the experiment include the electron beam voltage and current,

main magnetic field, gun magnetic field, and the alignment of the vacuum tube with

respect to the room temperature bore of the superconducting gyrotron magnet. The

electron beam voltage and current were varied up to 15 kV and 160 mA while the main

magnetic field was varied up to 9.2 T and the gun magnet up to ±8.5x10-2 T with respect

to the cathode field. All measurements were taken at the end of a 2 m long copper

waveguide of 2.54 cm inner diameter, which couples to the output window.
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Figure 6-4 shows an example of typical oscilloscope traces of the electron beam

voltage, collector current, and RF signal for the experiment. In this case we show the

fundamental TE0, 3,1 mode. The noise and distortions to the pulse shape are due to power

supply ripple and the transient response of connecting cables. A small droop in the

voltage pulse causes a small corresponding droop in the microwave pulse.
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Figure 6-4: Oscilloscope microwave signal, beam voltage and collector current traces of the
fundamental TEo,3,1 mode at 237.91 GHz and main magnetic field of 8.58 T. The RF signal is
recorded with a broadband WR-3 (220-325 GHz) detector diode. The voltage and current traces
are measured through inductively couples probes (Rogowsky coils).

6.3.1 Start oscillation current

The starting current curves for all modes experimentally observed are shown in Fig. 6-5.

Five fundamental modes are depicted with open shapes ranging in frequency from 157 to

246 GHz and two second harmonic modes near 460 GHz are shown with filled shapes.

Data in each mode were collected at the unique voltage which was optimal for its

excitation. The conditions are labeled in Fig. 6-5.
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Figure 6-5: Summary of experimental starting current data recorded for resonant cavity modes
from 5.6 to 9.2 T and up to 15 kV and 160 mA. Open symbols denote fundamental modes and
filled-in symbols denote second harmonic modes.

6.3.2 Power

Peak power measurements were made during the microsecond pulsed experiment using

both a laser calorimeter and a pyroelectric detector. The calorimeter head surface was

coated with an absorbing layer of paint and re-calibrated for millimeter wavelengths.

Figure 6-6(a) depicts measured peak power data of the fundamental TEo,3,q modes

around 238 GHz as a function of beam current and magnetic field. A pyroelectric

detector was used to measure the radiation, and the beam voltage was fixed at 9 kV with

microsecond pulse lengths and a repetition rate of approximately 30 Hz. The data were

confirmed with calorimetric measurements. Nearly 70 W of peak power were recorded at

237.9 GHz with an efficiency of over 7%.

Initial pulsed power measurements of the TE2,6,1 (456.15 GHz) second harmonic

mode indicate signal strengths of several watts with 13 kV and 110 mA. The TE2,6,1

mode was found experimentally to be more isolated from fundamental modes than the

TEo,6,1 second harmonic design mode, which was also observed in [19], [20].
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Figure 6-6: Contour plot of (a) measured peak power data of the fundamental TEo,3,q modes in
watts as a function of beam current and magnetic field using a pyroelectric detector. The electron
gun was pulsed for several microseconds at a repetition rate of approximately 30 Hz with 9 kV.
The power level was calibrated using a calorimeter. (b) MAGY simulated power at experimental
conditions.

6.3.3 Linear theory and MAGY simulations

With the linear theory previously described in Section 6.2.1, we can proceed to analyze

the start current data from Fig. 6-5. In all cases, we use the beam parameters that were

derived from EGUN simulations. We have observed two second harmonic modes in
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these experiments, the TE 2,6,1 and TE0, 6,1, for which theoretically predicted and

experimentally measured starting currents show good agreement (Figure 6-7). For each

mode, we have also calculated the theoretical magnetic field which minimizes the start

current and compared it to experiment (Table 6.2). Finally, we are able to calculate a

cavity radius of 2.041 mm to obtain the best fit to the data. This value is 0.3% larger than

the design value of 2.035 mm and the difference is within the manufacturing accuracy of

the cavity.

Table 6.2: Minimum start current, and magnetic field and frequency for minimum starting
current of q=l1 modes from linear theory [21] using EGUN calculated parameters of Fig. 6-2(b)

and (c) vs. experiment

Experiment Theory
TEm,p,q Bo Ist f Bo Ist f

(T) (mA) (GHz) (T) (mA) (GHz)
TE2,2,1  5.747 4 156.90 5.746 4 156.89
TE4,2,1  7.933 2 217.10 7.926 4 217.09
TE2,6,1  8.346 58 456.15 8.345 58 456.15
TE0,6,1 8.388 67 458.56 8.390 67 458.56
TE2,3,1  8.454 18 233.15 8.433 27 233.15
TE0 ,3,1  8.625 16 237.91 8.605 7 237.92
TE, 2,1  8.936 7 246.00 8.915 14 246.01

It is clear that the TEm,p,l modes are excited at the magnetic fields predicted by

linear theory [21]. However, the fundamental modes in the experiment have multiple

local minima which form a continuous manifold of accessible cavity oscillation states,

each one producing monochromatic emission. This phenomenon, which is due to higher

order longitudinal states, will be more fully discussed in Section 6.4. In short, for

fundamental modes, the occurrence of overlapping TEm,p,q (where q is larger than one)

higher order axial modes broadens the magnetic excitation range. Finally, the very low

values of start current observed in the fundamental modes are described by linear theory.
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In Table 6.2, the experimental start current values of seven observed modes are

compared with values calculated from [21] using beam parameters from Fig. 6-2,

diffractive Q from cold cavity theory, and all other values from experiment. The

agreement is good, and discrepancies might be explained by the uncertainties in the beam

alpha, diffractive Q, and experimental conditions such as beam radius and alignment.

160

120

E
: 80

40

0

0

8.32 8.34 8.36 8.38 8.4

Magnetic field (T)

Figure 6-7: Second harmonic TE2,6,1 and TE0, 6,1 start oscillation current data (points) compared
with linear theory (solid lines) at 13.1 kV.

Nonlinear modeling has been performed using the time-dependent simulation

code MAGY, developed jointly at the University of Maryland and the Naval Research

Laboratory [22]. In MAGY, the resonator transverse fields are expanded in a normal

mode basis of waveguide modes, and the axial field structure is solved self-consistently

in the slowly time-varying approximation. In all the simulations presented here, one or

two TE modes were used in the basis. In order to observe steady state dynamics, all

modes were forced to oscillate at the frequencies obtained from self-consistent

simulations in an iterative adjustment procedure which employs the slope of the field
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phase evolution as an estimator. The cavity geometry was defined with an axial grid step

of 9.8 x 10- cm (1041 points), and with half the conductivity of ideal copper. We have

chosen physical parameters to describe the geometry and thermal properties of the beam.

This includes, for all simulations, pitch angle, velocity spread, guiding center radius and

(where applicable) the spread in guiding centers which was obtained from EGUN

simulations presented in Fig. 6-2(b) and (c). We have systematically increased the

EGUN-derived velocity spread according to [23] to account for cathode uniformity,

thermal variations, and other effects not explicitly modeled in EGUN. The simulation

geometry also involves a slightly tapered magnetic field derived from experimental

measurement of the axial field profile. The simulation time step was taken to be 50-150

ps, and we ran the code for 200-2,000 iterations to reach a converged steady state

solution.

In simulations of the TE0,3 fundamental mode, MAGY qualitatively reproduces

the experimentally observed power distribution [Fig. 6-6(b)] but predicts much higher

power output than was actually observed. The remaining differences might arise due to

higher ohmic losses in the cavity, diffractive and coupling losses in the quasi-optical

mode converter, and reduced coupling to the output waveguide, which were not studied

in detail in this experiment.

6.4 Broadband continuous frequency tuning experiment

Broadband continuous frequency tuning was observed as a function of magnetic field for

all fundamental modes. A long cavity design was utilized in order to reduce the start

current for the second harmonic, in order to meet excitation criteria for a low power gun.

In addition to lowering the start current for second harmonic modes, the length of the
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cavity permits multiple radiation maxima along the axial length of the cylindrical

waveguide resonator to be excited. That is, in addition to the TEm,p,l modes that we

expect to excite, there exist a series of TEm,p,q modes where the q is larger than one.

These higher order axial modes can be excited at magnetic fields just above those where

the TEm,p,l modes are reached. The practical consequence of this is that continuous

frequency tuning on the order of several gigahertz has been observed for each of the

fundamental modes excited in this gyrotron. A continuous bandwidth of 410 MHz

around 31.8 GHz has been previously observed using higher order axial modes, up to

q=5, in a two-stage gyrotron amplifier experiment at the University of Maryland [24].

Several experiments in electron paramagnetic resonance (EPR) and dynamic nuclear

polarization (DNP) might be dramatically simplified with a tunable oscillator that

exploits this property.

6.4.1 Experimental data

The experimental gyrotron frequency corresponding to magnetic field tuning in the range

5.6 - 9.2T is shown in Fig. 6-8. The frequency was measured using a heterodyne receiver

system which operates on a high harmonic of an 18-26 GHz YIG-tuned local oscillator.

The local oscillator was frequency-locked using a PLL circuit, resulting in frequency

measurement accuracy which is limited only by the harmonic phase noise of the local

oscillator.
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Figure 6-8: Summary of experimentally measured frequency vs. magnetic field for the modes in
Fig. 6-5.

The data were taken concurrently with the data from Fig. 6-5, in which the beam

current was set near the threshold of oscillation for each mode. Further, the data in each

TEm,p mode were taken at unique voltages which are labeled on Fig. 6-5. We observe

continuous frequency tuning in each fundamental mode across a range of magnetic fields.

The frequency tuning bandwidth is relatively large, notably with 1.8 GHz tuning at the

246 GHz TE5,2,q modes and 2.34 GHz tuning at the 157 GHz TE2,2,q modes. Further, the

data show that a significant amount of power can be maintained across the frequency

tuning range of a given mode. This is illustrated for the TEO,3,q modes in Fig. 6-6(a),

where the power measurements are taken as a function of the magnetic field and electron

beam current. We can conclude that an average power of at least 5 W can be maintained

from 237.9 to 238.6 GHz. Finally, the second harmonic modes do not tune by more than

20-30 MHz, which implies that the long-term frequency will be stable towards drift in the

magnetic field. This follows from Fig. 6-7 where we have shown that only the first axial

variation of the second harmonic modes has been excited in this experiment. This is

important in the intended application of this device.
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6.4.2 Discussion

Prior to further analysis, we note that the mechanism of frequency tuning is qualitatively

similar for each fundamental mode. Figure 6-9 is a plot of the experimental data from

the fundamental modes of Figs. 6-6 and 6-8, normalized to one magnetic field axis. That

is, the data from each TEm,p,q mode family are normalized to the magnetic field value

which yields minimum start current for the mode. The frequency axis in the lower plot is

then normalized with respect to the frequency of the first axial mode at that magnetic

field.

120

1.008

1.004

1

0.995 1 1.005 1.01 1.015
Normalized magnetic field (a.u.)

Figure 6-9: Start oscillation currents and frequency tuning normalized to the frequency at the
minimum start current versus magnetic field normalized to the field at the minimum start current
of fundamental modes from 7.8 to 9.2 T.
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The start currents and normalized frequency tuning with respect to magnetic field

resemble each other in functional form. For instance, in the upper plot, the local minima

of the start oscillation current curves fall at approximately the same magnetic field

values; in the lower plot, the frequency tuning rate, dfldB, is identical for each family of

modes.

For the following discussion, we therefore focus our attention on the TE5,2 mode,

which displays broad frequency tuning in isolation from other fundamental and second

harmonic modes. First, using weakly irregular waveguide (so-called "cold cavity")

theory [15], we can calculate the resonator eigenfrequencies, Q values, and axial field

functions of TE modes by solving a one-dimensional wave equation of the form

+ k(z) (z) =0 (6.12)

where f is the longitudinal profile function and z is the longitudinal coordinate, with the

boundary conditions of a cutoff wave in the input and propagating wave at the output.

The analysis relies upon the dimensions of the cavity as well as the indices of the TEm,p

mode, but neglects coupling to other modes and the perturbing effects of the electron

beam. Calculated field profiles lose the distinction between consecutive axial modes,

approximating the continuous behavior observed in the experiment.

Using the cold cavity frequencies and axial field profiles corresponding to the

TE5,2,1 - TE5,2,5 modes, we have applied linear theory [21] to calculate their

corresponding magnetic fields. These five calculated eigenfrequencies are shown in Fig.

6-10 as solid circles, where each eigenfrequency is located at the magnetic field

corresponding to the theoretical minimum starting current of that eigenmode. This value

of magnetic field is selected because, at the minimum starting current, the effect of
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dispersion due to the electron beam is negligible and the linear theory should be valid.

Since these data are indeed taken near the threshold of the starting current, the agreement

between theory and experiment is very good.

248

N
I

O

247

L_
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8.9 9 9.1

Magnetic field (T)

Figure 6-10: Linear theory (solid circles) and MAGY simulation (solid triangles) using EGUN
calculated parameters of the frequency tuning of the TE5,2,q modes compared to the experiment
(+). The dotted line is the relativistic cyclotron frequency.

However, the linear theory alone cannot completely describe the dynamics of the

beam-wave interaction for reasons that have been previously enumerated. For example,

the observation of continuous frequency tuning even between frequencies corresponding

to the discrete axial modes of the cold cavity theory cannot be easily explained within the

framework of linear theory. We therefore again apply the non-linear, time-dependent

theory as implemented in MAGY to model the operating characteristics of this gyrotron.

Using the EGUN-derived beam pitch ratio and the adjusted perpendicular velocity spread

to model thermal properties of the electron beam as previously described, the self-

consistent MAGY simulations quantitatively predict continuous frequency tuning and
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monochromatic emission in the TE5, 2 mode. The agreement between experiment and the

predictions of MAGY as shown in Fig. 6-10 is better than for the linear theory, even

though the former depends on fewer adjustable parameters.
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Figure 6-11: Self-consistent axial field profiles for TE5,2,q modes with q > 1 as calculated from
MAGY. The cavity geometry is indicated above each column, and we have displayed the
normalized voltage amplitude. The frequency increases from 246.0 GHz in (a) to 248.1 GHz in
(h).

Detailed analysis of the axial field structures predicted by MAGY (Figure 6-11)

reveal a continuous transition from lower to higher order axial modes, and this is the

basis of the observed frequency tuning. The self-consistent axial field structures

resemble those obtained from the cold cavity theory.

6.5 Conclusion

The 460 GHz experiment has successfully demonstrated that a gyrotron can efficiently

produce several watts of average power in submillimeter wavelengths at low voltage. In

addition, continuous broadband frequency tuning of the gyro-oscillator has been
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demonstrated, and we have presented non-linear and linear analyses of the results. The

gyrotron is currently being processed for CW second harmonic generation at 460 GHz.

We note that, due to the inhomogeneous frequency dispersion of the interactions

responsible for dynamic nuclear polarization effects in paramagnetically doped solids,

either the microwave source frequency or the static magnetic field in the NMR

spectrometer must be varied over a broad range to optimize the experiment. Performing

the latter currently requires high homogeneity superconducting magnets in the 9-16 T

range which incorporate a persistent sweep coil. Future oscillator designs which could

exploit the broad tunability features described here might eliminate this complication of

the experiment while still preserving the advantages of simple, low-voltage, CW

operation.
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Chapter 7 Continuous-Wave Operation of a 460 GHz
Second Harmonic Gyrotron Oscillator

This chapter appears in the following publication:
Melissa K. Hornstein, Vikram S. Bajaj, Robert G. Griffin, and Richard J. Temkin,
"Continuous-wave operation of a 460 GHz second harmonic gyrotron oscillator," IEEE
Transactions on Plasma Science, vol. 34, no. 3, pp. 524-533, June 2006.

We report the regulated CW operation of a second harmonic gyrotron oscillator at output

power levels of over 8 W (12.4 kV and 135 mA beam voltage and current) in the TE0, 6 ,1

mode near 460 GHz. The gyrotron also operates in the second harmonic TE2,6,1 mode at

456 GHz and in the TE 2,3,1 fundamental mode at 233 GHz. CW operation was

demonstrated for a one-hour period in the TE0 ,6,1 mode with better than 1% power

stability, where the power was regulated using feedback control. Non-linear simulations

of the gyrotron operation agree with the experimentally measured output power and RF

efficiency when cavity ohmic losses are included in the analysis. The output radiation

pattern was measured using a pyroelectric camera and is highly Gaussian, with a beam

waist ellipticity of 4%. The 460 GHz gyrotron will serve as a millimeter-wave source for

sensitivity-enhanced nuclear magnetic resonance (dynamic nuclear polarization)

experiments at a magnetic field of 16.4 T.

7.1 Introduction

The submillimeter wave regime is lacking in high average power devices. While

gyrotrons deliver the highest average power in this band, there have been very few CW

gyrotron experiments at high frequencies. Only six CW gyrotrons from Univ. Sydney

[1], Fukui Univ. [2], IAP [3], [4], and MIT [5], [6] generate frequencies above 250 GHz

at output powers ranging from a fraction of a Watt to a kilowatt.
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The gyrotron is a vacuum electron device that is capable of producing high

average power at the fundamental or an harmonic of the electron cyclotron frequency

through an interaction between a mildly relativistic electron beam and electromagnetic

field in a static DC magnetic field. Design at high frequency, second harmonic, and low

beam power is challenging because the latter two involve lower gain than at fundamental

modes and all three necessitate higher Q cavities. Furthermore, ohmic loss is a limiting

factor in the design of high Q cavities, which are necessary to lower starting currents to

the operating range of the low power electron gun

While the physics of a gyrotron can be nearly completely characterized in short

pulse (microsecond to millisecond) operation, many nontrivial engineering issues remain

which must be addressed in the design of a high frequency continuous-wave gyrotron.

These include passing an energetic electron beam through a narrow interaction structure,

the design of a robust collector that can dissipate high average power, a cooling circuit,

and a sufficient vacuum pumping conductance throughout the tube. The goal of this

experiment is to successfully generate several watts of CW power at the second harmonic

TE0 ,6,1 mode near 460 GHz, a level sufficient to perform biological experiments using

sensitivity-enhanced nuclear magnetic resonance (NMR) through dynamic nuclear

polarization (DNP) [7] at 16.4 T.

7.2 Experiment

The gyrotron is shown schematically in Fig. 7-1. We have previously characterized the

operation of this gyrotron in short pulse operation [5]. In the present study, we have

employed a CW DC power supply in place of the pulse forming network and found stable

operating parameters for continuous duty operation. The parameters of the CW operation
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are summarized in Table 7.1. During the transition from short pulse to CW operation, the

heater temperature was held constant and the emission current increased over time with

increasing cathode voltage at continuous duty, resulting in the successful outgassing of

the collector. The collector has dissipated in excess of 2.0 kW of electron beam power,

sufficient to achieve the nominal operating parameters of 12.4 kV and 100 mA, with no

adverse effects.

C7

Cathode
Anode
Drift tunnel
Microwave absorber
Cylindrical
resonant cavity
Quasi-optical
mode converter
Output window
High voltage
ceramic insulator
Electron beam
collector
Superconducting
magnet
Electromagnet

Figure 7-1: Cross-sectional schematic of the cylindrically symmetric 460 GHz gyrotron tube, not
shown to scale, indicating key components. The gyrotron tube is approximately 1.4 m long and
the magnet bore diameter is 7.62 cm.

329

(5>



Table 7.1: CW experimental operating parameters
Experimental parameters Min. Max.
Duty cycle (%) - 100
Beam voltage (kV) 0 15
Beam current (mA) 0 140
Main magnetic field (T) 8.3 8.7
A cathode magnetic field (mT) -85 85

A parametric study of the second harmonic design mode and neighboring modes

involves independent variation of the electron beam voltage and current, main magnetic

field, gun magnetic field, and the alignment of the vacuum tube with respect to the room

temperature bore of the superconducting gyrotron magnet. The electron beam voltage

and current were independently varied up to 15 kV and 140 mA while the main magnetic

field was varied up to 8.7 T and the gun magnet up to ±8.5 x 10-2 T with respect to the

cathode field. All measurements were taken at the end of a 2 m long copper waveguide

of 2.54 cm inner diameter, which couples directly to the output window, unless otherwise

specified.

7.2.1 Mode Map

A mode map was generated to chart the regions of parameter space in which the modes in

the vicinity of the TE0 ,6,1 design mode can be excited (cf Fig. 7-2). In the region of

interest, we observed only two second harmonic modes, the TE2,6,1 and TE0 ,6,1, and one

competing fundamental mode, the TE2,3,q. To determine the operational limits of each

mode, the main and cathode magnetic fields were varied for fixed beam parameters of

12.4 kV and 100 mA during CW operation.
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Figure 7-2: Mode map for the design mode and nearby competing fundamental TE2,3 mode for
the cavity and cathode magnetic fields operating CW at 12.4 kV and 100 mA.

We find that the modes are spaced well apart and there are few possibilities of

simultaneous mode excitation in the present gyrotron in CW operation. This result

differs from the observation in the short pulse experiment [5], in which the neighboring

TE 2,6,1 mode was experimentally favored over the design TEO,6,1 second harmonic mode

due to interference from the fundamental TE2,3,q mode, which was excited at the rise and

fall of the pulse, which saturated the TEO,6,1 signal at high magnetic fields. The high

efficiency region is located in the lower left of each of the three mode spaces.

7.2.2 Second Harmonic

The CW power in the operating mode was measured using a calorimeter (Scientech, Inc.)

that was recalibrated for millimeter wavelengths. The variation of the output power of

the TE0, 6,1 design mode with beam current is depicted in Fig. 7-3(a). After oscillations

begin around 77 mA, the power is linear with beam current, indicating that saturation of
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the interaction has not been reached. A maximum CW output power of 8.4 W is

achieved at beam parameters of 135 mA and 12.4 kV, yielding an efficiency of 0.5%.

(a)
e1

(b)
aO0.

Current (mA)

Magnetic field (T)

(c)
0
IL

(d)
10

Cathode magnetic field (T)

4

0
0

2

0
85

Figure 7-3: CW output power in the TE0,6 second harmonic mode as a function of (a) beam
current, (b) main magnetic field, (c) voltage, and (d) cathode magnetic field. The magnetic
tuning (b) is compared with nonlinear theory from MAGY simulations, and in (a), (c), and (d) the
lines are added as a guide.
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In Fig. 7-3(b) the experimentally measured continuous duty power of the design

TE0 ,6 ,1 mode with varying magnetic field is compared with the theoretical results from

MAGY, a self-consistent nonlinear code developed by the University of Maryland and

the Naval Research Laboratory [8]. In the theoretical model we assumed 30% losses in

the quasi-optical mode converter. A conductivity one-fifth that of ideal copper is used

based on cavity thermal load measurements of the second harmonic TE0, 6,1 mode. The

following parameters of the electron gun operation were obtained through EGUN

simulations: the guiding center spread is 5.5%, the transverse velocity spread is 6%, and

the pitch factor is 2.4 [5]. At beam parameters of 100 mA and 12.4 kV, a power of nearly

5 W is recorded. However, the theory shows a slightly elevated power of 7 W indicating

that either the mode converter is less efficient than previously assumed or that the beam

quality is below that which is expected. There is no present explanation for the

difference in width of the theoretical and experimental curves.

The power was optimized as a function of beam voltage [Fig. 7-3(c)], yielding an

optimum beam voltage of 12.4 kV. In our diode electron gun, the electron velocity pitch

factor changes rapidly with cathode magnetic field, along with other factors such as main

magnetic field and cathode voltage [5]. This rapid change is illustrated in Fig. 7-4. A

first-order attempt at holding the alpha (ratio of transverse to longitudinal velocity of the

electrons) constant was made in the voltage optimization measurement by maintaining a

constant body current signal. The small but nonzero body current is attributed to

reflected electrons originating from an unusually high alpha, and is less than 2% of the

total beam current in most cases. Since we do not have an alpha probe in our experiment,

an experimental illustration of the change in alpha with cathode magnetic field can be
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inferred from the change in body current and is shown in Fig. 7-3(d). Here, both the

power and body current are shown as a function of changing cathode magnetic field. The

body current increases from zero to four milliamperes with decreasing cathode magnetic

field (increasing alpha) while the power increases with decreasing cathode magnetic field

(increasing alpha and increasing beam compression) until a point where the overall beam

quality suffers.
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Figure 7-4: EGUN simulations for varying cathode magnetic fields at 12.4 kV and 100 mA.

7.2.3 Frequency Pulling

The dependence of the emission frequency on the operating parameters is an important

metric of the frequency stability of the gyrotron. The DNP application requires

approximately 5 MHz frequency stability near 460 GHz (corresponding to 700 MHz 1H).

While the gyrotron frequency at the nominal operating parameters is 458.56 GHz, in the

present paper it is referred to as either 459 GHz or "near 460 GHz." The dependence of

the emission frequency of the TEo,6 design mode on the operating parameters such as the

beam current, main magnetic field, beam voltage, and cathode magnetic field was
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characterized using a heterodyne frequency system. The heterodyne receiver system is

highly accurate due to a phased locked loop which is capable of stabilizing the local

oscillator to 1 Hz (Phase Matrix EIP 578B). Only a single parameter was varied for each

measurement in order to simulate operation. While the beam voltage is not likely to

change during operation, the control of the output power feedback will cause the beam

current to vary in response to fluctuations in the output power. While in persistent mode,

the main magnetic field will drift downward at a specified rate (ppm/hour) over long

periods of time and the cathode magnetic field may vary due to heating of the gun coil.

Table 7.2: Frequency dependence on operating parameters

Parameter Sensitivity
Beam current 0.4 MHz/mA
Magnetic field 3.0 GHz/T
Beam voltage 50 MHz/kV
Cathode magnetic field 1.3 GHz/T

The measured frequency pulling characteristics of the gyrotron are plotted in Fig.

7-5 and the frequency dependence on operating parameters is summarized in Table 7.2.

The total frequency change observed is within 30 MHz. Linear theory predicts that the

pulling effects on frequency by the magnetic field are proportional to wo/Q [9].
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Figure 7-5: Frequency tuning of the TEo, 6 second harmonic mode with (a) beam current, (b) main
magnetic field, (c) voltage, and (d) cathode magnetic field. The magnetic frequency tuning (b) is
compared with nonlinear theory from MAGY simulations, and in (a), (c), and (d) the lines are
added as a guide.

The frequency pulling effects of the cathode voltage Vc and main magnetic field B

in Figs. 7-5(b) and (c) have opposing slopes. For a given beam current, the observed
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shift in emission frequency resulting from changes of either the main magnetic field or

the beam voltage is due to the effect on the cyclotron frequency, oc ( = eB/y me), where y

(=1+Vc/511) is the relativistic factor, and the cathode voltage Vc is in kilovolts. If the

magnetic field alone is varied, the resulting frequency pulling will have a positive slope,

and if the voltage is varied, the frequency pulling will have a negative slope. However,

in theory over small values, coordinated changes in both the magnetic field and cathode

voltage may leave the cyclotron frequency unchanged such that there is no change in the

emission frequency. The same nonlinear theory (MAGY) as was used to simulate the

power as a function of magnetic field yields results for the frequency pulling, which are

compared with experimental data in Fig. 7-5(b) with coinciding slope.

7.2.4 Ohmic Losses

At high frequencies, a significant portion of the power generated in the cavity is not

extracted and is instead deposited in the cavity walls in the form of ohmic heating. These

ohmic losses are given by the ratio of diffractive to ohmic Q multiplied by the output

power,

Pohmic diffractive Pout (7.1)
Qohmic

where

Qdiffractive = 4(L/ (7.2)
1- R1,2  (7.)

QohMc ~= 1- 2 (7.3)5 Vmp
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The method, materials, and process of fabrication of the cavity are the main contributions

to the experimental value of the ohmic losses. For example, the properties of the material

(in our case copper), in particular the electrical conductivity and surface roughness, as

well as machining anomalies such as irises, in essence determine the ohmic losses. The

theoretical RF efficiency, diffractive Q, and conductivity for the second harmonic TE0 ,6 ,1

mode are given in Table 7.3. The RF efficiency is the fraction of output power with

respect to the total power generated in the cavity. With an initial value near 40% at the

conductivity of ideal copper (5.8 x 107 S/m), the RF efficiency rapidly decreases as the

quality of copper degrades. By contrast, the RF efficiency decreases rapidly with

increasing diffractive Q.

A measurement of the ohmic losses in the TE0,6 second harmonic design mode of

the 460 GHz gyrotron was made possible by the data acquisition capabilities of the

computerized control system. By measuring the flow rate and change in temperature of

the cavity cooling water, the amount of power transferred from the cavity to the water

could be calculated. The temperature of the cavity cooling water was simultaneously

measured at both the inlet and outlet of the cavity with separate thermistors, where the

measurement was taken as spatially close to the cavity as possible to prevent heat transfer

between the cooling hose and the ambient. Assuming that the water is in good thermal

contact with the cavity and that the cavity is thermally isolated from any other source of

heat internal or external to the tube (such as the collector which is isolated by a ceramic

insulator), this is equivalent to measuring the thermal load on the cavity. A period of up

to several minutes was allowed for thermal equilibrium to be reached.

338



Table 7.3: Design and measured parameters from the ohmic loss measuremenl
cavity at 458.6 GHz

Design Measured
Conductivity x (5.8 x 107 S/m) 0.5 0.25
Diffractive Q 31,000 47,000
RF efficiency (%) 32 24

Table 7.4: Measured and theoretical ohmic losses

Output Cavity thermal
power (W) load (W)

0 0
2.5 7.9
3.75 12.1
4.1 13.5

t of the gyrotron

in the gyrotron cavity at 458.6 GHz

RF efficiency
(%)

24.0
23.6
23.3

Using wet calorimetry, the ohmic power distribution was measured for CW

gyrotron output powers up to 4 W. The output microwave power was measured using

dry calorimetry. The results of these measurements are shown in Table 7.4. The RF

efficiency is nearly constant with output power and the cavity thermal load is linear with

output power. The observed RF efficiency of 24% is approximately 8% less than the

theoretical value. The effective electrical conductivity required to match the

experimental results ranges between one-quarter and one-fifth that of ideal copper. An

increase in the cavity diffractive Q from 31,000 to 47,000 might also explain the

increased cavity losses, and this might result from errors in the manufacture of the

shallow output taper. The design and measured values for the ohmic loss measurement

are summarized in Table 7.3. The measured quantities are given such that the value

reflects a single parameter change in either electrical conductivity or diffractive Q. Both

the increase in diffractive Q and decrease in conductivity are within reasonable bounds
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and in reality it is probably a combination of the two factors contributing to the slightly

elevated ohmic losses.

7.2.5 Spectral Purity

The radiation produced by the gyrotron has a finite linewidth which can be attributed to

both intrinsic (natural) and extrinsic (technical) sources. The fluctuations of the technical

parameters which dominate over the natural noise sources cause the broadening of the

radiation linewidth in gyrotrons [10], [11]. Among these technical or operating

parameters are the beam voltage, beam current, and external magnetic field.
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- Gyrotron off

• 0 o.1
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- t
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(b)
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4
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.. Gyrotron off
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i 0.0

0.00
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Figure 7-6: Homodyne measurements of the technical noise for the second harmonic TE0, 6,1
mode.

340



The 460 GHz time domain signal is an amplitude modulated (AM) signal which

can be demodulated yielding both the linewidth and technical noise of the device. An

overmoded horn directed at the gyrotron output beam coupled a sample of the gyrotron

radiation into the homodyne receiver. In our case, the main center line frequency of the

gyrotron acts as a local oscillator; this frequency beats with any other frequencies that are

generated by the gyrotron in the harmonic mixer, including those generated by spurious

or competing gyrotron modes. The receiver consists of a mixer followed by three

intermediate frequency (IF) amplifiers whose amplification bandwidth is from

approximately 0.1-1,000 MHz, and a low pass filter with 520 MHz cutoff frequency.

Thus, the intermediate frequencies between 0.1 and 520 MHz are amplified, digitized,

and passed through an FFT.

The results of homodyne measurements on the TEO,6,1 mode over 1 kHz, 25 kHz,

and 500 MHz bands are shown in Figure 7-6. Since the amplifiers do not pass DC, these

signals are presumed to be well below the gyrotron center line frequency. The technical

noise in the gyrotron is apparent in the tens of kilohertz (cf Fig. 7-6). The high voltage

power supply is a likely source of the noise in this band. The specifications for the ripple

on the power supply are 0.03% rms below 1 kHz and 0.75% rms above 1 kHz. In

addition, the alternating current filament output is at 38 kHz. The gyrotron signal at

higher frequencies shows little contamination [cf Fig. 7-6(c)] indicating single mode

operation.
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7.2.6 Radiation Patterns

The first element in the quasi-optical transmission line is the quasi-optical antenna

located internal to the gyrotron and collinear to the cross-bore of the superconducting

magnet. Its function is to efficiently convert the operating TE0,6 waveguide mode into a

free-space Gaussian beam which will then be transmitted out of the vacuum tube to the

DNP probe through a transmission line. That line can be either a corrugated metallic or

hollow dielectric waveguide supporting the HE1,1 quasi-Gaussian mode or a mirror line

supporting the free-space Gaussian mode. This experiment employs an internal quasi-

optical mode converter to efficiently separate the microwave beam from the energetic

electron beam; the microwave beam is directed to the experiment through an orthogonal

cross bore in the superconducting magnet, while the electron beam is collected in a

compact, water-cooled collector region, far from any fragile microwave structures or

windows. This in turn increases the vacuum pumping conductance and reduces the

ohmic losses in the output waveguide. The mode converter consists of a cylindrical

waveguide with a step cut and a cylindrical focusing mirror. The waveguide antenna

converts the higher order transverse electric gyrotron output into a linearly polarized

beam which is subsequently collimated by the focusing mirror. The mode converter

works well for TEm,p modes where m << p.

Table 7.5: Beam waists of the mode converted radiation fields from Fig. 7-8 as calculated by the
best fit Gaussian

TEm,p Frequency x waist (mm) y waist (mm) Ellipticity
mode (GHz) (%)
TEo,6 459 4.67 ± 0.04 4.91 - 0.04 4
TE2,6  456 6.42 ± 0.03 5.63 ± 0.02 12
TE2,3  233 5.25 ± 0.02 6.60 ± 0.02 20
TE2,2 157 3.00 ± 0.02 3.81 ± 0.02 21
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Figure 7-8: Linear radiation intensity patterns of the mode-converted (a) TEo,6 (b) TE2,6 (c) TE2,3
and (d) TE2,2 modes captured by a pyroelectric camera.

A pyroelectric camera laser beam diagnostic system developed by Spiricon, Inc.

(Pyrocam III) was used for millimeter and submillimeter-wave radiation pattern

measurements. The camera is a pyroelectric array consisting of 124 by 124 elements

where the element spacing is 100 gm by 100 gm, yielding an active area of 12.4 by 12.4

mm. The pyroelectric camera has been previously used to image the output beams of 250

GHz [12] and 140 GHz [13] gyrotrons. During these measurements, the gyrotron was

operated in CW mode with an output power of less than 2 W. Since a pyroelectric

detector is sensitive only to alternating signals, the CW gyrotron beam was modulated at
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48 Hz by an optical chopper housed in the body of the camera. Since the gyrotron

window is 25.4 mm in diameter and set inside the cross bore of the superconducting

magnet, an epoxyglass waveguide (supporting the HE1,1 mode) with 25.4 mm inner

diameter conveyed the output power to the pyroelectric camera over a distance of 66 cm.

As a result, the detector aperture does not cover the entire area of the waveguide. The

detector gain was set near the threshold of saturation to maximize the dynamic range of

the measurement. Data were processed by subtraction of a separately recorded dark

frame to eliminate systematic dead pixel artifacts and background noise, followed by

averaging of 128 captured frames to improve the sensitivity of the measurement.

An image of the captured TE0,6 mode-converted beam at 459 GHz is displayed in

Fig. 7-7(a). A Gaussian fit [cf Fig. 7-7(b)] determined that the measured beam is slightly

elliptical with a waist size in y of 4.91 ± 0.04 mm and a waist size in x of 4.67 + 0.04

mm, where the beam waist is given by 1/e2 from the maximum intensity or -8.7 dB. The

4% ellipticity indicates a good performance of the internal quasi-optical mode converter.

The output field patterns of the converted TEo, 6, TE 2,6, TE2,3, and TE 2,2 modes were also

measured (cf Fig. 7-8). These modes span 157 GHz through 459 GHz demonstrating

that the pyroelectric camera functions continuously from millimeter to submillimeter

wavelengths. The quasi-optical mode converter will convert most TEp,, modes to free-

space Gaussian beams where m << p. In agreement with this prediction, images of the

gyrotron operating in the TEO,6 and TE 2,6 show a Gaussian beam, while images with the

gyrotron operating in the TE2,3 and TE2,2 modes do not. Table 7.5 shows the beam waists

of the four modes as calculated by a best-fit Gaussian with 95% confidence interval. A

rectangular grid diffraction pattern is observed on the high frequency intensity patterns
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that is not observed on the lowest frequency intensity pattern. The spacing of the

elements in the pyroelectric array is 100 gm, which may cause interference effects with

the gyrotron wavelengths in the hundreds of microns.

7.2.7 CW Stability

Operating under a computerized control system, the 460 GHz gyrotron is capable of

stable CW emission for extended periods. The control system, implemented in the

LabVIEW software package, is based upon similar principles as a computerized control

system written for a low power CW 250 GHz gyrotron which has operated continuously

for over twenty-one days and has been in service for seven years [12]. The stability of

the emission in the TEo, 6,1 second harmonic mode near 460 GHz and, separately, the

TE2,3,1 fundamental mode near 230 GHz was monitored for a period of one hour during

which the gyrotron ran in complete CW mode. During this period, a constant output

power was maintained by proportional, integral, and derivative feedback adjustments to

the filament current based on the difference between the set point and monitored power

signal. The output power was monitored in two cases, first with a diode and later with a

calorimeter. In the case of diode monitoring, the output power was referenced at the start

and finish of the monitoring period with the calorimeter. All aspects of the experiment

were monitored by the computerized control system and logged, including the output

power, pressure, beam voltage, beam current, filament current, and gun coil current. The

superconducting magnet was in persistent mode.
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Table 7.6: Stability of the second harmonic TE0, 6,1 and fundamental TE2,3,1 modes in
gyrotron

the 460 GHz

TE0 ,6,1 (diode)
Avg. Std. dev.

(%)

TE0 ,6,1 (calorimeter)
Avg. Std.

dev. (%)
Power (W) 3.76 0.3 3.13 0.4 4.69 0.2
Pressure (x 10.8 Torr) 4.34 3.4 3.80 1.7 1.21 1.7
Beam voltage (kV) 12.40 0.0 12.40 0.0 3.50 0.0
Filament current (A) 2.55 1.0 2.52 0.6 2.36 0.3
Beam current* (mA) 119.0 8.6 111.1 6.1 19.7 2.7
Gun coil current (A) 2.54 0.0 2.54 0.1 24.63 0.0
*Beam current was monotonically increasing in the second harmonic experiment.
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Figure 7-9: Three separate one hour duration stability tests of the (a) power, (b) pressure, (c)
beam voltage, (d) filament current, (e) beam current, and (f) gun coil current for the TE0, 6,1 second
harmonic mode at 459 GHz using a diode (left) and calorimeter (center) and for the TE2,3,1
fundamental mode at 233 GHz using a diode (right) to monitor the output power. The dotted
lines on (a) represent 1% stability.
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Figure 7-10: Statistical analysis of power fluctuations from set point for the diode controlled
TEo,6,1 hour long run. The solid line is a Gaussian fit to the data.

A summary of the TE0 ,6,1 second harmonic and TE2,3 ,1 fundamental results is

shown in Fig. 7-9 and Table 7.6. A statistical analysis of excursions of the 459 GHz

power signal from its set point over the hour long experiment using a diode for feedback

(Fig. 7-10) shows that power fluctuations are normally distributed and that the tolerances

of the DNP experiment are met by the control system. Notably, the power was stable to

within 1% for all cases over the hour long period using feedback from either a diode or

calorimeter, where the dotted lines in Fig. 7-9 represent ±1% of the power signal. The

pressure in all cases was low, but showed a tendency to increase for second harmonic

operation. This increase in pressure was directly related to the increase in beam current

required to maintain the constant output power.

In both the fundamental and second harmonic operation, the output power is

regulated through changes in the filament current, which, in turn, brings about

proportional changes in the beam current. During constant power operation in the
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fundamental mode, however, the beam current and filament current change much less

than they do for similar operation at the second harmonic. While the rf output powers

were comparable for both the fundamental and second harmonic controlled runs, their

beam powers differed by a factor of 20 due to the difference in efficiency; where a beam

power of 70 W was used for the fundamental, 1.4 kW of beam power was used for the

second harmonic. Experimental runs of the gyrotron indicate that the increase in beam

current required to maintain a constant second harmonic output power is likely due to the

overheating of the electron gun. An improvement of the electron gun cooling system will

be implemented in future runs.

7.3 Conclusion

The 460 GHz experiment has successfully demonstrated that a gyrotron can efficiently

produce over 8 W of average power at the second electron cyclotron harmonic in low

voltage operation. To our knowledge, this is the highest continuous-wave output

achieved by a gyrotron this far into the submillimeter wavelength band. The efficiency

of the gyrotron was verified with measurements of the cavity ohmic losses which also

confirmed the ratio of diffractive to ohmic Q. The stability characteristics were studied

over the duration of an hour, and demonstrated that the output power could be maintained

stable to within 1% under computer control. The limiting factor in operating at longer

periods of time is likely the overheating of the electron gun. This will be corrected in

future operation. Frequency pulling measurements determined that the stability of the

frequency with respect to the beam voltage, beam current, and magnetic field drift was

sufficient for DNP. The radiation pattern of the second harmonic design mode at 460

GHz shows that the beam is Gaussian with a 4% ellipticity and that the mode converter
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works reasonably well for several other observed second harmonic and fundamental

modes. In addition, the gyrotron operates at useful CW output powers in several

fundamental modes for which the design was not explicitly optimized; many of these

modes also exhibit unusually broad magnetic tunability. The 460 GHz gyrotron will

serve as a millimeter-wave source for sensitivity-enhanced nuclear magnetic resonance

(dynamic nuclear polarization) experiments at a magnetic field of 16.4 T (700 MHz 1H),

which will be the highest frequency DNP experiments attempted to date.
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Chapter 8 Efficient, Low Voltage Operation of a CW
Gyrotron Oscillator at 233 GHz

This chapter appears in the following publication:
Melissa K. Homstein, Vikram S. Bajaj, Robert G. Griffin, and Richard J. Temkin,
"Efficient, Low Voltage Operation of a CW Gyrotron Oscillator at 233 GHz," IEEE
Transactions on Plasma Science, vol. 35, no. 1, pp. 27-30, Feb. 2007.

The gyrotron oscillator is a source of high average power millimeter-wave through

terahertz radiation. Here, we report low beam power and high efficiency operation of a

tunable gyrotron oscillator at 233 GHz. The low voltage operating mode provides a path

to further miniaturization of the gyrotron through reduction in the size of the electron

gun, power supply, collector, and cooling system, which will benefit industrial and

scientific applications requiring portability. Detailed studies of low voltage operation in

the TE2,3,1 mode reveal that the mode can be excited with less than 7 W of beam power at

3.5 kV. During CW operation with 3.5 kV beam voltage and 50 mA beam current, the

gyrotron generates 12 W of RF power at 233.2 GHz. The EGUN electron optics code

describes the low voltage operation of the electron gun. Using gun operating parameters

derived from EGUN simulations, we show that a linear theory adequately predicts the

low experimental starting currents.

8.1 Introduction

Since the power in a gyrotron oscillator increases strongly with beam voltage and current,

gyrotrons tend toward operation with high voltage in the tens to hundreds of kilovolts

generating tens of kilowatts to one or two megawatts in the microwave to millimeter-

wave band. For example, a state-of-the-art commercial CW gyrotron oscillator at 140
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GHz operating at 80 kV and 45 A has recently achieved a power level of 900 kW for a

duration of several minutes [1], [2]. However, many high frequency applications, such as

dynamic nuclear polarization (DNP) [3], require only a modest average rf output power

of several watts to several tens of watts. In such cases, it is feasible to generate this

amount of power under conditions of low voltage (<15 kV) and current operation. For

instance, using a 140 GHz gyrotron oscillator (14 kV), it has been demonstrated that rf

powers as low as 1 W can be sufficient to enhance the nuclear magnetic resonance signal

using the dynamic nuclear polarization mechanism [4], [5] and 3-4 W (12 kV) has shown

to be sufficient at 250 GHz [6].

In fact, there is no device as well suited to the generation of high average power

submillimeter radiation as the gyrotron oscillator. Gyrotrons, whose interaction

structures can be several times the operating wavelength, are more robust than

conventional vacuum electron devices (such as the klystron, TWT, and BWO), whose

circuit dimensions are limited to the order of a wavelength, thus restricting high power

capabilities especially at higher frequencies. In a gyrotron, lowering the voltage at which

oscillations occur while maintaining a good efficiency can result in a reduction of the size

of the electron gun, power supply, collector, cooling system, and vacuum pumping

system and can further reduce the length and complexity of the microwave tube

processing and conditioning. Lowering the voltage of operation is therefore an important

step toward miniaturization of the gyrotron.

In this work, we report a short wavelength gyrotron operating at a beam voltage

as low as 3 kV and producing several watts of output power at 233 GHz. Previously, a

gyrotron with a 5-15 kV, 2 mA beam has produced 5 W at 9.4 GHz with up to 2%
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efficiency [7], and a gyrotron with a 20 kV, 2-3 mA beam in a 5 T magnet generated 1 W

of power at frequencies up to 140 GHz at an efficiency of up to 2% [8]. The gyrotron

reported here differs in several respects from this earlier work. It utilizes a magnetron

injection gun (MIG), which produces an annular beam. Such a beam has reduced space

charge forces and lower velocity spread than a Pierce gun, providing higher electron

beam quality and higher output efficiency. The present gyrotron was also optimized for

DNP with the requirements to operate continuously at the second electron cyclotron

harmonic at 460 GHz with 12 kV beam voltage and output powers of between several

watts and several tens of watts. A CW power level of over 8 W was observed near 460

GHz [9]. Results reported in this paper are for operation of this gyrotron at the

fundamental cyclotron harmonic.

The electromagnetic radiation in a gyrotron oscillator results from the interaction

of a mildly relativistic gyrating electron beam and transverse electric (TE) wave near

cutoff in an overmoded cavity resonator situated in a DC magnetic field. The oscillation

frequency co of a TEm,p,q mode of a cylindrical cavity of effective length L and radius ro is

given by

0=k 2 k, + (8.1)

where k (= vmp/ro) and kz (= qi/L << kj are the transverse and longitudinal propagation

constants of the TEm,p,q wave, c is the velocity of light, vmp is the pth root of Jm(x), and m,

p, and q are, respectively, the azimuthal, radial, and axial mode numbers. The resonance

condition for the excitation of the cyclotron resonance maser instability is satisfied when

(o and kz in (8.1) satisfy the beam mode dispersion relation,

355



Co- k -zoc = nCOco (8.2)

where coco (=eBo/y me) is the relativistic cyclotron frequency, y = (1 - -z
2 - 32)-1/2 is the

relativistic mass factor, me and e are the electron rest mass and charge, I3± and zo are,

respectively, the transverse and longitudinal velocities of the electrons normalized to the

velocity of light, n is the cyclotron harmonic number, Bo is the magnitude of the static

axial magnetic field, and the subscript "0" denotes that the value is taken at the start of

the interaction region.

8.2 Low Voltage Experiment

In this experiment, the axis of the gyrotron lies along the vertical bore of a 9.2 T

superconducting magnet, while the microwave power is extracted via a quasi-optical

mode converter (optimized for TE0,6 waveguide mode radiation) through an auxiliary,

horizontal, room temperature bore which intersects with the main bore above the main

coil of the superconducting magnet. The gyrotron is shown schematically in [9], [10].

The high voltage power supply used in the present experiment is 3 kW-limited with

maximum output voltage of 25 kV and maximum output current of 192 mA.

The experiment employs a low voltage, diode-type electron gun which was

analyzed using the EGUN electron optics and gun design program [11]; the results of

this study over a range of 5-15 kV and 7.8-9.2 T were reported in [10]. For operating

parameters corresponding to excitation of fundamental modes, EGUN simulations predict

large variations in the velocity spread and velocity pitch ratio with changes in the beam

voltage and the magnetic field.
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Figure 8-1: Mode excitation regions for two second harmonic modes (TE2,6 and TEo,6) and
nearby fundamental harmonic mode (TE2,3 ) over beam voltage, cavity, and, implicitly, cathode
magnetic fields.

A parametric study of the gyrotron modes involves independent variation of the

electron beam voltage and current, main magnetic field, and the gun magnetic field.

Figure 8-1 is a plot of the mode excitation regime that was generated during

microsecond-pulse, low-duty operation charting the regions of mode excitation in the

parameter space of interest. For a fixed magnetic field, the excitation region is narrow in

voltage-space for the second harmonic modes and has therefore been represented as a

line. In Fig. 8-1, three main parameters have been varied - the main magnetic field, the

beam voltage, and the cathode magnetic field for a fixed beam current of 100 mA - to

determine the operational limits of each mode. The electron beam voltage was varied up

to 15 kV, the main magnetic field was independently varied up to 8.5 T, and the cathode
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magnetic field was varied by 30%. All measurements were taken at the end of a 2 m long

copper waveguide of 2.54 cm inner diameter that couples directly to the output window.
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Figure 8-2: CW output power in the TE2,3 ,1 mode as a function of beam current at 3.5 kV and 8.38
T.

In the region of interest, there are two second harmonic modes, the TE2,6 at 456

GHz and the TEo, 6 at 459 GHz, and one fundamental mode, the TE2,3, at 233 GHz. The

studies of the TE2,3 fundamental harmonic mode reveal that the mode can be excited at

very low voltage, less than 3.5 kV, with less than 7 W of beam power. Calorimetric

measurements of the rf power indicate that the mode begins oscillating at 2 mA at 8.38 T

and 3.5 kV with 100 mW of output power (cf Fig. 8-2). At the experimental magnetic

field corresponding to the minimum measured starting current, a starting current of 2 mA

can be obtained using linear theory [12] with electron velocity pitch factor a (ratio of

transverse to longitudinal velocity of the electrons) of about 2.
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Figure 8-3: Electron gun simulation using EGUN electron optics code of the velocity pitch factor
(solid line) and transverse velocity spread (dashed line) for 10 mA, 3.5 kV, and 8.38 T.

The low voltage operation of the electron gun can be adequately explained

through simulation of the electron gun using the EGUN electron optics code. Depicted in

Fig. 8-3 is an EGUN simulation for 10 mA beam current at 3.5 kV beam voltage. The

cathode magnetic field used in these experiments is estimated to be less than 0.22 T,

corresponding to an electron beam velocity pitch factor with a steep slope and a

transverse velocity spread of 8%. The calculation in Fig. 8-3 depicts that a large range of

alpha values can be obtained by comparatively small changes in the cathode magnetic

field.
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Figure 8-4: CW start current data in the TE2,3,q series of axial modes at 3.5 kV compared to linear
theory using a equal to 2 and 5 and with 12% transverse velocity spread.

Using a range of alpha values between 2 and 5 and with 12% transverse velocity

spread, the starting currents for the first five discrete integer longitudinal modes (TE2,3,q,

where q=1,2,3,4,5) have been calculated using linear theory [13] and are shown in Fig. 8-

4. The experimental data in Fig. 8-4 are a representative sample of continuous start

current data as a function of magnetic field. This phenomenon is a result of axial mode

hybridization of the TE2,3,q modes and therefore the data cannot be assigned to discrete

modes [10]. The starting current calculation uses electron beam parameters calculated by

EGUN, cold cavity electric field profiles, cavity radius of 2 mm, and cavity beam radius

of 0.85 mm. We have systematically increased the EGUN-derived velocity spread

according to [14] to account for cathode surface roughness, thermal variations, and other

effects not explicitly modeled in EGUN. While the experimental starting currents match

well with linear theory for alpha equal to two at the lower magnetic fields, the calculation
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shows that a higher alpha is required to provide good agreement at higher magnetic

fields.
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Figure 8-5: Contour plot of measured CW power data of the fundamental harmonic TE2,3,q modes
in watts as a function of beam current and magnetic field for an electron beam voltage of 3.5 kV.

Average power measurements were made during the experiment using a laser

calorimeter that was recalibrated for millimeter wavelengths. Figure 8-5 depicts

measured CW power data of the fundamental harmonic TE2,3,q modes around 233 GHz as

a function of beam current and magnetic field. A calorimeter was used to measure the

radiation, and the beam voltage was fixed at 3.5 kV. Over 12 W of average power was

recorded at 50 mA with an efficiency in excess of 7%. The mode also exhibits an

experimentally wide frequency tuning range, shown in Fig. 8-6, nearly 2 GHz; this effect

has been discussed in detail in [10], [15] and has been interpreted in terms of smooth

transitions between higher order axial modes of the resonator.
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Figure 8-6: CW output power and frequency in the TE2,3,q modes as a function of magnetic field
for 50 mA and 3.5 kV.

8.3 Conclusion

Gyrotron oscillators are capable of generating extremely high average powers (<1 MW)

over a wide frequency range (typically 24-170 GHz). One challenge is to further

develop compact gyrotron oscillators for moderate average power applications of

millimeter-wave and submillimeter-wave radiation. In this work we have significantly

lowered the operating voltage of a millimeter/submillimeter wavelength gyrotron while

still producing several watts of average power. The fundamental harmonic TE2 ,3,1 mode

at 233 GHz was excited with low beam power (7 W), at a voltage below 3.5 kV while

oscillations started with 2 mA of beam current. Linear theory provides an explanation to

the low experimental starting currents at low voltage, and the EGUN electron optics code

described the operation of the diode gun. Future low voltage gyrotron designs can then
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incorporate a more compact electron gun and electron beam collector, and operate with

significantly reduced cooling requirements.
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Chapter 9 Gradual Winding of the Bacteriorhodopsin
Chromophore in the First Half of Its Ion-Motive Photocycle: a
Dynamic Nuclear Polarization-Enhanced Solid State NMR Study

This chapter will appear in the following publication:
Vikram S. Bajaj, Melody L. Mak, Melissa K Homstein, Marina Belenky, Richard J.
Temkin, Judith Herzfeld, and Robert G. Griffin, "Gradual winding of the
bacteriorhodopsin chromophore in the first half of its ion-motive photocycle: a dynamic
nuclear polarization-enhanced solid state NMR study," (2007).

By exploiting sub-terahertz (250 GHz) radiation from a gyrotron oscillator, we have

enhanced the sensitivity of NMR spectra of native bacteriorhodopsin samples using

dynamic nuclear polarization. We report the first NMR spectra of the K intermediate in

the ion-motive photocycle of bacteriorhodopsin. The intermediate is identified by its

reversion to the resting state of the protein in red light and by its thermal decay to two

successive substates of the L intermediate. The 15N chemical shift of the Schiff base in K

indicates that contact has been lost with its counterion. Under these circumstances, the

visible absorption of K is expected to be more red-shifted than it is and this suggests

torsion around single bonds of the chromophore. This is in contrast to the development of

a strong counterion interaction and double bond torsion in L. Thus the storage of photon

energy is primarily electrostatic in K and is transferred to torsional modes in L. This

transfer is facilitated by the reduction in bond alternation that occurs with the initial loss

of the counterion interaction, and is driven by the re-entrainment of the Schiff base under

the influence of a new counterion interaction. The torsion developed in the chromophore

in the first half of the photocycle is probably responsible for enforcing vectoriality in the

pump by causing a decisive switch in the connectivity of the active site once the Schiff

base counterion is neutralized by proton transfer.
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9.1 Introduction

The light-driven ion pump, bacteriorhodopsin (bR), has been studied extensively since it

was discovered in the 1970's. This effort has garnered a great deal of information about

the structure of the protein and the changes that it undergoes during its functional

photocycle. However, it remains unclear how the protein stores and channels energy to

translocate ions and prevent backflow.

An important feature of the pump cycle (Figure 9-1) is that the change in the

connectivity of the active site between the two sides of the membrane occurs midway

through the photocycle (in the transition from the early M state to the late M state), long

after the initial photoisomerization of the retinylidene chromophore from all-trans to 13-

cis (Figure 9-2) and long before the thermal reisomerization of the chromophore at the

end of the photocycle. Since the change in connectivity is divorced from the major

isomerization events, much attention has been directed to the process(es) that might be

responsible. However, in the fuller context, the more interesting question is how the

active site remains connected to the extracellular surface for so long after the

photoisomerization event, and what finally releases it from that set of interactions. In this

light, it is not surprising that vibrational spectroscopy finds a strained chromophore in the

K and L intermediates and a relaxed chromophore in the N intermediate [1]. Evidence of

strain is also seen in solid state NMR spectra. Furthermore, solid state NMR has

pinpointed the release of strain to the transition from early M to late M (i.e., coincident

with the connectivity change) and determined that the strain in L and early M is

dominated by torsion about double bonds [2, 3]. Of course, such torsion is expected to

store more energy than torsion about single bonds. In the present work, we push further
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back in the photocycle to learn how the torsion seen in the L and early M intermediates

develops.

bR555

Hext

Figure 9-1: The ion-motive photocycle of bacteriorhodopsin. The subscript on each
photocycle intermediate indicates wavelength of maximum visible absorbance.
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Figure 9-2: Retinal configurations in the early photocycle intermediates of bacteriorhodopsin.
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NMR has the advantage of providing unique, non-perturbing, site-specific probes

that are relatively readily applicable to mixtures of states, such as are obtained in studies

of functional intermediates [4, 5]. On the other hand, NMR has the disadvantage of low

sensitivity due to the small equilibrium polarization of nuclear spins. Recently, Dynamic

Nuclear Polarization (DNP), in which the greater polarization of electron spins is

transferred to the nuclear spins prior to the NMR experiment [6-8], has been

demonstrated to provide large signal enhancements in bacteriorhodopsin in magnetic

fields of 5 T [9]. Here we apply DNP at 9 T, the highest magnetic field at which DNP

experiments have been performed to date [10]. The DNP experiment currently requires

the application of a continuous radiofrequency field at, or near, the electron resonance

frequency and cryogenic temperatures to attenuate spin-lattice relaxation processes that

might otherwise compete with polarization transfer. Happily, the low temperatures are

also useful for trapping the early photocycle intermediates of bR [11]. As a result, we

have been able to observe the K state for the first time by NMR and identify two L

substates according to their appearance in the thermal relaxation of K.

The '5N chemical shift of the Schiff base in these three early photocycle

intermediates suggests that the mode of energy storage is different in each. By

comparison to halide salts of 13-cis,15-anti retinylidenes and bR variants in which the

Schiff base counterion is neutralized, we conclude that the interaction between the

chromophore and its counterion is lost in K, but becomes progressively restored and

strengthened in the substates of L. At the same time, single bond torsion in the

chromophore of the K intermediate is gradually superseded by double bond torsion in the

L intermediates. These results suggest that photon energy is stored primarily in
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electrostatic modes in K and is gradually transferred to torsional modes in the progression

from L1 to L2. Since release of this torsion has previously been shown to coincide with

the switch in the connectivity of the active site, it is likely responsible for enforcing

vectoriality in the pump.

9.2 Methods and Materials

9.2.1 Sample Preparation

[- 15sN]lysine-labelled bR was prepared by growing Halobacterium salinarium strain

(JW-3) in a synthetic medium containing L-[ -'5lN]lysine [12]. The purple membrane,

isolated and purified according to the method of Oesterhelt and Stoeckenius [13], was

washed in 0.3M guanidinium hydrochloride at pH 10, until the supematant had the same

pH, and then washed further with 60% glycerol (v/v, for cryoprotection) containing 0.3

M guanidinium hydrochloride, and 40 mM 4-amino TEMPO (the exogenous nitroxide

radical required for the DNP experiments [14]), at pH 10. The washed purple membrane

was collected in a pellet by ultracentrifugation (1 hour at 323,000 g) and packed into the

middle third of a 4 mm diameter single-crystal sapphire rotor which is transparent at both

optical and millimeter-wave frequencies. The drive tip was bonded to the sapphire rotor

using a low-temperature epoxy to avoid problems associated with thermal contraction at

cryogenic temperatures. The sample was reversibly sealed using a vespel screw which

threads into a Kel-F top spacer of a diameter such that it must be inserted under liquid

nitrogen. The total sample volume was 57 mL.
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9.2.2 Preparation of Photocycle Intermediates

In order to generate photocycle intermediates, light was delivered to the sample using a

multimode fiber which penetrates the stator housing perpendicular to the rotor and

projects a diffuse beam of diameter comparable to the sample size. The light sources

were a 300 mW diode-pumped solid-state laser, operating at 532 nm (green), and an

argon/krypton ion laser producing 1 W at 647 nm (red). Each photocycle intermediate

was accumulated at the temperature which maximizes its yield relative to other states and

then cooled (3-5 K/min) to 90 K to trap the intermediate for data acquisition. Operation

of either laser raised the sample temperature by less than 0.5 K.

bR568: bR568 (the "light adapted" state), was generated by irradiation of the dark-

adapted mixture (bR568 and bR555) with 532 nm light for 45 minutes at 278 K.

K intermediate: The K state was generated by irradiation of bR568 at 90 K with 532

nm light for 45 minutes.

L1 and L2: The L1 and L2 states were prepared, first, by thermal relaxation of the K

intermediate at 150, 160, or 170 K. Both states were also prepared directly by irradiation

of bR 568 at 150 K with red light from a 647 nm laser for four hours.

Mo and M,: The early M intermediate (Mo) was prepared by irradiation of bR568

with green light at 210 K for 45 minutes. The late M intermediate (Mn) was prepared by

thermal relaxation of early M at 260 K.

In order to avoid interference with the generation of photocycle intermediates, the

spinning frequency of the MAS rotor was monitored using weak IR light for illumination.
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9.3 DNP/NMR Spectroscopy

All experiments were carried out at 9 T. The 250 GHz e/380 MHz 1H spectrometer

includes a three RF channel ('H, "3C, 15N) probe that incorporates matching transmission

lines to provide remote tuning, high isolation between the channels, and high stability

with respect to temperature variations in the sample chamber. Operation of the

spectrometer employs custom-designed NMR data acquisition hardware and software

(D.J. Ruben).

Millimeter-wave power is produced by a 250 GHz gyrotron oscillator. The beam is

directed to the sample through a quasi-optical transmission circuit consisting of two

HE,1-mode overmoded corrugated waveguides and an optical matching circuit between

them [10, 15]. Gaussian mode purity is maintained throughout the transmission system,

resulting in negligible transmission losses, and 2-4 W of power are delivered to the

sample. The transmission circuit incorporates a quasi-optical beamsplitter for feedback

regulation of the microwave power. A computer control system guarantees safe and

unattended operation of the device with power stability of better than 1%.

Cryogenic magic angle spinning is accomplished through the use of bearing and

drive nitrogen gas streams which have been cooled using a pressurized heat exchanger

immersed in liquid nitrogen. The gas transfer lines incorporate integral heaters and

calibrated resistive temperature sensors for feedback regulation of the temperature.

However, the temperatures that we report are measured in the sample chamber using a

Fabry-Perot interferometric thermometer, which is immune to magnetic and

radiofrequency fields and is accurate to within 1 K. The spinning frequency was

regulated to within 2-3 Hz by a pneumatic controller.
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All 15N chemical shifts are referenced indirectly to liquid ammonia by using

adamantane as an external standard and following the procedure of Zilm and co-workers

[[16]]. Due to the temperature dependence of the chemical shift, which can arise due to

intrinsic and extrinsic (instrument-related) factors, we have referenced all spectra using

the chemical shift of adamantane at the temperature of acquisition (usually 90 K).

One dimensional NMR spectra were recorded using cross-polarization [17, 18] with

high power proton decoupling and magic angle spinning [19, 20] for high resolution.

Typically, the cross polarization involved a 'H field of 45 kHz, with the 13C or 15N power

ramped linearly over the n=l matching condition. Data were acquired with optimized

TPPM [21] decoupling at 100 kHz field strength and magic angle spinning at a frequency

of 6.25-6.5 kHz.

9.4 Results

Figure 9-3 shows 15N spectra of [_-'5N]lysine-labelled bR under various conditions. The

only change in these spectra, from one case to another, is in the signal from the Schiff

base nitrogen of the retinylidene chromophore. These minor contributions to the spectrum

can usually be detected within a few hours due to the 40-fold enhancement in sensitivity

provided by DNP.

The spectrum of the dark-adapted sample [Figure 9-3(a)] shows bR555 and bR 568 in

the expected 60:40 proportion. Subsequent irradiation at 275 K with green light converts

bR 555 to bR568 [Figure 9-3(b)]. The following three spectra [Figure 9-3(c,d,e)] show that

different intermediates accumulate depending on the temperature at which light adapted

bR is irradiated.
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Irradiation at 90K produces two new signals, the larger one upfield of bR568 and a

smaller one downfield of bR568 . Neither of these has been detected by NMR previously.

The major product can be assigned to the K state on multiple grounds: first, irradiation

with red light results in the expected reversion to bR568; second, as discussed further

below, thermal relaxation (in the dark) at 150-170 K gives rise to the previously observed

L photocycle intermediate, confirming that the newly observed species is an intermediate

in the functional photocycle. The minor product disappears over a few hours at 90 K.

Thus it appears to be an unstable side-product of the formation of K. According to visible

spectroscopy, the generation of K is accompanied by the formation of iso-bR and pseudo-

bR, both of which relax to bR568 in the dark at 77K [22]. Based on the yields reported in

the literature, we tentatively assign the small, most downfield, signal in Figure 9-3(c) to

iso-bR.

At 150K, the photocycle proceeds beyond the K intermediate, and the L

intermediate accumulates. The two Schiff base signals observed under these conditions

[Figure 9-3(d)] reproduce earlier observations [23]. The stronger of the two signals was

previously assigned to the L state based on the wavelength dependence of its intensity

and on thermal relaxation to the M state. However, for the weaker of the two signals, it

was not possible to exclude the possibility of a photo-product of L. In the present work,

access to lower temperatures allows us to unambiguously assign both signals as substates

of L, according to their appearance as products of the thermal relaxation of the K

intermediate (about which more below). It should be noted that Figure 9-3(d) shows no

evidence of the K state, although the sample has been cooled to 90K for data acquisition.

Previous observations of K on cooling L [24] may have been due to irradiation of
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residual light adapted bR. In our experiments, cooling and data acquisition occur in the

dark.
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Figure 9-3: 15N spectra of photocycle intermediates of [ 5SN]lys-bR. Insets expand the regions
between the dashed blue lines and the red dashed lines clarify the relationships between the
signals shown in the insets. All intermediates are accumulated by irradiation or thermal
relaxation at the temperature of maximum yield, as indicated in the figure, and then trapped at
90K for sensitivity-enhanced detection with DNP: (a) dark-adapted thermal equilibrium
mixture of bR555 and bRS68; (b) light-adapted mixture produced by irradiation of the species in
(a) with 532 nm green light at 275 K; (c) a mixture of the K intermediate with bR568,
produced by irradiation of bR568 with 532 nm light at 90 K; (d) a mixture of the L1 and L2
states with bR568, generated by direct excitation of bR568 with 640 nm (red) light at 150 K; (e)
the early M intermediate of bR, produced by irradiation of bR568 with 532 nm (green) light at
210 K; (f) the late M photointermediate, produced by relaxation of the species in (e) at 260 K;
(g-i) the products of the relaxation of the species in (c) at 150K, 160K, and 170K include
intermediates L1 and L2 in proportions that reflect their order in the bR photocycle.
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At higher temperatures, the photocycle progresses beyond the L intermediate, and

the M intermediate accumulates. The extremely low-field signal of the Schiff base

[Figures 9-3(e) and 9-3(f)] reflects the deprotonation of the Schiff base at this stage of the

photocycle. At 210 K, the major product is the early M intermediate [Figure 9-3(e)].

Warming to 260 K yields the late M intermediate [Figure 9-3(f)]. This also reproduces

previously observed behaviour [2, 3] and shows that the very high glycerol content of

these samples has not significantly disturbed the progress of the photocycle.

The remaining spectra [Figures 9-3(g,h,i)] show the products of thermal relaxation

of the K intermediate at 150 K, 160 K and 170 K. The fact that both of the signals

produced by irradiation at these temperatures [Figure 9-3(d)] are also produced by

thermal relaxation of a single K species suggests that the signals reflect two different L

substates. At 150 K [Figure 9-3(g)], both L species are clearly evident. However, at

higher temperatures [Figures 9-3(h,i)], the smaller, higher field, component gradually

disappears. This suggests that the lower field component follows the higher field

component in the photocycle and we therefore refer to the latter as L1 and the former as

L2. This inference of two successive L states is in agreement with a recent analysis of

time resolved visible spectra [25] and might explain the greater disorder found in x-ray

crystallography of the L state at 150 K than at 170K [26].

In the foregoing spectra, linewidths for the 15N Schiff base resonance are

typicallyl30-170 Hz. Since the chemical shift depends strongly on the electrostatic and

electronic environment, these linewidths indicate a well-ordered chromophore structure

and a distinct environment for each photocycle intermediate.
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Table 9.1: 15N chemical shifts of the Schiff base in bR

Intermediate Chemical Shift (ppm
vs. liquid NH3)

bRs5s 173.5 ± 0.65*
bR 568  165.2+ 0.60
Iso-bR 175.4± 0.65*
K 156.5± 0.72
L1 174.3+ 1.02
L2 184.6+ 0.83
Mo 318.4± 0.63
Mn 312.0± 0.65*

* experimental uncertainty estimated by monitoring lysine resonance at 31.1 ppm

Chemical shifts for the Schiff bases of each of the eight species observed in the

present work are summarized in Table 9.1. Most species were generated at least three

times to provide a statistical measure of the uncertainty. However, for the less important

species, we estimate the accuracy of the Schiff base chemical shifts from an analysis of

the resonances of the free lysine sidechains in 61 independent ' 5N spectra of three

different samples. These chemical shift deviations were found to follow an

approximately normal distribution, with a standard deviation of 0.65 ppm.

9.5 Discussion

9.5.1 Dynamic Nuclear Polarization

This work is the first application of dynamic nuclear polarization to functional

intermediates of a protein. With signal enhancements of up to 40-fold, most lD spectra

can be acquired within an hour and longer data acquisition allows the detection of minor

components. In spite of the necessity of doping with free radicals, the spectra are of

comparable resolution to those obtained in earlier studies at higher temperatures, as long

as cryoprotection conditions are adjusted to avoid phase separation of the sample with
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repeated thermal cycling to liquid nitrogen temperatures. That these conditions are

largely compatible with previous protocols for the generation and trapping of photocycle

intermediates is demonstrated by the results in Figure 9-3.
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Figure 9-4: ' 5N chemical shifts and wavelengths of maximum visible absorption for the
Schiff base in halide salts of 13-cis, 15-anti retinylidene model compounds [27] (0) and in the
early photocycle intermediates of bacteriorhodopsin (0). The dashed line is a linear fit to the
halide series data. For the L substates, we assign the reported wavelengths of maximum
visible absorbance for the early, minor component and the major, late component [25] to our
species L1 and L2, respectively.

9.5.2 Schiff Base-Counterion Interactions

The chemical shift of the Schiff base nitrogen in retinylidenes is extremely sensitive to

the interactions of the Schiff base with hydrogen bonding and counterion partners [2, 3,

23, 27, 28]. In early work on bR, this sensitivity provided evidence for a hydrogen-

bonded complex counterion in bR568 [29-31] that was confirmed by x-ray crystallography

a decade later [32]. It also indicates that the deprotonated Schiff base in each M
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intermediate has a hydrogen bonding partner that has not yet been identified. In the

present work, we find that the Schiff base signal is far upfield (small chemical shift) in

the K intermediate and gradually moves downfield (larger chemicals shifts) in the L

intermediate, as shown along the horizontal axis of Figure 9-4. Whereas the shifts of the

L substates are comparable to those of 13-cis,15-anti retinylidene halides, the shift of the

K intermediate is so far upfield that it only compares to the shifts of acid blue bR [31]

and D85N bR [2], in which the Schiff base counterion has been neutralized by pH

titration and mutation, respectively. This suggests that the Schiff base in K has lost

contact with the original counterion, a result that is consistent with findings by FTIR [33].

Since both D85 and D212 remain unprotonated in K, the loss of the counterion

interaction must reflect movement in the active site, as expected upon isomerization of

the chromophore. However, the single narrow NMR signal of the K intermediate

indicates a discrete state, in contrast to the considerable disorder seen in NMR spectra of

the bR variants with a neutralized counterion.

Narrow NMR lines, indicative of order in the active site, persist through the

rearrangements in the L substates that result in establishment of a counterion interaction

which is intermediate in strength between that of the iodide and bromide salts in L1 and

between that of the bromide and chloride salts in L2. As has been noted earlier [23], these

counterion interactions are stronger than the counterion interaction in bR568 (the Schiff

base 15N resonance of which is farther upfield than the most upfield of the all-trans,15-

anti retinylidene halides) and the candidates for the interactions in the active site of L are

few. Either the Schiff base in L1 and L2 is approaching one of the two carboxylic acids in

the active site more closely than in bR568, or the water hydrogen bonded to the Schiff
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base is becoming highly polarized. The latter seems more likely and has motivated

speculation that bR may be acting as an inward-driven hydroxyl pump rather than an

outward-driven proton pump [4, 5].

9.5.3 Polyene Torsion

The interactions of the Schiff base affect not only the chemical shift of the nitrogen, but

also the visible spectrum of the chromophore. For a given configuration of the

retinylidene, the relationship between the 15N chemical shift and the frequency of

maximum visible absorbance is linear [3, 23, 27, 28]. This is illustrated in Figure 9-4 for

a set of halide salts of 13-cis,15-anti retinylidenes. In this series, the only variation from

one model compound to the other is the counterion. Comparison with the data for the 13-

cis,15-anti intermediates of the bR photocycle (also shown in Figure 9-4) must take into

account other influences on the visible spectrum, particularly strain in the polyene chain.

Distortion involving rotations about single bonds gives rise to wavelengths of maximum

visible absorption that are shorter than expected based on the '5N chemical shift;

conversely, distortion involving torsion about double bonds yields wavelengths of

maximum visible absorption that are longer than expected based on the 15N chemical

shift. These relationships were the basis of previous conclusions that the change in

connectivity in the active site coincides with a release of double bond torsion in the

chromophore [2].

Here, we extend this analysis to earlier stages of the photocycle. As shown in

Figure 9-4, the K intermediate is blue shifted relative to expectations based on its Schiff

base environment (i.e., not as red shifted as expected) whereas the L2 intermediate is red
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shifted relative to expectations based on its Schiff base environment. This suggests that

chromophore strain in the K intermediate is primarily about single bonds. Since torsion

about single bonds does not store much energy, the data suggest that the energy in the K

intermediate is stored primarily in the electrostatics of breaking the interaction between

the Schiff base and its counterion. In contrast, chromophore strain in the L2 intermediate

appears to be primarily about double bonds. Such strain stores more energy and is

presumably "paid" for by re-establishment of a counterion interaction. The Li

intermediate falls between these two poles, with an intermediate counterion interaction

and no significant shift in the visible spectrum. In this respect, it is like the N

intermediate which is regarded as having a relaxed chromophore. However, since L1

must have an energy intermediate between that of the K and L2 states, it probably has a

mixture of single and double bond torsion.

Table 9.2: Dihedral angles in the bR chromophore as determined by x-ray crystallography

intermediate bR568  K L
pdb entry 1C3W IMOK 100A

angle
C14-C15=Ný-Ce -1630 1310 440
C13=C14-C15=Ný 1790 1740 1610
C12-C13=C14-C15 -1570 -560 310
C11=C12-C13=C14 1780 1690 1510
C10-C11=C12-C13 1790 1790 -1780

Table 9.2 shows torsion angles in bR found by fitting polyene coordinates to

electron densities from x-ray diffraction [26, 34]. The results for the L intermediate agree

with our qualitative conclusion that double bond torsion dominates just before Schiff base

deprotonation ([23] and the present work). However, the fit to electron densities also

finds double bond torsion dominating in the K intermediate, which is inconsistent with

the NMR results.
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The present overall picture is one of initial storage of energy in breaking the Schiff

base-counterion interaction, with relatively little energy stored in polyene torsion,

followed by stronger twisting of the chromophore, under the influence of new counterion

interactions. The transfer of energy from electrostatic modes to torsional modes would be

facilitated by the reduction of bond order alternation in the polyene (corresponding to

delocalization of the retinylidene charge) when the counterion interaction is initially

broken, and would be driven by the establishment of a new counterion interaction.

9.6 Conclusions

DNP-enhanced solid state NMR spectroscopy at cryogenic temperatures has provided the

first NMR observation of the K intermediate of the ion-motive photocycle of bR, and

afforded firm identification of the NMR signals of two, successive L intermediates. The

'5N chemical shifts of the chromophores of these species indicate that the Schiff base

loses contact with its counterion in K and establishes a new counterion interaction in L1

that becomes stronger in L2. At the same time, low energy, single bond torsion in K

evolves to high energy, double bond torsion in L2. Thus photon energy initially stored in

electrostatic form is transformed to torsion that is probably responsible for the decisive

switch in the connectivity of the Schiff base when its counterion is neutralized by proton

transfer. Such a switch is critical for preventing backflow in the pump.
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Chapter 10 Complexities of Chromophore Isomerization in
Bacteriorhodopsin Revealed by Polarization-Enhanced NMR of
Uniformly Labeled Samples: Assignments of Stable and
Transient States, Distance Measurements, Torsion Angle
Experiments

Portions of this chapter will appear in the following publication:
Vikram S. Bajaj, Melody L. Mak-Jurkauskas, Marina Belenky, Judith Herzfeld, Robert
G. Griffin, "Complexities of Chromophore Isomerization in Bacteriorhodopsin Revealed
by Polarization-Enhanced 2D NMR," 2007.

In the archael membrane protein bacteriorhodopsin, photoisomerization of a retinal

chromophore is coupled to ion translocation via a sequence of photocycle intermediates.

In spite of decades of study by a wide variety of techniques, the mechanism of energy

transduction is not well understood. Here, we elucidate the process by using

multidimensional solid state NMR to assign chemical shifts of the chromophore in

cryogenically trapped photocycle intermediates. In order to overcome intrinsic

sensitivity limits, we enhance the NMR signals by a factor of -120 using dynamic

nuclear polarization (DNP), in which sub-terahertz (250 GHz) radiation from a cyclotron

resonance maser is used to transfer spin polarization from electrons to nuclei, prior to the

NMR experiment. Significant changes in chemical shifts report on chromophore

rearrangement during the photocycle. The detection of four discrete substates of the L

intermediate shows that the chromophore faces multiple barriers on the way to forming a

fully planarized 13-cis C13=C14 bond in late L. Unexpected complexity is also seen in

dark adaptation. These results demonstrate the capability of DNP to routinely extend the

reach and range of NMR methods in membrane proteins.
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10.1 Introduction

Bacteriorhodopsin (bR) is a 26-kDa integral membrane protein from Halobacterium

salinarum that functions as a light-driven ion transporter. Seven transmembrane helices

surround a transport channel in which the Schiff base (SB) formed between retinal and

lysine 216 provides the binding site for a labile proton. The counterion of the protonated

SB comprises a hydrogen bonded complex of two carboxyl groups (D85 and D212), one

guanidyl group (R82), and several water molecules.

Absorption of a visible photon by the retinylidene chromophore initiates the

photocycle,

hv -H
+  

+H
+

bR568_> J625 - K590 "- > L-550 L5  M 412  Mn408 - N520 - -> 064 (10.1)

which results in the net translocation of a single proton across the membrane. The

vectoriality and irreversibility of the pump cycle is enforced by a switch in connectivity

of the SB from the extracellular to the cytoplasmic side between the early and late M

states. On the other hand, photoisomerization of the chromophore occurs at the start of

the photocycle, suggesting that an understanding of the structural rearrangements in early

photocycle intermediates will be critical in understanding the impetus for the eventual

switch in SB connectivity.

In order to obtain high-resolution structural information about bR photocycle

intermediates, the photocycle must be arrested by cryogenic trapping. The accumulation

of a desired intermediate can be favored by manipulation of the temperature and the

wavelength of visible light irradiation. However, in most cases, the result is a mixture of

photocycle intermediates. A unique advantage of NMR is that signals from these

1 Mo and Mn in our nomenclature correspond respectively to early and late M, or M1 and M2 in the
nomenclature of other investigators.
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intermediates can be distinguished because of the dependence of the chemical shift

interaction on local conformation. Studies of bR by solid state NMR (SSNMR) have

distinguished the two M intermediates [1] previously only postulated and more L

intermediates than previously inferred from time-resolved optical spectroscopy (as has

been discussed previously in this thesis). In addition, SSNMR has elucidated details of

the chromophore environment in various intermediates and provided evidence for an

electrostatically-driven, torsion-based mechanism for enforcing vectoriality in the pump

[2-4].

Multidimensional SSNMR has long been recognized as a promising and general

tool in the structural biology of molecules that are inaccessible to X-ray crystallography

and solution state NMR. Recent successes include determination of the structures, at

atomic resolution, of a microcrystalline protein [5] and an 11-residue amyloid fibril [6]

(and in this thesis). In analogy to successful approaches from solution state NMR [7],

these studies involve uniformly isotopically enriched samples and multidimensional

chemical shift correlation experiments for both resonance assignment and the collection

of structural constraints. While this approach is tractable in small systems (<50 residues),

it is not routine in larger systems. In higher molecular weight samples, the dispersion of

signals in multiple chemical sites and across multiple dimensions of the experiment

dramatically reduces the sensitivity of NMR, already low because of the small

equilibrium polarization of nuclear spins at accessible temperatures. The sensitivity

deficit is even more acute when NMR signals are further divided among multiple

conformational states, as in trapped photocycle intermediates of bR. A one or two order
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of magnitude enhancement of NMR sensitivity over the existing state of the art is

required for broad application of multi-dimensional SSNMR methods.

Several methods have been developed to improve the sensitivity of NMR

experiments. They include improvements in instrumentation and pulse sequence

technology. An example is dynamic nuclear polarization (DNP), through which the

-660-fold greater spin polarization of unpaired electrons in a paramagnetically doped

sample is transferred to nuclei prior to an NMR experiment [8-30]. Here, we

demonstrate the utility of DNP as a general tool for biological SSNMR at 380 MHz (9T).

These experiments rest on several recent developments: first, an understanding of the

polarization transfer mechanisms operative at high magnetic fields [31] together with the

development of optimized paramagnetic polarizing agents for doping diamagnetic

biological samples [32]; second, the development of millimeter-wave gyrotrons

(cyclotron resonance masers) capable of stable and continuous operation at frequencies

above 250 GHz [8, 11, 14, 16, 33-38]; and, third , the development of cryogenic,

variable-temperature NMR probes incorporating delivery of millimeter wave radiation

for DNP and, for application to photocycle intermediates, visible radiation for excitation

of the sample (this thesis). The application of DNP to bR has resulted in a signal

enhancement of -40 [8]. Further enhancement results purely due to the cryogenic

cooling of the sample: because signal acquisition is conducted at 90 K, in order to both

trap bR photointermediates and attenuate spin-lattice relaxation processes that interfere

with electron-nuclear polarization transfer, the signals are enhanced by an overall

Boltzmann factor of -120 over room temperature experiments which do not incorporate

DNP.
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The present experiments on the intermediates of bR are designed to probe

structural rearrangements in the chromophore early in the photocycle, when the absorbed

energy is still relatively localized. Conformational changes can be deduced by

monitoring changes in chemical shifts. Furthermore, chemical shift assignments are

necessary for future direct measurement of conformational parameters, such as

internuclear distances and torsion angles. Our approach entails frequency-selective

heteronuclear magnetization transfer [39] from the SB nitrogen (K216 Ný) to the C15 of

retinal or the CE of K216 , followed by homonuclear polarization transfer [40, 41] along

the retinal polyene in the former case or along the K216 side chain in the latter case.

Because of the extended topology of the chromophore, these experiments involve

polarization transfer across up 4 to 5 13C-13C bonds and distribution of the Schiff base

magnetization across 6 to 7 13C sites in a single experiment, resulting in polarization

transfer efficiencies of < 5% in the worst case. Due to the simultaneous presence of

multiple photocycle intermediates, minor conformational intermediates are diluted by

factors of 2 to 20. Nevertheless, two-dimensional spectra can be recorded in 12 to 48

hours in all photocycle intermediates of bR due to the high signal enhancement provided

by DNP.
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Figure 10-1: Pulse sequence for multidimensional, band-selective heteronuclear correlation
experiment. Following 'H- 15N cross-polarization, the Schiff base resonances are selected by a
soft, band-selective 15N pulse from the "E" family of selective excitation pulses optimized for
solid state NMR. Signals corresponding to the Schiff base are along the z-axis, and all other
signals are allowed to dephase. Following rotation to the transverse plane, the 15N magnetization
arising from the Schiff base resonances evolves under the 15N chemical shift during tl and then is
transferred selectively to retinal-C15 or K216-CE by SPECIFIC CP. The 15N and 13 C fields are
chosen to provide spectrally selective, chemical-shift dependent transfer to either directly bonded
carbon, while a ramp of 5-6% in the 13C RF field results in quasi-adiabatic transfer with improved
efficiency. Following an optional t2 evolution period under the 13C chemical shift, further
correlations are established by homonuclear mixing using proton-driven spin diffusion with an R3

recoupling field or RFDR recoupling. Parameters were optimized using simplex optimization
implemented in home-built NMR acquisition hardware and software (D. Ruben).
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Figure 10-2: Ný-C15-Cx heteronuclear correlation experiments for the retinylidene chromophore
in the early photocycle intermediates of bR. Each row is the result of a single 2D experiment.
(A) dark adapted state (.... H acquisition) (B) light-adapted state (12 h acquisition); (B) the K
intermediate with residual bR 568 (12 h acquisition); (C) the L intermediate with residual bR 568 (48
h acquisition).
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Figure 10-3: (A) Np-C15 and (B) Ný-Ce-Cx heteronuclear correlation experiments for the L
intermediate. The spectrum in (B) provides resonance assignments of K216 through
magnetization transfer along its side chain.

A subset of the spectra obtained for various states of bR are shown in Figures 10-2 and

10-3. (The complete set of spectra is provided in Supporting Information.) In these

spectra, the sensitivity of the '5N chemical shift of the protonated SB to the strength of its

counterion interaction resolves resonances from different intermediates in the nitrogen

dimension of the 2D spectra. The combination of correlations via C15 (Figure 10-2) and

Ce (Figure 10-3) result in 9 to 10 chemical shift assignments for each intermediate. The

'3C assignments are based on the relative intensities of the cross-peaks and the expected

chemical shift range for each site. Not shown are non-chromophore regions of the

spectra which contain some cross-peaks from long-range magnetization transfer to

several nearby residues in the active site, including D85, D212, and nearby W86.

Examining the spectra in detail, we see that Figure 10-2B shows a single 13C

resonance for each accessible carbon in the light adapted (LA) chromophore. Similarly,

Figure 10-2C shows a single 13C resonance for each accessible carbon in the K

photocycle intermediate (in addition to the resonances from the coexisting LA state). In

contrast, the dark adapted (DA) state and the L state are unexpectedly heterogeneous.
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Dark adaptation is generally considered to involve the equilibration of a bicycle

pedal isomerization between all-trans,15-anti bR568 and 13-cis,15-syn bR555. However,

Figure 10-2A shows cross-peaks with the '5N chemical shift of bR568 there are not seen in

the light adapted state. Thus it seems that some chromophore isomerization occurs

without perturbing the interactions of the SB. In addition, there is a cross peak at a 15N

chemical shift different from that of either bR568 or bR555. However, the weakness of the

signal suggests that there is very little of this species.

Until recently, the L state was considered to be a single species. However, a

recent analysis of time-resolved optical spectra resolved two substates [42-44] and our

own recent 1D DNP SSNMR spectra identified three substates [this thesis]. The present

2D spectra (Figure 10-2D and Figure 10-3) now show four L substates. The new one, Lo,

has a 15N chemical shift so similar to that of bR 568 that its presence is only detectable by

its C15 signal in the N-C15 correlation spectrum (Figure 10-3A). In the N-C15-Cx

spectrum (Figure 10-2D) this signal is obscured by the C13 signal of bR56 8. That each

' 5N Schiff base resonance is correlated to a distinct manifold of ' 3C resonances, reflects

the presence of an ensemble of well-defined substates rather than conformational

disorder.

Table 10.1: 13 C Chemical shifts (ppm) of retinal carbons in photocycle intermediates of bR.
13C position LA DA DA-2 K L1 L2 L3 Mol, Mo2

C11 136.4 139.8 129.7
C12 134.5 125.9 141.2 137.7 121.7 122.1 127.1,125.5
C13 166.8 169.6
C14 123.9 111.5 119.4 123.9 116.4 117.5 124,123
C15 160 163.3 164.6 159.7 163.7 162.3 162.7 165.4
C20 14.27 23.36 17.26 24.88 24.77 20.62

13.95 24.37
13.7

15.92
12.52
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Table 10.2: 13C Chemical shifts (ppm) of carbons of the lysine 216 side chain in photocycle
intermediates of bR.

'3C position LA DA K L1 L2 L3 Mol, Mo2
K216-Ce 54.22 50.82 50.5 53.51 50.4 50.4 58.11,

53.74 49.1 50.89 48.27 50.87, 48.97 49.89 58.12
53.5 48.55

K216-Cd 29.23 30.22 28.42 32.34 28.2, 29.37 29.05
K216-Cg 26.51 28.51 24.6 29.13* 23.69
K216-Cb 34.7 32.8
K216-Ca 56.11

The presence of mixtures of intermediates and their substates has important implications

for crystallography. Refinement of crystallographic data requires a priori estimates of

the reaction stoichiometry, in addition to the assumption of additive contributions to the

diffraction. Since visible spectroscopy is of very limited use in this regard, the

crystallographic refinement of L state structures accumulated between 150 K-170 K is

probably subject to significant uncertainties. Similar arguments apply in the case of

Mo: multiple conformational substates of Mo have been reported in one-dimensional

spectra of specifically labeled samples and the additional resonances assigned here

through correlation spectroscopy conclusively show discrete conformations of the retinal,

rather than static disorder.

Several retinal chemical shifts are particularly informative because their

dependence on specific structural parameters is well understood. As noted earlier, the

progression of the ' 5N shifts of the SB indicates that the electrostatic interaction of the

Schiff base with its counterion is broken in the K intermediate and that a new, stronger

counterion interaction is established in discrete steps as the photocycle progresses

through the L substates. This supports earlier evidence that electrostatic steering is

important in driving the photocycle forward [2, 45]. The experiments presented here also

reveal changes in the 13C chemical shifts that reflect steric interactions between protons
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on carbons three bonds apart (the y-effect). In particular, as seen earlier in Mo and Mn,

retinal C12 in L2 and L3 is shifted up field relative to bR568 due to the steric interaction

of its proton with that of retinal C15. (That there is no comparable shift of the C15

resonance is due to the fact that the C15 proton is in steric conflict already in bR568, in

this case with the C20 protons.) The important feature of the present spectra is that the

up field shift of C12 is not yet present in LO or L1. Thus, at least one of the three bonds

between C12 and C15 must be rotated from the fully planar 13-cis conformation and

planarity is reached only as the photocycle progresses towards the late L and M

photocycle intermediates. These changes in the torsional degrees of freedom of the

retinal chromophore are consistent with the proposal that strain in the chromophore is

responsible for the abrupt change in connectivity between early and late M that is

responsible for enforcing the vectorial action of the pump [2, 4, 45].
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Figure 10-4: '3C chemical shift of the C12 of retinal in the photocycle intermediates of bR (open
circles denote previous measurements in selectively labeled samples).
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In addition to providing important qualitative information about the active site, the

present chemical shift assignments can be used to measure conformational constraints.

Measurements in progress at this time focus on internuclear distances and torsion angles

near the SB. Essential to this effort is the -120-fold enhancement of spectral sensitivity

afforded by DNP. Indeed the present application to bR demonstrates its potential value

as a routine adjunct in high field solid state NMR experiments: Spectra from a substate

of L that is present in -5% yield in a protein/lipid complex of 35 kDa effective molecular

weight suggest that spectra of a -700 kDa system can be recorded in a similar amount of

time, even at the modest magnetic field strength of 380 MHz. Recent extensions of this

instrumentation to 460 GHz (700 MHz 1H) [33, 34, 37] will aid applications in systems

requiring greater chemical shift resolution. It should be noted that our efficiency of

polarization transfer from electrons to nuclei is a fraction of its theoretical value (40/660

= -6%) and a much higher DNP efficiency of -40% has been realized at lower magnetic

fields. By using improved polarizing agents, we anticipate that enhancements can be

increased by at least a factor of 2. The enhancement may also be improved by using

smaller samples or resonators optimized for aqueous samples, to increase the penetration

of the microwaves into the sample. Finally, the DNP efficiency and total enhancement

can be improved by operating at lower temperatures through the use of helium cooling

gas, which is possible in the present apparatus without modification. The already

important capabilities of DNP can thus easily be extended to enable new applications in

the future.
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10.2 Methods

10.2.1 Sample Preparation

The purple membrane, isolated and purified according to the method of Oesterhelt and

Stoeckenius [46], was washed with 300 mM Gdn HC1, pH 10, and 40% (v/v) glycerol

cryoprotectant as described in [1DPaper]. The sample was packed into a sapphire rotor

that is transparent at both millimeter and optical wavelengths.

10.2.2 Accumulation of Different States

An optical fiber in the probe delivers green light (532 nm from a Coherent Verdi 6W

DPSS laser) or red light (640 nm from a Coherent 599 dye laser pumped by the DPSS

laser) to the rotating sample as needed. bR is dark-adapted by several hours of

equilibration in the dark at room temperature and then light adapted by green light at 273

K. Different photocycle intermediates are accumulated by illumination of light adapted

bR as follows:

K: green light at 90K

L's: red light at 150K

Mo: green light at 210K.

The accumulated intermediates were cooled to 90K and their NMR spectra were acquired

in the dark. The controlled cryogenic temperatures were achieved by using cooled dry

nitrogen gas to drive magic angle spinning at 10 kHz.

10.3 Supporting Figures
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Quasi-optical directional coupler

250 GHz
gyrotron

-I

UNI- PrODe

Figure 10-5(a): Schematic representation of the 250 GHz gyrotron, corrugated transmission
system, and 380 MHz NMR probe. (1) 250 GHz gyrotron oscillator (2) Corrugated waveguide
(22 mm i.d.). (3) Beam splitter; (4) Forward power detector; (5) Reflected power detector; (6)
Focusing and reflecting mirror optics; (7) Helically corrugated waveguide (8 mm i.d.); and (8)
Miter mirror

Figure 10-5(b): Composite photograph ot the system illustrated schematically in Figure 10-5(a)
[left] 250 GHz gyrotron the gyrotron tube is shown with vacion pumps in the gray
superconducting magnet, [center] corrugated transmission system with the directional coupler
visible in the center of the photograph, and [right] 380 MHz NMR magnet is visible on the edge
of the photo. The NMR probe is not visible since it is under the magnet. The view in this photo
is from above the gyrotron and waveguide looking down.
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Figure 10-6: Ný-C15 heteronuclear correlation experiments provide assignments of the K216-
Nýand retinal-C15 resonances in bR. (A) dark-adapted state ; (B) light-adapted state ; (C) the K
intermediate with residual bR 568 and a short-lived side product with a "1 N chemical shift like that
of bR 568; (D) the L intermediate with residual bR568; (E) the Mo state. . This spectrum in C was
acquired in 45 minutes with a non-uniform sampling of ti to capture the signal of the side-
product of K formation that decays within 1-2 hrs at 90K. Details of this approach and the
reconstruction of the spectrum will be provided in a separate publication.
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Figure 10-7: Ný-C15 heteronuclear correlation experiments which trace the connectivity of
resonances in the retinal chromophore of bR. (A) dark-adapted state ; (B) light-adapted state ;
(C) the K state with residual bR 568 ; (D) the L state with residual bR 568 ; (E) The Mo state.
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Figure 10-8: Ný-Ce-Cx heteronuclear correlation experiments which trace the connectivity of
resonances in K216 by magnetization transfer along its side chain. (A) light-adapted state; (B)
the K state with residual bR 56s; (C) the L state with residual bR568 ; (D) The Mo state.

10.4 Unstable Photoproduct of Bacteriorhodopsin Probed by
Dynamic Nuclear Polarization-Enhanced Solid State NMR with Non-Uniform
Sampling

Bacteriorhodopsin (bR) is a 26 kDA integral membrane protein that functions as a light-

driven ion pump in the archaea Halobacterium salinarum. Photoisomerization of the

retinylidene chromophore initiates a sequence of changes that eventually results in the
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expulsion of a single proton from the cell (or, equivalently, the uptake of a single

hydroxyl). High-resolution structural information about these intermediates is necessary

to discriminate between different models of the pump mechanism.

Structural studies of bR by crystallography or nuclear magnetic resonance (NMR)

generally require trapping of photocycle intermediates through manipulation of the

sample temperature and the frequency of irradiation. Rarely do the conditions favor one

intermediate strongly over all others, and the result is generally a mixture of

intermediates. Earlier studies of the bR photocycle using dynamic nuclear polarization

(DNP)-enhanced NMR, in which the greater spin polarization of unpaired electrons is

transferred to nuclei prior to the NMR experiment, have demonstrated that

multidimensional NMR is capable of resolving even minor conformers in mixtures of

intermediates.

Here, we combine reduced-dimensionality correlation spectroscopy with non-uniform

sampling to record DNP-enhanced 2D spectra of the 532 nm photoproducts of [U-

13C, 15N]-bR in as little as 45 minutes. The short time scale of this acquisition permits

observation not only of the K photocycle intermediate, but also of a transient side-product

that decays within a few hours. Such side-products may complicate the interpretation of

diffraction experiments which depend on knowledge of the reaction stochiometry. The

present results demonstrate the utility of DNP NMR as a tool for rapid acquisition of

structural information in membrane protein systems.

10.5 Non-linear sampling schemes

In its simplest manifestation, multidimensional Fourier transform NMR generates

correlations by linear sampling of all incrementable time dimensions. While this is
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acceptable for two and even three-dimensional NMR in stable biological samples, it

results in prohibitively long acquisition times for spectra of higher dimensionality. It also

has not been clear a priori that a linear sampling schedule produces optimal sensitivity

and resolution per unit time. This problem, however, is not unique to NMR and has a

rich history in many branches of science that deal with interferometry, including

astronomy and radio astronomy. The reconstruction problem in interferometry involves

obtaining the spectrum, S(f), given an observable O(f), where the instrument response is

given by the matrix R, and the noise vector, N,

O(f)= R S(f)+N (10.2)

The na'fve mathematical inversion

S(f) = R- 1' 6(f) (10.3)

is appropriate only for invertible transformations, R, and in the absence of noise. A

precise mathematical statement of well-posed inverse problems was provided by

Hadamard in 1915: well-posed inverse problems require a unique solution which

depends continuously on the parameters of the data. Inversion of non-linearly sampled

data, however, is an ill-posed inverse problem that depends discontinuously on the data.

Solution of such problems is generally impossible without introducing additional

information about the data set into the inversion problem.

The process by which additional information is introduced into an inversion

problem is called "regularization." For example, let us assume that the power spectrum

of the perturbing noise is known. The Weiner filter, a kind of regularization method, then
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suppresses the contributions of perturbed frequencies in the data reconstruction through

the transformation

O'(f) = G(f) ) O(f) (10.4)

where

PSF* (f ) (10.5)
G(f)=

PSF(f)2 +
P,(f )

The most common regularization transformation is the Tikhonov regularization. Given

the aforementioned ill-posed inverse problem,

O(f)= RS(f) + N (10.6)

the Tikhonov regularization instead involves solving a minimization problem to obtain

S(f),

S = min[R.S(f) - O(t)]2 + a IIS(f)112  (10.7)

where ca is a regularization parameter that penalizes solutions with a high norm. The

Maximum Entropy Method (MEM) for reconstruction is a widely applied variant of this

procedure in interferometry and NMR. In this process, the minimization problem is

solved subject to the constraint that a Shannon-like entropy function,

N-1 (10.8)
S(f) = R(I f )

j=0

is maximized. The precise form of the Entropy functional for an ensemble of spin-1/2

particles has been derived by Hoch, Stern and their co-workers [47-57].
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While there have been numerous applications of the Maximum Entropy Method

for spectral reconstruction, we note that it has the following unattractive features: (a) the

physical basis of the entropy functional cannot be firmly justified; (b) solution of

minimization problem for an N-dimensional dataset requires repeated operations on N-

dimensional data matrices whose dimensionality can be quite high. As a compromise,

Hoch proposed a row-wise reconstruction algorithm in which rows of a multidimensional

data set are separately reconstructed. However, this approach suffers from uncontrolled

nonlinearities which distort the spectra and prevent quantitative extraction of spectral

intensities.

To search for a simpler spectral reconstruction method, we can employ linear

algebraic techniques and determine how each candidate regularization transformation

operates on the domain of singular values. Specifically, the singular value decomposition

of matrix A,

A = USVT  (10.9)

gives an expression for the nxn matrix A in terms of vectors U=(UI,U 2,...,U.), V=(VI,V-

2,...,Vn) and S, the diagonal matrix of singular values S=diag(sl,s 2,...,Sn), defined by

A V,=sU, and ATU,=sV. Following the treatment of Vogel and co-workers, the formal

solution of the Tikhonov inverse problem is

Y=AX

X = (ATA + al)-' AT

= (VSTUT USV T + aVIVT )-' VSTUT

= V(STS + aI)-'S TUT  (10.10)

2 1
= Vdiag( 2 )UT

Si +a si
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The expression in parentheses resembles a transfer function in the singular value domain:

Tikhonov Regularization thus scales singular values in proportion to their size as

compared to the regularization parameter, c. Since, in an ideal dataset, the first k linearly

independent signal components will be represented by k singular values and vectors, this

has the effect of removing noise from the reconstruction; the Maximum Entropy Method

operates according to a similar principle.

In order to simplify the process of reconstruction, we elected to simply truncate

the SVD at its first k terms, where k is an estimate of the number of cross peaks, and then

solve the inverse reconstruction problem by global minimization using the truncated data

set. This has the additional consequence of dramatically reducing the dimensionality of

the minimization problem. For an N-dimensional experiment with (ni, n2... nn) possible

points in each dimension, programs for MEM generally operate on matrices of rank-( ni x

n2 x ... x nn). In our rank-reduced approach, the solution domain is of rank-k, consisting

of k n-element vectors and n singular values irrespective of the formal size of the data

domain. The minimization algorithm operates efficiently, then, on the elements of the

singular value decomposition directly. We note that a spectrum reconstructed this way

can serve as an initial guess for subsequent minimization using MEM or other

approaches, if this is desired.

10.6 Fast Detection of Transient Products in K Accumulation

In order to test the validity of this reconstruction approach, we recorded 2D spectra of bR

immediately after production of the K photointermediate, using the pulse sequence

previously described. Using the sampling schedule illustrated in Figure 10-8, we
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recorded a 2D Ný-C15 heteronuclear correlation experiment in the K photostate in less

than 45 minutes with good sensitivity. Reconstruction of the spectrum reveals the

presence of a transient photointermediate (Figure 10-9). We have therefore identified

both the iso-bR and pseudo-bR side products of K accumulation that were previously

inferred through their contributions to vibrational spectra at low temperatures[58].
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10.7 Frequency-Selective TEDOR Experiments for Amino-Acid
Selective Assignments and Heteronuclear Distance Measurements in bR

Distance measurements in uniformly labeled solids are complicated by the tendency of

strong dipolar couplings between directly bonded spin pairs to obscure the weaker

couplings of interest, a phenomenon called "dipolar truncation," which has been

explained in earlier chapters. Even where dipolar truncation is absent due to the form of

the recoupled Hamiltonian (e.g. REDOR experiments), strong heteronuclear dipolar

couplings can compromise the sensitivity of the experiment. Further, evolution under the

homonuclear 13 C- 13 C J couplings in such systems imposes an overall modulation on the

buildup or dephasing under the dipolar coupling, and it also can generate anti-phase

coherences, which in turn give rise to phase-twisted line shapes. In order to circumvent

these limitations, Jaroniec and co-workers introduced a frequency-selective REDOR [59,

60] experiment in which the detrimental effects of the J coupling are removed through the

application of frequency-selective pulses. A logical extension of these techniques has

been the 3D TEDOR experiment [61], in which multiple 13C- 15N distances can be

measured simultaneously or in a band selective manner in the context of a 13C_15N

correlation experiment. In this case, the effects of the J coupling are respectively

removed through the application of a coherence filter or frequency selective pulse.

Due to limited sensitivity, however, it has not yet been practical to apply this

experiment to measure multiple weak dipolar couplings in membrane proteins. Further,

in the case of bR, only distances in and around the chromophore and channel are of

interest. This, in combination with the fact that several 15N sites of interest are resolved

in the 15N dimension and have been assigned through previous DNP studies of bR,

motivates a 15N-frequency selective analog of the 3D TEDOR experiment (Figure 10-11).
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Figure 10-11: Pulse sequence for selective TEDOR transfer.

Following ramped, 'H- 13C cross polarization, we apply a REDOR train to generate a 13C_

'5N antiphase coherence which evolves under the heteronuclear dipolar couplings.

During the excitation period, a frequency selective pulse is applied on the nitrogen

channel, with the result that only those 15N nuclei within the pulse bandwidth contribute

appreciably to the spin dynamics under REDOR. Following the excitation period,

optional frequency labeling with the nitrogen chemical shift occurs during ti. A second,

frequency selective REDOR period converts the resulting coherence into observable

magnetization on the 13C channel, which is detected in t2. A delay, t, is necessary to

ensure that the time between REDOR periods is an integer number of rotor cycles.

Finally, the 13C-' 3 C J-couplings give rise to undesired zero-quantum and double-quantum

coherences which, after the reconversion period, result in severe anti-phase distortions to

the line shape and spurious cross-peaks in 2D spectra. Two variable-length coherence

filters (z-filters) are applied to dephase these undesired coherences, resulting in

undistorted and purely absorptive spectra.
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fs-TEDOR experiment in

Sasparagine.

Table 10.3: Heteronuclear distances measured with two-dimensional TEDOR experiment as
applied to [U- 13C, 15N]-Asparagine.

fs-TEDOR fs-REDOR Neutron diffraction
(A) (A) (A)

N-C '  1.50 1.50 1.49
N82-C a  3.24 3.58 3.75
N-CP 2.46 2.49 2.48
N82-CP 2.41 2.44 2.42

As a test of fs-TEDOR, all heteronuclear distances in [U- 13C, 15N]-asparagine were

measured in two experiments, summarized in Figure 10-12 and Table 10.3, in good

agreement with crystallographic distances. The sequence is currently being applied in

[U-13C, 15N]-bR in combination with DNP for active site distance measurements. As a

prelude to these measurements and to determine the capabilities of this sequence in DNP

experiments, it was also applied to generate amino-acid specific side-chain assignments

of the arginine region of bR, where six of the seven Arg. residues appear in the DNP-

enhanced correlation spectra in Figure 10-13. In this case, the selective pulse was placed
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on the arginine side chain '5N resonances, and the TEDOR mixing time was set to favor

two-bond (2.5 A) couplings. Because directly bonded 13C sites are coupled to several

side chain 15Ns, they are not expected to appear in this experiment.

C 75
. 80

C 85

. 90
()
- 95

Z 36 34 32 30 28 26 24

'C Chemical Shift (ppm)
Figure 10-13: 2D heteronuclear correlation experiment of arginine side chain region of bR.

10.8 Measurement of the HNCH Torsion Angle and N-H Bond
Distances in Uniformly Labeled bR with Dynamic Nuclear Polarization-
Enhanced NMR

As outlined earlier in this chapter, vibrational spectroscopy and NMR chemical shift

perturbation suggests that there are significant distortions in the planarity of the polyene

chain in the vicinity of the Schiff base during the bR photocycle and support the

electrostatic steering hypothesis for ion pumping in bR. The structure of retinal in the

Schiff base region in photocycle intermediates of bR is therefore critically important to

understanding the proton pumping mechanism. The internal coordinates of the retinal

are, in principle, best constrained through the measurement of local torsion angles (see

discussion in Chapter 11). Unfortunately, crystallographic structures are typically refined

with planar retinal chromophores; even when they are not, extensive deconvolution of

diffraction patterns is necessary to properly model mixtures of photointermediates, and
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this produces uncertainty in the retinal conformation. The result, shown in Figure 10-17,

is that the mechanistically important torsion angles are not reliably constrained by

diffraction measurements. Solid state NMR, by contrast, is capable of direct

determination of internuclear torsion angles with high accuracy [62-75], even in mixtures

of photocycle intermediates. We defer a complete discussion of the tensor correlation

experiments to Chapters 11 and 12 of this thesis and instead provide only a brief

description here. In order to measure the H-Ný-C15-H in the LA, L, and K states of bR,

we utilized a Selective 3D HNCH experiment, shown in Figure 10-14. The sequence

incorporates magnetization preparation steps for selective excitation of the Schiff base

resonance as previously outlined. In the context of 13C-' 5N chemical shift correlation

spectroscopy, the experiment measures correlated dephasing under the 1H- 15N and 'H- 13C

dipolar interactions, recoupled using the y-encoded TMREV [76] sequence. These

dimensions are synchronously incremented to reduce the dimensionality of the

experiment, resulting in a pseudo-3D sequence. As shown in Figure 10-15, this

measurement is very similar to the HNCH measurements designed to provide constraints

on the 0 and x backbone torsion angles in peptides.

Selective HNCH Torsion Angle Experiment with Synchronous CT Dipolar Evolution

TMREV TMREV

H R3IITPPM cw cwcw TPPM
I3 , f 11 11

F-I I I
I 2mk, I 2m

Figure 10-14: Sequence for selective 3D HNCH tensor correlation experiment.

410



Figure 10-15: The relationship between 3D HNCH experiments in peptides and the 3D Selective
HNCH experiment used in bR.

When either dipolar evolution time is set to zero, the result is a sequence that can be used

for site-resolved heteronuclear distance measurements. An example of these

measurements is shown in Figure 10-16, where the dephasing trajectory under TMREV

has been Fourier transformed to yield a recoupled dipolar spectrum. The spectra

demonstrate that the H-Nc bond distance is identical in L2 and LA. In Figure 10-17, we

illustrate the determination of the HNCH torsion angle in [U-13C, 15N]-bR568 in only 72

hours acquisition time, using Dynamic Nuclear Polarization. At the time of this writing,

similar data have been collected in LA, L, and K photostates, and a global analysis is

underway.
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Figure 10-16: Recoupled dipolar lineshape for H-Nc couplings in [U-13C,15N]-bR (L and LA).
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Figure 10-17: HNý-C 15H torsion angle experiment conducted in [U-"C,"5N]-bR in the L state.
These data resulted from only 72 hours of acquisition time. The torsion angle is fit to 178±80 for
bR568. (right) the spread of torsion angle data in crystallographic studies of light-adapted bR.
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Chapter 11 Structural and dynamic transitions of peptides
and proteins monitored by solid state NMR
This chapter will appear in the following publication:
Vikram S. Bajaj, Patrick van der Wel, and Robert G. Griffin, "Structural and dynamic
transitions of peptides and proteins monitored by solid state NMR," (2007).

11.1 Introduction

The central role of dynamics and flexibility in protein function has been clear since the

very first crystal structure [1]. In order to bind substrate or channel a chemical reaction

forward, an enzyme assumes one or more conformational states in sequence, such that

energy is transduced in the desired direction. Transitions between these local energy

minima, which are near the global minimum of the protein energy landscape, are

mediated by concerted dynamical rearrangements at ambient temperatures [2, 3] [4]. At

the same time, a protein must be able to adopt a unique conformation or set of

conformations which are essential for its function. This balance between conformational

flexibility and structural robustness has been optimized in each protein to allow it to

function in the environment where it is normally active.

All dynamical processes in proteins are sensitive to temperature in varying degree.

However, proteins undergo a universal dynamical transition at -200 K and experience a

concomitant loss of biological function. The transition is accompanied by reduced local

atomic fluctuations and hence a change in the dynamics of the protein. In analogy to the

dynamics encountered in disordered media such as liquids, this is called the "protein

glass transition" [5-9] [10]. A similar transition has been observed in other biological

macromolecules [11 ]. A detailed understanding of the physical basis for this phenomenon

is important for several reasons. First, it will provide insight into the concerted

dynamical rearrangements which are necessary for optimal biological function. Second,
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a number of biophysical techniques, including x-ray crystallography, solid state NMR

and cryo-electron microscopy, all require cooling of the sample to temperatures below

the protein glass transition temperature. Since the protein in this state is not biologically

active, it is important to understand how measured structural parameters change as a

function of temperature. Finally, the dynamics of the glass transition, if better

understood, may allow for trapping of mechanistically relevant conformational

intermediates [6].

Several lines of evidence including x-ray crystallography [12] [13], FTIR [14], and

molecular dynamics simulations [7] support the idea that the protein glass transition is

due to a coupling of the protein motions with the dynamics of the solvent. The

dynamical modes of the bulk water molecules, in particular, appear to influence the

dynamics of the polypeptide chain; ordering of water at low temperatures is then

associated with a loss of this dynamical activation [12] through a solvent caging effect.

At temperatures slightly above the glass transition, ordering of bound waters results in

increased local viscosity and prevents the anharmonic and concerted protein motions that

gives rise to mechanistically significant rearrangements. However, several lines of

evidence also show that a glass transition is possible in the absence of solvent: these

include neutron scattering experiments in dehydrated films of myoglobin [15] and

lysozyme [16], molecular dynamics simulations in the absence of solvent [17], and the

extrapolated results of solution state NMR experiments at ambient temperatures [8].

These studies suggest that the glass transition is also an intrinsic property of the protein

conformational energy surface alone. The glass transition is then associated with a loss

of intrinsic mobility in internal (torsional) degrees of freedom, including dynamics in

methyl groups, aromatic ring reorientation, and librational motions of side chains.
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Recent molecular dynamics simulations by Vitkup and co-workers [7] suggest that

solvent mobility dominates the glass transition until 180 K, and then intrinsic protein

dynamics play the dominant role. The experimental evidence for these processes is

currently insufficient.

Iu (bil

Figure 11-1: Lattice structure off-MLF-oMe crystals [23]. Panel (a) shows a 'top-down' view
of the crystal lattice. Panel (b) shows the steric crowding and relative orientation of the
phenylalanine side chains, allowing aromatic 7c-nT interactions.

Here, we aim to study that part of the protein glass transition which is due to the

intrinsic dynamics of the peptide in the absence of solvent. To do so, we have performed

solid-state NMR measurements of temperature-dependent structure and dynamics in a

chemotactic tripeptide, f-MLF-OH, which is a model system for solid state NMR. It has

been well-characterized in numerous previous experiments [18-21], resulting in an early

solid-state NMR based structure [22]. In the current context, the system is particularly

appropriate because it crystallizes in solvent-free microcrystals and yet experiences a

representative range of dynamical phenomena. Indeed, a variety of conformational

dynamics expected in this tripeptide, including rotamer interconversion, librational
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motion of side chains, and three-fold "hopping" of methyl groups, as illustrated in Figure

11-2. Further, the addition of a single methyl group produces f-MLF-OMe, which yields

very similar crystals whose structure has been solved by x-ray crystallography [23]. This

form, however, the phenylalanine ring is static (Figure 11-1).

Leu

le

Figure 11-2: Representation of dynamical motions accessible to MLF. These motions include
flipping of the phenylalanine ring about its symmetry axis, librational motions of the methionine
side chain, rotamer interconversion of the leucine side chain, and three-fold hopping motion of
the methyl groups.

Solid state NMR is a robust method of ab initio structure determination and is also

capable of providing detailed information about motional processes over a wide range of

time scales. Furthermore, there has been significant progress in the development of low-

temperature MAS instrumentation in recent years, facilitating an investigation of the

protein glass transition [24, 25]. In 1D spectra collected as a function of temperature, the

effects of dynamics are readily observed. They include classical conformational

exchange and interference phenomena that are manifest when dynamical process occur at

rates similar to the magic angle spinning or 'H decoupling. Further, the tripeptide f-

MLF-OMe proves a rigid reference compounds, showing little effect of cooling to
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temperatures as low as 90K. In contrast, similar cooling causes large changes in the NMR

spectra of the f-MLF-OH crystals. These changes include the emergence of a structurally

distinct substate of the peptide near the glass transition temperature, which we show is

correlated to a remarkable motional transition occurring between 90 and 200 K. The

observed dynamical transition is discussed in terms of its relation to the protein glass

transition and protein low temperature dynamics in general.

11.2 Methods

11.2.1 Sample preparation

Unlabeled tripeptides N-formyl-Met-Leu-Phe-OH (f-MLF-OH) and N-formyl-Met-Leu-

Phe-OCH 3 (f-MLF-OMe) were obtained from Bachem (King of Prussia, PA). Selectively

deuterated f-MLF-OH containing ring-deuterated Phe-d 5 was prepared by solid phase

peptide synthesis by SynPep Corporation (Dublin, CA). Uniformly labeledf-[U-13C,15N-

MLF]-OH was synthesized by solid phase peptide synthesis by CS Bio Inc. (Menlo Park,

CA). Isotopically labeled Phe-ds, FMOC-[U- 13 C,15N-Met], FMOC-[U-13C,15N-Leu], and

FMOC-[U- 13 C,15N-Phe] were obtained from Cambridge Isotope Laboratories (Andover,

MA). F-MLF-OH and f-MLF-OMe were crystallized from isopropanol and benzene,

respectively. Small, needlelike crystals were obtained after dissolution in warm solvent

followed by slow evaporation to dryness.

11.2.2 NMR Measurements and Analysis

Magic angle spinning experiments were performed using a home-built spectrometer

operating at 380 MHz 1H frequency (designed by D. J. Ruben, Francis Bitter Magnet

Laboratory, MIT) and a triple channel (1H, 13C, 15N) 4 mm MAS probe designed for low

temperature DNP experiments. Sample cooling was performed by using pre-cooled
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nitrogen gas to provide the drive and bearing pressure for MAS. The spinning frequency

of 6.25-7 kHz was controlled by a Bruker MAS controller (Billerica, MA). At each

temperature, 13C chemical shifts were referenced relative to dilute, aqueous DSS using

external referencing via the 13C chemical shifts of adamantine [26], and '5N chemical

shifts were referenced to liquid ammonia, via indirect referencing using the suggested

IUPAC frequency ratios (13C/1H) of aqueous DSS and liquid NH3 ('5N/'H) [27, 28].

Spectra were processed and visualized using the NMRPipe [29], Sparky[30], and

CCPNMR [31-34] software packages.

Static deuterium NMR spectra were obtained on a home-built spectrometer operating at

61 MHz 2H frequency, courtesy of David Ruben (Francis Bitter Magnet Laboratory,

MIT), using a quadrupolar echo pulse sequence. Simulation of the lineshapes was done

using the TURBOPOWDER deuterium line shape simulation software [35].

11.3 Results

11.3.1 Room temperature measurements

Figure 11-2 shows the 1D solid-state MAS NMR spectra at room temperature for bothf-

MLF-OH and f-MLF-oMe. In f-MLF-oMe the chemical shifts of each carbon in the

phenyl ring of MLF-OMe are distinct, indicating a static structure without dynamics that

are observable on the NMR time scale. The ring in the f-MLF-OH peptide, on the other

hand, is undergoing 180-degree flips, resulting in an averaging of the chemical shifts of

C8 and Ce ring carbons. Due to interference of the ring dynamics with the heteronuclear

'H- 13C decoupling, these carbon signals are broad, unless the Phe side chain is deuterated

(compare panels (c) and (d)).
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Figure 11-3: Room temperature 1D spectra and assignments. Panels (a)-(c) show the '3C spectra
of natural abundancef-MLF-OH, unlabeled f-MLF-OH with a 2H-labeled side chain (Phe-ds), and
unlabeled f-MLF-OMe. Panels (d) and (e) contain the 15N spectra offor-[U-3C, SN]MLF-OH and
natural abundance f-MLF-OMe. Assignments forf-MLF-oMe are based on analogy with f-MLF-
OH, with particular uncertainty in the italicized labels.

11.3.2 Cooling of f-MLF-oMe

Figure 11-3 shows the ID spectra obtained for the f-MLF-oMe peptide, at temperatures

ranging from 298 K down to 95 K. Neither the 15N nor the 13C resonances show a

significant change in their chemical shifts, but significant changes in line width and peak

intensity are observed. The largest effects are visible for the two methyl groups of leucine

side chain (indicated with arrows in the figure). This is due to a change in the rate of the

three-fold hopping motion of these methyl groups. Note that other methyl groups in the

methionine side chain and capping the peptide's c-terminus experience less steric

hindrance and as a result remain in the fast-motion regime in this temperature range.
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Figure 11-4: Variable temperature ID spectra of unlabeled f-MLF-oMe, showing 13C (a-d) and
15N (e-h) measurements 298, 190, 155, and 95 K. Data were acquired at 380 MHz 1H frequency
and 6.25 kHz MAS. Arrows indicate Leu methyl resonances that are most strongly attenuated at
low temperature.

11.3.3 Cooling of f-MLF-OH

Similar low temperature experiments were performed on the -OH variant. Figure 11-4

shows the 13C 1Ds for natural abundance f-MLF-OH at various temperatures, ranging

from room temperature to 90K. At 200K, there is no longer any averaging of the Phe ring

carbons, indicating that the rapid flipping motion that it experiences at room temperature

has slowed. Similar to f-MLF-oMe, those methyl groups that experience steric

interactions (Leu side chain) disappear near 90K. Those that perform their three-fold

hopping motion without steric hindrance (e.g. the -S-CH 3 of the Met side chain) remain

mobile down to these temperatures. At 90K, most of the other resonances have a
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chemical shift that is similar to their value at room temperature, with small shifts for just

a few resonances. Interestingly, however, in the range between room temperature and

90K rather significant changes are observed, as shown in the column to the right. This

apparent phase transition occurs at temperatures between 200K and 90K, and results in

the formation of an additional, distinct spectroscopic 'form' of the peptide.

(a)

290K L

(b)
200K

JK5J7h1
S 1141• 3

J90K

180 140 60 20 180 140 60 20
13C chemical shift (ppm) 13C chemical shift (ppm)

Figure 11-5: Variable temperature ID spectra of unlabeled f-MLF-OH. Column (a) shows the
coarse temperature dependence from room temperature down to 90K. The spectra on the right
(b) illustrate the spectral changes indicative of a transition between 200K and 90K.

Similar trends are observed in Figure 11-6, showing the temperature dependent nitrogen

spectra for 10% isotopically diluted [U-13C, "N] f-MLF-OH. Upon cooling of the

sample, the nitrogen resonances remain unaffected down to approximately 200K, after

which we observe the appearance of a second set of resonances corresponding to a

distinct conformational substate. Note that upon heating the sample (right column), the

process is reversed, although there is a certain extent of hysteresis that affects the relative

intensities (but not the chemical shifts). At the lowest temperatures, near 90K, the

intensity of the 'second form' reduces again. The precise proportions vary slightly from

sample to sample.
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Figure 11-6: Variable temperature 15N spectra of 10% [U-13C, 15N] f-MLF-OH. Column (a)
shows the change occurring upon cooling from room temperature to 83K. Column (b) shows
spectra obtained upon heating from 90K back to room temperature.
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Figure 11-7: 3C-13C correlation spectra of 10% 13C, 15N labeled f-MLF-OH at 298K (a), 175K
(b), and 90K (c). A DARR/RAD mixing time of 10 Oms resulted in mostly single bond, and weaker
two-bond correlations. The top and bottom panels show aliphatic-aliphatic and carbonyl-aliphatic
cross-peaks, respectively. The novel form seen at 175K is highlighted in red.

The assignments of the different signals in the ID spectra are based on assignment

experiments performed at temperatures of 298K, 175K, and 90K. The results of these

measurements are summarized in Figure 11-7 to Figure 11-10. Figure 11-7 illustrates

that complete 13C assignments can be obtained through 2D 13C-13 C correlation

spectroscopy. We observe a single form of the peptide at 298K and 90K, but a mixture of

two forms at 175K. Of these, one form has chemical shifts which resemble those of the

room temperature form of MLF, while the other form is a novel form that arises as the

sample approaches a temperature of 175K. In Figure 11-8, these differences are

highlighted for the aliphatic Ca-Cf3 region of the correlation spectrum. It is further

noteworthy that the apparent loss of resolution in the Ca region of the 1D spectrum is not

due to line broadening but is instead due to the emergence of another structural form at

intermediate temperatures. This transition is further illustrated in Figure 11-9, which

highlights the C' region of the spectrum and shows that the emergence of a second form

of MLF is accompanied by a pronounced change in the dynamics of the phenyalanine
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ring. At room temperature, the timescale of the ring hopping motion interferes with

either magic angle spinning or 1H decoupling, and no cross peaks are seen. At low

temperatures, the dynamics are attenuated and cross peaks emerge in the aromatic region

of the spectrum. Complete 15N and sequential assignments of the spectrum are possible

through heteronuclear correlation spectroscopy, illustrated in Figure 11-10. Two-

dimensional NCACX correlation experiments are sufficient to generate complete

assignments of the peptide.

Figure 11-8: 13C-13C correlation spectra of 10% 13C,15N labeled f-MLF-OH as in Figure 11-7.
The panels show correlated changes in the Cox-Cp3 region and establish unambiguously that the
line broadening in 1D spectra is actually due to a second structural form of MLF.

The assignment results and the 1D data can be combined to chart the change in chemical

shift as a function of temperature, and the appearance of the transitional form below

200K. These results are summarized in Table 11.1, Table 11.2, and

Table 11.3, where the assignments for f-MLF-OMe, available only at natural abundance

in this study, were made in analogy tof-MLF-OH.
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Figure 11-9: 13C-' 3 C correlation spectra of 10% 13C, 15N labeled f-MLF-OH as in Figure 11-7.
The top panels highlight changes in the C-Ca region, and the lower panels highlight changes in
the aromatic region of the spectrum. Note that aromatic cross peaks are completely absent at
room temperature due to interfering dynamics and become visible at lower temperatures, where
the dynamics are attenuated.

175K NCACX
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5 0U
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25 20
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Figure 11-10: 2D 15N-13C NCACX-type correlation spectra which result in complete
assignment of all resonances in MLF at 175K. Following 'H-15N cross polarization, the
magnetization evolves under the S5N chemical shift and then is transferred to the 13Ca using
band-selective cross polarization (SPECIFIC CP). Aliphatic cross-peaks are generated by
proton-driven spin diffusion with an R3 recoupling field (DARR).
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Table 11.1: Tabulation of the 13C and '5N chemical shifts of f-MLF-OMe at
(referenced to DSS and liquid NH3, respectively).

various temperatures

Table 11.2: Tabulation of 13C chemical shifts of natural abundance f-MLF-OH at various
temperatures (referenced to DSS). (aromatic chemical shifts are obtained from Phe-d 5 variant.)

Assignment 303K 298K 200K 175K 135K 80K
- Leu-C' 177.1 177.1 177.3 177.1 / 175.0 177.0 / ? 176.9
a Phe-C' 175.5 175.4 175.8 174.3 /174.3 174.8 /174.8 174.9
0

-t Met-C' 174.3 174.2 174.2 174.3 / 172.6 174.8 / 172.4 173.5

U Formyl-CO 167.4 167.3 167 166.7 166.7 167.0

Phe-CG 137.8 137.7 138.1 138.0 138.0 138.1
"• Phe-CD? 132.1 132.3
o Phe-CE? 130.4 130.4

Phe-CZ 129.4 129.3 130.1
Leu-CA 58.9 58.8 58.5 / 57.6 58.1 / 57.4 57.7 / 57.0 57.7
Phe-CA
Met-CA
Leu-CB
Met-CB
Phe-CB
Met-CG
Leu-CG
Leu-CD1
Leu-CD2
Met-CE

56.5
54.2
42.9
40.0
39.0
30.8
27.3
26.9
21.8
16.1

56.4
54.1
42.7
39.9
38.9
30.6
27.2
26.8
21.6
16.0

56.5
53.5

42.3 / 43.8
40.1

38.7 / 38.1
29.3 / 32.2

27.3 / 27.3*
26.7
21.3

15.4 / 16.7

56.3 / 55.5
53.2 / 53.2
42.1 /43.6

40.0 / 37.6*
37.6* / 37.6
28.8 / 32.0
27.2 / 27.7
26.5 / 26.5

21.1 / ?
15.2 / 16.6

56.3 / 55.4
53.0/53.0
42.0 / 43.5

40.2 / 37.1*
37.1" / 37.1"

27.1*"/-
27.1"
27.1"

21.1 /?
15.2 / 17.0
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56.2
52.6
41.6
40.0
38.1
27.8
27.8

15.0
* Resonances showing (severe) overlap, large uncertainty in exact frequency & intensity

Assignment 303K 192K 155K 95K
Leu-C' 177.6 177.5 177.4 177.7

" Met-C' 175.8 175.8o
Phe-C' 175.0 175.0 174.9 175.2

U Formyl-CO 162.1 162.0 161.9 161.9

Phe-CG 139.0 139.0 138.9 139.2
. Phe-? 134.0 133.9 133.8 134.0
" Phe-? 132.0 131.8

Phe-? 131.3
Phe-? 130.4 130.6 130.5 130.6
Phe-? 129.8
Leu-CA 59.4 59.2 59.0 59.3
Phe-CA & oMe 55.7 55.7 55.6 55.9
Met-CA 53.0 52.4 52.1 52.2
Leu-CB; Met-CB 41.0 40.6 40.3 40.6
Phe-CB 37.2 36.5 36.1 36.2
Met-CG 32.8 32.3 31.9 31.9
Leu-CD 26.9 27.0 26.9 27.4
Leu-CD 20.9 20.3 20.0 -
Met-CE 16.4 15.9 15.6 15.6
Met-N 122.8 123.4 122.9 123.3
Leu-N 117.6 119.3 118.9 119.8
Phe-N 109.8 109.7 109.1 109.2



Table 11.3: Tabulation of 15N chemical shifts for 10% [U- 13C,15N]-labeled f-MLF-OH at various
temperatures (indirectly referenced to liquid NH3 via the adamantane 13C resonances).

Assignment 298K 225K 200K 175K 135K 90K
Met-N 127.5 126.3 125.5 124.8
Met-N' n/a 128.2 128.3 129.0 / 127.3
Leu-N 118.2 117.5 117.1 116.7
Leu-N' n/a 124.1 ? / 120.1?
Phe-N 109.7 109.3 109.2 108.8
Phe-N' n/a 111.8 111.7

11.3.4 Structure Determination

In order to determine the high resolution structure of two forms of MLF which co-exist at

175K, we have followed a strategy that has been applied successfully in the case of MLF

at room temperature and, more recently, in amyloid fibrils from transthyretin [36] and its

L111M mutant (in this thesis). This strategy involves the application of dipolar

recoupling experiments in uniformly labeled systems to measure heteronuclear 13C-' 5N

distances [20, 37, 38] and homonuclear [39-42] distances, and tensor correlation

experiments [19, 43-53] to constrain backbone and sidechain torsion angles. All

measurements were conducted in a sample diluted to 10% in natural abundance peptide

prior to crystallization in order to minimize the effects of intermolecular dipolar

couplings (see Figure 11-11). In this case, we have used the 3D TEDOR [38] and

Rotational Resonance Width [42] experiments to obtain distance constraints. The

backbone 0 and x torsion angles were constrained through HNCH and HNi+1CiH tensor

correlation experiments, respectively, which incorporate the TMREV sequence for y-

encoded heteronuclear recoupling; secondary constraints on V were obtained through the

NCCN dipolar correlation experiment. Side chain torsion angles were constrained

through the HCCH tensor correlation experiment.
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Figure 11-11: CHHC experiment in 10% [U- 13C,15N]-MLF, which was subsequently used for
experiments designed to measure structural parameters. The absence of intermolecular cross
peaks at long mixing times demonstrates that all structural constraints measured in these
experiments are not influenced by intermolecular packings in the diluted sample.

The details of the 3D TEDOR pulse sequence are described in Figure 11-12, while Figure

11-13 is a 2D projection of the 3D experiment that illustrates the number of cross peaks

from which meaningful distances can be extracted. The data are fit using an approximate

analytical model of the spin dynamics for multiple, coupled spins under TEDOR [38]

using a Levenberg-Marquardt algorithm for minimization of the X2 fit parameter. An

example of the fit for weak dipolar couplings corresponding to distances of 5.4 A and 6.4
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A is shown in Figure 11-15. The approximate analytical model used to fit these data

neglects the orientational dependence of the spin dynamics and hence introduces a

systematic error of approximately 10%-20%, which is greater than the random error in

these data in all cases.

H 2

cP CWITPPM I TPPMI CWI CW/TPPM

13c

Mixing/2 Evolution Mixing/2

Figure 11-12: 3D TEDOR experiment use for 15N- 13C distance measurements in MLF, in which
transferred echo double resonance is used to produce quantitative heteronuclear polarization
transfer in the context of a chemical shift correlation experiment [38].
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Figure 11-13: Projection of dipolar dimension of 3D TEDOR experiment in MLF (175 K). The
intensity of each cross peak was fit as a function of the mixing time to obtain an accurate estimate
of the heteronuclear distance.
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Figure 11-14: Projection of dipolar dimension of 3D Rotational Resonance Width experiment in
MLF (175 K). With the exception of Ca0 and Cf3 atoms, the intensity of each cross peak was fit
as a function of the spinning frequency to obtain an accurate estimate of the homonuclear
distance. Not all cross peaks are visible in this projection.
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Figure 11-15: (left) Example of fitting of long distances in TEDOR experiments. (right) The N-
form of MLF (MLF-1) has systematically longer distances than the O-form, which closely
resembles both the room temperature and 90K MLF structures.

HNCH and HNi+1CiH tensor correlation experiments are illustrated in Figure 11-16.

The correlated dephasing under 1H-15N and 'H-' 3C couplings is monitored through the

intensity of the '5N-13C cross peaks as a function of the synchronously incremented

dipolar mixing time. The relative rate of incrementation is chosen to optimize the

sensitivity of the experiment (in this case, n=2). In these experiments, TMREV-4 was

applied at a spinning frequency of 8.333 kHz. The resulting trajectories can be fit to

obtain constraints on the backbone torsion angles (Figure 11-21).
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Figure 11-16: 3D HNCH experiments for measurement of backbone 4 torsion angles in uniformly
labeled peptides [52]. Heteronuclear couplings are reintroduced using constant-time TMREV
[54] recoupling sequences which are synchronously incremented during '1H-13C and 'H-' 5N
recoupling periods. A similar experiment to measure the y torsion angle instead involves
correlation of the 'H- 15N(i+l) dipolar tensor with the 'H- 13Co~ tensor.
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Figure 11-17: Experimental data for HNCH tensor correlation experiment designed to measure
the 0 torsion angle in MLF at 175K. Note that there are differences in the experimental
dephasing trajectories for the methionine and phenylalaine residues between the two forms of
MLF but minimal differences for the leucine.
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Figure 11-18: Experimental data for HNi+1C iH tensor correlation experiment designed to measure
the \y torsion angle in MLF at 175K. No constraints on the phenylalanine residue can be obtained
from this experiment. The results suggest only minimal differences in this backbone Ag torsion
angle between the N-form and O-form of MLF. The HNCH Ni measurements were supplemented
with an NCCN dipolar correlation experiment that constrains the same torsion angle.
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n/2 n n/2

13C

Figure 11-19: 3D HCCH experiments for measurement of side chain Xn torsion angles in
uniformly labeled peptides. Double quantum coherence is created using the band-selective SPC-
53 recoupling sequence [55] and allowed to dephase under the 'H-13C dipolar interactions,
reintroduced by TMREV [54].

The 3D HCCH experiment for side chain torsion angle measurements can be

implemented in one of two ways: in one implementation, show in Figure 11-19, a double

quantum coherence dephases under the recoupled 1H- 13C dipolar interactions. A second

implementation involves two separate synchronous dipolar recoupling periods. In both

cases, the narrowband homonuclear recoupling sequence SPC53 is used to generate

double quantum coherence or polarization transfer. The results of these experiences,

show in Figure 11-20, suggest that there are differences in the side chain torsion angles of

N-form and O-form MLF. However, because of systematic degeneracies in the data

analysis, these constraints have not been included at this stage of the structural

refinement. In the related NCCN experiment, which provides constraints on the yV

backbone torsion angle, SPC53 is used to generate double quantum coherence between

C'-Ca, and this is allowed to dephase under the N-C' and N-Ca interactions which are

recoupled simultaneously using REDOR. The resulting dephasing trajectories can be fit

to obtain constraints on the torsion angle, as shown in Figure 11-21 for the case of the

Leucine residue in MLF.
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The structural data resulting from these experiments is summarized in Table 11.4

and Table 11.5. Solutions for the torsion angle inherently dependent on the precise value

of the heteronuclear 1H-15N and 1H-13C couplings and on the three-atom bond angles used

in the calculation of the projection angles. For all fits, we used the equilibrium

parameters specified in the X-Plor NIH NMR refinement forcefield for consistency. The

expected variation of bond angles about these average values can induce a ± 10-15 degree

uncertainty in the solution for the projection angle, which in all cases is greater than the

random error in these experiments.

oI
.9-0M

--- Ln._C'
.- LO_CMI

)u X1

et X1

1.0-

0.8-

0.6- -0- MO.Ch2
0.6-C2

0Met X2
0.2-

0.0-

0.0 0.2 0.4 0.6 0.8

Mixing Time (ms)

Figure 11-20: Experimental data for HCCH tensor correlation experiment designed to measure
the Xn torsion angles in MLF at 175K. The results show significant differences in side chain
conformation between the two forms of MLF which co-exist at 175K.
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Figure 11-21: Examples of data fitting and resulting solution surfaces for the backbone torsion
angles of Leucine in N-form (red) and O-form (black) f-MLF-OH as measured in HNCH (4),
HNi+1CiH (W), and NCCN (y) tensor correlation experiments.

443

-100 0 100 200
0(degrees)

I
p

0

ri I I I
I..

0-
r 1 -I . III-

0 0 0001 0.0002 0.0003 0.0()4

t

CI . 1 . I 1 . 1 -i

fC
aC



Table 11.4: Summary of torsion angle measurements resulting from HNi-CiH (f), HNi+I-Ci-H
(y) and NCCN (y) dipolar tensor correlation experiments.

H-Ni-Cao-H
-150, -90
(-17, 137)
164, 105,

(-46,-164)
-144,-96
-149,-91

156, 117; 3, -36; -84, -157
171, 97; 21, -55; -72, -167

H-N(i+1)-Ca-H
144, 95

-160, -110,40, 157

-100,-19, 48
-101, -18, 46

n/a
n/a

Table 11.5: Summary of distance measurements resulting from 3D
Distance (nm)

TEDOR experiments [38].

RT
form Form-0 Form-N

(298K) (175 K) (175K)
MC-MN 250 240 240
Moc-MN 150 150 150

Met.N iMP-MN 250 255 240
My-MN 380 320 440
Me-MN 530 540 640
MC-LN 130 135 135
Mox-LN 260 255 235
MP-LN 320 330
My-LN 500 420 425
Me-LN 580 620 630Leu.N
LC-LN 240 250 315
Lao-LN 150 150 150
LP-LN 260 240 235
Ly/5-LN 360 355 460
L62-LN 390 400

ME-FN 520 540 580
LC-FN 130 135 140
Lao-FN 230 235 230

LP-FN 320 340 325
Phe.N Ly/I-FN 450 490

L52-FN 600
FC-FN 270 245 245
Fa-FN 140 145 145
FO-FN 260 245 235
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-154,154

-159, 159

-78,78
-69,69

n/a
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Figure 11-22: Powder diffraction pattern of f-MLF-OH sample used in NMR studies. The unit
cell parameters (P212121, a=21.9, b=20.7, c=5.3) were obtained through indexing in CRYSFIRE
and rigid body refinement in the program UNITCell.

11.3.5 Powder diffraction

While there is a high resolution diffraction structure off-MLF-OMe,f-MLF-OH does not

yield crystals of sufficient size for diffraction experiments. Nevertheless, we expect that

the dynamics might be influenced by crystal packing, and so it is important to determine

if the crystal packing arrangement is similar in both peptides. In order to verify that the

crystallographic parameters of f-MLF-OH are similar to those of f-MLF-OMe, we

conducted powder diffraction experiments (MIT CMSE), show in Figure 11-22.

Following indexing, analysis, and refinement, we obtained unit cell parameters of

P212121, with a=21.9, b=20.7, c=5.3. The published parameters for f-MLF-OMe are

P2 12121 with a=21.7, b=21.8, c=5.1. The slightly larger unit cell of f-MLF-OH may

explain its greater ring dynamics, and this is also suggested by greater equilibrium
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displacements in short-time molecular dynamics simulations of the MLF crystal in the

program GROMACS (not shown). However, it was computationally infeasible to extend

these simulations to the timescales probed by NMR experiments.

11.3.6 Direct Probe of Dynamics

If a dynamical process imparts time-dependence to a dipolar coupling, the dipolar

coupling may be averaged from its static value. In turn, the magnitude of a recoupled

dipolar interaction will also be averaged. Thus, by monitoring the magnitude of dipolar

couplings through recoupling experiments as a function of temperature, the thermal

activation and other parameters of the process can be identified, if there is a model to

explain the motion. We have monitored the 1H-13C dipolar couplings as a function of

temperature using the TMREV recoupling sequence (Figure 11-23).

__ __ __ __ _ 2X
ort in n -J

1H CW Decoupling TPPM:Cý]M

15N

Figure 11-23: TMREV [54] experiment to probe averaging of 'H- 13C dipolar couplings as a
function of temperature.
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The dipolar lineshapes, shown in Figure 11-24 and Figure 11-25 change significantly

as a function of temperature. In particular, they indicate that methyl and aromatic

motions slow down progressively as the temperature is reduced, and that the dipolar

couplings, shown in Figure 11-25, reach a limit near the value of the glass transition

temperature. This change in the averaging of the dipolar coupling strength, which is

directly related to the dynamics, is correlated to the emergence of a second form of MLF

at low temperatures.

CB
CO

.Iojell

Alt

AIOI
e4l 10
cM?:

-r

O

0

C:

Figure 11-24: Span of recoupled dipolar interaction as a function of temperature. The second
dimension is generated from a Fourier transform of the dipolar dephasing curve under TMREV
recoupling. Note the increase in apparently methyl group dipolar couplings as the temperature is
reduced.
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Figure 11-25: Span of recoupled dipolar interactions in TMREV experiments as a function of
temperature. The dramatic change in the dipolar lineshape of the aromatic carbons clearly
indicates a change in their dynamics with temperature.

11.4 Discussion

The NMR data show a remarkable difference in dynamical behavior between the two

tripeptide crystals, despite their similar chemical structure and crystallization behavior.

As expected for a largely rigid system, the changes in the NMR spectra of the methylated

peptidef-MLF-OMe are relatively small. They are limited to changes in the methyl group

intensities, with the variations correlated to the steric hindrance encountered by the

methyl group during its three-fold jump. The interference of the 'H-' 3 C decoupling due to

a reduction in CH3 jump rate occurs at a higher temperature for the Leu side chain

methyls. At 90K, the Met CH3 group rotation remains fast enough to prevent such
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destructive interference. The various 15N and 13C resonance frequencies remain

unaffected, including those of the Phe side chain (which is immobile up to room

temperature).
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0 8.8
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I I I I I I f I I i I I I I I II I I I II I I ,I
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Temperature (K)
Figure 11-26: Effective (scaled) dipolar couplings for two methyl groups as a function of
temperature. The methionine Ce methyl appears to be in a less hindered environment than the
Leu C81, though both experience an apparent loss of dynamics near the glass transition
temperature.

Spectra of the f-MLF-OH peptide show the same manifestations of methyl group

dynamics (disappearance of Leu methyls), but significant additional effects of cooling are

also visible. These effects include the temperature-correlated emergence of a second

conformational substate which is correlated to the dynamical transition. In order to study

this further, we applied several solid state NMR methods to measure structural

parameters of the peptide at 175K. The variable temperature structural measurements

449



were complicated by the disappearance of the Leu methyl groups at lower temperatures,

but the chemical shifts suggest that the peptide is structurally similar.

In the conventional picture of temperature-activated conformational exchange as

monitored by NMR, a transition between two states results in spectra with an averaged,

narrow resonance at high temperature, a broad, single resonance at intermediate

temperatures, and separate narrow resonances at temperatures low enough to arrest the

dynamics. Interestingly, f-MLF-OH does not display this behavior, but rather shows a

distribution between two distinct, similarly narrow sets of NMR lines. Even more

atypical seems the observation that the form that appears upon cooling, again disappears

at even lower temperatures.

The phase transition inf-MLF-OH takes place between 200 and 100K. Concomitantly,

there is a drastic reduction in the intensity of the methyl group resonances. The

temperature range of the transition is below the canonical protein glass transition, which

is generally observed at 200-230K [10]. The observed dynamical event does correlate

with the observed onset of anharmonic motion at temperatures above 100K, which was

proposed to be associated with methyl group dynamics [7, 11, 16, 56]. Our system

highlights the fact that another potentially important source of side chain motions in

proteins can be associated with the aromatic side chains, such as phenylalanine. The

predominant difference between the f-MLF-OH and f-MLF-OMe crystals revolves

around the dynamic of the Phe ring. As illustrated in Figure 11-1, the aromatic ring inf-

MLF-OMe is prevented from flipping by the close proximity of a number of bulky

groups, including the C-terminal methyl group (OMe). The lack of this group inf-MLF-

OH allows the Phe 1800 flip, which must play a role in the observed phase behavior.
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Figure 11-27: Deviation in heteronuclear distances in two forms of MLF at 175K from their room
temperature values (indicated by red line at y=0O). The N-form of MLF has systematically longer
distances than the O-form, which closely resembles both the room temperature and 90K MLF
structures.

Aside from the implications for low temperature protein dynamics, our results are also

relevant to low temperature solid state NMR applications. We observe that line

broadening as a result of cooling to low temperatures (even in a dynamical system) does

not preclude low temperature NMR experiments. As previously observed in a number of

other peptide and protein systems, one can obtain relatively narrow spectral lines at

temperatures down to 90K. While there might be solvent-dependent mechanisms which

result in broadening of NMR lines near the glass transition, it may be possible to

manipulate these through solvent composition and cooling rate. As has already been

demonstrated, the attenuation of signals from sites in intermediate-rate conformational

exchange can be ameliorated through specific deuteration.
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Figure 11-28: Density of structural constraints for N-form of MLF superimposed on MLF
structure.

11.4.1 Refinement

The high resolution structures of two forms of MLF, the N-form and the O-form, were

refined based on solid state NMR constraints using previously established protocols for

simulated annealing molecular dynamics [36] as implemented in the program X-Plor-

NIH [57]. Due to the lack of intensity in the methyl resonances at 90K, no side chain

constraints could be obtained for the Leucine residue, and hence no structural refinement

was attempted for MLF at this temperature. However, its chemical shifts suggest that this

form closely resembles the room temperature form of MLF. As shown in Figure 11-28,

solid-state NMR measurements provide approximately 9 constraints/residue, which is

sufficient to yield structural ensembles characterized by a root mean squared deviation in

heavy atom coordinates of 0.53 A for O-form MLF. The lack of constraints on the

terminal Phe. residue allows it to assume a variety of conformations in the refinement.

While it is possible to further constrain its conformation by applying either an excluded

volume restraint or periodic boundary conditions representing the MLF crystal lattice, no

such approaches were attempted here. Representative members of the structural

ensemble for N-form and O-form MLF are shown in Figure 11-29.
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O-form N-form

Figure 11-29: Preliminary refinement of MLF structures on the basis of experimental data at
175K. It is anticipated that inclusion of additional side-chain torsion angle data in the refinement
data set will improve the ensemble. Differences between the O-form and N-form structures are
most pronounced in the side chains. The ensembles are generated by selecting the five structures
which represent the conformational space spanned by the 100 lowest energy conformers in the
refined ensembles. Alignments are generated to all heavy atoms.

Figure 11-30: Superposition of 298K, N-form, and O-form MLF average structures as
determined by solid state NMR. Structural coordinates were averaged and then subjected to
minimization in Cartesian coordinates (in X-PLOR-NIH) to eliminate inappropriate geometries
and steric clashes.
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Average structures for three forms of MLF are superimposed in Figure 11-30. Though

there are differences in the backbone torsion angles, the structures predominantly differ

in side chain conformation. The structure of the O-form of MLF is similar to the room

temperature form, while the N-form has systematically longer distances and a different

conformation of the Leucine side chain, in particular.

A cooperative and reversible structural transition occurs between these forms as the

sample is cooled from ambient to cryogenic temperatures. The structural phase transition

is accompanied by a coupled transition in the range of dynamics experienced by the

sample, and both have similar temperature dependence. There are no intermediate range

exchange dynamics as would be expected if the N-form and O-form of MLF existed and

were in conformational exchange at room temperature. Further, in the related f-MLF-

OMe peptide, whose crystal lattice excludes a subset of the ring motions experienced by

f-MLF-OH at room temperature, no such phase transition occurs. It is reasonable to ask

whether or not the activation of these dynamical modes is necessary for the structural

phase transition to occur, or if the reverse is true. Our measurements elucidate the

endpoints of this phase transition but do not provide information about its mechanism. In

order to understand this further, it may be possible to conduct molecular dynamics

simulations to assess the stability and range of motion in the MLF lattice, using these

structures as a starting points or for comparison. We conducted molecular dynamics

simulations in the program GROMACS [58, 59] to confirm a greater degree of dynamics

at short time scales in f-MLF-OH as compared to f-MLF-OMe, but it was not

computationally feasible to extend these approaches to monitor the dynamical timescales

associated with NMR measurements. Using replica exchange or parallel tempering

molecular dynamics [60-62] and periodic boundary conditions to represent the MLF
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lattice, it appears computationally practical to extend this approach to the millisecond

timescale. Such a study may reveal the connection between the dynamical and structural

phase transitions seen here. Further, molecular dynamics simulations may be used for

ensemble averaging of NMR restraints, and thus might be helpful in generating more

accurate estimates of dipolar couplings and torsion angles in the presence of dynamics.

11.4.2 Protein Applications

The tripeptide MLF is model system for a subset of the range of dynamics experienced

by proteins near the glass transition temperature. It may be a model for, in particular, the

part of the glass transition which is due to the loss of anharmonic motional modes of the

protein. While methyl dynamics have been invoked to explain the glass transition in the

past [8], it is increasingly clear that the transition also involves coupling to the range of

structures and dynamics experienced by the solvent. In the context of low-temperature

NMR studies such as those involving Dynamic Nuclear Polarization, the source of line

broadening observed at low temperatures in some microcrystalline protein systems [63]

[64] is of particular interest. Several explanations are possible: first, it may be possible

that the crystal structure of the system is being damaged by freezing at low temperature.

The observation that temperature-induced line broadening is reversible in

microcrystalline systems tends to exclude this hypothesis. Second, temperature-induced

or so-called "cold denaturation" of the protein may be responsible for the line

broadening. Indeed, there may be structural heterogeneity without static disorder, as

shown in the case of MLF, which would only become visible in multidimensional

correlation spectra and would appear as line broadening in 1D spectra of a protein with

hundreds or thousands of chemical sites. Finally, the freezing of the solvent at low
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temperature may induce static disorder in the sites with which it interacts structurally;

equivalently, it may introduce line broadening through its interaction with these sites via

the magnetic dipolar coupling.

Table 11.6: Plasmid sequence of pet30-GB 1 plasmid and translated amino acid sequence of GB 1
fusion peptide crystallized and used for these experiments (legend: E sites; sites; c C-

terminal HIS tag). (bottom) SDS PAGE (18-20% gradient) gel illustrating purification of
polypeptide following cell lysis.

CAG TAC AAA CTG ATC CTG AAC GGT AAA ACC CTG AAA GGT
GAA ACC ACC ACC GAA GCT GTT GAC GCT GCT ACC GCG GAA AAA GTT
TTC AAA CAG TAC GCT AAC GAC AAC GGT GTT GAC GGT GAA TGG ACC
TAC GAC GAC GCT ACC AAA ACC TTC ACC GTT ACC GAA
CAC TAA t

1-MQYKLILNGK TLKGETTTEA VDAATAEKVF KQYANDNGVD GEWTYDDATK
TFTVTEGSHHHHHH-64

I %, purified fractions
vu " % C - 2
E • ,- ',

4,4.4.

In order to study this problem, we began an investigation of immunoglobulin binding

(B1) domain of Protein G, a small, thermally stable protein that has been characterized

previously by crystallography [65], solution state NMR [66], and solid state NMR [64].

The protein (see Table 11.6) was overexpressed in e.coli as a fusion peptide with a 6-

residue, N-terminal HIS tag that was used for affinity purification of the lysate. The
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lysate was produced by detergent lysis, as this gave the best yield of purified product. It

is important to note that these experiments have involved a different protein construct,

and hence a protein with different physical properties, than that used in the solid state

NMR experiments of Rienstra and colleagues. Following affinity chromatography, the

polypeptide was further purified using gel filtration chromatography and then dialyzed

into the crystallization buffer (25 mM sodium acetate, pH 4.5). Crystallization conditions

were established by hanging drop vapor exchange methods starting from a protein

concentration of 30 mg/mL. Batch crystallization was accomplished using two

approaches. First, the sample was crystallized using PEG 2000 (50% w/v) as a crowding

agent and by using a SpeedVac centrifugal evaporation unit to bring the sample gradually

to a concentration at which precipitation can occur [63]. Cryoprotectants such as glycerol

were added to the initial crystallization buffer in a concentration that resulted in bulk

glass formation upon freezing at the target concentration of precipitant. A second

approach utilizes methylpentanediol (MPD) as a precipitant and has been described in the

solid state NMR literature [64]. Following crystallization, the samples were packed by

centrifugation into 3.2 mm or 4 mm NMR rotors.

The samples were initially characterized at room temperature using a 700 MHz

NMR spectrometer. We have recorded 2D 1 3C-' 3C correlation spectra at 700 MHz using

proton driven spin diffusion with an R3 recoupling field (DARR[67]). Two-dimensional

NCA and NCACX-type 15N-' 3C correlation spectra were recorded using approaches

described earlier. The spectra, shown in Figure 11-31, Figure 11-32, and Figure 11-33,

show resolution typical of microcrystalline proteins, with the majority of cross peaks

resolved in a two-dimensional experiment.
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Figure 11-31: Homonuclear 13C-13 C correlation experiment in nanocrystalline protein GB1
recorded at 700 MHz with DARR. The protein was prepared through precipitation in
polyethylene glycol. Note the excellent resolution, which is typical of microcrystalline proteins.
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Figure 11-32: Heteronuclear 13C- 15N NCACX-type correlation experiment in nanocrystalline
protein GB 1 recorded at 700 MHz.

The low-temperature dynamics of this system were studied on the 380 MHz DNP

spectrometer, which is able to access a wide variety of temperatures. The results of this

very initial study for samples of GB1 cryoprotected with 20% glycerol are shown in

Figure 11-34. The resolution for this microcrystalline sample is surprisingly high even at

380 MHz, a comparatively low field for biomolecular NMR applications. Upon cooling,

there is a loss of resolution due to line broadening (see for example, the Threonine Ca-

C3 region), but detailed analysis of 3D spectra for resolved regions (e.g. proline,

threonine) will be required to understand the basis for these effects. In Figure 11-35,

one-dimensional spectra of a 15N-labeled GB1 sample precipitated from MPD show a

more dramatic loss of resolution with temperature, indicating that solvent dynamics may

play a role in these processes.
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Figure 11-33: Heteronuclear 13C- 15N NCA-type correlation experiment in nanocrystalline protein
GB1 recorded at 700 MHz.
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Figure 11-34: A comparison of homonuclear correlation spectra of protein GB1. (left) PEG-
precipitated sample of GB1 at 700 MHz, 273K; (middle) homonuclear correlation spectrum of a
sample of GB1 precipitated from PEG and cryoprotected with glycerol, recorded at 380 MHz;
(right) the same sample, cooled to 100K.
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Figure 11-35: 1D 15N spectra of U-S1 N-MLF microcrystals prepared by precipitation in MPD.
Note the loss of resolution at lower temperatures.
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A complete study of these effects was not attempted here. At the very least, such a study

will involve recording resolved 2D or 3D correlation spectra in GB1 samples at a variety

of intermediate temperatures from 290K to 90K. The role of cryoprotection can be

explored by measuring spectra in samples prepared with different cryoprotectants or

different concentrations of a single effective cryoprotectant, such as glycerol. Further,

the direct or indirect involvement of the solvent can be tested by preparing samples from

highly deuterated solvents. Ultimately, the degree of chemical shift resolution and

sensitivity realized in these initial experiments suggests that all of the approaches used

for the elucidation of the structural phase transition in MLF can be applied to probe the

structural and dynamical basis of the glass transition in a protein such as GB 1.
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Chapter 12 Resonance width measurements of
homonuclear and heteronuclear dipolar couplings

Parts of this chapter are based on:
Ramachandran, R., Ladizhansky, V., Bajaj, V. S. and Griffin, R. G. " 13C-13C rotational
resonance width distance measurements in uniformly C-13-labeled peptides." Journal of
the American Chemical Society 125, 15623-15629 (2003).

Bajaj, V.S., Ramachandran, R., Ladizhansky, V., Griffin, R.G. " N-C Cross Polarization
Resonance Width Experiments for Accurate Measurement of Heteronuclear Dipolar
Couplings in Solid State NMR. " (in preparation).

Bajaj, V.S., Caporini, M, van der Wel, P., Griffin, R.G. "Quasi-Adiabatic Passage
Experiments for Measurement of Heteronuclear and Homonuclear Distances in Solid State
NMR" (in preparation).

12.1 3D Rotational Resonance Width Experiments

The rotational resonance width (R2W) experiment is a constant-time version of the

rotational resonance (R2) experiment, in which the magnetization exchange is measured

as a function of sample spinning frequency rather than the mixing time. The significant

advantage of this experiment over conventional R2 is that both the dipolar coupling and

the relaxation parameters can be independently and unambiguously extracted from the

magnetization exchange profile. In this paper we combine R2W with two-

dimensional13C-13C chemical shift correlation spectroscopy, and demonstrate the utility

of this technique for the site-specific measurement of multiple '3C-'3C distances in

uniformly labeled solids. The dipolar truncation effects, usually associated with distance

measurements in uniformly labeled solids, are considerably attenuated in R2W

experiments. Thus, R2W experiments are applicable to uniformly labeled biological

systems. To validate this statement, multiple 13C- 13C distances (in the range of 3-6 A)

were determined in N-acetyl-[U-_3C, 15N]L-Val-L-Leu with an average precision of
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±0.5 A. Furthermore, the distance constraints extracted using a two-spin model agree

well with the X-ray crystallographic data.

12.2 Introduction

Recent innovations and technological advances in the field of solid-state NMR (SSNMR)

spectroscopy have brought it to the point where it shows considerable promise as a

technique for studying problems of biological relevance that are not accessible via

solution NMR or diffraction techniques [1-10]. In particular the combination of magic

angle spinning (MAS) [11-13], cross-polarization (CP) [14, 15] and heteronuclear

decoupling techniques [16-18], yielded increased spectral resolution and sensitivity in

studies of such systems. At the same time MAS attenuates the dipolar interactions among

the nuclear spins. Since these are the primary parameters of interest in structure

determinations, it is necessary to reintroduce the dipolar interactions in order to retrieve

the desired structural information. This fact has provided the impetus for the development

of a suite of recoupling techniques that result in the reintroduction of the dipolar

couplings during MAS in a controlled manner [19-24]. In such recoupling schemes (the

rotational resonance technique consider here being an exception), the spin component of

the dipolar interaction is modulated with radio-frequency pulses to constructively

interfere with the MAS modulated spatial component, thereby resulting in the re-

introduction of the dipolar interaction. Using such approaches, distance constraints have

been obtained in a number of selectively labeled systems [20]. These distance

measurements are essential in determining the molecular structure of biological samples

such as membrane proteins [2-5, 25, 26] and insoluble peptide aggregates [9, 10, 27, 28],
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whose structures are not easily accessible with conventional structural techniques such as

solution-state NMR spectroscopy and X-ray crystallography.

Dipolar recoupling techniques can be conveniently classified as either broad-

banded or selective. To date broad-banded recoupling techniques are used extensively

for spectral assignments, but the deleterious effects of dipolar truncation [29] and other

multi-spin interactions on the spin dynamics limit their utility in distance measurements

in uniformly 13C labeled solids. In particular, the strong couplings among directly bonded

spins, attenuate polarization transfer to weakly coupled neighbors and it is precisely these

distances that are essential in structure determination. Quantifying multi-spin effects in

uniformly labeled systems is difficult and usually results in inaccurate distance

measurements. Moreover, such techniques are sensitive to pulse imperfections and

require intense radio frequency modulations on the low-y nuclei, which interfere with the

proton decoupling, leading to a loss of signal intensity during the recoupling period [30].

In contrast, with selective recoupling techniques such as rotational resonance (R2) [31-

39], and its related variants [40-43] such problems are circumvented because the applied

rf fields are either weak or non existent.

In the case of R2 experiments, the dipolar interaction between the members of a

pair of spins is reintroduced selectively by matching the isotropic chemical shift

difference, 8 (in Hz), to an integer multiple of the sample spinning frequency (ur) - i.e.

8 = no, (where n is a small integer representing the order of resonance) - and monitoring

the exchange dynamics as a function of the mixing time. This leads to a coherent

interaction between the nuclear spins and the macroscopic sample rotation, leading to

magnetization exchange between the spins of interest. Since the recoupling during R2 is
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rotor-driven, it is, in contrast to radio frequency driven recoupling techniques, less

sensitive to interference from 'H decoupling. Moreover, the spectral selectivity of the R2

phenomenon is often advantageous in quantitative studies, as multiple and relayed

polarization transfers are minimized. Most importantly, as a direct consequence of the

selectivity, the dipolar truncation effects are significantly attenuated in R2 experiments.

In addition to the dependence on the internuclear distance, the magnetization

exchange dynamics at R2 are sensitive to the homogeneous and inhomogeneous

contributions to the zero quantum line-width parameters [42-46]. The homogeneous

contribution is described by a phenomenological relaxation parameter T2ZQ, which

characterizes the decay of the ZQ coherences created during the magnetization exchange.

In addition, the chemical shift distribution (CSD) [47] represents an inhomogeneous

contribution that arises mainly from variations in intermolecular packing and results in a

distribution of chemical shifts at each of the recoupled spin sites. Quantifying these two

zero-quantum contributions is an important and non-trivial task since they must be

separated from the dipolar couplings if structural parameters are to be measured

accurately. Only recently have experiments been devised to measure the homogeneous

and inhomogeneous contributions to such effects [42, 43, 48-50].

In the usual R2 magnetization exchange experiments, the dipolar couplings are

extracted by fitting the experimental exchange curves with different sets of dipolar (and

in some cases the magnitude and orientation of CSA tensors) and relaxation parameters.

However, the accuracy of such distance measurements is limited by the accuracy with

which the zero quantum line-width parameters (especially T2ZQ) are estimated and

accounted for in the numerical simulations. The value of T2ZQ has a significant influence
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on the exchange dynamics, and depending on its relative magnitude (with respect to the

effective dipolar interaction), the form of the magnetization exchange trajectories vary

from damped oscillations in the "under-damped" regime (Oeff>>l/T 2ZQ), to monotonic

decays in the opposite over-damped case ((O)ef<<1/T 2ZQ).[38] Short distances often fall in

the under-damped category and can be measured accurately [39], even absent an accurate

estimate of the zero quantum relaxation parameters. However, in the context of

measurements intended to constrain the structure of biomolecules, the most interesting

constraints arise from long-range dipolar contacts between residues that are also distant in

primary structure. These distances tend to correspond to the over-damped case.

Consequently, the accuracy of such long-range distance measurements using the R2

magnetization exchange method can be significantly compromised by the uncertainties

associated with the estimation of the ZQ relaxation parameters. This necessitates the need

for developing experiments with a reduced dependence on the relaxation parameters.

With this goal in mind, Costa et al. proposed an experiment based on rotational

resonance technique where the magnetization exchange was monitored under a constant

mixing time as a function of spinning frequency (rotational resonance width, R2W) [43]

which shows a reduced dependence on relaxation parameters. In a similar vein, Goobes et

al. [45, 46] proposed observation of the magnetization exchange as a function of spinning

frequency in a constant time, narrow-band radio frequency driven recoupling (nb-RFDR)

experiment. Both approaches involve the observation of the ZQ resonance transition,

with its intensity and width dependent on the dipolar coupling and relaxation parameters.

The simultaneous analysis of both (or alternatively the resonance shape) allows

independent extraction of distance and relaxation parameters without ambiguity when
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compared to the conventional R2 experiments. Using this technique, internuclear

distances in selectively labeled samples have been determined with a reduced dependence

on zero-quantum line-width parameters and with much improved accuracy and precision.

(a)

13c

(b)

01

2 4 05 06

132 t ._ (rec
SCP  - Z-filter 1 mrie

Figure 12-1: Pulse sequences for 3D-R2W experiment. Solid rectangles represent 2t/2 pulses. (a)
Represents a general 13C-13C correlation experiment performed as a function of spinning
frequency with the following phase cycling scheme: (P1=l, (P2 =1313, (p3= 2 , 9p4=1122 3344,
(prec=1324 3142 3142 1324. (b). In this scheme a selective Gaussian flip-up pulse is employed to
select the carbonyl region of the spectrum. The following phase cycles were employed: (pq=8x1,
8x3; (p2 =1; (p3=8x2, 8x4; (p4=1; P5=4x3, 4x1; (p6= 1234; (Prec=1 2 34 3412 3412 1234 3412 1234
1234 3412. The labels 1,2,3,4 correspond to the phases x,y,-x,-y respectively. In all the above
experiments the phase of the 'H-CP pulse was fixed along the y-axis and the dipolar mixing time
(tmix) was 30 ms.
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The primary aim of the experiments reported here is to extend the applicability of

the R2W technique to uniformly '3C-labeled systems and to investigate the dependence of

the accuracy of R2W measurements in the presence of multiple spin couplings. To

address these issues we have measured multiple distance constraints (in the range of 3-

6 A) in the dipeptide N-acetyl-[U-13C, 15N]L-Val-L-Leu using 3D dipolar-chemical shift

correlation spectroscopy. Using an approximate model of the spin dynamics that

considers only two coupled spins, a total of 9 distances were extracted in good agreement

with the diffraction distances. The excellent agreement of all the measured distances with

X-ray data justifies the use of this simplified model. The ability of the R2W approach to

separate the effects of relaxation and dipolar couplings, and simultaneously attenuate

dipolar truncation, makes it an invaluable tool in structural studies of uniformly labeled

biological systems.

12.3 Experimental

The experiments were performed on a sample N-acetyl-[U-' 3C, 'SN]L-Valine-L-Leucine

(the N-acetyl group was not labeled). For measuring intramolecular distances, the above

uniformly labeled compound was diluted to 9% in natural abundance to attenuate

intermolecular dipolar couplings. The NMR spectra were recorded at 8.4 T (360.336

MHz for 1H, 90.607 MHz for 13C) using a Cambridge Instruments spectrometer (courtesy

of Dr. D. J. Ruben) with a commercial Chemagnetics triple resonance MAS probe. The

probe was equipped with 4.0 mm Chemagnetics spinning module. Spinning frequencies

in the range 5.8-7.5 kHz were used in the experiments and were regulated to ±2Hz with a

Bruker spinning frequency controller. The standard approach for site-specific

measurement of multiple 13C-13C distances is illustrated in Figure 12-1(a). Ramped cross-
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polarization [51] from 1H creates the initial 13C magnetization. The magnetization is then

encoded by the tl evolution, followed by a preparatory ix/2 pulse, which creates the initial

longitudinal polarization (along z-axis) for dipolar mixing. The second 7t/2 pulse creates

transverse polarization for detection. The period between the two 7c/2 pulses constitutes

the dipolar mixing time and is maintained constant in the experiment. In our

implementation of the R2W experiment, a series of two-dimensional experiments are

performed using different sample spinning frequencies. Due to the larger 13C spectral

width, the tl increments in such 2D experiments are generally short in order to avoid

spectral folding. Since the total number of scans is limited by the number of tl points

(which in turn is needed to establish high resolution in the indirect dimension) as well as

by phase cycling, such experiments are often time consuming, unnecessarily in small

peptides where high signal-to-noise can be expected. This problem, however can be

circumvented by employing the pulse sequence illustrated in Figure 12-1(b) and has been

implemented in our experiments. Here, following 'H-'3 C CP, the carbonyl region of the

13C spectrum is selected by a 900 Gaussian pulse which restores the 13C=0 magnetization

to the z-axis of the rotating frame. This is followed by application of a z-filter, during

which all unwanted coherences are dephased via transverse relaxation processes and

removed through phase cycling. After the dephasing period, the carbonyl magnetization

is restored to the transverse plane by a n/2 pulse. Since the spectral width of the residual

13C (only carbonyl region) spectrum is reduced, larger tl increments are possible during

the evolution period thereby minimizing the total acquisition time. The chemical shifts of

the carbonyl resonances are then encoded during tl evolution, which is then followed by a

preparatory n/2 pulse for the magnetization exchange. The influence of the heteronuclear
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13C-1H dipolar interaction during the tl evolution, 13C- 13C recoupling period and

acquisition is minimized by employing the two-pulse phase modulation (TPPM)

decoupling scheme [18] (- 83 kHz, 0 = 120, r = 6 gs), while CW proton decoupling of -

100 kHz was employed during the n/2 pulses. The length of 13C 1t/2 pulses was 5 gs, and

Gaussian pulse of 300 gs and recycle delays of 3 s were employed in all our experiments.

12.4 Numerical Simulations

The spin dynamics under rotational resonance conditions have been well described by

several authors [34, 36, 38, 40-43, 48, 50] and will not be considered in detail in this

article. We therefore only present modifications of the theory relevant to our

experimental scheme. In the high field approximation the spin Hamiltonian for an

isolated spin pair during MAS is given by

H = Oo(t)1z +02 (t)12z +O)d(t)[ 21jzI2z +21(IJ+ + 11-I)1 (12.1)

where oi(t) , od(t) denote the periodic time-dependent coefficients (due to MAS) of the

chemical shift and dipolar interactions respectively. Such periodic time-dependent

interactions may be conveniently expressed using a Fourier series expansion given below

2) 2 i2mnv,t (12.2)
m=-2

where cozm) (for X = 1 ,2 or d ) denotes the time-independent Fourier component associated

with a particular interaction. The orientation dependence [52] of the chemical shift

interaction is expressed through the coefficients

0m) = iso(2m2O +aniso D •-m(~R) •[D2,-m (R)+ - Dm(R ,) d2m,O(JRL) (12.3)
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where s = - so and (,iso= -0Oaaniso represent the isotropic and anisotropic

components of the interaction. The chemical shielding parameters (such as isotropic

chemical shift, anisotropy and asymmetry parameter) are related to the principal values of

the shielding tensor according to "& = ++a = •)o,-;aio, and

Z - A

a = respectively. Dp, (R) is an element of the Wigner rotation matrix (of

rank 2) describing the transformation from the principal axis frame P of the interaction

k through a given crystal fixed frame C ( which in our case is chosen to coincide with

the dipolar principal axis system) to the rotor frame R, i.e.

D ( I 2 (12.4)
k=-2

where Oxy = axy xP yx} denotes the Euler angles relating the frames X and Y.

pc specifies the orientation of the interaction tensor relative to the crystal fixed frame

and • R represents the so called powder angles describing the individual crystallite

orientation relative to the rotor frame. The reduced Wigner matrix element dm,0 (L

relates the transformation from the rotor frame R to the laboratory frame L with

fRL = tan-'1(J) being the magic angle. The definition of the dipolar coefficients is

analogous to the above description and is represented by,

2) = bk ((12.5)o(m ) =bjkj D2,l(QjkC )X )2 d 2
ml=-2

where bjk is the through-space dipole coupling constant given by bjk= (- _ in

units of rad s-1. For the sake of clarity and convenience, the above Hamiltonian is
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rewritten using the single transition operator basis [53]. In this basis the Hamiltonian is

written as a sum of two interaction terms, namely

H = Ho + H1  (12.6)

where
Ho = o(t)I 4 + A( t)(2 34) (12.7)

H1 = 8(t)I 23 + oB(t)I 23  (12.8)

and ok(t)= o(t)+ ±c(t), 6(t)= c~(t) -0 2 (t) denote the sum and the difference of the

chemical shift terms. Since the exchange dynamics under the R2 condition is described in

the zero quantum subspace, the spin system is only governed by the interaction term H1

and is represented by

H, = I23 + CO ( t)123, (12.9)

where the time-dependent CSA coefficients have been omitted for the sake of simplicity

and 8 = cos " - so denotes the isotropic chemical shift difference between the spin pair of

interest. In order to describe the observed interference effect between the MAS

modulated spatial component (of the dipolar interaction) and the chemical shift

modulated spin component of the interaction the above Hamiltonian is transformed into

an interaction frame (defined by the transformation function U = exp{i(2znvt)23 }). In

this frame the Hamiltonian is represented by

H U =UH1U-I = (8 - nr)I23+ B (t)[ If cos(21nr t) + y1 sin(2nnv,t)] (12.10)

Inserting the dipolar time-dependent coefficients in the above expression, the interaction

Hamiltonian can be re-expressed as
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HT = (W -fnnr)I-m + [23 i(n-m)2urt + e i(n+m)2rJrt] (12.11)T=(6-nVY)I +  O)B [I+ 2 + I23
m=-2

which can further be simplified to

HT = (8-nv,r)Iz23  i 23 (12.12)
n= -2

So far, we have neglected the time-dependence of the chemical shift anisotropy.

Although it is true that the CSA interaction would affect the lineshape of cross-peaks of a

correlation spectrum, their effect on polarization transfer is less significant.5 4 The unitary

operator described above may be modified to include the time-dependent CSA interaction

as and has been described in detail by Karlsson et al. [48]:

U(t) = exp{-i[2nvrt+ Qaniso( t,O)]I 23}, (12.13)

tb
aniso, aniswhere ao (ta, tb o (t)dt. In this frame the Hamiltonian is represented by

HT ( = (3 nv)I +23 (t)I 2 (12.14)

where B (t)= B(t)exp[-iai'so(t·0)]. Usually, the exchange dynamics is governed by

the interaction Hamiltonian and depends on the experimental scheme employed. In the

conventional R2 experiments (3= nVr) the above interaction Hamiltonian has only a

transverse component and is purely dipolar in nature whereas in the case of R2W

experiments, since the exchange dynamics is monitored as a function of spinning

frequency, the interaction Hamiltonian has both the longitudinal (described by the

resonance mismatch terms) as well as a transverse component (described by the dipolar

terms). Since the exchange dynamics are influenced by both coherent (described by the

Hamiltonian operator) as well as incoherent interactions (described by the relaxation
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operator), the spin dynamics is best studied using the Liouville formalism. In this

approach a new set of basis operators are defined (also known as super-operators) and the

time evolution of the spin system (represented by the spin density operator, p(t)) is

studied by solving the Liouville-von Neumann equation

d ^ (12.15)
t p(t)= -i[H, p(t)]- F p(t) .

dt

Using the Liouville super-operator L (represented by L= -iH- F), the above equation

can be further simplified and rewritten as a first order homogeneous differential equation

d ^ (12.16)
p( t) = L p(t)

dt

A A

The term H in the Liouville super-operator L denotes the Hamiltonian commutation

super-operator whose matrix elements are defined by

A A (12.17)
Hab = H I Qb) = Tr{Q_[ H,Qb]} (12.17)

where I Qa) , I Qb) etc. are orthonormal basis operators defined in the Liouville space, and

F denotes the relaxation super-operator, which is usually diagonal for all practical

purposes (neglecting cross-relaxation terms) and is formally represented by

A= QXoi (12.18)
T'(Qi IQ, )

The term T' in the above equation denotes the relaxation time associated with a given

coherence i. The R2W experiments described here involve polarization transfer from spin

1 to spin 2; the relevant Liouville subspace is therefore spanned by the operators

A

{lI), 2z),l I•),I I•~3)} and the Liouville super-operator L, can be represented by a

40 4 matrix. Using the explicit form of the operators mentioned above, Eq. (12.14) can

be expanded as follows
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o(li t) ' (li t))

d ( 3(t)) 0 0 -(8-nOr) ( 23 ) (12.19)

Here, T,' denotes the longitudinal relaxation time associated with spin i and is determined

experimentally by measuring the intensity (or magnetization) as a function of mixing

time far from rotational resonance conditions. In our case the measured T1' were long and

have been neglected in the calculations. The term T2ZQ refers to the zero quantum

relaxation parameter, and accounts for effects that are not directly correlated to the

chemical shift or the dipolar interactions. The spin dynamics are then evaluated by

solving Equation (12.19). Usually the distance information for a particular spin pair is

obtained by calculating the root mean square deviation between the experimental and

simulated data that is represented as

1 N
RMSD = - (E - Si)2. (12.20)

Here E' and S' denote the experimental and simulated data (integrated cross peak

intensities in our case) for a particular spin pair of interest. The summation index here

refers to the number of points (denoted by N, corresponding to different sample spinning

frequencies) performed. The internuclear distance r and the zero-quantum relaxation T2f

constitute the fit parameters in such calculations.

12. 5 Data Analysis

The experimental data from the R2W experiments were processed using NMRPipe55, and

the cross peak volumes were extracted by automated fitting to two-dimensional
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Gaussians. Analysis of the magnetization exchange curves involved: (i) normalization of

all data points to initial carbonyl intensities derived from cross-polarization reference

experiments conducted at identical spinning frequencies to compensate for the

dependence of CP enhancements on the sample spinning frequency, (ii) normalization of

cross peak volumes to carbonyl intensity at a spinning frequency which is free from any

recoupling conditions, and (iii) estimation of model parameters using a Liouville-space

formalism (Equation 12.19) of the spin dynamics (vide supra) which considers only two

coupled spins. For model estimation, the root mean squared deviation between the

calculated and measured magnetization exchange curves was minimized; confidence

intervals reflected in the contour plots were derived on the basis of an F-test 57 in which

only points above the noise floor were used to enumerate the degrees of freedom in the

model fitting. The experimental details and results obtained using this method are

discussed in the next section.

Val ,,9

a

Leu "
Figure 12-2: Diagram of the peptide N-Ac-Val-Leu derived from the crystal structure. The
nomenclature used to label measured distances in the text is indicated.
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(a) O)r/ 2n = 6.95 kHz

0

w~T V'

178 174 170

(b) cor/2n = 7.05 kHz

0

O.%. V
L'

178 174 170

26 22 18

V'Ny2

L'/N1

13C Chemical Shift (ppm)
Figure 12-3: Representative two-dimensional slices from the 13C-' 3C R2W experiment in N-
Acetyl [U- 13C, 15N]L-Val-L-Leu recorded on 360 MHz spectrometer at (a) 01I/2n=6.95 kHz and
(b) or/2n=7.05 kHz. The pulse sequence of Figure 12-1(b) was used with the mixing time of 30
ms. Different cross peaks appear at different spinning frequencies, thereby demonstrating the
selectivity of the polarization transfer. In (a) cross-peaks corresponding to the medium range V'-
Vyl dipolar coupling (R=3.879 A according to the crystal structure) appear in the spectrum, along
with long-range couplings between the L'-L81 (R=4.675 A) and L'-L82 (R=4.872 A). These
cross peaks are not present in (b) (note that the spinning frequency changes by just 100 Hz), but
two additional cross-peaks appear between L' and Vyl (R=6.464 A) and V' and Vy2 (R=2.969 A).

12.6 Results and Discussion

To validate our approach, the proposed 3D R2W experiment was applied to carbonyl-side

chain distance measurements in N-acetyl-[U-' 3C, 5"N]L-Val-L-Leu. The three-

dimensional structure of this dipeptide had been previously determined using X-ray

crystallography57 and is illustrated in Figure 12-2. In combination with 2D 13C- 1 3C
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correlation spectroscopy, the R2W methodology allows the measurement of multiple

distance constraints in a site-specific manner.

The R2W experiments were performed at 360 MHz (1H frequency) and at

spinning frequencies ranging from 5.8-7.5 kHz, incremented in steps of 25 Hz. The

sweep range of the sample spinning frequencies employed in the 2-D experiments were

chosen to satisfy appropriate resonance conditions (n = 2) between all carbonyl and side-

chain carbons. Figure 12-3 illustrates representative two-dimensional slices from the

R2W experiment corresponding to spinning frequencies 6.95 kHz and 7.05 kHz, and to a

mixing time of 30 ms.

The cross-peaks in the aliphatic region are labeled with the carbonyl and side

chain carbon frequencies. When the spinning frequency corresponds or is sufficiently

close to the R2 condition for a particular carbonyl-side chain spin pair, the magnetization

exchange between the spins results in the appearance of cross-peaks in the aliphatic

region of the spectrum. The aliphatic regions of the spectra demonstrate that these

polarization exchange processes are highly selective. In particular, at or/2n=6.95 kHz, the

V'-Vyl (medium-range; R=3.879 A according to crystal structure), L'-L51 (long-range;

R=4.675 A), and L'-L2 (long range; R=4.872 A) interactions are recoupled. However, at

a slightly higher spinning frequency, or/27n7.05 kHz, the corresponding cross peaks

disappear, and cross peaks corresponding to L'-Vyl (long range; R=6.46 A), and V'-Vy2

(short-range; R=2.969 A) appear. The varying cross peak intensities associated with a

particular spin pair of interest provide a measure of polarization transfer as a function of

sample spinning frequency and can be used as a tool to estimate the distance between the

spins of interest. The dependence of the cross peak intensity on the spinning frequency is
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shown in Figure 12-4 for the L'-L82 and V'-Vyl spin pairs together with the best fit

simulations and confidence plots. The T1 relaxation times were calibrated in separate

experiments. In all the experiments described in this article, the peak intensities were

referenced with respect to the intensity of the carbonyls (that were polarized initially). In

addition, the above intensities were corrected for the dependence of CP enhancement on

'I I Y" V-\l,

r 0.20
C

0.10

"*i 0.00n-

V.3V -

0.20-

0.10-

0.00- I I I

l i I w I s

6.4 6.8 7.2 6.4 6.8 7.2
wr/2n (kHz) wor/2n (kHz)
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2
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E 14
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6

2

50%
75%
90%
95%
97.5%
99%
99.5%
"9.90/

3.0 4.0 5.0 6.0 3.0 4.0 5.0

R12 (A) R12 (A)
Figure 12-4: Representative plots of the cross peak intensities as a function of the spinning
frequency for the L'-L82 and V'-Vyl rotational resonances, and corresponding graphs of the
model estimator in which contour levels are confidence intervals determined from an F-test. The
volume intensities of the cross-peaks are given relative to the corresponding carbonyl peaks. The
parameters in the best fit simulations were as follows. For L'-L82: Tz - = 4.0 ms, R=5.0 . For
V'-Vyl: T, - = 8.9 ms, R=4.25 A. The confidence limits of the contour levels are indicated on the
figure.

the sample spinning frequency. The experimentally observed polarization transfer

efficiency is quite high for stronger coupling and is on the order of 20% for longer (L'-

L62) distances. Using the numerical procedure described in the previous section and
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from the RMSD plots, a total of 9 distances were extracted with high precision and are

presented in Table 12.1. As is clear from the table, the distances measured using NMR

are in good agreement with X-ray data, despite the fact that multi-spin effects have been

neglected in our calculations. The agreement between the two data sets further justifies

our use of a simplified two-spin model for data analysis. It also is in agreement with the

earlier reported effect of the reduction of dipolar truncation in the presence of multiple

quantum relaxation.58

8

7

86

. 5C

S4Cu

3

2
2 3 4 5 6 7 8

Diffraction Distance, (iA)
Figure 12-5: Comparison of 13C- 13C distances measured by using X-ray diffraction and R2W
experiments. NMR results account for random errors.

In order to investigate other sources of systematic error, the dependence of the spin

dynamics on the magnitude and orientation of the CSA was studied. For a given set of

typical CSA parameter, a series of numerically exact simulations were performed and

then fit using the approximate treatment presented here. The results of the simulations

indicate an overestimation of the inter-nuclear distances of at worst 0.2 A using NMR

when the CSA magnitude and orientation are not known a priori. Such dependence on

CSA parameters can however be minimized at the n= 1 R2 condition.
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One of the limitations of this approach is the stringent condition imposed on the

sample spinning frequency. This restricts the applicability of this technique to systems in

which the CSA's are small compared to the chemical shift differences. Where this

condition is not met, the resolution is often obscured by the presence of crowded

sidebands, which in turn affects the selectivity. Such problems can be partially alleviated

Table 12.1. 13C-13C Internuclear Distances and ZQ relaxation times determined in N-Ac-L-Val-L-
Leu

13C- 13C Distance (A)
Atom s R2~ 1) Xray T2ZQ, ms

V' Vy2 3.20±0.20 2.969 5.9
Vyl 4.25±0.35 3.879 8.9
LS1 4.40±0.70 4.290 13.0

LP 3.25±0.45 3.715 9.3

L' Vy2 4.80±0.70 4.535 4.3
Vyl 6.50±0.80 6.460 0.1(2)

L61 5.00±0.60 4.675 6.0
L82 5.10±0.50 4.872 4.0
LP 2.95±0.45 2.487 7.0

(')The error bars are given with 95% confidence level.
(2) The R2W data for L'-Vyl spin pair could be fit with T2ZQ relaxation 0.1-10 ms. The
polarization transfer efficiency for this cross peak was very weak because of the long distance,
and could be fit with broad distribution of the ZQ relaxation parameter.

by employing the R2TR technique (rotational resonance in the tilted frame) introduced by

Terao et al. [40, 41]. This approach relaxes the restrictions on the sample spinning

frequency in addition to eliminating the broadening effects observed under rotational

resonance conditions.

12.7 Conclusions

We have demonstrated the application of 3-D R2W technique for simultaneous site-

specific measurement of multiple 13C-13C (carbonyl-side chain) distances in uniformly

488



13C-labeled solids. The method relies on 13C chemical shift resolution and is expected to

benefit from higher static magnetic fields with better selectivity and reduced dependence

on multi-spin effects. Since the recoupling is chemical shift modulated, its application is

limited to systems with spin pairs having significant isotropic chemical shift differences.

Fortunately, many interesting biological systems satisfy this criterion. Further, the effects

of dipolar truncation are significantly reduced in this approach and enable the extraction

of distance constraints even in weaker (or long range) couplings. Moreover, in systems

with favorable chemical shift resolution the distance information can be extracted without

ambiguity using a simple two-spin approximation model. Thus, the reduced dependence

on relaxation and other multi-spin parameters makes this a suitable approach for

measuring distances in larger uniformly labeled biological systems.

12.8 15N-'3 C Cross Polarization Resonance Width Experiments for
Accurate Measurements of Heteronuclear Dipolar Couplings in Solid State
NMR

We present a three-dimensional magic angle spinning experiment, Cross Polarization

Resonance Width (CPRW), for the measurement of multiple heteronuclear dipolar

couplings in uniformly labeled solids. CPRW is a constant-time experiment that records

the passage through a DQ 13C- 15N Hartmann-Hahn [54, 55] match condition as a function

of the RF field on either channel. The resulting exchange trajectories can be fit to obtain

both the dipolar coupling and the double-quantum lineshape parameter (T2 DQ)

independently, yielding an accurate estimate of the internuclear distance. We further

show that a simple two-spin treatment, both numerical and analytical, can be used to fit

the experimental data, greatly simplifying analysis in crowded spectra. Finally, we apply

the Multipole-Multimode Floquet Theory [56-58] (MMFT) approach to incorporate the
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effects of CSA-induced depolarization into the two-spin treatment. The experiments are

demonstrated in the dipeptide N-acetyl-[U-13C, 15N]-Val-Leu and the tripeptide [U- 13C-

15N]-N-formyl-Met-Leu-Phe, in which structurally informative backbone '5N to side-

chain 13C distances have been obtained. Here, we briefly describe this sequence and the

initial results with reference to the previous description of resonance width phenomena in

the context of rotational resonance width experiments.

As described in the previous section, experiments designed for the simultaneous

measurement of multiple distances in uniformly labeled compounds share several

features. First, they are generally pseudo-3D experiments in which an anisotropic

interaction is recoupled in one dimension of the experiment, while other dimensions

involve chemical shift correlation. The build up or decay of the cross peak intensities

then encodes information about the anisotropic coupling. Second, the experiment must

be designed in such a way that the dipolar couplings of interest can be independently and

reliably fit even in the presence of decoherence effects such as depolarization and

relaxation. Finally, they must be free from both the effects of dipolar truncation, in

which a stronger coupling dominates the weaker couplings of interest in a multispin

system, and from signal evolution under the J-couplings, which are not structurally

informative in this context. This criteria can be met either by applying a recoupling

sequence whose Hamiltonian is commuting for different spin pairs (and hence does not

suffer from truncation) or by using a frequency-selective approach that selectively

recouples only the weak dipolar couplings of interest. The transferred-echo double

resonance (3D TEDOR [59]) experiment is an example of the former, and rotational

resonance width [60] (R2W) and R2TR [61] experiment of the latter.
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The 3D TEDOR experiment gives reliable estimates of the heteronuclear dipolar

couplings and has been applied to peptides and amyloid fibrils, including in this thesis.

However, while the form of the recoupled Hamiltonian precludes dipolar truncation, the

experiment is nevertheless sensitive to multi-spin effects. In order to extract the distance

from a given 13C, I, to a nitrogen, S, the build up and decay of all I-Sn cross peaks to

which the carbon is coupled must be monitored and simultaneously fit. This means that

all such cross peaks must be resolved in a 2D 13C- 15N correlation experiment. Further,

for multiple couplings, the polarization transfer is scaled according to the number of

couplings and their magnitudes, resulting in weak intensities particularly for residues

whose side chains contain nitrogen. Finally, the spin dynamics are sensitive to the

orientation of the dipolar tensors as well as their magnitudes. Jaroniec and co-workers

used the first, orientationally-independent terms of a formal analytical expansion of the

spin dynamics under REDOR[62-66] to approximate the spin dynamics. This

approximation introduces a systematic error of up to 20% in the measured distances. In

spite of these limitations, 3D TEDOR is an extremely effective tool for structure

determination in peptides and proteins with resolved chemical shifts.

To overcome these limitations, an ideal sequence would generate spin dynamics

that are approximately governed by bilinear, two-spin interactions. This precludes the

use of broadband recoupling sequences. Following the successful resonance width

approaches for homonuclear distance measurements, the CPRW experiment makes use of

weak irradiation on both '3C and '5N channels as first introduced by Terao and Costa, and

later in the heteronuclear context by Baldus and co-workers. The experiment is spectrally

selective because it relies on a modified Hartmann-Hahn matching conditions between
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effective RF fields under weak, off-resonant irradiation. Two conditions can occur: [40,

41] the ZQ conditions for a (ij)-spin pair occur at radio-frequency intensities satisfying

the equality

o - .= noR, nn= L2 (ZQ), (12.21)

and the double quantum (DQ) conditions satisfy the equality:

coef + <o = no R , n = L2 (DQ). (12.22)

In this context, the DQ condition with weak RF fields results in spectral selectivity which

is sufficient to recouple aliphatic resonances in the range 0-30 ppm without introducing

strong couplings to the Ca and CO3 of the amino acid side chain. The experiment is then

particularly useful for the measurement of structurally informative 1'5N to side-chain

methyl distances.

Considering only two coupled spins, the Hamiltonian for this experiment near the

DQ matching condition is:

H = -ASz- A2zI + 4eff (S+I+ + S-I-), (12.23)

where

A, = ef - R (12.24)

o = Ai2 + C02  (12.25)

The recoupled dipolar coupling is scaled by geometrical factors under off-resonance

irradiation according to

1 (12.26)
S= rDe(1+ 2sin , sin j - cos i cos Pj)

where:
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(12.27)
f3 = arctan •0tAroj

and Dy depends on the Euler angles.

In order to properly account for the effects of relaxation on the spin dynamics, we

follow the polarization transfer in the operator space,

d A

d p(t) =L p(t)
dt

(12.28)

A A A

where the Liouville superoperator is L=-iHeff -. The superoperators have matrix

elements where are defined as follows,

(Qai effdQj) = Tr(Qj[Heffjj]}

(ai Aj) = ij  (12.29)
T

In the fictitious operator approach, the operators, Q, are chosen to satisfy the

commutation relations of two-spin basis operators [67]:

Q, = I, 2 = Sz,
Q3 =  -2(I+S+ + FS-),

Q4 = -iV2(I+S - I-S-)

Explicit calculation of the commutators yields the following e:

equation, in which the relaxation elements appear purely on the di.

(Q2 (t)) -1 / T 2)1

d (Q2() -/T
(2)  1ff

dt (Q3 (t) -1/T 2  -(A 1  2 )

(Q4(t))) -F2.,12 -F2"(, A1A+ A2 -1T 2DQ

(12.30)

Kpansion of the master

agonal:

(Q1 (t))
(Q2) (12.31)

(Q3(t))

(Q4(t)
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To simulate the spin dynamics, this system of differential equations is solved subject to

the initial condition:

(Q1(0)) =1, (Q2(0))=o0, (Q3(0))=o0, (Q4(0))= 0 (12.32)

The spin dynamics thus depend on several empirical parameters: the dipolar

coupling, Tip for each spin, and T 2DQ. Of these, Tip can be experimentally determined in

a separate spin-locking experiment, while the dipolar coupling and T2DQ must be fit. Due

to a Bloch-Siegert-like shift in the resonance condition due to the CSA, the position of

the resonance is allowed to vary slightly during the fit in treatments which do not

incorporate the CSA. The experiment is conducted in a regime which minimizes

transverse elements of the CSA, as they also contribute to depolarization effects.

12.9 Experimental Methods

12.9.1 Uniformly labeled peptides

The dipeptide N-acetyl-[U- 13C,15N]L-Val-L-Leu (N-Ac-VL) and tripeptide N-formyl-[U-

13C, 15N]L-Met-L-Leu-L-Phe (N-f-MLF-OH) were produced by solid phase synthesis and

crystallized as described elsewhere [68-70]. N-Ac-VL and N-f-MLF-OH peptides were

diluted to 9% and 10%, respectively, in the respective natural abundance peptides to

minimize the effects of intermolecular dipolar couplings.

12.9.2 NMR experiments

The NMR experiments were performed on NMR spectrometers operating at 11.7 T (500

MHz 'H) and 8.42 T (360 MHz 1H) using spectrometer hardware that was designed by
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D.J. Ruben and co-workers at Cambridge Instruments. All experiments were performed

on 4-mm triple resonance Chemagnetics (Fort Collins, CO) probes at spinning

frequencies from 13.5 - 16 kHz. The CPRW pulse sequence is shown in Figure 12-6.

1H
CP TPPM

13c (OctDCP
tmix

15N C l DCP
*- ti -*

Figure 12-6: Pulse sequence for 3D CPRW experiment. Following polarization transfer from the
1H to 15N spins, the magnetization evolves under the 15N chemical shift during tl and is then
transferred to the 13C spins through a constant-time Hartmann-Hahn cross polarization period. A
pseudo-3D experiment is conducted as a function of the '3C RF field.

12.10 Results and Data Analysis

Experimental data were processed using RNMR or NMRPipe and integrated in NMRPipe

using the NlinLS lineshape fitting utility. The Tip relaxation parameters were measured

in separate spin-locking experiments, and the experimental data were simulated by

numerical solution of the system of four differential equations that describe the spin

dynamics in the fictitious operator subspace. Random errors were estimated through the

diagonal elements of the covariance matrix of the fit. The results for experiments

conducted in [U- 13C, 15N]-VL at 360 MHz are shown in Figures 12-7 and 12-8. They

demonstrate that conformationally significant distances can be accurately measured in 3D

CPRW experiments. Indeed, Figure 12-7 shows that distance measurements can be

accurate even in the case of nearly complete resonance overlap. This is an experimental
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demonstration of previous observations of the diminished importance of dipolar

truncation in three-spin systems in the presence of multiquantum relaxation [71 ].
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Figure 12-7: Accuracy of distance measurements in the presence of chemical shift overlap. The
matching conditions which result in Val yl-VN and Val y 2-VN cross peaks are fulfilled nearly
simultaneously, but the two-spin approximation still gives an accurate estimate of the internuclear
distance.

Figure 12-8: Comparison of distances
crystallography.
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Because the CPRW experiment can be interpreted in terms of a two-spin approximation,

it should be possible to approximate the spin dynamics in terms of simple kinetic

relationships, in analogy to NOE-spectroscopy in solution state NMR. To do this, we

make the approximation that operators which do not give rise to observable

magnetization reach steady-state values. This results in an analytically soluble system of

differential equations which yields, for the observable operators,

1S, I (l+e 2 kt)
2

S2z I(-+2kt (12.33)
2

2o 2 R 1
k= ;R=

(m I + A2)2 + R 2  T2DQ
(A1+A2 2+R T2DQ

The difference between the exact and approximate treatment, shown in Figure 12-9,

suggests that this approximation is valid over the entire range of experimentally relevant

parameters.

F
• 0.0O
E
k 0.01

10.01

xC .O'

'12 ' 8 CI-

Figure 12-9: Agreement of analytical approximation treatment with two-spin numerical approach.
The agreement is good over the entire range of relevant distances and relaxation parameters.
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While the data in Figure 12-7 demonstrate the reduced importance of dipolar truncation

for overlapping couplings of comparable magnitude in the presence of multiquantum

relaxation, it is not always possible to arrange the experiment so that strong couplings are

absent from the spin dynamics. In this case, an analytical treatment would require an

enlarged operator space. The kinetic approach, as shown in Figure 12-10, simplifies the

simulation of such experiments. In this picture, the spin dynamics are solved by

numerical integration of two coupled rate equations. The simulations in Figure 12-11

show that it is an appropriate mechanism to consider polarization transfer among multiple

coupled spins.

0

\k2

Figure 12-10: Kinetic approach for estimating weak couplings in the prese
coupling with partial resonance overlap.

U05

0.04

0O3

0.02

o.o2l

2 3 4

(4.0 A)
RF field (kHz)

Figure 12-11: Attenuation of magnetization transfer for weak coupling
an additional overlapping resonance (5.5, 4.5, 2.5 A).
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12.12 The Influence of CSA on the Spin Dynamics'

As has been pointed out earlier, the transverse component of the CSA results in a Bloch-

Siegert-like shift in the heteronuclear Hartmann-Hahn resonance condition. However, it

also contributes to the multiquantum relaxation and may thus result in depolarization. It

is therefore particularly important to conduct the experiment to avoid the transverse

components of the 13C CSA and far from the '5N CSA recoupling condition, which in

practice requires fast magic angle spinning. The effects of the CSA are summarized in

Figure 12-12.

()
C
0C=

13C RF Field (kHz)
Figure 12-12: The effects of CSA under conditions where the transverse CSA elements are not
minimized. CSA parameters corresponding to amide 15N and 13Cf were assumed.

While it is possible to approximately account for the effects of the CSA using average

Hamiltonian theory in a fictitious-spin basis, we instead apply the more general Multipole

1 The MMFT approach and its application to heteronuclear decoupling, rotational resonance
width and depolarization in double-quantum recoupling experiments are due to Dr. Ramesh
Ramachandran and are summarized in several papers on this topic.
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theory of Ramachandran et al., which allows for a complete description of the dynamics

and can be readily extended to describe multiple spin dynamics.

12.12.1 Basic theory

The spin Hamiltonian of a heteronuclear two spin system under MAS is represented by

H(t) = ( (t)+ o,)Iz + (ws(t)+ os )Sz + 2os(t)IzSz + o,I x + cosSx  (12.1A)

where the isotropic chemical shifts are represented by w,(s) and the time-dependent

2

anisotropic interactions (spatial terms) are represented by (, (t)= = I 49e m "'' with X
m=-2,
m•O

characterizing the spin interactions (i.e. X = I,S, IS). Since the spatial terms wo (often

expressed in terms of spatial tensor operators, R5k)o), are often expressed in their

respective principal axes, the following sets of transformations describe the dynamics in

the lab frame.

D(Opm) D(Mn,) D(•Q) (12.2A)
PAS - molAS -- RAS - Lab

Employing the properties of Wigner rotation matrices, the spatial tensors defined in the

principal axis system (PAS) are transformed in to the lab frame (represented by

D(k) (•pL)) as follows,

k (12.3A)
D(k) (PL)R(k) (Dk(k) )(PL)= R(k)qlD (, ,(k) D(k (12.3A)

q,q12,q=-k

where D(k) (•M) represents the Wigner rotation matrix describing the transformation

from the PAS to the molecular axis system (molAS) and D(k) (MR) the transformation

from the molecular axis to the rotor axis (RAS). The transformation from the rotor axis to

the lab frame is time-dependent (due to sample spinning) and is represented by the Euler
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angles Q,L = (a - cOt, f,O 0) with m. representing the magic angle and w, the sample

spinning frequency. In the case of chemical shift anisotropy (CSA), the spatial

components in the lab frame are represented by,

2 2

RI ( t) =  
R(I(S) I Dmlm2 ( PM) Dm2m(MR) DmO(DRL)

m,=O,+2 M,2 =-2 m=-2 (12.4A)oI(S) (t) m(o
(i)

I(S)

where RJ2,(S) (RP(I(S) = ,ans, R(I(S) - anis77 where 4,ans' 77 represent the chemical

shift anisotropy and asymmetry parameter) represents the non-zero spatial terms defined

in the principal axis frame. In a similar vein the dipolar spatial terms are represented by,

2 2

RZP, (t) = ( ODm2 ( YPM) DmXm(-MR) DmO(RL,)
m2=-2 m=-2 (12.5A)

OS (t) m*O

(m)IS

where only R 2 (2 R(2R = bk , and blk = #oYsh (rad / s) represents the dipolar

coupling constant) is non-zero in the dipolar principal axis frame.

To describe the effects of RF irradiation, the Hamiltonian (Eq. 12.1A) in the

rotating frame is transformed in to a tilted frame defined by the transformation operator

U, = exp(if3I,)exp(ifsSy), with I(S) = arctan -( representing the tilt angle.

Employing the multipole operator basis (Table 12.2), the Hamiltonian in the tilted

rotating frame is represented by
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H, = U 1HUT'
1 1

I,ef z + S,ef SZ + , (t) a' (10) iT()q (10) + OSWI (1)q (01) iT()q (01) +
q=-1 q=-1 (12.6A)

- 2ms (t) a" c'D1 iT (O ) (10) X a(1)q(o1) iTq (01)

q=-1 q=-1

where a represents the Wigner rotation matrix elements corresponding to a tensor of

rank 1 (i.e. a (1O = cos f, a'()' 1 = T sin f, with representing the flip angle) and

OtI(s),ef the effective field (i.e. ol(S),ef = 2I(S) + oll(S) ) along the z-axis.

Table 12.2. Operator basis for two spin system

Operator basis Number of operators
1. Identity operator

T0o)o°oo) 1
2. Single spin operators

T (1)q (1o) 3

T (1)q (01) 3
3. Two spin operators

f 2)q (11) 5
T(1)q (11) 3

T(0)0(ll) 1

Total 16

In the CPRW approach, the polarization transfer is established through a series of

experiments under constant mixing times as opposed to the traditional NMR experiments,

wherein the polarization transfer is monitored as a function of mixing time under a single

effective Hamiltonian. Since the coherent averaging due to MAS is compensated through

a series of experiments with different RF fields; the modifications in the spin

Hamiltonian are conveniently described in the interaction frame defined by the

transformation operator, U2 = exp(inortl )exp(in,rtSz) represented below,
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H(t) = U2 H, U2 1

= (Ieff - nWO,)iT(1)O(io + 1 s,0 - no,)iT0)(1 +

1 1

Ol (t) I (1)q (1 0o)e iqn t iT()q (1 0 ) + OS(t a(1)q (01 )ol)e iqn t iT(1)q (01)- (12.7A)
q=-1 q=-1

2is (t) a(1)q ( ) "ie rt iT(1)q (10) X (1)q (ol)e iqn(Or iT (1)q (01)
q=-1 q=-l

The spin dynamics in the interaction frame could be solved analytically, either employing

the Average Hamiltonian theory (AHT) or the Floquet theory. In the zero order Average

Hamiltonian treatment, the effective Hamiltonian describing the spin dynamics

neglecting the effects of CSA interactions may be represented by,

H O,AHT = (1,ef - flr) i' 1 )0 (10o)+ (sf - nwr) iT') 0 (o1)
(12.8A)

+G (2)2 T(2)2(11) + G(2)-2(2)-2(11)iS,_l IS,1 ' (

where the G coefficients represent the dipolar spatial terms o' ) , illustrated in Eq. (5).

Expressing the density operator in the multipole basis i.e. p(t) = q(k) (kk) (k)q(k k) , the

spin dynamics in the operator (or Liouville) space is described by the following set of

differential equations.

(DO) iF 0 00(10) [1] 0 0 -iG12,1
d Ioco ( ti 0 0 -iG2

dt (2)( f[] iG12 -1  iG12, 1  0,ef S,eff - Or )

-2 (11) l i _-iGl2, -iG12,1 0 (1oef-

(M0 (10) It ]
o (0o1 1i
A012.9A)

(11) [(2 ]
24 nv

where the bk)(1o) [ti 's represent the time-dependent spin polarizations in the interaction

frame. The expectation value of the observable is given by

= Tr'[SO3(t)] (12.10A)

= (0) ol(o t)sin is
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where S, = U2U,SxU 1 U2 represents the observable in the interaction frame. It is

important to note here that the spin dynamics is described in the Schrodinger picture. The

incoherent effects due to relaxation are incorporated in to the exchange dynamics by

including a phenomenological decaying rate constant, TDQ corresponding to the double

quantum polarizations 2)_.1, t . Although the proposed model provides a qualitative

explanation of the underlying phenomena, quantitative agreement with the experimental

data often requires a complete description of the CSA effects in addition to the

contributions from the second order terms in the Hamiltonian. To this end several

researchers have derived expressions for evaluating the higher order corrections based on

the Magnus expansion. Although such approaches yield results, they are often numerical

in nature and fail to provide analytical insights of the underlying phenomena.

Furthermore, existing basis employed for spin description in such treatments do not

elucidate the exact contributions of the higher order terms in the spin dynamics.

Alternatively we present an approach based on Floquet theory (MMFT) for

evaluating the higher order terms in addition to describing the dynamics incorporating

both the coherent as well as incoherent effects. In the MMFT approach the spin dynamics

is described in the Floquet-Liouville space and the higher order corrections are evaluated

in terms of an effective Hamiltonian derived using the contact (or van Vleck)

transformation procedure. The complexities involved in the conventional Floquet

treatments are significantly minimized in the MMFT approach. In the next section we

describe the CPRW experiments using the MMFT approach.
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12.12.2 Spin dynamics using the MMFT approach

Employing the Floquet theorem for solving differential equations involving time-

dependent coefficients, Shirley proposed a general description in the form of Floquet

theory for studying periodic time-dependent phenomena in quantum mechanics. In this

approach a time-dependent Hamiltonian, which is periodic is transformed in to a time-

independent Hamiltonian via Fourier series expansion. The transformed Hamiltonian

(also referred as Floquet Hamiltonian) is described in an infinite dimensional Floquet

state space (of dimension (21, + 1)(2I 2 + 1)...(21, + 1)(2n+ 1), where I i represents the

spin quantum number and n the Fourier index (n = -o, oo)) using a basis set constructed

by a direct product of the spin basis with the Fourier index. Since the evolution of a

quantum system is constrained by both coherent (due to the spin Hamiltonian) as well as

incoherent (relaxation) processes, an adequate interpretation of the experimental results

entails a Floquet-Liouville space ((21, + 1)2 (212 + 1)2 ...(21, + 1)2 (2n+ 1)) treatment.

Since the density operator defines a state in the operator (or Liouville) space analogous to

the spin eigenfunctions in the state space, an appropriate choice of the basis has often

limited the description in the Floquet-Liouville space. The problem is circumvented in

the MMFT approach by expressing both the density operator and the spin Hamiltonian

using an operator basis constructed by a direct product of the irreducible spherical tensor

operator basis (which is finite and represented in Table 12.2) with the Fourier index

(which in principle is infinite). The multipole operators T(k)q (k k
2 (in Table 12.2) define

the spin part while the Fourier operators Fr define the Fourier part of the basis. Such an

approach provides a convenient basis that is independent of spin magnitude and quite

elegant for analytical treatments involving multiple spins. Employing the MMFT
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approach the spin Hamiltonian in the interaction frame (Eq. 12.7A) is transformed in to a

time-independent Hamiltonian represented in the Floquet -Liouville space.

2 1

HF = ,N + Wo,.o iT(1)0io)Fo + Ws,off iT(1)0()F + G ' iT(1 (lo)Fm+q1 n +
m=-2, q=-1
m*0

2 1 2 1

G- (14 iT (I)qi(o)l)Fm + G (1)q T )q(ll)Fm+qn + (12.1A)
m=-2, q=-1 m=-2, q=-1,
m&0 m*0 q*0

2 2 2
S Gr( 2 q T( 2 )q(l)Fm+qn + I G(0)0 T(0)0(11)Fm

m=-2,q=-2 m=-2,
m*0 m*O

where the indices q and r denote the off-diagonality in the spin and Fourier dimensions

respectively. The operator N is diagonal both in the spin as well as in the Fourier

dimension and is obtained from the derivation of the Floquet Hamiltonian. In the above

representation of the Floquet Hamiltonian only the non-zero Fourier components are

represented with the G coefficients having the following definitions:

G)q 1(m) a,(l) (10), = (m>q
(1)q ( (l) l = 0m ) sin(l, - s)(1 0 ((,X (01) • "ISrm

G(2)+1 = +•) 1sin( s) G) = -m) cos cos - 1sin 1, sin fs
IS,m IS 2 1'\ ) IS,,m 0IS, c

(2)2 -(m ) 1 sin , sin Ps GIo>o =osm) ( cos P, cos fs + sin P, sin Ps)  andIS,m is 1 Ism ISJ r3- -,r

w(s), = W (s),, - nor the off-sets of the individual spins. Each element [H!]

represents a matrix of dimension 16 x 16 defined in the Liouville space. The off-

diagonality in both spin and Fourier dimensions often complicates the dynamics and

often necessitates spin description in the entire Floquet-Liouville space. The standard

approach in such cases involves numerical diagonalization of a truncated Floquet

Hamiltonian matrix with the order of truncation fixed based on the convergence of

eigenvalues for increasing matrix dimensions. Though such numerical approaches yield
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results; physical insights in to the dynamics often entail analytical treatments. To this end

we employ the contact transformation procedure for deriving an effective Hamiltonian,

which is nearly diagonal both in the spin as well as in the Fourier dimension. The

advantages associated with such an approach have been described in earlier works and

would not be elaborated upon any further in this article. In the next section we derive the

effective Hamiltonian using the contact transformation procedure.

12.12.3 Effective Floquet Hamiltonians

The contact (or van Vleck) transformation procedure is an operator equivalent of the

traditional Rayleigh-Schr6dinger perturbation theory in which perturbation corrections to

the zero order eigenvalues and eigenvectors are obtained in terms of operators as opposed

to matrix elements. The method employs a series of unitary transformations chosen

carefully such that the off-diagonal contributions (operators) due to the interaction

Hamiltonians (perturbations) are folded back to give diagonal corrections to the zero

order Hamiltonian. As a result, one obtains a new Hamiltonian whose eigenvalues are

comparable to those of the exact Hamiltonian.

In order to apply the contact transformation procedure the Floquet Hamiltonian

(Eq. (12.11A)) is rewritten as a sum involving a zero order and a perturbing Hamiltonian.

Generally, the zero order Hamiltonian is represented using operators, which are diagonal

both in the spin as well as in the Fourier dimension (i.e. terms involving T(k)o and Fo

operators). Nevertheless, depending on the nature of experiments, the definition of the

zero order Hamiltonian needs to be modified accordingly. For e.g. in the case of double-

quantum recoupling experiments (both homonuclear and heteronuclear) the zero order

Hamiltonian should involve the T(22 (n11) operators. The definition of the zero order

507



Hamiltonian plays a vital role in averting the problem of degeneracy (or Poincare's

catastrophe) in quantum mechanical treatments based on perturbation theory. It is

important to realize that the zero order Hamiltonian is both a dominant as well as a time-

independent interaction and should be defined carefully according to the experiment of

interest. In the CPRW approach the resonance condition (o/,, e + cs,ef = ncor) is scanned

through a series of experiments by varying the effective fields under constant mixing

times. Such an approach more or less compensates the effects of chemical shift dispersion

as well as minimizes the dependence of the experimental data on the relaxation

parameters. The catastrophic (or degeneracy) condition in the CPRW experiments is

obviated by the following choice of the zero order (H o) and perturbing Hamiltonian

(HI).

H o = (OrN + o,off iT(1)(1o)Fo + Osff iT) 0 (ol(o)Fo +
(12.12A)G(2T(2)2(1)F + G (2)-2 T(2)-2(11)Fo

IS-1 )'0 + "IS,1 " (ll)F0

2 1 2 1

H1 = G5 iT('l)q(10)Fm+qn + G a G I'T( iT'lq '°o)Fm+qn +
m=-2, q=-1 m=-2, q=-1
mO0 m*0

2 1 2

G Iq TG 1Fm+qn~ + I G0 0() T(00(1)Fm+ (12.13A)
m=-2, q=-l, m=-2,
m*0 q*0 m•0

2 1 2

S r(2)q T( 2 )q(11)Fm+qn + G 2'q T(2)ql (11)Fm+qn

m=-2, q=-l m=-2, q, =+2
m*0 m*0

Such a choice should not be misinterpreted as a clever manipulation of the theory to suit

the experiment, but rather a fundamental definition of the zero order Hamiltonian in

quantum mechanics.
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Employing the method of contact transformation, the transformation function S,

is expressed as a linear combination of spin operators used to describe the perturbing

Hamiltonian H1.

C(1)q iT(1)q oo)Fm+qn +

)q (1)q (1 )Fm+qn +

C(2)q T( 2 )q (11)Fmqn +IS, M q

iT (1)q (01)Fm+qn +
2 1

m=-2, q=-I
m*0

2
C (O)O T(°)0 (11)F +

m=--2,
m*O

2

m=-2, q =2
mtO

The C coefficients involved in the transformation function are suitably chosen to

compensate the off-diagonality (both in the spin as well as in the Fourier dimension) by

solving equation (12.15A).

H(l) = Hi + i [Sl,H o] (12.15A)

Since the perturbation HI is chosen to contain only off-diagonal terms, the first order

correction H(') is zero and the C coefficients are obtained by solving a set of linear

equations (Eq. 12.16A) corresponding to a particular operator and have been tabulated in

Table 12.3.

H~' = H, + i[S, H o ]

= iT(l)q (1o)Fm+q, [Gl - ((m + qn)O , + qo1, C)f })c.] +

iT(l)q(loFm+qn [Gif ' - {(m + qn), + q's,f m( ] +

T()(O LoF. [G°so, - mo,C(O)O

T ( 2) q
(ll,,Fm+qn [G, - (m + qn) - q.L + s. C•> - iO - Os.jlSm ]+

T (_m L r 2-I'Off _ . of 2 (m Iqn)j ,off -q S. off) CS" Im

m()q (11)Fm+qn L Ws~m 1, Off -W S, / _SJm +mqn, .)r +q - OLoff off +J o'IS,mJ

(12.16A)
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2 1

m=-2, q=-I
m*O

2 1

m=-2, q=-l,
m•O q•0

2 1

m=-2, q=-I
m*O

(12.14A)

T ( 2 ) q
(11)Fm+qn



Table 12.3. C coefficients involved in the transformation function. The indices involved in the
coefficients have the following values, q = 1, q, = 0,+1, q2 = ±2 and m = ±1, ±2.

G (1)q G(2)0 G(o)o
C'•)q I(S)',m (2)0 IS,m O = IS,m

(m + qin)O)r + q J(s),off} mO)r mo,.

G(2)qa
-(2)q 2 , IS,mIS om -{ _ + CO ,Sr {(m+ q2n)Or q2 -(Iof +Osof

)((2q \Iwo ,•f)G m - {(m +qn) c, +q(o +q s )} G2)q(2)q,•2 2 S' ff )I - s o " S

L(1 )q

( -) s.o )2 - {(m+qn)of-q q(oo 1 + s,)f (m+qn) ,+q ,off + s,off

S(W.Off - S.,off ) G 2) -(m + qn)Or -q Loff + S.off ,) G
"2 ~ff-Os If]'Sm _q 2 ' Ml,()1IS,m - 0s(. )) (m+qn)wOr - q ( (I,Off Sff(m ) + ,off +,o

Table 12.4. Coefficients involved in the second order correction terms. The indices involved in
the coefficients have the following values, q = +l, q1 = +1,±2 and m = +1, ±2.

A, 1 )q (l)-q l-ql L (2)ql (2)-q ,(1)q (1)-q _ ( (2)q (1 ) - q - (1)-q (2)q
2 l, m ,-m "2 Sm IS,-m 2ISm 2 IS.m S-m I s,

csa-csa dipolar-dipolar

A 2 1-qC(()G•G()-q- )- L C(2)'G (2)-q4-fL()q()-q + (2)qG! )- q (-C1)-q (-2)q

2 r'Sm iS,-m -(2)'Sm GS-m 2IS-m 2 ISm .. m lS,m IS,-m

csa-csa dipolar-dipolar

A / j(c5 '),'1 )1 + (C 1)1) + . 1+ ( (1)1+ s , )G11 - )c(2)11(I)
A3 I -T2 "M .mS IS,

-  
1'.-, _S.-m -IS'm T2 I.M .S1m IS.- 1s m - l._I ( () -)) (0 S(1)0 ) (2)2 I+ ( (1)0 )) (2)2 ( ( 2) IS,

2 C0+C )G + Gi,) + G+1 ) C) + C+ oC 1)G + (G1 + G G (2)2
csa-dipolar

A 1 V C1-1 + 0,G2-1 +(GG()- + G(1)-,i(2)- + C fr()-1 - C ( (,-G - (G()-- - G (1)-C
A4 1 r2{ m s'm a

S.
- m  

'.-m 'S.-m IS• m M • r2 , - .m ,S.-m -- .- m -' S.-m I'"SIm J
2- _{(1)cm C()O G0(2)-2 + (G1)0 +G(1)0)C(2)-2 (()0 + C ()0 G(2)-2 + (G()0 + G• )01)C 2-2

1["1,2 S.2 , IS.-'1 - 1,2 - S2 , S'-1 J-[ l .-1-IS, 2

csa-dipolar

It is important to realize here that in the evaluation of the C coefficients corresponding to

the double quantum operators T ( 2 )±2 (11), the catastrophic condition

(co,eff + s,eff = nOr, m = -qn) has been avoided by the definitions employed in
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Equations 12.12A and 12.13A. The second order (or diagonal) corrections to the zero

order Hamiltonian are obtained by evaluating H(1) ,

H(1 )= H2 +i[S,,H,]-[S,[SI,Ho]]

= 1[SI,H 1] (12.17A)

= iT)1 o0 (1o)FoA + iT(')o (lFo A2 + T 2)2 (11)FoA 3 + iT(2)-2 (11)FA 4

with the A coefficients (Table 12.4) representing the second order corrections. The

second order corrections are evaluated using the general commutator relations between

the tensor operators and the Fourier operators illustrated in earlier works. The cross-terms

between the CSA-CSA and dipolar-dipolar interactions result in corrections to single spin

operators (represented by the coefficients A1, A2) while the cross-terms between the CSA-

dipolar interactions result in corrections to two spin operators (represented by the

coefficients A3, A4 ).

The effective Hamiltonian derived from the contact transformation procedure is

block-diagonal in our approach and simplifies the dynamics considerably in the Floquet-

Liouville space.

H•f = H o + H(1)

=wON +(N+ ,off + A,) iT'o'0 )Fo +(Osoff + A2) iT(l'(OlFo + (12.18A)

(G(2)2 + A T(2)2(11)FO +(SG2-2 +A4 (2)-2(11)Fo-IS,-1 + A3) T lFo + (G$, 1 + A4

12.12.4 Spin dynamics in the Floquet-Liouville space

Following the MMFT approach, the density operator for a two-spin system in the

Floquet-Liouville space is represented by,
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(12.19A)
p, (t)=(k) (k lk2 , ) T(k)q (klk2 )Fn

n=-- k,q,kI,
k2

and the dynamics in the Floquet-Liouville space is described by Equation 12.20A.

id (k) =[)[A] (12.20A)
d-t (k k2 , t) =[[A (D , (kakq' ,t)

where q (knk k2,t) represents the spin polarization (defined in the interaction frame) and

[[A] ,q,k' q,] the supermatrix defined in the Floquet-Liouville space. The index k denotes

the total rank and q its component. The ranks of the individual spins are represented by

k1,k2 respectively and range from 0,2I i . The derivation of the matrix elements in the

supermatrix is described in the original article describing the MMFT approach.

Employing the effective Floquet Hamiltonians (Eq. 12.18A), the spin dynamics in

the Floquet-Liouville space can in principle be described using a set of differential

equations corresponding to a particular Fourier mode.

dihd
dt

(2) (t)

(V (t)

& ) (t)

j~-2,(t)

A 
2° [Ao[

[A]o 0
[Ao

[A 2*

(2(t)

, ) ( t)

,i (t)

V-2 (t)

(12.21A)

ih cd &')(t) = [A]i (iD(t) (12.22A)
dt

6a (t)= Fak(i)eit(i) [kJ(i) -1 ' (0) (12.23A)
jk
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where D' (t) represents a column vector (of dimension 16 x 1) corresponding to a

particular Fourier mode i defined in the Liouville space using the operator basis described

in Table 12.2. In the above expression 1Fa,( and kk( )' represent the eigenvectors and

eigenvalues corresponding to a particular mode (denoted by the superscript) respectively.

The subscript in ),' (t) is representative of all the quantum numbers (such as the rank,

component etc) employed in the description of the spin polarization in the operator space.

It is important to realize here that such simplifications in the Floquet-Liouville

space result only from the effective Hamiltonians obtained from the contact

transformation procedure.

At time t =0 the Floquet density matrix is represented by spin polarizations

whose Fourier indices are zero i.e. PF(0)= c0  (0) . Such a choice of the initial

condition is appropriate as no evolution takes place at t =0, and is consistent with other

standard theoretical approaches employed for spin description in a finite dimensional

space. Since the Floquet Hamiltonian has been transformed into a new frame (in which it

is diagonal) , it becomes essential for the initial condition, PF(0), to be described in a

common frame. This is illustrated by the following transformation,

jF (0 ) = ei' LkF(O)e-'iAs
(12.24A)

= p(0)+[S,,PF(0)]+....

In this new frame, in addition to the 0i0 ° (0) term, initial conditions for other

polarizations (W~'(0), i • 0) result from the evaluation of higher order terms in Eq.

(12.24A) (such as [S, ,3(0)] +.. etc.). However, these polarizations (I~D'(0), i 0) are
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scaled accordingly (approximately by a factor , due to the transformation function
nCo

r

S1), thereby minimizing their contributions in the Floquet-Liouville space. This enables

an approximate description of the spin dynamics in a reduced subspace, corresponding to

the super-block [A0 ]o*(i.e. block whose Fourier indices are zero), illustrated below.

d*
id <y(O () = [Ao ]0* (O (t) W

(12.25A)
(DO) (W) = ek - (]it - () (0)

jk

In a similar vein the Floquet detection operator (S'F) is transformed in the new frame

defined by the transformation function S, . Since the entire dynamics is described in the

Schr6dinger picture, the time dependence is retained only on the density operator.

(,ef (t)) = Tr [F(0)3,(t) (12.26A)

where S (0) = e•'•S ()e . The S (0) represents the Floquet operator at time t = 0

and analogous to F (0) is represented via spin polarizations whose Fourier indices are

zero. Such simplifications in the description of the spin dynamics in the Floquet-Liouville

space are possible only due to the effective Hamiltonians derived from the contact

transformation procedure. In the next section we describe the dynamics in the Liouville

space corresponding to the super-block [Ao ]0'

12.12.5 Spin dynamics in the Liouville space

Although the description of a two-spin system in the operator space involves a matrix of

dimension 16 x 16; the effective Hamiltonian (Eq. 12.18A) reduces the complexity of the
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problem in the Liouville space. Accordingly the spin dynamics in the interaction frame is

governed by the following sets of differential equations,

o ('O) I 0 0 -iA' iA ' o (0O) It]

d ~o(1)(o1) t 0 0 -iA 4  iA o(on [t]
ih- = A0l (12.27A)

dt c(2) (ll) [t] iA3 iAm (A'+A;) 0 D(2)()[t]

S(2)) -iA' -iA* 0 (AC+ A;)J (2 )
D2 (11) It] L-4(2)-2 Th

where A = wjo,o + A,, A = wSoff + A2 , A = A3 + G(2)2 and A4 = A4 +G )2 The

equation illustrated above is exactly identical to the one derived using the zero order

Average Hamiltonian treatment sans the second order corrections.

In the interaction frame, the density operator is represented by

(t)= D(k)(k kt) T(k)q(k, k) and the initial conditions for the various polarizations are

obtained by solving Eq. (12.28A)

A(t) = U2U1p(t)UI2Uj' (12.28A)

where the density operator in the rotating frame is represented by p(0) = Ix. Employing

the above relations the following initial conditions are obtained

o(1 )o o] = i, (o) (o1)[o] = 0 in accord with the experiments. Since the entire dynamics is

described in the interaction frame, the final detection operator (Sx) is also transformed in

to the tilted frame (i.e. Sx = U2USUS U-' 1)

(t)) = Tr [ ) (12.29A)
V 1) I(Ol t)sin 3s

In order to describe the incoherent effects, a simple exponential relaxation model is

employed in our calculations to describe the dynamics during the CPRW experiments. In
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this approach the relaxation is modeled as a damping term along the diagonal

corresponding to each of the polarizations involved in the dynamics.

(1) [t] -iT 1, O -iA iA

ih- 0PS 4 3

• d/+•0U1)r]0, = 0 -iT- -iA' iA'
dt (2(11) t] iA' iA' -(A,'+A)-iT, O0

L(D2 o(1) t,] -iA4 -iA 0 (A;D+A)-iTQ]

The complex factor ' i' in the relaxation terms originate from

Liouville-von Neumann equation (ih dp(t) = [H,p(t)]- i[R,p(t)]
dt

001)(10) It]
0(01) 1] (12.30A)

D(2) [ri

2 It]

the definition in the

where R represents

the relaxation matrix). TP, represents the relaxation time in the rotating frame and TDQ

the relaxation associated with the double quantum coherence. In the next section we

describe the results obtained using this model.

In order to demonstrate the utility and accuracy of the MMFT description, we

conducted two CPRW experiments at 500 MHz (1'H). In the first, described in Figure 12-

13, conditions for a CPRW experiment in [U- 13C- 15N]-VL were chosen so that the

applied 15N RF field was near that required for CSA recoupling. In spite of the CSA-

induced dynamics, several distances are measured in VL, albeit with reduced accuracy.

A second experiment was conducted in [U-13C- 15N]-f-MLF-OH with conditions chosen

to minimize CSA recoupling, resulting in 11 conformationally significant distance

measurements in good agreement with crystallographic data.
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Figure 12-13: Accuracy of the distance estimation when the experiment is conducted near the
CSA recoupling condition. The data are fit using a second order MMFT treatment which takes
into account the CSA.
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12.13 Quasi-Adiabatic Passage Experiments for Homonuclear and
Heteronuclear Distance Measurements

We have introduced two new sequences for the measurement of homonuclear and

heteronuclear distances in uniformly labeled compounds. These sequences, called quasi-

adiabatic DQ CP and quasi-adiabatic R2TR/HORROR respectively, make use of

frequency-selective recoupling to overcome the effects of dipolar truncation, and are
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described in Figures 12-15 and 12-16. Unlike conventional resonance width

experiments, which typically require 60-80 points in the dipolar dimension to fully record

each exchange curve, here all matching conditions are successively fulfilled at different

times during ramped RF excitation. A complete experiment requires as few as 8 points in

the dipolar dimension, collected as a function of the ramp rate (the adiabatic parameter).

Analytical and numerical results, shown in Figure 12-17, demonstrate that the ramp also

reduces the dependence of the experiment on the CSA, CSA orientation, and

experimental imperfections such as RF inhomogeneity. By using a HORROR matching

field, the experiment can used for aliphatic distance measurements (methyl-methyl,

methyl-side chain), for which the only present options are all based on proton-driven spin

diffusion. The same approach has been applied for carbonyl-to-side-chain distance

measurements, where it can be used instead of R2Width when the experiment duration is

limiting. These distance measurements are attractive because the aliphatic region is

generally more resolved than the carbonyl region (probed with R2Width and R2TR), and

because constraints to methyl groups probe the hydrophobic core of folded proteins.

These constraints are particularly important for determining the intermolecular packing

arrangement of peptide aggregates such as amyloid fibrils. For that reason, we have

chosen 100%-labeled peptide crystals, in which both intermolecular and intramolecular

couplings can be measured, to demonstrate these experiments.
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Figure 12-15: Pulse sequence for 3D quasi-adiabatic CPRW experiment. The 13C RF field is
ramped linearly through all recoupling conditions for aliphatic spins of interest.

CP I R I TPPM CW TPPM

- I i II
cPA It I lIJ2 AAM t3vvv

I v..
15N

Figure 12-16: Pulse sequence for quasi-adiabatic DQ R2TR/HORROR experiment for
homonuclear distance measurements. Following selection of the initial magnetization, the system
evolves under the 13C chemical shift during Ti. Magnetization is then transferred using a ramped
radiofrequency field selected to span the HORROR or n=l/n=2 R2TR DQ matching conditions
for the spins of interest, depending on the chemical shift separation of the carbons involved, and
detected in T2 following an echo.

Ramp Length (ms) Ramp Length (ms)

Figure 12-17: Spin dynamics during the ramp for several values of the CSA and (b) T2 relaxation
parameter. Quasi-adiabatic polarization transfer during the ramp is less influenced by the CSA
and DQ relaxation than the equivalent "sudden" experiment.

519

t2

RANVcvw~

1H C TPP
CP TPPM

m



0,

0
0
0
n-
z

2 3 4 5 6
Diffraction Distance

Figure 12-18: Plot of intramolecular and intermolecular distances in [U-13C,' 5N]-Val. Leu
measured using 3D quasi-adiabatic CPRW.

Figure 12-18 demonstrates the result of applying this experiment to [U-13C,15N]-

Val. Leu, in which 10 intermolecular and intramolecular distances were measured in

good agreement with the crystal structure. The results were analyzed using numerical

integration of the kinetic, two-spin approximate model of the spin dynamics, as outlined

in the last section.

Figures 12-19 and 12-20 illustrate an application of the homonuclear experiment

to methyl-methyl and methyl-aliphatic distance measurements in n-formyl-[U- 13 C,' 15N]-

MLF. Several distances up to -5.5 A are accurately fit even in a simple two-spin model

which has one fit parameter and neglects relaxation and CSA effects. A more realistic

model will improve the accuracy of this analysis. Further, we note that the magnetization

transfer efficiency for weak couplings continues to improve with increasing mixing time.

Thus, the capabilities of the commercial NMR probe used here limit the sensitivity of this

experiment for applications to weak dipolar couplings.
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Figure 12-19: DQ HORROR spectrum in which magnetization from the methyl groups (Met-
Ce, Leu-C81, and Leu-C82/Cy) is selected and transferred to other aliphatic resonances.
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Figure 12-20: A plot of distances obtained by fitting exchange trajectories to
model which neglects relaxation.
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Because of their simplicity, robustness towards experimental imperfections and

relaxation, and the straightforward analytical approaches used to extract internuclear

distances, we anticipate that the quasi-adiabatic passage methods outlined here will be

useful adjuncts to spin diffusion and other methods whose spin dynamics are more

complex and less amenable to quantitative analysis.

12.14 References

[1] McDermott, A.; Creuzet, F.; Griffin, R. G.; Zawadzke, L. E.; Ye, Q. Z.; Walsh, C.
T., Rotational resonance determination of the structure of an enzyme-inhibitor complex:
phosphorylation of an (amino alkyl) phosphonate inhibitor of D-alanyl-D-alanine ligase
by ATP. Biochemistry 1990, 29, 5567-5574.

[2] Creuzet, F.; McDermott, A.; Gebhard, R.; van der Hoef, K.; Spijker-Assink, M.
B.; Herzfeld, J.; Lugtenburg, J.; Levitt, M. H.; Griffin, R. G., Determination of membrane
protein structure by rotational resonance NMR: Bacteriorhodopsin. Science 1991, 251,
783-786.

[3] McDermott, A.; Creuzet, F.; Gebhard, R.; van der Hoef, K.; Levitt, M. H.;
Herzfeld, J.; Lugtenburg, J.; Griffin, R. G., Determination of Internuclear Distances and
the Orientatation of Functional Groups by Solid-State NMR: Rotational Resonance Study
of the Conformation of Retinal in Bacteriorhodopsin. Biochemistry 1994, 33, 6129-6136.

[4] McDowell, L. M.; Klug, C. A.; Beusen, D. D.; Schaefer, J., Ligand Geometry of
the Ternary Complex of 5-Enolpyruvylskikimate-3-phospate Synthase from Rotational-
Echo Double-Resonance NMR. Biochemistry 1996, 35, 5395-5403.

[5] McDowell, L. M.; Lee, M.; McKay, A.; Anderson, K. S.; Schaefer, J.,
Intersubunit Communicaltion in Tryptophan Synthase by Carbon-13 and Fluorine-19
REDOR NMR. Biochemistry 1996, 35, 3328-3334.

[6] Marassi, F. M.; Opella, S. J., NMR structural studies of membrane proteins. Curr.
Opin. Struct. Biol. 1998, 8, 640-648.

[7] Griffin, R. G., Dipolar recoupling in MAS spectra of biological solids. Nature
Struct. Biol. 1998, 5, 508-512.

[8] Watts, A., NMR of drugs and ligands bound to membrane receptors. Curr. Opin.
Biotech. 1999, 10, 48-53.

522



[9] Tycko, R., Solid State NMR as a Probe of Amyloid Fibril Structure. Curr. Opin.
Chem. Biol. 2000, 4, 500.

[10] Petkova, A. T.; Ishii, Y.; Balbach, J. J.; Antzutkin, O. N.; Leapman, R. D.;
Delaglio, F.; Tycko, R., A structural model for Alzheimer's P3-amyloid fibrils based on
experimental constraints from solid state NMR. Proc. Nat. Acad. Sci. USA 2002, 99,
16742-16747.

[11] Andrew, E. R.; Bradbury, A.; Eades, R. G., Nuclear magnetic resonance spectra
from a crystal rotated at high speed. Nature 1958, 182, 1659.

[12] Lowe, I. J., Free induction decay of rotating solids. Phys. Rev. Lett. 1959, 2, 285.

[13] Long, J. R.; Sun, B. Q.; Bowen, A.; Griffin, R. G., Molecular dynamics and magic
angle spinning NMR. J. Am. Chem. Soc. 1994, 116, 11950-11956.

[14] Pines, A.; Gibby, M. G.; Waugh, J. S., Proton-enhanced NMR of dilute spins in
solids. J. Chem. Phys. 1973, 59, 569-590.

[15] Schaefer, J. S., E. O, CPMAS. J. Am. Chem. Soc. 1976, 98, 1030.

[16] Mehring, M.; Pines, A.; Rhim, W.-K.; Waugh, J. S., J. Chem. Phys. 1971, 54,
3239.

[17] Mehring, M.; Sinning, G., Dynamics of heteronuclear spin coupling and
decoupling in solids. Phys. Rev. 1977, B15, (5), 2519-2532.

[18] Bennett, A. E.; Rienstra, C. M.; M., A.; Lakshmi, K. V.; Griffin, R. G.,
Heteronuclear decoupling in rotating solids. J. Chem. Phys. 1995, 103, 6951-6957.

[19] Bennett, A. E. Dipolar Recoupling and Decoupling in Solid State Nuclear
Magnetic Resonance Spectroscopy. Massachusetts Institute of Technology, 1995.

[20] Dusold, S.; Sebald, A., Dipolar recoupling under magic-angle spinning
conditions. Annu. Rep. Nucl. Magn. Reson. Spectr. 2000, 41, 185-264.

[21] Hohwy, M.; Rienstra, C. M.; Jaroniec, C. P.; Griffin, R. G., Fivefold symmetric
homonuclear dipolar recoupling in rotating solids: Application to double quantum
spectroscopy. J. Chem. Phys. 1999, 110, 7983-7992.

[22] Carravetta, M.; Eden, M.; Zhao, Z.; Brinkmann, A.; Levitt, M. H., Symmetry
principles for the design of radiofrequency pulse sequences in the nuclear magnetic
resonance of rotating solids. Chem. Phys. Lett. 2000, 321, 205-215.

523



[23] Carravetta, M.; Eden, M.; Zhao, X.; Brinkmann, A.; Levitt, M. H., Symmetry
principles for the design of radiofrequency pulse sequences in the nuclear magnetic
resonance of rotating solids. Chemical Physics Letters 2000, 321, (3-4), 205-215.

[24] Brinkmann, A.; Ed6n, M.; Levitt, M. H., Symmetry principles in the nuclear
magnetic resonance od spinning solids: Heteronuclear recoupling by generalized
Hartmann-Hahn sequences. J. Chem. Phys. 2001, 115, 357-384.

[25] Weliky, D. P.; Bennett, A. E.; Zvi, A.; Anglister, J.; Steinbach, P. J.; Tycko, R.,
Solid-state NMR evidence for an antibody-dependent conformation of the V3 loop of
HIV-1 gpl20. Nat. Struct. Biol. 1999, 6, 141-145.

[26] Thompson, L. K.; McDermott, A. E.; Raap, J.; van der Wielen, C. M.;
Lugtenburg, J.; Herzfeld, J.; Griffin, R. G., Rotational resonance NMR study of the active
site structure in bacteriorhodopsin: Conformation of the Schiff base linkage.
Biochemistry 1992, 31, 7931-7938.

[27] Gregory, D. M.; Benzinger, T. L. S.; Burkoth, T. S.; Miller-Auer, H.; Lynn, D.
G.; Meredith, S. C.; Botto, R. E., Dipolar recoupling NMR of biomolecular self-
assemblies: determining inter- and intrastrand distances in fibrilized Alzheimer's f3-
amyloid peptide. Solid State Nucl. Magn. Reson. 1998, 13, 149-166.

[28] Tycko, R., Biomolecular solid state NMR: advances in structural methodology
and Applications to peptide and protein fibrils. Annu. Rev. Phys. Chem. 2001, 52, 575-
606.

[29] Baldus, M. M., B.H., Broadband recoupling. J. Magn. Reson. 1997, 128, 172.

[30] Ishii, Y.; Ashida, J.; Terao, T., 13C-1H dipolar recoupling dynamics in 13C
multiple-pulse solid-state NMR. Chem. Phys. Lett. 1995, 246, 439-445.

[31] Andrew, E. R.; Clough, S.; Farnell, L. F.; Gledhill, T. A.; Roberts, I., Resonant
rotational broadening of NMR spectra. Phys. Lett. 1966, 21, 505-506.

[32] Andrew, E. R.; Bradbury, A.; Eades, R. G.; T, W. V., related to rotational
resoanance. Phys. Lett. 1963, 4, 99.

[33] Raleigh, D. P.; Harbison, G. S.; Neiss, J. E.; Roberts, J. E.; Griffin, R. G.,
Rotational Resonance. Chem. Phys. Lett. 1987, 138, 285.

[34] Meier, B. H.; Earl, W. L., Rotational resonance. J. Am. Chem. Soc. 1987, 109,
7937.

[35] Raleigh, D. P.; Levitt, M. H.; Griffin, R. G., Rotational resonance in solid state
NMR. Chem. Phys. Lett. 1988, 146, 71-76.

524



[36] Colombo, M. G. M., B.H.; Ernst, R.R., Rotational resonance. Chem. Phys. Lett.
1988, 146, 189.

[37] Raleigh, D. P. C., F.; Das Gupta, S. K.; Levitt, M. H.; Griffin, R. G., Rotational
resonance. J. Am. Chem. Soc. 1989, 111, 4502.

[38] Levitt, M. H.; Raleigh, D. P.; Creuzet, F.; Griffin, R. G., Theory and simulations
of homonuclear spin pair systems in rotating solids. J. Chem. Phys. 1990, 92, 6347-6364.

[39] Williamson, P. T. F.; Verhoeven, A.; Ernst, M.; Meier, B. H., Determination of
internuclear distances in uniformly labeled molecules by rotational-resonance solid-state
NMR. J. Am. Chem. Soc. 2003, 125, (9), 2718-2722.

[40] Takegoshi, K.; Nomura, K.; Terao, T., Rotational resonance in the tilted rotating
frame. Chem. Phys. Lett. 1995, 232, 424-428.

[41] Takegoshi, K.; Nomura, K.; Terao, T., Selective Homonuclear Polarization
Transfer in the Tilted Rotating Frame under MAgic Angle Spinning in Solids. J. Magn.
Reson. 1997, 127, 206-216.

[42] Costa, P. R.; Sun, B.; Griffin, R. G., Rotational resonance tickling: accurate
internuclear distance measurement in solids. J. Am. Chem. Soc. 1997, 119, 10821-10836.

[43] Costa, P. R.; Sun, B.; Griffin, R. G., Rotational resonance width experiment. J.
Magn. Reson. 2003, in press.

[44] Kubo, A. M., C. A, spectral spin diffusion. J. Chem. Soc. Faraday Trans. 1 1988,
84, 3713.

[45] Goobes, G.; Boender, G. J.; Vega, S., Spinning frequency-dependent narrowband
RF-driven dipolar recoupling. J. Magn. Reson. 2000, 146, 204-219.

[46] Goobes, G.; Vega, S., Improved narrowband dipolar recoupling for homonuclear
distnqace measurements. J. Magn. Reson. 2002, 146, 236-251.

[47] Vander Hart, D. L. E., W. L.; Garroway, A. N., Line broadening in C13. J. Magn.
Reson. 1981, 44, 361.

[48] Karlsson, T.; Levitt, M. H., Longitudinal rotational resonance echoes in solid state
nuclear magnetic resonance: Investigation of zero quantum spin dynamics. J. Chem.
Phys. 1998, 109, 5493-5507.

[49] Karlsson, T.; Brinkmann, A.; Verdegem, P. J. E.; Lugtenburg, J.; Levitt, M. H.,
Multiple-quantum relaxation in the magic-angle-spinning NMR of 13C spin pairs. Solid
State Nucl. Magn. Reson. 1999, 14, 43-58.

525



[50] Helmle, M.; Lee, Y. K.; Verdegem, P. J. E.; Feng, X.; Karlsson, T.; Lugtenburg,
J.; de Groot, H. J. M.; Levitt, M. H., Anomalous rotational resonance spectra in magic-
angle spinning NMR. J. Magn. Reson. 1999, 140, 379-403.

[51] Metz, G.; Wu, X.; Smith, S. O., Ramped-amplitude cross-polarization in magic-
angle-spinning NMR. J. Magn. Reson. A 1994, 110, 219-227.

[52] Spiess, H. W., Rotation of molecules and nuclear spin relaxation. In Dynamic
NMR Spectroscopy, Diehl, P.; Fluck, E.; Kosfeld, R., Eds. Springer-Verlag: Berlin, 1978;
Vol. 15, pp 5 5 -2 14 .

[53] Vega, S., Fictitious spin operator formalism. J. Chem. Phys. 1978, 68, 5518.

[54] Schaefer, J.; Stejskal, E. O., Double Cross Polarization NMR in Solids. J.
Magnetic Resonance 1979, 34, 443-447.

[55] Baldus, M. A.; Petkova, A. T.; Herzfeld, J.; Griffin, R. G., Cross Polarization in
the Tilted Frame: Assignment and Spectral Simplification in Heteronuclear Spin
Systems. Mol. Phys. 1997, 95, (6), 1197-1207.

[56] Ramachandran, R.; Griffin, R. G., Multipole-Based Multimode Floquet Theory in
NMR. submitted (2003).

[57] Ramachandran, R.; Griffin, R. G., Description of depolarization effects in double-
quantum solid state nuclear magnetic resonance experiments using multipole-multimode
Floquet theory. Journal of Chemical Physics 2006, 125, (4), -.

[58] Ramachandran, R.; Lewandowski, J. R.; van der Wel, P. C. A.; Griffin, R. G.,
Multipole-multimode Floquet theory of rotational resonance width experiments: C-13-C-
13 distance measurements in uniformly labeled-solids. Journal of Chemical Physics
2006, 124, (21), -.

[59] Jaroniec, C. P.; Filip, C.; Griffin, R. G., 3D TEDOR NMR experiments for the
simultaneous measurement of multiple carbon-nitrogen distances in uniformly '3C, 15N-
labeled solids. J. Am. Chem. Soc. 2002, 124, (36), 10728-10742.

[60] Ramachandran, R.; Ladizhansky, V.; Bajaj, V. S.; Griffin, R. G., '3 C-13 C

Rotational Resonance Width Distance Measurements in Uniformly 13C-Labeled Peptides.
J. Amer. Chem. Soc. 2003, 125, 15623-15629.

[61] Ladizhansky, V.; Griffin, R. G., Band selective 13C- 13C distance measurements in
uniformly 13C,15N labeled peptides using solid state MAS NMR. J. Am. Chem. Soc. 2003,
submitted.

526



[62] Mueller, L. J.; Elliott, D. W., Correlated tensor interactions and rotational-echo
double resonance of spin clusters. Journal of Chemical Physics 2003, 118, (19), 8873-
8881.

[63] Vogt, F. G.; Gibson, J. M.; Mattingly, S. M.; Mueller, K. T., Determination of
molecular geometry in solid-state NMR: Rotational-echo double resonance of three-spin
systems. Journal of Physical Chemistry B 2003, 107, (5), 1272-1283.

[64] Vogt, F. G.; Mattingly, S. M.; Gibson, J. M.; Mueller, K. T., Measurement of
internuclear distances in solid-state NMR by a background-filtered REDOR experiment.
Journal of Magnetic Resonance 2000, 147, (1), 26-35.

[65] Vogt, F. G.; Aurentz, D. J.; Mueller, K. T., Determination of internuclear
distances from solid-state nuclear magnetic resonance: dipolar transforms and
regularization methods. Molecular Physics 1998, 95, (5), 907-919.

[66] Mueller, K. T.; Jarvie, T. P.; Aurentz, D. J.; Roberts, B. W., The REDOR
transform: Direct calculation of internuclear couplings from dipolar-dephasing NMR data
(vol 242, pg 535, 1996). Chemical Physics Letters 1996, 254, (3-4), 281-282.

[67] Ernst, R. R.; Bodenhausen, G.; Wokaun, A., Principles of Nuclear Magnetic
Resonance in One and Two Dimensions. Clarendon Press: Oxford, 1991.

[68] Stewart, P. L.; Tycko, R.; Opella, S. J., Peptide backbone conformation by solid-
state nuclear magnetic resonance spectroscopy. J. Chem. Soc. Faraday Trans. 1 1988, 84,
3803-3819.

[69] Rienstra, C. M.; Hohwy, M.; Hong, M.; Griffin, R. G., 2D and 3D 15N-13C-'3C
NMR chemical shift correlation spectroscopy of solids: Assignment of MAS spectra of
peptides. J. Am. Chem. Soc. 2000, 122, 10979-10990.

[70] Jaroniec, C. P.; Tounge, B. A.; Herzfeld, J.; Griffin, R. G., Frequency selective
heteronuclear dipolar recoupling in rotating solids: accurate 13C- 15N distance
measurements in uniformly-'3C,15N-labeled peptides. J. Am. Chem. Soc. 2001, 3507-
3519.

[71] Ladizhansky, V.; Griffin, R. G., Band-selective Carbonyl to Side Chain 13C-13C
Distance Measurements in U- 13C,15N-Labeled Solid Peptides by Magic Angle Spinning
NMR. J. Amer. Chem. Soc. 2003, 125, (in press).

527



528



Chapter 13 Solid State NMR Structure of the L111M Mutant of
Transthyretins,05 -11 in an Amyloid Fibril

Portions of the following chapter have been adapted from a manuscript in preparation:
"Solid State NMR Structure of the L111M Mutant of Transthyretin0os5115 in an Amyloid
Fibril" Vikram Bajaj, Marc Caporini, Cait MacPhee, Anthony Fitzpatrick, Christopher
Dobson, Robert Griffin. To be submitted (2007).

13.1 Introduction

In general, proteins adopt regular tertiary structures which encapsulate enzymatic active

sites and project binding or interacting surfaces. This regular tertiary structure, or protein

fold, is thus essential for native protein function, and the mechanistic basis of protein

folding is the thus the target of both experimental and computational investigation [1].

Protein folding is also of considerable medical interest, as many significant diseases are

caused by mutations which perturb or eliminate the native function of a protein by

influencing its propensity to fold correctly [2]. While misfolded proteins generally

trigger cellular mechanisms through which they are targeted for decay, most proteins are

also able to enter a conformational state in which they aggregate and accumulate in

amyloid deposits. At least 25 clinical disorders are associated with amyloidosis and

protein aggregation [3].

Amyloid diseases are caused by extracellular deposits of long, unbranched protein

fibrils which give a characteristic green birefringence upon binding Congo Red dye.

Amyloid fibrils have been characterized by electron microscopy [4], mass spectrometry

[5], cryo-EM reconstruction [6], atomic force microscopy [7], x-ray diffraction [8],

circular dichroism [9-11], and NMR spectroscopy [12, 13], but, until recently, their

precise three-dimensional structure has been unknown. In order to understand the

structural basis for amyloid fibril accumulation, we have studied several short peptides
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which form amyloid fibrils. Peptide fragments of transthyretin (see Figure 13-2), an

extracellular transporter of thyroid hormone, form amyloid fibrils [14-18] in vitro, and we

have recently solved the structure of TTR10 5-115 using MAS NMR methods [19, 20] [21].

Mutations in the wild-type TTR sequence are responsible for inheritable amyloid

disorders; the L 111M mutant genotype, in particular, causes a hereditary amyloid-related

cardiomyopathy [22-53]. Here, we investigate the structure of the L 111M mutant which,

in addition to its clinical significance, displays differences in fibril morphology (Figure

13-3) and fibril formation kinetics (Figure 13-6). A comparison of the WT and L111M

structures may provide information about the molecular basis of supramolecular fibril

assembly.

In order to solve the three-dimensional structure of amyloid fibrils of L111M

TTR, we have applied the solid state NMR methodology outlined in the previous chapter,

which is based on the successful strategy employed for WT TTR. This has involved

measurement of heteronuclear [54-56] and homonuclear [57-59] dipolar couplings in

uniformly labeled samples to generate distance constraints, and tensor correlation [60-70]

experiments to generate constraints on the backbone and side chain torsion angles. Here,

we characterize the fibril morphology and formation kinetics using EM, AFM, and NMR,

report the intramolecular or monomer structure of the peptide fragment.

13.2 Materials and Methods

13.2.1 Synthesis of Samples

Samples for experiments designed to probe the fibril morphology were prepared by solid

phase synthesis [71] (FMOC chemistry) by CS Bio Inc. Samples for NMR experiments

530



were prepared from FMOC-protected and O-T-Butyl (where applicable) protected, U-

13C, 15N-labeled amino acids purchased from Cambridge Isotope Laboratories. Two

segmentally U- 13C, 15N-labeled fragments were prepared, as shown in Figure 13-1,

corresponding to the peptide fragment shown in Figure 13-2.

YTIAAL SPYS

YTIAALMSPYS
Figure 13-1: Samples used for solid-state NMR measurements in L111M TTR. Two segmentally
[U-13C, 15N]-labeled samples were prepared by solid phase synthesis.

Figure 13-2: Ribbon diagram of native transthyretin monomer backbone. The segment
corresponding to the native structure of residues 105-115 is highlighted in blue.

13.2.2 Formation of Amyloid Fibrils [7, 72]

The peptides were dissolved without further purification in a solution of 10% acetonitrile

in water (v/v), adjusted to pH 2.0, at a concentration of 18 mg/mL. The solutions were
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incubated in sealed containers at 370 C for 48 hours, after which they became turbid,

indicating the formation of amyloid fibrils. The fibrilization solutions were then left

undisturbed for 14 days at ambient temperatures (23°C + 50 C). Concentrated pellets of

the amyloid fibrils were formed by two cycles of centrifugation at 300,000xg, followed

by washing in distilled water. The concentrated pellets were packed into 4 mm Varian

NMR rotors that were sealed to prevent dehydration of the pellet.

13.2.3 NMR Experiments

All NMR experiments were performed on a 500 MHz NMR console with a home-built

spectrometer console (D.J. Ruben). The sample temperature was maintained at 20 C

during the experiments to prevent sample damage due to RF and aerodynamic heating.

The spinning frequencies ranged from 8.6-10.0 kHz, depending on the experiment.

TPPM [73] decoupling (83-125 kHz) was employed during acquisition and during

multiple pulse sequences where appropriate. Chemical shifts were referenced indirectly

to solid adamantane following the recommendations of Morocombe and co-workers [74].

13.3 Results

13.3.1 Fibril Morphology and Kinetics

Amyloid fibrils can adopt a variety of morphologies which may, a priori, correspond to

different structures on the NMR length scale. These morphologies may also have

different NMR spectra and may therefore be responsible for broad NMR lines seen in

other amyloid fibril systems [12, 75, 76]. Several morphologies seen in images of WT

TTRI05-115 amyloid fibrils are shown in Figure 13-5. They include rope-like twisted

fibrils, ribbon like structures with various degrees of pitch, and flat, untwisted, laterally-
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associated protofilaments that are characteristic of denatured or immature fibril samples

[72]. The morphology of L1 1M TTR10 5-11 5 samples were characterized using negative

stain transmission electron microscopy (Figure 13-3) and atomic force microscopy

(Figure 13-4). Both techniques reveal that L111M amyloid fibrils have a twisted, ribbon-

like morphology which differ in pitch and width from WT amyloid fibrils. The pitch and

width of WT amyloid fibrils is approximately 950 ± 100 A and 108 + 12 A, respectively;

for L111M, these are 1200 ± 100 A and 173 + 15 A.

Figure 13-3: Negative stain TEM image of amyloid fibrils prepared from peptides of L111M
TTR105-115. The predominant morphology is that of a twisted ribbon.
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Figure 13-4: AFM image of mature amyloid fibrils from prepared from LI 1M TTR105-115.
sample was dehydrated and imaged on the surface of freshly cleaved mica substrate.

a b 1k i i Ir
c % II I I r

rope-like laterally-associated
protofilaments

Figure 13-5: The range of fibril polymorphism represented in samples of WT TTR1 05-115. Sample
morphology observed during maturation and in mature fibrils ranges from rope-like extended
fibrils to ribbon-like fibrils which appear to have a hollow core. Laterally associated
protofilaments are also visible in some samples. NMR samples are inspected to confirm that one
morphology dominates prior to NMR experiments.
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Figure 13-6: The kinetics of amyloid fibril formation in WT TTR105-115 and its L1 1 1M monitored
by 1H solution state NMR (spectrum in (a)) (10% d-acetonitrile in D20; 4 scans with
presaturation for solvent suppression). Because the NMR spectra change only in intensity, we
assume that any intermediates of fibril formation are too dilute or short-lived to be observed. The
results demonstrate dramatic differences in the kinetics of amyloid fibril formation in the WT and
L11IM peptides.

13.3.2 X-ray fiber diffraction measurements

Jarvis and co-workers [15] have recorded x-ray fiber diffraction patterns from amyloid-

forming peptides of transthyretin. These measurements, which are summarized in Table
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13.1, are sensitive to length scales longer than the NMR measurements and therefore

indicate differences in the packing of monomers into the protofilament and the

protofilaments into an NMR fibril. However, they do not encode any information about

the monomer structure.

Table 13.1: Summary of diffraction measurements in WT and L111M peptides reported by Jarvis
and co-workers [15].

WT TTR10os-115  L111M TTR10 5os-115
equivalent resolution (A) equivalent resolution (A)

4.7 4.7
9.7 8.4
17.1 15.5
31.0 28.0

13.3.3 Fibril Formation Kinetics

The kinetics of amyloid fibril formation can be assessed by monitoring optical turbidity,

binding of amyloid fibrils to a fluorescent dye such a thioflavin T, dynamic light

scattering, time-resolved circular dichroism, or NMR [10, 77-79]. In all cases, kinetic

measurements in a wide variety of systems show that fibril formation is preceded by a

characteristic lag or nucleation phase, followed by a period of rapid growth, and then

finally fibril maturation. Solution state NMR is a particularly attractive method of

following fibril formation kinetics, because completely formed amyloid fibrils precipitate

as solids and do not contribute to the NMR spectra in solution. The loss of intensity in

the NMR spectra can thus be followed as a direct indicator of the fibril formation

kinetics. Because the NMR line widths and positions do not change, any intermediate

oligomers of fibril formation must be too dilute or, equivalently, short-lived to be

observed in these experiments. Samples for solution state NMR were prepared by

dissolving WT TTR (pI 5.52, MW=1198.38) at 15 mg/mL concentration, or L111M TTR

(pI=5.52, MW=1216.41) at 15 mg/mL or 15.2 mg/mL concentration in 10% deuterated

536



acetonitrile in D2 0 (v/v). The kinetics of fibril formation were monitored by 1H solution

state NMR at 591 MHz; the pulse sequence incorporate presaturation for suppression of

the residual water, and all experiments were conducted at a constant temperature of 370C.

The measurements were repeated to guarantee their reproducibility. The results indicate

that the L111M and WT TTR fibrils differ in the kinetics of the lag or nucleation phase of

fibril formation. The next phase of rapid fibril growth is similar in both cases, but this

phase is diffusion-limited in many models of fibril growth, and so is not expected to be

significantly different for two peptides with similar physical properties. Finally, the

slower, fibril maturation phase occurs at a faster rate for the L 111M peptide than for the

WT TTR peptide.

13.3.4 One Dimensional Solid State NMR

One-dimensional solid-state NMR spectra were recorded with high power proton

decoupling (100 kHz TPPM) on a 500 MHz NMR spectrometer. The spectra, shown in

Figure 13-7, are characterized by narrow line widths, which demonstrate that the sample

is microscopically well ordered and contains one conformation of the peptide. Further,

differences in the aromatic intensities and line shapes between the N-terminal and C-

terminal segmentally labeled samples point to differences in the dynamics of the N-

terminal and C-terminal tyrosine. The greater line widths and reduced intensities for the

C-terminal tyrosine suggests that the rate of ring flipping or other motion is different in

that case from that of the tyrosine on the N-terminus. One-dimensional NMR spectra

were recorded before and after each subsequent multidimensional experiment to insure

that the sample was not damaged by RF heating or other effects.
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YTIAALMSPYS YTIAALMSPYS

180.0 140.0 100.0 60.0 20.0 180.0 140.0 100.0 60.0 20.0
13C Chemical Shift (ppm) 13C Chemical Shift (ppm)

130.0 110.0 90.0 70.0 50.0 30.0 130.0 110.0 90.0 70.0 50.0 30.0
15N Chemical Shift (ppm) 15N Chemical Shift (ppm)

Figure 13-7: One-dimensional 13C and 15N NMR spectra of the two segmentally labeled peptide
samples used in this study. The spectra demonstrate that the sample is microscopically well
ordered. Differences in the aromatic line intensities are due to different aromatic ring dynamics
experienced by the N and C-terminal tyrosines.

13.3.5 Chemical Shift Assignments

Chemical shift assignments were obtained on the basis of 2D 13C- 13C and 15N-13C

correlation spectroscopy [80, 81]. Complete side chain connectivity and sequential

assignments were possible on the basis of three spectra for each sample: 2D 13C-'3 C,

which provide connectivity between side chain carbons, 2D NCACX, which provides

intraresidue correlation between the amide nitrogen and side chain carbons, and 2D

NCOCX, which gives interresidue correlations between the side chain carbons and the

amide nitrogen of the subsequent residue, in complete analogy to well-established

solution state NMR experiments [82].
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Figure 13-8: Pulse sequence for 2D 13C- 13C homonuclear correlation spectroscopy through
proton-driven spin diffusion with the application of a 1H R3 recoupling field (DARR).
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Figure 13-9: Two-dimensional 13C- 3C correlation experiments in LI 11M TTRo05-115. The spectra
demonstrate that the samples are microscopically ordered. All 13 C sites can be assigned on the
basis of a single 2D correlation experiment in each sample.

Homonuclear correlation spectroscopy was accomplished through either proton-

driven spin diffusion [83-85] with the application of an R3 recoupling field [86] or

application of the SPC5 double quantum mixing sequence [87] for polarization transfer
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among aliphatic carbons (Figure 13-8). The mixing times were set to 10 ms and 0.8 ms

(8 tr), respectively, to favor polarization transfer to directly bonded carbons. The

spinning frequency was 10 kHz and 83 kHz TPPM decoupling was applied during

acquisition. Assignments and 2D spectra are shown in Figure 13-9 for both samples.

Due to dynamical processes which interfere with the proton decoupling or magic angle

spinning, site-specific assignments of aromatic resonances was only possible for the N-

terminal peptide, as shown in Figure 13-10.

100,

S 110'r-o

c 120.

E
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150'

1o0

'100
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Figure 13-10: Aromatic region of 2D 13C- 13C correlation experiment in YTIAAL-labeled sample
of Ll lIM TTR1 05-115. Since the timescale of the aromatic ring dynamics for the C-terminal
tyrosine does not interfere with the decoupling or magic angle spinning, nor does it render ring
carbons equivalent through conformational exchange, it is possible to obtain a complete set of
assignments for its '3C sites.
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Heteronuclear correlation spectroscopy was accomplished through spectrally selective

15N-13C polarization transfer (SPECIFIC CP [88]) from the amide nitrogen to the Ca of

the same residue or to the C carbon of the following residue in NCACX and NCOCX

experiments, respectively. Aliphatic polarization transfer was accomplished using

proton-driven spin diffusion with the application of an R3 recoupling field (Figure 13-11).

The mixing times were set to 20 ms to give uniform polarization transfer to all sites in the

side chain. The spinning frequency was 10 kHz and 83 kHz TPPM decoupling was

applied during acquisition. NCACX and NCOCX spectra, shown in Figure 13-12,

confirm 13C assignments and provide assignments for all backbone '5N sites. Both the

homonuclear and heteronuclear correlation spectra also confirm that each monomer in the

amyloid fibril exists in the same chemical and conformational environment.

a/2

1H c TPPM CW TPPM

3U

13C

15N

Figure 13-11: Pulse sequence for 2D 15N-13C homonuclear correlation spectroscopy. Following
IH-l N cross polarization, magnetization evolves under the 15N chemical shift during T1 and then
is transferred to the 13Co or 13C' via band-selective cross polarization (SPECIFIC CP). Aliphatic
homonuclear mixing is accomplished through proton-driven spin diffusion with the application of
a 'H R3 recoupling field (DARR).
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Figure 13-12: Two-dimensional 15N-13C correlation experiments in L11I M TTR105.11 5. Complete
sequential assignments have been obtained through 2D NCACX and NCOCX-type correlation
spectra, shown above for each sample.

13.3.6 Measurement of Distances

Structural constraints in the form of internuclear distances were obtained by 3D TEDOR

[54] (15N-13C) and Rotational Resonance Width [57-59] (13C-13 C) methods, both of which

report on the dipolar couplings by monitoring the evolution of cross-peak intensities as a

function of an incrementable parameter. In the case of 3D TEDOR, which is a broadband

experiment, the intensities of 13C- 15Ni cross peaks as a function of the TEDOR mixing

time are simultaneously fit to obtain all heteronuclear dipolar couplings to a given carbon

atom. The R2W experiment is spectrally selective due to its reliance on the rotational

resonance [89-91], in which spin pairs separated approximately by the spinning

frequency or twice the spinning frequency are recoupled. The evolution of 13CO- 13C

cross peak intensities are fit as a function of the spinning frequency at constant mixing

time to obtain an estimate of the homonuclear distance.
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Examples of 2D planes from 3D TEDOR experiments are shown in Figure 13-13,

for the YTIAAL sample, and in Figure 13-14, for the ALMSPY-labeled sample (only the

aliphatic regions are shown). Each cross peak corresponds to a unique '5N-' 3 C dipolar

coupling and leads to a structural constraint. An example of data fitting is illustrated in

Figure 13-15, in which cross peaks between I107Cy2 and T106N/I107N are

simultaneously fit to yield two distances. The modulation of cross peak intensities at

long mixing times is due to the influence of homonuclear J couplings; the data fitting

assumes that they take canonical published values for peptides [92].

a*

0

Oi

13C Chemical Shift (ppm)
Figure 13-13: 2D planes from 3D TEDOR experiment in YTIAAL-labeled L111 M TTR105-115
sample corresponding to 1 ms (top) and 10 ms (bottom) TEDOR mixing times. The intensity of
each cross peak as a function of the mixing time can be fit to obtain the heteronuclear dipolar
couplings.
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'~C Chemical Shift (ppm)
Figure 13-14: 2D plane from 3D TEDOR experiment in ALMSPY-labeled L111M
sample corresponding to a 10 ms TEDOR mixing time. The intensity of each cross
function of the mixing time can be fit to obtain the heteronuclear dipolar couplings.
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Figure 13-15: Example of data fitting for I107Cy2 13C- 15N cross peaks to I107N and T106N. The
modulation of TEDOR intensity at long mixing times is due to the J-coupling. Experimental data
extends to 16 ms.
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13.3.7 Measurement of Torsion Angles

Constraints on backbone torsion angles can be obtained through tensor correlation

experiments, in which the spin evolution due to one anisotropic element of the nuclear

spin Hamiltonian (e.g. CSA, dipolar coupling) is correlated to that of another. The

mutual orientation of the anisotropies is then inferred from the combined dynamics. This

approach is most useful for dipolar tensors, which have an orientation with respect to the

molecular segment that is known by definition. The dipolar tensor correlation

experiments utilized here follow two patterns: in one, a correlated spin state is created

between two directly bonded nuclei, and that state is allowed to dephase under recoupled

heteronuclear dipolar couplings. Examples of this include HCCH [64] tensor correlation

experiment, which is useful for constraining side chain torsion angles, and the NCCN

experiment for the backbone torsion angle y. Alternatively, polarization transfer can be

used to correlate the dynamics at one site with those of another, such as in the HNCH (0)

experiment [65] and the HNi+1CH (W) experiment [61]. In these cases, two separate

incrementable heteronuclear evolution periods are employed during which the system

evolves separately under the H-N and H-Ca dipolar couplings. When combined with

chemical shift evolution, such an experiment is, in principle, four dimensional. To avoid

prohibitively long acquisition times, the two dimensions are instead synchronously

incremented in a ratio that maximizes the sensitivity of the experiment. All experiments

make use of SPC53[93] for narrowband homonuclear double quantum mixing and the y-

encoded TMREV[94] sequence (TMREV-4) for heteronuclear 'H- 15 N and 1H-' 3C

recoupling. The NCCN correlation experiment makes use of REDOR[95] for 15N-13C

recoupling.
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Figure 13-16: Experimental constraints on backbone torsion angles of Threonine 106 from
HNCaH (4), HNi+1CaH (~y), and NCCN (V) tensor correlation experiments. Fits as a function of
mixing time are indicated on the left, and the solution surfaces are plotted on the right.

For the HNCH experiments, data analysis involves simultaneous fitting of torsion

angle and a constant which describes exponential relaxation, subject to assumptions about

the 1H-'5N and 'H-Ca bond lengths and equilibrium bond angles. The NCCN

experiment is dependent on assumptions about the N-Ca and Co-CO distances in

addition to the N-Ca-CO and Ca-C'-N bond angles. These parameters are fixed at there

equilibrium values from the forcefield used in the NMR refinement (XPlor-NIH [96]);

however, statistically reasonable variations in these parameters introduce a potential 10-

15 degree error in the torsion angle measurement, which in all cases exceeds the random

error recovered from the data fit [19]. In particular, pairs of nearly degenerate solutions
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in the HNCH experiments coalesce effectively into a single solution if the bond angles

and other parameters are not precisely defined. While global Monte Carlo simulation

can, in principle, uncover the true confidence intervals that describe the data, we have not

attempted this approach here. An example of torsion angle experiments which constrain

the backbone torsion angles in T106 is provided in Figure 13-16. Since the solution

space may contain multiple acceptable minima (particularly for the W measurements),

multiple torsion angle measurements are combined where possible to yield a consistent

solution.

Table 13.2: Experimental constraints on backbone torsion angles in L 111M TTR1 05-115 fibrils.

H-Ni-Ca -H
Y105 n/a
T106 -130.6, -109.3
1107 -130.0, -110.0
A108 -130.1, -109.9
A109 -138.8, -101.1
L1IO -129.4, -110.5
Mill -135.0, -104.3
S112 -136.3, -103.6
Pl113 n/a
Y114 -140.7, -100.5
S115 n/a

H-N(i+l)-Ca-H N-Ca-C -N
99.0, 140.8 ±158

119 ±138, ±80
120 ±138

104.8. 135.2 ±132
109.8, 129.4 ±134
112.5, 126.0 ±152
106.9, 130.8 ±130

n/a ±136
120 ±144
n/a n/a
n/a n/a
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Table 13.3: Distance constraints measured in 3D TEDOR experiments in L 11M TTRo0 5. 115.
Potetentially intermolecular couplings are colored in red.

Spin 1 Spin 2 Distance (nm) Spin 1 Spin 2 Distance (nm)
Y105 Ca Y105 N 150 L11 OCP L110N 240
Y105 Ca T106N 260 L110 CP MIi1N 355
Y105 C' Y105 N 245 Lll0 Cy L10 N 450
Y105 C' T106 N 140 L110 C81 L11ON 460
T106 Ca T106 N 150 L110 C81 Mill N 320
T106 Ca 1107 N 275 L110 C81 S112 N 440
T106Cy T106N 370 L110 C82 A108 N 470

T106 Cy 1107 N 310 L110 C82 A109 N 470
T106 C' T106 N 315 L110 C82 L10 N 445

T106 C' 1107 N 140 L110 C82 M111 N 440
1107 Ca 1107N 150 L110 C' A108 N 320
1107 Ca A108 N 235 L110 C' L10 N 145
1107 C3 1107 N 260 Mill Ca Mill N 150
1107 CP A108 N 320 M111 Ca S112 N 235
1107 Cy 1107 N 300 Mill CP A109N 315

1107 Cy2 1107 N 400 M111 CP Mill N 260
1107Cy2 A108N 470 M111CP S112N 355
1107 Cy2 A109 N 510 Mill Cy Mill N 255
1107 C8 1107 N 500 M111 CE A109 N 390
1107 C8 A108 N 650 M111 CE LllON 380
1107 C8 A109 N 880 Mill CE Mill N 440

A108 Ca A108 N 150 S112 Ca S112 N 150
A108 Ca A109 N 480 S112 Ca P113 N 255
A108 C3 A108 N 265 S112 CD S112N 255
A108 CP A109N 335 P113 Ca P113 N 145
A108 C' A108 N 240 P113 Ca Y114N 270
A108 C' A109 N 140 P113 CP P113 N 250

A109 Ca A109 N 145 P113 Cy P113 N 280
A109 Ca L10 N 250 P113 C8 S112N 305
A109Ca M111 N 310 P113 C8 P113 N 150
A109 CP A108N 370 Y114 Ca Y114 N 150
A109 C[ A109N 265 Ll10 Ca Mill N 220
A109 C3 L1ON 340 L10 Ca A108 N 335
A109 CP Mill N 360 Lll0 Ca L10 N 150
A109 C' A109 N 240
A109 C' L10 N 135
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13.4 Discussion

13.4.1 Structural Refinement

The structure was refined using simulated annealing molecular dynamics [97] in the

internal variable minimizer implemented in XPlor-NIH [96], roughly following protocols

developed in the refinement of MLF at Low Temperature and the WT TTR structure

[21]. Distance restraints were represented as harmonic potentials, while torsion angle

restraints were represented as square-well potentials during the later stages of the

refinement. No database-derived restraints were used in the process. Acceptable

solutions contained no violations of the distance or torsion angle restraints. The density

of restraints is depicted in Figure 13-17. Since the C-terminal serine was not isotopically

labeled, there are far fewer constraints on the C-terminus than at other sites. Many

conformations of the C-terminus are thus reflected in the structural ensemble, and this is

not an indication of either static or dynamic disorder. Refinement of the structure using

periodic boundary conditions or excluded volume restraints designed to simulate the

packing of the amyloid fibril monomer into a generic n-sheet would further constrain the

conformation, but no such approaches were attempted in this refinement. A

representative set of structures from an ensemble of 100 acceptable structures is shown in

Figure 13-18. The average root mean square deviation of coordinates of heavy atoms is

0.51 A, which is slightly better than what was possible in the refinement of the related

WT TTR10 5- 115 structure. Side chain torsion angles were not included at this stage of the

refinement, but it is anticipated that their inclusion will improve the quality of the refined

structural ensemble. Finally, a preliminary conformational analysis of quality of the

structural ensemble, shown in Figure 13-19, shows that all residues adopt conformations
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in the favored or most-favored regions of the conformational space corresponding to 3-

sheet secondary structure.

Figure 13-17: Representation of the density of structural constraints used in the refinement of the
L11 1M structure. Note the lower density of constraints in the N-terminal tyrosine and on the C-
terminus, which was not labeled due to the expense of attaching labeled, protected, Serine to the
resin.

Figure 13-18: Representative members of the L 11M structural ensemble. These conformers
span the conformational space defined by the 100 lowest energy structures in the minimization.
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Figure 13-19: Ramachandran plot formed from the ensemble depicted in Figure 13-18. All
residues lie within the favored, 13-sheet region of the conformational space.

13.4.2 Differences from WT Structure

Both the WT TTR1 05-115 peptide and its L11 M mutant adopt the conformation of an

extended P3-strand in the amyloid fibril, with no indication of the P-turn conformation that

it adopts in the native transthyretin protein. That they have 13-sheet content was known

from diffraction and circular dichroism experiments [14-16], and this is characteristic of

all amyloid fibril samples. The diffraction experiments further indicate different periodic
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spacings in the L 11M peptide, which may in part result from the alternate excluded

volume of the methionine side chain. While there are only minimal differences possible

in conformation between extended 3-strands, there are nevertheless differences in both

the backbone torsion angles and side chain conformations in the average structures of

WT and L1i1M TTR1 0 5-11 5, as shown in Figure 13-20. In order to understand the

structural consequences of these differences for the self-assembly of the entire amyloid

fibril, a structure of the fibril is required. This will involve measurement of

intermolecular conformational parameters in specifically and multiply labeled samples to

determine the parameters of 3-strand packing into the protofilament, which includes the

orientation (parallel or antiparallel) and registry of the 3-sheet, and the number and

relative topology of 3-sheets in the protofilament. The length scales on which the

protofilaments twist and assemble into fibrils are inaccessible to solid state NMR and

must therefore be studied by cryo-electron microscopy, atomic force microscopy, and

other techniques. These measurements are currently in progress for the WT TTR105_115

peptide and will also be completed for the case of the L 111M mutant. A comparison of

these structures may provide insights into the different physical properties of these two

amyloid fibrils, including their different fibril formation kinetics and differences in pitch

and width of the fibrils.
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Figure 13-20: Comparison of the WT TTR structure with the structure of L 11M TTR (two
views).
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Chapter 14 The Supramolecular Structure of Amyloid
Fibrils formed from Transthyretin 105.115.

This chapter is based on work conducted in collaboration with Marc Caporini, at MIT,
and Anthony Fitzpatrick, Cait Macphee, and Professor Christopher Dobson, in
Cambridge, UK.

14.1 Introduction

Solid state NMR has been applied to elucidate the structure adopted by monomers of

TTR10os5 1 5 [1] and its amyloidogenic L111M [2] mutant at atomic resolution. These are the

first high-resolution structures of amyloid fibrils solved by any technique. While

informative in that respect, a structure of the monomeric unit alone is insufficient to provide

a complete picture of fibril self-assembly. The self-association of monomers into amyloid

fibrils has been studied by solution state NMR [3], solid state NMR [4-13] [14], electron

microscopy and diffraction, [15-17] cryo-EM reconstruction [18, 19], and atomic force

microscopy [20, 21], but a high resolution atomic structure has yet to emerge. Recent

micro-scale x-ray diffraction studies of crystals formed from amyloid-forming peptides by

Eisenberg [3, 22-24] and co-workers have provided an intriguing insight into the structural

basis of amyloid assembly. However, the crystals are not themselves amyloid fibrils, and

recent solid state NMR evidence [25] calls into question the structural relationship between

the crystals and the fibrils formed from the same peptides.

Fibrils are difficult structural targets because they are structured on length scales

ranging from the atomic to the microscopic. Fibrils themselves, as shown in Figure 14-1,

are microscopic objects which are 100-200 nm wide and microns long. Peptide

monomers form 3-sheets, either parallel or antiparallel, which are stabilized by the

canonical hydrogen bonding forces. One or more 3-sheets then associate into a
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protofilament, and the winding of protofilaments results in assembly of the microscopic

fibril (Figure 14-2).

Figure 14-1: Electron micrograph (negative stain) of amyloid fibrils from TTR1os- 115.

Figure 14-2: Structural hypothesis for fibril assembly. The
protofilament (left) consists of parallel or antiparallel f3-sheets which
are held together by hydrophobic association or side-chain hydrogen
bonding. The fibril is formed from protofilaments which wind
together along the longitudinal axis. (images courtesy of A.
Fitzpatrick).
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Figure 14-3: Length scale of experimental methods used in the TTR structure determination.

Solid-state NMR measurements are based on intermolecular dipolar couplings

whose strength declines rapidly with the distance between interacting centers. While

they effectively constrain the structure of the monomer and may provide constraints on

the interaction between monomers, solid-state NMR methods cannot be extended to

provide information about length scales greater than 10 A. X-ray fiber diffraction, by

contrast, provides information about periodic structural features such as the repeated

spacing between monomers in a protofilament and between protofilaments, typically on

the 5-50 A length scale for amyloid fibril samples. Above 100 A, imaging techniques

such as electron microscopy and atomic force microscopy can image the fibril surface.

Mass-per-unit length measurements can be obtained through quantitative STEM

experiments with known mass calibration standards, such as tobacco mosaic virus.

Finally, cryo-electron tomography operates on the longest length scales and can result in

three-dimensional information about amyloid fibril morphology in favorable cases [18].
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The length scales at which these methods yield information about fibril structure are

summarized in Figure 14-3.

In principle, information from all the aforementioned structural methods can be

combined to yield a complete, high-resolution structure of an amyloid fibril. A structural

protocol which accomplishes the self-consistent combination of these diverse data using

simulated annealing molecular dynamics in CNS [26] is described in Figure 14-4. The

protofilament structure will be refined through simulated annealing molecular dynamics

subject to NMR-derived distance constraints and symmetry constraints produced from fiber

diffraction measurements. STEM-based mass per unit length measurements provide

constraints on the number of 3-sheets in a protofilament and the number of protofilaments

in the transverse axis of the fibril, both of which are a priori inputs to the structure

refinement. The resulting protofilament structure can then be used as a template to fit the

electron density map resulting from cryo-EM image reconstruction. Provided that all the

data are consistent, the structure that will emerge will be the first high resolution structure of

an amyloid fibril. This chapter summarizes our progress towards refining this structure.

Monomer Dimer : : 16-mer

Axis of Fiber

Figure 14-4: Strategy of hierarchical

n-mer _ _ _

structure determination of TTR amyloid fibrils.
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14.2 Solid State NMR Constraints on the Structure of the P-sheet

The fundamental secondary structural element of amyloid fibril structure is the 3-sheet,

as verified by the structure of the monomer. Adjacent P-strands assemble into P-sheets

primarily through intermolecular hydrogen bonds to form an axis which is approximately

perpendicular to the orientation of the side chains. Though energetically disfavored, 0-

strands may pack into a parallel fashion as well as an antiparallel one. In addition, as

shown in Figure 14-5, the orientation of the strands in a sheet may vary: they may be

exactly in register, exactly out of register, or some combination or mixture of registers.

Though significant perturbations in peptide registry have been observed in at least one

system [27] as a function of sample preparation conditions, this is due primarily to the

presence of ionizable side chains. The lack of acidic or basic side chains in TTR suggests

that the register will be fixed by hydrophobic compatibility or other forces.

parallel

mixed
parallel-

antiparallel

Figure 14-5: Several possibilities for 0-sheet registry in amyloid fibrils.

14.2.1 Monomers are in a Single Chemical Environment

A structure of the peptide monomer is a prerequisite for refinement of a fibril structure; it

also provides indirect information about the fibril topology. First, the quality of the
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refined structural ensemble suggests that every 3-strand in the amyloid fibril adopts the

same structure. Second, each site in the monomer has a single, well-defined chemical

shift and narrow resonance widths, suggesting that each monomer is also in the same

chemical environment. This implies that fibril geometries which call for mixed registries

are less likely; such geometries would result in multiple chemical shifts for each site or

broad spectral features (i.e. a continuum of shifts). Further, these results demonstrate that

each monomer is identically solvated and rule out fibril configurations which call for

differential solvation of protofilament surface.

14.2.2 Tests of the Antiparallel Hypothesis: REDOR Experiments

Antiparallel f-sheets fulfill a greater number of backbone hydrogen bonds, and therefore

they are energetically favored over parallel sheets. On the other hand, both antiparallel

and parallel registries of the TTR peptide are equivalent in terms of hydrophobic

complementarity. Ideal solid state NMR measurements of antiparallel sheet geometry

must unambiguously probe intermolecular interactions. The most reliable approach,

then, involves labeling sites that experience a very weak intramolecular dipolar coupling

but a strong intermolecular coupling, such as backbone '3C' and lsN sites which are

involved in hydrogen bonding interactions. X-ray diffraction suggests a 4.7 A spacing

between adjacent strands in a n-sheet [28], and this is well within the reach of solid state

NMR methods designed to measure heteronuclear dipolar couplings. Rotational Echo

Double Resonance (REDOR), in particular, is a well-established method for the

measurement of '3C-' 5N dipolar couplings [29-36], and we have previously described its

use in the context of distance measurements in the monomer. The REDOR

measurements presented here make use of TPPM decoupling [37] in the evolution
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periods between REDOR pulses to minimize dephasing due to relaxation [38] but

otherwise do not differ from previously published techniques. As shown in Figure 14-6,

inter-strand '5 N-13C' distances lie in the 3.9-5.5 A range and can easily be probed in spin-

pair labeled samples.

Figure 14-6: Antiparallel model of TTR1051-15 amyloid fibrils showing key backbone-to-backbone
heteronuclear distances.

The expected dephasing curves for spin geometries shown in Figure 14-6 are tabulated in

Figure 14-7, where an average coupling corresponding to a 4.7 A distance has been

assumed. The REDOR signals, normalized on the basis of an intrinsic reference which

compensates for relaxation and for some experimental imperfections, are expected to

dephase by approximately 40% at 20 ms for an spin pair in an antiparallel beta sheet
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orientation. Three spin pair samples, listed in Table 14.1, were synthesized to test the

antiparallel, antiparallel+l, and antiparallel-1 configurations. The results, which are

illustrated in Figure 14-8 and Figure 14-9, show minimal dephasing due to REDOR and

suggest that the orientations probed in these experiments do not occur in the fibril.

Peptides corresponding to registry indices greater than +/- 1 were not prepared.

1

0.9

0.8
o

C,

0.7

0.6

0 5 10 15 20
REDOR Mixing Time (ms)

Figure 14-7: Analytical simulations of REDOR dephasing corresponding to spin geometries in
TTR1 05-115. (black) spin pair, 4.7 A; (red) spin triplet, 4.7 A; (blue) six spins, 4.7 A.
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Figure 14-8: Summary of REDOR measurements designed to test the hypothesis of antiparallel
13-sheet packing. The dashed red lines correspond to simulations of the dephasing in a spin pair
separated by 4.7 A and a cluster of four spins with two inequivalent distances of 4.1 A and 5.6 A
respectively. (A) Ala108- 15N-Leul l 1-13C', antiparallel -1 register; (B) Alal09-SN--Leul 11-
13C', antiparallel and in register; (C) Alal08-" N-Serl 12- 3C', antiparallel and in register; (D)
Leul 10- N--Leul l-1 3C', antiparallel +1 register. The expected dephasing is not observed in
these experiments.
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Figure 14-9: REDOR measurements in Alal08-' 5N-Leulll- 13C' spin pair sample and in a
mixture of Ala108-15N and Ala109111- 13C' labeled peptides designed to probe parallel strand
packing. The dephasing in the mixed sample has been adjusted to account for the 50% dilution of
all intermolecular couplings. In both absolute and scaled terms, the dephasing is greater in this
sample. A four-spin model with two unequal couplings fits the data in agreement with the
hypothesis of parallel, in register packing, subsequently verified in other experiments (see below).
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Table 14.1: Spin pair samples for intermolecular measurements in TTR amyloid fibrils. 15N
spins are colored blue and 13C' spins red.

Parallel - In Register
Ylos T1061107 A 08A10 9 L0lo L1l S112 P113 Y 114 S115
Y 0o5 T106 1107 A108 A109 L10 L1l S112 P113 Y114 S115

Parallel - 1 Out of Register
Yios T106 I107 AIos A109 LIlo L1l S112 Pll3 Y114 Sl15Y 105 T106 1107 A1 08 A 10 9 Llo LIll S 12 P 13 Y 1 14 S15

Antiparallel - In Register
Y105 T106 1107 A108 A109 L110 L11I S112 P113 Y114 S115
S115 Y 114P 13S112 L1 1E L110 Alo9A108 1107 T106 Y105

Y105 T106 1107 A108 Ao0 9L110 L1  S112 P113Y114 S115

Y 105 T 16 107 A108A109 L10 L1 l S112 P 11 3 Y114 S115
S115 Y 114 P 11 3SI12 L11 l Lo1 A 10 8 9AloS107 T106 Y105

Y105 T106 1107 A108A109 1 L1ill S112 P113Y114 S115

Antiparallel - +1 Out of Register
Y105 T106 1107 A108A109 Lo0 L11 S112P113 Y 114 S15

S115Yl14 P13 S112 Lill LoAloA09 A08 1107 T106 Y105
Y105 T106 1107 A108 A109Li0 L1ll S112 P113 Y114 S1 15

Antiparallel - -1 Out of Register
Yo T105 6 1107 A108 A109 L110 Lll S112 P113 Y114 SI15

S115Y 114 P11 3S112 L 1l1 L0lo A109 AloS 1107 T106 YI05
Y105 T106 1107 Ao08 A109 L 0lo L1ll S112 P 11 3 Y 11l4 S115

14.3 Tests of the Parallel Hypothesis: DRAWS Experiments and
REDOR Experiments

The design of experiments to probe the geometry of parallel f3-strands is complicated by

the overlap of intermolecular and intramolecular couplings. For example, labeling 15Ni

and 13C'i-1 sites (e.g. Ser112 and Proll113), which are hydrogen bonding partners, would

result in an observable intermolecular coupling but a much stronger intramolecular

coupling. The intramolecular coupling of a directly bonded spin pair would obscure the

measurement of the weak dipolar coupling of interest. This is true even for sequences

such as REDOR, which do not suffer from dipolar truncation, because the sites involved
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in intermolecular and intramolecular interactions are identical and therefore have the

same chemical shifts. Two alternatives are possible: first, instead of labeling the 15N-13C

spin pair in a single sample, two samples may be prepared, each with one labeled site.

Fibrils prepared from a physical mixture of these samples would then be free of

intramolecular couplings, albeit at the expense of the statistical dilution of the

intermolecular coupling between monomers. A second approach involves measuring

homonuclear distances in a singly labeled site. As shown in Figure 14-10, the carbonyl

sites have a unique topology with a regular, 4.6-4.7 A, distance in a parallel, in register 3-

sheet. Because similar couplings may be manifest in an out-of-register antiparallel 1-

sheet (Figure 14-10), at least two measurements will be required to unambiguously

establish this geometry. The L111-13C' and S112- 13 C' spin pair samples are suitable for

this kind of measurement.
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Parallel, in register 4.69-4.74 A Antiparallel, in register 10.3-10.9 A

Antiparallel, +1 7.68-7.78 A Antiparallel, +2 4.87-6.61 A

o

g
0.

(D

ZgE
LU

Excitation Time (ms) Excitation Time (ms)

Figure 14-10: Peptide geometry corresponding to parallel n-sheet packing. Note that
antiparallel+2 and antiparallel+3 packing produces some carbonyl-carbonyl distances which are
similar to those in a parallel strand. (below) DQ DRAWS spin dynamics for spin geometries
found in TTR.

Several recoupling sequences have been applied for homonuclear distance measurements

between spins of degenerate chemical shift. The finite-pulse RFDR zero-quantum (ZQ)

recoupling sequence has been applied at high MAS frequencies and in a constant-time
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implementation (which produces a static dipolar Hamiltonian) by Tycko and co-workers

[39] for homonuclear distance measurements in multispin systems. This approach has

the advantage of being applicable at arbitrary MAS frequencies. Instead, we have chosen

to investigate approaches based on double quantum (DQ) spin pair filters. While SPC5

[40] and other y-encoded DQ recoupling sequences based on C7 symmetry are effective

as mixing sequences in assignment experiments, they suffer from reduced efficiency for

the case of weak dipolar couplings in the presence of the chemical shift anisotropy [41]

[42]. Sequences based on R229
4 symmetry have been applied by Levitt and co-workers

[43] [44] for homonuclear distance measurements in systems with large CSAs; however,

this family of sequences is known to be extremely sensitive to experimental artifacts such

as spectrometer phase errors and switching transients. The DRAWS sequence [41, 45,

46] has been frequently used in this application, has reduced sensitivity to the CSA, and

is less sensitive to experimental artifacts. In spite of its high RF field requirement of 8.5

times the MAS frequency, DRAWS can be successfully applied to homonuclear distance

measurements in singly labeled samples at low magnetic fields.

In order to minimize the RF requirements and minimize the contribution of the

CSA, we conducted all DRAWS measurements at 360 MHz (o/2nt = 5.882 kHz, wRF- 50

kHz, orppM = 83-125 kHz). Previous studies have involved analytical simulations

incorporating phenomenological transverse relaxation of the observed signal [41, 47] for

data fitting. However, numerous investigators [48, 49] [50-52] and our previous work on

this subject [53] demonstrate the importance of multi-quantum relaxation parameters in

solid state NMR distance measurements. Further, the spin topologies involved in TTR

measurements require simulation of coupled spin networks, which is analytically
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difficult. For these reasons, our data analysis involves an exact numerical treatment of

the spin dynamics in the program SPINEVOLUTION [42]. Since the CSA is known to

contribute to MQ relaxation effects [51], the simulations explicitly include the

experimentally determined CSA. In order to further investigate the validity of this

model, we recorded DQ DRAWS trajectories in a dicarboxylic acid model compound as

a function of the decoupling field, as shown in Figure 14-13. At different decoupling

field strengths, the data are fit with an identical dipolar coupling but with unique

transverse relaxation parameters, suggesting that the effects of insufficient decoupling

and similar experimental imperfections are effectively modeled by this treatment. We

note that the best-fit distance of 3.76 A, while significantly shorter than the

crystallographic distance of 3.91 A, agrees with previously reported solid state NMR

measurements of this compound with DRAWS and the SR224
9 recoupling sequence [41].

Simulations of linear spin topologies are shown in Figure 14-11, where it is

apparent that the simulated DQ DRAWS trajectories do not converge as a function of the

number of spins, particularly at long mixing times. In the cross-n model for amyloid

structure, the P-sheets extend along the axis of the fibril, which we assume to be longer

than the NMR length scale. Thus, the spin dynamics can be approximated by a periodic

boundary condition which renders all spins in the cluster equivalent. Simulations of spin

chain geometries, shown in Figure 14-12, rapidly converge in the initial rate regime (< 10

ms) and show reduced dependence on the simulation geometry at long mixing times.

Thus, we anticipate that this approximation will be an effective treatment of the spin

dynamics in the initial rate regime, while the build-up at longer mixing times may depend

on the precise details of the fibril topology. Expected DQ DRAWS build-up trajectories
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for spin topologies corresponding to various parallel P3-sheet registries are shown in

Figure 14-14.
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Figure 14-11: Numerical simulation of DQ DRAWS experiment in linear spin clusters with a
topology similar to
number of spins.
explicitly included.

that of a parallel J-sheet. Note the lack of convergence as a function of the
No T2 relaxation has been included in these simulations, but the CSA is
(bottom) the DQ DRAWS pulse sequence used in these experiments.
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Figure 14-12: Numerical simulation of DQ DRAWS experiment in clusters of spins with a
periodic boundary condition that renders all spins equivalent. The simulations rapidly converge
in the initial rate regime (< 10 ms). No T2 relaxation has been included in these simulations, but
the CSA is explicitly included.
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Figure 14-13: The dependence of DQ DRAWS efficiency on CW decoupling power during the
mixing. Because damping of DQ coherences by CSA-induced dynamics is implicitly accounted
for in the numerical simulations, the experimental model contains only a single transverse
relaxation parameter. The model results in an unambiguous fit of the distance and the relaxation
parameter.
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Figure 14-14: Expected DQ DRAWS build-up trajectory for spin geometries corresponding to
parallel, parallel+l, and parallel+2 P-sheets. Note that out of register parallel 3-sheets have
inequivalent sets of intermolecular couplings which have been included in this simulation.
T2=15ms, 360 MHz 1H, 5.882 kHz MAS. The maximum filtering efficiency will vary depending
on the magnitude of the T2 relaxation, which is expected to be stronger in the amyloid fibril than
in succinate (succinate parameters were used here).

The experimental DQ DRAWS curves are shown for several compounds in Figure 14-15.

The model compound 1,4-' 3C-Succinate, with a crystallographically determined

internuclear distance of 3.9 A, is fit with a distance of 3.81 A and agrees with numerical

simulations over the entire range of the exchange curve. Two TTR samples - L 111 13C'

and S112 13 C' - result in DQ DRAWS curves which are fit, using a cluster of four spins

with periodic boundary conditions, to 4.5+0.1 A and 4.48 +0.06 A, respectively, where

the errors represent random errors and do not take into account possible systematic errors.

These couplings and exchange trajectories are most consistent with a parallel, in-register

arrangement of the monomers to form 3-sheets in the amyloid fibril. For self-consistency,
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it will be useful to confirm these measurements with REDOR experiments in diluted

samples. An example of such a measurement in a sample made from a mixture of A108-

13C' labeled and A109- 15N-labeled peptide is shown in Figure 14-16. Adjusting for the

50% dilution of intermolecular dipolar couplings, the distance between the two labeled

sites fits to 4.22-4.7A, which is also consistent only with a parallel, in-register P-sheet.

Thus, all experimental DQ DRAWS and REDOR data are consistent with this topology.
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14.4 Solid State NMR Constraints on the Structure of the
Protofilament

While the structure of the 1-sheet is best probed through interactions between sites

labeled on the backbone of adjacent monomers, the protofilament architecture can only

be probed through side-chain interactions. This is because the spacing between 3-sheets

in the protofilament is greater than 10 A, as confirmed by x-ray diffraction

measurements. The spectral regions corresponding to aliphatic side chains are spectrally

resolved, unlike the 13C' region. Thus, it is possible to probe these interactions in

multiply labeled samples. Such measurements provide a higher density of constraints as

compared to those in spin pair samples. As illustrated in Figure 14-17, two samples were

initially prepared for this type of measurement, both corresponding to the hypothesis of

an antiparallel spin-spin coupling. Five experimental approaches were applied to these

samples: (1) Heteronuclear distance measurements with 3D TEDOR [54]; Homonuclear

distance measurements with (2) CHHC [55], (3) DARR [56], (4) R2TR and R2W [57, 58],

(5) quasi-adiabatic HORROR experiments. A subset of these experiments is described

here.

1. Y105T 106 107A108oA10L 110LilS 11 2P113Y114S115  TTR1 os s115 W'T

2. Y10sT 106 107Ao1 08A 19L110L1 llS 112P113Y114S s1 TTRIos s WT
Figure 14-17: Samples for intermolecular measurements of protofilament architecture in TTR105-
115.
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14.4.1 Measurements Based on Spin Diffusion

Magnetization exchange between protons or magnetization exchange between 13C sites

mediated by their interactions with nearby 'H sites (proton-driven spin diffusion) are

semi-quantitative indicators of internuclear proximity. They have been applied

extensively for the elucidation of intermolecular complexes [59, 60] and, recently, for

structure determination in microcrystalline proteins [61, 62]. The application of the

CHHC 1H-'H magnetization exchange experiment to AALL, shown in Figure 14-18,

reveals Ala-Ha-Leu-Hox cross peaks which are likely intermolecular in origin. In an

antiparallel P-sheet, the Ha-Ha distance approaches 2.25 A, while, in a parallel sheet, the

Ha-Cadistance is -3.1 A; the corresponding intramolecular distance is 4.3 A. A

separate control experiment in a YTIA-labeled sample demonstrates that no

intramolecular crosspeaks are observed at this mixing time, as do internal controls in this

sample (e.g. lack of Leu H--Ala-Ha cross peaks). The presence of these crosspeaks is

thus most consistent with parallel or antiparallel configuration of the amyloid fibrils

which is, at most, +/-1 out of register. The measurements also illustrate some features of

experiments based on spin diffusion: namely, while it is possible to quantitatively

interpret spin diffusion exchange trajectories, the analysis requires numerical simulations

of the nearby spin geometry, typically including 7-9 spins (Veshtort, private

communication). Exact numerical simulations are therefore computationally infeasible

unless the exact spin geometry is known a priori. Analytical approaches for the

approximate simulation of spin diffusion have been developed but have not yet been

explored here [55].
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Figure 14-18: 2D plane of CHHC experiment conducted in AALL-labeled TTR sample.

Instead of these approaches, we have elected to perform experiments in a sample labeled

so that all interesting cross peaks are unambiguously intermolecular. While it is possible

to probe interfaces by specific labeling of one binding partner with '3C and the other with

' 5N, such a labeling pattern would result in dilution of intermolecular couplings in this

system. Instead, we probed the antiparallel protofilament packing hypothesis in a sample

that was uniformly labeled at the N and C-termini (Figure 14-17). Irrespective of the

experiment, any magnetization exchange between the labeled "YTIA" and "LSPY"

segments of the peptide is therefore intermolecular. Proton-driven spin diffusion

experiments (DARR-type) are illustrated in Figure 14-19 and Figure 14-20. At short

mixing times, only intramolecular cross peaks appear; at longer mixing times, however,

intramolecular cross peaks are clearly visible. Approximately 15-20 intermolecular cross

peaks have been observed in this experiment. While efforts to quantify them are
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underway, they can be classified as between 3-6 A by using known intramolecular

couplings as an internal calibration, following procedures used by other investigators

[62]. The results, analyzed in Figure 14-21, are most consistent with an antiparallel

interface between P3-sheets in the protofilament. A quantitative analysis of the cross peak

intensities which takes into account the possibility of relayed transfer is underway and

may result in improved differentiation of the conformational possibilities.
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Figure 14-19: 2D plane of 3D DARR experiment corresponding to 25
YTIA-LSPY TTR105-115 sample. All cross peaks are intramolecular.
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Figure 14-20: 2D plane of 3D DARR experiment corresponding to 250 ms mixing time in
YTIA-LSPY TTR 05s-115 sample. Many intermolecular cross peaks emerge at long mixing times.
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Figure 14-21: Consistency of DARR results with preliminary family of TTR models (courtesy of
A. Fitzpatrick).
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Figure 14-22: 3D TEDOR experiment in AALL-labeled sample which demonstrates
intermolecular cross peaks that report on the protofilament packing geometry.
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Several other structural measurements are also consistent with an antiparallel

packing of f-sheets in the protofilament. 3D TEDOR and R2TR experiments in the

AALL labeled sample (Figure 14-22 and Figure 14-23) reveal cross peaks between the

Ala108 backbone and the side chain of Leulll. The corresponding intramolecular

distances lie in the range of 5.9-6.6 A and are unlikely to have been detected in these

experiments.
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Figure 14-23: 3D R2TR experiment in AALL-labeled sample which demonstrates intermolecular
cross peaks that report on the protofilament packing geometry.
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The 15N-13C81 and ' 5N- 13C52 distances are fit to 4.1 A and 5.2 A, respectively, while the

13C'- 13C81,2 distances fit to 4.3-5.4 A. As shown in Figure 14-24 and Figure 14-25,

these distances are expected to lie in the 4.5-4.8 A range for in-register, antiparallel sheet-

sheet packing. The corresponding '5N-13C81 distances lie in the range 5.2-5.6 A 13C'-

13C81,2 for a parallel sheet-sheet packing, while the 13C'-1 3C81,2 distances are 4.9-5.2 A.

Because these distances may change as a function of the peptide registry, we cannot use a

single distance alone to rule out parallel packing of the interface. However, antiparallel

packing is most consistent with the totality of information. Similar constraints have been

observed between the A108N backbone and M111 side chain of the L111M mutant of

TTR.

Figure 14-24: Distances between A108 backbone and L111 side chain in antiparallel-antiparallel
configuration of TTR amyloid fibrils.

591



Figure 14-25: Distances between A108 backbone and L 11 side chain in parallel-antiparallel
configuration of TTR amyloid fibrils.

Figure 14-26: Distances between A108 backbone and L111 side chain in parallel-parallel
configuration of TTR amyloid fibrils.
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Figure 14-27: Distances between A108 backbone and L111 side chain in parallel-parallel
configuration of TTR amyloid fibrils (alternate distances).
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Table 14.2: Table of intermolecular restraints in TTR105-115 amyloid fibrils.

Assignment Distance Method
Estimate

T106CA-P113CD 3-5 A DARR
T106CG-P113CB 3-5 A DARR
I107CA-S112CA 3-5 A DARR
I107CB-SI12CA 3-5 A DARR
I107CB-S112CB 3-5 A DARR
I107CD-S112CA 3-5 A DARR/HORROR
I107CD-P113CA 3-5 A DARR
I107CG2-S112CA 3-5 A DARR
I107CG2-P113CA 3-5 A DARR
1107CG2-P113CB 3-5 A DARR
A108CB-S112CA 3-5 A DARR
A108CB-S112CB 3-5 A DARR
S112CA-T106CG 3-5 A DARR/HORROR
S112CB-I107CA 3-5 A DARR
P113CA-I107CA 3-5 A DARR
P113CA-T106CG 3-5 A DARR

A109N-L111CD1 4.1 A 3D TEDOR
A109N-L111CD2 5.2 A 3D TEDOR
P113N-A108CB 4-5.5 A 3D TEDOR
S112N-A108CB 4-5.5 A 3D TEDOR
Y114N-I107CA 4-5.5 A 3D TEDOR

A108CO-L111CD1 4.3-5.25A R2TR
A108CO-L111CD2 4.3-5.25A R2TR

A108/A109CA 2.0-4.0A CHHC

14.5 Refinement of the Protofilament Structure

Refinement of an NMR structure of the protofilament, which involves self-consistent

evaluation of all the distance restraints, will result in a family of structures that is most

consistent with the observed data. The first step in this process is the refinement of a

dimeric interface between two monomers. This has been accomplished using Cartesian-

space simulated annealing molecular dynamics in the program X-Plor NIH [63], and a

preliminary family of refined structures is presented in Figure 14-28. Starting from

extended strands, the structure refinement used intramolecular and intermolecular

distance restraints. The conformational analysis shown in Figure 14-29 demonstrates that
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all residues occupy favored regions of the 3-sheet conformational space. In order to

refine the protofilament structure completely, side chain distance restraints can be

incorporated into the refinement. However, this can only be accomplished once the

number of sheets in the protofilament are known through other measurements (such as

STEM). The inclusion of hydrogen bonding potentials, which was not done in this

refinement, is a logical step in improving the geometry of this ensemble.

Figure 14-28: Structure of TTR dimer refined from extended strands using intermolecular and
intramolecular structural constraints.
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Figure 14-29: Ramachandran plot illustrating the quality of the structural ensemble in Figure 14-
28.

14.6 Structural Approaches for Fibril Architecture on Long Length
Scales

Several experimental approaches are being applied to extend these structural

measurements to the length scale of the microscopic amyloid fibril. As previously

mentioned, these include x-ray fiber diffraction, atomic force microscopy, STEM mass

per length measurements, and cryo-EM tomography. STEM mass per unit length

measurements are required to obtain an estimate of the number of 3-sheets in the

protofilament. Cryo-EM experiments, which are in progress, will provide an electron
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density map that can be fit using the structure of the protofilament, refined by NMR and

other methods (Anthony Fitzpatrick, private communication). An example of the current

reconstruction is shown in Figure 14-30, in which the pattern of dark-light-dark regions

in the fibril crossover is characteristic of a fibril that has a hollow core.

Figure 14-30: Examples of structural refinement from cryo-EM experiments (courtesy of A.
Fitzpatrick).
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