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Abstract

The study of B meson decays to 3 pseudoscalar mesons M M M provides a promising
arena for constraining C P violation from the Standard Model and searching for “new
physics”. In this thesis we derive decay amplitudes, rates, and CP asymmetries for B
mesons decaying to MMM, in the limit of SU(2) isospin and in the limit of SU(3)
quark flavor symmetry. Our results are classified according to the relative angular
momentum of mesons in the final states. When all the mesons have relative even
angular momentum, there are 56 decay channels expressed as linear combinations of
7 reduced matrix elements. There are also 7 reduced matrix elements for the 36 decay
channels where all the mesons have relative odd angular momentum. These results
imply relations between the decay amplitudes, including several isospin triangles for
B — MMM, analogous to the B — 77 isospin triangle. We also derive sum rules for
B — MMM, which give approximate SU(2) relations among branching ratios and
CP asymmetries.
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Chapter 1

Introduction

Symmetries provide an attractive way to describe nature. Examples of important
symmetry transforms are parity P, charge conjugation C, and the combined transform
CP. The charge conjugation transformation, C, reverses the electric charge and all
the internal quantum numbers of a particle, such as baryon number. C thus converts
a particle to an antiparticle. Meanwhile, the parity operation, P, is the inversion
of all spatial coordinates ¥ to —Z. Charge conjugation and parity symmetries are
each preserved in classical physics and in strong interactions, but are badly broken
by weak interactions. The combined transform CP was historically expected to be
a symmetry of weak interactions, but it too is broken by weak interactions. Careful
study of the pattern by which these symmetries are broken was important to the
construction of the Standard Model. [1]

In the Standard Model, CP symmetry breaking, or C'P violation, occurs in elec-

troweak quark flavor changing processes due to the complex phase in the Cabibbo-
Kobayashi-Maskawa (CKM) matrix. The CKM matrix is typically written as follows:

Vud Vus ‘/;.Lb
Vea Ve Vo (1.1)
V:td ‘/ts Vib

where each matrix element V;, gives the relative magnitude and phase of the quark

flavor changing process z — y. The quark names, masses, and charges are in given
Table 1.

The C'P violation in the Standard Model, however, is already known to be insuf-
ficient to explain the matter-antimatter asymmetry in the universe. Furthermore, it
is still not clear whether the C'P violation in the CKM matrix is enough to account
for all the C'P violation we can observe in collider experiments. A careful study of
experimental constraints on the CKM matrix may reveal other sources of CP vio-
lation at higher energies than physicists have been able to probe in the past, which
is generically called “new physics”. It is possible that the C'P violation due to new
physics could account for the matter-antimatter asymmetry. Thus an accurate deter-
mination of sources of C'P violation would have many implications in particle physics
and cosmology.



Table 1.1: Quark masses and charges from [2].

Flavor Mass Charge (e)
Up u 1.5-3 MeV 2/3
Down d 3-7 MeV -1/3
Strange s 95+ 35 MeV -1/3
Charm ¢ 1.254.09 GeV 2/3
Bottom b 4.20 % .07 GeV -1/3
Top t 17424 3.3 GeV 2/3

One promising area of research is the study of C'P violation in B meson decays.
The phenomenological study of CP violation in B-decays centers on the unitarity
triangle. In order for the CKM matrix to be unitary, there are 6 relations that must
hold between elements of the matrix. The unitarity triangle is one particular relation:

VudVp + VedVy + ViaVyy =0,  or

VuaViy ViaViy
—w 41 = 0. 1.2
VoV +1+ VoV (1.2)

The angles of the unitarity triangle are defined as:

_ —ViaVy, _ —VeaVy, . —VuaViy

These angles are called weak phases because the quark flavor changing processes
occur via the weak interaction. There are analogous weak phases defined for the
other unitarity relations. These phases lead to CP violation; a larger weak phase
results in more C'P violation. Measurements of CP violation which cannot satisfy
unitarity consistently would imply sources of new physics.

Because B decays to mesons typically involve quark processes such as b — (ud)u
(with weak phase V,4V};) to b — (¢d)c (with weak phase V4V}), they are useful for
studying the angles of the unitarity triangle. Decays of B to two mesons, such as
B — mm or B — wK, have been well-studied theoretically, and are being analyzed
thoroughly by experimental collaborations such as BaBar and Belle 3, 4].

On the other hand, the decay of B to three mesons M, such as B — nwm and
B — Kmm and related decays, is still a fresh area to explore. With the copious
amounts of B decays being observed by experimentalists, predictions for B — MMM
offers additional tests and constraints on the CKM matrix and sources of new physics
[5, 6, 7, 8, 9, 10]. The goal of this thesis is to provide predictions between different
B — MMM channels from group theory.

This thesis begins in Chapter 2 with a brief guide to the group theory necessary
for understanding the analysis done here. We discuss the observables and the Hamil-
tonian for the relevant decay processes in Chapter 3. Chapters 4 and 5 are devoted
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to a detailed analysis of the group theory of calculating matrix elements and sym-
metrization of the wavefunction. Finally, the predictions for B — MMM in both
SU(3) and SU(2) limits are presented. We give a limited list of decay and amplitude
relations, classified according to relative angular momentum of particles in MMM,
in Chapter 6. In Chapter 7, we discuss useful relations that can be tested by the
data, including isospin triangles analogous to the B — # isospin triangle, as well
as four sum rules and their corresponding CP asymmetry sum rules. We conclude
in Chapter 8. The full tables of 3-body decay amplitudes and additional amplitude
relations are presented in the appendices.



Chapter 2

Symmetry and Group Theory

The usefulness of group theory in studying particles composed of quarks stems from
the approximate flavour symmetry of quarks in strong interactions. The strong inter-
action is blind to quark flavor, though not to quark mass. If all the quarks had the
same mass, then there would be an SU(6) symmetry of strong interactions among
the quarks.

Though the quarks do not all have the same mass, as shown in Table 1, the
difference in masses between several quarks is small compared to the typical scale of
strong interactions, A &~ 200— 500 MeV. In particular, there is an approximate SU(2)
symmetry known as isospin, between the up and down quarks, because (m, —mq)/A is
small. The other quarks are treated as ‘singlets’ or ‘invariants’ in the SU(2) limit, and
therefore regarded as if they had infinite mass. Isospin has only about 2% theoretical
error when predictions are compared to observations.

Since (ms — mg)/A = .3, it is reasonable to try to assume an SU(3) symmetry
as well among the up, down, and strange quarks. SU(3) introduces a theoretical
error of about 30% in calculations, but can still provide valuable information. In this
thesis we assume SU(3) symmetry, but note which predictions are true assuming only
isospin, as these predictions are more precise.

2.1 Representations and Tensor Methods

It is now necessary to delineate some basic definitions, methods, and theorems rel-
evant to group theory. Further details can be found in [11]. Our focus will be on
representations of SU(2) and SU(3). A representation is a linear mapping 7" of group
elements g to matrices which preserves group multiplication: T(g,)T(g2) = T(g192)-
An irreducible representation is a representation that has no invariant subspace; other
than the entire vector space, there is no set of vectors that only transforms into itself
under multiplication by matrices of the representation. The dimension of the irre-
ducible representation is the dimension of the vector space acted on by the matrices.

Irreducible representations determine how particles transform under symmetry
operations. SU(2) is the familiar group from quantum mechanics which describes the
rotational symmetry of physical systems. Each irreducible representation of SU(2)
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is typically labeled by its spin, and we follow the convention in this thesis; the 2
dimensional representation (the Pauli matrices) is labeled by %, and the spin S rep-
resentation has dimension 25 + 1. Spin-S particles transform under the irreducible
spin S representation.

In angular momentum the two basis states for spin——;- are typically labeled by
projection of spin along the z axis: |1,) and ||,). In SU(2) isospin, we pick the two
eigenstates to be |u) and |d), for the u and d quarks. The antiquarks % and d also have
an SU(2) isospin symmetry, and here the eigenstates are picked by convention to be
— |d) and |z). Taking the direct product of representations (adding angular momenta
in SU(2)) is typically accomplished using Clebsch-Gordan coefficients, which can be
found in tables.

We can use tensor methods to arrive at the same results, since the calculations are
far easier. In the tensor analysis, we place the particle states in matrices corresponding
to their representations. The quark doublet in SU(2) is:

@=(4) @=(s ) 21)

where we use an upper index for the quarks and a lower index for the antiquarks. The
fundamental representation of SU(3) is the 3. In this thesis SU(3) representations
will labeled by their dimension D, and SU(2) representations will be labeled by spin
S where the dimension is 25 + 1. The quarks in SU(3) are in a triplet and the
antiquarks in an anti-triplet:

3:¢=|d ), 3:,=(uw d 3) (2.2)

Note that while representations of SU(2) are equivalent to their complex conjugate,
this is not true in SU(3). In SU(3), the complex conjugate representation of D is
denoted by D.

From SU(2) we know higher dimensional irreducible representations can be ob-
tained by taking tensor products of the %, as long as some symmetry restrictions are
imposed. Decomposition of tensor products into a direct sum of irreducible represen-
tations in SU(2) iss: m®n=|m —n|®|m —n|+1& ... ® |m + n|. In SU(3) higher
dimensional representations can be obtained by taking tensor products of the 3 and
3, again with symmetry restrictions. The decomposition of tensor products in SU (3)
is done with Young tableaux; this is discussed further in Chapter 5.

Thus an irreducible representation can be written as a tensor with a number of
upper and lower indices, each of which refers to the lowest dimensional representation
(3 in SU(2) or 3 and 3 in SU(3)), and with symmetry constraints on the indices:
B;:;i;’:n In SU(3), if a representation D has n upper indices and m lower indices,
then D has m upper indices and n lower indices. Without proof, we now state some
results regarding tensors irreducible representations. [11] The first two are necessary

for some of the symmetrization done in Chapter 5.
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First, an irreducible representation B;i;i;’;n must be symmetric in its upper in-
dices, symmetric in its lower indices, and must satisfy the traceless requirement:
6,’:3;;;2;’; =0, where k€ 1,2,..mand £ € 1,2, ...n.

Second, the Levi Civita symbols €;;x and €7* and the Kronecker delta §i are
invariant tensors in SU(3). In SU(2), 6%, €;; and € are invariant. These are invariant
because singlets (0-dimensional representations) can be formed by contracting upper
and lower indices using €;;x, or d;. For example A; B*6% and €;;, A' B?CF are singlets. A
singlet does not change under rotations in the flavor symmetry space and is therefore
invariant. Note also that these invariant tensors can be used to raise or lower indices.

Finally, the Wigner Eckart Theorem is essential. This theorem is proven in [11]
and [12]; here we give the result. Suppose we are given two states that transform
under irreducible representations labeled by ¢ and n, respectively, and are labeled by
i¢ and 4, within the representations. For example, in SU(2), we could have particles
with spin angular momentum ¢ labeled by the z component of angular momentum,
my. The two states may also have other labels which we denote by « and o'.

Next, consider a tensor operator OF. A tensor operator OF is defined to be a
set of operators that transforms under commutation with a specific set of operators
(the generators of the Lie algebra) like an irreducible representation of dimension
k. Specifically, suppose the ket |£,4,) transforms as the i,th state in the irreducible
representation £. Then OF, |£,4,) transforms like the direct product of two irreducibles:
|k7 m> ® lgi Zg)

The Wigner-Eckart Theorem states:

(€,ig, a|Of |0, in, &) = (£, a||OF||n, @) (£, 0|k, m; 1, 5 (2.3)

where (£, a||O¥||n, o) is a number, called the reduced matrix element, that is inde-
pendent of m, i, and i,. The number (¢, %,|k, m; n,4,) is a Clebsch-Gordan coefficient
that depends only on the transformation properties of states and operators, and is
nonzero only when the irreducible £ appears in the tensor product £ ® n. Note that
it is necessary for £ to appear and not ¢ because £ is the label of the bra state.
(£,i4,0|OF |1, in, o) must be an SU(3) invariant, or a singlet, and only a represen-
tation and its complex conjugate representation can form a singlet. In the tensor
language, this means the upper and lower indices must match up in order to be
contracted.

The particle states and operators in this thesis transform as irreducibles. The
Wigner-Eckart theorem implies the matrix elements depend only a few reduced matrix
elements which we will enumerate in Chapter 4. The group theory calculation then
gives the relative dependence of a decay channel on each reduced matrix element.

11



Chapter 3

Observables and the Electroweak
Hamiltonian

For the decays B — M;My;M; we are concerned with the B, m, , and K mesons,
which are spin-0 (pseudoscalar) bosons composed of one quark and one anti-quark.
The particle convention adopted in this thesis is:

B~ =tm B'=-bd B, =b3

Bt =bu B = bd B =bs

R 0 _ (vu—dd) +_ 7

T =ud 7r_0— Vo T du (3.1)
K =su K = —sd

Kt =3u K°=73d

ng = (Tu + dd — 2§s)/\/6

The negative signs in Eq. 3.1 are included such that particle states correspond directly
to isospin eigenstates in the standard sign convention of Clebsch-Gordan tables. In
addition, the ng above is part of of the meson octet (see Eq. 3.2 below); the physical
n is a mixture of 7g and the singlet 7, = (Wu + dd + 5s)/+/3. The physical 7 can be
written as cos¢ ng + sin¢ 7, with the mixing angle ¢ ~ 10 — 20°. In this thesis,
we limit our analysis to 7. In SU(2), both 7 and 7g are singlets, and thus the
non-negligible mixing angle does not alter the group theory predictions. However,
any SU(3) results derived involving 7s have an uncertainty due to 1, — 75 mixing
associated with them.

Particles which are combinations of quarks and anti-quarks can form a tensor with
one upper index for the u,d, s quarks and one lower index for the %, d, 3 anti-quarks
in SU(3). The b quark is a singlet and has no index. The SU(3) meson octet is the
8-dimensional irreducible representation formed by taking the tensor product 3 ® 3.
We write the states in the matrix M; as

—1r 0
Ftsa K (3.2)
K- —70 —fn

12
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Again note the negative signs in front of 7+ and K in keeping with the particle
convention of this thesis. Each element of the matrix M} is a sum of mesons M
weighted by (¢'g,|M). Thus Eq. 3.2 is a convenient way of keeping track of the ket
states [11]:

ZM,@ lq’ﬁk> =7 |7TO> +nln+ K™ IK+> + K° |K0> (3.3)

We can think of the mesons in Eq. 3.2 as creation operators (on ket states) or an-
nihilation operators (on bra states). Taking the conjugate of the above equation
gives: ’
- i . —0
Y (da] (M), = (7°| =+ (nln + (KT K~ + (K°| K. (3.4)
ik
Hence M can also be used to keep track of the bra states, by regarding the mesons in
M as creation operators acting on the bra state of the conjugate particle. We define
a tensor M to keep track of the bra states, defined by Mf = (M*);. Note that in
this case M, = MF.
In SU(3) the B mesons form an anti-triplet, or a triplet if one looks at the con-
jugate particles:
B+
B=(p B B) B=| B (3.5)
By
B has an upper index and B has a lower index. In practice, we will label both B and
B by B and just use the index to indicate whether we mean a triplet or an anti-triplet.
In SU(2) there are a number of triplets and doublets:

=(5F) (%) ®e(x )
V2

B=(5 -B) BE(ZZ;) (3.6)

3N

Il

=

The kaons form doublets here because the s quark is a singlet in SU(2).

While the results derived in this paper are strictly all B — MM M, which is the
decay of a b quark, all results can be directly applied to the CP conjugate process
B — MMM for the decay of the b quark. The only difference is that weak phases
in decay amplitudes must be conjugated. We work through an explicit example in
Chapter 7.

3.1 Observables

Using the Wigner-Eckart Theorem, we will be calculating the decay amplitudes A =
(MMM|H|B) which is dimensionless. |.A|? is proportional to the (unnormalized)
decay rates I'(B — MMM). The C'P conjugate process of A will be denoted by A.
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The branching ratio is the time-independent observable quoted most frequently
by experimentalists and is defined as

11 (;AP + |Z|2) (3.7)

_ 1 2 5 9
Br= g /dm12dm23 (2m)3 32m3; 2

for three-body decays to pseudoscalars [2]. Here mZ, = (p; + p;)?, and p; is the 4-
momentum of the ith particle. The integral over m?, and m2; is equivalent to the
integral is over all possible momenta of the 3 final mesons, given that the B is initially
at rest and the initial energy of the system is mp (in units where ¢ = 1). The numerical
constants under the integral, including the mp, are phase space factors. Meanwhile,
I'p is the total decay rate of the specific B particle which is decaying, for example
B~. Note that I'g is equal to 1/75 in the equation above, where 7p is the lifetime of
the particle, and is not the specific decay rate I'(B — MMM) « |A(B — MMM)|>.

Also FB— = FB-f- and FBO ~ FEO
The other parameter we will be concerned with is the CP asymmetry, defined as
2 _ 412
CpP = -|i4-|—-|£_t (38)

|A]? + | A]?

Clearly if there is no CP violation Acp will be 0.

3.2 CKM Matrix

Matrix elements of decays are weighted by elements of the CKM matrix, so the sizes of
these numbers can suppress or enhance various reduced matrix elements, depending
on the decay. This information is useful in making approximations for the values of
decay amplitudes.

The Wolfenstein Parameterization of the CKM matrix is [13]:
1— 222 — 2\ A AX¥(p —in)

“AH LA -2(p+m)]  1-IN- %)\4(1 + 4A?) AN? (3.9)
AN[1— (1 =32 (p+1n)] —AN+3AN[1-2(p+in)] 1-— 142\

The parameters A, p,n are of order unity. |A] = .2 and terms of O(\%) were ignored.

The following representation of the CKM matrix gives only the order of magnitude
of the elements and will be used below to justify the smallness or largeness of various

terms:

Vud Vus Vub 1 A )\3

Va Ve Vo | =] XA 1 22|, (3.10)
Vie Vis Vi A3 A% 1
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3.3 Electroweak Hamiltonian

The electroweak Hamiltonian describing Ab = 1 transitions b — f, where f is d or s,
is given by

10,7+,8¢

e
Hy = 7% S Vi ;f(cloi’ + 05+ Y CiOi), (3.11)

p=u,c 1=3

with G, C; constants and O are operators [14]. The standard basis of operators are:

O} = (ub)y—a(fu)v-a, o = (Upba)v-a(faup)v-a,
0% = (eb)v_a(fe)v-a, 5= (Caba)v—_a(Facs)v-a,
O3 = (fb)v_a(@q)v—a, Os = (fgba)v-a(Gaas)v-a,
Os = (fb)v-a(@Q)v+a, Os = (fgba)v-4(Gaq8)v+a;

3e, — 3e, —
Or = —2—q(fb v-a(@@)v+a, Og = f(fﬁba)v%(@a%)vm,

3e, — 3e, —
Oy = —;—q(fb)V—A(GCI)V—A, O = *z—q‘(fgba)\/—A@a(Iﬁ)v-A,

my —
Ory.80 = —-8—7;% f ot {eFu, gG% T} (1 + 75)b. (3.12)

The sum over ¢ = u,d, s,¢,b is implicit in (gg). The labels «, 8 are color indices
and the e, label is electric charge. The y_4 and ;4 subscripts on the operators
denote spin structure. The As = 0 (strangeness preserving) and As = 1 (strangeness
changing) Hamiltonians are obtained by respectively setting f = d and f = s in
Egs. 3.11 and 3.12.

We are only concerned with analyzing the flavor structure; the other parts of the
Hamiltonian will all be absorbed into the reduced matrix elements. We also make
the further simplification of ignoring the (ggq) operators, since these are singlets in
the group theory. The charm quark c is also a singlet. Thus for our purposes the
operator basis that contains only the non-singlet flavor operators can be written as:

vy — (ab)(fu) for b— ufu
i2 - (7@ for b— f
03456 — (Fb) for b— f
3€q =, - 3eq_
078910 — T(fb)(QQ) for b— f(‘é“QQ) (3-13)

The operators in the left column of Eq. 3.13 correspond to the processes listed in the
right column. The final state quarks appearing in each process are the conjugate of
the quarks appearing in the operator because these operators are annihilation and
creation operators on the quarks. Hence b needs to act on the initial state and the
other quarks need to act on the final state (they act on the ket if b acts on the bra).
The (%iﬁq) operator can be written as %ﬂu + %Ec — %(aq) and is thus composed of a

15



piece that transforms like the O3 456 operators and a piece that transforms like OY,.

In the group theory, the operators in Eq. 3.13 are the only ones contributing to
B — MMM. The operator Of , contributes even though there are no charm quarks
in the octet mesons because the ¢¢ pair can annihilate to a gluon, producing a gg. All
of these operators can be combined with an arbitrary number of singlets Gq, produced
by flavor singlet gluons. For the decay B — MMM, it is necessary to include two
extra singlets for the (fb) operator and one extra singlet for every other operator
in Eq. 3.13. For a group theory analysis these singlets only affect the value of the
reduced matrix elements.

The operators OF, are called the tree operators and the operators Of , and O3 456
are called penguin operators. The Orgg10 operators are typically called the elec-
troweak penguin operators. Fig. 3-1 shows some possible quark diagrams correspond-
ing to these operators. There are many possible quark diagrams contributing to a
decay B — MMM, such as as the annihilation diagrams also shown in Fig. 3-1.
However, the operators in Eq. 3.13 and the Hamiltonian, Eq. 3.11, give all the infor-
mation about the decays as far as the flavor structure is concerned, since the group
theory analysis cannot distinguish between two operators which transform in the same
way. The annihilation diagrams in Fig. 3-1 (c¢) and (d), for example, correspond to
operators that transform in the same way as O3z 456.

The Hamiltonian, Eq. 3.11, gives the relevant CKM factor for each operator. To
see how this comes about, consider the penguin operators Os 456 and Of , which
correspond to b — f. These operators transform as 3s in SU(3) because b is a
singlet. The isospin of the operators is Al = 0 in As =1 processes and is Al = 1/2
in As = 0 processes. However, O3 456 has a CKM factor of VinVis + Ve Vo while Of 5
has a CKM factor of V;V; according to Eq. 3.11. Now using unitarity, we can write:

ViV + VoV + ViV = 0. (3.14)

Though O3 456 in reality has a CKM factor of VinVi}, it can be written with a factor
of VipVyi; + Vcch’} instead. Both V;bVC*} and VypV,; are ~ A3 for f = d and ~ A2 for
f = s from Eq. 3.10. However, VipV5; is ~ A* for f =d and ~ M for f = s.

The tree operator Of, corresponds to b — %ufu where f is d or s. An example
is shown in Fig. 3-1(b). These operators are the tensor product of three non-singlet
quark operators and transform as 3 ® 6 @ 15 in SU(3). The electroweak penguin
operators O7gg10 also transforms as 3 @ 6 @ 15 in SU(3) because (§§—qqq) = %ﬂu +
3cc — 1(gg). While O75910 has a piece that transforms like the penguin operator,
this piece can be combined with the 3 in 3 @ 6 ¢ 15. The isospin of the operators is
Al =11in As =1 processes and Al = % in As = 0 decays. However the CKM factor
for O75910 is ViV while the CKM factor for OF, is Vi Vs

To summarize, the As = 0 decays have contributions from processes with V,,V.*;, ~
A% and ViV ~ A3, (We always will remove CKM factors involving ¢ using Eq. 3.14.)
The relative weak phase of these two CKM factors is v in Eq. 1.3. Meanwhile the
As = 1 decays have contributions from processes with V,, VX ~ A* and V, V% ~ A2,
As a result, for the As = 1 Hamiltonian, contributions with CKM factor V,,V.% are
suppressed by O(\?) relative to contributions with CKM factor of V,,V%. Even though
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b Vub I/Jf
Ve Ve

Sl
S

(a) Penguin (b) Tree
VoV ViV
(c) Penguin Annihilation (d) Tree Annihilation

Figure 3-1: Some of the quark diagrams corresponding to operators in Eq. 3.13.
There are a number of possible quark diagrams for a given operator, and only a few
are shown here. However they do not affect the group theory. Possible pairings of
the quarks into the final state mesons are represented by the ellipses. Each diagram
is associated with a CKM matrix factor, labeled in the figure. Antiquarks are arrows
pointing away from mesons. The unlabeled quark-antiquark pairs are all singlets (gq),
or penguins. The p means either d or s, depending on the Hamiltonian.
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these coefficients are suppressed we cannot drop these terms since they are important
for interference in C'P violation. Finally, the C'P conjugate of a process conjugates
the CKM factors but not the coefficients multiplying the CKM factors. If a decay has
contributions from processes with a relative weak phase, the C'P conjugate decay will
have a different amplitude, resulting in CP violation. The size of the CP violation
is quantified by Eq. 3.8.

3.4 Components of the Hamiltonian

There are two types of operators as far as group theory is concerned. The tree
operators and electroweak operators corresponding to b — Ufu are 3 ® (3 ® 3) =
3@ (1®8)=3®3®6 15, as we will show below. Next, the penguin operators
corresponding to b — fgq are simply 3s.

Therefore the Hamiltonian has three parts, transforming as a 3, 6, and 15, respec-
tively. We write the parts of the Hamiltonian as H(3)!, H(6)y and H(15)7 [11]. The
number in the parentheses indicates how that part of the Hamiltonian transforms.
Note that it is necessary to give the tensor H(6);) two upper indices and one lower
index for the index contraction to work in Eq. 4.1 below. A tensor which transforms
as a 6 typically has 2 lower indices. However, a 3 can be formed from an antisym-
metric combination of two 3s using the €;;, tensor. As a result H(6)Y will transform
as a 6 if we impose antisymmetry on the upper two indices.

In general, the components of the tensors H(3)}, H(6)Y and H(15){ are linear
combinations of the physical constants of the electroweak Hamiltonian in Eq. 3.11,
weighted by CKM matrix elements. Hence the H components can be written as
ViV X + Vcch’}Y, where f =d or s and X and Y are constants. The components
of H(3) will have contributions from tree and penguin operators, and include CKM
factors of Vi V;; and VipV;. Meanwhile the components of H (6) and H(15) will have
contributions only from tree and electroweak penguin operators, with CKM factors
of VipVys and VipV}. Since the contribution from electroweak penguin operators is
expected to be small, the effect of adding V;;V}} terms to H(6) and H(15) should also
be small. Nevertheless, we keep them in order to make our analysis complete.

In the group theory analysis, however, only the symmetry properties of the irre-
ducible representations matter. Thus the amplitude relations we derive are indepen-
dent of the components used. We will only impose the restriction that an irreducible

. i142...0 R . e .
representation B2~ " must be symmetric in its upper indices, symmetric in its lower

indices, and be traceless. Hence H(15)/ is symmetric in its upper two indices. We
will set the components of the Hamiltonian to be numbers, and separate our calcula-
tions according to As = 0, for f = d, or As = 1, for f = s. Depending on As, only
certain components of the Hamiltonian will be nonzero. This choice of components
simplifies calculation. The weak phases and other constants from Eq. 3.11 will all be
absorbed into the reduced matrix elements of the Wigner-Eckart Theorem.

We use the same components as Savage and Wise, who calculated B — MM
group theory relations in [15]. The components can be derived by writing out the

18



tensor product of 3 ® 3 ® 3 with indices. We begin with 3 ® 3:

33=801:¢g, = (¢ %‘"M‘h)"‘

3

with an implied sum over repeated indices. The term in parentheses is an 8 and the
other term is a 1. Call the 8 v]. Then 3 ® 8 is:

wiv] = (w vl + wivk — —é,iwlv{ - (%wlvl’)

35kw — —6{11) v}) (3.16)

1., .
+Ze’ﬂ(qmnwmv2 + €mnw™ ) + (= 3 g

where each term in parentheses transforms as a 15, 6 and 3 respectively. Given an
operator such as udd we know which components of ¢7,,, and w* are nonzero: for
example ¢! for u, g, for d and w? for d. A convenient convention is to then set those
components of ¢/, g, and w* to be 1 because of our freedom in defining the reduced
matrix elements. From this one obtains the components of the various parts of the
Hamiltonian. The nonzero components used in the computation for the As = 0
Hamiltonian are:

H(3 )

H(®); ( 6);’ = ~H(6);=-H(®) =1

H(15 ) H(15) =3

H(15)2

H(15)% H(15) (3.17)

The nonzero components used in the computation for the As = 1 Hamiltonian are:

H(3)®=1

H(®) H(6) —H(®)7 =-H(@®)} =1

H(15)12 (151 =

H(15)3’

H(15)% (15)32 = 1. (3.18)

Note that the weak phase factors for the As = 1 reduced matrix elements are different
from that of the As = 0 reduced matrix elements.
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Chapter 4

Effective Hamiltonian and Matrix
Elements in SU(3)

The electroweak Hamiltonian H describes decays of B to three mesons, MMM.
Therefore {M; M,M;|H|B) gives the decay amplitude for B — M; MM, To fully
understand all the group theory involved in computing (M; M, M;|H|B), it is neces-
sary to delve into details of tensor product decomposition and symmetrization. In
this chapter, we focus on the physics; the details of the group theory are presented
in the next chapter.

The procedure for computing (M; MaM3|H|B) is to construct SU(3) invariants
by contracting indices of the meson octets with the index of the B meson and the
indices of the various parts of the Hamiltonian: H(3)!, H(6)Y and H(15){. The
contraction of indices can be pictured as diagrams shown in Fig. 3-1. A contraction
between indices of two mesons such as M, ,zMJ’“ indicates that a quark-antiquark singlet
contributes a quark to one meson and an antiquark to the other. A contraction such
as B'M; indicates that the anti-quark in the original B meson contributes to the
formation of the meson M/. Because the indices of the mesons B and M are fixed,
the Hamiltonian must have an extra upper index compared to the number of lower
indices. Hence we chose the 6 part of the Hamiltonian as H(6);, where H(6) is
antisymmetric in its two upper indices.

From the tensor analysis, we derive an effective Hamiltonian for B — M; M, M,
in SU(3) as follows. To find an SU(3) invariant, we find all the unique ways of
contracting indices:

H,j; = a3BiH(3)'(My M; M) + by Bi M H (3)*(M[, M}™) + c3 B; M} M} MEH (3)*
+ deBiH (6) M (MEM]™) + e BiM My H(6)5 M
+ foBiM;H(6)* M3, M;* + g6 B; H (6); My M;" My,
+ his BiH (15)] MF (MF,M}") + i15B; M, My* H(15)% M
+ 15 BiMyH(15)5* M, M + ks B; H(15) My M7 M, (4.1)

where there is an implied 'sum over all repeated indices. The constants as, bs, ..., k15
of the effective Hamiltonian are the reduced matrix elements of the Wigner-Eckart
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Figure 4-1: The effective Hamiltonian of Eq. 4.1. Every line represents an index
contraction. Hence there is one line extending from every B and H(3) and there are
two lines from every M. There are three lines from every H, which could be H(6)
or H(15). Diagrams (a), (b), and (c) correspond to the terms multiplying as, b5 and
cs respectively. Diagrams (d), (e), (f), and (g) correspond to the terms multiplying
ds, €6, fo and ge respectively when H is replaced with H(6). When H is replaced
with H(15), diagrams (d)-(g) correspond to the terms multiplying A5, 415, j15 and
k15, Tespectively.

Theorem. Their subscripts denote the representation of the Hamiltonian in each term.
The 11 terms in the effective Hamiltonian implies that there are 11 singlets in the
tensor decomposition of

8®808®3®3)
OBR8RE8R®6®3I)
DBR®8®8®15®3). (4.2)

The terms in the Eq. 4.1 can also be seen diagrammatically in Figure 4-1. In the
figure each index contraction is represented by a line connecting two tensors, and the
number of lines from a tensor is the number of indices it has. Each part of the figure
is a term in the Hamiltonian. The first three match the terms with H(3). The last
four match both the terms with H(6) and those with H(15) since H(6) and H(15)
have the same number of upper and lower indices. Because a tensor is traceless no
line extending from a tensor loops back to itself.

In computing (M; M2 M;|H|B) the effective Hamiltonian should in general have
M instead of M, where M is defined using Eq. 3.4. Since M = M we can just
use M here. This gives the effective Hamiltonian as a sum of creation or annihilation
operators. However, because the creation operator for (M| is the annihilation operator
for |M), all mesons M appearing in the effective Hamiltonian must be conjugated.
(Practically, this can be carried out by transposing all the M matrices in Eq. 4.1.)
Thus we obtain the coefficient to every BM MM term in the effective Hamiltonian
as the relative contribution to the decay B — MMM.
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4.1 Including Angular Momentum and Symmetriz-
ing the Wavefunction

The expression for the effective Hamiltonian in Eq. 4.1 has not yet been subject to
the constraints of angular momentum and symmetrization. In this section we discuss
the symmetrization of the wavefunction. Further discussion of symmetrization using
Young tableaux may be found in Chapter 5.

The mesons in the SU(3) flavor symmetry limit are identical particles labeled by
spin and flavor. The pseudoscalar mesons in the meson octet are spin 0 and must
obey Bose statistics. The total wavefunction of a meson has the form:

U= ¢space¢ﬂavor (43)

where we have dropped the Ycoorspin part of the wavefunction because the color and
spin wavefunctions of a pseudoscalar meson are flavor singlets and identical for all
mesons. The color and spin part of the wavefunction is already symmetric under
interchange of two mesons. The wavefunction in Eq. 4.3 must be symmetrized with
respect to every two mesons in the final state. Furthermore, the reduced matrix
elements depend on the angular momentum states. In this section we discuss five
different cases of relative angular momentum between the mesons, and evaluate the
number of reduced matrix elements for each case.

If the relative angular momentum of two mesons is L, the symmetry under inter-
change of spatial wavefunctions is (—1)f. An even L implies the flavor part of the
wavefunction must be symmetric under exchange of flavor labels of those two mesons.
Meanwhile L odd implies the flavor part must be antisymmetric. It is also possible
for two mesons to have no symmetry under exchange in the spatial part but only be
symmetric under the combined exchange of both spatial and flavor parts. The differ-
ent possibilities for angular momentum in the final states are given in Table 4.1. Note
it is not possible for two of the particles to have relative odd angular momentum, and
another two to have relative even angular momentum. Suppose 11 = —17); and

P11P3 = P3901. Then
Y1haths = —hath1hs = —hathzhy = Y1hathy = Y3th1he = —hs3ihetdy, (4.4)

but we assumed 11913 = ¥31092;. Hence this symmetry is not possible. Nor is
it possible for two pairs of the particles to have relative odd (or even) angular mo-
mentum, but for the last pair to have no symmetry. Suppose ¥y = F1)91); and

P12P3 = £Y31p;. Then

Y12tz = Tath1 U3 = Yorhsth = £iePsihs (4.5)

which implies 9915 = £1p3105. Then all the particles must have relative odd (or even)
angular momentum. This explains why Table 4.1 has only 5 rows.

Now we impose these restrictions on the effective Hamiltonian. We must sym-
metrize |My) |Moths) |M3)3) where M; and 1); refer to specific flavor and spatial
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Table 4.1: Different cases for relative angular momentum in MMM. The 9; < ¥,
columns give symmetry under exchange of spatial wavefunctions of M; and M;. The
/ means the two mesons are not in relative angular momentum eigenstate, so that
there is no symmetry property. In rows 2 and 4, which have a 4+ or — in one column
and a / in the other two columns, exactly two of the mesons are in a relative angular
momentum eigenstate. These two mesons are labeled by M; and M, in this table;
however they could also be labeled My and Mz or M; and M;. The column |¥)
indicates where the explicit wavefunction may be found. The last column of the table
gives the number of reduced matrix elements.

R 1 A A = N |T) Reduced Matrix Elements

] ] 7 Eq. 4.6 <53
+ / / Eq. 4.10 <28
+ + +  Eq 412 7
-~ / / Eq. 4.10 <25
- - —  Eq 412 7

wavefunctions. In general the symmetrized wavefunction is:

=%( (M) | Man) | Matis) + [ Masha) | Myin) [ Matis) + | Mahs) | Mas) | M)

+ |Myir) [ Msths) | Mapa) + | Matha) | Mstbs) [ Myahy) + | Msths) | Myhy) | Mata) )
(4.6)

v)

where the color and spin labels have been dropped since they are identical for all
mesons. It is more useful for our purposes to separate the flavor and spatial tensor
product spaces, in the following form:

=—¢1—6( | My Mo Ms) [Yriabs) + | Mo My Ms) [atpnihs) + | MMMy ) [hstbtin)

+ | My M3 My) [y13hsthe) + | My Ms My [hathsthn) + | Ms My Ma) [thsthraps) ). (4.7)

¥)

In order to keep track of the spatial wavefunction, we keep track of the ordering
of the Ms in the Hamiltonian of Eq. 4.1. For example:

H(123) = a<123)BiH(3)i(M1'gM2§M3{:)
+ b(iag) Bi My} H (3)" (Mo, Ms}*) + c123) BiMy s M) M H(3)
+ d1og) B H (6) Ma§ (Mo, Ms}") + €123 B: My, My H () My,
+ f(123)BiM1ZH(6)§kM2¥nM3ZZ + 9(123)BiH(6)?M1§M2?M3fn
+ hos) BiH (15) My 5 (Mol Ms7Y) + 123y Bi H (15)} My Mo My,
+ Josy BiMypH(15)5% Myl Ms + kqiaay BiMy b, Mo H(15)% Myl (4.8)
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where there is again an implied sum over all repeated indices. The constants a(;23),
b123), ---» K(123) are reduced matrix elements. The (123) subscripts of H(;153) and these
reduced matrix elements refer to how M;MyMs3 is contracted in each term. This
also labels the spatial wavefunctions 1,9,v3. For example, in H ;3 the first term
would be a3 BiH(3)!(Maf MiiMs]) which differs from the a(ip5) term in Higs) of
Eq. 4.8 by the interchange of 1 < 2. H(y3) gives contributions to the final state
| Matpa My Mips).

There are a total of 6 different effective Hamiltonians H,,.) we can construct,
where (uv7y) is a permutation of (123). Using Eq. 3.3, we then directly read off the
amplitude (MY, M, v, M, |H|B) from the coefficient for BM, M, M., appearing
in H(.). Note that because the reduced matrix elements depend on the angular
momentum, they depend on (uvr~y). In general, the total effective Hamiltonian is a
sum of all the Hy,,.):

Hess = H(123) + Hm3) + Hisg) + Hzar) + Hzia) + Hiasn) (4.9)

so that Hs; gives the contribution to (V|H|B).

If none of the Ms have a relative angular momentum symmetry, then there are
no conditions to impose on Hess. There are 11 reduced matrix elements in each
H.y), and 6 different H(,,,), resulting in up to 66 independent reduced matrix
elements in H.;;. However, there are several terms that have a manifest symmetry

"in the Ms: the a terms are cyclically symmetric in all three mesons, and b, d, and
h terms are symmetric in two of the mesons. This can easily be seen in Fig. 4-
1. Hence there are effectively only two a terms and 3 of each of the b, d, and h
terms. This reduces the number of independent reduced matrix elements in Hegy to
at most (66 — 4 — 3 x 3) = 53. This number is a bound and does not consider the
symmetries that may relate various terms of the effective Hamiltonian; we will see
several examples of these symmetries below.

In the mixed symmetry case two of the spatial wavefunctions, say ; and 15, have
relative angular momentum L. We use the symmetry in the wavefunction to rewrite
Eq. 4.6 as:

-1

(1Mat1) | Matha) | Mstps) + (—1)% | Mot ) | Mathe) | Mstps)

+ | Msyps) | Muhr) | Matpa) + (—1)% | Matps) | Mathy) | Myaha)
+ | Myths) | Maths) [Myshy) + (—1)% | Mype) | Maths) | Moy ) ). (4.10)

This wavefunction can also be written as:

7) = %((lm M) [Ms) + (~1)% [Ma) |My) [Ms)) ® [4h1) [oho) )

+ (IMs) |My) |Ma) + (—1)" [My) | Mz) |Mh)) ® bs) [ihr) [4h2)
+ (IMa) | M) |My) + (=1)F |My) | Ms) | M2)) ® |92) [obs) [91) ). (4.11)

To impose this symmetry on the effective Hamiltonian, we symmetrize or antisym-
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metrize M, and M, in H123), H(312), and H(33;) and sum these three terms. This
gives us contributions to the first, second, and third lines of Eq. 4.11 respectively.
Note that we could also have symmetrized M, and M3 or M3 and M,. However,
this simply corresponds to a relabeling of the mesons from M;MsM3 to MyM3zM; or
M3z M, M.

Thus when there is a mixed symmetry in two mesons, there are up to 33 inde-
pendent reduced matrix elements, 11 for each of the symmetrized or antisymmetrized
H123), Hz12), and Hg3;). However, there can only be one independent a contri-
bution because symmetrizing (or antisymmetrizing) any two mesons in (M;“MfM,ﬂ)
gives a totally symmetric (or totally antisymmetric) combination of all three mesons.
Similarly, there can only be two independent matrix elements from the b,d and h
terms ML (Mot MsT): symmetrizing the first and third mesons or the first and
second mesons give equivalent contributions. Therefore there can only be up to
(33 — 2 —1 x 3) = 28 independent reduced matrix elements for even mixed symme-
try. The b,d, and h terms cannot be antisymmetrized in one pair of mesons so for
odd mixed symmetry there are at most (28 — 3) = 25 independent reduced matrix
elements.

The final cases are when every pair of particles has relative even angular momen-
tum, or every pair of particles has relative odd angular momentum. Then because of
the symmetry on the spatial wavefunction, the total wavefunction can be written as:

W) = % (1) [¢2) |9s)) ® (IMI) |Mz) |Ms) + | Mz) [Ms) | M) + |Ms) | M) | M)

£ (ML) | Ma) |Ma) = [My) [ My) | M) = | M) | M) |M1>) (4.12)

where |, ) is the wavefunction for even L and |¥_) is the wavefunction for odd L. We
completely symmetrize the meson flavor states in Eq. 4.8 for even L and completely
antisymmetrize for odd L. The result is that each of the H(,,,) are equivalent up to
an overall sign so only one is needed.

When the meson flavor state is totally symmetric, the labels on the Ms in Eq. 4.8
are unnecessary and we instead just use Eq. 4.1. There are at most 11 independent
reduced matrix elements. We can use four additional identities to eliminate four of
these. There is one identity involving all the terms with H(3):

2 , ) . L
—?;BiH(3)’(MfoM,ﬂ) + B;MyH3) (ML M) — 2B, MM MEH(3)F = 0. (4.13)

As a result, only two of the terms in H(3) are necessary to describe the decays. We
will use a3 and bs There are two identities involving H (6):

B;M;H(6)5 M, M[* = —B; M} M;" H(6)% Mj (4.14)

and

B;H (6); M; M;* M}, = ~B;H () MF(ME,MJ™). (4.15)

N =
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These relations are independent of the components of H(6), as long as H(6) satisfies
the tracelessness and antisymmetry requirements. The relations imply that only the
linear combinations es — fs and ds + gg/2 will appear in the effective Hamiltonian
Eq. 4.1. We can drop the fs and gs terms since they provide no new information.
Hence there are only two independent H(6) terms that can be formed. Finally there
is one relation for H(15):

B;H(15) MMM}, = %BiH(15)ZjMf(M,ﬂM}"), (4.16)

which again only depends on the symmetry properties of H(15). This allows us to
eliminate the k;5 term. These four equations decrease the number of independent
reduced matrix elements to 7 when all the mesons have even relative angular momen-
tum. The totally symmetric effective Hamiltonian is:

HZ = a3 BiH(3)'(My M} M]) + b3 B; M H (3)* (ML, M;")
+ dg B;H(B){ M (My, M7") + e B;M;, My H(6)7* M,
+ h35B; H(15)7 MF(MEM™) + i35 B M}, My H(15)F M}
+ jisBiM; H(15)% M7 M (4.17)

where the S superscript means totally symmetric flavor wavefunction.

Finally, when all the mesons have relative odd angular momentum, we can again
drop the labels in Eq. 4.8 if we require that the mesons anticommute. It is clear the
b,d, and h terms cannot be totally antisymmetrized so there are at most (11 —-3) =8
independent reduced matrix elements. When the mesons anticommute, there is an
identity for H(6):

—B;M: M"H(6)*M! — B;M}H (6)* M M™ + 2B;H6) MM MX =0 (4.18
miviy j g 4 i tm ik k757 P m

which we will use to remove the g¢ term from the Hamiltonian. Therefore the number
of independent reduced matrix elements for totally antisymmetric wavefunctions is 7.
The totally antisymmetric effective Hamiltonian is:

Hf; = af BiH(3)'(My Mi M}) + ¢ B;M: M} MEH (3)*
+ e§ B;M;, M;* H(6);* M + f§ B:MyH (6)3* M}, M
+ i B; M}, M]*H(15) M} + j{y B M H(15)% MI M7
+ kiy BH(15); ME M ME,. (4.19)

where the S superscript means totally symmetric flavor wavefunction.

In this section we addressed the different possibilities for spatial parts of the wave-
functions, and the resulting consequences for the flavor wavefunction. The Wigner
Eckart Theorem is most practical for the totally antisymmetric or totally symmet-
ric cases. Imposing the symmetry on the effective Hamiltonian is easier here, since
it only involves anticommuting or commuting flavor states. Furthermore there are
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only 7 reduced matrix elements in both cases. In the B — MM decays, there are
5 reduced matrix elements for both the antisymmetric and symmetric cases. (How-
ever, for B — MM only the symmetric case is physically allowed because the initial
state has total angular momentum equal to 0.) The cost of adding another M in
the final state is a slight increase in the number of reduced matrix elements for the
completely symmetric or antisymmetric cases, and a much larger number of reduced
matrix elements when we consider mixed symmetries in MMM.

In the remainder of this thesis we will focus on the the totally antisymmetric
and totally symmetric cases, and leave a complete analysis of the mixed symmetry
case for a future publication. The totally antisymmetric or symmetric cases should
contain the greatest number of simple relations between the number of reduced matrix
elements is much lower. However, they also require extraction of the symmetry state
from the data which may be more difficult. Furthermore, the mixed symmetry cases
could be used to study decays such as resonant decays such as B — pM — (n7)M,
where the p particle is an antisymmetric combination of 7 mesons. In a non-resonant
decay, B would go directly to MMM rather than a resonant decay where B —
MM’ — M(MM). An analysis of mixed symmetry decays could provide more useful
information for experimentalists, who distinguish resonant decays from non-resonant
decays.

4.2 Reduced Matrix Elements

We began this chapter by deriving an effective Hamiltonian from a practical view-
point: we determined all the ways the indices of B, H, and MMM could be con-
tracted in order to create SU(3) singlets. In this section, we connect this approach
to the group theory by examining representations and Clebsch-Gordan decomposi-
tion of tensor products into irreducible representations. This provides an important
cross-check on the counting above. We use some results from Chapter 5 below.

The Clebsch-Gordan decomposition HB is:

HB—- 3@ (3®6®15)
315=8410027

3 6=8010
3 3=108
HB— 1680808010010 27 (4.20)

This equation can be derived using the Young tableaux of Chapter 5. The Wigner-
Eckart Theorem states there will be nonzero matrix elements when M M M transforms
as 1, 8, 10, 10 or 27. Note that the representations 1, 8, and 27 are all equal to their
conjugate representations, but 10 is the conjugate of 10.

The Clebsch-Gordan decomposition of MMM is more complicated because it is
now necessary to consider symmetrization of the final particle wavefunction and thus
consider the symmetries of the various representations that appear in the decompo-
sition of MM M. The prodigious ingredients that go into the symmetrization are
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delayed until Chapter 5. Here, we just state the results.

MMM :8® (8®28)
=8Q (ls®84 D8s D104 104 B 275)
(MMM)s — 1®&8¢® 106 10 & 27
(MMM)y — 1680100 106 27 (4.21)

where the subscript A or S indicates totally antisymmetric or symmetric with respect
to the two eights it arose from. The final states are decomposed into irreducibles that
transform like the conjugate of the representations in HB of Eq. 4.20.

From Egs. 4.20-4.21, we obtain the reduced matrix elements. The reduced matrix
elements for (MMM)s labeled in the manner of Eq. 2.3 are: (1|3[3), (8|[3][3),
(816113), (10/6]3), (8l15|3), (10]|15]|3), and (27||15||3) where we dropped the
extra labels & and /. These 7 numbers are linear combinations of the 7 numbers a3,
b3, d5, es, hi, i%s, and ji from Eq. 4.1. For the completely antisymmetric case, or
relative L odd between all the mesons, the reduced matrix elements are again labeled:
(113113). (81[31[3). (I16113), (10[[6]13). {8]1151[3), {T0]15][3), and (27][1513). These
are linear combinations of the 7 numbers a4, ¢, ef, f&, it ji, and k{l. Note that
these numbers all depend on the relative angular momentum.

4.3 Reduced Matrix Elements as ‘Graphical’ Am-
plitudes

In this thesis, we are computing decay amplitudes as a linear combination of the
reduced matrix elements, and we explained earlier in this chapter that this has a
correspondence with contraction of quark flavor indices in diagrams. Another com-
mon practice is to decompose decay rates in terms of ‘graphical amplitudes’ which
directly correspond to quark diagrams. [16] This practice can be useful for writing
decays as sums from contributions due to specific physical processes, though it is less
fundamental than doing the group theory and it is harder to count the number of in-
dependent unknowns. Graphical amplitudes are also useful because one can associate
different sizes to them.

Suppose we were to try to swap between bases of reduced matrix elements and
‘graphical’ amplitudes. The graphical amplitudes for As = 0 include terms like P
(penguin), PC (color-suppressed penguin), T (tree), TC (color-suppressed tree), PA
(penguin annihilation), and EW (electro-weak). The origin of these terms is beyond
the scope of this thesis but they can be found in [16]; suffice it to say that they
correspond to different configurations of the quark diagrams like in Fig. 3-1.

We know the number of independent decay amplitudes in As = 0 and As =1 for
a totally symmetric final state is 7. If the number of graphical amplitudes is also 7, we
can express each linear combination of matrix elements as a linear combination of the
decay rates. (The physics tells us which processes contribute to which decays, and we
are free to pick the phase definition.) Then it is just a matter of solving Ax = b, where
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b is a vector of the decay rates and x is the vector of graphical amplitudes. This gives
each graphical amplitude as a linear combination of matrix elements. Conversely, one
could also define each graphical amplitude as a linear combination of matrix elements
that contribute to it, and solve.

However, the number of graphical amplitudes is unfortunately not equal to the
number of independent decay amplitudes, so one must pick linear combinations of
certain graphical amplitudes to be a basis element, for example as in [16] where it
was done for B — M M decays. For 2 body decays, the number of independent decay
amplitudes was close to the number of graphical amplitudes. In B — MMM, the
number of graphical amplitudes is far larger than the number of independent reduced
matrix elements for the completely symmetric or antisymmetric cases. This makes it
more difficult to think of reduced matrix elements as sums of graphical amplitudes.
Perhaps a scheme could be devised, but it is beyond the goal of this work.

4.4 Effective Hamiltonian in SU(2)

The group theory analysis of B — MMM is simplified when we only consider the
SU(2) isospin limit. In SU(2), the 7, K, K and 5 mesons are not identical particles.
Only particles within a doublet such as K or within a triplet such as 7 are identical,
and must be symmetrized. The 7 is now a singlet, and we are free to use the physical
n because both 7g and 7, are isosinglets. All SU(2) results can be found in the SU(3)
results by looking for relations that only involve final states of the same combination
of SU(2) representations, such as 77K. We will discuss this in more detail in Chap-
ter 6. However, to be complete, here we outline the method for the B — MMM
SU(2) analysis. We limit the discussion below to decays with relative even angular
momentum between identical particles. The different angular momentum cases can
also be done for SU(2) by keeping track of order of the mesons, much as we did in
earlier parts of this chapter for SU(3).

Using the spin label for representations of SU(2), the As = 0 Hamiltonian has
isospin  ® 3 ® 3 =+ ® 1 ® 2. Hence the Hamiltonian has Al = 1/2 and AI = 3/2
parts. The AT = 1/2 part of Hamiltonian, H(3)?, has one index and has the following
components:

H(ly = ( (1) ) . (4.22)

Here we neglected the constants and CKM factors, for the reasons described in Chap-
ter 3. Meanwhile the Al = 3/2 part of the Hamiltonian has three indices, H(2)/,
and has the following nonzero components, again without CKM factors:

HE = HGP = 1= -HQF (4.23)

Because the 7, K, and K are all in different representations, it is necessary to
construct many effective Hamiltonians. For example, in Fﬂ — K with the 7w
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mesons in a symmetric state, the effective Hamiltonian is:

Hyr=a P(:H(%)[I—{—m;ﬂf +b _BfH(%)fw;lw{Kj
+ ¢ BoH(3) Kinfr! + d BoH (3)IntnK,
= o B,H(Y)Rrin! + ¢ ByH(E) Kinfr! (4.24)
where o' = a +b/2 and d' = d. We have used that T = n. The last line follows
because there are only two reduced matrix elements, (0]|1]|3) and (0]|2||2). Similar

effective Hamiltonians can be constructed for B — nnm, ’B*j — KKK and so on.
We can also consider the As = 1 Hamiltonian, which has isospin 1 ® 1 =0 1.
The AI = 0 part is simply a singlet. The AI =1 part, H (1);'., has components:

H(1); = ( (1) _01 ) (4.25)

There are again a number of a effective Hamiltonians, such as that for B —» KKK:
Hess = aBK'K'K; + bB; H(1) KK K" + cBK H(1)/K,K* (4.26)

This matrix multiplication is equivalent to looking up numbers in Clebsch-Gordan
coefficient tables. The tensor analysis is useful here because in general we have 5

objects in the effective Hamiltonian and would need to use the Clebsch-Gordan tables
three times.
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Chapter 5

Tensor Products and Symmetrizing
the Wavefunction

In this chapter we work out the details of Clebsch-Gordan decomposition and sym-
metrization with Young tableaux. We find the tensor decomposition of MMM or
8 ® 8 ® 8, with symmetries. We also determine the symmetry of the Ms in each irre-
ducible representation in the tensor product of 88®8. This enforces the symmetries
in the wavefunctions. Results in this chapter justify Equation 4.21 and the counting
of the reduced matrix elements in Chapter 4. However, the discussion here is limited
to the totally symmetric and totally antisymmetric cases.

Young tableaux are a compact way of describing representations and their sym-
metries. Details about the origin of the tableaux and their use in tensor product
decomposition can be found in [11]. In a Young tableau, each box represents an
upper index, a 3 (or an N in SU(N)). The rule is to symmetrize indices separately
in each row, and then antisymmetrize the indices in each column. Since an 3 is an
antisymmetric combination of two 3s, it has a lower index represented by a pair of

boxes in a column:
3. D 3: B

To see the 3 in index notation, note that A; = €;;.BC*. The €;;; is an invariant tensor
in SU(3). Contracting of an upper and lower index in Young tableau is accomplished
by putting 3 boxes in a column:

i
|

DiA,; = EijkDiBjCk —

If we now start with an arbitrary reducible tensor A with indices A% then we
can use a Young tableau to pick out a part of the tensor that transforms as a 6 by
putting the indices in a tableau for a 6:

L1 (5.1)




We first symmetrize separately in the upper indices and lower indices:

Aiikl . pdikl y pilk o pdilk
Next antisymmetrize in pairs of upper and lower indices in the same column:

Aijkl + Ajikl + Aijlk + Ajillc

__Akjil _ Ajkil _ Ak:jli _ Ajkli

_Aitki _ pliki _ gilik _ plijk

L ARG Al | ARl ATk (5.2)
The resulting tensor transforms as 6. In general the indices could be placed in different
orders in the boxes to obtain a different representation. In this case, this -are two
6s possible. This tensor is symmetric in its first two and second two indices, and
antisymmetric in its first and third indices and second and fourth indices. Hence the
Young tableaux gives the symmetry properties of the tensor. We can think of each
box as an index of the irreducible tensor, where boxes in rows are symmetrized and
boxes in columns are antisymmetrized.

There is an algorithm for using Young tableaux to find the Clebsch-Gordan de-
composition of a tensor product, which may be found in [11]. This gives:

MMM — 8® (8®8)
=8®(1ls®84D8s D104 ® 104 & 275)
=80 (8®84)D(BR8)D(BD10D27D35) D (8 10
®27335)® (B10D10® 27D 27 ® 35 @ 35 @ 64) (5.3)

We examine this in greater detail, and with symmetries, in the following section.

5.1 A Totally Symmetric Wavefunction

Using the rules for Clebsch-Gordan decomposition from [11], we have for 8 ® 8:

3@8=|| ol
b
al al lala] o ala]
= a|® bl @] |a 69_ @ bEB 5
alb] [a] 0] 2] .
=108, 98 ®100 106 27 (5.4)

The as and bs are just placeholders to keep track of which tableaux are valid and to
avoid double counting. Note that the as indicate the first two indices are symmetrized,
so a tableaux in the decomposition cannot have as in the same column.

Next we use the rules of the Young tableaux to symmetrize in rows and then
antisymmetrize in columns, and from this deduce the symmetrization properties of
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the two 8s. For example, in the first term of Eq. 5.4, the singlet, we use symmetry
under exchange of columns to rewrite the tableau:

clc cic
dla|—|ald (5.5)
alb bla

where we temporarily keep track of the tableau of the first 8 with ¢ and d. Then
we can exchange boxes in the columns; for every exchange there is a factor of -1 for
antisymmetry. There are 4 exchanges:

cle cla ala ala ala
ald|— —lald|—|c|d]|— —|bld|—|b]c (5.6)
bla ble ble cle cld

The result is a tableau the same as the starting tableau, with the exchange of (a, b)
and (c¢,d). We found that given a set of indices specifying M; and M>, there is no
change of sign when the indices are interchanged. Hence this singlet is a symmetric
combination of two 8s.

The same process follows for the rest of the products in Eq. 5.4. For example, in
the 8; we begin by exchanging labels in rows and then in columns:

c

c| a
d (5.7)

clal a
b —lbld —-

[e]a]o

[2 oo

[o [o]e

which is antisymmetric. The 8;,10 and 10 in Eq. 5.4 are antisymmetric and the 1,
8y, and 27 are symmetric by similar arguments.

Thus to find the totally symmetric combination of 8s the relevant tensor products
in 8®(8®8) are 8®1g, 8®8s, and 8®27s, where the S subscript indicates symmetric.
Now it is necessary to determine which representations in 8 ® (8 ® 8) are symmetric
or can be symmetrized. We begin by keeping track of the indices of all three particles
with the pairs (a, b), (c,d) and (e, f), where the first index in each pair refers to the
top row of the 8 tableau and the second index refers to the bottom box of the 8
tableau. The results for 8 ® (8 ® 8) are:

alal o7 alalele]
Is®8=[b|c ®i_ =lblc|f] =8 (5.8)
cld cld
alalc] l
8s®8=[blc| ®FH
d L[]
alalc] lalalcle] lalalcle] [alalclele] lalalcle] |alalc
=1blcle|Dlbj|c @iblcie| D|blc Dlblclelf|DPlblc|f
diel|lf dle dlf dl f d ]| d
=108, ®8 010010027 (5.9)
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The 8; is antisymmetric in (a,b) and (e, f) so it cannot be completely symmetrized.
Finally, the decomposition of 8 ® 27 is:

_lalalclcellele]
27 @8 = o Td ®L

alalcle] lalalclele] lalalcle] lalalclclel lalalclc]e]
=1b|dle] ©D|b|d @lb|dlele|D|b|d]|f @b|d

elf elf Lf e} ]

o reprelelelel rararererel [alalelelele]

bldle bid

7] f b

=8@10010027T0 27D 350 35® 64 (5.10)

The first 27 is antisymmetric in (e, b) and (e, f) and cannot contribute.

To create a totally symmetric wavefunction, we symmetrize in the labels of each
irreducible representation. For example, the 8 in 15 ® 8, in Eq. 5.8:

alalele] [alalc]c] [clelalal
blelf] Hbleld| +dlelb| +(cyclic permutations of (a,b) — (¢,d) — (e, f) )
cld elf elf

(5.11)
The next step is to examine all the different representations of the same dimension
after symmetrization. There are three possible 8s:

alalele] |alalele] [alalcle]
Is®8:|blc|f] —|blfle] —|blcle
cl|d dic dl|f
alalclc| lalalcle] |alalelc]
27s @8 :|bldle —|bld|e —|blele
elf fle fid
alalcle]
8s®8:|blcle (5.12)
dif

The 8 of 275 ® 8 has a term proportional to the symmetrized 8 in 85 ® 8, and so does
the 8 in 15 ® 8. Hence there is only one independent 8 when we totally symmetrize.

The other representations we consider are 1, 10, 10 and 27. In the above decom-
position there was only one 1 that appeared. The 27s are:

alalclele]
8s®8:\blc|f
Ld]
alalclcle] [alalelc]c]
27s@8:[bld|e —[bleld (5.13)
Lf] Lf]
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The 27 in 85 ® 8 of Eq. 5.9 and the second 27 in 273 ® 8 of Eq. 5.10 are proportional
upon symmetrization, so there is one 27. Finally, using arguments similar to those
presented in Egs. 5.12-5.13, one can show that the two 10s are proportional, and
the two 10s are proportional as well. This shows that the relevant representations

appearing in (MM M)g are 1, 8, 10, 10 and 27.

5.2 A Totally Antisymmetric Wavefunction

For relative odd angular momentum in all of the mesons, the relevant terms in 8®(8®
8) are instead 8®8,4, 8®104, and 8®10,4 where the subscript A means antisymmetric.

Keeping track of all the indices with pairs (a, b), (¢, d) and (e, f) again, we have

BAa®8 =

alalc] oTe]
bld] ®
B Lf]
alalc] |alalcle| [alalcle] lalalclele]l [alalclel [alalclele]
bldle|®[b]d]f| ©[bldle] ®[bld o[bldlelfl®[bld]f
clelf] |cle c clf c) ¢

=108 ®8d10010® 27 (5.14)

The 8, cannot contribute because it is symmetric under exchange of (¢, d) and (e, f),
and the 27 also cannot because it is symmetric under exchange of (a,b) and (e, f).
Even though the 1 is a symmetric combination of an 8 and an antisymmetrized pair

of two 8s, it can still be completely antisymmetrized.
For 8 ® 104 the decomposition is:

8® 104

And 8 ® T(—)A:

EA®8=

Now, we must antisymmetrize. The 1 from 84 ® 8 in Eq. 5.14 can be antisym-
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d] Lf

alalclc| lalalclele]l [alalelele] [alalclclele]
blele|] ©D|ble Dlbie|f blf

alf daif d] d)
~—8010®27®35 (5.15)

alalc].|ele]

blcld®[f

alalcle] lalalcle aace|e]aaceel
=iblcid| ©@ibjc|d|f|DP|blc|d

. e 7 bleld|f
=8@10927T® 35 (5.16)



metrized. Let us now compare the three possible 8 terms:

alalclel |alalcle] alalcle]l |alalele]
84®8:|b|d|le| —|bldle| — —|blcle| —|blc|c
clf fle fld fld
alalclcl
10, ®8:|blele
dif
. alalcle]l [alalcle] [elalelal [eleleclal
104®8:|blc|d|] —|blcid] —|blc|d] —|f|lcld (5.17)
elf fle fle bla

The first and second 8 are proportional after antisymmetrization. (They do not
cancel out because there may be different constants multiplying the two.) The last
8 is symmetric in (a,b) and (e, f) because the order of the e and f doesn’t matter
in the last row of the tableau; it is just to avoid double counting. This leaves one 8
when we totally antisymmetrize.

In the 27s:
alalc|ecle]
10,®8:(ble|f
d
. alalclele| |alalelelc]
10,®8:[blcld]  —|bleld (5.18)
Lf] ]

The last 27 in the equation above is proportional to the first after antisymmetrization,
so there will be one independent 27 representation. The two 10s and the two 10s are
also proportional. This shows that the relevant symmetric representations appearing
in MMM are 1, 8, 10, 10, and 27.

5.3 SU(2) Subgroups

It is also useful to know how the SU(3) Hamiltonian looks like in SU(2), since this

corresponds to isospin. This can also be accomplished using Young tableaux, which

we present without proof following [11]. The idea is again around symmetrization.

Take an SU(2) tableaux and take the product of it with a U(1) tableaux. The number

of times the SU(3) representation appears in the product is the number of times the

SU(2) representation appears. Here is the isospin decomposition of 3, 6, and 15:
The 3 decomposition is:

D . —>I:—;—
e [] —-I=0 (5.19)

where the o denotes a singlet. The first column gives the SU(2) tableaux, and the
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second column gives the U(1) tableaux. One index in SU(2) is [ = % and a singlet
in SU(2)is I =0.
The 6 decomposition is:

!

!
~~ M~
I

Il

L]
i

S o=

e [ 1] -
The first row is I = 1 because the SU(2) tableaux is a symmetric combination of two
spins.

Finally, the 15 decomposition is:

(5.20)

N
_ 3
(1) 0O ~1=;

| .1
N L] 2

1

- -
(] [T11 ~1=4 (5.21)

The first row is I = 1 because it looks like a singlet with a symmetric combination
of 2 spins. The second row is I = g because it’s completely symmetric addition of
3 spins. The third row has to be [ = % because it has 3 spins but isn’t completely
symmetric. In the fifth row, the antisymmetric combination of two spins is I = 0.

In As = 0 decays, where the process is b — (du)u for the tree and electroweak
operator, the Hamiltonian has only Al = % and Al = -g— parts. The penguin operators
are only Al = % From the above decomposition, we know only the 15 contributes to
Al = %, so the 15 is only tree and electroweak, as expected. In As = 1 decays, where
the process is b — (s@)u for the tree and electroweak operator, the Hamiltonian has
Al =0 and Al =1 parts. The penguin operators are only Al = 0.
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Chapter 6

Relations Among Decay
Amplitudes

The effective Hamiltonian of Egs. 4.1 and 4.8 gives the decay amplitudes A(B —
MM M) as linear combinations of reduced matrix elements. The full tables of results
are presented in Appendix A, with columns labeled by reduced matrix element and
rows labeled by decay. The results are separated according to totally symmetric
meson wavefunction or totally antisymmetric meson wavefunction. There are 56
decay channels expressed in terms of 7 reduced matrix elements for totally symmetric
and 36 decay channels expressed in terms of 7 reduced matrix elements for totally
antisymmetric.

The purpose of this chapter is to summarize the relations and discuss the impli-
cations when two amplitudes are related. When 3 or 4 amplitudes are related the
implications are more involved, and this is left to Chapter 7. In addition, because of
n mixing and because there are a large number of relations involving 7s, the SU(3)
relations involving 7g are summarized in Appendix B. Finally, all the C'P conjugated
decay amplitudes satisfy the same relations, with the weak phase conjugated.

A number of decays have no contributions from H(3). Because penguin processes
transform as a 3 and tree and electroweak processes transform as 3 @ 6 @ 15 in
SU(3), these decays must result from tree and electroweak processes. For the As =0
decays, discussed in Section 3.3, both tree and electroweak operators have a CKM
factor of O(A?). Since here electroweak contributions are small, these decays are tree
dominated:

B, — (nsm K*)s

B, — (Kn%ns)s

B, — (1’1" K*)s

B~ — (K°7°K™)g

B~ — (K’n3K™)s

B~ — (n°nsm7)s

B~ — (K°7°K )4 (6.1)
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where the S subscript is totally symmetrized final state and A is totally antisym-
metrized. However, for As = 1 decays, tree contributions are suppressed by a factor
of O(\?) relative to electroweak contributions so both can be important.

A final comment on the decay amplitudes in Appendix A: there is one decay
amplitude .A(B — (m%7~K)g) which has only one contribution from the reduced
matrix elements, from the 15 part of the Hamiltonian. This is interesting because it
means it is possible to measure the magnitude of one of the reduced matrix elements,
115, thus simplifying the analysis of other decay amplitudes which also involve 45.

In the rest of this chapter we discuss relations between decay amplitudes. These
relations were obtained by finding nullspaces of the matrices formed by the tables
of decay amplitudes in Appendix A. Note that relations only hold for a given spa-
tial wavefunction of MMM, as the reduced matrix elements depend on the spatial
wavefunction. In this thesis only relations involving up to four decay amplitudes are
discussed. We also give a number of decay rate relations. Some relations can be
obtained by adding together several of the lines we list, so these extra dependent
relations will not be listed.

A number of the SU(3) results below have analogous SU(2) relations which are
slightly different and listed separately. In SU(2) we only symmetrize within each
triplet and doublet, since each multiplet is regarded as distinguishable from the rest.
In addition, because the ng and n are both singlets in SU(2), we can replace ng with n
when we extract SU(2) relations from their SU(3) counterparts. Examples are given
below.

6.1 Even Angular Momentum Relations

6.1.1 As=0, SU(2) Relations

We begin with As = 0 relations for even L that hold in SU(2). Two simple ones are:

AB™ — (n77 7)) = —vV2 A(B~ — (r~1%%)s)
V2 A(B® = (n°1°1%)s) = V3 AB" — (n"1*1%)s) (6.2)
leading to the decay rate relations:
(B~ = (n"n™n")s) =4 T(B™ — (7~ 7°71°)s)
(B = (n%r°1%)3) = g (B - (1)), (6.3)

These can be directly tested once an angular momentum decomposition of the data
becomes available.
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There are also two triangle relations. In SU(3) they are:

V2 A(B, — (11" K*)s) + V2 A(B, - (K°n°1%)s) = — A(B, — (K°n~n*)s)
)

.A(FO — (rtn7n)s) + V2 A(§0 — (1%7%8)s) = V2 A(B~ — (7T_7T07)8)£g).
6.4)

but these relations also hold in SU(2). In SU(2), only identical particles are sym-
metrized and the two relations become:

V2 A(B, — K*(r°17)s) + V2 A(B, - K°(n°1%)s) = — A(B, — K°(n"7%)s)

.A(F0 —n(rtn7)s) + V2 A(—B-0 — n(7°7°)s) = V2 A(B™ — n(w‘wo)i). |
6.5

These two triangle relations are discussed further in Chapter 7 on triangle relations.

6.1.2 As =0, SU(3) Relations

The simplest As = 0, SU(3) relations are:

VA" = (K K5) =2 A = ()9 = —AE ()
6.6

leading to the relation between decay rates:
2B~ — (n"K"K%)g) =4T(B™ — (7 7°1%s) =T(B~ — (x~ 7~ 7%)s) (6.7)

HFAG [17] gives the following information for branching ratios of CP conjugates of
the decays in the equation above:

Bt —watatn=: (16.24+1.5) x107°

Bt —» rtrtn~(NR) : <4.6 x107°
Bt — Ktntg~: (54.9429) x107°
Bt — K*ztr~(NR):  (2.97%9) x107° (6.8)

This information for BY — #txtn~ and B* — K*#ntn~ from HFAG seems to
contradict Eq. 6.7. However, the relation given in Eq. 6.7 was for 3-body decays
where all the final mesons are in relative even angular momentum states. In order
to test the relations, the experimental results in Eq. 6.8 must be decomposed into
angular momentum symmetry states.

There is one triangle relation in SU(3) not involving 7s:

V3 A(B™ — (K~K°%)s) + V3 AB" — (K°n°1%s) = AB® — (K °K’K+)(S> )
6.9
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and two quadrangle relations:
A(B, — (K°n~1%)s) (6.10)
=2 (A(B~ — (K*7°K™)s) — A(B’ — (n°K~K*)g) — A(B® — (n~n*10)s))
= A(B° — (K°K~1%)s) — A(BY — (K°K~K*)s) — AB° — (B K*n™)s).

In addition the relation /3 A(Fo — (m7tn0)s) = =2 A(FO — (7%7%7%)5) can be
used in the equation above to obtain one more quadrangle relation.

6.1.3 As =1, SU(2) Relations

Next we look at As = 1 decays for L even. There are 3 simple SU(3) relations:

AB’ = (K~ 1°7M)g) = — A(B~ — (K °n%)s)
V2 A(B, — (n°1°1%)s) = — V3 A(B, — (r~n*1°%)s)
-2 A(Fg — (ngm®7%)s) = (Bs — (ngm7h)s). (6.11)
From this we obtain the following SU(2) relations between decay rates:
T(B" — K~ (n'1%)s) = (B~ — K (n°17)s)
2 (B, — (n’n°r%)s) = 3 (B, — (n~n*n")s)

2 T(B, - n(r°1%)s) = (B, - n(z"")s). (6.12)
There is one SU(2) triangle relation:
V2 AB® — K~ (°1)s) + V2 AB° - K’ (7°1%)s) + A(B’ — K (n~n")s) = 0.
(6.13)

In addition, there are several SU(2) quadrangle relations:
V2 AB° = B (1°1%5) + A(B~ — K~ (n"nt)g)
= V2 A(B~ — K~ (r°1%3) — A(B’ — K (n~7T)s)
V2 A" - K*(B'K")s) + A" - K'B'K")s)
=V2 A(B- - K%(K"K)s) + A(B~ — K*(K"K")s)
V2 AB™ - K n)+ AB~ -1 K K’n)
=V2 AB° - °Kn) + AB° - ntKn)
V2 AB! - K~ K+ + A(—Bg — K~ K°t)
= V2 AB. - K°K°7% — AB. - K’ K+r). (6.14)
The last two relations in the equation above involve three distinguishable particles

in the final state in SU(2). Hence these relations hold independent of the relative
angular momenta, provided that the spatial wavefunction for MM M is the same in
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all four decays. All of these relations are discussed further in Chapter 7 on sum rules.

6.1.4 As=1, SU(3) Relations

There is one As = 1, SU(3) relation between decay rates:

A(B~ — (K"K K*)s) = —vV2 A(B™ — (K~ n~7t)g)
(B~ (— K K K%)s)=2T(B™ — (K 7~ 7%)g). (6.15)

HFAG provides a limited set of data to compare with the above relation [17]:
Bt - K*KtK~: (33.7+15) x107®
Bt — K*tntn=: (54.9+29) x107°
Bt - Ktgtr~(NR):  (2.9751 x107° (6.16)

Again the data is inconclusive as the above relation only holds for totally symmetric
meson wavefunction. Finally, we have a quadrangle relation:

AB~ = (K"K~ K*)g) — 2 A(B~ — (K~°1%)3)
=2 AB’ - (B’n°1%s) + vV2 AB’ - (B'r~1*)s). (6.17)

6.1.5 SU(3) Relations with both As =0 and As = 1 Decays

There are also SU(3) relations involving both As = 0 and As = 1 decays. In the
SU(3) tensor analysis, the difference between As = 1 and As = 0 decay amplitudes is
the different CKM factors. Any As = 0 decay amplitude can be written as V,, VX, W +
VoV gX and any As = 1 decay amplitude can be written as Vi, V., Y + ViV Z. Let
AB - MMM); =W, A(B - MMM),; = X for a As = 0 decay, and A(B —
MMM), =Y, A(B - MMM), = Z for a As = 1 decay. The following SU(3)
relations are relations between the coefficients W, X,Y, Z, which are combinations
of the reduced matrix elements without the CKM factor absorbed in them. In the
equations below the As = 0 decays are listed to the left of the equality and the
As =1 decays listed to the right. There is an abundance of simple relations:

A(B, = (K°m°1%)s); = AB® — (B°n°1%)s);
A(B, = (K°K'K")g)i = AB° — (K'K'K")s);
AB = (K'K"K)g)i = — AB® — (B°n1%)s):
AB, - (K17 1%)s)i = — A(B" — (B K~K*)s);
V2 A(B~ — (K°K'17)s)i = A(B~ — (K°K°K™)s):
V2 AB™ - (mnnt)g)i = A(B™ — (K~ m 7")s)i
AB™ — (K°m°K™)g)i = AB® — (°K~711)s);

AB’ = R’ K*)s)i = — AB° — (K°K~71%)s);
AB = (R°K 1)) = — AB° — (B'n~K*)s)s. (6.18)
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Using these relations to obtain information about decay rates and CP asymmetries
requires making 3 measurements, if one assumes the CKM factors are known. The
simple relations in the sections above relating only As = 0 decays or only As = 1
decays require making 2 measurements, for example |.A|? and |.AJ%.

There are a large number of relations between As = 0 and As = 1 decays that
can be formed using the above amplitude relations. Hence they will not be listed.
The relations below are less obvious. Two triangle relations are:

A(B™ = (K77 K%)g)i = V2 A(B~ — (n°7°K7)s); — V2 A(
~V2 A(B; — (K°r°1°%)s); + A(B, — (K°K~K*)s); = V2 A(

and two quadrangle relations are:

A(B] = (K°K™K*)s); + A(B, = (K"n"n%)s): + A(B’ — (K7 K*)s);
= —AB - (K'n~K*)s);
A(—B—O — (KK~ 7)g): + \/iA(Z_BO — (P°K~K)s); + \/-Z—A(EO — (7077 g )
= V2 AB’ - (7K n1)s):
V2 A(B, = (K°n°1%)s)i = V2 A(B™ = (77 7°1°)s); — A(B, — (K°K~K*)s);
= V2 AB~ — (K~ n°7%5)i.  (6.20)

6.2 0Odd Angular Momentum Relations

Next we discuss relations for when MMM is completely antisymmetric. Relations
involving 7g are given in Appendix B. We will use a subscript A here to denote totally
antisymmetric.

For As = 0 decays there is just one SU(3) relation not involving ns:

AB’ = (K°K~ 7)) + AB — (K°K*17) )
= A(Fg — (KK~ K1) ) + A(_B{S) — (K7~ ). (6.21)
This relation also holds in SU(3) in the totally symmetrized case.

For As = 1 decays there are two SU(2) quadrangle relations, which were listed
above in the even angular momentum section. These relations do not depend on the
relative symmetry of the mesons:

V2 A(B~ — K™ n) + A(B~ — vaon)
=2 A(EO — WOFOU) + A(FO — 7tK™n)
V2 A(_ES — K- Kt7% + A(Eg — K K°™)
= V2 A(B! - K°K°°) — A(BY - K°K+r). (6.22)
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6.2.1 SU(3) Relations with both As =0 and As =1 Decays

As in Sec.6.1.5, there are SU(3) relations between amplitudes where the CKM factors
have been factored out of the reduced matrix elements. Again we write equalities with
As = ( decays to the left of the equality.

L

A(BL = (K°K K1) 4); = A(B — (Bon~717).4);
AB = (Ko nt)a)i = — AB’ — (KK~ K*)4):
AB™ = (K K%)= — A(B™ — (KKK ™) 4);
AB™ = (n K K%)= — A(B™ — (K™ n7m),);
) a)i

T)a)i=

AB°® — (K°K- AB = (K KA
AB’ = (B'K*r

AJi S
2)i = AB, — (K°K~1%) 4)s. (6.23)

There are a number of relations that can be formed by simple substitution using the
above relations, which will not be listed. There is also a quadrangle relation:

—V2 .A(Fg — (77T K 1) (6.24)
= AB, — (K K*)a)i + AB, — (K°K~7)4)i + V2 A(B* — (K77 4):.
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Chapter 7

Triangle Relations and Sum Rules

In Chapter 6 we discussed relations between decay amplitudes. Relations between
two decay amplitudes are easier to test because they simply relate different decay
rates (once the appropriate angular momentum projection is done). In this chapter
we connect some of the more complicated relations in Chapter 6, involving more
than 2 decay amplitudes, with physical observables. We will use our knowledge of
the CKM matrix and the operators in the Hamiltonian of Chapter 4. We begin by
discussing triangle relations between three decay amplitudes and then continue on to
quadrangle relations involving four decay amplitudes. Each section is preceded with
a review of the analyses done for B — M M decays, because the strategy is similar.

7.1 Isospin Triangles

The Gronau London triangle relation for strangeness-preserving B — 7m decays is a
well known result from an isospin analysis of B — m [18]. This is a triangle relation
between three B — wm amplitudes:

AB’ — (r*77)s) + V2 A(B’ = (11°)s) = VZ A(B™ = (rn°)s)  (7.1)
along with the C'P conjugate relation:
A(B® — (nF77)s) + V2 A(B® — (7°7%)s) = V2 A(BT — (x*1%)s). (7.2)

Using group theory, one can show that the two amplitudes (A(B~ — (7~ 7%)g) and its
C P conjugate A(B* — (777°)s)) have no penguin contribution because they cannot
result from the Al = 0 part of the Hamiltonian. If we neglect electroweak penguin
amplitudes, which are typically small, then these amplitudes are pure tree and thus
differ only by an overall phase of 2a, where o was defined in Eq. 1.3. In addition
the angle between A(—EO — (7t77)s) and its C'P conjugate can be related directly
to an observable, the time-dependent asymmetry S(n*7~). This angle is defined to
be 2a.s¢, and in the absence of C'P violation a.sf = a.

To see how this works, in Fig. 7-1 we present the triangle relations and the various
angles connected to observables. (See [3] for details.) In order to acquire the weak
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Figure 7-1: The Gronau London isospin triangles; the blue triangle formed by decay
amplitudes A is from Eq. 7.1 and the red triangle formed by the C' P conjugate decay
amplitudes A is from Eq. 7.2. The overall phase of the amplitude A(B~ — (7~ 7°%)g)
has been factored out of all other amplitudes. The superscripts on A and A indicate
the charge of the pions in each decay.

phase «, there are 6 observables that must be measured. One of these is ., obtained
from S(n*7~). The other 5 observables are the magnitudes of the sides of the two
triangles, where we have used |A(B~ — (77 7%)s)| = JA(Bt — (7+7%)4)|. In terms
of the observables of Chapter 3, we need to measure:

Br(B — (rt17)s) o [A(B” — (n+n7)s)[? + [A(B° — (x77)s)?
-9 2 A/ RO - 2
Acp(B — (nt717)g) = |A<§o = (T )s) - lil(B = (7))l
JAB® — (wt7=)s)[2 + [A(BO — (n+7-)s)|?
Br(B — (1°1%s) o [A(B® — (n°7%)s)[? + [A(B® — (#°°)s)|”
-9 0.0 2 — (70570 2
Aop(B — (a070)5) = AB = (@*m)9) = [AB® — (x'n%)s)|
JAB” — (7919))|2 + | A(B® — (7°10)s)|?
Br(B — (1°77)s) & 2= (JA(B™ — (" 1°)s)]2 + [A(B* — (x+1%)5)[?) . (7.3)

7

Note that Acp(B — (777 )s) = 0 if we neglect electroweak penguins. These 5
numbers give the magnitudes of the sides of the isospin triangles. With the addition
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S(nt7n~) we can determine Fig. 7-1 completely.

The Gronau London isospin triangles are a very tidy example of using group
theory to directly measure weak phases. There are a few limitations of the analysis
above that merit discussion. First, we neglected the effect of electroweak penguins,
which would result in small differences between the magnitudes of A(B~ — (7~ 7%)5)
and A(BT — (7+7%)gs) as well as the angle between them. However, this is actually
not a limitation as proven in [19]. In addition, decays to neutral pions 7° are difficult
to measure. In fact the uncertainty in measuring Acp(B — momg) currently does not
make this analysis very accurate.

In B — MMM decays, there are also several isospin triangle relations for which
we can apply the same analysis as above. For each triangle relation below, there
is one amplitude that has no penguin contribution. Hence we can draw diagrams
analogous to Fig. 7-1, and measure the six observables by which we can obtain weak
phases. However, the limitations of the B — 77 isospin triangles also apply to the
decays below.

There are two SU(2) triangle relations for B — MMM and As = 0, given in the
previous chapter. The first relation is an obvious extension of the B — M M triangle
relation:

AB’ = nrtn)s) + V2 AB" — n(n°n%)s) = V2 A(B~ — n(r~1%)s).  (7.4)

Because 7 is an isosinglet, its presence in the decay does not affect the group theory
in SU(2). Therefore, like the decay B~ — (7~ 7%)g and its CP conjugate, the decay
B~ — n(r~n°%)gs and its CP conjugate also cannot have a penguin term which is
Al =0.
The second triangle relation for B — MMM and As =0 in SU(2) is:
A(BS — K+ (5 )s) + A(B} — K(xn%)s)+ = (B} — K°(xx")s) = 0. (7.5)

V2
Here it is the decay Eg — K*(n%77)s that has no penguin contribution. This can be
seen from the SU(3) results given in Appendix A, where the decay ”Efj — (KT7%7)s
has no terms from the H(3) part of the Hamiltonian while the other two decays
do. Since the penguin operator transforms as a 3, it cannot contribute to Bf, —
(K*n%77)s.
Also, for As = 1 decays there is the following triangle relation in SU(2):

AB® = K~ (% ")s) + AB° — FO(W%O)SH% AB® = K (nnt)s) = 0. (7.6)

In this decay A(EO — K~ (m%7%)s) has no penguin contribution while the other two
decays do. However, because this is a As = 1 decay the tree part is suppressed by

~ A2 Based on data from B — K7 we expect Br(B® — K~ (7°7+)s) to be smaller
than the other two branching ratios, which might make analyzing the triangle here
more difficult.

47



7.2 Sum Rules for B— MMM

Sum rules give approximate relations among the branching ratios and C'P asymme-
tries, and hence can provide strong constraints on observed decays. First we review
the Lipkin and CP sum rules for As = 1, B — wK decays. There are four B — 7K
decays which have amplitudes that are related in SU(2) by a quadrangle relation:

V2 A(B~ = 1K~y — A(B° — 7T K")

—0

~V2AB’ - K+ AB~ - K)) =0. (7.7)

A decomposition of the amplitudes that satisfies this relation is:
AB™ = 1K) = VigVi A+ ViV Pagc
V2 A(B~ — 7°K™) wWVi(C+ T + A) — Vi Vi (Prgc + EWT)
AB’ = 7t K™) = = Vi Vi T — Vy Vi (Pek + EWC)
V2AB® — 1K) = — VViC + VioVia(Paxc — EWT + EWC).  (7.8)

Il

This parameterization and the derivation below follows the notation and convention
of [20]. We have written the amplitudes as linear combinations of graphical ampli-
tudes with appropriate CKM factors. Next recall that Vi, VX ~ X* and V, Vi ~ A2
where A &~ .2. This suppresses terms that have a CKM factor of V,,,V};, such as the
tree graphical amplitude 7". In addition, the electroweak contributions to the de-
cay amplitudes (EW7T and EWY) are small relative to the penguin amplitude P,x.

Hence, these amplitudes can be rewritten as:

AB™ — 7 K') = P(1+¢%¢,)

V2 A(B~ — n°K™) = — P(1+ € +e’¢(6A+eT+ec))
A(B —7TK7) = —P(1 + ¢ + €erp)
V2 A(B — K" K')=P(1+e — & — %) (7.9)

where P = V3V Pk and ¢ = arg ( ) The other terms in the equation above
are small and are defined by:

VubI/Js ew EWT ew EWC
— € —

- € — —
T C
[£3% Pri Prk

A T C
GAZT(PWK> eT:r<P7rK> €C=T<P’ITK) : (7.10)

From Eq. 7.9 we obtain the following decay rates:

T(B~ =7 K')=|PP(1 +e%e, + e~i¢e* +0(é?))

2T(B™ —»n’K") = |Pk (1+2 Re(e5") + €(ea + er + ec) +e7(eh + € + €5) + O(€?))
2T(B" — 7'K’) = |P|*(1+ 2 Re(¢%’) — 2 Re(5¥) — €%ec — e el + O(€%)
I(B" — 77 K~) = |P|*(1 42 Re(c&") + ¢%er + e %€ + O(e ). (7.11)
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To obtain the decay rates of the C'P conjugate of the above decays, only the weak
phase ¢ is conjugated.

Recall from Eq. 3.7 that the branching ratio is proportional to the average of a
decay and its C' P conjugate, the lifetime of the particle. The proportionality constant
is independent of the specific decay. Therefore the relevant branching ratios are:

Br(B™ — K ) (1 + cos(¢)Re( eA) + O(e%))

2 Br(B~ — 7°K ™) o 75-|P|*(1 + 2 Re(e3) + 2 cos(¢)Re(ea + e + €c) + O(€?))

2 Br(B - 'K ) oc 50| P|*(1 + 2 Re(eg”) — 2 Re(e5") — 2 cos(¢)Re(ec) + O(€?))
Br(B® — 7T K") (14 2 Re(eg) + 2 cos(¢)Re(er) + O(€?)). (7.12)

OCTB—IP|

The Lipkin sum rule is a relation between these four branching ratios:

2 Br(B~ — n°K~) —~ Br(B™ — W_-K—O)

Br(B~ — W—FO)
Tp- 2 Br(FO — WOFO) — Br(EO — 7T K™) 5
+ —5 = O(e%). (7.13)
T Br(B- -7 K")

The branching ratio we chose to place in the denominator is arbitrary.
The CP-sum rule relates the set of rescaled asymmetries [21, 22, 23, 24]:

2Br(B~ — 7K ™)

Ay = x Acp(m K~
' Br(B- — 71'—?0) ol )
=0 P
T N
Br(B- — 7~ K")
O_O
. 2Br(B — T EO) « AQP(WOR_O)
Br(B- — 7~ K)
Ay = Acp(r K). (7.14)

The statement of the CP-sum rule is
Al - Az + Ag - A4 = 0(62). (715)

The usefulness of these decays hinges on the assumption made above that the ¢ terms
in Eq.7.10 are small.

The sum rules for B — 7K in Eq. 7.13 and 7.15 can be extended to the As =
1,B — MMM decays in SU(2). We will discuss four cases. Each case arises from a
quadrangle relation that was given in Sec. 6.1.3. The parameterization of amplitudes
in Eq. 7.9 can be applied to all four decays in each quadrangle relation below. In a
given quadrangle relation, each decay must have a penguin part P, which is enhanced
over tree contributions 7" by a factor of approximately 1/\%. The penguin operator
is a 3 in SU(3), so it is necessary that each decay has a nonzero coefficients in the
az or by columns in the amplitude tables in Appendix A. We also must determine
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that each decay is proportional to the same linear combination of a3 and bs; in order
to use a parameterization like the one in Eq. 7.8. Finally, we can check that each of
the decays below has a large penguin part P by ascertaining that we can draw the
corresponding quark diagram of Fig. 3-1(a) for each decay.

The four amplitudes in each quadrangle relation are needed to cancel out both
the order unity terms and the order € terms. What we mean by € below is terms
with the size of about (A\*T/P) or terms with the size of the ratio of electroweak to
penguin amplitudes (EFW/P). An advantage of one of these sum rules is that it does
not involve decays to neutral pions.

The first amplitude relation relates decays of type B — Kzw in SU(2):

V2 A(_BO — 7{—0(7'(071'0)5) + AB~ — K (7 7")s)
+V2 AB™ = K~ (7°1%)3) + AB° - K (rnt)s) = 0. (7.16)

The sum rule relating the branching ratios is:
2 Br(B® — K (r°1%)s) — Br(B’ — K (n~7+)s)
Br(B® — K (7-7+)s)
N 750 2 Br(B™ — K~ (7%7%)s) — Br(B~ — K~ (7~ 77)5s)

TB- BI(EO — KO(W_W‘F)s)

= O(e?). (7.17)

And the C'P sum rule is:
2 Br(B’ — K (7°7%)s)Acp (B’ — K (7°7%)5)
Br(B’ — K (n—7+)s)
750 Br(B~ — K~ (n n")g)Acp(B™ — K~ (m~7nt)g)

— Acp(B° = K (n1h)s)

TB- Br(EO — ?O(F“W'{')S)
4 T2 2BiB” = K (') Acp(B” ~ K~ (1'n%)s) _ ;) (7.18)
TB- Br(B — K (r—7%)s)

This sum rule has two drawbacks: not only is it necessary to make accurate mea-
surements of neutral pion decays, but it is also necessary to determine the relative
symmetries of the pions.

The second set of SU(2) relations has B — KKK decays:

V2 AB’ - KHE' K )s) - A(B~ — KT (K"K™)s)

~ V2 AB™ = KK K)s)+ AB’ — KK 'K")s) =0 (7.19)

giving the branching ratio sum rule:
2 Br(B’ — K+(K'K~)s) — Br(B" — K
Br(B' — KY(K'K)s)
T 2Br(B” — K%K-K")s) —Br(B~ — K*(K-K")s)
TB- Br(B — KK K')s)

KK’

)s)
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and the CP sum rule:

2 Br(?0 — K+(?OK")S)ACP(P_O — K+(T(—OK—)5)
Br(B’ — KNE'K")s)
Tg0 Br(B™ — KT (K"K~ )s)Acp(B™ — KT (K~K™)s)

— Acp(B® — KY(E’K")s)

TB- BI‘(P_O — KO(_K_OXO)S)
_ K- - o K-K°
L T8 2Br(B” — K°(K"K )5)Acp(B~ - KKK )s) — 0(eY). (7.21)
B Br(B’ — K9(K’K’)s)

This sum rule is nice because it does not involve any pions, making it easier to test.
However, it is still necessary to sort out the symmetries of the Ks. It is also perhaps
pertinent to point out that the amplitudes in Eq. 7.16 and 7.19 have not only a
penguin contribution, but also a color-suppressed penguin contribution. This simply
means that there is more than one kind of penguin quark diagram that can be drawn
for these decays; this does not change the sum rules as all the penguin terms can be
grouped into the P amplitude. The other amplitudes in the rest of this section do
not have any color-suppressed penguin contribution.

The third set of sum rules relate B — wKn decay channels, with an SU(2)
amplitude relation:

V2 A(B~ — 7°K—n) — .A(E0 — 7t K™n)
—V2 AB® - 1K’n) + A(B~ —» 7 K’n) = 0. (7.22)

This relation is an obvious extension of the Lipkin sum rule; the s are isosinglets, so
the group theory is exactly the same. The sum rule is:

2 Br(B~ —» 7°K~n) — Br(B~ — w__I?On)
Br(B- — F"FO’I’])
L TB 2 Br(B® — mK’n) — Br(B® — 7K n)
TB° Br(B- — w‘fon)

= 0(€°) (7.23)

and the CP sum rule is:
2 Br(B~ — m°K~n)Acp(B~ — m°Kn)
Br(B- — W—Fon)
TB- Br(FO — W+K"n)ACp(§O — 7t K™n)

— Acp(B™ — W__I?On)

T5° Br(B- — w—_I?on)
TB- 2 Br(FO — WOKOU)ACP(P—O — wofon) 5

+ L = 0(&?). (7.24)
T° Br(B- - 7~ K n)

Note that because the m, K, and 7 are distinguishable in the SU(2) limit there are no
enforced symmetries in this relation. The SU(3) amplitude relation corresponding to
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Eq. 7.22 has an g and all mesons symmetrized. Appendix A indicates that the SU(3)
decays B — mKng have no terms from the 3 part of the Hamiltonian, implying there
is no penguin term. However, the decay B — wKn does have a penguin amplitude.

The final set of relations is for the decays B — KK=. Again, because we have
three distinguishable particles in SU(2), there is no enforced symmetry on the decays
in the following SU(2) amplitude relation:

V2 A(B, —» K~K*1°%) + A(B) — K~ K°r)
+v2 A(B, - B°'K°r°) + A(B, » K°K*r™) = 0 (7.25)
with the sum rule:
2 Br(B. — K-K+19%) — Br(B — K~ K%r+)
Br(Fg — T(—OK"”?T‘)
2 Br(Eg — ?OKOWO) - Br(FS — KOK”LW*)
+ =0 =0 =
Br(B, —» K K+r~)

O(é?). (7.26)

Finally our last CP sum rule is:

2 Br(B, —» K- K*1%) Acp(BY — K- K+1°) —o
—0 —0 - ACP(B
Br(B, - K K+7n~)
_ Br(B, = K"K%*)Ace(B, — K~K°r*)
Br(Eg — ?Kﬂr“)
2 Br(Eg — KK OwO)ACp(Eg — K K1)
+ =0 0 — -
Br(B, - K K+r~)

— FOK""W—)

8

O(e?). (7.27)

All the sum rules have exactly the same form. In the sum rules relating branching
ratios, the branching ratios with the prefactor of 2 have the same sign, and the
other branching ratios have opposite sign. The denominators in the sum rules are
arbitrary. Any of the four possible branching ratios in each sum rule can be placed
in the denominator; different branching ratios will only effect a change of O(e3).

The last two sets of sum rules we gave for B — 7Kn and B — KK= can
be applied more readily than the first two, as these make no assumptions about
the relative angular momentum of the three mesons. In the first two sum rules
for B —» nnK and B — KKK, there are two particles that must have relative
even angular momentum. There is also the issue of the neutral pion, which is more
troublesome for experimentalists. This difficulty with 7° unfortunately infects three
of our sum rules. Hence despite the symmetry restriction, B — KKK remains a
particularly appealing way of testing the data because of the lack of neutral pions.
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Chapter 8

Conclusion

Determining the sources of C' P violation is an important test of the Standard Model.
By comparing experimental data with constraints on the CKM matrix, we can as-
certain whether the Standard Model is enough to explain the processes observed in
colliders. As a result, the study of C' P violation is also a promising route to finding
“new physics”.

The study of B meson decays has been particularly fruitful to our knowledge of
the CKM matrix. One way to make predictions for B meson decays is by using
group theory in the limit of SU(2) and SU(3) flavor symmetry, which allows us to
determine decay amplitudes as linear combinations of a few constants, the reduced
matrix elements. This makes it possible to relate different decay channels. Group
theoretical analyses of decays such as B — #w and B — wK have provided precise
predictions for B decays. Here the decays depend on 5 reduced matrix elements.

In this thesis we analyzed the decay B — M MM using group theory. In three-
body decays there are several possibilities for the relative symmetries of the mesons
M: totally symmetric when every pair of mesons has relative even angular momen-
tum eigenvalue, totally antisymmetric when every pair has relative odd angular mo-
mentum, and mixed symmetry when some pairs of mesons have no relative angular
momentum eigenvalue. These symmetries determine the number of reduced matrix
elements. In the SU(3) limit, there are 7 reduced matrix elements which completely
describe B decays to three mesons M in a totally symmetric state. There are also
7 reduced matrix elements when the three mesons M are in a totally antisymmetric
state. However, when considering mixed symmetries there are as many as 25 or 28
reduced matrix elements for odd and even mixed symmetry, respectively.

The discussion in this thesis focused on totally symmetric and totally symmetric
wavefunctions in the SU(3) and SU(2) limits. Because there are many three-body
decays and relatively few reduced matrix elements, one can find a large number
of simple SU(3) relations between decay amplitudes. In the SU(2) limit, we could
expand our discussion to decays with mixed symmetries. In summary, we found simple
relations between two decay amplitudes that led to relations between the observable
decay rates. We also discussed triangle and quadrangle relations between three and
four decay amplitudes respectively.

Combined with facts about CKM factors and the electroweak Hamiltonian, a
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number of these triangle and quadrangle relations yield tidy methods for determining
weak phases from observables. The triangle relations we presented for B — MMM
were analogous to the B — 77 isospin triangles. Here one exploits the fact that one
decay amplitude in the triangle relations has no penguin term, and is consequently
dominated by a tree amplitude T. One can directly obtain the weak phase by measur-
ing 6 different numbers: 3 branching ratios and 2 CP asymmetries listed in Eq. 7.3,
and a time-dependent asymmetry.

We also derived sum rules for As =1 B — MMM decays, which are analogous
to the sum rules for B — wK. Here we take advantage of the difference in size of the
two relevant CKM factors. Because the CKM factor multiplying the tree amplitudes
T is smaller by about A? than the CKM factor multiplying penguin amplitudes P,
these decays are penguin dominated. From a quadrangle amplitude relation, we can
thus derive sum rules directly relating the observable branching ratios and the CP
asymmetries, listed in Egs. 7.17-7.27. These sum rules are accurate to order €2, where
€ is a number that has the size of about A\2T'/ P or the size of the ratio of electroweak
(EW) to penguin amplitudes.

The effectiveness of the relations presented in this thesis depends in part on the
ability of experimentalists to make accurate measurements about decays to neutral
pions and to separate decays according to relative angular momentum. All of our
isospin triangles and two of our sets of sum rules stipulate a particular symmetry
between two of the mesons in the decay. However, two sets of sum rules we derived
do not depend on any particular symmetry and are free of this restriction. Many of
the relations we derived also require reliable observations of decays involving neutral
pions, a challenge for experimental particle physics. Here we were able to derive
one set of sum rules, for the B — KKK channel, which has no neutral pions. In
conclusion, the abundance of new constraints we have provided should offer a variety
of options for testing the Standard Model.
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Appendix A

Full Decay Amplitudes in Terms of
Reduced Matrix Elements

In Appendix A we give all the SU(3) decay amplitudes as linear combinations of 7
reduced matrix elements. This appendix is separated accordingto As =0and As =1
decays and relative angular momentum. Only decay amplitudes involving totally
symmetric or antisymmetric final states are given here. The amplitude relations from
Chapter 6 are all derived using these decay amplitudes. In these tables, the leftmost
column gives the decay. The other columns give the relative contribution of each
reduced matrix element. The labels for the reduced matrix elements corresponds to
the coefficients in Eq. 4.17 and Eq. 4.19. The numerical values of the coefficients
are in general different for each set of relative L and cannot be determined by group
theory alone.
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Appendix B
SU(3) Relations With ng

In Chapter 6 our discussion of SU(3) relations was limited to relations without 7g
due to 7 — g mixing. The SU(3) relations including decays to ng are all provided
in Appendix B. Again we divide the appendix according to As = 0 or As = 1 and
totally symmetric wavefunction or totally antisymmetric wavefunction.

B.1 As=0, MMM Completely Symmetric

The simplest relation is:
A(B™ — (K~K°1%s) = V3 A(B~ — (K~ Kg)s). (B.1)
Next we have several triangle relations:

A(BL = (K°m°1%)5) — 3 A(B° — (K°ngs)s) = A(B- — (K°K°K")s)
V3 AB, — (K°1°1%)s) — V3 A(B, — (K°ngm)s) = V2 A(B, — (K%%s)?). |
B.2

The above two triangle relations can be combined to give two more. There are at
least three more triangle relations:

V3 A(B, — (s~ K*)s) + A(B, — (1’7" K*)s) = 2v/3 A(B~ — (K™ K°ng)s)
V6 .A(EO — (7%ngms)s) + V3 .A(_EO — (%7771 t)s) = —2v/2 A(FS — (K%7%%)s)
AB’ - (K1°K)s) — V3 AB° — (KK ")s) = A(B. — (K°K°K)s). (B.3)

There are a large number of quadrangle relations involving B~ — 7~ 7~ 7+ (which
is proportional to the B~ — 7%7%r~ decay amplitude). We begin with the following:

V6 A(B, — (K°n°ns)s) +2 A(B, — (n'n"K™)s)
= V6 A(B™ — (ns177")s) —2V3 A(B~ — (1K~ K")s)
= V2 A(B~ — (1" K°K’)s) — A(B~ — (n~m"1*)s).  (B.4)
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In addition are there several B~ — 7 7~ relations which only involve B~ decays:
V3 A(B™ — (nn~nt)s) + 2v2 A(B™ — (2% 7s)5s)
=8 A(B™ — (K~ K"ng)s) — 2V3 A(B™ — (7 ngrs)s)
A(B™ = (n~r"1%)s) = V2 A(B~ - (m~K°K)s)
=2v3 A(B™ — (K" K%s)s) — V6 A(B~ — (n°7778)s).  (B.5)
Combining the above two relations gives three more relations.

The following two decays can also be combined to give 3 more relations:
2v3 A(B° = (K~ K*)s) + A(B, — (K°°n°)s)
= -3 A(B, = (Knsms)s) — 2 A(B® — (K°n°K")s)
AB, = (K’1°1%)s) + V3 A(B’ — (K'nsK )s)
=3 A(BY = (K%sms)s) + AB" — (K7°K")s).  (B.6)

Next we look at quadrangle relations involving only B’ decays:
1 A(B’ — (KK )s)
A(R° — g+ 7° 0, — + 7° 0
=4 AB — (1K K*)s)+ V3 AB — (n°n"1")s) + VB AB" — (n°nss)s)

=4 A(B’ — (K ~K*)s) + V2 AB" — (r°r°ng)s) — 3v6 AB’ — (77877877825) )
B.7

and

V3 A(FO — (r°7%7%¢) — V3 A(FO — (7°7°ng)s)
= V2 AB’ - (K°1°1%s) ~ V2 A(B’ — (K°n°K")s).  (B#)

There are also a number of Eﬂ decay relations:
2 A(B) — (K°K~K*)s) — V6 A(B, — (K+n~ng)s)
= —V2 A(B, = (K*r™1%)s) — 2 A(B, — (K%~ 1%)s)
= V2 A(B, - (K°n°°%)s) — A(B; — (K’1~1%)s) (B.9)
and
2V3 A(B, - (n°1~K*)s) + V6 A(B, — (K°n~7%)s)
= V3 A(B, - (K°K°K")s) — 3V2 A(B; — (K'n°75)s)
= —2v3 A(B, — (K ngns)s) — 2v2 A(B, — (K°r°ng)s). (B.10)
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Finally we give relations among decays of all three B mesons:

VB A(B, — (K’nsms)s) — V2 A(B° — (K°1sK")s)
= A(B’ — (n°1°1%)5) — A(B" — (°r°ng)s)
,A(—Eg — (e K1)s) + V3 A(Eﬁ — (%1 K*)g)
= V2 A(B~ — (r°ngm7)s) — V2 A(B’g — (K°1°ns)s)
A(B, — (K°K~K*)s) - V6 A(B™ — (K°ngK™)s)
=3v2 A(B, — (K°nsms)s) — V2 A(B° — (K°K°K")s). (B.11)

B.2 As=1, MMM Completely Symmetric

In this section we give As = 1 relations when all the mesons have relative even angular
momentum. There are several simple relations:

A(B — (K% %)s) = —A(B™ — (K 7077)s)

AB° - (7%7°1°)5) = \[A(B—mrmr))
—V2 A(B, — (ns7°1%)s) = A(B, — (ngn~1)s)
A(B~ — (K"K~K%)s) = —V2 A(B~ — (K~n"n%)g). (B.12)

The following triangle relations also result in a number of other triangle and quad-
rangle relations:

AB’ - (KKK )s)

= AB" - (R'1°r%s) — 3 AB" — (B’nsns)s)

2

= \/; AB" = (1K ")s) — 2 A(B® — (K"nsms)s)

= V6 A(B~ — (K ns1%)s) — V2 A(B® — (K°K~K*)s)

= A(B, = (K'K’1°)s) - V3 A(B, — (K K"n)s). (B.13)
There are three more independent triangle relations:

2v2 A(B” — (n°nsK )s) + V6 A(B, — (1°nsns)s) + V3 A(B. — (n°1~1%)s) = 0
AB~ — (K 1°%s) = V3 A(B™ — (1 K ns)s) — A(B’ — (K~ °1+)g) = 0

A(B~ — (K~K'K")s) — A(B~ — (K~ 1%)s) — V3 A(B~ — (K~ ngr®)s) = 0.
(B.14)

As for quadrangle relations we begin with B~ decay relations. The first two
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relations can be combined to obtain two more:

2 A(B~ — (°nsK™)s) + V6 A(B™ — (K nsms)s)
=v2 A(B~ — (778_}?071'_)5) — V3 AB™ — (K~ 7t)s)
A(B~ — (K~ 7°7%5) + 3 A(B~ — (K ns78)5s)
= V6 A(B~ — (K~ ngm%)s) — 2v2 A(B~ — (K~ K°K")s)
2 A(B~ — (B'n°1)s) + A(B~ — (K~ 1°7%)s)
=3 A(B~ — (K nsms)s) + V2 A(B~ — (K" K°K")s). (B.15)

There is one relation involving only B

VB AB’ - (st K")s) + V2 AB’ — (K n°n%)s) =
=2 AB’ - (KK "K*)s) + AB — (B'n~11)s). (B.16)

Finally there are four quadrangle relations involving decays of two or more B
mesons:

V2 A(FO — (K~7%1)s) + 3v2 A(B~ — (K™ nsms)s)
= -2 A(B~ - (K~K°K")s) — A(B~ — (K~1"7")s)
V2 A(B, — (ns7~7%)s) + V2 A(B, — (1K~ K*)s) =
= V2 A(B" = (nsntK™)s) + V2 AB: — (K°K~n")g)
V2 AB° — (KK~ 1%)s) + AB, — (n°1~1)s)
= V3 A(B, — (nm7*)s) - V2 A(B’ — ('K~ K™)s)
A(B, = (n°7°n5)s) — 3v/3 A(B, — (nsnsis)s)
= 4v/2 A(B; - (K°nsK")s) +2 A(B" — (n°nK")s). (B.17)

B.3 As=0, MMM Completely Antisymmetric

Beginning with As = 0 relations, there are several triangle relations:
AB’ — (KK ) 4) + V3 AB" — (K°1°K")4) + V2 AB — (K°rns)4) = 0
V3 A(B0 — (K°K 1) a) — A(B~ — (K°K~7°)4) — 22 A(B~ — (1K K% 4) =0
V2 A(B70 — (K°K™ng)4) — A(B~ — (n°ns77)4) — V3 A(B~ — (W_KOKO)A) =0.
(B.18)
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Combining the last two listed above gives 2 more triangle relations. The quadrangle
relations are:

V3 A(B, — (nsmK*)a) (B.19)
=3 AB) - (2" K*)4) +6 A(B~ — (K°K~7°)4) — 2v/3 A(B. — (K°7%) 4)
= A(B, = (1’7" K*)a) + V2 A(B, = (K°K~K*)4) + V2 A(B, — (K°n~1%)4)

— V3 AB® - (5K~ K+)a) + V3 AB" = () a) + % AE = (RK+n) ).

Again, more quadrangle relations can be found using the equations above.

B4 As=1, MMM Completely Antisymmetric

For As = 1 decays with antisymmetric MM M, we begin with the triangle relation:

VB AB, - (R'K°1)4) + A(B, - (K'K'1s)4) = V2 A(B* = (11K ")),
(B.20)
There are a number of quadrangle relations that, when combined, result in several
triangle relations. The quadrangle relations are:
2 AB’ - (msm*K™)a) —2V2 A(B’ — (nnsK ) )

=V6 AB~ = (K°K"K")a) — 3v2 A(B~ — (n°K 1) 4)

= V3 AB™ — (B'm°r)a) +3 A(B~ — (nsn"K") )

=2V3 A(B~ — (1% K)a) +2v6 A(B~ — (K°K"K")4)

=6 A(B™ — (ngm K )a) — 2V6 A(B~ — (K°K"K") ) (B.21)

and combining the equations just listed gives the triangle relations:

A(B™ = (nsnK")4) + V3 AB~ — (n°7"K")) +2V2 A(B~ — (K %)) = 0
2V2 A(B™ = (K°K K )a) + A(B™ — (K'1°77)4) = V3 A(B™ - (nsnK")a) = 0
V3 A(B™ — (KOK'_KO)A) ~A(B™ — (K™ 7%8)4) — V2 A(B™ — (ngw‘T(—O)A) =0
A(B~ — (K°K"K")4) + V3A(B™ — (K" 1%n8)4) + V2 A(B~ — (K 1%17) ) = 0.
(B.22)
Finally we have another set of quadrangle relations:
V2 AB’ - (B'K-K*),) (B.23)

= V3 AB, — (s~ 1)4) = V2 AB, — (K°K~71%) 4) — A(B, — (n°7 %) 4)
= A(B, — (K~ K*) ) — V2 AB, — (1K K*)a) — V3 A(B} — (15K~ K*) )
= A(EO — (K71 - vV2 AB® — (fOW‘WJr)A) — 3 A(F0 — (ngmTK™)a).
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