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Anc 1: A New Player in the Cellular Response to DNA Damage
by

Rachel L. Erlich

Submitted to the Department of Biology
on August 31, 2007 in Partial Fulfillment of the

Requirements for the Degree of Doctor of Philosophy in Biology

ABSTRACT

The continuity of living organisms depends on their ability to protect their
genomes from a constant assault by internal and external sources of damage. To this
end, cells have developed a variety of mechanisms to avoid and repair damage to their
genetic material. In this thesis, we analyze a yeast gene that has a previously
uncharacterized role in the cell's ability to survive after DNA damage. This gene, ANC1,
is interesting for several reasons. First, Ancl is the only common member of seven
different multiprotein complexes that all function in general RNA polymerase II-mediated
transcription. Second, Ancl is evolutionarily well-conserved between yeast and
humans, suggesting that its function is critically important for survival. And finally, three
out of four human homologs of ANCI have a role in the MLL gene fusions associated
with human acute leukemias.

Here, we show that ANCI falls into the same genetic pathway as several
members of the postreplication repair (PRR) pathway, but has additive or synergistic
relationships with other members of the pathway. Based on our epistasis data and our
analysis of Ancl's role in mutagenesis, ANCI functions in the error-free branch of PRR.
Genetically, however, ANCI is not in the same pathway as several canonical error-free
branch members, and thus defines a new error-free branch of PRR. Similar to other
genes involved in error-free PRR, ANCI was found to have a role in suppressing the
expansion of the Huntington's Disease-associated CAG triplet repeat.

Additionally, we demonstrate a role for Ancl in the global transcriptional
response to MMS treatment: expression changes in transcripts regulated in response to
environmental stress are significantly abrogated in ancl cells. The regulation of this
transcriptional response to environmental stress has previously been attributed to the
Mecl signaling pathway. To determine if Ancl's effect on global transcription is linked
to Mecl signaling, we assayed the role of Ancl in mediating the protein-level DNA
damage response of Smil, a downstream member of the Mecl pathway. We observed
that in the presence of MMS the SmIl protein is abnormally degraded in ancl cells,
indicating a possible role for Ancl in this pathway.

Thesis Supervisor: Leona D. Samson
Title: Professor of Biological Engineering, Professor of Biology

Abbreviations footnote: PRR = Postreplicative repair, TCR = Transcription Coupled
Repair, RNA pol II = RNA polymerase II, TLS = Translesion Synthesis, H2A - Histone
2A, H2B = Histone IIB



INTRODUCTION
Recently, in a screen for yeast deletion strains that show sensitivity to DNA

damaging agents, a target was uncovered that displayed particularly interesting

characteristics. This strain, deleted for a gene called ANCI, showed sensitivity to three

out of the four damaging agents it was screened against (UV, MMS and 4NQO, but not

t-BuOOH), and had three human homologs associated with acute leukemias (Begley et

al. 2002; Begley et al. 2004). Although several cellular roles for this protein were known

or suspected (Ancl is the only common member of seven complexes important to

transcription, and is suspected to play a role in actin function), these roles did not

illustrate a clear basis for the observed DNA damage sensitivity. In this thesis I will

describe our efforts to characterize the underlying mechanism for ancl's observed DNA

damage sensitivity, and present Ancl as an important new component of the cellular

response to DNA damage.

Ancl background

The ANCI gene (aka SWP29, TAF30, TFG3, TAF14) gets its many names from

the assortment of genetic and biochemical experiments from which it has been

identified. Biochemically, it encodes a member of the TFIID (TAF30), TFIIF (TFG3) and

SWI/SNF (SWP29) complexes, and genetically, it was identified in a screen for genes

that fail to complement the actl-1 temperature sensitive allele of actin (thus Actin Non-

Complementing) (Welch et al. 1993; Henry et al. 1994). At the time of this genetic

screen there were several other genes whose failure to complement this actin allele had

been characterized, all of which encode actin binding proteins (Welch et al. 1993).

Indeed, ancl mutant strains do have defects in actin organization, similar to defects



observed in mutant alleles of actin itself (Welch et al. 1993). Furthermore, the ancl

deletion fails to complement deletions in the SAC6 and TMPI genes, both of which are

actin-binding proteins (Vinh et al. 1993). There has been further evidence for a

relationship between ANCI and actin since this initial discovery: INO80, a complex of

which Ancl is a member, contains Act1 along with several ARPs (Actin Related

Proteins), and SWI/SNF, another Ancl-containing complex, also contains several ARPs

(Cairns et al. 1996; Shen et al. 2000). Despite the compelling implication that Ancl may

have a role in actin function, this aspect of Ancl's cellular role is not well understood. In

addition to its relationship to actin, several characteristics of ancl cells were noted in

these early studies. The morphology of these slow-growing ancl cells was observed to

be abnormally large and elongated, and the strain shows considerable resistance to

formation of a mating projection in response to a-factor (and its associated arrest),

possibly due to mislocalization of Spa2, a protein involved in polarity and cytokinesis

(Welch and Drubin 1994). Ancl localizes to the nucleus, a surprising quality for a

protein involved in cell structure (Welch and Drubin 1994).

The Ancl protein has been found to interact with 85 other proteins, the large majority of

which are proteins involved in RNA polymerase II (RNA pol II) transcription (Figure 1-1).

Fifty-nine of Ancl's interactors are members of known transcription-related complexes

(TFIID, TFIIF, Mediator, SWI/SNF, RSC, IN080 and NuA3), and 17 of the remaining

proteins have roles that involve direct interaction with these Ancl-containing complexes,

(12 are RNA Pol II subunits) (STARK et al. 2006). Five of the remaining nine proteins

are directly involved in transcription activation, including Spt7 (a member of the SAGA

complex), Hap4 (a member of the CCAAT binding complex), and Gcn4, Tfb4 and Mot1



Figure 1-1
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Figure 1-1: Diagram of Ancl 's protein-protein interactions. Ancl has been shown to
interact with 85 different proteins, 84 of which are diagrammed here (Stark et al. 2006).
The characterized interaction with Dunl is absent (Ho et al. 2002).



(transcriptional regulators) (STARK et al. 2006). The final four proteins, Mus81, Sap185,

Smt3 and Dun1 function outside of the transcriptional machinery, and may help to

define new cellular roles for Ancl, as we will see below.

In addition to its physical protein-protein interactors, an ANCI knockout allele is

synthetically lethal with three other knockout alleles: YAF9, DSTI and SLA I (Welch and

Drubin 1994; Zhang et al. 2004; Fish et al. 2006; Stark et al. 2006). Yaf9 (Yeast AF9) is

a homolog of Ancl that shares a YEATS domain with Ancl, a domain they both share

with their leukemogenic human homologs. Yaf9 is a subunit of the NuA4 histone

acetyltransferase complex (which acetylates histones H2A and H4), and is involved in

counteracting silencing near telomeres (ZHANG et al. 2004). NuA4 has also been

implicated in double strand break repair through its acetylation of histone tails near

break sites (BIRD et al. 2002). DST1 encodes transcriptional elongation factor TFIIS

(Transcription Factor II S), that promotes cleavage of stalled transcripts, and allows Pol

II-mediated elongation to reinitiate elongation after stalling (UBUKATA et al. 2003). It is

notable, however, that dstl mutants are synthetically lethal with a total of 60 genes,

many of which are involved in transcription, as well as several mutants in repair

pathways (i.e. rad6 and rad52) (STARK et al. 2006). Unlike Yaf9 and Dstl, Slal has a

structural role in the cell; it is involved in building the cortical actin cytoskeleton, and is

required for normal endocytosis in S. cerevisiae (PIAO et al. 2007).

As mentioned above, Ancl's sequence has similarity to three proteins implicated

in human acute leukemias, ENL, AF9 and GAS41, a connection whose importance has

been of increasing relevance in the study of acute leukemias (Welch and Drubin 1994).

Many additional members of this highly conserved protein family (called the "YEATS"



family) have since been identified across eukaryotic proteomes, although the

connection between this sequence and leukemogenesis is still being unraveled.

Currently, there are three known S. cerevisiae members of the YEATS family (Ancl,

Yaf9 and Sas5), and four known human members (ENL/MLLT1, AF9/MLLT3, GAS41

and YEATS2), and the conserved YEATS domain shows a high degree of similarity in

an alignment (Figure 1-2). Ancl is quite a small protein, only 29 kDa, and its only

recognizable domain is the domain it shares with its YEATS family homologs

(http://www.sanger.ac.uklSoftware/Pfam/). The sole function of the YEATS domain that

has been illuminated to date is its direct binding to histones H1 and H3, as

demonstrated in the ENL human homolog (Zeisig et al. 2005).

Mixed-linkage leukemia (MLL) and the human YEATS-family members

The human Mixed Linkage Leukemia gene, MLL (ALL, HRX, Hrtx), can become

fused with a wide variety of other genes, resulting in either acute myeloid or acute

lymphoid leukemias (accounting for its "mixed" designation) (Popovic and Zeleznik-Le

2005). In humans, three of the four known YEATS family members are involved in

Mixed Linkage Leukemia (MLL)-associated leukemogenesis, which occurs primarily

through a reciprocal translocation between the MLL gene and a fusion partner. ENL,

and AF9 are direct fusion partners with the MLL gene, and the GAS41 protein interacts

directly with AF10, another MLL gene fusion partner (Daser and Rabbitts 2004). Of the

greater than 60 MLL fusion partners that have been identified clinically, the YEATS-
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associated partners are among the most common, accounting for about 35% of

spontaneous human acute leukemias with MLL gene fusions (Daser and Rabbitts

2005).

The MLL gene is involved in about 10% of all pediatric leukemias, and 5% of

acute adult leukemias (Daser and Rabbitts 2004). Some MLL-associated leukemias

arise spontaneously (90-95%), while others are related to treatment with chemical

therapies (5-10%) (Daser and Rabbitts 2004). MLL-associated leukemias are clinically

found to be associated with two patient populations in particular: infants exposed to

chemical insult in utero (often presenting with leukemia before they reach one year of

age), and patients who have had a primary cancer early in life, and have been treated

with high-dose radiation therapy and certain chemotherapeutic agents (i.e.

topoisomerase II inhibitors) (Tkachuk et al. 1992; Daser and Rabbitts 2005; Eguchi et

al. 2006). Despite recent advances in the treatment of childhood leukemias, the

survival rate of MLL-associated infant leukemias is about 17-18%, which drops to about

5% survival in patients under three months of age (Hess 2004). The cure rate of both

spontaneous and secondary MLL-associated leukemias is approximately 35% (Hess

2004).

Reciprocal translocations occur in several possible locations within the MLL

gene, which spans about 90 Kb, but are most common in the breakpoint cluster region

(Popovic and Zeleznik-Le 2005). The MLL protein is unusually large (about 4,000

amino acids), and contains many recognizable functional domains (Daser and Rabbitts

2004), (Figure 1-3A). Starting at the N-terminal end of the protein, MLL contains three

AT hooks, which function to bind the minor groove of AT-rich regions of DNA; AT hooks
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Figure 1-3: Schematic of MLL protein domains. A. Complete MLL protein. B.
MLL protein fused to generic fusion partner (Daser and Rabbitts, 2004).



have been shown to mediate DNA-protein interactions or stabilize protein-protein

interactions through DNA binding (Zeleznik-Le et al. 1994; Daser and Rabbitts 2004).

Next there are two nuclear localization signals (SNL1 and SNL2) that direct the protein

into the nucleus, and a region involved in transcriptional repression through both

methyltransferase activity (RD1) and histone deacetylase recruitment (RD2) (Slany et

al. 1998; Daser and Rabbitts 2004). In an in vitro study to determine which of these

regions is required for transformation, it was determined that a deletion of MLL's AT

hooks or the methyltransferase domain diminishes transformation considerably (Slany

et al. 1998). The C-terminal domain of MLL is generally lost in reciprocal translocations

(Figure 1-3B). In its wildtype state, however, the C-terminal domain contains three zinc-

finger-PhD domains, two protease cleavage sites (CS1, 2), as well as a SET domain,

involved in histone methylation (Daser and Rabbitts 2004) (Figure 1-3A). When the

wildtype MLL protein is cleaved at these cleavage sites, the two resulting fragments are

then reassociated with one another through the FYRN and FYRC domains (Hsieh et al.

2003). Finally, the transcriptional activation domain (TAD) interacts with the CPB

acetyltransferase, resulting in transcriptional activation through binding to CREB (Cyclic

AMP Response element-Binding Protein) (Ernst et al. 2001; Daser and Rabbitts 2004)

(Figure 1-3A).

MLL is a member of the trithorax group, trx-G, (originally identified in Drosophila),

a protein family involved in positive maintenance of gene expression during

development (Tkachuk et al. 1992; Popovic and Zeleznik-Le 2005). The best

understood target of trithorax group proteins is regulation of homeobox (HOX) gene

expression. HOX genes are a highly conserved set of transcription factors, that are



involved in embryonic development and hematopeotic cell differentiation (Hess 2004;

Daser and Rabbitts 2005). Surprisingly, the normal expression of Hox genes has been

observed in cells containing MLL fusions, as well as other MLL defects (Daser and

Rabbitts 2005). The wildtype MLL is a member of a large multi-protein complex (at

least 29 proteins), containing members of several complexes, including SWI/SNF,

hSNF2H, TFIID, NuRD, and Sin3A, complexes involved in RNA pol II transcription at a

variety of levels (Daser and Rabbitts 2005); MLL is thus likely to be involved in

chromatin remodeling, acetylation, deacetylation and histone methylation (Daser and

Rabbitts 2004).

In mice, homozygous deletion of MII is embryonic lethal, and, as expected from

the involvement of HOX genes, there are numerous skeletal, segmental and

hematopoetic errors in these embryos (Daser and Rabbitts 2005; Popovic and Zeleznik-

Le 2005). In the absence of even a single copy of the MIl gene, mice have anemia and

a slow growth phenotype, indicating that haploinsufficiency may play a part in human

MLL-associated leukemogenesis (Popovic and Zeleznik-Le 2005). Interestingly, a null

mutant in the mouse AF9 YEATS homolog showed a misregulation of embryonic

development as well, hinting that its wildtype function may also be related to HOX gene

regulation (Collins et al. 2002). It has recently been noted that murine cells containing

an inducible MLL-ENL fusion have an increased incidence of chromosomal

abnormalities, although the reason for this increase has not yet been characterized

(Eguchi et al. 2006).

In global analyses of MLL association, it was observed that MLL colocalizes with

RNA pol 11I at actively transcribed genes, as well as to microRNAs that are involved in



leukemia and hematopoesis, and that a loss of function in MII results in defects in RNA

pol II distribution (Guenther et al. 2005; Milne et al. 2005). Several MLL fusion

products, including all of the YEATS-associated fusions, were found to downregulate

p21, MDM2 and Bax, all downstream targets of p53's damage response, in the

presence of DNA damage (Wiederschain et al. 2005). In human nuclei, both the

wildtype MLL protein and its fusion product show punctate distribution, probably

corresponding to their localization to nuclear structures, and are expressed in a wide

variety of tissues, including hematopoetic cells, cerebral cortex, kidney, thyroid and

lymphoid tissues (Butler et al. 1997), suggesting that the fusion protein is localized

normally, but misregulated.

Ancl containing complexes

As mentioned above, Ancl is a member of seven protein complexes: TFIID,

TFIIF, Mediator, SWI/SNF, RSC, IN080 and NuA3. All of these complexes have a role

in general RNA pol 11I transcription, although several have specialized roles outside of

this function as well.

TFIID, TFIIF and Mediator complexes

RNA pol 11I is the major transcriptional polymerase in all eukaryotes. Unlike the

prokaryotic transcriptional polymerase, the RNA pol II enzyme is unable to initiate

transcription in vitro unless several cofactors, called general transcription factors are

present (Alberts et al. 2002). These general transcription factors include the Ancl-



containing complexes TFIID and TFIIF, among others. The TFIID complex contains a

subunit called Tata Binding Protein (TBP), which binds to the thymine- and adenine-rich

TATA box upstream of the transcriptional start site, initiating transcription, and seeding

the formation of the transcription initiation complex (Figure 1-4A). The TFIID complex

also contains a histone acetyltransferase that allows it to aceylate histones H3 and H4

(Mizzen et al. 1996). It has a demonstrated function in regulating the state of cellular

growth through the G1/S cyclin genes (Walker et al. 1997). In human cells it has been

shown that a partial loss of function in TAF1 can lead to activation of the ATR damage

signaling pathway (Buchmann et al. 2004).

While the TFIID complex is involved primarily in transcriptional initiation, the

TFIIF complex functions in both transcription initiation and elongation. TFIIF joins the

transcription initiation complex after it has already bound to RNA pol II, and is

positioned, with RNA pol II, directly over the transcriptional start site (Lodish et al. 2000)

(Figure 1-4B). TFIIF is necessary for RNA pol I's binding to the TFIIB-promoter

complex (Lodish et al. 2000). The TFIIF complex remains in contact with RNA pol II

through at least the beginning of elongation (and possibly longer), and suppresses RNA

pol II pausing during nucleotide addition through an unknown mechanism, though it is

possible that it's role in elongation is limited to the first few bases after initiation (called

"promoter escape") (Shilatifard et al. 2003) (Figure 1-4B). Recently, it was shown in

human cells that TFIIF is involved in the bypass of oxidative lesions during

transcriptional elongation (Charlet-Berguerand et al. 2006), although this finding has

been challenged (Kuraoka et al. 2007). Although there is currently no direct role known

for TFIIF in DNA repair, TFIIF recruits TFIIE, which, in turn, recruits TFIIH to the RNA
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pol II holoenzyme, and TFIIH is known to function in Transcription Coupled Repair

(TCR), a DNA repair that targets DNA damage specifically on the transcription template

strand.

In addition to the general transcription factors required for RNA pol II to

transcribe RNA in vitro, there are additional factors that are required for RNA pol II

transcription within the context of the cell. The Ancl-containing Mediator complex is

one such factor. Mediator interacts with the unphosphorylated C-terminal domain

(CTD) of RNA pol II, and dissociates as the tail becomes phosphorylated during

elongation (Bjorklund and Gustafsson 2005). Mediator has been shown to bridge the

general RNA pol II holoenzyme with transcriptional activators that are sequence specific

(Bjorklund and Gustafsson 2005) (Figure 1-4C). It has also been shown to acetylate

histones, through its Nut1 subunit, indicating that Mediator may help to keep chromatin

acetylated and open for transcription factors (Lorch et al. 2000; Wang et al. 2005).

SWIISNF, RSC and INO80 complexes

The Swi2/Snf2 family of DNA-dependent ATPases is a family of chromatin

remodelers with an important role in gene transcription, and is conserved through all

eukaryotes. This family includes several Ancl-containing complexes, including

SWI/SNF, RSC, and INO80. The Rad5 protein, a member of the postreplicative repair

pathway, is also a member of the SWI/SNF family. The SWI/SNF complex is recruited

to promoter regions by DNA-bound activators and repressors in a sequence dependent

manner for chromatin remodeling (Martens and Winston 2003) (Figure 1-5A). The
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chromosome is remodeled by a repositioning of the nucleosome that allows for better

access to the DNA (Sudarsanam and Winston 2000). The SWI/SNF ATPase subunit,

like others in the family, contains a bromodomain motif that allows for binding to

acetylated lysines in histone tails, which is required for its stable association with

chromatin, and for localization to some of its promoter targets (Martens and Winston

2003). In mice, it has recently been shown that the components of SWI/SNF are

downregulated in response to the activation of TCR, resulting in a change in gene

expression patterns, which may hint at a regulator role for SWI/SNF in TCR (Lee et al.

2007).

Like the SWI/SNF complex, the RSC complex is involved in both activation and

repression of transcription, but unlike SWI/SNF, the RSC complex is essential for mitotic

growth (Martens and Winston 2003). In addition to activation and repression, RSC may

also have function in transcription elongation (Govind et al. 2005). It was recently

shown that RSC and, to a lesser extent, SWI/SNF, decrease the accumulation of

arrested RNA products and increase the yield of full-length transcript; it is thought that

this may relate to their ability to recognize acetylated histones and regulated

accessibility of the regions to be transcribed (Carey et al. 2006). Finally, both RSC and

SWI/SNF have been implicated in the homologous recombination repair of double-

strand breaks (DSBs), with SWI/SNF being recruited to the break site before strand-

invasion, and helping to extend the invading strand, and RSC recruited after synapsis

has already occurred (Chai et al. 2005). RSC has also been implicated in the non-

homologous end-joining of DSBs; NHEJ is impaired in the absence of certain RSC



subunits, and RSC is recruited to the site of the break for chromatin remodeling activity

(Shim et al. 2005; Shim et al. 2007) (Figure 1-5B).

The IN080 complex, along with SWR1 complex, belongs to a subclass of the

SWI/SNF family characterized by a split ATPase domain in the core ATPase subunit

(Bao and Shen 2007). In addition to the DNA-dependent ATPase activity that defines

this family, the IN080 complex also has a 3'-5' helicase activity (Bao and Shen 2007).

Like SWI/SNF and RSC, the IN080 complex has roles in both transcriptional regulation

and DNA repair. When IN080, the ATPase subunit of the IN080 complex, is deleted,

the expression of a subset of genes is significantly reduced, particularly genes related to

cell structure (Ebbert et al. 1999). It was recently discovered that the IN080 complex

localizes to the phosphorylated histone y-H2AX that forms near the site of DSBs

(Morrison et al. 2004; van Attikum et al. 2004). To assay IN080's role, H2 was modified

such that y-H2AX could not form at DSBs: it was found that single-strand DNA

production at the break site was diminished, hinting that IN080 may function in this

crucial stage of homologous recombination (van Attikum et al. 2004; Bao and Shen

2007). A potential role for INO80 in non-homologous end-joining (NHEJ), a separate

pathway that also repairs DSBs, has been indicated through both gene expression

analysis, and survival after an induced double strand break (van Attikum et al. 2004)

(Figure 1-5B).

NuA3 complex



The NuA3 complex is the least well understood of the Ancld -containing

complexes. It has been shown to acetylate histone H3 through its catalytic subunit

Sas3; acetylated chromatin is associated with areas of active transcription (John et al.

2000). Recently, it was shown that NuA3 is recruited to the areas it acetylates by the

SETI- and SET2-dependent methylation of H3 (Martin et al. 2006b) (Figure 1-5C). This

recruitment takes place through recognition of H3 methylation by a PhD domain in one

of its subunits (Martin et al. 2006a; Taverna et al. 2006) (Figure 1-5C).

The Postreplicative repair pathway

Upon the occurrence of DNA damage, there are a panoply of DNA repair

mechanisms that the cell may employ in order to survive the insult. The pathway the

cell chooses depends on the type of damage, its extent, the position of the cell within

the cell cycle and the state of the DNA that has become damaged. To this end,

eukaryotic pathways have evolved that promote direct reversal of damage, mismatch

repair, nucleotide excision repair, base excision repair, homologous recombination, non-

homologous end-joining, transcription-coupled repair and postreplication repair. In the

absence of successful DNA repair, a cell may not be able to replicate its DNA for cell

division, or it may make errors in its DNA replication or transcription that lead to death

for the cell, or even the entire organism. Although each pathway has its preferred

substrates, in many cases a substrate may be acted upon by several different repair

pathways; this redundancy leads to competition for substrates between pathways and

further protects the cell from the consequences of DNA damage.



The postreplicative repair pathway (PRR) is highly conserved from yeast to

humans, and functions at sites where unrepaired lesions in the DNA block the

replication machinery, creating stalled replication forks. The PRR pathway, sometimes

called the "damage avoidance" pathway, resolves the replication blockage without the

removal of the lesion. If the stalled replication fork were allowed to persist, it could lead

to cell cycle arrest, and, ultimately, cell death (Ulrich 2006). This pathway consists of at

least one error-prone branch, characterized by specialized polymerases that are

capable of replicating past DNA lesions without fixing them, and at least one error-free

branch, in which lesions are avoided for the purposes of replication through a poorly

understood recombination mechanism (Zhang and Lawrence 2005; Friedberg et al.

2006). The error-prone branch is so named because in the absence of its members,

the mutation rate decreases; thus, the members of the error-prone pathway, when

intact, promote mutagenesis. Conversely, when members of the error-free branch are

absent, the mutation rate of the cell increases, indicating that these genes have a role in

suppressing mutagenesis. The classification of branches and sub-branches in this

pathway has proven difficult, as its outcome differs depending on the type of DNA

damage employed (i.e. UV-treatment vs. MMS-treatment vs. spontaneous damage), the

assay utilized (i.e. survival vs. mutagenesis) and other technical details (i.e. chronic vs.

short-term exposure to damage, liquid treatment vs. treatment on agar, etc.) (Cejka et

al. 2001; Ulrich 2001; Broomfield and Xiao 2002; Barbour and Xiao 2003; Minesinger

and Jinks-Robertson 2005).

Both the error-prone and error-free pathways are encoded by the RAD6 epistasis

group, whose members are: RAD6, RAD18, REVI, REV3 REV7 RAD30, RAD5, MMS2



and UBC13 (Friedberg et al. 2006). SRS2, an additional gene involved in the PRR

pathway, suppresses the extensive sensitivity of rad6 cells to UV light (Lawrence and

Christensen 1979). Several members of the PRR pathway are involved in ubiquitin-

mediated signaling, although a relationship between their roles in ubiquitination and

DNA repair has been somewhat elusive (Friedberg et al. 2006).

The Rad6 protein has been implicated in a variety of cellular processes, ranging

from sporulation to a-factor sensitivity to DNA repair (Welch and Drubin 1994; Alberts et

al. 2002). Its deletion results in massive DNA damage sensitivity to a variety of agents

(UV, MMS, y-rays, cross-linking agents), cell cycle defects and decrease in chemically-

induced mutagenesis (although an increase in spontaneous mutagenesis) (Friedberg et

al. 2006). The damage sensitivity phenotype of rad6 cells is suppressed in srs2 cells,

as is the cell cycle defect, in part, but the defects in mutagenesis and sporulation are

not suppressed, demonstrating that these aspects of Rad6 function can operate

independently from one another (Schiestl et al. 1990). Rad6 was identified as a

functional member of the ubiquitin conjugating enzyme (E2) family, which, in

combination with an E3 ubiquitin ligase, transfers activated ubiquitin to a target protein

(i.e. H2A, H2B and PCNA, in the case of Rad6) (Jentsch et al. 1987; Hoege et al. 2002).

The role of Rad6's ubiquitin function in DNA repair is a matter that is still being explored.

When the active site cysteine of Rad6, conserved in all E2s, is mutated, all Rad6

function appears to be disrupted (i.e. the phenotype is like that of rad6 mutants) (Sung

et al. 1990). Surprisingly, however, if just the acidic tail is deleted, a region necessary

for the ubiquitination of histones, Rad6's DNA repair function is unchanged (Morrison et

al. 1988; Sung et al. 1990).



Rad6's other known ubiquitination target, PCNA, plays an important role in

determining whether the error-prone or error-free branches of PRR will be utilized at a

stalled replication fork (Hoege et al. 2002). PCNA acts as a homotrimer ring that

encircles DNA and tethers polymerases to it; PCNA is necessary for DNA synthesis

(Moldovan et al. 2007). PCNA can be mono- or poly- ubiquitinated in a Rad6/Rad18-

dependent fashion at lysine 164. Monoubiquitination at this site is associated with

initiation of the error-prone branch, and polyubiquitination, dependent on Rad5's

recruitment of the Mms2/Ubc13 heterodimer for polyubiquitination at lysine 63, is

associated with the error-free branch (Ulrich and Jentsch 2000; Hoege et al. 2002).

Monoubiquitinated PCNA has been specifically associated with several TLS

polymerases (Bienko et al. 2005; Wood et al. 2007), though the link between the error-

free pathway and polyubiquitination is still poorly understood (Moldovan et al. 2007).

The Radl8 protein forms a stable heterodimer with Rad6 (Bailly et al. 1994), and

rad18 cells display a similar range, but not extent, of DNA damage sensitivity as rad6

cells; it is sensitive to MMS, UV, y-rays, etc, and its spontaneous mutation rate in

increased over that of wildtype (Friedberg et al. 2006; Ulrich 2006). The Radl8 protein

is an E3 ubiquitin ligase that binds directly to single-stranded DNA, which may be

involved in the targeting of PRR to sites of locally single-stranded DNA at stalled

replication forks (Bailly et al. 1997). Like Rad6, Radl8 is necessary for both the error-

free and the error-prone branches of PRR.

Rev1, Rev3 and Rev7 and Rad30 are all involved in translesion polymerase

activity in the error-prone branch of PRR. Rev3 and Rev7 function as a heterodimer,

polymerase ,, while Rad30 (polymerase n) acts alone, and Revi, whose role is still



largely uncharacterized, may gain some of its activity through interactions with

translesion synthesis (TLS) polymerase , (Nelson et al. 1996; Ulrich 2006). When

translesion polymerases are deleted, a marked decrease in mutagenesis is observed,

although some polymerases show this phenotype in a broader spectrum of mutagenesis

assays (i.e. polymerase ,), than others (i.e. polymerase rl) (Friedberg et al. 2006).

These polymerases are characterized by low processivity (i.e. they often dissociate from

the DNA after only a few bases), presumably to allow a more accurate and processive

polymerase a chance to resume normal activity (Friedberg et al. 2005).

Although Rad5 is generally characterized as belonging to the error-free branch of

postreplicative repair, where its role is better understood, it has several characteristics

that hint it may play a role in the error-prone branch as well (and possibly even non-

homologous end-joining) (Ahne et al. 1997). In epistasis assays, rad5 mutants shows a

synergistic relationship with mutant TLS polymerases, indicating that they may function

in partially overlapping or parallel pathways (Ulrich 2006). Although rad5 cells show an

increase in mutagenesis in most assays, certain markers have shown a decrease in

mutagenesis, as would be expected from involvement in the error-prone pathway

(Schurer et al. 2004). It should be noted that a Mms2/Ubcl 3-independent role for Rad5

has been characterized, and may involve histone H2B, a Rad6/Radl8 substrate (Martini

et al. 2002; Gangavarapu et al. 2006). Rad5 is a member of the SWI/SNF DNA-

dependent ATPase family; it has both chromatin remodeling and helicase domains,

though helicase activity has not yet been demonstrated (Ulrich and Jentsch 2000).

Rad5 binds to DNA, has single-strand ATPase activity, and appears to mediate contact

between the Rad6/Rad18 and the Mms2/Ubcl3 heterodimers (Johnson et al. 1992;



Johnson et al. 1994; Ulrich and Jentsch 2000) (Figure 1-6). Based on its placement in

the pathway, and its interaction with Mms2/Ubcl3, it is possible that Rad5 functions as

an E3 ubiquitin ligase (Ulrich 2006).

Like Rad6 and Rad 18, Mms2 and Ubcl3 form a stable heterodimer that consists

of an E2 ubiquitin-conjugating enzyme (Ubc13), and its E3 partner (Mms2) (Ulrich and

Jentsch 2000). Interestingly, the unique polyubiquitination created by this heterodimer

(K63 instead of K48) seems to be specifically indicative of DNA damage, although its

target is as yet unknown (Spence et al. 1995; Friedberg et al. 2006). The main physical

contact of this heterodimer with the other members of the PRR pathway is through

Rad5, and only occurs in the presence DNA damage, when Mms2 and Ubcl3 localize

to the nucleus from the cytosol (Ulrich and Jentsch 2000; Friedberg et al. 2006) (Figure

1-6).

Srs2, although not technically a member of the Rad6 epistasis group, also

functions in the PRR pathway. Mutations in the SRS2 gene suppress the DNA damage

sensitivity of rad6 cells, and of mutants in the error-free branch of PRR, but not the error

prone branch (Ulrich 2001; Broomfield and Xiao 2002). Srs2 is a 3'-5' helicase, and it

has been shown to direct stalled replication forks to the PRR pathway by stripping the

Rad52-pathway promoting Rad51 filament from single-stranded DNA (Krejci et al. 2003;

Veaute et al. 2003). As mentioned earlier, the competition between multiple repair

pathways, in this case, homologous recombination and PRR, helps to ensure that even

under bad genetic or environmental conditions, damage can be handled by the cell,

promoting cell survival.
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Figure 1-6: Model of the Postreplication Repair Pathway. The proteins involved in the
error-prone and error-free branches are shown, with error-free pathway members shown
in color. Srs2 strips the Rad51 filament from single-stranded DNA, where it would
sequester the DNA for homologous recombination, allowing the Rad6/Radl 8
heterodimer to bind. Rad5 mediates the interaction between the Rad6/Radl 8 heterodimer
and the Mms2/Ubcl3 heterodimer. Rad6/Radl8 functions in both the error-prone and
error-free branches.
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The aforementioned qualities of Ancl - its roles in transcription and its homology

to human genes associated with leukemia - make its mechanism of promoting survival

after DNA damage particularly fascinating. In this thesis, we will explore the connection

between what is known of Ancl's function in transcription and its characterized

sensitivity to DNA damage. We will also explore Ancl's involvement in the DNA

damage cell cycle checkpoint, DNA repair pathways, the global transcriptional response

to DNA damage and the damage signaling pathway. Our results will provide a new

understanding of Ancl's role in cell survival.
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ABSTRACT

S. cerevisiae strains lacking Ancl, a member of the YEATS protein family, are

sensitive to several DNA damaging agents. The YEATS family includes two human

genes, ENL and AF9, that are common fusion partners with MLL in human acute

leukemias. Ancl is a member of seven multi-protein complexes involved in RNA

polymerase II-mediated transcription, and the damage sensitivity observed in ancl cells

is mirrored in strains deleted for some other non-essential members of several of these

complexes, including SWI/SNF, IN080, Mediator, and RSC. Here we show that ANCI

is in the same epistasis group as SRS2 and RAD5, members of the postreplicative

repair (PRR) pathway, but has additive or synergistic interactions with several other

members of this pathway. Although PRR is traditionally divided into an "error-prone"

and an "error-free" branch, ANCI is not epistatic with all members of either established

branch, and instead defines a new error-free branch of the PRR pathway. Like several

genes involved in PRR, an intact ANC1 gene significantly suppresses spontaneous

mutation rates, including the expansion of (CAG) 25 repeats.



INTRODUCTION

Understanding the role of all genes that function to provide resistance upon

chemical exposure will provide a systems level view of how cells respond to changing

environments, and an understanding of what happens to the cell and the organism

when this system is impaired. Recently, we screened all of the non-essential yeast

genes to identify those that provide resistance to DNA damaging agents (BEGLEY et al.

2002; BEGLEY et al. 2004). Based on the genes of known function whose deletion

resulted in sensitivity, we identified several unexpected cellular processes that were

overrepresented among damage sensitive mutants (BEGLEY et al. 2002; BEGLEY et al.

2004). RNA polymerase II (Pol II)-mediated transcription was among the many

pathways that were significantly overrepresented (BEGLEY et al. 2002; BEGLEY et al.

2004).

The product of the ANCI gene (also known as TAF14 and TFG3) is a member of

at least seven multi-protein complexes that have distinct but related cellular roles, the

common theme being their involvement in RNA Polymerase Il-mediated transcription.

Ancl-containing complexes include two members of the RNA Pol II holoenzyme, TFIID

and TFIIF, the chromatin remodeling complexes RSC, SWI/SNF, and IN080, the

histone acetyltransferase complex, NuA3, and the transcriptional activation adapter

complex, Mediator. (Henry et al. 1994; Poon et al. 1995; Cairns et al. 1996; John et al.

2000; Le Masson et al. 2003; Zhang et al. 2004; Kabani et al. 2005). The sensitivity of

ancl S. cerevisiae strains to UV light, y-irradiation the DNA alkylating agents methane

methylsulfonate (MMS) and 4-nitroquinoline 1-oxide (4NQO), and to hydroxyurea (HU)



was recently reported (Bennett et al. 2001; Begley et al. 2002; Begley et al. 2004;

Zhang et al. 2004). How Ancl promotes survival after exposure to DNA damage and

replicative stress has not, until now, been explored.

The Ancl protein contains a highly conserved YEATS domain that is present in

three yeast (Yaf9, Ancl and Sas5) and four human (ENL/MLLT1, AF9/MLLT3, GAS41

and YEATS2) proteins. Three of the four YEATS family human proteins are associated

with the human mixed linkage leukemia) gene: MLL gene fusions occur in -3% of AML

(acute myeloid leukemia) and 8-10% of ALL (acute lymphoid leukemia) (DASER and

RABBITTS 2005). Both ENL and AF9 are common translocation partners with MLL in

these cancers, and GAS41 has been shown to interact directly with the product of the

AFIO gene, another MLL fusion partner (DEBERNARDI et al. 2002). Together, ENL, AF9

and AFIO fusions with MLL account for about 35% of spontaneous human acute

leukemias with MLL gene fusions (DASER and RABBITTS 2005). The function of the

YEATS domain is still largely unknown, although it was recently reported that tagged

ENL binds specifically to histones H1 and H3 via its YEATS domain (ZEISIG et al. 2005).

Moreover, the wildtype MLL protein is a member of a large multiprotein complex that

contains many members of the human TFIID and SWI/SNF transcription complexes.

Similar to MLL, Ancl is a member of yeast TFIID and SWI/SNF complexes, and is thus

intriguingly similar to MLL itself (NAKAMURA et al. 2002). This, along with the fact that

Ancl and several of MLL's leukemogenic fusion partners share the YEATS domain

makes Ancl a particularly interesting candidate for mechanistic analysis.

During DNA replication, template nucleotides that have been chemically modified

or lack a base altogether, frequently block advancement of the replication fork, and can



even cause fork collapse. Unless a stalled replication fork is enabled to restart, the cell

cannot properly complete DNA replication, resulting in cell cycle arrest and cell death.

The post-replication repair (PRR) pathway, exemplified by the RAD6 epistasis group in

S. cerevisiae, employs a variety of mechanisms for restarting stalled replication forks. It

is the least well characterized of the DNA repair pathways, and is generally divided into

error-prone and error-free branches, although there is some disagreement as to the

number and sub-branches therein (Xiao et al. 2000; Cejka et al. 2001; Gangavarapu et

al. 2006; Ulrich 2006). The error prone branch employs specialized translesion DNA

polymerases (i.e. Rev1, Pol ,, Pol q) that individually, or in collaboration, allow

replication past and beyond replication-blocking DNA lesions, usually in an error-prone

manner. Such DNA lesion bypass enables continued replication, albeit at the cost of

increased mutation, and renders the lesion available for subsequent DNA repair

(FRIEDBERG et al. 2006). The error-free branch of PRR, still largely uncharacterized,

competes with Rad52-mediated homologous recombination for substrates, and likely

repairs these substrates by recombination between sister-strands, through either

template strand switching or copy choice mechanisms (ZHANG and LAWRENCE 2005).

The error-free branch of PRR is associated with a subset of the Rad6 epistasis group,

including Rad6, Rad18, Srs2, Rad5, Ubc13 and Mms2 (ULRICH 2006).

Rad6, an E2 ubiquitin conjugating enzyme, forms a heterodimer with Rad18, a

ubiquitin ligase and single-strand DNA-dependent ATPase. Under appropriate

conditions the Rad6/Radl8 heterodimer monoubiquitinates PCNA at lysine 164. PCNA

thus modified activates the error-prone PRR pathway by recruiting translesion

polymerases to the replication fork (HOEGE et al. 2002; STELTER and ULRICH 2003).



Alternately, monoubiquitinated PCNA can serve as a substrate for polyubiquitination by

the Rad5/Mms2/Ubcl3 complex, leading to activation of the error-free pathway instead

(HOEGE et al. 2002; STELTER and ULRICH 2003). Like Rad18, Rad5 is a single-strand

DNA-dependent ATPase. Rad5 appears to play a complex role in these pathways, with

evidence for its participation in error-prone translesion synthesis, and at least one

putative branch of the error-free pathway, although its primary role is considered to be

in the error-free branch (Schiestl and Prakash 1990; Cejka et al. 2001; Minesinger and

Jinks-Robertson 2005; Gangavarapu et al. 2006; Ulrich 2006). Srs2 ("Suppressor of

Rad6"), a DNA-dependent ATPase and helicase, strips Rad51 from single-stranded

DNA, preventing Rad51 from sequestering the DNA for homologous recombination, and

allowing PRR pathway members to access the substrate instead (KREJCI et al. 2003).

Thus, Srs2 acts as the gatekeeper to all of postreplicative repair, although it only

suppresses damage-induced sensitivity and mutagenesis in mutants of the error-free

branch of PRR (ULRICH 2001).

In this study we investigate the basis of ancl's sensitivity to alkylating agents.

We show that ANCI defines a new branch a new branch in the PRR pathway, one that

is error-free, promotes cell survival in the presence of DNA damaging agents, and

suppresses both induced and spontaneous mutation, including the expansion of CAG

triplet repeats.

RESULTS

Analysis of Ancl-containing complexes



As discussed earlier, Ancl is a member of several RNA Pol II-related multi-

protein complexes, namely TFIlD, TFIIF, RSC, SWI/SNF, INO80, NuA3 and Mediator.

Given these associations, we set out to determine whether Ancl's role in providing

alkylation resistance could be assigned to one or more of these complexes, bearing in

mind that Ancl might provide resistance independently of these complexes. We

therefore checked the sensitivity of mutants deleted for the non-essential members for

each complex. We reasoned that if deletion mutants for other members of a particular

protein complex share ancl's damage sensitivity profile, this would pinpoint the complex

via which Ancl helps cells survive after chemical damage.

Using data from our genome-wide DNA damage sensitivity phenotyping screen,

the non-essential members of Ancl's constituent complexes were checked for MMS,

4NQO and UV sensitivity (BEGLEY et al. 2002; BEGLEY et al. 2004) (Figure 2-1). For two

of the seven Ancl-containing complexes, namely TFIID and TFIIF, Ancl is the only

non-essential member, so these complexes could not be interrogated. Of the five

complexes containing non-essential members in addition to Ancl, four have a majority

of subunits that, when deleted, share ancl's sensitivity to MMS, 4NQO or UV; these are

Mediator, SWI/SNF, INO80, and RSC excluding only NuA3 (Figure 2-1). The damage

sensitivity of strains deleted for several subunits in four out of five complexes

demonstrates that Ancl's role in survival after DNA damage is likely to be tied to the

functions of at least four of its protein complexes.
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Alkylation damage induces normal cell cycle arrest in ANCI deficient cells

Many cell cycle-related genes are critical for survival after alkylation damage;

indeed, -45% of known cell cycle regulation genes were found to be MMS sensitive in

our genome-wide screen for genes involved in damage resistance (BEGLEY et al. 2004).

Strains mutated in genes that are necessary for the Mecl-mediated DNA damage

checkpoint (i.e. MEC1, RAD53, RAD9, RAD17, RAD24) are more sensitive to killing by

MMS than wildtype strains (PAULOVICH and HARTWELL 1995; PAULOVICH et al. 1997).

Given the sensitivity of the ancl strain to MMS and 4NQO damage, it seemed plausible

that their sensitivity may be due their failure to arrest in response to DNA damage

(DAHAN and KUPIEC 2004). To assess the effect of Ancl on the Mecl-mediated DNA

damage checkpoint, we analyzed cell cycle progression in wild-type and ancl yeast

cultures in the presence of MMS (PAULOVICH and HARTWELL 1995) (Figure 2-2).

As previously shown, a moderately toxic dose of MMS (0.015%) induced a Mecl-

dependent S-phase arrest in wildtype S. cerevisiae (PAULOVICH and HARTWELL 1995).

The 0.015% dose of MMS used in this experiment causes minimal killing in wildtype and

only moderate killing in ancl strains (Figures 2-3 and 2-4). Although ancl strains grow

more slowly than wildtype (VINH et al. 1993), the MMS-induced S-phase arrest is clearly

observed in both the wildtype and anc1 strains (Figure 2-2); it is important to note that

no such arrest is observed in mec1-1, rad53, rad9, radl7 and rad24 (PAULOVICH and

HARTWELL 1995; PAULOVICH et al. 1997). However, ancl cells take longer than wildtype

to reach an arrested state, and also take longer to move through S phase (Figure 2-2).

This lag may be a result of the following: (i) ancl's slow growth rate; (ii) a slower release
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from the checkpoint; or (iii) a more strongly induced cell cycle arrest (Figure 2-2).

Comparing the untreated cell cycle profiles of ancl and wildtype, we observed that ancl

cells spend much longer in G1 than do wildtype cells, presumably contributing to their

slow growth phenotype (Figure 2-2). The reason for a prolonged G1 in ancl cells is

unclear, but may be linked to a role for Ancl either in leaving G1 or in starting S phase.

What does seem clear is that the sensitivity of ancl cells is not due to a complete failure

to arrest at the Mecl-mediated DNA damage checkpoint, although there does seem to

be a delay in triggering this S-phase checkpoint (PAULOVICH et al. 1997).

Epistasis of ANC1 with established DNA Repair pathways

To determine if ANCI functions within a canonical DNA repair pathway, we

examined whether anc1 could be assigned to established DNA repair epistasis groups,

namely nucleotide excision repair (here represented by rad2), base excision repair

(apn1), homologous recombination (rad5l, rad54), transcription coupled repair (rad26)

or postreplicative repair (PRR) (rad5 and rad6) (Figure 2-3, Supplemental Figure 2-1).

The MMS sensitivity of double mutant strains was compared to each of the single

mutants as well as wildtype yeast. With the exception of rad5ancl and rad6ancl, the

double mutants all showed additive or synergistic effects compared to the single

mutants (Figure 2-3, Supplemental Figure 2-1). The sensitivity of the rad5ancl double

mutant matches that of the rad5 single mutant, indicating that ANCI shares a genetic

pathway with RAD5, a member of the postreplicative repair pathway (Figure 2-3F). rad6

strains are extremely sensitive to MMS, roughly 100X more sensitive than ancl, so we

used two sets of MMS doses to observe sensitivity in this epistasis test (Figures 2-3G
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and H). At the MMS doses to which ancl cells begin to show sensitivity, the sensitivity

of the rad6 and the rad6ancl strains was so great that survival could not be measured.

But, looking at MMS doses on a log scale, we observed an apparently epistatic

relationship between ANCI and RAD6 (Figure 2-3G). A closer examination of the

extremely low MMS dose range where the survival of rad6 and rad6ancl strains can be

accurately measured may, however, reveal a slightly synergistic relationship between

these two genes (Figure 2-3H).

RAD5 is known to belong to the error-free branch of PRR, although studies have

shown an additional role for Rad5 in the error-prone branch of the pathway (Schiestl et

al. 1990; Minesinger and Jinks-Robertson 2005; Gangavarapu et al. 2006). RAD5 has

a complex relationship with other members of the error-free branch of PRR: the

rad5mms2 double mutant has an additive effect for UV- or MMS-induced cytotoxicity

compared to the single mutants (XIAO et al. 2000), and Mms2/Ubcl 3-dependent and -

independent roles for Rad5 have recently been described (GANGAVARAPU et al. 2006).

RAD6, on the other hand, operates upstream of the branching between the error-prone

and error-free pathways (Figure 2-4A).

After establishing the epistatic relationships between ANCI, RAD5 and (possibly)

RAD6, we assayed the genetic relationship between ANCI and other members of the

PRR pathway, namely SRS2, MMS2, UBC13, REV3, and RAD30 (Figure 2-4). The

genetic relationships between the genes in the PRR pathway and the number of

branches therein are a subject of some disagreement, but the pathway is generally

divided into error-prone and error-free branches
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(Xiao et al. 2000; Cejka et al. 2001; Gangavarapu et al. 2006; Ulrich 2006) (Figure 2-

4A). Like RAD5, SRS2 was also found to be in the same genetic pathway as ANC1,

with the srs2 mutation suppressing the MMS sensitivity of ancl (Figure 2-4B). The

suppression of ancl sensitivity in the srs2ancl double mutant is consistent with earlier

observations that the srs2 deletion suppresses the MMS sensitivity of several mutants

in the error-free branch of the postreplicative repair pathway, including rad5, ubcl3 and

mms2 (FRIEDL et al. 2001; ULRICH 2001) (Figure 2-4B) These data support the

hypothesis that Ancl functions in the error-free branch of postreplicative repair,

downstream of Srs2.

Epistasis analysis of ANCI with RAD18 was not carried out because we were

unable to create a radl8ancl double mutant by either mating or transformation (ancl

transformation into rad18 or vice versa). The defective alpha-factor response and

sporulation of ancl have been previously noted (VINH et al. 1993). Mutants for two

other error-free pathway components, MMS2 and UBC13, showed a synergistic pattern

of sensitivity to MMS when combined with the ANCI mutation (Figure 2-4C, D). From

this we infer that Ancl might act on the same type of damage as Mms2/Ubc13, but

through a different pathway. ANCI's epistasis with RAD5 and (possibly) RAD6 does

not help us determine to which branch of PRR it belongs, as each gene has a role in

both the error-prone as well as the error-free pathway. SRS2, MMS2 and UBC13 are

all characterized members of the error-free branch, and given ANCI's epistasis with

SRS2, but synergistic relationship with MMS2 and UBC13, ANCI's role in PRR does

not fit into the canonical error-free branch.



Because ANCI is synergistic rather than epistatic with the MMS2 and UBC13

members of the error-free branch of the PRR pathway, we determined whether ANCI

lies in the error-prone pathway (BROOMFIELD et al. 1998). We analyzed the alkylation

sensitivity of ancl in combination with rev3 or rad30, mutants in two translesion DNA

polymerases involved in PRR: REV3 (with REV7) encodes DNA polymerase ,, an error-

prone polymerase, and RAD30 encodes polymerase q, a polymerase that is sometimes

characterized as error-prone, and sometimes as error-free depending on the type of

lesion being bypassed (PRAKASH et al. 2005). The rev3ancl double mutant showed an

additive MMS-sensitivity phenotype relative to the single mutants, indicating that Ancl

probably lies in a non-overlapping pathway with Rev3 (Figure 2-4E). The rad30ancl

double mutant, however, appeared to have synergistic sensitivity when compared to the

sensitivities of the single mutants, possibly indicating a partially overlapping function

between Rad30 (Pol q) and Ancl (Figure 2-4F). Thus, with respect to its genetic

pathway, ANCI appears to be independent from both the error-prone and error-free

branches of postreplicative repair. Taken together, from the lack of epistasis between

ANCI and error-free branch members UBC13 and MMS2, and from the lack of epistasis

with error-prone branch members REV3 and RAD30, we infer that ANCI functions in a

genetic pathway that is independent from the two established branches, and thus

defines a member of a new branch of PRR (Figure 2-4A).

Induced and spontaneous mutagenesis in ancl cells

As discussed, PRR has been divided into "error-prone" and "error-free" branches.

When the error-prone pathway is impaired, cells become refractory to spontaneous and



damage-induced mutagenesis; when the error-free pathway is impaired, cells become,

if anything, more susceptible to damage-induced mutagenesis. Given that ANCI is not

epistatic with all members of the error-free branch of postreplicative repair, it was

important to determine whether ANC1 acts in an error-free or error-prone pathway with

respect to mutagenesis.

Yeast lacking Ancl were assayed for both frameshift and point mutations as

previously described (Tran et al. 1997; Glassner et al. 1998; Stelter and Ulrich 2003;

Hanna et al. 2004). Point mutations were monitored in the CAN1 gene by canavanine

resistance, and frameshift mutations were monitored by reversion of the lys2 A12 and

A14 alleles containing mononucleotide runs of adenines (Tran et al. 1997; Hanna et al.

2004). Functional LYS2 is only expressed after a -1 or +1 frameshift mutation in lys2

A12 and lys2 A14, respectively (TRAN et al. 1997). Rev3 is a well-characterized member

of the error-prone branch of PRR, and is used here as a positive control for monitoring

the phenotype associated with a deficiency in an error-prone pathway (Figure 2-5).

ANCI deleted cells were slightly more sensitive than wildtype yeast to UV-

induced point mutation and -1 framshift mutations; in contrast, UV-induced +1 frameshift

mutations were similar between ancl and wildtype. (Figure 2-5A, B, C). At the CAN1

locus rad5 has been observed to result in a slight increase in UV-induced point

mutagenesis compared to wildtype, although the induced mutagenesis in rad5 strains

has been previously characterized as being very dependent on the mutational target

being assayed (Johnson et al. 1992; Broomfield and Xiao 2002; Gangavarapu et al.

2006). This is consistent with the slight increase in induced mutagenesis observed in

our ancl strain at the CAN1 locus (Figure 2-5A). In contrast, the rev3 deleted strain is
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refractory to UV-induced point mutations compared to both wildtype and ancl strains

(Figure 2-5A). Thus, ancl's sensitivity to damage-induced mutagenesis is consistent

with Ancl acting in an error-free rather than an error-prone pathway.

Previous studies have shown an increase in spontaneous mutation rates among

mutants in the error-free branch of PRR, and a decrease in the spontaneous mutation

rate among mutants in the error-prone branch (BROOMFIELD et al. 1998; BRUSKY et al.

2000; CEJKA et al. 2001). Here we show that, the deletion of ANCI results in an

increased frequency of spontaneous -1 frameshift mutations (Figure 2-5B), and also in

an increased spontaneous base pair substitution mutation rate compared to wildtype

(Figure 2-5D). Note that the rev3 control displays a decreased spontaneous base pair

substitution mutation rate compared to wildtype. Thus, in terms of both induced and

spontaneous mutation, the newly defined Ancl branch of PRR is clearly error-free,

protecting S. cerevisiae from both cytotoxicity and mutagenesis.

Ancl protects against trinucleotide repeat expansions

It was recently reported that gene deletion for several members of the error-free

branch of the PRR pathway, including RAD5 and SRS2, results in an expansion of

CAG and CTG trinucleotide repeats (TNRs); expansion of such repeats have been

associated with Huntington's disease and myotonic dystrophy (Timchenko and Caskey

1996; Bhattacharyya and Lahue 2004; Daee et al. 2007). In those studies, it was

observed that the disease-associated TNRs, but not dinucleotide repeats or non-



disease associated TNRs, are prone to expansion, but not contraction, in cells deficient

in the error-free branch of the PRR pathway (DAEE et al. 2007).

To determine whether Ancl plays a role in limiting CAG expansions like other

members of the error-free PRR pathway, an ancl deletion was introduced into a strain

containing a (CAG) 25 construct, and assayed for CAG expansions as described (DAEE

et al. 2007). Like other PRR members, ancl displays a statistically significant (three-

fold) increase in CAG expansions compared to wildtype (Figure 2-5E). This expansion

is statistically indistinguishable from those in rad5 and mms2 strains, although it is

considerably lower than the expansion observed for several other PRR mutants (DAEE

et al. 2007). These data indicate that Ancl, like other members of the error-free PRR

pathway, plays a role in preventing the expansion of CAG trinucletide repeat

sequences.

DIscussION

Ancl is known to directly interact with the catalytic protein subunits for six of the

seven Ancl-containing multi-protein complexes, including TFIID, TFIIF, RSC, lno80,

SWI/SNF and NuA3 (Treich et al. 1995; Sanders et al. 2002; Kabani et al. 2005). Of the

six subunits with which Ancl directly interacts, Sthl, lno80 and Snf2 are DNA-

dependent ATPases/helicases with sequence similarity to the SNF2 family of DNA-

dependent ATPases (Laurent et al. 1992; Ebbert et al. 1999; Kabani et al. 2005). The

other three catalytic subunits are Tsml and Tgfl that are both involved in general

transcription initiation, and Sas3, the catalytic subunit of NuA3 that acetylates histone

H3 (KABANI et al. 2005). Given the interaction between Ancl and the catalytic domains



of nearly all of its component complexes, plus the putative interaction between histones

and Ancl's YEATS domain, it seems likely that Ancl acts as a regulatory adapter

between chromatin and the complexes that act upon it (KABANI et al. 2005; ZEISIG et al.

2005). The damage sensitivity of cells mutant in individual components of so many of

these complexes suggests that Ancl is involved in regulating transcription, chromatin

remodeling, and as reported here, PRR, upon exposure to DNA damaging agents.

The ANCI transcript belongs to a minority of yeast transcripts that contain a

splice site. It was recently reported that ANCI mRNA splicing is regulated by Cdc40, a

protein involved in controlling cell cycle progression (DAHAN and KUPIEc 2004). In the

absence of CDC40, cells arrest in G2/M, and the addition of intronless ANCI cDNA only

partially mitigates this arrest (Vaisman et al. 1995; Dahan and Kupiec 2004) indicating

that Cdc40 may have other splicing targets in addition to the ANCI mRNA, or may have

yet another function. The slow transition out of G1 that we observed in ancl cells is

also observed in cdc40 cells (Vaisman et al. 1995; Kaplan and Kupiec 2007), and like

ancl, cdc40 mutants are sensitive to a variety of DNA damaging agents, including

hydroxyurea, MMS, 4NQO and UV (BEGLEY et al. 2004; KAPLAN and KUPIEc 2007).

However, the sensitivity of cdc40 cells to MMS or HU is not suppressed when intron-

less ANCI cDNA is expressed (KAPLAN and KUPIEc 2007). Of relevance to this study, a

temperature sensitive allele of cdc40 was shown to be epistatic to an allele of rad6 in

terms of MMS sensitivity during log phase growth, although neither allele was

characterized as being null (KUPIEc and SIMCHEN 1986). Since a correctly spliced

ANCI transcript does not suppress the MMS or HU sensitivity of cdc40 cells, we must

conclude that Cdc40 has another function in allowing cells to survive after DNA damage



that is independent from ANCI transcript splicing. Like ANCI, UBC13 and MMS2 are

intron-containing genes in the PRR pathway (DAVIS et al. 2000). Given the observed

epistasis between alleles of cdc40 and rad6 after MMS treatment (KUPIEC and SIMCHEN

1986), and the failure of the correctly spliced ANCI transcript to complement a cdc40

mutant's damage sensitivity (KAPLAN and KUPIEc 2007), it is worth exploring whether

Cdc40 mediates the splicing of the MMS2 and/or UBC13 transcripts as well.

Several pieces of evidence support Ancl's role in the PRR pathway. Based on

the suppression of ancl's sensitivity by srs2, ANCI can be placed genetically

downstream of SRS2, as was previously observed for other members of the error-free

PRR pathway (Schiestl et al. 1990; Friedl et al. 2001; Ulrich 2001). ANC1 also shares a

genetic pathway with RAD5, a downstream member of the error-free pathway and

possibly with RAD6, which lies between SRS2 and RAD5 in the genetic model of the

PRR pathway (Figure 4A). If the slight synergism observed at low MMS doses between

rad6 and ancl is genuine, it may imply a role for Ancl that is partially parallel to that of

Rad6. The lack of epistasis between ANCI and other error-free branch members

MMS2 and UBC13 provides evidence for a new, Mms2/Ubc13 independent branch of

the PRR pathway. Given that we were unable to create a radl8ancl double mutant by

mating or transformation, even in the presence of a covering plasmid bearing an intact

RAD 18, we do not yet know whether Rad 18 also plays a role in the new pathway

defined by Ancl; however, since no Rad6-independent role for Rad18 has been

described, it seems likely that Radl8 also plays a role in the Ancl-branch of PRR.

Two types of mutagenesis data indicated that the Ancl-containing branch of the

PRR pathway deals with DNA damage in an error-free manner. First, the ANC1



deletion, similar to deletions for most members of the error-free PRR pathway (Ulrich

2001; Broomfield and Xiao 2002), causes an increase in both induced and spontaneous

point mutation compared to wildtype. Second, ancl mutants display a significant

increase in the expansion of CAG tri-nucleotide repeats compared with wildtype, a trait

that was recently identified in all of the tested members of the error-free branch of the

PRR pathway, including srs2 and rad5 (DAEE et al. 2007). These mutagenesis data are

consistent with a role for Ancl in error-free PRR.

Ancl's role in PRR may be crucial for understanding the interaction of key

players in the cellular response to DNA damage. Ancl interacts physically with Mus81,

a structure-specific endonuclease in the XPF family involved in cleaving stalled

replication forks (Ho et al. 2002; OSMAN and WHITBY 2007). Mus81 forms a heterodimer

with Mms4 for its endonuclease activity, and deletions of either partner results in

sensitivity to MMS and 4NQO (BEGLEY et al. 2002; BEGLEY et al. 2004). Mus81 is

speculated to be involved with the PRR pathway (in addition to its better characterized

role in homologous recombination) by means of its cleavage of the stalled replication

forks that the PRR pathway acts upon (OSMAN and WHITBY 2007). Furthermore, there is

genetic evidence in S. pombe that srs2 and mus81 are epistatic with respect to their

MMS, UV and HU sensitivities (DOE and WHITBY 2004), although in S. cerevisiae the

mms4srs2 double mutant displays a synergistic effect compared with either of the single

mutants after MMS or UV treatment, suggesting that their pathways may partially

overlap (ODAGIRI et al. 2003) Having demonstrated ANC1's membership in the error-

free branch of PRR, it seems likely that the physical interaction between Mus81 and

Ancd relates to Mus8l's cleavage function in PRR. The method by which Mus8l



recognizes its substrates is not well understood, but it seems possible that Ancld,

through its presumed interaction with histones (ZEISIG et al. 2005), allows the Mus81

endonuclease access to sites where its cleavage will initiate the sister-strand

recombination that drives error-free PRR.

Given the direct interaction between the YEATS domain of ENL with histones H1

and H3, and Ancl's interaction with the catalytic subunits of so many transcriptionally-

important complexes (KABANI et al. 2005; ZEISIG et al. 2005), it may be hypothesized

that Ancl acts as a DNA-damage mediated adapter between chromatin, transcription

and PRR repair at or near sites of DNA damage. Since transcription generally

continues through S-phase, while DNA is being replicated, the collision of the

transcriptional machinery and stalled replication forks is thought to be a common event

(AGUILERA 2002). In recent years there has been considerable interest in the

phenomena of transcription-associated mutation (TAM) and transcription-associated

recombination (TAR), which characterize the mutagenesis and recombination that occur

when the transcription and replication machineries collide (AGUILERA 2002). Mediation

of the interaction between these machineries by a common member (Ancl) of the

transcription complexes is a possibility worthy of further exploration. It is possible that

the new branch of postreplicative repair represented by Ancl is responsible for

mediating the repair of replication forks that have stalled as a result of the collision

between transcription and replication machineries (Figure 2-6). Furthermore, the role of

the human YEATS containing leukemia-associated proteins, ENL, AF9 and GAS41, in

both the human post-replication repair pathway, and in polyglutamine expansions such

as those associated with Huntington's disease is certainly worthy of further exploration,



and may provide insight into the molecular basis of such disparate diseases as

leukemia and Huntington's disease.

MATERIALS AND METHODS

Yeast Strains and Media: Yeast strains used in this study are listed in Supplementary

Table 2-1. Yeast strains were grown in standard media, including YPD and synthetic

complete (SC) medium. All strains are congenic with the BY4741 background (MATa

his3A 1 leu2AO0 met15A0 ura3AO), except for the spontaneous mutagenesis and the

trinucleotide repeat assays as specified below in Induced and Spontaneous

Mutagenesis Assays and Supplemental Table 1. Double mutants were created by

transformation of an ancl::URA3 linear cassette into G418 resistant strains from the

genome-wide deletion collection (Invitrogen-ResGen) (WACH et al. 1994). Homologous

ends allowed the cassette to recombine into the ANC1's endogenous location (WACH et

al. 1994). Constructs were confirmed by PCR and/or DNA sequencing.

Flow Cytometry: Log phase cells were washed twice in 50mM Tris pH 7.8,

resuspended in 50mM Tris pH 7.8 containing RNase A (1mg/ml) and incubated at 370C

overnight. Cells were pelleted and resuspended in 55mM HCI containing 5 mg/ml

Proteinase K, incubated at 370C for 30 min, washed once with 200mM Tris pH 7.5,

211mM NaCI, 78mM MgCI2 , then resuspended in the same buffer with 1mg/ml of

propidium iodide before assaying by flow cytometry using a FACScan cytometer

(Becton Dickinson) and CellQuest Pro software. Two independent assays were

performed to confirm reproducibility, and analysis was performed using FlowJo software
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Version 6.4.7.

Sensitivity of deletion strains to DNA damaging agents in the genome-wide

screen

The sensitivity of every non-essential gene deletant in S. cerevisiae was previously

determined (BEGLEY et al. 2002; BEGLEY et al. 2004). Relative sensitivity values were

generated using a scoring scheme that allocated values of 4, 3, 2, or 1 depending on

the concentration of agent where strain sensitivity was identified; 4 is allocated to the

lowest, and 1 is allocated to the highest concentration of damaging agent in the plate.

These values were allowed to accumulate in each replicate, and then they were

summed across all replicates. For example, in replicate 1, strains sensitive to all

concentrations of agents received a score of 10 (4 + 3 + 2 +1), and this was summed

over all 3 replicates for a final score of 30 (10 + 10 + 10). Damage-sensitive strains had

scores that ranged from 30 (most sensitive) to 2 (least sensitive) (BEGLEY et al. 2004).

All data is available at http://genomicphenotyping.mit.edu/newpages/source2.html.

Survival Curves/Epistasis Assays:

Log-phase cells were diluted and plated on MMS-containing YPD-agar plates or onto

control plates with no MMS. Colonies were allowed to grow at 300C for 2-5 days,

depending on rate of growth for each strain, and survival was calculated by dividing the

number of surviving colonies at a given MMS dose by the number of colonies that grew

in the untreated sample. At least two replicates were counted per trial.



Induced and Spontaneous Mutagenesis Assays:

Yeast strains CG379-A 12 and CG379-A 14 from (TRAN et al. 1997) revert by -1 and +1

frameshifts in LYS2::InsE-A12 and L YS2::InsE-A14, respectively, were used to measure

frameshift mutation frequencies. These strains are isogenic with CG379 (MA Ta ade5-1

his7-2 leu2-3, 112 trpl-289 ura3-52) (TRAN et al. 1997). Frameshifts were calculated by

comparing the number of Lys' revertants growing on Lys- media to the number of

colonies on a YPD control. Point mutation frequencies were measured in a BY4741

background. Canavanine-resistant mutations were measured on synthetic complete

medium containing 0.004% (or 30 mg/liter) canavanine (HANNA et al. 2004). In the

induced mutagenesis assay, UV doses of 0, 7, 14 and 21 J/m 2 were administered using

a UV Stratalinker 2400 (Stratagene). Cells were grown into log phase, then serially

diluted and plated onto YPD or Canavanine containing plates before exposure to UV.

Colony formation on YPD was used to calculate the total number of cells plated on

canavanine-containing plates, for a final calculation of mutants per 107 survivors.

In the spontaneous mutagenesis assay, forward mutations at CANI were determined

based on the protocol previously described in Glassner et al. (GLASSNER et al. 1998).

Briefly, an overnight culture of each strain was diluted to 4000 cells/mi in 5mL of YPD in

10 cultures. The cultures were allowed to grow at 300C for 5 days, then a small amount

diluted 105 fold on YPD to assay for viable cells, and the remainder concentrated to 1

mL, and 100ul plated on 0.04% Canavanine-containing synthetic complete medium to

assay for CanR mutants. Mutagenesis rates were calculated using the Drake Formula

(ROSCHE and FOSTER 2000).



Trinucleotide Repeat Assay

Expansion rates were measured by fluctuation analysis as described previously (Miret

et al. 1998; Rolfsmeier et al. 2001; Dixon et al. 2004; Daee et al. 2007). All experiments

were conducted in BL035, a leu2 version of the wild type strain MW3317-21A (MA Ta

Atrpl ura3-52 ade2A ade8 hom3-10 his3-kpnl met4 met13) (KRAMER et al. 1989).

(CAG) 25 tracts were cloned into a yeast promoter-reporter construct that allows spacing-

sensitive expression of the downstream URA3 reporter. Yeast cells harboring an

expansion of four or more repeats do not express URA3 and are identified by their

resistance to 5-fluoroorotic acid. Mutation rates are calculated by the method of the

median (LEA and COULSON 1948). Six independent clones were tested to ensure

reproducibility. Single colony PCR analysis of expansions were done as previously

described and rates were corrected by multiplying the percent bona fide expansions by

the apparent mutation rates obtained by fluctuation analysis (DIXON et al. 2004). All

statistical analyses were performed using the T-test (two-tailed distribution and two-

sample equal variance) in Microsoft Excel and P-values less than 0.05 were considered

statistically significant.
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Supplemental Table 2-1: Strains used in this study

Strain genotype reference
S. cerevisiae

BY4741 MATa his3A 1 leu2A0 metl5AO ura3A0 Wach et al, 1994
BY4741ancl BY4741 ancl::URA3 this study
BY4741 rad2 BY4741 rad2::kanMX4 Wach et al, 1994
BY4741rad2ancl BY4741 rad2::kanMX4 ancl::URA3 this study
BY4741apnl BY4741 apnl::kanMX4 Wach et al, 1994
BY4741apnlancl BY4741 apnl::kanMX4 ancl::URA3 this study
BY4741 rad51 BY4741 rad51::kanMX4 Wach et al, 1994
BY4741rad5lancl BY4741 rad51::kanMX4 ancl::URA3 this study
BY4741 rad54 BY4741 rad54::kanMX4 Wach et al, 1994
BY4741 rad54ancl BY4741 rad54::kanMX4 ancl::URA3 this study
BY4741 rad26 BY4741 rad26::kanMX4 Wach et al, 1994
BY4741 rad26ancl BY4741 rad26::kanMX4 ancl::URA3 this study
BY4741 rad5 BY4741 rad5::kanMX4 Wach et al, 1994
BY4741rad5ancl BY4741 rad5::kanMX4 ancl::URA3 this study
BY4741srs2 BY4741 srs2::kanMX4 Wach et al, 1994
BY4741srs2anc1 BY4741 srs2::kanMX4 ancl::URA3 this study
BY4741 rad6 BY4741 rad6::kanMX4 this study
BY4741rad6ancl BY4741 rad6::kanMX4 ancl::URA3 this study
BY4741mms2 BY4741 mms2::kanMX4 Wach et al, 1994
BY4741mms2ancl BY4741 mms2::kanMX4 ancl::URA3 this study
BY4741ubcl3 BY4741 ubcl3::kanMX4 Wach et al, 1994
BY4741ubcl3ancl BY4741 ubcl3::kanMX4 ancl::URA3 this study
BY4741 rev3 BY4741 rev3::kanMX4 Wach et al, 1994
BY4741rev3ancl BY4741 rev3::kanMX4 ancl::URA3 this study
BY4741rad30 BY4741 rad30::kanMX4 Wach et al, 1994
BY4741 rad30ancl BY4741 rad30::kanMX4 ancl::URA3 this study

MATa ade5-1 his7-2 leu2-3, 112 trpl-289 ura3-52
CG379-Ai 2  lys2::InsE-A 12 Tran et al., 1997

MATa ade5-1 his7-2 leu2-3, 112 trpl-289 ura3-52
CG379-Ai 4  lys2::InsE-A 14 Tran et al., 1997
CG379-A12ancl CG379-A12 ancl::kanMX4 this study
CG379-A14ancl CG379-AI 4 ancl::kanMX4 this study

Rusyn et al. (in
CG379-A1 2reV3 CG379-AI2 rev3::HIS3 preparation)

Klapacz et al (in
CG379-A14rev3 CG379-A 14 rev3::kanMX4 preparation)

MA Ta trpl ura3-52 ade2 ade8 hom3-10 his3-kpnl
BL035 met4 metl3 leu2 Daee et al. 2007

BLO35ancl BL035 ancl::kanMX4 this study
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ABSTRACT

The Ancl protein has been shown to interact with 85 different proteins in yeast.

The large majority of Ancl's interactors are involved directly in RNA polymerase II-

mediated transcription, but a few interactors, involved in signaling and posttranslational

modification, such as Dun1, hint at an additional function for Ancl. Here, we analyze

the gene expression profiles of anc1 cells in the presence and absence of DNA

damage, and find that they indicate a role for Ancl in modulating the expression of the

roughly 900 genes involved in the transcriptional response to environmental stress.

Specifically, in the absence of ANCI, the expected up- or down-regulation of transcripts

after exposure to environmental stress is significantly reduced. The transcription of

these genes is under the control of the Mecl signaling pathway, such that mutants in

mecl or dun1 disrupt their transcriptional regulation similarly to the ancl strain. Smil, a

downstream effector of the Mecl-signaling pathway, was found to be inappropriately

degraded in the absence of Ancl after MMS treatment, strengthening the possibility of a

connection between Ancl and the Mecl pathway, especially given that Smil is a direct

target of Dun1, an Ancl interactor.



INTRODUCTION

Eighty-five protein-protein interactions have been identified for Ancl (Ho et al.,

2002; Stark et al., 2006) (Figure 1-1). Of these, all but four interactions are involved,

either directly or indirectly in RNA polymerase II (RNA pol II) transcription. Since Ancl's

presence in transcriptional complexes has been well-characterized, the four protein

interactors that are not implicated in transcription are of particular interest; these

proteins may indicate a link between Ancl's known functions in transcription and DNA

repair, and a hitherto undiscovered function. The four interacting proteins unrelated to

transcription are: Mus81, a structure dependent endonuclease involved in homologous

recombination; Sapl85, which is necessary for Sit4 phosphatase function; Smt3, a

protein in the SUMO signaling family; and the Dun1 kinase, a member of the Mecl/Tell

damage signaling pathway (Ebbert et al., 1999; Gardner et al., 1999; Luke et al., 1996;

Soustelle et al., 2004). The involvement of three of these proteins (Sap185, Smt3 and

Dun1) in post-translational modification may reveal a role for Ancl in this process, or as

a target of this process. Of these three proteins, only Dun1 shares Ancl's pattern of

DNA damage sensitivity to MMS, 4NQO and UV (Begley et al., 2004).

The Mecl/Tell signaling pathway in S. cerevisiae is homologous to the human

ATM/ATR pathway. Both pathways are activated in response to DNA damage, and in

the event of a DNA damage insult, a cascade of activation through phosphorylation

propagates signals from upstream members (e.g. Mecl, Rad53, Dun1) to downstream

members (e.g. Rad55, Smll) (Bashkirov et al., 2000). The downstream members of the

Mecl/Tell pathway are involved in a wide variety of cellular processes, ranging from



the regulation of cell cycle arrest (e.g.Chkl) to the regulation of nucleotide precursors

for DNA repair (e.g. Smil).

Several genes in the Mecl-mediated pathway have been shown to regulate the

transcriptional response of yeast to a wide variety of stressors, in addition to DNA

damage (Gasch et al., 2001). In these experiments, transcriptional changes in yeast

cells that had been exposed to stresses such as high salt concentration, temperature

shock or MMS treatment were assayed (Gasch et al., 2001; Gasch et al., 2000). A set

of about 900 transcripts whose regulation was modulated similarly in response to a

variety of different stressors was identified, and dubbed the Environmental Stress

Response (ESR) (Gasch et al., 2000). Gasch et al. observed that the deletion of

upstream members of the Mecl pathway, like Mecl or Dun1, results in a loss of the

wildtype transcriptional response to stress, that is, the ESR was abrogated (Gasch et

al., 2001).

Here, we show that Ancl is necessary for the normal transcriptional response to

the DNA damaging agent MMS, and that, in its absence, the transcription of ESR genes

is significantly reduced. Given that mecl and dun1 strains had previously expressed

this same phenotype, we assayed the effect of Ancl on this signaling pathway. We

demonstrate that the regulation of Smil, a downstream target of the Mecl pathway, is

disrupted after DNA damage when Ancl is absent, and that this disruption takes place

at the protein, not the transcript level.

RESULTS

Anc1 is a Protein Hub that may have an Intrinsically Disordered C-terminus



On average, each protein in S. cerevisiae interacts with approximately 5 other

proteins (Grigoriev, 2003). Proteins that interact with a large number of other proteins

are called "hub" proteins, and their characteristics have been much studied, given their

disproportionate involvement in cellular contacts (Dosztanyi et al., 2006). Although

there are differing opinions regarding the cutoff for how many interactions define a "hub"

protein (usually about eight interactions), Ancl, with 85 protein-protein interactions,

clearly surpasses the threshold for definition as a "hub" protein (Ho et al., 2002; Stark et

al., 2006). Hubs are sometimes divided into static "party" hubs and dynamic "date"

hubs (Ekman et al., 2006). Static hubs are proteins that interact with most of their

protein partners at the same time (i.e. independent of time and location), and dynamic

hubs are proteins that bind their partners at different times/locations (Ekman et al.,

2006). Given Ancl's large number of protein interactors, and their variety of functions in

cellular regulation, it seems most likely that Ancl functions as a dynamic hub,

interacting with its various protein partners at different times and places.

There are several traits that have been associated with hub proteins: highly

connected proteins are more likely to be essential than those that are less connected, to

be more highly conserved evolutionarily, and to have regions of intrinsic disorder

(Ekman et al., 2006). Although Ancl is not essential, it contains a YEATS domain that

is highly conserved between yeast and humans, and its presence is characterized in

many eukaryotic organisms (Gasteiger et al., 2003). To determine whether Ancl

contains any regions of intrinsic disorder, we utilized the PondR ("Predictor of Naturally

Disordered Regions) program (http://www.pondr.com/) that predicts protein disorder

based on amino acid sequence. According to this algorithm, Ancl's N-terminal,



YEATS-containing region is highly ordered, whereas the middle and C-terminal regions

are very likely to contain areas of disorder, including one stretch of 44 consecutive

amino acids that are predicted to be disordered (Figure 3-1) (Li et al., 1999; Romero et

al., 1997; Romero et al., 2001).

Intrinsically disordered (or "intrinsically unstructured") proteins have several

qualities that are thought to be useful within hubs, including the ability to bend into many

different conformations so as to accommodate many different partners, the ability to

respond quickly and reversibly to changes in the cellular environment and the ability to

be targeted for degradation quickly in their unfolded state, allowing for rapid regulation

(Ekman et al., 2006). Proteins involved in transcription, cell cycle control and signaling

are more likely than other proteins to contain long regions of disorder (>40 residues),

and dynamic hubs are more likely than static hubs to contain regions of intrinsic

disorder (Ekman et al., 2006). Ancl is no exception; although it is a rather small protein

(only 244 amino acids) it contains one predicted disordered region of 44 amino acids,

and a second region of 24 amino acids (Figure 3-1).

ancl mutants display massive transcriptional changes both in the presence and

absence of alkylation damage

Given Ancl's participation in seven protein complexes involved in general

transcription it seems possible that Ancl is involved in genome-wide transcriptional

regulation. A set of microarray experiments was performed to determine how the

absence of ANCI affects transcription in the presence and absence of DNA damage.



Figure 3-1
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The genome-wide transcription of wildtype and ancl cells were assayed in the presence

and absence of MMS treatment, yielding four transcriptional profiles, all performed in

triplicate: wildtype untreated (WTU), ancl untreated (ancU), wildtype treated (WTT),

and ancl treated (ancT) (Figure 3-2A). We used two metrics to determine changes in

these transcriptional profiles; the difference between WTU and anclU, hereafter called

"basal" changes (or basal regulation), and the difference between the ratios of

WTT/WTU and ancT/ancU, hereafter called "delta eta," or differential changes (Figure

3-2B, C). Delta eta describes a difference in transcriptional response to MMS

depending on the presence/absence of ANCI (i.e. the difference in the extent of change

in expression between the wildtype and ancl strains after MMS treatment) (Figure 3-

2C).

The transcriptional response of wildtype cells to MMS has been assayed

previously, and there is a good deal of overlap between the data from the arrays in this

study and the data from the earlier publication; the correlation between those transcripts

that are significantly changed after treatment is r2 = 0.81 (Jelinsky et al., 2000) (Figure

3-3). Using FUNSPEC software, we determined which Gene Ontology (GO) categories

were overrepresented in the set of genes that were up- and down-regulated after MMS

treatment compared with the untreated wildtype control (Robinson et al., 2002) (Tables

3-1 and 3-2). In wildtype strains treated with MMS we observed increased expression

of genes involved in carbohydrate metabolism, protein degradation, stress response

and DNA repair, and decreased expression of genes involved in ribosome synthesis,

ribosome assembly and nucleotide biosynthesis, similar to groups represented in the

earlier study (Tables 3-1 and 3-2) (Jelinsky et al., 2000; Jelinsky and Samson, 1999).
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There are 1,386 transcripts whose basal expression is different between wildtype

and ancl deleted cells, using a 1.5X fold change cutoff (Figure 3-4A). We are able to

use a 1.5X fold-change cutoff (as opposed to the 3X fold change used above) because

the high level of correlation between our three replicates makes the large majority of

these changes statistically significant (data not shown). This corresponds to

approximately 23% of the genome being transcriptionally-regulated by the

presence/absence of ANCI. Gene ontology categories that are down-regulated in the

absence of ANCI include genes involved in a variety of biosynthetic processes, DNA

replication, lipid biosynthesis and the S-phase of the mitotic cell cycle (Figure 3-5B).

We have observed that ancl cells spend a disproportionate amount of their cell cycle in

G1 compared to wildtype cells (Figure 2-2). Presumably this accounts for the apparent

down-regulation of transcripts involved in the S-phase of the cell cycle. Gene ontology

categories up-regulated (i.e. whose expression has increased) in response to ANC1

deletion include carbohydrate metabolism, energy pathways, response to stress and

monosaccharide transport (Figure 3-5B). Despite these basal differences, there is a

positive correlation between the transcriptional responses of wildtype and ancl strains

to MMS (r2 = 0.64) (Figure 3-4B).

Transcriptional changes in the Postreplication Repair Pathway

As demonstrated in Chapter 2, ANCI is a new member of the error-free branch

of the postreplication repair pathway. Given this newly uncovered relationship between

Ancl, a member of seven complexes involved in transcription, and postreplication

repair, we sought to determine whether the transcriptional expression of genes involved
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in postreplication repair is altered in ancl cells. We analyzed both the basal and the

differential responses of the genes involved in postreplication repair to the deletion of

ANC1, and determined that none of the genes in this pathway (RAD6, RAD18, RAD5,

MMS2, UBC13, REVI, REV3 REV7 RAD30 and SRS2) show a statistically significant

change in transcriptional expression (data not shown).

The Environmental Stress and DNA Damage Responses are Abrogated in ancl

mutants

The differential transcriptional response to MMS involves 1340 ORFS, 750 (56%)

of which are not changed basally between wildtype and ancl cells (Figure 3-4C, D).

Gene ontologies that are basally unchanged and differentially expressed (i.e. there is no

transcriptional change between the WTU and ancU, but there is a difference between

the ratios WTT/WTU and ancT/ancU) include ribosome biogenesis, metabolism, RNA

processing and transcription from the Pol I promoter and amino acid biosynthesis. We

observed that there was a very significant overlap between differentially responsive

"delta eta" genes and genes involved in the response to environmental stress (Gasch et

al., 2000). The set of about 900 ESR genes was identified by exposing wildtype yeast

to a variety of environmental stressors ranging from high salt to MMS treatment (Gasch

et al., 2000). A set of nine genes (ALG14, DIN7, DUN1, RNR2, RNR4, PLM2, RAD54,

FMP52, RAD51) termed the "DNA Damage Signature" that is transcriptionally

responsive only to DNA damaging agents was also identified in this study (Gasch et al.,

2001). The overlap between our set of differentially responsive genes and genes

involved in the ESR is extremely significant (Fisher's Exact Test, p = 1x10-78), this



significance decreases, but is still maintained, when delta eta genes that are already

changed basally are excluded (Fisher's Exact Test, p=2x10-40). The overlap between

our set of delta eta genes and the nine genes of the DNA Damage Signature is also

significant (Fisher's Exact Test, p=0.04).

The delta eta metric identifies transcripts for which the difference in expression

has changed between the wildtype and ancl strains after MMS treatment, but says

nothing about the directionality of the change. To determine the directionality of the

changes between the WTT/WTU ratio and the ancT/ancU we aligned heatmaps of the

expression levels of ESR genes for these ratios (Figure 3-6). We observed that the

regulation of genes involved in the ESR was abrogated in the ancl mutant strain,

compared to the high level of regulation observed in the wildtype (Figure 3-6). That is,

the WTT/WTU ratio shows an extensive increase/decrease in expression after MMS

treatment, but these changes are muted in the ancl strain. The basal response

(ancU/WTU) shows that expression of the large majority of ESR genes did not show

changes basally between wildtype and ancl mutant strains (Figure 3-6). Similarly, none

of the transcripts involved in the DNA damage signature show statistically significant

basal expression changes (i.e. the expression of these transcripts does not change

significantly between wildtype and ancl strains in the absence of MMS), and a majority

show a significantly muted transcriptional response in the absence of ANCI (p=0.04)

(data not shown).

Anc1 modulates the Protein Expression of Smll, a Downstream Member of the

Mecl/Tell Signaling Pathway



Figure 3-6
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Figure 3-6: Transcriptional response of genes involved in the ESR. Transcriptional heatmap of
the 904 genes involved in the ESR. Columns from left to right are: wildtype response to MMS,
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There are three lines of reasoning that lead us to explore the role of Ancl in the

Mecl-mediated DNA damage signaling pathway. First, Ancl was identified in a screen

for genes that, when overexpressed, allow for the survival of the usually lethal mecl

and rad53 mutations (Desany et al., 1998). Other deletion suppressors include proteins

known to function downstream of Mecl and Rad53 in the DNA damage signaling

pathway, like Rnrl, as well as several transcriptional factors thought to function

indirectly in the rescue (Desany et al., 1998). Secondly, Ancl was observed to interact

directly with the Dun1 kinase, a member of this signaling pathway (Ho et al., 2002).

And finally, the abrogated ESR and DNA damage responses that we observe in ancl

mutants treated with MMS is similar to the abrogation observed in mecl and duni

mutants (Gasch et al., 2001).

To determine if Ancl has a role in the Mecl signaling pathway we looked

at protein expression and modification of a known downstream member of the Mecl

pathway, namely SmIl. SmIl is a ribonucleotide reductase inhibitor that regulates

dNTP production after DNA damage; its degradation after DNA damage allows for the

production of nucleotides needed for DNA repair (Zhao et al., 2001). We chose SmIl

for analysis because of its moderate to high level of protein expression in wildtype cells

(Ghaemmaghami et al., 2003), its Mecl-pathway dependent phosphorylation after DNA

damage (Zhao et al., 2001; Zhao and Rothstein, 2002), and its direct interaction with

Dun1 (which also interacts physically with Ancl) (Ghaemmaghami et al., 2003; Ho et

al., 2002) (Figure 3-7A). Specifically, in response to DNA damage (i.e. MMS, UV, y-

irradiation), Smil is phosphorylated by Dun1 and, subsequently, degraded; DNA
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Figure 3-7: Posttranslational modification of Sml and Ancl after MMS treatment. A. Model of
Smll position within the Mecl-mediated damage response. Modified from Zhao and Rothstein,
2002. B. Western blot using antibody against Smll-TAP, as described in Materials and
Methods. Corresponding SML1 transcription levels are shown below. C. Predicted
phosphorylation sites for the translated ANCJ ORF sequence. Predictions were determined using
the NetPhosYeast algorithm at http://www.cbs.dtu.dk/services/NetPhosYeast/ (Ingrell et al.,
2007). D. Western blot using antibody against immunoprecipitated Ancd-TAP, as described in
Materials and Methods.

damage treated dunI strains show an accumulation of unphosphorylated Smil protein

(Zhao and Rothstein, 2002) (diagrammed in Figure 3-7A).

Using an antibody against epitope-tagged Smil we monitored the expression of

SmIl protein in wildtype and ancl strains in the presence and absence of MMS

treatment (Figure 3-7B). The expected phosphorylation of SmIl was observed in the

MMS treated wildtype cells, however the apparent increase in Smil protein levels in the

wildtype treated sample is an artifact of this particular blot, and is not a consistent

feature of this experiment (Figure 3-7B). SmIl protein levels appear to be normal in

untreated ancl cells, however in ancl cells that have been treated with MMS, the

amount of Smll protein decreases, in contrast to wildtype cells, and its phosphorylation

state cannot be observed due to the low protein levels (Figure 3-7B). Looking at

transcript levels in MMS-treated and untreated cells, we observe that the gene

expression of the SMLI transcript decreases after MMS treatment in both wildtype and

ancl backgrounds, but the extent of this change is not significantly different between

the two strains (Figure 3-7B). We deduce, therefore, that the difference in protein

expression observed in ancl cells is most likely regulated at the protein, not the

transcript level. Two large-scale phosphoproteomic screens were recently completed in

yeast, identifying roughly 900 protein phosphorylation substrates (Ficarro et al., 2002;



Gruhler et al., 2005); although Ancl was not determined to be a phosphorylation

substrate, an algorithm developed from these sets does predict several possible

phosphorylation sites within the Ancl protein (Ingrell et al., 2007) (Figure 3-7C). It is

noteworthy that the majority of the predicted phosphorylation sites fall within the two

predicted unstructured domains that are likely to interact with many protein partners

(Figures 3-1 and 3-7C).

If Ancl acts directly within the Mecl signaling pathway, we might expect to see

Ancl act as a substrate for Mecl or a downstream kinase. To determine if the Ancl

protein itself is modified in response to DNA damage, we immunoprecipitated epitope-

tagged Ancl, and probed Ancl with an antibody against the C-terminal epitope tag. We

did not observe a shift in Ancl that would have been indicative of posttranslational

modification, although this does not rule out the possibility of a very small or faint shift

not resolvable on a 2D gel (Figure 3-7D). We did observe a reproducible two-fold

increase in Ancl protein expression in the MMS-treated sample, but given the

limitations of the immunoprecipitation assay, this may be a spurious result (Figure 3-

7D).

ANCI does not share an Epistasis Group with DUNI

Given the physical interaction between Dun1 and Ancl (Ho et al., 2002), and the

similar DNA damage sensitivity patterns between these two genes (Begley et al., 2002;

Begley et al., 2004), we determined whether Ancl and Dun1 operate in the same

genetic pathway. To determine their genetic relationship we performed epistasis

analysis using MMS sensitivity as the phenotype. We observed that DUNI and ANCI
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do not operate in the same epistasis group, and seem to display a synergistic

interaction (Figure 3-8). This synergistic genetic interaction implies that Dun1 and Ancl

may operate in partially overlapping or parallel pathways, or possibly, they may have a

more complex interaction.

DiscussioN

Mecl, the highly conserved homolog of the human ATR protein, has a critical

role in signaling after DNA damage. It operates upstream of a variety of important

responses to DNA damage, including cell cycle arrest, nucleotide production and DNA

replication as well as the transcriptional regulation of the ESR and DNA Damage

Signature (Gasch et al., 2000). Two pieces of evidence point to a role for Ancl in

modulating the Mecl-mediated signaling pathway's response to DNA damage. First,

MMS-treated ancl cells, like dun1 and mecl strains, lack some of the transcriptional

changes normally observed after MMS treatment, although we known from our earlier

cell cycle analysis (Figure 2-2), that the Mecl-mediated S-phase checkpoint is intact.

Second, Smll, a phosphorylation target of Dun1 (Zhao and Rothstein, 2002), is

degraded prematurely in ancl cells after 1 hour of 0.1% MMS treatment.

If the absence of Ancl were muting Dunl's phosphorylation of Smil in response

to damage, we would expect to see an accumulation of unphosphorylated SmIl (Zhao

and Rothstein, 2002), however we see, instead, a premature degradation of SmIl. This

may indicate that in the absence of Ancl, Dun1 constitutively phosphorylates SmIl in

the presence of DNA damage (at a higher rate than wildtype cells), leading to its

abnormally fast degradation. Given Ancl's putative binding to histones through its



YEATS domain (Zeisig et al., 2005), and its direct interaction with Dun1, it also seems

possible that the early degradation of Smil in ancl cells in response to MMS exposure

may be due to destabilization of a protein complex containing SmIl, also a Dun1

interactor. Alternately, it is certainly possible that Ancl is involved more directly in the

signaling pathway. There is not, at this point, evidence that Ancl itself is a member of

the signaling pathway, despite its modulation of SmIl regulation. Ancl has several

domains that are strongly predictive of phosphorylation (Ingrell et al., 2007), but, we

observed no shift that would correspond to posttranslational modification in Ancl after

MMS treatment; it should be noted that these are preliminary results that need to be

repeated. In addition, mass spectroscopy should be used to determine Ancl's

posttranslational modifications with more precision.

We have noted that Ancl is a protein hub, interacting with many more protein

partners than the average yeast protein (Stark et al., 2006). The large majority of these

proteins are involved in the process of RNA polymerase II transcription and the

associated chromatin remodeling processes, but our data demonstrate that Ancl's

physical interaction with Dun1, a protein outside of the transcriptional machinery, may

also be highly relevant to its cellular function.

Furthermore, our epistasis data show that, despite their sensitivities to similar

DNA damaging agents, Ancl and Dun1 do not function in the same genetic pathway

with respect to the cause for their MMS sensitivity, although they may function in

partially overlapping pathways. Although the exact function of Ancl with respect to the

Mecl signaling pathway has not yet been characterized, its function seems likely to be

tied to its physical interaction with Dun1. Despite the lack of epistasis between ANCI



and DUN1, there are several pieces of evidence that tie the postreplicative repair

pathway, of which Ancl is a newly characterized member, and the Mecl signaling

pathway together functionally. It has been noted that the MEC1 gene and the genes

involved in the error-free postreplicative repair pathway (i.e. SRS2, RAD5 and RAD18)

act synergistically with respect to rates of chromosome loss and recombination, both

markers of genetic stability (Smirnova and Klein, 2003). A putative role for Dun1 in the

posttranscriptional regulation of Rad5 has also been described (Hammet et al., 2002).

Specifically, it was found that Rad5 is upregulated in dunI mutant strains, and when

RAD5 is overexpressed, dunI strains have an increased sensitivity to the alkylating

agent, hydroxyurea (Hammet et al., 2002). Although it seemed a likely possibility, the

mechanism for the interaction between the Mecl signaling pathway and postreplication

repair is not a result of Ancl -mediated transcriptional regulation, as the members of this

pathway showed neither basal nor differential regulation in the absence of Ancl.

Thus, our data demonstrate, using both transcriptional and protein assays, a role

for Ancl in modulating the Mecl signaling pathway in its response to DNA damage.

We have shown that in the absence of Ancl the normal transcriptional response to

treatment with DNA damage is absent, similar to strains lacking Mecl and Dun1, and

that Smll, a downstream protein in the Mecl pathway, is degraded improperly in the

absence of Ancl. These data reveal an additional, novel role for Ancl in the cellular

response to DNA damage.

MATERIALS AND METHODS

Yeast Strains and Cultures



All strains were congenic with BY4741 (MA Ta, his3A1, leu2AO, metl5AO, ura3AO)

obtained from invitrogen-ResGen. Cells were grown and maintained in YPD, under

selection of Geneticin for strains containing G418R, or in SC-URA- or SC-HIS- to select

for the auxotrophic markers.

RNA Extraction

Three independent colonies of both wildtype and ancl::G418R were grown overnight,

then diluted and grown into log phase for 4-5 hours in YPD. The cultures were then

divided into treated and untreated samples. Treated samples were exposed to 0.1%

MMS for 1 hour, then cells were pelleted and washed with water. RNA was extracted

using Qiagen's RNeasy Mini Kit, checked for quality using an AgilentBioanalyzer and

20ug of total RNA were sent to Paradigm (now Cogenics) for hybridization on Affymetrix

YG-898 microarrays.

Analysis of Microarray Data

Repair proficient and deficient strains were analyzed in triplicate on YG-S98 arrays.

Normalization was carried out using the Robust Multichip Average (RMA) algorithm

(Irizarry et al., 2003). Arrays were analyzed using Microarray Suite 5.0 to obtain

Absent/Present calls and filtered for transcripts that were not expressed in any

experiment. Differential gene expression was calculated using a dual filtering criteria;

(1) an estimation of statistical significance through the Local Pooled Error test (LPE)

(Jain et al., 2003) calculated using S-Plus Array Analyzer (ref) with an adjustment for

false discovery rate calculation of p value of <0.05 (Benjamini Hochberg) and (2) a fold



change (FC) limit of 1.5. Differential responsiveness between strains was calculated

using "delta eta" {log2 (WTT treated/WTU)- log2 (anclT/ancl U)) with a FC greater than

1.5 identifying significance in magnitude of differential transcript modulation in response

to treatment. Gene Ontologies were determined using online FUNSPEC algorithms at

http://funspec.med.utoronto.ca/ (Robinson et al., 2002).

Western Blot

Log-phase wildtype and ancl cells were treated with 0.1% MMS for one hour (as in the

microarray experiment), then proteins were isolated and diluted to a common

concentration using BCA Protein Assay Kit (Pierce), and confirmed by Ponceau

staining. Samples were loaded on Tris-HCI 12% gels (BioRad). The TAP-tagged Smll

protein was probed with Peroxidase-anti-Peroxidase antibody (Sigma), and PGK was

probed with anti 3-phophoglycerate kinase (yeast) mouse IgG, monoclonal antibody

(Molecular Probes). Ancl-TAP was immunoprecipitated using IgG Sepharose 6 Fast

Flow (Amersham Biosciences).
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Table 3-1: ORFs downregulated in response to MMS in wildtype (3X cutoff).
(Robinson et al, 2002)

GO Biological Processes p-value
biosynthesis [GO:0009058] 2.47E-12
cell growth and/or maintenance [GO:0008151] 4.83E-11
protein biosynthesis [GO:0006412] 1.42E-10
macromolecule biosynthesis [GO:0009059] 2.40E-10
ribosome biogenesis and assembly [GO:0042254] 3.94E-09
metabolism [GO:0008152] 2.30E-07
ribosomal subunit assembly [GO:0042257] 3.34E-07
ribosome assembly [GO:0042255] 5.20E-07
ribonucleotide metabolism [GO:0009259] 1.81 E-06
purine ribonucleotide metabolism [GO:0009150] 1.81 E-06
ribosome biogenesis [GO:0007046] 4.07E-06
transcription from Pol I promoter [GO:0006360] 6.13E-06
purine nucleotide metabolism [GO:0006163] 7.75E-06
nucleotide metabolism [GO:0009117] 1.20E-05
purine ribonucleotide biosynthesis [GO:0009152] 1.54E-05
ribonucleotide biosynthesis [GO:0009260] 1.54E-05
nucleotide biosynthesis [GO:0009165] 3.36E-05
GTP metabolism [GO:0046039] 3.66E-05
purine ribonucleoside triphosphate metabolism [GO:0009205] 3.66E-05
ribonucleoside triphosphate biosynthesis [GO:0009201] 3.66E-05
purine nucleoside triphosphate biosynthesis [GO:0009145] 3.66E-05
purine ribonucleoside triphosphate biosynthesis [GO:0009206] 3.66E-05
GTP biosynthesis [GO:0006183] 3.66E-05
ribonucleoside triphosphate metabolism [GO:0009199] 3.66E-05
purine nucleoside triphosphate metabolism [GO:0009144] 3.66E-05
purine nucleotide biosynthesis [GO:0006164] 6.16E-05
ribosomal large subunit assembly and maintenance [GO:0000027] 0.0001259
nucleoside triphosphate biosynthesis [GO:0009142] 0.0001427
steroid metabolism [GO:0008202] 0.0003029
sterol biosynthesis [GO:0016126] 0.0003197
nucleoside triphosphate metabolism [GO:0009141] 0.000348
lipid metabolism [GO:0006629] 0.0004477
rRNA processing [GO:0006364] 0.0004565
sterol metabolism [GO:0016125] 0.0005611
ribosomal small subunit assembly and maintenance [GO:0000028] 0.000678
organic acid biosynthesis [GO:0016053] 0.0009246
carboxylic acid biosynthesis [GO:0046394] 0.0009246
steroid biosynthesis [GO:0006694] 0.001079
ergosterol metabolism [GO:0008204] 0.001211
ergosterol biosynthesis [GO:0006696] 0.001211
regulation of CDK activity [GO:0000079] 0.001228



lipid biosynthesis [GO:0008610]
nucleobase metabolism [GO:0009112]
aerobic respiration [GO:0009060]
fatty acid biosynthesis [GO:0006633]
cellular respiration [GO:0045333]
purine nucleoside monophosphate metabolism [GO:0009126]
ribonucleoside monophosphate metabolism [GO:0009161]
purine ribonucleoside monophosphate metabolism [GO:0009167]
oxidative phosphorylation, ubiquinone to cytochrome c [GO:0006122]
methionine metabolism [GO:0006555]
electron transport [GO:0006118]
nucleoside monophosphate metabolism [GO:0009123]
fatty acid elongation [GO:0030497]
purine base metabolism [GO:0006144]

0.001482
0.002065
0.00216

0.002646
0.00266

0.003688
0.003688
0.003688
0.003688
0.003824
0.003824
0.004948
0.006353
0.008164
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Table 3-2: ORFs upregulated in response to MMS in wildtype (3X cutoff).
(Robinson et al, 2002)

GO Biological Processes p-value
ubiquitin-dependent protein catabolism [GO:0006511] 2.89E-09
protein-ligand dependent protein catabolism
[GO:0019941] 1.29E-08
protein catabolism [GO:0030163] 2.32E-08
proteolysis and peptidolysis [GO:0006508] 7.34E-08
nitrogen metabolism [GO:0006807] 4.87E-07
arginine biosynthesis [GO:0006526] 9.59E-07
urea cycle intermediate metabolism [GO:0000051] 1.49E-06
macromolecule catabolism [GO:0009057] 2.78E-06
response to stress [GO:0006950] 6.42E-06
catabolism [GO:0009056] 2.64E-05
siderochrome transport [GO:0015891] 5.30E-05
iron-siderochrome transport [GO:0015892] 5.30E-05
arginine metabolism [GO:0006525] 6.14E-05
protein folding [GO:0006457] 7.16E-05
amino acid biosynthesis [GO:0008652] 0.0001319
amine biosynthesis [GO:0009309] 0.0002579
glutamine family amino acid biosynthesis [GO:0009084] 0.000295
amino acid metabolism [GO:0006520] 0.0004321
aldehyde metabolism [GO:0006081] 0.0004834
nucleotide-excision repair, DNA damage recognition
[GO:0000715] 0.000808
multidrug transport [GO:0006855] 0.000808
response to chemical substance [GO:0042221] 0.0008633
amino acid and derivative metabolism [GO:0006519] 0.0008638
amine metabolism [GO:0009308] 0.0009985
ornithine metabolism [GO:0006591] 0.001563
non-protein amino acid metabolism [GO:0019794] 0.001563
nucleotide-excision repair [GO:0006289] 0.001741
iron homeostasis [GO:0006879] 0.001876
trehalose metabolism [GO:0005991] 0.002646
drug transport [GO:001 5893] 0.002646
response to drug [GO:0042493] 0.002884
glutamine family amino acid metabolism [GO:0009064] 0.003398
nitrogen utilization [GO:0019740] 0.004095
aspartate family amino acid biosynthesis [GO:0009067] 0.004517
response to abiotic stimulus [GO:0009628] 0.004813
trehalose catabolism [GO:0005993] 0.00571
energy reserve metabolism [GO:0006112] 0.009482
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Chapter 4: Conclusions

At the outset of this study, the only characterized roles for Ancl were as

members of complexes involved in RNA pol II transcription, and as a potential mediator

of actin function. A recent screen, however, showed that ancl cells have a strong and

distinctive pattern of DNA damage sensitivity (Begley et al. 2002; Begley et al. 2004),

indicating that the wildtype ANC1 gene or its products somehow help cells to survive in

the presence of DNA damage. In addition to its role in transcription, Ancl was an object

of particular interest because of its homology to three genes involved in human acute

leukemias. Thus, we set out to learn more about Ancl's function.

To this end, we began by analyzing the Ancl-containing complexes (TFIID,

TFIIF, Mediator, SWI/SNF, RSC, IN080 and NuA3) to see if mutants in any other

members of these complexes share ancl's pattern of DNA damage sensitivity. We

reasoned that if the other components of a complex contributed to MMS, 4NQO and/or

UV resistance, that the entire complex may be involved in the same role as Ancl in

survival after DNA damage. Since Ancl is the only non-essential member of TFIID and

TFIIF, we were only able to conduct this analysis for the other five complexes. We

determined that the deleted non-essential members of Mediator, SWI/SNF, RSC and

IN080 all had similar DNA damage sensitivities to ancl. This indicates, although not

conclusively, that Ancl's role in survival after DNA damage may take place in the

context of several of its transcription-associated complexes.

Our analysis of Ancl's function in DNA damage-induced cell cycle arrest allowed

us to determine whether the Mecl-mediated S-phase arrest is intact in ancl cells.

While we observed that ancl cells are not deficient in this cell cycle checkpoint in the
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manner of mecl and rad53 cells, the response of ancl cells to DNA damage was not

entirely normal. Untreated ancl cells spend more time in GI than wildtype cells, and

after treatment, their entry into S-phase and passage into G2 is even more delayed than

that of wildtype. This phenotype could be due to a variety of factors, ranging from a role

for Ancl in leaving G1 to a role for Ancl in removing DNA lesions to an artifact of

ancl's slow growth.

We analyzed the membership of Ancl in known DNA repair pathways (Base

Excision Repair, Nucleotide Excision Repair, Homologous Recombination, Transcription

Coupled Repair, and Postreplication Repair) using epistasis testing. In addition to

epistasis with RAD6, ANCI showed epistasis with RAD5, a DNA dependent ATPase of

the SWI/SNF family that is a member of the postreplication repair (PRR) pathway. Ancl

interacts with DNA-dependent ATPases in the context of several of its protein

complexes (SWI/SNF, RSC and IN080); it is possible that the putative interaction

between Ancl's YEATS domain and histones serves to localize these ATPases to their

substrates. Epistasis testing also showed that, like members of the error-free branch of

PRR, the deletion of srs2 suppressed the MMS sensitivity ancl cells. These epistasis

results, along with the synergistic relationship between ANCI and the other error-free

pathway members, show that ANCI defines a new branch of error-free PRR that is

RAD5-dependent, but MMS2- and UBC13-independent. Mutagenesis data backs up

the placement of ANCI in the error-free pathway, as its absence increases point and

frameshift mutagenesis.

Another piece of evidence that backs ANCI's placement in the error-free branch

of PRR is its role in suppressing the expansion of triplet repeats. It was recently shown
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that in cells deleted for error-free branch members, there is an expansion of disease-

associated triplet repeats (Daee et al. 2007), and the results for ancl cells are

consistent with the earlier findings. The molecular basis for the expansion of CAG

triplet-repeats, associated with Huntington's Disease, is still being worked out, and

given this recent data, it seems that the error-free branch of PRR may play a role in this

process, although its mechanism is not yet understood. The prospect of a role for DNA

repair in maintaining the length of triplet repeats is not surprising, although how the

recombination-based error-free branch is involved in this process is not immediately

clear.

The deletion of ANC1 is synthetically lethal with the deletions of two genes

involved in DNA repair: YAF9, and DSTI (Zhang et al. 2004; Fish et al. 2006). Yaf9 is

another member of the YEATS family whose DNA repair function is linked to its

membership in the NuA4 complex, and DST1I encodes TFIIS, a general transcription

factor that helps resolve stalled replication forks (Zhang et al. 2004; Fish et al. 2006).

Given Ancl's newly established role in PRR, these synthetic lethalities can be better

understood: both of these genes operate in pathways that may be at least partially

redundant with Ancl's function in PRR for an essential cellular function, thus, when both

pathways are absent, the cell cannot survive.

Ancl has an uncommonly large number of protein interactors (85), most of which

are associated with its role in transcription, though a few hint at a possible role in cell

signaling. The YEATS domain, in Ancl's human homolog ENL, has been shown to

interact directly with histones 1 and 3 (Zeisig et al. 2005), and, given the high degree of

conservation in this domain, we expect that Ancl's YEATS domain has a similar
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function. We analyzed the Ancl protein for regions predicted to be unstructured, and

for sites predicted to be phosphorylated (Romero et al. 1997; Li et al. 1999; Romero et

al. 2001; Ingrell et al. 2007). There was considerable overlap between these

predictions: there are two main regions predicted to be unstructured in Ancl, and these

regions correspond to regions with a high density of predicted phosphorylation sites. It

is thought that that unstructured protein domains encourage the quick and reversible

binding of proteins to a broad range of interaction sites in response to changes in the

cellular environment (Dunker et al. 2002). We suspect that these regions, which lie in

the middle and C-terminal portion of the Ancl protein, are the domains through which

Ancl makes the majority of its protein-protein interactions, and that the YEATS domain

functions to bring these complexes in proximity to chromatin.

The transcriptional response of cells to MMS treatment has been characterized

previously (Jelinsky and Samson 1999; Jelinsky et al. 2000), and we were eager to

learn whether Ancl, with its many roles in transcription-related complexes, has a

function in regulating the global transcriptional response to DNA damage. We

discovered that the transcriptional response of ancl cells to MMS treatment did not

exhibit the transcriptional changes that would be expected after MMS-treatment or other

environmental stressors. The -900 genes that are transcriptionally responsive to

environmental stress have been previously identified, and were shown to be under the

control of the Mecl signaling pathway (i.e. mecl and dun1 cells are transcriptionally

unresponsive to environmental stress) (Gasch et al. 2000; Gasch et al. 2001). Thus,

Ancl plays an extensive role in mediating the transcriptional response to MMS

treatment.
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Given the similarity between ancl's transcriptional response to MMS and those

of mecl and dun1, the physical interaction between Ancl and Dun1 (Ho et al. 2002),

and earlier data showing that an ANCI overexpression strain can suppress the lethality

of mecl cells (Desany et al. 1998), we postulated a role for Ancl in mediating the Mecl

signaling pathway. We selected Smll, a protein known to be phosphorylated by Dun1

after DNA damage (Zhao et al. 2001; Zhao and Rothstein 2002), for this purpose.

Although SmIl levels in untreated ancl cells were similar to those found in untreated

wildtype cells, after MMS treatment, SmIl was almost entirely absent in ancl cells,

rather than present and phosphorylated, as it is in wildtype. We show that this

regulation of SmIl levels takes place at the protein, not the transcript levels, as the level

of SML1 transcript in ancl cells is not significantly different from that of wildtype. We

suspect that this abnormally fast degradation of the Smil protein after DNA damage is

linked to Ancl's interaction with Dun1, but the mechanism by which this interaction may

affect the Mecl signaling pathway is as yet unknown

In summary, we have examined a gene, ANCI, whose function in survival after

DNA damage was previously uncharacterized, and have made considerable progress

towards describing its contribution to the DNA damage response. We have shown that

ANCI is a member of the postreplication repair pathway, and that within this pathway, it

defines a previously undiscovered branch of error-free repair. Furthermore, we have

described a role for Ancl in the genome-wide transcriptional response to environmental

stress, and shown that proper Ancl function has consequences for protein-level

changes as well. Given the homology of Ancl to three human genes involved in
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chemically-associated leukemias, we are hopeful that this new understanding of Ancl's

role in repair may shed light on the function of its homologs in human disease.

107



References

Begley, T.J., Rosenbach, A.S., Ideker, T., and Samson, L.D. 2002. Damage recovery
pathways in Saccharomyces cerevisiae revealed by genomic phenotyping and
interactome mapping. Mol Cancer Res 1(2): 103-112.

-. 2004. Hot spots for modulating toxicity identified by genomic phenotyping and
localization mapping. Mol Cell 16(1): 117-125.

Daee, D.L., Mertz, T., and Lahue, R.S. 2007. Postreplication repair inhibits CAG.CTG
repeat expansions in Saccharomyces cerevisiae. Mol Cell Biol 27(1): 102-110.

Desany, B.A., Alcasabas, A.A., Bachant, J.B., and Elledge, S.J. 1998. Recovery from
DNA replicational stress is the essential function of the S-phase checkpoint
pathway. Genes Dev 12(18): 2956-2970.

Dunker, A.K., Brown, C.J., Lawson, J.D., lakoucheva, L.M., and Obradovic, Z. 2002.
Intrinsic disorder and protein function. Biochemistry 41(21): 6573-6582.

Fish, R.N., Ammerman, M.L., Davie, J.K., Lu, B.F., Pham, C., Howe, L., Ponticelli, A.S.,
and Kane, C.M. 2006. Genetic interactions between TFIIF and TFIlS. Genetics
173(4): 1871-1884.

Gasch, A.P., Huang, M., Metzner, S., Botstein, D., Elledge, S.J., and Brown, P.O. 2001.
Genomic expression responses to DNA-damaging agents and the regulatory role
of the yeast ATR homolog Meclp. Mol Biol Cell 12(10): 2987-3003.

Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G.,
Botstein, D., and Brown, P.O. 2000. Genomic expression programs in the
response of yeast cells to environmental changes. Mol Biol Cell 11(12): 4241-
4257.

Ho, Y., Gruhler, A., Heilbut, A., Bader, G.D., Moore, L., Adams, S.L., Millar, A., Taylor,
P., Bennett, K., Boutilier, K., Yang, L., Wolting, C., Donaldson, I., Schandorff, S.,
Shewnarane, J., Vo, M., Taggart, J., Goudreault, M., Muskat, B., Alfarano, C.,
Dewar, D., Lin, Z., Michalickova, K., Willems, A.R., Sassi, H., Nielsen, P.A.,
Rasmussen, K.J., Andersen, J.R., Johansen, L.E., Hansen, L.H., Jespersen, H.,
Podtelejnikov, A., Nielsen, E., Crawford, J., Poulsen, V., Sorensen, B.D.,
Matthiesen, J., Hendrickson, R.C., Gleeson, F., Pawson, T., Moran, M.F.,
Durocher, D., Mann, M., Hogue, C.W., Figeys, D., and Tyers, M. 2002.
Systematic identification of protein complexes in Saccharomyces cerevisiae by
mass spectrometry. Nature 415(6868): 180-183.

Ingrell, C.R., Miller, M.L., Jensen, O.N., and Blom, N. 2007. NetPhosYeast: prediction of
protein phosphorylation sites in yeast. Bioinformatics 23(7): 895-897.

Jelinsky, S.A., Estep, P., Church, G.M., and Samson, L.D. 2000. Regulatory networks
revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells:
Rpn4 links base excision repair with proteasomes. Mol Cell Biol 20(21): 8157-
8167.

Jelinsky, S.A. and Samson, L.D. 1999. Global response of Saccharomyces cerevisiae
to an alkylating agent. Proc Nat/ Acad Sci U S A 96(4): 1486-1491.

Li, X., Romero, P., Rani, M., Dunker, A.K., and Obradovic, Z. 1999. Predicting Protein
Disorder for N-, C-, and Internal Regions. Genome Inform Ser Workshop
Genome Inform 10: 30-40.

108



Romero, Obradovic, and Dunker, K. 1997. Sequence Data Analysis for Long Disordered
Regions Prediction in the Calcineurin Family. Genome Inform Ser Workshop
Genome Inform 8: 110-124.

Romero, P., Obradovic, Z., Li, X., Garner, E.C., Brown, C.J., and Dunker, A.K. 2001.
Sequence complexity of disordered protein. Proteins 42(1): 38-48.

Zeisig, D.T., Bittner, C.B., Zeisig, B.B., Garcia-Cuellar, M.P., Hess, J.L., and Slany, R.K.
2005. The eleven-nineteen-leukemia protein ENL connects nuclear MLL fusion
partners with chromatin. Oncogene 24(35): 5525-5532.

Zhang, H., Richardson, D.O., Roberts, D.N., Utley, R., Erdjument-Bromage, H., Tempst,
P., Cote, J., and Cairns, B.R. 2004. The Yaf9 component of the SWR1 and NuA4
complexes is required for proper gene expression, histone H4 acetylation, and
Htzl replacement near telomeres. Mol Cell Biol 24(21): 9424-9436.

Zhao, X., Chabes, A., Domkin, V., Thelander, L., and Rothstein, R. 2001. The
ribonucleotide reductase inhibitor Smil is a new target of the Mecl/Rad53 kinase
cascade during growth and in response to DNA damage. Embo J 20(13): 3544-
3553.

Zhao, X. and Rothstein, R. 2002. The Dun1 checkpoint kinase phosphorylates and
regulates the ribonucleotide reductase inhibitor SmIl. Proc Natl Acad Sci U S A
99(6): 3746-3751.

109



Acknowledgements

My Ph.D. adventure would certainly not have been complete (and I mean, I never

would have finished it) without the help and support of so many labmates, colleagues,

friends and family. Although it would be impossible to include everyone who helped me

in this endeavor, there are a number of people I would like to expressly thank for their

contributions, scientific and otherwise.

I must start by thanking my advisor and mentor, Leona Samson, for making this

thesis possible, and for her generous support and patience during my time in graduate

school. I very much appreciate the balance of independence and guidance she has

given me to carry out this project; her mentorship has been invaluable to my work and

to me personally. The Samson lab has been a warm and stimulating environment in

which to carry out my graduate research. No matter how busy people are (and they're

all pretty busy), everyone makes time for each other, be it baby showers (how many

babies?), birthdays or impromptu coffee breaks after an experiment has failed one too

many times. Lisi Meira has been an incredible force in bringing the lab together -

organizing so many of the lab social events, while heroically juggling multiple projects

and still caring for the emotional well-being of all of the lab members. She's been a

great help to me in both talking science and learning the politics of the field. Rebecca

Fry has been a terrific collaborator and a great friend - all those months analyzing array

data would have been painful and dreary without her. Ayelet Maor-Shoshani has been

there for me through all the day-to-day science and non-science problems in my life,

and I can't imagine having made it through without her unflagging support. The

occasional cards, drawings and phone calls from Ofer and Tomer (her children) have

110



certainly helped too. Jamie Bugni has been a great sounding board for ideas, and his

statistics help is much, much appreciated; plus, I can learn a lot from his laid-back

approach to life. Joanna Klapacz's advice on analyzing mutagenesis in yeast has been

invaluable, as has her friendship. The same can be said of Dharini Shah, whose

expertise in using the CCR's cranky flow cytometers saved me from many late nights

alone in the FACS facility. And Nick Bergis, well, the lab was never the same after he

left. He's a good friend and it was fun to work with a recent convert to the yeast

approach to problem solving.

Shared experiences often produce a particular kind of close friendship, and my

fellow Samsonite graduate students, Ivy Lee, Erica Noonan, Joe Shuga and Chandni

Valiathan have been awesome - it's been a joy to share my grad student experience

with them. The lab's technicians have been constantly helpful for keeping the lab

running, and for just being good people: Catherine Moroski, David Luchetti and Brad

Hogan have been particularly helpful to me. I can't imagine what I would have done

without Christian Rheult's constant computing help; his good natured competence made

the requisite technological glitches go so much more smoothly. But don't believe him if

he says it will only take five minutes... And Julie, Sophea and Jackie have been just

wonderful keeping the lab running smoothly.

A great many people outside of the Samson lab have also helped me in the

pursuit of this degree, especially the members of my surrogate lab, the Walker lab. In

particular, Xu Simon and Rachel Woodruff have been terrific "thesis club" members -

this writing process would have been nearly impossible without their help and

friendship. Laurie Waters has been a younger and wiser yeast expert; always willing to

111



share her advice and her strains. Jessica Brown, of the Lindquist lab, was also a great

source of advice, strains and expertise. Although we've focused on quite different areas

of study, Bijou Bose has been a wonderful friend, and a very useful source of

information about our department when building 56 seems miles away from Course 7.

My committee members, past and present, have been tremendously helpful in

guiding me through this scientific process and keeping me productive and motivated. A

very great thanks to Phil Sharp, Graham Walker, David Housman, Forest White, Mike

Yaffe and Mitch McVey for all of your time and interest. Working with you has been an

inspiration.

My collaborators at UNMC in Nebraska, Danielle Daee and Bob Lahue also

deserve my thanks for their interest in my work and their timely contributions to my

project. I would also like to thank Brad Bernstein at HMS for sharing his human AF9

antibody with me, and for his (actually quite useful) advice on careers and on life.

Of course, there are many, many people outside of MIT who have helped me

through my MIT years in somewhat less research-oriented ways. First and foremost, I

need to thank my family (Mom, Dad, Jason, Ethan and the Grandparents) for suffering

through my explanations of what I'm working on, what was going wrong at school this

time, and for continuing to ask "When will you graduate from kindergarten already?"

(That's you, Grandpa Sam.) Really, though, thank you so much for seeing me through

this.

I know that my outside-of-work friends deserve a chunk of my degree and a huge

amount of thanks for all of their support over these last few years. This is true of no one

more than Heather Bodman and John Pyper. They have been a great source of advice,

112



food, comfort, friendship, laughter and, most of all, perspective, and I can't thank them

enough. Claire Bailey Reardon, John Reardon, Doug MacElhiney and the rest of the

Bungalow crew have been a great escape from grad school life and make the "real

world" actually look like fun. The women from our chic book club keep my love for

literature alive.., and make it so tasty too! And life without bad TV at Jess Alfoldi and

Dan Doty's would make Friday nights so... boring. My oldest friends, Kebbeh Gold,

Janaki Parthasarathy and Ora Szekely are great at reminding me where I come from,

(even though I'd probably rather forget about middle school). Suzie Proctor Hallquist

has helped me to explore our great country by moving six times in the last four years,

and my new night-owl friend, Sarah Matthews, has been awesome for making sure the

gym stays open until closing. And, of course, can't forget to thank my college buddies:

Melanie Arzt, Sharon Chaitin-Pollack and all the tower folks.

This work was supported by NIH grants CA055042, ES002109 and CA14051.

113


