
A Model of Composite Objects for

Information Mesh

by

Felix Tun-Han Lo

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degrees of

Master of Engineering in Electrical Engineering and Computer
Science

and

Bachelor of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1996

@Felix Tun-Han Lo, MCMXCVI. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and to
distribute copies of this thesis document in whole or in part, and to

grant others the right to do so.

A uthor
Department of Electrical Engineering and Computer Science

August 26, 1996

Certified by
Karen R. Sollins

Research Scientist
J esis Supervisor

OF "•'N ted by

MAR 211997 Morgenthaler

LIBRARIES Chairman, Departmental oinmittee on Graduate Theses

A Model of Composite Objects for

Information Mesh

by

Felix Tun-Han Lo

Submitted to the Department of Electrical Engineering and Computer Science
on August 26, 1996, in partial fulfillment of the

requirements for the degrees of
Master of Engineering in Electrical Engineering and Computer Science

and
Bachelor of Science in Electrical Engineering and Computer Science

Abstract

This report describes the design and implementation of a prototype for composite
objects in the Information Mesh. A composite object is composed of a collection of
objects. The prototype uses the example of a book. It was built using two recently
developed technologies in distributed computing, Java and CORBA. Java supports
mobile code systems, while CORBA provides the mechanism for making transparent
requests. Both technologies are essential in building the prototype.

The prototype is then generalized into a composite model for all objects in the
Information Mesh Object System. This general model extends from the current Mesh
object model, and incorporates a new capability for the composition of objects. Ob-
jects of different types can be combined, while the mechanism for composition is
transparent to users of the object system.

Thesis Supervisor: Karen R. Sollins
Title: Research Scientist

Acknowledgments

I would like to give my sincere thanks to:

Dr. Karen Sollins, my thesis supervisor, for her guidance throughout the
project, and for the diligence with which she has read and understood the
drafts of this thesis. Her ability to help me extract and clarify my ideas
has been invaluable.

Lewis Girod, for helping me grasp many of the ideas in the Information Mesh.

I am also in debt to the following people, whose company has immensely enriched
my life, both at MIT and beyond.

To Dad and Mom, Ada, Eileen, and Adrian, for their love and caring through-
out these twenty-two years. No word can possibly express my gratitude
toward my family.

To Andy, oyip, pchan, Anita, Jenny, Vinci, for sharing my walk at MIT since
freshman year, and for being project partners in many classes.

To Jerome, Bernard, Yuk, Albert, the "old-biscuits", for helping me the way
around MIT and making MIT a fun place to live in.

To khon, kennethp, for the happy time in UROP together and being two of
my best friends.

To Cavlin, Chris, kclau and members in the hockey team, soccer team, and
table-tennis team, for the wonderful memories together.

To David Ma, Jimmy, bwong, King, Mawlo, Kin, Richard, for walking together
to find and grasp the right priorities in life.

To my friends in HKSS, for making these four years the happiest time of my
life.

To the people in HKSBS, for their love and compassion through prayers and
fellowship over these years.

Last but not least, to the Lord Jesus Christ, who has made all of the above a
reality.

Contents

1 Introduction

1.1 M otivation .

1.2 Goals and assumptions

1.3 The Information Mesh Environment

1.3.1 Overall Vision and Goals.........

1.3.2 The Information Mesh Object System.

1.4 Specific Problem and Proposed Solution . . .

1.5 Roadmap

2 Design Overview

2.1 Overall Model of the Book Paradigm

2.1.1 Example..........................

2.1.2 Straight Forward Design of the Book Paradigm . . .

2.1.3 Hypothesis of no Association between component and

2.1.4 Design of the Composite Model

2.2 Extending the Information Mesh Object System

2.2.1 First Issue

2.2.2 Second Issue.

2.3 Sum m ary

3The

3.1

3.2

part

Book Paradigm System

Platforms and programming Language

Client-Server Interactions

9

.. 10

.. 10

.. 11

.. 11

. 12

. 13

.. 13

15

15

16

17

20

22

23

24

29

33

33

34

3.3 Client-Side.................................. 37

3.3.1 User Interface............................ 37

3.3.2 The Client Object Model...................... 39

3.4 Server-Side 40

3.4.1 Detailed Design of the Composite Class 41

3.4.2 Detailed Design of the Book 44

3.4.3 Persistent Storage.......................... 47

3.5 Sum m ary 48

4 Implementation 49

4.1 Overview of Implementation . 50

4.2 User Interface 51

4.3 Server . 52

4.4 Book 53

4.4.1 Book's Interface 53

4.4.2 Book Implementation 55

4.4.3 Reading Pages and Chapters 56

4.4.4 Replacing Pages and Chapters 57

4.4.5 Other methods 61

4.5 Com posite . 62

4.5.1 Translator . 64

4.5.2 The Composite Class 68

4.6 Conclusion and Unresolved Issues . 81

5 Conclusions 83

5.1 Further Research 85

5.2 Conclusion.................................. 85

List of Figures

The example.............

The flexibility of a role

A straightforward design

Conflict and Modification.....

Problems in writing

A part set and component set. . .

A book wraps around a composite.

The first issue

Sets of roles..............

Example.

Example.

Example.

Example.

Closed loop..............

Recursion is expanded infinitely..

3-1 The interactions between a client and a server..

3-2 User interface.....................

3-3 Object representation

3-4 Example.

Inefficiency in reading a complex file structure.

Different levels of mechanisms

The shifting of insertion filepointers

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

2-10

2-11

2-12

2-13

2-14

2-15

3-5

3-6

3-7

...................

3-8 Object Model at the Server machine.....

3-9 List of page filepointers as fixed boundaries.

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

4-11

4-12

4-13

4-14

4-15

4-16

4-17

4-18

Implementation Overview

An example of a menu..............

A tree of nodes..................

Object instance creation.............

The lists of pointers.

Replaceing a page.

Mapping between a composite object and its

The Recursive nature of a composite object.

Partition Array and Table of Components.

Convention, and alternate algorithm.....

Scheme 1....................

Scheme 2.....................

The control flow of the method writePT. . .

Reducing to four cases..............

Case 1.......................

Case 2........................

Case 3........................

Case 4........................

•.••..

underlying

. ..• • . .

.. ••..

file structure.

. ,. , • . .

• •. . . . •

Chapter 1

Introduction

The Information Mesh is an infrastructure which provides better supports for dis-

tributed information applications. One of the major design goals of the Information

Mesh is its evolvability. A flexible object-typing model has been developed so that the

Information Mesh may evolve along with changing applications and supporting in-

frastructures [1]. Currently, the Information Mesh project has not developed a model

of composite objects that takes advantage of the flexibility of the underlying object

system. A composite object is composed of a collection of Mesh objects; it requires

certain relationships among Mesh objects [3]. These relationship requirements reduce

the flexibility allowed by the object system.

This work proposes a composite model which is compatible with the existing object

system. The model is designed to retain the flexibility of the Information Mesh object

system. A book paradigm will be studied to reveal fundamental concepts and insights

for the overall development of a composite model. These fundamental concepts and

insights suggest a general composite model as an extension of the Information Mesh.

A book prototype has been built to demonstrate composite model and to expose

implementation issues in details.

1.1 Motivation

A composite model allows the composition of a collection of Mesh objects into a

single object. Many distributed information applications recognize composition as

an essential capability. In a study of hypertext system, F. Halasz suggests that

"the basic hypermedia model lacks a composition mechanism, i.e., a way of repre-

senting and dealing with groups of (objects) as unique entities separate from their

components. [10]" His Dexter Model of Hypermedia System supports composition as

a hierarchical structuring mechanism. [11] Furthermore, Halasz suggests that com-

position should be "implemented within, as opposed to on top of, all hypermedia

systems. '[10]" Therefore, a hypertext model requires composite capability, and this

capability should be implemented within hypermedia systems. Composition is neces-

sary at the Information Mesh level.

Another motivation comes from the nature of the Information Mesh itself. [3] The

Information Mesh is a distributed system, and may not be able to provide complete,

system-wide, information on individual objects. With the lack of system-wide knowl-

edge, each object may need to maintain its own information. Thus the need of a

composite model partly comes from the distributed nature of the Information Mesh

Model.

1.2 Goals and assumptions

Before designing a composite model, certain assumptions need to be made about the

model. The following assumptions are based on previous studies on designing models

for composition.

1. A component should not be aware of its containing objects. Otherwise, the list

of contained objects can be very large. The cost of maintaining a large list is

undesirable. This constraint is stated in the Linking in a Global Information

Architecture paper [2].

2. A component can be included in more than one composite.

3. A component is allowed to contain other components. Thus a restriction is

needed to prevent any cycle in composite/component relationship, that is, a

composite should not be a component, directly or transitively, of itself [10].

1.3 The Information Mesh Environment

The development of a composite model is a step in achieving the overall vision and

goals of the Information Mesh project. The composite model needs to be consistent

with the overall Information Mesh object system. We will first look briefly at the

overall vision and goals of the Information Mesh, then at the object model.

1.3.1 Overall Vision and Goals

The overall vision of the Information Mesh Project is to provide a long-lived global

architecture for networked-based distributed information reference, manipulation and

access [3]. The architecture should provide a minimal set of requirements so it does

not restrict the evolution of the network. The hope is that the Information Mesh will

become the primitive abstraction around which applications are built [4].

The specific goals to meet this vision of the Information Mesh are:

* Global Scope.

The Information Mesh should provide a general agreement on object re-

ferral in a highly scalable manner.

* Ubiquity.

The Information Mesh should support all network-based applications wher-

ever the information they access is located.

* Heterogeneity.

The Information Mesh must support a broad set of network protocols and

applications. The set includes past implementation and likely future im-

plementation.

* Longevity.

Information and its identifiers should be able to survive for at least 100

years.

* Evolvability.

Future applications and a changing network may place new requirements

on the Information Mesh. Therefore the Information Mesh must be able

to evolve and adapt to these new requirements.

* Resiliency.

The Information Mesh should be resilient to failure in accessing informa-

tion. These failures may arise due to a variety of reasons such as hardware

failures or expired pointers.

* Minimality.

The architecture should place the minimum necessary restrictions on ap-

plications. Thus it must provide as few restrictions as possible to achieve

the above goals.

1.3.2 The Information Mesh Object System

The Information Mesh object system provides a typing model that achieves its goals

of flexibility and evolution. This typing model allows a data object to play a variety

of roles; an object's type is defined by the set of roles the object is playing. Each

data object has an external appearance entirely defined by the roles they play. The

object's appearance may change from time to time depending on the set of roles the

object chooses to play at run-time.

Roles are arranged into an inheritance hierarchy. When an object plays a particu-

lar role, it also plays all that role's super roles. The root of the inheritance hierarchy

is the object role. Any first class object in the Information Mesh must play the object

role. Although the role hierarchy is rooted in the object role, it also supports multiple

inheritance.

Each role specifies an abstract interface to a certain type of data object. These

abstract specifications are distinct from their actual implementations. The interface

includes parts, actions, and makers. Parts describe the abstract structures of the data

object that plays the role. Actions, similar to traditional "methods", are specifications

of functions that operate on the object. Makers define the abstract functions that

create instances of the object.

1.4 Specific Problem and Proposed Solution

The part characteristics of the role interface gives rise to complications in developing

a model of composite objects. A part specifies an interface to an object structure.

Each part has a name and specifies how substructures are exposed. A part's name

is called part-name and an object's actual substructure is called part-instance. Part-

instances may overlap. The overlapping of part-instance is a difficult issue that needs

to be addressed in designing a model of composite objects. This flexible substructure

in role-interface will be integrated with a fixed storage structure in the model of

composite objects. Thus the integration of the part component is a major issue in

developing a composite model.

By studying the book paradigm, this thesis attempts to resolve the underlying

problem in the conflicts between part and composite model. The underlying prob-

lem is the implicit assumption that a role's parts and components are related. Our

proposed solution is to separate role implementation from composition mechanism.

The composition mechanism is implemented in a lower-level role, using part-instances

which will not overlap.

1.5 Roadmap

The remainder of this document will describe the composite model and the demon-

stration of the model in a book paradigm. Chapter two describes the design of the

composite model. It presents a model specific to the book paradigm, and then pro-

poses a general model for the Information Mesh. Chapter three describes the detailed

design of the book prototype. This chapter divides the system into different modules,

and describes each module. Chapter four describes the implementation of the book

paradigm. Chapter five concludes this report and suggests future work.

Chapter 2

Design Overview

In order to understand the Information Mesh composite model, it is necessary to

study an extended example of the model. This chapter studies a book paradigm, and

generalizes from this paradigm. The generalization results in a composite extension

to the Information Mesh Object Model. In the book paradigm, a book is composed

of components. The components are distributed over the network. The paradigm

exposes various design and implementation issues to the overall composite extension

in the Information Mesh Object System.

The content of this chapter is presented as follow. Section 2.1 discusses the overall

model of the book paradigm. Section 2.2 discusses the Composite Model as part of

the overall Information Mesh Object System. Section 2.3 summarizes the design.

2.1 Overall Model of the Book Paradigm

In the book paradigm, the components of a book are distributed over the network.

The components are limited to be file objects. The user interface is presented in the

book role, which has chapter and page as its parts. Studying this paradigm exposes

some underlying problems in developing a composition mechanism. The problems

arise due to possible conflicts with the existing role object model. We will attempt to

resolve the conflicts in two design alternatives. Comparison of the design alternatives

yields the specific model of composition in the book paradigm.

editor editor editor editor

supervisor

Figure 2-1: The example.

2.1.1 Example

Consider the following scenario depicted in Figure 2-1. A project team of five people

is given the assignment of publishing an electronic book. The team has a project

manager, who supervises the team. He organizes the book into five chapters, and

assigns each team member(including himself) the job of writing one chapter. While

each team member has editing power over only his own chapter, the project manager

has editing power over all chapters. As well, they expect that a book can be divided

into parts. It can be divided into pages, into chapters, or bibliography. Sometimes a

team member may want to take out a whole chapter for reading or editing. Sometimes

he may want to take out just one particular page to make a minor spelling correction.

This example raises a couple of concerns. First, different people may have different

access rights over parts of or an entire document. In the Information Mesh Project,

the security model is a orthogonal abstraction from the composite model.' Therefore

the composite model should be free of security consideration. Though security is not

the focus of this report, the composite model should be consistent with the security

lFor demonstrating and efficiency purposes, we have not maintained this orthogonality in our
prototype. This should not be taken as the preferred choice, but only expediency in the face of
available technology.

chapter

I

/chapters

content
pages

chapters

ges and chapters
erlap

Figure 2-2: The flexibility of a role.

model in the Information Mesh. Thus in general, read and write access should be

valid.

The second concern has to do with the flexibility of parts in a role. For example,

part-instances may overlap(See Figure 2-2). A page may contain the end of one

chapter and the beginning of the next chapter. As well, a part-instance may contain

another part-instance. A page may be included in a single chapter. The composite

model should not restrict the flexibility of part in the Role Object System.

2.1.2 Straight Forward Design of the Book Paradigm

In the most intuitive design, each component is either a chapter or a page. Consider a

design which ignores the overlapping among part-instances as in Figure 2-3. Chapters

represent the components of a book. Pages represent the components of a chapter.

This straight-forward design serves as a basis. The basis will be modified to retain

the flexibility in the role object system.

Consider the following example. The example reveals a problem in the initial

straight-forward design. Suppose a person wants to read page 9 of a book. Page 9

contains the end of Chapter 1 and the beginning of Chapter 2. The top of the page

tlI V t JLW7r-- - -

r

pages

chapter

Schapter

} chapter

book

Figure 2-3: A straightforward design

exists as a component of Chapter 1. The bottom of the page exists as a component

of Chapter 2. In this special case, if page 9 is kept as one component, then chapter

1 and chapter 2 point to the same component. They can no longer be distinct com-

ponents(see Figure 2-4). To fix this problem, the straight-forward design is modified

so that page 9 is composed of a top component and a bottom component. Chapter 1

and page 9 point at the top component. Page 9 and Chapter 2 point to the bottom

component. Chapter 1 also points from page 1 to page 9. Chapter 2 also points from

page 10 to the last page of the chapter. The book points at Chapter 1 and 2, and

other chapters.

Modifying the design becomes complicated when we consider writing a part-

instance. For example, if an extra line is inserted on page 10, the last line of page 10 is

shifted to the first line of page 11 as in Figure 2-5. Lines are shifted in a similar fash-

ion on every subsequent page. Changes would occur in all components with a higher

page number than 10. Thus the insertion of a single line causes changes throughout

the entire document. This replacement process is very inefficient. The inefficiency

may slow down the overall performance. Moreover, the effect of an uncaught error

is magnified by this inefficiency. An error in one component may propagate to many

components.

pages

Conflicts
pageschapters Modification

chapters
Chaoter 1

files pages

Figure 2-4: Conflict and Modification.

Figure 2-5: Problems in writing.

page 1

page 9

page 10

Most importantly, this replacement process violates a constraint stated in the

Linking in a Global Information Architecture paper: "contained objects are not aware

of their inclusion in a composite object. [2]" This constraint is violated in our example,

in which changes in one component cause changes in other components. Without

violating the constraint, the component has no way of informing its changes to its

container, and hence to other components.

2.1.3 Hypothesis of no Association between component and

part

The previous example can be generalized into the following hypothesis: any asso-

ciation between parts and components may require components to be aware of their

containers. Another way of stating the hypothesis is: any association between parts

and components may require changes within one component to be reflected in another.

In this section, we will give an informal proof of the hypothesis. This hypothesis will

support the second design of the composite model, which is presented in section 2.1.4.

In the informal proof, the association between parts and components is represented

by an overlap of two sets(see Figure 2-6). Let part-set be a set that represent all

elements of part-instances in a role. Let component-set be a set that represent all

elements of components. The association between part-instances and components

corresponds to the overlap of the two sets. For example, if chapters are components,

then the part-set and the component-set completely overlap with each other.

To prove the above statement, we first realize that changes in one part-instance

may cause changes to other part-instances. For example, by inserting a line on page

10, all subsequent pages need to be changed(see Figure 2-5). Thus changes in one

part-instance propagate to changes other part-instances. Note that this propagation

of changes cannot be eliminated, because it reflects the intrinsic nature of the page

abstraction.

From the example in Figure 2-5, if a page is a component, then changes in one

component cause the changes in others. The constraint is violated. However, a page

mnmonent-set

common elements

When part-instances
are components.

Scommon elements in both sets

elements of part-instances

Selements of components

Figure 2-6: A part set and component set.

does not have to be a component to violate the constraint. The constraint may be

violated if a component retains some properties of a page. Consider the elements

of a part-instance which cause changes in other part-instances. It is possible that

some of these elements are represented by the overlapping region between the part-

set and the component-set. Then changes in one component may cause changes in

other components. Therefore, the hypothesis that any association between parts and

components may require changes within one component to be reflected in another is

valid.

Moreover, even if the hypothesis is not valid, associations between part-instances

and components still raise complexity. First, the implementation of one part may

conflict with the implementation of another part. If a role has many parts, the re-

lationships among parts and components become very complex. The complexity is

even higher when an object plays multiple roles, because parts in different roles need

to interact.

We have shown that any association between parts and components may require

components to be aware of their containers. Moreover, any association between part-

instances and components would increase the overall complexity and restrict extensi-

bility. Therefore a composite model should not associate parts with components.

nrt-. vapart

2.1.4 Design of the Composite Model

The second design removes all associations between parts and components. The

composition mechanism is implemented in a composite module, which is responsible

for combining objects. From now on, objects of the composite module will be called

composite objects. Composite objects have the same interface as the objects which

make up composite objects. They are wrapped around by book roles(See Figure 2-

7). The book role is implemented in a book module, which is only responsible for

exposing part-instances.

In the book paradigm, the composite module combines only file objects. Thus

the interface of composite objects is similar to the interface of file objects. For ex-

ample, the byte offset from the beginning of a file is called a filepointer in the Java

programming language2 . Thus, the byte offset from the beginning of a composite is

also called a filepointer. While the composite module takes care of the composi-

tion mechanism, the book module implements the mechanism for accessing pages and

chapters. Since a composite object is similar to a file object, implementation of the

book module should be the same as the implementation before the incorporation of

the Composite Model.

This design has the following advantages. First components do not need to know

about the state of other components, because the design does not associate parts and

components. Second, the abstraction between the book module and the composite

module is very clean. The two modules have distinct functionality. The book module

finds pages and chapters. The composite module combines objects. On the other

hand the performance may not as good as the straight-forward design, especially if

part-instances rarely overlap.

We choose this design to build the book paradigm. Building the book paradigm

will be discussed further in Chapter 3 and 4. The remainder of this chapter attempts

to generalize from this design and extends the Information Mesh to support the

general composite model.

2We choose Java as our programming language. The choice is discussed in Section 3.1.

Book

-o

-o

-o

Figure 2-7: A book wraps around a composite.

Role 1

Role 2

Role N

Role *

Role *

Role *

Figure 2-8: The first issue.

2.2 Extending the Information Mesh Object Sys-

tem

The previous section describes a specific design for the book paradigm. The design

wraps around a collection of files with a composite abstraction, and builds a book

interface on top of the composite abstraction. In this section, the design will be

generalized so that any objects can be combined in the Information Mesh.

In coming up with the general composite model, we need to consider two issues.

The first issue is the number of roles which a composite module can combine. In the

book paradigm, the composite module only combines objects of the same role. In

Composite
File Object

File Structure

i'hi

-o

-o0

Figure 2-7: A book wraps
around

a composite.

The role universe

roles

that a
ule combines

Figure 2-9: Sets of roles.

general, a composite module may combine objects of different roles(see Figure 2-8).

The largest composite module combines objects of any roles. The smallest composite

module combines only objects of the same role. The second issue is the representation,

or the nature of a composite module. For example, a composite module can be treated

as part of an implementation, or it may be represented in a role.

2.2.1 First Issue

A composite module may be designed to combine objects playing different roles. Let

us denote the size of a composite module to be the number of roles it can combine.

The first issue involves the appropriate sizes of composite modules. The Information

Mesh may have a number of composite modules. Each composite module combines a

certain set of roles(see Figure 2-9). For example, in the book paradigm, the composite

module combines objects which play only the file role. The following compares a

design of large composite modules with a design of small composite modules.

In a design of large composite modules, a large variety of roles can be combined.

For example, consider a composite module of size 8. The module can combine ob-

Role 1

Role 2

Role 8

1

2

3

4

5

6

7

8

Figure 2-10: Example.

jects of 8 distinct roles. In contrast, consider composite modules of size 2. They

cannot combine objects of 8 distinct roles. In order to combine objects of 8 distinct

roles, 7 composite modules of size 2 are needed(see Figure 2-10). A design of small

composite modules has another disadvantage. With small composite modules, it is

often necessary to add new modules to combine a specific pair of objects. But an

environment with many composite modules may be confusing to programmers. When

programmers want to combine objects, they may encounter difficulties in finding the

suitable composite modules.

We should also consider the complexity issue in a composite module. There are

different factors which may increase the complexity in a composite module.

On the other hand, a large composite module may be more complex to implement

than a small composite module. There are a number factors which may increase the

complexity in a composite module. For example, the similarity and dissimilarity of the

roles involved will have a strong impact on complexity. If the roles being composed are

very similar, the composite module will be simpler. The size of a composite module

should also have a strong impact on complexity. For example, consider a composite

module of size 3. The module must handle the differences among the three combining

roles. The differences may exist in the actions, parts, or makers in a role. Suppose

the module is modified so that it will be able to combine a fourth distinct role. The

new module needs to handle three more relationships. It must handle the differences

between the new role and each of the three original roles. Therefore the modified

module will be more complex than the original module. In general, a large composite

module is more likely to have higher complexity than a small composite module. A

large composite module may also be slower than a small composite module because

of the extra complexity. Suppose we want to combine objects of two roles, and two

composite modules can do the job. Then the smaller composite modules may be more

efficient than the larger module.

Looking at the relative advantages of large and small composite modules, we come

up with the following design.

The General Design of the Composite Model

Roles are defined hierarchically in the Information Mesh. In the general composite

model, the condition for composition is the existence of a common super role among

the objects. Objects can combine only if they have a common ancestor role which

allow its objects to be combined. To combine a collection of objects, we search the

role hierarchy. After we find the closest common ancestor, we check if objects of this

role can combine. If they can combine, we return an object which plays the common

ancestor role. This returned object is a composite object in reality. Notice that

the farther back we search in the hierarchy, the fewer similarities exist between the

composite object and the original components. Then it may be difficult to transform

the composite object into a desirable form. Therefore a closer common ancestor is

preferable.

As an example of this general model, consider an I/O stream role, a tape

role, and a file role. The I/O stream role is a parent of a tape role and a

Figure 2-11: Example.

file role(see Figure 2-11). To combine a tape object and a file object, each will

need to be considered as an I/O stream object. After the objects are combined, the

composite object will play the I/O stream role. The I/O stream role has actions and

parts common to the file role and the tape role. The I/O stream composite may be

transformed back to a file object.

This design eliminates the disadvantage of the implementation complexity, while

retains the advantage of a large composite module. The implementation complexity is

completely eliminated, since each composite module is implemented as if it combines

only one role. At the same time, the actual size of a composite module is equal the

number of descendants of the combined role. Therefore, a composite module is very

large if it combines a role with many descendants. For example, if the I/O stream role

has a lot of descendants, and a composite module for I/O stream role can combine

many other roles. This design also has an appropriate abstraction for composition. To

combine two objects, the two objects must be similar in their actions and parts. But

similarities among objects are also captured in the inheritance relationship. Therefore,

by finding the closest common ancestor, we have identified the largest set of common

actions and parts.

On the other hand, this design may be unable to combine some objects of similar

structure. For example, a string object and an array object have very similar struc-

lobiect-mile I

role I role 3Oactionl action2
partl action3

ction4Ipart2 part3
proper2

role 2

action2
acton4
partl
part3 I

Figure 2-12: Example.

ture. Yet in a programming language such as Java, they have no common ancestor

except the root object class. Therefore, if we want to combine them in the Infor-

mation Mesh, they must be designed to have a common ancestor in the beginning.

Under this design, we may also encounter problems if we initially build a few straight-

forward roles, and later want to combine some of these roles. For example, look at

Figure 2-12. Suppose role 1, role 2, and role 3 are initially designed as shown on

the left-hand side. Later, we want to combine role 1 and role 2, and present the

composite in a role with no action and the single part part 1. Under this design, it

may be necessary to rebuild role 1 and role 2 so that they derive from the common

ancestor role*. The redesign is shown on the right-hand side of Figure 2-12.

A possible design alternative is to identify common relationships among roles by

the common actions and parts instead of by a common ancestor. However, actions

and parts in two roles may have the same specification but very different behaviour.

Therefore it is difficult to define which are the common actions and parts and hence

a common ancestor is the only clear indication of common relationship among roles.

The general composite model allows objects to be combined after first converting

the objects into a closest common super role. The closer the common ancestor, the

more similar are the roles of the composite and components. A composite module can

combine objects which may play any of the descendant roles. The implementation is

Combine role I and role 2
using part 1.

a 1

)nl

2]

still simple because all composite modules are built to combine objects playing one

role.

2.2.2 Second Issue

Section 2.2.1 discusses the general composite model. The central issue is the size

of each composite module. Section 2.2.2 will focus on the representation of these

composite modules in the Information Mesh. There are different options for realizing

composite modules. For example, composite modules may exist as part of an under-

lying representation in some roles, or they may also exist as composite roles in the

Information Mesh Object System.

Our design chooses to represent composite modules as an underlying representa-

tion of some role. In the object role hierarchy, there can be a number of roles which

support composition. For each of these roles, there are multiple implementations that

allow for different underlying representations. One is the simplistic, straight-forward,

non-composite representation. Another is the composite representation. The compos-

ite representation handles the composition mechanism. Its implementation is defined

recursively, as it handles components playing the same role.

For example, consider the IO Stream role(see Figure 2-13). The IO Stream role

is supported by two underlying representations. One representation is the straight-

forward IO Stream implementation. The other is a composite representation, whose

components play the IO Stream role. With this recursive definition, the recursion

ends at a component which is a straight-forward IO Stream object. However, we

must be careful that some composite representations may loop forever, and we must

restrict the existence of such representations. For example, suppose object 1 contains

object 2, which in turns contains object 1(Figure 2-14). The mutual containment con-

tinues forever, and there is no end to the recursion(Figure 2-15). Then the composite

is infinitely large. This infinite loop exists whenever a closed loop exists between two

nodes of combined objects. Therefore we must make sure that the instance contain-

ment relationship forms a DAG(directed acylic graph).

A role which supports composition is considered identical to its non-composite

cursively!

Figure 2-13: Example.

/ N

Figure 2-14: Closed loop.

Figure 2-15: Recursion is expanded infinitely.

version. The composite version supports a few more optional actions to specify the

parameters for inserting objects. For example, a composite IO Stream role should

have all the actions and roles of a straight-forward IO Stream role. It should also

support a set of optional actions to specify parameters for inserting an IO Stream.

A parameter may be the oid of an IO Stream, or the exact location for inserting

one IO Stream into another IO Stream.

In this design, the Information Mesh is built so that the composition mechanism in

one set of roles is not exposed to the implementations of other roles. The abstraction

is very useful since the development of the Information Mesh is divided into different

areas. Therefore developers in one area only need to be concerned with the compo-

sition mechanism inside their area. For example, developers who build the naming

service may use kernel roles, some of which may support composite. These developers

do not need to understand the composition mechanisms inside these kernel roles.

In addition, a role can be modified easily to support composition. In some situa-

tions, the need for composition may not be recognized until a considerable amount of

time has elapsed. Then, the original versions of certain roles need to be modified in

order to support composition. In this design, the modification does not affect other

implementations. The new role is modified to include an underlying composite rep-

resentation and a set of optional actions to specify the composite parameters. These

changes do not affect other implementations which have been using the role, because

they see an identical interface in these roles.

2.3 Summary

This chapter has described the composite model in the book paradigm and the general

composite model as an extension of the Information Mesh.

By studying the book paradigm, we discovered the conflicts between roles and

composition. We developed a composite model which resolve this conflict. The model

dissociates the composition mechanism from the module which provides the book

interface. The book interface wraps around the composite module, which combines

files into a single virtual files.

This model is extended to a general model in the Information Mesh. In the

extension, certain roles support composition. To combine two objects, we find their

closest common role ancestor which supports composition. These roles have multiple

underlying representations. One is non-composite. The other is composite. This

design allows composition to be possible for many roles. At the same time, it prevents

the object system from getting complex.

Chapter 3

The Book Paradigm System

This chapter focuses on the design details of the book paradigm system we build

and study. This book paradigm system is a software prototype which simulates

the composite model. Section 3.1 explains our choice of platform and programming

language. Section 3.2 gives an overall view of the client-server interaction. Section

3.3 describes the client-side design. Section 3.4 describes the server-side design.

3.1 Platforms and programming Language

The Java programming language is chosen to build the book paradigm, and Windows

NT is the underlying operating system. There are several reasons this choice. First,

Java is object-oriented. Therefore the whole system can be built using objects. This is

important since the Information Mesh universe is composed of objects. Second, Java

supports interactions with Web browsers. So page and chapter instances of a book

can be displayed on a web browser. Third, Java is "architecturally neutral", allowing

code to be portable and "is secure to survive in the network-based environment [8]."

On the other hand, Java may have worse performance than C++ because Java is an

interpreted language. However, the performance of Java should be adequate for most

applications [8]. Since the overall performance is not the primary issue in building

the prototype, the performance of Java should be sufficient for this project.

The book paradigm can be presented in different ways. It can be presented in

a Web browser, or it may exist as a completely new standalone application. As

a commercial application, building a new standalone application may be more at-

tractive. However, building a new application may introduce many issues which are

outside the scope of the Composite Model. For example, a book can be presented

in HTML(Hypertext Markup Language) on a web browser. In a completely new ap-

plication, a new way of document presentation needs to be designed. Therefore the

book paradigm will be presented in a Web browser.

For the book paradigm to be presented in a Web browser, we can either modify

an existing web browser or build a Java applet. Modifying an existing web browser

is an impractical option because there is too much installed base. As well, there

are currently many different web browsers in many different versions. Therefore a

Java applet is the choice to present the book paradigm. On the other hand, security

restrictions on applets do not allow reading or writing on local disks. These security

restrictions may give rise to some fundamental differences between an applet model

and a more realistic model of a new standalone application.

3.2 Client-Server Interactions

The previous section established Java as the programming language for the book

paradigm, and the Java applet as the choice of presentation. This section examines

the possible mechanisms which allow an applet to access a user specified part-instance.

The choices of mechanisms are limited by the set of interactions which a Java applet

provides. The Java applet restricts reading and writing on local disk, and can only

initiate network connection with the machine it comes from. Based on these security

restrictions on an applet, there are three possible approaches for accessing an object

on a remote machine. First, an existing protocol, such as http or ftp, can be used to

retrieve documents. Second, a private protocol can be designed, allowing an applet

to communicate with the machine it comes from. An applet and a server process

may open a socket using the Java Socket package. Then they may exchange string

messages. Third, the access object is treated as a remote object, and remote functions

Approach 2
Local claint Server Rmt
Machin Process prooaa Machine

ae(

Local Approach 3 Reote
Lachin Machne

nunaob call an
Q Serve ojec

Figure 3-1: The interactions between a client and a server.

on the object are called using an existing RPC product. Figure 3-1 depicts these three

approaches.

In the first approach, an existing protocol, such as ftp, is used to retrieve files.

The file can be thought of as an object instance. The "object instance" resides at the

local machine after retrieval. The "object instance" is a copy of the original object at

the remote machine. Then the applet can modify this "object instance" at the local

machine. To make permanent changes to the file, the modified "object instance"

needs to update the original file on the remote machine. This updating mechanism

may be implemented using the second or third approach. This first approach has the

disadvantage that existing protocols only transfer files. Even though transferring files

may work well in the book paradigm, this approach may not be generalizable to the

composite model as an extension of the Information Mesh Object System. Therefore

the first approach is taken out of consideration.

Both the second and third approaches involve interactions with a server process.

Appruc

2

\ •

fie

The server process is running at the remote machine from which the specified doc-

ument originates. In the second approach, a private protocol is developed between

the applet and the server process. The applet and server process are connected by

opening a socket using the Java Socket class. Then, the applet and the server process

communicate by exchanging string messages. The private protocol is in the same

level as HTTP, NNTP, or FTP, but is much simpler. It is designed only to suit the

specific needs in the book paradigm. This approach has the following disadvantages.

First, it takes time to develop a robust protocol. Errors in protocol may be sensitive

to the timing of each message. Second, if new functionality is added to the server,

the protocol needs to be changed. The protocol needs to be well designed so that it

can be easily modified and extended.

The third approach is much simpler to implement. Approach 3 involves technology

in distributed computing such as CORBA. An applet can invoke methods on a remote

object at the server machine. First, the applet accesses a remote object through

some naming service, and remotely invokes a method on this remote object. The

interaction with a server process allows a client applet to read or write on a remote

object, because the server process has the authority to read and write any files in the

server machine's disk. This approach is simpler to implement, and is a more elegant

design. Moreover, adding new functionality is easier than the second approach. Only

the common interface, between the applet and the server process, needs to be changed.

Therefore the third approach is clearly superior to approach 2. There are two

other concerns, however. The first concern is the performance issue. The second con-

cern is the choice of current technology in distributed computing. The first concern

is that the performance of the second approach may be better than the performance

in third approach. However, the difference in performance is likely very small. The

second concern is the choice of available technology which allows distributed comput-

ing. Currently, there are many commercial CORBA ORBs available, but they are

all very expensive, and provide significantly more services than this specific project

requires. However, there are freeware options which provide the technology of dis-

tributed computing. Moreover, they are all specialized for the Java programming

language. Among the freeware products that support remote object invocation, there

are Java IDL [14], Java RMI [15], and HORB [16]. Java RMI is probably the most

efficient and easiest to use. However, the netscape browser does not support it yet.

Netscape does support Java IDL and HORB. HORB supports only with Java JDK

1.0.1, but not Java JDK 1.0.2. Therefore Java IDL was chosen for this project.

The basic interaction between client and server is as follows. At initialization,

the client applet finds a server process that can create a book instance. When the

applet asks the server to create an actual book-instance, the server process creates

the book instance. The book instance exists as an object instance at the server site,

not at the client site. The server process binds the book instance to a unique name

using functions supported by Java IDL. The server returns the unique name to the

client applet. Using this unique name, the applet asks the Java IDL's ORB to resolve

the book-instance. The applet then creates a stub for the book-instance. Then, the

applet can call different functions on the book stub based on the interface of the book

role.

3.3 Client-Side

The client side handles the user interface. The goal of the user interface is to demon-

strate that underlying mechanisms function properly. The user interface may not be

the most user-friendly because the focus of this project is on the Composite Model.

With this goal in mind, this section presents the user-interface, and its interaction

with server objects.

3.3.1 User Interface

As depicted in Figure 3-2, the user interface begins with a document with two frames

on a web browser. The top frame contains an applet. The bottom frame displays a

page or chapter. The applet allows a user to request a specific page or chapter. The

bottom frame displays the requested page or chapter.

The applet has two text field entries. The first entry allows a user to specify

:.:" dil ir -ir.h: - i: :(: Li Ir b: br,: 11' im:.:1 I "> .- j..".::I -.*:I ":

,t t:r II • .. : ." L :.t:' u .u . .":. ..: ~ :-.,um:I .- ir dr.-. .-L::x." GiI.. r di C ')F{ KA..:,':1: iiil ii i:- :.1: -:. il:',-l" r dr3 '•,: JmII ii :.

1.1 Overview
: :" -: " ":': :" :::. -.:1 :,v- ..I:. .' - I.-.:m:. :..j .I: .:m ,- .. :I c , "r . I:: IL :-.:i. > m-., -2i m:-:l I :I

c):4s w.;ji Lh;.r e._k c ci i ,i th, --- c 3i).'ir- m reaim t * . k nu*:t r I -.. €. tw.e; t ,. ,'e ,3).•in-"
II:.:-I -: . -.*y.. n "x L c.-:.L.•ir: dl. I 4 AI. :y; i.." 1:xbh ii hU: Ir .:*: I ll im:-:1 :1 r: I ..L Ii I It , *vA:r.-.'V

ct t.:l'm> - . ct ta: m) il. .cE m ItAarm- -i,<--t.L"- a..

= :-* c -:x&. -.e ;k -);)i!c >.-= c.. -te.- , ul..c r! ;r te:.. Ih. t - J, LL:2.T - %.:eT.
I:' ': 14 :," di l., . ,,C .:i,: >I:m: '. I,:,. >

•:jI:•:•If.tq• 1f,. m >•.I • i mt:c.r•; e:Ec .n;:.;n:e; c ;rdli,; Ce<E •_.<t''": .= 6ceEr .::;m .*. ; >.C.:

" '- ''1= m11 I n ! i~drYTt. 'l.r:'n; ..15,L'uJ,

Figure 3-2: User interface.

the URL of a book. The second entry allows a user to specify the name of a book.

The applet also contains a "READ" button and a "WRITE" button. Invoking either

button causes a new window to appear. If the "READ" button is invoked, a new

"READ" window lets a user request a desired page or chapter, which appears in the

bottom frame. If the "WRITE" button is invoked, a new "WRITE" window allows

a user to specify how to edit the book.

Each new window contains a menu. The menu in the "READ" window lets a

user choose specific pages and chapters to be displayed. A user chooses specific pages

and chapters by clicking their corresponding indices in the "READ" window. The

menu in the "WRITE" window lets a user modify specific pages and chapters. A user

can modify pages and chapters in two ways. The first way is to replace them with

new files. In this "Replaced" option, the "WRITE" window has a textfield entry for

indicating the URLs of new files. Pages and chapters are replaced when a user clicks

the corresponding indices on the menu. In the second way, a user modifies pages by

setting their sizes. In this option, the "WRITE" window has two textfields and a

"commit" button. The first textfield displays the original size of a page. The size,

in bytes, appears in the textfield after a user clicks on the desired page index on the

menu. The second textfield allows a user to specify a new size for the page. The

"commit" button lets a user commit the changes permanently.

The user interface can be designed to be more user-friendly. For example, instead

of creating new "READ" and "WRITE" windows, the applet may contain the read

and write menus. However, Java does not allow menus to be inside an applet; menus

can only appear in a new window. In addition, in a more realistic application, there

is no need for the URL and name entries on the applet. Instead, a user would directly

access the book by a call to a Netscape browser. In this case, the page would contain

an invisible applet for creating a menu window. However, our applet is designed for

testing and debugging purposes. To access another book, one can just change the

entries in the applet. Thus the current design is chosen over designs which are more

user-friendly.

3.3.2 The Client Object Model

When the applet page is browsed, invocation of the "READ" or "WRITE" button

creates a menu window. In our design, each initialization of a menu window also cor-

responds to a book-instance creation. Thus each menu window represents a separate

copy of a book-instance(See Figure 3-3). The abstraction is similar to the books in

the real world where there are many copies of one publication.

There may be a better object model at the client site. For example, it might be

better if only one book instance existed at any time(See Figure 3-3). However, there

are many issues involved in the object model. For example, should readers of a book

be notified of updates to the book in real time? If so, a reader may skip a section

while someone else is editing the book. For example, suppose a reader is reading

page 9. At the same time, someone else deletes a line on page 8. Then the reader

turns to page 10. The first line on page 10 becomes the last line on page 9, and the

II-
menu I

Figure 3-3: Object representation.

reader would miss reading that line(See Figure 3-4). There is a locking mechanism

needed here, although we will leave locking as a topic for later study. We will deem

the current design of the client object model sufficient for now.

3.4 Server-Side

This section discusses the server side design. On the server side, the Book class and

the Composite class are distinct modules. At run-time, instantiation of the Composite

class will be wrapped by the book abstraction.

The section starts by discussing the detailed design of the Composite class, fol-

lowed by the detailed design for the book class. Finally, the issues of persistent object

storage is studied.

page 8 page 8

Figure 3-4: Example.

3.4.1 Detailed Design of the Composite Class

The Composite class has an interface that makes it appear to be a single file. The

class has a read method which reads the content of composite objects. The read

region is specified by a starting and an ending filepointer. The class also has a write

method which writes onto Composite objects. The replaced region is also specified

by a starting and an ending filepointer.

In the simplest design of the Composite class, insertion of a component is indicated

by special tag. Then to find the starting filepointer, the composite object needs to

be scanned from the top. When a special tag is parsed, the scanning switches to the

component. If the component is finished, the scanning switches back to the container.

A counter is incremented each time a byte is scanned. When the counter is equal to

the starting filepointer, the composite object can start to read or write.

This design is similar to how LATEX and HTML work. They keep the amount

of information on the files' relationships to a minimum. This advantage allows im-

plementation to be more straight forward, since there is no need to manipulate any

information on files' relationship.

On the other hand, this design is very inefficient. Consider the case in which a

last line
line 1-
page 9

line 1

last line~
line 1-
page 10

line 1

starting filepointer

L1I

l - the region which does not have to be scanned

i - the region which needs to be scanned

Figure 3-5: Inefficiency in reading a complex file structure.

document contains very large components. If the starting filepointer is below the

insertion of a component, then the whole component is scanned through unneces-

sarily(See Figure 3-5). The inefficiency is even greater when there are many levels

of components. However, this inefficiency can be prevented if the information on

component sizes is available. By keeping track of component sizes, high-level virtual

filepointers in a composite can be translated into real filepointers in disk files. Then,

the starting filepointer can be found without traversing levels of components.

But then, why do LATEX and HTML use this design to include components? To

answer this question, we first realize that LATEX and HTML are high level markup

languages. They convert the content from text files into the correct format and

document presentation(See Figure 3-6). Even without composition, their mechanisms

need to read through the entire document because they are context sensitive. But

the Composite class is at a lower level abstraction. Its only function is to combine

files into a virtual file. The class is not concerned with how the virtual file will be

presented. Therefore this design causes inefficiency in the composite class, but not in

LATEX and HTML.

In our design, each insertion of a component is associated with the following

information:

* the URL of the component.

* the filepointer for inserting the component.

s

High level mechanism
Presentation

Low level mechanism

File

Figure 3-6: Different levels of mechanisms.

* the size of the component.

The disadvantage of this design is the potential complexity in maintaining and

updating the above information. The complexity is further discussed in Chapter 4,

which describes the implementation of the book paradigm. As well, in this design,

the insertion filepointer does not shift with the content, even though the insertion

of a component should shift along naturally with the content(See Figure 3-7). For

example, suppose the sentence "I play tennis" is composed of "I play ", and "tennis".

The offset for "tennis" is 7 in the sentence. Then "I play" is changed to "I played ".

Thus the new sentence should be "I played tennis." The offset of "tennis" needs to

be updated from 7 to 9. Therefore this design requires an extra mechanism to shift

all insertion points. The extra mechanism creates more complexity. Thus the design

may not be optimal.

I

container component container component container componenthinuetin

insertion
filepointer

insertima
locatiao

line x-1line x-

Figure 3-7: The shifting of insertion filepointers.

3.4.2 Detailed Design of the Book

This section first specifies the book role, which is the interface of the book. Then it

describes the object model at the server. Finally, this section describes the chaptering

and pagination in the book role implementation.

Book Role

The book role provides functions that define a book interface to users. The core

actions in the book role are: retrieving a page, retrieving a chapter, replacing a page,

and replacing a chapter. Other actions such as maximum page, maximum chapter,

page size, and setting page size, are also useful to the client applet. The only parts

of interest for this study are page and chapter.

The Object Model in the server machine

For the object model in the server machine, each book instance is created by a re-

mote call on a Server object. The Server object associates the book-instance with a

composite object. All these object instances reside at the server machine(See Figure

3-8).
In an alternate design, book instances and composite objects reside at the client

machine(See Figure 3-8). This design is possible since a Java applet can load remote

classes. Then, remote invocations are necessary at a lower level in order to modify

disk files at a remote server machine. Thus, one possibility is to design a Server object

which has the ability to write files and allows its methods to be invoked by remote

objects.

. o

Object instances at server machine

menu --
window

cregtý

/ / \ \

Alternate model:imn
Object instances at client machine

/
mpoelte

erver

m0

Figure 3-8: Object Model at the Server machine.

Pagination and Chaptering

The main function in the book class is in retrieving a requested page or chapter.

The book class retrieves a part-instance by locating its beginning and its end in the

composite. There are two possible mechanisms for locating the beginning and the end.

The first mechanism scans through a document and parses for a page break or chapter

break. The second mechanism uses a list of filepointers. Each filepointer indicates

the beginning of a part-instance, and the end of the previous part-instance. The

mechanism for pagination is first discussed, followed by the mechanism for chaptering.

In our design, pages are retrieved by the second mechanism, where a persistent

list of filepointers refers to the beginnings of pages. The second mechanism is superior

to the first mechanism in the following way. Consider the example in which a line is

deleted on page x. The first mechanism needs to shift the page breaks for all pages

following page x. Shifting page breaks is complicated because it involves deleting

and inserting page breaks in the content. On the other hand, the second mechanism

does not need to modify the list of filepointers. This list of filepointers acts as fixed

boundaries on top of the content(See Figure 3-9). The fixed boundaries are unaffected

when the content is modified. Therefore, as a line is deleted, the shifting in pages

erver

fle a s

I ----- ,

content

page delete page
a line

ries
Sfixed

ed
matically

boundaries

Figure 3-9: List of page filepointers as fixed boundaries.

propagates automatically to the following pages. The second mechanism reflects the

nature in the page abstraction. The page abstraction separates a document into

sections by sizes, not by content.

On the other hand, there is the concern that page sizes may not be identical.

For example, some pages may contain larger headers and consist of fewer bytes than

other pages. For example, the page which contains "Chapter X" likely consists of

fewer bytes than the following page. With this concern, the second mechanism is still

superior to the first mechanism for two reasons. First, shifting page pointers is easier

than the first mechanism. It involves incrementing and decrementing numbers. The

second reason is that the book class is implemented in a separate application which

is also responsible for the actual presentation. For example, the application may be

similar to Latex. In this separate application, the size of a page may be determined

by some other units than bytes. The units reflect the size in the actual representation.

For example, an empty line has the same value as a line of text, because both lines

take up the same space in the actual presentation. As well, a character of 18pt font

is larger than a character of 16pt font by their difference in size. Using this unit, all

page sizes are identical.

In our design, chapters are also retrieved by the second mechanism. The initial

design chooses the first mechanism, but the second mechanism is found to be more

practical. In the initial design, chapters are indicated by chapter breaks embedded

in the content. Since chapter is an abstraction which separates a document by its

content, the initial design may be better because one chapter is unaffected by changes

in another chapter. On the other hand, the second mechanism needs to manipulate

chapter pointers to reflect changes in another chapter. For example, suppose chapter

1 is modified and becomes larger. The starting filepointer of chapter 2 needs to be

updated to be a larger filepointer.

However, the initial design has the difficulty of finding a specified chapter tag.

In one possibility, the mechanism scans through the composite object and parses for

the specified chapter tag. Scanning through the entire composite object is inefficient

and may slow down performance. Another possibility is to modify the design of

the composite class. Then a region in a composite object can be indicated by a

beginning chapter tag and an end chapter tag. However, this idea breaks down

the abstraction model, since the composite class is different from a simple file with

the knowledge of chapters. On the other hand, even though the second mechanism

needs to manipulate the list of filepointers, shifting filepointers is easy. It involves

incrementing and decrementing numbers. Therefore chapters are retrieved by the

second mechanism.

The current model exclusively relies on filepointers. Both chaptering and pagina-

tion use a list of filepointers to indicate the starting position of each part-instance.

Manipulation of the list is often necessary to keep the list consistent with changes in

the book.

3.4.3 Persistent Storage

Section 3.4.1 and 3.4.2 describe the designs of the Composite class and the Book class

respectively. Both designs contain structures that contain persistent data, such as the

URLs of components. The persistent data can be stored in several representations.

They can be stored in text files, a Java class called Properties, or they can be stored

as persistent objects.

The simplest storage representation is a text file. In the initialization of an object,

text files are parsed to create run-time data structures. This representation is neither

efficient and nor elegant. The second representation is a Java class called Properties.

The Properties class represents a persistent set of properties. It is specialized for

saving and retrieving data in the String class. This representation is faster than the

first representation, because the Properties class is implemented with a hash table.

However, the stored data must be in String. The third representation is a persistent

object. The object can be an instance of a user defined class. Thus the storage can

be an integer or a user defined table. Persistent object storage has the advantage

that objects of any type can be stored and restored without conversion. Our project

chooses persistent object storage, using Java Object Serialization [17].

After establishing persistent object storage as our choice, we need to figure out

which objects to store. The main consideration is the object size and the abstraction

model. Storing large objects may provide better abstractions and may be more conve-

nient in the implementation. However, storing large objects may waste unnecessary

disk space because only parts of the object contain the persistent data. Our sys-

tem usually stores small objects, since the storing large objects does not necessarily

provide better abstraction.

In general, this object storage model can be substituted with a more efficient

model. Since the main goal of our project is not focused on database storage, the

current object storage model is sufficient.

3.5 Summary

This chapter describes the design of the book paradigm system. After exploring

the different possibilities in connecting client and server machine, the designs of the

client and server is presented. The client is responsible for interacting with the user.

The server is responsible presenting a book interface to a client, and organizing the

underlying content of a book from a set of components.

Chapter 4

Implementation

The previous chapter discusses some high-level design issues on building the book

paradigm system. This chapter presents the implementation of the system. The im-

plementation utilizes Java applets and CORBA(Common Object Request Broker Ar-

chitecture). The Java programming language is architecturally neutral and is portable

across multiple machines. Building mobile code system is secure with Java, whose

run-time system has built-in protection against viruses and tampering [8]. CORBA

provides the mechanisms by which objects transparently make requests and receive

responses through the CORBA ORB. [12] The CORBA ORB is similar to a "bus"

on a hardware circuit [13]. It provides interoperability between applications built in

different languages on different machines. The different langauges are mapped to a

common interface called IDL(Interface definition language). By giving the ORB a

remote object's uid(unique identifier), the ORB is able to return a reference to the

object. In the prototype, uids are different from URLs(Uniform Resource Location).

Run-time objects are distinguished by uids, while URLs represent the locations in

persistent storage.

In this chapter, section 4.1 gives an overview of the different modules, and de-

scribes the interactions among the modules. Each other section focuses on a particular

module and describes different algorithms in implementing the module.

- 1

Figure 4-1: Implementation Overview.

4.1 Overview of Implementation

The implementation is divided into four main modules: the user interface module,
the server module, the book module, and the composite module(See Figure 4-1). This
section describes the basic functionality of each module, and the interactions among
the modules.

The user interface module is responsible for all the interactions with a user. This
module remotely invokes methods which are supported by the book module. The
book module provides the basic methods for reading and writing, and supports the
abstract structures of pages or chapters. For example, when a user wants to read a
page, the requested page is saved as a temporary file in the server memory. Then the
user interface module asks the associated web browser to display the content of the
temporary file. The composite module maintains the content of a book. It combines
a collection of files into a single virtual file, and provides the methods for reading and
writing a selected region in bytes. While the book module presents a book interface,
the composite module handles the underlying content.

Figure 4-2: An example of a menu.

4.2 User Interface

The high-level design of the user interface was specified in section 2.3. This section

discusses implementation details of the user interface. The user interface consists

of three classes. The first class is an applet, which is loaded by the dynamic class

loader on a web browser. The implementation of this class is fairly straight forward.

The second class is a read menu. A read menu object is a window frame with an

embedded menu. A menu has the items "Chapter" and "page". These items allow

a user to request a desired chapter or page for reading. The third class is a write

menu, which is a subclass of read menu. A write menu object allows a user to

write over a desired chapter or page. This section focuses on the implementation of

the two menu classes.

The two menu classes are responsible for all the interactions between the client

and the server machine. At initialization, a menu searches for a Server object. It

searches at the machine from which the applet originates. A Server IDL has the

method newBook, which creates a new book and returns the book's uid. The menu

invokes newBook remotely. It then asks the ORB to resolve the uid to obtain a

reference to the new book. After the menu has obtained the reference, it gets the

indices of the last chapter and the last page in the book. The menu needs the indices

to generate the correct number of items. Since a page number may be very large, a

chapter index or a page number is represented as a sequence of submenus as in Figure

4-2. For example, to access page 43, a user selects 4, and then selects 3.

The implementation of a menu is fairly tricky. In most submenus, there should be

ten items, from zero to nine. However, some submenus contain less than ten items.

For example, suppose a book has 46 pages. The "page" menu contains four submenu

items from 1 to 4. Each of the 1, 2, and 3 submenus contains ten items. The 4

submenu contains 7 items. The problem can be represented by a tree of nodes(See

Figure 4-3). This tree has two types of nodes. Type I nodes correspond to submenus

such as 1, 2, and 3 in the example. A type I node has a branching factor of 10.

Type II nodes correspond to submenus such as 4. A type II node has a branching

factor of less than 10. To build this tree, a possible algorithm utilizes two recursions.

Recursion A fills each menu with 10 submenus, and recursively calls recursion A at

each submenus. Recursion B calls recursion A at type I nodes, and recursively calls

Recursion B at type II nodes. The whole tree can be built by calling recursion B.

4.3 Server

Section 4.2 describes the interactions between a menu object and a Server object.

This section describes the implementation of the Server class. The Server class

supports two methods. The method newBook creates a new book instance at the

server machine. It binds a uid with the new book instance, and returns the uid.

The uid is generated by the Server. It distinguishes among different book copies at

run-time. The method main instantiates the Server object, and newBook is the

only method in a Server IDL. Figure 4-4 displays the creations of object instances.

The method main is implemented as follows.

1. Initialize the ORB which is in the Java IDL packages.

2. Instantiate a Server object and create a skeleton for the Server object. This

skeleton acts as a proxy for the Server object.

3. Ask the ORB to bind the skeleton with the name of the Server object. Now a

client can ask the ORB to resolve the Server object with its name.

The newBook method is implemented as follows. The input parameters of new-

Book are url and the name of the book. The url specifies the location of the book.

It is different from the uid, which is generated by the Server to distinguish among

different book copies at run-time..

1. Instantiate a Composite object using url as an input. The url input describes

the URL of the Composite object.

2. Create a uid for the Book instance. This uid will be useful for identifying a

unique path which stores data for this book.

3. Instantiate a Book. Two of the inputs are the Composite object instantiated

in Step 1 and the uid created in Step 2. Book is an abstraction layer which

wraps around the Composite object and presents the interface of a book.

4. Create a skeleton for the book instance. This skeleton acts as a proxy for the

book instance. Ask the ORB to bind the skeleton to the uid created in 2.

5. Return uid. A client can obtain a reference to this book instance with the uid.

4.4 Book

A client applet can remotely invoke methods on a Book object. A Book IDL specifies

the common interface between the client applet and the Book class. This IDL is

analogous to a role in the Information Mesh. A Book class implements the methods

on the IDL. Section 4.4.1 will present the methods in the Book IDL, and the rest of

section 4.4 will describe the implementation of the Book class.

4.4.1 Book's Interface

The Book IDL is analogous to the book role interface of the Information Mesh Object

Model. The IDL consists of the following methods:

* maxPage() Return the maximum page index.

* maxChapter() Return the maximum chapter index.

030

Figure 4-3: A tree of nodes.

Figure 4-4: Object instance creation.

5)n

I

* pageSize(int) Return the size of a specified page.

* page(int) Save the specified page in a temporary file. Return the URL of the

temporary file.

* chapter(int) Save the specified chapter in a temporary file. Return the URL

of the temporary file.

* setPageSize(int, int) Modify the size of a specified page.

* replacePage(string, long, int) Replace the specified page with a new file.

The string parameters indicate the new file's URL. The other parameters indi-

cate the new file's size and the index of the replaced page.

* replaceChapter(string, long, int) Replace the specified chapter with a new

file. The string parameters indicate the new file's URL. The other parameters

indicate the new file's size and the index of the replaced chapter.

4.4.2 Book Implementation

A Book object holds references to the following objects: a Composite object, a

list of entries which point to the beginnings of chapters, and a list of entries which

point to the beginnings of pages(See Figure 4-5). The Composite object represents

the underlying content of a book. The content is accessed by bytes. The offset from

the beginning of a composite is indicated by a Filepointer in bytes. The Book

module allows clients to access the content by chapter or by page. The list of chapter

pointers maintains the exact location of every chapter. Similarly, the list of page

pointers maintains the exact location of every page. Every location is specified by a

filepointer in the Composite object.

When a book is initialized, a temporary directory is created for this book. The

directory will store all temporary files which represent chapters and pages of this

book. At the same time, the list of chapter pointers and the list of page pointers are

restored from persistent storage. In persistent storage, a list may exist in one of two

kent

Figure 4-5: The lists of pointers.

possible forms. It may be represented by a text file, or it may exist as a persistent

object. If a list is represented by a text file, the text file is parsed during initialization

in order to restore the list object. If a list exists as an object in persistent storage, it

can be restored directly into an object.

4.4.3 Reading Pages and Chapters

When a user decides to read a page or a chapter, the menu remotely invokes the meth-

ods page(int) and chapter(int) on a book. The implementations for page(int)

and chapter(int) are very similar. This section describes the implementation of

page(int) and the differences between page(int) and chapter(int).

page(int)

1. Choose a path for a temporary file.

2. Invoke Composite.readPT. Composite.readPT reads the content between

a starting filepointer and an ending filepointer, and places the content into a

temporary file. The filepointers are retrieved from the list of page pointers. The

starting filepointer is at the requested page index. The ending filepointer is at

the subsequent index. The path of the temporary file is the path created in

Step 1.

3. Add a begin HTML tag to the top of the temporary page file, and add an end

HTML tag to the bottom of the temporary page file. This step ensures that

a web browser reads the file in HTML format. Note that it is not possible to

add these tags inside a Composite object, because chapters and pages may

overlap.

4. Update the hashtable which keeps track of which page file has been produced.

When this page is requested again, steps 1 to 4 will be skipped.

5. Return the path for the temporary page file.

Note that Step 4 may generate an inconsistency between the copy which is read

and the actual copy of the book. For example, suppose someone rewrites a page

which is simultaneously read by another person. Then the temporary page file is

consistent with the new page. However, the book paradigm does not specify a locking

mechanism. Thus the inconsistency issue will not be considered in this thesis.

4.4.4 Replacing Pages and Chapters

The Book module also supports the methods replacePage and replaceChapter.

These two methods modify a book's content. When replacePage is invoked, a page

is replaced with the content in a new file. If the size of the new file is larger than the

size of the replaced page, the content in the file may represent several new pages. If

the file size is less than the page size, the content in the file may represent a segment

of a page. When replaceChapter is invoked, a chapter is replaced by the content in

a new file. The new file is a new chapter. The implementation of the replacePage

and replaceChapter are more complicated than page and chapter. This section

first describes replacePage, and then compares this method with replaceChapter.

The method replacePage takes in three input parameters: the url of the new

file, the size of this new file, and the index of the replaced page. The implementation

of the replacePage is outlined as follows(See Figure 4-6):

1. Create a new directory. This directory stores the new components of the book.

The name of the directory is the current book's name concatenated with the

book's uid. If this directory already exists, then no new directory is created.

2. Transport the new file from its url to the new directory created in Step 1. This

step is necessary since the new file may only exist temporarily. For example,

this file may be generated when someone edits a page. The person may delete

the file after calling replacePage.

3. Invoke Composite.writePT. The inputs are (1) the filepointer which indicates

where to start replacing, and (2) the filepointer which indicates where to stop

replacing. (3) the path of the new file transported in Step 2.

4. Call the private procedures updatePgLink, updateChpLink, and shiftCh-

pLinkFpt.

(a) updatePgLink updates the list of page pointers. If the new page is much

larger than the old page, the procedure appends extra page pointers to the

end of the list. If the new page is much smaller than the old page, the

procedure may delete some existing page pointers.

(b) updateChpLink modifies the list of chapter pointers. The procedure

deletes chapter pointers which correspond to chapters on the replaced page.

The procedure also inserts chapter pointers which correspond to extra

chapters on the new file.

(c) shiftChpLinkFpt shifts the chapter pointers which correspond to pages

after the replaced page. The shifting is necessary when the size of the

replaced page is different from size of the new file.

The method replaceChapter is almost identical to replacePage. There are only

two differences. First, replaceChapter uses the chapter pointers instead of page

pointers when it invokes Composite.writePT. Second, replaceChapter does not

call updateChpLink, though it does call updatePgLink and shiftChpLinkFpt.

Updating the List of Page Pointers

The method updatePgLink updates the list of page pointers. The input to up-

datePgLink is oldLength, which is the length of the composite object before it was

modified. The implementation is outlined as follows:

1. Retrieve the length of the composite object. Call it newLength.

2. Compute the average size of the first ten pages.

3. If newLength is greater than oldLength by more than the average size com-

puted in Step 2, then append page pointers to the end of the list of page pointers.

To append new page pointers to the end of the list:

(a) Delete the last page pointer, which points to the end of the composite

object. The value equals the size of the composite object.

(b) Append new page pointers to the end of the list. Each new page pointer

is larger than the previous one by average page size computed in Step 2.

Stop before the new page pointer is greater than newLength. Add the

last page pointer whose filepointer is newLength.

4. If newLength is less than oldLength, then delete page pointers from the end

of the list. Stop deleting when the last page pointer is less than newLength.

Then add the last page pointer whose filepointer is newLength.

Updating the List of Chapter Pointers

The method updateChpLink updates the list of page pointers. The input to up-

dateChpLink are (1) the index of the page to be replaced, and (2) the URL of the

new file which will replace the specified page. The implementation is outlined as

follows:

1. Find the index of the first chapter which appears on the page to be replaced.

Call this index first index. Find the index of the first chapter which appears

AFTER the page to be replaced. Call this index subsequent index.

/ / / II
/ / /

/ / / /
/ 1~ ,~ I~

Figure 4-6: Replaceing a page.

(a) Retrieve the filepointer which points to the beginning of the page to be

replaced. Call this Filepointer A. Retrieve the filepointer which points

to the beginning of the next page. Call this Filepointer B.

(b) Let the current chapter pointer be the first chapter pointer. Compare the

current chapter pointer with the filepointers retrieved in Step 1(a).

i. If the chapter pointer is greater than Filepointer B, set the current

index to be subsequent index. Then go to Step 2.

ii. If the chapter pointer is greater than Filepointer A, set the current

index to be first index. Then go to Step 1(c).

iii. Otherwise, repeat Step 2 with the next chapter pointer as the current

chapter pointer.

(c) Starting from chapter pointer at first index, iteratively check whether

the current chapter pointer is greater than Filepointer B. If the current

chapter pointer is greater, set the current index to be subsequent index,

and break out of the iteration.

2. Remove any extra chapter pointers which point at the replaced page, and update

other chapter pointers. For example, if two chapters point to the replaced page

and one chapter points to the new file, the second chapter pointer is removed,

and the first chapter pointer is updated to the correct location.

Let the current index equal first index. Until the current index is less than

subsequent index, do the following for each index:

(a) Invoke findOffset to find the filepointer of the chapter which corresponds

to the current index.

findOffset parses the new file, searching for the special tag which repre-

sents a chapter. It returns the offset from the beginning of the file. This

offset will be one of the inputs when findOffset is called again. So the

next call on findOffset will yield the offset for the next chapter.

(b) If findOffset finds a chapter on the new file, the current chapter pointer

is set to the Filepointer A + offset.

(c) If there is no additional chapter on the new file, remove the entry of the

current index. Since an entry has been removed, decrement subsequent

index.

3. Insert additional chapter pointers which correspond to any additional chapters

in the new file. For example, suppose Chapter 1 was on the original page and

three chapters are on the new file. Step 2 updates the first chapter pointers,

and this step inserts two more chapter pointers.

4.4.5 Other methods

The IDL interface also provides the methods maxChapter(), maxPage(), page-

Size(int), and setPageSize(int, int). The implementation for each of these meth-

ods are fairly straight forward.

* maxChapter() returns the highest index in the list of chapter pointers.

* maxPage() returns the second highest index in the list of page pointers. Note

that the second highest index represents the maximum page index whereas the

highest index points to the end of the document.

* pageSize(int) computes the difference between the filepointer at the requested

index and the filepointer at the next index. Then it returns the difference.

* setPageSize(int, int) (1) shifts the filepointers with indices higher than the

requested index(except the highest index) (2) removes all indices whose file-

pointers are greater than the size of the composite object.

4.5 Composite

An instance of the Composite class behaves like a single, virtual file while its content

is composed of a number of disk files. Each region of a composite object can be

specified by a starting filepointer and an ending filepointer. A filepointer represents

the offset, in bytes, from the beginning of a composite. Since these filepointers point

to a virtual file, they will be called virtual filepointers for the rest of this report. A

virtual filepointer is analogous to a real filepointer, which represents the offset, in

bytes, from the beginning of a disk file.

A disk file cannot be accessed directly by a virtual filepointer. In order to read

or write disk files, virtual filepointers must be translated into their corresponding

filepointers of disk files(See Figure 4-7). Each composite object contains an instance

of the Translator class. A translator is responsible for translating virtual filepointers

into their corresponding filepointers of disk files. Each translation takes a virtual

filepointer as an input, and returns its corresponding filepointer and the URL of its

corresponding disk file.

A composite object may have several levels of components. For example, a com-

posite may contain a component which in turn contains another component. In our

implementation, each composite only needs to deal with one level of components. It

sees its components as composite objects which are able to deal with their own com-

j The container - and its components

virtual filepointer 1

virtual filepointer 2

- real filepointer 1

filepointer 2

Figure 4-7: Mapping between a composite object and its underlying file structure.

Composite 2

7-

i
'II
'II
II'
ii I

Disk File

/II

II ~

I

Figure 4-8: The Recursive nature of a composite object.

VIRTUAL
FILE
(Composite)

ACTUAL
REPRESENTATION
(Relationship between
files)

ponents(see Figure 4-8). Inside each composite object, a disk file holds the references

to the components. This disk file will be called a container for the rest of this report.

A composite object always has one container and it may have several components.

By restricting composites to handle one level of components, the implementation

becomes simpler. For example, a translator translates a virtual filepointer in a com-

posite into the corresponding filepointer in a component or container. The filepointer

in a component may be virtual or real. If the component is a composite, than the

filepointer is virtual. If the component is a disk file, than the filepointer is real.

The rest of section 4.5 describes the implementation of the Translator class and

the implementation of the Composite class respectively. Section 4.5.1 describes the

implementation of the Translator class. Section 4.5.2 describes the Composite

class and the algorithms for reading and writing a composite object.

4.5.1 Translator

The Translator class is responsible for translating a virtual filepointer in a composite

into the corresponding filepointer in a component or container. Inside a translator,

a composite object is partitioned into different regions. Each partition is either a

component or a segment in the container between two insertions of components. A

translator describes its partitions by the partition array. Each array entry points

to the beginning of each partition. The array begins from index=O0. A composite

object is allowed to read and modify the partition array inside its translator.

At initialization, a partition array is created by reading data from a table

of components(See Figure 4-9). A table of components stores the data which

describe the relationships among a container and its component. The composite

object is allowed to read and modify the table of components inside its translator.

The table is implemented as a list of component entries. Each component entry keeps

the following data on the the corresponding component:

* The URL of this component.

* The offset(filepointer) to insert this component into the container.

Table of Components
Partitions

Partitio
Array

0
1

2

3

5

Figure 4-9: Partition Array and Table of Components.

* The size of this component.

* The offset on this component to begin reading or writing.

Both a partition array and a table of components describe the relationships

among a container and its components. A partition array divides a composite into

partitions, and keeps track of which of the partitions are components. A table of

components maintains the relationships between a container and its components.

Translation

The method getRealFilepointer translates a virtual filepointer in a composite into

a filepointer in a component. The filepointer in a component is represented by an

array of two entries. The first entry is the URL of the component. The second entry

is the filepointer. The algorithm for getRealFilepointer is as follows.

1. One of the input parameters is the virtual filepointer which will be translated.

Compute the index of the partition which contains this input filepointer. The

index is computed by comparing the input filepointer with partition array

entries, using binary search.

2. From the partition array, retrieve the filepointer in the entry whose index

equals to the index computed in Step 1. Compute the difference between this

filepointer and the input filepointer. Let offset be the difference.

I - '-4

3. If the partition in Step 1 is a component, find the url of the component from

the table of components. Return an array of url and offset.

4. If the partition in Step 1 is a segment of the container, then, from the table

of components, find the component entry which corresponds to the previous

partition. Add offset to the insertion filepointer of this component entry. The

result is the real filepointer in a disk file. Return an array of string "this"

and the result. The string "this" indicates the partition is a segment of the

container.

Initialization

A partition array is initialized from a table of components, which is retrieved

from persistent storage. The initialization algorithm is correct when the following

assumptions hold: (1) an even index partition corresponds to a region in the container;

(2) an odd index partition corresponds to a component. Then, the following formula

computes the beginning filepointer for each partition, using the data in the table of

components.

Let

b = The virtual filepointer of the beginning of a partition.

I = The filepointer for inserting a component into a container.

s = The size of a component.

i = The indez of a partition.

bi = Lt2 1 + E sj
j=O

Intuitively, a virtual filepointer corresponds to the result from shifting a real file-

pointer by the cumulative size of all previous components. The cumulative size of all

previous components is represented by ~Ej = sj. Since 1 is the filepointer for inserting

Partitions

Partitio
Array

0 /

-31

145I
/ 5 K3

0

3

4

o\0

Following the convention Alternate Algorithm

Figure 4-10: Convention, and alternate algorithm.

a component into a container, shifting 1 by Zj=o sj yields the virtual filepointer of
the beginning of a partition.

Implications of the assumption

The algorithm for initialization is correct assuming that the partitions with odd in-
dices correspond to segments of the container, and the partitions with even indices
correspond to the components. However, this assumption does not have to hold. For
example, a container may insert two components at the same filepointer. Then one of
the components corresponds to a partition with an odd index. To keep the assump-
tion valid, the following convention is introduced. Whenever a container inserts two
components at the same filepointer, insert a partition of zero size between the two
components(See Figure 4-10). This partition of zero size is only seen in the partition
array.

By introducing this convention, the algorithm for initialization works properly. On
the other hand, introducing this convention has the following disadvantages. First,
it increases the overall complexity in the partition array. For example, consider a
virtual filepointer which points to the beginning of a partition. This partition corre-

I

sponds to a component, and its preceding partition is a partition of zero size. When a

translator computes which partition contains the filepointer, it must make sure that

the result is not the partition of zero size. Second, after writing the composite a

number times, partitions of zero size may appear often more than necessary. These

unnecessary partitions need to be cleaned up.

Alternate algorithms may be better and simpler. For example, instead of using

even-odd parity to determine whether a partition is a component, a new field is added

to each entry in the partition array. The new field indicates whether the partition

is a component or not. If the partition is not a component, the value of the field is

-1. Otherwise, the value of the field is the number of previous components. Thus,

each partition array entry has a direct reference to the corresponding component

entry in the table of components. However, this alternative also has a drawback

because when a component is inserted in the middle, the fields for all the suceeding

components must be incremented. Since the system was not built this way, this

alternative may have other problems yet to be discovered.

4.5.2 The Composite Class

The Composite class has an interface similar to a disk file. The class supports the

methods readPT and writePT. The method readPT reads from a specified region

in a composite object. The method writePT writes over a specified region in a

composite object. A specified region is bounded by a starting virtual filepointer and

an ending virtual filepointer. The algorithms for readPT and writePT are presented

as follows.

Algorithm for readPT

In the algorithm for readPT, the basic idea is to fill a temporary file with individual

"chunks" of text. Each "chunk" of text may come from a full partition or a segment

of a partition.

1. Translate the starting and ending filepointers into real filepointers by invok-

ing Translator.getFilepointer. Let the real filepointers be startoffset and

endoffset respectively.

2. If the starting virtual filepointer and the ending virtual filepointer belong to the

same partition, then transfer the content of the partition into a temporary file.

The transfer starts at startoffset and stops at endoffset.

3. If the starting virtual filepointer and the ending virtual filepointer belong to

two distinct partitions:

(a) Transfer the content of the first partition into a temporary file. The trans-

fer starts at startoffset and stops at the end of the partition.

(b) For each subsequent partition which does not contain the ending virtual

filepointer, concatenate the temporary file in 3(a) with the content of the

entire partition. The partition may be a component or a segment of the

container.

(c) Transfer the content of the last partition into a temporary file. The transfer

starts at beginning of the partition and stops at endoffset.

4. Return the url of the temporary file.

To transfer the content of a partition into the temporary file, the algorithm splits

into two cases. In the first case, the partition corresponds to a segment of the con-

tainer. In this case, the container is a disk file. Therefore the algorithm reads from

the disk file and appends the content into the temporary file. In the second case, the

partition corresponds to a component. The component may be a composite object,

and it may contain another level of components. Therefore the algorithm recursively

invokes readPT on its component. The basic steps are:

1. Instantiate a composite object which is the component.

2. Invoke readPT on the composite object instantiated in Step 1.

Algorithm for writePT

There are two general schemes for implementing the method writePT. The first

scheme restricts a composite object to write only files in the local memory. The

second scheme allows a composite object to write files in the local memory and files in

a remote memory. The following discusses the two schemes, their relative advantages

and disadvantages, and the implementation of one of the schemes.

Scheme 1 :

The first scheme restricts a composite to write only files in the local memory.

In this scheme, the abstraction is analogous to "pasting" new components on

top of a composite. The new components are new files in the local memory.

After the "pasting", the partition boundaries of a composite are changed. For

example, suppose a component is pasted on top of a composite which contains no

component. Thus the original composite has only one partition. The modified

composite has three partitions. The middle partition corresponds to the new

component(See Figure 4-11). The basic steps in carrying out this scheme are

as follows.

1. At the local machine, create a new file which contains the content of the

new component.

2. The new component may be "pasted" on top of certain regions of the

container. Cut out this region from the container.

3. Update the partition array and the table of components to be con-

sistent with the following circumstances:

(a) A composite does not contain those components whose partitions have

been completely covered by the new component. For example, if a

component is pasted on top of several partitions, the component may

completely cover certain partition.

(b) Some partitions are partially covered by the new component. If such a

partition corresponds to a component, a composite cannot delete the

Composite Composite with
with 3 partitions 5 partitions

replaced re ion

the new component

There is no knowledge
that partitions 1 and 3
come from the same file.

Figure 4-11: Scheme 1.

covered area. Thus a composite may contain only a segment of a disk

file(or a composite) as its component. A composite needs to maintain

the information which specifies the boundary of the segment. The

information is maintained in the table of components.

In many situations, not all of the component files can be modified. Writes are

restricted for certain component files. Scheme 1 is useful in this type of situa-

tion. It creates a private version of a new composite in the local memory. For

example, in a collaborative environment, editors may keep their own versions of

a composite before updating the different versions to the central copy. On the

other hand, this scheme has several drawbacks. First, the design for garbage

collection is not well specified, since writing component files is restricted. Sec-

ond, most of the component files will reside in the local memory after writing

the composite a number of times. Third, a high degree of complexity may

be introduced when the partition array and the table of components are

updated. Our book paradigm system is built with this scheme, and the high

degree of complexity is evident in the implementation of the system.

Scheme 2 :

The second scheme allows a composite object to write files in the local mem-

ory and also files in a remote memory. In this scheme, the method writePT

utilizes a recursive algorithm, similar to the algorithm of readPT. During each

(__,1
I

I

recursion, it modifies the content within the container, and invokes the method

writePT on its component(See Figure 4-12). The basic steps in carrying out

this scheme are as follows.

1. Set current partition to be the partition which contains the starting file-

pointer.

2. If the current partition corresponds to the container, then

(a) If the partition contains the ending filepointer, replace the region be-

tween the starting filepointer and the ending filepointer with the re-

mainder of the new file.

(b) Otherwise, replace the content between the starting filepointer and

the end of the current partition with a segment of the new file. The

segment has the same size as the replaced region

3. If the current partition corresponds to a component, instantiate a com-

posite object which represents the component. Invoke writePT on the

composite object.

4. Set the current partition to be the next partition. Repeat from Step 2,

replacing starting filepointer with start of the current partition.

5. Break out from steps 2 to 4 when the new file has reached the end. Delete

the region between the ending filepointer and the filepointer where replace-

ment from the new file stops.

Scheme 2 has the following advantages. First, scheme 2 is less complex than

scheme 1. The lower complexity is evident in the manipulation of the par-

tition array. Under scheme 2, the partition array does not change much

after the invocation of writePT. Second, after writing the composite a num-

ber of times, components are still distributed over different sites' memory . In

scheme 1, most components will reside in the local memory after many writes.

Third, a possible advantage may come in the performance. Each invocation of

writePT on a remote component may be taken up by a distinct thread. Then

writing the composite
writing the component

2 replace

Local machine Remote machine

Figure 4-12: Scheme 2.

the writePT process in the local machine may proceed while writing compo-

nents are computed in remote machines. The disadvantage of scheme 2 is that

certain components may be restricted from writing. For example, security rea-

sons may restrict the modification of certain components. Then scheme 2 may

become complex.

Implementation of Scheme 1

Our book paradigm system is built using scheme 1. The implementation of scheme 1

is divided into two phases. Figure 4-13 shows the control flow of scheme 1. The first

phase deletes the partitions which will be completely covered by the new component.

This phase first deletes the corresponding entries in the partition array, and cuts

out a region from the container. The cut-out region is the area covered by the new

component.

The second phase constructs a relationship between the new component and the

container. This phase modifies the partition array and the table of components

so that the composite recognizes the new component. After the first phase cuts out

the covered region, the second phase is left with four cases to consider(See Figure

4-14). The cases are distinguished by the starting and ending input filepointers. An

input filepointer is a virtual filepointer on the composite object. After it is translated

into a real filepointer, it may point to either the container or a component. In case 1,

both the starting filepointer and the ending filepointer point to a component. In case

2, the starting filepointer points to a component, and the ending filepointer points

URL of
new file

starting
filepointer ending

1 i7pointer

Figure 4-13: The control flow of the method writePT.

to the container. In case 3, the starting filepointer points to the container and the

ending filepointer points to a component. In case 4, both filepointers point to the

container. In each case, the partition array and the table of components are

handled differently. The implementations of phase 1 and phase 2 are outlined as

follows.

Phase 1 :

Two of the input parameters are the starting virtual filepointer, startpt and

the ending filepointer, endpt. These two filepointers indicate the region to be

replaced in the composite object.

1. Find the partitions to which startpt and endpt belong. Call them starting

partition and ending partition.

m I

out

/ PHASE 1

1t-- --I

Case 3
Iu u

I/ -- F - - -

/
PHASE 1

LJ
-!

PHASE 1

Figure 4-14: Reducing to four cases.

75

Case 1

PHASE 1

17 Ot

I I

I I

I ICase 3
.,...,f------• •out

itara

I I

2. If the starting partition corresponds to a component, find the index of this

component in the table of components. If the starting partition corresponds

to the container, find the index of the component which corresponds to the next

partition. Call this index start component index.

If the ending partition corresponds to a component, find the index of this com-

ponent in the table of components. If the ending partition corresponds to a

container, find the index of the component which corresponds to the previous

partition. Call this index end component index.

3. From the container file, cut out the region which is covered by the new compo-

nent. This region is bounded by two filepointers. The first filepointer indicates

where to insert the component of the start component index. The second

filepointer indicates where to insert the component of the end component

index.

4. Remove the entries between start component index (exclusive) and compo-

nent index (exclusive) from the table of components.

5. Remove the entries which point to partitions between starting partition (ex-

clusive) and ending partition (exclusive) from the partition array.

6. For each index after start component index(inclusive), shift the filepointers

which indicates the offset to insert the component. These filepointers are shifted

by the size of the cut-out region in Step 3.

For each partition after ending partition(inclusive), shift the corresponding

partition array entry by the startpt - endpt.

Phase 2 :

Phase 2 is branched into four cases. In the following description, each case

focuses on the three or four partitions where most changes occur. For each case,

delta is defined to be the difference between the new document size(filesize) and

the size of the replaced region. Thus delta = filesize + startpt - endpt.

Case 1:

1. If startpt and endpt points to the same partition,

(a) Insert two entries of startpt and two entries of endpt into the partition

array. Thus two zero length partitions are created. These two zero length

partitions deal with the even and odd requirement, so that even indices

always correspond to components.

(b) Shift all entries by delta, starting from the two entries whose filepointers

equal endpt.

(c) Modify the table of components. The original table of components

has one component entry. The new table of components has three com-

ponent entries. The first entry corresponds to a top segment the original

component. The top segment ends at the insertion of the new component.

The third entry corresponds to the remainder of the original component.

The second component entry corresponds to the new component. The

fields of the table of components are updated as shown in Figure 4-15.

2. Otherwise, the starting partition and the ending partition are beside each

other,

(a) Do steps 1(a) and 1(b).

(b) Delete the entry of the ending partition from the partition array. This

entry is no longer useful, because the new component covers the boundary

between the starting partition and the ending partition.

(c) Modify the table of components. The original table of components

has two component entries. The new table of components has three

component entries. The first entry corresponds to the first original compo-

nent. The third entry corresponds to the second original component. The

second component entry corresponds to the new component. The fields of

the table of components are updated as shown in Figure 4-16.

Partition
Array(PA) New Partition

Array

9ralp

CO IL URLO ize0 0
'tartptCO ILO URLO , 0

ILO new new 0
URL size

CAO[OtR] endptCO ILO URL0 -nm -a1
- _.t

4,'

0r pt

enartpt

I-
Table of Components

CO ILO URL0 ize0 0

Cl ILO URL1 izel 0

.tartpl
CO ILO URLO- 0IL0 PA[ij.]

ILO new new 0
URL size

Cl ILO URL1 - PA[2]

Figure 4-15: Case 1.

+ delta

-4---

+ delta

ts t t

I
T bl f C t- - - - -

a e o omponens

S+ delta

Table of Components

CO IL LO URLO ize0 0 CO ILO URLO -At 0
PA (1

ILO new new 0
URL size

Subtract (endpt - PA(2]) from
the rest of the insertion locations.

Figure 4-16: Case 2.

Case 2:

1. Insert two entries of startpt and one entry of endpt.

2. Delete the entry of the ending partition from the partition array.

3. Shift all entries by delta, starting from the entry whose filepointer equals endpt.

4. Modify the table of components. The original table of components has

one component entry. Call the component of this entry the "original" compo-

nent. The new table of components has two component entries. The second

component entry corresponds to the new component. The fields of the table

of components are updated as shown in Figure 4-13.

5. Cut out a region from the container. The region starts from the insertion of

the "original" component. It ends at the real filepointer which corresponds to

endpt.

6. For all subsequent component entries, shift their insertion filepointers by the

size of the cut-out region in Step 5.

Case 3:

1. Insert one entry of startpt and two entries of endpt.

2. Delete the entry of the starting partition from the partition array.

3. Shift all entries by delta, starting from the two entries whose filepointers equal

to endpt.

4. Modify the table of components. The original table of components has

one component entry. Call the component of this entry the "original" compo-

nent. The new table of components has two component entries. The first

component entry corresponds to the new component. The fields of the table

of components are updated as shown in Figure 4-17.

5. Cut out a region from the container. The region starts from the real filepointer

which corresponds to the startpt. It ends at the insertion of the "original"

component.

6. For all subsequent component entries(including the entry of the "original" com-

ponent), shift their insertion filepointers by the size of the cut-out region in

Step 5.

Case 4:

1. Insert one entry of startpt and one entry of endpt.

2. Shift all entries by delta, starting from the entry whose filepointer equals to

endpt.

3. Modify the table of components. Insert a component entry which corresponds

to the new component. The fields of the table of components are updated

as shown in Figure 4-18.

4. Cut out a region from the container. The region starts from the real filepointer

which corresponds to the startpt. It ends at the real filepointer which corre-

sponds to the endpt.

Table of Components

CO ILO URLO ize0 0

+ delta

new new
ILO URL size 0

ILO - PA[2] endptCO (PA[l! - URreOstartpt) mdt PA
Subtract (PA[1] -startpt) from
the rest of the insertion locations.

Figure 4-17: Case 3.

5. For all subsequent component entries, shift their insertion filepointers by the
size of the cut-out region in Step 5.

-- W-
-Th

+ delta

Table of Components

CO ILO URLosizeo 0 ILO new new
URL size

CO P' O- URLO sizel 0startpt)

Subtract (endpt - startpt) from
the rest of the insertion locations

Figure 4-18: Case 4.

4.6 Conclusion and Unresolved Issues

This chapter discusses the implementation of the book paradigm system. The chapter
presents the main algorithms and suggests alternate algorithms. The built system

I

I l o _ý

matches the specifications in chapter 3. A user may request any page or chapter to

be displayed. He may edit a chapter and replace the old chapter with the new edition.

All these functions work properly with good performance.

In building this system for purposes of demonstration only, some issues have not

been addressed. For example, in the current implementation, the size of a component

is retrieved from a lookup table. However, the size of a component may change dy-

namically. Moreover, a component may not notify the change to any of its containers

because a component need not be aware of its containers. This issue can be dealt

with by computing the size of components recursively. Thus, if a component does

not contain any component, return its file size; otherwise, return the sum of its file

size and the sizes of all its components. This algorithm works well for scheme 2. For

scheme 1, this algorithm needs to be extended because a component may not be a

whole file.

Another possible extension to the system is a distributed lock management. Lock

management is needed to provide consistent shared data for users. Though lock

management is well established in a transaction processing environment [5], it may

be different inside a model of composite objects. One major issue is the granularity of

locking [6]. If the entire document is the item to lock, much flexibility is restricted. If

a chapter or a page is the item to lock, the item may change even if it is not modified.

For example, a page may change when someone modifies another page. Thus the

issue of lock management may be very complex.

Chapter 5

Conclusions

We conclude this paper with a brief summary of the ideas that have been presented

and a review of further research on the composite model.

We started by discussing the Information Mesh Project, its goals, and its role

object model, to give an understanding of the environment for which we needed a

composite model. The composite model extends the current role object model. It

provides objects with the capability to be composed of other objects. This new

capability should be added without changing the current role object model.

We approached the problem by studying a specific example. From the example,

we learned the fundamental issues in extending the role object model. The example

we studied is a book object. Its role has the parts chapter and page. These parts

expose the substructures in a book. Intuitively, a book object should be divided into

components by pages or by chapters; in general, an object would be divided into com-

ponents based on its exposed substructures. However, the original design of the role

object model allows part-instances to overlap, while the straight-forward composite

design may restrict part-instances from overlapping. For example, a chapter may

begin in the middle of a page, and vice versa. From this book example, we learned

the basic conflict between a composite model and the existing role object model.

A well-design composite model needs to resolve this apparent conflict between

composition and the flexibility of parts in roles. Our design resolves the conflict by

removing the composition mechanism from the underlying representation of a book

role. In the composite model. the underlying representation of a book role remains

the same as the non-composite version. It reads a book's content from a file, and

provides a book interface. Users can read and write the content by pages or chapters.

At the same time, a composite abstraction wraps around a collection of files. These

files are combined into a single, virtual file. The underlying representation of a book

is able to read from the virtual file as if it is an ordinary file.

We then generalize this design of a book to consider other objects in the In-

formation Mesh. In the general model, composition mechanisms are hidden in the

underlying representations of a number of roles. If a role supports composition, it will

have two underlying representations, a straight-forward representation and a compos-

ite representation. Both representations support the methods on the role. Thus the

composition mechanism is not exposed to other objects, who see the objects by the

role interface. Another concern is the ability to combine objects which play different

roles. The inter-roles composition is possible through the inheritance relationships

among the roles. A common ancestor presents a common set of attributes in two

distinct roles. Therefore, to combine objects playing different roles, each object is

cast into the closest common ancestor which supports composite. Then these objects

are combined into a composite object which plays the common ancestor role.

Using the above model, we developed a prototype of a book. The prototype

is built using Java and CORBA, two recently developed technologies in distributed

computing. The two technologies provide the mechanisms for objects to communicate

and to be transported across the network. In the prototype, a client-side applet can

be transported to any machine in the network. The applet talks to a book server

to access a remote book object. It then calls the methods available in a book IDL.

The book IDL is analogous to a book role in the Information Mesh. It presents the

interface of a book abstraction. Underneath the book object is a virtual file, composed

of real disk files. A virtual file is defined recursively; its components are virtual files.

The recursion ends in real disk files. Building the book prototype shows that the

previously stated design is indeed effective in developing composite objects.

5.1 Further Research

In this paper, we build a book prototype which allows composition of objects. Though

the book prototype functions properly, the composite model may not be effective for

some other roles. Certain conflicts may appear in some roles but not in the book role.

Thus it is important to test the model against other roles, especially those which will

support composite in the Information Mesh.

This paper also proposes a general composite model which extends the Informa-

tion Mesh Object System. In the extension, a role may have multiple underlying

representations, one of which supports composition. As well, inter-role composition

is accomplished by combining objects based on their closest common ancestor. While

the basic design has been described, an actual system still needs to be built so that

the model can be studied in greater details.

Another unresolved issue is distributed lock management. The current design of

a composite model is incomplete without a distributed locking mechanism. If part-

instances are being read and modified concurrently, then inconsistency may arise.

Therefore we need to design a lock management which complies with the composite

model. The first step towards building a lock management scheme is to clearly specify

what the well-defined behavior is. There are a number of possibilities. One possibility

is to restrict modification whenever someone is accessing the book. Another is to

restrict modification whenever someone is reading a page. A third possibility does

not restrict modification at all. A distinct object copy is created for every user. Each

user is notified whenever a new edition comes into existence. There are many other

possible specifications. After the well-defined behavior has been specified, the lock

management can be designed and built.

5.2 Conclusion

This paper suggests a general model for including a composite capability in the Infor-

mation Mesh. A book prototype has been built according to this model. While the

construction of the prototype is essentially complete, it does not cover every idea in

the general composite model. A full-scale implementation is needed to demonstrate

the ideas in the general composite model. Further research is also needed in the area

of distributed lock management.

Bibliography

[1] David D. Clark, Karen R. Sollins, John T. Wroclawski, and Michael L. Dertouzos.

Critical technology for universal information access. Research proposal submitted

to ARPA, 1994.

[2] Karen R. Sollins and Jeffrey R. Van Dyke. Linking in a Global Information

Architecture. In Fourth International World Wide Web Conference Proceedings

O'Reilly and Assoc., Dec 1995.

[3] Jeffrey R. Van Dyke. Link Architecture for a Global Information Infrastructure.

MIT/LCS/TR-659, June 1995.

[4] Paradigms for universality: Networking in the information Age. Abridged Ver-

sion of Proposal. Submitted in Support of Work by the Advanced Network

Architecture Group, 1991.

[5] Andrew B. Hastings Distributed Lock Management in a Transaction Processing

Environment CMU-CS-89-152, May 27, 1989.

[6] Andrew S. Tanenbaum Modern Operating systems. Prentice Hall, 1992.

[7] David Ragett. Hypertext markup language Specification Version 3.0. In-

ternetDraft, MIT/W3C, 1995. See http://www.w3.org/pub/WWW/MarkUp/

html3/html3.txt

[8] James Gosling and Henry McGilton. The Java(tm) Language Environment: A

White Paper. Sun Microsystems, 1995.

[9] Tim Ritchey Programming with Java. New Riders Publishing, 1995.

[10] Frank Halasz. Reflections on notecards: Seven issues for the next generation of

hypermedia systems. Communications of the ACM, 31(7), 1988.

[11] Frank Halasz and Mayer Schwartz. The dexter hypertext reference. Communi-

cations of the ACM, 37(2), 1994.

[12] Object Management Group(OMG). The Common Object Request Broker: Ar-

chitecture and Specification, Revision 2.0 Object Management Group, July 1995.

[13] Robert Orfali, Dan Harkey, and Jeri Edwards. The Essential Distributed Objects

Survival Guide. John Wiley and Sons, INC., 1996

[14] Sun Microsystems Java IDL alpha 2.0 Sun Microsystems, June, 1996. See

http://splash.javasoft.com/JavaIDL/pages/index.html

[15] Sun Microsystems Java Remote Method Invocation alpha 2.0 Sun Microsystems,

June, 1996. See http://chatsubo.javasoft.com/current/rmi/index.html

[16] Hirano Satoshi HORB 1.2.1 Electrotechnical Laboratory, 1996. See http://

ring.etl.go.jp/openlab/horb

[17] Sun Microsystems Java Object Serialization alpha 2.0 Sun Microsystems, June,

1996. See http://chatsubo.javasoft.com/current/serial/index.html

