
The Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Working Paper 224 December 1981

Program Understanding through Cliche Recognition

Daniel Brotsky

Abstract

We propose research into automatic program understanding via recognition of common
data structures and algorithms (clichis). Our goals are two-fold: first, to develop a theory of
program structure which makes such recognition tractable; and second, to produce a program
(named Inspector) which, given a Lisp program and a library of cliches, will construct a hierarchical
decomposition of the program in terms of the cliches it uses.

Our approach involves assuming constraints on the possible decompositions of programs
according to the teleological relations between their parts. Programs are analyzed by translating
them into a language-independent form and then parsing this representation in accordance with a
context-free web grammar induced by the library of clichcs. Decompositions produced by this
analysis will in general be partial, since most programs will not be made up entirely of clichds.

This work is motivated by the belief that identification of the cliches used in a program,
together with knowledge of their properties, provides a sufficient basis for understanding large parts
of that program's behavior. Inspector will become one component of a system of programs known
as a programmer's apprentice, in which Inspector's output will be used to assist a programmer with
program synthesis, debugging, and maintenance.

A.I. Laboratory Worki.hg Papers are. produced for internal circulation, and may contain information that is, for example.
too preliminary or tux detailed for formal publication. It is not. intended that they should be considered papers to whict,
reference can be made in the litcra•ture.

S .ISSACIIUEITS lISTITUE Of TE~OI 131GZl

1. Introduction

We propose research into automatic program understanding via recognition of
common data structures and algorithms (cliches). Our goals are two-fold: first, to
develop a theory of program structure which makes such recognition tractable; and
second, to produce a program (named Inspector) which, given a Lisp program. and
a library of clich6s, will construct a hierarchical decomposition of the program in
terms of the clich6s it uses.

This work is motivated by the belief that identification of the cliches used in
a program, together with knowledge of their properties, provides a sufficient basis
for understanding large parts of that program's behavior. Rationale for this belief
is given in Section 2.

Of the two results of this work, the more immediately useful will be the
program Inspector. From a methodological perspective, however, a theory of
program structure is a necessary precursor of Inspector's existence, and is of
interest in its own right. Section 3 explains this point of view.

Inspector is intended to become one component of a system of programs known
as a programmer's apprentice, described fully in [211. Inspector's representation
for programs and initial library of clich6s are the results of earlier research by
Charles Rich, Howard Shrobe, and Richard Waters. Section 4 summarizes this
earlier work.

Our approach involves assuming constraints on the possible decompositions of
programs according to the teleological relations between their parts. Programs are
analyzed by translating them into a language-independent form and then parsing
this representation in accordance with a context-free web grammar induced by
the library of clich6s. Section 5-the bulk of this paper-presents our theory of

recognition and a scenario of Inspector analyzing a program. It also sets forth the
criteria by which the success of the proposed work will be judged.

Finally, section 6 reviews the literature.

2. Why Clich6 Analysis?

One goal of this research is a program which recognizes standard forms in
programs. We claim that the ability to do such recognition is useful for an automatic
program understanding system. In this section, we support this claim by viewing
programming from an engineering perspective.

The Nature of Understanding

The measure of an engineer's understanding of a device is what he can do
with it. Can he explain how it works? Modify it to do something else? Fix it when
it breaks? As a special case of this, a programmer's understanding of a program
is demonstrated in his ability to document, modify, and maintain it.. if we are to

Clichb Recognition

believe that an automatic program understanding system understands a program,
it must demonstrate its understanding in the same ways.

Since understanding is always diplayed indirectly, the nature of an engineer's
understanding of a device is not obvious. It may be that his understanding consists
solely of his ability to reason about the device in the ways necessary to work
with it. We believe, however, that his understanding has content apart from his
reasoning ability, in the form of knowledge about the device which is shared among
many problem-solving and reasoning processes.' This research is concerned with
how appropriate knowledge of this type is brought to bear on a given problem.

Analysis by Inspection

Programmers understand programs not as monoliths but as hierarchical
structures of components. When a programmer encounters a new program, he tries
to understand it a piece at a time. When he encounters something familiar-a
hashing function, or a linked list used as a stack-he can apply his pre-existing
understanding of that piece to facilitate work on the program. He also integrates
that knowledge with understanding of other familiar pieces to understand the
program as a whole.

We call this process, wherein understanding of the whole is assembled from prior
understanding of familiar parts, analysis by inspection. Its use runs throughout
all engineering disciplines, not just programming. It provides a partial explanation
for the expertise which an engineer accrues with experience: Not only does an
engineer's depth of understanding of common components grow as he uses them
repeatedly, but his familiarity with an increasing number of components allows him
to easily analyze a broader range of devices.

Analysis by inspection is to be the primary program understanding technique of
the programmer's apprentice, a group of programs intended to aid programmers
with program synthesis, maintenance, and debugging. The first step in analysis
by inspection-recognition of common program components-is the goal of this
research.

3. Methodology

The methodology of this research is inspired by David Marr's distinction
between theory, algorithm, and implementation [14]. In this approach, one separates
the tasks of specifying the problem domain (theory), manipulating domain objects
(algorithm), and representing domain objects (implementation), treating them as
far as possible in that order. This separation is motivated by the observation
that algorithms are dependent on those domain constraints which make their
task tractable. Thus, design of a successful algorithm is possible only after such
constraints have been identified by a domain theory; also, one adequate theory
may provide enough "leverage points" on the problem that several methods of

'Arguments supporting this view are manifold. See, for example, [20 6 23].

Methodology

Plans and the Library

solution become apparent. In addition, the theory which constrains the solutions
to one problem in a given domain may be sufficient to constrain those of others; a
fact which may not be apparent if the theory is never made explicit but remains
embedded in an algorithm which uses it.

Having adopted this approach, our first goal is to specify those constraints
on programs which make cliche recognition possible. Our theory will by no means
address all aspects of the nature of programs; we will be concerned only with those
features relevant to recognition. In particular, we will focus on how programs are
built up from smaller pieces, since a priori knowledge of the possible structures for
a given program allows quick location and identification of its standard forms.

Having identified the constraints which make recognition possible, our next
step will be to construct a recognition algorithm. This algorithm, in addition to its
utility in program analysis, will be of interest as a test of the program structure
theory it embeds.

As to implementation, Inspector's implementation is being integrated with that
of other parts of the PA system, such as an interactive program synthesis module.
Thus the exact implementation structures used will depend in part on the needs of
those parts. In general, aside from the use of a truth maintenance system [16], we
do not anticipate Inspector's implementation to use mechanisms that are new or of
especial interest in themselves.

4. Plans and the Library

This section reviews the theory and structures which Inspector inherits as part
of the Programmer's Apprentice (PA) project. These include a theory of program
semantics and inter-program relationships, as well as a library of program modules
commonly found in symbolic manipulation programs. Before proceeding with the
actual review, however, we spend some time investigating the relationship between
the work proposed here and previous PA research.2

4.1. PA Research Directions

As mentioned in Section 2, the PA's primary tool for understanding programs
is analysis by inspection. As the PA project has matured, so have its inspection
techniques. The work proposed here is best understood in light of this historical
development.

The PA system was first described by Charles Rich and Howard Shrobe in [19].
Also described in this document was a language-independent representation for
programs called the plan calculus. As is common in ground-breaking work in AI,
the original form of the plan calculus was inspired less by a desire for rigor than
for intuitional accuracy and utility in problem-solving. A formal basis has since

"This section is not intended as a self-contained review of the PA. Readers who desire one should
consult [19 20 22].

Clich6 Recognition

Plans and the Library

been supplied, but the original conception was so useful thatý it has been preserved
almost in its entirety as the presentational form of the current plan calculus (see
below).

The first use of the plan calculus in program analysis was made by Richard
Waters [27]. In this work, Waters used the control and data flow relations between
program operations (which are made explicit in the plan calculus) to segment
programs into a hierarchy of loosely-coupled subsystems. This segmentation was
desirable for two reasons: first, its groupings were natural from a programmer's
point of view; and second, the function of each grouping could be deduced from
those of its constituents (as shown in [9]).

Although Waters's approach captured the hierarchical feeling of analysis by
inspection, it made no provision for the use of special knowledge about clich6d
segments. In addition, it ignored entirely what has been called [25] the teleological
role of the segments it identified; for example, that an operation which concatenates
two lists may be viewed as taking the union of two sets represented by those lists.

These issues were the focus of work by Rich [23] in which he constructed a
library of clich6s used in symbolic manipulation programs. With this library, we
need rely less on deduction to discover the functions of segments; we can look them
up in the library and read their function as an annotation. Similarly, teleological
annotations relating library entries show how they may be used to implement each
other, and other types of annotations provide information that may be used in.
program synthesis or modification.

Unfortunately, we may not do program analysis simply by running Waters's
segmentation algorithm and then looking up the resulting segments in Rich's
'cliche library. Since the choice of library entries made by a given designer may

be somewhat idiosyncratic, we can not expect the segmentation imposed by a
library-independent algorithm to agree with that imposed by a particular library.
The aim of this research is an algorithm which takes both a program and a library
as input, and decomposes the program according to the library. This is the first
step in analysis by inspection.

4.2. Plans

The plan calculus is Inspector's representation for programs at all levels of
abstraction. Inspector's input is a plan prepared by Waters's plan segmenter [27],
and its output is a hierarchy of library plans representing possible derivations for
parts of the input plan.

In this section we summarize those features of plans which are crucial to an
understanding of the scenario in section 5. We do not present a complete description
of the plan calculus, nor are we concerned with justifying the plan calculus as
Inspector's chosein representation. Readers interested in these topics should consult
[24] and [23].

Clichd Recognition

Plans and the Library

Figure 1. The plan for ABS-DIFF

4.2.1. Plans as Flowcharts

To'a first approximation, the plan for a program may be thought of as an
augmented flowchart for that program. Its skeletal structure is that of a flowchart--
operation and test boxes connected by control flow arcs-but to this structure are
added logical annotations such as data flow information [81 and operand types or
values.

For example, figure 1 shows the plan for the following program, which computes
the magnitude of the difference of its operands:

(DEFUN ABS-DIFF (X Y)
(COND ((> X Y) (- X Y))

(T (- Y X))))

;; computes Ix-yl

In this figure, rectangular boxes represent program operations. Arrows with hatched
shafts represent control flow; those with no hatches represent data flow.

Although the operations in this plan are LISP primitives,3 it differs from a
traditional flowchart in significant ways. For one thing, the variables X and Y have
been replaced by explicit data flows, which become the inputs and outputs of
operation boxes. For another, the plan is annotated with the fact that the inputs to
the initial test are real numbers. The relationship between such logical annotations
on plans and their graphical skeletons, as well as the relationship between plans
and programs, will be clarificd below.

SPlans meeting this criterion arc called surface plans.

Clichi Recognition

Plans and the Library

Figure 2. The plan SET-ADD

o\~

The plan for ABS-DIFF shown above is known as a temporal plan, since
it consists of multiple operations that are temporally ordered by control flow.
Temporal plans are built out of three simpler plan types, each of which has an
analogue in traditional flowcharts: single-operation plans (called input/output
specifications) which correspond to flowchart boxes, control-flow splitting plans

(called tests) which correspond to flowchart diamonds, and control-flow merging
plans (called joins) which correspond to merges in flowchart control flow. For
example, the plan for ABS-DIFF contains one test (the > test), two input/output
specifications (the subtractions), and one join (the last box). Note that Plan joins
have more structure than the control-flow joins in traditional flowcharts. Their
purpose is to specify explicitly the dependency relation between branches in control-
and data-flow; that is, that the data-flow resulting from a branch depends on which
side of the branch was taken. In traditional flow-charts, this is left implicit in the
variable assignments used on either side of the branch.

Figure 2 presents an input/output specification from Inspector 's plan library.
This is the SET-ADD operation, in which an element is added to a set. Notice
that this plan has exactly the same form as the input/output specifications in the
ABS-DIFF plan shown above: there are input and output data flows with logical
conditions both on and between them. There is no syntactic distinction between
this abstract plan and the surface plan for SUBTRACTION; 4 this will allow Inspector
to replace groups of operations in surface plans by the more abstract -operations
that they implement without violating their plan structure.

4.2.2. Plans as Predicates

The flowchart-like presentation form for plans presented above greatly
facilitates insight into program structure. The semantics of such plans are rigorously
defined by means of the plan calculus (PC), a variant of standard predicate calculus
developed by Rich [23].

In the PC, a computer is modelled as an infinite set of objects, which are
functions mapping situations to abstract mathematical structures called behaviors.
This is a starting point common in modern programming language semantics (see,

'The plan calculus is thus a widf -spectrum language in the sense of [3].

Clich6 Recognition

Plans and the Library

e.g., [13] and [4]), and may be motivated by taking the olbjects to be computer
memory cells, situations to be states of memory at given times, and behaviors to
be the integers represented by the bit strings inside memory cells.

A plan calculus computation is an n-tuple of objects and situations. Intuitively,
the objects represent memory cells involved in the computation, and the situations
represent different states of memory that are reached during the computation. For
example, a computation which adds two real numbers might be represented in the
PC as a 5-tuple consisting of two situations-the memory states just before and
just after the addition-and three objects-the two cells holding the inputs and
the cell holding the output.

A plan calculus plan is a first-order predicate calculus formula whose variables
range over objects and situations. Intuitively, this formula is viewed as a predicate
on computations, and we say that a computation satisfies a plan if the plan is made
true by substituting the computation's components for the plan's free variables.5

For example, consider the plan:

real-addition(K = (s1, 82, 01, 02, 03))
real(oi(si)) A real(o2(s81))
A(03(s2) = 01(81) + 02(81))

which is part of the library plan for addition of reals. This plan asserts that, when
the computation starts, both input cells contain reals, and that, when it ends, the
output cell contains the sum of the two input values.

In practice, referring to components of computations by subscript or arbitrary
variable, as was done above, makes plans impossible to read. The PC avoids this
by introducing role functions to select the appropriate component; for example,
we might write the above plan as:

real-addition(K) _
real(input l(r)(in(-))) A real(input2(,.)(in(,c)))
A(output(K)(out(I)) = inputl(rc)(in(K)) +- input2(X)(in(K)))

4.2.3. Formal vs. Presentational Forms

The formal and presentational forms of a plan represent the same information
in different ways, and translation between them is straightforward. For example,
the formal plan for an input/output specification is practically a transliteration of
the presentation plan; we can look at the diagram for SET-ADD shown above and
read off the following:

set-add(nc)
set(old(^)(in(r))) A set(new(K)(out(K)))
Ainput(old()) E new(out(n))

"Plan predicates are considered type predicates. A computation which satisfies a plan is said to
be an instance of that type.

Clichi Recognition

Plans and the Library

There are just a few subtleties worth mentioning. First, note that the "memory cells"
of the plan calculus "virtual machine" are capable of holding any mathematical
structure, from integers to sets. In the next section (about the library), we will
introduce the plan-to-plan abstraction functions which allow us to work our way
up from the bit strings of real machines to the sets and other structures of abstract
plans.

Second, note that the actual library plan for SET-ADD also contains the following
two clauses, which insure that the only change made to the input set is the element
insertion:

AVx[z E old(r)(in(r)) -+ z x new(,)(out(,))]
AVx[(i e new(n)(out(l)) A x input(n)(in(r'))) -- x G old(n)(in(rc))]

In general, such clauses are left implicit in the presentation form. Their idiosyncratic
nature is one reason the PC is used to provide an unambiguous semantics for the
presentational form.

The relationship between the formal and presentational forms of tests and
joins is very similar to that for input/output specifications. The differences center
around the fact that tests have more than one output situation, only one of which
will be reached in any given computation. This requires some formalism which we
need not explore here; interested readers should consult [24].

Temporal plans are defined inductively in terms of other plans. The control-
and data-flow connective tissue of these plans become clauses in the fomal plans
which relate the output objects and situations of one operation with the inputs of
another. For example, given this temporal plan:

we would obtain its formal form essentially by concatenating formal plans for OP-A

and OP-B and then adding clauses similar to the following:

/\cflow(out(OP-A), in(OP-B))

Aoutput(OP-A)(out(OP-A)) = input(OP-B)(out(OP-B))

4.2.4. Recursion and Temporal Abstraction

Consider the following program, which returns the first member of a list equal

to an input:

Clich6 Recognition

Plans and the Library

Figure 3. Circular plan for loop of LIST-FIRST

(DEFUN LIST-FIRST (OBJ LST)
(PROG ()
LP (COND ((EQ OBJ (CAR LST)) (RETURN (CAR LST)))

(T (SETQ LST (CDR LST))
(GO LP)))))

This program is iterative, and we might expect its plan to contain circular control-
flow relations like those shown in figure 3. In the plan calculus, however, the
program is represented in its equivalent tail-recursive form:

(DEFUN LIST-FIRST (OBJ LST)
(COND ((EQ OBJ (CAR LST)) (CAR LST))

(T (LIST-FIRST OBJ (CDR LST)))))

This gives rise to the tail-recursive plan shown in figure 4, in which the spring-like
connecting line indicates that the inner plan is in fact identical to the outer plan.

The primary feature of note in tail-recursive plans is their similarity to plans
for non-recursive procedural composition. For example, consider the plan for the
following procedure, shown in figure 5:

Clich6 Recognition

Plans and the Library

Figure 4. Recursive plan for loop of LIST-FIRST

(DEFUN MARK-COPY (ARG)
(COND ((MARKED? ARG) ARG)

(T (MARK (COPY ARG)))))

This structure of this plan differs from that for LIST-FIRST primarily in that the
inner procedure call is not recursive.

The resemblance between plans for recursive and non-recursive compositions
suggests that analysis techniques intended for one type might be applicable to the

other. Investigation of this possibility led Waters, Rich, and Shrobe to develop a
representation technique known as temporal abstraction, in which a tail-recursive
plan is represented as the non-recursive composition of other, special-purpose plans.

The essence of temporal abstraction is the observation that, since all the
"iterations" of a tail-recursive plan have the same control- and data-flow structure,
any given point in the presentation form of these plans is reached once in each
iteration. If we think of copying the plan once for each iteration, each data flow in
the plan for the initial iteration is replicated in each of the others. This gives rise
to a temporally distributed sequence of data objects, all of which are outputs of
the same operation. For example, in the above plan LIST-FIRST, we might consider

Clich6 Recognition

Plans and the Library

Figure 5. Plan for MARK-COPY

Figure 6. Temporally Abstracted loop from LIST-FIRST

the sequence of outputs of the CAR or CDR operations.

We can temporally abstract such a sequence by considering a vector composed
of its elements, and viewing operations in the plan as vector operations which
operate on each element in the temporal sequence simultaneously. For example, the
CDR operation in LIST-FIRST becomes a CDR GENERATOR which generates a vector
of lists, while the CAR operation becomes a CAR MAPPING which accepts a vector of
lists and outputs the vector consisting of their CARs.

Figure 6 shows the temporally abstract plan of the loop from the LIST-FIRST

Clich6 Recognition

Plans and the Library

Figure 7. Temporally Abstracted plan for LIST-MEMBER

procedure. The CDR operation has become a generator which takes a standard data
object as input and produces a temporal sequence as output. The CAR operation
has become a mapping which inputs and outputs temporal sequences. Finally, the
exit test has become a terminator, which accepts a temporal sequence as input and
outputs a standard data object. Note that the control- and data-flows connecting
these operations are temporal flows which result from the temporal abstraction,
not the standard flows of a temporal plan.

In general, the temporal decomposition of an iterative (tail-recursive) plan
may lead to a number of generators, mappings, and terminators. 6 For example,
consider the two-exit tail recursion used in the following code, which implements a
list-membership predicate:

(DEFUN LIST-MEMBER (OBJ LST)
(COND ((NULL LST) NIL)

((EQ OBJ (CAR LST)) T)
(T (LIST-MEMBER OBJ (CDR LST)))))

This gives rise to the temporal composition shown in figure 7.

4.2.5. Programs vs. Plans

A program may be viewed as defining a set of computations, viz, the set of
all computations which are gotten by executing the program on all valid inputs.
Intutively, the plan for a program should define the same set the program does;

'[27] discusses this decomposition in great detail.

Clich6 Recognition

Plans and the Library

that is, it should be satisfied by a computation if and only Tf that computation is
the result of executing the program on some valid input.

In practice, a surface plan for a program may be obtained by taking a
single-element plan for each of the various programming-language primitives used
in the program, and then symbolically evaluating the program in order to determine
the control- and data-flow connecting these plans. Program-to-plan translators
which use roughly this technique have been written for LISP [19], FORTRAN [28],
and COBOL [9].

As mentioned above, the plans Inspector will analyze are prepared from
LISP code by a translator implemented by Waters [28]. The control-flow relations
in these plans differ slightly from those in the original code, in that only the
control-flow necessitated by data-flow and conditionals is preserved. For example,
the control-flow ordering of these two assignment statements would not affect the
execution of a program containing them:

(setq x (+ 3 4))
(setq y (+ 4 7))

In the plan prepared from these two statements, Waters's translator would not put
a control-flow link between the two additions; they would remain unordered by
control flow. 7

4.3. The Plan Library

Inspector's initial library of plans for clichid operations was developed by
Rich [23]. Entries in the library are annotated with information about their
relationships to other entries; this section summarizes the two most important types
of annotations.

4.3.1. Specialization

A plan P1 specializes another plan P2 if P1 -+ P2; that is, if the defining
constraints of P1 are stronger than those of P2 . In practice, specializations of plans
are often derived by adding constraints on their inputs or outputs. For example,
the library plan SORTED-LIST-MEMBER, whose input is constrained to be a sorted
list, is a specialization of the LIST-MEMBER plan presented above.

4.3.2. Implementation

Some library entries are commonly used to implement others. For example,
lists are often used to implement sets, and set membership operations are often
implemented as list membership operations. Implementation relationships in the
library are represented via special entries known as overlays.8

Formally, overlays are functions from instances of one plan type to instances
of another. The image of an instance under an overlay is typically an abstract view

:Note that determining which control-flows are required by data-flows may be very hard in the
presence of general side effects. Waters's approach to this problem is outlined in 127].
'Most of this section is taken directly from [24].

Clichi Recognition

Plans and the Library

Figure 8. Overlay LIST-MEMBER>SET-MEMBER

selVCf

set~

of that instance; for example, one library overlay maps instances of linked lists to
sets whose elements are the list elements. In practice, instances of a given plan type
may often be implemented by their pre-images unders some overlay.

An example of an overlay between computations is given in figure 8. Intutitively,
this overlay expresses how a SET-MEMBER operation may be implemented by the
LIST-MEMBER operation introduced earlier, given that the set. being tested is
implemented as a list. Note that the diagram fro an overlay is made up of a plan on
the left hand side (which is the domain type of the mapping), a plan on the right
hand side (which is the range of the mapping), and a set of hooked lines showing a
set of correspondences between roles of the two plans (which define the mapping).
In this case, the role correspondences may be summarized as follows:

(defoverlay list-member>set-member (list-member)

(= (element set-member) (obj list-member))
(= (universe set-member) (list>set (1st list-member))))

In general, correspondences between roles are either simple inequalities, as in

(= (element set-member) (obj list-member))

which says that the OBJ object in the LIST-MEMBER computation (which is tested
for membership) corresponds to the ELEMENT object in the SET-MEMBER operation;
or they are defined in terms of other overlays, as in

(= (universe set-member) (list>set (Ist list-member)))

which says that the set being searched in the SET-MEMBER operation is the set
composed of the elements of the list being searched in the LIST-MEMBER operation.

One final point to note about oveiilays is that they are not only part of the
taxonomic structure of the library, they are also used to construct the refinement
trees of programs. When Inspector "recognizes" a SET-MEMBER operation in a

Clich6. Recognition

Clich6 Recognition

program, it will in fact be recognizing a surface plan which, through a sequence of
library overlays, can be used to implement a SET-MEMBER operation.

5. Scenario

In this section we present our recognition theory and a scenario of Inspector
at work. We begin by describing an overly simple approach to the recognition
problem, but one that nevertheless formed the basis of our approach. This intuitive
description is followed by a more formal treatment of our current thinking, which
leads naturally into a scenario of Inspector's operation. We conclude by stating
criteria for judging the success of the proposed work.

Throughout what follows, we will use the terms "plan analysis" and "program
analysis" interchangeably. While the goal of this work is program analysis, existing
systems which translate programs into plans [27] make it sufficient to solve the
problem of plan analysis. Since Inspector will make little reference to the actual
code of its input programs, this section deals entirely with analysing the output of
the translation system-a plan.

5.1. Overview of the Problem

A well-designed program embeds a hierarchical decomposition of the problem it
solves. The task of clich6 recognition is: given a library of problem decompositions
and a program, identify those pieces of the program hierarchy which occur in the
library. This is the first step in bringing library knowledge about such pieces to
bear on engineering work involving the program.

An intuitive picture of a possible recognition algorithm is provided by imagining
library plans drawn on transparent slides, such as those used in overhead projectors.
Given the plan of a program to be analyzed, we take the library slides one at a
time and slide them around on top of the program plan. Wherever the components
of a library plan match up with pieces of the program plan, we have recognized
some cliche, and we add to the program plan an extra box representing the entire
clich6.

We then repeat this process, but this time we move the library slides around
on top of our augmented program plan. The plans on these slides may match up
with parts of the original program plan or with previously recognized library plans;
the latter case giving rise to a hierarchy of recognized plans. As before, we augment
the program plan with recognized cliches and repeat the matching process again,
stopping when we can no longer find matches for any of the library plans.

This process strongly resembles bottom-up string parsing, suggesting an analogy
which proves apt. Just as strings may be generated using grammar rules to expand
single symbols, programs may be generated using library entries to expand single
operations, such as a hash-table insert or lookup. Parsing techniques, which in the
string case recover a generating sequence of rule applications, may be used in our
case to recover a generating sequence of library entries, that is, clich6 usages.

Scenario

Clich6 Recognition

We proceed, then, by embedding the process of clich6-'based plan (program)
synthesis in a context-free grammar framework. This embedding allows clich6
recognition by parsing for those program plans (or parts thereof) that can be
generated from the clich6 library. Special problems arise in the parsing of such
plans; we consider these and show a sample parse. Finally, we note that standard
optimizations applied to real programs lead to derivation structures outside of
the context-free framework. We designate as well-structured those plans whose
derivations are "optimized context-free," and adapt our parsing techniques to
handle them. These well-structured plans will be those in which we can do clich6
recognition; only experimentation can show how broad a class this is.

5.2. Plan Synthesis in a Context-Free Framework

Throughout our discussion of grammar-based plan synthesis and analysis, it will
be useful to keep in mind an analogy with string grammars. For example, consider
the grammar for Pascal [12]: In synthesis, it tells us that we can implement a
statement of the language as an assignment statement, an IF-THEN-ELSE statement,
or many others. In analysis, it tells us that an expression of the form VAR [INDEX] is
to be interpreted as an array reference. Similarly, in synthesis our cliche" grammar
should tell us that we can implement a set as a list; in analysis it should tell us
that the statement

(COND ((< X 0) (- X))

(T X))
may be interpreted as taking the absolute value of X.

5.2.1. Graph Grammars

Before we can express plan derivations in a context-free framework, we must
extend our concept of grammar to derive more general graphs than just strings.
We will adopt the formalism of web grammars, developed in [18] and extended in
[17].

The intuition here is that strings may be thought of as directed acyclic graphs
(DAGs), all of whose nodes have restricted in- and out-degree. Just as a context-free
string grammar generates strings by successively replacing nodes with strings; a
context-free web grammar generates more general DAGs by successively replacing
nodes with DAGs. Since the presentation forms of plans are just, DAGs, web
grammars are ideal for expressing derivations in which a single operation of an
existing plan is replaced (implemented) by those of some other plan.

5.2.2. Library Entries as Grammar Rules

Now that we can derive plans using a web grammar, we must decide on
the particular rules this grammar should contain. Intuitively, the left hand side
of such a rule (a single box from a plan diagram) will specify something to be
implemented, and its right hand side (an entire plan diagram) will specify a
possible implementation. Thus, every entry in our clichi library will induce a rule
which expresses its embedded implementation relationship, leading to the term
implementation gramminar as a synonym for clich6 grammar.

Scenario

Clicht Recognition

An overlay with domain P and range Q specifies how an instance of plan type
P implements one of type Q. Thus for an overlay P>Q we construct a rule whose left
hand side is Q and whose right hand side is P. For example, section 4.3 introduced
the overlay LIST-MEMBER>SET-MEMBER, which induces the following rule:

Vj; VC1

Note that overlay-induced rules take single nodes to single nodes; they express
changes in the programmer's view of an operation or data item. We call them
abstractions, and there may be many abstractions with the same range (e.g., many
implementations for sets).

Temporal and data plans show how single operations or data items may be
constructed out of others. Thus a plan P with roles R 1, ... , R, becomes a rule whose
left side is the node P and whose right side is P's presentation form (a DAG with
nodes for R 1 ,...,Rn). For example, section 4.1 introduces the plan LIST-MEMBER
which implements a list membership operation as a list enumeration followed by a
sequence-search. This plan induces the rule:

As described in [18], the rule specifies how the connectivity of the left side
determines the embedding of the right side in any graph to which this rule is
applied. Rules of this type (induced by temporal or data plans) describe clich6d
groupings of operations; we call them aggregations.

Finally, the plans for primitive programming language operations are the
terminals of our clich6 grammar. Their presentation form consists of a, single node,
either an input/output specification or a test. The plans Inspector will parse are

Scenario

t:

Clichi Recognition

Figure 9. Set implemented as a Headed, Irredundant List

(DEFUN SET-CREATE ()
(LIST NIL))

(DEFUN SET-MEMBER (E S)
(MEMBER E (CDR S)))

(DEFUN SET-ADD-NEW (E S)
;;precondition: (not (set-member e s))
(RPLACD S (CONS E (CDR S)))
S)

(DEFUN SET-ADD (E S)
(COND ((SET-MEMBER E S) S)

(T (SET-ADD-NEW E S))))

(DEFUN SET-DELETE (E S)
(PROG (THIS NEXT)

(SETQ THIS S)
LP (SETQ NEXT (CDR THIS))

(COND ((EQUAL E (CAR NEXT))
(RPLACD THIS (CDR NEXT))
(RETURN S)))

(SETQ THIS (CDR THIS))
(GO LP)))

constructed from these terminals by Waters's program translation system [27],
about which we say more in section. 5.5.

5.2.3. A Sample Derivation

Consider, as shown in figure 9, implementing a set as a list with a header
cell and no duplicate entries. 9 A simplified version of the derivation tree for the
SET-MEMBER operation is shown in figure 10. (Control and data flow relations have
been suppressed, and the connections to the final code simplified, so as to produce
a tree with a more conventional appearance.) This derivation makes use of the
LIST-MEMBER plan mentioned above.

One subtle feature of this derivation system must be mentioned; to wit,
the interplay of "syntactic" and "semantic" concerns. In traditional programming
language grammars, the semantic consistency of derived strings (e.g., agreement
of operand types in expressions) is not considered; only the form of allowable

9The header cell allows operations by side-effect-a useful technique if a set is to be pointe!d
at from multiple locations. The lack of duplicate elements is part of the interface between the
element insertion and deletion operations.

Scenario

Clich6 Recognition

Figure 10. Derivation Tree for SET-MEMBER

-.W n.b W -MIAc4(3E

El.-.•- Awre yL+•Ov

expressions is specified. In our case, since the constraints of the domain semantics
(i. e., computations) are part of the plans themselves, no distinction may be made
between the syntactic and semantic applicability of a rule. From a synthetic view,
this means that all derivable plans are meaningful. 10 Its ramifications for analysis
are discussed below.

5.3. Parsing Tree-derived Plans

We are now ready to consider parsing plans which are derivable using the
context-free web grammar system described above. We begin by considering the
requirements our parsing methods must meet, and some of the decisions we have
made in satisfying them.

5.3.1. Partial, Bottom-up Recognition

Real programs are not composed entirely of clich6s. Thus, our parsing technique
must pick out of a program's plan those sub-plans which may be derived from our
library. The "sliding transparency" method of section 5.1 comes to mind, and its
suggestion that we work bottom-up.'1

In traditional left-right bottom-up string parsing, one tries to recover a right-
most derivation for the input by reducing rules in their inverse order of application.
The lack of a total order on plan nodes prevents adopting this strategy directly;
there is no clear referent for "rightmost derivation" or "right sentential form."
However, since plan nodes are partially ordered by their control flow links, we can
generalize the string case by trying to recover a right-minimal derivation, that is,

'lThis is certainly not the case for all syntactically correct program strings!
"Reader familiarity with some traditional shift-reduce parsing methods is assumed in the

following material.

Scenario

~---~-

Clichi Recognition

Figure 11. Sample Right-minimal Derivation (partial)

519P 2;

•TFP 3

one in which rules are only applied to nodes who have no non-terminal successors
in the partial order.

To clarify this concept, consider the sample right-minimal derivation of figure
11, in which terminal elements are labelled with lower-case letters and non-terminals
with capitals. At step 1, only nodes B and D are eligible for rewriting; node C is
succeeded by D, which is a non-terminal. Even after node D is rewritten once (to
give step 2), node C may not be rewritten: it still has a non-terminal successor.
Only in step 3, once its successors are entirely terminals, may C be expanded. Of
course, node B is still eligible for rewriting in both steps 2 and 3.

Our strategy, then, will be to find a right-minimal derivation of the plan being
parsed. We will do this with a generalized shift-reduce technique which finds a
left-minimal handle of the plan being parsed, and reduces it as usual. We give more

Scenario

Clich6 Recognition

details below, but first we deal with some of the considerations imposed by the
merging of syntax and semantics mentioned above.

5.3.2. Logical vs. Structural Constraints

Plans are constructed out of two sorts of constraints. There are the structural
constraints shown most clearly in the presentation form: the number, arity, ordering

(control-flow), and connectivity (data-flow) of its operations. There are also the
logical constraints on or between operations and data elements, such as their type

(e.g., integer or set-of-integers), intrinsic and relative properties (e.g., that a list
is irredundant, or that one list is longer than another), and other special features.
Some plans (e.g., ABSOLUTE-VALUE) have very few logical constraints; others (e.g.,
SET-MEMBER) have almost no structural constraints.

While structural and logical constraints have the same formal status (predicates
on plan components), it would not be wise to treat them computationally uniformly.
Structural constraints are made explicit when plans are coded in any standard
programming language, and they are rarely the subject of complicated deductions.
Logical constraints, on the other hand, are rarely made explicit in a program's code,
and are often obtained only as the result of much deduction. We must expect that,
in general, the necessary computations involving logical constraints will cost much
more than those involving structural ones. Wherever possible, we should delay work
on logical constraints until all possible structural work has been completed.

To effect such a division of labor, we group grammar rules into classes with
structurally identical right-hand sides, and break the reduction process into two
parts: First, we locate a handle which belongs to one of the structural classes;
and second, we go through the members of that class until we find one whose
logical constraints are satisfied by the handle. This breakdown is analogous to the
traditional syntax/semantics distinction used in programming language parsing:
first, the form of a rule's right hand side is located, and then its semantic applicability
is checked.

Note that our structural classes will be closely related to the specialization
links in the clich6 library. Plans which are related via specialization are structurally
identical, differing only in their logical constraints. Once the rule induced by some
plan is found to be a candidate for reduction, all rules induced by generalizations
of that plan must also be candidates.

5.3.3. The Structural Task

We are now ready to explain the structural side of our parsing strategy. The
next section explains how this interfaces with the verification of logical constraints.

As mentioned above, we will be using a generalized shift--reduce strategy. We
will stick to a simple algorithm, taking as our handle the first left-minimal subplan
which structurally matches some rule's right-hand side, and backtracking if this
leads to an incorrect choice. This strategy is motivated by the desire to locate all
instances of cliche usage, even those which were not intended by the programmer
and whose recognition is thus inconsistent with recovery of a complete derivation.

Scenario

ClichU Recognition

Although there are faster parsing algorithms, such as the LIR(k) techniques, they
use context to avoid such accidental reductions, and so are not suited for our
purposes.

Our central structural task, then, is to find a structural handle: a left-minimal
subplan which structurally matches the right-hand side of some rule. To do this,
we use standard shift-reduce techniques on each of the threads (linear subgraphs)
of a plan, and then assemble the results of these parses into a parse of the plan
as a whole. For example, given the library plan for absolute value shown in figure
12(a), we start by factoring it into its threads, A-V-LEFT and A-V-RIGHT (see figure
12(b)). We then parse the threads of our program plan using the A-V-LEFT and
A-V-RIGHT rules: if they appear in two threads that share the appropriate nodes

(as in figure 12(c)), we can combine them and reduce the ABSOLUTE-VALUE plan in
its entirety.

Note that this algorithm, while it may be costly, has the necessary property of
finding derivations even for subplans of the program plan. We will delay a detailed
algorithmic description and complexity analysis until this work is completed.

5.3.4. Checking Logical Constraints

Once a structural handle has been found, we must find a rule in its structural
class whose right-hand side logical constraints are satisfied by those of the handle.
Unfortunately, as mentioned above, the handle's logical constraints may not be
explicit in the input plan. For example, the input to ABSOLUTE-VALUE must be a
number; in the code:

(LET ((X (- (LENGTH LIST1) (LENGTH LIST2))))
(COND ((> X 0) X)

(T (- X))))

it is only library knowledge of the LENGTH function that allows us to recognize this
condition on X.

As this example shows, in order to complete the process of logical constraint
checking, we will have to propagate information about parts of the plan already
parsed to those being parsed. Unfortunately, there may be cases in which this
technique may not be sufficient to recover all the implicit logical constraints, and
we may be forced to make assumptions about the applicability of rules. Both these
processes-propagation and hypothesis formation-lie at the heart of the parsing
procedure, and both require deduction using logical constraints. We first discuss
the necessary deductive facilities, and then how these processes may be handled.

Deduction using Logical Constraints

Since we will be making deductions based on rule applications (such as that
described above), and since our backtracking parser may undo such applications
(and so invalidate deductions based on them), our system must facilitate the
retraction of deductions when their hypotheses are invalidated. In addition, it must
support deductions baised upon equalities of terms; for example, that a predicate
true about the output of some operation is also true of an input which is equal

Scenario

Clichi Recognition

Figure 12. Plans for ABSOLUTE-VALUE, its chains, and a sample parse

(C) ABLUWTE-VALIUE

A-V-LZCFi
Occules

V() A-V-LEFT-

-v-IRiclle- o~cutn$

40(S~1J?? 4e pArs C

· ~·~·__1~_~__1 ·

Scenario

'

c) A-V-RI 414

Clichd Recognition

to that output. (This is the nature of the deduction used in the absolute value
example above.)

The construction of such a system is well beyond the scope of this research,
so it is well that some already exist. We will be using a Reasoning Utility Package
(RUP) developed by McAllester [15] which satisfies these requirements.

Propagation of Information

Inspector's information-propagation process is based on the distinction made
in the library between an entry's defining constraints and its properties--other
predicates which follow from its use. For example, the plan ABSOLUTE-VALUE
constrains its input to be a real, so that the ABSOLUTE-VALUE rule may not be
reduced unless this constraint holds on the current handle. However, it is a property
of the plan ABSOLUTE-VALUE that its output is positive, so that having reduced the
ABSOLUTE-VALUE rule we can deduce this about its output in the resulting plan.

Propagation of information is thus performed conveniently at reduction time.
Once a structural handle is found, its logical constraints are looked up in the
RUP and used to find an applicable rule (if any). Once this rule is reduced, any
properties associated with its left-hand side are then asserted in the RUP, with the
rule reduction as justification. These properties are then available as constraints
on successive handles, successfully propagating information derived from analyzed
plan portions to others not yet parsed. (If the rule reduction is later retracted during
backtracking, the RUP will automatically retract any deductions based upon it.)

Hypothesis Formation

In cases where the known logical properties of a handle do not satisfy the
logical constraints on the right-hand side of any rule, it may be appropriate to
assume the constraints necessary for some reduction. For example, to recognize in
the code:

(DEFUN ABS (X)
(COND ((> X 0) X)

(T (- X))))

the plan for ABSOLUTE-VALUE, it may be necessary to make the assumption-fairly
obvious from operation types-that the input is a real. Or, more subtly, in order
to recognize the code

(DEFUN SORTED-MEMBER (INT LST)
(COND ((OR (NULL LST)

(> (CAR LST) INT))

NIL)
((= (CAR LST) INT) T)

(T (SORTED-MEMBER INT (CDR LIST)))))

as a list membership operation, it may be necessary to assume both that the input
is an integer and that the input list is of integers sorted in increasing order.

Scenario

Clich4 Recognition

It is our belief that efficient, intelligent hypothesis fornration may be the key
to recognizing large classes of programs. 12 One of our motivations in distinguishing
structural and logical constraints is the hope that the structure of the handle
may guide guessing about logical constraints. (For instance, the structure of the
conditional in the sorted list membership operation above is characteristic of all
priority queue operations.) Here, once again, the specialization relations in the
library may be closely involved: useful assumptions may be those necessary to
specialize an applicable rule to one of its desired specializations. In general, the
question of how to make appropriate assumptions may only be answered via
experimentation.

5.3.5. A Sample Parse

We are now ready to parse the SET-MEMBER operation derived above. We will
show only the main path followed in the parse, ignoring most of the false starts.
In addition, we will suppress many details of the parsing algorithm, leaving these
unspecified until the work is completed.

Figure 13 shows the output of Waters's segmenting translator when run on the
following code:

(DEFUN SET-MEMBER (E S)
(COND ((NULL S) NIL)

((EQ E (CAR S)) T)
(T (SET-MEMBER E (CDR S)))))

Notice that, although the program itself generates its return value of T or NIL at
whatever recursion level it terminates, the translator has noticed that these data
values are constants and moved them out of the recursive section. The resulting
structure is that of a conditional whose test is the two-exit recursively implemented
loop. It is this structure that Inspector takes as input.

The first structural handle Inspector isolates is the top-level conditional whose
branches contain no actions. This is a structural match for the library plan
ENFLAG+NIL (see figure 14), which embodies the LISP clich6 in which a value is
tested and the result flagged as NIL if the test fails, some other value otherwise.13

The logical constraints on ENFLAG+NIL are then checked, starting with the
data flow constraints. In this case, the logical constraints on the input plan satisfy
those of a specialization of ENFLAG+NIL, LISP-PREDICATE, whose success flag is T.
(A specialization not matched is TESTED-VALUE+NIL, which returns the tested value
itself after a successful test.) Since the constraints of LISP-PREDICATE are satisfied
by the input plan, this reduction is made, yielding an initial analysis of the routine
as a LISP predicate whose criterion -is computed by the loop.

Inspector now continues with the analysis of the loop itself, shown in figure 15.
Since loop plans contain both temporal and standard control flows, their control

12We believe, in fact, that this is one area which gives expert programmers an edge over novices
in analysis.

13The flag is then usually used as the predicate value in a COND clause.

Scenario

Clich6 Recognition

Figure 13. Waters's Segmented Output for SET-MEMBER

flow ordering is not well defined. Inspector's approach is to first eliminate the
standard control flows by parsing each recursive segment individually. This results
in a sequence of temporally abstract plans connected by temporal control flow.
While we will not go into all the details here, the following gives a general idea of
how this procedure works.

The first operation grouping surrounded by temporal control flows is the
recursive application of CDR, labelled SSR.14 This is a structural match for the
library plan LISP-LIST-GENERATOR, but fails to satsify its logical constraints as the
input is not known to be a list. Rather than assuming this hypothesis, however,

14"SSR" stands for "single self-recursion".

b -

Scenario

Clich~ Recognition

Figure 14. Library Plan for ENFLAG+NIL

Figure 15. The loop from SET-MEMBER

Inspector is able to deduce it as a result of its built-in assumption that primitive
language operations are correctly used in the input program. 15 Thus it assumes that
the input to CDR is a cons-cell, and is able to apply the overlay CONS-CELL>LIST to
satisfy the constraints on LISP-LIST-GENERATOR.

The analysis of the next two SSR segments proceeds similarly, identifying them
as a terminator whose criterion is NULL and a map whose action is CAR. Finally,
Inspector analyzes the final SSR in two stages, one in which the test is transformed
into a unary predicate on the temporal input, 16 and one in which the resulting SSR
is recognized as a terminator with the transformed criterion.

At this point, Inspector is ready to parse the resulting sequence of temporally
abstract operations, shown in figure 16. Note that this sequence is not a true

'"In future work on bug detection via analysis by inspection, we may wish to relax this
assumption.

16This uses the fact that one of the arguments to the EQ test is the same in all iterations

Scenario

Clich6 Recognition

Figure 16. Temporally Abstracted Loop from SET-MEMBER

Figure 17. Transformed Loop from SET-MEMBER

composition, as the last two actions may not be executed every time the first
two are. However, we consider this non-compositionality to be an optimization
commonly used in loops to simplify the generation of a sequence of values. 17 . In
this case, Inspector treats the generator/terminator pair as a finite generator. The
knowledge that the sequence generated is probably finite is used to transform the
final terminator into a finite terminator whose additional exit is used in case the
sequence ends before the terminating condition is satisfied. (The result of these
transformations is shown in figure 17.)

Inspector is now ready to resume parsing as usual on the transformed loop.
This leads to two reductions, in which the first two operations are recognized as
a LISP-LIST-ENUMERATOR which takes a LISP-style list as input and outputs its
top-level elements as a temporal sequence, while the terminator is recognized as an
EARLIEST operation which takes a temporal sequence and a predicate as input and
outputs the first element of the sequence which satisfies the predicate (or none if
there is none).

Inspector continues by reducing this two-operation plan to the plan for LIST-

1"This is a view shared by others. See, for example, [1].

Scenario

Clich6 Recognition

Figure 18. Set implemented as a hash table (partial)

(DEFUN HASH-TABLE-MEMBER (E S)
(SET-MEMBER E (HASH E S))) ;note that HASH returns a bucket

(DEFUN HASH-TABLE-ADD-NEW (E S)
;;precondition: (not (hash-table-member e s))
(SET-ADD-NEW E (HASH E S))
S)

(DEFUN HASH-TABLE-ADD (E S)
(LET ((BKT (HASH E S)))

(COND ((SET-MEMBER E BKT) S)
(T (SET-ADD-NEW E BKT)

S))))

(DEFUN HASH-TABLE-DELETE (E S)
(SET-DELETE E (HASH E S)))

MEMBER,'" analyzing the SET-MEMBER function as a lisp predicate on an object and
a list which returns T or NIL as the object is or is not present in the top level of
the list.

At.this point, the loop being analyzed consists of a single LIST-MEMBER
predicate, so the only applicable rules are abstaction rules, such as SET-MEMBER
and SEQENCE-MEMBER. The obvious heuristic applied to the function name1 9 allows
Inspector to finish by reducing the LIST-MEMBER>SET-MEMBER rule, so that its
complete analysis of SET-MEMBER is as a lisp predicate on an object and a set which
returns T if and only if the object is in the set. Inspector's derivation tree for
SET-MEMBER is exactly that developed in the previous section (see figure 2).

5.4. Optimizations

Any programmer could tell us immediately why what we have proposed won't
often work: programs don't really grow in trees. Even if programs are designed in a
tree-like fashion, various sub-trees will have identical nodes. Since separate coding
of these nodes may lead to great inefficiency, standard engineering practice holds
that they should be shared among the sub-trees in which they appear.

For example, suppose we wish to implement a set using a hash table. We
can use our previous set implementation for the buckets of this table, adding
the table superstructure as shown in figure 18. All goes as expected except for
HASH-TABLE-ADD, where we notice that the expected code:

'"This reduction depends on the predicate input to EARLIEST being of the proper form.
"lInspector will analyze function and variable names using a parser developed for this purpose

by Chapman [5] in his work on test case maintenance.

Scenario

Clich6 Recognition

Figure 19. Plan for HASH-TABLE-ADD

(DEFUN HASH-TABLE-ADD (E S)
(COND ((HASH-TABLE-MEMBER E S) S)

(T (HASH-TABLE-ADD-NEW E S))))

may hash the added element twice (once each in HASH-TABLE-MEMBER and HASH-
TABLE-ADD-NEW). This leads to the optimized version used in figure 18, where the
hash is remembered and the SET- routines called directly. 20

This type of sharing for optimization is both ubiquitious and desirable, so
that not allowing it in our parsable programs would restrict them unreasonably.

To see how our strategy may accomodate it, we must consider its effects on the
derived plans.

A plan for HASH-TABLE-ADD is shown in figure 19. Note that both the plan

for HASH-TABLE-ADD-NEW and that for HASH-TABLE-MEMBER are subplans of this

plan, reflecting its derivation as the merge of the two. Since our plan parsing
algorithm is sensitive to partial parses, both of these plans will be recognized, and
we can use their overlap as a key that sharing has occurred. We can then force

the intuitively correct derivation by copying the shared plan elements (in this case

the HASH) and parsing as usual. In this case (see figure 20), the resulting derivation

for HASH-TABLE-CHECKING becomes just that for the unoptimized version shown

above; the fact that an optimization was used may be retained by annotating the

derivation tree.
20Note that this would not be considered a good design unless the hash is expensive. In the

absence of other considerations, programmers really do prefer pure trees!

Scenario

Clich6 Recognition

Figure 20. Plan for HASH-TABLE-ADD with copied hash function

In summary, we define a well-structured program as one whose implementation
structure is context-free except for sharing induced by optimization. Well-structured
programs are those for which our recognition algorithm will be effective. Their
context-free implementation structure allows recognition by parsing, in which
shared program segments (indicated by ambiguities in the parse) are unshared
through duplication.

5.5. Success Criteria

Our proposed success criterion is purely operational. Appendix A contains
a number of programs, all of which may be derived using Rich's clich6 library.
Inspector should be considered a success when it is able to parse all of these
programs.

Note that we would eventually like to have Inspector recover derivations for
clicbhd fragments of programs even if the entire program is not derivable from the
clichM library. While we believe we have taken an approach which should make
this possible, we have not made this a criterion for Inspector's succes~s because we

Scenario

Review of the Literature

believe that doing it efficiently in the general case may present problems beyond
the scope of a master's thesis.

6. Review of the Literature

This work has roots in a number of research areas without belonging entirely
to any one of them. It draws on previous work in program analysis and synthesis,
pattern recognition, and engineering problem solving; but extends and adapts this
work with an essentially new perspective. We here examine briefly, area by area,
these historical connections.

Engineering Problem Solving

Engineering problem solving (EPS) is the study of the techniques used by
human engineers in their daily work. The goals of EPS research are twofold: first,
the construction of design tools (such as the PA) whose utility is enhanced due
to their understanding and use of these techniques; and second, the design of
educational programs which teach such techniques explicitly, rather than through
example.

The work proposed here is part of the EPS project at MIT. Early work in this
project [25] identified a problem solving approach now known as AID,2 1 which may
be summarized as follows:22

(i) Simplify the problem description by concentrating on just those
features which are most important.

(ii) By inspection, find a standard implementation (clich6) which
solves the problem.

(iii) Debug the solution by recursively applying this technique to
those parts of the problem specification not yet satisfied.

The AID paradigm, which emphasizes the use of inspection methods, has
been applied to electronic circuit analysis [EL 6] and synthesis [7], mechanical
analysis [10], and programming [19]. The electronic circuit work is continuing in the
DPL project [26], and the programming work in the PA project. The work proposed
here is thus properly viewed as research into the use of AID in programming.

The prior EPS research most relevant to this work is that of DeKleer [6], in
which he tried to automatically recover the rough functional specifications of an
analog circuit by examining its circuit diagram. For example, the circuit:

" AID is an acronym for "Abstraction, Inspection, and Debugging." The method was originally

entitled "problem solving by debugging almost-right plans."
2"This description is a summary of that in [22].

Clich6 Recognition

Review of the Literature

V

UTPUT

was correctly identified as a two-stage amplifier.

DeKleer used a two-stage analysis strategy which bears a strong resemblance
to ours. He first used a form of symbolic evaluation which he called "causal
analysis" to move from the circuit diagram representation to one in which changes
in electrical quantities and their cause/effect interrelationships were made explicit.
He then matched these "causal graphs" against those characteristic of common
circuit structures, such as amplifiers and power supplies. These cliched graphs were
annotated so that the functions of individual components (such as a shunt resistor)
in the original circuit could be recovered.

In our work, plans take the place of deKleer's causal graphs. Waters's analyser
performs. the symbolic evaluation needed to recover a plan from the "circuit
diagram" provided by a program's code. Inspector will do the matching of program
and library plans done in deKleer's second stage.

An instructive difference between our work and deKleer's lies in the relative
complexities of the two stages. In deKleer's work, most of the complexity was in the
causal reasoner, which had to correctly model the behavior of circuit components
in various situations. Once the causal graph was obtained, the pattern matching
stage presented few difficulties, primarily because (i) the library of clich6d graphs
was small, as was each entry in the library, and (ii) the logical relations between
causal components (e.g., voltage or current variation) were derivable directly from
the circuit diagram.

In our work, while the initial symbolic evaluation is still difficult (especially
in the correct recognition of side effects and temporal compositions), the pattern
matching stage has grown enormously in complexity. Each library entry is still
fairly small, but there are hundreds of them (as opposed to deKleer's few dozen)
at many levels of abstraction. We must also be able to recognize patterns occuring
as fragments of plans, whereas deKlccr always considered the circuit as a whole.
Finally, almost none of the logical constraints needed for recognition are made
explicit in the output of the symbolic evaluation, so guessing and verification
strategies play a very important role.

Clich6 Recognition

Review of the Literature

The commonality of our work and deKleer's, however, i; also instructive. Both
deKleer and the Programmer's Apprentice group started by formalizing some of
the intuitions engineers (in these cases circuit designers and programmers) have
about their domain. These formalizations led to domain representations amenable
to the types of reasoning used by engineers, and translation methods between these
intuitive representations and standard ones used in the fields. The two stage process
characteristic of both systems arises from the desire to separate the reasoning used
to recover useful information left implicit in the standard representation used in
the field (e. g., blueprints, circuit diagrams) from that needed to manipulate this
information so as to perform engineering tasks.

Pattern Recognition

The initial recognition strategy outlined in the previous section was motivated
by work done by Winston [29]. As our ideas developed, however, it became clear
that most of the traditional pattern-matching work would not be as relevant as we
first believed. At this point, the only point of contact between this research and
pattern-matching research are the web grammars.

Web grammars were initially intended as pattern generators used in feature
detection work and their use in our application is, as far as we know, entirely
new. Prior research using web grammars has concentrated primarily on generative
questions, such as grammar equivalence and characteristics of the generated
language. Thus, little work has been done on parsing grammar-generated webs
(labelled graphs), and we have not been able to find relevant material.

Program Synthesis and Verification

The synthesis ideas presented in chapter 5 resemble much of the work done
on program synthesis via transformations. With regard to Inspector's analysis
methods, however, only a few of the transformational ideas are relevant, primarily
some of the work on loop transformations (see, e.g., [2]). This is because most
current transformation systems are pattern directed and driven only in the synthetic
direction, so that the final program representations do not preserve the modularity
of the patterns which triggered the transformations.

More useful in analysis is some of the verification literature, especially that
concerned with hypothesis generation (e.g., [11]). We expect that, as Inspector
needs more sophisticated hypothesis generation schemes (in the constraint checking
phase of the parse), it will use some of the presented. there.

Cliche Recognition

Appendix

Appendix

(DEFUN HASH-TABLE-MEMBER (E S)

(SET-MEMBER E (HASH E S))) ;note that HASH returns a bucket

(DEFUN HASH-TABLE-ADD-NEW (E S)
i;precondition: (not (hash-table-member e s))
(SET-ADD-NEW E (HASH E S))
s)

(DEFUN HASH-TABLE-ADD (E S)

(LET ((BKT (HASH E S)))
(COND ((SET-MEMBER E BKT) S)

(T (SET-ADD-NEW E BKT)
s))))

(DEFUN HASH-TABLE-DELETE (E S)

(SET-DELETE E (HASH E S)))

(DEFUN SET-CREATE ()
(LIST NIL))

(DEFUN SET-MEMBER (E S)

(MEMBER E (CDR S)))

(DEFUN SET-ADD-NEW (E S)
;;precondition: (not (set-member e s))
(RPLACD S (CONS E (CDR S)))
S)

(DEFUN SET-ADD (E-S)

(COND ((SET-MEMBER E S) S)
(T (SET-ADD-NEW E S))))

(DEFUN SET-DELETE (E S)
(PROG (THIS NEXT)

(SETQ THIS S)

LP (SETQ NEXT (CDR THIS))
(COND ((EQUAL E (CAR NEXT))

(RPLACD THIS (CDR NEXT))
(RETURN S)))

(SETQ THIS (CDR THIS))
(GO LP)))

Clichi Recognition

Cliche Recognition

Bibliography

[1] R. Balzer, "Transformational Implementation: An Example", IEEE Trans. on Software Eng., Vol. 7,
No. 1, January, 1981.

[2] S.K. Basu and J. Misra, "Proving Loop Programs", IEEE Trans. on Software Eng., Vol. 1, No. 1, pp.
76-86, March, 1975.

[3] F.L. Bauer et al, "Towards a wide spectrum language to support program specification and program
development," ACM SIGPLAN Notices, Vol. 13, No. 12, pp. 15-24, 1978.

[4] R. Cartwright and J. McCarthy, "First Order Programming Logic", 6th Annual ACM Symposium of
Principles ofProgramming Languages, 1979, pp. 68-80, 1979.

[5] D. Chapman, "A Program Testing Assistant", MIT/AIM-651, November, 1981.
[6] J. de Kleer, "Causal and Teleological Reasoning in Circuit Recognition", (Ph.D. Thesis),

MlT/Al/TR-529, September, 1979.
[7] J. deKler and G.J. Sussman, "Propagation of Constraints Applied to Circuit Synthesis",

International Journal of Circuit Theory and Applications, Vol. 8, No. 2, April 1980.
[8] J.B. Dennis, "First Version of a Data Flow Procedure Language", Proc. ofSymposium on

Programming, Institut de Programmation, U. of Paris, April 1974, pp. 241-271.
[9] G. Faust, "Semiautomatic Translation of COBOL into HIBOL", (M.S. Thesis), MIT/LCS/TR-256,

March, 1981.
[10] M.J. Freiling, "The Use of a Hierarchical Representation in the Understanding of Mechanical

Systems", Ph.D. Thesis, Mathematics Dept., M.I.T., 1977.
[11] S.L. Gerhart, "Knowledge About Programs: A Model and Case Study", in Proc. of Int. Confi on

Reliable Software, June 1975, pp. 88-95.
[12] K. Jensen and N. Wirth, "PASCAL User Manual and Report", Springer-Verlag, New York, 1976.
[13] Z. Manna and R. Waldinger, "Problematic Features of Programming Languages: A

Situational-Calculus Approach; Part I: Assignment Statements", Stanford Univ., Weizmann
Institute and the Artificial Intelligence Center, August, 1980.

[14] D. Marr, "Artificial Intelligence: A Personal View", Artificial Intelligence, Volume 9, 1977, pp.
37-48.

[15] D.A. McAllester, "The Use of Equality in Deduction and Knowledge Representation",
MIT/A1/TR-550, January, 1980.

[16] D.A. McAllester, "An Outlook on Truth Maintenance", MIT/AIM-551, August, 1980.
[17] U.G. Montanari, "Separable Graphs, Planar Graphs, and Web Granmnars", Information and

Control 16:3, March, 1970, pp. 243-267.
[18] J.L. Pfaltz and A. Rosenfeld, "Web Grammars", Proc. Int. Joint Conf on Artificial Intelligence,

Washington, D.C., 1969, pp. 609-619.
[19] C. Rich and H.E. Shrobe, "Initial Report On A LISP Programmer's Apprentice", (M.S. Thesis),

MIT/Al/TR-354, December 1976.
[201 C. Rich, HI.E. Shrobe, R.C. Waters, G.J. Sussman, and C.E. Hewitt, "Programming Viewed as an

Engineering Activity", (NSF Proposal), MIT/AIM-459, January, 1978.
[21] C. Rich and H. Shrobe, "Initial Report on A Lisp Programmer's Apprentice", IEEE Trans. on

Software Eng., Vol. 4, No. 5, November, 1978.
[22] C. Rich, H. Shrobe and R. Waters, "Computer Aided Evolutionary Design for Software

Engineering", (NSF Proposal), MIT/AIM-506, January, 1979.
[23] C. Rich, "Inspection Methods in Programming", MIT/AT/TR-604, (Ph.D. thesis), December, 1980.
[24] C. Rich, "A Formal Representation for Plans in the Programmer's Apprentice", Proc. of 7th Int.

Joint Conf on Ariiucial hntelligence, Vancouver, Canada, August, 1981.

Bibliography

Bibliography

[25] G.J. Sussman, A Computer Model ofSkill Acquisition, (Ph.D. Thesisr, American Elsevier, New
York, 1975.

212C6 G.. Sussman, J. Holloway, and T. Knight, "Computer Aided Evolutionary Dcsign for Digital
Integrated Systems", MIT/AIM-526, May, 1979.

[27] R.C. Waters, "Automatic Analysis of the Logical Structure of Programs", MIT/AI/TR-492, (Ph.D.
Thesis), December, 1978.

[28] R.C. Waters, "A Method for Analyzing Loop Programs", IEEE Trans. on Software Eng., Vol. SE-5,
No. 3, May 1979, pp. 237-247.

[291 P. Winston, "Learning and Reasoning by Analogy", Comm. of the ACM, Vol. 23, No. 12, December,
1980.

