
MASSACHUSSETS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

Working Paper 293 March 1987

Discovery Systems:
From AM to CYRANO

Ken Haase

The emergence in 1976 of Doug Lenat's mathematical discovery program AM [Len76] [Len82a] was met with
suprise and controversy; AM's performance seemed to bring the dream of super-intelligent machines to our doorstep,
with amazingly simple methods to boot. However, the seeming promise of AM was not borne out: no generation of
automated super-mathematicians appeared. Lenat's subsequent attempts (with his work on the Eurisko program)
to explain and alleviate AM's problems were something of a novelty in Artificial Intelligence research; AI projects
are usually 'let lie' after a brief moment in the limelight with a handful of examples. Lenat's work on Eurisko
revealed certain constraints on the design of discovery programs; in particular, Lenat discovered that a close coupling
of representation syntax and semantics is neccessary for a discovery program to prosper in a given domain. After
Eurisko, my own work on the discovery program Cyrano has revealed more constraints on discovery processes in
general in particular, work on Cyrano has revealed a requirement of 'closure' in concept formation. The concepts
generated by a discovery program's concept formation component must be usable as inputs to that same concept
formation component. Beginning with a theoretical analysis of AM's actual performance, this program presents a
theory of discovery and goes on to present the implementation of an experiment - the CYRANO program - based
on this theory. (This article is a preliminary version of an invited paper for the First International Symposium on
Artificial Intelligence and Expert Systems, to be held in Berlin on May 18-22 1987.)

A.I. Laboratory Working Papers are produced for internal circulation, and may contain information that is, for example, too
preliminary or too detailed for formal publication. It is not intended that they should be considrerd papers to which reference
can be made in the literature.



AM to Cyrano

1 Introduction

The emergence in 1976 of Doug Lenat's mathematical discovery program AM [Len76) [Len82a] was met with
suprise and controversy; AM's performance seemed to bring the dream of super-intelligent machines to our
doorstep, with amazingly simple methods to boot. However, the seeming promise of AM was not borne out:
no generation of automated super-mathematicians appeared. Lenat's subsequent attempts to explain and
alleviate AM's problems [Len82b] [Len83b) [Len83a] [LB831 were something of a novelty in Artificial Intelligence
research; AI projects are usually 'let lie' after a brief moment in the limelight with a handful of examples.
The research described here both examines and extends Lenat's follow-up on the successes and failures of
AM.

This paper is thus about discovery both in general and in particular. In general, it proposes a theory of
discovery and learning and a set of constraints on the implementation of discovery programs. In particular,
it is about the evolution and 'discovery' of this theory, based on the results and analyses of several discovery
programs. In describing discovery in general, this paper is theoretical; in describing a particular discovery,
this paper is methodological and descriptive.

The author's work with the discovery program CYRANO [Haa86b] - still ongoing - builds on Lenat's
seminal work in discovery with both AM and Eurisko. The CYRANO program implements a theory which
views discovery - and indeed, nearly all learning - as a process of forming new representational vocabulary
from the empirical regularities and potential structure in an existing vocabulary. This new vocabulary -
describing a world grounded in but abstracted from the previous vocabulary - is then used as a base for
further analysis, discovery, and definition.

This image of the discovery process emerges from a detailed study of the successes and failures of AM,
Eurisko, and early versions of CYRANO. In each of these programs, the construction and subsequent use
of new representations forms a cycle of development or abstraction which must be closed if the discovery
process is to sustain itself; if newly developed concepts or definitions are unusable as the basis for further
discovery, the progress of the program will halt, stuck at a particular level of discovery or sophistication.

This view of discovery owes a significant debt to the images, metaphors, and genius of Piaget's con-
structive developmental psychology. Our programs - I argue - should learn like our children; ever growing
into new ways of seeing and manipulating the world, beginning from a foundation of the worlds they already
inhabit. When I speak of discovery, I include not only the realm of scientific or mathematical discovery, but
the dozens of daily discoveries of a five-year old child or the hesitant steps of a freshman physics student in
the footprints of millions before her. There is - from my perspective - a common thread to these expe-
riences; they all arise from the effort to reshape or fill out an incompletely understood world by imposing
or finding order in it. The theoretical question addressed in this paper is then: 'What must the structure
of such structure-constructing programs be?' We begin to answer this in the next section by examining the
structure of the 'cycle of discovery'.

2 The Cycle of Discovery

Figure 1 illustrates the discovery cycle introduced in the previous section. The central notion of the cycle of
discovery is deceptively simple. Any discovery program - given a represented domain - works off of the

Ken Haase



AM to Cyrano Ken Haase
.--...

Figure 1. This depicts the cycle of discovery. A process of 'concept formation' acts on a given represen-
tation and - based on empirical properties and structural attributes - constructs a new representation
which can be further processed by succeeding phases of concept formation.

empirical properties of that domain to produce definitions which combine domain concepts in some sensible

manner. If we assume a finite flat (non-recursive) combinatorial vocabulary (ways of combining definitions to

produce new objects), we have a space of new definitions which is some polynomial of the number of initial

concepts. The order of this polynomial is the maximal arity of any combinator and, given a reasonably

compact starting vocabulary, this space is relatively small and practically enumerable. The trivial new

definitions derivable from a given vocabulary are - though not uninteresting - inherently limited. To go

any further, the developed concepts of the program must be subject to combination and extension as well;

the process of concept formation must operate on its own outputs as well as any user-provided inputs. This

is the notion of the cycle of discovery.

When the space of concepts may feed upon itself, its size becomes exponential in the number of cycles

the program is permitted to run. In order to control this exponential explosion, all discovery programs are

heuristic; rather than enumerate entire spaces of concepts, they selectively enumerate subspaces of possible

concepts. The subtitle of Lenat's thesis, "The Application of Heuristic Search to Discovery In Mathematics,"

captures this image of the discovery process. I believe, however, that this image is incomplete and that a

return to the image of a cycle is appropriate.

In the characterization of discovery as search, heuristics enumerate subspaces of defined concepts; in

the characterization of discovery as cycle, heuristics define new vocabularies from which further empirical

analysis and concept formation may proceed. These 'vocabularies' are the terms in which new concepts and

definitions will be cast; they define a 'flat' space for new concept definitions. In AM, Eurisko, and Cyrano,

vocabularies are collections of categories (classes or types) and operations (between categories). Returning

to the perspective of discovery as cycle, two important properties of the discovery process are brought to

light: the coherence of vocabularies and the importance of closure in concept definition.

In general, a particular discovery constructs a new concept - or class of concepts - about which

AM to Cyrano Ken Haase



AM to Cyrano

a coterie of auxiliary concepts or operations define a new vocabulary to be explored and analyzed. This
vocabulary is coherent in that it forms a structured and interconnected web of new definitions. While AM
and Eurisko both produced vocabularies, their coherence is made explicit in the CYRANO program by the
introduction of abstraction functions which map between vocabularies. The notion of coherent vocabularies
and explicit abstractions between them suggest a knowledge-intensive way of controlling the search for new
concepts; the development of new concepts is still heuristic - based on empirical analysis of base vocabularies
- but is now organised in a way that makes the cycle of discovery explicit.

Even if the cycle of discovery is not made explicit in the structure of a program - as is largely the
case in AM and Eurisko - it nonetheless exists in a distributed fashion; new representations are used to
construct still newer representations. In order for this process to succeed, it must not 'get stuck' with
representational vocabularies which cannot be further explored or analyzed. In the following section, I will
demonstrate - with examples from AM, Eurisko, and Cyrano - how discovery programs can close the
cycle of discovery to generate new concepts and definitions which do provide a basis for further discovery
and definition. After describing several'good' heuristics or mechanisms, I go on to describe how a discovery
program - in particular, one component of AM - fails to close the cycle of discovery by generating concepts
that are interesting but not represented in a way which enables further growth and development.

3 Closing The Cycle: Good Heuristics

In this section, I will describe a series of 'good' cycle-closing heuristics for discovery, extracted from the AM,
Eurisko, and Cyrano. After describing several good heuristics, I describe a bad heuristic from AM which
breaks the cycle, and argue that such heuristics contributed significantly to AM's eventual failure.

The first heuristic we look at is a simple category formation heuristic:

If some but not all examples of a concept C are also examples
of a concept D

Then define the intersection CAD as those examples of C which
are also examples of D.

This constructs concepts which are statistically significant and - of equal importance - can be used
as new terms in other combinations. In fact, the same heuristic which created an intersection C A D can
be applied to again to the new concept if another 'some but not most' regularity is noticed. Viewed as
vocabulary formation, this is creating a new term about which other new terms (for instance, operations on
C's applied solely to instances of the new term) can be defined. It is a special case of what I have called
abstraction: abstraction by specialization.

AM used this heuristic to note that some, but not most, factorisations of numbers were pairs. It
then defined the set of factorizations which were pairs and looked at what numbers factored into this set.
The resulting concept, prime numbers, was one of AM's most exciting discoveries. Had AM merely noted
the coincidence of factors and pairs (say, with a statistical annotation) the subsequent development of
concepts which captured the regularity would not have occured, and the discovery of primes (and their use
in hypotheses like Goldbach's conjecture) would have never been possible. The critical event at this point
in AM's progress was the formation of the concept 'primes'.

Another case of abstraction by specialization is AM's domain restriction heuristic:

Ken Haase



AM to Cyrano

If an operation 0 has a domain D with an interesting spe-
cialization D'

Then define a specialization 0' which is 0 restricted to operation
on instances of D'

this constructs a new term (an operation) which can be either combined with other operations or used
in defining new concepts which come from operations (for instance, the class determined by the range of the
restricted operation).

AM used this heuristic to eventually propose Goldbach's conjecture that every even number is expressible
as the sum of primes. It did this by restricting the addition operation from sets of numbers to sets of prime
numbers (it had already defined and discovered prime numbers). It then noticed that the range of this new
operation was exactly the even numbers; thus it proposed a general conjecture about such sums and even
numbers.

The domain restriction heuristic implements - to some degree - the notion of 'coherent vocabularies'
described above. However, rather than making the notion of distcint vocabularies explicit, the domain
restriction heuristic forms a single 'vocabulary' loosely coupled together by notations of 'interstingness'.
The term 'interesting' in the heuristic is neccessary because AM had no explicit notion of abstraction or the
coherence of generated vocabularies; there was no way for AM to decide that terms involving a concept C were
interesting, other than declaring C interesting. In Cyrano, the domain restriction heuristic is implemented
by a general representation for abstraction which carries over operations (as well as other representational
elements) through abstraction functions.

4 Breaking the Cycle: Bad Heuristics

An instance of a bad heuristic from AM is the so called 'CANONIZE' heuristic; 1 this is an example of a
heuristic which fails to close the cycle of discovery, and as a result contributed to the eventual 'failure' of
the program.

The CANONIZE heuristic as described by Lenat is:
CANONIZE is both an example of and a specialization of 'Operation'. It accepts two predicates pl and P2
as arguments, both defined over a domain A x A, where pl is a generalization of p2. Canonize then tries to
produce a ustandard representation" for elements of A, in the following way. It creates an operation f from A
into A, satisfying pl(z, y) - p2 (f(z), f(y)). Then any item of the form f(s) is called a canonical member
of A. The set of canonical-A's is worth naming, and it is worth investigating the restriction sof various
operations' domains and ranges to this set of canonical-As.

In practice, the CANONIZE heuristic played a critical role in AM's progress, developing the representation
which Lenat called 'Numbers' and lifting its speculations from the domain of set theory to the domain
of number theory. Given a definition for LIST-EQUAL (provided by Lenat) and a definition for LIST-
SAME-SIZE (generalized by AM from the definition of LIST-EQUAL), the CANONIZE heuristic produced
a function which translated any two lists of the same size into two equal lists. This function converted
each element of the lists into a unique element T; it's domain - called 'BAGS-OF-Ts' - captured as a

1This heuristic in fact should have been called, CANONICALIZE, but for reasons of pronouncability, the more
saintly version was chosen.

Ken Haase



AM to Cyrano

representational term the notion of cardinal identity inherent in LIST-SAME-SIZE. The class 'BAGS-OF-
Ts' was named 'Numbers' by Lenat and then used (by the domain restriction heuristic described above) to
define operations like addition, multiplication, and so forth.

The CANONIZE heuristic in AM was only used once, for the leap from bags to numbers. But looking
at its behaviour and implementation, we can see that this was foredoomed, for the way in which it worked
failed to close the cycle of discovery and obsoleted itself upon its initial application.

Logically, what CANONIZE did was to notice that the SAME-SIZE operation partitioned the set of

BAGS in a particular way (in fact, an equivalence partition) and defined an operation which produced a
particular (in terms of OBJECT-EQUAL) representative of each partition.

From the point of view of closing the cycle of discovery, these new 'abstractions' were not proper concepts
- defined equivalence classes - but were rather particular tokens which represented (particularly to the
user) classes of objects. The cycle was not closed because it did not produce full-fledged concepts; rather it
defined a specialization of BAGS which had interesting properties; the connection of these properties to the
corresponding equivalence classes was provided by Lenat, when he named the concept 'Numbers'.

This, one could argue, is merely a philosophical complaint; if we imposed our assumptions on the
program, it is just the same as though the program had grown to fill our assumptions. But a deeper problem
arises from the manner in which CANONIZE worked internally. The mechanism of CANONIZE did not
in fact recognize partitions in general, but only recognised a handful of partitions determined by trivial
mutations on list structure: element permutation, addition, deletion, modification, etc. But the sorts of
partitions CANONIZE could recognise was fixed initially and a generated concept (like Bags-Of-Ts) was
'structureless' once generated. The CANONIZE heuristic, by virtue of its implementation, immediately
obsoleted itself with its first concept formation; it is no suprise that it was only used once.

Cyrano implements a version of CANONIZE which defines abstractions by producing actual equiva-
lence classes (e.g. the class of all lists with five elements). We can imagine (and will see, when CYRANO
makes sufficient progress) that this version of CANONIZE will notice partitions among other defined parti-
tions/abstractions (e.g. modular numbers partitioned from the partitions defining numbers) or that it will
discover partitions on composite structures which contain other defined abstractions (e.g. rational pairs or
arbitrary vectors defined over natural numbers). However, the version of CANONIZE implemented by AM
- impoverished as it is - is unable to notice such structure because its operation produces concepts it
cannot itself deal with, breaking the cycle of discovery.

In the sections above, we described ways in which closure of the discovery cycle are assured in the
AM, Eurisko, and Cyrano programs. Then we showed how one particular part of the AM program broke the
cycle of discovery by implementing heuristics which produced definitions they themselves could not deal with,
obsoleting themselves with their first application. In the next section, we discuss how CYRANO attempts to
implement the model of the discovery process given above; explicitly implementing the notion of abstraction
and using a uniform mechanism for defining new or given concepts from primitive components.

5 Cyrano: The Implementation

The considerations on discovery programs presented above arose from a detailed examination and partial
reimplementation of the AM and Eurisko programs. After an initial reimplementation effort - an effort

Ken Haase



AM to Cyrano

staying very close to the original design of AM and Eurisko - the ideas above were formulated. My current
research program is implementing a discovery program around the key points of the previous section. This
section describes the implementation of that program.

The representation used by AM, Eurisko, and CYRANO-0 2 was a frame based representation language;
in the case of Eurisko and CYRANO-0 it was a representation language language (RLL-1 [GL80) [Gre80] in the
case of Eurisko; ARLO [Haa86a] in the case of CYRANO-0). For reasons detailed in [Haa87bJ, frame based
RLL's were abandoned for the current implementation of CYRANO. Instead the representation language
used is a type specification and inference language called TYPICAL and described in detail in [Haa87a].
TYPICAL is a combinator language for defining new predicates/types in a lattice of subsumption; when a new
predicate/type is defined by combining existing types, TYPICAL makes a set of heuristic inferences about
the relation of the new type to other types. Particularly, TYPICAL makes inferences about subsumption
relations between types; whether satisfaction of one type neccessarily entails satisfaction of another.

All new concepts and definitions developed by CYRANO are either types in TYPICAL's lattice or
mappings between types in the lattice. New types are defined by combining either existing types, existing
mappings, or primitive SCHEME predicates or procedures. Such a uniform way of constructing new types
from old is an important part of maintaining the closure of the discovery cycle. If concept formation is a
module whose output/input feedback forms the discovery cycle, the common representation of the lattice
provides a common interface at the incoming and outgoing edges of the module boundary.

The firing of heuristics is organized through this lattice; types in the lattice are annotated with daemons
to apply to instances of the type. When a concept is given or created, all of these daemons are run, driving
the proposal of hypotheses, the definition of 'related concepts,' and the formation of wholly new concepts.
This control mechanism is detailed - as an application of TYPICAL - in [Haa87a].

In addition to representing new and given concepts and organizing control in Cyrano, the lattice is
used to organize the confirmation of empiricial regularities. Most of the regularities noticed by CYRANO
are expressed in terms of functions which generate example and counterexample spaces for the regularity.
Cyrano's major activity consists of attempting - as a problem solver - to generate examples of these
spaces. This process of confirmation is detailed in [Haa87a].

As mentioned above, the notion of abstraction is made explicit in CYRANO. An abstraction function
is a function from a set of particulars (which are sometimes types) to a set of types which represent an
abstraction of the domain of the function. The term abstraction is used loosely here; what is strictly meant
by abstraction (in the implementation of CYRANO) is a mapping between two representational spaces. In
the simple case mentioned above, abstraction by specialization, the mapping is an introjection; it is used
particularly to 'scale down' vocabularies to subsets of the represented domain.

Another quite common abstraction function (used by CYRANO in place of AM's CANONIZE) is the
PARTITION abstraction for a given relation. Each relation has two partition abstractions which map from
the domain of the relation into a space of types/predicates represented in TYPICAL. The two abstractions
are 'right' and 'left' partitions of the relation: the right partition of a relation '-' maps any element x into
a type which is satisfied by some u only if x N u; the left partition maps any element x into a type which is

2This is the prototypical version of CYRANO implemented almost directly from Lenat's description of AM and
Eurisko.

Ken Haase



AM to Cyrano

satisfied by some u only if u - z. If a relation is symmetric these partitions are the same; otherwise they
are different.

An abstraction maps from one space into another and carries with it operations and relations in the orig-
inal space. For instance, if APPEND is an operation on lists and the abstraction SAME-SIZE-PARTITION
maps from list-space into number/cardinality-partition space, the operation which we call PLUS would be
automatically generated as a carry over with the abstraction.

Where do abstractions come from? To begin, abstractions are the core of concept formation; each truly
new concept has an accompanying abstraction. The problem of concept formation is a search problem in the
space of abstractions; thus we have the two problems that appear immediately in search: how to generate
possibilities and how to prune possibilities. Given classes of abstractions - like specialization to intersections
or partitions of relations - the generation of possiblities is relatively straightforward. The second problem
- of pruning possible abstractions - brings us to unknown lands, for the CYRANO program has not yet
advanced far enough to give us insight into how to prune spaces of abstractions. But our current research
brings us to speculate on possible ways of pruning these spaces.

One possible principle for pruning is based on the 'coherence of vocabularies' introduced above; we
might prune from our search those abstractions which fail - heuristically - some criterion of coherence.
But using such a criterion requires a precise notion of coherence which has not yet been advanced. Part
of our current research program is an effort to acheive this precision; our suggestion is that each way of
generating a new abstraction possesses a related method for judging the effectiveness of the abstraction.

One requirement of a coherent vocabulary is that the classifications it makes not be empty; that the
classes and concepts it defines have both examples and non-examples. For if the concepts created cover nearly
everything, they will tell us little more than we already know. One criterion along these lines, implemented
in the current version of CYRANO, prunes partition abstractions based on the statistical properties of the
produced partitions. In this implementation, a partition abstraction is declared and then studied - as an
abstraction - by application to some random subset of the space it is partitioning. The resulting partitions
are then analysed to find their 'spread': how partition size compares to the size of the space partitioned.
Relations which have huge spreads are not very useful as partition definers because they define concepts
which have huge overlaps and fail to really 'distinguish' much. Of course, such a failure might suggest
other abstractions (than partitions) which might be effective for the relation (for instance, point ordering
abstractions or neighborhood groupings).

Again, these are merely speculations; the real results will come from the progress of the CYRANO
program. And it is to this methodology of experimentation which we finally turn, to treat briefly the issue
of analysis and reproducibility in Artificial Intelligence.

6 Methodology: From AM to Cyrano

Lenat's step of following up on the failures of AM is something of a methodological novelty in Artificial
Intelligence. While the 'Future Work' section of research reports often point out weaknesses of the current
research and directions for exploration, these suffer from two sorts of flaws. They are either implementational
inadequacies which are attacked by a flurry of tool-building which loses the problem or they involve deep-
seated issues which are at least as interesting (involving, distracting, etc) as the original issue.

Ken Haase



AM to Cyrano

In the first sort of case, energy is invested to produce nice (though this is always subject to argument)
tools which make implementing the original program (or a slightly better one) easier. The problems of
the program, however, are lost. In the second sort of case, the work focusses on some very difficult 'hard
problem' and a variety of models and programs are tried as approaches to the 'hard problem.' In this case,
the original problem is lost and with it, the issues (except for one) raised by it. Seldom does the researcher
return - bearing a partial solution to the 'hard problem' - to try again and see what this partial solution
will do. This step of Lenat's is the methodological novelty of his work. I believe that I am continuing this
work with the development of the CYRANO program.

This is possible - at least in the domain of discovery - because of several factors. Two particular
factors are a focus on analysis of the programs progress and a pragmatic attitude towards mechanisms and
particular programs.

The focus on analysis of a program's progress was critical to both Lenat's development of Eurisko from
AM and - as can be seen from the analyses earlier in the paper - the development from CYRANO from
AM and Eurisko. This was possible in the domain of discovery because both the AM and Eurisko programs
provided a wealth of examples. By the very nature of the vocabularies it develops and the cycle of discovery
it implements, a discovery program is applied again and again to produce a wealth of generated examples.
One way to think about discovery programs are that they are generators of examples of discovery! This
twist of perspective actually turns out to be useful for considering introspection as a domain for automated
discovery; by the same token it aids the human researcher in examining the discovery process implemented
by his or her program.

The pragamatic attitude towards mechanisms and programs - the second reason discovery is a success-
ful domain for AI by experimentation - reveals itself in the vocabulary used to describe our programs. We
use terms like 'concept,' 'abstraction,' or 'experiment' quite loosely, leaving the implementation details and
mechanisms as 'engineering problems'. While this leaves us floating over the pit of McDermott's 'natural
stupidity' criticism[McD81], our defense is that we do not believe that our programs' 'concepts' or 'abstrac-
tions' are concepts or abstractions in the broadest sense. But we use these terms - vauge and flaky as they
are - as a 'task level' or 'knowledge level' [New82] characterization of our problem. And as researchers in the
area of discovery, we are always returning to this level for deployment and analysis of our interim solutions.

Pragmatically, having such a cavalier attitude towards mechanisms and programs requires a certain
competence in the maintenance of large programs which may not be universal. As in the natural sciences,
the role of good 'experimentalists' emerges into Artificial Intelligence in the form of programmers who are
effective at keeping track of and easily modifying large and complicated systems. But these 'experimentalists'
are able to see different problems and appreciate different biases, since 'how to do the experiment' is both
more binding (it may be part of how they think) and less binding (when thinking, they have more latitude
for experimentation) on their theory making.

The careful and well-thought-out criticisms of Lenat in [RH83] may be a criticism of experimentalists
by theorists. Such criticism is important, as is criticism in the opposite direction, but the importance of
both perspectives is also crucial to progress if we are to remain honest to those notions that keep us from
being particularly - on the one hand - logicians or philosophers or - on the other hand - engineers and

programmers.

Ken Haase



AM to Cyrano

7 References

[GL80] Russell Greiner and Douglas Lenat. A representation language language. In AAAI-80, American
Association for Artificial Intelligence, 1980.

[Gre80] Russell Greiner. A Representation Language Language. Stanford HPP Report HPP-80-9, Com-
puter Science Department, Stanford University, 1980.

[Haa86a] Kenneth W. Haase. ARLO: Another Representation Language Offer. Technical Report 901, MIT
Artificial Intelligence Laboratory, 1986.

[Haa86b] Kenneth W. Haase. Discovery systems. In ECAI-86, Europeran Conference on Artificial Intelli-
gence, 1986.

[Haa87aj Kenneth W. Haase. TYPICAL: An Implemented Approach to Type Specification and Inference.
Technical Report 922, MIT Artificial Intelligence Laboratory, 1987. (in preparation).

[Haa87b] Kenneth W. Haase. Why Representation Language Languages are No Good. Memo 921, MIT
Artificial Intelligence Laboratory, 1987.

[LB83] Douglas B. Lenat and Jon S. Brown. Why AM and Eurisko Appear to Work. Artificial Intelligence,
23, 1983.

(Len76] Douglas B. Lenat. AM: An Artificial Intelligence Approach to Discovery in Mathematics as Heuris-
tic Search. PhD thesis, Stanford University, 1976.

[Len82a] Douglas B. Lenat. AM: Discovery in Mathematics as Heuristic Search. In Douglas B. Lenat and
Randall Davis, editors, Knowledge Based Systems in Artificial Intelligence, McGraw-Hill Book
Company, 1982. Several appendices of examples were trimmed from the original version of the
thesis in this book version.

[Len82b] Douglas B. Lenat. The Nature of Heuristics, Part I. Artificial Intelligence, 19, 1982.
[Len83a] Douglas B. Lenat. Eurisko: A program which learns new heuristics and domain concepts. Artificial

Intelligence, 21, 1983.

[Len83b] Douglas B. Lenat. Theory Formation by Heuristic Search. Artificial Intelligence, 21, 1983.
[McD81] Drew McDermott. Artificial intelligence meets natural stupidity. In John Haugeland, editor, Mind

Design, Bradford Books, 1981.
[New82] Allen Newell. Aaai president's address. AI Magazine, 1982.
[RH831 G.D. Ritchie and F.K. Hanna. AM: A Case Study in AI Methodology. Artificial Intelligence, 23,

1983.

Ken Haase


