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Abstract

Motivated by the electron cyclotron heating being employed on dipole experiments, the
effects of a hot species on stability in closed magnetic field line geometry are investigated. The
interchange stability of a plasma consisting of a fluid background with a population of kinetic
hot electrons is considered. The species diamagnetic drift and magnetic drift frequencies are
assumed to be of the same order, and the wave frequency is assumed to be much larger than the
background drift frequencies.

To illustrate the key physics issues and obtain an simpler understanding of instability
mechanisms, we first examine the effects of hot electrons in cylindrical Z-pinch geometry. This
linear approximation to a dipole preserves the essential feature of closed magnetic field lines.
The absence of variations along the equilibrium magnetic field allows us to analytically derive an
arbitrary total pressure dispersion relation, investigate a large variety of regimes, and explain the
physical phenomena at work. Our analysis finds that two different types of resonant hot electron
effects can modify the simple Magnetohydrodynamic (MHD) interchange stability condition.
When the azimuthal magnetic field increases with radius, there is a critical pitch angle above
which the magnetic drift of the hot electrons reverses. The interaction of the wave with the hot
electrons with pitch angles near this critical value always results in instability. When the
magnetic field decreases with radius, magnetic drift reversal is not possible and only low speed
hot electrons interact with the wave. Destabilization by this weaker resonance effect can be
avoided by carefully controlling the hot electron density and temperature profiles.

Based on the insights obtained by considering a Z-pinch, we then expand our calculation
to a dipole magnetic field confined plasma by retaining geometrical effects such as the poloidal
variations of electric and magnetic fields. These variations cause quasi-neutrality and the radial
component of Ampere's law to become a set of coupled integro-differential equations which
without approximations can only be solved numerically. To obtain a semi-analytic solution we
consider an interchange approximation that allows us to obtain an arbitrary beta dispersion



relation that recovers the correct Z-pinch limit. In the dipole case, our analysis again shows that a
weak drift resonance with slowly moving hot electrons can result in destabilization, which can be
controlled by the hot electron density and temperature profiles. The specific example of a point
dipole equilibrium is considered in some detail to explicitly demonstrate these results. In contrast
with the Z-pinch, a strong hot electron destabilization due to magnetic drift reversal is found not
to occur in a point dipole.
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Chapter 1

Introduction

The motivation behind this work is the recent interest in the Levitated Dipole Experiment

(LDX) operating at MIT. It has been built by Columbia University and MIT to investigate the

physics of plasmas confined by a dipolar magnetic field and to explore the possibility of

achieving high plasma pressure comparable to the magnetic pressure' 2 . To confine plasma this

device uses a dipolar magnetic field, created by a superconducting coil that is capable of

producing up to 4 Tesla of magnetic field with the average of a few tenths of a Tesla. Presently,

the coil is being supported, but it is expected to be levitated in the current year, which will reduce

the losses to the supports and improve confinement' 8. LDX is shown schematically in Fig. 1.1. It

has a chamber radius of about 2.5 m, a levitated coil outer diameter of 1.2 m, and it contains

approximately 30 m3 of plasma.



Figures 1.1: Schematic picture of Levitated Dipole Experiment.

LDX is designed for steady state operation in an MHD interchange stable regime3-6 in the

presence of electron cyclotron heating. This heating increases the temperature 7 and introduces a

hot electron population. Current experimental measurements suggest that a hot electron

population with temperatures in excess of 50 keV and number density of - 3 x 1016 m-3 has

been achieved while the background plasma is at 10's of eVs with a density of - lx 1017 m- 3 .

The presence of these hot electrons can alter plasma stability, leading to the motivation of

this work, which is to study the effects of hot electrons on the stability of plasma confined by

closed magnetic field lines such as those in dipole geometry. The current work develops a

theoretical approach to examining the problem of plasma stability in the presence of a hot

species by highlighting many of the key physics issues and by employing a technique that can be

used in numerical extensions. To make the analysis analytically tractable to the extent possible,

we model the plasma as having an ideal MHD background consisting of ions and electrons plus a



fully kinetic population of hot electrons. To simplify the gyrokinetic hot electron response only a

Maxwellian unperturbed distribution function is considered.

It is particularly important to examine the role the hot electrons play in modifying the

usual ideal MHD interchange stability condition including wave-particle resonance effects.

Based on current LDX experimental observations, unstable modes with frequencies ranging from

two to five of kHz to hundreds of MHz are being observed, corresponding to typical magnetic

drift frequencies of the background species and hot electrons, respectively. To concentrate on the

role the hot electrons play in modifying the interchange stability, we consider modes with wave

frequencies much higher than the background and lower or on the same order as the hot species

drift frequencies.

Geometrical effects are known to complicate the analysis, so we begin by considering the

simplest closed field line geometry, namely, the Z pinch, which is investigated in Chapter 2. It

can be thought of as a cylindrical approximation to a general dipole, so that the unperturbed

magnetic field is constant and closed on the cylindrical flux surfaces, and the unperturbed

diamagnetic current is along the axial direction. It lacks the geometrical details associated with

field line averages of quantities, but is useful to help understand the physics behind the driving

forces for instability. This simple model also allows us treat the diamagnetic and magnetic drifts

as comparable as they are in a dipole and makes it possible to perform a kinetic treatment of the

hot electron population in the limit in which the wave frequency resonates with the magnetic

drift frequency to cause a destabilizing Landau-type resonance. When the superconducting coil is

fully levitated, it is expected to confine plasmas in which the magnetic pressure is comparable to

both the background kinetic pressure and the hot electron kinetic pressure. So in our analysis we

consider the case when the background kinetic pressure and the hot electron kinetic pressure are



of the same order. However, the experimental measurements of the current LDX plasmas suggest

that the plasma pressure is primarily contained in the hot species, presumably because of

background plasma losses to the supports of the superconducting coil. To investigate stability in

this case, we allow the hot electron pressure to be much higher than the pressure of the

background plasma.

We note that the stability analysis presented here is completely different from those

employed for a bumpy torus where a hot electron ring is necessary to provide stability in the

otherwise unstable mirror cells linked to form a torus8. In a Z pinch model of a dipole, stability in

the absence of hot electrons is assured by employing a pressure profile that decreases slowly

enough to satisfy the usual MHD interchange condition which arises due to the stabilizing

influence of plasma and magnetic compressibility in closed magnetic field lines. The hot

electrons generated by electron cyclotron heating must then be investigated to determine if they

can act in a destabilizing manner. In particular, the curvature and grad B drift must be treated on

equal footing. These drifts allow a strongly unstable hot electron drift resonance to occur when

the grad B drift opposes the curvature drift. Weaker destabilization occurs when the drifts are in

the same direction. Here we remark that high mode number Z pinch interchange stability in the

presence of a hot electron population is in some details related to the low mode number alpha

particle driven internal kink mode and fishbone instabilities in tokamaks. For these alpha particle

driven modes the details of the resonance of the wave with the magnetic drift of the alphas can

have a important impact, with drift reversal at some radius leading to instability9. In our Z pinch

model we are able to investigate the resonant particle mechanism in a simpler geometry that

allows us to give a physical interpretation of the effect of drift reversal, which occurs at some

critical pitch angle (that is allowed to vary radially). These hot electron drift resonance effects



are considered in detail in Sec. 2.4. In the electrostatic limit when the wave and drift frequencies

are comparable our results include the standard hot electron interchange if hot electron

temperature gradients are ignored and the hot electron density falls off radially'0 .

To examine the role geometrical effects play in the interchange stability of plasma, we

expand the Z-pinch calculation of Chapter 2 to a more realistic geometry of a general dipole in

Chapter 3. Here the unperturbed magnetic field B0 is purely in the poloidal direction, while the

unperturbed diamagnetic current Jo is toroidal. We again consider flute or interchange modes

with wave frequencies intermediate between the background and hot species drift frequencies.

We do not address the hot electron interchange, for which the mode frequency is of the order of

the typical hot electron drift frequency 15. As in the previous chapter, the magnetic drift,

consisting of comparable grad B and curvature drifts, is treated on equal footing with the

diamagnetic drift. We obtain the dispersion relation for arbitrary plasma and hot electron

pressures, but then examine three plasma pressure orderings relative to the magnetic pressure:

background electrostatic with b <<Ph ~ -1, electromagnetic with I ~Pb<< h , and

electromagnetic with 1 - Pb -~ Ph. Throughout this chapter, we compare and contrast the results

from dipolar geometry to that of the Z-pinch.



Chapter 2

Effects of kinetic hot electrons on the stability of Z-pinch

plasma.

2.1 Introduction

The Levitated Dipole Experiment (LDX)1,2 is designed to operate in an MHD

interchange stable regime3-6 . Electron cyclotron heating is employed to increase the temperature7

and will introduce a hot electron population that can alter interchange stability. We examine the

effects of a hot Maxwellian electron population on interchange stability of Z-pinch plasma to

simplify our analysis. We consider a confined plasma having an ideal MHD background

consisting of electrons and ions plus a fully kinetic population of hot electrons. Of particular

interest is the role the hot electrons play in modifying the usual ideal MHD interchange stability

condition by wave-particle resonance effects.

For the Z pinch geometry the unperturbed magnetic field B0 is constant and closed on

the cylindrical flux surfaces and the unperturbed diamagnetic current Jo is along the axial

direction. The Z pinch approximation to a dipole preserves the essential feature of the closed

magnetic field lines, but misses the geometrical details associated with field line averages of

quantities, so it is only intended to illustrate the key physics. A more realistic dipole equilibrium

is required to make quantitative stability predictions. The Z-pinch model also allows us to

consider plasmas in which the magnetic pressure is comparable to both the background kinetic

pressure and the hot electron kinetic pressure, as well as to treat the diamagnetic and magnetic



drifts as comparable as they are in a dipole. Moreover, it makes it possible to perform a kinetic

treatment of the hot electron population in the limit in which the wave frequency resonates with

the magnetic drift frequency to cause a destabilizing Landau-type resonance.

In the low wave frequency limit of interest a particularly strong destabilizing hot electron

interaction occurs when the hot electron magnetic drift exhibits reversal due to a change in the

grad Bo direction. In the absence of drift reversal a much weaker resonant particle interaction

can occur which can destabilize an otherwise stable interchange, with the new stability boundary

depending on the details of the hot electron density and temperature, and their profiles. To make

the analysis more tractable and highlight the role of the hot electrons, only flute modes are

considered with wave frequencies intermediate between the background and hot species drift

frequencies. Flute or interchange modes are the least stable modes in the absence of hot

electrons 3 6.

In Sec. 2.2 we derive two coupled equations for the ideal MHD background plasma that

depend on the perturbed hot electron number density and radial current. These two quantities are

then evaluated kinetically in Sec. 2.3 assuming the unperturbed hot electron population is

Maxwellian. Section 2.4 combines the results from the two previous sections to obtain the full

dispersion relation that is analyzed in detail, including the hot electron drift resonance de-

stabilization effects. A simple hard core Z pinch geometry and the case of a "rigid rotor" are

discussed in Sec. 2.5. We remark on the stability of the hot electron interchange (HEI) mode in

Sec. 2.6 , following a brief discussion of the results in Sec. 2.7.



2.2. Ideal MHD Treatment Of The Background Plasma

In this section we will develop an ideal MHD treatment for the background plasma that

permits a hot electron population to be retained. This treatment allows us to derive a perturbed

radial Ampere's law and a perturbed quasi-neutrality condition that depend on the perturbed hot

electron radial current and density, respectively, which are evaluated in the next section.

We consider the simplest closed field line configuration of cylindrical Z-pinch geometry

in which we only allow radial equilibrium variation. The unperturbed magnetic field is in the

azimuthal direction and given by B0 = Bo(r), while the unperturbed current is axial and given

by Jo = Jo(r)2 . Ampere's law requires

porJo = (rBo) , (2.1)

where a prime is used to denote radial derivatives.

Denoting the total equilibrium pressure by po, force balance gives

JoB, = -po, (2.2)

where the total pressure is the sum of the background pressure, Pob and hot pressure Poh

Po = POb + POh The background pressure Pob = POe + Poi is the sum of the background electron

pressure Poe = noeTe and the ion pressure Poi = noiT , where noe noi, Te, and T. are the

background electron and ion densities and temperatures. The total current is the sum of the

background and hot contributions Jo = Job + 1Oh which satisfy the force balance relations

JobBo = -P0b and JohBo = -Poh



To derive the perturbed equations we linearize the full equations assuming there is no

azimuthal variation (/alaO=0) and that the time and axial dependence are of the form

exp(-ia - ikz), with Im m>0 for an unstable mode. The background ion flow velocity VI is

written in terms of the displacement 5 as v- = -iao. Making the usual ideal MHD assumption

that the magnetic field moves with the flow, the perturbed electric field E1 is

E1 = iaxB0 , (2.3)

so that Faraday's law for the perturbed magnetic field B1 becomes

BI =VxxixBo). (2.4)

Knowing B1 , the total perturbed current J1 = J lb + Jlh is evaluated from Ampere's law,

1oJ11 =VxB1. (2.5)

We consider flute modes so Eq. (2.4) gives B1, = 0 = Blz and then Eq. (2.5) requires the parallel

current to vanish (Jle = 0).

To determine the displacement we employ momentum conservation for the background

plasma by accounting for the charge imbalance - or uncovering - due to the hot electrons:

- minoij2d = enOhl +Jlb XB + JOb XB 1 - VPb , (2.6)

where quasi-neutrality for singly charged ions requires noh = noi - hOe and mi denotes the mass

of the background ions. The perturbed pressure of the background plasma Plb is assumed to

satisfy an adiabatic equation of state

Plb = -ObV - Pb04 r , (7)

where y = 5 / 3 and r, is the radial component of ý.



Using the preceding system of equations, it is convenient to obtain two coupled equations

for the azimuthal component of B1 and the radial component of 5, that only require knowledge

about the perturbed hot electron density and radial current which are evaluated in Sec. III. To

carry out this simplification we first define the flux tube volume V af dl / Bo = 2ntr / Bo and

then form the 0 component of Eq. (2.4) to obtain

B1 =- -Bor - BoV - , (2.8)

with V'/V = / r - B / Bo . Another useful expression is obtained from the radial component of

Ampere's law, ikBlo = / o (Jlbr + Jlhr), by using the axial component of the momentum equation

- minoi05,z = enOhElz + BOJlbr + ikPlb

to determine Jlbr, then using Eq. (2.7) and the axial component of (2.3) to eliminate Plb and

Elz = i0)Bo r , and finally using

(2.9)

to eliminate ýz. Defining the background plasma beta by

fib 2Bo (2.10)

the resulting equation can be written as

B1 = flOJlhr + Bo (2.11)S +eBonh nr "2- IV -[ _-r'(r r) •

If we neglect the coupling to sound waves by assuming w2 / k2<< POb/ min0i, use Eq.

(2.8) to eliminate V ., write 4 r in terms of the axial electric field Elz, and define the

interchange parameter



d= -ObVO0b (2.12)

and Maxwellian averaged background electron curvature and total magnetic drift frequencies

e = and Wde = ake , (2.13)

we obtain from Eq. (2.11) the first of the desired equations, the radial Ampere's law, in the form:

B1+ y B OJlhr bF i -+ de 0hTe(eEI
2 B0 &kBO 2 L O POb J ikTe

To obtain the second equation we start with background charge conservation

V 1b = ie(nli - nle ) and use perturbed quasi-neutrality nlh = nli - nle to write

(2.15)

The interchange assumption means that only the perpendicular component of Jlb matters in Eq.

(2.15). Solving the momentum equation for Jlb_ by making sure to retain the inertial term in

Jlbz but continuing to ignore it in Jlbr to be consistent with the neglect of sound waves in Eq.

(2.11)), and inserting the result into Eq. (2.15), gives

i (,nl h + In+ jm1) + lnOhV f l= -ik + B

Using Eqs. (2.7) and then (2.8) to eliminate Plb and then V ., writing 5r

using definitions (2.12) and (2.13), and defining Qi = eBo /mi and

in terms of Elz,,

b= k 2 Te nolTe
min 2 POb

the preceding gives the quasi-neutrality equation, to be

nhe + b+de nOhTe /wh /nOh) de (
Plb + Pob rV'/V 2

(2.14)

(2.16)

d eElz _ Blg noTe _de-d)]&ik e B F ) 0  d)].'jik7'e/ B POb 0
(2.17)

i.enlh = V .Jlb



Combining Eqs. (2.14) and (2.17) in the absence of hot particles we recover the usual

arbitrary fib ideal MHD interchange condition5 in the form

(C 2 ) (2+d,6b)t V2 b 2 .) (2.18)

Notice that since our MHD treatment requires b << 1 and we are interested in d ~- 1, the

frequency range of interest is m>> ,e as assumed. The same coupled system of equations

(2.14) and (2.17) can also be obtained kinetically following a procedure which assumes the

transit frequency is much greater than the collision frequency which is much greater than the

wave, magnetic drift and diamagnetic frequencies". To analyze the modifications due to a

Maxwellian hot electron population, nlh and Jlhr are calculated kinetically in the next section.

2.3. Kinetic Treatment Of The Hot Electrons

To complete our description we need to kinetically evaluate the perturbed hot electron

density and radial current contribution to the Ampere's law and quasi-neutrality equations (2.14)

and (2.17). The hot electron response must be evaluated kinetically since the temperature of the

hot electron population, Th, is assumed to be much larger that the background temperatures. As a

result, the magnetic drift and diamagnetic frequencies of the hot electrons will be assumed to be

much larger than the wave frequency.

We assume that the hot electrons satisfy the Vlasov equation. We then linearize by

assuming the unperturbed hot electron distribution function, f0h, is a hot Maxwellian plus a

diamagnetic correction:

fOh = f - Ce l xO. VfMh, (2.19)



where f&h = noh(me /2rTh)3/ 2 exp(- mv2 / 2Th) and Qe = eBo /me, with me the electron mass.

The gyro-kinetic equation for the linearized hot electron distribution function flh is most

conveniently rewritten by introducing the scalar and vector potentials via E1 = -VD -A /a)t

and B1 = V x A, extracting the adiabatic response by letting

(2.20)fh = hm + geL ,
flh= fh

where L = Oe-' V x and V = v (icos09+ sinO)+vi0,, and then seeking solutions of the form

exp(- iox - iS) where VS = k_. The resulting gyro-kinetic equation for g becomes 12"13

(2.21)

where Jo(ah) and J1 (ah) are Bessel functions of the first kind with ah = kLv / e. In Eq.

(2.21)

k• vdh r-, (vII V rB m2 [( + s) + -)I U- O~h 2Th

is the grad Bo plus curvature magnetic drift frequency with wa = kTh / erBo the curvature drift

frequency, A = vii /v a pitch angle variable and

(2.23)s 1+ rBBo

where s = 0 corresponds to the vacuum limit. In addition,

a = 1 + 17h -T 2) (2.24)

is the hot electron diamagnetic drift frequency with qrh = (T" / Th )/(nOh / nOh) and

kThnoh
Sh -- eBOnOh

(2.22)

(2.25)

-( - '_dh)g= " e-fMh - (ah) -W 
Jl

B



The v il/(- . dh) moment of the gyro-kinetic equation (2.21) shows that J1 ,h is

proportional to A4 . Moreover, as mentioned earlier, there is no perturbed parallel current carried

by the background plasma. As a result, the parallel component of the Ampere's law results in a

homogeneous equation for A,. Therefore, we may safely assume AO =0 and B, =BI0,

consistent with Eq. (2.4) and our interchange assumption. In addition, we assume that axial

wavelengths are much shorter than azimuthal wavelengths and radial derivatives of unperturbed

quantities. Consequently, k1 =k, L = kv ' sinO and ah =kv _e may be employed.

Finally, we allow the hot to background temperature ratio to be as large as Th / Te, - mi /me so

that a -b <<1 and L <<1. Then we may use Jo =1, J1 
= ah/ 2 , and exp(iL) 1+iL to

reduce Eqs. (2.20) and (2.21) to

fh D T ThOh )+ iL . (2.26)

To simplify our calculations, we note that our short axial wavelength assumption along

with the Coulomb gauge V -A =0 implies that Az << Ar. As a result, El, = ike may be

employed to make the replacement

eElz e (2.27)ikTe Te

in the perturbed radial Ampere's law, Eq. (2.14), and quasi-neutrality condition, Eq. (2.17). If the

assumption of fib ~ 1 is made, these equations also imply the ordering

B16  eQ )ie - 4ch (2.28)Bo Tew) ThO)

To simplify the results for the hot electrons while maintaining Th >> Te we will assume

wc >> CO >> Nice and thus



Th >> >> 1. (2.29)

Keeping the above simplifications in mind, we can integrate the distribution function, Eq.

(2.26), over velocity space and obtain perturbed hot electron density, n1h = 1Jfhd~, and radial

current, Jlhr = -e Vrflhd• . Fortunately, the full expressions for n1h and J1hr will not be

required. Only the approximations given in the Appendix 2.A are needed. For the moment we

need only define the hot electron beta

,h  _29POh and 8s h rph
= B Sh 2 POh

and comment that the expressions in the Appendix 2.A lead to the forms:

n•h - G +BO H and lohr _ e h H -B s8hI (2.30)
noh Th Bo ikBo Th 2 Boh

where H- G ~ shI- ~ 1, except in the vicinity of s = 1, where H - G -shI- ~ w. We

remark that even though c, >> ca, it is important to keep the &o term in the denominator of the

flh expression to resolve singularities during the evaluation of the integrals.

2.4 Dispersion Relation

Combining the perturbed radial Ampere's law, Eq. (2.14), and quasi-neutrality condition,

Eq. (2.17), with the expressions for nlh and Jlhr from the previous section, we can form the

dispersion relation, which can be written as

-b+ (d-ry)+ nohTe G+ +rn ( 1 (ybI ++ShI)+To h + rV'/V 2 (2.31)

+ -(d y)+ nohTeO H) =
2 Lc POb



If we consider comparable hot electron pressure and background pressure then in the absence of

the finite Larmor radius term b, Eq. (2.31) is seen to permit only solutions with

Wde / - noh /n 0i since we order d fib - Pfh shI - G - H - Vn'h /nOhV' for the case of s •1.

Therefore, the neglect of b violates the ordering imposed by Eq. (2.29) when fb - ih.

Consequently we proceed for now by assuming b - O / 2 >> (nO / ni )2 and neglecting order

noh / nOi Te / Th terms compared to coKe /  in the dispersion relation. For the case of s 1 this

assumption corresponds to neglecting G and H as well as the equilibrium hot electron density

gradient term. Thus, the only hot electron contribution that matters in Eq. (2.31) is shI and the

dispersion relation then reduces to

2 -(rV'I 2 (y-d) (1+ db+shI)
-= kv [b l+lb+S "(2.32)

Oe V b (1+- A +ShI)

Had we retained finite hot electron gyro-radius terms they would have entered as small order ah

corrections to shI in Eq. (2.32).

To evaluate I we only need the lowest order expression for Jlhr:

Jl hr . -fhBleOh dte-t t4 [l+h (t2 d1 d B hI (2.33)
ikBo F•Boq h 2 -1 D-CaO/ht2 

- B

where t2 = mv 2 /2Th and D= (1+s)2 +(l-s). To perform the integral in I for k > 0 we may

neglect the a term by using w<< woh in the denominator except (i) in the vicinity of s = 1 and

(ii) to insure the path of integration is on the causal side of the D = 0 singularity for s > 1. The

sign of the imaginary part of I for s > 1 changes if k < 0. Recall that reality requires - o*, - k

to be a solution if c, k is a solution so hereafter we will only consider k > 0. Leaving the details

of this calculation to the Appendix 2.A, we find that we can write the expression for I as



I =

Expressions for I in the vicinity of s = 1 are given in the Appendix 2.A for completeness. We

remark that our analysis ignores drift resonances of the background species since they are

exponentially small and of order exp(- wc/w,, ), where c >> re"

Notice that for s > 1 a large imaginary term enters because of the vanishing of the hot

electron drift velocity for some pitch angle. This singularity in the drift introduces a Landau

resonance in pitch angle space between the wave and the drifting hot electrons. The effective

dissipation associated with the vanishing of the hot electron drift resonance makes it such that

one root will be unstable because there will always be a sign of k for which Im w > 0. Before

examining the s < 1 case in detail we discuss the physical mechanism responsible for instability

when s 5 1.

The Landau resonance between the wave and the hot electron magnetic drift has two

different forms. When s < 1 the hot electron magnetic drift does not reverse and the wave-

particle interaction is weak because the wave frequency is much smaller than the hot electron

drift frequency except for a very low speed hot electrons. That is Wc= k Vdh can only be

satisfied if v is very small since the surfaces of constant k V dh are closed ellipses about v = 0

in the vll, v_ plane. As s approaches unity the ellipse opens and becomes hyperbolic because

1 (s + 4) + 3 s3 >
(l+s)2ii+)+v & JIj s>1

+r- -iT -i41 s=

_ 21(s +4) - _arctan 1s -1< s <1. (2.34)

(5+s)2 27h
s=-1

5

(l+s+4)_ In ý$ -S+ s2i<-1



the drift frequency reverses. A stronger interaction occurs for s 2 1 because particles of all speed

are resonant near the critical pitch angle. For s > 1 the hot electrons with smaller pitch angles

drift along the positive z axis while the larger pitch angle ones continue to drift in the negative

z direction (as for s <1). The energy exchange with the near stationary wave is strong since

many more hot electrons are involved in the resonant interaction.

2.4.A. Strong resonant hot electron case (s 1).

For the special case s = 1 there is only curvature drift and all hot electrons are drifting in

the same direction along the negative z axis. Energy flows from these particles to the nearly

stationary growing wave since all the particles are moving faster than the wave and are therefore

being slowed by it. As s increases above unity the drift direction of the lower pitch angle hot

electrons reverse and these hot electrons moving slower than the wave are able to extract energy

from it so the growth rate decreases. The wave remains unstable, however, and the parabolic

dependence of the magnetic drift on pitch angle, k Vdh 22 - A with A = (s - 1)/(s + 1) means

that for s>1 there is always a critical pitch angle Ai for destabilization. The s > 1 case is always

unstable since the hot electrons with pitch angles above the critical pitch angle for drift reversal,

o, are always able to give more energy to the wave than those below A0, which extract it from

the wave.

If the Maxwellian hot electron distribution function were replaced by a bi-Maxwellian

with T- > T4j then there would be fewer faster and more slower hot electrons near A0o. The

growth rate for s > 1 would decrease. However, the sign of the residue would not change



because, unlike standard Landau damping, drift resonance Landau damping depends onh ,

rather than on the velocity space derivative of f0h , as can be seen in Eq. (2.26). Because

w << h, the wave is essentially stationary and simply a means of transferring energy between

the counter drifting hot electrons so W may safely be neglected in the expressions for I (except

near s = 1 where I depends on w because there are few if any drift reversed particles). Only in

the limit s -- oo, when the drifts of all hot electrons are reversed does the resonant drive vanish

for s >l.

The special case rV'/V =2- s -+ 0 corresponds to B0 o r (flux tube volume

independent of r ), but since d oc V /rV' -+ oo it is always unstable even in the absence of hot

electrons as can be seen from Eq. (2.32). The growth rate (Imo4) for other s > 1 can be

estimated from Eqs. (2.32) and (2.34) to find

fifblr-dj3/212-s (rpsh POh)
Im( ol •Oe h (2.35)

(1+s?2Vb Fs:1

for Ib " d - 1. Notice that the growth rate vanishes for d = y and/or s -- oo.

2.4.B. Weak resonant hot electron case (s < 1 ).

For s < 1 the stable operating regime of most interest satisfies the usual interchange

stability condition y>d along with the additional condition 1+,bd/2+shI >0. To better

understand this regime it is convenient to write equilibrium force balance in terms of s as

Then d can be written in terms of s and sh b
Then d can be written in terms of s and Sh as



l+ I fibd - 2-sh2 r 2-s

Using this result, 7 > d becomes

(2.37)

Then, ignoring for the moment resonant particles effects for s < 1, the stability condition

of Eq. (2.32) can be illustrated graphically by plotting sh as a function of s for a given value of

background beta as shown in Figs. 2.1.
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Figures 2.1 (a)-(c): Stability regions for different values of Y3b with b=0.01 and n ohTp0b=--5%. The bold solid
line is 7=d, the thin solid line is 1+d•b2+Shl=O, and the dotted is l+yb/2+shl=-0. St and Un Indicate stable and

unstable regions.

(2.36)

sh >- )#b+ I7b .



Notice that when the hot electrons are ignored, i.e. sh = 0, we recover the usual Z-pinch

stability condition'4 , s < flb /(1 + fb /2). The plots also show that the fib term increases the size

of the stable region, allowing more general hot pressure profiles (i.e. sh can be negative as well

as positive for s = 0). However, as s - 1, I becomes large, so the curves 1 + dafb /2 + shI = 0

and 1+ 7fib/2 + shI = 0, which cross at d = y, require s h -+ 0 at s = l. To prevent a sign

change in Eq. (2.32) we need to be above all three curves to maintain stability. From plots like

Figs. 2.1 we can see that a value of Yf3 b between about 3 and 5 optimizes the stable operating

region since a larger fib does not substantially increase the stable operating regime.

So far we have assumed Irnh InOhI 1 and thus, due to Eq. (2.29), were able to neglect

terms that involve hot electron density gradient. However, it is possible to have a steeper hot

electron density gradient - so steep that Irnh /noh >> 1. If we assume that the hot electron

temperature and density profiles are similar and consider a smooth profile for equilibrium

background pressure, then Irnoh loh l ~Sh l ~s due to equilibrium force balance,

s=-1brp1b/ 2POb + Sh. However the hot electron density gradient only enters in the form

(rnh 'nOh)/(2-s), which for Irnh lOh>> 1 is of order unity. Thus because of the direct

relation between Irnh /Ohlh and IsI through the equilibrium force balance and the ordering

imposed by Eq. (2.29), the hot electron density gradient terms do not become significant enough

to appear in the dispersion relation.

During the operation of LDX it is anticipated that the hot electron pressure will become

much larger than background pressure. Therefore we also consider the case of jfh > > fb, by



taking b ,- o2 / d - (no / n0i )2. This ordering leads to neglecting only the G term in the lowest

order dispersion relation Eq. (2.31), due to the ordering imposed by Eq. (2.29).

As before, the drift reversal case (s > 1) continues to be strongly destabilizing due to

large imaginary terms in I and H. If we ignore weak resonant hot electron effects, the stability

condition for s < I1 case can be written as

1+ Y 0, (2.38)

where to the lowest order we find H r= h d from Eq. (2.A7) ,and we define2noh -1 (1+s) 2+(1-s)

S2(y1-d) 2b (Idb+shl) b(1-H( P/h+HJ

Jh n 2 (L n /Oh) 2 e i~ fl'SI ) bii + shiIb ]
If electrostatic fluctuations are considered (fib = 0) this condition reduces to

n(o(1+rnnO'h) +4b(y-d) 0,
ob N rV'/"1V Y+4*-d O'

from which we can see a tendency for the hot electrons improve lowest order stability by

allowing d to be larger than y since b> 0.

Examining the full expression for Y +1 we see that when fib - 0, Y >> 1. As a result,

the stability boundaries are the same as in Fig. 2.1(a) for this limit. For other values of fib, the

stability regions can be plotted as shown in Figs. 2.2 for various values of YfiJ and rn'h nOh

Comparing Figs. 2.2 (a),(b) with Fig. 2.1 (b) and Figs. 2.2 (c),(d) with Fig. 2.1 (c) we can see

that the hot electrons somewhat improve the lowest order stability, as in the electrostatic limit.
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Figures 2.2 (a)-(d): Stability regions for different values of Sb and rn'Oh/noe with b=0.01, ph-7pb and
nOhTe/pOb=10%. The dotted line is the 1+'~ib/2+shl=O curve and for small yfb the bold solid line approaches

y=d. The thin solid line becomes 1+dpb/2+ShI=O as non->0.

Comparing the plots of Figs. 2.1 and 2.2 we can conclude that stability remains robust

even at ,ah >> ib as long as the region of operation is above the solid curves and the area of drift

reversal (s > 1) is avoided, with higher hot electron fractions improving stability.

As noted earlier, the resonant hot electron interaction enters as a weaker effect for s < 1

than it does for s > 1, which is always strongly unstable. We next consider the effect of these

resonant hot electrons on stability for s <1 by evaluating their contributions to the perturbed hot

YI-b=2; rn'oh/nOh"-I



electron density and radial current density for the real part of aj greater than zero (Re o > 0) as

described in the Appendix 2.A:

= B H +H GBo res Th res and /O'" hrikBo Ires
el AH - BV (shBres,

Th 2 res Boxhres

Gres = -iA h

H 2adGra es 4 fhh Gres
Hres 30h (1-s) and (Shl)res 15__ (1-s2 '

(2.40)

with A defined by

(2) 1 s/2 "h (Il h ) bh .( •
-15 2 (_1- s) 8b h

(2.41)

Here and elsewhere qa is the positive stable root of Eq. (2.31), which can be schematically

represented as

A + B + +C= 0O
2de de

where A, B and C are coefficients of corresponding powers of qb / 2de"

Retaining the resonant interaction perturbatively in Eq. (2.31) using w= a o + q, with

b >>l ql gives

S= iAKF, (2.42)

where

(2.43)

which is a strictly positive quantity,

and

h res

where

(2.39)

K= 2 [a(1- H)- 1]2 + 5x[ta(l-H)-l]+- =x[a(l-H)-l]+I +! > 0,



(1+27b+shI)F =, •  (2.44)
A+- B

with

IC fib (-d)(2-s) and a anohTe (2.45)
(1+½Ab+shlI1-s) adeP Ob(7-d)

As a result the sign of ct / q depends the sign of product AF .

If we consider comparable background and hot electron pressures (IBh fb), then the a

terms become negligible because using Eq. (2.32) gives a ~nohTe /ObFb)<<1. After

substituting in the expressions A = b(1 + yfb + shi), B = 0 and C = (d - )(1+ dlb + shI) for

this limit, we find that F = 1 / b. Equation (2.42) then reduces to

q- = jA (C-1 + . (2.46)

As we can see the sign of wa / I.o depends only on the sign of A. As a result, for 8h ~ fib, a

weak instability of the drift resonant hot electrons (lab > 0) occurs if rah (1- 317h / 2)> 0 or

3 Th > rnOh (2.47)2 Th nOh

The analysis of weak resonant hot electrons effects for the case of flh >> fb is more

complicated since the stability is determined by the sign of the product of AF. We first observe

that we are only interested if the stable operating region above the bold solid curve in Figs. 2.2

can become destabilized by this weak interaction, since the stable region below the bold solid

curve does not allow the hot electron pressure to fall off (positive sh ). In the region of interest,

above the bold solid curve in Figs. 2.2, the numerator of F is clearly positive, while the

denominator is also positive, but for a more subtle reason. Since the negative real roots of the



dispersion relation Eq. (2.31) are always stable in the absence of resonant hot electrons we are

only interested in ac > 0 . Using our schematic representation of zero order dispersion relation

the denominator of F can be rewritten as

A+ -5LB= + '* IB2 - 4AC .
2b - 2 o -

In the region of interest A > 0 and C < 0, thus the dispersion relation has two real roots - one

positive and one negative. Only the positive root can be unstable for k > 0, and it makes the

denominator of F positive. Consequently, the sign of wj /ab depends on the sign of A, and is

therefore given by Eq. (2.47).

Notice that in the electrostatic limit fib =0, A= b >O,

B=(nohTelpobXl+dlnnohldlnV), and C=(d-y). In this case s=sh, and as a result, d

cannot be determined from Eq. (2.36) and is a free parameter. If d > y, then C < 0 and the

stability of the region depends on the sign of B, since there are two real roots. If

(1 + d ln nOh /d lnV)> 0 then both roots are negative and the region is stable, due to the absence

of drift resonance. If d < 7, C > 0 and there is only one positive root in the lowest order stable

region. Then the stability is determined by the sign of A and therefore by Eq. (2.47). It is also

clear that the temperature profile of hot electrons plays an important role in stabilizing this weak

drift instability, since if qth =0 only increasing density profiles can be stable. To confirm that

this drift resonance driven mode is indeed weak for s <1 we note that (w /e)2 ~ 1/b giving

OA /% _ flh/1bXq./WOKh)5 12 ••1 for Ph ~-Pb.

From the overall discussion of stability, we can conclude that while large hot electron

density gradient as well as high background beta are beneficial for the zero order stability, they



are destabilizing when the first order correction is considered, particularly if rnh /nOh is

negative and greater than 2 to 3 in magnitude for fb -~ 1. So, to maximize the overall stable

region rnh lnOh > -2, it is best to keep ;f#b - 2 and 2 > rnh /nOh > 3rTh'/2Th along with

y>d.

2.5. Applications

As a specific application of the results obtained in the previous section we consider a

hard core Z pinch as a crude approximation to a dipole with a levitated current carrying

superconducting coil as in LDX. Assuming power law profiles satisfying pressure balance gives

BO = Ba I(l+(f) and PO = Pa . ( , (2.48)

where a is the radius of the current carrying hard core conductor, Ba and Pa are the magnetic

field and total plasma pressure at its surface, respectively, and 8 = 2to{Pa I B2 is the total beta.

If we assume that the background and hot pressure profiles are the same, then Pa = Pab + Pah

with pab ~ Pah and

POb =Pa )/(l+, ) and POh = Pah (2.49)

where = 2O(Pab + Pah)l B2 = fb + Ah

For this special model

s = - = >(i >0 and sh Ph j > 0. (2.50)



Note that since s <1, drift reversal is not possible in this model. The stability condition for a

hard core Z-pinch with the above profiles can be obtained by substituting these expressions for s

and sh into the lowest order dispersion relation, Eq. (2.32), to find

02 (r i" 2 ( r-d) (1+ dfb-+' h fh I)
W V7 d ),+ 9 , (2.51)

where d= 2/(2+f8)>0 and [1+dfib/2+fihl/(1+f)]l/[1+ fb/2+fhl/(l1+f8)]>0 since I >0.

Therefore, in the absence of resonant hot electron effects the stability boundary is described by

Y> d ---2 (2.52)

which is always satisfied.

To determine the stability condition for the case of Ph > > b , we assume power law

temperature and density profiles

Th Tah ()h / (1+f) and nOh = (2-q)I(i+f) (2.53)

with 0 < qh < 2. Substituting the expressions for s and sh along with the hot electron number

density gradient into Eq. (2.38), we find the stability condition to be the same as in the fh ~ ib

case. For fib -+ 0 Eq. (2.38) is satisfied since 1 + Y > 0. For the case of fib 0, Y is smallest if

b = 0 . Moreover, a plot of 1+ Y as a function of fib /fl in Fig. 2.3 for different values of qh and

2b = 3 always finds 1+ Y > 0. For other values of flb the plots look very similar to Fig. 2.3

and thus, even for the worst case of b = 0, Eq. (2.38) is satisfied.
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Figures 2.3: Graph of 1+Y vs. dI for different values of q~.

To determine the effects of a resonant hot electron population on the stability, we note

that due to Eq. (2.53), the hot number density is monotonically decreasing, rn~h n0h <0. Since

d <7 the stability is determined by the sign of A and therefore this hard core Z-pinch will

remain stable for fih - Pb or ih >> b if i7h > 2/3 or qh > 4/5.

Finally, we remark that if the unperturbed hot electron distribution function is simply

assumed to be a drifting Maxwellian, then from Eq. (2.19) we find the flow

Th = Z(Thnoh /m enOh) along with the restriction that VTh = 0 = rlh. As a result, for this "rigid

rotor" equilibrium case, a weak resonant hot electron driven instability always occurs.

2.6. Hot Electron Interchange Mode

As another application of the preceding theory, we would like to briefly discuss another

type of instability that is of interest to LDX and other closed field line devices. It is called the hot

electron interchange mode 12,15 (HEI) for which the wave frequency is comparable to the



magnetic and/or diamagnetic hot particle frequency: (dh)- w>> (gode). In this limit the wave

frequency dependencies of G, H, and I terms can no longer be ignored. Consequently, the

dispersion relation given by Eq. (2.31) is no longer a simple quadratic and its solution has to be

found numerically. In this section we present some sample numerical calculations and briefly

mention the complications of obtaining stability conditions for the HEI.

For this frequency ordering the full expressions for G, H, and I are required, and can

be written as

G= 2-1 2 -t2 a"h[llh(t h 2) 2 d dt,
- 0h -1 0Io/ow t2-D

02 -t 2 2-sh h 23 1 2
H ft2 e 4 - dt.

o0 -1 -/ht2 _

shI = 4 _t2 (O-6hI+?1h 2 (1ydAt
OX -1 W/ It 2-D

We substitute the preceding equations into the dispersion relation, Eq. (2.31) and numerically

solve for r . We present our findings in Figs. 2.4 in the form of graphs of Re(w) and Im(o) as a

function of nohTe / Pob, which measures the fraction of hot electrons.
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Figures 2.4 (a)-(b): Real and imaginary parts of o as a function of hot electron fraction, nohTJPOb. The bold
solid and dashed lines are real and imaginary parts for HEI mode, respectively. The fine solid and dashed

lines are real and imaginary parts for MHD interchange mode, respectively.



Figure 2.4 (a) shows the usual MHD interchange instability in the presence of hot

electrons; what we call the zero order instability. As nohTe /Pob increases we see that the region

described by this parameter set is also unstable to the HEI mode. The graph suggests that these

two modes might be coupled at nohTe / Pob in the vicinity of 15%. Figure 2.4 (b) shows the case

where the MHD mode is stable, while the HEI mode is unstable. This finding suggests that it is

important to investigate not only the stability of the MHD mode, but also the HEI, as regions

stable to the MHD mode can be unstable to the HEI. For the case shown in Fig. 2.4 (b) there also

exists a stable root, which complicates the investigation of the stability of this mode in general.

These results are merely intended to demonstrate another possible application of the theory

developed, and are in no way intended to be exhaustive. Clearly much more work is required to

find all possible branches of HEI mode and investigate the requirements for their stability.

2.7. Conclusions

The effects of hot electrons on the interchange stability of a Z-pinch plasma are

investigated. The results yield two types of different resonant hot electron effects that modify the

usual ideal MHD interchange stability condition.

Our analysis indicates that when the magnetic field is an increasing function of radius,

there is a critical pitch angle for which the magnetic drift of hot electrons reverses direction. The

interaction of the wave and the particles with the pitch angles close to critical always causes

instability for Maxwellian hot electrons. Thus, stable operation is not possible when the magnetic

field increases with radius.



If drift reversal (s < 1) does not occur and resonant hot electron effects are neglected, we

find that interchange stability remains robust and is enhanced by increasing the background

plasma pressure as well as the gradient of the hot electron density for h >> fib ~ 1 case.

However, once fb becomes of order two or three, further increases in fib do not result in

significant increases in stability. In the absence of drift reversal, hot electron effects are weak,

but not negligible. When they are retained, an additional constraint must be satisfied to avoid a

weak resonant hot electron instability. For fh - fib - 1 and for h >> fib - 1, the hot electron

density and temperature profiles must satisfy rn'h /nOh > 3rTý / 2 Th. Stability in the electrostatic

limit (fib = 0) is particularly awkward since it requires rnh nOh > 3rTý / 2 Th if there is no peak

in the hot electron pressure profile.



Chapter 3

Effects of hot electrons on the stability of a dipolar plasma

3.1. Introduction

In Chapter 2 the effects of hot electrons on the interchange stability of Z-pinch plasma

was investigated. In this section we extend our calculation to dipolar geometry for which the

unperturbed magnetic field Bo is purely in the poloidal direction, while the unperturbed

diamagnetic current Jo is toroidal. The format of this calculation is similar to that of the

previous chapter, as we only consider flute or interchange modes with wave frequencies

intermediate between the background and hot species drift frequencies, since they are the least

stable modes in the absence of hot electrons 3 . We treat the magnetic drift, consisting of

comparable grad Bo and curvature drifts, on equal footing with the diamagnetic drift. We obtain

the dispersion relation for arbitrary plasma and hot electron pressure, but then examine three

plasma pressure orderings relative to the magnetic pressure: background electrostatic with

b < <Ph ~ 1, electromagnetic with 1 ~ Pb < < •h, and electromagnetic with 1 ~ Bb Ph

Throughout this chapter we compare and contrast the results from dipolar geometry to that of the

Z-pinch.

In Sec. 3.2 we derive two coupled equations for the ideal MHD background plasma that

involve the perturbed hot electron number density and the V ,/ component of the current. These

two quantities are then evaluated kinetically in Sec. 3.3. Section 3.4 combines the results from

the two previous sections to obtain the full dispersion relation, and general stability conditions,



including a discussion of hot electron drift resonance de-stabilization effects. As an application

of the above theory, a separable form of a point dipole equilibrium is considered and the

obtained results are presented in Sec. 3.5. We close with a brief discussion of the analysis in Sec.

3.6.

3.2. Ideal MHD Treatment of the Background Plasma

Our derivation for the dipole geometry will follow the guidelines developed for the Z-

pinch. In this section we will use an ideal MHD treatment to derive the V V component of the

perturbed Ampere's law and a perturbed quasi-neutrality condition. The quantities pertaining to

the hot species, such as V / component of the perturbed current and number density, will be

evaluated kinetically in the next section.

Using the standard approach for the closed field line axisymmetric or dipole

configuration we introduce poloidal magnetic flux V, toroidal angle 4 and radial distance from

the axis of symmetry R so that the unperturbed poloidal magnetic field and toroidal current are

given by:

B0 = V x~xVý and J0 = R2 dpo V (3.1)dW

where the total pressure po, is the sum of the hot pressure POh and the background pressure

POb = noeTe + noiTi, with noe, noi, Te, and Ti the background electron and ion densities and

temperatures, respectively. The total current is the sum of the background and hot contributions

Jo = Job + JOh which separately satisfy the force balance relations to give



JOb = (dPOb Id)R 2 V and Joh = (dpoh/ d y)R 2V. Using the Ampere's law to derive the

Grad-Shafranov equation yields

V.~ + p =0.

Defining ic-= (-V as magnetic field curvature with = BolBo , it also follows from the

preceding equation and equilibrium pressure balance that

2i=Vy -0 dlnpO V. V(-
B 2R 2  2 dv BJR2  (3.2)

where

We assume perturbations of the form (•j (y,0)e,- i - ui, with 0 the poloidal angle and

Imcw>0 for instability. Then, we perturb around this equilibrium by introducing the

displacement vector 5 as V1 = -i&4, with V1 the background ion flow velocity, and writing it as

B0  vvj
P IVV2 IV (3.3)

Using the usual ideal MHD equations, the perturbed electric field E1, magnetic field B1

and total current Jl = Jib + Jlh are given by

El = iag x B, (3.4)

B1 = Vx( xBo), and (3.5)

oJ1 = VxBI, (3.6)

where it is convenient to write B1 as



B + Go + V + Qý . (3.7)B1 =QBB-+Q1  IVz2 +QIV".

Equations (3.3) and (3.5) give QB =-B 2 v 2 V= 0 V and

Q- = Bo ".VN

In addition, background plasma momentum and energy conservation are written as

- minoi2 = enOhEl + JIb XBO + JOb XB1 - VPlb, (3.8)

and

p-b-- b b, (3.9)Plb -)PObV.~7w (3d9)

where mi denotes the mass of the background ions, Plb is perturbed background pressure, and

y=5/3. The El term in the momentum equation, which is absent in the usual ideal MHD

treatment, enters due to the effect of charge uncovering - the incomplete shielding of the

background electrons by the background ions since the equilibrium quasineutrality for singly

charged ions requires n0h = ni - nOe

Using the preceding system of equations, it is convenient to define

W = -Plb - '• y - = bV',b (3.10)

and then obtain two coupled equations for W and Y,, both of which only require knowledge of

the perturbed hot electron density and current, which are evaluated in the next section. To

simplify the procedure we use the parallel component of Faraday's law and Eq. (3.3) to form

V - and to obtain two convenient expressions for 4g and QB

il -= QB (3.11)
IV •12 B02



and

"=Bo V vv _ W ' 0" (3.12)
V 0 )ý v WI2  7Ob

Next, we consider the V V component of Ampere's law,

po0 l V V = 0Jlb .V v+0 Jlh .V = -ilQB -Bo V(R2 Q). (3.13)

The background contribution is calculated from the toroidal component of the momentum

equation yielding

Jlb -V = minoi 2 = + enohR 2 El • V' + ilPlb ,

with ýg given by Eq. (3.11), Plb given by Eq. (3.10), and E .- V= -i a V5f2  from the

toroidal component of Eq. (3.4). Defining the background plasma beta as

and using Eq. (3.11), the V V/ component of Ampere's law can be rewritten as

OJlhI'6 BO.V(R2QC) bW +_1 dlnPo minoi0
2R2 VW'V•J

ilB~ ilB2 2 POb 2 dV IPb 12POb IV2 (3.14)
= 1 (minoiR  

m (3.14)

=21 POb ) A0

The most unstable ideal MHD ballooning-interchange modes have 1 >> 1 for an

axisymmetric torus with closed field lines3. Therefore, we can use the standard high mode

number formalism to neglect the 1/12 term from 0 o-V(R2Q) and the coupling to the

magnetosonic waves by assuming W2R 2 / 12 < POb /min0i in Eq. (3.14). Then, using Eq. (3.12)

we obtain the first of the desired equations, the V V component of Ampere's law, in the form:



W 1+ b) 0 h VPO I' ' + + (3.15)
2POb . b1 &)y2 vfi (d+ i

To obtain the second equation, we start with background charge conservation in the form

V - ilb = i1e.(nli- nle)= i-Lenlh , where we also use perturbed quasi-neutrality. The expressions

for the parallel and perpendicular components of the perturbed background current are calculated

from the parallel component of Ampere's law and momentum equation, respectively. Using the

large I approximation gives

, 1O O_(Jlb"Ilh)'0-" V/ 2V(R2Qc- it ilQ+oll *o = .0lb16 + +lh + -SR2 2

Jlb'V V = -iEn0h¥ + ilPlb + minoio)2R 2 4 = -i Oen0h4 + ilPlb,

and

ib V• VI.VPlb ennOi0h2 en•_• "QB' dPOb QBO

JibVW V 2 I I 2  2 d2 2

Notice that we retain the inertial term in jlb V', but continue to ignore it in Jib V Vy to be

consistent with the large 1 expansion. Expressing Plb and QB0 in terms of W and (, we insert

the preceding three equations into the background charge conservation to obtain

&enlh _- 0 V lh'B 'f7-[ l VB V 1 d InPob -lnOh•O o 1V Ob ]
1 Io 2 ilBo2 i 2 y dy 10

(3.16)

+ (minoiw2 rVIV'VnOh. +dPObonOh T0I

Finally, using the parallel component of the momentum equation to eliminate 48 yields

Bo V( B= ) o ' V m VC w , (3.17)\8O2 ,u28O7)



where we assume noi is a flux function. Substituting Eq. (3.17) into Eqs. (3.15) and (3.16) we

now have the two coupled equations

+iI ooV( 2  - --.--• (+T -- (dlnPOb + Ponbd

(3.18)

and

nihb + ITe mjnii W2 +nhT, V-VlVInnoh . ITe -n +
POb WaPOb BOR2  POb IV02  WP0b 't 'o dv + V 2•" j- POb

edin pob +fohTj V( B2 >(-VW ITe §0
- dV POb m •minoi )B•o POb poivu• 2  ilBj J

(3.19)

where the terms with n0h are due to the charge uncovering effect of the hot electrons on quasi-

neutrality.

Observe that without hot electrons we can easily recover the well known ballooning

equation for shear Alfven modes3. It can be obtained by substituting Eq. (3.18) and its poloidal

flux surface average into Eq. (3.19) to first eliminate B0 -VW and then the W terms,

respectively:

Bo2R 2
0 . V(+ K VPb + minoi 2)= 4 2Ob (F V •) (1+(lb))

In addition to using Eq. (3.2) to get the right hand side of the preceding equation, we note that it

follows from Eq. (3.18) that the variations of W along the unperturbed magnetic field are

proportional to w2. As a result, W tends to flux function as the growth rate diminishes. In

particular, from the field line average of Eq. (3.18)



W = -27oPb ,+½R(Pb) )

where the flux surface average is defined by (...) =V-'(...)dIBo 0 VO with 0 the poloidal

angle and V = fdO/IB o V .

3.3 Kinetic Treatment Of The Hot Electrons

In the previous section we have obtained two coupled equations for quasineutrality and

Ampere's law that require knowledge of the perturbed hot electron density and current.

Generalizing the Z-pinch procedure developed in reference' 6 to dipole geometry, we will first

kinetically evaluate the perturbed hot electron responses in this section to obtain the dispersion

relation in the next section. We assume that the temperature of the hot electron population, Th, is

much larger that the background temperatures, which requires that the magnetic drift and

diamagnetic frequencies of the hot electrons to be much larger than the corresponding

background frequencies.

We assume that the hot electrons satisfy the Vlasov equation, and following the standard

procedure for solving the gyro-kinetic equation 9'10 we linearize the hot electron distribution

function around the equilibrium by writing fh = fOh + fih +.... Employing the orderings

le 2 4b > > Wdh - "h >> O, (3.20)

with m the electron mass, fe = eB0 /m the cyclotron frequency, b - VI -V the bounce

frequency, and odh and "h the magnetic and diamagnetic frequencies, the equilibrium

distribution function satisfies



V -VfOh - Le X Oh = .VfOh + e = 0, (3.21)

where 0 is gyrophase. As in the case of all axisymmetric machines, the toroidal component of

canonical angular momentum is a constant of the motion and therefore it is useful to introduce

=I =r./- _. i. Then exact solutions to Eq. (3.21) exist of the form foh = fOh(E,v*), with

E=v 2 /2.

To evaluate the first order correction to the hot electron distribution function we again

look for solutions of the form e-io -"l and solve the linearized Vlasov kinetic equation

a• -Vflh e-- b-X 'Vflh+e (V+ VXB) Vvfoh=0, (3.22)

where the scalar and vector potentials D and A= AIb+AJVI/RBo+AýRV{, enter

El =-VD- A/3t and l =VxAi, with V.A =0 for the Coulomb gauge. Observe that the

gauge condition coupled with the large mode number assumption causes the toroidal component

of the vector potential to be small compared with the other two components: Aý - (A,, or A1 )/li.

The solution to Eq. (3.22) is found by removing the adiabatic piece by writing

flh =fOh + 1 , (3.23)

and then defining gl = gW + g1 with the bar and tildes indicating the gyrophase independent and

dependent parts, respectively. Using v, magnetic moment P = v2 /2Bo, q as the velocity space

variables, and the incremental time along the particles trajectory dr =d# > 0, the resulting

lowest order expressions for gl and g are given by'2,13

fMh (oa h) e Jdr(4-v1 A) mu dQ B0  (3.24)dg•'k d T , (3.24)
, 2r2Th-)



and

-= -n- fx- I Th + fMhAl B-02 V ] (3.25)

where the parallel and perpendicular subscripts refer to the components parallel and

perpendicular to the equilibrium magnetic field B0 . The details of the calculation are given in

the Appendix 3.A. For simplicity we consider the unperturbed hot electron distribution function

f0h to be a Maxwellian to the lowest order and use a gyroradius expansion to write

foh(E,y*)= fMh +(V*-afMh/Iy+... with fMh =nOh(m/2Th)3/ 2 exp(-mv 2 / 2Th). The

hot electron diamagnetic drift frequency is defined by

hj h+ M h - a , (3.26)

with dn =e and ?h = d ln Th Id lnn0oh. The effective trajectory averaged magnetic drift

frequency is

S 2IThR-VV[1 B0(1+s) 2 I/. =- 2lTh V-
WD= -2 Lhr 2  2B1 j d - rVd -Vtdr/dr, (3.27)

eR2BO2 2B my2

with

ed ' v2; 2V 0B(2+s)B (3.28)

where

1 Vy'VlnB0s=l1- (3.29)

measures the departure from the vacuum limit s = 0 and A,= - = is a pitch angle variable
with2 B at the outboard equatorial plane. We note that the trajectory

with B being the value of B0 at the outboard equatorial plane. We note that the trajectory



integrals are different for passing and trapped particles, with the former running over one full

poloidal pass, while the latter runs over one complete bounce.

Ampere's law, Eq. (3.18), and, quasi-neutrality Eq. (3.19), require the hot electron

density and V V component of perturbed hot electron current, which we form by integrating the

distribution function over velocity space to obtain n1h = tflhdv and J,, = -ejvyflhdi. Only

the gyrophase independent part of g, contributes to nlh, while only the gyrophase dependent

part survives the integration in Jl,,. The full details of the preceding calculations are presented

in Appendix 3.B.

From the form of f, it is clear that both nlh and JI, involve dr integrals, which

involve poloidal trajectory averages of 1, Al, and QB. In Z-pinch geometry 16 the interchange

assumption removed poloidal variations. As a result, the perturbed number density and radial

component of current were written as linear combinations of Q and QB, while the parallel

component of the Ampere's law resulted in a homogeneous equation for ýA,, allowing us to set it

to zero. These simplifications permitted us to write quasineutrality and the radial component of

Ampere's law as a set of two linearly coupled equations. In dipole geometry, the poloidal

variation of B0 and R cause quasineutrality and the V / component of Ampere's law to become

a set of two coupled integro-differential equations, which without approximations can only be

solved numerically.

To examine the possibility of a partially analytic solution we consider interchange modes,

with Q,= B0o V4V,= 0, making ý, a flux function. Next, we examine V v and V4'

components of Ohm's law, Eq. (3.4),



El .Vy = -V(. Vy+ iaAV ,RB 0 = ioagR 2 Bo

El -V = il/IR2 + iag IR= -ia4, IR 2

We recall that from Eq. (3.11) (- ~ , / R 2Bol, while from V · = 0 we have Ag - A, II. As a

result, in the preceding expression for E -V " we may neglect the Ag term as small by 1/12,

making

D = - /, /lI (3.30)

We also note that

(3.31)

For interchange modes 0 is up-down symmetric, while All is antisymmetric. As a result,

for both the passing and trapped particles 4vllAldr = 0 and J1h B0 oc J|vllldv = 0. Consequently,

we may ignore Jlh iBo and All terms in Eqs. (3.18), (3.19), and (3.24). In addition, upon

gyroaveraging, the QB term in Eq. (3.25) does not survive to enter Jlh -V V and the Ag

component that does enter is small by 1/12 as shown in Appendix 3.B.

The last complication in Eqs. (3.24) and (3.25) is the trajectory averaged terms involving

QB. If we combine Eqs. (3.12), (3.17) and (3.18) to eliminate terms involving B0o V we get

QB = Jlh'V+ W+(dPb + "nOh
iO W d V I (3.32)

For ideal MHD interchange modes near marginality both 4, and W are flux functions, so we

see from Eq. (3.32) that in the absence of hot electrons, QB is also a flux function. Therefore,

near marginality any variations of QB along the equilibrium magnetic field are caused by V V

component of the hot electron current. In general Jlh -V y and, as a result, QB, W, and 4, are

A -- l IlR .



not flux functions, causing the quasineutrality and V y component of Ampere's law to be

coupled integro-differential equations. There are several options to deal with the increased

complexity. One is to solve the problem numerically, which is outside the scope of the present

work and probably not the most insightful approach at this point in the development of hot

electron models. The second option is to treat perturbed hot electron terms as small and introduce

them perturbatively. However, from the Z-pinch geometry, we know that hot electron effects can

enter on equal footing with the fluid background response and play an important role in stability

analysis. The third option, and the one we will pursue here, is to simply assume that QB, W, 0,

and Jlh V - are flux functions to lowest order, which allows us to obtain a dispersion relation

essentially the same as the one found for a Z-pinch'6. This procedure allows us to recover all the

results from the second option, but cannot otherwise be justified in any other rigorous fashion.

However, when we consider the point dipole model in Sec. V, we will find that the behavior of

I, H, F, and G as a function of poloidal angle is similar to that of Bo2 as required for this

assumption.

Replacing QB, Jlh V1 • and 0 by (QB)=(BIBO), (lh .V iV ,and (0), and taking

them outside of poloidal trajectory averages in Eq. (3.24). To lowest significant order, we can

then write the expressions for n1h and (jlh .VV as

n=h = Ge() -(QB )(B2 )H (3.33)
nOh Th

and

2 h X I \ r ,BI, (3.34)

where 8h = 2 PoPOh /B 0 and



, fMh ah.'h 2 2(-1 AfMh BO)/dGf-Jdv (64) H f _ d_2T mv2 h(f )dr(BB O)Id
G=2WZ2h Wb2h 2

(3.35)

F 2-I mv2 AfMh(a-o (B - 2  m 2 2 f•,Mh (o-oh dr(•I/ BO)1dTr

fOhBOB J 2Th ( v2WD nOhBOB3 2Th
(0-)... . y2Th

The details of obtaining these expressions are provided in Appendix 3.B. Notice, that in general,

the expressions for G, H, F, and I contain resonant particle effects due to the possible

vanishing of the denominator. Here we consider only the intermediate frequency ordering, with

the wave frequency much less than the magnetic frequency of the hot electrons, so that the co

dependence in the preceding equations only matters in determining the causal path of integration

about the singularity. The vanishing of the denominator corresponds to the wave - hot electron

drift resonance, which can occur when coD is small. This resonance is weak when only very low

speed hot electrons interact with the wave (no drift reversal), and possible strong for s > I when

drift reversal occurs so that many hot electrons with a specific pitch angle jcrit = can

resonate.

3.4 Dispersion Relation

In this section we obtain the dispersion relation by substituting the expressions for (nlh)

and (Jlh VV)(Bo2) given by Eqs. (3.33) and (3.34) into quasineuitrality and the Vy

component of Ampere's law. To annihilate terms involving B0o V in Eqs. (3.18) and (3.19) we

flux surface average and then assume =(Q), W=(W), QB =(QB), and



Jlh V If = ( V) in undifferentiated terms, and continue to use ~fvllyldr =0= Jlh B0.

When we use Eq. (3.12) to eliminate (W), the resulting two coupled equations are identical in

form to those obtained for a Z-pinch' 6:

Q(B2 )(I+ _()) 2\ h J.Vy) + 'fib)[ (e d) - Oh e 1 eO (3.36)-2 U '"-( POb JTe

and

(lTe)+ [b)+ _+(+ OhTe~dl (d)2 D =( QB( 2) (oO ) (y-d) , (3.37)
\POb ) +o(b) +w p0b dlnV "Te= /L POb to

where we define

d In POb ITe d InV b 12Te minoiTe
dInV ' e d, ' e 2B2R 2 POb

and employ (V. (V y/IV ~2 = d In V / dy. Combining the preceding two equations with Eqs.

(3.33) and (3.34) to form the dispersion relation we obtain

(b)+ nhTe [- (G()+ ()I 1+ - (y-d) 1+Iy(_b)+ (j() +
POb Lh dInV 2 2 (3.38)

(3.38)
a (T)( (y) - d)- nOhTe (1 - (F))][(w-e) (y - d) - OhTe (-H)] = 0,

which is the same as the Z-pinch result'6 with the exception of flux surface and trajectory

averages due to geometrical effects.

Even though, the dispersion relation looks quadratic in ao, in general, the coefficients of

the above dispersion relation are not necessarily real or independent of the wave frequency due

to the hot electron drift resonance with the wave. As we noted in the previous section, there are

two types of resonance. A weak resonance occurs when the wave interacts with a few slow

moving hot electrons. In this case, even though the imaginary parts of the coefficients in the



above dispersion relation depend on the wave frequency, they are much smaller than the real

parts. As a result, this type of resonance can be examined perturbatively, which is done later in

the section. Another type of resonance happens when s > 1 and drift reversal is possible. In this

case the wave interacts the hot electrons of particular pitch angles, the real and imaginary parts

of the coefficients are comparable in size, and the interaction is strong and always unstable. In

the remainder of this section we discuss stability assuming drift reversal does not occur.

We will not consider the high frequency regime having (7dh) ~ - w>> (d). We simply

remark that in this limit the wave frequency dependencies of (G), (H), (F), and (I) terms can

no longer be ignored. Consequently, the dispersion relation given by Eq. (3.38) is no longer a

simple quadratic and its solution has to be found numerically. In this case, a new instability can

occur which is often referred to as the hot electron interchange".

In what follows we first consider the lowest order interchange modes in the absence of

resonant hot electrons for << (Wdh)~ -h and then retain the hot electron drift resonance

perturbatively.

3.4.A. Lowest order non-resonant modes.

To investigate the effects of hot electrons on stability for closed magnetic field lines, we

first ignore any resonant effects and consider the electrostatic case. To do so we drop all the

terms proportional to the background plasma, by assuming /b < < fh 1. The dispersion relation

then reduces to

(1+ ( ) ZI (b) + (-e + dlnnh)-(r-d)] =0. (3.39)



The overall multiplier in front is independent of the frequency, so stability requires

(nOhTe/Pob)2+ dlnh) +4(b)(y'-d)_0, as in a Z-pinch'6 . The hot electrons enter only

through charge uncovering effects (proportional to n0h) in this limit and these improve the well

known dipole interchange stability condition3'5 of d < y.

For the fully electromagnetic case, we continue to ignore the resonant effects of the hot

electrons so that (G), (H), (F), and (I) are real and independent of wave frequency and the

dispersion relation is quadratic. For the intermediate frequency ordering with

(wdh)» >> >> (o de) it follows that = >> T It is expected that during LDX operation

the hot electron beta will be much larger than the background beta so it is of interest to consider

1 h >> Pb ~ 1, which coupled with the frequency ordering allows us to take nOhT ~ (de>>T .
POb aW Th

In this regime, the dispersion relation is given by Eq. (3.38) with the (G) term ignored, and

stability is determined by the sign of the discriminant. This limit will be investigated in more

details for the point dipole equilibrium in Sec. V.

For completeness we also examine the case of equal hot and background pressures with

h -~ ~ 1. Recalling the frequency ordering, this limit requires nh ~ e << The

dispersion relation then reduces to

- (= 
(3.40)

(Wde) 2  (b)-1+Ia b)+(I)2r 2



with stability determined by the signs of three terms on the right hand side. Section V will also

investigate this limit in more detail for a point dipole, for which 7 > d always, so only sign

changes in the numerator need to be considered.

3.4.B. Resonant hot electron drift effects on stability.

It is also of interest to examine how weak hot electron drift resonance effects change

stability boundaries. We examine these effects by retaining the imaginary parts of (G), (H),

(F), and (I). Since the imaginary parts of the hot electron coefficients are much smaller than

the real ones, we may examine resonant effects perturbatively by writing co= b + q , where

0% >>i II is the zero order solution to Eq. (3.38) with real coefficients, and q is the small

complex correction due to the hot drift resonance. Due to its small size, q cannot stabilize a

zero order instability or significantly affect the stability boundary, so we only look at real

solutions to the dispersion relation by considering real ft and ignoring the real part of q .

Moreover, without drift reversal, a weak drift resonance for 1 > 0 is possible only for positive

wave frequencies so we require qb >0. We need only consider > 0 since reality requires

- Y*, -I be a solution if w, I is a solution.

The full details of obtaining the expressions for imaginary parts of hot electrons

coefficients are provided in Appendix 3.C. Here we note that to the required order they can be

written as



(Gres) = -A 2 PObTh A1,

(Fres ) A ab 2P A3

(Hres) A, Q PO A2,

and (Ires)= 2POb A 4,
(de)2 POh

with A defined by

A2= i f h( ) 2 o 5• 2

and the positive geometrical coefficients defined by

A1 = (Ods 3/21 B
I (Wdh

A 3 =2 ( 2 ) -B5/ 2 /B) o

A4 dh)7/2 B/Bo

2B4( 02) 2 0

f dA
0 "D21- A oB- '

dd aZ 1_-ABoIfd Ai 2dz(I/Bo)l/fd

/t'Y 2,i41 o 80

where ('adh) = (OWde)T h Te

The expression for the first order complex correction for the fully electromagnetic case is

quite cumbersome. To understand the procedure of obtaining q , we schematically represent the

general zero order dispersion relation as

A - +B ,l-)+C=O,
(WO)2 (•de)

with A, B and C are the real coefficients of corresponding powers of W/(Wde) in Eq. (3.38)

and given by

(3.41)

(3.42)

i



A = [(b)(1 + Yr() + (I) + ) ( -(H)XI- (F))

B = n0hTe[(I +dn0h (1+I (ib )+ () (I)) - b) ( y-d)(2-H)-(F)),
POb . nV \ 2 2 2

C=-(y-d + ±d((I)+

where the contribution from the term involving (G) is always small by at least Te << Th.

The general zero order stability boundary is described by the real solution of the

preceding equation. The expression for the first order imaginary correction can be written as

= ANK, (3.43)

where

K= '2[a2 (1-H)X1-(F))-a(2-(H) -(F))+1]A 4  (3.44)

+ aA 2 (1 - (F))+A 3 (1 -(H))]-(A 2 +A 3)}+ A 1,

and

N 2 (3.45)
A+(Ode) B2a00

with

(flb)(r-d) clbnOhTe2 = 2 (,•b)(-d)l(t and a= (WOde POb-d) (3.46)

The sign of the Eq. (3.43) determines if plasma is weakly unstable. In our Z-pinch investigation,

we have extensively evaluated all possible cases and requirements for this weak resonant

instability. Here we will focus on three cases: electrostatic background, electromagnetic with

h fib - 1, and the high 8h electromagnetic case h >> fib - 1 for the point dipole

equilibrium.



For the electrostatic background case Ib << fh 1, K = 0, and in the absence of drift

reversal K > 0, with t, the solution of the simplified zero order dispersion relation given by

Eq. (3.39). Equation (3.39) is a quadratic with real coefficients, and for the resonant modes to be

of interest it must have two real stable roots. If d > 7, then both roots are positive if

dlnnOh IdlnV <-1, in which case the resonance is always unstable. Both roots are negative if

d lnnOh IdlnV > -1, in which case there is no resonance and the plasma is stable. Therefore, if

d > y we also require dlnnoh//dlnV > -1 to be completely stable due to charge uncovering

effects. If d < y, then there is always one positive root, which permits a resonance, and the

stability of the region depends only on the signs of A and the numerator of N . For d < 7 case

stability requires

(1+I1  I dlnTh <0 (3.47)(I 2\8h/\ dlnnVh 2 dlnp, '

where the sign of (I) depends on sign of d In POh /d lnW and the details of the dipole magnetic

field. For the point dipole considered in the next section, the sign of (I) depends only on sign of

d In POh /d In y and the plasma beta.

If we consider the electromagnetic case, with fh ~ fb - 1, then the a or charge

uncovering terms become negligible, N reduces to N = 1/(b) >0, all A j terms are positive

without the drift reversal, and the expression for K becomes

K=2A4 - (A2 + A3 )+ A1 = A4 A+ + Al (A+A

In this limit, stability depends on the sign of AK. If

dlInn0oh /d Iny IdlnTh /dln ,



then a sufficient condition for stability is Al (A2 + A3)2 / 4A4 .

If we allow 8h >> 1~ b, then a~ 1 and the general result of Eq. (3.43) must be

considered. A sufficient condition for stability can then be seen to be y > d,

(1+~ ib)+ ()(I))> 0, (F)<1, (H)<1, and dlnnohldlnyf<dlnThllndV. However,

more detailed results require a specific dipole equilibrium. In the next section we consider this

high /3h case further, as well as the situations already discussed, for the point dipole

equilibrium". Their point dipole model allows us to simplify the computational aspect of our

analysis, while retaining enough features of the general dipole geometry to be of interest to LDX.

3.5 Point Dipole Application

In the previous section we derived and discussed the dispersion relation for interchange

stability in general dipole geometry. Unlike the Z-Pinch, the dipole dispersion relation involves

flux surface averages of various geometrical quantities, making it difficult to usefully discuss

stability without numerical work and a specific dipole equilibrium. To obtain semi-analytical

results we adopt the point dipole equilibrium found by writing the poloidal magnetic flux in the

separable form given by

(r,u)= yoh(urb  , (3.48)

where u = cos 0 and R = rsin 0, with r and 0 spherical coordinates and 0 measured from the

axis of symmetry' 7 . Here, V0 and ro are normalization constants and a is a parameter between

zero and one to be determined. The spatial behavior of V is governed by Grad-Shafranov

equation, which for the choice of Eq. (3.48) and



p(¥)= po (/o) 2+4/ a  (3.49)

can be rewritten as an ordinary differential equation for h(u) :

d2hd - h - a(a + 2)]1h+ 4 / a , (3.50)

where B= ,•o with Po being a normalization constant. Solving the preceding equation fora2V

h(u) determines the eigenvalue a =a(f), with a -+ 1 for 8--.>0 and a -+ 0 for /3 -oo. For

this model the local beta, defined in Sec. II, is only a function of poloidal angle and is given by

,8 = 2h 4 /a (h+_a]

Using this separable form we can express the spatial dependence of all required quantities

in terms of V, h(u), and its derivatives, and evaluate all of the flux surface and trajectory

averages.

We begin by addressing the issue of drift reversal in point dipole geometry, which

requires the evaluation of 4D . Figures 3.1 present graphs of - l V(21Th imv2), which when

trajectory averaged becomes wD , given by Eq. (3.27). We plot this expression as a function of u

for different values of B and A .
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Figures 3.1 (a)-(c): Expression - 'rd .V(21Th /mv2) as a function of u for different values of 3 and L. The bold
solid line is A-=0.1, the thin solid line is W=0.9, and the dotted is -=0.5

From the graphs we can see that the integrand can become negative. However, even at large /,

the particles do not spend enough time in the regions with reversed magnetic drift to make oD ,

the effective trajectory averaged drift, negative. As a result, drift reversal is not possible in point

dipole geometry.

We next proceed to the evaluation of the hot electron coefficients I, F, and H, as well

as their trajectory averages entering in the dispersion relation. Figures 3.2 illustrate the

dependencies of I, F, and H on u for different values of ,, where I is normalized to

d In P0h /d In V, while F and H are normalized to d In noh /d In W.
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Figures 3.2 (a)-(c): Normalized hot electron coefficients I, F, and H as a function of u for different values of l.
The bold solid curve is the coefficient I, normalized to dinpbdln 1 while the dotted curve is the coefficient F

and the thin solid curve is the coefficient H., both normalized to dlnnohdlnv.

As we can see from the plots, all three normalized coefficients are positive at all possible u, so

their flux surface averages will also be positive, as confirmed in Fig. 3.3, where we plot (I),

(F), and (H) as a function of 8f. We take dlnnOh Idlny = 1 and r1h =0, so that (I), (F), and

(H) are normalized to d In POh /d In ~ and d In noh Id ln V, respectively.
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Figure 3.3: Flux surface averages of normalized hot electron coefficients I, F, and H as a function of P with
dlnnddln tl and lh=0 for normalization. The bold solid line is <I>, the dotted line is <F>, and the thin solid

line is <HI>.

As we can see from the plot, the normalized flux surface average of I is positive, and both

normalized (F) and (H) are also positive as well as less than unity. It is also obvious from Fig.

3.3 that (H) = (F), and therefore the expression for K, which describes the resonant particle

effects, can be approximately written as

K= A4{I a(1-(H))- 1]+ (A2 +A 3)/2A4  ++A, 34A

As a result, only if A - (A2 + A3)2 / 4 A4 becomes negative, can K change sign, an observation

we will return to, when the resonant effects of hot electrons are addressed later in the section.

Next, we turn our attention to analyzing the lowest order stability condition, which

ignores the resonant particle effects and for the general case is described by the dispersion

relation of Eq. (3.38). It is convenient to illustrate this analysis with plots of d as a function of

If. To do so, we use the expression that relates the total pressure gradient to the hot and the

background pressure gradients, namely

dlnp = 2 +A= h) dnh b) dlnb (3.51)dlnv a (fO) dlnpv (,&0) dlny '

I\ 1 · I · · r 1



where for this point dipole model the total pressure is given by Eq. (3.49). Notice that if we

assume equal background and hot electron pressure profiles and use d lnVI/d ln V=-(1+ 3/a),

we find that lowest order stability is always satisfied since d = (2a + 4)/(a + 3) < y = 5/3.

For the electrostatic case with 8b < < ,8h - 1, Eq. (3.51) reduces to

2 + 4/a = d In POh/ d In , which when substituted in the dispersion relation given by Eq. (3.39)

yields

1 + h) (I) (b) +nOhTe - 2a+4 1 . -(_d)= 0 ,
S• )2 POb (id) a+3 l+,h

where we used dlnVIdlnyV= -(1+3/a) and dlnnoh / d ln= (d lnpoh /dlnu)/(1+q7h). The

stability boundary is described by d y a+3 and can be graphically represented as
4(b)(bl/ nohTe)2

in Fig. 3.4,

_fl a.I·r· ~a ol(nOh I dPob-= 1  Unstable

-eta=1 - - - eta=3Stable
- - eta=-3

,

I I I I II I I 1 1 1 1 1 1 1 1 1 -I 1
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Figure 3.4: Stability regions for different values of ilh with b(podnohT)•=1. The bold solid curve is qh =1,
which coincides with the thin solid line d=--y. The dash-dotted line is lbh =-3 and the dotted line is TIb =3.
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where the qh = 1 and d = y curves overlap. As we can see from the graph, the charge

uncovering effects due to hot electrons are stabilizing, and allow achieving stability with d

above y when qh is kept negative.

Next, we consider fully electromagnetic case with 8h >> b ~ 1, so that the total plasma

pressure remains mostly contained in the hot electrons. It follows from Eq. (3.51) that

d In p /d In Poh = , and as a result the expression for (I), which is dependent on d In poh /d in ¥v

is positive. In addition the expressions for I+•L• r(b) + 1(h)(I) and the coefficient A given

before Eq. (3.43), with (1-(H)XI -(F)= (1 - (H)are positive. The dispersion relation for this

case is given by Eq. (3.38) without the small (G) term. The stability boundary is illustrated in

Figs. 3.5 where d is plotted as a function of 8 for different values to rh ,

I (nohTJpob2)'=l, BOl ,1h=3
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Figures 3.5 (a)-(d): Stability regions for different values of Ir, with Pb =1 and b(panBnelT) 2=1. The thin solid
line is d=y. In figures (a), (b), and (d) it overlaps with the top solid curve.

and where the d = Y curve overlaps with the top solid curve with the exception of the Fh = -0.8

case. As can be seen from the graphs, stability is improved in the vicinity of irh = -1, but

otherwise is rather insensitive to changes in rh . The b(pob /nohTe,)2 parameter does not affect

the stability boundary significantly. When increased (decreased), it slightly shifts the two curves

together (apart), thereby decreasing (increasing) the stability region. The graphs in Figs. 3.5 are

only valid for ,8h >> ,b -~ 1, that is above about / = 5. For lower ,/, the stability condition

is given by Fig. 3.4 if /b < <, h 1 or will be discussed shortly for h fib ~ 1.

It is also of some interest to take the hot and background pressure gradients as equal, so

that Eq. (3.51) reduces to 2+41a=dlnpoh ldlnrn=dlnpobldlnyn. For this special case

d < y and therefore A and C as given before Eq. (3.43), are positive and negative, respectively.

Consequently, the plasma is always stable in the absence of resonant particles effects.

For the case of Ph -~ b - 1 the dispersion relation is given by Eq. (3.40) and the total

plasma pressure is split between the background and hot particles. If, for example,
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(fib)=(,h )/2, then Eq. (3.51) reduces to 4(l+2/a)=dlnpoh/ Idln+dlnpob/dlnV,

and it follows that

dlnPOh =4(1+ )- (1+3)
d Inr a a

From Eq. (3.40), the stability boundary is determined by the signs of three expressions: -d ,

the numerator 1+ Id(flb) ) (8(I), and the denominator 1+ Iyr(fb)+ ( (I), that are shown

in Fig. 3.6. Unlike the previous two cases the stability boundaries are independent of r7h .
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Figure 3.6: Stability regions for <P>-p=<-<P=<f>/l2. The bold solid curve is d=y, the dash-dotted line is
1+d<Pb>/2+<I><IP>/2=0, the dotted line is 1+y<P>/2+<I><Plh/2-=0.

As we can see from the graph, d < y is expected to be the only experimentally accessible

stability region, since the second stability region does not cover 8 <1, depends sensitively on

(Ah)(Ib) and does not exist in the absence of hot electrons.

Next we consider the resonant hot electron effects that determine what we refer to as the

first order stability boundary. We note that these effects are weak, and therefore cannot stabilize

the lowest order instability, but can potentially destabilize the zero order stable regions. Recall



that resonant particle stability is determined by the sign of a , which is given by Eq. (3.43), and

depends on the signs of a 0, A, N, and K. Since the expression for aw is quadratic with real

coefficients, in the stable regions it will have two real roots. Only positive roots can lead to a hot

electron resonance with the wave, since otherwise the denominator in the expressions (I), (F),

and (H), as given in Eq. (3.35), will not vanish. Consequently, stable regions with two negative

real roots will remain stable due to the absence of resonance. Moreover, the lowest order stable

regions with two positive roots will always become weakly unstable, regardless of the signs of

A or K. This behavior occurs because of the denominator of N, which can be written as

A+ 'deB= i v B2 -4AC . As both signs are present there will always be one unstable root.
2aib 2ab

In the lowest order stable regions with one positive and one negative root, only the positive root

can lead to a resonant instability, and the condition for it will then be determined by the signs of

N, A, and K. We will first concentrate on the sign of the latter.

As we have discussed earlier in this section, the sign of K depends on the sign of

A1 - (A2 + A3)2 /4A4 . So we present the graph of Al - (A2 + A 3)2 1/ 4A 4 as a function of /f in

Fig. 3.7.
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Figure 3.7: Graph of A,-(Az+A 3))/(4A4) vs. .



The graph shows that this expression and, as a consequence, the expression for K, are always

positive. So the condition for weak resonant stability in the regions of interest depends only on

the signs of A and the numerator of N, which are considered next for the three different cases

of beta orderings.

For the electrostatic background case of 8b << «h ~ 1, first order or resonant particle

stability requires

dlnnanOh 2(2+a)
dlnV (a+3Xl+qh)

if d > y, as discussed in the previous section. This is the condition for the lowest order stable

region to have two negative real roots and it is satisfied when 1h < -1 or

r7h > (a + 1)/(a + 3)> 1/3. If d < 7, then the lowest order stable region has only one real positive

root, and the first order stability is given by Eq. (3.47). For this beta ordering (1 + (Ph )(I))> 0,

so the plasma will be stable to a hot electron resonant instability if

dlnnoh /dlny <•dlnT h /d ln g . This condition can also be written as

(dIn POh /dlnfX1 - qh)/(1+? h)5 0 and is satisfied when h < -1 or h > 2/3. Thus, Fig. 3.4

suggests that to avoid hot electron resonance destabilization we need to avoid operation with

-1 qrh <2/3.

For electromagnetic case of b ~ h -~ 1, the zero order stability boundary is independent

of qh , and stable regions always have one positive and one negative root. Therefore, as

discussed in the previous section, the resonant particle stability depends only on the sign of A

and requires dlnnOh /d In -d In Th /d Iny, which as before is satisfied when ph < -1 or



??h > 2/ 3. So as in the electrostatics case, the regions of operation with -1 < r/h < 2/3 should be

avoided.

For the electromagnetic case of Sh >> b ~ 1, we recall that the coefficient A, given

before Eq. (3.43) is always positive, and the plasma will be resonant stable in the regions with

C > 0 and B > 0, where it has two real negative roots. When C <0 there is only one positive

root, and the sign of A determines the stability, so dlnn<Oh/ddInV d ln dTh Id InV is required

for stability.

In this high Ph case, unless Rh -- --1, the lowest order stability boundary very closely

coincides with the C =0 curves. As a result, except for this special case, resonant electron

stability requires d In nOh / d In yv< d In Th Id In .

For the special case of rh -- -1, the stability condition is presented in Fig. 3.8, where the

signs of B and C are plotted as a function of P, and we also remind readers of the lowest order

stability boundaries, which are shown in faint grey.
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Figure 3.8: Stability regions for q->-1l with Pb =1 and b(p0b/n0bT.=1. The dotted line is B=O, two bold solid
lines are C=O and thin solid lines are the lowest order boundaries as shown in Figs. 3.2.



In this graph, the two solid lines bound the region with C <0, where the plasma is resonantly

stable if d ln n0h /d In y 5 d In Th Id ln V. The region above the top solid line, but below the

faint grey line has C > 0 and B > 0, and is always stable since the two lowest order roots are

negative. The region below the bottom solid line and above the faint grey line has C > 0 and

B < 0, and is always resonantly unstable since it has two positive roots.

We conclude this section by stressing, that keeping d < 7 and

d In nOh d In I< -d In Th Id In v is the best means of keeping the plasma stable. In special cases,

these conditions can be relaxed, but more profile control is required.

3.6 Conclusions

We have investigated the effects of hot electrons on the interchange stability of a plasma

confined by a dipole magnetic field and have obtained the general dispersion relation for

arbitrary beta. The analysis of the stability boundary is dependent on the particular details of

magnetic field, as well as the background and hot electron pressure, temperature and number

density profiles. As a particular illustration of the preceding theoretical development, the

dispersion relation is analyzed in detail for a point dipole equilibrium.

Our analysis indicates that it is impossible to have magnetic drift reversal in the point

dipole, but it might become a concern in more general dipole geometry, in which case a strong

instability would occur.

If resonant hot electron effects are neglected, we find that the general, experimentally

achievable interchange stability condition normally remains close to d < 7. In a point dipole we



demonstrate that this condition can be improved and d can be allowed to exceed y either in the

case of an electrostatic background by keeping qh negative, or in the electromagnetic case with

jfh >> f i by keeping -lh close to negative unity.

Hot electron drift resonant effects result in small corrections to the mode frequency that

can create weak instabilities in the stable regions. Usually this weak instability can be avoided by

satisfying the condition d In nOh d In v d n Th /d In v.



Chapter 4

Conclusions

In this thesis the effects of hot electrons on the interchange stability of a plasma confined

by closed magnetic field lines was investigated. This work has been motivated by a desire to

determine how interchange stability is modified by the presence of hot population due to electron

cyclotron heating. Our study has demonstrated the key roles that hot electron magnetic drift

reversal and the hot electron fraction and profiles will play in the Levitated Dipole Experiment.

The results of this work are applicable to LDX and can be useful to other closed field line

devices.

In Chapter 2, we first have developed the procedure for Z-pinch plasmas, which can be

thought of as a linear approximation to a dipole. The simplicity of this geometry, while

preserving the feature of closed field lines and allowing us to treat the diamagnetic and magnetic

drifts as comparable, gave us the ability to understand the physics behind the destabilizing

influences due to a hot electron population. In particular, our results yielded two different types

of resonant hot electron effects that modify the usual ideal MHD interchange stability condition.

The first occurs when the magnetic field is an increasing function of radius and there is a

critical pitch angle for which the magnetic drift of hot electrons reverses direction. This

interaction between the wave and the particles with the pitch angles close to critical always

causes instability for Maxwellian hot electrons. And as a result, stable operation is not possible

for such a magnetic field profile.



When the drift reversal does not occur and resonant hot electron effects are neglected, we

find that interchange stability can be enhanced compared to the usual MHD interchange

condition by increasing the background plasma pressure as well as the gradient of the hot

electron density for 8h >> fb ~ 1. However, further increasing Pb beyond two or three, did not

result in significant increases in stability region. When the hot electron drift effects are retained,

they can potentially cause a weak resonant hot electron instability. This second destabilizing

effect due to the hot electron drift resonance can be avoided by controlling the hot electron

density and temperature profiles so that rn'h /nOh > 3rTh1 /2Th .

Geometry can be important in evaluating effects of hot electrons on a plasma interchange

stability. Consequently, we extended our calculations to dipolar geometry in Chapter 3 and have

obtained the general dispersion relation for arbitrary beta. The analysis of the stability boundary

dependents on the details of magnetic field, background and hot electron pressure, temperature

and number density profiles. To illustrate the application of the preceding theoretical

development, we have the analyzed the dispersion relation for a point dipole equilibrium. Unlike

the Z-pinch case, our analysis of a point dipole showed that it was impossible to have magnetic

drift reversal. However, this may become an issue in more general dipole geometry or when the

effects of anisotropic temperature due to ECRH are considered, in which case a strong instability

would occur.

Without the resonant hot electron effects, the general, experimentally achievable

interchange stability condition normally remains close to d < y. In a point dipole geometry this

condition could be improved and d could be allowed to exceed 7 in the case of an electrostatic

background by keeping rlh negative or in the electromagnetic case with Ph >> fb - 1 by

keeping rlh close to negative unity.



As in the Z-pinch case, the hot electron drift resonant effects in a dipole resulted in small

corrections to the mode frequency that could create a weak instability in the interchange stable

regions. This weak instability can be avoided by controlling the number density and temperature

profiles of the hot electrons so they satisfy d In nOh / d In V < d In Th / d n .

The work presented here can be expanded in many ways. As an example of a possibly

interesting continuation we mention the investigation of anisotropic temperature effects of hot

electrons on plasma stability. The ECRH tends to heat predominantly in the direction

perpendicular to the magnetic field, and as a result the parallel and perpendicular temperatures

are expected to different. The velocity space anisotropy may have a great impact, particularly if

the VBo drift were to reverse. Another interesting problem that has been mentioned only in

passing here is the stability of HEI modes in Z-pinch and dipolar geometry. These effects are of

great interest to LDX community, since they depend on the hot electron fraction, as well as

density profile and seem to be observed in LDX. Finally, the extension of the point dipole case to

the particular dipolar geometry of LDX and the solution of the full integro-differential

description would be useful to the LDX effort.



APPENDIX 2.A: EVALUATION OF HOT ELECTRON RESPONSE.

This appendix presents details of hot electron response expressions G, H and shl.

Recall that the perturbed hot electron density and radial current are given by

nlah _ If Lhdi G+ 0 H (2.Al)
Oh "Oh Th B0

and

=ik -- /-'-e Vrflhdv = eH L --- I s h l , (2.A2)ikB0  ikB0 Th 2 B0

with f1h given by Eq. (2.26). Thus, the expressions for G , H and Shl can be written as

G=1-2h [dte-t2 + h (t2 _31 d2 (2.A3)
O0 2-1 D-m/t2rh'

H= 2 h Jr dte 2 1- (2.A4)
4 o 0 -1 D-wl/t2'h

and

Lh"~h fdte-t 2 4[l+qh(t2 3) dA.(1- 2

wh dte- t1- (2.A5)
4Oh 0 -1 D-2/t2

where t2 = mv2 2 Th and D=(1+ s)2 2 +(I- s).

For s <1 no drift reversal is possible and we can drop the o/ ol t 2 term in the

denominator due to co<< <o, , except for very small t, where slow electrons are resonant with

the wave. Retaining this weak resonant effect the expressions for G, H and shl become

G = 10_ l-h) j d' + Gres, (2.A6)-1



H =T"..J + Hres' and (2.A7)
-1

8akh D res
-1

with

Gres 7h) 3/2 (2.A9)

Hres  3 ý/2d

Hres = i1h 52 , and (2.A10)t• -1

(ShI)res - i 2 D h7/ (2.A D7 l2
-1

Observe that since D does not vanish for s < 1, integrals over 1 are easily evaluated,

confirming that the non-resonant parts of expressions for G, H and shl are all of order unity.

As we noted at the beginning of Sec. 2.4, only the non-resonant part of shl matters in the

dispersion relation for s <1 to lowest order. Thus, ignoring the weak resonant effects, the hot

electron response for s <1 is described only by shl, where I is given by Eq. (2.34).

The weak resonant effect of hot electrons for s <1 is calculated by evaluating the A

integrals in Gre,, Hre and (Shl)res to obtain the expressions given in Eqs. (2.40) - (2.41).

For s > 1 there is always a critical pitch angle A01 <1 for which D vanishes and

therefore we must keep the w term with ImW >0 to satisfy causality. Evaluating the A integral

in the expression shl, Eq. (2.A8), we find



d =-A4 (4+s)-311 dA
-1 D-0m/$t 2  3(1+ss)2  ) D-t/It 2a(A-I - (2.A12)

(s) (4+s)-[ Ins+ + ----i7)3(1+sy -r 2'
where we have dropped o/t 2 Oih order terms since they are much smaller than the leading

imaginary term. As a result, the expression for s > 1 is as given in Eq. (2.34).

Finally, we have to evaluate the expression for I at s -- 1. The vicinity of s = 1 is the

only region were the c and t dependence of the integral

1 -1... s<1
J d - (2.A13)

-1 D-/xht2 s- -1... S >
J2(s-l+a,/t2aj, )

enters. The weak t dependence makes it awkward to do the t integrals exactly. However, to get

the region about s = 1 approximately correct, we evaluate the integrals in shl at s = 1 getting

I=- 2i+-2 , Z(2.A14)

and then use the result to make an approximate fit that is independent of t. This procedure is

equivalent to making the replacement

-1... s<l
42(1-s-owl ,A)

I dA , -2 1... s>l, (2.A15)
1 D-a/ ltt2 s 2s-~l+/

[-1... s=l

where

'"44x(2+3h )]•



Notice that if we were to repeat the same procedure for G and H as given by Eqs.

(2.A3) - (2.A4) for s > 1 and s -+ 1, we would find that they are of the same order as shl and

therefore would not be significant in the dispersion relation.



APPENDIX 3.A: EVALUATION OF PERTURBED HOT ELECTRON

DISTRIBUTION FUNCTION.

This appendix presents the detailed evaluation of the first order correction to the

perturbed hot electron distribution function. We assume that the hot electrons satisfy the Vlasov

equation and linearize the hot electron distribution function about its equilibrium by taking

fh = fh + flh +... with fOh = fOh(V*,E) satisfying Eq. (3.21) and flh satisfying Eq. (3.22).

We follow the standard gyro-kinetic procedure12,123 by removing the adiabatic response by

introducing gl = flh + so thatm SE

#hdf 91A, h - \m --dg-, "•"L - 'aA (3.A1)'-- - VQ+ -vxM a -V f0h, (3.A1)

where d /dt = ~ /lt + f -V - 2ev x B0 Vv is unperturbed Vlasov operator. Rewriting the above

kinetic equation for g yields

dgl afoh d _ + • ×l).vfoh

dt E dt\m ' at(3.A2)
h Oa R_^)+ R O V+A V xg@ *

m aE \St St av'"r at

where o o 0L=0 .
dt E -- "

We denote the gyrophase independent and dependent portions of gl = gl + gl with a bar

and tilde, respectively. Next, we obtain the two equations for both parts of gl. The equation for

gi is obtained by gyroaveraging Eq. (3.A2) using E = v2 /2, '= v2/2B o, and 0 gyrophase on

the left side. Recalling that g1 is gyrophase periodic yields

at avt (-l+).V I40+\At _)oh ._ " )+  -ll) (3.A3)at+ ro- gj+ V-L V a maEat at av R a _11



with the gyrophase average defined by (...)p = -... do. The equation for the gyrophase

dependent part, gl, is obtained by subtracting the preceding equation from Eq. (3.A2) to find

(3.A4)

Using the orderings given by Eq. (3.20) we can expand gl = go + g4 +... and solve these

two equations order by order. As a result, go is gyrophase independent, since to lowest order Eq.

(3.A4) gives

-QeVxi-VVg9o Oe =0. (3.A5)

In addition, Eq. (3.A3) to lowest order requires ri VFro = 0, making g.o also a flux function to

lowest order.

The solution of Eq. (3.A4) to next order gives us the equation for the first order

gyrophase dependent part k , which we write as

1- 1- x .V fo+ Oh • •fohm aE at Bo a I --- "• (3.A6)

With the help of the preceding equation we can calculate go from the next order version of Eq.

(3.A3) by gyroaveraging and observing that

( } 2 .FD + ' V VXfbQe ) V 2 Qe

with the magnetic drift velocity given by

d 0V 2 nB+v 2
Vd have a V component.

Note that neither the curvature nor VB0 have a V4 component.

ail •'V l+elV4l-( Vl = -J" .° Le +" 7• X afoh a" +•R afoh Alat V -L -V' aw

;O-L .Vk I
I =;vi -VV -)X T 1



Multiplying Eq. (3.A3) by B / v11 and integrating over one complete poloidal circuit for

the passing and one full poloidal bounce for the trapped particles to annihilate fi -V§7 we then

obtain Eq. (3.24).



APPENDIX 3.B: EVALUATION OF PERTURBED HOT ELECTRON

NUMBER DENSITY AND RADIAL COMPONENT OF CURRENT.

In this appendix we evaluate the perturbed hot electron number density nlh = tflhdv and

V y component of the current, Jl, = -e f Vflhdi , where flh is given by Eqs. (3.23)-(3.25). It

is clear that only the gyrophase independent part of gl contributes to nlh, while only the

gyrophase dependent part survives the integration in Jlr . Thus, the perturbed number density is

given by

eo ep fMh 60)aZ0h) vmy2 MA fdh W_0dr(QBB /BOl)/4d-d
lh nOh' T~h 22 + Th

where 4vjllAlldr = 0 since for an interchange mode 41 is up-down asymmetric.

The expression for Jl, = -e Jvgldv may be rewritten as

JI, - 2BO  IV (V"g + i+ fMh) -h  = im fV2 t 6 eMfMhAg~ k.

Before proceeding further we use the estimates gi - fMhe D ITh and Aý - A /l to compare the

size of the terms in Jl,,. Recalling Eqs. (3.30) and (3.31), we see that

fiMhA eoj/Th .o _ 1/12 << 1.
T /lR 120

Hence, for high mode number I we can ignore the Ag term compared with the gi contribution.

Therefore, the expression for Jl, reduces to

_eg iml v2fMh(O•~h) im2 A2v4fMh (-O~ah )df(Q B / - BO)/ •)dr
JJ f 2 + -- - 2J, - Th 2RBI 2- 4ThRB m



If we also treat QB as a flux function to lowest order, then it can be taken outside of the

dr integrals in the expressions for n1h and JI, to obtain Eqs. (3.33) and (3.34), respectively.



APPENDIX 3.C: EVALUATION OF IMAGINARY PARTS OF G, H, F,

AND I TERMS.

This appendix presents the details of obtaining the weak hot electron drift resonance

terms for the intermediate frequency regime with (wdh) >> w(>>(wde) . Accounting for both

B/B 0 oo2gr
signs of vi gives JId•- I I I d0v2dvdl(BolB)/2 9 1-ABo0  .

0 00
We can then rewrite the full

expressions for G, H, F, and I given by Eq. (3.35) at the end of Sec. 3.3. By evaluating the 0

integral and defining t = vfm 72T we obtain

dA jdte-0t2 h 1+qh 2

-A80 /W t2

dA dr(I/Bo)/IdT Jdte t 4  0t 2h 1+1 2
41-AB0 0 0t2

2 BIA0  0d t2 h 1+qh 023)1
F =(B J)-  

_
1  f  J/ BO ,d de-t2 t4 -

F /-rg2 o 2

(Bo2)-2 B/BO ,2fdr(R/BO)/lfdr 0 t 6 a-h h2_•2-

0 .4-4 0 -ABOI 0 0e-t2 fD

To get the non-resonant, real parts of the expressions for G,

- Oh, we simply neglect all w dependence in the t integrals. Then we only need to

evaluate the lowest order resonant contributions in the following expressions:

G=1 B0 Io

H = Boo-2)- B / Bo
o3 0

(3.C1)

( << (dh)

H, F for

1



BIB0

G=I- B0azh (1-17h)I dA +2B 0 WD1A-BO re

BO(BE2)'h BIBOfJAqd(BO)I~jd
H =I3 1 d IOI+Hres

F(BE2-2' -~h BIB0F 2 fB AdA - res'
4B 0W ODjI--ABOIB

3(BE2)-c2Ah(1+17h) B/BB o 2 fdr(RIBO)I4dr
8 g - dA7 fres0 WD41-ABOINo~s

(3.C2)

To calculate the small imaginary corrections due to the weak resonance, we consider the

speed integrals first and note from (3.C1)

of(tY)e- dt
o0 a-At2

that they are all of the form of

SJdt f(~-t2  + L with f being only a function of t. The imaginary
0 2A7 Am / A -t /A(-+t'

part of the preceding integral is given by -ni eAf-f ) from the calculus of residues. For the2A-4[l

intermediate frequency ordering -J•/A «<<1, so that we can approximate the exponential by

unity and only keep the largest contribution to f(~ 1 A ). As a result, for wa<< (dh)~ "h, the

weak hot electron drift resonance terms to lowest order can be written as

Gr i'F'ra4Wsh(1-Vh )B0B IB 0
rs2B 0i

/2 )BIBB

2g3(Bg2) 0'
Hres 2ff3(BE2)2 f

0 aFres~i-.,3~G2 2GhO

2B2(B6~2) 0$

dA

O V4d2BFIBo)IldT

(3.C3)
AdA

iJ"N /2ah (1-rlh)B B O d~A2 dr(BIBo)1•4dz
res 2 2 2 0 241B. 2g4(B62 ) 0 _,jjo~io



Once the above expressions are flux surface averaged, they reduce to the ones given in Eq. (3.41)

upon using (Odh) = (de )Th ITe .
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