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Abstract

Motivated by the electron cyclotron heating being employed on dipole experiments, the
effects of a hot species on stability in closed magnetic field line geometry are investigated. The
interchange stability of a plasma consisting of a fluid background with a population of kinetic
hot electrons is considered. The species diamagnetic drift and magnetic drift frequencies are
assumed to be of the same order, and the wave frequency is assumed to be much larger than the
background drift frequencies.

To illustrate the key physics issues and obtain an simpler understanding of instability
mechanisms, we first examine the effects of hot electrons in cylindrical Z-pinch geometry. This
linear approximation to a dipole preserves the essential feature of closed magnetic field lines.
The absence of variations along the equilibrium magnetic field allows us to analytically derive an
arbitrary total pressure dispersion relation, investigate a large variety of regimes, and explain the
physical phenomena at work. Our analysis finds that two different types of resonant hot electron
effects can modify the simple Magnetohydrodynamic (MHD) interchange stability condition.
When the azimuthal magnetic field increases with radius, there is a critical pitch angle above
which the magnetic drift of the hot electrons reverses. The interaction of the wave with the hot
electrons with pitch angles near this critical value always results in instability. When the
magnetic field decreases with radius, magnetic drift reversal is not possible and only low speed
hot electrons interact with the wave. Destabilization by this weaker resonance effect can be
avoided by carefully controlling the hot electron density and temperature profiles.

Based on the insights obtained by considering a Z-pinch, we then expand our calculation
to a dipole magnetic field confined plasma by retaining geometrical effects such as the poloidal
variations of electric and magnetic fields. These variations cause quasi-neutrality and the radial
component of Ampere's law to become a set of coupled integro-differential equations which
without approximations can only be solved numerically. To obtain a semi-analytic solution we
consider an interchange approximation that allows us to obtain an arbitrary beta dispersion



relation that recovers the correct Z-pinch limit. In the dipole case, our analysis again shows that a
weak drift resonance with slowly moving hot electrons can result in destabilization, which can be
controlled by the hot electron density and temperature profiles. The specific example of a point
dipole equilibrium is considered in some detail to explicitly demonstrate these results. In contrast
with the Z-pinch, a strong hot electron destabilization due to magnetic drift reversal is found not
to occur in a point dipole.
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Chapter 1

Introduction

The motivation behind this work is the recent interest in the Levitated Dipole Experiment
(LDX) operating at MIT. It has been built by Columbia University and MIT to investigate the
physics of plasmas confined by a dipolar magnetic field and to explore the possibility of
achieving high plasma pressure comparable to the magnetic pressure' . To confine plasma this
device uses a dipolar magnetic field, created by a superconducting coil that is capable of
producing up to 4 Tesla of magnetic field with the average of a few tenths of a Tesla. Presently,
the coil is being supported, but it is expected to be levitated in the current year, which will reduce
the losses to the supports and improve confinement'®. LDX is shown schematically in Fig. 1.1. It

has a chamber radius of about 2.5 m, a levitated coil outer diameter of 1.2 m, and it contains

approximately 30 m> of plasma.
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Figures 1.1: Schematic picture of Levitated Dipole Experiment.

LDX is designed for steady state operation in an MHD interchange stable regime’ 6 in the
presence of electron cyclotron heating. This heating increases the temperature’ and introduces a

hot electron population. Current experimental measurements suggest that a hot electron

population with temperatures in excess of 50 keV and number density of ~ 3%10' m™ has

been achieved while the background plasma is at 10's of Vs with a density of ~1x10"7 m™.

The presence of these hot electrons can alter plasma stability, leading to the motivation of
this work, which is to study the effects of hot electrons on the stability of plasma confined by
closed magnetic field lines such as those in dipole geometry. The current work develops a
theoretical approach to examining the problem of plasma stability in the presence of a hot
species by highlighting many of the key physics issues and by employing a technique that can be
used in numerical extensions. To make the analysis analytically tractable to the extent possible,

we model the plasma as having an ideal MHD background consisting of ions and electrons plus a
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fully kinetic population of hot electrons. To simplify the gyrokinetic hot electron response only a
Maxwellian unperturbed distribution function is considered.

It is particularly important to examine the role the hot electrons play in modifying the
usual ideal MHD interchange stability condition including wave-particle resonance effects.
Based on current LDX experimental observations, unstable modes with frequencies ranging from
two to five of kHz to hundreds of MHz are being observed, corresponding to typical magnetic
drift frequencies of the background species and hot electrons, respectively. To concentrate on the
role the hot electrons play in modifying the interchange stability, we consider modes with wave
frequencies much higher than the background and lower or on the same order as the hot species
drift frequencies.

Geometrical effects are known to complicate the analysis, so we begin by considering the
simplest closed field line geometry, namely, the Z pinch, which is investigated in Chapter 2. It
can be thought of as a cylindrical approximation to a general dipole, so that the unperturbed
magnetic field is constant and closed on the cylindrical flux surfaces, and the unperturbed
diamagnetic current is along the axial direction. It lacks the geometrical details associated with
field line averages of quantities, but is useful to help understand the physics behind the driving
forces for instability. This simple model also allows us treat the diamagnetic and magnetic drifts
as comparable as they are in a dipole and makes it possible to perform a kinetic treatment of the
hot electron population in the limit in which the wave frequency resonates with the magnetic
drift frequency to cause a destabilizing Landau-type resonance. When the superconducting coil is
fully levitated, it is expected to confine plasmas in which the magnetic pressure is comparable to
both the background kinetic pressure and the hot electron kinetic pressure. So in our analysis we

consider the case when the background kinetic pressure and the hot electron kinetic pressure are
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of the same order. However, the experimental measurements of the current LDX plasmas suggest
that the plasma pressure is primarily contained in the hot species, presumably because of
background plasma losses to the supports of the superconducting coil. To investigate stability in
this case, we allow the hot electron pressure to be much higher than the pressure of the
background plasma.

We note that the stability analysis presented here is completely different from those
employed for a bumpy torus where a hot electron ring is necessary to provide stability in the
otherwise unstable mirror cells linked to form a torus®. In a Z pinch model of a dipole, stability in
the absence of hot electrons is assured by employing a pressure profile that decreases slowly
enough to satisfy the usual MHD interchange condition which arises due to the stabilizing
influence of plasma and magnetic compressibility in closed magnetic field lines. The hot
electrons generated by electron cyclotron heating must then be investigated to determine if they
can act in a destabilizing manner. In particular, the curvature and grad B drift must be treated on
equal footing. These drifts allow a strongly unstable hot electron drift resonance to occur when
the grad B drift opposes the curvature drift. Weaker destabilization occurs when the drifts are in
the same direction. Here we remark that high mode number Z pinch interchange stability in the
presence of a hot electron population is in some details related to the low mode number alpha
particle driven internal kink mode and fishbone instabilities in tokamaks. For these alpha particle
driven modes the details of the resonance of the wave with the magnetic drift of the alphas can
have a important impact, with drift reversal at some radius leading to instability’. In our Z pinch
model we are able to investigate the resonant particle mechanism in a simpler geometry that
allows us to give a physical interpretation of the effect of drift reversal, which occurs at some

critical pitch angle (that is allowed to vary radially). These hot electron drift resonance effects
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are considered in detail in Sec. 2.4. In the electrostatic limit when the wave and drift frequencies
are comparable our results include the standard hot electron interchange if hot electron
temperature gradients are ignored and the hot electron density falls off radially'®.

To examine the role geometrical effects play in the interchange stability of plasma, we
expand the Z-pinch calculation of Chapter 2 to a more realistic geometry of a general dipole in

Chapter 3. Here the unperturbed magnetic field By, is purely in the poloidal direction, while the

unperturbed diamagnetic current J, is toroidal. We again consider flute or interchange modes
with wave frequencies intermediate between the background and hot species drift frequencies.
We do not address the hot electron interchange, for which the mode frequency is of the order of
the typical hot electron drift frequency'’. As in the previous chapter, the magnetic drift,
consisting of comparable grad B and curvature drifts, is treated on equal footing with the
diamagnetic drift. We obtain the dispersion relation for arbitrary plasma and hot electron
pressures, but then examiﬁe three plasma pressure orderings relative to the magnetic pressure:

background electrostatic with [, <<f, ~1, electromagnetic with 1~ /8, <</f,, and

electromagnetic with 1~ S, ~ B,. Throughout this chapter, we compare and contrast the results

from dipolar geometry to that of the Z-pinch.
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Chapter 2

Effects of kinetic hot electrons on the stability of Z-pinch

plasma.

2.1 Introduction

The Levitated Dipole Experiment (LDX)'* is designed to operate in an MHD
interchange stable regime3'6. Electron cyclotron heating is employed to increase the temperature’
and will introduce a hot electron population that can alter interchange stability. We examine the
effects of a hot Maxwellian electron population on interchange stability of Z-pinch plasma to
simplify our analysis. We consider a confined plasma having an ideal MHD background
consisting of electrons and ions plus a fully kinetic population of hot electrons. Of particular
interest is the role the hot electrons play in modifying the usual ideal MHD interchange stability
condition by wave-particle resonance effects.

For the Z pinch geometry the unperturbed magnetic field B, is constant and closed on

the cylindrical flux surfaces and the unperturbed diamagnetic current J, is along the axial

direction. The Z pinch approximation to a dipole preserves the essential feature of the closed
magnetic field lines, but misses the geometrical details associated with field line averages of
quantities, so it is only intended to illustrate the key physics. A more realistic dipole equilibrium
is required to make quantitative stability predictions. The Z-pinch model also allows us to
consider plasmas in which the magnetic pressure is comparable to both the background kinetic

pressure and the hot electron kinetic pressure, as well as to treat the diamagnetic and magnetic
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drifts as comparable as they are in a dipole. Moreover, it makes it possible to perform a kinetic
treatment of the hot electron population in the limit in which the wave frequency resonates with
the magnetic drift frequency to cause a destabilizing Landau-type resonance.

In the low wave frequency limit of interest a particularly strong destabilizing hot electron
interaction occurs when the hot electron magnetic drift exhibits reversal due to a change in the

grad B, direction. In the absence of drift reversal a much weaker resonant particle interaction

can occur which can destabilize an otherwise stable interchange, with the new stability boundary
depending on the details of the hot electron density and temperature, and their profiles. To make
the analysis more tractable and highlight the role of the hot electrons, only flute modes are
considered with wave frequencies intermediate between the background and hot species drift
frequencies. Flute or interchange modes are the least stable modes in the absence of hot
electrons™®.

In Sec. 2.2 we derive two coupled equations for the ideal MHD background plasma that
depend on the perturbed hot electron number density and radial current. These two quantities are
then evaluated kinetically in Sec. 2.3 assuming the unperturbed hot electron population is
Maxwellian. Section 2.4 combines the results from the two previous sections to obtain the full
dispersion relation that is analyzed in detail, including the hot electron drift resonance de-
stabilization effects. A simple hard core Z pinch geometry and the case of a “rigid rotor” are
discussed in Sec. 2.5. We remark on the stability of the hot electron interchange (HEI) mode in

Sec. 2.6 , following a brief discussion of the results in Sec. 2.7.
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2.2, Ideal MHD Treatment Of The Background Plasma

In this section we will develop an ideal MHD treatment for the background plasma that
permits a hot electron population to be retained. This treatment allows us to derive a perturbed
radial Ampere’s law and a perturbed quasi-neutrality condition that depend on the perturbed hot
electron radial current and density, respectively, which are evaluated in the next section.

We consider the simplest closed field line configuration of cylindrical Z-pinch geometry

in which we only allow radial equilibrium variation. The unperturbed magnetic field is in the

azimuthal direction and given by By = By(r)0, while the unperturbed current is axial and given
by J 0 =Jo(r)2. Ampere’s law requires
HorJo=(rBy) , @1

where a prime is used to denote radial derivatives.

Denoting the total equilibrium pressure by p,, force balance gives
JoBo =-po. 22)
where the total pressure is the sum of the background pressure, pg, and hot pressure pgy,
Po = Pop + Poy, - The background pressure p;, = pg, + py; is the sum of the background electron
pressure pg, =ng, T, and the ion pressure py; =n,T;, where ny,, ny, T,, and T; are the

background electron and ion densities and temperatures. The total current is the sum of the

background and hot contributions Jy =J, +J;, which satisfy the force balance relations

JosBo =—pop and Jo,By =—poy .

17



To derive the perturbed equations we linearize the full equations assuming there is no
azimuthal variation (d/06=0) and that the time and axial dependence are of the form
exp(—iax —ikz), with Im@ >0 for an unstable mode. The background ion flow velocity ¥, is
written in terms of the displacement E as v, = -iaJE . Making the usual ideal MHD assumption
that the magnetic field moves with the flow, the perturbed electric field El is

E, =igkxB,, 2.3)
so that Faraday’s law for the perturbed magnetic field B, becomes

B, =Vx(ExB,). 2.4)
Knowing B, , the total perturbed current J, =J w+ J,, is evaluated from Ampere’s law,

U, =V xB,. (2.5
We consider flute modes so Eq. (2.4) gives B;, =0=B,, and then Eq. (2.5) requires the parallel

current to vanish (J149 =0).

To determine the displacement we employ momentum conservation for the background

plasma by accounting for the charge imbalance — or uncovering — due to the hot electrons:

— ming, € = engy By +J1, X By + T X By —Vpy, (2.6)
where quasi-neutrality for singly charged ions requires ng;, =ng; —ny, and m; denotes the mass
of the background ions. The perturbed pressure of the background plasma p,, is assumed to
satisfy an adiabatic equation of state

P =~V -~ PsS (M

where ¥ =5/3 and ¢, is the radial component of E.

18



Using the preceding system of equations, it is convenient to obtain two coupled equations

for the azimuthal component of B; and the radial component of E, that only require knowledge
about the perturbed hot electron density and radial current which are evaluated in Sec. III. To

carry out this simplification we first define the flux tube volume V =¢dl /B, =2ar/ B, and
then form the @ component of Eq. (2.4) to obtain

Big =% By&, ~BoV -E, (2.8)
with V’/V =1/r- By /B, . Another useful expression is obtained from the radial component of
Ampere’s law, ikB,g = tty(J 15, + J 1 ), by using the axial component of the momentum equation

~mng@*&; = engyEy, + BoJ 1y, + ikpyy

to determine J1sr > then using Eq. (2.7) and the axial component of (2.3) to eliminate p;, and
E,, =iaBy&, , and finally using

V-E=12(rg)- kS, 29
to eliminate &,. Defining the background plasma beta by

2
B =00 (2.10)
Bo

the resulting equation can be written as

By = yo;]klhr bBo { e § (Pob al‘-’];(())’;Oh )fr o m,no,[ a 71;_ ’"‘fr)]} (2.11)

Lob
If we neglect the coupling to sound waves by assuming @” /k* << Dop/ ming; , use Eq.

(2.8) to eliminate V-E, write & in terms of the axial electric field E,,, and define the

interchange parameter

19



- (2.12)

Vs
and Maxwellian averaged background electron curvature and total magnetic drift frequencies

KT, .
B, =5 and Dyp = B -, (2.13)

we obtain from Eq. (2.11) the first of the desired equations, the radial Ampere’s law, in the form:
(1+1 18, )52 = 2o+ 22 ( [ y—d)%e - Ml ](‘;’—f;A) 2.14)
To obtain the second equation we start with background charge conservation

V-3, =ice(n; - n,,) and use perturbed quasi-neutrality ny;, =ny; —ny, to write
iaeny, =V -Jy3. (2.15)
The interchange assumption means that only the perpendicular component of J 15 Matters in Eq.

(2.15). Solving the momentum equation for J 15 by making sure to retain the inertial term in
Jy;, but continuing to ignore it in Jy,, to be consistent with the neglect of sound waves in Eq.

(2.11)), and inserting the result into Eq. (2.15), gives

""3["1h +(no;,+”ke”§ )5 +ngpV - f;] —zk(p“'y +P°§f“’).

Using Egs. (2.7) and then (2.8) to eliminate p;; and then V.E, writing & in terms of E,,,

using definitions (2.12) and (2.13), and defining Q; =eBy/m; and

KT, nyT,
b=mi’<}-’%—, (2.16)

the preceding gives the quasi-neutrality equation, to be

Te e T h 0)2 Ez B T e .
n}l:(l)b +[b+ :) nghb (1 vV ) o (7‘d):|(fk;.) Bl:k%b—- %(}’—d)] (2.17)
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Combining Egs. (2.14) and (2.17) in the absence of hot particles we recover the usual

arbitrary 3, ideal MHD interchange condition’ in the form

(;%)2 = (e f i) Gedi) 2.18)
Notice that since our MHD treatment requires b<<1 and we are interested in d ~1, the
frequency range of interest is @>>@,, as assumed. The same coupled system of equations
(2.14) and (2.17) can also be obtained kinetically following a procedure which assumes the
transit frequency is much greater than the collision frequency which is much greater than the
wave, magnetic drift and diamagnetic frequencies'’. To analyze the modifications due to a

Maxwellian hot electron population, n;, and Jy,, are calculated kinetically in the next section.

2.3. Kinetic Treatment Of The Hot Electrons

To complete our description we need to kinetically evaluate the perturbed hot electron
density and radial current contribution to the Ampere’s law and quasi-neutrality equations (2.14)
and (2.17). The hot electron response must be evaluated kinetically since the temperature of the
hot electron population, T}, is assumed to be much larger that the background temperatures. As a
result, the magnetic drift and diamagnetic frequencies of the hot electrons will be assumed to be
much larger than the wave frequency.

We assume that the hot electrons satisfy the Vlasov equation. We then linearize by

assuming the unperturbed hot electron distribution function, f,, is a hot Maxwellian plus a

diamagnetic correction:

Son = Fam = x0-Vfyg, (2.19)
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where £ = ngy(m, /22T, )3/ 2 exp(— mv? [ 2T,,) and Q, =eB,/m,, with m, the electron mass.
The gyro-kinetic equation for the linearized hot electron distribution function f; is most
conveniently rewritten by introducing the scalar and vector potentials via El =-V®-0A/dt

and B, =Vx A, extracting the adiabatic response by letting
fin =5 fom +ge" (2:20)

where L=Q_'k-9x8 and ¥v=v, (Zcos@ + fsind)+ v"é , and then seeking solutions of the form

exp(—iax —iS) where VS =k . The resulting gyro-kinetic equation for g becomes'>!®

-f(w—l?-vdh)g=i;e—fm(w—aﬁ{(Q—vnAa)lo(ah)—Vf"’Jl(a;,)} @21)
h L

where J,(a;) and J,(a;) are Bessel functions of the first kind with a;, =k, v, /Q,. In Eq.

2.21)

~ B, 2
K-V = Kkze (vﬁ -vi_;B_z)= Do T [(1+s)/12 +(1 -s)] (2.22)
is the grad B, plus curvature magnetic drift frequency with @, =T}, /erB, the curvature drift

frequency, 4 =v/ /v apitch angle variable and

_ By
s=1+ T:_ , (2.23)

where s =0 corresponds to the vacuum limit. In addition,

ol =av 1+mifg-3) | (224

is the hot electron diamagnetic drift frequency with 7, =(Tj, / T}, )/(nfy, / ngy ) and

= _kTynoy
oy =50 (2.25)
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The v“/(w-—l-i-vdh) moment of the gyro-kinetic equation (2.21) shows that Jig, is
proportional to 4y . Moreover, as mentioned earlier, there is no perturbed parallel current carried
by the background plasma. As a result, the parallel component of the Ampere’s law results in a
homogeneous equation for A,. Therefore, we may safely assume A, =0 and B, =Bwé,

consistent with Eq. (2.4) and our interchange assumption. In addition, we assume that axial

wavelengths are much shorter than azimuthal wavelengths and radial derivatives of unperturbed
quantities. Consequently, k, ~k, L=~kv,Q;'sin@ and aj,~kv,/Q, may be employed.
Finally, we allow the hot to background temperature ratio to be as large as 7, /T, ~m;/m, so

that a,f~b<<1 and L<<1. Then we may use Jy =1, J,=a,/2, and exp(iL})=1+iL to

reduce Egs. (2.20) and (2.21) to

fu =fzw{%—( = )(%-%%?)(“"L)} (220

K-V gy
To simplify our calculations, we note that our short axial wavelength assumption along
with the Coulomb gauge V-A=0 implies that 4, << 4,. As a result, E|, ~ik® may be
employed to make the replacement

eE;. oD
g (2.27)

in the perturbed radial Ampere’s law, Eq. (2.14), and quasi-neutrality condition, Eq. (2.17). If the

assumption of S, ~1 is made, these equations also imply the ordering

By PO _ Db
By Tea)e T Ty o (2.28)

To simplify the results for the hot electrons while maintaining 7, >>7, we will assume

D, >> O >> 0, and thus
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T,
-Tl;- >> ?:); >>1. (2.29)

Keeping the above simplifications in mind, we can integrate the distribution function, Eq.

(2.26), over velocity space and obtain perturbed hot electron density, ny;, = f1,dV, and radial
current, Jy;,. =—efv,f,dv. Fortunately, the full expressions for n;, and Jy,, will not be

required. Only the approximations given in the Appendix 2.A are needed. For the moment we

need only define the hot electron beta

_ 24Py —_ By oon
Br= 52 b and g, 2 pop
and comment that the expressions in the Appendix 2.A lead to the forms:

Py _ed B Mo _ e® ﬂh 10
oy = T, G+ By H and B =T, 2 o H- B, Sh I, (2.30)

where H ~G~s,I ~1, except in the vicinity of s=1, where H ~G ~s;] ~\@y /®. We
remark that even though @, >> @, it is important to keep the @ term in the denominator of the

fin expression to resolve singularities during the evaluation of the integrals.

2.4 Dispersion Relation

Combining the perturbed radial Ampere’s law, Eq. (2.14), and quasi-neutrality condition,
Eq. (2.17), with the expressions for n;, and J,,, from the previous section, we can form the

dispersion relation, which can be written as

Pos

2
+lolow ()t g <

{b+%’;——(d 7)+ "°"T[hG+”"”(1+—'—”9¢%,J-)}}(1+1}ﬁb+shl)
(2.31)
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If we consider comparable hot electron pressure and background pressure then in the absence of
the finite Larmor radius term b, Eq. (2.31) is seen to permit only solutions with

@y, | @~ nyy, I ny; since we order d ~ fy ~ By, ~s,1 ~G ~H ~Vngy, [ ng, V"’ for the case of s #1.

Therefore, the neglect of b violates the ordering imposed by Eq. (2.29) when S, ~ 5, .

Consequently we proceed for now by assuming b ~ a),%e @ >> (nop / ng; )2 and neglecting order
noy /ny; ~ T, /T, terms compared to @,, /@ in the dispersion relation. For the case of s #1 this

assumption corresponds to neglecting G and H as well as the equilibrium hot electron density

gradient term. Thus, the only hot electron contribution that matters in Eq. (2.31) is s,/ and the

dispersion relation then reduces to

@ _ (rV')2 (y=d) (-3 dBy+s11) (2.32)

aﬁe - _V— b (1+%;ﬁb+3hl) )

Had we retained finite hot electron gyro-radius terms they would have entered as small order a,?
corrections to s,/ in Eq. (2.32).

To evaluate / we only need the lowest order expression for Jy,, :

tolvhr . BiBie®y T o -1 4 2_3 t_aal-# —_Be
O Lhr fate™ 1+, \t | s=——251, (2.33)
lkBO ”Boakh 0 2 ) D_w/%t BO

where 12 = mv? /2T, and D =(1 +s)/12 +(1-s5). To perform the integral in I for k>0 we may
neglect the @ term by using @ << @y, in the denominator except (i) in the vicinity of s=1 and
(ii) to insure the path of integration is on the causal side of the D =0 singularity for s >1. The
sign of the imaginary part of I for s>1 changes if k <0. Recall that reality requires — @', —k

to be a solution if @, k is a solution so hereafter we will only consider £ > 0. Leaving the details

of this calculation to the Appendix 2.A, we find that we can write the expression for / as
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s=1

(s +4)-—L=arctan 1—*‘5) -l<s<1. (2.34)

s=-1

(
——l—((s+4)-Js%__lm(—s+MJ) s<-1

Expressions for I in the vicinity of s=1 are given in the Appendix 2.A for completeness. We
remark that our analysis ignores drift resonances of the background species since they are

exponentially small and of order exp(- @/ @,,), where @>> @,, -

Notice that for s >1 a large imaginary term enters because of the vanishing of the hot
electron drift velocity for some pitch angle. This singularity in the drift introduces a Landau
resonance in pitch angle space between the wave and the drifting hot electrons. The effective
dissipation associated with the vanishing of the hot electron drift resonance makes it such that
one root will be unstable because there will always be a sign of & for which Imw > 0. Before
examining the s <1 case in detail we discuss the physical mechanism responsible for instability
when s >1.

The Landau resonance between the wave and the hot electron magnetic drift has two
different forms. When s <1 the hot electron magnetic drift does not reverse and the wave-

particle interaction is weak because the wave frequency is much smaller than the hot electron

drift frequency except for a very low speed hot electrons. That is @= k-V,_ can only be

satisfied if v is very small since the surfaces of constant k-¥ 4 are closed ellipses about v =0

in the vy, v, plane. As s approaches unity the ellipse opens and becomes hyperbolic because
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the drift frequency reverses. A stronger interaction occurs for s >1 because particles of all speed
are resonant near the critical pitch angle. For s >1 the hot electrons with smaller pitch angles
drift along the positive z axis while the larger pitch angle ones continue to drift in the negative
z direction (as for s<1). The energy exchange with the near stationary wave is strong since

many more hot electrons are involved in the resonant interaction.

2.4.A. Strong resonant hot electron case (s >1).

For the special case s =1 there is only curvature drift and all hot electrons are drifting in
the same direction along the negative z axis. Energy flows from these particles to the nearly
stationary growing wave since all the particles are moving faster than the wave and are therefore
being slowed by it. As s increases above unity the drift direction of the lower pitch angle hot
electrons reverse and these hot electrons moving slower than the wave are able to extract energy

from it so the growth rate decreases. The wave remains unstable, however, and the parabolic
dependence of the magnetic drift on pitch angle, k- Vap o< A2 - 1% with /'l% =(s—1)/(s+ 1) means
that for s>1 there is always a critical pitch angle A, for destabilization. The s>1 case is always

unstable since the hot electrons with pitch angles above the critical pitch angle for drift reversal,

Ay , are always able to give more energy to the wave than those below 4, which extract it from

the wave.
If the Maxwellian hot electron distribution function were replaced by a bi-Maxwellian

with T, >7j, then there would be fewer faster and more slower hot electrons near A,. The

growth rate for s>1 would decrease. However, the sign of the residue would not change
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because, unlike standard Landau damping, drift resonance Landau damping depends on w.Th ,
rather than on the velocity space derivative of f;,, as can be seen in Eq. (2.26). Because
@ << @,y , the wave is essentially stationary and simply a means of transferring energy between
the counter drifting hot electrons so @ may safely be neglected in the expressions for I (except
near s =1 where I depends on @ because there are few if any drift reversed particles). Only in

the limit s — oo, when the drifts of all hot electrons are reversed does the resonant drive vanish

for s21.
The special case rV’/V=2-5s—0 corresponds to Bye<r (flux tube volume
independent of r), but since d o<V /rV’— it is always unstable even in the absence of hot

electrons as can be seen from Eq. (2.32). The growth rate (Imw) for other s>1 can be

estimated from Egs. (2.32) and (2.34) to find

_ Bubslr-dl*'*2~s|(rmbn/ pon)

(1+s)2 \/b(sz—l)

Imw/ o, (2.35)

for B, ~d ~1. Notice that the growth rate vanishes for d =y and/or s — 0.

2.4.B. Weak resonant hot electron case (s <1).

For s<1 the stable operating regime of most interest satisfies the usual interchange
stability condition ¥ >d along with the additional condition 1+ B,d/2+s,1>0. To better

understand this regime it is convenient to write equilibrium force balance in terms of s as

- P0b
S =8y _ﬂb 2p0p "

Then d can be written in terms of s and s, as
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2-sp

1 _
1+2 pd = -

(2.36)

Using this result, ¥ >d becomes

sn>=18 + 1+ 118, )s. 2.37)
Then, ignoring for the moment resonant particles effects for s < 1, the stability condition

of Eq. (2.32) can be illustrated graphically by plotting s, as a function of s for a given value of

background beta as shown in Figs. 2.1.

1Br=2

2 18,
St ,,3 S

-1 -0.5

6
€)) ®)
YBp=3
2 38,
St 3 s

-1 -0.5

(©

Figures 2.1 (a)-(c): Stability regions for different values of ¥B, with b=0.01 and ny,T/pe,=5%. The bold solid
line is Y=d, the thin solid line is 1+dB,/2+s,I=0, and the dotted is 1+yB,/2+s,I=0. St and Un indicate stable and
unstable regions.
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Notice that when the hot electrons are ignored, i.e. s, =0, we recover the usual Z-pinch
stability condition', s < 38, /(1+ 8, /2). The plots also show that the 8, term increases the size
of the stable region, allowing more general hot pressure profiles (i.e. s, can be negative as well
as positive for s =0). waever, as s —1, I becomes large, so the curves 1+df,/2+s,I =0
and 1+ B, /2+s,I =0, which cross at d =y, require s, =0 at s=1. To prevent a sign

change in Eq. (2.32) we need to be above all three curves to maintain stability. From plots like

Figs. 2.1 we can see that a value of 5, between about 3 and 5 optimizes the stable operating
region since a larger £, does not substantially increase the stable operating regime.
So far we have assumed Irn('),, / no,,l ~1 and thus, due to Eq. (2.29), were able to neglect

terms that involve hot electron density gradient. However, it is possible to have a steeper hot

electron density gradient — so steep that |m6h / no,,| >>1. If we assume that the hot electron
temperature and density profiles are similar and consider a smooth profile for equilibrium
background pressure, then |mgy,/ng,|~|sy|~|s| due to equilibrium force balance,
s==Byrpos/2pgp +5,. However the hot electron density gradient only enters in the form
(rnyy, /1oy )/(2 - 5), which for |rn6h / n0h|>>1 is of order unity. Thus because of the direct
relation between |rn6h / no,,l and Is] through the equilibrium force balance and the ordering

imposed by Eq. (2.29), the hot electron density gradient terms do not become significant enough
to appear in the dispersion relation.

During the operation of LDX it is anticipated that the hot electron pressure will become

much larger than background pressure. Therefore we also consider the case of B, >> B, by
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taking b~ w2, / & ~ (ngy / no,-)z. This ordering leads to neglecting only the G term in the lowest

order dispersion relation Eq. (2.31), due to the ordering imposed by Eq. (2.29).

As before, the drift reversal case (s>1) continues to be strongly destabilizing due to
large imaginary terms in  and H . If we ignore weak resonant hot electron effects, the stability
condition for s <1 case can be written as

147 >0, (2.38)

where to the lowest order we find H = -2-";% | _(ff)%:ﬁl_ from Eq. (2.A7) , and we define

_g ) ™n!m0h
2(y—d) 2 (I%dﬂb"'shl)_ﬂb(l H)( Vv +H)
(1 +m63 //r;gh )2 (nonTe pos @—é}ﬂbﬂﬂ ) (2985 +n1)
r

If electrostatic fluctuations are considered ( 8, =0) this condition reduces to

(st o /s (-0,

from which we can see a tendency for the hot electrons improve lowest order stability by

allowing d to be larger than ¥ since »>0.

Examining the full expression for ¥ +1 we see that when £, — 0, ¥ >>1. As a result,
the stability boundaries are the same as in Fig. 2.1(a) for this limit. For other values of £, the

stability regions can be plotted as shown in Figs. 2.2 for various values of ), and rngy, /ny, .
Comparing Figs. 2.2 (a),(b) with Fig. 2.1 (b) and Figs. 2.2 (c),(d) with Fig. 2.1 (c) we can see

that the hot electrons somewhat improve the lowest order stability, as in the electrostatic limit.

31



’YBb=2; rn'oh, n0h=1 ’YBb=2; rn'OhI n0h='1

23h
St ni ___ S

-1

-6
@) ®)
YBp=3; M'on/Ng,=1 Bp=3; M'gn/ng,=-1
2 Sh 2 Sh
St i S

L LI B | LIS ) LA |

-1 -0.5

© @

Figures 2.2 (a)-(d): Stability regions for different values of B, and rn’y,/ny, with b=0.01, B,=7p, and
gy To/Po=10%. The dotted line is the 1+yB,/2+s,I=0 curve and for small ¥, the bold solid line approaches
¥=d. The thin solid line becomes 1+df,/2+s,I=0 as ng,—>0.

Comparing the plots of Figs. 2.1 and 2.2 we can conclude that stability remains robust
evenat f, >> 8, as long as the region of operation is above the solid curves and the area of drift
reversal (s > 1) is avoided, with higher hot electron fractions improving stability.

As noted earlier, the resonant hot electron interaction enters as a weaker effect for s <1

than it does for s>1, which is always strongly unstable. We next consider the effect of these

resonant hot electrons on stability for s <1 by evaluating their contributions to the perturbed hot
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electron density and radial current density for the real part of @ greater than zero (Rew>0) as

described in the Appendix 2.A:
HoJ _e® B B
:(l): res —J_Hres T, i Gres and kBth’ res _TthhHres —B;Oo(shl)res’ (239)
where
res —iA—p~ ISﬂb (Zh')z
(2.40)
__2aG _ _ 484986,
with A defined by
_ (27ap)? o, (1"%7)},),3;, T,
o= G alin) (T,, F. 2.41)

Here and elsewhere @, is the positive stable root of Eq. (2.31), which can be schematically

represented as
2
D% g% L=
Aw,%e +dee +C=0,
where 4, B and C are coefficients of corresponding powers of ay /@y, .
Retaining the resonant interaction perturbatively in Eq. (2.31) using @=a + @, with
ay >>|m)| gives

2 = JAKF , (242)

8|

where
K=kle1-H)-1P +5zc[a(1—117)—1]+1—2-‘4={;r[oz(1-1ar)—1]+-g-}Z +2>0, (2.43)

which is a strictly positive quantity,

and
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(l+%7ﬂb+sh1 )

F= , 2.44
A+—;‘:’; B 244
with
. Bolrdos) L =@l (2.45)
(1+%7ﬂb+s;,l Xl—s) @epop(7-d)" )

As a result the sign of @, /@, depends the sign of product AF .

If we consider comparable background and hot electron pressures ( 8, ~ 8;), then the &
terms become negligible because using Eq. (2.32) gives a~ngy,T, /(pOb Vb ) <<1. After
substituting in the expressions 4= b(l + -% Wy +s,1 ), B=0and C=(d - }')(1 + %dﬂb +sp1 ) for

this limit, we find that F =1/b. Equation (2.42) then reduces to
a_ %[(x-g)z +§]. (2.46)

As we can see the sign of @,/a, depends only on the sign of A. As a result, for £, ~ B,, a

weak instability of the drift resonant hot electrons ( & >0) occurs if @, (1-37m,/2)>0 or

31T, oy
370> T (2.47)

The analysis of weak resonant hot electrons effects for the case of B, >> f; is more

complicated since the stability is determined by the sign of the product of AF . We first observe
that we are only interested if the stable operating region above the bold solid curve in Figs. 2.2
can become destabilized by this weak interaction, since the stable region below the bold solid
curve does not allow the hot electron pressure to fall off (positive s;,). In the region of interest,

above the bold solid curve in Figs. 2.2, the numerator of F is clearly positive, while the

denominator is also positive, but for a more subtle reason. Since the negative real roots of the
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dispersion relation Eq. (2.31) are always stable in the absence of resonant hot electrons we are

only interested in ay >0. Using our schematic representation of zero order dispersion relation

the denominator of F can be rewritten as

A+%B=+i’¢€—\/32 —4AC.

t3a
In the region of interest A>0 and C <0, thus the dispersion relation has two real roots — one
positive and one negative. Only the positive root can be unstable for £ >0, and it makes the
denominator of F positive. Consequently, the sign of @, /@, depends on the sign of A, and is
therefore given by Eq. (2.47).

Notice that in the electrostatic limit B, =0, A=b>0,
B=(ng,T,/ po, 1+dInng,/dInV), and C=(d~7). In this case s=s,, and as a result, d
cannot be determined from Eq. (2.36) and is a free parameter. If d >¥, then C <0 and the
stability of the region depends on the sign of B, since there are two real roots. If
(1+dInng, /dInV)>0 then both roots are negative and the region is stable, due to the absence
of drift resonance. If d <y, C>0 and there is only one positive root in the lowest order stable

region. Then the stability is determined by the sign of A and therefore by Eq. (2.47). It is also
clear that the temperature profile of hot electrons plays an important role in stabilizing this weak

drift instability, since if 77, =0 only increasing density profiles can be stable. To confirm that

this drift resonance driven mode is indeed weak for s<1 we note that ((ub/(o,‘e)2 ~1/b giving

2
o lan ~ By By Xan ! @, }'* <<1 for By ~ B
From the overall discussion of stability, we can conclude that while large hot electron

density gradient as well as high background beta are beneficial for the zero order stability, they
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are destabilizing when the first order correction is considered, particularly if myy, /ng, is
negative and greater than 2 to 3 in magnitude for S, ~1. So, to maximize the overall stable
region rng, /ng, >—2, it is best to keep B, ~2 and 2>y, /ny, >3rT, /2T, along with

y>d.

2.5. Applications

As a specific application of the results obtained in the previous section we consider a
hard core Z pinch as a crude approximation to a dipole with a levitated current carrying

superconducting coil as in LDX. Assuming power law profiles satisfying pressure balance gives

| By =B, (%)“(Hﬂ) and pg =p, (“:‘)ZI(H'B) , (2.48)
where a is the radius of the current carrying hard core conductof, B, and p, are the magnetic
field and total plasma pressure at its surface, respectively, and 8=2u,p,/ Bg is the total beta.

If we assume that the background and hot pressure profiles are the same, then p, = p,, + pa;

with p,, ~ pg, and

/1 1+
pos = P& and py = pufaf 2, (2.49)
where 8=241(pas + Pan)/ B = By + By -
For this special model
=_bBrm__ B =By _ B
S——ﬁ—m>0 and Sp =— ;POhh— ) >0. (2.50)
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Note that since s<1, drift reversal is not possible in this model. The stability condition for a
hard core Z-pinch with the above profiles can be obtained by substituting these expressions for s
and s, into the lowest order dispersion relation, Eq. (2.32), to find
(l+%dﬂb+£—’;?l)

(1+—;—;ﬁb+é% ) ’

70:%2,— - (%)2 (V;d) (2.51)

where d =2/(2+ 8)>0 and [1+dB, 12+ B,1/(1+ B)[1+ B, 12+ B,1/(1+ B)]> O since 1>0.
Therefore, in the absence of resonant hot electron effects the stability boundary is described by
y>d= 2 (2.52)
which is always satisfied.
To determine the stability condition for the case of £, >> f,, we assume power law

temperature and density proﬁles
)q (1+8 Pah (a 2-q, )/(1+8
Th = Tah(_‘: h ( ) and Rop = T (r)( qh) ( ) (253)

with 0<g, <2. Substituting the expressions for s and s, along with the hot electron number
density gradient into Eq. (2.38), we find the stability condition to be the same as in the 8, ~ £,
case. For 8, — 0 Eq. (2.38) is satisfied since 1+Y > 0. For the case of £, #0, Y is smallest if
b=0. Moreover, a plot of 1+Y as a function of f,/8 in Fig. 2.3 for different values of g, and
18, =3 always finds 1+Y >0. For other values of 8, the plots look very similar to Fig. 2.3

and thus, even for the worst case of b =0, Eq. (2.38) is satisfied.
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Figures 2.3: Graph of 1+Y vs. B,/B for different values of q;.

To determine the effects of a resonant hot electron population on the stability, we note

that due to Eq. (2.53), the hot number density is monotonically decreasing, rng, /ng, <0. Since
d <y the stability is determined by the sign of A and therefore this hard core Z-pinch will
remain stable for B, ~ B, or B, >> B, if 1, >2/3 or q, >4/5.

Finally, we remark that if the unperturbed hot electron distribution function is simply
assumed to be a drifting Maxwellian, then from Eq. (2.19) we find the flow
¥, = 2(T,ngy, I mQ,ng;, ) along with the restriction that VT, =0=1),. As a result, for this “rigid

rotor” equilibrium case, a weak resonant hot electron driven instability always occurs.

2.6. Hot Electron Interchange Mode

As another application of the preceding theory, we would like to briefly discuss another

type of instability that is of interest to LDX and other closed field line devices. It is called the hot

12,15

electron interchange mode (HEI) for which the wave frequency is comparable to the
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magnetic and/or diamagnetic hot particle frequency: (wdh) ~0>> (wde) . In this limit the wave

frequency dependencies of G, H, and I terms can no longer be ignored. Consequently, the

dispersion relation given by Eq. (2.31) is no longer a simple quadratic and its solution has to be

found numerically. In this section we present some sample numerical calculations and briefly

mention the complications of obtaining stability conditions for the HEL

For this frequency ordering the full expressions for G, H, and I are required, and can

be written as

2 g2 a0 [l+7]h(t2

3

G=1—T [e

2
)

ey

=,
la)la),ht—

hod 2 o-any
H=-2 [
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[, (‘2—%)]} f1-2 )d/l i

L]

lw/a,‘ht
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We substitute the preceding equations into the dispersion relation, Eq. (2.31) and numerically

solve for . We present our findings in Figs. 2.4 in the form of graphs of Re(w) and Im(w) as a

function of ny,T, / py, , which measures the fraction of hot electrons.
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Figures 2.4 (a)-(b): Real and imaginary parts of o as a function of hot electron fraction, ng,T./pgs. The bold
solid and dashed lines are real and imaginary parts for HEI mode, respectively. The fine solid and dashed
lines are real and imaginary parts for MHD interchange mode, respectively.
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Figure 2.4 (a) shows the usual MHD interchange instability in the presence of hot

electrons; what we call the zero order instability. As ng,Te/ pg, increases we see that the region

described by this parameter set is also unstable to the HEI mode. The graph suggests that these

two modes might be coupled at ng,T, / py, in the vicinity of 15% . Figure 2.4 (b) shows the case

where the MHD mode is stable, while the HEI mode is unstable. This finding suggests that it is
important to investigate not only the stability of the MHD mode, but also the HEI, as regions
stable to the MHD mode can be unstable to the HEL For the case shown in Fig. 2.4 (b) there also
exists a stable root, which complicates the investigation of the stability of this mode in general.
These results are merely intended to demonstrate another possible application of the theory
developed, and are in no way intended to be exhaustive. Clearly much more work is required to

find all possible branches of HEI mode and investigate the requirements for their stability.

2.7. Conclusions

The effects of hot electrons on the interchange stability of a Z-pinch plasma are
investigated. The results yield two types of different resonant hot electron effects that modify the
usual ideal MHD interchange stability condition.

Our analysis indicates that when the magnetic field is an increasing function of radius,
there is a critical pitch angle for which the magnetic drift of hot electrons reverses direction. The
interaction of the wave and the particles with the pitch angles close to critical always causes
instability for Maxwellian hot electrons. Thus, stable operation is not possible when the magnetic

field increases with radius.



If drift reversal (s <1) does not occur and resonant hot electron effects are neglected, we
find that interchange stability remains robust and is enhanced by increasing the background
plasma pressure as well as the gradient of the hot electron density for £, >>f, ~1 case.
However, once [, becomes of order two or three, further increases in S, do not result in

significant increases in stability. In the absence of drift reversal, hot electron effects are weak,

but not negligible. When they are retained, an additional constraint must be satisfied to avoid a

weak resonant hot electron instability. For B, ~ f, ~1 and for f, >> f, ~1, the hot electron
density and temperature profiles must satisfy gy, /ng, > 3rT,, /2T),. Stability in the electrostatic
limit ( B, =0) is particularly awkward since it requires rng, / ng, > 3rT;, /2T, if there is no peak

in the hot electron pressure profile.
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Chapter 3

Effects of hot electrons on the stability of a dipolar plasma

3.1. Introduction

In Chapter 2 the effects of hot electrons on the interchange stability of Z-pinch plasma
was investigated. In this section we extend our calculation to dipolar geometry for which the

unperturbed magnetic field B, is purely in the poloidal direction, while the unperturbed
diamagnetic current J, is toroidal. The format of this calculation is similar to that of the

previous chapter, as we only consider flute or interchange modes with wave frequencies
intermediate between the background and hot species drift frequencies, since they are the least
stable modes in the absence of hot electrons®®. We treat the magnetic drift, consisting of
comparable grad B, and curvature drifts, on equal footing with the diamagnetic drift. We obtain
the dispersion relation for arbitrary plasma and hot electron pressure, but then examine three
plasma pressure orderings relative to the magnetic pressure: background electrostatic with
By, << B, ~1, electromagnetic with 1~ f,<<pf,, and electromagnetic with 1~ 5, ~ f,.
Throughout this chapter we compare and contrast the results from dipolar geometry to that of the
Z-pinch.

In Sec. 3.2 we derive two coupled equations for the ideal MHD background plasma that
involve the perturbed hot electron number density and the Vi component of the current. These

two quantities are then evaluated kinetically in Sec. 3.3. Section 3.4 combines the results from

the two previous sections to obtain the full dispersion relation, and general stability conditions,
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including a discussion of hot electron drift resonance de-stabilization effects. As an application
of the above theory, a separable form of a point dipole equilibrium is considered and the
obtained results are presented in Sec. 3.5. We close with a brief discussion of the analysis in Sec.

3.6.

3.2. Ideal MHD Treatment of the Background Plasma

Our derivation for the dipole geometry will follow the guidelines developed for the Z-

pinch. In this section we will use an ideal MHD treatment to derive the Vy component of the

perturbed Ampere’s law and a perturbed quasi-neutrality condition. The quantities pertaining to

the hot species, such as Vi component of the perturbed current and number density, will be

evaluated kinetically in the next section.
Using the standard approach for the closed field line axisymmetric or dipole

configuration we introduce poloidal magnetic flux y, toroidal angle { and radial distance from

the axis of symmetry R so that the unperturbed poloidal magnetic field and toroidal current are

given by:

5 3 4

By=VyxV{ and J0=R2-£-V§ (3.1)
where the total pressure pg, is the sum of the hot pressure pg, and the background pressure

Pop = NoeI, +nyT;, with ny,, ny;, T,, and T; the background electron and ion densities and

temperatures, respectively. The total current is the sum of the background and hot contributions

Jo=Jop +Jop, ~which separately satisfy the force balance relations to give
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Job =(dpoy/dW)R*VE and Ty, =(dpgy, /dw)R?V{ . Using the Ampere’s law to derive the

Grad-Shafranov equation yields

Defining &=(b-V)b as magnetic field curvature with b=B/B,, it also follows from the

preceding equation and equilibrium pressure balance that

2kVy _ Bo dinpg Vy
<ty - inn_v.(2r) a2
where
= 2P0
A="%

We assume perturbations of the form Ql (v, B)e“"“'—”g , with @ the poloidal angle and
Im@w>0 for instability. Then, we perturb around this equilibrium by introducing the

displacement vector & as V= —idk , with Vv, the background ion flow velocity, and writing it as

6 (3.3)

+&, T4 &Y
AT wf 7 lvcl
Using the usual ideal MHD equations, the perturbed electric field E;, magnetic field B,

and total current J, =J,, + J,;, are given by

El = iaﬁXE(), (3.4)
B, =Vx(ExB,), and (3.5)
ﬂ0j1=VXE1, (3.6)

where it is convenient to write B, as



BR. — _D.
B, =0p Bg+Q'/" o lemz. (3.7

VEVE Vg,
et vef

Equations (3.3) and (3.5) give QB=—Bg( ], QV,=§0-V¢'V and

QOr= B, V&r.
In addition, background plasma momentum and energy conservation are written as
— ming;’§ = engyBy + Iy, xBo +Jop X By = Vpyy,, (3.8)
and
P =0V E-TLE,, 3.9)
where m; denotes the mass of the background ions, py, is perturbed background pressure, and

y=5/3. The El term in the momentum equation, which is absent in the usual ideal MHD

treatment, enters due to the effect of charge uncovering — the incomplete shielding of the
background electrons by the background ions since the equilibrium quasineutrality for singly
charged ions requires ng, =ngy; —nyg, .
Using the preceding system of equations, it is convenient to define
W-‘-‘Plb-fy/%:?ﬁbv'ga (3.10)
and then obtain two coupled equations for W and 6'// , both of which only require knowledge of

the perturbed hot electron density and current, which are evaluated in the next section. To

simplify the procedure we use the parallel component of Faraday’s law and Eq. (3.3) to form

V- and to obtain two convenient expressions for f; and Op

. VyV4 + 2
il§y = |W|2“’ Bg, (3.11)
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and

pufgergie o

Next, we consider the Vi component of Ampere’s law,

Loy -V =pdy, Vw+pdy, -V =-ilQg - By ~V(R2Q;). (3.13)
The background contribution is calculated from the toroidal component of the momentum

equation yielding

j]b ’VW = m,-nOia)szfg +en0hR2E1 'V;'f" ilplb ’

with & given by Eq. (3.11), py, given by Eq. (3.10), and E;-V{ =-igV{]’E, from the
toroidal component of Eq. (3.4). Defining the background plasma beta as

2
ﬂbﬁ‘%?"

and using Eq. (3.11), the Vi component of Ampere’s law can be rewritten as

ﬂoth vy By V(R o ) be +1 18 (ﬂ' In pop, £, + 012"011 £, + mi"(zlia’z R? V“"V’fv]
1 il Pob POb ) \
8 mz":‘% s VW) 514
=|1- g, minoi¥’R” 10
(1 Py 212 pop )33.

The most unstable ideal MHD ballooning-interchange modes have [>>1 for an

axisymmetric torus with closed field lines’. Therefore, we can use the standard high mode

number formalism to neglect the 1/1% term from ﬁo-V(RzQ{) and the coupling to the

magnetosonic waves by assuming @*R? /1% << Pop ! m;ng; in Eq. (3.14). Then, using Eq. (3.12)

we obtain the first of the desired equations, the Vi component of Ampere’s law, in the form:
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= n v
%(1+%mb)=BO.V(%)+[V(€ﬁ) %@‘Tgf—u-,;’;;’!-)}:w ,-h HInYY - (315)

To obtain the second equation, we start with background charge conservation in the form
V-3, =iae(n;; —n,, )=iaen,, , where we also use perturbed quasi-neutrality. The expressions
for the parallel and perpendicular components of the perturbed background current are calculated
from the parallel component of Ampere’s law and momentum equation, respectively. Using the

large | approximation gives
#ol1-By =/‘0(ij +jlh)' —'fVW V(RzQ ) 4 ~+ilEQ£

31 -V =~iweng, &, +ilpy, + mng,a® R*Ep = —iaeny,E, +ilpyy,

and

= _ Vv, : VyV Q
gt ) 2

Notice that we retain the inertial term in J;; - V¢, but continue to ignore it in J;, -V to be
consistent with the large [ expansion. Expressing py;, and Qp in terms of W and 5,,, we insert

the preceding three equations into the background charge conservation to obtain

aenyy ___ﬁ .V ﬁO'Vfw _.-i]h'ﬁo _1lv.| V¥ 14dInpgy , aengy
F (#OWV’F g ) | o) T e
mingie? eV y-Vngy ‘dPOb mmo;;h vl é8
+[ R’B}  IR’B} )5“'+ ay * T BV B )
Finally, using the parallel component of the momentum equation to eliminate &g yields

By V(:)=‘ﬁ°‘v(;%)’ G.17)

(3.16)
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where we assume ng; is a flux function. Substituting Eq. (3.17) into Egs. (3.15) and (3.16) we

now have the two coupled equations
_HodwVy BoWVW _\__w (141 Vv | B “““POb aengy,
llBg +B v(m,-no,-a)ng) Pob (1+ 2 }ﬂb)+[v (W'l’i ] 2 dy + Ipop )]fw

(3.18)

and
mTe (e mngia? | nowT, VyVinngy e __ W || dinpgy g | V||, noae |
Pob @epop 3032 Pob |VV|2 V" pop | x| dy vy Pob

(I_T,_dnnpo,, no;,Th By VW T, . .y BoVé _Jubo
a Pob @Pozw O N wlvef? ugg )’

ming;*Bg ilBg

(3.19)

where the terms with ng, are due to the charge uncovering effect of the hot electrons on quasi-

neutrality.
Observe that without hot electrons we can easily recover the well known ballooning

equation for shear Alfven modes’. It can be obtained by substituting Eq. (3.18) and its poloidal
flux surface average into Eq. (3.19) to first eliminate By-VW and then the W terms,
respectively:

(5,,&-vw B&R2>
1+17(Bp)

Bo- ny

B2R’B -V(
07 PO T uolvuf?

]+¢,,,(2x Vo, + mingi? )= 41p0s (R V)

In addition to using Eq. (3.2) to get the right hand side of the preceding equation, we note that it

follows from Eq. (3.18) that the variations of W along the unperturbed magnetic field are

proportional to @”. As a result, W tends to flux function as the growth rate diminishes. In

particular, from the field line average of Eq. (3.18)
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(g,,,a-vws&ﬁ)

W=-2 :
P01
where the flux surface average is defined by (...)=V'4(...)d6/B,-V8 with 6 the poloidal

angle and V = {d6/B,-V@.

3.3 Kinetic Treatment Of The Hot Electrons

In the previous section we have obtained two coupled equations for quasineutrality and
Ampere’s law that require knowledge of the perturbed hot electron density and current.
Generalizing the Z-pinch procedure developed in reference'® to dipole geometry, we will first
kinetically evaluate the perturbed hot electron responses in this section to obtain the dispersion
relation in the next section. We assume that the temperature of the hot electron population, T}, is
much larger that the background temperatures, which requires that the magnetic drift and
diamagnetic frequencies of the hot electrons to be much larger than the corresponding

background frequencies.

We assume that the hot electrons satisfy the Vlasov equation, and following the standard

0

procedure for solving the gyro-kinetic equation®!® we linearize the hot electron distribution

function around the equilibrium by writing f}, = fo, + fi5 +.... Employing the orderings

Q, 2@y, >> ay, ~ 0y, >> 0, (3.20)
with m the electron mass, Q,=eB,/m the cyclotron frequency, @, ~Vy-V the bounce
frequency, and @,, and @, the magnetic and diamagnetic frequencies, the equilibrium

distribution function satisfies
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V- Vfor = Q9xB-V, fop =¥- Vfgy +Q, L2 =0, (3.21)

where ¢ is gyrophase. As in the case of all axisymmetric machines, the toroidal component of
canonical angular momentum is a constant of the motion and therefore it is useful to introduce
W =l//—'—":-i§~ V. Then exact solutions to Eq. (3.21) exist of the form fp, = fo, (E.ws), with .
E=v?/2.

To evaluate the first order correction to the hot electron distribution function we again

look for solutions of the form e *#~#¢

and solve the linearized Vlasov kinetic equation
i{g-}+ V-V, -Q.xb-V, £, +-'§(V¢+%§-— Vxﬁ,)- V., for =0, (3.22)
where the scalar and vector potentials ® and A= A"ﬁ +A,Vy/RBy+A;RV{, enter

E,=-V®-0A/0t and B; =V xA, with V-A=0 for the Coulomb gauge. Observe that the
gauge condition coupled with the large mode number assumption causes the toroidal component

of the vector potential to be small compared with the other two components: A, ~ (A,,, or A )/ l.
The solution to Eq. (3.22) is found by removing the adiabatic piece by writing
fin =52 fon + &1 (3.23)
and then defining g, = g, + g, with the bar and tildes indicating the gyrophase independent and
dependent parts, respectively. Using v, maghetic moment 4= v_2L /2B,, ¢ as the velocity space

variables, and the incremental time along the particles trajectory dz=-=%2->0, the resulting

=3 ve
lowest order expressions for g; and g, are given by'*"?
- th(w-ai-TQ ( e ‘fdf(q’-VuAﬂ)_ my §d0p/ Bo) (3.24)
&1 = T,  4dr T, ddr )

2
(o)
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and

= —Q IV_L Xb [Vgl +1'%?th1& —%.%%%;’LVW], (3.25)

where the parallel and perpendicular subscripts refer to the components parallel and
perpendicular to the equilibrium magnetic field ﬁo. The details of the calculation are given in

the Appendix 3.A. For simplicity we consider the unperturbed hot electron distribution function

fon to be a Maxwellian to the lowest order and use a gyroradius expansion to write

fon(Ews)= fa + (s —w)ofag, 10y +... with th="0h(M/27¢Th)3/2€XP(‘mV2/ZTh)- The

hot electron diamagnetic drift frequency is defined by

o, = ah,,[l +n;,(%;-:——%) ] | (3.26)
with @, = l:" d';;”" and 7, =dInT, /dlInng, . The effective trajectory averaged magnetic drift
frequency is

op = 42’2';‘;"’ h-Bles) 3 b g = Ml v, -Vedr/faz, (3.27)
with

vy Vg=—X "W[l Bllss) ] (3.28)
where

s=1-Te Tk (3.29)
measures the departure from the vacuum limit s=0 and A= %—'——;’; = ”—5 is a pitch angle variable

with B being the value of B at the outboard equatorial plane. We note that the trajectory
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integrals are different for passing and trapped particles, with the former running over one full
poloidal pass, while the latter runs over one complete bounce.
Ampere’s law, Eq. (3.18), and, quasi-neutrality Eq. (3.19), require the hot electron

density and Vi component of perturbed hot electron current, which we form by integrating the
distribution function over velocity space to obtain n, = [f),dV and J, =—efv, f;;dV. Only
the gyrophase independent part of g, contributes to n;,, while only the gyrophase dependent
part survives the integration in Jy, . The full details of the preceding calculations are presented
in Appendix 3.B.

From the form of f; it is clear that both n;, and Jy, involve d7 integrals, which
involve poloidal trajectory averages of ®, 4, and Q. In Z-pinch geometry16 the interchange

assumption removed poloidal variations. As a result, the perturbed number density and radial
component of current were written as linear combinations of ® and Qp, while the parallel

component of the Ampere’s law resulted in a homogeneous equation for Ay, allowing us to set it

to zero. These simplifications permitted us to write quasineutrality and the radial component of
Ampere’s law as a set of two linearly coupled equations. In dipole geometry, the poloidal

variation of B, and k cause quasineutrality and the Vi component of Ampere’s law to become

a set of two coupled integro-differential equations, which without approximations can only be
solved numerically.

To examine the possibility of a partially analytic solution we consider interchange modes,
with Q, = B, -V§, =0, making £, a flux function. Next, we examine Vy and V{

components of Ohm’s law, Eq. (3.4),
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E,-Vy=-V®.-Vy+ioA, RB) =iwk,R*B}
E, -V =il®o/R® +iah; | R=-iwk, | R,

We recall that from Eq. (3.11) ‘f{ ~ fv, /RZBOI, while from V-A =0 we have Ay ~A,ll. Asa

result, in the preceding expression for El -V{ we may neglect the A term as small by 1112,
making
O =-af, Il (3.30)
We also note that
Ay ~&,IIR. (331)
For interchange modes @ is up-down symmetric, while Ay is antisymmetric. As a result,
for both the passing and trapped particles § vj4dr=0 and Jip Byocd vi814v =0. Consequently,
we may ignore J,-B, and A terms in Egs. (3.18), (3.19), and (3.24). In addition, upon

gyroaveraging, the Qg term in Eq. (3.25) does not survive to enter J 1YY and the Ar

component that does enter is small by 1/ 2 as shown in Appendix 3.B.

The last complication in Egs. (3.24) and (3.25) is the trajectory averaged terms involving

Qp . If we combine Eqgs. (3.12), (3.17) and (3.18) to eliminate terms involving ﬁo -V we get

0 _ IuwVy (ﬁp_og @"Oh)f
o= T +W+ dy T 1 P (3.32)
For ideal MHD interchange modes near marginality both fy, and W are flux functions, so we

see from Eq. (3.32) that in the absence of hot electrons, Qp is also a flux function. Therefore,

near marginality any variations of Qp along the equilibrium magnetic field are caused by Vi

component of the hot electron current. In general J - Yy and, as aresult, Qg, W, and .f,, are
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not flux functions, causing the quasineutrality and Vy component of Ampere’s law to be
coupled integro-differential equations. There are several options to deal with the increased
complexity. One is to solve the problem numerically, which is outside the scope of the present
work and probably not the most insightful approach at this point in the development of hot
electron models. The second option is to treat perturbed hot electron terms as small and introduce
them perturbatively. However, from the Z-pinch geometry, we know that hot electron effects can
enter on equal footing with the fluid background response and play an important role in stability

analysis. The third option, and the one we will pursue here, is to simply assume that Qg, W, @,

and J,, -V are flux functions to lowest order, which allows us to obtain a dispersion relation

essentially the same as the one found for a Z—pinchw. This procedure allows us to recover all the
results from the second option, but cannot otherwise be justified in any other rigorous fashion.

However, when we consider the point dipole model in Sec. V, we will find that the behavior of
I, H, F,and G as a function of poloidal angle is similar to that of 862 as required for this
assumption.

Replacing Qg, Jy,-Vy and @ by (Qp)=(ByBy), (J14-V¥), and (®), and taking
them outside of poloid;ll trajectory averages in Eq. (3.24). To lowest significant order, we éan

then write the expressions for ny;, and (j 1h -Vyr) as

4206+ (05 B3 )H (3.33)
and
ﬂo(-:ll;éVW) =_<§h)(eg<:> F-(QB)<352>I), (3.34)

where B, =24opos /B3 and
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ﬂf_'i(‘”'_"’rh_) H= (B‘szl mv? ﬂfm(w-af,,);dr B/Bo)/gdr
i) "R )

21, “D
(BGZ)— mv2 A (w-afh '2} 2f (m-m.T )gdr(B/Bo I{dr
N o If (:’%‘”’D) I’ nonBoB I(ﬁ( ) ) ( hzr;. “’D)

The details of obtaining these expressions are provided in Appendix 3.B. Notice, that in general,

G=1--L[d¥
noh

(3.35)

the expressions for G, H, F, and I contain resonant particle effects due to the possible
vanishing of the denominator. Here we consider only ;he intermediate frequency ordering, with
the wave frequency much lgss than the magnetic frequency of the hot electrons, so that the @
dependence in the preceding equations only matters in determining the causal path of integration
about the singularity. The vanishing of the denominator corresponds to the wave — hot electron
drift resonance, which can occur when @, is small. This resonance is weak when only very low

speed hot electrons interact with the wave (no drift reversal), and possible strong for s>1 when

drift reversal occurs so that many hot electrons with a specific pitch angle 4, =Fo'2(1:-Ls7 can

resonate.

3.4 Dispersion Relation

In this section we obtain the dispersion relation by substituting the expressions for (nl h)
and (Jy, -Vy/)(Bgz) given by Egs. (3.33) and (3.34) into quasineuitrality and the Vy

component of Ampere’s law. To annihilate terms involving ﬁo -V in Egs. (3.18) and (3.19) we

flux surface average and then assume (I>=(<I>), w =(W), 05 =(0p).,
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3 -Vw:(j,h-Vl//> in undifferentiated terms, and continue to use {v“A“dr:O:jlh ‘B,.

When we use Eq. (3.12) to eliminate (W) , the resulting two coupled equations are identical in

form to those obtained for a Z-pinch'®:

05 (857145 7(8))=~4(B5 - V) + B[ {2 - g) -tk 2. (336)

Pob

and

AT,
Pob L 7 dinV Pob

(3 e ) - w0 - -0 o0

where we define

d=-21nrw ( >=_£gdmv p=Te_ mingT,
diny * \"de e dy° 233R2 oy

and employ (V . (V yiv y/iz)) =dInV /dy. Combining the preceding two equations with Egs.

(3.33) and (3.34) to form the dispersion relation we obtain

o)+l <G>+<"’d=>1+"::.:'a*)] e -a) 1+ 08+ 00 )
+ Qo) 5 ) e 1 ()| L - 0) -2 (1)) o,

(3.38)

~ which is the same as the Z-pinch result'® with the exception of flux surface and trajectory
averages due to geometrical effects.

Even though, the dispersion relation looks quadratic in @, in general, the coefficients of
the above dispersion relation are not necessarily real or independent of the wave frequency due
to the hot electron drift resonance with the wave. As we noted in the previous section, there are
two types of resonance. A weak resonance occurs when the wave interacts with a few slow

moving hot electrons. In this case, even though the imaginary parts of the coefficients in the
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above dispersion relation depend on the wave frequency, they are much smaller than the real
parts. As a result, this type of resonance can be examined perturbatively, which is done later in
the section. Another type of resonance happens when s>1 and drift reversal is possible. In this
case the wave interacts the hot electrons of particular pitch angles, the real and imaginary parts
of the coefficients are comparable in size, and the interaction is strong and always unstable. In

the remainder of this section we discuss stability assuming drift reversal does not occur.

We will not consider the high frequency regime having (a)dh) ~>> ((ode). We simply
remark that in this limit the wave frequency dependencies of (G) , (H ), (F ) , and (I ) terms can

no longer be ignored. Consequently, the dispersion relation given by Eq. (3.38) is no longer a
simple quadratic and its solution has to be found numerically. In this case, a new instability can
occur which is often referred to as the hot electron interchange".

In what follows we first consider the lowest order interchange modes in the absence of

resonant hot electrons for @<< ((odh> ~ apy, and then retain the hot electron drift resonance

perturbatively.
3.4.A. Lowest order non-resonant modes.

To investigate the effects of hot electrons on stability for closed magnetic field lines, we
first ignore any resonant effects and consider the electrostatic case. To do so we drop all the
terms proportional to the background plasma, by assuming 8, << 3, ~1. The dispersion relation

then reduces to

(Br) o? dlnngy
(1220 o) sl ) -] 0. o
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The overall multiplier in front is independent of the frequency, so stability requires

(nonT. ! po,,)2(1+%‘l-:";ﬂ)z +4(b)(y~d)20, as in a Z-pinch'®. The hot electrons enter only

through charge uncovering effects (proportional to ng,,) in this limit and these improve the well
known dipole interchange stability condition® of d <y .
For the fully electromagnetic case, we continue to ignore the resonant effects of the hot

electrons so that (G) , (H ), (F ) , and (I ) are real and independent of wave frequency and the

dispersion relation is quadraticc. For the intermediate frequency ordering with
(a)dh) >> w>> (a)de) it follows that % = % >> 23327 . It is expected that during LDX operation

the hot electron beta will be much larger than the background beta so it is of interest to consider

By, >> B, ~1, which coupled with the frequency ordering allows us to take noaTe . (e >>le

Pob @ T,
In this regime, the dispersion relation is given by Eq. (3.38) with the (G) term ignored, and
stability is determined by the sign of the discriminant. This limit will be investigated in more

details for the point dipole equilibrium in Sec. V.

For completeness we also examine the case of equal hot and background pressures with

By ~ B, ~1. Recalling the frequency ordering, this limit requires ~2-c Pop ; ——2 The

dispersion relation then reduces to

. dmam )
(o) (o1t )

(3.40)
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with stability determined by the signs of three terms on the right hand side. Section V will also
investigate this limit in more detail for a point dipole, for which ¥ >d always, so only sign

changes in the numerator need to be considered.

3.4.B. Resonant hot electron drift effects on stability.

It is also of interest to examine how weak hot electron drift resonance effects change

stability boundaries. We examine these effects by retaining the imaginary parts of (G) , <H ),
(F ) , and (I ) Since the imaginary parts of the hot electron coefficients are much smaller than
the real ones, we may examine resonant effects perturbatively by writing @= a + @, where
ayy >> ]a)ll is the zero order solution to Eq. (3.38) with real coefficients, and @ is the small

complex correction due to the hot drift resonance. Due to its small size, @ cannot stabilize a
zero order instability or significantly affect the stability boundary, so we only look at real
solutions to the dispersion relation by considering real @y and ignoring the real part of @.
Moreover, without drift reversal, a weak drift resonance for />0 is possible only for positive
wave frequencies so we require @ >0. We need only consider />0 since reality requires
—w*, —1 be asolution if @, ! is a solution.

The full details of obtaining the expressions for imaginary parts of hot electrons

coefficients are provided in Appendix 3.C. Here we note that to the required order they can be

written as
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(Crs)=-AZBLA,  (Hp)=Ay 220

"OhTe (wde> nonTe 2
w 2 20 (3.41)
(F,es)=Am;£%A3 and (1,“)=A—"i%—(mde)2 o Ags
with A defined by
t~/—w~h( zﬂh)the ab T, §/2
) T (—T;f , (3.42)

and the positive geometrical coefficients defined by

B/By

_ 312/ By
m=How (¥ ey )

_ {om” @B'B“ ﬂ{dr(B/Bo)/{dr
A2 2§2<362> I dA a)ls)’z rl
("’dh)SI2 IIBO MA
FwT]\ | F)
__{ew)"? BP0 ), RjarlBiny)igor
¢ 273'4(352>2 0 op?1-2By1B

A3=

where (wdh> = (a)de)Th / Te .
The expression for the first order complex correction for the fully electromagnetic case is

quite cumbersome. To understand the procedure of obtaining @, we schematically represent the

general zero order dispersion relation as

with A, B and C are the real coefficients of corresponding powers of co/(a)de) in Eq. (3.38)

and given by



Az[@@+%y<ﬁb>+@;—><z>)+%ez("zz:ffo—<H>X1—<F>>]
B "0"7[1+";‘1‘;‘3"{ LB )(1))—(—@(7%)(2—(}1)‘(”})]’
~(y- d(l+1d )+ ﬁ;)( ))

where the contribution from the term involving (G) is always small by at least T, <<T,.

The general zero order stability boundary is described by the real solution of the

preceding equation. The expression for the first order imaginary correction can be written as

% = ANK, (3.43)
where
=] -()0)-ale~ ()~ oat
+ oA, (1 ‘<F>)+ Al ‘<H>)]‘ (Ay+A3)}+ Ay,
and
N (1+%r<ﬂb<>;%§ﬂh><r>) (3.45)
A+—511a—;—8
with
o= B d) g g el (3.46)

2+L (B ) LB X D)) (@) pop (r-d)”

The sign of the Eq. (3.43) determines if plasma is weakly unstable. In our Z-pinch investigation,
we have extensively evaluated all possible cases and requirements for this weak resonant
instability. Here we will focus on three cases: electrostatic -background, electromagnetic with

By ~By~1, and the high f, electromagnetic case S, >>f, ~1 for the point dipole

equilibrium.
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For the electrostatic background case £, << 8, ~1, k=0, and in the absence of drift
reversal K >0, with @) the solution of the simplified zero order dispersion relation given by

Eq. (3.39). Equation (3.39) is a quadratic with real coefficients, and for the resonant modes to be

of interest it must have two real stable roots. If d >y, then both roots are positive if
dlInngy, /dInV < -1, in which case the resonance is always unstable. Both roots are negative if
dInng, /dInV >—1, in which case there is no resonance and the plasma is stable. Therefore, if
d >y we also require dlnngy,/dInV >-1 to be completely stable due to charge uncovering
effects. If d <y, then there is always one positive root, which permits a resonance, and the

stability of the region depends only on the signs of A and the numerator of N . For d <7 case

stability requires

(400 et 3 0. 347
where the sign of (I) depends on sign of dln py, /dIny and the details of the dipole magnetic
field. For the point dipole considered in the next section, the sign of (I ) depends only on sign of
dln py, /dIny and the plasma beta.

If we cbnsider the electromagnetic case, with S, ~ 3, ~1, then the @ or charge
uncovering terms become negligible, N reduces to N =1/(b)>0, all A; terms are positive
without the drift reversal, and the expression for K becomes

K=12Ay~(Ay+As)k+A; = M(x—%{-“—)z + A -2t
In this limit, stability depends on the sign of AK . If

dinny, /diny < 3dInT,/dIny,
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then a sufficient condition for stability is A; 2 (A, +A;)2 /4A,.

If we allow f§,>>1~p,, then @ ~1 and the general result of Eq. (3.43) must be
considered. A sufficient condition for stability can then be seen to be y>d,
(1+%y(ﬂb)+%(ﬂh)(1))>0, (F)<1, (H)<1, and dlInng, /dIny <3dInT;, /Indy . However,
more detailed results require a specific dipole equilibrium. In the next section we consider this
high B, case further, as well as the situations already discussed, for the point dipole

equilibrium'’. Their point dipole model allows us to simplify the computational aspect of our

analysis, while retaining enough features of the general dipole geometry to be of interest to LDX.
3.5 Point Dipole Application

In the previous section we derived and discussed the dispersion relation for interchange
stability in general dipole geometry. Unlike the Z-Pinch, the dipole dispersion relation involves
flux surface averages of various geometrical quantities, making it difficult to usefully discuss
stability without numerical work and a specific dipole equilibrium. To obtain semi-analytical
results we adopt the point dipole equilibrium found by writing the poloidal magnetic flux in the

separable form given by

w(r,u)=v'oh(u)(%)a. (3.48)
where u=cos@ and R=rsin@, with r and @ spherical coordinates and & measured from the

axis of symmetry'’. Here, Yo and ry are normalization constants and a is a parameter between

zero and one to be determined. The spatial behavior of ¥ is governed by Grad-Shafranov

equation, which for the choice of Eq. (3.48) and
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pW)= polw/wo )" (3.49)

can be rewritten as an ordinary differential equation for () :

Cho ey (g 42)aHe, (3.50)
du 1-u

4
where f = Zﬂi‘i‘zﬁ'—“— , with p, being a normalization constant. Solving the preceding equation for
ay

h(x) determines the eigenvalue a=a(8), with a—1 for §—0 and a -0 for B — . For

this model the local beta, defined in Sec. II, is only a function of poloidal angle and is given by

By = fa?h* ,[(g_dn%&)z 4+ ]

l—u2

Using this separable form we can express the spatial dependence of all required quantities
in terms of ¥, h(u), and its derivatives, and evaluate all of the flux surface and trajectory
averages.

We begin by addressing the issue of drift reversal in point dipole geometry, which

requires the evaluation of @), . Figures 3.1 present graphs of -V, -V§(21Th /mv? ), which when

trajectory averaged becomes @y, , given by Eq. (3.27). We plot this expression as a function of u

for different values of £ and 4.

35 —— lambda=0.9
2 4\ - - - lambda=0.5

\ —— [ambda=0.1
1 - A )

' u
o -
-1 Unm Uym Uy
.2 g
-3 1
-4 -

(a) (b)
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51 —— lambda=0.1
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Figures 3.1 (a)-(c): Expression~v, -V;(ZIT,, lmvz) as a function of u for different values of § and A. The bold
solid line is A=0.1, the thin solid line is A=0.9, and the dotted is A=0.5

From the graphs we can see that the integrand can become negative. However, even at large f,
the particles do not spend enough time in the regions with reversed magnetic drift to make @y,

the effective trajectory averaged drift, negative. As a result, drift reversal is not possible in point
dipole geometry.
We next proceed to the evaluation of the hot electron coefficients 7, F, and H, as well
as their trajectory averages entering in the dispersion relation. Figures 3.2 illustrate the
dependencies of I, F, and H on u for different values of B, where I is normalized to

dlnpy, /dIny, while F and H are normalized to d Inng, /dIny .
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Figures 3.2 (a)-(c): Normalized hot electron coefficients I, F, and H as a function of u for different values of B.
The bold solid curve is the coefficient I, normalized to dinp,,/dIn y; while the dotted curve is the coefficient F
and the thin solid curve is the coefficient / , both normalized to dlnn,/dIn y.

As we can see from the plots, all three normalized coefficients are positive at all possible u, so

their flux surface averages will also be positive, as confirmed in Fig. 3.3, where we plot (I) ,
<F), and (H) as a function of . We take dInng, /dIny =1 and 7, =0, so that (I), (F), and

(H ) are normalized to dIn py, /dIny and dlnng, /dIny, respectively.
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Figure 3.3: Flux surface averages of normalized hot electron coefficients I, F, and H as a function of B with
dinn,,/din y=1 and 1,=0 for normalization. The bold solid line is </>, the dotted line is <F>, and the thin solid
line is <H>.

As we can see from the plot, the normalized flux surface average of I is positive, and both

normalized (F ) and (H ) are also positive as well as less than unity. It is also obvious from Fig.

3.3 that (H ) z(F), and therefore the expression for K, which describes the resonant particle

effects, can be approximately written as

K= Agfilol—(H))- 1]+ (A, + As )2, F 4+ A, - 10220F

As aresult, only if A;—(A, +A; )2 /4A 4 becomes negative, can K change sign, an observation
we will return to, when the resonant effects of hot electrons are addressed later in the section.
Next, we turn our attention to analyzing the lowest order stability condition, which
ignores the resonanf particle effects and for the general case is described by the dispersion
relation of Eq. (3.38). It is convenient to illustrate this analysis with plots of d as a function of
B. To do so, we use the expression that relates the total pressure gradient to the hot and the

background pressure gradients, namely

dinp _ _{B) di (By) dl '
A T (35D
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where for this point dipole model the total pressure is given by Eq. (3.49). Notice that if we

assume equal background and hot electron pressure profiles and use dInV /dIny = —(1+3/a),
we find that lowest order stability is always satisfied since d =(2a +4)/(a+3)<y=5/3.

For the electrostatic case with f,<<f,~1, Eq. (3.51) reduces to
2+4/a=dInpy,/dIny, which when substituted in the dispersion relation given by Eq. (3.39)

yields

(1+%ﬁ(1))[i-)-2-(b)+2%5—ﬂ— —M—L—)—(}'—d)]=0,

Pob (“’de). a+3 l4imy

where we used dInV/dIny =—(1+3/a) and dinng,/dIny =(dIn py, /dIny)/(1+m7,). The

(2mss)
stability boundary is described by d < 7+————"2/__ and can be graphically represented as
4(b)(pob /nonTe
in Fig. 34,
3 d bAnonTo/Por)’=1  ynstable

N - eta=1 - - - eta=3
1 . ofar3 Stable 5

O LIRSt S B R B S At A [ S R B S B A N B S S |

0 1 2 3 4 5

Figure 3.4: Stability regions for different values of , with b(pew/ne,T.)’<1. The bold solid curve is 1, =1,
which coincides with the thin solid line d=y. The dash-dotted line is 1), =-3 and the dotted line is 1y, =3.
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where the 7, =1 and d =y curves overlap. As we can see from the graph, the charge

uncovering effects due to hot electrons are stabilizing, and allow achieving stability with d

above ¥y when 7, is kept negative.

Next, we consider fully electromagnetic case with S, >> f, ~1, so that the total plasma

pressure remains mostly contained in the hot electrons. It follows from Eq. (3.51) that

dInp/dinpy, =1, and as a result the expression for (I ) , which is dependent on dIn pgy, /dIny

is positive. In addition the expressions for 1+1 (g, )+1 I) and the coefficient A given
p P! 2 b/ 2\Fh

before Eq. (3.43), with (1—(H))1-(F))=~(1-(H)) are positive. The dispersion relation for this

case is given by Eq. (3.38) without the small (G) term. The stability boundary is illustrated in

Figs. 3.5 where d is plotted as a function of A for different values to 77,
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Figures 3.5 (a)-(d): Stability regions for different values of 1, with §;, =1 and b(pm/no.,T,)2=l. The thin solid
line is d=y. In figures (a), (b), and (d) it overlaps with the top seolid curve.
and where the d =¥ curve overlaps with the top solid curve with the exception of the 7, =-0.8

case. As can be seen from the graphs, stability is improved in the vicinity of 7, =—1, but

otherwise is rather insensitive to changes in 7, . The b(pg,/ng,T, )2 parameter does not affect
the stability boundary significantly. When increased (decreased), it slightly shifts the two curves
together (apart), thereby decreasing (increasing) the stability region. The graphs in Figs. 3.5 are
only valid for 8= B, >> B, ~1, that is above about B =5.For lower f, the stability condition
is given by Fig. 3.4 if £, << B, ~1 or will be discussed shortly for S, ~ B, ~1.

It is also of some interest to take the hot and background pressure gradients as equal, so
that Eq. (3.51) reduces to 2+4/a=dlInpg,/diny=dInpgy,/diny. For this special case
d <y and therefore A and C as given before Eq. (3.43), are positive and negative, respectively.
Consequently, the plasma is always stable in the absence of resonant particles effects.

For the case of f, ~ B, ~1 the dispersion relation is given by Eq. (3.40) and the total

plasma pressure is split between the background and hot particles. If, for example,
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(By)={B4)=(Bo}/2, then Eq. (3.51) reduces to 4(1+2/a)=dInpy,/dIny +d1npgy,/dIny,
and it follows that

%‘;"—:4(1+-§-)-(1+%)d.

From Eq. (3.40), the stability boundary is determined by the signs of three expressions: y-d,

the numerator 1+—;—d(ﬂb)+(—%@1(1), and the denominator 1+1%(8,)+ ’82" (1), that are shown

in Fig. 3.6. Unlike the previous two cases the stability boundaries are independent of 7, .

157d '
.l- Unstable |— - numerator
10 - : N, - - = - denominator
' N ~ .| —d=5/3
. Stable T
5 R
Unstable
0 ——Stable ' P

Figure 3.6: Stability regions for <py>=<B,>=<f¢>/2. The bold solid curve is d=y, the dash-dotted line is
1+d<Pp>/2+<I><Py>/2=0, the dotted line is 1+y<P,>/2+<I><P},>/2=0.

As we can see from the graph, d <y is expected to be the only experimentally accessible
stability region, since the second stability region does not cover S <1, depends sensitively on
(B)!(B,) and does not exist in the absence of hot electrons.

Next we consider the resonant hot electron effects that determine what we refer to as the
first order stability boundary. We note that these effects are weak, and therefore cannot stabilize

the lowest order instability, but can potentially destabilize the zero order stable regions. Recall
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that resonant particle stability is determined by the sign of @, , which is given by Eq. (3.43), and
depends on the signs of @y, A, N, and K. Since the expression for ay is quadratic with real
coefficients, in the stable regions it will have two real roots. Only positive roots can lead to a hot

electron resonance with the wave, since otherwise the denominator in the expressions (I ) , (F ) ,

and (H ), as given in Eq. (3.35), will not vanish. Consequently, stable regions with two negative

real roots will remain stable due to the absence of resonance. Moreover, the lowest order stable
regions with two positive roots will always become weakly unstable, regardless of the signs of

A or K. This behavior occurs because of the denominator of N, which can be written as

A+-%‘§B = i'z%,"/ B2 —4AC . As both signs are present there will always be one unstable root.

In the lowest order stable regions with one positive and one negative root, only the positive root
can lead to a resonant instability, and the condition for it will then be determined by the signs of
N, A, and K. We will first concentrate on the sign of the latter.

As we have discussed earlier in this section, the sign of K depends on the sign of

Ay —(Ay +A314A,. So we present the graph of A;—(A, +A;) /4A, as a function of # in

Fig. 3.7.
0.3 1 Ar{Ax+As)/(8A4)
0.2 -
0.1 1
B
O T 1rr T 1rr1rr g 1 r T rr Ty

0 2 4 6 8 10

Figure 3.7: Graph of A;-(A2+A3)*/(4A4) vs. B.
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The graph shows that this expression and, as a consequence, the expression for K, are always
positive. So the condition for weak resonant stability in the regions of interest depends only on
the signs of A and the numerator of N, which are considered next for the three different cases
of beta orderings.

For the electrostatic background case of £, << B, ~1, first order or resonant particle
stability requires

dinng, _ 2(+a)
dnv = " GoYem) > "

if d >y, as discussed in the previous section. This is the condition for the lowest order stable
region to have two negative real roots and it is satisfied when 7, <-1 or
m, >(a+1)/(a+3)>1/3.If d <y, then the lowest order stable region has only one real positive
root, and the first order stability is given by Eq. (3.47). For this beta ordering (1 +1(BXI ))> 0,

so the plasma will be stable to a hot electron resonant instability if

dInny,/diny<3dInT,/dIny. This conditon can also be written as

(d1n poy, /dIny )1 - 27, )/(1+7,)<0 and is satisfied when 7, <—1 or 73, >2/3. Thus, Fig. 3.4

suggests that to avoid hot electron resonance destabilization we need to avoid operation with

-1<n, <2/3.

For electromagnetic case of £, ~ B, ~1, the zero order stability boundary is independent
of 7,, and stable regions always have one positive and one negative root. Therefore, as
discussed in the previous section, the resonant particle stability depends only on the sign of A

and requires dlInngy,/d lny/S%d InT,/dIny, which as before is satisfied when n,<-1 or
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71, > 2/3. So as in the electrostatics case, the regions of operation with —1<1, <2/3 should be
avoided.

For the electromagnetic case of £, >> f, ~1, we recall that the coefficient A, given

before Eq. (3.43) is always positive, and the plasma will be resonant stable in the regions with

C>0 and B >0, where it has two real negative roots. When C <0 there is only one positive
root, and the sign of A determines the stability, so dInng, /d lnyfs-%dln T, /dIny is required
for stability.

In this high B, case, unless n, — —1, the lowest order stability boundary very closely
coincides with the C=0 curves. As a result, except for this special case, resonant electron
stability requires d1nng, /dIny <3dInT, /diny .

For the special case of 77, — ~1, the stability condition is presented in Fig. 3.8, where the

signs of B and C are plotted as a function of £, and we also remind readers of the lowest order

stability boundaries, which are shown in faint grey.

40 | d B/NonTo/pon)’=1, Pu=1, N->-1

30
20 1 Resonant Stable ---B=0
10 4 —C=

Resonant Unstable

Figure 3.8: Stability regions for n,—>-1 with B, =1 and b(pgy/ng,T.)’=1. The dotted line is B=0, two bold solid
lines are C=0 and thin solid lines are the lowest order boundaries as shown in Figs. 3.2.

74



In this graph, the two solid lines bound the region with C <0, where the plasma is resonantly

stable if dInng, /dlnyfs—g-dlnTh/ dIny . The region above the top solid line, but below the

faint grey line has C>0 and B >0, and is always stable since the two lowest order roots are
negative. The region below the bottom solid line and above the faint grey line has C>0 and
B <0, and is always resonantly unstable since it has two positive roots.

We conclude this section by stressing, that keeping d<y and
dinngy, /dIny < %d InT}, /dIny is the best means of keeping the plasma stable. In special cases,

these conditions can be relaxed, but more profile control is required.
3.6 Conclusions

We have investigated the effects of hot electrons on the interchange stability of a plasma
confined by a dipole magnetic field and have obtained the general dispersion relation for
arbitrary beta. The analysis of the stability boundary is dependent on the particular details of
magnetic field, as well as the background and hot electron pressure, temperature and number
density profiles. As a particular illustration of the preceding theoretical development, the
dispersion relation is analyzed in detail for a point dipole equilibrium.

Our analysis indicates that it is impossible to have magnetic drift reversal in the point
dipole, but it might become a concern in more general dipole geometry, in which case a strong
instability would occur.

If resonant hot electron effects are neglected, we find that the general, experimentally

achievable interchange stability condition normally remains close to d < ¥ . In a point dipole we
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demonstrate that this condition can be improved and d can be allowed to exceed ¥ either in the
case of an electrostatic background by keeping 7, negative, or in the electromagnetic case with
By >> B, by keeping 7, close to negative unity.

Hot electron drift resonant effects result in small corrections to the mode frequency that

can create weak instabilities in the stable regions. Usually this weak instability can be avoided by

satisfying the condition dInng, /dIny < %d InT, /dIny .

76



Chapter 4

Conclusions

In this thesis the effects of hot electrons on the interchange stability of a plasma confined
by closed magnetic field lines was investigated. This work has been motivated by a desire to
determine how interchange stability is modified by the presence of hot population due to electron
cyclotron heating. Our study has demonstrated the key roles that hot electron magnetic drift
reveréal and the hot electron fraction and profiles will play in the Levitated Dipole Experiment.
The results of this work are applicable to LDX and can be useful to other closed field line
devices.

In Chapter 2, we first have developed the procedure for Z-pinch plasmas, which can be
thought of as a linear approximation to a dipole. The simplicity of this geometry, while
preserving the feature of closed field lines and allowing us to treat the diamagnetic and magnetic
drifts as comparable, gave us the ability to understand the physics behind the destabilizing
influences due to a hot electron population. In particular, our results yielded two different types
of resonant hot electron effects that modify the usual ideal MHD interchange stability condition.

The first occurs when the magnetic field is an increasing function of radius and there is a
critical pitch angle for which the magnetic drift of hot electrons reverses direction. This
interaction between the wave and the particles with the pitch angles close to critical always
causes instability for Maxwellian hot electrons. And as a result, stable operation is not possible

for such a magnetic field profile.
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When the drift reversal does not occur and resonant hot electron effects are neglected, we
find that interchange stability can be enhanced compared to the usual MHD interchange
condition by increasing the background plasma pressure as well as the gradient of the hot

electron density for 8, >> B, ~ 1. However, further increasing S, beyond two or three, did not

result in significant increases in stability region. When the hot electron drift effects are retained,
they can potentially cause a weak resonant hot electron instability. This second destabilizing
effect due to the hot electron drift resonance can be avoided by controlling the hot electron

density and tcmperéture profiles so that g, /ng, > 3rT}, 12T, .

Geometry can be important in evaluating effects of hot electrons on a plasma interchange
stability. Consequently, we extended our calculations to dipolar geometry in Chapter 3 and have
obtained the general dispersion relation for arbitrary beta. The analysis of the stability boundary
dependents on the details of magnetic field, background and hot electron pressure, temperature
and number density profiles. To illustrate the application of the preceding theoretical
development, we have the analyzed the dispersion relation for a point dipole equilibrium. Unlike
the Z-pinch case, our analysis of a point dipole showed that it was impossible to have magnetic
drift reversal. However, this may become an issue in more general dipole geometry or when the
effects of anisotropic temperature due to ECRH are considered, in which case a strong instability
would occur.

Without the resonant hot electron effects, the general, experimentally achievable-
interchange stability condition normally remains close to d < 7. In a point dipole geometry this
condition could be improved and d could be allowed to exceed ¥ in the case of an electrostatic

background by keeping 77, negative or in the electromagnetic case with S, >> B, ~1 by

keeping 77, close to negative unity.
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As in the Z-pinch case, the hot electron drift resonant effects in a dipole resulted in small
corrections to the mode frequency that could create a weak instability in the interchange stable

regions. This weak instability can be avoided by controlling the number density and temperature
profiles of the hot electrons so they satisfy dInngy, /dIny < —g—d InT, /dIny .

The work presented here can be expanded in many ways. As an example of a possibly
interesting continuation we mention the investigation of anisotropic temperature effects of hot
electrons on plasma stability. The ECRH tends to heat predominantly in the direction
perpendicular to the magnetic field, and as a result the parallel and perpendicular temperatures
are expected to different. The velocity space anisotropy may have a great impact, particularly if

the VB, drift were to reverse. Another interesting problem that has been mentioned only in

passing here is the stability of HEI modes in Z-pinch and dipolar geometry. These effects are of
great interest to LDX community, since they depend on the hot electron fraction, as well as
density profile and seem to be observed in LDX. Finally, the extension of the point dipole case to
the particular dipolar geometry of LDX and the solution of the full integro-differential

description would be useful to the LDX effort.
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APPENDIX 2.A: EVALUATION OF HOT ELECTRON RESPONSE.

This appendix' presents details of hot electron response expressions G, H and s,1.

Recall that the perturbed hot electron density and radial current are given by

——n”' =——1 =——e¢ [ ___Blﬂ
b= L [fydv=22G+32H (2.A1)
and
. ed B,
ﬂlp 1: =—Tﬂ°—zfvrf1hdv=#%”1—7':'sh1’ (2.A2)

with fj, given by Eq. (2.26). Thus, the expressions for G, H and s,I can be written as

_q_ 2yt 2__3_I di
G=1-22 T bem2 -3 5t (2.A3)

_ 20y % 1?2 23\t ail-2)
H Teo ‘{dte t [1+77,, (t 2)]_11 Dwias (2.A9)

and

oo 1 2
T -2 4 2 _3)\ _dali-# ! 2 AS
spl Vo J""’ t [1+77,,(t 2)]_11 Dooio’ (2.A5)

where 2 =mv? /2T, and D =(1+s)4? +(1-s).
For s<1 no drift reversal is possible and we can drop the @/ a),(,,t2 term in the

denominator due to @<< @, , except for very small ¢, where slow electrons are resonant with

the wave. Retaining this weak resonant effect the expressions for G, H and s,/ become

1
G=1_ﬂ£_;m-_) {%mm, (2.A6)
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1 2
H=gt flﬁ%—ﬂ)* H ;. and (2.A7)

_ 3Bpamy (1+7;,) Idl(l-l)z (s,1)

Sh 80)"' _l res £ (2-A8)
with

J— o 1—-377 [_

Gres - h I D3,2 ’ (2.A9)

«/‘ 1-3n, 2t af-2)

H,, = “"( R L (a)3 4 ‘5,’} , an (2.A10)
J_ wan,(1-27 /2 -2}

(sal),,, A —a (zg)s f“‘D‘w‘z . Q2.A11)

Observe that since D does not vanish for s<1, integrals over 4 are easily evaluated,

confirming that the non-resonant parts of expressions for G, H and s,] are all of order unity.
As we noted at the beginning of Sec. 2.4, only the non-resonant part of s,/ matters in the

dispersion relation for s <1 to lowest order. Thus, ignoring the weak resonant effects, the hot

electron response for s <1 is described only by 5,7, where I is given by Eq. (2.34).

The weak resonant effect of hot electrons for s<1 is calculated by evaluating the 4
integrals in G,,,, H,,, and (s,1 )m to obtain the expressions given in Egs. (2.40) — (2.41).

For s>1 there is always a critical pitch angle l/’lo|<1 for which D vanishes and

therefore we must keep the @ term with Im@ >0 to satisfy causality. Evaluating the A4 integral

in the expression 5,1, Eq. (2.A8), we find
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1 dA(l-A’)’ "
J; D-ol o 3(1+ )2 [(4+s) 3 { D-wlt*ay

=— 3(1+s)2{(4+s) 3[ J-s;—_iln(s+ s2-1)+—§'_—1]},

where we have dropped @/ tza),d, order terms since they are much smaller than the leading

(2.A12)

imaginary term. As a result, the expression for s>1 is as given in Eq. (2.34).
Finally, we have to evaluate the expression for I at s — 1. The vicinity of s=1 is the

only region were the @ and ¢ dependence of the integral

z -1... s<1

; T
f _ \1211 s—wlt a),,,) (2.A13)
-1

=

D—m/a:.‘,.t2 51 1 -1... s>1
s+l oy,

enters. The weak ¢ dependence makes it awkward to do the ¢ integrals exactly. However, to get

the region about s =1 approximately correct, we evaluate the integrals in s,/ at s =1 getting

(142
{__,J— "5’-:% 3 ] (2.A14)

and then use the result to make an approximate fit that is independent of 7. This procedure is

equivalent to making the replacement

—_— o —]... s<1
. ,/ 2 1-s-ow/ &, )
—di —_»m R 2.A15
__Il D-o/ oyt ;:; J2s-1+ow/ ) L. s>1 : ( )
A —1... s=1
| V200! B
where
_[_30em) T
ar(243m,) |
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Notice that if we were to repeat the same procedure for G and H as given by Egs.

(2.A3) — (2.A4) for s>1 and s — 1, we would find that they are of the same order as s,/ and

therefore would not be significant in the dispersion relation.
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APPENDIX 3.A: EVALUATION OF PERTURBED HOT ELECTRON

DISTRIBUTION FUNCTION.

This appendix presents the detailed evaluation of the first order correction to the
perturbed hot electron distribution function. We assume that the hot electrons satisfy the Vlasov
equation and linearize the hot electron distribution function about its equilibrium by taking
fn = fon + fip +... With fop = fo,(Ws, E) satisfying Eq. (3.21) and f;,, satisfying Eq. (3.22).
We follow the standard gyro-kinetic procedureu’123 by removing the adiabatic response by

e® fon

intl'OdUCiﬂg &1 = flh +——m —aE SO that
dfﬂ _dg d 'e‘b af()h —_ Vo + 0A vxB,}V 3.A
dlt dtl dt\m GE) ;1( ot 1)' vf()hv (3.A1)

where d/dt=9/9t+V-V—-Q,vxB,-V, is unperturbed Vlasov operator. Rewriting the above

kinetic equation for g; yields

dg) _ on d (e A _g ") _
—dt——-alé—'z;(-’?)—-’%(V‘p'F "VXB] 'va()h—

; ! (3.A2)
_ e 5.4, You pp A _yxB
=%y ) Jou gt o+ 9B

d %on

where aE) 0.

We denote the gyrophase independent and dependent portions of g; =g, + g; with a bar
and tilde, respectively. Next, we obtain the two equations for both parts of g,. The equation for
g is obtained by gyroaveraging Eq. (3.A2) using E = vi/2, U= v}_ /2B,, and ¢ gyrophase on

the left side. Recalling that g, is gyrophase periodic yields

B4y VE + (V) - Vg,)q,—fl-ag‘g'(% I at) E’f‘"'kz; (V<D+A-v“xnl) (3.A3)



with the gyrophase average defined by () 0 =#g’...d¢. The equation for the gyrophase
dependent part, g, is obtained by subtracting the preceding equation from Eq. (3.A2) to find

08 , = v~ , = _ - -~ -1 9% - e - a
—ag%"'V'Vgl +v, 'Vgl —(VJ_ 'Vgl>¢+ge "-’%=—V_L (ﬁ%%"‘R%BI XC). (3.A4)

Using the orderings given by Eq. (3.20) we can expand g; = g? + g} +... and solve these

two equations order by order. As a result, g? is gyrophase independent, since to lowest order Eq.

(3.A4) gives

N ~0
-Q,7xb-V,g =@, =0. (3.A5)

In addition, Eq. (3.A3) to lowest order requires V| -V"g’lo =0, making Elo also a flux function to

lowest order.

The solution of Eq. (3.A4) to next order gives us the equation for the first order

gyrophase dependent part g,‘ , which we write as

- ] ~ — d A 9 b v 0
3! =_Qelleb.(vg;)+ﬁ_g%%%_%7f%vw)5-&xvl-D. (3.A6)

With the help of the preceding equation we can calculate §10 from the next order version of Eq.

(3.A3) by gyroaveraging and observing that

v..vel) =(v, . Vlb)xs) D+(v, VDxB-7,) =7, D+Ab.VxD
<VJ_ Vg1>¢—<v_|_ V%)XV>¢ D+<V_L Vnge vl)¢—vd D+ ZJ'Q—e'VXD,
with the magnetic drift velocity given by
2
Vg4 =—§z€—Vyl-(leVlnBo +v"2|'é).
e

Note that neither the curvature nor VB, have a V{ component.
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Multiplying Eq. (3.A3) by B, /v and integrating over one complete poloidal circuit for

the passing and one full poloidal bounce for the trapped particles to annihilate V) -V§1l we then

obtain Eq. (3.24).
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APPENDIX 3.B: EVALUATION OF PERTURBED HOT ELECTRON

NUMBER DENSITY AND RADIAL COMPONENT OF CURRENT.

In this appendix we evaluate the perturbed hot electron number density n,, = [ f,,dV and
Vy component of the current, Jy,, = —ejvw fipdv , where fy, is given by Egs. (3.23)-(3.25). It
is clear that only the gyrophase independent part of g, contributes to ny,, while only the

gyrophase dependent part survives the integration in J,, . Thus, the perturbed number density is

given by
ny, =""”0h £§1 j'd" th( “"Th) + [dV ,3;2 ﬂfuh(w-w.r,,)!dr(QBIBoE)/ejdr
myv h
[ 2 ""’) ("*"zﬂr‘h‘ )

\ivvhcre Jvy4d7 =0 since for an interchange mode Ay is up-down asymmetric.

The expression for Jy,, =—e[v, g dv may be rewritten as

Jiy =—3 IVJ.V{ (V81+—QthA}i‘7 I‘U.(,;gl thA;)ﬁ-
Before proceeding further we use the estimates g, ~ fy,e®/T;, and A, ~ A, /1 to compare the

size of the terms in J Iy Recalling Egs. (3.30) and (3.31), we see that

fmnAzealT,  aRA, 2
TR e ~1/1° <<1.

Hence, for high mode number [ we can ignore the A, term compared with the g; contribution.

Therefore, the expression for J;, reduces to

v th(a)—aa.T!)+ im2 ¥ 24 th(a)-a)Z;‘){dr(QBIFBo)l{dr.

Iy =—<2 0L [y
L4 Ty 2RB 2 4TRB 2
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If we also treat Qp as a flux function to lowest order, then it can be taken outside of the

dt integrals in the expressions for ny;, and Jy, to obtain Egs. (3.33) and (3.34), respectively.
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APPENDIX 3.C: EVALUATION OF IMAGINARY PARTS OF G, H, F,

AND I TERMS.

This appendix presents the details of obtaining the weak hot electron drift resonance
terms for the intermediate frequency regime with (@y,)>>@>>(m,,). Accounting for both

signs of vy gives [&v=> [ [ [ dgvdvdA(By/B)/2,/1-~2By/B . We can then rewrite the full
0 00

expressions for G, H, F,and I given by Eq. (3.35) at the end of Sec. 3.3. By evaluating the ¢
integral and defining ¢ = v\/m/ 2T, we obtain

-t g2 O [1+'7h(' J)]

G= 1—— T% e o
_ Bofao /I{dr (B1Bo)14dr I e w—%[”m.(tz—-)]

VzB? 0 1-ABy/B o-t*op

F=<Baz>_ E’IB" i Tare"" 4""0*h[1+ﬂh(‘2-‘3)]

JzB? J1=2Bo1B o-t*op

MBIB" A24dr(B1By)14dr T . - 60)—akh[l+’lh('2—l)]
1= | A e

L

3.C1)

L]

To get the non-resonant, real parts of the expressions for G, H, F for
<< (a)dh) ~ aky, , we simply neglect all @ dependence in the ¢ integrals. Then we only need to

evaluate the lowest order resonant contributions in the following expressions:
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G=1- Boawy, (1-113) IIBO dA___
e ol =

+ Gres 4

-1 —
30(862> oy BIBo  14ae(B 1By )14dr
B R o

(&

F="—F ga)m/l— 75 s s

-2
3<362> o (473) B/ B0 | 2040(5 1B )1 qar
I = 8§4 I dl_ﬁia_"" Ires .
0 ap+1-ABy/ B

To calculate the small imaginary corrections due to the weak resonance, we consider the

H=
(3.C2)

speed integrals first and note from (3.Cl1) that they are all of the form of

If(r)e'dr I L0 (4
w-Ar?

Y A «/a)lA+t); with f being only a function of ¢. The imaginary

A r(Jora

from the calculus of residues. For the
24Vml A

part of the preceding integral is given by —m

intermediate frequency ordering v@/A <<1, so that we can approximate the exponential by
unity and only keep the largest contribution to f (\/ ol A). As a result, for @<< (a)dh) ~ Oy, , the

weak hot electron drift resonance terms to lowest order can be written as

iNx x|l
Gres =— ]

_ iz 2an {12y )Bo B IIBO A4de(B1By)I4dr
res 2§3<862> ai)lz\[]_—' ’
. 12, (13, B/
F,, = u/;w}— m“h(l 277h) IBO - 1A
2B2(B5%) o @b 1-2B/B

. N7 2oy (135 ) B IBO g3 Pdar(B1Bo)iqdr
res 2§4< 2> 0 %'zm

(3.C3)
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Once the above expressions are flux surface averaged, they reduce to the ones given in Eq. (3.41)

upon using (@, ) =(@,, )T, /T, .
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