MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A1 Working Paper No. 325 August 1989

Decision Representation Language (DRL)
and Its Support Environment

Jintae Lee

Abstract

In this report, I describe a language, called Decision Representation
Language (DRL), for representing the qualitative aspects of decision
making processes such as the alternatives being evaluated, goals to
satisfy, and the arguments evaluating the alternatives. Once a decision
process is represented in this language, the system can provide a set
of services that support people making the decision. These services,
together with the interface such as the object editor and the different
presentation formats, form the support environment for using the lan-
guage. I describe the services that have been so far identified to be
useful — the managements of dependency, plausibility, viewpoints, and
precedents. I also discuss how this work on DRL is related to other
studies on decision making.

Copyright (© Massachusetts Institute of Technology, 1989

Artificial Intelligence Laboratory Working Papers are produced for internal circulation, and may
contain information that is, for example, too preliminary or too detailed for formal publications.
It is not intended that they should be considered papers to which reference can be made in the
literature.

DRL (Decision Representation Language) is a language for representing decision
processes. The goal of DRL is foremost to provide a vocabulary for representing the
qualitative aspects of decision making -- such as the issues raised, pro and con
arguments advanced, and dependency relations among alternatives and constraints,
that typically appear in a decision making process. Once we have a language for
representing these basic elements of decision making, it becomes possible to provide
services that use this language to support decision making. A DRL environment
consists of a set of such services. The present DRL environment include services
such as plausibility management, dependency management, and viewpoint
management.

This report describes DRL and its environment. In the first section, I discuss the
motivations underlying the design of DRL. In Section 2, I describe the DRL
constructs. In Section 3, I describe the DRL services that form its environment. In
Section 4, I try to justify the DRL constructs by characterizing intuitively the things
that we want to represent in decision making processes and illustrating how DRL and
other relevant works succeed or fail to represent them. In the final section, I describe
the topics for current and future research.

1. Motivations

The goal of DRL, as mentioned above, is to provide a language for representing the
qualitative aspects of decision making processes. This goal, in turn, is motivated by
the following goals: knowledge sharing, decision support, and a problem solving
paradigm based on arguments. I describe each of them below. Also, in Appendix 1,
I present a sequence of scenarios that illustrates these motivations in a concrete
context.

Knowledge Sharing

Decision making usually involves gathering and relating pieces of knowledge relevant
to evaluating alternatives along some criteria. Such knowledge, once explicitly

represented, can be shared by others who have to make similar decisions. Past
decisions can tell us not only the factual information that we need but also the ways
that a decision can be structured, the ways that different goals can be achieved, or the
attributes against which alternatives should be evaluated. Furthermore, past
decisions provide the additional knowledge of whether the approach they took were
successful or not.

Documents,, Basis for Learning and Justification

The records of how decisions were made serve as documents, which in turn serve as
a basis for justification and learning. In particular, when the language is used by the
system for representing the decisions it makes, the decision records allow a special
kind of knowledge acquisition: when a system fails, we can examine the records of
the decisions it made and find out why it failed. That way, we can find out what
piece of knowledge is missing or not utilized. We can also test the completeness of a
system this way before releasing it to the world.

Decision Support

Once we have a language for representing the qualitative structure of decision making
processes, the system can provide many services that support decision making. The
system can manage the dependencies among objects (e.g. This claim depends on
another claim. MacOS is an alternative only if MacIntosh is chosen as the hardware
platform, etc.) so that if an object changes its status, its consequences would be
propagated. The system can keep track of multiple viewpoints.

A Problem Solving Paradigm based on Arguments

Another motivation underlying DRL is to study the dialectical process as a
computational problem solving paradigm. So far, I have discussed DRL mostly in
the context of providing support for human decision making. However, the
importance of a 'deliberate’ decision process -- in the sense of involving arguments

pro and con, evaluating alternatives, compromising and negotiating -- is being more
appreciated also in automated reasoning. Hewitt [Hewitt 86, Hewitt 88], for
example, has been pointing out the features of open systems, such as incompleteness
and inconsistency, which makes a purely deductive approach unrealistic. What really
happens in real systems and what needs to be included in artificial systems is the
complexity of the dialectical processes involving the interactions among agents with
different goals, shared resources, and different expertise. DRL is an attempt to
identify and articulate the objects and the processes involved in such deliberate
decision making processes. DRL, in that sense, can be viewed as a protocol for
cooperative and distributive problem solving.

2. DRL Constructs

Figure 1 lists the constructs, and Figure 2 displays them graphically. The
fundamental objects of DRL are Goals, Alternatives, and Claims. Alternatives
represent the options to choose from, Goals specify the properties of the ideal option,
and Claims constitute arguments relevant for making the choice. Other objects are no
less essential in a decision making, but either they are special cases of the above three
(e.g. Decision Problem is a subclass of Goal) or they are useful in general (e.g.
Group, Viewpoint) or they are auxilary (e.g. Question, Procedure). In the following,
for each of the objects and relations, I discuss the rationale for having it and what its
intended meaning is. An example decision graph, i.e. the representation of a decision
problem in DRL, is shown in Appendix 2. In Section 4.2, I illustrate the use of the
following constructs through another example.

2.1 DRL Objects
ALTERNATIVE

An ALTERNATIVE represents an option in consideration for the decision problem
that it's associated with. An ALTERNATIVE may have other ALTERNATIVES as

Fig. 1 DRL Vocabulary

Alternative
Goal
Decision Problem
Claim
DRL Relation
Is-A-Sub-Decision-Of (Decision Problem, Decision Problem)
Is-A-Goal-For (Goal, Decision Problem)
Is-A-Subgoal-Of (Goal, Goal)
Is-An-Alternative-For (Alternative, Decision-Problem)
Is-A-Sub-Alternative-Of (Alternative, Alternative)
Facilitates (Alternative, Goal)
Supports (Claim, Claim)
Denies (Claim, Claim)
Qualifies (Claim, Claim)
Queries (Question, Claim)
Influences (Question, Claim)
Are-Arguments-For (Group of Claims, Claim)
Is-An-Answering-Procedure-For (Procedure, Question)
Is-A-Result-Of (Claim, Procedure)
Answers (Claim, Question)
Are-Possible-Answers-To (Group of Claims, Question)
Is-A-Sub-Procedure-Of (Procedure, Procedure)
Is-A-Component-Procedure-Of (Procedure, Procedure)
Question
Procedure
Procedure Description
Executable Procedure
Group
Viewpoint

Figure 2. DRL

Decision is-a-goal-for
Problem
\V,

is-an-alte

is-an-alternatjve-

Alternative

is-subdecision-of

ecision Proble I
procedure (description) J

Ontology

for

0
questions

R

-D>influepeé

is-an-anSwering-procedure-of

<Hs-a-
@ result-of procedure (description)

is—a-componen%rocedure-of

procedure\(descn'ption)

its sub-alternatives. For example, 'Obtaining STROBE with SPE' is a sub-alternative
of 'Obtaining STROBE'. An ALTERNATIVE is evaluated with respect to each goal,
and has the attribute, EVALUATION, which can contain either an evaluation measure
(actually an evaluation object, which contains the measure together with the
explanation of how the measure was computed) or a pointer to unresolved objects
(actually an instance of the object, UNRESOLVED, which contains the pointer)
which have to be resolved to compute an evaluation measure.

GOAL

A goal object represents a condition that one wants to satisfy in making a decision. A
GOAL may have other GOAL's as subgoals, which can be grouped into a
conjunctive set (i.e. all of them have to be satisfied) or a disjunctive set (i.e.
satisfying one of them makes it unnecessary to satisfy the others in the set). Also, we
need a distinction between a goal which is completely specified by its subgoals (i.e.
satisfying its subgoals is equivalent to satisfying the parent) and one which is only
partially specified (i.e. satisfying its subgoals is not equivalent to satisfying the goal
because it might have some other conditions that are not yet completely exhausted by
the conditions specified by the subgoals). These distinctions are captured in terms of
SET and the relationship such as CONJUNCTIVE, DISJUNCTIVE, and
EXHAUSTIVE.

DECISION PROBLEM

A DECISION PROBLEM represents the top level goal. Hence, it is a special case of
goal where the goal is of the form, "Choose X for Y." The other goals are the
subgoals of the decision problem, which elaborates what it means to satisfy this top
level goal.

CLAIM

A CLAIM represents a fact or a claim asserted as relevant to decision making. DRL
makes no distinction between facts and claims. In DRL, any statement is defeasible.

If a statement is very likely to be true, eg. "The Earth revolves around the sun.”, the
CLAIM representing it would have a very high PLAUSIBILITY-- an attribute that
every CLAIM has. The plausibility of a CLAIM depends in part on other CLAIMS
that SUPPORT, DENY, and QUALIFY it. This decision not to make the distinction
between a fact and a claim is based on the difficulty of making the distinction
consistently. What has been regarded as FACTs often turn out to be wrong, as
illustrated in the history and philosophy of science.

DRL RELATIONS

All DRL relations are subclasses of CLAIM. For example, B IS-A-SUBGOAL-OF
A' is interpreted as 'I claim that B should be a subgoal of A'. As such, that claim can
be supported, refuted, qualified, or questioned just like any other claims. More
discussion of the relations follow in the next section.

QUESTION

A QUESTION represents an uncertain state which requires more information to
determine its outcome uniquely. A question might be a simple request for
explanation-- eg. Why is G a goal of DP? Or it may represent a major uncertainty
whose different potential outcomes might lead the decision in different ways-- eg.
Would the next version of X be released in time? The evaluation of X, hence its
relative ranking with respect to other alternatives, might depend on how this question
is answered-- eg. The next version of X might contain the hypertext feature in need.
Even in the first case of a question representing a simple information request, the
different outcomes might influence the alternative evaluation in different ways. For
example, it might turn out that the simple question cannot be answered satisfactorily
and as a result the question can become a refuting claim and the plausibility of the
questioned claim can be reduced.

To deal with the different possible outcomes, each question has the attribute,
Viewpoints, whose value is a set of multiple VIEWPOINTS that represent possible
outcomes. Within each viewpoint, a possible outcome is assumed to hold and the

evaluation takes place with that assumption. If and when the outcome is uniquely
determined, the viewpoint that corresponds to that outcome is 'realized’. A question
may be also related to a procedure via IS-AN-ANSWERING-PROCEDURE-OF
(PROCEDURE, QUESTION). This relation is used to record a procedure that can be
used to answer the question either in the present context or in another context (i.e. as
a precedent, cf. Precedent Management).

PROCEDURE

A PROCEDURE represents either an actual executable procedure or a description of a
procedure as may be in the case of human support context. For the moment, a
- PROCEDURE object is used to represent a procedure that can be used to answer a
QUESTION so that this information can be used to execute or have a human being
execute the procedure in answering the question. A PROCEDURE may be related to
other procedures through IS-A-SUBPROCEDURE-OF or IS-A-COMPONENT-
PROCEDURE-OF. IS-A-SUBPROCEDURE relation describes the
generalization/specialization relationship among procedures, and is useful when one
needs a procedure that is similar but not exactly the same as another procedure. IS-A-
COMPONENT-PROCEDURE-OF relation describes the part/whole relationship
among procedures, and is used when one wants to describe a procedure in terms of
the component procedures that implement it.

PROCEDURE DESCRIPTION
EXECUTABLE PROCEDURE

GROUP

A GROUP represents a set of objects, among which we want to indicate some
relationship. A GROUP object has the following attributes: Members and Member-
Relationship. The Members attribute points to all the objects that belong to the group.
The Member Relationship attribute takes as values such relationships as Conjunctive,
Disjunctive, Mutually Exclusive, and Exhaustive.

VIEWPOINT

A VIEWPOINT groups objects that are under the same set of assumptions. The
kinds of objects that one might want to group under a viewoint are:

claims assuming different possibilities

the same set of claims with different plausibilities
different sets of goals

the same set of goals but with different weights
objects at different points in time

2.2 DRL Relations

All the relations discussed here are subclasses of RELATION, which in turn is a
subclass of CLAIM. So any relation itself can be related to another claim via the
relations that take a claim as an argument (i.e. the relation itself can be supported,
refuted, qualified, and so on.)

IS-A-SUBDECISION-OF (DECISION PROBLEM, DECISION PROBLEM)

A decision problem D1 is related to another decision problem D2 via IS-A-
SUBDECISION-OF relation if D2 requires solving D1. For example, choosing the
best computer environment for one's project has as its subdecisions choosing the
hardware, choosing the operating system, and choosing the programming language
among others. When that is the case, the alternatives of the parent decision consists
of combination of the alternatives from its subdecisions. For example, the
alternatives for choosing the best computer environment are:

Sun, Unix, C

Sun, Unix, Lucid Common Lisp
Mac, A/UX, C

Mac, A/UX, Allegro Common Lisp
Mac, MacOS, C

Mac, MacOS, Lisp

As we can see, not all combinations are valid. The user should be able to specify the
compatibility among these objects in the form of dependency relationship (Cf.
Dependency Mangement).

IS-A-GOAL-FOR (GOAL, DECISION PROBLEM)

A goal C IS-A-GOAL-FOR a decision problem DP if C is a state that the decision
maker wants to achieve by solving DP.

IS-A-SUBGOAL-OF (GOAL, GOAL)

A goal C1 IS-A-SUBGOAL-OF another goal C2 if achieving C1 contributes
achieving C2. This relation does not yet capture some of the distinctions that need to
be captured in the subgoal relationship. For example, a goal might be exhaustively
specified in terms of its subgoals or only partially specified. And a goal might have
conjuntive subgoals in the sense that they all have to be achieved to achieve the parent
goal; or it might have disjunctive subgoals in the sense that achieving one of the
subgoals would make the other Goals unnecessary. I have yet to think about how
these distinctions can best be introduced in DRL.

IS-AN-ALTERNATIVE-FOR (DECISION PROBLEM, ALTERNATIVE)

An Alternative A IS-AN-ALTERNATIVE-FOR a decision problem DP if A provides
an option for solving DP. As such, IS-AN-ALTERNATIVE-FOR relation is a
special case of FACILITATES described below because it is to be interpreted as the
claim that A facilitates satisfying the top level goal.

IS-A-SUBALTERNATIVE-OF (ALTERNATIVE, ALTERNATIVE)

An alternative A1 IS-A-SUBALTERNATIVE-OF another alternative A2 if A2 is
compatible with several choices within its framework and A1 represents one such

choice. For example, Buying a Sun 386i IS-A-SUBALTERNATIVE-OF Buying a
Sun.

FACILITATES (ALTERNATIVE, GOAL)

FACILITATES is a relation that links an alternative A with a goal C. Itis to be
interpreted as the claim that the ALTERNATIVE facilitates satisfying the GOAL. As
a claim, of course, it can be argued about -- supported, denied, and qualified.
Whenever a new alternative is created for consideration, it is automatically linked to
all the existing Goals via a FACILITATES relation with its plausibility attribute set to
UNEVALUATED. Then as claims are added that supports or denies this claim, its
plausibility measure will change accordingly.

SUPPORTS (CLAIM, CLAIM)

A claim C1 SUPPORTS another claim C2 when the plausibility of C2 is enhanced by
Cl.

DENIES (CLAIM, CLAIM)
A claim C1 DENIES another claim C2 when the plausibility of C2 is reduced by C1.
QUALIFIES (GROUP(CLAIM), CLAIM)

A set of claims {Ci} qualifies another claim C if the plausibility of C depends on
which of the claims Ci being true. For example, one might have a claim that LOOPS
IS-AN-ALTERNATIVE-FOR the decision problem of choosing a knowledge
representation language. However, another qualifies that claim by saying that
LOOPS will be an alternative only if the hardware chosen is a Xerox D-Machine.
One would represent this qualifying claim by linking that relational claim via
QUALIFIES relation to the latter claim that we choose Xerox D-machine hardware.

ARE-ARGUMENTS-FOR (GROUP(CLAIM), CLAIM1)

All the claims that influence the plausibility of CLAIMI, in particular the claims
supporting or denying it, are grouped and related to it through this relation.

QUERIES (QUESTION, OBJECT)

A question Q QUESTIONS an object O when Q points to an unclear aspect of O. So
if it is not clear what a claim (or any object like goal, alternative, etc.) says, one can
create a question object and link it to the object being questioned via this relation. Or
if one does not understand why an object is related to another through a given relation
(eg. why is C1 a goal of the decision problem DP1), then one can create and link a
question object to the relation object (IS-A-GOAL-OF).

INFLUENCES (QUESTION, CLAIM)

A question Q INFLUENCES a claim C if the plausibility of C depends on the answer
to Q. In that sense, the group of possible answers to Q, as claims, would be related
to CLAIM via a QUALIFIES relation (Cf. Figure 2).

IS-AN-ANSWERING-PROCEDURE-FOR (QUESTION, PROCEDURE)

A procedure (or a description of procedure) P IS-AN-ANSWERING-PROCEDURE
of a question Q if it is believed that executing P would produce an answer to Q.

IS-A-RESULT-OF (CLAIM, PROCEDURE)

A claim C IS-A-RESULT-OF a procedure P if C is the information obtained as a
result of executing P. This definition is somewhat vague as it stands because
'obtaining as a result of can be ambiguous. But intuitively it seems clear, and the

definition will be elaborated as the needs arise.

ARE-POSSIBLE-OUTCOMES-FOR (GROUP(CLAIM), QUESTION)

10

A set of claims can represent possible answers to a question. A claim C which IS-A-
RESULT-OF a procedure which IS-AN-ANSWERING-PROCEDURE for a
question Q may belong to the set which FORMS-POSSIBLE-OUTCOMES for Q
unless the result was some bookkeeping information such as errors from the
procedure.

ANSWERS (CLAIM, QUESTION)

ANSWERS relates a claim to a question in the special case where there was no need
to represent several possible answers to the question, but only one.

IS-A-COMPONENT-PROCEDURE-OF (PROCEDURE, PROCEDURE)

A procedure P1 1S-A-COMPONENT-PROCEDURE-OF another procedure P2 if (it
is believed that) executing P1 can involve executing P2. For example, Getting to an
airport is an component procedure of Getting to LA by plane.

IS-A-SUBPROCEDURE-OF (PROCEDURE, PROCEDURE)

A procedure P1 IS-A-SUBPROCEDURE-OF another procedure P2 if P1 is a special
case of P2 in the sense that some components of P1 are subclasses of P2. For
example, Getting to Logan airport IS-SUBPROCEDURE-OF Getting to an airport.

3. DRL Environment

In this section, I characterize the services that form the DRL environment. These
services use DRL to provide various bookkeeping management services and support
decision making processes. They are described here in a rather general way.
Eventually, however, for each of these services, I will identify a set of operations
which will serve as its interface. In Appendix 3, I give partial lists of such

11

operations, but they are far from complete. They need to be refined, modified, and
expanded.

Plausibility Management

In the course of decision making, people make claims. We need some way of
indicating how plausible a claim is. Different kinds of sources exist for plausibility.
Rescher (76), for example, classifies them into the following categories: the
observational data, personal report (experts, eyewitness), depersonalized historical
sources (newspapers, tradition), intellectual resources (assumptions), and cognitive
principles (simplicity, regularity). At the moment, we can be neutral wrt what the
source is, although later we may incorporate this information. However, since the
plausibility of a claim is partially a function of the plausibilities of other claims related
to it, we need to define the semantics of how plausibilities should be combined and
propagated over the different relations.

There are many studies of this confirmation process -- i.e. the way that a hypothesis
should be confirmed or denied as a result of evidence.

I do not want to develop yet another method of confirmation. Instead, it would be
ideal if we can provide a hook to use whichever method one wants to use for the
propagation of plausibilities. But a problem with many of the existing methods such
as Bayes or Dempster-Shafer is that they are based on assumptions that are not likely
to be true in many realistic situations -- such as the mutual exclusiveness and
exhaustiveness of the hypotheses and the conditional independence of the evidence
under a hypothesis. So I need to study whether there are other methods that get
around these assumptions. For example, there are some purely qualitative theories of
uncertainty management such as Doyle's reasoned assumptions and Cohen's theory
of endorsement, which hopefully avoid making these assumptions. Also, since some
of these methods have one relation defined between hypothesis and data, namely is-
an-evidence-of, I need to think about how this relation maps to the set of finer
relations I want to capture such as not only supports or refutes but also qualifies or

12

influences. Once these problems are solved, I will try to isolate the common
requirements of these methods so that the common interface can be built for them.
For example, we could have different jury modules which provide the same interface
but deliberate differently inside.

Although plausibility management is an essential part of decision making processes,
working out this part is not a top priority. In the worst case, I feel that I can always
leave it for people to actually make the decision. For example, if we represent the
different relations among the objects represented explicitly and perspicuously, then I
think we can expect people to propagate plausibilities themselves in the sense that
they can start out explicitly assessing claims, based on the different sources
mentioned above, that are at the very periphery, and then in turn recursively assess
the plausibility of the claim that the assessed claims are related to based on the
different sources including the assessed plausibilities.

Dependency Management

When changes are made to existing objects, some consistency must be maintained
over the knowledge base containing the objects. What kinds of consistency we want
to maintain depend on applications. One obvious type of consistency to maintain is
the truth-value dependency. Often many arguments depend on a certain condition
being true. For example, one might argue that C++ is a good language to use
provided that it has a source level debugger, or that Interlisp is a viable candidate
language as long as the only company marketing it now survives. We want to
represent this sort of dependency and propagate the consequences of a condition
when we know its truth value. Or if we have to make a decision without knowing
whether the condition is true or not, we would like to associate with the condition
certain actions to be performed in assessing the plausibility of other claims related to it
-- such as assuming the condition true, calculating the plausibility using the
probability assigned to that condition, and so on.

13

Another type of consistency that one might want to maintain is the compatibility
among objects. Suppose one is trying to choose a computer environment and
partitioned the problem in terms of choosing a hardware, an operating system, and a
programming language. The actual set of alternatives would hence be combinations
of an hardware, an OS, and a programming language -- e.g. (Sun, SunOS, C) (Mac
2, A/UX, C). However, some of these combinations are incompatible. One may
want to indicate to the system these dependencies among the different components so
that certain incompatible combinations would not be considered at all (e.g. Sun and
MacOS)

Viewpoint Management

I define viewpoint management as the set of services responsible for creating and
manipulating a viewpoint, which is in turn defined as an object that groups objects
which presuppose the same set of assumptions. In this sense, dependency
management can be viewed as a special class of viewpoint management, because
dependency can be maintained by explicitly creating viewpoints. The examples I
gave above of the dependency management, however, are the things that you might
want to do without having to create separate viewpoint objects. Viewpoint
management is one aspect that I want to focus on in my thesis both because providing
multiple perspectives is such an important problem that I come across whereever I
turn and because it is a stepping stone to the precedent management, which was the
original motivating force behind DRL. The other services such as plausibility,
selective retrieval and presentation are no doubt very important parts of representing
decision processes, but for the purpose of my thesis I would be content with
providing the minimal features that are necessary for the functioning of the DRL
system.

Viewpoint management was characterized in Lee [1989a] as also being responsible
for maintaining a semantically consistent state over the knowledge base in the face of
change. I distinguished viewpoint management from dependency management in
terms of modification versus elaboration. Viewpoint management was said to be

14

concerned with the types of change that require modification of existing objects, and
dependency management with the types of change that introduce additional objects
into the existing structure. The rationale was that when you want to modify an object,
you would want to create a new viewpoint. I no longer think that this distinction
between modification and elaboration is important. I think there are many cases
where you want to modify existing objects but do not want to create a separate
viewpoint or you simply add new objects but under a different viewpoint.

It is important to capture and relate different viewpoints. The system should allow
people to argue under a specific assumption and group those arguments so that we
can compare the consequences of different assumptions and cancel the whole
collection of arguments based on certain assumption when that assumption is known
false. The system should allow different viewpoints to be created when the goals get
assigned different importance. Different viewpoints would be needed when the
arguments are given different plausibilities. One should be able to freeze the present
state into a viewpoint so that you can later see the way that the decision making
unfolded or even revert back to this state if some assumption was wrong. Here,
viewpoints would provide the version mechanism, but the relation between the
viewpoints would be more than simply that of chronological one as between
versions. The relations among them should include:

Is-A-Next-Version-Of
Elaborates

Restricts
Has-Different-Importance
Has-Different-Plausibilities.
Is-A-Child-Of

The ability to establish mappings between objects in different viewpoints would be
also important. Such mappings would show how the problem representation has
evolved in the course of a decision making process. (e.g. Subalternatives become
flattened alternatives in the next version, What was a question in one version becomes

15

a refuting claim in the next.) It would also be useful if we have to merge viewpoints.
For example, if the marketing group and the design group were both evaluating
alternatives for a computer environment, it would be nice if they do so within their
own viewpoints and then later merge them for an overall evaluation. (What such
merging would require is yet to be worked out, but I am thinking about a way to link
this work to the work I did earlier on Partially Shared Views scheme for translating
between different type hierarchies [Lee & Malone 88] and on Knowledge Base
Integration [Lee 87].)

Another feature that we want, and potentially related to the concept of viewpoint, is a
measure of consensus. As the DRL system is designed to be used by many people
contributing their knowledge, it should be able to indicate what the consensus is on a
particular claim or on an alternative overall. This measure of consensus can be
incorporated into the plausibility measure or the evaluation measure; or it could be a
separate measure. I plan to look at some related literature such as Lowe's SYNVIEW
[1986] that discusses some measure of consensus among people who participate in a
debate.

Precedent Management

There must be some operations that take the description of the present decision
problem and find past decision problems that are relevant to the present problem. It
would be even nicer if there were operations that allow extraction of specific parts that
are relevant from the retrieved precedents. The language, DRL, should of course
allow representing whatever it is that is being used for judging relevancy. For
example, it seems reasonable to use similarity among goals to determine relevance.
Then it is important that one should be able to represent in DRL not only the goals
that come up in a decison problem but also a structure (say, a lattice) in which the
goals are related to other goals in various ways (e.g. IS-A-SUBGOAL-OF,
CONFLICTS-WITH).

16

Object Editor

We should be able to create, delete, modify, and relate objects that will eventually
represent what we consider is important in decision making processes. In particular,
we should be able to represent such qualitative aspects of decision making as the
different ways that objects can be related to one another. Claims support, refute, or
qualify others. Some goals are subgoals of another and in different ways. It may be
that satisfying a goal means satisfying one of subgoals or all of its subgoals. Or all
the subgoals do not specify a goal completely so that satisfying all of them does not
amount to satisfying the parent goal. The language has to provide the vocabulary
expressive enough to capture these distinctions.

Another feature that the language has to provide is the ability to represent meta-claims
that arise in decision provesses. For example, one might want to say that we should
stop exploring further alternatives. A claim of this sort is not about the evaluation of
a particular alternative, hence has a status different from other claims which do
evaluate alternatives. The way that these meta-claims are related to the other claims
and the role they play in the decision making process has to be sorted out and
represented.

Selective Retrieval

We want to define and look at different subsets of the objects represented.
**¥¥% show all the subgoals

#¥4 show all unresolved objects and their status

**&dk show all the claims that depend on this claim

**+¥* show all the claims that refute this claim

*x¥¥k show me all the claims that have been added since the last time I looked.

We need a query language for specifying these kinds of requests.

17

Presentation

Presentation is an important part of the system because without good presentations
people are very reluctant to use the system. Although presentation will not be a main
part of this work, we cannot avoid thinking about the different ways of presenting
information to the extent that we want the system actually to be used by people.
There will be more specific discussion of different formats of display and associated
operations in the user-interface section.

4. Related Work

In this section, I provide a basis for judging the DRL model by relating it to other
relevant works. The studies I discuss are: the analytic decision model (rational actor
model maximizing utility), Toulmin's theory of arguments, Doyle's model of
deliberation, and gIBIS (graphical Issue Based Information System). It would be
ideal if I could represent each of these works in a common underlying model and
compare them. However, that is difficult to do for a couple of reasons. Most of
these works are not precise enough to have a model. For those which do have some
sort of models (e.g. decision theory, Doyle's theory), it is not clear what the common
model should be.

Short of that, I am going to relate the DRL model to other models by first
characterizing the things that we want to represent and then see how each model can
or cannot represent them. Doing so helps us see the different ways that the same
structure is represented or cannot represented at all. So first, I give an intuitive
characterization of the things that you would want to represent in a decision making
process. After having done so, I will describe how DRL represent them. Then, for
each of the work mentioned above, I will discuss why it was chosen for comparison,

18

provide a brief overview, and describe how it can or cannot represent the things
discussed above.

4.1 Desiderata

The following is an intuitive characterization of the things in decision making
processes that we want to represent.

** Alternatives

Alternatives are those that one is trying to choose from. E.g. the different
workstations like Sun or MacIntosh. In fact, an alternative does not stand for
objects, but a proposition like "We use a Sun." or "We use a Mac."

** Goals

I am using the term Goal broadly to refer to any condition or property that one wants
an ideal alternative to satisfy. Thus, goals include what some people might want to
call constraints or desirable properties. e.g. "Implement DRL." "Has A Good
Debugging Environment."

*** Relationship among Goals
The goals are related in different ways. The following lists a few possible relations.

**¥¥ Sub-Goals
A goal can be one way of achieving another goal. These subgoals, in turn, can be
related among themselves in the following way:

**¥¥k Conjunctive, Disjunctive
Satisfying a goal requires satisfying all the members of a given set of other goals.

**¥xx* Completely Specifying, Partially Specifying
Satisfying a goal requires satisfying only one of a given set of other goals.

19

**¥* Conflicting Goals
Satisfying a goal can prevent or make it more difficult to satisfy another goal.

#4 Concording Goals
Satisfying a goal can facilitate satisfying another goal.

** Factors Relevant for Evaluating Alternatives

Examples of such factors are: facts, claims, opinions, possible states of nature, and
informed guesses about them. These factors can be related among themselves in
different ways. Some make others more likely or believable or have the opposite
effect.

** History

We want some way to represent the history of decisions that led to the current state so
that we can do, for example, credit-assignments. In a way, that is the motivation of
the whole DRS, but we want to do that at local levels as well.

** Questions
¥ Answers
** Meta-Comments

There will inevitably be questions, answers, and meta-comments, i.€. comments not
about alternatives but nevertheless relevant to decision making -- €.g. comments
about whether we should go on searching for more relevant factors or make the
decision now with what we have. It would be nice to integrate these objects to the
representation of other objects discussed above.

** Status on Objects (the ranking of alternatives at the moment, etc.)

20

Often, we need to know the status of certain objects are. Different types of objects
will have different types of status information. For example, associated with an
alternative can be information about its current ranking. Associated with a claim can
be its current plausibility. Associated with a question can be the status about whether
it has been answered or not.

** Specialize/Generalize Relation among Objects

Sometimes, an alternative has to be specialized. E.g. Sun 4 specializes the alternative
Sun. The sub-goal relation discussed above is also an example. The whole decision
problem sometimes have to be specialized. E.g. Choosing a computer environment
needs to be broken up into choosing a hardware, choosing an operating system, and

choosing whatever software one needs.
** Different Views

We often want to look at the information collected from different perspectives. We
might want to evaluate alternatives with only a subset of the goals, with the goals
weighed differently, with different probability assigned to the possible state of
affairs, and so on. It would be nice if we could not only look at them from different
perspectives, but also explicitly represent these perspectives so that we can have a
meta-level view of how these perspectives themselves are related.

** Different Degrees of:

*** Importance

Some goals are more important to satisfy than others. And some are absolutely
necessary.

% Uncertainty

Some situations are more or less likely to happen than others. Or at least we are more
sure about some events than others.

21

*** Plausibility
Some claims are more plausible than others.

**¥* Performance

We need to represent the degree to which an alternative satisfies a given goal.

*** Evaluation

We need to represent the overall extent to which an alternative satisfy a set of goals.
For example, alternatives would be ranked on the basis of this evaluation measure.

4.2 DRL

The objects of DRL has been discussed in Section 2. Here, I illustrate how they are
used to represent the desiderata discussed above by walking through an example.

Suppose we want to make a decision about which programming language to use for
implementing a project called Xanadu. First, we would create an instance of Decision
Problem called "Choose the best programming language for implementing Xanadu.."
Then, we represent the relevant goals as instances of Goal. We would, for example,
create the following instances of Goal": "Supports Rapid Prototyping", "Minimizes
Development Time", "Is Very Portable."”, "Has a Good Debugging Environment"”,
and so on. If satisfying a goal facilitate satisfying another goal, the two goals are
related via the IS-A-SUBGOAL-OF relation. Hence, "Has a Good Debugging
Environment" is a subgoal of "Minimize Development Time". The different
relationships among the subgoals are represented in terms of GROUP. A GROUP
allows us to group a number of objects and specify the relationship among them. So
we can specify a set of subgoals to be members of a set whose Member-Relationship
property can be such as the ones mentioned in the previous section: conjuntive,
disjunctive, exhaustive, mutually exclusive, and so on.

22

The alternatives from which we want to choose from are represented as Alternatives
and linked to the decision problem via IS-AN-ALTERNATIVE-FOR: C, AT & T
C++, Oregon C++, Lucid Common Lisp, and Franz Common Lisp. [Strictly
speaking, the alternatives should be not objects (C or Lisp) but propositions (‘We use
C' or 'We use Lisp."). Cf. Section 3. But, with that understanding, I'll sometimes
talk as if the alternatives are objects themselves.] The relation IS-AN-
ALTERNATIVE-FOR (ALT, DECISION-PROBLEM) is interpreted as "ALT should
be considered as an alternative for DECISION-PROBLEM", which in turn means
"ALT facilitates satisfying the goal represented by the DECISION-PROBLEM
instance." This decision problem is shown in Figure 3.

Each alternative, when created, is automatically related to each goal via a
FACILITATES relation. In DRL, every relation is a CLAIM. The IS-AN-
ALTERNATIVE-FOR relation, as we discussed above, was interpreted as the claim
that "ALT facilitates satisfying the goal represented by the DECISION-PROBLEM
instance". The FACILITATES (ALTERNATIVE, GOAL) relation is interpreted as
the claim that ALTERNATIVE facilitates satisfying the GOAL. As such, these
relations can be supported, refuted, or qualified as other claims can. Of course, the
extent to which the alternative satisfies the goal is a matter of degree, and the
PERFORMANCE measure of FACILITATES relation reflects this extent. This
extent is, in turn, a function of the arguments that people put forward as relevant for
evaluating the alternative with respect to the goal.

In DRL, an argument is represented as a set of CLAIMs. For example, suppose one
wants to say that we should use Lisp because it provides high level features . One
would first create the claim, "Lisp provides high level features.”" One would then find
one or more goal that gets satisfied by virtue of that claim being true. There must be
such a goal because goals are supposed to reflect all the desirable properties that an
alternative should have. Hence, if such a goal is not found, then the list of goal is not
complete; and one should be added, possibly as a subgoal of an existing one. In our
example, the goal being satisfied is "Minimizes Development Time."

23

Fig. 3 An Example of DRL Decision Graph

Supports Rapid Prototyping

< is-a-subgoal-of Is Very Portable
inimize Dvpt TIme

N/ V.

Has a Good Debugging Envt

Choose the optimal
programming language for
implementing the current
version of Xanadu

is-a

isp is inefficient.

is-a-subdlternative-of

Franz Co
Lisp
TLucid Common

is-a-subglternative-of

What are the hig
level features?

Once the relevant goal(s) are found, one links the claim via SUPPORTS relation to
the FACILITATES relation between the alanine alternative and the found goal. (IS-
AN-ALTERNATIVE-FOR relation is in fact a special class of FACILITATES
relation.) In DRL, all the factors that enter into an argument are represented as
instances of CLAIM. DRL intentionally makes no distinction between facts, claims,
opinions, or possible states of affairs because I believe, like many philosophers of
science, that these distinctions are only matter of degree to which the assertion is
accepted. Introducing these distinctions introduce the problem of ambiguity about
how to classify a given assertion. It seems better to have a uniform type with an
attribute, called Plausibility, for indicating the degree to which it is accepted.

Claims can SUPPORT, DENY, or QUALIFY other claims. So the claim that "LISP
provides high level features." SUPPORTS the FACILITATES relation (, which is
itself a claim) between the alternative "Use Lisp" and "Minimize Development Time."
Another claim can DENY this claim by saying that we do have some knowledge
about the current situation and pointing to a claim that does represent such
knowledge. A claim can be QUALIFIED by a CLAIM or a SET of CLAIMs. The
semantics of QUALIFIES (CLAIM1, GROUP of CLAIMS) is that the plausibility of
CLAIM1 depends on which of the claims in GROUP of CLAIM is true. The
relationship among the claims in a group may be related by the relations one specifies
in the Member-Relationship attribute of the group: e.g. mutually exclusive,
exhaustive, and so on. If the truth of the claim is not known, then the plausibility of
the claim qualified remains tentative. If the decision has to be made with the qualified
claims whose plausibility is tentative, the plausibility of the claim is calculated with
appropriate weights given to the possibilities -- in this case, the plausibility of the
claims reflect the probability of the possibilities they represent.

Another relation that a claim can have is being QUESTIONed. In fact, any object,
not just a claim, can be QUESTIONed. A QUESTION QUESTIONS a claim (Note
that the object QUESTION is not the same as the relation QUESTIONS) if somebody
wants a more information about the claim. Hence, the presence of a QUESTION
object indicates the need for clarification. For example, if one does not know what
high level features that Lisp provides, one would create a question object and link to

24

the object in question, in this case the claim object "Lisp provides high level
features”. People answer a question by creating an Answer object and link to the
question object via ANSWERS relation. Or if the procedure of answering a question
is involved and worth recording, then the procedure or its description is linked to the
question object via IS-AN-ANSWERING-PROCEDURE-FOR. A PROCEDURE
can be an EXECUTABLE PROCEDURE or just a PROCEDURAL DESCRIPTION,
i.e. a description of a procedure. A PROCEDURE can be related, via the IS-A-
COMPONENT-PROCEDURE-OF relation, to other PROCEDURES, which
describes the original procedures in detail. On the other hand, a procedure is related
to another procedure via the IS-A-SUBPROCEDURE-OF relation if the first
procedure generalizes the second procedure, though neither is part of the other. For
example, Evaluate the Debugging Environment of Oregon C++ would be a
component procedure of Compare the Debugging Environments of the Alternatives,
but not its subprocedure.

In DRL, a VIEWPOINT represents a collection of other objects and their relations.
VIEWPOINTS are first-class objects so you can browse them, relate them, or
perform operations defined on them. Thus, if you want to consider only a subset of
goals, say, related to implementation, then you would collect only those objects
linked to the goals in the subset into a viewpoint called Implementation Viewpoint.
When you decide to incorporate other goals about, say, Cost, you can create another
viewpoint, called Implementation with Cost Viewpoint, which incorporates all the
objects linked to relevant goals. You can then relate this viewpoint to the previous
viewpoint, Implementation Viewpoint, by one of the possible relations that can hold
among viewpoints. Such relations include: Elaborates, Elaborates Alternatives,
Elaborate Goals, Restricts, .., Is-A-Next-Version-Of, Has-Different-Weights-on-
Goals, and so on. This way, whatever different parts of the graph or different
assumptions one wants to make, can be made explicit and considerations pursued
within a local environment.

The different degrees of importance, uncertainty, plausibility, performance, and

evaluations discussed in Section 1 are all represented as an attribute value of the
relevant objects. For example, a goal has the Importance attribute, which indicates

25

how much weight we should give in evaluating an alternative with respect to the goal.
A claim has the Plausibility attribute, which indicates how plausible it is. This
plausibility is based on many factors -- the credibility of the source from which the
claim originates, uncertainty of the event that the claim represents, as well as the
plausibilities of other claims that are related to it. Hence, DRL has no separate
measure for uncertainty because no event is directly represented in it; instead,
whatever uncertainty is reflected in the plausibility of the claim representing the event
in question. A FACILITATES (ALTERNATIVE, GOAL) relation is a subclass of
Claim, hence it has the Plausibility attribute. In addition, it also has Performance
attribute, which indicates the extent to which ALTERNATIVE facilitates satisfying
the GOAL. This value is a function of the plausibilities of all the claims that are
linked, directly or indirectly, to the FACILITATES relation. An Alternative object
has the Evaluation attribute, which indicates the extent to which the alternative
facilitates satisfying all the goals that have been specified for the given decision
problem. This value is a function of the evaluation measures of the alternative with
respect to all the goals, properly weighed with their importance.

We also want to associate the history of how a decision was made with the outcome
of the decision. In our example, that means associating a particular sequence of
amino acids or a set of them with the history of how it was arrived at. This can be
achieved by storing in the History attribute of the object the technique used to obtain
the object together with the previous state to which the technique was applied as well
as the pointer to the records of the decisions that have led to the choice of the
technique.

4.3 Analytic Decision Theory
Since DRL attempts to represent and support decision processes, it is worthwhile to

compare it to the analytic decision theory, which has similar goals but has been
around much longer.

26

Analytic decision theory starts with a set of Actions and a set of possible States. Each
of the possible states is associated with the probability of its actual occurrence. The
theory also assumes that we can assign a utility measure for each Consequence,
which is a state resulting from an action applied over a possible state. Then, the
theory judges an Action to be optimal when it maximize the expected utility over all
possible states.

In the case of our example, using the different programming languages correspond to
the set of actions (Cf. Figure 4). The relevant consequences are such as 'Finding Out
that the Chosen Language is a Disaster for Xanadu', 'Finding It Adequate', and
'Finding It Perfect'. The states are the conditions that matter in evaluating the
consequences of the different actions. In our example, they include: whether a
language supports rapid prototyping, whether it minimizes development time,
whether it is portable, and so on. Hence, the states correspond roughly to the
subgoals. The analytic decision theory assumes that we know what these relevant
conditions are and the probability of the conditions being true for each of the actions
taken. In that sense, it presupposes the whole qualitative structure that others like
DRL or Toulmin's tried to capture. Once we know them, however, the theory
dictates that we choose that action that maximizes the expected utility.

Of the features listed in the beginning, the only ones represented explicitly in the
decision theory are:

ACTS represent alternatives;

POSSIBLE STATES is one of the factors that enter into an argument;
PROBABILITY assigned to these states represent the different degree of uncertainty;
CONSEQUENCES represent goals, but only implicitly.

UTILITY represents the different degree of evaluation of the alternatives, which, in
turn, is a result of combining all the other factors listed above.

Goals are represented only implicitly by Consequences and States. In the above

example, one might argue that the Consequences and the Goals -- 'Choosing the
optimal programming language for implementing Xanadu' and 'Finding the chosen

27

Fig. 4 Analytic Decision Theoretic Representation

(Probability Distribution over)

ACTS STATES
TJ*.4=.28 v
s Very Portable ~
Minimizes 7% 6= >
Dvpt Time Not Very Portable
A
v
-3 4 s Very Portable >
Not Minimizz U,
,@ Dvpt Time 6 .18
Which programming PTs Not Very Portable v
language to use for N
. . 9
implementing Xanadu? 24 >
Very Portable
v ’
2 3 3 06 v
@ A Minimizes 2 < s Not Very Portable >
Dvpt Time v
.56 >
s Very Portablé
.8 S
"/
.2 .14

s Not Very Portable

>

(Utility Distribution over)

CONSEQUENCES

Minimize Dvpt Time
AND Portability
AND ...

Minimize Dvpt Time
AND No Portability
AND ...

Not Minimize Dvpt
TIme

AND No Portability
AND ...

programming languge perfect for implementing Xanadu' -- are the same things.
Often, however, they are not the same. For example, when we decide whether to
buy an insurance, a goal is to minimize cost. However, the consequences are specific
states such as having an accident but covered by the insurance, or having an accident
and having to pay for the damage yourself. The goal of minimizing cost is implicitly
reflected in the utility measure assigned to these consequences, but it, by itself, is not
explicitly represented independent of any particular realization.

However, there are good reasons for making goals explicit. The explicit
representation of goals allow modular representation of arguments. For example, if
goals remained implicit as in the above example and if a goal were to change -- e.g.
portability were not so important because the current version is only going to be a
prototype, it would be difficult to determine which part of the arguments would be
affected by this change. Also, the explicit presence of goals forces people to
articulate the goals as well as their subgoals. Furthermore, by making goals explicit,
we can argue about them -- whether they should be the goals or how important they
are.

Goals in DRL also serve as a basis for determining the relevance of past decisions to
the decision in question. Those precedents which share more goals are more similar,
and these shared goals can be used to lift out, so to speak, portions of those
precedents in order to transfer the knowledge to the current context. Furthermore,
making goals explicit allows different viewpoints possible; if there are disagreements
as to which goals should be pursued, the decision process can be factored with
respect to multiple subsets of goals and the alternatives evaluated with respect to each
of them.

All the other qualitative aspects -- factors that enter into arguments, questions, meta-
comments, in fact anything that is relevant in evaluating alternatives -- are merged into
the utility measure. Of course, that means that all these factors are not represented
explicitly. Hence, the theory will not help you extract any qualitative knowledge that
are cumulated in decision making processes, but only will help you make a choice
from the existing options.

28

4.4 Toulmin's Theory of Argument

A British philosopher, Stephen Toulmin, has proposed a model of argument in his
book, The Uses of Argument [Toulmin 69]. Since then, this model has been adopted
by many people in modeling dialectical processes. It has been used for
computationally modeling arguments ([Birnbaum et. al. 80] [Lowe 86], in
interpreting literary text [Wunderlich 74] as well as general text [Huth 1975]. It has
been also related to the theory of truth [Habermas 73] and legal argumentation [Pratt
70].

Because it has been so widely used, it is worth comparing this model with that of
DRL. First of all, it is worth noting again that Toulmin's is a model of argument,
which is a subset of what DRL is trying to represent. Hence, I will compare
Toulmin's model with only those aspects of DRL that is trying to represent
arguments. First, I describe Toulmin's model, illustrate with an example, and
discuss why the DRL model is different from Toulmin's.

Figure 5(a) shows the object types in Toulmin's model. A CLAIM is the main
assertion being made, DATA is what supports the claim, WARRANT is the basis on
which DATA is said to support the claim, BACKING is what, in turn, supports
WARRANT, QULAIFIER is what qualifies the extent to which the data supports the
claim, and REBUTTAL is what gives a reason for QUALIFIER.

Figure 5(b) shows the representation of our example in Toulmin's model. The
CLAIM is "Lisp is a good language to use for implementing Xanadu." A DATUM
may be "Lisp provides high level features.” A WARRANT may be "A language that
provides high level features is good for minimizing developing time, which is
desirable for implementing Xanadu." A BACKING is "A language that provides
high level features spares the programmer from the lower level details." A
QUALIFIER can be something like "provided that Lisp is not a disaster on other
accounts."

29

Fig. 5 Toulmin's Model of Argument and an Example

(a) The Model

QUALIFIER
\ R

REBUTTAL

(b) An Example

isp is a good

language to use for
implementing

Xanadu.

Lisp provides
high level features.

provided

A language that
provides high level
features is good for minimizing
development time, which is
desirable for implementing
Xanadu.

Lisp is not
a disaster on other
accounts.

A language that
provides high level features
spares the programmer from the
lower level details.

One problem with this model is that some of its distinctions are arbitrary. What
makes "Lisp is a good language to use for implementing Xanadu." a CLAIM, but not
"Lisp provides high level features." or "A programming language that provides high
level features is good for minimizing developing time, which is desirable for
implementing Xanadu."? And what makes "A programming language that provides
high level features spares the programmer from the lower level details." a BACKING
rather than a DATUM? One answer is that it is context-dependent so that a CLAIM
is what is being argued for, a DATUM is what supports or refutes it, and so on. In
other words, the same thing can play different roles in different contexts.

This context-dependent typing, however, undermines the uniformity and
extendability of the representation. For example, Toulmin's model only allows a
CLAIM to be backed up, qualified, or rebutted but not a DATUM or a WARRANT.
What shall we do if we want to express disagreement with "Lisp provides high level
features.” or "A programming language that provides high level features is good for
minimizing developing time, which is desirable for implementing Xanadu."? Also,
in Toulmin's model, WARRANT is what allows DATA to support CLAIM, and
BACKING is what supports WARRANT. What do you then to support
BACKING?

Many other desirable distinctions that we discussed above cannot be expressed in
Toulmin's model. That's partly because Toulmin's model is that of argument proper,
but not entirely so. One can refute an existing claim only in a round-about way by
supporting its negation (which does not really mean the same thing anyway). One
can qualify a claim, but whether that qualification is due to some uncertainty over
situations, less than perfect plausibility of data, or the weak relation between data and
claim is not clear. It does not leave rooms for expressing questions, answers, meta-
comments, or different viewpoints. One might, however, argue that they are not part
of argument proper, although they are bound to appear in any complex arguments.

4.5 Doyle's Model for Deliberation

30

Doyle, in [Doyle 1980], has proposed "a model for deliberation, action, and
introspection”. It is worth relating the DRL model to his model for several important
reasons. First, it is the most comprehensive and detailed model that I have seen so
far of defeasible reasoning, i.e. where the assertions are non-monotonic. As Doyle
points out, this provides an important framework for dialectical reasoning, i.e.
reasoning based on arguments, as opposed to pure deduction. Second, it is a
computational model. The goal of the model is to control or direct the reasoning and
actions of a computer program by explicitly representing and justifying the reasoning
process itself. As such, it has special relevance to my goal of developing a
computational problem solving paradigm based on arguments. In particular, I need to
justify how my model is different and why. Third, it also discusses the meta-level
decision making in the context of deciding how to reason.

Doyle's theory is, as said above, very comprehensive. If I were to present all the
aspects of the model, it would take as much space as the original paper, probably
more because the original is quite dense. Hence, instead of explaining the concepts in
abstract, let me illustrate it through an example. I'll use the same example I've been
using.

The basic primitive objects in his model are Concepts, Desires, Intentions, and
Beliefs. A concept represents an object that one needs to reason about. In human
interactive context, we may not need concepts because human users can extract
concepts out of free texts. However, in computational context, we need some way of
representing whatever objects the system needs to reason about. In our example, the
concepts are C, Development Time, High Level Features, Portability, etc.

Desires and Intentions represent what we have been referring to as goals so far.
Doyle argues that goal is an ambiguous concept that confounds the two concepts --
desire and intention. To summarize, we can think of desire as a mental attitude which
is satisfied when a certain condition is realized. Hence, wanting to find a very
portable language is a desire. That desire is satisfied when we achieve the condition
of having found such a language. Intention, on the other hand, is a mental attitude

31

associated with an action and it is satisfied when the action is taken. Hence, the
intention to find a portable language is satisfied when a certain action is taken toward
that aim, whether that aim is satisfied or not. The more specific the intention is, the
more specific the action would be. A belief is a mental attitude which is more or less
justified depending on the other beliefs and the state of nature. "The higher level
features a language provides, the less development time it will take." is a fairly
reasonable belief though by any means a totally justified one.

Plan, Policy, and Reason are higher level structures linking other objects. "Plans are
ways of describing the structure of one's desires and intentions." A plan specifies
how a desire can be satisfied in terms of other desires or intentions. A plan, say X,
for breaking a tie between two candiates may be "First, find out the differences other
than the ones considered already. Order the differences by their importance. Then,
for each difference, do so and so... " A policy is an intention "with conditional or
hypothetical statements as their aims". For example, "Consider the plan X whenever
there is a tie between two alternatives.” is a policy. Policies express temporal
ordering relationships between intentions, embody the strengths of desires, as well as
embody many other preferences of the program, such as those used in belief revision
to chose one possible revision over another. The actions of a policy can be a plan as
in the above example, or a primitive. An example of a policy with a primitive action is
"If you have to break the tie and if you don't have much else to go by, add a pro-
argument for the option of using Plan X" The action of this policy makes the option
of using Plan X more attractive, whereas the action of the previous policy just added
Plan X as an option. (This way, the actions of a policy either add new intentions as
subordinates of the decision intention, options to the list of options, considerations to
the list of considerations, or reasons to the list of reasons.)

A Reason is a record of how an attitude, such as Desire, Intention, or Belief, has
been arrived at. Hence, in Doyle's model, every attitude is associated with one or
more reasons, which includes previous attitudes from which the current attitude was
derived and the "inference rule" (such as policy) that was used for derivation. So in
the above example, the reason for adding Plan X as an option was the policy whose

32

action was to consider this plan plus the fact that the condition for applying the
policy, i.e. the need to break the tie.

Given these basic concepts, here is how a decision is made in Doyle's system. Let's
pursue the same example: we are trying to find out the appropriate strategy to apply at
this point. The first step in decision making is to create a decision record, which
represents the decision intention (i.e. the intention to make a decision) to be worked
on. A deliberation record has several parts: a purpose, a list of options, a list of
considerations, a list of reasons, a list of reflections, and an outcome. The purpose of
deliberation record is the intention to make the decision, i.e. about choosing the

optimal programming language.

Once the record is created, policies are searched for the active intention. Suppose
there is the following policy relevant to the decision intention: "If the aim of the
intention is to make decisions about which language to use for implementing the
current version of Xanadu, then add the following options (C, Lisp) to the list of
options." A retrieved policy is not executed at this point, but only (the intention of
applying it is) added to the list of Considerations at this point, whose purpose is to
keep track of the items to be examined later. Another relevant policy that may be
added to the list is "If the aim of the intention is to make decisions about which
language to use for implementing the current version of Xanadu and if it is important
that Xanadu be portable, then add a pro-claim to the option "Use C."

Next, reflect on how to proceed. Create a second order deliberation procedure to
consider the problem of how to proceed with the original decision. All the policies
relevant to the second order decision are retrieved, and executed one by one rather
than simply being added to the list of considerations as in the case of the original
decision. That is why the deliberation does not lead to infinite recursion. The second
order options include: Delay, Abort, Halt by choosing the current best option,
Continue, or Reformulate. In our case, suppose the second order option chosen is
Continue.

33

There are two policies in the list of considerations now, and some other policies
determine which one to execute first. In our case, the first one about adding options
get executed, and then the second one of adding a pro-argument. The actions for
both of them are primitive, so can be executed directly. If the action of a policy were
a plan, applying the policy would involve adding new desires, intentions, options, or
reasons as dictated by the plan. If there are new reasons that have been added, reflect
on them in the sense of retrieving all the policies relevant to the new reason and the
purpose, and then carries out each of these new considerations the same way. The
process of reflecting on new reasons continues until no more reason-relevant policies
can be found. This process is guaranteed to terminate. At this point, the system
repeats the step of reflecting on how to proceed and applying policies, until the
second-order decision is made to halt the deliberation.

There are much more detail in [Doyle 1980] than what is briefly presented above.
Doyle discusses the representation (Structured Description Language) he uses for the
model, the reason maintenance system that keeps track of the dependencies among
reasons, as well as more detailed presentation of the distinctions such as plan, desire,

and intentions.

Doyle's model certainly captures much of the qualitative aspects of decision making
processes. The notion of goal, missing in many models as we saw above, is not only
explicit but also is there in finer distinctions: desires and intentions. (The distinction
between desire and intention has to be made in computation context because as we
saw they are orthogonal concepts. But, I am not sure if the distinction is needed in
human support context.) Subgoals are represented by Subordinate relation.
However, there is no explicit discussion of the relations that hold among goals such
as conflicting and concording, or among subgoals such as conjunctive, disjunctive,
completely specifying, and partially specifying. It is not difficult to put these
distinctions in Doyle’s model, and it seems worth doing it. Alternatives are
expressed as Options in a Decision Record. Arguments are represented by Pro and
Con Reasons on Options or other Reasons. There is no distinction between facts,
claims, and opinions -- I believe for the same reason that there is no such distinction
in DRL. Questions and answers have no place in Doyle's model. Meta-comments,

34

however, can be expressed as beliefs, because beliefs can be about anything not just
about the evaluation of an alternative as in DRL. Doyle's model does not provide a
way to deal with the different degrees of importance, uncertainty, plausibility and
how they can be combined.

Doyle's model is a very ambitious one. It wants to represent every single step in
reasoning explicitly. This ambitious goal is both the strength and weakness of his
model. The explicit representation allows the system to reason about the steps in its
own reasoning and retract them if necessary. However, it is a very expensive
process in both the human and the computational contexts. People will find it too
demanding to represent their decision processes in the way that the model requires.
Computationally, the model would be intractable.

I would like to view DRL as a language that is compatible with Doyle's model but is
non-committal about some of its aspects. Thus, the DRL model is not as explicit as
Doyle's, but it then does not have to do things, e.g. making assertions, the way
prescribed by Doyle's. What DRL requires is only that claims are produced and
linked to other claims in some meaningful way. The claims could have been
produced in any way you want, like in Doyle's model or not. Also, one may decide,
for computational tractability, not to keep justifications for every step in reasoning.
In that sense, DRL can be viewed as a higher level interface to something like Doyle's
model, but not bound to it.

DRL is less ambitious than Doyle's. Doyle's is a model for deliberation, action, and
introspection. DRL provides a model for decision making. To the extent that
deliberation, action, and introspection can be all viewed as kinds of decision making,
DRL may be viewed as ambitious. But the scope of DRL, at least for now, is a
subset of such decision making at large -- namely, those decisions that involve
evaluating well-defined alternatives against a set of goals. That restriction in scope
let DRL provide higher level constructs such as the FACILITATES relations, which
allow more modular representation of the arguments evaluating alternatives as well as
allow such relations themselves to be argued about. This comparison is only a

35

preliminary and the exact relation between Doyle's model and DRL has to be worked

out.

4.6 gIBIS

gIBIS (graphical Issue Based Information System) is a "hypertext tool for
exploratory policy discussion" that is being developed at MCC [Conklin & Begeman
88}. The goal of gIBIS is to capture the design rationale: the design problems,
alternative resolutions, tradeoff analysis among these alternatives, and the tentative
and firm commitments that were made in the process of the decision making process.
gIBIS is discussed here because its goal is similar to that of DRL and because it is a
hypertext-based system that is designed to support human making decisions. The
difference between DRL and gIBIS comes from the structures provided in achieving
this goal and the underlying philosophy behind the structures.

gIBIS attempts to capture qualitative aspects of decision making with the following
constructs (Cf. Figure 6). There are three types of objects (Issue, Position,
Argument) and nine kinds of links (e.g. Responds-To, Supports, Objects-To,
Generalize, Specialize, Question, Be-Suggested-By). In our example, ISSUE is
"Which programming language should we use for implementing the current version
of Xanadu?", POSITIONs are the different languages, e.g. "Use Lisp." An
ARGUMENT Supporting this Position would be "Lisp provides high level features."
An ARGUMENT Objecting-To the last ARGUMENT would be "But Lisp is not
efficient.”

Notably lacking in gIBIS, however, is again the notion of goals. Of course, goals
cannot be absent in decision making. In gIBIS, they appear implicitly in Arguments.
For example, when one argues that Lisp is not a good choice because it is not
efficient, an implicit goal is to minimize the development or the run time. Again, all
the reasons for making goals explicit, discussed in the context of analytic decision
theory, still hold here. The explicit representation of goals: allows modular
representation of arguments, forces people to articulate the goals and their subgoals,

36

Fig. 6 The gIBIS Model and an Example

(a) The Model

GENERALIZES,

REPLACES,
QUESTIONS,

SPECIALIZES ISSUE

IS-SUGGESTED-BY

QUESTIONS

IS-SUGGESTED-BY
RESPONDS-TO

QUESTIONS
IS-SUGGESTED-BY

SUPPORTS
POSITION ARGUMENT
OBIECTS-TO
(b) An Example
ISSUE
Which programming
language should we use for POSITION
implementing the current \ﬁ&pmd&{> :
version of Xanadu? Use Lisp
JaY
Orts
. ARGUMENT
Repohds-To Obje¢ts-To ' .
Lisp provides high
level features.
POSITION ARGUMENT

Use C

Lisp is inefficient.

lets people argue about them, provides a basis for precedent management as well as
multiple viewpoints.

Another major difference between gIBIS and DRL is that, in DRL, relations are
objects, in particular subclasses of CLAIM, so that they can be argued about or
questioned in the same way as any other claims. In gIBIS, there is no way to
comment on relations themselves. Also, gIBIS is only a static representation
structure; there are no services such as dependency or viewpoint, or precedent
managements envisioned as in the DRL environment.

5. Future Research

The semantics for DRL needs more work, as mentioned. Doing so will clarify its
relationship with other computational paradigms like production rules or prolog.

The operations need to be defined that will serve as interfaces to each set of services
that I discussed in Section 3.

I would like to identify and classify the different types of dependency relations that
can hold among the objects of DRL. Goals, for example, are related in ways more
complex than through IS-A-SUBGOAL-OF. They could be completely or partially
conflicting; they could be supportive without one being subsumed by the other; or
there could be tradeoffs between them. I need to work out what the possible relations
are, and how they should affect the way that evaluation get merged and propagated.
It is also important to identify the different kinds of goals and how they are related, if
the system is to provide precedent management. There are some works on goal
taxonomy (e.g. preservation goal, achievement goal, delta goal. Cf. Schank,
Wilensky). But we need to articulate more fine-grained categories of goals. Another
area that I want to study is requirements analysis (e.g. Greenspan). I suspect that in
specifying the requirements, much of the same issue comes up and that some work
has been done on it.

37

I would like to find a more formal basis for describing and comparing the models
discussed in Section 4. The above comparison was given by first intuitively
characterizing the things that we want to represent and showing how they were or
were not represented in each model It would be nicer if I can make the basis for
comparison more formal or systematic.

I am also aware of some models that have not been covered in this report. One is
Konolige's recent work [Konolige 89] on 'defeasible arguementation system'.
Another is Jarkes' MEDIATOR [Jarkes 88, Hahn 88]. Konolige's work is
interesting because it is an attempt to formalize argumentation in terms of non-
monotonic logic and studying it would provide me with better understanding of the
semantics of DRL. MEDIATOR is interesting because it views collaborative
decisions as "complex, evolving data objects to be managed by an extended database
management system". Decision problems are represented as "multispatial mappings
that eventually lead from real-world observations to group utilities. Group decision
processes are represented as nested transactions which collaboratively design this
mapping structure, controlled by group communication norms represented as integrity
constraints." MEDIATOR would be also interesting to study because it uses CML
(Conceptual Modeling Language). CML is a descendant of RML (Requirements
Modeling Language) used for requirement analysis, which is an area that I indicated
in another report as interesting to study.

38

Appendix 1. A Scenario Illustrating the Motivations

Below, I present scenarios that illustrate the problems that motivate this research on
DRL.

Learning from Precedents

As the head of a new project FOO, John is responsible for selecting the best
knowledge representation (KR) language for Project FOO. John knows that the
project BAR at' ABC Inc. is similar to FOO; so he calls ABC. After many tries, John
finally gets to talk to some members of the project BAR and ask them what KR
language that they had chosen and why. Unfortunately, most members who had
been involved in deciding the KR language for BAR are not around anymore, and
others do not remember all the issues and the alternatives that had been considered.
How could one transfer the knowledge cumulated at ABC to John's company? What
is the best way to describe the decision processes that went on? How can one extract
the relevant issues from them?

John was told that, in fact, ABC's choice of KRL was a bad one insofar as
minimizing development time was concerned because it did not h_ave_a good version
mechanism. It occurs to John that it would be nice if one could represent and transfer
to the current problem context the experiences after the decision as well as the
considerations given before the decision.

Distributive Group Decision Support

John calls several meetings of his project members to discuss the issues that arise in
choosing the best KR language. However, meetings are not always the best way to
discuss the issues. There are usually some people who cannot come to the meeting
for various reasons but whose inputs are necessary. Also, John wants some way of
allowing people to raise additional issues or arguments whenever they want to.

Dependency Management

During meetings, it becomes apparent that the choice of KR language depends on
other choices. On which of the machines available-- Sun, microVax, Mac2-- should
the language run and under which programming language? The choice of one would
restrict, but not completely determine, the range of other choices. For example, if
one chooses STROBE, the programming language has to be either Lisp or C and the
hardware cannot be Mac 2. On the other hand, if one chooses LOOPS, then the
programming language has to be Interlisp and the hardware has to be Sun. John
finds that the choices of hardware and the programming language themselves merit
discussions. For example, portability and reliability of the hardware can be important
issues. John wants to represent the dependency relations in such a way that when
one choice is made, he need not consider all the other choices incompatible with it.

Not only does a choice depend on other choices, but also the validity of arguments
depend on other arguments or choices. For example, Lisp would be a bad choice as a
programming language if it were to run on microVax. But that claim would be
relevant only if microVax is chosen as the hardware and VaxLisp as the programming
language. John wants some way of representing all these dependency relations
among choices as well as among claims in such a way that when one changes, the
others dependent on it can get updated in a consistent way.

Viewpoint Management

As the issues, arguments, and various constraints are brought forth, John feels the
need to view them in different ways. He wants to evaluate KR languages with
different weights on the different constraints; for example, when portability is very
important vs. when it is not or when Sun is chosen as the hardware vs. microVax.
John wants to be able to switch back and forth between these different perspectives
and compare them as well.

Clearer Representation

John has called several meetings to talk about the issues to consider in choosing the
right KR language. Notes are kept at every meeting, but John finds the notes
unsatisfactory. The textual notes are too linear to show the complex interrelationship
among the issues that have been raised, the arguments put forth, and the eventual
evaluation of the alternatives. John feels that there must be a better way to represent
all that has been discussed so that one can see more clearly their overall structure.

Cumulative Progress

John also feels no sense of cumulative progress from meeting to meeting. Again, the
meeting notes kept provide some record of what has been discussed. But they do not
provide a sense of continuity. He believes that they need a better way of representing
the decision process so that the next meeting can start from where the previous one
left off.

Decision Audit

Several months after John made the decision, his superior calls him and asks him
why he made the decision the way he did. John collects all the notes that have been
kept from the meetings and tries to reconstruct the decision processes. But he finds it
not only time-consuming but also difficult to remember all the details.

Appendix 2. An Example Decision Graph

qulemem R Comet Loms) is-a-oub
A=A Lof
Knig
[] nate
is-a3gog! r = -Hor meriace _
D8 tacilitate
is-a-goal
facil
is-aterngtivé-tor e L . hypenex
oma!
oai-of
cilitate
facilifate -
s-shernmive-tor “..'
fogil . SUPPONED
facilinate
s y g 7 < | —t
-~
h
)) fand
tacilifase [T '
facihin
suppc
9ol & oo Pt he
TEOMT.
oot 1t roe
more
[3 . '
X eligagerheld = m in TROBE esem.
ams on LOOPS wen ol » part of imorhep s
X it code.
NVOE gne
ROw we ®
! A LOOPS. Bur we can ot Wrvs.
n any seasonabie e hore's ENVOS and
baved 10 e owerkap.
aher
”®
Snowen Cr
L i be is-an-answering. how enwy it
ENVOS 0 do eo. Foreg.,
oulier tram the
N of KB

is-a-
s, resun-of . n L

me Lang waih 18ce

Appendix 3. Operations
User Interface Operations

The following are the operations available to the end user. They are organized object-
oriented way. For the end user, this also means that only those operations for a given
object (and its parents) will be accessible from the object. For example, when the
user clicks on an object, only those operations for that object will be presented for the
user as an option. From the system viewpoint, these operations for an object form the
methods for the object.

¥ for any object

+4 Edit Object
#+++ Delete Object

*** for Decision Problem

**¥* Create An Instance (Class operation)

**¥* Add Goals

ik Add Alternatives

**x* Show Matrix

Shows a matrix where the columns represent goals, the rows represent alternatives,
and each cell represents an overall evaluation measure so far.
**¥* Evaluate

Updates the evaluation by propagating and calculating the impact of newly added
claims, goals, or alternatives.

**¥ for Evaluation
*¥%k Show Arguments

Shows the claims that are responsible for the evaluation
**** Specify Evaluation

Updates the evaluation measure for the evaluation

*%% for Set

s#%* Create an Instance (Class)
¥x Specify Members
%% Specify the Relationship

**% for Goal

#*¥* Create an Instance (Class)
**4% Specify the Importance
%k Create a Subgoal

**%% Show Subgoals

*** for Alternative

%k Create an Instance (Class)
#% Specify the Seriousness
***% Show Sub-Alternatives

*#% for Claims

#% Create an Instance (Class)
**x% Add a Pro Claim

**4%k Add a Con Claim

*x%% Add a Supporting Claim
*kkk Add a Refuting Claim

*x4%k Add a Qualfying Claim

*4x% Add a Question

4% Add an Influencing Question
*x#% Specify Plausibility

**%% Propagate Plausibility

Updates the plausibilities and the evaluation mesaures
*** for Question

¥x Create an Instance (Class)

**¥k Add a Question

*¥4¥ Create an Answering Procedure
¥+ Connect to an Answering Claim
**x* Create a Set of Possible Outcomes

*** for Viewpoint

***¥ Create an Instance (Class)
**%* Create an Related Viewpoint
**** Relate to another Viewpoint
**¥* Display Sub-Viewpoints

**¥* for Procedure

++ Create an Instance (Class)
*¥4% Specify Sub-Procedures (Class)
**** Specify Component Procedures

System Operations

**¥ Retrieve what's been represented selectively (ASK)
and possibly transform them in such a way

#i Explicitly Represented Information:
;something that a simple query langnage would do)
;something that requires only filtering)

e.g. show me all the claims that refute this claim

kx Implicitly Represented Information (Derived Information):
;something that requires transformation)

x e g Evaluate Alternatives

*dokkk extracting relevant precedents

*xkkkk navigating the goal lattice

**kdk extracting relevant parts from a given precedent

Selectively change what's been represented (TELL)

**¥* explicitly, in which case we need consistency check

**¥* automatically, representing and mainataining dependency relation.
*#*4* Propagate Plausibility

*** Display

**** e g. multiple viewpoints

References:

[Birnbaum et. al. 80] Bimbaum, L., Flowers, M., and McGuire, R. Towards an Al
model of Argumentation. In Proc. AAAI, Stanford, CA. 313-315. 1980

[Conklin & Begeman 88] Conklin, J. & Begeman, . gIBIS: A Hypertext Tool for
Exploratory Policy Discussion. Proc. Computer Supported Cooperative Work.
1988

[Doyle 80] Doyle, J. A Model for Deliberation, Action, and Introspection. MIT Al-
TR 581. Cambridge, MA 1980

[Fahrenbach 73] Fahrenbach, H. Wirklichkeit und Reflexion. Festschrift fur Walter
Shulz. Pfullingen, Gunther Neske. 1973

[Habermas 73] Habermas, J. Wahrheitstheorien in [Fahrenbach 73] 1973
[Hahn 88] Hahn, U. & Jarke, M. A Multi-Agent Reasoning Model for Negotiation
Support. MIP-8804, Fakultat fur Mathematik und Informatik. Universitat Passau.

1988

[Huth75] Huth, L. Argumentationstheorie und Textanalyse Der Deutschunterricht,
Jhrg. 27, pp.80-111. 1975

[Jarke 88b] Jarke, M. The Design of A Database for Multiperson Decision Support.
MIP- 8812, Fakultat fur Mathematik und Informatik. Universitat Passau. 1988

[Konolige 89] Konolige, K. & Pollack, M. Ascribing Plans to Agents. Preliminary
Report. Proc. IJCAI-89 Detroit, MI

[Lowe 86] Lowe, D. SYNVIEW: The design of a system for cooperative structuring
of information. Proc. Computer Supported Cooperative Work. 1986

[Pratt 70] Pratt, J. The appropriateness of a Toulmin analysis of legal
argumentation. Speaker and Gavel, v.7 1970

[Schank & Abelson 77] Schank, R. & Abelson, R. Scripts, Plans, Goals, and
Understanding. Lawrence Earlbaum Associates. New York, NY. 1977

[Toulmin 69] Toulmin, S. The Uses of Argument. Cambridge, Cambridge Univ.
Press.

[Wilensky] Wilensky, R. Planning and Understanding. UC Berkeley, CA. 1986

[Wunderlich 74] Wunderlich, D. Grundlagen der Linguistik. Reinbek bei
Hamburg, Rowohlt Taschenbuch Verlag 1974

