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Abstract

Ring Signatures were developed by Rivest, Shamir and Tauman, in a paper titled
How to Leak a Secret, as a cryptographically secure way to authenticate messages
with respect to ad-hoc groups while still maintaining the signer's anonymity. While
their initial scheme assumed the existence of random oracles, in 2005 a scheme was
developed that does not use random oracles and meets the strongest security defini-
tions known in the literature. We argue that this scheme is not deniable, meaning if
someone signs a message with respect to a ring of possible signers, and at a later time
the secret keys of all of the possible signers are confiscated (including the author),
then the author's anonymity is no longer guaranteed. We propose a modification to
the scheme that guarantees anonymity even in this situation, using a scheme that
depends on ring signature users generating keys that do not distinguish them from
other users who did not intend to participate in ring signature schemes, so that our
scheme can truly be called a deniable ring signature scheme.
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Chapter 1

Introduction

Ring signature schemes, first developed by Rivest, Shamir and Tauman [13, 14), allow

a user to sign a message anonymously with respect to a ring (essentially a group or list)

of possible signers as long as that list includes the actual signer. The basic security

requirements for such a scheme are unforgeability and anonymity. Unforgeability

means that someone must be in the ring to produce a ring signature for that ring

and anonymity essentially means that the ring signature gives no more information

about the signer's identity other than the fact that it is one of the members of the

ring. Ring signatures differ from the seemingly related notion of group signatures in

several main respects. Group signatures [4] include a central authority that can reveal

the identity of a signer and the group of possible signers is fixed in advance. Ring

signature schemes are much more flexible because there is no such central authority,

and the members included in a ring of possible signers can be chosen at the time the

message is signed and therefore need not be fixed. This means that someone that had

no intention of ever participating in ring signature schemes may still be included in

a ring signature as a possible signer. This flexibility leads to a variety of applications

for ring signature schemes.

The canonical application for ring signature schemes is for whistle blowing, as

stated in the title of the first work in this area, "How to leak a secret" [131. For



example, a member of the board of directors of a company may wish to make known

the illegal activities going on in the company without revealing their own identity but

still proving that the message came from a valid source. This board member could

use ring signatures to sign their message with respect to a ring of possible signers that

includes all of the board members. Another interesting application of ring signatures

is for designated verifier e-mail. If a sender signs their e-mail message with respect

to the ring of two users including the sender and receiver, then the receiver will be

convinced that the message came from the claimed sender, but they will not be able

to prove this to anyone else because the receiver could have produced this signature

themselves. One final application we will mention here is electronic voting [11]. A

vote can be a ring signature with respect to the ring of eligible voters so that votes

can be made public and counted publicly without revealing the votes of individual

people. The property of linkability is augmented onto basic ring signature schemes

to ensure that people can't vote twice.

The original ring signature scheme in [13] elegantly uses public-key encryption to

achieve anonymity and unforgeability. Any user who publishes a public key of the

type used in the scheme can therefore be included in a ring signature even if they

never anticipated participating in ring signatures. This flexibility was extended in [1]

where it was shown that ring signature schemes could be based on public encryption

keys even if the keys are not all of the same type. The main drawback of these schemes

were their dependence on random oracles, a sort of idealized hash function that is

used in theoretical work but is assumed to be replaced by a hash function in practice.

This dependence is seen as a drawback since it was shown in [12] that the random

oracle model is not secure, in the sense that there exist cryptosystems that are secure

using random oracles, but are not secure whenever these oracles are replaced by real

world hash functions. This motivates the recent results of [2] that first demonstrate

the existence of ring signature schemes without random oracles, which are the basis

for the work in this thesis.



In addition to developing a ring signature scheme that does not use random or-

acles, [2] give the strongest security requirements for unforgeability and anonymity

known in the literature and show that their scheme meets these requirements. The

two strongest anonymity requirements they propose are anonymity against attribut-

ion attacks and anonymity against full key exposure. The first of these requirements

guarantees anonymity even if the adversary is given the secret keys (and random-

ness that generated these keys) for all but one of the possible signers in the ring.

Anonymity against full key exposure is the stronger of the two requirements, guar-

anteeing anonymity even if the adversary knows the secret keys and randomness for

all of the members of the ring. While the scheme presented in [2] meets the weaker

of these two requirements, they propose a slight variation on their scheme that meets

the stronger requirement, by having users generate encryption keys for which they

themselves don't even know the secret key. We argue that this variation is inconsis-

tent with the ad-hoc nature of ring signatures, because the other users included in

the ring may actually know their own secret keys and therefore the real signer can be

distinguished from the other members of the ring by being the only member who can

not produce their secret key. We argue that in order for ring signatures to be deni-

able, all of the keys used by the signer must be indistinguishable from the keys of the

other members of the ring, even in the situation where the secret keys are exposed.

We build on the scheme of [2] to produce a scheme without random oracles that is

anonymous with respect to full 'key exposure and depends on the use of keys that will

not distinguish ring signature participants from those users who had no intention of

participating in ring signature schemes.





Chapter 2

Preliminaries

In this section we present some of the notation and basic definitions we will be us-

ing throughout the paper. We will introduce some of the notation and definitions

to describe probabilistic algorithms and some of the definitions needed to concisely

describe the assumptions and results we will be working with.

2.1 Notation

Since we will often be working with probabilistic algorithms, we define A(x), where

A is a probabilistic algorithm and x is an input to that algorithm, as the distribution

that assigns to every string y the probability that algorithm A on input x produces

y. We will use A(x; w) to refer to the deterministic computation of A on input x with

w as its random coins. When A is both probabilistic and runs in polynomial time, we

will sometimes refer to it as a PPT (Probabilistic Polynomial Time algorithm). In

general if S is a probability space, we may write x +- S to mean that x is chosen at

random from S.

When we say a function f is negligible, we mean that for every polynomial p(n),

there exists some no such that f(n) < for all n > no. In such a case we may

also write f(n) = negl(n). Similarly we say that a function f is non-negligible if there



exists some polynomial p(n) such that f(n) >1 for infinitely many n.

2.2 One-way Functions

Most of the results in modern cryptography are based on either assumptions about the

hardness of some problems (such as number-theoretic problems) or standard assump-

tions such as the existence of one-way or trapdoor one-way functions or permutations.

To summarize, a one-way function is a function that is easy to compute but hard to

invert, while a trapdoor one-way function is a one-way function that is easy to invert

if one knows some secret trapdoor information. We define one-way functions here:

Definition 1 (One-way Functions) A one-way function is a function f that sat-

isfies the following two properties:

1. f can be computed in polynomial time.

2. f is hard to invert, meaning for any non-uniform PPT A, for any auxiliary

input zn,

Pr[x +- {0, 1}n; y - A(f(x), zn); f(x) = f(y)] = negl(n)

2.3 Computational Indistinguishibility

Many of the results we will address in this paper are framed in terms of computational

indistinguishibility, which is essentially a way to express the difficulty of distinguishing

between two ensembles of probability distributions. For example, we will obtain

pseudorandom numbers from one-way functions and express our results in the form

of computational indistinguishibility to say that no efficient algorithm could tell the



difference between pseudorandom numbers and truly random numbers. In general we

define computational indistinguishibility in terms of an adversarial game:

Definition 2 (Computational Indistinguishibility) Two ensembles of probabil-

ity distributions, { Ax }x)i and { Bx )EI are said to be Computationally Indistinguishi-

ble if for any non-uniform PPT D, for all x E I n {0, 1}n , and any auxiliary input

zn,

IPr[y +- A(x); D(x, y, z) = 1] - Pr[y +- B(x); D(x, y, z) = 1]1 = negl(n)

In such a case we may use the shorthand {Ax} I {B, }.





Chapter 3

Previous Work

In this section we present the basic cryptographic primitives and constructions that

will be used to construct the deniable ring signature scheme in the next section. The

results we present are all framed in terms of adversarial games and the assumptions

used are all stated in terms of generic complexity based assumptions, such as the

existence of one way functions, or number theoretic assumptions, such as the difficulty

of distinguishing quadratic residues from quadratic non-residues.

The first primitive we present, Pseudorandom Number Generators, provides the

basis for the main innovation in our scheme. The next three sections, about Public-

key Encryption, Digital Signatures, and Zero Knowledge Proofs, introduce primitives

that are used in the Ring Signature scheme in [2], which is also the last subsection and

the basis for our construction in the next section. For the basic primitives (the first

four sections) we simply provide the definitions and theorems we will use later, while

for the section presenting the scheme in [2] we provide more detail because we will

be using the main ideas from it in our own construction rather than simply applying

results.



3.1 Pseudorandom Generators

The goal of pseudorandom generators is to take random strings and expand them

into longer strings that appear to be random. The result that we will use is that

the existence of one-way functions implies the existence of pseudorandom generators.

We first define pseudorandom generators as they were defined in [3, 7], as functions

that stretch random strings of length n to strings of length polynomial in n that are

indistinguishable from random:

Definition 3 (Pseudorandom Generator) Let f,: {0, 1}n -_+ {0, 1}1( ) be a poly-

nomial time function ensemble for some polynomial l(n) > n. {fn}neN is a Pseudo-

random Generator if the probability ensemble of f, on random strings of length n is

computationally indistinguishable from the probability ensemble of random strings of

length l(n).

It was originally shown by Blum and Micali [3] that pseudorandom generators

can be constructed from functions f that have a hard-core predicate b, meaning b(x)

can be computed easily given x but can not be computed given only f(x). These

pseudorandom generators can expand the random input by any polynomial amount

by cleverly repeating the application of the hard-core predicate to obtain extra bits.

Goldreich and Levin [7] then showed that any one-way function can be turned into

a function with a hard-core predicate that can be used for pseudorandom generators

as in [3]. This gives us the following theorem:

Theorem 4 If One-way Functions exist, then there exist Pseudorandom Generators

for any polynomial l(n).

3.2 Public-key Encryption

To construct ring signature schemes as in [2] we will be using public-key encryption

schemes with the property that no feasible adversary can distinguish between en-



cryptions of two different messages chosen by the adversary. This property, known

as polynomial security against chosen plaintext attacks, has been shown to be equiv-

alent to semantic security, which was presented by Goldwasser and Micali [8], and

essentially means that no feasible adversary can obtain any partial information about

a message given only an encryption of that message. While there exist encryption

schemes that meet stronger security definitions, such as security against chosen ci-

phertext attacks, the requirements from [8] will be sufficient for constructing our ring

signature schemes. We first define a probabilistic public-key encryption scheme:

Definition 5 (Public-key Encryption Scheme) A Public-key Encryption Scheme

is a triplet of PPTs (G, E, D) where

* G is a key generator that takes input 1k, where k is the security parameter, and

returns (PK, SK) where PK is the public key and SK is the secret key.

* E is an encryption algorithm that takes as input a message m and the public

key PK of the recipient of the message, and returns a ciphertext c = EPK (m).

* D is a decryption algorithm that takes as input a ciphertext c and the secret key

SK of the user and returns the original message m = DSK(C).

* For all key pairs (PK, SK) that G might produce, and for all messages m,

Pr[DSK(EPK(m)) = mi = 1.

We will now formally define polynomial security against chosen plaintext attacks

in terms of an adversarial game. The idea is that the adversary, given the public key,

will produce two messages that it claims to be able to distinguish between if given

an encryption of one of them. After receiving an encryption of one of the messages,

it will guess which message was encrypted and we will assert the probability that the

adversary is correct is no more than negligibly far from 1:



Definition 6 (Chosen Plaintext Security) A public-key encryption scheme (G, E, D)

is polynomially secure against Chosen Plaintext attacks if for any PPT A the proba-

bility p(n) that A succeeds at the following game satisfies Ip(n) - I1 = negl(n):

1. Keys (PK, SK) +- G(1") are generated randomly and PK is given to A.

2. A returns two messages, mo and mi .

3. A bit b is chosen at random and A is given c - EpK(mb).

4. A returns b' E {0, 1} and succeeds if b' = b.

Since this security definition is equivalent to semantic security, we may use this

definition when describing schemes that we assume to be semantically secure. Several

semantically secure encryption systems have been developed under various assump-

tions, such as the number theoretic Quadratic Residuosity Assumption. We will use

these results to construct ring signature schemes, and state the theorem to be used

here:

Theorem 7 Under the Quadratic Residuosity Assumption, there exist public-key en-

cryption schemes that are semantically secure.

3.3 Digital Signatures

In addition to public-key encryption, the ring signature scheme of [2] also utilizes dig-

ital signatures. However, unlike with encryption, the signature schemes they assume

use the strongest security definitions in the literature. In particular they use signature

schemes for which any adversary, even if given access to an oracle to produce sample

signatures, has no more than a negligible chance of producing a forgery of a message

for which it did not already query the oracle. This security requirement is known

as existential unforgeability under adaptive chosen-message attacks. Before defining



any security notions, we first define digital signature schemes as we did for public-key

encryption schemes earlier:

Definition 8 (Digital Signature Scheme) A Digital Signature Scheme is a triplet

of PPTs (G, S, V) where

* G is a key generator that takes input 1 k, where k is the security parameter, and

returns (PK, SK) where PK is the public key and SK is the secret key.

* S is a signing algorithm that takes as input a message m and the secret key SK

of the user, and returns a signature a = SsK(m).

* V is a verification algorithm that takes as input a signature a and the public

key PK of the claimed signer and returns a bit b = VpK(m, a) where b = 1

(respectively 0) if the signature is valid (respectively invalid).

* For all key pairs (PK, SK) that G might produce, and for all messages m,

Pr[VpK(m, SSK(m) = 1] = 1.

We will now define the security requirement we will use for signature schemes in

this paper in terms of an adversarial game as we did for public-key encryption. The

idea is that the adversary will be given a public key and access to a signing oracle and

is then challenged to produce a forgery of any message for which he did not already

query the oracle. The requirement is that the adversary must succeed with no more

than negligible probability:

Definition 9 (Chosen Message Security) A digital signature scheme (G, S, V) is

secure against existential forgery under adaptive chosen-message attacks if for any

PPT A the probability p(n) that A succeeds at the following game satisfies p(n) =

negl(n):

1. Keys (PK, SK) <- G(1") are generated randomly and PK is given to A.



2. A is given access to a signing oracle SO that it can adaptively query with queries

of the form SO(m), which return a signature oa SsK(m).

3. A returns a signature a for a message m and succeeds if m was never queried

to the oracle and VPK(m, U) = 1.

It was first shown by Goldwasser, Micali and Rivest [10] that there exist digital

signature schemes that meet this strongest security definition under the number the-

oretic assumption that factoring is hard. It was later shown by Rompel [15] that the

assumption can be weakened to just the existence of one-way functions, giving us the

following result which we will use to construct ring signatures:

Theorem 10 The existence of one-way functions implies the existence of Digital

Signature schemes that are secure against existential forgery under adaptive chosen-

message attacks.

3.4 Zero Knowledge and ZAPs

The final cryptographic primitive we will present before constructing the ring signa-

ture scheme of [2] is Zero Knowledge Proofs, of which ZAPs are a particular flavor.

Zero Knowledge Proofs were first proposed by Goldwasser, Micali and Rackoff [9] as

an interactive proof technique whereby a prover could prove a statement to a verifier

without giving away any more information other than the fact that the statement is

true. For example, a prover could prove that a graph is 3-colorable given a witness,

such as a 3-coloring of the graph, without giving away the witness or even divulging

any information about the witness. Informally, the requirements for a protocol to be

a Zero Knowledge Proof System are the following:

1. Completeness: The prover should be able to prove any true statement.

2. Soundness: It should be very hard for any prover to prove any false statement.



3. Zero Knowledge: No verifier should be able to obtain any information from

interacting with the prover other than what it could have obtained on its own.

Feige and Shamir [6] introduced a weaker requirement called witness indistin-

guishibility to replace the zero knowledge requirement. Witness indistinguishibility

allows information to leak about the witness but asserts that if there are several wit-

nesses for a statement proven, then the verifier does not learn any information about

which witness the prover used to construct the proof. To give a rough idea of why this

weaker requirement will suffice for ring signatures, we will see that zero knowledge

proofs will be used to hide the identity of the signer of a ring signature. Since the

possible witnesses correspond to the possible signers (i.e. the ring members), we need

not hide all information; we just need to give no information about which witness

was used.

The ring signature scheme we will look at in the next section is heavily dependent

on ZAPs, which are a kind of 2-round witness indistinguishable protocol developed by

Dwork and Naor [5] that can be used to prove statements of the form x E L for any

language L in NP. Associated with any NP language L is a polynomially bounded

witness relation RL such that x E L 4=* 3w, (x, w) E RL. The idea of ZAPs

is that the verifier sends a first message r and the prover responds with a proof 7r,

which it can produce because it has access to a witness w for the statement x. These

two rounds of communication complete the protocol, and witness indistinguishibility

guarantees that the verifier can not tell which witness was used from all of the w such

that (x, w) E RL. It is even shown that the first message can be fixed and used to

prove many different statements, so that someone can post their first message as a

kind of public key that people can look up in a directory when they want to prove a

statement to that person. The formal definition of a ZAP is given below:

Definition 11 (ZAP) A ZAP is a triplet (P, V, 1) where P is a PPT prover, V is

a polynomial time deterministic verifier, and l(n) is a polynomial satisfying the three

following conditions:



1. Completeness: For all (x, w) E RL and all r E {0, 1}1(n),

Pr[r +-- Pr(x, w); Vr(x, 7r) = 1] = 1

2. Adaptive Soundness: With high probability there is no x V L for which there

is a valid proof:

Pr[r + {O, 1}"(n); 3(x, r), x V L, V,(x, 7r) = 1] = negl(n)

3. Witness Indistinguishibility: For any x E L and pair of witnesses wo

and wl such that (x, wo) E RL and (x, wi) E RL, the pair of ensembles of

probability distributions {P,,(x, wo)} and {P, (x, wl)} indexed over n, where

rn + {0, 1}' (n), are computationally indistinguishable.

The ring signature scheme in the next section as well as the modified scheme

presented in this paper both use the following result from [5] to construct ZAPs for

particular NP languages related to ring signatures:

Theorem 12 (ZAPs) There exist ZAPs for any language L E NP.

3.5 Ring Signatures without Random Oracles

The first ring signature scheme that was not dependent on random oracles was in-

troduced by Bender, Katz and Morselli [2], in a paper that also introduced stronger

security requirements. The requirement we will focus on in this paper is anonymity,

since this is the area we will show improvement. The main scheme presented in [2]

does not meet the strongest anonymity requirement they propose. While they pro-

pose a modification to meet the strongest anonymity definition, we will argue that

this modification is inconsistent with the aims of ring signatures because it eliminates

deniability. In this section we will first present the definitions of a ring signature



scheme and the security definitions from [2], then we will present their main scheme,

and finally we will review their modification and argue why a different type of modi-

fication is necessary to achieve the strongest anonymity requirement.

3.5.1 Definitions

We first provide a formal definition of a ring signature scheme. A ring signature

scheme has a similar formal structure to an ordinary signature scheme except that to

create a signature, in addition to using a secret key, one also uses the public keys of

the other users that are to be included in the ring.

Definition 13 (Ring Signature Scheme) A Ring Signature Scheme is a triplet of

PPTs (G, S, V) where

* G is a key generator that takes input In, where n is the security parameter, and

returns (PK, SK) where PK is the public key and SK is the secret key.

* S is a signing algorithm that takes as input a message m, a ring R = (PK, , PK1)

of public keys, a user i* and their secret key SKi., and returns a signature a =

Si.,SK,. (m, R). We assume here that (SKi., PKi.) is a valid key pair generated

by G and IRI > 2.

* V is a verification algorithm that takes as input a signature a and a ring

R = (PK1,..., PK1) of public keys and returns a bit b = VR(m, a) where b = 1

(respectively 0) if the signature is valid (respectively invalid).

* For any polynomial 1 in n, and any set of key pairs {(PKi, SKi)}'=l that G(1 n)

might produce, and for any message m and user i* E [1, 1], Pr [VR(m, Si.,SK.. (m, R)) =

1] = 1, where R = (PKi,..., PK1 ).

One thing to note here is that because of the ad-hoc nature of ring signatures,

and the fact that we will want to sign messages with respect to rings that include



users that never planned on participating in ring signature schemes, the key gener-

ator algorithm must perform a function that most people already perform on their

own without intending to do ring signatures. For example, the public keys could be

public encryption keys or public keys for digital signature schemes, or some combi-

nation thereof, because it is expected that most people create and publish such keys

regardless of the existence of ring signature schemes that utilize them. On the other

hand, a key generator algorithm for ring signatures that requires users to generate

public keys that are not ubiquitous, such as a specially designed key made with ring

signatures in mind, would not be of much use because then one would not be able to

sign messages with respect to rings that include people who were not also interested

in doing ring signatures.

We now give the strongest unforgeability definition given in [2], which they refer to

as unforgeability with respect to insider corruption. The idea behind the adversarial

game in this definition is that the adversary is given a set of validly generated public

keys, and an oracle in which it can make queries with respect to a ring of its choice

(even rings including adversarially generated keys). The adversary is even given the

power to choose the author in the oracle queries, provided the specified author does

not correspond to one of the adversarially generated keys. The requirement is that

the adversary succeeds in this game by producing a forgery, i.e. a signature for a

message and ring it never queried before, with negligible probability.

Definition 14 (Unforgeability) A ring signature scheme (G, S, V) is unforgeable

if for any PPT A and any polynomial k the probability p(n) that A succeeds at the

following game satisfies p(n) = negl(n):

1. Keys {(PKi, SKi))l})  <- G(1") are generated randomly and the set of public

keys S = {PK}•](n) is given to A.

2. A is given access to a signing oracle SO that it can adaptively query with queries

of the form SO(i*, m, R), which return a signature a +- SSK,. (m, R), under the



condition that PKW, E R.

3. A is also given access to a corruption oracle CO that it can query with queries

of the form CO(i*), which returns the secret key SKi..

4. A returns a signature a for a message m and a ring S* and succeeds if SO was

never queried with message m and ring S*, S* C S - C (where C is the set of

corrupted users) and Vs.(m, a) = 1.

We will now see the two strongest anonymity definitions presented in [2], anonymity

against attribution attacks and anonymity with respect to full key exposure. The def-

initions are very similar and differ only in a single detail related to the powers granted

to the adversary. In both adversarial games, the adversary is given a signing oracle

as in the unforgeability definition, and is supposed to produce a sample message m,

a ring R, and two possible signers io and il in R. The adversary is then given a ring

signature of m with respect to R, signed by one of the two authors, and the adversary

is supposed to guess which author was used. In both anonymity definitions, along

with the challenge signature, the adversary is given the randomness to generate the

keys for several users in the ring R. The difference between the two definitions is

that in the weaker definition the adversary is given the randomness for all but one of

the users, while in the stronger definition the adversary is given the randomness to

compute the keys for all users. The two definitions are presented together because

they only differ in one place:

Definition 15 (Anonymity against attribution attacks / full-key exposure)

A ring signature scheme (G, S, V) is anonymous against attribution attacks if for any

PPT A and polynomial 1, the probability p(n) that A succeeds at the following game

satisfies jp(n) - 1I = negl(n):

1. Keys {(PK, SK.)}l} +- G(1n ) are generated randomly and the set of public

keys S = {Pji 11(l is given to A. A is given access to a signing oracle SO that



it can adaptively query with queries of the form SO(i*, m, R), which return a

signature a -- SSK,. (m, R), under the condition that PKi. E R.

2. A outputs a message m, a ring R, and the indices of two users io and il such

that PKio and PKg, are both in R.

3. A random bit b is selected and A is given a signature a +- SSKib (m, R) as well

as {W}i)jAo-

4. A outputs a bit b' and succeeds if b' = b.

If in step 3 the adversary is also given the randomness wi0 then we say that the scheme

is anonymous against full key exposure.

3.5.2 Scheme from [2]

The main scheme from [2] meets the strongest unforgeability requirement and the

weaker of the two anonymity requirements presented in the last section. The scheme

assumes the existence of a semantically secure encryption scheme (GE, E, D), a digital

signature scheme (GS, Ss, V s ) and a ZAP (P, Vz,1) for a particular NP language that

we will define. The idea of the scheme is that for a user to sign a message m, with

respect to a ring R containing that user, the user first signs the message with their

own ordinary signature, then encrypts this signature using the public encryption keys

of all the users in the ring, and then proves using the ZAP that the encryption is an

encryption of a signature of m using the secret signing keys of one of the members

of the ring. Therefore a public key PK for a ring signature scheme really consists of

a public encryption key, a public signature key, and a ZAP message corresponding

to the first message sent by the verifier, while a secret key SK for a ring signature

scheme consists of a secret signature key to produce the ordinary signature.

To illustrate the scheme more clearly, we will begin by defining what we mean

when we say the user encrypts using the public encryption keys of all the users in



a ring. We define an encryption ERE (a) of a message a with respect to the ring of

public encryption keys RE = {PK}i 1 as follows: First select k - 1 random strings

sl,..., Sk-1 E {0, 1}1 l1 of the same size as a. We then define the cipher text C as:

C = ERa(a) = EPK(Sl), EpK (S2) ,..., EPKE1 (Sk-1), EPKE( ($ SO
i=1

It can be shown that this larger encryption scheme is also semantically secure as

long as the secret keys of at least one of the users in the ring RE is kept secret.

We can now describe in more detail how the ring signature scheme works. After

the user i* in a ring of k users creates an ordinary signature a, they create a ciphertext

Ci. = ERE(a). Additionally the user creates k-1 more ciphertexts {Ci = ERE (0)}i#i*

There are now k ciphertexts CO, ..., Ck, and the author of the ring signature, user i*,

has encrypted their signature into the i*th ciphertext, and encrypted 0 into the rest.

The semantic security of the encryption scheme hides which ciphertext contains an

encryption of a signature. Now the user can prove, using the ZAP, that there exists

some i between 1 and k such that the ith ciphertext has the signature of the ith user.

This corresponds to proving membership in the following NP language, where Rs is

defined similarly to RE except for public signing keys rather than public encryption

keys:

k

L = {(m, Rs, RE, Ci ) a, w, s.t. V(ERE(a; w) = Ci A VSKs(m,a) = 1)}
i=1

The language is obviously in NP because there is only a single existential quanti-

fier, the variables are all polynomial size in n, and the statement can be checked in

polynomial time because the PPT ERE becomes deterministic once the randomness

w is provided and the signature verification algorithm V is deterministic polynomial

time to begin with.

We are now ready to define the ring signature scheme (G, S, V) formally:



* Key Generator G(1"):

1. Generate signing key pair (PKS, SK s ) -- GS(1").

2. Generate encryption key pair (PKE, SKE) + GE(1n ) (we will ignore the

secret encryption key for ring signature purposes).

3. Choose an initial ZAP message r +- {0, 1}1 (n).

4. Output as the public key PK = (PK s , PKE, r) and as the private key

SK = SK s .

* Signing Algorithm Si-,SK .(m, R):

1. Parse R = (PK 1,..., PKk) and each PKi = (PKs, PKE, r2 ) and SKi. = SKi..

Set RE = (PK E , ..., PKf ) and Rs = (PKf , ..., PKS).

2. Set M = mlPK1 I...IPKk where "I" denotes string concatenation and com-

pute the digital signature a = S (M).

3. Compute ciphertext Ci = ERE (a) and record the random coins used in

Wi*.

4. Compute ciphertexts Ci = ERE(0) for each if i*.

5. Set statement x -= (M, Rs, RE, {C}=), and witness w = (oi., w.) and

use the ZAP with the first message rl from the lexicographically first public

key to produce the proof ir +- P,, (x, w) of the statement x E L.

6. Output the signature a = ({Ci}k=l, 7).

* Verification Algorithm VR(m, a):

1. Parse R = (PK 1, ..., PKk) and each PKi = (PKW, PKE , ri) and a =- ({C}il, 7r).

Set RE =- (PK, ..., EPK), Rs = (PKf, ..., PK(S), and M = mlPKlI...IPKk.

2. Set statement x = (M, Rs, RE, {Ci}=1).

3. Verify the proof 7r of x E L signature and output Vz(x, Xr).



This ring signature scheme can be shown to achieve the highest unforgeability

guarantee. However it only achieves anonymity with respect to attribution attacks

because if all of the secret keys are exposed, then the encryption scheme ERE can

be decrypted and the ordinary signature will be seen in the clear beneath one of the

ciphertexts, thereby giving away the signer's identity. If all but one of the secret

keys are exposed, however, the signer's identity will still be kept secret because the

encryption will still be unbroken, giving us the following theorem from [2]:

Theorem 16 If (GE, E, D) is a semantically secure encryption scheme, (Gs, Ss, VS)

is a signature scheme that is existentially unforgeable against adaptive chosen message

attacks, and (P, Vz, 1) is a ZAP for the language L, then the ring signature scheme

defined above is unforgeable and anonymous against attribution attacks.

3.5.3 Achieving the strongest anonymity guarantee

The reason why the ring signature scheme from [2] does not achieve the strongest

anonymity guarantee is because the encryption scheme they propose is not secure if

all of the secret keys are exposed. To solve this problem they propose a modification

to their scheme in which an oblivious encryption key generator is used, rather than a

standard encryption key generator. If an encryption system has an oblivious gener-

ator, this means that a user can generate a public encryption key for which they do

not know the secret key. Oblivious key generators also allow the user to expose the

randomness used to generate the public key and still know that it will be infeasible

for an adversary to distinguish their public keys from keys for which the secret key

is known. This modification to the scheme achieves anonymity against full key expo-

sure because now we can reveal the randomness used to generate all of the encryption

keys, and the adversary will still not be able to decrypt the ciphertexts because they

will not be given the decryption keys.

There are several reasons why this modification, while it does satisfy the strongest

anonymity definition, is unsatisfactory. The first reason is that this would require a



user to publish encryption keys for which they do not know the secret key, and pass

this off as a regular encryption key that they will use to receive secure communica-

tion. Using an oblivious generator eliminates the ability to actually use the key for

encryption because the messages can not be decrypted. While the definition of ring

signature schemes does not explicitly require that the primary functionality of the

primitives that ring signatures are built on be preserved, this is certainly a weakness

of this scheme.

A more significant weakness of the scheme under this modification is that the

adversarial game in the strongest anonymity definition no longer models the real world

situation accurately if such keys are used. In the adversarial game, both users that

the adversary is trying to distinguish between as author have had their keys generated

specifically for ring signatures, so that the encryption keys were generated without any

known private key. The corresponding situation in the real world is that all members

of a ring have had their secret encryption keys exposed, either by coercion or other

means, except for two members, both of whom generated their keys obliviously (i.e.

without a private key) because they both intended to participate in ring signatures.

Even under coercion, these two users can claim inability to produce their private keys

because their public keys were indeed produced obliviously, though in the process

they will be forced to admit their intention to participate in ring signature schemes.

While in this situation, anonymity would be preserved, the adversarial game does not

capture another plausible situation in which a user signs a ring signature with respect

to a ring of users all of whom (except for the signer) have the private encryption keys

to go along with their public keys. In this situation, all the users' keys will be

exposed and the signer will be the only user who claims inability to produce secret

keys. While even in this case the ciphertexts can not be decrypted, anonymity is no

longer preserved because the ring member who can not produce their private keys

can no longer deny their involvement with ring signatures while everyone else can.

What we really seek is a scheme that meets the strongest anonymity requirement



and is also built on cryptographic primitives that are identical to those of users who

had no intention of participating in ring signatures. In such a scheme, even when all

the members of a ring are coerced to give up the randomness used to generate their

keys, ring signature participants still have deniability, or the ability to deny partici-

pation in ring signature schemes. An oblivious key generator has deniability until the

point at which the randomness and secret keys are exposed, at which point users who

did not use the oblivious key generator will give up their secret keys and thereby dis-

tinguish themselves from those who intended to participate in ring signatures. In the

next section we will modify the ring signature scheme from [2] to produce a scheme

that meets the strongest security definitions from [2] and is also deniable.





Chapter 4

Deniable Ring Signature Scheme

We will modify the scheme in [2] so that it achieves the strongest security guarantees

while also achieving deniability. By deniability we mean that the scheme only uses

keys such that when the secret keys and randomness used to generate the keys are

exposed, the user who constructed their keys to participate in ring signatures can

claim that they never intended to participate in ring signatures and only generated

the keys to use them for their default functions, such as secure communication or

message authentication for encryption and digital signatures respectively. We stated

in the previous section that a way to ensure deniability is to have the key generator

for a ring signature scheme generate public and private keys that are identical to those

generated by people who never anticipated participating in ring signature schemes.

The main scheme in [2] uses keys for public key encryption, digital signatures, and

ZAPs, all of which have a public key infrastructure and for which it can be assumed

that people will want this functionality independent of the fact that they can be

used for ring signatures. We will build on this scheme by using the same three

cryptographic primitives.

In order to construct a ring signature scheme based on the scheme from (2] that

is anonymous even if all of the secret encryption keys are divulged we will have the

signer avoid encrypting their ordinary signature in ERE. Instead, the signer will



encrypt a string of zeroes the same length as an ordinary signature. When the secret

keys are divulged and the cipher texts are decrypted, the underlying message 0 will

be revealed behind each cipher text, thereby preserving anonymity. The problem here

is that now the signer can not prove using the ZAP that one of the cipher texts is

an encryption of someone's signature, because in fact the statement is false. We will

have to change the language L for the ZAP so that the signer can still create a valid

signature (preserving completeness) while simultaneously ensuring that only someone

in the ring could prove membership of x E L (preserving unforgeability).

The trick behind our scheme is that when we generate our digital signature keys,

we will do so pseudorandomly rather than randomly. We will explain what this means

more formally in the next section, but just to give an idea of why the scheme works, we

note that this allows us to prove using the ZAP that "either the cipher texts Ci contain

an encryption of the signature of someone in the ring, OR someone in the ring had

their digital signature keys generated pseudorandomly rather than randomly." The

idea is that only someone who participated in the pseudorandom generation of their

signature keys would be able to prove that someone's keys were generated pseudoran-

domly, thereby proving that if someone could create this ZAP proof then they must

be in the ring. Anonymity is still preserved because the ZAP is witness hiding and

therefore does not give away whose keys were generated pseudorandomly, and this

can not be inferred by just looking at the keys because random and pseudorandom

are indistinguishable. This indistinguishability between random and pseudorandom

also allows us to achieve deniability because even if someone's keys were generated

pseudorandomly in order to create ring signatures, they can deny this fact even after

their secret keys are divulged and no feasible adversary would be able to tell whether

they were lying because they can not tell whether their keys are random or pseudo-

random. We have achieved deniability by requiring that the ring signature scheme be

based on keys that are indistinguishable from, rather than identical to the keys that

people generate for their own use of these public key cryptographic primitives.



In the following sections we will define and prove the security of pseudorandom key

generation schemes, formally define our modified ring signature scheme, and prove

that our scheme satisfies the strongest security definitions from [2].

4.1 Pseudorandom Key Generation

When a user of digital signature schemes generates their keys via GS(1), the gen-

erator algorithm flips some random coins w ER {0, 1 }q(n) for some polynomial q and

then computes the deterministic function GS(ln; w). If instead of using q(n) random

bits, we used only half as many random bits, but used a pseudorandom number gen-

erator to expand our string to the appropriate length, we will produce keys that are

computationally indistinguishable from the keys we would have produced if we had

picked all q(n) bits randomly. Furthermore, the digital signature scheme will be just

as secure if we use these pseudorandomly generated keys as it would have been if we

generated the keys randomly.

We now formally define a pseudorandom key generator G• for a digital signature

scheme (GS, Ss, VS), given a pseudorandom number generator f. Let fk be a pseudo-

random generator as in Definition 3, with 1(k) = 2k (meaning it stretches by a factor

of 2). Given w E {0, 1 }q(n)/2, we define & = fq(n)/2(w). We note that IlI = q(n) and

the ensembles of distributions {w +- {0, 1 }q(n)} and {w +- {0, 1 }q(n)/2: = fq(n)/2(W))

are computationally indistinguishable by the definition of a pseudorandom generator.

Now that we have defined a pseudorandom key generator Gs, we will prove two

lemmas that will allow us to replace Gs with this new generator and still be able to

use the keys for digital signatures, as well as for ring signatures. The first lemma

implies that if we were to use ds to generate signature keys rather than Gs, then

the ring signature scheme built upon this would still be deniable because no feasible

adversary could tell which generator we used, even if we divulge both the secret key

and the pseudorandom string (which we will try and pass off as random) used to



generate these keys.

Lemma 17 Given a PPT digital signature key generator Gs that uses a polynomial

q(n) bits of randomness, and a pseudorandom generator fk with l(k) = 2k, the follow-

ing two ensembles of probability distributions are computationally indistinguishable,

where Gs is defined as above:

W {0, 1}y(n); (PKs, SKs) = GS(ln; (w, PKS, SKS)}

{W - {0o, 1 }q(n)/2; (PKs, SKs) = Gs(1n; w): (fq(n)/2(W), PKs, SKS)}

Proof Suppose there existed some non-uniform PPT adversary A that could distin-

guish between the two ensembles for some auxiliary information zn with non-negligible

probability. We can obtain a contradiction by constructing an A' that distinguishes

between the two ensembles of distributions {w} and {c} defined above, using the

same auxiliary input zn. Given a string w from one of the two distributions, we sim-

ply run G(1~; w) = (PKs, SKs) and then run A on input (w, PKs, SKS), with auxiliary

input zn, and output whatever A outputs. We see that we will distinguish with the

same non-negligible probability as A because if our input is from the distribution {w}

then our input to A will be from the first distribution, while if our input is from the

distribution {f} then our input to A will be from the second distribution. 0

This next lemma implies that if we generate our keys using G3 instead of Gs, we

will preserve the functionality of the original digital signature scheme, even preserving

achievement of the strongest security guarantees. It is trivial to see that (Gs, Ss, V s )

is a digital signature scheme because completeness holds with probability 1 for the

original scheme and the keys that we generate with Gs are a subset of the keys

generated by Gs . We just need to show that the unforgeability condition holds:

Lemma 18 Given a digital signature scheme (Gs, Ss, Vs) that is secure against ex-

istential forgery under adaptive chosen-message attacks, the digital signature scheme



(Gs, Ss, Vs) where Gs is defined as above, is also secure against existential forgery

under adaptive chosen-message attacks.

Proof We can show that the existence of an adversary A that can produce a

forgery will allow us to distinguish between the two distributions of keys that were

proven computationally indistinguishable in the last lemma. Given (w, PKS, SKs)

from the first distribution, we know from the fact that (Gs, Ss, Vs) is existentially

unforgeable, that adversary A will produce a forgery with negligible probability if we

play the adversarial game using those keys. On the other hand, given (w, PKs, SKS)

from the second distribution, by assumption A will be able to produce a forgery with

non-negligible probability because this is the distribution of keys generated via the

scheme (GS, Ss, VS) that we are assuming A can break. Therefore if our adversary

A' for distinguishing the two distributions simply outputs 1 if and only if A produces

a forgery, A' will be distinguishing between the two distributions, contradicting the

previous lemma. U

4.2 Scheme Implementation

The implementation of our deniable ring signature scheme differs from that of [2] in

three main respects: 1) Signature keys are generated pseudorandomly rather than

randomly, 2) we do not produce an ordinary signature and then encrypt it but rather

just encrypt a string of zeroes, and 3) we use the ZAP prove membership in a slightly

different NP language that allows for witnesses that attest to the pseudorandomness

of a ring members signature keys.

We begin by defining the NP language L that we will be proving membership

in. The difference between L and L is that in L we take every clause from L and

"or" it with the statement that a ring member's digital signature keys were generated

pseudorandomly, i.e. there exist random coins w and a secret signing key SKs such



that the pseudorandom key generator Gs defined in the previous section, when given

random coins w, produces the correct secret and public signing key.

L= (m, Rs, RE, Ci• l) , 2 SKS, s.t.

k

V(ERE(a;w) = C, A VS (m,a)= 1) V S(l"; w2) = (pKs, SKS)}
i=1

We can see that this language is in NP just as L was because the only difference

is an extra "or" statement with each clause, two more polynomial size variables

after the existential quantifier, and the computation of a PPT function Gs which

is deterministic once the randomness w2 is provided. We are now ready to define the

modified ring signature scheme.

* Key Generator G(1"):

1. Generate signing key pair (PKS, SKs) -- S(1") and record random coins

ws from ds.

2. Generate encryption key pair (PKE, SKE) +- GE(n) (we will ignore the

secret encryption key for ring signature purposes).

3. Choose an initial ZAP message r +- {0, 1}z(n).

4. Output as the public key PK = (PKs, PKE, r) and as the private key

SK = (ws, SKS).

* Signing Algorithm Si*,SKi, (, R):

1. Parse R = (PK1,, PKk) and each PKi = (PKs, PKE, ri) and SKi. = (w. , SK s ).

Set RE = (PK , ..., PKE ) and Rs = (PK s , ..., PKS).

2. Set M = mlPKlI...IPKk where I denotes string concatenation.

3. Compute cipher texts Ci = ER,(O) for each i E [1, k].



4. Set statement x = (M, Rs, RE, iC)}k ) and witness w = (0,0, ws, SKS )

and use the ZAP with the first message rl from the lexicographically first

public key to produce the proof ir = Pr, (x, w) of the statement x e L.

5. Output the signature a = ({Ci}xl, ).

* Verification Algorithm VR(m, a):

1. ParseR = (PKI,..., PKk) and each PK2 = (PKf, PKF, ri) and a = ({Cj}jý , r).

Set RE = (PKf, ... , PKE), Rs = (PK, ..., PKS), and M= mPKl...IPKk

2. Set statement x = (M, Rs, RE, {Ci}}= 1)

3. Verify the proof 7r of x E L and output V4z (x, ir).

To verify the completeness of this ring signature scheme, we can see that a signer

that generated their digital signature keys pseudorandomly, via GS, as specified in G,

will produce a proof 7r using their ZAP with witness w = (0, 0, w, SK s ) that satisfies

the NP relation (x, w) for L. By the completeness of the ZAP, the proof will be

verified with probability 1 and hence the signature will be verified with probability 1.

4.3 Proofs of Security

Before we prove that our ring signature scheme achieves the strongest security guar-

antees proposed by [2], we make an observation about what it means to hand over to

the adversary the randomness used to generate keys. The reason we generated keys

pseudorandomly was so that when our secret keys and randomness are exposed, we

could pass off this pseudorandom string as our random string and noone would notice

and therefore suspect that we had planned to do ring signatures anymore than anyone

else. Therefore it would not be unreasonable to weaken the anonymity requirement

from [2] so that instead of the randomness from our ring signature generator G being

divulged, we can choose to divulge some concocted randomness that we pass off as the



randomness used to generate all of the underlying primitives, since we do not admit

to running any ring signature generator G anyways. However, the anonymity game

in the definition entails at least two honest users, where honest means they both had

their keys generated for ring signatures. Since there are at least two users who admit

to participating in ring signatures, we can have both users submit the actual random-

ness used to generate their ring signature keys and still show that the adversary can

not distinguish between the two possible signers in this case. We therefore prove that

we achieve the strongest guarantees from [2], but admit that the definition could be

weakened.

Theorem 19 If (GE, E, D) is a semantically secure encryption scheme, (GS, SS, Vs)

is a signature scheme that is existentially unforgeable against adaptive chosen mes-

sage attacks, GS is a pseudorandom key generator for Gs, and (P, VZ, 1) is a ZAP

for the language L, then our ring signature scheme defined above is unforgeable and

anonymous against full key exposure.

Proof We begin by proving anonymity and will then prove unforgeability.

4.3.1 Anonymity

We will show that if there exists an adversary A that can win the adversarial game in

Definition 15 with some non-negligible probability above . for some polynomial

p and infinitely many n, then we will use A to construct an adversary A' that can

distinguish between witnesses in a ZAP proof for the language L associated with our

ring signature scheme. A' will begin by generating keys {(PKi, SK-)}••() + G(1n) and

giving the set of public keys S = {PKi)il to A.

When A makes a query of the form SO(i*, m, R) with PKi. E R, we respond by

giving A a signature a i- SSK,. (m, R) which we can do because we have the secret

keys SKi. for all i* E [1, l]. Eventually A will output a message m, a ring R, and the

indices of two users io and il such that PKio and PKil are both in R. We will begin



constructing a signature for message m with respect to ring R as specified in S, which

we can do without committing to a signer i* until we have to construct the witness

for the ZAP proof. So far we will have constructed cipher texts C2 = ERE (0) for each

i [1, IRI] and we will also have the statement x = (M, RE, Rs, {Ci)~o), for which

we need to provide a proof that x E L. We note that at this point, we have two valid

witnesses that we could use: w0 = (0,0, WS SKo) and wl = (0,0,w, SK ) where

w and w4 are the random coins used in the pseudorandom signature key generation

algorithm Gs and stored in SKio and SKi, respectively.

Our adversary A' then submits the statement x and the two witnesses w0o and

wl for statement x as a challenge to try and distinguish between proofs using the

different witnesses. A' is then given back a proof ir of x which uses one of the two

witnesses. This proof r allows us to complete the challenge signature a = ({C} , 7r}

to give back to adversary A. We also give A the randomness {wj}! 0 used to produce

all the keys in G. We note that if A' was given a proof using witness wo, then the

distribution of signatures given to A will follow the distribution of signatures using

io as author, while if A' is given a proof using witness wl, then the distribution of

signatures given to A will follow the distribution of signatures that use il as author.

Furthermore the randomness J{w}i=o that we give A is the same regardless of which

witness was used. Therefore with probability . + ,A will output a bit b that

correctly corresponds to the witness that was used. So if A' simply outputs whatever

bit A outputs, then the probability that A' guesses the correct witness is also 1 + .

This contradicts the witness indistinguishability of the ZAP and therefore completes

our proof of anonymity.

4.3.2 Unforgeability

The basic idea behind our proof for unforgeability is that if there exists an adversary

that produces forgeries with non-negligible probability, we will use this adversary to

extract a forgery for the digital signature scheme of one of the members of the ring,



contradicting the unforgeability of the digital signature scheme. We note that if an

adversary is producing forgeries, this means that the ZAP proofs produced in the

signatures are valid, implying one of the two following events: there is an ordinary

signature belonging to one of the ring members encrypted in one of the cipher texts or

one of the ring members had their digital signature keys generated pseudorandomly.

We would like to force the adversary to produce proofs using the first type of witness,

so that we can extract a forgery. This is tough to do as long as all the ring members'

signature keys are in fact generated pseudorandomly. To get around this, we create

hybrid experiments in which we switch the signature keys of all of the users from

pseudorandom to random, counting on the fact that the adversary can not tell the

difference. The main challenge is in how we respond to oracle queries during the

hybrid experiments.

To formalize how we may behave in response to oracle queries in the different

hybrid experiments, we first define two alternative versions of the signing algorithm

S: S1 and S2. Like the original signing algorithm S, S1 assumes that the author i*

had their digital signature keys generated pseudorandomly, and the algorithm has

access to a witness w that generated these pseudorandom keys. Signing algorithm S1

operates just like S except that in creating the cipher texts C1 , instead of encrypting

0 in all the cipher texts, S1 encrypts a digital signature i .(M) in the i*th cipher

text, as in the scheme from [2]. This opens up the opportunity for a different witness,

namely w = (ai., i., 0,0) (where wi. is the randomness from the encryption algo-

rithm ERE), to be used for the ZAP proof, rather than the witness attesting to the

pseudorandomness of SKY. However, we still define S1 use the same witness as S.

Signing algorithm S2 operates just like S, except that we use the alternative

witness w attesting to the fact that an ordinary signature of i* has been encrypted

in one of the cipher texts. We note that in this signing algorithm we are no longer

dependent on the pseudorandomness of i*'s digital signature keys and so this signing

algorithm would produce a valid signature (meaning it would pass verification by V)



even if the digital signature keys were generated randomly.

We first define an alternate adversarial game, in which the keys are all generated

randomly and queries are all answered using signing algorithm S2 and show that

the existence of a successful adversary in this game contradicts the unforgeability of

the underlying digital signature scheme. Then we will show, using hybrid experi-

ments, that the existence of a successful adversary in this alternate adversarial game

is equivalent to the existence of a successful adversary for the original adversarial

game.

Our new adversarial game will be similar to the original game except that we

alter the key generation algorithm G and the signing algorithm S. We alter S so

that instead of producing signature keys via Gs, it produces these keys using GS. We

also alter G to store the secret encryption keys produced by GE. We also replace the

signing algorithm S with the alternate signing algorithm S2 that does not depend on

pseudorandom keys. Suppose there exists some PPT adversary A that can produce a

forgery in this altered game with non-negligible probability 1 for some polynomial

p. We construct an adversary A' that forges the underlying digital signature scheme

with non-negligible probability 1 where 1(n) is the polynomial number of ring

signature keys given to A.

We know by the soundness of the ZAP that with all but negligible probability, A

will not be able to produce proofs for false theorems. We also know that because the

digital signature keys were generated randomly, via Gs, rather than pseudorandomly,

the probability that there exists some random coins w so that GS(ln; w) produces

one of these keys is negligibly small. Therefore with all but a negligible probability,

when A produces a forgery, there is in fact an ordinary signature of one of the ring

members encrypted in one of the cipher texts. Our strategy will be to randomly guess

in advance, out of the 1(n) possible signers, which signer will be used for the ordinary

signature produced in the forgery produced by A. We can then create an adversary A'

to forge the digital signature scheme. A' will be given a public signing key, PKS and



adaptive access to an oracle for digital signatures. A' will produce 1(n) ring signature

keys, as the adversarial game mandates, except that for one randomly chosen user i,

we will insert PKs as their public signing key, and not generate a secret signing key

for them.

A' can give these keys to A and respond to the oracle and corruption queries as

follows: If A requests a signature for a message m with respect to a ring R and a

signer i* Z i, then we can produce the signature honestly using S2 because we know

the secret key SKY. If A asks for a signature of a message m for a ring R with

i as the signer, we compute S2 except for the part where we produce the ordinary

signature. For this we take the corresponding M = mlPKil ... PKi RI, and submit it

to our digital signature oracle, and proceed with the computation of S2 using the a

that was returned by the oracle. If A corrupts a user i y i, we provide their secret

key SKI which we know. If A corrupts user i, we simply abort. Eventually A will

output a forgery for a message m and a ring R that it did not query before. With

probability negligibly close to 1 of the times that A successfully produces a forgery,

this forgery will contain a digital signature a' of i of message M corresponding to

m on ring R, and we will not have aborted in this run because A could not have

corrupted any of the users in the ring R. Since A did not query m with ring R before,

the corresponding M could not have been queried by A' to its digital signature oracle.

Therefore the A' can decrypt the cipher texts of the signature produced by A and

extract the ordinary signature a' which it can then output as its forgery.

Since A outputs a forgery with non-negligible probability, and A' will be able to

extract a digital signature forgery a non-negligible fraction of those times, we have

contradicted the unforgeability of the digital signature scheme.

Now we will show that given a PPT adversary A that succeeds with non-negligible

probability in the original adversarial game, A also succeeds with non-negligible prob-

ability at this second adversarial game. Call our interaction with A via the second

adversarial game experiment Ea and our interaction with A via the original adversarial



game experiment Eb. We will show that Ea and Eb are computationally indistinguish-

able using a series of hybrid experiments. We will use the polynomially long sequence

of hybrid experiments (Ea = E° , Ed, ..., E = Eo, E, , E"(n) = E, E, ... , E•~ ) =

Eb), where q(n) is the number of queries adversary A makes to the signing oracle. We

define the experiment Eg to be the experiment in which the first i signature keys out

of the 1 keys given to A are generated pseudorandomly, while the rest are generated

randomly, and all oracle queries are still answered with signing algorithm S2 as in

the second adversarial game. We define El to be the experiment in which all keys

are generated pseudorandomly, as in adversarial game 2, the first i out of q(n) oracle

queries are answered with signing algorithm S1, and the rest are answered with S2.

Finally we define E2 to be the experiment in which all keys are generated pseudo-

randomly, the first i oracle queries are answered with the original signing algorithm

S, and the rest are answered with S1. It can be verified by definition that the equal-

ities written in the sequence of experiments are true. If we use the notation that l

denotes computational indistinguishability, then we need to show the following three

statements: E ; E ~ +1 , El P El'+ , EP ; E • .

To show the first computational indistinguishability result, we note that the only

difference between the two experiments is that one extra digital signature key that is

given to the adversary has been generated randomly rather than pseudorandomly. If

this difference triggers a difference in behavior in A (such as successfully producing

forgeries in one case and not the other), then we can exploit this difference to distin-

guish pseudorandom keys from random keys, contradicting Lemma 17. To do this,

we generate the first i keys pseudorandomly, as both experiments mandate, and we

take the digital signature keys for user i + 1 as a challenge, being either random or

pseudorandom. We generate the remaining keys randomly, also as both experiments

mandate. Now we can see that if our challenge keys were generated randomly, we

will be running Ei, while if they are pseudorandom we will be running E + ' . Since A

distinguishing between those two experiments would allow us to distinguish between



the two distributions, we have shown that E0 P E0+ 1.

For the second pair of experiments, Ei and Ef+', we note that the only difference is

that in the second experiment, the (i + 1)st oracle query was answered using S1 rather

than S2. Since the only difference between the two signing algorithms is the witness

used in the ZAP proof, we can use a distinguisher between these two experiments to

contradict the witness indistinguishability of the ZAP. This proves that El ; E' +1 .

For the last pair of experiments, we note that the only difference is that in the

second experiment, the (i + 1)st oracle query is answered with signing algorithm S

rather than S1. Since the only difference between these two signing algorithms is

that in S we compute an encryption of 0 while in Si we compute an encryption of

a signature, the semantic security of the encryption scheme implies that these two

experiments are indistinguishable. Otherwise we could use A to distinguish between

encryptions of the two messages, 0 and a. More specifically, we need to take as

challenge an encryption scheme and plant this encryption scheme in the adversarial

game with A in such a way that for the i + 1st query, the challenge encryption scheme

is used. This means we need to guess randomly one of the users, i that will be

specified in the ring of the i + 1st query and set their encryption public keys to be

the challenge keys. Then when the i + 1st query comes along, we can construct two

possible messages to encrypt in i's part of the encryption ERE: one message that

forces the entire message encrypted to add up to 0, and another message that causes

the total message to add up to an ordinary signature signed by the specified author

i*. These two messages can be submitted as the challenge and the returned cipher

text can be inserted into the ring signature so that in one case the resulting signature

follows the distribution from S and in the other case it follows the distribution of S,.

Since we will guess a user in the ring with probability at least -L and in this situation

A will distinguish between the two distributions with non-negligible probability, this

allows us to distinguish between encryptions of the two messages with non-negligible

probability, thereby proving that Ei P E•+.



These three computational indistinguishability results can be combined to show

that Ea - Eb. This is really iterating over a polynomial number of computational

indistinguishability results, which we can do because a negligible difference multiplied

by a polynomial is still negligible. Since the two end experiments are computationally

indistinguishable, this shows that the PPT adversary that produces a forgery in our

ring signature scheme contradicts the unforgeability of the underlying digital signature

scheme, thereby proving that our scheme is unforgeable. U





Chapter 5

Future Work and Conclusion

We have demonstrated the existence of a ring signature scheme, without random or-

acles, that achieves the strongest security definitions in the literature, and does so in

such a way that does not depend on primitives that might distinguish a ring signature

user from someone who never intended to participate in ring signatures and had the

same primitives for other purposes. One weakness of our scheme is that instead of

having users generate signature keys according to the same distribution as ordinary

digital signature users do, we mandate that to participate in ring signatures, one must

generate their keys according to a distribution that is different, albeit indistinguish-

able, from this generic distribution. This is a weakness in the sense that it prevents

someone from producing ring signatures if they did not plan on producing ring signa-

tures at the time they generated their keys. While this could be overcome by changing

one's keys, it must still be seen as a weakness and a scheme that allowed someone to

convert to a ring signature user without any key generation or replacement would be

ideal.

One criticism that might be leveled at both the scheme presented here and the

scheme in [2] is the dependence on ZAPs. While ZAPs could function as a general

purpose tool because they are not designed specifically for ring signatures and it is

understandable that many people might publish ZAP keys just so people could prove



theorems to them, they are not ubiquitous in the way that public key encryption

and digital signature keys are at the moment. An improvement might therefore be

to construct a scheme that meets the strongest definitions but without depending on

ZAPs.

Another issue to consider is a stronger anonymity definition in which a signer is

protected against being framed, in the sense that if they are the only honest user in

a ring for which they produced a signature, we would at least want the adversary

to not to be able to prove to some separate authority that the signer was indeed

the author of the message, even when all secret keys are exposed. We postulate

here, without formal proof, that the scheme we present in this paper achieves this

guarantee because this would essentially amount to an adversary proving that the

signing keys of the author are pseudorandom (which is hard to show without the

original randomness) and that all of the keys belonging to the adversary were not

pseudorandom. Any polynomial time judge that might accept proofs of this form

could be fooled by altering the keys of the adversary to be pseudorandom and setting

the adversary as the author. In this case the judge would be accepting false theorems

and therefore could not be considered an authority to accept such proofs.

It is also foreseeable that the unforgeability requirement could be strengthened by

having the adversary's corruption oracle return the randomness that produced the

secret keys in addition to just the secret keys. While the unforgeability of the scheme

presented here, as well as that of the modified scheme in [2], seem to depend on the

fact that the adversary does not have access to this randomness, it is unclear why

this should be the case and whether a scheme could be constructed that meets the

stronger variation of this unforgeability requirement.

One final direction for future work is to find applications for ring signatures that

meet the strongest security requirements. The flexibility of ring signature schemes

to include arbitrary groups of users, whether or not they planned on participating in

ring signatures, has already produced numerous applications, some of which we have



mentioned here, and promises to lead to many more.
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