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Abstract

Model Order Reduction (MOR) is becoming increasingly important in computational
applications. At the same time, the need for more comprehensive models of systems
is generating problems with increasing numbers of outputs and inputs. Classical
methods, which were developed for Single-Input Single-Output (SISO) systems, gen-
erate reduced models that are too computationally inefficient for large Multiple-Input
Multiple-Output (MIMO) systems.

Although many approaches exclusively designed for MIMO systems have emerged
during the past decade, they cannot satisfy the overall needs for maintaining the
characteristics of systems. This research investigates the reasons for the poor perfor-
mances of the proposed approaches, using specific examples.

Inspired by these existing methods, this research develops a novel way to ex-
tract information from MIMO systems, by means of system transfer functions. The
approach, called Shifting method, iteratively extracts time-constant shifts from the
system and splits the transfer function into several simple systems referred to as
contour terms that outline the system structure, and a reducible system referred
to as remainder system that complement the Contour Terms. This algorithm pro-
duces a remainder system that existing approaches can reduce more effectively. This
approach works particularly well for systems with either tightly clustered or well sep-
arated modes, and all the operations are O(n). The choice of shifts is based on an
optimization process, with Chebyshev Polynomial roots as initial guesses. This paper
concludes with a demonstration of the procedure as well as related error and stability
analysis.

Thesis Supervisor: Jacob K. White
Title: Professor of Electrical Engineering and Computer Science





Acknowledgments

The work of this thesis couldn't have been possible without the help and support

of many people. My foremost and most sincere gratitude goes to my thesis advisor,

Jacob White. He has been an extraordinary source of ideas as well as an excellent

mentor. From the beginning of my time at MIT, he has been supporting and en-

couraging me, particularly on my idea of shifts and splits. Without his constant

and insightful advices, this thesis wouldn't have been this smooth. As a persistent,

rigorous and intelligent scholar, he has set an example for me to learn from.

The Computational Prototyping Group has created an interactive environment

for discussion, for which I owe many thanks. Dimitry Vasilyev has offered to join

my dicussion and set forth many valuable suggestions. Although the proposed joint

discussion wasn't be able to be set up due to my limited time at MIT, I have still

been grateful for the suggestions on dynamic system simulation and the kindness.

Bradley Bond, during one talk with me, suggested that a specific system should be

defined in order to guarantee the accuracy, which was an important source for me to

build up my approach. Lei Zhang, my senior in CDO, has given me continuous help

in my studies and research. I would also to thank other members in this group.

Without the help of CDO staff members, I couldn't have proceeded smoothly since

I came to MIT. Thanks for the care and the activities organized.

Last but not least, infinite thanks should go to my parents and my wife, who have

been consistently supporting me and providing me with valuable suggestions beyond

the sea. Their encouragements and urgence are great stimulation for me to march on

all the way here.





Contents

1 Introduction 15

1.1 Model Order Reduction ......................... 15

1.2 Single-Input Single-Output Systems MOR . .............. 16

1.2.1 Linear Systems .......................... 16

1.2.2 Nonlinear Systems ........................ 16

1.3 Multiple-Input Multiple-Output Systems MOR . ........... 17

1.4 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 17

1.5 O utline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Terminals Extraction 21

2.1 Motivation .. . ....... . ...... ................ . 21

2.2 SVDMOR Algorithm .... . . .......... . ........ .. 21

2.3 Drawbacks ....... . . ... . .... . ......... . ..... . 23

2.4 Simulation Results ............................ 25

2.5 Diagnostic Analysis ............ ... . ........... . 28

2.5.1 Error plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.2 SVD-based Analysis ...................... 29

2.5.3 Global Error ............................ 30

2.6 Conclusions .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 31

3 The Shifting Approach 33

3.1 Eigenvalues and Modes .......................... 33

3.2 System Split with a Single Shift . . ................ .. . . 34

7



3.2.1 M otivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.2 The Algorithm .......................... 35

3.3 Exam ples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 37

3.4 Conclusions . . . .. . . . . . . . . . .. . . . . . .. . . . . . . . . . 39

4 Successive Extractions 41

4.1 System Splitting with Multiple Shifts . ................. 41

4.1.1 Motivation .................... ......... 41

4.1.2 Algorithm ..... ... .. ....... ... . . ....... 41

4.2 MOR of the Remainder .......................... 43

4.3 Exam ples .................... ............. 44

4.4 Error Analysis ............................... 46

4.4.1 Relative 2-norm Error ...................... 46

4.4.2 Frequency Response 2-norm Error . ............... 46

4.4.3 Point-to-Point Error ....................... 49

4.5 Conclusions . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . 49

5 The Choice of Shifts 51

5.1 Based on Chebyshev Polynomials ................ . . . . 52

5.2 Full Algorithm Description ........................ 56

5.3 Based on Optimization .......................... 57

5.3.1 Inaccuracy of Chebyshev Approach . .............. 57

5.3.2 Basic Idea ...... . . . ......... ...... ... . 58

5.3.3 The Algorithm .......................... 59

5.3.4 Exam ple . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 61

5.3.5 Computational Complexity ................... . 61

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 62

6 Numerical Results 63

6.1 Computational Complexity ................... ..... 63

6.1.1 Issues on Storage and Computation . .............. 63

8



6.1.2 Extension to smaller number of terminals ........... . 66

6.2 2-D Grid RC Circuit Simulation . .................. .. 68

6.3 Comparison Study ............................ 69

6.4 Optimization of the choice of shifts . .................. 71

6.5 Point-to-Point Error ........................... 72

7 Conclusions and Future Work 73

7.1 Conclusions . . . .. . . . .. . .. . .. . . . . . . . . . . . . . . . . 73

7.2 Future W ork ................................ 73

A Figures 75

B Full Algorithm 79





List of Figures

2-1 Structure of the Two-Dimensional RC Circuit . ............ 24

2-2 Singular Values of the transfer function matrix in 2-D circuit .... . 25

2-3 DC Responses (w = 0) Comparison Between the Original and Reduced

System (SVDMOR, tol=5 x 10-2) ................... 27

2-4 High-Frequency Responses (w = 1 x 106) Comparison Between the

Original and Reduced System (SVDMOR, tol=5 x 10- 2) . ...... 28

2-5 Relative Error (2.11) vs. Frequency (10 x 10- 10 - 10 x 1010 ) .... . 29

2-6 Global Error (2.16) vs. Frequency (10 x 10- 10 - 10 x 1010) ...... 31

3-1 Split M odel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3-2 Change of Singular Values with a Single Shift . ............ 38

4-1 Change of Singular Values after the First Shift . ............ 44

4-2 Change of Singular Values after the Second Shift ............ 45

4-3 Change of Singular Values with after the Third Shift ......... 45

5-1 Chebyshev Polynomial and its roots . .................. 55

5-2 Chebyshev Polynomial and its roots: Type 1 . ............. 55

5-3 Optimization Results ............................ .. 61

6-1 Structure of the Two-Dimensional RC Circuit . ............ 68

A-1 Comparison of methods with different number of shifts in Example 1 75

A-2 Comparison of methods with different number of shifts in Example 2 76

A-3 Comparison of methods with different number of shifts in Example 3 76



A-4 Point-to-Point Transfer Function Error and Magnitude in Example 1 77

A-5 Point-to-Point Transfer Function Error and Magnitude in Example 2 77

A-6 Point-to-Point Transfer Function Error and Magnitude in Example 3 77

A-7 Distribution of shifts before and after optimization . ......... 78

A-8 Distribution of shifts before and after optimization . ......... 78

A-9 Distribution of shifts before and after optimization . ......... 78



List of Tables

2.1 The SVDMOR algorithm ........................... 22

3.1 Single step shifting approach ................... .... 37

5.1 Full Algorithm Description ........................ 56

5.2 Optimization Algorithm of the choice of shifts . ............ 59

6.1 Operation Counts of the Shifting Method . ............... 66

6.2 Comparison of methods to different systems . ............. 69

6.3 Number of States left vs Shifts ...................... 70

6.4 Number of shifts before and after optimization in example (2) . . . . 71

6.5 Comparison of point-to-all transfer functions . ............. 72

B.1 Full Algorithm .................... .......... 79

B.2 The SVDMOR algorithm ......................... 81





Chapter 1

Introduction

1.1 Model Order Reduction

Existing physical and engineered systems can be described by mathematical models

useful for analysis, the most common being a dynamic system. An example of a

physical system model is the Storm Water Management Model (SWMM), a dynamic

rainfall-runoff simulation model used for single event or long-term (continuous) sim-

ulation of runoff quantity and quality from primarily urban areas [1]. An example

of an engineered system model is the interconnected circuit used to design electronic

systems. As these models became more complex, techniques are needed to reduce

that complexity in a reliable fashion. [2].

For simulation purposes, dynamic systems are primarily discretized and trans-

formed into discrete Ordinary or Partial Differential Equations (ODEs or PDEs), for

instance the simulation of RC circuits. For control purposes, controllers are often

designed according to and depending on original systems, in order to adjust the sys-

tem's characteristics. A proportional-integral-derivative controller (PID controller)

is effective and most common in vast applications. It is noticeable that either the

simulation or the control process is directly affected by the complexity of the original

systems. In other words, given a similar structure, it is more expensive to simulate

or design a controller for a more complex system.

However, the need for increasing accuracy is driving research in generating more



and more complex models, and this poses a problem. The computational cost of

simulating ever more complicated system is not adequately compensated by the in-

creasing speed of computers. Therefore, it has been increasingly important to develop

methods for computing smaller-sized approximations to original systems, in order to

reduce computational complexity while retaining best accuracy. This technique has

been generally named Model Order Reduction (MOR). It should also be noted that

other than simplifying the original, parellelization is also an option given a computer

cluster without sacrificing accuracy as MOR does. In this paper, we only focus on

MOR.

1.2 Single-Input Single-Output Systems MOR

So far, the most prevalent MOR approaches are for or at least more effective for

Single-Input Single-Output systems (SISOs).

1.2.1 Linear Systems

Until present, most of the efforts have been focused on developing MOR algorithms

for linear SISO systems. Among them there are SVD-based methods including Han-

kel norm approximants [3], Truncated Balanced Realization (TBR) [4], Proper Or-

thogonal Decomposition (or Karhunen Loeve expansion) [5, 6] and [7], Krylov-based

methods including Krylov subspace projections [8, 9] as well as SVD-Krylov mixed

type [2].

1.2.2 Nonlinear Systems

For nonlinear SISO systems, MOR techniques include methods based on lineariza-

tion or bilinearization of the initial system around the equilibrium point [10]-[12],

methods of balanced truncation [13, 14], and algorithms using Proper Orthogonal

Decomposition [15, 16]. Moreover, recently methods such as Trajectory Piecewise-

Linear approximations [17] have emerged.



1.3 Multiple-Input Multiple-Output Systems MOR

In a vast array of applications, systems also contain multiple inputs and outputs, or

terminals, where the established methods mentioned above become inefficient or even

inapplicable. This incapability is due to the inherent property of MIMO systems:

because we cannot make the assumption that the interaction between any pair of

terminals is magnitude-wise insignificant, the transfer function matrix will be fully

populated. Past research has developed an incisive and effective SVDMOR method

[18], which explores the correlation between pairs of terminals and applies MIMO

MOR algorithms [19]-[23] to the extracted system.

Unfortunately, none of methods mentioned above performs satisfactorily when the

number of terminals is on the same numerical scale as the total number of states. The

SISO methods will fail because they rely on the fact that the number of terminals is

much smaller than that of states; the SVDMOR, which is based on the DC response,

generates a reduced model that has disordered high-frequency responses and has

unfruitful performances when the system is well-conditioned.

Aiming at these drawbacks, the research work below explores the inner connec-

tions inside a system and develops a new method based on SVDMOR. The proposed

method iteratively extracts information while improving the condition for MOR on

each iteration. Moreover, this method also guarantees accurate high-frequency re-

sponses and better medium-frequency characteristics approximation.

1.4 Notations

This thesis uses the standard form for a following Continuous Linear Time-

Invariant (LTI) dynamic system, which is a typical representation of control

systems:

{ E • = Alx + Blu,
y= Clz + Dlu,



Here, the inputs are denoted as u E RP, the states are denoted as x E Rn, and the

outputs are denoted as y E R . We only focus on the system where E matrix is

non-singular. Therefore, defining A = E1'A1, B = E1'B1, C = C1, and D = D1,

the system can be rewritten in normal form as

: = Ax + Bu, (1.2)

y = Cx +Du,

where the system matrix A E Rnx", the input matrix B E RUxp, the output ma-

trix C E R qxn, and the direct matrix D E R q
X

p . This normal form representation

will be used in the following.

The Laplace Transform of (1.2) yields the transfer function

G(s) = C(sI - A)-1 B + D, (1.3)

where s is the Laplacian operator. We employ the notation

G(s) ; G(s)

where O(s) is the reduced model that approximates G(s).

A special case of (1.2), used below, is

i = Ax + blnu, (1.4)

y = cInxnX

where A is symmetric and b, c E R. This prototype will be studied in the next few

chapters. The reason for introducing this special case is that the singular values of a

system's transfer function, which will be crucial for MOR, is determined by A alone.

The advantage of such a property will be explained in the following chapters.



1.5 Outline

This thesis is organized in the following way:

Chapter 2 gives the results generated by applying SVDMOR to a two-dimensional

grid circuits and offers the reasons for poor performances.

Chapter 3 describes a single step of the shifting method, and justifies the method

by examining both low and high frequency effects.

Chapter 4 introduces the iterative version of the implementation.

Chapter 5 explains some implementation issues and computational complexity

concerns.

Chapter 6 shows the results of applications to circuits with different conditions.

Chapter 7 provides conclusions and suggestions.





Chapter 2

Terminals Extraction

2.1 Motivation

As stated in Chapter 1, MIMO MOR algorithms include [19]-[23]. Regardless of

which algorithm is applied to a system, the computational complexity is determined

by the dimensions of the system. In particular, it is related to the size of the transfer

function of the system. For example, the computational complexity of reducing the

system (1.2) is determined by the size of its transfer function (1.3): p x q.

Therefore, it will be more efficient if MOR can be applied to a smaller system

extracted from the original one. One option is to find a proper subspace and use

this subspace to represent the system's characteristics. This approach is the most

prevalent method for system simplifications.

2.2 SVDMOR Algorithm

Proposed in [24, 18], the SVDMOR algorithm is to extract information from the

frequency response matrix of a system. This process is based on Singular Value

Decomposition (SVD) low-rank approximations [25], which is carried out as follows.

Theorem 2.2.1. Given matrix A E R m x~ , if ai is the ith singular value of matrix A,

ui and vi are associated left and right singular vectors, and -al _ a 2 _ 0amin(m,n), then

21



the best rank r(r < min(m, n)) approximation of A in the 2-norm and the Frobenius

norm is

r

Ar = auiv, = UrErVr, (2.1)
i=1

where IhA - A 112 = Ur+1 and IIA - A, IF = Vor1+l +" + Omin(m,n).

Table 2.1 provides an overview of the SVDMOR algorithm.

Table 2.1: The SVDMOR algorithm

Given a dynamic system, as shown in (1.2):

e: Tolerance for reducing singular values;

r: Number of remaining singular values;

1.Compute one matrix M' that reveals correlations.

2.Apply Low-Rank Approximation using E: M = UEV ; U,•EV.r

3.Find weights using Pseudoinverse: b = BUr(UU,)-1 , c = (V'V,)V'C.

4.Form the transfer function: G(s) . Urc(sI + A)-'bV,'.

5.Apply MIMO MOR techniques [19]-[23] to Gr(s) = c(sI + A)-lb,

which is an r x r matrix transfer function, and obtain G,(s).

6.Recover the system transfer function G(s) . U~Gr(s)V',

the number of states being reduced from n to r.

This technique is based on the idea that the original system, G(s), can be spanned

by a smaller system, Gr(s). Then the more computationally-inexpensive G,(s) can

be obtained by applying MOR to Gr(s), as explained below:

1. The Laplace transform of the transfer function is a matrix of rational expressions

represented by the Laplacian operator s, which cannot be directly processed

in many Linear Algebra manipulations. Therefore, a matrix comprising only

1The M matrix is often called Correlation Matrix.



numbers must be used instead. These matrices include

DC Response: GDC = -CA - 1B (2.2)

The First Moment of the Response: G1 = CA-1'A-1B (2.3)

Frequency Shifted Moments: G,, = C(soI - A)-'B (2.4)

The 'moments' are usually referred to as the coefficients of the Taylor series

expansion, with respect to some point, for example, 0 in DC response matrix

(2.2) or frequency shift so in (2.3) and (2.4) above.

By constructing these matrices, we expect that they can, mostly, reveal the

correlation between terminals.

2. B and C are approximately linear combinations of Ur and Vr, respectively.

Pseudoinverse [25] is used to solve

bVr' B (2.5)

UrCc C C, (2.6)

as in Step 3, leaving the resulting system Gr(s) with dimensions r x r.

3. In this thesis, the SVDMOR algorithm is performed through the Lanczos pro-

cess with deflation and look-ahead [26].

2.3 Drawbacks

Due to the fact that SVDMOR relies on low-rank approximation, this approach re-

quires the singular values of correlation matrix to be distinguishable. In other words,

some of the singular values must be relatively larger than others so that only a part

will be kept. However, in many practical cases, the singular values are so close that

SVDMOR will not eliminate any states. For example, in a system where B and C are

identity matrices and A is diagonal with approximately the same entries like 2, the



singular values are approximately 0.5. In this case, unless a high threshold is allowed,

no states will be deleted.

Another example is as follows:

Figure 2-1: Structure of the Two-Dimensional RC Circuit

The objective is a n x n two-dimensional Resistor-Capacitor (RC) circuit. It contains

n2 nodes, each node connecting with its neighbouring node with a coupling resistor

R, and connecting with parellel capacitor C, and ground resistor Rc to the ground.

The three black dots connected to each node denote the parellel capacitor and ground

resistor.

This is a typical example in simulation that can be formulated as an ODE, see

[27]. Using the same technique as in equation (1.2), the simulation of this problem is

formulated as a first order ordinary differential equation, which is a dynamic system.

The input is a vector of currents into each node and the output is a vector of voltages

on each node, both with length n2 . The states are the same as the output, therefore

the system is at order-n 2 and C = In2xn2.

By specifying n = 10, Cg = 20pF, Rm = 100Q and Rc = 100Q, we reach a

system with B = C = Iloox o00o, D = 0 and A whose eigenvalues are distributed in

o\ *\



[-3.95e +6, -5.00e+4]. If SVDMOR is applied, the singular values of CA-1B should

be noted, which is shown below (the X-axis is the value and Y-axis is used to line the

singular values):

Singular Values of the transfer function matrix

10 20 30 40 50 60 70
Singular Values

80 90 100 110

Figure 2-2: Singular Values of the transfer function matrix in 2-D circuit

The singular values are distributed between 11.36 and 100. This means that if the

5% threshold is chosen, no states can be eliminated. Therefore, the natural system

configurations has hindered SVDMOR to work efficiently.

On the other hand, the SVDMOR has generated a model with disordered high

frequency responses, which is shown in the following sections.

2.4 Simulation Results

Suppose we have the system

(2.7)

-1.01 -1 1 0
-1 -1.01 0 1
10
0 1

muhmumum~ ..."i~g *)+ r) *0

-0.2

-0.4

-0.6

-0.8

-1

I · · · · · ·

I I

* * *



The transfer function, by means of Eigenvalue Decomposition, is

01 [-i.o
1J [-1

01

-2.01

-12 2
1 v2 2s+2.01 J 2J

2

2

Now we apply the SVDMOR to this system (2.7) as follows:

1. Choose the DC response matrix (s=O) as the correlation matrix and extract its

low-rank approximant:

GDC

2. Calculate weights:

2 2 0.01 2 2

2 11 2 2.01 2 2•J • •
JZ 0·01-1

' L• [• L•J ; 2 (2.9)

2 2]T
r I

= UrErrV'.

b-[

c-L- J2 2

3. Form the approximated transfer function:

G) Urc(sl + A)- bVr

G(s) 0
[1

(s
[0

-1 o

-1.01 0 1

S 2 2 s+0.01

2 2 v'_ 0L 2 2 J L

-1

) -1

(2.8)

G(s)

1 0 2 _-0.01i(a 2 2
/2 1f2 02 2



T 1

2s -+0.01

2 S+0.01 2

V 0 0 J0 2o1 0
4.2 to this result and obtain the following transfer function:

4. Apply MOR techniques to this result and obtain the following transfer function:

f---1[s+00] L0(s) - L 1G(s) 2 8 +0.0122 L 2
= B(sI - A)-'(c. (2.10)

It appears that we have successfully reduced one state, leaving the reduced system

little changed from the original one. However, if we compare the frequency responses

of the two systems, we observe disordered results in high frequency.

0 0.5 1

60
60- - -Original
S-- - - Approx-

50

40

30

20

10

lOL
0 0.51

Figure 2-3: DC Responses (w = 0) Comparison Between the Original and Reduced
System (SVDMOR, tol=5 x 10-2)

Figures 2-3 and 2-4 show the comparisons of the responses in the two outputs,

between the original and the approximated system, with inputs u = (0, ei") (X-axis:

time, Y-axis: value of response). It is demonstrated that in high frequency, the

- - - Original
- - - Approx

- -_rfl



x10
-t°

5
S - - - Original

4 9 --- Approx

I

2 -

-1 I

, 
I . I

-2

-5 L 1
0 0.5 1 1.5

x 10l

x 10-9

S0.8
- - -Original

0.8 -- -Approx

0.4 qi r i

I I g
0

-0.2

-0.6 1

-0.8 I

0 0.5 1 1.5

x 10

Figure 2-4: High-Frequency Responses (w = 1 x 106) Comparison Between the Orig-
inal and Reduced System (SVDMOR, tol=5 x 10-2)

approximated system exhibits a chaotic response, especially with a larger number of

terminals.

2.5 Diagnostic Analysis

2.5.1 Error plot

To further explore the chaotic phenomenon presented in section 2.4, we plot the

relative errors versus frequencies. The relative error referred to here is defined as

follows:

er (w) = IM( - Mr()II, M(w) = G(jw). (2.11)
IIM(w)112

Figure 2-5 shows the relative errors with respect to frequencies ranging from 10-10

to 1010 in semi-logarithm axes. It is clear that as frequency increases, the original

and approximated systems have unrelated responses that lead to the relative error 1.



Frequency(Logarithm)

Figure 2-5: Relative Error (2.11) vs. Frequency (10 x 10-10 - 10 x 1010)

2.5.2 SVD-based Analysis

We begin this analysis by comparing the two transfer functions (2.8) and (2.10):

2 2 8+0.01
2 2 +O.O1

"- "•-[20

2 2
1+2.01 2 2

s+2.01 JL 2 2

1 0 r 2
s+0.01 2 2

00
2 2

-[•T
+ -0.01 2

2
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2

These are exactly the SVD decompositions of the systems. The error

systems, which is also in SVD form, is

between the

e(s) = G(s) - ((s) =
_F-
2

L 2

r1 -1

2 02 2

2 JL s+2.01 2 2

G(s)

d(s) 2

2 -

2

2

(2.12)



Then the relative error 2 is

= IIe(s)2 s + 0.01
(s) IIG(s)ll 2  s + 2.01 (2.13)

er (w) = + 0.01. (2.14)
jw + 2.011

It should be guaranteed that this value should not be excessively large when frequency

varies. However, easily,

jw + 0.01
lim = 1.

w-oo jw + 2.01

The limit means that as frequency increases, the error is so large that the state

kept at first is not informative enough to span the whole system. This drawback does

not change if the correlation matrix in Step 1, in Table 2.1, is otherwise selected.

This intrinsic high-frequency error is due to the fact that as frequency changes, the

relations between different singular values will also change and finally breach the

conditions used to reduce states. For example, in this case, the ratio between two

singular values is 2--1 at 0 frequency and near 1 at high frequency. In other words,

the states considered small enough to be deleted at low frequency are not trivial at

high frequency, thus cannot be eliminated.

2.5.3 Global Error

Other than the observations above, it is also noticeable that the frequency response

decays with the frequency, or 3

1
cIG(s)ll2 oc -. (2.15)

This relation means that the DC response has the largest magnitude among all the

frequency responses, gaining the most importance. With respect to the DC response,

2The 2-norm of a matrix is its largest singular value, as in [25].
3This is an approximation and is more accurate as s = jw becomes large in magnitude.



we re-evaluated the difference versus frequency between the two systems:

e(2) Ile(s) 12
IIG(0)I12

(2.16)

Frequency(Logarthm)

Figure 2-6: Global Error (2.16) vs. Frequency (10 x 10-10 - 10 x 1010)

Figure 2-6 shows that the maximum error is approximately 5 x 10- 3 through out

the whole range of frequencies. In a separate experiment, it was demonstrated that

if we impose white noise signals4 as inputs, the error will remain below the defined

threshold, which is satisfactory. Based on the high probability that an input signal

may be random, the generated reduced model is accurate in this sense.

2.6 Conclusions

The SVDMOR method allows us to conclude the following:

1. The SVDMOR uses SVD to extract 'important' information from the 'trivial.'

Then MOR is applied to the 'important' system. The generated reduced model

4 The white noise signal is one of the most important test signals in System Identification, to
capture system characteristics.



of this 'important' system is then used to span the whole system. This approach

is insightful because it decouples the problem on a basis of a correlation matrix.

2. In many practical cases, SVDMOR method, based on low-rank approximation,

cannot perform efficiently due to the close distribution of the singular values of

the correlation matrix.

3. The SVDMOR generates an inaccurate, or disordered, model, especially at high

frequencies, because the relations between singular values of the system matrix

change as frequency varies. The feasibility of keeping only a portion of states

is not guaranteed through out the whole range of frequencies.

4. However, the method guarantees global accuracy. By global, we mean the error

with respect to the zero, or DC, response.

5. The SVD low rank approximation is the best approximation in the 2-norm, as

shown in Theorem 2.2.1. This fact reminds us that this problem may not be

easily settled if we still only transform the original system into another simple

system.



Chapter 3

The Shifting Approach

We have seen that the proposed SVDMOR method has unignorable drawbacks. The

conclusions drawn from Chapter 2 cast some illumination on system simplifications,

which suggest that the original system may be transformed into more than one sys-

tems.

3.1 Eigenvalues and Modes

In control theory, for the system (1.2), stability is related with the system matrix

A, or more specifically, the eigenvalues of A. Generally, it is known that the system

is asymptotically w-stable if and only if for all eigenvalues A of A: Re(A) < 0 [28].

Moreover, many of a system's other characteristics are also associated with these

eigenvalues. The reason is as follows:

i= Ax + Bu i = QAQ-x + Bu Q-1' = AQ- 1x + Q-'Bu

= Cx + Du y= Cx + Du y= CQQ-lx + Du

where A = QAQ - 1 is the eigenvalue decomposition and the diagonal entries of A are

the eigenvalues of A. For X = Q-1x, the system is decoupled to

{ X= AX + Q-1Bu, (3.1)
y = CQX + Du.



By solving the first equation of (3.1) evolving in time, it is seen that

X = CxeAtXo + Dxu

is represented as a linear combination of eAt, where Cx E Rnx"', Dx E RnXp and

e At diag(Alt,A2t,... ,Ant)

= diag(eAlt, e2t,... , e).

These exAt's are called the modes of the system, which determine the responses of

the original system. In a stable system, all the eigenvalues of the system matrix

must contain negative real parts; the modes represented by a smaller eigenvalue in

magnitude is called slow decaying modes, and fast decaying modes otherwise.

In this thesis, we only deal with stable systems, which means that all eigenvalues

of A only contain negative real parts.

3.2 System Split with a Single Shift

3.2.1 Motivation

The SVDMOR algorithm fails to work as an accurate and effective approach, but it

does reveal an important perspective of generating reduced model. The research will

be the modification based on this approach.

For the system (1.4), the transfer function is

G(s) = (Is - A) - 1

On the one hand, as mentioned in section 2.5.2, in high frequency, G(s) P1 (Is) - '.

This is the reason for the tremendous error in high frequency using SVDMOR. This

phenomenon reminds us that it would be more reasonable to define or extract some

simple portion that can maintain high frequency accuracy.



On the other hand, even the DC response', which is G(0) = A-' , is sometimes

'ill-conditioned' but very simple. By 'ill-conditioned', we mean the singular values of a

matrix being not favorable for SVDMOR. For example a matrix whose largest singular

value is 10 and smallest one is 5 cannot be reduced as otherwise any eliminated

terminal will generate at least a 50% error. However, there are matrices such as the

identity or matrices with clustered eigenvalues that can hopefully be described with

less information than the whole-matrix-size storage. For instance, only 1 and the

dimension n will be needed to record the identity matrix.

Note that G(0) = A - 1 = QA-'Q-1 = Q(-A-I(-Q-1)). If A is symmetric and

negative definite, this form is an SVD2 . This is an explanation for the choice of the

model in (1.4), as the singular values of G(0) are analytically determined by A's

eigenvalues, or more specifically the minus reciprocal of the eigenvalues.

3.2.2 The Algorithm

Basically, this approach is to extract a simple system from the original one and hence

to hopefully readjust the system more favored by MOR, which is reflected as the

Remainder system. The term singular values referred to here, meaning the singular

values of the DC response matrix of the system, will be mentioned from time to time

as it is a determining factor of the SVDMOR. We will derive the algorithm for the

general model.

We split the original model into two parts, as shown in Figure 3-1:

Figure 3-1: Split Model

1DC response is the correlation matrix mentioned in Table 2.1, and will be always referred to
this way in the following chapters except that it is used for system verification.

2 For a symmetric matrix, the eigenvectors can be chosen orthonormal.



We have3

G(s) = C(sI- A)-'B = C(sI - QAQ-')B

= C(Q(sI - A)Q-1)-'B = CQ(sI - A)-'Q-'B

= CQ[ A Q-'B
1 1 1= CQ s Q-1B + CQ - A Q-B

= C(_ 1 )B + CQ Q AB-A' ]Cs - A'B (s - A,)(s - A,')] -

= (CB) + 1 (CQ A- A' Q-1B)
s --- S- Ai i

= G,(s) + Gl(s)

After the linear algebra operations, the original system is transformed into a simple

shifted system G,(s) and a higher-order remainder system GI(s). To simulate the

system G,(s) is no more expensive because the system is decoupled and does not

involve denser matrices. If we can reduce the remainder term GI(s) to certain extent

that the overall simulation requires less computation, the result can be advantageous

over the original one. For the remainder term, in SVDMOR

HDC = CiAl B I

= UEV UrrVr,

and in MOR part

H(s) , Ur bc(sI - AL)-bb VT

Hr(S)

- UHr(s)V7

Ur Hr(s) Vf

3We use the notation [ai]i to denote a diagonal matrix, whose ith diagonal is ai.



therefore

G(s) = G (s) + (Ur () VT)

It is noticed that compared to the original system, there is a scaling factor [A2 - A']j

that changes the distribution and mutual relations of the singular values of HDC.

In particular, for the system (1.4), the singular values are changed from i to

[i-l] x ,. The shift rescales each of the original system's singular value with

different factors and scales the whole system by 1, in the hope that more states can

be eliminated out of the remainder system than of the original one.

After defining the shifted system, the approximated model maintains high fre-

quency accuracy, please refer to section 4.4 for details. Table 3.1 is the brief descrip-

tion of the algorithm:

Table 3.1: Single step shifting approach

Eigenvalue decompose A, get Q and A

choose A' to be the shift4

% Generate the shifted system

A, = [A'] , B, = B

C,= C, , = D

% Generate the Remainder system

At = [Ai]i , BI = Q- 1 B

C, = CQ [Ai - A']i , D = D

% Obtain reduced model

apply SVDMOR to the Remainder system

3.3 Examples

The following examples demonstrate the advantage of the shifting idea.
4 The choice of shifts in discussed in 5



1. For a system (1.4), A is a symmetric dense matrix with eigenvalues uniformly

distributed in [-10, -1]. If only SVDMOR is applied, no states will be deleted

using tolerance 5%, as the singular values of its DC response matrix are in

[0.1, 1]. However, by selecing A' = -8 as the shift, the resulting remainder

system has a better singular distribution, as shown in Figure 3-2

S

S 5 10 15 2 25 30
Sngular Value #

Figure 3-2: Change of Singular Values with a Single Shift

The dots and the stars are the singular values in the original and remainder

systems. The straight line denotes 5% of the largest singular value in the re-

mainder system. After the shift, 15 states can be eliminated out of a total 30,

and the first 4 singular values are scaled much more than the others.

A shift can make some modes more significant than others in the remainder

system.

2. For a system (1.4), A is a symmetric dense matrix with eigenvalues uniformly

distributed in [-2.05, -1.95]. If only SVDMOR is applied, no states will be

deleted using tolerance 5%, as the singular values of its DC response matrix

are in [0.488, 0.513]. In this system the eigenvalues or the modes are clustered

closely around -2. Therefore, if -2 is chosen as the shift, the simple system



extracted by the shift is accurate enough to represent the whole system and the

remainder system is deleted completely.

The shifting idea can be more efficient if there are tightly clustered eigenvalues.

3.4 Conclusions

1. The shifting idea is to extract a simple system with identical modes and hence

make the remainder system more favorable to be reduced than the original one.

2. A shift can either rescale some modes with larger amplifying factors than the

others in the remainder system, or capture a cluster of eigenvalues and hence

in both ways reduce states in the system.

3. The approximated system using the shifting idea maintains high frequency ac-

curacy.





Chapter 4

Successive Extractions

As mentioned in the chapter before, the shifting idea is to extract a simple system

with identical modes from the original and make the remainder system more favorable

to be reduced than the original one. More often, more than one shift should be carried

out to the original system.

4.1 System Splitting with Multiple Shifts

4.1.1 Motivation

For a system (1.4), A is a symmetric dense matrix with eigenvalues half -1 and half

-2. If only SVDMOR is applied, no states will be deleted using tolerance 5%, as the

singular values of its DC response matrix are in [0.5, 1]. Even by a single shift -1,

we only could eliminate half the states. However, in this case, the remainder, which

contains only -2 as eigenvalues, is still simple enough to be shifted again. This is the

primitive motivation for the multiple shifts method, which is successive shifting of

the original system.

4.1.2 Algorithm

After applying a single shift, a new system configuration (A,, B1, C1 , DI) is set up as

the remainder system, as in Table 3.1. In the approach described in this chapter,



another single shift will be applied to the remainder system without it being reduced,

generating a new remainder system. This procedure is repeated for a certain number

of times d, which is the number predefined by experiments and observation of the

system's characteristics. Actually, the MOR part will not be performed until all

shifts have been picked out.

The derivation with details is as follows (d shifts and Aj denotes the jth shift):

G(s) = C(Is- A)-'B = CQ[ Q1B

S - (1) I -- J i
1 1

s - A)(1 (CB + q - A\2) (CQ [Ai - A(')]i Q-1B

+CQ s (A - A )) (A -A(2)

S - Ai i

1 1
(CB + (CQ [Ai - A)] Q-1B

8 - ( 1 )  8 - A( 2 )  i

- 3)(CQ [(Ai - A('))(A• - A(2))] Q-1B

+CQ (Ai - ( -(2))i q- A3 Q-1B)))
s - Ai i

CB CQ [Ai - A(1)], Q-1B CQ [(Ai - A1))(Ai - A(2))] Q-1B
= + +

s - A(') + (s - A))(s - A(2)) + (s - A'))(s - A(2))(s - A(3))

CQ d[H lI(i- A(k))] Q-1B 1 = (k) Q-B
+d 1-l(s - AU)) + H(s - AU))1 [ , i (s- A ))

Ss -a w t 1 -A (A )  (S -A i)= (j= d - _ I

d M--1 AM)] d A - (k))1:.C E [k1AQr+ d CQ II-k=l(i Q--,.
m=- Ij=(s -A(C)) ( - ,) _

With d shifts picked out of the original system, the remainder system is organized

in a way that the singular values are rescaled by different factors successively. By

carefully selecting these shifts, this approach will exhibit similar but more stronger

efficiency than a single shift. The choice of shifts will be discussed in section 5.



In the derivation, the terms

d d [Hm-1A A(k))]
Gcr= ) = Gm (s) = CQ -, •i Q -1B

m= 1 m= 1 ,= 1
(4.1)

are called the Contour Terms, as they basically outline the characteristics of the

system. Gm(s) is a m-order ODE system. The term

GRS(s) - CQ k=1 -i (k)) l QB
k 1 ( i Q -i

is defined as the Remainder. The Remainder is a (d + 1)-order ODE system. This

term supplements some important properties that the Contour Terms are not able to

fully represent. The full algorithm description is discussed in section 5.2.

4.2 MOR of the Remainder

The Remainder is a (d + 1)-order ODE system, but there is a d-order scalar system

in front. Therefore, for the MOR part, only a first order system is reduced.

Generate Remainder using equation (4.2):

= -1B,

C, = CQ ]J(A, - A (k))

D= k=1

D1 = D.

Then
1

GRs(s) = dl(s - A)) (C1(sI - A 1)-'Bl + DI).

SVDMOR, as decribed in Table 2.1, is applied to CI(sI - Ai)-'B1 + D, obtain a

(4.2)



reduced model Cr(sI - A,)-'Br + D,. Therefore

1
GRs(s) = d( ) (Cr(sl - Ar)-'Br + D,),nr, s j= , (4.3)

where Ar E RExr, B E R•xP C E qxr, and D E Rqxp

4.3 Examples

The following example shows how the singular values of the Remainder term in each

step are rescaled to obtain a final Remainder more suitable to be reduced.

For a system (1.4), A is a symmetric dense matrix with eigenvalues uniformly

distributed in [-10, -1]. -10, -6.55 and -3.1 are chosen as shifts, though it is not

guaranteed that these are the optimal choice. The following is a set of plots after

each shift, indicating the change of singular values of the remainder system.

a

Singular Value #

Figure 4-1: Change of Singular Values after the First Shift

Figures 4-1, 4-2 and 4-3 show the change of singular values of the remainder

systems (excluding the scaling factor 7•I( _•j))) and we can see that 20, 12 and 6

44
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Figure 4-2: Change of Singular Values after the Second Shift
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Figure 4-3: Change of Singular Values with after the Third Shift
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singular values are kept with 5% as the threshold. It looks like that in each step, the

whole curve is broken off around the shift point, the part containing the slow-decaying

modes is lift up to a steeper slope and the other part is planished. With all shifts

applied, the whole curve is twisted such that only a few modes outside the range of

shifts are lifted to a very steep slope and all the other modes are reduced to be trivial

enough to eliminate.

On the other hand, for the example mentioned in section 4.1.1, only two shifts

-1 and -2 will be needed to represent the system. Similar to a single shift, the shifts

can either rescale some modes more than others in the remainder system, or capture

a cluster of eigenvalues then the remainder is so trivial that it can be completely

eliminated.

4.4 Error Analysis

4.4.1 Relative 2-norm Error

The Relative 2-norm Error refers to the relative error between DC response matrices

of the approximated and of the original system.

e2 = IGcT(O) + GRs(O) - G(0)112  (4.4)
IIG(0) 12

Because MOR is based on SVD, this approach naturally guarantees low error, in the

DC response matrix's 2-norm sense. In this thesis, experiments are performed with

reference to this error. This is the error to estimate during model reduction.

4.4.2 Frequency Response 2-norm Error

Section 2.5 reveals disordered high frequency response of the approximated system,

if only SVDMOR is applied. However, after shifts, high frequency response of the



approximant

d

GCT(s) = ZGj(s), (4.5)
j=1

as in (6.1), is

d

lim GcT(S) = lim Gj (s) (4.6)
-S iso 8--+-Oo

j=1

= lim Gi(s), (4.7)
8--*00

and the Remainder is in higher order so that can be ignored in high frequency. There-

fore, ((s) oc -, the same as the original system.

More, optimistically, in system (1.4) the original system's 2-norm, which is the

largest singular value (A1 has the least magnitude), is

1

s - A1

For any given frequency, if r states are kept out of the remainder, the 2-norm er-

ror between the original and the approximated system is the difference between the

unreduced and reduced Remainder.

IIGcT(O) + GRS(0) - G(0)112  (4.8)
S= IG(o)112

lIIGs(o) - GRs(0)1 2  (4.9)
JIG(0)112

After MOR, the singular values of the difference in the numerator of (4.9) are

I(s •l(' i= 1,2- ... n - r



Supposedly any of them can be the largest singular value. For each,

k=1 i _ ()= _  (k) P(Ai)
< 1| -J2 < njF 112 - 112

H3=l(s - AUi)) r l,(O - Aoi)) P(O)
< maxxEIA,Anrl IP(x)l

IP(O)I

If Chebyshev roots are chosen be the shifts, as in Figure 5-1, the value of IP(O)I can

be substantially larger than that of maxx[ex,~n-,] IP(x)I, and the error is guaranteed

to be a small number.

When C and B are not scaled identities, the problem is more complicated and not

resolved in this research. Singular values are targeted in MOR. However, the choice

of shifts only guarantees the change of eigenvalues, eigenvalues are not singular values

and how these eigenvalues affect the singular values of GRS(s) is unknown, for reasons

stated in 3.2.1. In fact, no relation is ascertained between eigenvalues and singular

values, if B's and C's are allowed to change randomly. In practice, it is hoped that

most probably C and B do not change the significance of the scaled eigenvalues, for

example, a very large rescaled eigenvalue I (1B= ) does not take overwhelm-

ingly small portion in the Remainder System. For example, the following example

will not be considered as typical:

G1(O) = CIA-'1B i

10+ 5

1

1

1

1

1

1

1

1

1

Although A - 1 has a very favourable structure according to our reasoning, the struc-

tures of B and C spoil the advantageous position of the first eigenvalue.

10-5

1

1

1

1I



4.4.3 Point-to-Point Error

Sometimes the 2-norm error is not strict enough to guarantee an accurate approxima-

tion and it is suggested to observe the point-to-point transfer function value in DC

frequency. By point-to-point transfer function, we mean each entry of the transfer

function. For example, the ith row jth column entry denotes the response of jth in-

put to ith output. To observe the transfer function individually will allow us to know

more about this approach. Normally, we only study a specific jth column denoting

the interactions of all nodes with the jth input.

4.5 Conclusions

1. Successive extractions or multiple shifts is an extension of the single shifting

approach, in particular that only one MOR is performed after all shifts are

carried out.

2. Instead of one shift, multiple shifts will cooperatively reorganize the singular

value distribution so that as few states as possible can be kept. This is done

through making some modes sufficiently larger than others, or extracting the

Contour Terms sufficiently more significant than the Remainder.

3. After shifts, the approximant remains accurate high-frequency response. In a

specific system 1.4, the approximated system guarantees accurate responses at

all frequencies.





Chapter 5

The Choice of Shifts

In Chapter 4, the single shift idea is extended to the multiple case and a simple

example has illustrated the advantage of multiple shifts. Some implementation issues

are discussed in this chapter.

A basic principle of choosing shifts is that these selected significant shifts should

represent the whole system's characteristics as much as possible. The significance

here is discussed in the scope of the DC response matrix of a dynamic system.

At this point, two kinds of systems the multiple-shift method favors should be

pointed out. They are already illustrated in section 3.3. One is a system with well

separated modes, and some mode can be sufficiently larger than others; the other

one is a system with tightly clustered modes, or modes in a sufficiently narrow range.

To deal with these types requires different philosophies: for the former one, as some

modes are larger than others, we will further amplify these modes more while less to

others, and normally MOR to this kind ends up with the slowest modes; however,

for the latter, as the modes do not differ as significantly, they can be represented

altogether as only a small number of shifts because of their similarity between each

other, and it is often possible to eliminate all states in the Remainder. However, both

philosophies reflect the same requirements of system configuration: in both kinds,

there should be obvious significant shifts. More than often, a system will not be as

simple as either of them, but a mixed type. Then we can think of it as a combination

of subsystems, and deal with them according to the philosophies above. In this



thesis, typical systems referred to above will be referred to as Type 1 and Type 2

respectively.

As a result of the difference of philosophies, the type that is between these two is

possibly intractable.

It is worthing pointing out that if a system contains a few modes relatively sepa-

rated from others, the modes can be considered as candidates for shifts. For example,

in the system where the eigenvalues are -2 and in [-11, -10], -2 can be chosen as a

shift.

5.1 Based on Chebyshev Polynomials

In this section, we focus on system (1.4) with concentrated modes.

how the Remainder is rearranged compared with the original system:

Take a look at

1
GRS(S) =d CQ

Ij=1( - Aw)

G(s) = CQ

-d= (,-i(k))
(S-Al)

(l-k= 2 (k))
(s-1\2)

dlk (A,-(k))
(s-An)

1
(s-Aj)

1
(s-A2)

1
(s-As)

Q- 1B.

Other than the scalar scaling the whole system, which can be ignored for a moment

as it does not change the ratios between modes, each mode 1 is scaled differently

by factor l= 1(i - (k))

(5.1)

(5.2)



Define

d

P(x) = (x - A (k)). (5.3)
k=1

It is a d-order polynomial with shifts A(k) as zeros. Therefore, each mode is scaled

by P(Ai). For the first kind of system, the idea that fast decaying modes far from

the origin need to be scaled less than the modes closer to the origin is similar to the

convergence analysis of the Generalized Conjugate Residual algorithm (GCR) or the

Conjugate Gradient algorithm (CG) for solving linear equations [25]. The analysis is

performed through the introduction of Chebyshev Polynomials.

Definition 5.1.1. The Chebyshev polynomials of the first kind are defined by the

recurrence relation:

To(x) = 1

T1(x) = x

T2(x) = 2xT,(x) - T.-1(x).

Or explicitly:

cos(n arccos(x)), x E [-1, 11

T,(x) = cosh(n arccosh(x)), x > 1

(-1)n cosh(n arccosh(- x)), x < -1

Theorem 5.1.1. Tn is a Chebyshev polynomial of the first kind. For any given 1 < n,

among the polynomials of degree n with leading coefficient 1, f(x) = 2•lTn(x) is the

one of which the maximal absolute value on the interval [-1, 1] is minimal. This

maximal absolute value n is and If(x)I reaches this maximum exactly n+1 times:

in -1 and 1 and the other n - 1 extremal points of f.

Corollary 5.1.2. By polynomial manipulation, it is proved that for any given 1 < n,

among the polynomials of degree n with leading coefficient 1, f(x) = ~n-, (n a )



is the one of which the maximal absolute value on the interval [-1, 1] is minimal.

This maximal absolute value (b-a)- is and If(x)l reaches this maximum exactly n+1
times: in a and b and the other n - 1 extremal points of f.

Corollary 5.1.3. A Chebyshev polynomial of either kind with degree n has n different

simple roots, called Chebyshev roots, in the interval [-1,1]. The roots are sometimes

called Chebyshev nodes because they are used as nodes in polynomial interpolation.

Using the trigonometric definition and the fact that

cos( (2k + 1)) = 0 (5.4)

one can easily prove that the roots of Tn are

k = cos(2k- ),k = 1, ... , n. (5.5)
2 n

and the roots of Chebyshev polynomial in range [a, b] are

b-a 7r2k-1 a+b
k = - cos( )+ ,k= 1,...,n. (5.6)

2 2 n 2

Figure 5-1 is an illustration of a Chebyshev Polynomial and its roots. The poly-

nomial reaches low values in the range of roots, which is referred to as Chebyshev

Range in the context (the range complementing this range in the whole range is

referred to as Remainder Range or Leftover Range). With proper choice of this

range, the modes outside this range will be amplified substantially more to overwhelm

the modes inside.

Then we restudy the examples in section 3.3.

1. For a system (1.4), A is a symmetric dense matrix with eigenvalues uniformly

distributed in [-10, -1]. The Chebyshev Range is [-10, -1.5] and Remainder

range is [-1.5, -1]. Figure 5-2 shows the scaling of different eigenvalues.
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Figure 5-1: Chebyshev Polynomial and its roots
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Figure 5-2: Chebyshev Polynomial and its roots: Type 1



The Remainder range is amplified substantially more than the Chebyshev Range.

With proper choice of the ranges and number of shifts, the whole Chebyshev

Range and some part of the remainder can be eliminated after shifts.

2. For a system (1.4), A is a symmetric dense matrix with eigenvalues uniformly

distributed in [-2.05, -1.95]. The Chebyshev Range is [-2.05, -1.95] and Re-

mainder range is null. Then the Chebyshev Range will be eliminated whole.

In fact, in practice, no explicit analysis will be carried out about whether a system be-

longs to the first or the second kind. For the second kind, as in the latter example, even

the Chebyshev Range is [-2.05, -1.93] and the remainder range is [-1.93, -1.95], the

results will be little affected, as the roots generated from the [-2.05, -1.95] will not

differ much from those from [-2.05, -1.93]. Therefore, in practice, a percentage a, for

example 1%, is chosen to determine how much of the whole eigenvalue range belongs

to the Remainder range and the left range belongs to the Chebyshev Range.

The reason why the Chebyshev Range leans towards the fast-decaying modes

(most negative eigenvalues) is that slow-decaying modes are in naturally advantageous

positions, as in (5.2) the reciprocal of slow-decaying modes are larger. For example,

for two eigenvalues -1 and -10, the corresponding singular values are 1 and &, it is

more convenient and efficient to amplify and keep -1 instead of -10. This choice of

Chebyshev Range is to make use of the favorable situation in the original system.

5.2 Full Algorithm Description

Table 5.1 is the brief description of the algorithm:

Table 5.1: Full Algorithm Description

E: the threshold for keeping states

a: the percentage of the Remainder range

p': pre-stored shifts



Eigenvalue decompose A = QAQ- 1, get Q and A

if no p' are inputted:

Choose shifts using Chebyshev Polynomials using a, in section 5.1

% Generate the shifted system

Generate equations (6.2) and (6.3)

% Generate the Remainder system

Generate Remainder using equation (4.2)

Al = [Ai]i, B1 = Q- 1B

C1 = CQ LH=(A <- A (k)) , D = D
% Obtain reduced model

Apply SVDMOR (in Table 2.1) to the system (A,, B1, C1, DI) with E

and obtain (Ar, Br, Cr, Dr) that constitute GRs(s)

Output error e2 (see (4.4))

% If Simulation is required

Evaluate GcT(s)u and GRs(s)u

Add GcT(s)u and GCRs(s)u

5.3 Based on Optimization

5.3.1 Inaccuracy of Chebyshev Approach

The motivation of coming up with the idea of the Chebyshev approach is that only

the amplifying factor P(Ai) is considered. In other words, our goal is to minimize

the value of P(a) = 1qk=l(a - a(k)) in a certain range. However, more accurately,

we should minimize the value of P(a) = 1Tli(-(k)as observed in the Remainder

term.

On the other hand, under different circumstances, either the Remainder or the

Contour Terms can take the dominance. The relative relation between these two



terms is not studied previously, because we only focused on the Remainder itself.

This means the Chebyshev approach may not generate an optimal set.

5.3.2 Basic Idea

The goal is to find the least number of states left for a given number of shifts. However,

when the objective, the number of states, is an integer and the variable is the shifts,

this optimization problem seems intractable, as the gradient of the objective function

may be undefined.

Then the problem is formulated based on the idea that if only a certain number

of states are kept, how low can the error be. If this error is lower than the predefined

threshold, the set of shifts is acceptable. Keeping changing the number of states in

ascending order searching for acceptable sets will yield the least number of states.

For instance, for a 100 x 100 system, we are interested in choosing 3 shifts to keep the

least number of states. The idea is like this: we force the Remainder to keep only 1

state, carry out the optimization and get the minimum error with only 1 state. If this

error is less than threshold 5%, then 1 is the least number of states. However, if the

error is larger than the threshold, we force the Remainder to keep 2 states and check

the error again. We keep increasing the number of states we force to keep. Therefore,

the process is an iteration of optimization, in each step, we fix the number of shifts

and number of states and check whether the minimum error under this condition can

reach the goal.

A single step of this optimization problem is described as follows:

Let G(s) be the original system's transfer function and G(s, p', a) be the approx-

imated system's transfer function given the shifts p' and number of states kept a



regardless of the error, then the objective is to minimize the function

(p', a) = G(O, p', a) - G(0)112
lIG(O)11 2

IIGT(0, p', a) + GRS(0, p', a) - G(0)112
IIG(O) 12

IIGRs(0 p', a) - GRs(0, p', a)ll2
IIG(0)112

or to choose some p' to obtain the most accurate DC response matrix of the approxi-

mated system in the 2-norm. To evaluate F(p', a) is through (5.1): the numerator is

the (a+ 1)th largest singular value in (5.1) and the denominator is the largest singular

value in (5.1).

The optimization problem is then formulated as

min F(p', a)

s.t p' max(p)

p' > min(p) (5.7)

p' E Rd,

where d is a predefined integer, a is the certain number of states and p' is the variable.

Note that the gradient of the objective cannot be computed analytically. Then any

suitable methods for solving nonlinear optimization problems with constraints can be

applied here. Table 5.2 is the detailed description of the optimization approach.

5.3.3 The Algorithm

Table 5.2: Optimization Algorithm of the choice of shifts

Globalize A, B, C, D, a;

Manually choose a set p' (Often Chebyshev Polynomial roots);

Use p' to obtain NS, the number of states left;



This scheme first performs a MOR using a pre-set Chebyshev points and obtains the

number of states left, NS. Every iteration, the optimization problem uses the manual

set p' as the initial guess. Then it chooses half the number of states NS as the guess

of how many states can be kept after optimization and then decreases or increases

this number to reach our goal. This is more advantageous over increasing a from 0.

For example, if 8 states are kept without optimization, this approach takes 4 as the

initial guess of the minimal number of states left after optimization of choice. If the

error is below the threshold with 4 states, then 3 is tried as the number of states

forced to keep; otherwise, 5 is tried until we can find the least number of states with

the error less than the threshold.

'Please refer to a single step (5.7) in 5.3.2.

% % p is a control over the optimization problem

a = NS/2;

Optimize' F(O, p', a) and find the least error, el;

%% Check to see whether the optimized set can keep a states.

If et > thres

%% No! Increase a

While el > thres

a= a+1;

Optimize F(O, p', a) and obtain p, el;

end

else

% % Yes! Decrease a to expect a better result

While el <= thres

a = a - 1;

Optimize F(O, p', a) and obtain p, el;

end

end



5.3.4 Example

This is a 100 x 100 system with eigenvalues in [-15.8,-0.02]. We use 5% as the

percentage to choose the Chebyshev roots. After optimization, as in Figure 5.3.4,

the optimized set shifts nearer to the origin, which is a reflection of the effects of the

damping factor !. As a result, 4 states are kept after optimization while there are 8

before.

Here 5% is the optimal range chosen manually and the optimization slightly change

the distribution of shifts. However, more often when a is not chosen properly (too

large or too small), the optimization process will perform better by adjusting a and

the distribution simultaneously. For example, in section 6.4, the distribution of the

shifts is changed the other way around.

-16 -14 -12 -10 -8 -6 -4 -2 0 2

Figure 5-3: Optimization Results

5.3.5 Computational Complexity

The optimization process is not unreasonably expensive. After obtaining A's eigen-

values once, in the process of optimization, only the singular values of (5.1) and (5.2)

are needed.

---- Chebyshev
-*-- Optimization
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_,II ___I

• 
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Due to the similarity of eigenvalue distributions of two systems with similar struc-

tures, the set obtained from a smaller system can also be advantageous for a large

system. Unfortunately, due to time limitations, work still needs to be continued on

this subject.

5.4 Conclusions

1. The basic principle of choosing shifts is to eliminate more states within a certain

threshold. This is through the choice of Chebyshev roots.

2. Due to the inaccuracy of the Chebyshev idea, optimization is required to obtain

a set in order to eliminate more states.



Chapter 6

Numerical Results

6.1 Computational Complexity

6.1.1 Issues on Storage and Computation

Simulate the Contour Terms

The reduced system is normally used for simulation, or to obtain the output given a set

of input vectors u. Moreover, the system matrix A is often sparse with O(n) entries.

Therefore, to multiply A with a vector only requires O(n) operations. Therefore,

instead of representing the system using A and sparse matrix Q, to use direct A

is a better choice for simulation. Using the property QP(A)Q - 1 = P(A) (P is a

polynomial), each Contour Term is changed accordingly to:

CB
Go(s) GB

s - aor)'

C(A - oa) I)B
GC(s) =-

G2 (S) C(A - U( 2)I)(A - a(')I)B
(s - a(3))(s - a(2))(S - U1)'



C(flq 1 (A - a(k)I))B

kq=1(S - U(k))

= Gm(s).
m=1

Defining uo = Bu, ul = (A - a( 1)I)Bu and so on,

l) -(1)x(=) = U -
1 )  (1) (1) -

x 2 ) - 0(2)x(
2 ) - 1)Z2 2 2 "

x1)
d

(1) _ (1)X 1 )

(2) ••)  (2 () 2 (x1)x3 - )x =
x3 3 3-

- 0(1) )- UdZd =Ud
.(2) _ (2) (2) (1)

d d U Xd

( (3) a (3) (3) X (2)
d - d - d3)

d d d

(d)
d Sa(d)x(d) = (d-1)

Comparing this set of equations, we can get

(1)x 2
(2)x3

= (A -- (1)I)x()

= (A - .(2) 2)

x~ d - ) (A - a(d-)I)x (d11)

Incorporating this into the triangular set of equations, we can only keep the last

equation in each column:

(1) - (1) (1)

(2) (2) (2)

i(3) - (3) (3)

x(d) _ (d)x (d)
Xd d

= U0 ,

= (A - o-(1)I)x),

= (A - -(2) I)x 2 )

= (A - (d-1))x(d-1)

GdC(s)
GcT(5) (6.1)



X1) (1) (1)xi - ,(1)x(l)
S••3) -( 23) - (A - a(r)I)x()

S - d) - (A - d-)I)x

Defining X = [x ) , x 2), . . ,x zd)T,

X - ANX = U,

where

I

-(A - a(2)I) I

-(A - a(d-1)I)

and U = [uo, 0, ... , 0]"T E Rndx1. To invert and apply this

Gaussian Elimination, the computational complexity is O(nd),

are off diagonal and will be seen only in multiplications.

E Rndxnd, (6.2)

big A matrix using

because all the A's

And the original output is

y = CNX + Du,

where

CN = [Inxn Inxn Inxn - I Inx] E R nxnq

= U0 ,

= 0,

= 0,

0.

I

-(A - a(')I)

AN =

(6.3)



Operation Counts

Assume A is sparse with O(n) entries and we only concern about the terms that

cannot be pre-calculated. Table 6.1 shows detailed operation counts of a simulation

of the reduced system.

Table 6.1: Operation Counts of the Shifting Method

Procedure

X1 = (x1 + Bu(t))/(1 - dt x p(1))

i=2:d

xi = (xi + dt x (A - Ip(i-1)) x xi- 1)

y = C(x1 + x2 +... + Xd)

Reduced System Modeling

Total

Operation Counts

3n

3n(d - 1)

dn

O(r3 + rd)

0(4nd + r3 + rd)

If A's are dense matrices with favorable eigenvalue distributions, this method will

outperform the direct method very much. However, in practice, many A's are sparse

and to Gaussian elimiate them does not require expensive operations. In section 6.2

a typical example will be discussed.

6.1.2 Extension to smaller number of terminals

The shifting method imposes no specification on the number of inputs and outputs.

Assume a system with smaller number of inputs and outputs. The Contour Terms



are:

Go(s)

Gl(s)

G2(s)

Gd(s)

CB
S - " '

C(A - a(1)I)B

(S - a(2))(s -O(1)'
C(A - U(2)I)(A - a(l)I)B

(s - o(3 ))(s - o(2 ))(s - 0(1))

C(rfd x(A - (k))B
Ikd= 1( -_ (k))

Suppose B E Rnxp and C E ~qx". The goal is to obtain the outputs, therefore it is

unnecessary to get the states first and then multiply them with the C matrix.

So instead, we pre-calculate the terms: M1 = CB, M2 = C(A - a(1)I)B, M3 =

C(A - a(2)I)(A-o ( 1)I)B, , Md = C(kl=j (A - (k)I))B, which are much probably

dense matrices. If we multiply these matrices with a vector, the operation is on the

order of O(pq).

Defining ul = M1u, u2 = M 2u and so on (To evaluate

operations), as well as y = Cx

each ui requires O(pq)

i3) (1)- l) - 3Yj 0' Yj U3
(2) (2) (2) (1)

y3 -( Y3 -i(3) (3) (3) (2)Yi 01 Yi Yi

981) _(1) dl) EYý - Yd Ud
(2) (2) (2) (1)

Yd aYd-Y

(3) (3)(3) (2)
Yd _ (Yd -Yd

(4) (4) (4) _ (3)
Yd Yd Yd

(d ) - .(d) (d) (d -l )

To evaluate each of them requires O(3q) operation. Moreover, adding all the y

together requires O((d - 1)q), which adds up to a total of approximately

O(2(d2 + d)q + dpq)

if pq is much less than n, this approach can be effective. From this perspective, this

U) _ (1) U) (1) _ 0(1) (1)Y1 Y2 _2 Y (2 d2) U2
(2) _ (2) (2) (1)Yi 0 Yi Y2



can be an alternative to do SISO MOR.

6.2 2-D Grid RC Circuit Simulation

The same as referred to in Section 2.3, the two-dimensional example is studied in the

following.

* 0 0
* 0 0
* 0 0

* S
*
* S

Figure 6-1: Structure of the Two-Dimensional RC Circuit

The objective is a n x n two-dimensional Resistor-Capacitor (RC) circuit. It contains

n2 nodes, each node connecting with its neighbouring node with a coupling resistor

R, and connecting with parallel capacitor Cg and ground resistor R, to the ground.

The three black dots connected to each node denote the parallel capacitor and ground

resistor.

This is a typical example in simulation that can be formulated as an ODE, see

[27]. Using the same technique as in equation (1.2), the simulation of this problem is

formulated as a first order ordinary differential equation, which is a dynamic system.

The input is a vector of currents into each node and the output is a vector of voltages

on each node, both with length n2 . The states are the same as the output, therefore

the system is at order-n 2 and C = In2Xn2.



6.3 Comparison Study

We introduce three examples:

1. All R, = 1000, C = 20pF(2 x 10-8) and R, = 10kO. Eigenvalues of A are

distributed between [-3.91e + 6, -5.00e + 3].

2. All &R = 100Q, C = 20pF(2 x 10-
8) and Rc = 1kQ + 10%. Eigenvalues of A

are distributed between [-3.95e + 6, -4.79e + 4].

3. All R, = 1000, C = 20pF(2 x 10-8) and R, = 100. Eigenvalues of A are

distributed between [-4.40e + 6, -5.00e + 5].

In this experiment, 10 x 10, 20 x 20, 30 x 30, 40 x 40, 50 x 50, 60 x 60 grid systems

are selected for simulation. Each simulation' takes 1000 steps, with errors defined in

section 4.4 less than 5%. The shifting methods used here did not optimize the set of

shifts. Table 6.2 shows the comparison of approximate operation counts.

Table 6.2: Comparison of methods to different systems

100 400 900 1600

2000000 1.2e+007 3.6e+007 8e+007

611500 2.81e+006 9.33e+006 2.99e+007

1 1 1 1

3 8 17 30

1.67e+006 1.14e+007 3.66e+006 8.86e+007

2 4 6 8

8 15 22 31

2.55e+006 1.03e+006 2.38e+006 4.41e+007

5 5 5 5

1 4 9 15

6 6 6 6

0 0 0 0

2500

1.5e+008

6.6e+007

3

33

n/a*

3600

2.52e+008

1.26e+008

4

41

n/a

7.29e+007 1.08e+008

5 5

22 31

6 6

0 0

is carried out in Matlab.

States #

Direct

(1)

Shifts #

States Left

(2)
Shifts #

States Left

(3)
Shifts #

States Left

Shifts #

States Left

I

is 

carried out in Matlab.

'Simulation

IrII



* means that with less than 9 shifts, keeping less than V¶ states is impossible and

the shifting method cannot beat the direct method.

For this 2-D circuit problem, to apply A- 1 to a vector requires approximately

O(n1 5) operations. However, in Table 6.1, the shifting method has complexity

O(4nd + r3 + rd). Therefore, to pick up the shifts, both d < YL and r < v;i

should be guaranteed.

It is interesting to observe that example (1) belongs to a typical type 1, as the

eigenvalues are far apart and there will always be states left regardless of how many

shifts are used; example (3) belongs to a typical type 2, as the eigenvalues are close

enough that after 6 shifts, no states are needed to be kept; example (2) belongs to

the kind we believe is relatively difficult to handle, where the shifting method is not

even as efficient as the direct one in large systems.

With retrospect to the configurations, in example (1), ground resistors are much

larger than coupling resistors, which means the injected currents are most affected by

heavy loads, and in example (3), ground resistors are the same as coupling ones, and

most of currents will flow into the ground rather than passing through other nodes.

Therefore, in these cases, there are prominent characteristics and this is why shifting

method can capture well.

Table 6.3 shows the number of states left after shifts in example (1).

Table 6.3: Number of States left vs Shifts

Shifts # 1 2 3 4 5 6 7 8

100 3 3 3 3 3 1 1 1

400 8 8 8 6 6 4 4 4

900 17 15 13 13 11 9 8 8

1600 30 28 22 20 17 15 15 13

2500 43 39 33 30 26 22 22 20

3600 60 54 48 41 37 31 30 28



The convergence is showed in Figures A-i, A-2 and A-3. It needs to be pointed

out that for example (1) for larger size of systems, more shifts are needed in order

to guarantee the accuracy. Here is the dilemma: on the one hand, as in Figure 5-1,

for a given number of shifts using Chebyshev approach will keep a portion, say E,

of the whole number as the number of states left, which is cn but r < vi-. This

means that for a given number of shifts, there will a larger n where these shifts are

not sufficient. on the other hand, as the larger size of system requires more shifts,

the tolerant number of shifts is also increasing, as in d < 4. As no optimization of

choice of shifts is carried out and storage is limited, it is still unclear whether this

will finally affect the convergence of the shifting method for the first type.

6.4 Optimization of the choice of shifts

The optimization is applied to example (2) (10 x 10,20 x 20,30 x 30 grid) where direct

Chebyshev method is in unsatisfactory performance. The optimization of the choice

of shifts shows:

1. Compared with random initial guesses, Chebyshev points with a = 3% lead to

the minimal number of states left. This is that a random initial guess may lead

to a local minimum because of non-convexity.

2. For the 30 x 30 case, Table 6.4 shows the comparison of states left before and

after optimization.

Table 6.4: Number of shifts before and after optimization in example (2)

Shifts # 3 4 5 6 7 8

Before >30 30 28 22 22 22

After 31 22 22 17 13 13



The change of shifts' distribution is shown in Figure A-7, A-8 and A-9. The

primary change in the distribution is in the shifts near to the origin, or the slow

modes. As mentioned in section 5.1, the slow decaying mode have a naturally larger

impact and attention paid to these modes results in much better outcome, that is,

less states left.

6.5 Point-to-Point Error

Sometimes the 2-norm error is not strict enough to guarantee accurate approximation

and we observe the point-to-point transfer function value in DC frequency. Table 6.5

shows the different properties of the transfer functions of a middle point to all the

other points in the grid in DC case, or a column of DC response matrix. Please refer

to Figures A-4, A-5 and A-6.

Table 6.5: Comparison of point-to-all transfer functions

Example Transfer Function Value DC Error MOR

1 Concentrated around the point Low Error around the point Efficient

itself, low value at others. itself, may have enormous

errors at other positions.

2 The positions around point i- May have large errors aro- Difficult

tself are a little larger than und the points nearby.

at other places

3 Relatively similar at differ- Low Error at every positi- Efficient

ent positions. ons. Mostly below 5%.

From Table 6.5, it is seen that either example 1 or 3 can be satisfying because at

every point where the transfer function value is significant, the error is maintained at a

low level. For example 2, it is a poor type, as applying MOR to it is more difficult than

the other two and it has large errors where there are unignorable transfer function

values, although the overall 2-norm error is less than the threshold.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

1. The shifting method is to most possibly represent a system's characteristics

through successively picking shifts and the computational complexity is on order

n.

2. Systems with sufficiently clustered or sufficiently separated eigenvalues are most

favored by the shifting approach, though using different philosophies.

3. The choice of shifts requires experiments and is an optimization process that

generates statistically optimal results if Chebyshev polynomial roots are chosen

as the initial guess.

4. For 2-D RC circuit problems, the shifting method outperforms direct method

when there is strong coupling or there are heavy loads. For the former case,

convergence is guaranteed but not sure for the latter one.

7.2 Future Work

1. For the system between type 1 and 2, research should be continued about picking

better shifts and guaranteeing more satisfying point-to-point errors. For current

approach, in 2-D problem, without optimization, the shifting method could



not even outrun the direct method. Normally, the norm, which is a global

metric of matrices, is a looser standard than the point-to-point error guarantee.

Therefore, regarding point-to-point errors, mere 2-norm based SVDMOR will

require further actions to address the problem. [29] provides inspiring directions

in how to guarantee more strict point-to-point errors more efficiently.

2. The dilemma between the fact that more shifts are required for larger systems

and the one that more shifts are allowed in larger systems calls for more attentive

research, as discussed in section 6.3.

3. The relation of rescaled eigenvalues of the original system and singular values

of the Remainder is worth studying. The reason for choosing the system (1.4) is

that in this system the eigenvalues of A can be directly related to the singular

values of the Remainder, which SVDMOR is based on. However, for most

system, this is not the case. Symbolical SVD may be helpful for this problem

[30, 31].



Appendix A

Figures
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Figure A-1: Comparison of methods with different number of shifts in Example 1



Ground = 1000 - 10000

Figure A-2: Comparison of methods with different number of shifts in Example 2
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Figure A-3: Comparison of methods with different number of shifts in Example 3
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Figure A-4: Point-to-Point Transfer Function Error and Magnitude in Example 1

Point-to-Point Relative Error.. .. ... .. ... :. .. f i il : ... .. .... . Point-to-Point TF Magnitude

50

. . . . - . .

10

10

Figure A-5: Point-to-Point Transfer Function Error and Magnitude in Example 2
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Figure A-6: Point-to-Point Transfer Function Error and Magnitude in Example 3
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Figure A-7: Distribution of shifts before and after optimization
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Figure A-8: Distribution of shifts before and after optimization
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Appendix B

Full Algorithm

Table B. 1: Full Algorithm

A, B, C, D: original system matrices

n: the number of states

d: the number of shifts

r: the number of states left in the reduced Remainder

e: the threshold for keeping states

a: the percentage of the Remainder range

p': pre-stored shifts

Eigenvalue decompose A = QAQ - 1, get Q and A

if no p' are inputted:

Choose shifts using Chebyshev Polynomials using a

a = Amin, b = Amin + (Amax - Amin) (1 - a)

p'(k) = b cos(E 2k1) + +, k = 1,..., d.

% Generate the shifted system

ACT = AN, BCT = B

CCT = CN, DCT = D

% Generate the Remainder system

Generate Remainder using equation (B.3)

A, = [As]i, B, = Q- 1B



Cl = CQ d= - A(k) D, l= D

% Obtain reduced model

Apply SVDMOR (in Table B.2) to the system (A1, B 1, C1 , Dj) with E

and obtain (A,, B,, Cr, D,) that constitute GLo(s)
IIGcT(O)+GLo(O)-G(O)I 2

Output error e2 = JIG(0)112

% If Simulation is required

Evaluate GcT(s)u and GLO(S)U
Add GcT(s)u and GLo(s)u

-(A - u(1)I)

-(A - a(2)1)

-(A - 0(d-1)/

E R ndxnd (B.1)

Inxn Inxn

GLo(s) = CQ
Jl(S - ()

AN =

CN = [Inxn S Inxn] E Rnx nq, (B.2)

Q- 1B (B.3)d=( -  A(i k))(s - ,A,) i



Table B.2: The SVDMOR algorithm

A, B, C, D: input system matrces;

f: Tolerance for reducing singular values;

r: Number of remaining singular values;

1.Compute one matrix M' that reveals correlations.

2.Apply Low-Rank Approximation using e: M = UEV Vz UrE,Vr.

3.Find weights using Pseudoinverse: b = BUr(U'Ur)-', c = (VrVr)VrC.

4.Form the transfer function: G(s) 0 Uc(sI + A)-'bVr.

5.Apply MIMO MOR techniques [19]-[23] to Gr(s) = c(sI + A)-lb,

which is an r x r matrix transfer function, and obtain Gr(s).

6.Recover the system transfer function G(s) , UG,(s)V',

the number of states being reduced from n to r.

Commonly used Correlation matrices include

DC Response: GDC

The First Moment of the Response: G1

Frequency Shifted Moments: G o

1This matrix is often called Correlation Matrix.

= -CA-1B

= CA-' A - 'B

= C(soI - A)-IB

(B.4)

(B.5)

(B.6)
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