WORKING PAPER 165
MINI-ROBOT GROUP USER’S GUIDE
PART 1: The 11/45 SYSTEM

by

Meyer A. Billmers

Massachusetté Institute of Technology
‘Artificial Intelligence Laboratory

June, 1978

Abstract

This USER'S GUIDE is in two parts. Part 1 describes the facilities of the
mini-robot group 11/45 and the software available to persons using those
facilities., It is intended for those writing their own programs to be run
on the 11/45 system. ' .

A.I. Laboratory Working Papers are produced for internal circulation, and
may contain information that is, for example, too preliminary or too
detailed for formal publication. Although some will be given a limited
external distribution, it is not intended that they should be considered
papers to which reference can be made in the literature.

This report describes research done at the Artificial Intelligence
Laboratory of the Massachusetts Institute of Technology. Support for the
laboratory's artificial intelligence research is provided in part by the
Advanced Research Projects Agency of the Department of Defense under Office
~of Naval Research contract N00014-75-C-0643.

B Mlssmlusms INSTITUTE or' TECHNOLOGY 1978

"TABLE OF CONTENTS

1.0 Introduction

1.1 General description of system
1.2 Operating system references

2.0 The mini-robot operating system

‘Logging on: LO ,
Logging on: LOG and LOGIN
Conventions for prompt characters
The escape character: °C vs. °D
":" commands

Device names

NN NDNDNDND
S AW N -

3.0 The GT40

3.1 Loading the GT40
3.2 DISP

3.21 Console mode

3.22 Datapoint mode

3.23 Real-time edit mode

3.24 Switch-selectable features

3.3 PICT .
3.4 PLOT and PLTPKG
3.5 Display programming support

3.51 GTMAC
3.52 GTROS
3.53 P

4.0 11/45 System programs

4.1 DHTIO

O O 0 &

10

12

12
14

14
16

‘17

17
18
19
31
31
33
34
38

38

PAGE 2-

[- -

4.2 EDIT
4..3 MACRO
4.4 RUG

.11 Using DHTIO

.12 The command interpreter
.13 1/0 routines

.14 Miscellaneous routines
.15 Special considerations
.16 The SWITCH file

4.41 Location opening commands
4.42 Typeout modes '

4.43 Typein modes

4.44 Breakpoints

4.45 Monitor mode

4.46 Miscellaneous commands

PRINT
LIST and
ITS

SEND and
USERS
BATCH
COPY
VERIFY
MAIL and
LISP

NN N - G O N O - G S
Mo AW > W oG W,

4.E1 LISP
4.E2 File
4.E3 LISP

4.F The STAR

5.0 The 11/40 .

RELIST

RECEIV

MSGS

control characters
specification ‘errors
functions

macro

5.1 Loading the 11/40

5.2 RUG40

38
40
41
43
44
45

46
52
53

55
56
56
57
59
62

64
64
65
65
67
67
69
69
71
72

73

74
75

78
80

80
81

PAGE 3

5.3 TROS and BOS

6.0 The Devices

6.1 The
6.2 The
6.3 The
6.4 The
6.5 The

7.0 System

ANALOGIC converter
X-Y table
Photowriter

Scheinman arm
VIDICON

Maintainance Notes

7.1 Installing New Users
7.2 Reading diagnostics
7.3 Formatting a disk pack

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E

11/40 BOOTSTRAP PROCEDURE
11/45 BOOTSTRAP PROCEDURE
GT40 BOOTSTRAP PROCEDURE
11/45 CORE MAP

GT40 CONVENTIONS

81

86

86"

87
88
91

95

96

96
98
98

99
100
101

102

105

PAGE 4

PAGE 5

1.0 Introduction

This document describes the resources available to users
of the mini-robot
group (micro}automation group) of the Artificial
Intelligence Laboratory. It is in two parts: PART 1,
THE 11/45 SYSTEM, and PART 2, ACCESS FROM ITS,

PART 1 is intended for the user who will be dealing

to -a large degree with the PDP11/45 operating system, file

structure, and system programs such as EDIT, RUG, and MACRO.

‘The user in question will be writing software to run on the 11/45 system,
and may refer to this USER'S GUIDE for the necessary documentation

of the 11/45 system and associated facilities. The discussion

given in the body of this document will be detailed for the sake

of completeness, and should be suitable reading for a new user
unfamiliar with the mini-robot system.

‘PART 2, published separately as working paper 166, documents
those mini-robot peripherals for which software has been developed
on ITS. This partitioning of function relieves the PHOTOWRITER,
PHOTOSCANNER, VIDICON or ARM user, who has applications which the
ITS utilities can handle, from having to know any details of the
11745 system itself. Of course, users of those devices who wish

to write their own special purpose programs directly on the 11/45
,System may still do so; these users are referred to PART 1.

1.1 General description of the system

The mini-robot system consists of two Digital Equipment
Corporation minicomputers, a PDP11/40 and a PDP11/45.
The PDP11/45 runs the operating system which supports the
system software necessary for most user programming
applications. There are essentially only two languages supported
on the 11/45, FORTRAN and PDP11 assembler' language (MACRO).
There is a working version of LISP, but core limitations
render it impractical for most non-trivial applications.

The 11/45 has associated with it:

,1) Two RK05 moving head disks, capable oflstor1ng 1.2 million
words each

2) 31K words of core memory

3) A Vidicon TV camera ("computer eye") and digitizer for
obtaining visual information about a real world scene

4) A light sensitive P.I.N. diode camera, for highly linear,
randomly accessible visual input

5) Two mechanical manipulators ("arms")

6? An x-y table, capable of extremely high precision pos1t10n1ng
of objects in a plane

7) A high speed link and a low speed link to ITS, the AI
laboratory's time-sharing system

8) A GT40 graphic display termihal, used as the system console
and for various display programs

9) A GE1200 Terminet, used primarily as a line printer, and

10) Assorted-interfaces and other system peripherals, enumerated
in Appendix D

The PDP11/40 exists primarily to support a number of special
purpose devices, which may be used off-line in conjunction
with a program running on ITS:

1) An Optronics photowriter, used to make high quality photographic
"transparencies from digital picture data

2) An Optronics photoscanner, which can scan.transparencies or opaque
prints in black and white or color with high resolution, and return
a digitized picture on disk

PAGE 6

PAGE

3) An X-Y tablet, with which the user can enter line traces
with a special pen, and have the trace digitized and stored on disk.

4) 24K of core memory
5) Assorted system interfaces

In addition, a small operating system is provided for the user
who wishes to program the 11/40 for his own applications.

1.2 Operating system references

The operating system on the 11/45 is a modified version of DOS,
the Digital Equipment Corporation's Disk Operating System. The
modifications to DOS are described in this paper, but throughout
it- is assumed that the user is familiar with basic DOS. Before continuing,
danyone not familiar with DOS is urged to read the following references.
In the following, AL denotes sections of interest only to assembly
language programmers and F denotes sections of interest only to
FORTRAN programmers. Keep in mind that the mini-robot operating system
is based on DOS version 8; any references to BATCH should be ignored
(our own version of BATCH is described later). The references given should
avoid discussion of DOS features which pertain only to version 9.

‘AL only: PDP11 Processor handbook (1975 eé.) sections 1.6, 2.2, 2.3, 2.4,
chapters 3, 4, 5 .

AL, F: DOS/Batch Handbook (April '74 ed.)‘part 1, part 2 chapter 2
sections 2.3.1.2, 2.3.1.3, Z.3.i.4, chapters 3, 5, 6 sections 6.1,

6.2, 6.4.1, chapter 7 sections 7.1, 7.2

part 3 chapter 1 sections 1.1, 1.2, 1.6, 1.7,

chapters 2, 3, 4, 6 '

(AL only) part 6 -

(F only) part 7

(AL and F) part 9, part 10, part 12, appendices D, E, I, J, K

PAGE 8

2.0 The mini-robot operating system

The operating system which runs on the mini-robot 11/45 is a modified
form of DOS version 8, as described in the DOS/BATCH Handbook. This
chapter describes the significant modifications to that operating system.

2.1 Logging on: LO

Most frequently, the system will be powered on and in an idle state, as
indicated by the words "WELCOME TO THE MINI-ROBOT GROUP DOS V08-02" on the
system console (if the system is not up, see Appendix B). The user should
log onto the system by typing

$LO N, M

where N,M is your user identification code (UIC) which identifies you to
the system and specifies your file area on disk. The system will respond
with the date and time. However, if that information had been lost due to
a crash there will be a delay while the date and time are fetched from ITS.
In the event that ITS is down, a message to that effect will be typed on
the console and the user should then enter the date and time himself using
the DA and TI commands (see DOS/BATCH Handbook part 3 sections 2.8.4 and
2.8.20). .

Next, the system will search your mailbok to see if there are undelivered
mail or messages waiting to be read (mail is information directed to a
single user, messages are information directed to the entire community).
If you wish to read a given item, type a "space"; typing {CR> (carriage
return) will cause the remaining items to remain in your mailbox, where
they will be waiting when you next log in.

2.2 Logging on: LOG and LOGIN .

Alternatively, one can log onto the system with the commands LOG or LOGIN
(they are equivalent). These will serve to specify your UIC to the system,
but will omit the steps of searching your mailbox and obtaining the date
and time from ITS. It may be deSirable to have these steps skipped if you
are in a debugging mode and are constantly and frequently crashing and

| ' PAGE 9

bbotstrapping the system, so that the seconds spent in searching your mail
directory and setting the date and time may be worth saving. '

This is strictly a time-saving means of logging in for use in_a debugging,
crash-prone environment. For normal system use, the standard LO cbmmand
should be used. '

2.3 Conventions for prompt characters

"The following conventions are used for prompt characters throughout
this document:

$ - top level_prompt by the monitor. Indicates that DOS is
waiting for a monitor command.

- file specification brompt. Indicates that the program
is waiting for a file specification. File specifications
are of the form #<ofield> "<(" <(ifield>, where the ocutput
field and input fields are of the form DEV:FILNAM.EXT[uic]
and where DEV may be DKO or DKl and <uic?> may be omitted
-if the file is on your directory.

* - command prompt. Indicates that the program is waiting for
a command.

2.4 The escape character: “C vs. “D

The DOS method for interrupting a program and returning to monitor
level is the sequence “C and KI(LL). For ease of typing and support of
other features, this sequence has been replaced by the single character,
“D. All 11/45 software obeys the convention of using ~D.as the escape
character, and ~C should not be used (except as noted in a later section
for a special application). One caution: ~D should never be used to
interrupt a program which is running; running programs should not in
.general be interrupted until they have printed a prompt character (either
“"#" or "x") and are waiting for user input. In general, it is not safe to
interrupt running programs with either “C or ~D because I/0 in progress

PAGE 10

cannot finish correctly, causing the system to crash and disagreements to
arise on disk between a file and its directory entry.

2.5 "." commands

Normal syntax for DOS commands is a 2 letter command name following the
"$" prompt character. Since the most frequently used command by far is RU,
it has been replaced by ":". Thus, to run the editor, one now types

:EDIT

o j .
Programs run using ":" instead of Rq may have arguments passed to the
program on the same line as the call ofithe program. Thus, to edit the
program PROG on device DKl, one.may enter

:EDIT DK1:PROG

instead of waiting for EDIT's initial file specification prompt character,
"#®, and then entering the name of the file to be edited. '

Multiple arguments may be entered in-line, separated by épaces, where each
‘argument will be treated as one line of input to be passed to the program.
Thus, for example:

$;PIP DK1:FILE1.MAC/DE DK1:FILE2.MAC/DE

will run PIP and cause the files FILE1.MAC and FILEZ.MAC to be deleted. If
the character "~E" appears on the line, it will be translated into the
escape character ""“D" and the program will return to top level, as in

$:PIP DK1:FILE1.*X/DE “E
5
Caution is advised when using this feature to pass multiple arguments to a

program, however. Output is turned off while there are unfetched arguments
left in the string. (This is so that the prompt characters the program

PAGE 11

uses to ask for the already-supplied arguments will not appear.) An
~unfortunate side effect of this disabling of output is that any error
messages associated with any of the arguments are also lost. 'Normally,
therefore, only one argument should be passed to the program in-line.

¥

2.6 Device names

The DOS system provides for a two or three letter device name for each
device known to the system. In general, any device name may be used as an
argument to any system program expecting a file specification (although for
some applications, only a file-structured device may be permitted). The
devices known to the system, and their. device names, are given in the
following table.

DEVICE NAME

Disk 0O DK or DKO ; system disk

Disk 1 DK1 ' ; user disk

GE Terminet (output) GE ;lline printer

GE Terminet (input) GK ; keyboard

GT40 (input, output) KB ; system console
Null device NL ; output only; output

;s is discarded

The .two disk drives provide for a strict partitioning of disk space into
system storage and user storage. The upper disk, DKO, is always for system
use and should have the disk cartridge labelled SYSTEM loaded at all times.
The user should NEVER write on this disk. Backup copies of the system disk
will be kept in case of a crash, but théy may not be current. The user
should always mount his disk on the lower drive, DK1, and refer to DKl
‘whenever writing out files on his dire&tory. Unfortunately, it is the
nature of the DOS system that the systemidisk may not be write-protected,
so user care and cooperation are needed! to prevent the system disk from
being overwritten. '

PAGE 12

3.0 The GT40

The GT40, display. processor (and associated PDP11/05 processor) serves
as a general purpose system console for the mini-robot system and also as a
special purpose graphics terminal. As a system console, it replaces the
traditional TTY terminal; the GT40 can display up to 30 lines of ASCII
text (up to 68 characters per line) and can buffer hundreds of lines of
text in its memory when loaded with the console display progfam; DISP.
Scrolling is available to allow the user to look at text not currently on
the screen -- in effect, the user has a window into the text buffer which
-he can scroll around at will. : o

In addition, a number of special application display programs are
available to display graphs and two-dimension images, or to aid the user in
developing his own display programs.

3.1 Loading the GT40

The GT40 is loaded from the 11/45 system, either from top level or by
program control using a system call. 1In order to be loaded, the GT40 must
be running one of the following programs: '

1) Any of the display programs described in this chapter

2) A user-written graphic program which conforms to the
conventions given in Appendix E, or

3) The 11/05 ROM loader.

Ordinarily, (1) or (2) will be true (DISP, the console program, survives
the process of powering the system down, so it should not normally need
reloading on a day-to-day basis). Should the GT40 crash, condition (3) can
be made true by bootstrapping (see Appendix C).

To load the GT40 from top level, type :DISP (to load the general consple
program) or :GTLOAD (to load any of the special graphics programs described

here, or to load a user-written program). The syntax of the call is

:GTLOAD PROG

PAGE 13

where the file extension, if omitted, defaults to .BIN and the UIC defaults
‘to [3,3]. All of the standard display pr?grams are .BIN files onudirectory
[3,31. : |

GTLOAD may be used to load multiple programs into the GT40; the names of
the files should all appear on the command line, separated by commas. The
effect of supplying GTLOAD with multiple arduments is to cause each
program, in turn, to be loaded into the GT40. If this is to be meaningful,
the address space occupied by the various modules should be
non-overlapping, and only the last program listed should have a start
address specified. After the GT40 is loaded, the last program loaded in
w?ll be started at its start address.

The /R switch may optionally ‘be appended to the last argument to GTLOAD.
If it.appears, that program is assumed to be a .LDA file instead of a .BIN
file, and is loaded into the 11/45 and run. In this cése, the next to last
program listed is assumed to contain the start address.

. . []
To load the GT40 from your program, the macro .GTLD should be declared in
the .MCALL statement, and should be called as follows:

.GTLD PTR or .GTLD #STRING

where:
PTR: STRING
STRING: .ASCII *<ARGS>*<15>¢12>

and where "<ARGS>" is an argument list with the same syntax as for the
:GTLOAD call (optionally including the /R switch, as well), such as:
<ARGS>= PROG1,PR0OGZ2,DK1:PROG3[100,100]. Calling .GTLD in this fashion
causes control to pass back to the monitor (if no /R was specified) or to
the user program which was the last item in the argument list (if /R was
present). If you want control to return to the instruction after the .GTLD
call in your program, the following syntax is necessary:

.GTLD PTR, S or .GTLD #STRING,S

PTR: STRING
STRING: .ASCII *<ARGS>/S*<15>¢12>

PAGE 14

While the GT40 is being loaded by the 11/45, it displays the word
"LOADING".

Note that when calling .GTLD from a user program, the area in memory from
50000 to 60000 must not be used, as GTLOAD will occupy this area. If .GTLD
i§ to be called as a subroutine (using the /S convention), the area
50000~-60000 may be a user buffer whose contents may be clobbered by the
call. This area may not contain part of the user stack, however, or any

interrupt routines which could occur during .GTLD, as this will cause .GTLD
to be clobbered.

3.2 DISP

DISP is-a general purpose console program which displays up to 30 lines
of text and buffers many additional lines which may be viewed by scrolling
a "window" throughout the text buffer. DISP is the'program which is
normally running in the GT40, and may be reloaded from top level at any
time by typing ":DISP".

DISP has three principal modes of operation: console mode, datapoint
mode, and real-time edit mode. .The normal mode of operation is console
mode. Programs which have need for DISP to be in a specific mode can
change modes under program control; so th%t ordinarily the user need not be
aware of the multi-mode status.of DISP. Some brief familiarity with the
various modes is advised, however, since DISP may get out. of agreement with
a program's intention for it, necessitating user .intervention.

3.21 Console mode'

Console mode DISP is the normal mode of operation when the GT40 is being
used as a system console. |In console mode, DISP displays characters
received from the 11/45 program, transmits characters typed at the GT40
keyboard, and performs a number of housekeeping chores. Tabs, rubouts,
~U's, carriage returns and line-feeds are interpreted, and scrolling is
supported when in SCROLL mer (see below). In addition, DISP keeps a

PAGE 15

‘buffer of approximately 12000 characters received from the 11/45.
Ofdinarily, the last 29 lines received are displayed on the GT40 screen,
and a rectangular cursor indicates the position of the buffer’s end, which
is where the next character received by DISP will be displayed.

Console mode DISP has two sub-modes, which govern the effect of certain
‘control characters on scrolling. In TRANSMIT mode, all characters typed at
the keyboard are transmitted to the 11/45 program for interpretation; in
SCROLL mode, certain control- characters are interpreted by DISP to allow
the user to scroll a window 29 lines high and 68 characters wide through
the text buffer. To enter SCROLL mode, type HOME. To enter TRANSMIT mode,
type "LOCK-EOL" (hold down LOCK while typing EOL).

- When DISP is first loaded, it will be in console mode, and in SCROLL
‘sttb-mode.

In SCROLL mode, the following characters have special meaning to DISP:

(up-arrow) -- begin scrolling the text up (or the window down),
towards the end of the text buffer. If already scrolling up,.
(up-arrow) causes the scroll speed to increase. If scrolling
down, (up-arrow) stops downward scrolling. '

(down-arrow) -- begin scrolling the text down. If scrolling down,
increase speed. If scrolling up, stop upward scrolling.

(right-arrow) -- begin scrolling to the right. If already scrolling
ﬁright, increase speed. If scrolling left, stop leftward
scrolling.

(left-arrow) -- begin scrolling to the left. If already scrolling
left, increase speed. If scrolling right, stop rightward
scrolling.

(HOME) -- causes DISP to jump the display window to the last
screenful.

(LOCK-EOS) -~ causes. DISP to jump the display window to the
. end of the text buffer (actually, to the last line).

PAGE 16

This effectively clears the screen.

Note that the various ARROWS, HOME, and LOCK-EOS are also the control
characters “Z, K, ~X, "“H, and ~]. Thus if the 11/45 program expects to
receive any of these characters from the user, DISP will have to be in
TRANSMIT mode; in SCROLL mode, DISP will interpret these
control-characters as scrolling commands.

Note also that attempting to scroll past the beginning of the text buffer
(oldest text) will merely cause scrolling to stop. Scrolling may be
performed while DISP is receiving characters; DISP normally keeps the last
line of text and the cursor in view by scrolling one line of text off the
top of the screen each time a new line of text is received (if the screen
is full), but this "cursor following" feature may be overridden by
scrolling the display window away from the cursor while charaters are being
received. DISP will then allow you to look at the screenful selected.
Normally, as new characters are received, old characters are discarded so
that the text buffer always contains the most recent (buffersize) number of
characters received. If the screen window has been scrolled-away'from the
cursor, DISP will give priority to the characters being viewed; characters
shown on the screen will not be overwritten, and as new characters are
‘-received, DISP will discard the new characters (ringing the console bell
once for each character discarded) until the screen window has been moved
off the beginning of the buffer. "Cursor following" will resume once the
screen window has been scrolled forward so that the cursor and end of
buffer are visible, or if you type HOME or LOCK-EOS.

3.22 Datapoint mode

In datapoint mode, DISP effectively converts the GT40 into a datapoint.
This means that the scrolling features of display mode are disabled, and
the text buffer contains only the text visible on the screen. - (In this
mode, like a datapoint, DISP has no "memory".) Datapoint mode is entered

.under control of the ITS program (see Section 4.7); when that program has
completed execution, it restores DISP to console mode.

PAGE 17

3.23 Real-time edit mode

When DISP enters real-time edit mode, the rectangular cursor disappears and
only an EDIT cursor $hou1d be present on the screen. In this mode, special
real;time edit commands move the edit cursor around, and only this ‘mode
allows for the insertion of text into the center of the buffer (at the
location of the edit cursor). Real-time edit mode is entered under control
of the program EDIT (see Section 4.2), and return of DISP to console mode
is ordinarily handled by EDIT as well.

3.24 Switch-selectable features

DISP features may be enabled or disabled by the switches in the 11/05
switch register, as follows: : ’ '

(Switch 15) -- causes lines which are too long for the GT40 screen
to be continued on the next line. A continuation character
- (down-arrow) at the end of the line will indicate such a

continuation.
(sﬁitch 14) -~ cursor blink
(switbh 13) -- edit cursor blink
(switch 12) -- noisy mode. Causes the console bell to ring each

time a character is received.

{switch 11) -- literal mode. Causes control characters to be
displayed, so that tabs, carriage returns, line feeds, etc.
will appear on the screen. Useful if a spurious control
character has infiltrated your file, and you need to find it.

(switch 10) -- datapoint mode. If the DISP gets out of phase
with your program, so that it is in datapoint mode when
you're not talking to ITS, for example, toggling switch 10
will return you to console mode.

PAGE 18

(switch 7) -- super-literal mode. Causes meta-characters to
display (but only if they are received while this switch
is up, unlike switch 11, which toggles the display of
control characters as the switch is toggled).

Meta-characters are characters preceeded by a *\, and can cause DISP to
take an action (rubout and clear-the-screen are meta-characters; so are
the mode changing commands, the blink-the-next-character command, the
italics command) or to display a special character, such as a Greek letter
or mathematical symbol (the cursor and the edit cursor are both special
characters which are represented by meta-characters). Any meta-characters
received while switch 7 is up will be displayed as (right-arrow) followed
by the non-meta-character analog. DISP's special character set is
enumerated in a documentary message which fills most of the text buffer
when DISP is first loaded; to see it, type :DISP and then scroll
backwards.

One switch which is not part of. DISP but which affects the user at type-in
time nonetheless is the two-position switch (incorrectly labelled ON) on
the back of the GT40 keyboard. 1In the ON position, this switch causes
every character typed at the keyboard to be upper-case; when OFF, upper
and- lower-case letters may be typed.

3.3 PICT

PICT is a GT40 program (actually two programs) for the display of digitized
pictures on the GT40 screen.., PICTB6 displays binary pictures, and PICTB7
displays full 256 grey-level images {although the GT40 only displays 8
grey-levels, so that some image quality is lost). In addition to the
_picture display, which occupies the uppér two-thirds of the screen, PICT
maintains a text buffer like DISP's, and d1sp1ays a display window into the
text buffer of 9 lines (full width) in t e bottom one-third of the screen.
The user may scroll the display window using the ARROW keys, HOME, and
LOCK-EOS, as in DISP (but left and right scrolling are not implemented) and
may enter TRANSMIT and SCROLL modes, as in DISP. This text area
facilitates communicating with the 11/45 program which has generatéd the

PAGE 19

image, or with RUG in the debugging stages.

The 11/05 switch register is not implemented in PICT except for switches
0-2, which govern the size of the image. With the switch register set to 0
the picture will be at maximum size (as if switches 0-2 were all on); the
user méy select a smaller size by placing a number less than 7 in these
switches.

The two PICT's are loaded by GTLOAD, (see Section 3.1), and data in a
user's memory area may be sent to PICT using the system macros .PCTB6 and
.PCTB7. The appropriate MCALL must be issued in the declarations area.

.PCTB6 BUFPTR, (THRESH) -- .
sends a 64 x 64 point picture to the GT40 in binary mode.
THRESH is an optional pointer to a threshold value.
The default threshold is 0. All points of intensity
less than or equal to the threshold will be considered
zero in the binary representation. BUFPTR points to
the data buffer containing the picture.

.PCTB7 BUFPTR, (BUKPTR) --
sends a 64 x 64 point picture to the GT40 in normal
.mode. BUKPTR points to a buckets table. The default
buckets, if BUKPTR is omitted, are linear. The
bucket table, if supplied, should be 8 words long.
A point will be sent at an intensity which corresponds
to the first bucket that its value is less than or
equal to.

3.4 PLOT and PLTPKG

This section describes the programs PLOT and PLTPKG which proVide software
support for plotting and examining graphs of data on the mini-robot system.
PLOT runs in the GT40; PLTPKG is its counterpart in the 11/45.

The user can display up to 4 graphs at one time, can turn'any or all of the

PAGE 20

|

‘graphs on and off with the use of the 11/?5'5 bit-switches, and can examine
the function values corresponding to any ?oint on the graphs by scrolling a
set of cursors which provide data readout on the GT40. In addition, PLOT
supports 9 lines of ASCII text at the bottom of the screen, for use in
communicating with the program running in the 11/45. Here too, scrolling is
possible, allowing the user access to more than 9 lines (though ohly 9
lines are visible at one time). '

PLOT is loaded into the GT40 under program control, and when the user is
finished with PLOT, it may be unloaded (by loading the régular'display
program, DISP) by executing the command :DISP from top monitor level (%
level) anytime PLOT is resident in the GT40. Most programs that run in the
11/45 with PLOT in the GT40 adtomatically reload DISP when exited (e.g. via
a D when in PLTPKG).

The 4 graphs PLOT can display are generally referred to as the upper right,
upper left, lower right, and lower left graphs. Since there are two sets
of coordinate axes, upper/lower refers to the axis. Left/right refers to
the identifying ASCII message that appears to the left and right of each
axis -- the message on the left labels the left plot, etc.

Each plot may be turned on by raising one of the 4 bit switches, 0,1, 2 or
3 on the GT40 console. When a graph is turned on, its labelling ASCII
message will increase in intensity, and the message Y=+0 will appear below
‘the message. This number is the data readout corresponding to the point on
the graph indicated by the cursor arrow and blinking spot. There will be
one such number for each of the graphs whose bit switches are turned on.
The message X=0 which appears at the left center of the screen indicates
the X position of all the cursors (0 is far left). The message R=n which
appears below the X value reflects the current setting of the programmable
resolution (see below). The arrows may be scrolled (that is, the value of
.X may be changed) by typing the left and right arrow keys on the upper
left-most area of the keyboard. Similarly, the text at the bottom of the
screen may be scrolled by typing the up and down arrows.

LEFT-ARROW => Scroll Eursors left. If already scrolling left,
increase scrolling speed of cursors. If already
scrolling right, stop scrolling.

PAGE 21

RIGHT-ARROW => Same ds LEFT-ARROW, but to the right.

UP-ARROW => Scroll text at bottom of screeh up. If already
scrolling up, increase scrolling speed. If
already scrolling down, stop scrolling.

DOWN-ARROW => Same as UP-ARROW, but down.

HOME => Enter "SCROLL" mode. "SCROLL" mode is the only
‘mode in which any scrolling may be done.
If for any reason, PLOT should get out of "SCROLL"
mode and refuse to scroll, type the HOME key.

LOCK~EOS => (hold down LOCK key and type EOS while holding it).
Jumps to the end of the ASCII text in the
buffer (where the cursor is). Equivalent to
Typing UP-ARROW and then waiting a (possibly)
long time.

LOCK-EOL => leaves SCROLL mode. Scrolling will be disabled, and the
control-letter equivalent of the various arrows
will be transmitted to tﬁe user program (for
example, UP-ARROW is “Z and DOWN-ARROW is “K when
not in SCROLL mode). [.

PLOT has room on the GT40 screen for only the first 256 points of each
graph. When graphs are sent to PLOT for display, it will automatically
display the first 256 points and truncate the rest. The resolution is
initially 1, indicating that the graph is being viewed at maximum detail
(every point is being displayed). If the user's graph is longer than 256
pbints, and he wishes to view the rest of it, there are two options. If
the cursors are scrolled off the right edge of the graph, more new points
‘will be brought into view. Or, the user can increase the resolutioh. As
an example, if the resolution'is 2, the first 512 points of the graph will
be visible, though only every other point will be displayed. In this mode,
the points that are displayed may be examined directly by scrolling the
cursors; once the cursor points to the area of interest, changing the
resolution to 1 will cause a section of the graph centered around the
cursor's position to be displayed in detail. And of course, the resolution

PAGE 22

may be increased as much as desired.

In addition to the arrow keys' role in scrolling as mentioned above, the
following control keys are implemented in PLTPKG:

‘AL

redisplay the graphs at the current resolution, centered
around the current position of the arrow (that is to say,
with the arrow in the center of the screen).

~“A - halve the resolution, then redisplay the graphs centered
around the current arrow position.

“S - double the resolution, then redisplay the graphs centered
around the arrows. '

“W - advance the arrows to the next screenful.
“Q - move the arrows back one screenful.

~E -~ go to the beQinning of the graph.

“R - go to the end of the graph. |

The user who wishes to use PLOT will surely also need to have access to it .
from his program. The package of macros and subroutines called PLTPKG

makes that access easy. It is assembled together with the user's program,
as follows:

$:MACRO
#DK1:PROG, PROGSPLTPKG, DK1:PROG

and then the macros are available to the user. If the user intends to
assemble with DHTIO, the following will suffice:

#DK1:PROG, PROGSDHTIO[3,3], PLTPKG[3, 3], DK1:PROG

Note that the user program should then contain a .END RCOMM statement (see
section 4.1).

PAGE 23

The plot package will support left/right cursor scrolling, and data
readout. It will also automatically reload the display program DISP if a
~D is typed. . '

A list of these macros, along with sample calls and an explanation of each,
follows.

CLRUL
-- clears the upper left plot.
CLRUR
| -- clears the upper right plot.
CLRLL
-~ clears the lower left plot.
CLRLR
; ~=- clears the loweir right plot.
CLRALL

-- clears all plots.

Tpe user should clear a plot before sending over new data to that plot, and
should clear all the plots with CLRALL before sending over a new set of
plots. All plots on the screen at one time should be the same length, so
if you are sending over a single new graph, it should be the same length as
tPe others. To change the lengths of the graphs, first CLRALL should be
called. '

o ULMSG #MSG
-- sends the ASCII text at MSG to PLOT to

' ' be used as a label for the upper left plot.
The text should be 7 characters or less, and should

PAGE 24

end in a 0 byte {(e.g. use ASCIZ).
Example: ULMSG #MSG
MSG: .ASCII/Fn. #12/<0>

URMSG #MSG

-- sends out ASCII text to label the upper right plot.

LLMSG #MSG

-- sends out text to labe? the lower left plot.

LRMSG #MSG

-~ sends out text to label the lower right plot.

LDPLOT
-- loads the PLOT program into the GT40. Should be called
before any of the other macros in this packagg;
If using DHTIO, you might want to make a subroutine
which does a LDPLOT and include the name of
that routine in your ICOMND string.
LDDISP

-- unloads PLOT and loads the standard display program, DISP.
LDDISP should be called before the user's program
returns to mnionitor; otherwise, system parameters
which PLTPKG has saved will not be restored
correctly, and the system may crash.

The user who also uses DHTIO should implement
an EX command which executes LDDISP and then
does a JMP EXIT so that those system parameters
which DHTIO saves can be correctly restored
{(EXIT is a DHTIO label).

PAGE 25

RAD8

-- causes the X coordinate, the resolution, and the
data readout to appear in octal on the screen.

RAD10

-- causes the X coordinate, the resolution, and the
data readout to appear in-decimal on the screen. When in
decimal, these numbers will have a "." after
them. '

ARROW XNUM

-- sets the X coordinate of the cursors to be XNUM.
This is for use by the user who wants to move
the cursor around under program control '
instead of or in addition to having it moved by
the scrolling keys (see LEFT-ARROW and RIGHT-ARROW,
above) and PLTPKG's control-keys. User scrolling
will still work and will resume moving the cursor
from the position last set by an ARROW statement.

Example: ARROW #100. Also, ARROW R2.

ARWPOS N

-- gets the current arrow position, and returns it
in N. :
Example call: ARWPOS R}
' {

|

~- redisplays the graphs on the screen, centered
around the current cursor (arrow) position,
. at the current resolution. Same as typing L.

CENTER

K | PAGE 26

SETRES R

~- sets the resolution to R. The R= message on the
screen will change to reflect the resolution,
but the graphs will not be re-displayed. If
SETRES is called before doing CLRALL and sending .
new graphs, the new graphs will appear at
the desired resolution, but if existing graphs
are not cleared, then CENTER should be called
immediately after SETRES, so that the graphs
will be re-displayed at the correct new resolution.
Sample call: SETRES #4

GETRES R

-- gets the current resolution in R.
Sample call: GETRES RO

SETSH S

-- sets the value of an internal variable called SHIFT
to 5. SHIFT determines how many new points are
shifted onto the screen when the arrows are scrolled
off either edge. Default setting is 200. Setting
this variable to 256 would cause a whole new
screenful to appear, with the arrow on the far
left (with the default, the arrow will appear
indented 56 points). Setting it to 128 will cause
the arrow to appear in the middle.

Sample call: SETSH #256.

SNDGRF PTR,CTR,C1,C2,SR, INCR

-~ sends a graph to PLOT for plotting. PTR should point to
the beginning of the data buffer. CTR should contain
the number of words in the buffer (or the number of
points in the graph -- they are the same). Cl and C2

i
are codes to determin# which of the four plots
this will be:

€l =0 C2=0 =>upper left plot
Cl =0 C2=1 =>upper right plot
Cl =1 C2=0 =>lower left plot
Cl =1 = 1 =) lower right plot

cz

These four arguments, PTR, CTR, Cl and €2 must

PAGE 27

be. present in all calls of SNDGRF. SR and INCR are optional.
IT present, SR should be the address of a scaling
routine to expand or contract the range of the data

so that it will fit onto the graphs on the GT40
screen (the range that will fit is +160 to -160)
SR should scale the number in R3, and return.

" IMPORTANT NOTE: The graph in question should be cleared by
the user before SNDGRF is called. Use '
one of the CLR macros {CLRUL, CLRUR, etc.):
or CLRALL.

An example of a call:
SNDGRF #BUFFER,#200,#0,#1,#SCALER

where BUFFER is the data, 200 is the number of
points in the .graph, the graph is to go in the
upper right, and the data is to be scaled with

SCALER: ASH #-3,R3
RTS PC

that is, the data is to be divided by 8.

If present, argument INCR should be an increment
(in words) to be added while accessing the

data from the graph table. The default value

for INCR is 1, meaning that SNDGRF will plot
every point in BUFFER. If INCR is 2, SNDGRF

PAGE 28

will plot every other point (starting with the
first one), etc. This is for use in buffers which
have more than one function intermixed. For
example, if the format of the buffer is

BUFFER: X0
Yo
X1
Y1
X2

etc., then to plot the X's, one might call
SNDGRF #BUFFER,#1000.,#0,#0,#SR,#2
and to plot the Y'S,
SNDGRF #BUFFER+2,#1000.,#1,#0,#SR,#2

Note: SR, if present, must not disturb any

other registers besides R3. The call may

have more indirection;than in the

example, e.g. SNDGRF RO,R1,#0,#1 where RO contains -

the address of the bu|fer, and Rl contains the count, etc.

Note also that BUFFER, the data to be graphed,
should be one graph point per word.

KRR =5 There are two scaling routines supplied with
" the package for the user who needs some scaling

done to get his data to fit on the screen, and
who doesn't want to do it himself. If the data
is all positive, use #ASPO (auto-scale, positive
oniy), and if it is signed, use #ASPN (auto-scale,
positive/negative) in the SR position of the macro .’
call for SNDGRF. Both will take the data and
scale it to the maximum range that will fit on
the graph, e.g. if max(data) > 160 it will scale
the data down, and if max(data) < 160, it will
scale it up, so that you get the greatest possible
magnification. The scaling is done to the displayed

PAGE 29

data only; original data in the buffer is untouched.
Sample call: SNDGRF #BUFFER,#200,#0,#1,#ASPN

Using ASPN on positive data will cause it to

be scaled to use the upper portion of the

graph {(above the zero axis), wasting the lower
portion. Using ASPO on positive data will cause
the data to fill the entire plot, making the
zero axis meaningless and moving zero to the -
bottom of the plot. Using ASPO on signed data
will not work.

. BGRAPH

-- begin graph mode. Used only in conjunction with SNDPNT
(see below). :

EGRAPH
~-- end graph mode. Used only in conjunction with SNDPNT.
SNDPNT PNT,C1,C2

-- sends one point to PLOT when PLOT is in graph mode.
This is for the user who doesn't want to use SNDGRF,
because he wishes to send the graph one point at a
time as it is computed, rather than after it is
all stored in a buffer. PNT is the data item to
be plotted, and Cl and C2 have the same meaning as
in SNDGRF (but note that now, after the BGRAPH and
until the EGRAPH, points may be sent to any of
the 4 graphs, in any order desired.)

If the user does use SNDPNT rather than SNDGRF, he will
have to inform PLTPKG himself of the size of the

graphs and their names, or else the cursor scrolling
will not function correctly. The variable GRFCTR should

PAGE 30

be set to contain the number of graph points, and the
table DSPTBL should contain the addresses of the four .
graphs, in the following order: '

DSPTBL: UL ; UPPER LEFT GRAPH
LL ; LOWER LEFT etc.
UR
LR

Also,lINCTBL will have to be filled in with the INCR
values for the four graphs (same as the INCR argument
to SNDGRF), and SRTBL will have to be filled in with
the addresses of the four scaling routines. INCTBL
and SRTBL, like DSPTBL, are four-word tables, and

the order of the entries is the same as in DSPTBL.

- If SRTBL contains the address of the user's scale routines,

they will be executed automatically when SNDPNT is called.

Thus, there is no need for the user to call them to scale the data.
Once again, they should scale the data to the range +160 to -160.
Note however that the automatic scaling feature (ASPN and ASPO)
which was available in SNDGRF cannot be used here. The

user must provide his own scale routines if SNDPNT is used.

When using SNDPNT, it is not necessary to CLR the graph
first. CLRALL etc. will reset the pointers to the beginning
of the screen, and should be called when a new graph is

being sent. But the SNDPNT user can call the EGRAPH macro
when only part of the graph has been sent, type some stuff

to his program, call BGRAPH, and send the rest of the

graphs. The new points will be appended to the end of

"the existing graphs.

These variables, GRFCTR, DSPTBL, INCTBL, and SRTBL are already
present in PLTPKG, so your program need only fill

them in. Remember that if you use SNDGRF they will

be filled in automatically. This note applies only

to users of SNDPNT.

PAGE 31

TIMING INFORMATION: SNDPNT takes approximately 2 msecs.
per point, BGRAPH takes 1 msec., and EGRAPH takes 2 msecs.

Please note that in order for the cursor scrolling to function correctly,
the user program must have control (and should be waiting for a command
from the user). If the user.is debugging the program and is in RUG (e.g.
at a breakpoint, etc.) scrolling will not work (RUG will try to interpret
the scroll characters as RUG commands){ In order to use the scrolling
.feature the user must first proceed his!program (type altmode-P to RUG).
When using DHTIO, there should be a DHTIb prompt character on the scfeen.
indicating that DHTIO is waiting for a co@mand, when you try to scroll.

3.5 Display programming support

The remainder of this chapter describes the facilities available to the
user who wishes to write his own display programs for the GT40. Facilities
available are GTMAC, a. set of macros which implement a GT40 instruction set
for the MACRO assembler; GTRDS, the GT40 Trivial Operating System, which
implements an extension of the GT40 instruction set, and P, a GT40 program
which implements the 9 line mini-DISP feature found in' PLOT and PICT, while
allowing the user to write his own display routines to use the_upper

two-thirds of the screen. o

3.51 GTMAC

The PDP11/05 processor is, with only minor differences, capable of
executing the same instruction set as the 11/40. Thus 11/05 programs may
be written as if they were to run on the 11/40, assembled in absolute mode
(with the Assembler switch .ENABL ABS) and then loaded into the 11/05 with
GTLOAD. The instruction set for the GT40 scope processor is, of course,
markediy different, and the MACRO-11 assembler does not recognize any
standard mnemonics for the GT40 scope instructions.

To enable the user to program easily for the scope processor, the macro

PAGE 32

‘file GTMAC.MAC[3,3] has been made available. GTMAC.MAC contains macros
which expand into the various scope instructions. These macros are:

SGM 'MODE, INTEN,K1,K2,K3 -- set graphic mode. MODE may be .
CHAR (character mode), SVEC (short vector), LVEC (long vector),
PNT (point mode), RPNT (relative point), GRFX (graphplot x),
or GRFY (graphplot y). It is a required argument; all other
arguments to SGM are optional. INTEN sets the intensity
level. If present, it must be an integer from 0 to 7.

K1,K2, and K3 are keywords. None or all three may appear;
note that if INTEN is omitted, the first keyword must
still be the third parameter. Their order is arbitrary,
and they may be chosen from the following three sets:

LPI,NOLPI -- enables or disables light pen interrupts.
BLK,NOBLK -- blinking is on, off.

SOLID,LDASH,SDASH,DDASH'-- line type (solid, long dash, short
dash, dotted dash).

LDA K1,KZ2,K3,K4,K5 -~ load status register A. The keywords
Ki-K5 may be chosen in any order and number from the following
sets:

HALT - stops the scope

HI,NOHI - interrupt on scope halt is enabled, disabled.

LPY,NOLPY - the point of light pen interaction is intensified,
not intensified.

ITX,NOITX - characters are italicized, not italicized.

SYNC - halt scope and restart on next 60 HZ clock pulse.

_ i
‘LDB NUM -- load status register B. NUM i§ the 6 bit positive
graphplot increment. '

The following group of macros uses the parameter conventions:

X6,Y6 are signed, 6 bit coordinates

X10,Y10 are signed, 10 bit coordinates
X10A,Y10A are positive 10 bit coordinates

HIDE is an optional keyword that specifies that

PAGE 33

the item is not to be intensified.

SVEC X6,Y6 -- short vector mode instruction
LVEC X10,Y10 -- long vector mode instruction
PNT X10A,Y10A -- point mode instruction

RPNT X6,Y6 -- relative point mode instruction
GRFX X10A ~-- graphplot x instruction

-GRFY Y10A -- graphplot y instruction

As in MACRO programs, the .ASCII / text / statement is used to imsert
characters into a scope program. :

To use these macros in your scope program, specify the following command
.string to the assembler:

SRUN MACRO
#DK1:,DK1:<GTMAC.MAC[3,3], DK1:PROG.MAC

and your file, PROG.MAC, will be assembled with GTMAC.MAC and all these
macros will be defined. :

3.52 GTROS

GTROS, -the GT40 Trivial Operating System, is available to the user as
GTROS.BIN[3,3], and as the following macros in GTMAC:

SJMPR - position independent scope jump

SJSR - jump to scope subroutine.

SJSRR - position independent SJSR.

SRTS - return from scope subroutine.

SINT - interrupt the 11/05. The argument to this macro
specifies the address at which the 11/05 is to be started.

PAGE 34

SINTR - position independent SINT.

SINTH - interrupt the 11/05, and halt the scope program.
SiNTHR - position independent SINTH. |

BELL - ring the console bell.

SEXEC - start execution of the scope processor at the
specified address. :

SREXEC - restart execution of the scope processor at the
last point at which it was stopped by a SINTH or SINTHR.

To use the macros in GTMAC which are part of GTROS, the user must first
load GTROS into the 11/05. The procedure is as follows:

:GTLOAD GTROS,PROG.BIN (or use the .GTLD syntax in your program)

This will load GTROS and then your program which makes use of the GTROS
macros. GTROS is loaded from 320 to 740.

P is a utility for the programmer who wishes to write his own display
routines. P provides such users with an interface to the 11/45 in the form
‘of a mini-DISP with a 9 line display window which may be scrolled through a
text buffer, as in DISP. P receives ASCII characters "typed” by the 11/45
program and puts them in its text buffer; it transmits characters which
the user has typed at the GT40 keyboard to the 11/45 program; and it
displays the user's $cope program in the upper two-thirds of the GT40
screen, and allows the user's 11/45 program to communicate with the scope
_program, to dynamically change the display. P handles the 11/05
‘interrupts, and drives all the display (the 9 line text window and the
user's display) in "SYNC" mode so that brightness is constant as the amount
of display changes. '

PAGE 35

P has a text mode, in which everything received from the 11/45 is treated
as ASCII text and placed in the text buffer, and a control mode, in which
data coming from the 11/45 is transferred to the user's display program for
control of his display graphics. ' '

To use P, it must be assembled as follows:
:MACRO DKI:PROG,PROG/NL:TTH(GTNAC[s,S],P[3,3],DK1:PROG

and then should be loaded into the GT40 by the system macro .GTLD or from
top level by :GTLOAD (see section 3.1).

When done, PROG should be unloaded from the GT40, and DISP reloaded into
the GT40 by

.GTLD #STRING, S
where :
. !
STRING: .ASCIZ/DISP/<15)X12> h g
. i
|

The user's program should not have a séart address; instead, the user
should define a scope routine to display his picture, and an interrupt
routine to receive data from the 11/45 when P is in control mode.

The user's scope routine should begin at location USCOPE, which he should
define. The GT40 code should be written in .GTMAC macros, but the P user
is not permitted to use GTROS macros. The last instruction of the user
scope program should be '

SJMP PSCOPE . ;3 JUMP TO P'S SCOPE ROUTINES

The user's scope program will begin to display its picture as soon as PROG
is loaded into the GT40. The user's 11/05 interrupt routine will not be
called until P goes from text mode into control mode. This happens when
the 11/45 program sends a ~“A (ascii 1) to P. P will discard the ~A and
enter control mode, putting the address of the user's interrupt routine
into the interrupt vector. The address of the user's interrupt routine
should be contained in a symbol called UINTAD, and the status that should

PAGE 36

be loaded for user interrupts should be contained in UINTST, both of which
should be defined in the user's program. Once in control mode, data
‘interrupts coming from the 11/45 will pass directly to the user's interrupt

routine. Two subroutines are available in P to help the user get this
data:

JSR PC,GETIC

will get one ASCII character of data from the 11/45 interface and return it
- in RD. This is a seven bit binary number. If the 11/45 wishes to transmit
‘data items which are more than 7 bits long, it must do so in 7 bit pieces.
GET1C returns immediately, and will return whatever data is in the 11/45
interface hardware buffer. Call it too often, and you'll just get the same
data repeatedly. Ordinarily GETIC should be called once for each
interrupt. '

JSR PC,PUTIC

takes the 7 bit number in RO and sends it to the 11/45. It does not return
until transmission of the data across the. interface is complete.

There is no special character analbgous to “A which signals the end of
control mode. The decision to go from control mode to text mode is made by
the user's interrupt routine. To effect the mode change, the user program
should call the macro

TXTMD
and then return‘from the interrupt (RTI).

In addition to UINTAD and UINTST, the user must also define the symbols
USCPAD and USCPST. These should contain the address and status of the

user's interrupt routine which is to receive control when the scope program
halts. The scope program halts inside of P once for each display cycle.
This. is done to ensure synchronization with the clock, and to enable the
various 11/05 sub-programs to modify the'display code while the GT40
display processor is not running. (It is very dengerous in general for the
11/05 to modify display code while the GT40 display processor is executing
display code.) Since the user may wish to modify his display code based on

PAGE 37

data he received in control mode from his 11/45’program, he is given a
handle on these scope halt interrupts so that he may make his modifications
in this manner also. If you don't wish to do anything with the scope halt
interrupts, you can have

USCPAD: SCOPE
USCPST: 340

SCOPE: JMP PSCPAD

On the other hand, if the user wishes to change his scope program at scope
halt time, he should have the routine at SCOPE (pointed to at USCPAD) to
this. Since the changes are known at character interrupt time, the normal
programming practice is for the UINTAD routine to buffer the characters
received from the 11/45 in a ring buffer, and for the USCPAD routine to
empty this buffer, decide what to do to the scope code based on the data
received, and make the scope modifications. Note that the USCPST status
.should be 340 (priority 7, uninterruptable) so that the user will not
receive more characters in the ring buffer while emptying the buffer.

The USCPAD routine should not end with an ﬁTI as UINTAD did, but rather
with a

JMP PSCPAD _ ; JUMP TO P'S SCOPE HALT ROUTINES

so that P can restart the display at the proper time and do its own
housekeeping chores. Remember that while you are at USCPAD, the screen is
dark and the priority is precluding interrupts, so the user should not take
excessive time at USCPAD (more than 16 milliseconds repeatedly will cause
noticeable flicker).

IMPORTANT NOTE: the user's program must not end with the normal .END
statement. A special macro called END has been defined, and should be used
as the last statement in the user's program. '

A trivial sample program to serve as an example of the various calls and
syntax is PTST.MAC[3,3].

PAGE 38

4.0 11/45 System programs

This chapter describes the various system programs available to the 11/45
user. Some system programs are part of the standard DOS package and thus
are described in the references listed in section 1.2. Those programs which
are "home grown" or which are part of the standard DOS package but which
‘have been modified are described here. |

4.1 DHTIO

DHTIO is a programming package designed to simplify input/output drudgery
and to allow the neophyte system user to be able to write interesting and
useful code quickly. DHTIO provides a command interpreter with an argument
passing facility and various I/0 and system subroutines. and macros. The
cost of using DHTIO is several thousand words of memory (though the exact
cost is variable and memory requirements may be cut if the user is willing
to sacrifice certain classes of features) and a loss of flexibility in
doing I/0 (certain operations are impossible, such as renaming a disk file
or random-accessing a disk file). The DHTIO user is spared a large burden
of obscure programming needed to deal with the DOS system calls. The new
user is therefore advised te strongly consider using DHTIO until his
programming effort gets off the ground. If additional capablity is
necessary (and this is rare) he can always convert to DOS 1/0.

DHTIO is named for its author, Dave Taenzer.

4.11 Using DHTIO

The user of DHTIO must follow several conventions, which will be the
subject of this section.

DHTIO is the file DHTIO.MAC[3,3], and should be assembled with the user's
program as follows: '

PAGE 39

:MACRO DK1:PROG, /NL:TTM<DK1:SWITCH,DKO:DHTIO.MAC[3,3], DK1:PROG

where'DKl:PROG is the user's 11/45 program, and where DK1:SWITCH is a DHTIO
assembly switch file (see section 4.16).

Two labels must be present in the user's program: HELLO and COMTAB. HELLO
is the address of an information message the user wants printed whenever
the command interpreter sees "?" on a command line. The message must be
ASCIZ (end in a zero byte). Traditionally, the HELLO message 1lists the
commands available to the user, with a brief description of each. COMTAB
should consist alternately of a word containing the two ASCII characters of
a command name, and a pointer to the subroutine which executes that
command. An example is in order:

COMTAB: "AB,ABRTN ; EXECUTES AB ROUTINE

"CD,CDRTN
"EF,EFRTN

0 ; MARKS END OF TABLE!

HELLO: .ASCII/Commands available: /<15><12>¢15>12>
.ASCII/AB -- does ABRTN/<15X<12>
.ASCII/CD -- does CDRTN/<15X¢12>
.ASCII/EF -- does EFRTN/C15>(12><15>€12>
.ASCIZ/For more help, see DKI:HELP.INF[201,2013/<15><12><15><12>

The user's program will then consist of (the three routines ABRTN, CDRTN,
.and EFRTN. All three should return via the instruction RTS PC. Note that
the registers need not be saved, butlin turn DHTIO won't save your:

registers between- commands. |
Finally, tﬁe user program must énd with
END RCOMM
When started, this will piace control in DHTIO, where.a "x" will be

printed. Each time the user types a two-letter command at the‘keyboard,_
one of the program's subroutines will be executed.

4.12 The command interpreter

" PAGE 40

DHTIO allows the user to enter numeric arguments to any of the two-letter

‘commands .

The user may enter the arguments on the same line as the

command, or they may be omitted. In this case, when the subroutine that
implements the command calls to DHTIO for its argument, DHTIO will ask the
user for the argument, using an ASCII query which the user supplies, and
printing the default value of that argument. (The user enters the default
by typing <CR> when asked for an argument.) Multiple arguments may be
‘entered separated by spaces or commas. The macro GPARAM is used in the
program to call for a set of arguments. An example will illustrate:

ABRTN:

TABLE:

ABMSG1:

Then, at run time, the user may

GPARAM TABLE

-ABMSG1

10

0

100
AB1
ABMSG2
10

0

100
AB2

.ASCIZ/Value of AB1 /
ABMSG2: .ASCIZ/Value of ABZ /

*AB 20,30

or he may type '

s EXECUTED WHEN USER TYPES AB

; AB QUERY MESSAGE IF ARG. OMITTED

; DEFAULT VALUE FOR FIRST ARG.

; MINIMUM PERMISSIBLE VALUE FOR FIRST ARG.
; MAX. PERMISSIBLE '

; LOCATION IN WHICH TO STORE ARG. ENTERED
; TABLE ENTRY FOR SECOND ARGUMENT .

; ZERO MEANS END OF TABLE, NO MORE ARGS.

type:

PAGE 41

*AB
Value of ABl (default is 10) ? 20
Value of AB2 (default is 10)'? 30

Note that typing <CR> at the query enters the default value for the
argument, and that entering the character """ on the command line enters
all the default values for all arguments, as in :

*AB ~ _
This causes ABl and AB2 to receive the value 10. Attempting to enter an

argument which is not within the specified minimum and maximum range will
elicit an error message from DHTIO.

4.13 1/0 routines

DHTIO provides for a number of subroutines and macre calls to facilitate
I/0. 1/0 may be done to the GT40 only, to the GE Terminet only, or to disk
only. Alternatively, output may be done to the "current output device",
which may be changed among the three devices listed above under program
control or by the user at the console. Output done to the "current output
device" will be routed to whichever device is currently selected.
.Following are DHTIO's I/O functions: '

TYPEGT ARG -- sends the single ASCII charactér contained in ARG
to the GT40. .
Examples: TYPEGT #'A, TYPEGT RO

TYPEGE ARG -- same as TYPEGT, but to the GE terminet

CHAR ARG ~~- same as TYPEGT, but to the current output device

PRINT ARGPTR -- prints an entire ASCIZ string on the GT40.

ARGPTR points to the string.
Example: PRINT ERROR
ERROR: .ASCIZ/ Error! /<15X12>

OUTPUT ARGPTR -- same as PRINT, but to current output device

OPENO STRING,[DELETE] -- opens a disk file for output.
STRING must point to an ASCIZ string containing the
file specification of the file to be opened. [DELETE]
is an optional argument; if omitted, and an attempt is made
to open an already existing file, DHTIO will ask you if
you wish to delete the old file. If [DELETE] is present
({its value is unimportant) and the file already exists,
DHTIO will delete the file without asking.
Example: OPENO FILE1,D

FILEL: .ASCIZ/DK1:0UT.TXT/<15><12>

-DUMP BUFFER,LENGTH -- dumps LENGTH bytesifrom memory
beginning at location BUFFER to the disk file currently
open for output. ! :
Example: DUMP BUF1,#1000 s dump BUF1 to BUF1+777

OPENI [STRING] -- opens a disk file for input. The file
specification may be pointed to by optional argument
[STRING]; if omitted, DHTIO will ask the user for the
name of the file to open. '

Example: OPENI INFILE
INFILE: .ASCIZ/DK1:IN.TXT/<15><12>

LOAD BUFFER,LENGTH -- loads LENGTH bytes from the disk file
currently open for input into BUFFER.
Example: LOAD BUF1,#1000

JSR PC,RLINE -- gets a line of. text from the user into the
DHTIO buffer called TXTBUF.

PAGE 42

PAGE 43

4.14 Miscellaneous routines

PUSH ARG -- pushes ARG onto the stack
POP ARG ~-- pops the stack into ARG

BIN2D #A1,A2 -- converts the value.of the number in A2 to a
' five character ASCII string whose characters are the
decimal digits of A2, and puts the ASCII digits into
five bytes starting at Al.
Example: BINZ2D #Al,A2
Al: .ASCII/XXXXX/
A2: 129.
causes Al to become
Al: .ASCII/00129/

BINZ20 #Al1,A2 -- same as BIN2D, but converts A2 into 6 octal digits

BIN2A #A1,A2 -- does a BIN2D if the current radix is decimal, and
does a BINZ20 if the current radix is octal.
i
Note that BIN2D, BIN20 and BIN2A will take negative numbers - in this case,
tbey will put a "-" sign in the byte before Al (so the user should leave
this byte blank if he anticipates negative numbers).

RADJ Al -- replaces leading zeroes in the 5 byte string beginning
at Al with blanks (right-justifies Al).
LADJ Al -- replaces leading zeroes in the 5 byte string beginning
at Al with pad characters which the various output routines
. (such as PRINT or OUPTUT) will ignore (left-justifies Al).

JSR PC,YESNO -- waits for the user to type a character. If he
' types "N", YESNO returns to the location after the call;
if he types "Y", YESNO skips a word.
Example: PRINT QUERY ; ASK USER A QUESTION

JSR PC,YESNO ; WAIT FOR REPLY

BR NO ' '

|
|

. PAGE 44

r . L
YES: ... ; HERE IF "Y"
"NO: ... ' HERE IF "N"

JSR PC,UCRNT -- done after a JSR PC,RLINE, this converts
the characters in TXTBUF to upper-case.

'JSR PC,RDRTN -- change radix for all numbers to decimal

JSR PC,RORTN

JSR PC,KBRTN

change radix for all numbers to octal

make KB the current output device

JSR PC,GERTN

make GE the current output device

JSR PC,DSRTN make DK1 the current output device

JMP EXIT -- exit to monitor

4.15 Special considerations

ICOMND, if defined in the user program, will be an ASCIZ string of commands
(either DHTIO commands or user commands from COMTAB) to be executed by
DHTIO before printing the first "*". Thus any initializatiqn routines can
be automatically executed. S

Example: ICOMND: .ASCIZ/AB CD EF/<15><12)

"The character “C, if typed at DHTIO, causes the routine currently being
executed to quit, and causes DHTIO to come to command level.

The character "D", if typed at the command interpreter while it is awaiting
arguments, causes the command to be aborted along with any arguments

already typed.

All commands may be upper-case or lower-case.

PAGE 45

In RUG, executing RCOMM1SG has the same effect as typing ~C to DHTIO.

The user should note that many of the routines which are available to the
program are also available at command interpreter level as pre-defined
commands. One feature (macros) is available at command interpreter level
which is not pertinent to the program. The pre-defined DHTIO commands are:
' : N :
KB -~ change current output'device-to KB
GE ~-- change current output device to GE '

DS -- change current output device to DK1

FF -~ output a form-feed (L) to current output device

CR -- output a carriage-return to current ouput device

RD -- change the radix to decimal '

RO -- change the radix to octal

EX -- exit to monitor

EM -- enter a macro into DHTIO'S macro buffer. A macro is' a
. string of DHTIO commands.

PM -- print contents of macro buffer

XM ARG -- execute the contents of the macro buffer ARG times

4.16 The SWITCH file

As was mentioned in section 4.11, the user assembles his program with
DHTIO.MAC[3,3] and a switch file. This switch file is optional, if
omitted from the assembly string, the user will receive all the DHTIO
features described in this section. If memory space is critical, and if
the user can afford to dispense with certain of the DHTIO features, then
DHTIO may be selectively pared by defining certain assembly switches in the
SWITCH file mentioned earlier. These switches are:

ZNODSO=1 ; suppresses the disk output feature

; and saves 2440 bytes '
ZNODSI=1 ; suppresses disk input (saves 720 bytes)
" ZNOHIO=1 ; suppresses I/0 printout in "?" message

; (saves 554 bytes)
. ZNOMAC=1 ; suppresses macro feature (saves 1260 bytes)

PAGE- 46

4.2 EDIT

EDIT is the 11/45 editor which is specially designed to take advantage of

the graphic capabilities of the GT40 and of DISP. The full format of the
EDIT call is .

:EDIT DK1:PROG1<DK1:PROGZ,PROG3

where PROG1 is the file specification of the output file, PROGZ is the file
specification of the primary input file, and PROG3 is the file
specification of the secondary input file. The file extension in all three
defaults to .MAC.

The primary input file will be the file from which EDIT will read the first
page for displdy on the GT40 screen. Most EDIT commands reference this
file, but special commands exist to read from the secondary file. All
output of edited text goes to the output file (using NL: for the output
file is a convenient way to look at a file using EDIT without modifying
it). The most common protocol is for the primary input file to be the same
as the output file, with no secondary input file. This is the case when a
file_is being modified. 1In this case, there is a special syntax; the user
merely types '

:EDIT DK1:PROG

Note that if DK1:PROG.MAC doesn't alreadﬁ exist, EDIT will ask if you wish
‘to create a new file by that name. Typﬂng "Y" will create a new file by
that name, and give you an empty buffer to fill.

EDIT will read one page from the file being edited and will display the
first 29 lines on the screen. When editing is complete (upon execution of
the EX command or the EF command, or "X in real-time edit mode) EDIT will
write out the newly edited file as PROG.MAC, and will keep the old. file
(brior to the editing session) as PROG.BAK. If the user decides to abort
an editing session without writing out the file, he may type *D. This will
cause the .MAC and .BAK versions of the file to remain as they were before
the editing session started. Because of the seriousness of these
‘consequences, when the user types “D he will be asked to confirm his

~ PAGE 47

decision: typing "Y" exits and loses the editing done so far, and typing
any other character leaves you back in EDIT.

In normal editing mode, DISP will display an EDIT cursor somewhere in the
‘text buffer and the regular DISP cursor at the bottom of the screen. The
user types one or two letter commands, including any arguments the command
requires f{arguments are usually strings of characters and may be several
lines long). Commands may be separated by a single alt-mode; commands
that require no arguments may be terminated by a {CR>; all commands may be
terminated with two alt-modes. Separating commands with one alt-mode is a
syntactical convenience only. Commands will not be executed until either a
KCR> or two alt-modes is typed. At that time, all commands typed in will
be executed. Once the pending commands have been terminated and executed,
EDIT redisplays the screen and shows you the new state of the text buffer;
the text you see is always centered around the current position of the EDIT
cursor.

The EDIT command list is as follows:

B

go to beginning of buffer (move edit cursor to beginning)

A - append a page to the buffer (pages are delimited by “L's)

I -~ insert a string. String follows the I, ended with alt~-mode
G - get contents of save buffer (put at edit cursor location)
S - search. String to search for follows S, ends in alt-mode.

Example: Ssearch for this strings$.
Keep going until end of page, then stop. If no argument,
(e.g. S33) search for same string as last S.

N - search. If not found in this page, do a P, search
again, and keep going until end of file is reached.
If editing a multiple page.file, and an S search fails,
it is useful to be able to immediately do N$$. This
will search for the same string as the S search, but
not be limited the the current page.

P - write out this page, read in new page

M

EN
ET

EX

macro feature. This command is of the form
{N>M<ARG> where N is a count and ARG is a
string terminated by two alt-modes. If

ARG is present (it is optional) the string
is placed in the macro buffer. The contents
of the macro buffer is then executed N times
(N may be 0, especially if ARG is non-null).
Example: OMSstring$-2D$$ places the commands
into the macro buffer to search for "string"
and delete the "ng", but this won't actually

© occur until the user types M3$. Each successive

M$$ will do another search and delete another "ng"

save ARG number of lines in the save buffer.
ARG is numeric, such as 3X.

repeat last command line

alter ‘ARG number of characters. Does {ARG>DSI
Example: 30new string is this$d

delete ARG characters. Examples: 4D, -3D
advance cursor ARG lines. Example: 5L

delete (kill) ARG lines. Example: 5K

move cursor ARG characters. Examples: 56, -4C
print out this command list

same as N, but for secandary input file
print ARG lines on the GE terminet.

write out this file and exit to monitor.

PAGE 48

PAGE 49

EX1 - go to beginning of file (this works for
multiple page files by writing the rest of
the file out onto a temporéry file, and then
reading in the beginning. If you need to reference
something on an earlier page than the current page,
or if a search fails because the search falls off
the end of the file, it may be desirable to
use the sequence EX1SNSS.

EA - append a page from secondary input file to end
. of buffer {not at the cursor).

EF - do an EX and then start up a batch file (see Section 4.A).
The name of the batch file is the argument; file
extension defaults to .BAT, entire file name defaults
to PROG.BAT where PROG is the program being edited.

Examples: EFA.BT1, EFA, EF . !

Real-time edit mode has an entirely difierent command set. In real-time
edit mode, each command is a sihgle character, always a control character,
and commands are executed as soon as they are typed. There is no syntax
for most commands, and the user sees the effect of the command on the
screen immediately. The'user enters real-time edit mode from regular mode
by typing ~“R; the rectangular cursor will disappear from the bottom of the
screen. Characters other than control characters are self-inserting; so
for example, typing an "A" causes an "A" to appear at the locatidn of the
edit cursor. The real-time edit commands are as follows:

“R - enter real-time edit mode. If in real-time edit mode,
display the list of real-time edit commands.
(this list will disappear when the next character
is typed). '

'IO
~A - move the edit cursor to beginning of line

~“E - move the cursor to the end of the line

~“D - delete next character (after the cursor)

fRUBOUT - delete one character before the cursor

~0

W

~K

~S

~C

~u
~F
~B
“L
N
~p
~T

AN

~Z

4

insert a blank liné to the right of the cursor

delete rest of this line {from cursor to the end
of the line), but leave the carriage-return

kill a line. Deletes rest of line, including
carriage-return

search fdr'gtring; As you type the string, it will
appear at the bottom of the screen. It should
be terminated by two alt-modes

same as "S, but does an N search (across page boundaries)

quote the next character. Allows for insertion of
control characters.

rub out from beginning of line to cursor
move cursor forward one character

move cursor back one character

refresh the screen

- move cursor to next line

- move cursor to previous line

move cursor forﬁard 8 characters

move cursor back 8 characters

moye cursor forward 29 lines (one screenful)

move cursor back 29 lines

PAGE 50

PAGE 51

“Y - get next page (does a P)

~71 - move cursor to begdinning of.page (does a B)
LOCK-EOS - move cursor to end of page

~\ - does an EX1

~X ~ does an EF (with no argument)

~@ - puts you temporarily in regular edit!mode, allowing
one line of commands to be typed at Fhe bottom of
the sereen, then returning.you to real-time edit
mode automatically. Terminate with two alt-modes

ALTMODE - go fo regular edit mode.

The user should note that there are several internal EDIT buffers. The
save buffer is filled with text by using the X command, and that text may
be deposited in the selected location with the G command. The macro buffer
-contains EDIT commands to be executed repeatedly; it is filled by M and
also executed by M. The search buffer contains the string most recently
searched for (by either S or N) and allows that string to be searched for
again without being re-typed. The command line buffer holds the last line
of commands, and allows it to be executed again (by using the Q command).

The user should also note th;t the editor creates temporary files on his
directory; these are ordinarily deleted by EDIT as well, so the user.
should not be concerned with them. If EDIT should crash and the system
need to bhe bootstrapped; these files will appear on the user directory;
worse, they will be locked, so that EDIT will not be able to. delete them,
and attempting to EDIT anything will result in a DOS error message. If
this happens, they must be unlocked:

:PIP DK1:EDITOR.TMP/UN

will do it.

PAGE 52.

4.3 MACRO

MACRO is the DOS assembler. The description of MACRO in the DOS
programmer's handbook is accurate, with the following modification:

The user has several levels of listing file he may create. The command
string

:MACRO DK1:PROG, /NL:TTM/CRF<DK1:PROG

will create a full listing file, using 120 columns (due to the /NL: TTM) and
a cross-reference file (CRF).

:MACRO DK1:PROG, /NL:TTM<DKI:PROG

will create the full 120 column listing file with no cross-reference.

:MACRO DKl:PROG,/LI:TTM(DKI;PROG
will create a full listing file using only 80 columns.

:MACRO DK1:PROG, /NL<DK1:PROG

will create a mini-listing file which consists only of the symbol table.
This. mini-listing file is not really suitable for listing, but satisfies
RUG's need for a listing file. Any of the longer listing files above will
be adequate for RUG also (see section 4.4) but if the user does not use the
listing feature and does not want an enormous .LST file on his disk area,
using the /NL switch is a convenient way'to get by with a short .LST file
which is adequate for RUG's symbol defini?ion'needs.

|
Finally, the user can specify ' !
+MACRO DKI;PROG,/NL:TTM/CRF(DKIQPROG/L

This final /L will cause LINK to be started when the assembly is finished
(but only if there are no assembly errors).

PAGE 53

4.4 RUG

RUG is a powerful symbolic debugger which replaces DOS's non-symbolic
debugger ODT. RUG takes as an argument the name of the user program. It
loads the program into core, along with the symbol table for the progranm,
and allows the user to examine the contents of memory locations and to
change the contents. The user may reference symbol names that appear in
.his program, and may have the contents of a location typed out as a number
(decimal, octal, signed, or unsigned), as a symbol in the program, or as a
PDP11 instruction. He may type in numbers (pctal or decimal), symbols, or
PDP11 instructions. He may do integer arithmetic in octal or decimal.
Finally, the user may set breakpoints and execute his program in a
controlled way, examining the contents of selected locations as the program
is executed. It may even be single-stepped (executed one instruction at a
time).

- Calling RUG with the command string
:RUG DK1:PROG

will cause RUG to take the following actions: 1) A search will be
.initiated for DK1:PROG.LST; this file must be present, or RUG will give an
error message.

2) The symbol table in DK1:PROG.LST will be searched and the symbols found
therein will be defined so that they may be referenced by name during the
debugging process.

3) RUG will attempt to locate DK1:PROG.MAP. If found, RUG will read the
relocation constants for PROG from it, -which will be added to all
relocatable symbols in PROG's symbol table {those which have an "R" next to
them in the symbol table portion of the listing file). If no JMAP file is
found, RUG will warn the user of this fact, and then assume a relocation
constant of zero. (Recall that the relocation constant applies only to
relocatable symbols; if PROG is an .ASECT with no .CSECT, then the
relocation constant is never used.) 4) A search will be made for
DK1:PROG.LDA, and if it is found it will be loaded into core. If this file
does not exist, RUG will print an error message.

PAGE 54

l
The file DK1:PROG.LST must exist, but it|need not be a full listing file.

See sectioh 4.3 for the use of MACRO to create partial listing files.

If DK1:PROG.MAP does not exist, a relocation constant may still be supplied
to RUG by typing ' ' .

:RUG DK1:PROG/RC:42642

If DK1:PROG.LDA was obtained by linking together the separately assembled
modules DK1:PROG1.0BJ,DK1:PROGZ2.0BJ, and DKl:PROGs.OBJ, the user may type

:RUG DK1:PROG1,PROGZ, PROG3

and RUG will load DK1:PROG1.LDA, use DK1:PROG1.MAP for the three relocation
constants (one for each module), and read in all the symbols from
DK1:PROG1.LST, DK1:PROGZ.LST, and DK1:PROG3.LST.

When RUG prints its "#", (if the user just typed :RUG), the user may type
just a <CR>. This will cause RUG to enter debugging mode without defining
any symbols or loading any user programs into core.

RUG will allow the user to define approximately 600 symbols, and then wili
print the message "TOO MANY SYMBOLS -- THERE WERE N UNDEFINED SYMBOLS".
Extra symbols will merely be ignored by RUG.

All symbols beginning with the letter "Z" and all symbols whose value is
less than 100 will not be defined by RUG. This allows the user to have
"garbage" symbols in his program which will not occupy space in RUG's
symbol table.

‘When RUG has completed the process of defining user symbols and loading the
user program, it will enter debugging mode and prompt with a "*", At this
point the user may execute any of the RUG commands described below.
Debugging mode may be entered at any time by starting the processor at
17000 if there is a copy of RUG in core.

"If RUG is used in conjunction with a user program, the program cannot
extend below location 50000 in memory.

PAGE 55

4.41 Location Opening Commands

The following commands govern the opening and closing of core locations.

foo/ opens location foo and.closes currently open location
foo\ same as above, but opens foo in byte mode
/ when typed at an open location, opens the contents

of that location and closes the original location.

closes the currently open location and opens the
previous location

<CR> closes the currently open location
<LF> same as <CR>, and additionally opens the next location
[same as /, but opens the left haﬁd (source)

argument of the currently.openglocation or of
the last location opened if no?e is open

] same as f, but opens the right hand (destination)

argument
< undoes an indirection chain (of [, / and] commands)

and opens the or191na1 open location.

‘When RUG opens a location, it types out the contents of that location and
then allows the user to change the contents by typing something to be
entered there. Anything the user types at an open location which is not a
RUG c¢ommand and which makes sense to RUG will be stored in the open
location when it is next closed. If the location is closed without
anything being typed, its con}ents will be unchanged. Note that only one
location may be open at a time.

PAGE 56

4.42 Typeout Modes

‘RUG has a number of typeout modes which govern the way in which the
contents of a location being opened are to be interpreted. Preceeding a
typeout mode with one alt-mode will set that mode temporarily (so that it
will only have effect until the next <CR> is typed), while preceeding it
with two altmodes sets the mode permanently. When RUG is started, it is in
instruction mode.

The typeout modes are:

- instruction mode

- symbolic mode

constant (numeric) mode

- ASCII mode

- Radix50 mode

. - decimal constant mode (typed again, goes back

to octal constant mode)

"-". signed number mode (negative constants are printed
with a "-". (Typed again, goes back to unsigned mode.)

Q - radian mode

- T o W /7, I
1

4.43 Typein Modes

Regardless of the typeout mode, RUG will always allow instructions,
numbers, symbols, or expressions composed of symbols, numbers and "+" and
"-" signs to be typed in to any open location. There are a number of
special typein modes which are available, however:

& - enters up to three radix50 characters
' - enters one ASCII character

" - enters two ASCII characters

37. - enters the decimal number 37

PAGE 57

4.44'Breakpoints

A breakpoint is a tagged ifstruction in a user program which, when
executed, causes control to return to RUG so that the state of the program
may be examined. The following RUG commands govern the use of breakpoints:

$B

fool$B
35B

n$D

$D

3G

SYM$G

P

ndp

“P

sets a breakpoint at the current value of "." (the
location currently open, or the last location to
have been opened)

sets a breakpoint at foo

types out the locations of all current breakpeints

if n < 10, deletes breakpoint number n. If n > 10,

“deletes the breakpoint at location n.

deletes all breakpoints

starts execution of the user program.at the program's
start addres;

starts execution of the user program at SYM

proceeds with the execution of the user program. This
is valid only after at least one breakpoint has
been encountered.

same as 3P, but sets a proceed count of n for the
breakpoint being proceeded past. This count will
be decremented each time the breakpoint is
encountered, and RUG will not receive control
until the count has gone to zero, so that the
breakpoint will effectively be proceeded past
n times.

same as 13P or just P

PAGE 58

3N single step. Executes one instruction from the user
program and then re-enters RUG.

n$NI Executes n instructions in the user program.
“N Same as 13N or just SN

$F Same as SN if the current instruction is not a JSR.
If the current instruction (next fo be executed) is
a JSR, $F executes the entire subroutine and then
re-enters RUG. :

~F Same as SF

fG Interrupts the user program and enters RUG as if
a breakpoint had just been encountered

In RUG the user is allowed to define 8 breakpoints. When a breakpoint is
encountered RUG will type a breakpoint message of the form:

Bn;SYM/ INC RO ; RO/ 123

wheré Bn is the breakpoint number, and SYM is the location of the
breakpoint. The user should note that the instruction at SYM has not yet
been executed. Other messagées RUG uses when entered from the user program
are:

SS; -~ single stepping

SB; ~-- subroutine single step (from a 3F)

IMR; -~ illegal memory reference (non-existant memory or
attempting to reference an odd address with a word
instruction)

I0C; -- illegal operation code (attempting to execute an illegal
instruction)

BE; -- bad entry (RUG encountered a BPT instruction or bit 4 of

PAGE 59

the PSW when no breakpoint or single stepping was expected)
~G; -- control G (the user typed "G)

Mn; -- monitor point. One of RUG's monitor points has become
true (see Section 4.45)

Note that including a BPT in the user program is often a convenient way to
assemble in a breakpoint.

4.45 Monitor mode

Monitor mode allows the user to have RUG monitor his program for the
presence of certain conditions, and to enter RUG if those conditions become
true.

First the user sets monitor points, which are similar to breakpoints,
except that the user specifies the location to be monitored, the .value to
be monitored for, and the condition to monitor for (contents = value,
contents > value, etc.)

RUG will then execute the entire program in single step mode, checking the
conditions in each monitor point after each instruction. This is a slow
process; RUG, when in monitor mode, runs about 80 times slower than the
program executing at full speed. Consequently, monitor mode is only useful
in selected applications, but can provide a powerful tool for finding
obscure bugs.

The following commands are pertinent to monitor mode:

~E -~ enters monitor mode. When in monitor mode, RUG
will prompt the user with ">" instead of "*",
This indicates that the program will be single
stepped and will run slowly; this is true even
if no monitor points;are set. Conversely,
even if monitor points have been set, if RUG
is not in monitor mode then the program will

PAGE 60

nbt be single stepped and the monitor points
will not be checked.

“L =~ leave monitor mode.

3M or SYM$M - sets a monitor point to monitor location
SYM (if SYM is omitted, monitors ".", the currently
open or most recently opened location). RUG
will ask for the value, the condition, and a
subroutine. The condition may be any.of the
branch instructions, less the initial "B",
e.g. GE, LT, HIS, EQ... the subroutine
should be omitted (type <CR>) unless you wish
to use this feature, which is explained below.
REMEMBER: setting a monitor point has no effect
until you place RUG in monitor mode (with “E).
Once set, monitor points may be left in place,
and RUG may be shifted into and out of monitor
mode without affecting them.

$5M - lists all currently set monitor points

n$kK - if n < 10, kills monitor point number n. If n > 10,
-kills monitor point at (monitoring) location n.

3K - kills all monitor points (but does not necessarily
leave monitor mode)

.AND - a flag which, when non-zero, causes RUG to be entered
on a monitor point only when all of the monitoring
conditions become true at the same time. If .AND
is set, RUG will cease to test monitoring conditions
as soon as one is false; thus, if the first test
is the least likely to be true, the monitoring
will run much more quickly.

“T - when typed the first time, enters trace mode. This
effectively sets an internal monitor point and
does a "E. The internal monitor point records

PAGE 61

the value of PC each time an instruction is
executed, and stores them in a ring buffer of
size 26. Successive “T's print out the buffer
contents. Thus, if the user program is
jumping into data and halting, trace mode
will show you where the program was for the
last 26 instructions before it halted.

The user may set up to 8 monitor points.

Routines which run at interrupt level will not be monitored unless bit 4 of
the PSW entry of the interrupt vector is set.

If the user specifies a subroutine when setting a monitor point, then the
user subroutine will be run’once for each instruction executed in the
single -stepping process, and it will be allowed to decide whether the RUG
should be entered. The user subroutine should: :

1) not modify any registers

2) set the C bit if it wishes RUG to be entered on this monitor point

Note that the user subroutine may not look directly at the registers, since
they will contain RUG's values, not the program's values. However, RUG
will pass the subroutine a pointer to the first word of the MPT block;
spgcifying that the monitor point should monitor location RO when you set
it up will cause RUG to give the subroutine a pointer to the user program's
registers.

.Examples of the use of monitor mode:

EX1: You want to know if R2 is ever > 100.

R23M -

VALUE: 100
CONDITION: GT
SUBR.:

For the rest of the examples, we will abbreviate the
above process as R2 <