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OVERVIEW

Offshore platforms have been installed in increasingly

deeper water. However, some studies indicate that the

Cognac platfbrm installed in 1025 ft of water is probably

the practical upper limit of the fixed offshore platform

due to economic and engineering problems. There is a

consensus today that the fixed platform is optimal up to

1,000 ft, the guyed tower between 1,000 and 2,000 ft and

the TLP between 2,000 and 3,000 ft.

In Chapter 3 a description of the TLP is given.

First, the total TLP system is overviewed followed by

a relatively detailed description of the Tension Leg

Platform itself. Next the installation is described

Finally, the advantages of the TLP are discussed.

In Chapter 4 some previous work is reviewed.

First, research'and experimental results are reviewed

to indicate the available engineering level of the TLP.

Then 5 proposed designs are reviewed.

Chapter 5 presents the difficulties associated

with the actual design of the TLP and explains the

purpose and goals of this thesis.

In Chapter 6 published data are analyzed to get

useful information for an actual preliminary design.
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This data include proposed TLP designs, actual designs

of semisubmersibles, and designs of fixed platforms.

First, equations to estimate equipment weight are presented.

These equations enable us to estimate the equipment

weight from production capacity, water depth and displace-

ment and are very important at the preliminary design

stage.

Next, relations among parameters are derived.

They include: (1) Steel structure weight vs. displace-

ment, (2) Deck size vs. deck load, (3) Deck size vs.

deck weight, and (4) Displacement vs. draft.

Section 6.3, Estimate of Freeboard, presents a method

to predict maximum and minimum freeboard required from

environmental data.

Section 6.4 presents a method to estimate the jacket

weight from the jacket volume. This method is used in

the computer program to calculate the light weight.

Finally, Section 6.5 presents a method to calculate the

light weight without using the computer. This is very

useful to find an initial value of the displacement

to start the computer iterations.

Chapter 7 introduces two simple models for analysis

and reviews the various design parameters and require-

ments. Section 7.2 presents a method to minimize the
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dynamic tension variation for a given range of wave

period. Section 7.3 discusses the stability. Two conditions

are considered. The one is the towing-out condition,

and the other is the operating condition with one leg

totally lost. Section 7.4 presents the evaluation of the

dynamic excursion, Section 7.5 discusses the wind and

current forces. Section 7.6 presents a method to calculate

the static excursion. In Section 7.7 the dynamic stability

is discussed. Section 7.8 describes the pitching moment

effect on mooring tension variation. Finally, in Section

7.9 natural frequencies are discussed. The computer program

is developed based on these design considerations.

Chapter 8 presents the results of the computer

calculation and the analysis of these results. First,

displacement and deck size are discussed. A method to

check the relative importance of the dynamic effects

against static effects is introduced. This method is

used to explain the correlations between displacement

and deck size and horizontal excursion.

In Section 8.2, the relation between the ratio of

light weight to displacement and positive tension restric-

tion is presented. The influence of draft is discussed

in Section 8.3. In Section 8.4, natural frequencies are

discussed. It is shown that there is no problem with
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surge and yaw but there can be a problem with heave and

pitch for deep water. In Section 8.5, it is shown that

dynamic stability is not critical as long as the TLP

has a reasonable static stability.

In Section 8.6, the influence of water depth is

discussed. Another method to estimate riser and mooring

system weight is presented. The minimum required displace-

ment, together with the natural heave period, are calcu-

lated for various water depths based on 2 different

assumptions of weight estimate. It has been shown that

the practical limit of the TLP is at most 1,000m. Due

to limited data available, it can not be determined

which assumption is closer to the truth. Some other

results are discussed and finally an approximate yet

very simple method to estimate the horizontal excursion

is presented.

Based on the analysis presented in Chapter 8,

a design procedure of the TLP is developed in Chapter 9.

Finally, in Chapter 10, this investigation is summarized

and recommendations for future research are outlined.
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CHAPTER I

INTRODUCTION

The last decade has seen tremendous advances in the

development of deep water technology in the field of

offshore drilling. A number of exploratory wells have

been drilled in water depths in excess of 3,000ft.

However, development and production technique have

not advanced to the same extent.

As the search for hydrocarbons continues, offshore

platforms are being installed in deeper and deeper

water. These platforms have primarily been of the fixed

type. The Cognac platform installed offshore Louisiana

in 1,025 feet of water is the deepest existing rigid

platform. However it is expected that the application

of the fixed offshore platform for deeper water will

encounter serious technical and economical problems.

The cost of fixed structures increases beyond

a certain point, exponentially with water depth and

the severity of the environmental forces. Only large

and prolific reservoirs can be considered for develop-

ment using a fixed platform in deep water. In addition,

as the water depths increases, the first natural periods

of vibration of these platform increase up to 4~5

seconds. The wave forces have significant energy at
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this level and dynamic amplification becomes significant.

(see Fig.1) Such structures may thus be subjected to

a very large high number of cycles at a significant

stress level so that structural fatigue becomes a signifi-

cant problem.

Another limitation of the fixed type platform is

the fabrication capability. Single-section jackets are

necessarily constructed in a horizontal mode in order

for cranes to roll and lift the jacket sections into

position. The highest lift used in fixed platform fab-

rication to date was a 316 ft crane for the Cognac

project. According to the study (14) the base width

in the short dimension is generally one-third of the

water depth, making 1,000 ft water depths the limits

of conventional technology, at least until cranes with

a higher capacity are developed.

Consequently, development of relatively small

reservoirs or those located in water depths beyond

the economic limit of a fixed platform require alternate

production concepts and the need for such production

facilities will also arise soon.
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CHAPTER II

COMPARISION OF ALTERNATIVES

2.1 Description of Each System

Due to the economic and engineering problems dis-

cussed in the previous section, considerable interest

has developed in the use of compliant structures.

Compliant structures, by definition, allow motion under

wave loading and therefore experience reduced stresses.

In other words, these structures avoid severe dynamic

problem by making the structures more flexible and

moving their natural frequencies to the lower frequency

side of the wave spectrum.(see Fig.1) Though there are

numerous variations of compliant structures, 3 distinct

types TLP, guyed tower and semi-submersible as shown

in Fig.2-1 are 'regarded as the more practical concepts.

The guyed tower is a relatively slender symmetrical

structure supported on the sea bed and held upright by

spread-moored guy lines. A guyed tower, particularly

for water depths greater than 1,000 ft, could be fabri-

cated at a smaller cost than a conventional fixed plat-

form because of uniform cross section and greatly reduced

steel tonnage. The concept is quite attractive for

light deck loads and a mild environment. The cross-section



-23-

of a guyed tower is generally about one-tenth of the

water depth. The study projected that guyed towers

will not likely be installed in depths greater than

2,000 ft, because the size at such depths becomes dif-

ficult to fabricate. Although no full-scale guyed tower

exists today, Exxon has installed a 1/5 scale model

in 300-ft water depth.
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A second alternative which takes advantage of

readily available semi-submersible drilling platforms

and much tested equipment and techniques is the floating

platform production system. The first such installation

is Sedco-Hamilton's Floating Production Facility (FPF)

on the Argyll Field in the North Sea. Prudent operation

of such a conventionally moored facility requires that

the wells be shut-in and risers be cleared of oil and

retrieved well in advance of weather conditions which

would impede such operations. The result is significant

downtime and therefore a less cost-effective program.

Also, when production is resumed, flow rates are often

lower.

The tension-leg platform is basically a large

semisubmersible drilling vessel with vertically anchored

lines at high tension. In 1976, the 1/3-scale version

of a TLP has been installed and tested off Southern

California.(16,17,18) Unlike the fixed platform or

guyed tower, the tension-leg platform requires a subsea

wellhead system or template. Placement of the template,

wellhead assembly and anchor blocks, and connection of

the production riser and mooring systems (cables or

structural riser pipes) make the tension-leg platform

more expensive to install. However its relative insen-

sitivity to water depth makes it very attractive for



-25-

deep water. The basic description and variations of

this type of structure are presented in Chapter 3.
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2.2 Optimal Depth for Each Concept

Technical and economical comparisions of these

alternatives show that each has a certain optimal water

depth range.(see Fig.2-2) The semisubmersible can be

deployed at virtually any water depth but the prospect

of substantial down-time for weather and maintenance

makes it a lesser choice. Fixed steel platform are

suited for shallow water applications up to a depth

range of 800 to 1,000 ft of water, at which point the

guyed tower becomes the most economic application.

The guyed tower is expected to be the least expensive

unit between 1,000 and 1,800 ft of water. Beyond 2,000

ft the guyed tower becomes too massive for practical

use and the tension-leg platform becomes the most eco-

nomical application. For ultra-deep discoveries past

the 3,000 ft depth, the natural period and heave of the

tension-leg platform becomes too large. Platform designs,!

for production in water depths beyond 3,000 ft have not

been seriously evaluated, but the semisubmersible pro-

duction facility linked to a future version of the

existing subsea systems will be the likely choice.



Fig 2-2 (14)
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CHAPTER III

DESCRIPTION OF THE TLP

3.1 Subdivision of the System

The TLP production system consists of (see Fig.3-1)

(1) A semi-submersible type floating structure moored

with vertical tension cables, or structural riser

pipes to the seabed, which carries the usual

processing and/or drilling equipment.

(2) A production riser system for flowing fluids between

the seabed and the TLP and for servicing the wells

and reservoir.

(3) A sub-sea wellhead system consists of a multi-well

seafloor template and a comparatively simple safety

block valve for each well. (Fig.3-2~3-4)

(4) An offshore tanker loading oil export system or

pipeline to shore.

Produced crude oil is processed on the platform

and transferred to shore through a subsea pipeline or

a tanker loading/shuttle tanker system. A variation

of the tanker loading system would include an undersea

storage tank to make production capability less sensitive

to tanker availability.
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3.2 Description of the TLP

The Tension Leg Platform is a floating structure

similar to ordinary semi-submersibles. The principal

characteristic of this type of platform is that its

buoyancy exceeds the weight, and the supplementary

downward force is supplied by tensioned vertical anchor

cables or by risers.

The basic motion is similar to that of an inverted

pendulum; it is very flexible horizontally and rigid

vertically. The effect of this mooring system is to

eliminate vertical motion while permitting limited

horizontal excursion of the platform.

The mooring system provides the necessary resil-

iency to absorb horizontal forces developed by wind,

wave or current, while providing the restoring force to

keep the platform on station. As the platform is forced

off station, the horizontal component of the mooring

line tension counteracts the offsetting force. The

draft of the platform increases with offset and this

enhances the restoring force effect.

The maximum offset is limited by design to insure

that riser stresses remain within acceptable limits.

Platform buoyancy and anchor size are selected to insure

that mooring lines remain in tension and the anchors



-32-

can stand maximum expected mooring tension.

The vertical dynamic response of the platform

due to wave motion is minimized by carefully designing

the vertical and horizontal members, to take full ad-

vantage of the principle of wave force cancellation.

As the wave crest passes along the platform (see Fig.

3-5), the buoyancy of the platform increases. At the

same instant, downward forces are caused by the passing

wave through the associated water particle accelerations.

As the wave trough passes the platform, the vertical

forces are reversed.

Thus the buoyancy and acceleration forces resulting

from waves tend to cancel each other at all times.

The optimum sizing and distribution .of the buoyant

members maximizes the wave force cancellation effect

and minimizes the cyclic response of the platform.

The result is a smaller (less costly) and more efficient

mooring system.
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Fig 3-5

Wave Crest Wave Trough
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3.3 Installation

The wellhead template and the anchor templates

will be fabricated and installed at least one year

ahead of the platform to achieve an early start to

production drilling. The platform installation will

be assisted by a number of tugs and a temporary caterary

mooring system to position the TLP over the anchors.

The TLP is ballasted with seawater to float freely

when finally installed. Some designs require temporary

auxiliary bouyancy tanks at this stage. The mooring

tethers are run simultaneously and each is stabbed-in

and connected to the appropriate anchor post at about

the same time. At this stage the tethers are slack, and

the next step is to apply tension by a combination of

deballasting and the hydraulic tension mechanism.

Finally the remaining tethers are installed and the

correct tensions applied.



3.4 Advantages of the TLP

The following is a summary of the major advantages

of a TLP production system as compared to other alter-

natives.

(1) Unlike conventional fixed type offshore platforms,

TLP costs are relatively insensitive to water

depth increases.

(2) Since there is virtually no movement of the well-

head relative to the deck structure, constant ten-

sioning devices or flexible piping can be eliminated.

Thus essentially conventional fixed offshore platform

drilling, completion, production and workover oper-

ations are conducted from the TLP deck.

(3) TLP can be retrieved and used again at other locations,

an attractive feature allowing flexibility in devel-

oping a field. The much lower salvage costs plus

the possible reuse value are facts that make the

overall economics of the TLP very attractive.

(4) The construction procedure allows the bulk of the

production facilities and platform equipment to be

installed at the fabrication yard, effectively

reducing the offshore construction costs and in-

stallation time.
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CHAPTER IV

REVIEW OF PREVIOUS WORK

4.1 Review of Research

A number of companies and investigators have carried

out research on tension-type platforms. Paulling et al

developed a method of predicting the TLP motions and the

forces in the mooring legs using a linearized hydro-

dynamic synthesis technique.(20,21)

The actual application of the TLP concept was

carried out by Earl and Wright on a "screen barge" in

1966. Gravel for the transbay tube in San Francisco

Bay was placed by this screen barge. Earl and Wright

carried out feasibility and parametric studies, as well

as an actual initial design of a TLP system.(13)

Another structure that has actually been fabri-

cated, installed(1976) and tested is the 1/3-scale

version of a TLP by Deep Oil Technology off Southern

California.(16,17,18) The platform is triangular in

shape, 130 ft on each side, and 66 ft in height from

deck to lower horizontal pontoon. The test site was

in 200 ft of water on the seaward side of Catalina

Island. Many field tests which simulate actual instal-

lation and operation have been and still are being

carried out.
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4.2 Review of the Proposed Design

Most major oil companies are developing variations

of the tension leg platform. Conoco intends to install

a TLP in the North Sea over the Hutton field.(1,2,3)

The proposed 8-column TLP with rectangular deck will be

installed in 485 ft deep water by 1984. This project

is considered to be a test of TLP system in an actual

production mode, similar to the non-production TLP

test off the coast of southern California.

B.P. designed a four-column TLP with square deck

for 183 meter deep Magnus field in the North Sea.(4,5,6)

B.P. also studied 2 types of tensioning system-spiral

strand wire and tubular steel pipe. It was concluded

that while a TLP system was technically feasible for

Magnus, it was not the most economic solution.

The Aker group has proposed its own Aker TPP41

tethered production platform.(11) The hexagonal hull

configuration was developed by Gulf Research and Devel-

opment as the least sensitive to wind and wave direction.

(19)

Amoco and Standard oil proposed a four-column

TLP with square deck.(6,7,8,9,10) They also conducted

fatigue analysis of the structural risers. Tecnomare

also designed a four- column TLP with square deck for
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600 m deep water.(12) Tables 4-1 through 4-5 summarize

technical data of 5 proposed TLPs.
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Table 4-1

Conoco
References (1,2,3)
Production Capacity 120,000(b/d)
Water Depth 147m
Site Hutton field in the North Sea

Environmental Condition
Max. wave height 30m period 17sec
Max. wind 44m/s( lmin mean)
Max. current 1.13m/s
Max. tide +2m

Dimensions
Deck length 78m
Deck width 74m
Draft 30m
Freeboard 23.7m
Deck height 10.8m
# of column 8m
Column diameter 15m
# of mooring tethers 12 steel pipes

Load Summary(tons)
Facilities 15,000
Structure Steel 20,000
Riser mooring system etc. 3,400
Ballast 1,800
Pretension 11,500
Displacement 51,700

Motion
Wind and current lOm
Wave 14m
Total 24m



Table 4-2

British Petroleum
References (4,5,6)
Production Capacity 80,000(b/d)
Water Depth 150-600m
Site Magnus(183m) in the North Sea

Environmental Condition
Max. wave height
Max. wind not available
Max. current
Max. tide

Dimensi ons
Deck length
Deck width
Draft
Freeboard
Deck height
# of column
Column diameter
# of mooring tethers

Load Summary (tons)

85m
85m
30m
33m

4

24

Facilities
Structure Steel
Riser mooring system etc.
Ballast
Pre tention
Displacement

Motion (200m water depth)

Max. excursion 16m

Sat

-r

TETHERED BUOYANT
13,0

?

8,0'
30, 0O

Load Summary (tons)

3



-41-

Table 4-3

Amoco
Referencies
Production Capacity
Water Depth
Site

Environmental Condition
Max. wave height
Max. wind
Max. current
Max. tide

Dimensions
Deck length
Deck width
Draft
Freeboard
Deck height
# of column
Column diameter
# of mooring tethers

Load Summary (tons)

(6,7,8,9,10)
26,000(b/d)
264m
Gulf of Mexico

26m period
67m/s (1min
2.7m/s

'61m
58m
36m
19.5m
9m
4
9m
24

13-16sec
duration)

Facilities 4 350
Structure steel 11,500
Riser mooring system etc. 3,474
Ballast 1,150
Pretension , 9,526
Displacement 30,000

Motion (1,000ft deep)
Wind & current 130ft
WaveI +25it

L
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Table 4-4

Aker
Referencie s
Production Capacity
Water Depth
Site

Environmental Condil

(11)
150,ooo
150m
northeri

tion

Max. wave height 30m
Max. wind 56m/s
Max. current 1.35m/s
Max. tide 2.75m

Dimensions
Deck length
Deck width
Draft
Freeboard
Deck height
# of column
Column diameter
Mooring tethere

86m
86m
32m
25,6m
9m
4
16m
Cables

Load Summary (tons)
Facilities
Steel Structure
Riser mooring system etc.
Ballast
Pre tension
Displacement
Payload

Motion
15% of the water depth
for 150m water depth

12.5% of the water depth
for 300m water depth

Ii,

Ii Ž

I

I-

F

--
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Table 4-_5

Tecnomare
Reference (12)
Production Capacity ?
Water Depth 600m
Site the North Sea

Environmental Condition
Max. wave height 30m
Max. wind 56m/s
Max. current 1.34m/s
Max. tide 2.75m

Dimensions
Deck length
Deck width
Draft
Freeboard
Deck height
# of column
Column diameter
# of mooring tethere

Load Summary (tons)

196m
96m
35m
?

4
?
24

Facilities
Structure Steel
Riser mooring system etc.
Ballast
Pretention
Displacement
Payload

23,500

15,ooo
64,500
26,000

a

Load Summary (tons)

- -



CHAPTER V

PURPOSE

The design of a TLP is rater complicated, because

it is required to satisfy many requirements which may be

conflicting with each other.

The following is a summary of the major design

requirements.

(1) Fabrication requirements

Most of the TLP dimensions are controlled by the

available capacity of graving docks, especially

its overall width.

(2) Dynamic requirements

Its natural frequencies must be kept outside the

wave frequency range:and the vertical force vari-

ation must be minimized. These two requirements

govern both the TLP dimensions(esp. column diameter

& lower hull size) and the vertical mooring con-

figuration.

(3) Structural requirements

Maintaining a positive minimum mooring tension

requires careful selection of geometric parameters

and appropriate pretention.

(4) Material requirements
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The vertical mooring system must be designed so

that it can stands both the maximum tension and

life-time fatigue damage.

(5) Operational requirements

Operational requirements dictate that geometric

parameters shoud be chosen so that the maximum

horizontal excursion is less than the allowable

one and that the TLP has a sufficient freeboard

at the maximum offset position.

(6) Stability requirements

The TLP must maintain positive stability in the

floating mode(tow-out condition) To avoid capsiz-

ing or severe damage when an anchor fails, it is

necessary to have positive stability in the oper-

ating mode as well.

(7) Economical requirements

Cost should be minimized.

Although many studies have been carried out (which

allow us to predict the TLP's performance reasonably

well) and several designs have been developed based on

these results, these sophisticated methods are costly

and require time and accurate data. Thus these methods

are not appropriate for the preliminary design, which

requires simple estimates without detailed data.
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It is quite rare that accurate long term wave

data are given at the preliminary stage. Often times

engineers are required to design based on the guessti-

mate of the maximum wave height. The purpose of this

thesis is to present a simple and practical design

procedure, which enables fast estimate at the preliminary

design stage.
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CHAPTER VI

ANALYSIS OF PUBLISHED DATA

6.1 Estimate of Equipment Weight

The first step of this analysis is to estimate

equipment weight. Equipment weight can be classified

into 3 categories.

(1) Riser & Mooring System; Wr

production risers, structural risers, winches etc.

(excluding pretension)

(2) Production and/or Drilling System; Wp
all the equipments directly related to production

and/or drilling

(3) Auxiliary Equipment; Wa

outfitting, machinery, electrical, piping, venti-

lation, bilge & ballast and accommodation.

Subsequently the purpose is to establish reasonable

correlation between equipment weight and important

parameters. For this purpose data were collected and

the analysis of this data indicates that water depth,

displacement of the TLP and production capacity are

the dominant factors.

Table 6-1 shows weight data of proposed designs.

First, let us consider the riser & mooring system.
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Assuming that the weight is a function of displacement

and water depth, and using design data of Conoco and

Amoco, the following equation is derived.

Wr=0. 4*Lwd* A/1,000 (eq.6-1)

Wr; Weight of riser & mooring system (ton)

Lwd Water depth (m)

A; Displacement (ton)

Table 6-2 shows production & auxiliary equipment

weight of several production platforms. Note Eq.6-1 is

used to estimate the weight for several TLPs. In Fig.6-1

production & auxiliary equipment weight data are plotted

against production capacity. It is clearly seen that

production & auxiliary equipment weight is strongly

related to production capacity.

An article "Cost correlated for N. Sea platforms"

proposes two equations for superstructure cost.(29)

ce=0.415*P +26.32 for low gas and oil ratioc

ce=1.4064*Po for high gas and oil ratio

ce; Superstructure cost ($million,1976)

Another article "The Brent Oil-Field" (28) gives

the following information. P =550,000 b/d and equip-

ment weight is 82,680 tons for the Brent Field.

Assuming that superstructure cost is proportional to

equipment weight, the following equations are derived.
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Equipment weight=44.4*Pc +2, 814 (tons) for low GOR

Equipment weight=150.3*Pc (tons) for high GOR

These two lines are also drawn in Fig.6-1.

Considering these two lines and all other plotted

data, the following equations are derived.

Wp=CP c  (Eq.6-2)

W a=93.3* /1,ooo (Eq.6-3)

W ; Weight of production and/or drilling system (ton)

Wa; Auxiliary equipment weight (ton)

P ; Production capacity (10 3b/d)

c; Coefficient 44.4_ 5 cS_ 88.8

The reason why c varies from 44.4 to 88.8 can be

explained by 2 uncertainties.

(1) The characteristics of the fluids produced-some

crude oils require more processing equipment, while

others do not.

(2) The function assigned to the TLP operation. It can

be designed solely for production or both production

and drilling.

Table 6-4 compares Amoco design to estimated values

by Eq.6-2 and Eq.6-3. They agree relatively well.

Finally putting all together the following equa-

tion is derived.

W =(93.3+0. 44*Lwd )* A/1,000oo+cP (Eq.6-4)
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We; Equipment weight (tons)

Table 6-3 shows weight estimates for the same designs

listed in Table 6-1. Estimated values agree well with

actual value.

Table 6-4

Amoco Estimate

Prod.&Drill 2,100 t 1,154-2,308 t

Aux. Equip 2,200 t 2,799 t



Table 6-1 Technical Data of Proposed TLPs

Table 6-3 Weight Estimates by Hypothetical Eauation

References 11 4,5,6 1,2,3 6,7,8,9,10 13

Steel Structure(t) 15,000 13,000' 20,000 11,500 10,887
Ballast(t) 2,100 1,800 1,150
Pretension(t) 10,000 8,000 11,500 9,526 9,072
Total Equip. Weight(t) 14,000 9,000 18,400 7,824 11,340
Displacement(t) 41,100 30,000 51,700 30,000 31,298
Prod. Capacity(b/d) 150,000 80,000 120,000 26,000 100,000
Riser & Mooring(t) 3,400 3,474
Prod. & Aux.(t) 15,000 4,350

Designed by Aker B.P. Conoco Amoco Earl & Wright

Designed by Aker B.P. Conoco Amoco Earl & Wright

Riser & Mooring 2,713 2,640 3,344 3,485 3,278
Prod. Equip. 6,660o- 3,552- 5,328& 1,154k- 4,440o

13,320 7,104 10,656 2,308 8,880
Auxiliary 3,835 2,799 4,824 2,799 2,920
Total Equip. Weight 13,208- 8,991- 13,496,- 7,438-- 10,638-

19,868 12,543 18,824 8,592 15,078
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Table 6-2 Production & Auxiliary Equipment Weight

References Prod.Cap.(b/d) Prod. & Aux Equipment Type Comments.. r.....C"p...b... Weight (ton) TypeComments

1,2,3 120,000 15,000 TLP
6,7,8,9,10 26,000 4,350 TLP
11 150,000 11,287 TLP =14,000-2,713(est. R&M)
4,5,6 80,000 6,360 TLP =9,000-2,640(est. R&M)
13 100,000 8,062 TLP =11,340-3,278(est. R&M)
22 200,000 12,269 Jacket
23 150000 8,000 8 Gravity
24 100,000 ? TLP 5,000oo-0,000
25 45,000 4,000 Jacket
26 120,000 7,000 Semi
27 10,000 3,000 Jacket
27 200,000 10,932 Jacket
27 200,000 10,433 Jacket
28 100,000 18,000 Jacket
28 150,000ooo 23,480 Jacket
28 150,ooo 14,800 Jacket
28 150,000 26,400 Jacket
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6.2 Relations Among Parameters

Fig.6-2 plots various steel structure weight against

displacement. Table 6-5 shows the corresponding data

to Fig.6-2. From Fig.6-2 the following equation is

derived.

Wss=0.37*& (Eq.6-5)

W ss Steel structure weight (ton)

A ; Displacement (ton)

Fig.6-3 shows Deck Size vs. Deck Load and Table

6-6 lists the corresponding data. This information is

useful to check the adequacy of deck size for a given

deck load.

Fig.6-4 shows Deck Size vs. Deck Weight and Table

6-7 lists the corresponding data. From Fig.6-4 the

following equation is derived.

Wd=(0.74±0.16)*L*B (Eq.6-6)

Wd; Deck weight (tons)

L; Deck length (m)

B; Deck width (m)

Fig.6-5 plots displacement against draft. Table

6-8 shows the corresponding data. Plotted data tail-

off where draft exceeds 30m probably because of construc-

tion constraints.
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Table 6-5

Data Mark Displacement Steel Structure References Type

A 51,700 t 20,000 t 1,2,3, TLP
B 30,000 t 11,500 t 6,7,8,9,10 TLP
C 41,100 t 15,000 t 11 TLP
D 31,298 t 10,887 t 13 TLP
E 41,000 t 12,500 t 30 Semi
F 11,697 t 3,175 t 31 Semi
G 19,051 t 6,804 t 31 Semi
H 29,263 t 8,687 t 32 Semi
I 28,000 t 10,600 t 33 Semi
J 64,500 t 23,500 t 12 TLP

I
Ln
01
1
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Fig 6-3

Deck Size vs Deck Load
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Table 6-6

Data Mark Deck Load (t) Deck Size (m2) Type References

A 4,000 1,320 Jacket 25
B 2,948-3,402 1,034-1,100 27
0 23,522 5,002 22,34
D 26,000 4,420 Jacket 36
E 9,500 4,200 Gravity 2
F 7,100 7,641 Semi 42
G 8,628 g,418 43
H 9,396 ,200 45
I 5,785 5,869 46
J 7,366 3,861 32
K 6,175 2,253 51
L 10,092 5,576 52
M 5,593 5,593 Semi 33
N 5,000 7,544 Jack-up 54
0 2,631 1,880 Jack- up 56
P 10,000 6,335 TLP 58,59
Q 14,000 7,396 58,59
R 7,000-14,000 3,700 60
S 9,000 7,225 4
T 7,824 3,538 7,10
U 18,400 5,772 1
V 12,600 6,656 TLP 61



Fig 6-4

4u)

- ww - ww w - - v



i 0

Table 6-7

Data Mark Deck Size (m2) Deck Weight (t) Type References

A 441 408-499 Jacket 27
B 1,034 680-907 27
C 2,233 1,680 35
D 9,290 5,443 27
E 2,787 1,043 27
F 4,180 998 Jacket 27
G 4,200 3,500 Gravity 37
H 3,538 3,250 TLP 7,10
I 3,4oo00 3,100 Gravity 28
J 4,000 5,600 28
K 3,400 4,200 Gravity 28
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FigG-5

Draft vs Displacement
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Table 6-8

Data Mark Draft (m) Displacement (t) Type References

A 30 30,000 TLP 4
B 36 30,000 7910
C 30 51,7oo 1
D 31 36,600 61
E 32 41,100 11,58,59
F 35 64,500 TLP 12
G 22.5 28,000 Semi 33
H 24 22,809 45
I 20 16,412 46
J 25 21,773 48
K ,24 29,263 32
L 22 26,824 49
M 25 31,530 62
N 22 17,300 51
0 21 23,715 64
P 24 27,322
Q 13 15,017
R 14 17,017
S 15 12,934
T 14 11,685
u 8.2 8,433 Semi 64
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6.3 Estimate of Freeboard

In the case of the TLP the freeboard must satisfy

the following inequality.

f H/2+(tide)+(sinkage due to horizontal excursion)

+(freeboard allowance)

f; Freeboard (m)

Hw; Max. wave height (m)

In the case of the semisubmersible, tide and sink-

age due to horizontal excursion have no effect on free-

board, thus

f Hkw/2+ (freeboard allowance)

ABS rule requires a freeboard allowance of 1.52m

(5ft)(65). For simplicity, horizontal excursion is

assumed to be 15% of the water depth because 15% is

probably the maximum allowable horizontal excursion

from the production riser's point of view.

Tide varies from site to site but usually ranges

from 2 to 3 meters including astronomical and storm

tides. For simplicity the sum of tide and freeboard

allowance is assumed to be 4m.

Based on these assumptions the following equations

are formulated for the estimate of freeboard.

fe=Hw/2+4+0.0113*Lwd (for the TLP) (Eq.6-7)
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fe=Hw/2+1.52 (for semisubmersible) (Eq.6-8)

fe; Estimated freeboard (m)

Lwd; Water depth (m)

Table 6-9 lists freeboard, estimated freeboard

and necessary information for the estimate and Fig.6-6

plots these data.

Fig.6-6 indicates the following 2 facts:

(1) Estimated fe gives minimum required freeboard.

(2) Actual freeboard satisfies the following relation:

fe e~f I-fe + 5 "5 (Eq.6-9)
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Table 6-9

Table 6-11

Data Mark Displacement Jacket Volume
Data (ton) (m3) C

A 51,700 75,600 0.0425
B 30,000 34,200 0.0546
C 64,500 90,200 0.0445
D 28,000 34,200 0.0509
E 22,809 25,600 0.0554
F 29,263 35,200 0.0517
G 17,300 23,300 0.0462

Average 0.0494
O0
I

Data Mark Hw Lwd fe f Type References

A 30 150 20.7 25.6 TLP 11,58.59
B 30 147 20.7 23.7 TLP 1,2,3
C 23 13.02 13.7 Semi 38,39
D 30 16.52 20 33
E 18.5 10.77 11 46
F 30 16.52 19.5 48
G 30 16.52 17.7 49
H 24 13.52 19 Semi 51
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6.4 Estimate of Jacket Weight

A reasonable estimate of jacket weight is neces-

sary to facilitate the estimate of light weight and

KG. Table 6-10 lists data necessary for the estimate.

Deck weights are estimated using Eq.6-6 when the infor-

mation is not available. From Fig.6-7, the following

equation is derived.

W. =0.18*V.

Wjs; Jacket steel weight (tons)

V.; Jacket volume (m3 )

Assuming that 2/3 of auxiliary equipment weight

is distributed evenly all over jacket and 1/3 on the

deck, total jacket weight is given by the following

equation.

Wjt =js*93.3/1, 000*2/3* A

W jt; Total jacket weight (tons)

A; Displacement (tons)

To express total jacket weight only by jacket volume,

the following coefficient is introduced.

c'=(93.3/1,000*2/3* A)/Vj

Table 6-11 lists values of c' for several different

cases. The average of c' is 0.0494, thus

Wjt=(0.18+0.0494)V =0.23*V (Eq.6-10)
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Table 6-10

Data Mark Displacement Column Diameter Freeboard Jacke5 Volume
(ton) (ton) m (m) Type

A 51,700 15 23.7 83,900 TLP
B 30,000 9 19.5 34,200
C 64,500 17 30 90,200 TLP
D 28,000 9.4 19.825 34,200 Semi
E 22,809 9/5.4 9.75 25,600
F 29,263 9.4 15.9 35,200
G 17,300 9.4 18.6 23,300 Semi
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6.5 Estimate of Light Weight

Light weight can be estimated by two different

methods.

(a) One is obtained from Eq.6-4 and Eq.6-5

We=(93.3+0.44*L wd)*A/1, 000+c*PWewdO c*
(Eq.6-4)

Wss 0.37*A (Eq. 6-

Assuming that only 1/3 of the riser and mooring

system is included in A1 , but not production & struc-

tural risers, the following equation is formulated

Al- *P c+(O.633+044*Lwd/3,000)*A (Eq.6-
(b) The other is obtained from Eq.6-10 and Eq.6-6

Wjt=0.23*yV (Eq.6-

Wd=0.74*L*B (Eq.6-

5)

11)

10o)

6)

11=0.23*V j+0.74*L*B+c*P c+(93.3+0.44*Lwd)*/3,000

(Eq.6-12)

Table 6-12 compares A by two methods. They agree

generally well (within 10%)
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Table 6-12

Conoco Design W =cP c=10,000, L wd=147

A 72,380 62,040 54,285

Eq 6-20 45,094 40,081 36,321
Eq 6-21 43,199 38,990 35,859

Aker Design W =cP c=7,0000, L wd=150

A 60,000 50,ooo 40,ooo

Eq 6-20 36,118 31,265 26,412
Eq 6-21 35,682 31,662 27,686

Amoco Design W =cP c=1,500, Lwd=264

A 39,000 30,000 24,000

Eq 6-20 21,079 16,561 13,548
Eq 6-21 18,387 15,010 12,776

B.P. Design W=cP =3,560,Lwd =200

A 36,000 30,000 24,000

Eq 6-20 21,295 18,339 15,383
Eq _6-21. 23,147 20,684 18,991
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CHAPTER VII

ANALYSIS OF THE TLP

L7.1 Design Parameters and Requirements

Two simple models of the TLP are adopted. These

are shown in Fig.7-1 and Fig.7-2. In either case, we

have 10 unknown parameters to be decided. They are;

A,D,d,R,r,f,h,H,L,B for model 1 and

A,D,d,Pb,r,f,h,Ph,L,B for model 2.

We need ten equations or correlations to decide these

parameters.

First we have 3 simple relations among parameters.

(1) f=D-d

(2) h+H=d

(3) A =4(tR2 H+÷tr 2h)e for model 1

A=(2LbLhL+4iRr2h)e for model 2

Eq.6-9 gives another relation for freeboard.

(4) fe<f <fe5.5 (Eq.6-9)

To minimize dynamic tension variation, r is deter-

mined by R,d,t and (wave frequency).

This relation will be discussed in the next section.

(5) r=f(R,d, A, A4)

To avoid large wave dynamic forces the lower hull

must always stay submerged.
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(6) h >HJ2
(7) The TLP also has to satisfy the stability require-

ments. This will be discussed in Section 7.3.

(8) The maximum horizontal excursion must be less than

the allowable one.

Xmax <Xall

(9) From the economical point of view the displacement

should be minimized.

(10) From the structural point of view the minimum

tension must be positive and the maximum tension must

be minimized.

(11) The natural frequency of the TLP must be outside

of the range of wave spectrum.

Although requirements (1) through (7) are relative-

ly easy to handle, (8) through (11) are not. So the

following procedure is adopteds First, input A,L,B

and d and calculate the other 6 parameters by a com-

puter program so that they satisfy requirements (1)

through (7). After the computation the design is com-

pleted by satisfying requirements (8) through (11).

So, to find the optimum design, it is necessary

to try several sets of A,L,B and d and evaluate the

results.

Fig.7-3 shows the conceptual flow of the procedure.
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The maximum dynamic excursion is discussed in Section

6-4. The wind & current forces are discussed in Section

6-5. The restoring force is discussed in Section 6-6.
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Fig 7-1 Model 1
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Fig 7-3
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7.2 Minimizing the Dynamic Tension Variation

(1) Model 1

The vertical dynamic force on the TLP is given

by thefollowing equation.
(2d ( 2

Fv e e2+4R 3/3*4e-g d) a*cos wt- Rr2ea*cos t
V; Displacement volume (= A/) (m3 ) (Eq.7-i)

C ; Frequency of wave

d; Draft (m)

R; Radius of the enlarged section (m)

g; Acceleration of gravity (9.8m/s 2)

e; Density of sea water (1.025t/m3 )

a; Wave amplitude (m)

r; Radius of the column (m)

t; Time

The first term represents displacement and the second

added mass. These two represent inertia force and the

third term buoyancy force.

The problem is to minimize this vertical dynamic

force for certain range of wave period. For a deter-

ministic approach, DnV requires to consider the follow-

ing range of wave period.

6.,5Hw < T <v (Eq.7-2)

OUmin= 2/13 <~/< w < 2 ~/6.5H3w= cmax

To minimize the vertical dynamic force within this
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range, the following equation must hold.

-C dIPd d 2

(Ve g 2 +4JR 3R/3*4e g d)m _4Rr2

g

=47tr -(Ve +47tR3/3*4e g
g

Denoting the wave frequency at which vertical dynamic

force is set zero by aiu0  and ignoring the frequency

effect on the exponential decay, we have;

(Ve g 2+4AR 3 /3*4e g / 0 24rr2
g

2 20 2 2
in W0 1 O0 W max

02=( 2  + )/2• 435 27/H (Eq.7-3)

The maximum vertical dynamic force variation is

given by the following relation;

2 2
.AFv=f(Veg 2 +47tR3/3*4eg ) -4r2 ea

W 2 d 42
= (Ve-- 2+42R 3/3*4e g- gd) 1(- )a

2 
2

=4Rr 2- a=4trt2r 1i/6.5+1/15 4.968ra

=5.093r2a (Eq.7-4)

In addition to this,dynamic tension variation must

include the pitching effect. ( It will be discussed in

Section 7-8) Finally the optimal diameter of the column

is given by the following equation:

2U (Ve g 2 +16RR 3*e-~ d (Eq.7-5)
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Fig 7-4 shows Max. wave height vs. Wave period.

Table 7-1 lists design data for platforms. Fig.7-4

clearly shows that the approach of setting the vertical

dynamic force zero at JO=4.3527/i is reasonable.

Two solid lines represent limits of wave period speci-

fied by DnV rule, and doted line W0=l4.3527/lHw

Most design wave periods are plotted very close to

this curve.

(2) Model 2

The vertical dynamic force on the TLP is given by

the following expression.

2d 2e
F =(Ve g 2 +2LPb2e g d) Cua*cos -Sa*cos

L; Deck length (assumed equal to the lower hull lengh)

Pb' Lower hull width
(Eq.7-6)

S ; Surface area of columns

Similarly the optimum surface area of columns is

given by

_02 WO d CV
Sa (V e g 2 +2LPb 2 e d (Eq.7-7)

and the maximum dynamic tension variation is given by

F =0,4053saa
v a (Eq.7-8)
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Table 7-1

Data Mark Hmax  Period Type References

A 30 14-20 TLP 11,58,59
B 26 13-16 TLP 6,7,8,9,10
C 23 15 emi 3839
D 30 14-17 33
E 18.5 11-20 46
F 30 ,17 49
G 24 15.5 Semi 51
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7.3 stability

The TLP must maintain positive stability at two

different conditions. One is towing-out condition, the

other is operating condition when one anchor is totally

lost. Although the second case is unlikely, nonetheless

the TLP must be designed for the worst possible case.

Also the second condition guarantees an easy installa-

tion of the TLP without the aid of additional buoyancy

tanks.

(1) Model 1

a. Towing out condition

From Eq.6-12 the light weight can be calculated.

Al V le=4T•RE2H4r 2 (f+d) 4 ] *0.23+W1

W1=0 .74LB+cP +(93.3+044Lwd) A/3,000

The towing draft is given by the following equations.

d0=H+b=H+ ( C l-4R2H)/4r 2  when Vl > 4CR2

d0=H+b= V1/'RR2  when V 7 4R 2H

KG,KB,BM and GM can be calculated by the following

equations;

A 1 *KG=0.23*2 7tR2H2+r 2 {( f+d)2-H2J)+ 1 (d+f+hd/2)

V1 *KB=2-)(R 2 H2 +2r 2b(b/2+H)] when b >0

when b 0=(H+b)/2
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V*BM=rr2(12+r 2 )  when b -0.5

=AR 2 (1 2+R2 ) when b<-0.5

1=B-2r-2

1; Column center spacing

For a very small negative value of b, BM has a very

high value at upright position, yet it decreases dras-

tically when the TLP is tilted even slightly. To avoid

this problem and make sure that we are on the conser-

vative side, the threshold value of b is set somewhat

arbitrarily at -0.5m.

Finally GM is calculated and checked by the follow-

ing relation:

GM=KB+BM-KGr O.1

The minimum value of GM, 0.1m, is arbitrarily chosen

to make the design conservative.

B
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b. Operating condition when one anchor is totally lost.

The situation can be modeled as shown in the figure

below. The moment around point K is

KB*F sin -KG*WsinO +BM*F sin B

= {(BM+KB)F/W-KG Wsin

=GM' Wsin6

GM'=(BM+KB)F/W-KG
=BM'+KB'-KG'

In this case F is the total displ

A, and W the light weight Al,

BM' =(12+rfr 2()r 2/ 1

KB' =2S Rr2(d2-H)RH2) VR2H2

KG' =KG=(20.23( R2H2 +r 2 (f+d) 2 -H2)+W1 (d+f+hd/2)]/ 1

GM'=KB'+BM'-KG' 0O.1

(2) Model 2

a. Towing out condition

From Eq.6-12 the light weight can be calculated:

Al=0. 23( V+Sa f)W1

W1=0. 74LB+cP +(93.3+0. 44 Lwd) A/3,000

The towing draft is calculated by the following equa-

tions:

do=Ph+b=(V1-2PhPbL)/Sa +Ph  when V1 >2PhP bL

dO=Ph+b= V1/(2PbL) when V1  
2 PhPbL

KG,KB,BM and GM can be calculated by the following
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equations:

S*KG=0.23LPb h2+0.5Sa (dfP h h) (df-Ph 1 (df+hd/2)

Vl*KB=S ab(Ph+b/2)+LPbPh 2  when b>0

KB=(Ph+b)/2 when b<0

Next radii of corner column and intermediate column

must be calculated first to compute BM. Assuming 6 columns

we can calculate for simplicity the corner column spacing

by the following equations.

r1
2=Sa/6

11=L-2-2r 1

12 =B-2-2r
1

Also assuming that the TLP has the same stability in both

directions (length and width), the radii can be computed

by the following equations

r 2=Sa 122/4/112

r' 2 =Sa/22r2

r; Corner column radius

r'; Intermediate column radius

Then BM can be computed by the following equations.

VI*BM=Sa(1 2 /2) 2+ r 4 + r/2

=Sa122/4+ (r +0.5r' ) when b >-0.5

7i*BM=L B3-(B-2Pb) 3 /12 when b -0.5

Finally GM is calculated and checked by the following re-
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lation:

GM=KB+BM-KG _ 0.1

b. Operating condition when one anchor is totally lost.

Similarly in the case of model 1

Vl*BM ' =Sa1 2 2/4t R( r 4 +0. 5r' 4)

VI*KB'=Sa (d-Ph) (d+Ph)/2+Ph 2PbL

KG'=KG= 0.23 [LPbPh 2+0.5Sa (d+f+Ph) (d+f-Ph)]

+W 1 (d+f+hd/2)) / A1

GII'=KB'+BM'-KG' >O. I
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7.4 Dynamic Excursion

The dynamic motion of the TLP is expressed by the

following equation:

Mx+Rx+Kx=F(t)

M; Mass

(Eq.7-9)

(= A1 +CaVe A A)
R; Damping coefficient

for typical offshore

(=2VM S=R/2 WNM9 WN2=K/M)

structure 5=0.01 ~0.03

K; Spring constant

F(t); External surging force

F(t)= (1+Ca)-•dV +0.59ACDulul

Assuming that the inertia force is far greater

than the drag force,

F(t) 2e =2 k•duco

x; Horizontal excursion of the TLP

2Ve(aw 2 )cos e- ds 2

Lwd - d C2(A
2

+ gT -d 2 2
wd-d

k; Wave number (= JU2/g=2,/X) (Eq. 7-10)

T0 ; Pretension

a; Wave amplitude

1/2

(=gTo/(Lwd-d))

1 +A)
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7.5 Static Force

(1) Wind Force

API code(66) requires to calculate the wind force

by the following formula.

F w=O.0473v C A

PFi Wind force (N)

Vw; Wind velocity (km/h)

A; Area of object (m2)

Cs; Shape coefficient

Beams-----------------------------------1.5

Sides of Building-----------------------1.5

Cylindrical sections--------------------0.5

Overall projected area of platform------1.0

API also recommends the following wind velocity profile

to consider the variation of wind velocity with height

to compute the wind force.

V ) = () / n

V H

Vy; The wind velocity at height y

VH; The wind velocity at a reference height H usually

O10m above a reference water depth.

1/n; An exponent, usually assumed to be between 1/13

and 1/7
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For both model 1 and model 2 the wind force on the

TLP is given by the following equation.

F w=0.06255vw2 (1.5LhdCl+4fr C 2 )

F ; Wind force (kg)

v ; Wind velocity (m/s)

L; Deck length (m)

hd; Deck height (m)

f; Freeboard (m)

r; Radius of column (m)

C1 ,C2 ; Height coefficients

S/nf+hd/2)1 C2f Y)1/ndy1For example, Cand 2 are computed for the Aker design.

For example, C and C2 are computed for the Aker design.

n C C2

13 1.08 0.99
7 1.17 1.01

Setting C1=1.1, C2=1.0,

the equation above becomes

86
t-" -

Fw =O.6255vw (1. 65Lhd+4fr) (Eq.7-11)
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(2) Current Force

API(66) recommends the following method to compute

the current force.

F c=O0.5CDVc 2 A

F c; Current force per unit length (N/m)

CD; Drag coefficient

e; Mass density (kg/m3)

v ; Current velocity (m/s)

A; Projected area per unit length

API also recommends a current velocity profile to consider

the bottom effect, but, generally, the TLP is installed

in sufficiently deep water to ignore this effect.

a. Model 1

For cylinder CDl1.0

Fc=0.4188vc2 2 [r(d-H)+RH] (Eq. 7-12)

Fc; Current force (kg)

vc; Current velocity (m/s)

r; Column radius (m)

d; Draft (m)

H; Height of enlarged section

R; Radius of enlarged section
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b. Model 2

For 2-dimensional rectangular section, CD; 2.0

Fc=0.4188v c
2 Ir(d-Ph) +.5PhL

Ph; Lower hull height

(Eq. 7-13)
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7.6 Static Excursion

Static excursion at the equilibrium point is cal-

culated by the following equations.

stat= (Lwd-d) sin (Eq. 7-14A)

Th=T vtan (Eq. 7-14B)

T •=Tg+4ir2(1-cos )(Lwd-d)e (Eq.7-14C)

Xstat; Static excursion

6; Angle between tension line and vertical line

TO Pretension

Th; Horizontal component of the mooring tension

T ; Vertical component of the mooring tensionV

Lwd
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7.7 Dynamic Stability

ABS rules(65) require that all units are to have

sufficient stability to withstand the overturning effect

of the force produced by a steady wind of 100 knots

from any horizontal direction. In other words, the area

under the righting curve at an angle corresponding to

submergence of the deck edge is not to be less than

30% in excess of the area under the wind heeling moment

curve to the same limiting angle. -- -

Area(A+B) 1 .3*Area(B+C)

U

Heeling Angle

Righting moment can..be calculated by the following

equation.
1+4si s ec

Mr=A*BM sin1+e2 - A(KG-KB)sino (Eq. 7-15)

Mr ; Righting moment

0; Heeling angle

Heeling moment can be computed by the following

equation.

Mh= I' . 65(hdcoso+BsinO)L(d+f+hd/2-KG) coso

+4r(f(d+f/2-KG)cos2 +12/8*sin2 ]}
*0.06255v 2 (Eq.7-16)

w (q -6

righting moment

heeling moment

w-

COe -le
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The derivation of these formulas is given in Appendix I.

In the computer program, Mr and Mh are calculated from

0=0c to 300 by 5*increment.
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7.8 Pitching Moment

(I) Moment Due to Wave

The response of the TLP to the wave is given by

the following relation.

(A + A)x +R +TOg/(Lwd-d)x=F(t)

The actual force exerted on the TLP is found as the sum

of the first and the fourth terms of the left hand side.

The pitching moment around G is given by the following

equation.

Mp A1x/g*BG+TO/(Lwd-d) x*KG
S O2*BG

=1 xmax - g +TO/(Lwd -d) Xma x l*KG (Eq.7-17)

(2) Moment Due to Wind and Current

a. Moment due to wind

For both models the pitching moment around G due to

wind is given by the following equation.
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M w=0.06255vw2 [1. 6 5hdL(f+d+hd/2)+ 4 fr(d+f/2)] -Fw*KG

=0.06255vw2 [1 .65hdL(f+d+hd/2-KG)+4rf(d+f/2-KG )

(Eq.7-18)

L

b. Moment due to current

For model 1 the pitching moment around G due to current

is given by the following equation.

M =0.41878 (r(d-H)(KG-H-d/2)+RH(KG-H/2)v v c 2

(Eq.7-19A)

For model 2 the pitching moment around G due to

current is given by the following equation.

Mc=0.41878 [r(d-Ph) (KG- Ph+d /2)+0.5*P L(KG-Ph/2)]vc2

(Eq.7-19B)
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7.9 Natural Frequencies

(1) Surge and Sway

Surge and sway motion of the TLP is expressed by

the following equation.

(A+A1)x +Rx +TOgx/(Lwd-d)=F(t)

As TO= A-A 1

O2ss=T0 (lwd-d)/( B 1)  + L -dc02Tg/(l Iwd-d

cU = ~i L"  g
as A+ Al Lwd-d

(Eq. 7-20)

(2) Heave

a. Model I

The heave motion of the TLP is given by the follow-

ing equation.

(A+1I6rR3e/3)z +RZz +(EATg/(Lwd-d)+4,r2pg)z=F (t)

2=EATg/(L- d) +4jr 2pi
h 1 +16RR3 1/3

(Eq.7-21)hEA g/(Lwd-d) +4jr2eg

h F!1+16R 3P/3
E; Young's modulus of elasticity

AT; Cross sectional area of the mooring line
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b. Model 2

The heave motion of this model is given by the

following equation.

L f EA
(A+2Pb2L)z +R z +( Tdg+Sag)z=F (t)

wd

2 EATg/(Lwd-d)+Sa
h A +2Pb 2Le1b

(Eq. 7-22)
EATg/(Lwd-d)+Saeg

h l+2Pb2 L

(3) Pitch and Roll

Pitch and roll motion of the TLP is given by the

following equation.

2
i,, , EAT 1 2

(10 i0) tr 4(Lwd d) + As(l/2) 2 =M6 (t)

q 2 =
pr

EAT 2/(Lwd-d)/4+As0( 1/2)2

To be conservative, assuming that most of the

mass is concentrated at the columns, we require that:

i A (1/2)

I Al (1/2 )2

Thus, for model 1

g g{EAT/(Lwd- d) +4Ttrl
pr_ (A +• I ) (Eq. 7-23)

Usually o rp is very large, thus if the minimum
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possible CO pr is above the range of wave frequencies,

it is assured that the pitch and roll motion causes

no significant dynamic problem.

For model 2

rg EAT/(Lwd - d) +Sa)
Sr (A(Eq.7-24)

(4) Yaw

The yaw motion of the TLP is given by the follow-

ing equation.

(If+iy)ý+RCy +4T0O/(Lwd-d)(1/q)2~P =M (t)

2= 2T0 1 2/(Lwd-d)

y I+i1

To be conservative, assuming that the mass is

distributed evenly, all over the shaded area shown

below, we require that: B

iY kn /3*1 2 A/6*12
l4, -1l/3 2, L 1/6*12

L

12T
Ly .-d)( 0

(L F7 -d)( fA+6 A

(Eq. 7-25)

wd .
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CHAPTER VIII

SENSITIVITY ANALYSIS

The computer calculation was carried out on both

model 1 and model 2. 4 proposed designs, Conoco, B.P.,

Amoco, and Aker are chosen for the sensitivity analysis

of displacement, deck size and draft. Appendix III

gives some typical results of this analysis. Sensitivity

analysis of other parameters is carried out only on

the Aker design of model 1.

8.1 Displacement and Deck size

Fig.8-1 through Fig.8-4 shows the summary of

these sensitivity analysis. These figures clearly

show the following:

(1) When the dynamic effect is relatively large the

horizontal excursion decreases as displacement

decreases or deck size increases. The Conoco design

of model I is the typical example.

(2) When the static effect is relatively large the

horizontal excursion decreases as displacement

increases or deck size decreases. B. P. and Amoco

designs are typical example of this.

For model I the following quantity can be used

to check the relative importance of static effects
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against dynamic effects.

(v 2+v 2/1,000)L
M w wd (Eq.8-1)

For M1 <20, the dynamic effects are dominant.

For M2 >20, the static effects are dominant.

For model 2, since current is more important

than for model 1, the following quality can be used

to check the relative importance of static effects

against dynamic effects.

(2v c2 V2/1,00)Lwd
". _ )Lwwd ,• 0 rr

Hw

For M2 <20 the dynamic effects are dominant.

For M2 >20 the static effects are dominant.

The actual numbers calculated for 4 proposed

designs are listed below.

Conoco Aker Amoco B.P.

M1 15.6 24.8 118.5 31.7
M2 21.7 33.9 191.4 46.7

Comparing these values with Fig.8-1 through 8-4,

it is concluded that although these qualities are

very approximate, they are generally reliable and

useful, especially at relatively shallow water, where,

the horizontal excursion is most critical.

E( 
q.8-2)



-102-

The explanation of these results is as follows:

As displacement decreases, pretention also decreases

and this leads to increased static excursions and

decreased dynamic excursions.

As the deck size increases, wind force increases

and leads to increased static excursions. An increase

of the deck size also causes a decreased dynamic excur-

sion, because, the response lag of the columns in the

wave propagation direction increases. Therefore it

depends heavily on the relative importance of static

versus dynamic effects, whether the change of displace-

ment or deck size will really increase or decrease

the total horizontal excursion.
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8.2 Positive Tension Restriction

A table below shows some values of 1/i . The

left column shows values of Al/A with positive tension

and the right column values of 1/a with negative

tension. From this table it is concluded that approx-

imately 0.75 is the threshold value. Positive tension

restriction becomes more critical when water depth

increases.

Case Positive Tension Negative Tension

Conoco 0.713 0.730!
Aker 0.741 0.766
B.P. 0.743 0.791

0.728 0.768
B.P. 0. 713 0.730



8.3 Draft

The influence of the draft on the horizontal

excursion is very complicated. The major influences

are summarized below:

As the draft increases,

(1) The wind force decreases as column diameter decreases,

and thus, the static excursion decreases.

(2) The current force increases, because projected

area increases and thus the static excursion in-

creases.

(3) The exponential decay of the fluid particle motion

increases and the dynamic excursion decreases.

(4) Pretention increases because the column diameter

decreases and so does the jacket weight. Thus the

static excursion decreases.

(5) Increased pretension makes the mooring system

more stiff and leads to an increased dynamic ex-

cursion due to increased dynamic amplification.

Fig.8-5 and 8-6 show the result of this sensitivity

analysis. For model 1 (3) or (4) dominate the behavior,

but for model 2 the current effect becomes more important,

and (2) dominates the behavior of the Amoco and B.P.

designs.
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8.4 Natural Period

(1) Surge and Yaw

In all 4 cases T4O40~50sec for relatively shallow

water(150~300m) and they increase with increased water

depths, so no problems are expected from wave excitation.

(2) Heave and Pitch

In all 4 cases T--2.5sec for relatively shallow

water and it is very sensitive to the change of ultimate

strength of the mooring lines and the factor of safty

used. So the estimate of ultimate strength and factor

of safty must be done very carefully. An increase in

water depth also increases natural periods. So in deep

water, natural frequencies of heave and pitch will be

very critical.
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8.5 Dynamic Stability

Some cases with small GM or GM' are shown in

Fig.8-7 and 8-8. In all cases, it is demonstrated that

the TLP with GM or GM' of at least O.1m has sufficient

restoring moment.
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8.6 Water Depth

Fig.8-9' summarizes the sensitivity analysis for

the water depth. Fig.8-9A% shows the minimum displace-

ment necessary to keep mooring tension positive versus

water depth. Fig.8-9B- shows natural heave periods

versus water depth. This analysis was carried out on

the Aker design of model 1. One important observation

is that beyond 600m the displacement increases expo-

nentially. This is probably due to the assumption that

the weight of the riser and mooring system is propor-

tional to not only water depth but also displacement,

This is absolutely true for mooring risers, but not

quite for production risers. Another reasonable assump-

tion is that the weight of production risers is pro-

portional only to water depth and is independent of

displacement. Thus the equipment weight is expressed

as follows.

Wr =Lwd A/1,000 +9Lwd(l(+cPc/1,000) (Eq.8-3)

The results of a similar sensitivity analysis

based on this assumption are shown in Fig.8-10. The

results indicate that displacement increases exponen-

tially as before, but less rapidly. In spite of the

different assumptions, natural heave periods show
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almost the same results. This analysis indicates that

the practical limit of the TLP is at most 1,000m, where

the natural heave period approaches 5 seconds and

displacement becomes too large(about 80,000tons).

The actual limit must be between 1,000m and 600m

but due to the limited data available, more practical

prediction was not possible. For more accurate computa-

tion, more data on the weight of the riser and mooring

system is necessary.
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8.7 Other Results

(1) Wave Height

As wave height increases, the dynamic excursion

and dynamic variation increase. It has no significant

effect on stability.

(2) Freeboard

As freeboard increases, static excursion increases,

while dynamic excursion decreases, thus the total

excursion may increase or decrease. Pretention decreases

while dynamic tension variation increases, thus the

positive tension restriction becomes more important.

(3) Deck Height

As deck height increases, static excursion increses

and so does dynamic tension variation. An increase of

deck height also has an adverse effect on stability.

(4) Wind Velocity

As wind velocity increases, static excursion

increases, while dynamic tension variation also increses

but slightly.

(5) Current Velocity

As current velocity increases, static excursion

increases.

(6) Production Equipment Weight

As production equipment weight increases, pretention
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decreases and dynamic tension variation increases thus

the positive tension restriction becomes more important.

An increase of production equipment weight has also

adverse effect on stability, however it may decrease

the total horizontal excursion.
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8.8 Horizontal Excursion

The horizontal excursion can be calculated approx-

imately by the following equations.

x " 0.725 A (Eq. 8-4)

dy-n (A A)~w( - Al )*2.25/(Lwd-d)

X (77+1.15 /1000,ooo)(vc 2+w2/1,000)
stat -c (Lw -30 )(-A) wd

(Eq.8-5)
Table 8-1 compares these approximate values with predicted

values by the computer program. They agree generally

well.
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Fig8-7 Dynamic Stability
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Fig8-8 Dynamic Stability
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Fig 8-9 A

Water Depth vs
Natural Heave Period
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Table 8-1

Conoco Design Approximate By Computer

A X stat dyn stat Xdyn

72,380 43,199 2.04 15.94 2.07 .16.09
64,625 40,038 2.29 15.54 2.36 15.61
54,285 35,859 2.81 14.85 2.96 14.83

Aker Design Approximate By Computer

Xp stat Xdyn stat Xdvn

60,000 35,682 3.57 15-91 3.53 15.38
50,000 31,662 4.36 15.24 4.38 14.62
40,000 27,686 5.94 14.32 6.03 13.62

Amoco Design Approximate By Computer

/A l_ Xstat dn XstatXdyn

39,000 18,387 16.14 14.07 15.11 13.44
30,000 15,010 20.30 13.70 18.47 13.01
24,000 12,988 25.93 13.21 22.49 12.51

B.P. Design Approximate By Computer

A_ A_ Xstat Xdn stat Xd n

36,000 23,147 7.44 14.49 7.62 14.01
30,000 21,086 10.10 13.72 10.27 13.24
24,000 18,991 16.86 12.73 16.20 12.20
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CHAPTER IX

DESIGN PROCEDURE OF THE TLP

As a result of this study the following design

procedure is proposed.

Step I Using Eq.6-11, compute Afor A1=0.75 A

Al=cPc+(0.4633+0. 4 4 Lwd/3000o ) A (Eq. 6-11)

Step 2 Estimate the horizontal excursion by the fol-

lowing equations.

dy ( +252.25(Lwd 0
"- (Li .6- A1) *2-25/(L 3O)

Xstatý

(Eq.8-4)

(77+1.15A/1,000)(v + 2/1,000)S w (L d-30)
LVnl w

(Eq.8-5)

Step 3 If Xdn+Xstat <Xall go to Step 4

If not, try smaller AI/A and find out Aso that

Xdyn+Xstat <Xall

Step 4 Compute M or M2 depending on which model is

closer to your TLP configuration.

Step 5 If M1or M2 >20, set L as small as possible

within the restriction of construction and operational

requirements. If Mor M2 <20, set L as large as possible

within the restriction of construction and operational

requirements. Fig.6-3 is useful to obtain a reasonalbe
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estimate.

Step 6 Generally the draft is determined by construction

and operational requirements. However for model I larger

draft is prefered, whereas a smaller draft is prefered

for model 2, if the other requirements allow it.

Fig.6-5 may be used to select a reasonable draft.

Step 7 The freeboard must satisfy Eq.6-15. Construction

and operational requirements also influence its choice.

Step 8 Deck height is usually from 9 to 11m. This is

determined mostly by operational and structural require-

ments.

Step 9 Start iteration to find real optimal design.



-125-

CHAPTER X

CONCLUSIONS AND RECOMMENDATIONS

Previous work, including 5 proposed designs, has

been reviewed. Published data, including existing

semi-submersibles, existing fixed platforms and proposed

TLPs have been collected and analyzed. Based on this

analysis, an equation to estimate the equipment weight

has been derived and relations among various parameters

are presented.

Fig.6-2 shows a very good approximation of the

relation between the steel structure weight and the

displacement. On the other hand, Fig.6-3 shows considerable

scatter of data and thus further investigation is

required. to establish a more reliable relation between

deck size and deck load. Other relations show generally

good agreement with available data, but further analysis

of additional design data is recommended.

The design requirements of the TLP have been

studied and a method to determine the design period

when only the maximum wave height is given, is presented.

The towing-out condition and the operating condition

with one leg totally lost are considered for stability

requirements. The maximum horizontal excursion, dynamic

stability and natural frequencies are also studied.
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The natural frequencies of pitch and roll are

approximated by their lower limit and the natural

frequency of yaw is approximated by its upper limit,

since mass distribution is not known. As the natural

frequencies of pitch and roll become. critical in deep

water, a detailed investigation of the mass distribution

is required. Information for the mass distribution

is also important for an accurate evaluation of the

static stability. The ultimate strength of the mooring

line and its factor of safty are other unknown factors

conserning the evaluation of the natural frequencies.

Considerable research is required for the adequate

selection of the material of the mooring line and its

factor of safty.

As a result, computer programs are developed for

two alternative models. Computer analysis indicates that

for shallow water(less than 300m), the stability and the

horizontal excursion are more important. On the other

hand, for deep water(more than 300m), the positive

tension requirement and the natural heave, pitch and

roll frequencies become critical.

A sensitivity analysis has been carried out. The

influence of the displacement, deck size and draft

has been studied in detail. Two quantities are intro-

duced for the two models, which indicate the relative
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importance of the dynamic effects versus static effects.

It has been demonstrated that these quantities are

useful to predict the change in the horizontal excursion

due to change in the displacement, or the deck size.

It has been shown that the light weight can not

exceed 75% of the displacement without violating the

positive tension requirement. The results of the com-

puter calculation also indicate that the natural frequen-

cies of pitch, roll and heave will be very critical in

deep water. It has been demonstrated that the TLP with

a reasonable static stability satisfies the dynamic

stability requirement.

The influence of the water depth on the TLP has

also been studied using two different estimation pro-

cedures for the riser and mooring system weight. It

has been shown that the maximum possible water depth

for the TLP is about 1,000m although two results based

on different estimation procedures give considerably

different answers in deep water. For future research

further analysis of additional design data is required.

As a result of the sensitivity analysis, a design

procedure is proposed. Finally, further information is

also required to improve the accuracy of estimating

the light weight.
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APPENDIX I

DYNAMIC STABILITY

I.1 Righting Moment

dmr = (2Rsin) P(1/2-Rcos ) tanORsin Od(1/2-Rcos8)

*(coso+ c )/2

dmtr= tan(cosf+ Cos)R2sin26 (1/2-Rcos2 ) 2dO

mr=tan4 ( co s+ 1 )•2 fsin 2 (1/2-Rcosj)2 d0

=RR2 .(12+R 2 ) (coso+c ) tano8pR ~ coso

(I

I
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For 4 columns,

Mr= R2 (12+R2 )sino(1+sec 2f )- L*BGsino

2= BMsin1+sec2 - A(KG-KB)sin'

1.2 Heeling Moment

Mh=. 06255v2 [1.65(hd coso+BsinO)L(f+d+hd-KG)cosP

+2r(f+ 1tan) cosO(d+=-KG+ tanO)cos

+2r(f-ltanc) cosk(d+-d-KG-l-tanO)coso]

Mh=o .06255v2 [ .65(hdcoso+Bsino)L (f+d+hd/2-KG) cos
2

+4rff(d+ -KG) cos2p+ sin2
1=B-2r-2
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APPENDIX II

CPU PROGRAM LIST

(Model 1)

10 CO4 Velw,Velc,Fb,.4d,31,Sd,Dw,Wdl,Pi,W,G,Fu,Ib, CI,Wb,Wpe
208 IN2UT Wpe,DwGI,W,S38,Fb, B1,BbO,Ve1c,Vel1w,Ud1l,Hw,Wb,Hd
38 PRINT Wpe,DwI, W,Sd8, Fb,.B18,Bb,,Ve1c,Velw,udl,Hw,Wb,Hd
40 IN*UT Pind,Rai n, R ax,Rinc
50 PRINT Pind,Rn i n,Ruax,Rince
60 Pi =3. 1416
78 G=,.8
88 Cl,. 23:
90 IF Pind<1.5 THEN 0OTO Disp
:18 IF rind<.2.5 THEN 0;TO Leng

128 DuwDw 0
130 BbaBb8
1480:i PRINHT•'D'"
150s FOq I-=1i TO: 3 '
168 I1al-1
178 Coef=•Rm i n+I 1,Rinc
188 IF Coef>Rmax THEN. GOTO ~ Term
1985 Sd=SdO*Coef
288 CA.L Cont2(W1,WI,3r,.Br,Bh,Dgm,Egm,Sb,Ftol,Xtol)
218 NE4T I
228 GOTO Term
-238 Diso: .BI=B181
248 Bb=BbO
258 Sd=Sd.
260 PRINT "DISP
270 FOR I=i TO 30
288 I1=1-1
290 Cof =fRmax-I i*Ri nc
3-. IF Coef<Rmin THEN GOTO Term
310 Dw=Dw8*Coef
320 CAR.L Cont2(W2,W1,r,pBr,Bh,Dgm,Egm,Sb,Ftol.Xtol")
338 NE4T I
348 GOTO Term
350 Len;: Sd=SdO
368 Dw=DwO
370 PRINT "B&L"
388 FOR I=1 TO 30
390 11=I-1
400 Copf=Rmax-I *Rinc
410 IF Coef<Rmin THEN GOTO Term
420 B1=B318*Coe
430 .Bb=B1-B18+Bb0
448 CA-L Cont2 W 1,W1,3 r,Br,Bh,Dgm,Egm,Sb,Fto 1Xto-1 )
450 NE4T I
468 Tern: PRINT "END"
470 END
480 SUB Cont2(W1,W1,S-,Br,Bh,Dgm,Egm,Sb,Fto!1,"tcl)
490 CO Velw,Velc ,Fb, -d,Bl,Sd,Dw,Wd ,Pi,W,G,FIu,Ib,C1,Wb,Wpe
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500 Wr =(93.3+. 4.*Wd 1)*Dw/3000.0
510 Wds=.74*B1 *Bt
520 Wi =Wra+Wds+Wpe
530 BhB=Sd-. 5*(Hu+l1)
548 Bri=12
550 CAR.L Column<(IBri,DBi,Sbi,qW,W1,Sr)
560 .Ebii=BhO-Bhi
570 ReAhi ABS(Ebhi)
580 BrrF=7
598 FOR -1=1 TO 361
600 CRAL Column(Prfjt,B•f,Sbf,41,W1,Sr)
610 S-1 pe=(Bri-Brff)/(Bhi-Bhf)
620 Ebfu=BhO-Bhf
638 Rwehf=ARS(<Ebhf)
.6418 Esol=Aebhf/Bh8
:65 IF Espl<1E-6 THEN GOTO Okey
651 IF Bbhf<8 THEN GOT3 Gost
668 IF Rebhi<Rebhif THEN GOTO Gost
6708 Bri=Brf
688 Bhi'wBhf
698 Re ht =Rebhf
780 Gost:" Dbr:SlI ope.*CBh8-Bh i)
718: Rdar=ABS(Dbr:
720 DbD-=Dbr/(1+RAIlbr)
738 BrF=Bri+Dbr
740 .NE(T I"
758 PRINT "STOP0:2"
751 PRINT Bhf,Brf,Sr,Sbf
760 "Oke,: CALL Stab(BrF,Bhf,.Sbf,Dgm,Egm,W1,W1,Sr,Dkg,Dkb.,Dbm,Ekb,Ebm,1)
770 IF Dgm<0 THEM GOT3 Sbchek
780. IF Egm<( THEN GOT3 Sbchek
838 GOTO Xerax
848 Sbctek: IF Sbf>-.5 THEN GOTO Hmin
841 Bri=10
850 IF Sbf>8 THEN GOT3 Hmin
860 CR_.L Column(Iori,Bii,Sbi,W1,Wl,Sr)
87 Sb 3=-.5
880 Es:i=SbO-Sbi
890 Resbi RBS(Esbi)
900 BrFP15
910 FOR I=1- TO 3E
920 CARL Column(Brf,Bif,Sbf,Wl,W1,Sr)
930 S1lpem(Bri-Br'f)/(3bi-Sbf)
940 Es f=SbO-.Sbf
950- Resbf=ABS(Esbf)
960 ARs0=ABS(.Sb0:
970 Eps2=Aesbf/ARs.b0
980 IF Eps2<1E-6 THEN GOTO Good
990 IF Aesbi<ResbP THEN GOTO Stay
18(00 Sbi=Sbf
1010 Bri=Brf
1020 Resbi=Resbf
1030 St y:Dsb=S1ope*(S •-Sbi)
1040 Adsb=ABS(Dsb:
1050 Ds-=Dsb/(1+ARdbr)
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107068
1878
1088
1098
1100
1118
1120
1138
11408
1150
1168
1178
1180
1190
1200
1218
12280
1230
1240
1258
12608
1278
1280
1298
1388
1318
1320
1330
1340
13508
1360
1378
1380
1381
1382
1383
1384
1385
1390
1391
1392
1393
1394
1395
148800
1481
1402
1483
1404
1410
1411
1412
1420
1421
1422

Br3=Bri +Dsb
NE4T I
PRINT "STOPO:'"
Good:CALL StaLb(Brf,Bhf,Sbf,Dgm,Egm,W1,W1 ,Sr,Dkg,Dkb,Dbm,Ekb,Ebm, 1)
IF Dgm<O THEN GOT3 Hmin
IF Egm<O THEN GOT3 Hmin
GOTO Xmax
Hmin:Bri=10
CA.L Column(I<ri,Bii,Sbi,W1,Wl,Sr)
Ebi =5-Bhi
Aehi=RABS(Ebhi)
Brf=15
FOR I=1 TO 30
CA.L Column(I:rf,Bif,Sb ,W1,W1,Sr)
S pe=(Bri -Br)/( BhiBh-hf)
Ebif=5-Bhf
Re hf =RBS ( Ebhf)
Eps3=Aebhf/5
IF Eps3<1E-6 THEN GOTO Nice
IF Aebhi<Aebhf TH-N GOTO Same
Bri=Brf
Bhi=Bhf
Rezhi=Rebhf
Sa-e: Dbr=Slcipe*(5-Bhi)
Ador=ABS(Dbr:
Db"=Dbr/( 1+Albr)
BrF=Bri+Dbr
NE4T I
PRINT "STOPO'."
Ni:e:CALL StaLb(BrF,Bhf,Sbf,Dgm,Egm,W1,W1 ,Sr,Dkg,Dkb,Dbm,Ekb,Ebm,-1)
IF Dgm<8 THEN GOT) Over
IF Egm<0 THEN GOT) Over
Dgl=Dgm
Egi1=Egm
Bri=Brf
Brf=Bri-I
FOR I=1 TO 360
CARL Column(IErf,Bif,Sbf,W1,W1,Sr)
CA.L Stab(Brf',Bhf,Sbf,Dgm,Egm,W1,W1,Sr,Dkg,Ikb,Dbm,Ekb,Ebm,-1)
IF Dgm<Egm THEN G3TO Tow
Slope=(Bri-Brf)/(!Egm1-Egm)
Erm=. 1-Egm
Ergml=.1-Egml
Db^=Slope*(. -Egm)
GOTO Ten
Toj:Slope=(Br1i-Brf)/(Dgml-Dgm)
Erm=. 1-Dgm
Er~ml=. 1-Dgml
Db^=Slope*(.I-Dgm)
Tei:Aergm=ABC;(Ergn)
Eps9=Aergm/.
IF Eps9<IE-6 THEN GOTO Agri
Ae^gm1=ABS(Erngm)
IF Aergml<Aer-gm T-EN GOTO Yuke
Bri=Brf
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1423 Dgnl=Dgm
1430 Egil=Egm
1431 Yu<e:Adbr=ABB(Dbr)
1432 Db^=Dbr/( +Adcbr)
1440 BrP=Bri+Dbr
1450 NE4T I
1460 PRINT "STOP 08"
1461 Ag^i:CALL Stab(Brf,Bhf,Sbf,Dgm,EgmW,W1,W1,Sr,Dkg,Dkb,Dbm,Ekb,Ebm,1)
1470 GOTO Xmax
1480 Over:CALL StiLb(Brf,Bhf,Sbf,Dgm,Egm,W1,Wl ,S)r,Dkg,Dkb,Dbm,Ekb,Ebm, 1)
1481 PRINT "NO GOOD"
1490 GOTO Fin
1588 Xmax:CALL XmZLx(Sr,Bhf,Brf,W1,Ekb,Dkg)
1510 Fin:SUBEND
1528 SUB Column(Br.,Bh,3bW1,W1,Sr)
1530 COI Velw,Velc,Fb,-d,B1,Sd,Dw,Wdl,Pi,W,G,Fu,Ib,C1,Wb,Wpe
1548 Br2=Br^2
1558 Sk=W^2/G
1568 Ek 2=EXP(-Sk*;d)
1570 Ekl=SQR(Ek2)
1588 Dv4=Dw/(4.0*F'i)/1.825
1590 Br3=Br^3
1688 Sr2=(Dv4*Ekl+4.B*Br3*Ek2/3)*Sk
1618 Sr=SQR(Sr2)
1628 Bh=(Du4-Sr2*.;d)/(Br2-Sr2)
1630 R21=Br2*Bh
1648 R2d=Sr2*(Fb+S.;d-Bh)
1658 W1=4.0*Pi*(R2:h+R2i)*CI+W1+Wb
1660 V1=W1/1.025
1670 Sb=(VI-4. *Pi*Br2*Bh)/(4. 8Pi*Br2)
1680 IF Sb<O .THEN GOTO Neg
1690 Sb=Sb*Br2/Sre'
170088 Ne:SUBEND
1710 SUB Stab(Br,Iih,Sb,Dgm,Egm,W1,W1,Sr,Dkg, Dkb,Ibm,Ekb,Ebm, Ii)
1720 COI Velw,Velc,Fb,id,Bl,Sd,Dw,Wdl,Pi,W,G,Fu,lb,C1,Wb,Wpe
1730 V1=W1/1.025
1740 Br2=Br^2
1750 R212=Br^2*Bh..2
1760 Sr2=Sr^2
1770 R2 2=Sr2*(Fb+Sd-Bi )*(Fb+Sd+Bh)
1780 S1=Bb-2*(Sr+J)
1798 S12=Sl^2
1800 Sh=1r=1.Wb/<(.*Pi*Br2)
1810 IF Shb<Bh THEN GOTO Usul
1820 Bwsr=1.1*Wb-.*.Pi*Br2*Bh
1830 ShD=Bh+Bwsr/(4*Pi*Sr2)
1848 S1=(<1.1*Wb*lih+ShD*Bwsr)*.5/(1.1*Wb)
1850 GOTO Moto
1860 Usil: S1b=.5+1Shb
1870 Moto:Dkg=(2*F'i.*(R2h2+R2d2)*Cl+W1*(Sd+Fb+. 5*d)+Wb*S1b)/W1
1880 IF Sb<8 THEN GOTO Bigr
1890 Br2=Br^2
19008 Dk =2*Pi*(R2Ph2+Sr2*Sb*(Sb+2*Bh))/V1
1910 Dbn=Pi*Sr2*($.12+S^2)/VI
1920 Dgn=Dkb+Dbm-Ilkg
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1930 GOTO Emerg
f 1948 Biar: Br2 -:Br ^ 2

1959 Dk-=2*Pi*Br2'(Bh+3b)^2/V1
1951 IF Sb>-.5 THEN GOTO Baka
1960 Dbn=Pi Br2*(.1;12+B-2)/V1
1961 GOTO Aho
1962 Ba<a:Dbm=Pi*4;r2*(312+Sr2)/V1
1963 AhD:Ii=1
1978 Dg=:Dk b+Dbm-IIk g
1988 Emerg: Sd2:=Sd^2
1990 Bh2=Bh^2
2000 D212=SdP Bh2
2018 Ek ;=Dkg *.

2820 Ek =2tPi*(R2hi2+Sr2* D2h2)/VT
2630 Eba=1i*Sr2*( \:+S-2)/V1
2040 Ego n=Ekb+Ebm-Ekg
2041 F Ii<0 THEN GOTO Rtun-
2050 PRINT "DATRA";Dw ,B1,Bb,Sd
.. . iPRINIT Br Sr, :h,W1,Sb,Dgm,Dbm,Dkb,Dkg,Egm,E bn,Ekb
2087 IF Dgm<0 THEN GOT3 Rtun
2088 IF Egm<8 THEM GOT3 Rtun
2084 DE;
2188 Velw=51.5^2
21108 FOR I=1 TO 6
2120 Fai=5*I
2130 Cosf=COS(Fai:
2140 Sif=SIN(Fai'
2158 Cosf2=Cosf^2
2168 Sif2=Sinf'^2
2178 Rm~ml=(l+1/Cosf2)*.5
2188 Rmamd=Wl*Sint*(Dbi*Rmoml+Dkb-Dkg) (.

2198 RmDme=W1*Sinf'*(Ebi*Rmoml+Ekb-Ekg)
2200 Om m1:1.65*(Hd*Cosf+Bb*Sinf)*B1*(Fb+Sd+ .5"-LHc-Dkg)*Cosf
2218; Omzm2=4*Sr*Ccisf2*:b*(Sd+.5*Fb-Dkg)
U2; 4 32 Om:m3=.5*Sr*,;12*Sinf2
22 8 Om me=Omoml +Cmom2*Omom3
2240 Om me=Omome*Yelw8*. 06255/1000
2250 IF Sb<0 THEN GOTO Bneg
2260 Omom4=2*Sr*Ccosf2*(Sd-Sb-Bh)*(Sd+Sb+Bh- 2*rLkg)
2278 GOTO Bpos
2280 Bn.ýg:Omom5=2.Sr*C sf2*,(Sd-Bh)* (Sd+Bh-2 *Dkg)
2290 Omam6=4*Br*Ccosf'2*b*.(Bh+.5*Sb-Dkg)
2300 Omam4=Omom5-Cemom6
2310 Om m3=Omom3*I:r/SrP
2320 Bp s:Omomd=Onom1+ )mom2+Omom3+Omom4
2330 Omdom=Omomd*Yelw . 06255/1000
2340 PRINT Omomd,F'momd,Omome,Rmome
2350 NE4T I
2360 RAD
2370 Rtan:SUBEND
2380 SUB Xmax(Sr,I:h,Br,W1,Ekb,jkg)
2390 CO Velw,Velc,Fb,-Id,B1,Sd,Dw,Wcl1,Pi,W,G,Fu,b,C1,Wb,Wpe
2400 Sr2=Sr^2
2418 W2=W^2
2420 Sk=W2/G
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2438 S1 Bb-2*(Sr+3)
2448 Ek3=EXP(Sk*Scd/2)
2450 Velw2=Velw^2
2460 Ar=1.65*B1*Hd+4.3 *Fb*Sr
2470 Fwin=.06255*Y'elw2*Arw/1000
2488 Velc2=Velc^2
2490 Ar:=(Sd-Bh)*.Sr+BrBh
2500 Fcjr=.4188Y•'Elc2* rc
2510 FtDl=Fwin+Fcur
2520 Teis=Dw-W1
2530 Cal1=Wdl-Sd
2540 Xs tat=Cab 1 Ftol/Tns
2550 FOR I=1 TO 30
2568 Si f =Xst at/CLb1
2570 Tet=ASN(Sinf:
2588 Cosf=COS(Tet:
2590 Rest 1=4. Pi (+ 1-C sf)*Cabl Sr2
2600 Restf=(Rest l+Tens)*Sinf/Cosf
2610 Eso4=(Restf-Ftool')/Ftol
2620 Eso4=ABS(Esp.)>
2638 IF Esp4<1E-6 THEN GOTO Xdyn
2648 Xs at,=Xstat+<Ftol-Rest f )*Cabl/Tens
2650 NE4T I
2668 PRINT "STOP85"
2678 Xdon: Tet2=lS;k*S1/2
2680 Cost=COS(Tet 2)
2690 Disr=WI/Dw
2700 Rl=(1-Disr)*C/Cabl
2710 Bl=Disr+1
2728 Abl=W2*B1-A1
2730 Ab2=Abl^2
2.748 Rb3=Ab2+.01*4..O*AI*B1*W2
2750 Rb4=SQR(Ab3)
2760 Xd.n=Hw*W2*Ccist/AR4/Ek3
2770 Xtl=1 dyn+Xstat
2780 Trt=2*.44*Wdl*Dw/3088.0
2798 Prest=Tens-Tr.m
2800 Dt dyn=2.546*Hw*Sr2
2810 Slf=Ekb*W1/Dw
2820 Fwav=Xdyn*W2*Wl/G
2821 Ftr n=Tens*Xdv.n/Caal
2830 RmAa=Fwav*Dkg-Sl P)+Ften*Slf
2840 AR1in=1.65*B1*Hd*(Fb+Sd+.5*Hd)+4.0*Fb*Sr*e:Sc+.5*Fb)
2850 SA=R wi n/Rrbi
2860 AmAi=Fwin*(Slw-Dkg)
2870 Al:ur=Sr*(Sd--Bh)*<Bh+.5*Sd)+.5*Br*Bh^2
2880 S1:=Alcur/Arc
2898 Am:u=Fcur*(Dkg-S1:)
2900 Amtol =Amwa+ARncu++Awi
2910 Dtoit=Amtol*'.Z/S1
2920 Dt2=Dtdyn^2+Dtpi tA^2
2930 Dtt=SQR(Dtt2'
2948 PRINT "XMAX";Fwin,Fcur,Ftol,Xstat,Xdyn,Xt. ol,Prest
2950 PRINT Dtdyn,Iiisr, Dtpit,Dtt
2960 Fsaf=6
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2970 Sa 11=100000
2980 Ey=2.1E7
2990 Wss2=(1-Disr:*G/(1+Disr)/Cabl
3000 Wss=SQR(Wss2:
3010 Tsi=2*Pi/Wss
3020 RAc l=Prest*F..af/Sa1 1
3830 Wh1=(Rcbl*Ey,'Cabl -4.0*Pi *Sr2*1.025)*G
3040 Wh2=W1+Br^3*F'i*1.325*16/3
3050 Wh32=Wh1/Wh2
3060 Wh3=SQR(Who2:
3070 ThD=2*Pi/Who
30860 Wp- 1=W +Dw
3090 Wp-2=Whl/Wprl
3100 Wp-=SQR(Wpr2:
3110 Tp'=2*Pi/Wpr
3120 Wy1=12*Tens/Cab1
3130 Wy2=Wyl/Wpri
3140 Wy=SQR(Wy2)
3150 Ty=2*Pi/Wy
3160 PRINT Wss,Whco,Wpr,Wy
3170 PRINT Tss,Thci,Tpr,Ty
3180 SUBEND
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APPENDIX III

TYPICAL RESULTS

Table A-1

Aker Design(Model 1) Parameter-Draft

Input Data

W(t)

7,000

L(m)

86

Hw(m)
,, w, , , , , ,,

30

L\(t)
40,000

B(m)

86

hd(m)

) (1/s) d(m) f(m)

0.38 ? 25.6

vc(m/s) v w(m/s) Lwd(m)

1.35 56 150

Output Results

d 22 24 26 28 30 32 34

Xtotal 22.23 21.40 20.80 20.36 20.21 19.62 19.35
T0  7,618 8,596 9,303 9.,829 9,673 10,554 10,813
AT dyn 9,256 8,471 7,945 7,595 7,825 7,188 7,076

GM 12.78 8.16 4.28 0.98 0.1 42.04 35.79
GM' 18.35 14.83 11.95 9.59 9.48 6.04 4.69

A 1/ 0.766 0.741 0.723 0.71 0.714 0.692 0.686

Tss 62.31 58.42 55.79 53.86 53.84 51.12 50.06
TH 2.28 1.97 1.76 1.61 1.66 1.40 1.32
Tpr 1.93 1.80 1.71 1.64 1.64 1.55 1.52
T 56.31 52.80 50.42 48.67 48.66 46.19 45.24

v. ,I I , I ... .......... I



Table A-2

Aker Design(Model 1) Parameter-Displacement

Input Data

W(t)

7,000

L(m)

86

Hw(m)

A(t)

B ()
B(m)

86

hd(m)

w (I/s)
o.38

v (m/s)

1.35

d(m)

32

vw(m/s)
56

f(m)

25.6

Lwd( m )

150

Output Results

A 60,000 55,000 50,000 45,00ooo 40,000 35,000 30,000

xtotal 18.90 18.92 19.00 19.21 19.65

TO  21,678 18,913 16,138 13,352 10,554

AT 10,834 9,899 8,980 8,076 7,188
dyn

GM 46.44 45.98 45.16 43.89 42.04

GM' 16.11 14.18 11.90 9.22 6.04

A1/A 0.595 0.612 0.633 0.659 0.692
Tss 43-25 44.45 46.01 48.12 51.12

TH 1.205 1.23 1.27 1.32 1.40

T 1.287 1.33 1.38 1.45 1.55
pr

T 39.08 40.17 41.58 43.48 46.19
.. 

.

.. 

. .

__
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Table A-3

Aker Design(Model 1) Prameter-Deck Size

Input Data

W(t)

7,000

L(m)

Hw(m)

30

A(t)
40,000

B(m)

hd(m)

CU(I/s) d(m) f(m)

0.38 32 25.6

v c(m/s) v w(m/s) Lwd(m)

1.35 56 150

Output Results

L 103.2 98.9 94.6 90.3 86.0 81.7 77.4

B 103.2 98.9 94.6 90.3 86.0 81.7 77.4

xtotal 19.82 19.68 19.62 19.79 19.65 19.72 19.82

TO  8,149 8,789 9,405 9,600 10,554 11,088 11,594

Tdyn 6,177 6,388 6,623 7,223 7,188 7,530 7,923
GM 8.23 4.98 1.79 0.1 42.04 34.49 27.18

GM' 16.49 13.81 11.16 9.92 6.04 3.59 1.22

A1/A 0.752 0.736 0.721 0.716 0.692 0.679 0.666

Tss 58.00 55.94 54.14 53.59 51.12 49.85 48.71
TH  1.62 1.55 1.49 1.57 1.40 1.36 1.32
Tpr 1.79 1.72 1.66 1.64 1.55 1.51 1.47
T 52.41 50.55 48.92 48.43 46.19 45.05 44.02


