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Abstract

Hearing-aid users often have difficulty functioning in acoustic environments with
many sound sources and/or substantial reverberation. It may be possible to improve
hearing aids (and other sensory aids, such as cochlear implants or tactile aids for
the deaf) by using multiple microphones to distinguish between spatially-separate
sources of sound in a room. This thesis examines adaptive beamforming as one
method for combining the signals from an array of head-mounted microphones to
form one signal in which a particular sound source is emphasized relative to all
other sources.

In theoretical work, bounds on the performance of adaptive beamformers are
calculated for head-sized line arrays in stationary, anechoic environments with
isotropic and multiple-discrete-source interference. Substantial performance gains
relative to a single microphone or to conventional, non-adaptive beamforming are
possible, depending on the interference, allowable sensitivity to sensor noise, array
orientation, and number of microphones. Endfire orientations often outperform
broadside orientations and using more that about 5 microphones in a line array
does not improve performance.

In experimental work, the intelligibility of target speech is measured for a two-
microphone beamformer operating in simulated environments with one interference
source and different amounts of reverberation. Compared to a single microphone,
beamforming improves the effective target-to-interference ratio by 30, 14, and 0 dB
in anechoic, moderate, and severe reverberation. In no case does beamforming lead
to worse performance than human binaural listening.

Thesis Supervisor: Nathaniel Durlach
Title: Senior Scientist
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Chapter 1

Introduction

1.1 A Deficiency in Monaural Hearing-Aids

Hearing-impaired listeners using monaural hearing aids often have difficulty under-

standing speech in noisy and/or reverberant environments (Gelfand and Hochberg,

1976; Nabelek, 1982). In these situations, the fact that normal listeners have less

difficulty, due to a phenomenon of two-eared listening known as the "cocktail-party

effect" (Koenig, 1950; Kock, 1950; Moncur and Dirks, 1967; MacKeith and Coles,

1971; Plomp, 1976), indicates that impaired listeners might do better with aids on

both ears (Hirsh, 1950). Unfortunately, this strategy doesn't always work, possibly

because hearing impairments can degrade binaural as well as monaural abilities

(Jerger and Dirks, 1961; Markides, 1977; Siegenthaler, 1979). Furthermore, it is

often impossible to provide binaural aid, as in the case of a person with no hearing

at all in one ear, or in the case of persons with tactile aids or cochlear implants,

where sensory limitations, cost, or risk preclude binaural application. All of these

effectively-monaural listeners find themselves at a disadvantage in understanding

speech in poor acoustic environments. A single output hearing aid that enhanced

"desired" signals in such environments would be quite useful to these impaired

listeners.

Such an aid could be built with a single microphone input if a method were

available for recovering a desired speech signal from a composite signal containing

interfering speech or noise. Although much research has been devoted to such single-

channel speech enhancement systems (Frazier, Samsam, Braida and Oppenheim,

1976; Boll, 1979; Lim and Oppenheim, 1979), no system has been found effective

in increasing speech intelligibility (Lim, 1983) 1. Fundamentally, single-microphone

1Recent adaptive systems proposed for single-channel hearing aids apply adaptive linear bandpass

6
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CHAPTER 1. INTRODUCTION

systems cannot provide the direction-of-arrival information which two-eared listen-

ers use to discriminate among multiple talkers in noisy environments (Dirks and

Moncur, 1967; Dirks and Wilson, 1969; Blauert, 1983).

1.2 A Strategy for Improvement

This thesis will explore the strategy of using multiple microphones and adaptive

combination methods to construct adaptive multiple-microphone monaural aids

(AMMAs). For spatially-separated sound sources in rooms, multiple microphones in

a spatially-extended array will often receive signals with intermicrophone differences

that can be exploited to enhance a desired signal for monaural presentation. The

effectiveness of this "spatial-diversity" strategy is indicated by the fact that it is

employed by almost all natural sensory systems. In human binaural hearing, the

previously mentioned cocktail-party effect is among the advantages afforded by

spatial diversity (Durlach and Colburn, 1978).

To truly duplicate the abilities of the normal binaural hearing system, a monau-

ral aid should enable the listener to concentrate on a selected source while mon-

itoring, more or less independently, sources from other spatial positions (Durlach

and Colburn, 1978). In principle, these abilities could be provided by first resolving

spatially-separate signal sources and then appropriately coding the separated infor-

mation into one monaural signal. While other researchers (Corbett, 1986; Durlach,

Corbett, McConnell, et al., 1987) investigate the coding problem, this thesis will

concentrate on the signal separation problem. The immediate goal is a processor

that enhances a signal from one particular direction (straight-ahead, for example).

filtering to the composite signal by either modifying the relative levels of a few different frequency
bands (Graupe, Grosspietsch and Basseas, 1987), or by modifying the cutoff-frequency of a high-pass
filter (Ono, Kanzaki and Mizoi, 1983). As we will discuss in more detail later, speech intelligibility
depends primarily on speech-to-noise ratio in third-octave-wide bands, with slight degradations due
to "masking" when noise in one band is much louder than speech in an adjacent band. Since the
proposed adaptive filtering systems cannot alter the within-band speech-to-noise ratio, we would
expect no intelligibility improvement except in the case of noises with pronounced spectral peaks.
Careful evaluations of these systems (Van Tassell, Larsen and Fabry, 1988; Neuman and Schwander,
1987) confirm our expectations about intelligibility. Of course, hearing-aid users also consider factors
beyond intelligibility, such as comfort, that may well be improved with adaptive filtering.

7



CHAPTER 1. INTRODUCTION

Many of these processors, each enhancing signals from different directions and all

operating simultaneously, would form a complete signal separation system for the

ultimate AMMA. However, even a single, straight-ahead directional processor could

provide useful monaural aid in many difficult listening situations.

The existence of the cocktail party effect indicates that information from multi-

ple, spatially-separated acoustic receivers can increase a selected source's intelligi-

bility. Unfortunately, we do not understand human binaural processing well enough

to duplicate its methods of enhancing desired speech signals. Certain phenomena,

such as the precedence effect (Zurek, 1980), indicate that this enhancement involves

non-linear processing, which can be difficult to analyze and may not be easy to

synthesize.

Linear processing, on the other hand, which simply weights and combines signals

from a receiver array, can be easily synthesized to optimize a mathematical perfor-

mance criterion, such as signal-to-noise ratio (SNR). Although linear processing may

ultimately prove inferior to some as-yet-unknown non-linear scheme, and although

improving SNR does not necessarily improve intelligibility (Lim and Oppenheim,

1979), the existence of a well-defined mathematical framework has encouraged

research and generated substantial insight into linear array processing techniques.

Techniques based on antenna theory (Elliott, 1981) can be used to design fixed

weightings that have unity gain in a desired direction with minimum average gain

in all other directions. However, if we restrict microphone placement (for cosmetic

or practical reasons) t locations on a human head, then the array size will be

small relative to acoustic wavelengths and overall improvements will be limited. On

the other hand, adaptive techniques developed in radar, sonar, and geophysics can

provide much better performance by modifying array weights in response to the

actual interference environment (Monzingo and Miller, 1980). The existence of a

substantial literature and the success of adaptive arrays in other applications make

them an attractive approach to developing AMMAs.

To date, only a few attempts have been made to apply adaptive array techniques

to the hearing aid problem (Christiansen, Chabries and Lynn, 1982; Brey and

Robinette, 1982; Foss, 1984). These attempts have generally proven inconclusive,

-�--··11·1�--·11)·11111(�_·__ls ----· � I _I __ _I_
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CHAPTER 1. INTRODUCTION

either because they used unrealistic microphone placements (i.e., near the sound

sources) or because they used real-time hardware that severely limited performance.

In no case has the potential problem of reverberation been addressed and there has

been no effort to compare alternative methods.

This thesis will focus on determining the applicability of adaptive array pro-

cessing methods to hearing aids and to the signal separation problem in particular.

We will not look at fixed array weighting systems or non-linear processing schemes,

although other researchers should not overlook these alternate approaches. Fur-

thermore, we will not directly address the issue of practicality. Our primary goal is

to determine the potential benefits of adaptive array processing in the hearing aid

environment, independent of the practicality of realizing these benefits with current

technology.

We will determine the potential of array processing both theoretically and ex-

perimentally. Theoretical limits on signal-to-noise ratio (SNR) improvement can

be calculated for particular environments and array geometries independent of the

processing algorithm. Experimentally, specific algorithms can be implemented and

actual improvements in SNR and intelligibility can then be measured and related

to the theoretical limits.

The effects of reverberation will be investigated empirically by measuring perfor-

mance in simulated reverberant environments with precisely known and modifiable

characteristics. We will not include the effects of head-mounting on our microphone

arrays. This makes the theoretical analysis tractable and reflects our intuition that,

while the amplitude and phase effects introduced by the head are substantial and

may change the magnitude of our calculated limits, they will not alter the general

pattern of results.

Research areas which might benefit from this work include: hearing aids and

sensory substitution aids, human binaural hearing, human speech perception in

reverberant environments, and adaptive array signal processing.

We believe that the combination of theoretical and experimental approaches

to the AMMA problem is especially significant, and that the experimental work

reported in this thesis is at least equal in importance to the theoretical work. The

9



CHAPTER 1. INTRODUCTION 10

simulation methods and experiments of Chapters 5 and 6 may have been presented

in less depth only because they are the subjects of previous publications (Peterson,

1986; Peterson, 1987; Peterson, Durlach, Rabinowitz and Zurek, 1987).
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Chapter 2

Background

Before describing adaptive multi-microphone hearing aids (AMMAs), we will dis-

cuss three separate background topics: (1) performance of non-impaired listeners

in noisy, reverberant environments, (2) principles of operation and capabilities

of currently-available multi-microphone aids, and (3) principles governing multi-

microphone aids based on linear combination, whether those aids are adaptive or

not.

2.1 Human Speech Reception in Rooms

The speech reception abilities of human binaural listeners provide at least three

valuable perspectives on AMMAs. Firstly, the fact that listening with two ears

helps humans to ignore interference demonstrates that multiple acoustic inputs can

be useful in interference reduction. Secondly, the degree to which humans reject

interference provides a point of comparison in evaluating AMMA performance.

Finally, knowing something about how the human system works may be useful

in designing AMMAs.

Considerable data are available on the ability of human listeners to understand

a target speaker located straight-ahead in the presence of an interference source,

or jammer, at various azimuth angles in anechoic environments (Dirks and Wilson,

1969; Tonning, 1971; Plomp, 1976; Plomp and Mimpen, 1981). Zurek has con-

structed a model of human performance in such situations that is consistent with

much of the available experimental data (Zurek, 1988 (in revision)). The model is

based primarily on two phenomena: head shadow and binaural unmasking (Durlach

and Colburn, 1978).

Figure 2.1 shows the predicted target-to-jammer power ratio (TJR) required to

11



CHAPTER 2. BACKGROUND

TARGET SPEECH

0o

180'

Figure 2.1: Human sensitivity to interference in an anechoic environment as pre-
dicted by Zurek's model. Target-to-Jammer ratio (TJR) needed for constant intel-
ligibility is plotted as a function of interference angle and listening condition (left,
right, or both ears).

maintain constant target intelligibility as a function of interference azimuth for three

different listening conditions: right ear only, left ear only, and two-eared listening.

(Better performance corresponds to smaller target-to-jammer ratio.) At 0 ° interfer-

ence azimuth, the interference and target signal coincide and monaural and binaural

listening are equivalent1. At any other interference angle, one ear will give better

monaural performance than the other due to the head's shadowing of the jammer.

At 90° for instance, the right ear picks up less interference than the left ear and thus

performs better. Simply choosing the better ear would enable a listener to perform

1Although this equivalence may seem necessary, there is some experimental evidence (MacK-
eith and Coles, 1971; Gelfand and Hochberg, 1976; Plomp, 1976) that binaural listening can be
advantageous for coincident signal and interference.

I __ _�_ _ _ _ _ _ _ __ _ _
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CHAPTER 2. BACKGROUND

at the minimum of the left and right ear curves. For a particular interference angle,

the difference between these curves, which Zurek calls the head-shadow advantage,

can be as great as 10 dB. The additional performance improvement represented by

the binaural curve, called the binaural-interaction advantage, comes from binaural

unmasking and amounts to 3 dB at most in this particular situation. The maximum

interference rejection occurs for a jammer at 1200 and amounts to about 9 db relative

to the rejection of a jammer at 00. It should be emphasized that even a 3 dB increase

in effective TJR can dramatically improve speech reception since the relationship

between speech intelligibility and TJR can be very steep (Kalikow, Stevens and

Elliott, 1977).

0

-2

-o
`0

0-clco
0
'OF-I

a)
o
CU

-4

-6

-8

-10

-12

Jammer Azimuth Angle (degrees)

Figure 2.2: Plomp's measurements of human sensitivity to a single jammer as a
function of jammer azimuth and reverberation time RT.

For reverberant environments, there is no comparable intelligibility model and

experimental measurements are fewer and more complex (Nabelek and Pickett,

I
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CHAPTER 2. BACKGROUND

1974; Gelfand and Hochberg, 1976; Plomp, 1976). Plomp measured the intelligibil-

ity threshold of a target source at 0° azimuth as a function of reverberation time

and azimuth of a single competing jammer. Figure 2.2 summarizes his data on TJR

at the threshold of intelligibility for binaural listening and shows that the maximum

interference rejection relative to coincident target and jammer drops to less than

2 dB for long reverberation times.

Plomp's data also indicate that, even for coincident target and jammer, intel-

ligibility decreases as reverberation time increases. This effect could be explained

if target signal arriving via reverberant paths acted as interference. Lochner and

Burger (Lochner and Burger, 1961) and Santon (Santon, 1976) have studied this

phenomenon in detail and conclude that target echoes arriving within a critical

time of about 20 milliseconds may actually enhance intelligibility while late-arriving

echoes do act as interference.

2.2 Present Multi-microphone Aids

Although it seems desirable that the performance of an AMMA approach that of

a human binaural listener (or, perhaps, even exceed it), to be significant such an

aid need only exceed the performance of presently available multiple-input hearing

aids. These devices fall into two categories: true multimicrophone monaural aids

(often called CROS-type aids) and directional-microphone aids.

The many CROS-type aids (Harford and Dodds, 1974) are all loosely based on

the idea of sampling the acoustic environment at multiple locations (usually at the

two ears) and presenting this information to the user's one good ear. In particular,

the aid called BICROS combines two microphone signals (by addition) into one

monaural signal. Unfortunately, there are no normal performance data on BICROS

or any other CROS-type aid. Studies with impaired listeners have shown that

CROS aids can improve speech reception for some interference configurations but

may also decrease performance in other situations (Lotterman, Kasten and Revoile,

1968; Markides, 1977). Overall, performance has not improved. For this reason,

commercial aids are sometimes equipped with a user-operated switch to control the

�·-···IIIIICrm-l------r- --�-r--· �� -�a
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CHAPTER 2. BACKGROUND

combination of microphone signals (MULTI-CROS). An AMMA which achieved

any automatic interference reduction would represent an improvement over all but

the user-operated CROS-type aids.

Directional microphones also sample the sound field at multiple points, but the

sample points are very closely spaced and the signals are combined acoustically

rather than electrically. These microphones can be considered non-adaptive arrays

and can be analyzed using the same principles from antenna theory (Baggeroer,

1976; Elliott, 1981) that are covered more fully in the next section. In particular,

they depend on "superdirective" weighting schemes to achieve directivity superior

to simple omnidirectional microphones. Ultimately, the sensitivity of superdirective

arrays to weighting errors and electronic noise limit the extent to which directional

microphones can emphasize on-axis relative to off-axis signals (Newman and Shrote,

1982). This emphasis is perhaps 10 dB at most for particular angles and about

3 dB averaged over all angles (Knowles Electronics, 1980). Nonetheless, directional-

microphones seem to be successful additions to hearing aids (Madison and Hawkins,

1983; Mueller, Grimes and Erdman, 1983) and an AMMA should perform at least

as well to be considered an improvement.

Recent work on higher-order directional microphones that use more sensing

elements indicates that overall gains of 8.5 dB may be practical without excessive

noise sensitivity (Rabinowitz, Frost and Peterson, 1985). Clearly, as improvements

are made to directional microphones, the minimum acceptable AMMA performance

will increase.

2.3 Multi-microphone Arrays

To describe the design and operation of multiple-microphone arrays, whether adap-

tive or not, we will need some mathematical notation and a few basic concepts.

Figure 2.3 shows a generic multi-microphone monaural hearing aid in a typical

listening situation. The listener is in a room with one target or desired sound

source, labelled So, and J jammers or interfering sound sources, S1 through S. For

the example in the figure, J = 2. The sound from each source travels through the

�_�_
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CHAPTER 2. BACKGROUND

Figure 2.3: The generic multiple microphone hearing aid.

room to each of M microphones, M 1 through MM, that are mounted somewhere

on the listener's head, not necessarily in a straight line. The multiple microphone

signals are then processed to form one output signal that is presented to the listener.

2.3.1 Received Signals

Let the continuous-time signal from Sj be sj(t), the room impulse response from

Sj to microphone Mm be hmj(t), and the sensor noise at microphone M, be u,(t).

Then the received signal, ,m(t), at microphone Mr, is

J

m(t) = j hmj(t) 0 sj(t) + (t) (2.1)
j=O

Joo
E hmj(T) j(t - ') d + im(t)
j=O °°

_�II__ --�--lllly�ll__l -· �-- -- -.·-1_1 I ·I I

16



CHAPTER 2. BACKGROUND

where 0 denotes continuous-time convolution. If we define the Fourier transform

of a continuous-time signal s(t) as

8(f) = j s(t) e-j2f t dt
-oo

then the frequency domain equivalent of Equation (2.1) can be written

Xm(f) = j 7,j(f) Sj(f) + Um(f) (2.2)
j=O

The signal processing schemes that we will consider are all sampled-data, digital,

linear systems. Thus, the microphone signals will always be passed through anti-

aliasing low-pass filters and sampled periodically with sampling period Ts. The

resulting discrete-time signal, or sequence of samples, from microphone m will be

defined by

xm[] T (,) , (2.3)

where we use brackets for the index of a discrete-time sequence and parentheses

for the argument of a continuous-time signal. The scaling factor, Ts, is necessary

to preserve the correspondence between continuous- and discrete-time convolution

(Oppenheim and Johnson, 1972). That is, if

f(t) = g() (t - r)d,

if f(), (), and h() are all bandlimited to frequencies less than 1/2T8, and if we

define the corresponding discrete-time sequences as in equation (2.3), then we can

write

[n]= g[l] h[n-o1] .
=-oo

This makes it possible to place all of our derivations in the discrete-time context

with the knowledge that, if necessary, we can always determine the appropriate

correspondence with continuous-time (physical) signals.

In particular, we can view the sampled input signal, x,,,[n], as arising from

a multiple-input discrete-time system with impulse responses h,j[n] operating on

17



CHAPTER 2. BACKGROUND 18

discrete-time source signals, sj[n], and corrupted by sensor noise u,,[n]. That is, if

we use * to denote discrete-time convolution,

J

Xm[n] = E hmj[n] * sj[n] + um[n] (2.4)
j=o

J 00oo

= E E hj[l] sj[n-] + m[nl].
j=0 1=-oo

If the corresponding continuous-time signals in (2.1) are bandlimited to frequencies

less than 1/2T, then

hmj[n] = Ts. hj(nT.),

sj[n] = T. j(nT.),
and um[n] = T m(nTs).

Defining the Fourier transform of a discrete-time signal s[n] as

f'-00

we can express equation (2.4) in the frequency domain as

J
Xm(f) = E tHmj(f) Sj(f) + Um(f) (2.5)

j=O

and, as long as the continuous-time signals are bandlimited to half the sampling

rate,

Xm(f) = Xmf)

Xlmj(f) = Im,(f)

sj(f) = Sj(f)

Um(f) = ur(f)

Note that the bandlimited signal assumption is not very restrictive. Since the

source-room-microphone system is linear and time-invariant (LTI), the order of

the room and anti-aliasing filters can be reversed without altering the sampled

microphone signals. Thus, low-pass filtering of the microphone signals prior to

__ I_ ·_ �llll-XI�-C ···III ---1·- 11�1.·- 1 �-.---



CHAPTER 2. BACKGROUND

sampling is functionally equivalent to using low-pass filtered source signals. Since

the room response at frequencies above 1/2T, either cannot be excited or cannot

be observed, we are free to assume that it is zero.

Since we will be concerned exclusively with estimating the target signal, so[n],

we can simplify notation by defining:

s[n] so[n]
J

vm[n] - hj[n] * sj[n]
j=1

and z[n] a v,[n] + um[n],

(2.6)

(2.7)

(2.8)

so that sn] is the target signal, v,[n] is the total received interference at microphone

m, and Zm[n] is the total noise from external and internal sources at microphone

m. The received-signal equations can now be rephrased as

Xm[n] = hmo[n] * s[n] + v,[n] + m,[n] = hmo[n] * s[n] + zm[n] (2.9)

in the time-domain or, in the frequency domain,

Xm(f) = lmo(f) S(f) + Vm(f) + Um(f) = imo(f) S(f) + Zm(f) . (2.10)

The received microphone signals can be combined into one observation vector

and the time-domain convolution can be expressed as a matrix multiplication, giving

rise to the following matrix equation for the observations:

Xl [n] hlo[O] h1o[1] hlo[2] ... s[n] z[n]

X2[n] h20[0] h20[1] h2 [2] ... s[n - 11 z2[ n]

: i ssn - 2]

xM[n] hMo[O] hMo[l] h hMo[2 ] ZM[n]

If we use boldface to denote vectors, we can write the time-domain equation more

compactly as

s[n]

sin - 1]
.s~n-2 + ,z[n] = Hs[n] +- +=n] , (2.12)

.............. W..." ......-
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CHAPTER 2. BACKGROUND

where x[n] is the vector of M microphone samples at sampling instant n and z[n] is

the vector of M total noise values. Each h[i] is the vector of microphone responses

i sample times after emission of an impulse from the desired source, and s[n] is a

vector of (possibly many) past samples of the desired source signal.

The frequency-domain version of the matrix observation equation is simpler

because convolution can be expressed as a multiplication of scalar functions:

= ](f) + [ (2.13)

XM(f) tM(f) zM(f)

where the elements of each vector are identical to the elements of equation (2.10).

Using an underscore to denote vectors in the frequency-domain, this equation can

be condensed to

x(f) = 2t(f) (f) + Zf). (2.14)

In developing the target estimation equations, the signals s[n] (target), vm[n]

(received interference), and u,[n] (sensor noise) will usually be treated as zero-

mean random processes, so that signals derived from them by linear filtering, such

as the received-target signal,

rm[n] = hmO[k] s[n-k] (2.15)
k=-oo

will also be zero-mean random processes. We will also usually assume that these

random processes are wide-sense stationary so that, for any two such processes, p

and q, we can define the correlation function

Rpq[k] E p[n] q[n - k]} , (2.16)

and its Fourier transform, the cross-spectral-density function

00

Spq(f) _ Rpq[n] e-i2rfnTs. (2.17)
n=-oo

If p = q, of course, these functions become the autocorrelation and spectral-density

functions, respectively.

�111 1 _ _I_·__I_ _�_·_ _ -C- ___1___1 _11__111__1_��1_1_____
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In the most general case, p and q may be complex, vector-valued random

processes and have a correlation matrix

Rpq[k] - E {p[n] qt[n - k]} , (2.18)

where t indicates the complex-conjugate transpose. The related cross-spectral-

density matrix is then

00

Spq(f) - ] Rpq [k]e - j2rf kT.

k=-oo

(2.19)

where the elements of Spq are the Fourier transforms of the elements of Rpq.

If the p and q processes are derived from a common process, say r, the correla-

tion and spectral-density matrices can be expressed in terms of the corresponding

matrices for r. If p, q, and r are related by the convolutions

p[n] = a[n] * r[n]

q[n] = b[n] *r[n],

(2.20)

(2.21)

then

Rpq [k] = E {p[n] q[n - k]}

= E E a[l] r[n-1] r[n - k + mbT[m] 

-= ] E a[l] R,,rr[k - I - m] bT [-m]
m=-oo =-oo

oo

-- Z (a[k- m] * Rrr[k - m) bT [-m]
= a[]00

= a[k]* R,,[k] bT [-k], (2.22)

and

Spq(f) = A(f) Srr(f) Bt(f) (2.23)

An alternative form of the correlation matrix can be derived if we express convolu-

21
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tions (2.20) and (2.21) as matrix multiplications, in the style of (2.11) and (2.12),

p[n] = Ar[n] = [a[0] a[l] -.. r[n- 1] (2.24)

q[n] = B r[n]. (2.25)

In this case,

Rpq[k] = E {A r[n] rT[n - k] BT} = A Rrr[k] BT , (2.26)

where it should be noted that Rrr is a matrix function of k:

R r[n] r[n - k] Rrr [k] Rrr[k + 1] ]..
Rrr[k] = E .[,- ] ,Irn- - 1] Rrr[k- 1] Rrr[k] .

(2.27)

When a derivation depends only on the value of Rpq[0], we will use the shortened

notation Rpq to denote this value.

In our application we will always assume that s[n], v,[n], and u,[n] are mutually

uncorrelated so that

Rsv[k] = Ru[k] = 0 (2.28)

and

Rvu[k]= .. . .. (2.29)

We will also assume that the sensor noise is white, uncorrelated between micro-

phones, with an energy per sample of a2 at each microphone. That is,

'7u 0 ... 0

0 o2 ... 0
o o []Ruul·6[k]aIm6[k], (2.30)

0 0 ... au

._*-_. I__ _I ___ __ ___ _-----·11�--·1�----
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where IM is the M x M identity matrix and S[n] is the discrete-time delta function,

b[n] 1 ifn=O, (2.31)
= 0otherwise.

We will usually not make any assumptions about the structure of the received

interference, v[n], so that Rvv[k] can be arbitrary.

The target autocorrelation function, R,,[k], if needed, must be determined from

properties of the particular source signal, either using a priori knowledge or by

estimation. Similarly, the received-interference autocorrelation matrix, Rvv[k],

will depend on the properties of the particular interference signals and on the

propagation (room) configuration.

It is now a simple matter to specify the statistical properties of the received

microphone signals. Using a vector form of (2.9), the convolutional definition of

Xm[n],

x[n] = h[n] * s[n] + z[n], (2.32)

and following (2.22) and (2.23), we can determine that

SzX(f) = l(f) S(f) t(f)) + Szz(f) (2.33)

SX(f) = Ss,(f)it(f) (2.34)

sX8(f) = H(f)s.(f). (2.35)

Using the multiplicative definition of x[n] in (2.12),

x[n] = Hs[n] + z[n],

and using (2.26), it also follows that

Rx[k] = HRs [k] HT + Rzz[k] (2.36)

R.x[k] = Rss[k] HT (2.37)

R,,[k] = HRsS[k]. (2.38)

When necessary, we can express the total noise statistics in terms of received

interference and sensor noise:

Rzz[k] = Rvv[k] + a 2IM [k] (2.39)

Sz(f) = Svv(f) + ~2IM (2.40)

1
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2.3.2 Signal Processing

After the received signals have been sampled, they are converted from analog to

digital form for subsequent digital processing 2. The processing schemes under con-

sideration form output samples, y[n], by weighting and combining a finite number

of present and past input samples. If the weights are fixed, the processing amounts

to LTI FIR (linear-time-invariant finite-impulse-response) filtering. In our case,

however, the weights are adaptive and depend on the input and/or output signals.

Strictly speaking, then, the processing will be neither linear, time-invariant, nor

even finite-impulse-response (when the weights depend on the output samples). If

the adaptation is slow enough, however, the system will be almost LTI FIR over

short intervals. After the output samples are computed, they are converted from

digital to analog form and passed through a low-pass reconstruction filter that

produces y(t) for presentation to the listener.

There are at least two ways, shown in Figures 2.4 and 2.5, to view the operation

of the digital processing section. Figure 2.4 shows the processing in full detail.

Each discrete-time microphone signal passes through a string of L - 1 unit delays,

making the L most recent input values available for processing. The complete set

of ML values are multiplied by individual weights, w,[l] (where m = 1 ... M and

I = 0... L - 1), and added together to form the output y[n]. This processing can

be expressed in algebraic terms by the equation

x [n]

y[n] = Tx[n] = [ T[0] wT[] .. WT[L - 11] n , (2.41)

x-[n-L + 1]

where w[l] is the vector of weights at delay 1, and x[n], as defined in the previous

section (equation (2.12)), is the vector of sampled microphone signals at time index

2 Although this conversion process introduces quantization errors, we will usually assume that
the errors are small enough to ignore and use Equation (2.3) to describe both digital and analog
samples.

�·IIlllll�··-·lll(·C- -I_ -·II I ___C_ ·- I · __ __
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w1loJ

xM[n-(L-1)]

WM[Ol

Figure 2.4: Detailed view of signal processing operations.

n. Specifically,

w [] xl[n]

[I] = 21 and z[n] [n

WM[] XM [n]

If the weights, w, are adaptive, they will, of course, depend on the time index,

n. We have not expressed this dependence in our notation because changes in

w are normally orders of magnitude slower than changes in x and, therefore, the

weights comprise a quasi-LTI system over short intervals. The notation was chosen

to emphasize the interpretation of the weighting vector as a filter.

If we consider the weights for each channel as a filter, then we can view the

processing more abstractly, as shown in Figure 2.5, where each microphone signal

passes through a filter with impulse response w,[n]. In this view, the output is

25
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Figure 2.5: Filtering view of signal processing operations.

simply the sum of M filtered input signals,

y[n]
M

= E wm[n] * xm[n]
m=l

M L-1

= Z wm[l] m[n - I]
m=l 1=0

L-1 M

= E E wm[] m[n - ]
1=0 m=l1

L-1

W= wT [l]x[n-l]
1=0

= wT[n]* [n]

or, in the frequency domain,

M

Y(f) = Z WM(f) Xm(f) = w T (f) X(f) .
m=1

If the xm[n] are stationary random processes, we can use (2.43) and, follow-

ing (2.22) and (2.23), determine the output autocorrelation and spectral-density

26
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functions:

Ryy[k] = wT[k] * Rz[k] * w[-k] (2.45)

S,,(f) = W T (f(f)S(f) W*(f) . (2.46)

We can also use (2.41) and (2.26) to derive the multiplicative form of the output

autocorrelation function:

Ryy[k] = E {y[n]y[n n-k]}

= E {wT x[n] xT[n k] w}

- wT Rxx[k ] w, (2.47)

where Rxx[k] is an ML x ML matrix of correlations among all the delayed mi-

crophone samples in the array, which can be expressed in terms of the M x M

correlation matrix Rz[k].

R x[nn [k- [n-k R] RzR[] R[k 1] --
Rxx[k] = E [n - 1] xtn-k-1] Rzz[k-1] Rx[k] ..

(2.48)

Rxx[k] can also be expressed in terms of target and interference statistics. The

vector of ML array observations, x, can be modelled by extending (2.12):

x[n]

x[n] = [n-1]

x[n - L + 1]

h[O] h[1] .
0 h[O] ...

o 0 ... h[O]...

s[n]

s[n- 1]

s[n - L+ 1]

z [n]

+ z[n- 1]

z[n - L + 1]

= Hs[n] + z[n].

27
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Using this model,

Rxx[k] = E {x[n]xT[n - k]} = H Rss[k] H T + Rzz[k], (2.50)

where Rss[k] and Rzz[k] are extended versions of Rss, [k] and R, [k].

2.3.3 Response Measures

Once an array processor (a set of microphone locations and weights) has been

specified, we can evaluate the response of that processor in at least two ways. The

array directional response, or sensitivity to plane-waves as a function of arrival

direction, can be determined from the specification of the array processor alone.

When we know, in addition, the statistics of a particular signal or noise field, we

can determine the overall signal- or noise-field response of the array for that specific

field.

Directional Response

An array's directional response can be defined as the ratio of the array processor's

output to that of a nearby reference microphone as a function of the direction of

a distant test source that generates the equivalent of a plane wave in the vicinity

of the array. We will assume that our arrays are mounted in free space with no

head present and that the microphones are omnidirectional, and small enough not

to disturb the sound field 3. We will also assume that the microphones have poor

enough coupling to the field (due to small size and high acoustic impedance) that

inter-microphone loading effects are negligible.

Let the location of microphone m be r, its three-dimensional coordinate vector

relative to a common array origin; let a be a unit vector in the direction of signal

propagation; let c be the velocity of propagation; and let ST(f) represent the

test signal as measured by a reference microphone at the array origin. Then the

3 The presence of a head or of microphone scattering will introduce direction- and frequency-
dependent amplitude and phase differences from the simplified plane-wave field that we have as-
sumed. The directional response is then harder to calculate and dependent on the specific head
and/or microphone configuration.

-tlllll·-C I I-- --
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amplitude and phase of the signal at microphone m will be given by

Xm(f, 5) = ST(f)ej2 fm(a) = ST(f)e-2" , (2.51)

where rm(a) = c'* rfm/c represents the relative delay in signal arrival at microphone

m. The array output for the test signal is then

M M

YT(f, 5 ) = W,(f)X(f, 5) = W(f)(f)S~(f)e - j 2
rf Tm(

a ) (2.52)
m=l m=l

and the array's directional response (sometimes called the array factor) is given by

M

g(f, a) Y= ) Z Wm(f)e-2,fm@). (2.53)
ST(f) m_

Since a can be expressed in terms of azimuth angle, , and elevation angle, , we

can also write the directional response as g(f, 0, /).

An array's directional response is often described by considering only sources

in the horizontal plane of the array and plotting the magnitude of 9(f, 0, 0) at a

particular frequency f as a function of arrival angle 9. To illustrate the utility of

such beam patterns, Figure 2.6 shows patterns for an endfire array (whose elements

are lined up in the target direction, 00) of 21 elements spaced 3 cm apart for a

total length of 60 cm, or about 2 feet. The processor that gave rise to these

patterns, a delay-and-sum beamformer, delayed the microphone signals to make

target waveforms coincident in time and then summed all microphones with identical

weights. That is, for a delay-and-sum beamformer,

Wm(f) = ej2fTm(0° ) (2.54)

The single-frequency beam patterns of Figure 2.6 (a), (b), and (c) illustrate the fact

that delay-and-sum beam patterns become more "directive" (preferentially sensitive

to arrivals from 00) at higher frequencies. In quantitative terms, the 3 dB response

beamwidth (Elliott, 1981, page 150) varies from about 160 ° at 250 Hz to 76 at

1 KHz to 38 ° at 4 KHz. Alternatively, directivity can be characterized by the

directivity factor or directivity index, D, defined as the ratio of the response power
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(d)

1800

-900

Figure 2.6: Beam patterns for a 21-element, 60 cm endfire array of equispaced
microphones with delay-and-sum beamforming. Patterns are shown for (a) 250
Hz, (b) 1000 Hz, (c) 4000 Hz, and (d) the "intelligibility-weighted" average of the
response at 257 frequencies spaced uniformly from 0 through 5000 Hz. Radial scale
is in decibels.

at 0° to the average response power over all spherical angles (Schelkunoff, 1943;

Elliott, 1981):
D(f) = 1 (f, 0, 0)12

4- J I(f, 0, 0)12 dO do
4i7r 

(2.55)

For our 21-element array, we can use an equation for the directivity of a uniformly-

weighted, evenly-spaced, endfire array (Schelkunoff, 1943, page 107), to calculate

the directivities of patterns (a), (b), and (c) as 3.7, 9.3, and 16 dB, respectively.

The final pattern in Figure 2.6 presents a measure of the array's broadband

(c)

180°

-900
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directional response, the "intelligibility-average" across frequency of the array's

directional response function for sources in the horizontal plane. This average

is designed to reflect the net effect of a particular frequency response on speech

intelligibility and can be calculated as

() = WAI(f) 20 log10 rms1/ 3(lJ(f, 0)l) df. (2.56)

The function rmsl/ 3() smooths a magnitude spectrum by averaging the power in a

third-octave band around each frequency and is defined as

(s= 1 IH(v)1 2 dv
rmsl/3(H(f)l= (21/6 - 2- 1/ 6 )f . (2.57)

This smoothing reflects the fact that, in human hearing, sound seems to be analyzed

in one-third-octave-wide frequency bands, within which individual components are

averaged together 4 . The smoothed magnitude response is then converted to decibels

to reflect the ear's logarithmic sensitivity to the sound level in a band. Next,

the smoothed frequency-response in decibels is multiplied by a weighting function,

WAI(f), that reflects the relative importance of different frequencies to speech

intelligibility. The weighting function is normalized to have an integral of 1.0 and

is based on results from Articulation Theory (French and Steinberg, 1947; Kryter,

1962a; Kryter, 1962b; ANSI, 1969), which was developed to predict the intelligibility

of filtered speech by estimating the audibility of speech sounds. Finally, the integral

of the weighted, logarithmic, smoothed frequency-response gives the intelligibility-

averaged gain, (), of the system. In the special case of frequency-independent

directional response, i.e. (f, 0) = K(O), smoothing and weighting will have no

effect and ((80)) I = 20 log1 0 K(8).

Intelligibility-averaged gain can be described as the relative level required for

a signal in the unprocessed condition to be equal in intelligibility to the processed

4 0f course, the presumed smoothing of human audition must operate on the array output signal,
and smoothing the magnitude response function (which is only a transfer function), as in (2.56) will
be exactly equivalent only when the input spectrum is flat. When the input spectrum is known,
we could calculate ()I more precisely by comparing smoothed input and output spectra. However,
the simplified formula of (2.56) gives very similar results as long as either the input spectrum or the
response magnitude is relatively smooth, and can be used to compare array responses independent
of input spectrum.
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signal. For the broadband beam pattern in Figure 2.6(d), the gain at 0° is 0 dB

because signals from 0° are passed without modification and intelligibility is not

changed. At 450, the intelligibility-averaged broadband gain of -12 dB implies that

processing has reduced the ability of the jammer to affect intelligibility to that of

an unprocessed jammer of 12 dB less power.

The absolute effect of a given jammer on intelligibility will depend on the

characteristics of the target. As an example, consider first a "reference" condition

with target and jammer coincident at 00, equal in level, and with identical spectra.

In this situation, Articulation Theory would predict an Articulation Index (the

fraction of target speech elements that are audible) of 0.4, which is sufficient for

50% to 95% correct on speech intelligibility tests of varying difficulty. Now, if

that same jammer moves to 450, its level would have to be increased by 12 dB

to produce the same Articulation Index and target intelligibility as the reference

condition5 . Alternatively, the target could be reduced in power by 12 dB and

still be as intelligible as it was in the reference condition. This implies one last

interpretation of ({)I as that target-to-jammer ratio necessary to maintain constant

target intelligibility (similar to the predictions of Zurek's binaural intelligibility

model in section 2.1).

Based on intelligibility-averaged broadband gain, the four broadband beam

patterns in Figure 2.7 can then be used to illustrate the rationale for adaptive

beamforming. Pattern (a) is; once again, the average directional response of a 21-

element 60-cm (2-foot) delay-and-sum endfire array. Although its directivity might

be satisfactory for a hearing aid, its size is excessive. Pattern (b) is the result of

reducing the delay-and-sum beamformer array to six elements over 15-cm (0.5 foot).

Now the size is acceptable but directivity has decreased substantially. Patterns (c)

and (d) show the results of applying "optimum" beamforming (to be discussed in

5 Strictly speaking, (), only approximates the result of a search for the input Target-to-Jammer-
Ratio that would give an A.I. of 0.4 if the A.I. calculation were performed in full (non-linear) detail.
However, for a number of cases in which full calculations were made, the approximation error was
less than 0.5 dB if the range of the frequency response was less than 40 dB. For frequency responses
with ranges greater than 40 dB, the approximation was always conservative, underestimating the
effective jammer reduction.
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(a
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Figure 2.7: Broadband beam patterns for four equispaced, endfire arrays: (a) 21
elements, 60 cm, delay-and-sum beamforming; (b) 6 elements, 15 cm, delay-and-sum
beamforming; (c) 6 elements, 15 cm, weights chosen to maximize directivity; (d) 6
elements, 15 cm, weights chosen to minimize jammers at 45° and -90 ° .

the next chapter) to the same 6-element, half-foot endfire array. In pattern (c), the

processing weights have been optimized to maintain the target signal but minimize

the response to isotropic noise or, equivalently, to maximize the directivity index

(Duhamel, 1953; Bloch, Medhurst and Pool, 1953; Weston, 1986). This processing

scheme provides directivity similar to that in pattern (a) with an array four times

smaller. It should be noted, however, that endfire arrays designed to maximize

directivity (so called "superdirective" arrays) are often quite sensitive to sensor

noise and processing inaccuracies (Chu, 1948; Taylor, 1948; Cox, 1973a; Hansen,

1981). For hearing aid applications, this sensitivity may be reduced while significant
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directivity is retained by using "suboptimum" design methods (Cox, Zeskind and

Kooij, 1985; Rabinowitz, Frost and Peterson, 1985; Cox, Zeskind and Kooij, 1986).

In pattern (d), the processing weights have been optimized to minimize the array

output power for the case of jammers at 450 and -90 ° in an anechoic environment

with a small amount of sensor noise. Although the beam pattern hardly seems

directional and even shows excess response for angles around 180 °, only the re-

sponses at angles of 0°, 45° , and -90 ° are relevant because there are no signals

present at any other angles. Pattern (d) is functionally the most directive of all

for this particular interference configuration because it has the smallest response

in the jammer directions. If the interference environment changes, however, the

processor that produced pattern (d) must adapt its weights to maintain minimum

interference response. This is precisely the goal of adaptive beamformers.

Signal- and Noise-Field Response

When we know the characteristics of a specific sound field, such as the field generated

by the two directional sources in the last example, we can define the array response

to that particular field as the ratio of array output power to the average power

received by the individual microphones. This response measure takes into account

all the complexities of the sound field, such as the presence of multiple sources or

correlated reverberant echoes from multiple directions.

We will use K,(f) to denote an array's noise-field response at frequency f to

noise with an inter-microphone cross-spectral-density matrix of Snn(f). The noise-

field response will depend on Snn(f) and on the processor weights, W(f), as follows.

The average microphone power is the average of the diagonal elements of Snn(f)

or trace(Snn(f))/M. The array output power, given by equation (2.46), is simply

WT(f) Snn(f) W*(f). The array's noise-field response is then

K(f) = () trace(S) (f)) (2.58)

A similar array response can be defined for any signal or noise field. In particular,

�-s-L--·lll·--- _-·1_11�--_1_--- --11111 -·^I1 __ _ _
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we will be most interested in the response to the total noise signal, z:

W T (f) Sz(f) w*(f)
K(f)= !trace(Sz(f)) ; (2.59)

the response to sensor noise, u, whose cross-correlation matrix is o2 IM:

WT(f)a 2 = (2.60)
Ku(f) l = t e( IM ) w(f) =(f) IW(f) (260)9 trace(a IM)

and the response to the received target signal, r[n] = h[n] * s[n], from (2.32):

K( WT(f) r(f) W*(f) WT(f) t(f) Ss (f) t(f) (f)
t trace(Srr(f)) trace((f)S,,(f) (f))

wT(f) t(f) Xt(f) W*(f) = wTjj( l(f) 2 (2.61)

1 trace(2it(f) H(f)) 1 l(f)I2 (2.61)

where we have factored out the scalar signal power, S,,(f) and used the identity

trace(AB) = trace(BA).

A measure of array performance that often appears in the literature, array gain

GA, is the ratio of output to input signal-to-noise ratios (Bryn, 1962; Owsley, 1985;

Cox, Zeskind and Kooij, 1986) and is easily shown to be

GA(f) = Kr(f) (2.62)

Note that array gain could be described as the gain against the total noise field and

is opposite in sense to the total-noise response, K(f), but has the intuitive appeal

that higher gains are better. We will extend the array gain notion by defining

similar gains for particular noise-fields of interest. Specifically, if we use G,(f) to

denote the ratio of output to input signal-to-noise ratios for noise n, then we can

define a total-noise gain,

GK(f) = GA(f) (2.63)
K,(f)

which is identical to array gain; an isotropic-noise gain, or array gain against

isotropic noise,

Gi(f) = K(f) = D(f) (2.64)
Ki(f)

....
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which is identical to the array directivity defined in (2.55); and a jammer-noise gain,

or gain against received directional-jammer signals,

Gj(f) = K(f)IKj(f) ' (2.65)

where Ki(f) and Kj(f) are the array responses, defined as above, to isotropic and

directional-jammer noise fields, respectively6 .

6 This family of gain measures is missing one member that we will not use. A commonly-used
measure of array insensitivity to errors, white noise gain, or gain against spatially- and temporally-
uncorrelated noise is defined as

K. (f)
Gw(f) = G,(f) = Ku(f) (2.66)

This measures the degree to which the signal is amplified preferentially to white noise and random
errors (Cox, Zeskind and Kooij, 1986). Thus, larger values of Gw are better, although the signifi-
cance of a small Gw will depend on the amount of white noise or the magnitude of error actually
present. In fact, Gw predicts the ratio by which white noise would have to exceed the signal to
produce equal power in the output. Note that white noise gain, Gw, is inversely proportional to
the sensor-noise response, Ku. In the common special case where the signal gain, Kr, is unity,

1uIf 1
Gw(f) = K - W(f)1 (Kr = 1) . (2.67)

We prefer to use Ku(f) directly as a measure of the sensitivity of a processor to sensor-noise.
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Chapter 3

Optimum Array Processing

In the last chapter we described the signal-processing structure of our proposed

multi-microphone monaural hearing aid and used response patterns to illustrate

the potential benefit of processing that is matched to the received interference.

In this chapter we derive specific processing methods that are, in various senses,

"optimum" for removing stationary interference. In subsequent chapters we will

analyze the performance of these optimum processors and describe adaptive process-

ing methods that can approach optimum performance in non-stationary hearing-aid

environments.

Our investigation of optimum processing will proceed in three steps. First,

we will consider various optimization criteria for processing based on unlimited

observations (i.e., processing that uses data from all time) and show that the various

criteria lead to similar frequency-domain processors. Second, we will consider a few

of the same criteria for processing based on limited observations, which will lead to

optimum time-domain processors. Third, we will try to relate the frequency- and

time-domain results and discuss ways in which the different methods can be used.

3.1 Frequency-Domain Optimum Processors

Although our ultimate goal is an AMMA based on a limited number of micro-

phone signal samples, as shown in Figure 2.4, we can gain considerable insight

with relatively simple calculations by first considering the case in which samples

from all time are available. If the sampled signal is stationary, it will have a

spectral representation, similar to the Fourier transform of a deterministic signal,

that depends on the signal samples over all time. Because the components of the

signal's spectral representation at different frequencies will be uncorrelated, the
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derivation and application of optimum processors in the frequency domain will be

greatly simplified. The results of frequency-domain processing can then be used

to bound the performance of realizable processors based on a limited number of

samples.

Spectral Representation of a Random Process. To present a rigorously

correct definition of the spectral representation of a stationary random process

would involve mathematical issues beyond the scope of this thesis (Wiener, 1930;

Doob, 1953; Van Trees, 1968; Gardner, 1986). We will use an approximation that

is essentially correct but requires a bit of justification.

Over a finite interval, a function x[n] can be represented as a sum of orthonormal

basis functions;

N-i

x[n] = Xk q lk[n] (-N/2 < n < N/2) (3.1)
k=O

where the basis functions, k[n], satisfy

N/2-1

ZE ';[n] k[n] = 6[j - k] (3.2)
n=-N/2

and the Xks can be determined by

N/2-1

Xk= E x[n]4[n] . (3.3)
n=-N/2

If the basis functions are known, then the set of XkS, {Xk I 0 < k < N}, and the

values of x[n], {x[n] I - N/2 < n < N/2}, are equivalent representations of the same

function.

When x[n] is a random process, its values will be random variables and the Xks

will be linearly related random variables. Karhunen and Loive have shown that

it is possible to choose a set of basis functions such that the Xks are uncorrelated

(Van Trees, 1968), i.e.

E {Xj Xk} = Aj 6[j- k] 

_II �_·_II _I_ _�I_ __I··__ I^·__·_^I __ __�_ _ ___
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Assuming that x[n] is stationary, this special set of basis functions will satisfy

N/2-1

E7 R[n -m] k[m] =Ak k[n], (3.5)
m=-N/2

in which qk is an eigenfunction and Ak is the corresponding eigenvalue. As N -+ oo,

this equation approaches the form of a convolution of Ok with R, which can be

viewed as the impulse response of an LTI system, whose eigenfunctions must be

complex exponentials.

In fact, it can be shown (Davenport and Root, 1958; Van Trees, 1968; Gray,

1972) that for large N,

Ok[n] N ej 2
-r

k n / N 1 ej 2 rfknT (3.6)

) \ = Sc(fk), (3.7)

where fk = k . (The previously mentioned mathematical issues arise in rigorously

taking the limit of these expressions as N -- oo.) This leads to our approximate

(for large N) spectral representation,

1 N/2-1
XN(f) = , x[n] e j2fn" T , (3.8)

for which

E {XN(fj) (fk)} _ SZ(f/) 6[j - k] (3.9)

The validity of this approximation will depend on N being much greater than

the non-zero extent of Rx,[n] or, equivalently, greater than some function of the

"sharpness" of features in Sx,(f).

We can now proceed to consider various optimizing criteria in the derivation of

frequency-domain optimum processors.1 These derivations will all be based on a

model of the received signal, generalized from Section 2.3.1, as

XN(f) = 21(f) SN(f) + gN(f) (3.10)

1The basic concept and many of the results of this section were originally presented by Cox in

an excellent paper (Cox, 1968) and later expanded slightly by Monzingo and Miller (Monzingo and

Miller, 1980).
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In all cases we will assume that _'(f), the vector of transfer functions from the

target source to each of the microphones, is known. To simplify notation, we will

drop both the explicit argument f in frequency-domain functions and the subscript

N that denotes the extent of approximate spectral representations. Thus, equation

(3.10) can be compressed to

X = iS + Z. (3.11)

3.1.1 Maximum A Posteriori Probability

If we assume that the target, jammers, and receiver noise are all zero-mean real

Gaussian random processes, then, in the frequency domain, the target and total

received noise will both have zero-mean complex Gaussian distributions (Reed, 1962;

Goodman, 1963) given by

(S) (S) exp(-S S (3.12)

P ( ) = 'M det( exp(- , (3.13)

which we can denote by

S N(O, S,,) (3.14)

- N (, Szz) . (3.15)

From these distributions and the received-signal model, it follows that

X - N ( , XS 'Is. + S) , (3.16)

and the a posteriori probability of S given the observation is

( Pl S) p(s) X - S ()
- _ _ _ _ _ _ _ - _ _ _

= k exp (- ( - ±S)t S-1 (X - )-(St S- S)) (3.17)

The MAP target estimate, SMAP, is that value of S for which the a posteriori dis-

tribution is maximum. Since the exponential function is monotonic, the maximum

_ __II II _·_ 11--·-�--111^.�-�- -- -·--· I·-I -- --- �
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of (3.17) occurs where the exponent itself is maximum. That is,

a&d [ (X X t s i- ( -es) - (St s8S S)] =0, (3.18)

which implies 2

4t S l -SMAP) - SMAP = (3.19)

and, therefore,

_ W (3.20)
SMAP = (' + St - i)' t S;1 = WAP . (3.20)

Thus, the optimum processor for the MAP criterion combines microphone signals

with the weighting function

MAP = (s:1 + 2 S;x ) S) (3.21)

or, after applying the matrix identity (A.2),

w,, s..(3 (s.. + s,). (a22)
) AP = 5 a8 8 2 t ( SSJ't + SZ (3.22)

= S, S;l (3.23)

Note that this processor is based on knowledge of 2, S,, and Szz, and on the

assumption that s and z are Gaussian.

2 The notation , where v is complex, stands for the derivatives with respect to the real and
imaginary parts of v. We use the following notation and rules for differentiation with respect to
complex vectors (or scalars). If s is a real scalar, v and w are complex vectors, and M and H
are complex matrices, then s is a vector of partial derivatives of s with respect to the real and

imaginary parts of each element of v, and, in particular,

k(vtMv) = 2Mv

[(w-H v)t M (w.-Hv)] = -2HtM(w - H v).

These relationships can be derived using rules for real-vector differentiation (Selby, 1975; Monzingo
and Miller, 1980) and considering separately the derivatives with respect to real and imaginary parts.
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We can characterize the performance of the MAP processor by calculating the

expected squared error (or variance) of the signal estimate.

EMAP - E (SMAP ) 2 } - S E {MAP X - S) (t WAP S*)}

= WvMAP SXZ WMAP S- WMAP - WMAP SZs + Sss

- 8- S.S- S; Sr. (3.24)

= S- S, ( t + S.Z)-' S, (3.25)

-=) ( 8 S1 + t S; )1X .(3.26)

3.1.2 Minimum Mean Squared Error

The MMSE target estimate, SMMSE, minimizes the expected squared estimation

error

62 _ ( _ 2 E(WyVT X- (Xt VW*-S* }

= W SZz W - WTS Sz - S W* + Ss- * (3.27)

The minimum of this quadratic form will occur where the gradient with respect to

W is zero.

89 ( 2) = 2 S MMSE - 2 Ss = 0 (3.28)
5-- W=WMMSE

then implies

WMSE = S; Ss

WTMSE = Ssz S;a (3.29)

= S.SS ( sHast+SZ)Z) (3.30)

= (S8 + t SZ-1 ) 1 .t Sz1 (3.31)

The MMSE processor is identical to the MAP processor and also depends on

knowledge of , S, and Szz, but the derivation does not depend on the Gaussian

assumption. This is consistent with the generally known result that, when S and X

are jointly Gaussian, then the MMSE and MAP estimates of S given X are identical

(Van Trees, 1968).

_ __ _I _� �_
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Since the MMSE and MAP processors are identical, the mean squared error for

the two processors will also be equal.

EMMSE = E { (SMMSE -)} = MAP

= S,, - , S; S, (3.32)

= s. -,S t (S, 8i t +Szz)- ' ts (3.33)

= (S' + tSS;Z,)'u .(3.34)

3.1.3 Maximum Signal-to-Noise Ratio

The SNR estimator attempts to maximize the ratio of target power to interference

power in the processor output, which can be decomposed into target and interference

components, V and U:

y = WTX = WT (S+) =WT S+W = V+U (3.35)

Assuming that s and z are uncorrelated, the output power is simply the sum

Sy = S, + S, = WT ' S. It W + WT SZ W* (3.36)

We want to find WSNR, that W which maximizes

(S) = a s * (3.37)
= W T $S yV*

By defining3 P - Sl/ 2 W* and R = -S /2H -Sl/2, this expression can be rewritten

(S ) tr (3.38)

According to Rayleigh's principle (Strang, 1976), this quadratic form will be max-

imized by setting P equal to the eigenvector of RIZ t with the largest eigenvalue.

3 The factorization Szz = S/lj 2 S1/2 exists if and only if Szz is positive definite (Strang, 1976),
a reasonable assumption in our application.
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Luckily, the rank 1 matrix 1. Zt has only one non-zero eigenvalue and the corre-

sponding eigenvector must be of the form a R. Thus,

PMAX = a R (3.39)

S1/2 NR = SZ-Z 2i S1 2 (3.40)
Z-WNR Ot

WSNR = 7-t S . (3.41)

The arbitrary constant, fi, determines the overall level of the output but does not

affect signal-to-noise ratio.

The performance of the SNR estimator can be evaluated by calculating the

maximized output signal-to-noise ratio:

S WTNR _i ss . WNR

N ( MAX sNRS wNR

t S~z iS.. fit S4Z a
1 S t

= S.. t SZ1 . (3.42)

Note that, although the performance calculation requires knowledge of H, Szz and

S,,, the SNR processor is based on 7- and Szz only.

3.1.4 Maximum-Likelihood

The preceeding processors were all based on the assumption that the target signal

could be modelled as a random process characterized by, at least, its spectral density

function and, in the MAP case, by Gaussian statistics. It is possible, however, to

derive processors based on the less restrictive assumption that the target is simply

an unknown, deterministic signal for which a priori information, in the form of

target statistics, is unavailable.

If we assume that the interference alone is Gaussian, i.e.,

(3.43)

1_1_1 _ �^_ 1_ 1_11_ _ __ _ _

44



CHAPTER 3. OPTIMUM ARRAY PROCESSING

then the probability density function for the observations X will depend on the

unknown S,

p = p (X - S)

= k exp - (-IS)t S; (X -s)). (3.44)

The ML target estimate, SML, is that value of S which maximizes (3.44) or, in other

words, the target signal for which the observation X is most likely. Once again,

because the exponential function is monotonic and the exponent is quadratic, the

maximum of (3.44) can be found where

OS [- ( ' - 7s) 3Z- (x ,- 7s$)] = 0, (3.45)

which implies that

t -S (- SML) = 0 (3.46)

SML = t S )-1 t S- X X (3.47)

Thus, the ML processor is

-'ML ,= ( sZ ) Iat S1 , (3.48)

which depends only on 2 and Sxz and is based on the assumption of Gaussian

interference. When the target signal actually is a stationary process, it can be

shown (see Appendix B) that

IL = (t S;}i 2- ts't S;. (3.49)

In other words, for an unknown but stationary target, knowledge of Szx, which can

be estimated from the observations, is equivalent to knowledge of Szz.

The performance of the ML processor can be characterized by the expected
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squared error (or

2
EML

variance) of the signal estimate, where the signal is now fixed.

E {(SML-S)}= E { (WL-S)}

= E{ ((wtS1 X) t S1 (X S +)-s) }

= E{((~tS;i)' atS;l)}

= (t S-)1 (350t Sz ) Sz1H ( SzX

(ft S; 1 a) (3.50)

3.1.5 Minimum-Variance Unbiased

The MV processor produces a signal estimate, SMv, that is unbiased and has the

lowest variance of all unbiased estimates. The zero bias requirement can be stated

as

E {SMV= E M =Ev } = E < s = V S+)S S, (3.51)

which implies that

WV_ ? = 1. (3.52)

The variance to be minimized is

EMV = E{(SMV-S) 2} = E{Sv-2Sv S +S2}

=E {Sv}- S2

E {WT ( + ) ( + j) Mv} 5

= WMVSZZW , (3.53)

where the last step depends on Z being zero-mean and on the assumption of zero

bias, i.e., that WTv -= 1. The minimization of (3.53) with respect to W must be

constrained to produce a W that satisfies the zero-bias condition WTV = 1. To

do this, we introduce the constraint with a Lagrange multiplier, A, and minimize

WMVSzzWMv + 2 A (WMV 1)

_ I �--·-·---i_ _ --- II I
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which will be independent of A as long as the constraint is satisfied. Differentiating

with respect to W*,

2 Szz Wv + 2 = 0

WM = -A S;Z 1H

2GV = -Ats,-. · (3.55)

Since this W must satisfy the zero-bias constraint,

WT V2i = -Aats1;-i = 1

A = .(±-/tS; !iHY) , (3.56)

which allows us to eliminate A in (3.55),

)MV = ( S;X1 ) -1 Et -(3.57)

Thus, the MV processor is identical to the ML processor, depending on /C and Szz,

but can be derived without making the Gaussian assumption. Since the processors

are identical, it will also be true for the MV processor that, if the target signal is

stationary,

WTMV (W s;Z X)-E' s;,. (3.58)

And, finally, the performance of the MV processor must equal that of the ML

processor:

e2V = ( 7i)-1 . (3.59)

3.1.6 Summary

Table 3.1 summarizes the results of this section. The most important result is that,

for all criteria, the processors are identical to within a scalar function of frequency

(the denominator expressions are all scalars) that depends on our a priori knowledge

of the signal and interference spectra. This frequency-dependent weighting function

controls the contribution of energy at different frequencies to the overall target-to-

jammer ratio (TJR). As discussed in Section 2.3.3, however, human speech reception
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Table 3.1: Summary of Frequency Domain Optimum Processors. In addition to the
listed assumptions, we always assume that target and interference random processes
are zero-mean and independent.

Criterion Assumptions Processor (WT) Performance (2)

- N(O,S 8 ) 7 .t$-i 1MAP 7-/, x

MMSE _ tS1Z - N (0, SZZ) S,-, + 'H X:IL- L S,-' + S i- '

SNR IY, S, Szz at (S) - S7'/t S ; ~ 1

ML 7-l, ,, N (0, Szz)Mv -,HI SZ Z as,,1 't S,- I s-1 't 1~ -P Ht s-l \ H 3H' Sl .

- S-1 1
MV -, S:

ML or MV also, s is stationary x Si
aut S;' 7 - t S $7 'Ht ;7 7-'

�----------" '~ ����'�- �- �� --
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does not depend on overall TJR but on the TJR within narrow frequency bands,

which can only be changed if both the TJR and the weighting function involve

substantial variation within these bands. In other words, only if the target and/or

jammer spectra are "peaky" and the processor is capable of a "peaky" response can

extra information about target and jammer lead to better performance. Whenever

either the TJR or the processor response is "smooth", any of the processors derived

in this section ought to produce equally-intelligible output.

Thus, except for targets or jammers with unusual spectra, the design of "op-

timum" processors (i.e., linear processors with squared-error type criteria) for im-

proving intelligibility is relatively insensitive to many initial assumptions, such as

target stationarity or Gaussian distribution of target and jammers. We need only

assume zero-mean stationary interference and knowledge of /H and Szz. When Szz

is not known, Szz, which can be estimated from observations, will work as well, but

at the cost of assuming a zero-mean, stationary target that is independent of the

interference. The principle of processing with an estimated Sz, lies at the heart of

many practical implementations.

3.2 Time-Domain Optimum Processors

Having derived many different optimum processors for observations over all time,

we must now relate those results to our proposed processing architecture (described

in Section 2.3), which uses observations over a limited time. In this section, we will

derive optimum MMSE and MV time-domain processors for limited observations4 .

Echoing our results for frequency-domain processors, these time-domain processors

will be quite similar, indicating that the exact choice of optimization criterion and

a priori information may not be critical.

4 The derivation of frequency-domain processors for limited observations is impractical because,
for limited observations, the basis functions of the Karhunen-Loeve transformation are signal depen-
dent and often intractable (Van Trees, 1968). Thus, practicality (rather than fundamental principle)
dictates the use of time-domain processing for limited observations and frequency-domain processing
for unlimited observations. This dichotomy also appears in the optimum-filtering literature in the
use of Kalman (time-domain) processing for limited observations and Wiener (frequency-domain)
processing for unlimited observations (Anderson and Moore, 1979; Wiener, 1949).

I I
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Both MMSE and MV time-domain estimators will be based on the microphone

samples available to the processor, which are described by the model in (2.49),

x[n = Hs[n] + z[n] ,

where x[n] is the vector of ML most recent microphone samples at sampling instant

n (L past values for each of M microphones), H is a transfer function matrix, defined

in (2.49), s[n] is a vector containing as much of the past target signal as can be

observed, through H, by the processor, and z[n] is the vector of ML most recent

total (internal plus received) noise values.

The time-domain processors will produce a desired-signal estimate, d[n], by

combining the observations, x[n], as described in equation (2.41),

d[n] = y[n] = wTx[n] .

The desired signal itself, d[n], can be defined in terms of the target signal as

d[n] = fT s[n] = [ f[I f[1] .. ] (3.60)

In most cases the desired signal "filter", f, will be no more than a delay, which

allows us to compensate for delay in the transfer function H or even, by adding

extra delay, to estimate a target sample based on observations of both past and

future samples.

3.2.1 Minimum Mean-Square Error

The MMSE estimator is based on the assumption that both the target and inter-

ference are stationary, independent, zero-mean random processes with covariance

matrices Rss and Rzz. The processor is designed to minimize the squared error

2 = E (d[n]- d[n]) }

= E {(wTx[n] - fTs[n]) (xT[n] w - sT[n] f)}

= WTRxx W - 2 WTRxs f+ fTRss f. (3.61)

_�_p�__ 1^1___ 1_11__ _____ I I _ I I _ I
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This quadratic form in w will be minimized when

aw ( )
= 2 Rxx wMMsE -2Rxs f = 0

W=WMMSE

which implies

WMMSE

T
WMMSE

T
WMMSE

T
WMMSE

=RI Rxsf

= fTRsx Rxx

= fTRss HT (H RssHT + Rzz)-1

fT (R-1 + HTR H)- 1 HTR Ss~ ~~~~~~~~ R zz

(3.62)

(3.63)

(3.64)

where (3.64) is derived from (3.63) by applying matrix identity (A.2). Thus, the

MMSE processor depends on knowledge of H, Rss, and RZz (or Rxx).

The performance of the MMSE processor can be evaluated by using WMMSE in

the squared error equation (3.61):

2
EMMSE (f TRsx R1) Rxx (R-' Rxs f) -2 (fTRsx R-J) Rxs f f fTRss f

fTRss f- fTRsx R-1 Rx f

fT (R -Rss HT (HRSS HT + Rzz) HRSS) f

fT(R-l +HTR- H) f, (3 .65)

where the last expression is obtained by using matrix identity (A.1).

3.2.2 Minimum Variance Unbiased

The time-domain MV processor is based on the assumptions that the target signal,

s[n], is completely unknown (as opposed to random), that the total noise, z[n], is a

stationary zero-mean process, and that H and Rzz are known. The MV processor is

designed to produce an unbiased desired-signal estimate, dMv[n], which must satisfy

E {dMv[n]} = E {WTvx[n]} = E {WMV (H s[n] + z[n])} = w(vH s[n] = d[n] .
(3.66)
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For this to be true for any s[n], TMV must satisfy the constraint

wTvH = fT. (3.67)

Subject to this constraint, the MV estimate must also minimize the variance

eMV = E{(dMv[n]-I dIn)} = E {2Mv[n] - 2dmv[n]fd[n] + d2[n]}

=E {d2M[n] d2[n]

= E {WTV (H sin] + z[n]) (sT[n] HT + zT[n]) WMV} - d2 [n]

= WV Rz WMV, (3.68)

where we have used (3.66) and the fact that z[n] is zero-mean. The constrained

minimization is performed by minimizing

WMV Rzz WMV - 2 (wv H - fT) X

which will be equivalent to (3.68) as long as the constraint is satisfied. Differenti-

ating with respect to WMv,

2RzzwMV-2HA = 0

WMV = Rz 1HA

WMV A T HTRz 1. (3.69)

We can use the zero-bias constraint to solve for the Lagrange multiplier A,

w vH = AT HTR-1 H = fT

AT = fT (HTR- H) - 1 (3.70)

and substitute into (3.69),

wV = fT (HTR H) HT R-1zz (3.71)

which specifies the MV limited-observation time-domain processor. With a deriva-

tion similar to Appendix B it can also be shown that, if s[n] is a stationary random

process,

(HTRz H)- HTRz = (HTR H)- HTR-X(H R-1~~ HY Rxx

�IQI_ I _I_· __ _�� �_I_ _ I�I __ �
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and

T
WMV

fT (HTR - H) - 1HTR-1= HR1H RXX Hy I x (3.72)

The importance of this alternative form is that Rxx can be estimated from the

observed microphone signals. Thus, the MV processor depends on H and Rzz or,

if s[n] is stationary, on H and Rxx.

Finally, the performance of the MV processor is given by the squared error

2MV = WV Rzz WM

= fTHTR- H HTR- Rzz Rz̀

fT (HTR-1H)1 f= HRZ
Note that this error is equivalent to EMMSE with Rss =

ignorance of the signal.

3.2.3 Summary

H (HTR- H)' f

(3.73)

oo, another way to express

Table 3.2: Summary of Time-Domain Optimum Processors. In addition to the listed
assumptions, we always assume that target and interference random processes are
zero-mean and independent.

Criterion Processor (wT) Performance (E2)

Assumptions

MMSE fT (R-1 + HTRz H) - HTRz1 fT (Rs1 + HTRz H)- f

H, Rss, Rzz

MV fT (HTRz H) - 1HTRl fT (HTR 1 H)-lf
H, Rzz 

in addition, fT (HTRx H) HTR (HTR )

stationary s = fT (HTRz H) - HTR-z
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Table 3.2 summarizes the processors derived in this section5 . The processors differ

only in the Rss term that incorporates a priori target information. This matrix

factor could significantly modify the processing but, since the corresponding factor

in the frequency-domain processor only added a frequency-dependent weighting,

we will presume that this time-domain factor has a similar effect. Certainly this

must be true in the limit of long observations since the time-domain processor must

approach frequency-domain processing (Gray, 1972).

If our presumption is correct, time-domain and frequency-domain processors to

minimize interference are equally insensitive to initial assumptions, such as target

stationarity or Gaussian distribution of target and jammers. The minimum nec-

essary assumptions are zero-mean stationary interference and, in the time-domain,

knowledge of H and Rzz. When Rzz is not known, Rxx, which can be estimated

from observations, will work as well, but at the cost of assuming a zero-mean,

stationary target that is independent of the interference. The adaptive beamformer

described in Chapter 5 is based on this final scheme for processing with an estimated

Rxx.

3.3 Comparison of Frequency- and Time-Domain

Processing

Clearly, a multi-microphone hearing-aid must be based on limited observations and

time-domain optimum processing. However, frequency-domain results are easier to

derive and interpret and, since processing in the two domains must be asymptoti-

cally equivalent as the observation time becomes long, it would be convenient to use

frequency-domain techniques to derive bounds on limited-observation processors.

These bounds would be more meaningful if we knew how many observations were

necessary for a time-domain processor to approach the performance of the corre-

sponding frequency-domain processor. It is likely that the answer to this question

is situation-dependent, but a simple example may shed some light on the different

5 MAP, SNR (perhaps), and ML processors could also be derived but, as for frequency-domain
processors, they would not be unique. In the interest of brevity the derivations are not included.
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processing methods and on their asymptotic equivalence.

Consider an anechoic room with a target and one off-axis jammer. A two-

microphone array is mounted in free space oriented broadside to the target. The

jammer is one sample-time closer to microphone 1 than to microphone 2 or, in other

words, a jammer impulse will arrive one sample-time sooner in microphone 1 than in

microphone 2. Sensor noise is present in both microphones and its spectral-density

function is times that of the received-jammer. Finally, the two microphone signals

are processed by a Minimum-Variance processor that assumes a target transfer

function of unity.

When this example is worked out in detail, the asymptotic (i.e., frequency-

domain) ratio of output to input noise power is approximately /3, which is what

one might expect if the jammer were cancelled completely and only sensor noise

remained. For time-domain processors limited to L samples per microphone, the

ratio of output to input noise power is approximately 1/L. For sensor-to-directional

noise ratios, 3/, of -10, -20, and -30 dB, the number of time-domain samples, L,

necessary to attain the sensor-noise performance limit would then be 10, 100, and

1000, respectively.

_ __I_
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Optimum Performance

In this chapter we analyze the frequency-domain performance of the MV processor

for a number of special cases where we can determine Szz(f) and 7t(f). Since

adaptive beamformers approach optimum MV performance (as will be shown), the

results of this chapter represent the best possible performance that an adaptive

beamforming hearing aid could achieve in the cases that we study. These cases

cannot be exhaustive, however, and some very significant factors, such as head-

shadow and complex array configurations, have not been considered in order to

make the analysis feasible. Consequently, the performance bounds that we develop

will be most valuable not in any absolute sense, but in evaluating the relative effects

of various environmental factors and processing configurations. At the end of this

chapter we consider, in a non-rigorous fashion, the possible effects of head-shadow

and other microphone arrangements.

In most configurations that we analyze, the target source is located in anechoic

space "straight-ahead" of the array' and in its far-field, so that received target

signals have equal magnitudes but phases that differ according to each microphone's

displacement in the target direction relative to the array center. We choose to

estimate the target signal as it would be measured at the array center, which makes

'We will always assume that the array microphones are omnidirectional, are coupled poorly
enough to the field that inter-microphone loading effects are negligible (Beranek, 1988), and are
small enough that scattering can be ignored. Scattering at 5 KHz would cause field perturbations
3 cm away from a 1-cm microphone of only -13 dB (Morse, 1976). At 1.6 KHz the perturbations
would be -32 dB. In either case, the presence of a nearby head would introduce much more dramatic
effects.

56

�I�_·^__I _ II I I_ I _ I_ _ II _



CHAPTER 4. OPTIMUM PERFORMANCE

7'(f) especially simple:

-/(f/) = i e J2r .rn/c e [Ijd/m(f) ] , (4.1)

where c is the velocity of sound and rm is the displacement of the mth microphone

in the positive-x direction (defined to be the target direction). This formulation

does not include head-shadow, which would introduce additional amplitude and

phase factors in 2(f).

To characterize performance we use response measures introduced in section

2.3.3, such as: G,(f), Gi(f) and Gj(f), array gains against total noise, isotropic

noise, and directional-jammer noise, respectively; Kz(f) and Kj(f), the array re-

sponses to total noise and to directional jammers; and K,(f), the array response to

uncorrelated sensor noise, which we will simply call the array noise sensitivity. The

various gain measures predict the benefit from processing when the actual Szz(f)

and A-(f) match our assumptions, while noise sensitivity indicates not only the

sensitivity of the processor to sensor noise but also, in some sense, its sensitivity to

deviations of Szz(f) and 2(f) from our assumptions2 .

We can expand the relevant array response and array gain definitions in terms

2 Random perturbations of Z(f) can be thought of as adding random errors to the received target
signal or, equivalently, adding an extra received-noise component (Cox, 1973b; Cox, Zeskind and
Kooij, 1986). Similarly, errors in Szz(f) can be thought of as caused by an extra received-noise
component. To the extent that such virtual noise signals are white (which will depend on the
perturbation mechanisms), sensitivity to perturbations is predicted by noise sensitivity K,(f).
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of Szz and - as follows.

f fjS; 1 2 2
Kw(f ) = (ItS( f-1 Mit S-f = 1 (4.2)

(f)12 /M 'Ht /M

K( f) = WT(f) S (f) W*(f)
trace(Szz(f))/M

trace(Sz )/M

trace(Szz)/M ()

G,(f) = (f) (f) (.tS; ) trace(Szz)

K(f) M

Ku(f) = WT(f)W*(f) = (t s;-_z )-' ts;z-sz- (it S; li)-1 (4.5)

Analogous expressions for Gi(f), Gj(f), and Kj(f) will be determined as needed.

4.1 Uncorrelated Noise

The total noise signals are uncorrelated between microphones in two situations:

when there are no jamming sources and only receiver noise is present, and when the

number of jammers and/or the amount of reverberation is great enough to create

an isotropic noise field3 and, in addition, the ratio of microphone spacing to sound

wavelength is large. As an example of the second situation, measurements in a large

reverberant room with two microphones located near the ears of a human head have

shown inter-microphone correlations of zero above 1 KHz (Lindevald and Benade,

1986).

To capture the essential characteristics of these two situations, we can look at the

simple case of independent white noise of power a2 per sample at each microphone,

3 To be discussed in greater detail in the next section.
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for which

a2 0 ... 0

: a ** * [k] = IM [k]

0 0 .-. a2

S = (f) = 2P(f)M=UIM.

Substituting into optimum weight

= (tt -1

= I ... e-M (f)

equation (3.57),

L t1
at iIM

U
2

U

= M [ -jm(f) ... ] (4.8)

The essence of this processor (which should not be surprising) is to compensate

for the arrival phase of the target component in each microphone signal and then

average the phase-aligned signals.

To characterize MV performance against uncorrelated noise, we evaluate Gz and

M 1 21)trace(IM) = M

M 1I, 1M I ii I 1K~ = M ['"e-J~in~l)·.. ] e m(l)M
1

M'

(4.9)

(4.10)

Once again, these results should not be surprising. When M microphones are

averaged together, white noise power is reduced by a factor of M and, if only

uncorrelated noise is present, the output signal-to-noise ratio is increased by a factor

of M.

Rzz[k]
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4.2 Isotropic Noise

Isotropic noise, which can be defined as the superposition of independent plane

waves with identical spectra and uniformly distributed incident angles, is an interest-

ing environment for at least two reasons. First, the diffuse sound field in reverberant

environments, which is composed of all reflected sounds, can be quite isotropic

(Beranek, 1954; Cook, Waterhouse, Berendt, et al., 1955; Lindevald and Benade,

1986). Consequently, performance against isotropic noise represents the limiting

performance of adaptive beamformers in environments where diffuse, reverberant

energy dominates the received signal. Second, an array designed to perform opti-

mally against isotropic noise has maximum directivity (as defined in section 2.3.3),

a common requirement for non-adaptive multimicrophone receivers. Therefore, the

methods and results of this section can be applied to the design and analysis of

fixed-weight arrays and, in particular, can be used to determine the best possible

non-adaptive system for comparison with our adaptive systems.

In an isotropic noise field the cross-spectral-density function for two points

separated in space by distance d is (Cook, Waterhouse, Berendt, et al., 1955; Cron

and Sherman, 1962; Baggeroer, 1976):

S(f, d) = Pi(f)sinc(2rfd/c) , (4.11)

where p'(f) is the common source spectral-density function. The spectral density

matrix for isotropic noise incident on an array is then

dll d2 dlM

Sii(f) = Pi(f) sinc 27rf d d 22 Pi(f) sinc (2f D)

(4.12)

where dij is the distance between microphones i and j. Note that when this matrix

is used in (4.4) and (4.5) to calculate G,(f) and Ku(f), the source spectrum Pi(f)

cancels out and we can disregard it (or, equivalently, assume that it is unity). The

remaining structure of Sii(f) is determined by array geometry alone.
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4.2.1 Fundamental Performance Limits

Table 4.1 summarizes known limits on optimum performance in isotropic noise

for microphone arrays with different geometries. The linear and ring arrays are

Table 4.1: Fundamental limits on the performance of M-element microphone arrays
in isotropic noise for various geometries, orientations, and element spacings. By
"large" d we mean d > A/2 or d equal to an integer multiple of A/2.

composed of equispaced sensors and performance depends on the number of micro-

phones, M, on the ratio of inter-microphone spacing to sound wavelength, d/A =

d f/c, and on the orientation of the array relative to the target source, which

can vary between broadside and endfire (or edgefire for the ring). The spherically

symmetric array can be analyzed without assuming regularity of sensor spacing

beyond that required for symmetry. In this case d is not well defined, but it turns

out that performance does not depend on microphone spacing when the noise is

Element Spacing

Geometry d < A/2 large d

Linear G = M 2 G = M
Endfire lim KU = oo K = 1/M

[_~zJ 2m4-1 2 4 [- 3
Linear = l(2m+ G = M

Broadside = 1/M
lim K = 0

d/A--+O

Ring Gz 0.53 (M + 1)3/2 G = M
Edgefire K, = 1/M

Spherically GZ M GZ = M
Symmetric K =1/M
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isotropic4 .

When microphones are spaced more than a few wavelengths apart (or at exact

multiples of A/2), the isotropic noise is uncorrelated between sensors, a situation

equivalent to the case analyzed in the previous section, and gain is equal to M with

noise sensitivity of 1/M, regardless of geometry or orientation. When microphone

spacing approaches zero, performance does not, as one might expect, approach

that of a single microphone but, rather, becomes superdirective, with gain greater

than unity and high sensitivity to noise (Hansen, 1981). Small endfire arrays are

theoretically capable of M 2 gain (Uzkov, 1946; Weston, 1986), but, as spacing

approaches zero, their noise sensitivity (i.e. Ku or the squared magnitude of W(f))

grows without bound (Chu, 1948), which imposes practical limits on performance

(Taylor, 1948; Newman and Shrote, 1982). Broadside arrays of more than two

microphones can also be superdirective, with similar sensitivity problems, but their

gain is only proportional to M (Pritchard, 1954; Vanderkulk, 1963). Rings of

equispaced microphones exhibit gain proportional to M 3/ 2 at small separations

(Vanderkulk, 1963), a dependence between that of broadside and endfire linear

arrays, and, although noise sensitivity has not been calculated directly, other perfor-

mance measures indicate sensitivity similar to that of linear arrays. The spherically

symmetric array can be shown to have a gain of M averaged over all orientations

of the array, regardless of array size (Vanderkulk, 1963). For large microphone

spacings this result is consistent with the fact that gain is M for any orientation.

For small spacings, the average gain of M implies that an orientation must exist

with at least a gain of M.

Comparing fundamental limits across geometries, all the arrays in Table 4.1 have

identical performance when spacing is large (or when frequency is high for a given

inter-microphone distance). When spacing is small (or frequency low for a given

inter-microphone distance), equispaced linear endfire and broadside arrays represent

two extremes of superdirective performance, although the practical significance of

these performance limits is not clear because noise sensitivity can be so high.

4 When sensor noise is considered, perfomance does depend on microphone spacing, but can be
analyzed using average sensor density instead of sensor spacing (Vanderkulk, 1963).
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4.2.2 Performance Limits for Hearing-Aid Arrays

To develop performance limits that are more relevant to the hearing aid application,

we can analyze the performance of "head-sized", equispaced, linear, endfire and

broadside arrays in the presence of both isotropic and sensor noise. Because the

endfire and broadside orientations in some sense bound the performance of other

geometries with equal numbers of microphones, this analysis is interesting in a

fairly broad context. In addition, linear geometries are interesting because they

are easy to analyze and construct, and non-trivial multimicrophone hearing-aids

can be composed of linear, equispaced sub-arrays5 . The inclusion of sensor noise

is extremely important because its presence reduces the superdirectivity of the

optimum processor. In fact, by using various levels of assumed sensor noise, we

can generate "sub-optimum" array processors that trade superdirective gain for

reduced noise sensitivity. We would hope that, over some range of assumed sensor

noise levels, we could achieve moderate amounts of supergain with acceptably low

noise sensitivity.

Figure 4.1 shows a detailed analysis of the performance of 4-microphone opti-

mum linear endfire and broadside arrays in a fixed isotropic noise field with different

amounts of assumed sensor noise. The total noise spectral matrix is given by

Sz(f) = Sii(f) + tr IM P( = (f) sinc D) + (f) IM (4.13)

where d(f) = a/1'iP(f) is the ratio of assumed sensor noise to isotropic noise. We

will always use frequency-independent constants for P, thereby making the implicit

assumption that both noises have the same spectral shape. Fortunately, none of

our results are sensitive to this assumption. The plotted performance measures are

noise sensitivity, Ku, and array gain against isotropic noise, Gi (equivalent to the

directivity D defined in Section 2.3.3), which can be expressed as

Kr(f) 1 trace(Sii(f))/M 1
Ki(f) - i(f) WT(f) Sii(f) W*(f) W T Sii W* (4.14)

5 The optimum weights for a composite array are not, in general, the composite of the optimum
sub-array weights (Baggeroer, 1976), but many general insights that we develop in studying linear
arrays will still apply to composite arrays and simple, sub-optimum combination rules can be used
to establish lower bounds on optimum composite performance.

I
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Figure 4.1: Gain against isotropic noise, Gi, and noise sensitivity, K,, as a func-
tion of the frequency array-length product, fL, for linear arrays of 4 equispaced
microphones optimized for various sensor-to-isotropic noise ratios, f. Sensor noise
is assumed temporally and spatially white, i.e., uncorrelated between samples and
between sensors. The two horizontal scales are equivalent, but note the difference
in vertical scales.
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For MV processing, WT = ([t (Sii(f) + /3 IM)'-1 2t)12 (Sii(f) + IM)- 1.

When actual and assumed sensor noises are equal, the array gain against the

total (isotropic plus sensor) noise can be expressed in terms of Gi, Ku, and /3 as

G(f Kr,(f )+ 1 + +/3 1 + /3
GK,(f) - - K,(4.15)K (f) Kz= WT Sii W* + W T -V* 1/G + K, 

Often, /3 < 1, Gi,3 K, < 1, and Gz - Gi. When actual and assumed sensor noise

differ, the actual Gz can be determined by using Gi and K, to compute separately

the output noise components due to isotropic- and sensor-noise.

Since Sii, G, and K, depend on the product fd = cd/A = fL/(M - 1),

performance in Figure 4.1 can be shown as a function of the ratio d/A or as a

function of the frequency array-length product, fL. These equivalent variables are

both shown along the abscissa. When the length of a particular array is known, we

can also interpret the curves as functions of frequency, where the frequency scale

is determined by dividing fL by the actual array length. For example, the 0 to 5

KHz response of a 5-cm array is given by the segment of the response curve from

fL = 0 to 25 KHz-cm.

Looking at the plots in detail, we first note that the limits of performance with

no sensor noise ( = -oo) correspond to the results in Table 4.1. Specifically, at

d/A = 0.5 and d/A = 1.0 (and presumably at d/A > 1), and in both orientations,

gain approaches M = 4, or 6 dB, and noise sensitivity approaches 1/M, or -6 dB.

As d/A - O, sensitivity becomes extremely high and gain approaches 16 (12 dB)

for the endfire and 2.25 (3.5 dB) for the broadside orientation.

When sensor noise is much greater than isotropic noise (e.g., = oo), the

total noise will be uncorrelated and the optimum weights will be uniform. Noise

sensitivity is then -6 dB, independent of frequency, while G; (i.e. directivity) ex-

hibits the frequency dependence of a conventional, uniformly-weighted array. Below

d/A = 0.4, this dependence is approximately 4L/A for the endfire and 2L/A for the

broadside array. Above d/A = 0.4, Gi eventually stops rising due to the effects of

spatial-undersampling, which is more detrimental in the endfire configuration.

The area at low frequencies where the curves diverge is the region of superdi-

rective effects. Note that these effects are only observed when d/A < 0.5, which
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is a general result (Vanderkulk, 1963) that is also observed on similar plots (not

shown) for 2, 8, 12, and 16 microphones. As the level of assumed sensor noise, 3,

is increased, the optimum processor's noise sensitivity, K, and isotropic gain, Gi,

both decrease, as expected. The decreases in Gi are larger at lower frequencies,

with the result that, as sensor noise increases, superdirective gain disappears first

at low frequencies. More importantly, the decreases in Gi are not proportional to

the decreases in K, and for some values of /, such as = -10 dB, superdirective

gain is substantial while noise sensitivity is not excessive.

At low frequencies it is also apparent that Ku < 1/d, or Ku (dB) < - (dB)

In other words 1/f functions as a "noise sensitivity limit". To see that this must

be true in general, consider the case in which the received interference differs only

slightly from received target (e.g., at very low fL both target and isotropic noise

have intermicrophone correlations of about 1.0 with only slight phase differences). In

this situation, the optimum processor will have to use very large weights because any

interference cancellation will also cause some target cancellation and, to maintain

a target gain of 1.0, the output target level can only be restored by increasing the

magnitude of the weights. As the weights are increased, however, sensor noise is

amplified in proportion. The optimum weighting is reached when the decrease in

output interference noise is matched by the increase in output sensor noise. This

is a complicated tradeoff but it would certainly never be advantageous to increase

sensor noise by more than 1/fl because then the output sensor noise would be greater

than the non-processed interference and processing would be making matters worse.

To a first approximation, then, assuming a relative sensor noise level of in the

design of an optimum processor is equivalent to setting a noise-sensitivity limit or

weight-magnitude limit of 1/1,.

We can gain some insight into the mechanisms of superdirectivity and noise

sensitivity by examining beam patterns for a few of the weightings represented in

Figure 4.1. Figure 4.2 illustrates optimum endfire and broadside beam patterns

for d/A = 0.1 at four levels of sensor noise. The lowest value of 3 (-50 dB) is

equivalent to no sensor noise at this value of d/A and produces a maximally directive

pattern. The highest value of /3 (+oo dB), as explained earlier, gives rise to uniform

_ _II I__·__ __ I __
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Figure 4.2: Beam patterns for 4-microphone endfire and broadside linear arrays at
d/A = 0.1 for various sensor-to-isotropic noise ratios, fi. Only half of each pattern
is shown (from 0° to 1800 or from 180 ° to 00) since the full patterns are always
symmetric about the 00 axis.
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weights and the beam pattern of a conventional, uniformly-weighted array. As

sensor noise decreases and superdirective gain increases, the beam patterns exhibit

more nulls, a behavior similar to that of more conventional arrays that have been

"oversteered" or "steered past endfire" (Cox, Zeskind and Kooij, 1986). Steering

refers to the process of compensating for relative propagation delays before adding

the microphone signals in conventional beamformers. An array that has been steered

to endfire has unity response in the target direction and off-axis response that

generally falls with increasing angle from endfire. Oversteering is a technique for

exagerrating the dependence of gain on angle by using greater than necessary delays

at endfire. The result is a more directive beam pattern but less sensitivity in the

target direction, which requires compensation with extra overall gain (i.e., larger

weights). The larger weights increase sensitivity to uncorrelated noise.

The frequency-gain data in Figure 4.1 can be used to calculate intelligibility-

averaged isotropic gain, (Gi)I, and thereby predict the performance of array pro-

cessors in hearing-aid applications. To illustrate such a calculation, consider a

broadside array with L = 5 cm, a frequency limit of 5 KHz, and processing optimized

for = -30 dB. For this array processor, the isotropic gain function, Gi(f), from

0 to 5 KHz would correspond to the ( = -30 dB) Gi curve in Figure 4.1 from fL

= 0 to 25 KHz-cm. Using this frequency response and equation (2.56) to calculate

(Gi)l provides a measure of the intelligibility benefit (about 2.3 dB) that such an

array processor could provide in isotropic noise.

Figure 4.3 shows intelligibility-averaged isotropic gain for linear arrays of 2, 4, 8,

12, and 16 microphones in endfire and broadside orientations as a function of array

length. Each panel contains gain functions for a different sensor-to-isotropic noise

ratio, . When / = oo dB (i.e. sensor noise dominates), the optimum processor

corresponds to a conventional delay-and-sum beamformer, for which isotropic gain

(i.e. directivity) will be small at these array sizes. For all other values of , the

optimum processor weightings are, to a greater or lesser extent, superdirective.

When = -oo dB (i.e. no sensor noise), the optimum processor approaches the

fundamental limits of Table 4.1, and gains are highest, approaching M2 for short

endfire arrays. The left three panels attempt to show how isotropic gain is affected
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Figure 4.3: Intelligibility-averaged isotropic gain, (Gi)i, for endfire and broadside
linear arrays limited to fMAX = 5 KHz, as a function of array length, L. Each panel
presents the data for a different sensor-to-isotropic noise ratio, /3. Each family of
curves represents the performance for M, the number of microphones, equal to 2, 4,
8, 12 and 16. The higher curves (better performance) always correspond to larger
M (except for 3 = oo dB). The circles indicate points on the 2- and 4-microphone
curves at which the inter-microphone spacing equals AMAX/ 2 . For larger spacings
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by differing levels of assumed sensor noise, 3 (which serves to limit noise sensitivity,

Ku, to less than 1//). From this figure we can make the following observations

concerning linear arrays operating to improve target speech intelligibility in isotropic

noise.

* Superdirective weightings, even with P as large as -10 dB, significantly out-

perform conventional weightings.

* Except for short arrays optimized for P = oo dB (i.e., with conventional

weightings), performance always increases with number of microphones.

* Whenever sensor noise is present (i.e. / > -oo dB), the incremental im-

provement in performance resulting from additional microphones becomes

insignificant beyond roughly 4 to 8 microphones for "head-sized" arrays.

* For short arrays with M held constant, endfire configurations significantly

outperform broadside configurations.

* For long arrays with M held constant and d > AMAX/ 2, endfire and broadside

performance tend to be roughly comparable. (AMAX = C/fMAX)

* Long arrays generally outperform short arrays except for sparse endfire config-

urations where d > AMAX/ 2. In other words, for the given range of L, spatial

undersampling (d > AMAX/2) is detrimental to endfire but not to broadside

arrays.

In general, these results suggest that optimum array processing can provide signifi-

cant benefit for head-sized arrays, with acceptable noise sensitivity, even in isotropic

noise. Of course, very few interference environments are completely isotropic and

it may be necessary to modify some of our conclusions after considering other

interference processes.
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4.3 Directional Noise

Hearing-aid users encounter many sources of interference (e.g., noisy appliances or

competing speech from talkers, televisions, or radios) that are spatially localized

and generate direct signals that propagate across the array from one direction. As

we have already demonstrated in section 2.3.3, the potential benefit of adaptive

array processing is especially great in reducing such directional interference. In this

section we will analyze optimum performance in the presence of direct signals from

localized sources of interference. In the next section we will consider the effects of

signal reflections.

The direct signal from a spatially-localized source is completely correlated from

microphone to microphone (i.e., knowledge of the received signal at one microphone

and of the inter-microphone transfer function is sufficient to predict the signal at the

other microphone). This can be seen by calculating the cross-spectral density matrix

for an M-microphone array in the directional-noise field generated by J jammers in

an anechoic (i.e., direct signal only) environment. Extending the notation of section

2.3.1, let 27j(f) be the M-vector of transfer functions from jammer j, as observed

at the array center, to each of the M microphones, analogous to our use of l(f) in

equations (2.14) and (4.1) to represent target transfer functions. If we assume that

jammer j is in the array's far field, each transfer function depends on the jammer

propagation vector, aoj [as defined for equation (2.51)], and on microphone location,

Xf(X)- = e-J2f: -| e-je"J ( ; m 'a J )- e - j 2
x

f m -j/c (4.16)

The received signal from the J jammers is then

J

V(f) = E j(f)Sj(f) (4.17)
j=1

6 For jammers in the array's near field, the plane-wave assumption does not hold and the transfer
functions will be influenced by differences in source distances and directions. Such details can be
taken into account when necessary and do not alter our basic conclusions.

�

71



CHAPTER 4. OPTIMUM PERFORMANCE

and, assuming statistically independent jammers, the cross-spectral-density matrix

is

Svv(f) = E {VIR(f) Vt(f)} = 1 Sjj f) (f) lt(f) (4.18)
j=1

If the only noise present is this directional interference, and we define o(f) _ H(f)

and So(f) A S(f), the observation equation reduces to

J

X(f) = l(f )(f)(f) . (4.19)
j=o

When the transfer functions are known, this matrix equation is simply a system of

M equations in J + 1 unknowns, which can be solved for all of the source signals if

J +1 < M. In other words, if we have as many microphones as independent jammer

and target sources, it should be possible to separate all of the sources perfectly.

In practice, of course, no noise field is perfectly directional because, even in an

anechoic environment, there is always at least some receiver noise. Our analysis will

focus on the optimum performance of an array in the presence of both directional

interference and uncorrelated sensor noise. The array's total-noise cross-spectral-

density matrix is then

J

SZZ(f) = sv + Suu = tlj Sjj + a IM . (4.20)
j=1

To simplify the analysis, we consider J jammers with white spectra (similar to the

sensor noise) and equal powers that sum to a constant, 'Pj, that is independent of the

number of jammers. If we continue to use to denote the ratio of sensor-to-received

noise,

p = 2/Tpj , (4.21)

and

sz(f) = P(j yZij t + IM . (4.22)

We can then write specific expressions for the total noise response K,, the gain

_ I _I ·I __·_ __ _P I_ _ __�__1_1111____1__1_1111�-
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against total noise Gz, and the gain against directional jammers Gj.

K,(f) = TSZZW* M
traceSzz/M (it X) traceSzz

M

(t ( 1 , - + 1I M) -l) trae ( J = t=1rIj X + IM)

(4.23)
(- + ( Ej1 - j J M) ' )(1)

G = (1 + ) ) (4.24)G(f) K(f) +

G(f = (f)trace J241 XlJ tj) /M

(1+/?)
2 -f - t; -1 a)J tt -1 H7 -t (4-X)

Note that the scale factor Pj, the total jammer power, always cancels out. This

would not be the case if we were using MAP or MMSE estimators, which make use

of information about relative target and jammer levels.

4.3.1 Performance against One Directional Jammer

Before considering the problem of multiple jammers, we will analyze the simpler

single-jammer case. Figure 4.4 shows an analysis of the performance of endfire and

broadside 2-microphone arrays in the presence of sensor noise and one directional

jammer incident from an angle of 45 °. The figure presents Gj, Gz, and Ku as a

function of fL for three different values of .

At fL = 0 (and at any value of fL where the jammer arrives with multiples of

3600 phase shift between microphones), the jammer is indistinguishable from target

and cannot be cancelled. The processor adds the microphone signals with equal

weights, the jammer is not attenuated (Gj = 0), and the sensor noise is reduced by

3 dB (Ku = -3 dB). As fL increases, the jammer becomes more distinguishable
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Figure 4.4: Array Performance as a function of fL for 2-microphone endfire and
broadside arrays in the presence of sensor noise and one directional jammer at
45 ° . The plotted performance measures are array gain against the jammer Gj, gain
against total noise G, and noise sensitivity KI. Performance is shown for three
different values of 3, the sensor-to-directional noise power ratio.
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from target and can be reduced, but at the cost of increasing the uncorrelated output

noise (Gj rises, K, rises even faster). These effects occur at lower frequencies for

broadside than for endfire arrays because broadside intermicrophone phase is more

sensitive to deviations of source angle from straight-ahead. As fL increases still

further, the jammer becomes even easier to distinguish from target and Gj continues

to rise while Ku falls. At some values of fL, the jammer arrives with 1800 of phase

shift and can be cancelled completely while the sensor-noise is attenuated by 3 dB.

Over a great range of frequencies, the jammer can be reduced to well below the

level of sensor noise.

Figure 4.5 provides another perspective on directional-noise reduction by show-

ing the directional response at various values of fL for 2-microphone endfire and

broadside arrays with the same 45° jammer and / = -10 dB. The response to the

jammer can be measured along the 450 radius. (In general, response to sensor noise

cannot be inferred from beam patterns). These patterns illustrate how attempts to

null out the jammer generally improve with increasing fL. They also illustrate how

performance can be extremely sensitive to the exact location of a null, an important

consideration when one tries to realize adaptive null placement against jammers that

are moving or strongly time-varying. Figure 4.6 shows the beam patterns for L = 5

cm and L = 20 cm averaged over frequency using the "intelligibility-averaging"

technique of section 2.3.3. Clearly, substantial nulling advantages are obtained

even over the broad bandwidth of speech signals.

To show the dependence of performance on jammer angle, we can measure the

intelligibility-averaged broadband jammer response, (K j )I, at the jammer angle

only and plot this response versus jammer angle, as shown in Figures 4.7 and 4.8.

These figures also show total noise response, (Kz), as a function of jammer angle.

The arrays described in these figures are 2-microphone 5- and 20-cm endfire and

broadside arrays with sensor-to-directional noise ratios, , of -10 dB.

The response patterns in figures 4.7 and 4.8 have a few properties in common.

Although the jammer can be attenuated by more than 20 dB over a wide range of

angles, the -10 dB sensor noise limits total-noise reduction to about 10 dB for both

array orientations. The average noise reduction is also similar for both orientations.
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Figure 4.5: Beam patterns for 2-microphone endfire and broadside arrays in the
presence of a single jammer at 450 with relative sensor noise at = -10 dB. Each
row represents the directional response for a different value of fL.
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Intelligibility-averaged broadband beam patterns, ((f, 0))I, corre-
the arrays and noise environment of Figure 4.5 for the cases L = 5
20 cm.
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Figure 4.7: Broadband Response to one jammer and to total noise as a function of
the jammer's angle for 2 -microphone endfire arrays with # = -10 dB.
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Figure 4.8: Broadband Response to one jammer and to total noise as a function
of the jammer's angle for 2-microphone broadside arrays with P = -10 dB. The
patterns for L = 20 cm can be compared with Figure 2.1.
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The main difference between endfire and broadside response patterns lies in

their shape. Due to symmetry, broadside arrays cannot distinguish between sources

directly ahead-of and directly behind the array, although we do not consider this

an insurmountable shortcoming because arrays can be mounted on the head to

make use of head-shadow or they can be composed of both endfire and broadside

subarrays. More significantly, the broadside response is much more sensitive to

jammer angle near 0 and broadside arrays will be more successful in reducing

jammers at small jammer angles. However, this behavior may have drawbacks that

appear when the target itself does not appear at exactly 00 (i.e., when the target

is misaligned). In this case we would expect a broadside array to cancel more of

the target than an endfire array, a characteristic that may be undesirable in some

applications7. The primary point of this discussion is that the shape of the response

function can be important, in ways that may not be obvious.

Note that the broadside 20-cm array can be compared directly to the human

binaural system modelled by Zurek in Figure 2.1 and Zurek's measure of sensitivity

can be compared directly to the total-noise response shown in Figure 4.8. It is

interesting that an optimum 2-microphone receiver with / = -10 dB matches the

performance of Zurek's model reasonably well.

Figures 4.9 and 4.10 show total noise response only, again as a function of jammer

angle for 2-microphone endfire and broadside arrays with lengths, L, of 5 and 20

cm, but now at two different values of P. Clearly, the maximum and average gains

increase and the "beamwidth" decreases as sensor noise decreases.

4.3.2 Performance against Multiple Jammers

Finally, we must consider configurations with more than one jammer. Since multi-

jammer directional sensitivity patterns would be difficult to visualize and compu-

tationally prohibitive to construct, we will use a Monte Carlo technique to evaluate

7 Unfortunately, a proper discussion of target misalignment is beyond the scope of this thesis.
However, we should note that target misalignment can be quite detrimental to some algorithms
(Peterson, Wei, Rabinowitz and Zurek, 1989) and algorithm modifications can reduce misalignment
effects (Griffiths and Jim, 1982; Greenberg, Zurek and Peterson, 1989).
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Figure 4.9: Broadband response of short 2-microphone arrays to one jammer as a
function of jammer angle and sensor noise level.
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Figure 4.10: Broadband response of long 2 -microphone arrays to one jammer as afunction of jammer angle and sensor noise level.
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multi-jammer environments. Figure 4.11 illustrates the method for one-jammer

configurations of the type discussed in the previous subsection.

For each combination of array and sensor noise, we choose 1000 jammer an-

gles from a uniform random distribution, determine the optimum processor and

total-noise response K, for each jammer angle, and accumulate the distribution of

response magnitudes. Figure 4.11 shows this distribution plotted in a form that

emphasizes its relationship to the directional-noise sensitivity plots in the previous

figures. As an example, consider the 20-cm endfire array with -30 dB sensor noise.

The plot tells us that about 93% of the randomly-chosen jammer angles resulted

in total responses below -10 dB or, equivalently, 7% of the responses were above

-10 dB. In Figure 4.10, the -10 dB beamwidth for the same configuration is 26 °,

or about 7% of 3600. In general, of course, these distributions tell us very little

about the shape of the response functions, especially for multiple jammers, where

the directional response will have many local maxima and minima.

We will use the mean of each distribution as our primary performance measure.

For 1000 random jammer configurations, the 3a confidence limit for the sample

mean is 0.5 dB8 . We will also use standard deviation of response to convey some

information about the shape of the response function. For example, in Figure

4.11, the gain distributions for L = 2.5 cm endfire and broadside configurations

at = -30 dB have almost identical average values but the endfire array has a

larger standard deviation (meaning that its gain is more likely to be either very

high or very low). This is another way to characterize the shapes of the endfire and

broadside response patterns shown in Figures 4.9 and 4.10.

For multiple jammers, the Monte Carlo technique is virtually identical, except

that each random jammer configuration is composed not of one but of multiple

equal-power jammers whose angles are independent, uniformly-distributed random

variables. Figure 4.12 shows (GZ)I, the mean intelligibility-averaged gain against

total noise, for 1000 multiple-jammer configurations as a function of array length

for 2, 4, 6, and 8-microphone endfire and broadside arrays with 2, 4, and 6 jammers

8 The distributions shown here were compared to distributions derived from uniformly-spaced
jammer angles and the match was consistent with the 0.5 dB confidence limit.
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Figure 4.11: Distribution of array total-noise response for 1000 randomly chosen
single-jammer angles, 2-microphone endfire and broadside arrays, various array
lengths, and 2 levels of sensor noise. The annotation 2B-10 refers to a 2-microphone
broadside array with relative sensor noise of P = -10 dB.
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Figure 4.12: Mean intelligibility-averaged broadband array gain against total noise,
(GZ)I, as a function of array orientation, array length L, number of microphones
M, number of jammers J, and relative sensor noise level /3. The sample mean was
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and Pf = -10 and -30 dB. Figure 4.13 shows the corresponding standard deviations

of gain. Directional-noise performance in Figure 4.12 can be compared directly with

isotropic noise performance in Figure 4.3, although some care is necessary because

the sets of microphone numbers and sensor-noise values are not identical. Based on

these figures we make the following observations.

* Even when arrays are short and sensor noise is only 10 dB less than directional

noise and the number of jammers is large, two microphones can give 3 dB of

gain and four microphones can give 6 dB of gain. For less sensor noise or

fewer jammers, the gains can be much greater.

* As in the isotropic noise case, performance saturates when the number of

microphones exceeds 4 for short arrays and 6 for long arrays.

* Performance does not degrade drastically when the number of jammers ex-

ceeds the number of microphones, probably because the presence of sensor

noise limits the best possible performance for small numbers of jammers.

* Endfire arrays generally outperform broadside arrays, especially if the arrays

are short, but the difference between isotropic and broadside performance in

many-jammer directional noise fields is less than the difference in isotropic

fields.

* Endfire performance in many-jammer fields is roughly equivalent to endfire

performance in an isotropic field, but broadside arrays perform significantly

better against many jammers (at least up to 6 jammers) than against isotropic

noise.

* The mean gains of long broadside and endfire configurations are nearly equal

but their response pattern shapes may be significantly different, as indicated

by differing standard deviations of gain.

In general, it is clear that optimum array processing can provide significant benefit

in a wide range of directional-noise fields. Once again, the endfire configuration
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seems superior to the broadside configuration, although performance differences are

less compelling in directional noise fields than in isotropic noise fields.

4.4 Directional Noise in Reverberation

In reverberant environments we can no longer use the directional plane-wave as-

sumption and write the simple source-microphone transfer function of equation

(4.16). This makes it harder to analyze performance; however, it does not neces-

sarily make it harder to determine the optimum processor. In particular, note that

the only properties of the interference that influence the choice of optimum weights

are those that are revealed in the total-noise cross-spectral matrix; and that this

matrix can be estimated without knowing the individual jammer transfer functions.

If the target transfer function is known, it should make no fundamental difference

whether the jammer-microphone transfer functions are reverberant or not9 . Thus,

for example, if sensor noise were absent, it should still be possible to cancel the

interference from J reverberant jammers with an array of J + 1 microphones.

The problems created by reverberation are due mainly to target reverberation.

If one regards reverberated target as "interference", then the assumption that

target and interference are uncorrelated does not hold. On the other hand, if one

regards reverberated target as "desired" signal, then the assumption of known target

transfer function is likely to be violated.

Rather than analyze optimum performance in reverberant environments, we

chose to pursue an empirical approach. The adaptive beamformer evaluation in

Chapter 6 was carried out in different reverberant environments to indicate the

magnitude of target reverberation effects.

90f course, we are ignoring practicality here. A practical system based on a finite observation
time, T, must fail in rooms with reverberation times greater that T.
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4.5 Head Shadow and Other Array Configura-

tions

The major results of this chapter were derived for a few specific array configurations

in extremely simple environments. We now consider the effects of head-shadow and

other array configurations on optimum performance.

We can establish upper bounds on the effects of head-shadow by considering

measurements of interaural amplitude and phase differences (Durlach and Colburn,

1978; Shaw, 1974). We will presume that no two microphones mounted anywhere

about the head could experience more of a "head effect" than two ears located on

opposite sides of the head. For any incident angle, interaural arrival-time differences

are only slightly frequency-dependent and always fall in the range of 1.0 to 1.5 times

the free-field arrival-time differences. Interaural amplitude differences are strongly

dependent on both frequency and incident angle, but never amount to more than

5 dB at 500 Hz, 10 dB at 2.5 KHz, or 17 dB at 5 KHz. For many incident angles,

amplitude differences are considerably smaller.

Head shadow can affect both the target transfer function, l(f), and the noise

cross-spectral matrix, Szz(f). We will assume that X(f) can be measured a priori

to calibrate for the effects of head shadow. Admittedly, for arrays mounted

close to the head, '(f) may be sensitive to differences in mounting position and,

therefore, difficult to calibrate in practice. If X(f) is known, the essence of adaptive

beamforming is that Sz(f) and, by implication, Szz(f), can be estimated from

the received microphone signals. In other words, beamformers do not need a

priori information about Sz, whether head-shadow is present or not. However,

we still need to know the effects of head-shadow on Szz to predict the asymptotic

beamformer performance.

If we consider intermicrophone phase only, adding a head to an array is equiv-

alent to stretching the array, perhaps non-uniformly. From Figures 4.3 and 4.12 it

is clear that changing the size of an array uniformly by 50% has only minor effects

1°For this strategy to be feasible, we must restrict 2(f) to represent only direct arrivals, which
can be measured in an anechoic environment.
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on performance. We presume the same will be true for non-uniform changes if the

non-uniformity is not too great.

Intermicrophone amplitude differences have the potential to cause much greater

alterations in performance. To see this, consider a directional jammer. As long

as different microphone signals are completely correlated, regardless of their ampli-

tudes or phases, equivalent information is available at all microphones and perfor-

mance is not compromised. For correlation to be preserved, however, the level of the

directional signal at all microphones must be significantly above the level of sensor

noise. When the directional signal at a shadowed microphone falls below sensor

noise, it cannot contribute to nulling of the directional jammer. For the simple case

of a 2-microphone system, the directional signal at the non-shadowed microphone

must then be treated as noise.

Now, to be more specific with the 2-microphone example, suppose that the

sensor-to-directional noise ratio, , is -10 dB in the free field. Let us compare the

performance of a free-field array with that of a head-mounted array for which the

microphone amplitudes are +5 dB and -12 dB relative to free-field amplitudes

[an extreme case in the spirit of available data (Shaw, 1974)]. The performance

of the free-field array will be sensor-noise limited at most frequencies, the jammer

will be essentially cancelled, and broadband total-noise gain, (GZ), will be about

10 dB (from Figures 4.7, 4.8 and 4.4). The head-mounted array must treat the

two microphone signals as uncorrelated and unequal noises, a generalization of the

equal noise example solved in Section 4.1. The solution for unequal noises is for

the optimum processor to align the target in both channels, just as before, and

then add the channels in inverse proportion to the noise power in each channel.

In our example the processing amounts to weights of 0 dB and -15 dB on the

weak and strong microphone signals, respectively. Since the output noise power

from each channel is proportional to the weight squared, the weak-channel noise,

which we assume is still -10 dB relative to the free-field jammer, will dominate. The

net result is broadband total-noise gain, (GZ)I, relative to the free-field jammer, of

10 dB, almost identical to that of the free-field processor.

Intuitively, we can summarize this example by saying that, when the combi-
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nation of head-shadow and sensor noise is not enough to destroy intermicrophone

correlation, the directional jammer can be cancelled and performance is limited by

sensor noise. When head-shadow and sensor noise make the directional jammer

unobservable in one of the microphones, then that microphone signal is already

sensor-noise limited and the strong-jammer signal can be almost ignored. To a first

approximation, then, it seems that amplitude and phase effects due to head-shadow

may not be very detrimental to array performance. However, this conclusion is

based on a simple, one-jammer example and ought to be tested with multiple

jammers and isotropic noise. It can also be argued that, for systems with more

that two microphones, the loss of jammer information in a shadowed microphone

may be more than offset by better jammer information in other microphones whose

jammer-to-sensor-noise ratio is increased by the presence of the head.

Even if head shadow does influence performance against more complicated in-

terference, it is unlikely that it would change our picture of the relative benefits

of endfire and broadside arrays. Head shadow effects over the extent of a linear

array (i.e., on one side of a head) are not large enough to greatly alter the funda-

mental properties of broadside and endfire arrays, namely, that target signals arrive

simultaneously in one case and with maximum possible intermicrophone delay in

the other.

We only considered equispaced, linear, endfire and broadside arrays because,

as shown in Table 4.1, these two configurations represent extremes of performance

for small, sensor-noise free, M-element arrays operating in free-field isotropic noise.

As indicated in the table, performance was limited only by array configuration

and number of microphones. When sensor noise is present, however, our own

results indicate that performance is limited by something other than number of

microphones, since performance saturates beyond 4 to 6 microphones. In fact, the

data in Figures 4.3 and 4.12 suggest that, for a given array length, the maximum

number of useful microphones corresponds to spatial oversampling by a factor of

slightly more than 1 when sensor noise is high to a factor of perhaps 2 when sensor

noise is low. If spatial sampling, rather than number of microphones, is the limiting

factor, then the best arrangement of M microphones is probably not a linear array
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but some other configuration that makes better use of the spatial extent of the head.

Based on spatial-sampling considerations, an array around the circumference of the

head might be able to use information from as many as 12-15 microphones, while

a spherical surface array might saturate at 50-60 microphones.
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Chapter 5

Adaptive Beamforming

The optimum processors of the preceding chapters were all based on a priori

knowledge of, at least, the target-to-array transfer function and the total noise

correlation matrix (or cross-spectral matrix). This chapter describes a realizable

processing system that continuously adjusts its parameters based on the received

microphone signals and approaches optimum performance for stationary interfer-

ence configurations.

Constrained adaptive beamformers' operate by minimizing array output power

under the constraint that signals from the target direction be preserved (Monzingo

and Miller, 1980; Frost, 1972). The method assumes that the target and interference

are uncorrelated and that the target direction is known (i.e., the relative amplitudes

and phases of the target signal at the microphones are known) 2. As long as

these assumptions hold, constrained minimization of total output power necessarily

minimizes interference output power. Since constrained beamformers make no

assumptions about the structure of the interference environment (e.g., number

and directionality of sources), they should not be overly sensitive to interference

complexity.

A major problem with application of constrained beamforming to hearing aids

concerns the presence of reverberated target energy. If one regards reverberated

target as "interference", then the assumption that target and interference are un-

correlated does not hold. On the other hand, if one regards reverberated target

as "desired" signal, then the assumption of known target direction is violated. In

1Although these methods are called beamformers, due to limited array size they cannot form
sharp beams in our application. We are capitalizing on their ability to adaptively steer nulls.

2In our application, the target direction is straight ahead of the listener and the target signals at
the microphones are assumed to have the relative amplitudes and phases of a target straight-ahead
in anechoic space.
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Chapter 6 we evaluate adaptive beamformers in various reverberant environments

to determine the effects of target reverberation.

Among the algorithms using the constrained adaptive beamforming criterion,

there is considerable variety in the strategies for adapting the microphone weights

in time. At one extreme, it is possible to calculate the optimum weights directly after

each signal sample, but the amount of calculation per sample can be prohibitive. At

the other extreme, some algorithms make very simple calculations with each sample,

eventually converging on the optimum weights, but only after many samples. Thus,

the fundamental tradeoff is between speed of calculation and speed of convergence.

Our eventual decision to implement the constrained adaptive beamforming method

of Griffiths and Jim (Griffiths and Jim, 1982) was based on two considerations.

First, it required the minimum amount of computation for a given filter length and

would be among the first candidates for inclusion in a wearable aid. Second, it

has the same ultimate performance as any beamforming method and, since our ini-

tial evaluation involved stationary environments, its performance after adaptation

would indicate the ultimate performance to be expected of adaptive beamformers

in general.

5.1 Frost Beamformer

Frost described one of the first practical constrained adaptive beamformers (Frost,

1972), a sampled-data system suitable for digital implementation. It is a time-

domain beamformer composed of tapped delay lines following each microphone,

adaptive amplitude weights at each tap, and a summer that forms the output

from the weighted delayed samples. The weight-adaptation procedure is based on

Widrow's LMS principle (Widrow, Glover, McCool, et al., 1975), but modified to

incorporate the target preservation constraint. The LMS adaptation procedure is a

stochastic gradient method that depends on the fact that average output power is

quadratically related to the array weights. Therefore, the weights can be adjusted

directly to give minimum output power by following the gradient of the quadratic

power function. This adaptation is slow but simple and eventually converges to
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CHAPTER 5. ADAPTIVE BEAMFORMING 95

within a "misadjustment" factor of the optimum weights. This misadjustment

arises because the gradient of the quadratic power function can only be estimated

from stochastic data. Misadjustment can be reduced by increased averaging in the

stochastic gradient estimate, but at the cost of longer adaptation times.

5.2 Griffiths-Jim Beamformer

An even simpler constrained beamformer, which can be made equivalent to Frost's

system, has been proposed by Griffiths and Jim (Griffiths and Jim, 1982). Instead

of adjusting the array weights directly with a constrained LMS algorithm, they

propose a two-stage system in which an initial linear transformation of array signals

constrains the target gain and a subsequent unconstrained LMS filtering removes in-

terference. Since the system is composed of separate, standard, single-channel LMS

noise-cancelling filters, extension to an arbitrary number of microphones is trivial

and implementation in both hardware and software should be straightforward.

A broadside two-microphone Griffiths-Jim beamformer is outlined schematically

in Figures 5.1 and 5.2. (The dashed lines in Figure 5.1 show an extension of the

system to three microphones.) The two microphone signals are transformed into

a sum signal, s[k], which contains target plus interference, and a difference signal,

dl[k], which contains no target for straight-ahead targets in an anechoic field3. The

beamforming problem is thus transformed into a noise-cancellation problem and the

sum and difference signals can be fed to a standard LMS noise-canceller composed

of a sum-signal delay, z-(L/2), an adaptive filter, hl[k], and an output summer. The

method can be simply extended to more microphones by summing all microphone

signals into one sum signal and forming pairwise microphone difference signals that

feed separate LMS noise-cancelling filters, each of which operates to cancel noise in

the sum signal.

3For orientations other than broadside, the microphone signals can be "steered" (i.e. multiplied
by amplitude and phase factors to equalize and time-align the target signals in each channel),
effectively transforming them into broadside signals.
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CHAPTER 5. ADAPTIVE BEAMFORMING

1/2

Figure 5.1: A Griffiths-Jim beamformer for a two-microphone broadside array.
The microphone signals at sample index k, denoted rl[k] and r2[k], are added and
subtracted and then scaled to form the sum signal s[k] and the difference signal dl [k].
The sum signal (which contains the target signal plus interference) is delayed by L/2
samples in the delay element labelled z - (L/2). The difference signal (which should
contain only interference) is passed through the L + 1-point FIR adaptive filter hi [k]
to form an interference cancellation signal which is subtracted from the delayed sum
signal to form the output y[k]. The output is then used in adjusting the adaptive
filter coefficients to further reduce output interference. This is accomplished by, in
effect, correlating the output with the past L + 1 samples of the (inteference-only)
difference signal, and then adjusting the FIR filter weights to drive that correlation
to zero. At zero correlation, none of the output interference can be predicted
from the past difference-signal samples and the adaptive filter has transformed the
difference-signal interference to most closely resemble the interference in the sum
signal. To incorporate a third microphone signal, r 3[k], the sum signal summation
is extended and a new difference signal, d2[k], is formed. The difference signal
is passed through an identically-constructed adaptive FIR filter h2 [k] before being
subtracted from the delayed sum signal.
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CHAPTER 5. ADAPTIVE BEAMFORMING

y[k]

Figure 5.2: The adaptive FIR filter structure. The adaptive FIR filter operates on
the L + 1 most recent difference-signal samples, d[k], d[k - 1], ..., d[k - L], which are
held in the chain of L unit delays labelled z -1 . Each sample, d[k - 1], is multiplied
by a weight, w[l], and all the weighted samples are added together to form the filter
output. The adaptation of weight w[l] is driven by the product y[k] d[k - 1], which
depends on the fixed parameter and the beamformer output y[k] and is added to
w[l] to form the weight for the next sample index. The accumulation of product
terms in w[l] can be viewed as a stochastic estimate of the correlation between y[k]
and d[k - 1].

I L ----
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CHAPTER 5. ADAPTIVE BEAMFORMING

5.3 Other Methods

The Griffiths-Jim processor that we eventually implemented is a constrained adap-

tive beamformer with an especially simple time-domain realization. Frost's time-

domain method is equivalent to a particular Griffiths-Jim implementation but uses

a more complex adaptation algorithm. Strube's method (Strube, 1981) is identical

in principle but uses block processing in the frequency domain and tends to generate

distracting artifacts. Computationally-efficient fast-adapting methods (Cioffi and

Kailath, 1984; Lee, Morf and Friedlander, 1981) may eventually be needed to follow

changes in interference environments, but such methods are quite complex. In

addition, faster adaptation can create problems by adapting not only to the changing

environment, but also to momentary changes in the target and interference signals

themselves (Honig and Messerschmitt, 1984). The fast-adapting methods will only

be attractive if simpler methods cannot cope with the variability of hearing-aid

environments
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Chapter 6

Experimental Evaluation

In preceding chapters we have shown that, in theory, adaptive beamformers ought to

reduce interference in hearing aids. In this chapter we test this hypothesis by, first,

simulating an adaptive beamforming hearing aid in some representative environ-

ments and, second, evaluating the intelligibility of that simulated aid. By simulating

the multimicrophone aid, we eliminate many possible confounding effects, such as

head-shadow or microphone mismatch, which do not represent fundamental prob-

lems and can be studied in more detail later. By simulating the environments, we

control the amount and type of reverberation, which allows us to study empirically a

potential major problem that we were not able to treat theoretically. The choice of a

two-microphone, head-width, broadside array and the inclusion of a no-processing,

binaural-hearing condition in the intelligibility tests allowed us to compare adaptive-

beamforming performance with normal human binaural performance.

6.1 Methods

6.1.1 Microphone Array Processing

We implemented a two-microphone Griffiths-Jim beamformer as described in the

previous chapter. The system is characterized by three parameters: the sampling

rate, which was fixed at 10 kHz; L, the length of the adaptive noise-cancelling

filter (i.e., the number of samples in its impulse response); and p, which controls

the adaptive step size. With larger L, the system can potentially remove more

interference, but at the cost of more computation and longer adaptation time.

With larger p, adaptation time shortens but misadjustment increases and the filter

approaches instability.
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CHAPTER 6. EXPERIMENTAL EVALUATION

To guide the choice of L, we fed interference alone to the system and measured

total output power with 20-, 100-, and 400-point filters. In an anechoic environment,

the 20-point filter was clearly inferior while the 100- and 400-point filters gave

identical performance. In reverberant environments, the 20-point filter was still

clearly inferior while 400-point filters performed better than 100-point filters to an

extent dependent on the amount of reverberation. In the present study, we used

both 100 and 400 for L.

In setting u, we reasoned that the time-variability of speech (and of the en-

vironment) would limit eventual performance, so there should be no penalty in

choosing a large pu for fast adaptation. Preliminary experiments with a range of

tt values confirmed this behavior and we finally chose a value 10 times smaller

than that which would cause instability. The value of ,l meeting this criterion

depends on overall input power and, in a practical algorithm, would be calculated

as y = a/P(t), where P(t) is a running measure of input power and a is a normalized

adaptation parameter. Our choice of u, which was made in fixed power experiments,

corresponds to a = 0.0004.

These choices for L and gave empirical adaptation times of a few seconds.

Since our intelligibility test stimuli last only a few seconds, and since we sought

to evaluate the asymptotic (adapted) performance of the system, we initialized the

weights to values near their adapted values. For the anechoic environment, we were

able to calculate the optimum weights a priori and initialize with these values. For

reverberant environments, we used "tuned" initial weights obtained by initializing

with optimum anechoic weights, running the system for 3 or 4 seconds, and then

measuring the adapted weights.

6.1.2 Simulated Reverberant Environments

The two simulated microphone signals were generated by passing anechoic source

materials through simulated room transfer functions (Peterson, 1986). To obtain a

range of reverberant environments, we simulated the transfer functions from target

and interference locations to two microphone locations in three spaces: an anechoic

space, a living-room space, and a conference-room space. Figure 6.1 illustrates a
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EXPERIMENTAL EVALUATION

LIVING ROOM LAYOUT
- 4.6 meters
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I ICa 'i INTERFERENCE
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Figure 6.1: The layout used in simulating a living room environment and the first
50 milliseconds of one of the source-to-microphone impulse responses. The room
height was 2.4 meters.
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CHAPTER 6. EXPERIMENTAL EVALUATION

typical room and transfer function. Both the sound sources and the microphones

were assumed to be omnidirectional. Thus, our simulation included neither trans-

ducer directivity nor head-shadow effects. The microphones were spaced 20 cm

apart and, to make the simulation less sensitive to room modes, their connecting

axis was not parallel to any wall. The target source was always located on a normal

bisecting the axis connecting the microphones but at a slightly different height.

The interference source was located at 450 off the normal to the array axis, also at

a slightly different height. Table 6.1 summarizes the parameters of the simulated

environments.

6.1.3 Intelligibility Tests

We administered intelligibility tests to normal-hearing subjects to compare target

intelligibility for three cases: monaural unprocessed, binaural unprocessed, and

monaural processed. In the binaural-unprocessed case, the signals from the two

microphones were fed separately to the two ears. In the monaural-unprocessed

case, only one microphone signal was presented. In the monaural-processed case, the

signals from the two microphones were processed by the Griffiths-Jim beamformer

and the beamformer output was presented to the listener6 .

The source materials used in the tests were digitized, single-channel, anechoic

recordings of IEEE Harvard sentences (IEEE, 1969) for the target and SPIN babble

(Kalikow, Stevens and Elliott, 1977) for the interference. Both sets of materials

were low-pass filtered with a 4.5-kHz anti-aliasing filter and approximately whitened

with 6-dB-per-octave high-frequency emphasis to increase intelligibility in the un-

processed conditions.

6In both "monaural" cases the presentations were actually diotic (identical in both ears) rather
than monaural. For listeners whose hearing is perfectly symmetric, diotic and monaural presenta-
tions lead to essentially identical results.

I _ _ _ _ I _··�· �_·__ ___ _

102



CHAPTER 6. EXPERIMENTAL EVALUATION

Room ANECHOIC LIVING CONFERENCE

Size (meters) 4.6 x 3.1 x 2.4 6.1 x 5.2 x 2.7

Microphone Locations (0, 0, 0) (2.76, 1.38, 1.55) (3.80, 1.73, 1.38)
(x,y,z in meters)' ±(0.10, -0.02, 0) ±(0.10, -0.02, 0) ±(0.10, -0.02, 0)

Target Location (0.17, 0.86, 0.17) (2.93, 2.24, 1.73) (4.31, 4.14, 1.55)

Jammer Location (0.72, 0.48, -0.17) (3.48, 1.86, 1.38) (5.87, 3.07, 1.21)

Target-to-Microphone 0.9 m 0.9 m 2.5 m
Distance

Wall Absorption 2 - 0.6 0.3

Reverberation Time3 120 ms 480 ms

Critical Distance 4 oo 1.8 m 1.2 m

Direct-to-Reverberant
Energy Ratio5 oo 5.9 dB -6.3 dB

Notes:

1Specified as the coordinates of the midpoint between microphones plus or minus
an offset to each microphone. Distances were originally specified in sample times
and converted to meters based on a 10-kHz sampling rate and a sound speed of 345
m/sec.
2 The ratio of energy absorbed to energy incident for each wall reflection; assumed
uniform over all walls.
3The source-to-receiver distance at which the energy received directly from a source
equals the energy received from all reflected paths.
4Time required for reverberant energy to decay by 60 dB.
5At the point midway between the two microphones.

Table 6.1: Characteristics of the three simulated reverberant environments.
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CHAPTER 6. EXPERIMENTAL EVALUATION

6.2 Results

6.2.1 Intelligibility Measurements

The results of the intelligibility tests are shown in Figure 6.2. In the anechoic

KEY:

PROCESSED:
* 1mrns FILTER (P10)

* 40ms FILTER (P40)
UNPROCESSED:

O MONAURAL (M)

o BINAURAL (B)

ANECHOIC

100

80

60

40

20

0

LIVING CONFERENCE

TARGET-TO-INTERFERENCE RATIO (dB)

Figure 6.2: Percentage keywords correct as a function of Target-to-Interference
power ratio in three different environments. Each curve represents data for one of
four processing conditions: monaural-unprocessed (M), binaural-unprocessed (B),
100-point adaptive processing (P1), and 400-point adaptive processing (P4). Each
data point is the average score of 5 normal-hearing subjects listening to 10 sentences
with 5 keywords per sentence.

environment, listeners using unprocessed signals needed 6 dB less target power

binaurally than monaurally for equivalent keyword intelligibility, a result roughly

consistent with data in the literature (Carhart, Tillman and Greetis, 1969; Plomp,
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CHAPTER 6. EXPERIMENTAL EVALUATION

1976). A 100-point beamforming system, on the other hand, achieved equivalent

intelligibility with 30 dB less input target power than that required for the monaural-

unprocessed case. Although, in theory, a beamformer could achieve perfect can-

cellation of one interference source in an anechoic environment, for our system,

cancellation is limited by the misadjustment error of the LMS adaptation algorithm

and by the time-variability of the input signals. In the living room environment,

the binaural advantage for unprocessed signals fell slightly to 5 dB, while 100- and

400-point beamformers showed 9 and 14 dB of improvement, respectively, over the

monaural-unprocessed condition. In the simulated conference room, the differences

among tested conditions were less than 1 dB. Again, the results for the two un-

processed conditions are roughly consistent with other intelligibility experiments in

highly reverberant environments (Moncur and Dirks, 1967; Plomp, 1976). These

comparisons cannot be exact because the related studies were done with listeners

in the acoustic field (thereby including head-shadow, pinna, and head-movement

cues) and using different reverberant conditions.

6.2.2 Response Measurements

To illuminate the reasons for the measured intelligibility results, we made some

objective measurements of system performance. The directional response was cal-

culated from "snapshots" of the time-varying filter weights, and the magnitude of

the frequency response in the target and interference directions was determined

from input and output spectra.

Figure 6.3 shows the "power-averaged" broadband directional response7 of the

system after adaptation to interference alone in the three environments. The gain at

0° is 0 dB, as it should be, and in the direction of the interference there is a response

null, whose depth depends on the environment. (In reverberant environments,

interference echoes arrive from many directions.) The pattern is symmetrical about

the axis connecting the two microphones. Although we observed 30 dB anechoic

7The data and analysis in this chapter predated the development of our intelligibility-averaging
technique. By "power-averaging" we mean the averaging of power across frequency with equal weight
given to all frequencies.
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Anechoic
Living Room
Conference Room

1

Figure 6.3: Power-averaged broadband beampatterns based on weight "snapshots"
of the 2-microphone Griffiths-Jim beamformer in the three environments.
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CHAPTER 6. EXPERIMENTAL EVALUATION

interference rejection in the intelligibility experiments, the power-averaged broad-

band anechoic null is less than 30 dB. A small part of this discrepancy is due to

a poor method of capturing the time-varying filter weights. The major part of the

discrepancy is due to the use of power-averaging to characterize broadband response.

When intelligibility-averaging is applied to the frequency responses described next,

the anechoic null is seen to be, effectively, 31.6 dB deep.
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FREQUENCY (kHz)
4 5

Figure 6.4: Time-averaged frequency-dependent beamformer responses, Kt and Kj
for target and interference sources in the three environments. Kt is indicated with
a dashed line; Kj with a solid line.

Figure 6.4 shows the magnitude of the beamformer frequency response for target
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CHAPTER 6. EXPERIMENTAL EVALUATION

Table 6.2: Comparison of the measured improvement in speech-reception threshold,
ASRT, due to the adaptive beamformer, with computed estimates of intelligibil-
ity-averaged gain, (G)I, for the anechoic and living room environments.

and interference signals, calculated by taking the ratio of output to input average

magnitude spectra. The output spectra were obtained from beamformers operating

on target and interference signals separately but using filter coefficients from an

identical beamformer that was adapting to target and interference at target-to-

interference ratios corresponding to 50% intelligibility (-32 dB, -14 dB, and -2 dB

for anechoic, living, and conference rooms). The beamformer is not able to reject

interference at 2.15 and 4.3 kHz because the microphone separation causes signals

from 450 to arrive in-phase at these frequencies. Target gain is not exactly 0 dB

because position roundoff errors and reverberation cause the target signals to be

different at the two microphones.

Using the measured frequency-responses in Figure 6.4 we can calculate the

expected intelligibility-averaged gain, (G)I, due to beamforming and then com-

pare (G)I with ASRT, the change in speech-reception threshold, measured as the

difference in target level necessary for 50% intelligibility. The comparison in Table

6.2 indicates that intelligibility-averaging can be used to predict speech-reception

thresholds within about 2 dB.

Environment Adaptive filter ASRT (G)I

length (ms) (dB) (dB)

Anechoic (AN) 10 30 31.6

40 - 31.2

Living (LV) 10 9 9.5

Room 40 14 16.7

- -----.----- ---.----�------ --- - ------------------�Is�
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Chapter 7

Summary and Discussion

We have now shown, both theoretically and experimentally, the potential of adaptive

array processing for improving the intelligibility of a target talker by reducing

interference from other spatially-distinct sources of sound. Such a "source separa-

tor" could be a useful component in multiple-microphone sensory aids for impaired

listeners who cannot distinguish between multiple sources of sound in a room.

In Chapter 1 we described the problems of hearing-impaired listeners in complex

acoustic environments. We contrasted these problems with the ability of non-

impaired listeners to separate distinct sound sources into different "directional chan-

nels" and then consciously attend to one channel while subconsciously monitoring

the other channels. We then described a strategy for designing sensory aids based

on, first, using the information from multiple microphones to resolve separate sound

sources and, then, somehow coding this information so the user could perform the

concentrate/monitor tasks. This thesis addressed the source separation problem

with the understanding that, even if the coding problem could not be solved, one

or more directional channels, perhaps with some type of user control, might still

contribute to improved sensory aids.

In Chapter 2 we reviewed human performance to establish a point of reference

and also reviewed the state-of-the-art in multimicrophone hearing aids. We then

described the basic signal processing scheme considered in this thesis, namely,

linear combination of a finite number of past samples from multiple microphones

into one output signal. With this processor in mind, we developed a stochastic

received-signal model for use in later derivations. In its simplest form, this model

involved the desired source signal, the transfer function from desired source to array

samples, and the total noise observations. Total noise consisted of propagating and

sensor noise and could be characterized by a cross-correlation or cross-spectral-
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density matrix. Finally, we introduced response measures to characterize an array's

directional response to single plane-wave signals and its response to signal fields,

which could be generated by multiple sources and, possibly, room echoes. In

formulating broadband response measures we developed the powerful technique of

"intelligibility-averaging" to characterize the potential effect of a given frequency

response on speech intelligiblity.

We began our theoretical considerations in Chapter 3 with the description

of frequency-domain, unlimited-observation optimum processors for many differ-

ent criteria and showed that output speech intelligibility was relatively insensi-

tive to choice of optimization criterion. Although unrealizable, frequency-domain

processors are important because they facilitate the determination of asymptotic

performance limits for related time-domain, limited-observation processors. We

then described two (also nearly equivalent) time-domain optimum processors, one

of which could be used to characterize the asymptotic behavior of the adaptive

beamformers that we would eventually implement. Finally, we worked out a simple

example to show how closely a time-domain processor for a given number of past

microphone samples would approach asymptotic, unlimited-observation (frequency-

domain) performance.

In Chapter 4 we evaluated asymptotic performance limits for head-sized line

arrays mounted in free-space with both endfire and broadside orientations in the

presence of either isotropic or multiple-source directional noise. (We argued later

that head-shadow might not alter our results while other array configurations might

significantly improve performance.) We evaluated performance as a function of the

number of jammers, number of microphones, array orientation, and assumed sensor-

noise level. The sensor-noise parameter was used to limit the sensitivity of a given

processor to unmodelled noise and random implementation errors. Without this

limit, processing would become extremely "superdirective" and infinitely sensitive

to noise and errors. Because sensor noise was present, the performance of head-sized

arrays did not increase indefinitely with number of microphones but saturated when

the number of microphones reached 4 to 6 for small linear arrays. With other array

configurations, such as circular or spherical, the number of useful microphones and
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CHAPTER 7. SUMMARY AND DISCUSSION

the performance level might be higher. For both endfire and linear arrays (and

presumably for any array), substantial "superdirective" increases in gain (i.e. at

least a few dB) were achievable without excessive noise sensitivity. Linear endfire

arrays often outperformed broadside arrays by a significant margin. One implication

of this statement, that all arrays should have some extent in the target direction,

may or may not be justified.

In Chapter 5 we described various adaptive beamformer implementations, all of

which approach optimum performance, as described in the previous chapter, as long

as the environment is stationary. Adaptive beamformers are especially attractive,

however, because they can adapt automatically to changing environments.

In Chapter 6 we tested an adaptive beamformer experimentally by simulating a

two-microphone system in rooms with target and interference sources and various

amounts of reverberation. Reverberation was included because target reverberation

violates the assumptions upon which adaptive beamformers are based and we were

not able to analyze theoretically the effects of this violation on performance. We

evaluated the simulated systems by conducting intelligibility tests with human

listeners. The results of the intelligibility tests demonstrated the potential of

adaptive array beamforming for hearing aids. Under the test conditions, and with

zero-to-moderate reverberation, the interference reduction achieved by the array

exceeded that achieved by the binaural auditory system. Furthermore, when the

reverberation was severe, the array performed no worse than the binaural system.

To determine the generalizability of these results and their implications for a

practical hearing aid, a variety of further studies must be performed. For example,

interference reduction must be measured using different interference source angles

and different reverberant conditions. Similarly, the effects of head shadow and

transducer directivity must be included. Of even greater importance, performance

with multiple independent interference sources must be studied. We would ex-

pect interference reduction to decrease dramatically for both the two-microphone

beamformer and the binaural system when multiple sources (covering a range of

angles) are introduced. However, whether the array maintains superiority over the

binaural system under such conditions is unknown. In principle, performance with
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N independent sources of interference can be greatly enhanced by using arrays with

N + 1 microphones. Such arrays should combat multiple noise sources much more

effectively than the binaural system. Detailed studies are required, however, to

evaluate practical realizations of such systems.

Some of these studies are now being conducted (or have already been completed)

in collaboration with other students in our group. We have looked at the possibility

of including head-shadow in the reverberant room simulation (Hammerschlage,

1988). We have done an initial study of 2- and 4-microphone systems with multiple

jammers that demonstrated a substantial improvement with more microphones but

also demonstrated performance degradation in the presence of strong, misaligned

targets (Wei, 1988; Peterson, Wei, Rabinowitz and Zurek, 1989). Finally, we have

begun to construct a real-time beamformer with algorithms modified to tolerate

strong and misaligned targets (Greenberg, Zurek and Peterson, 1989). This system

will be used for realistic evaluations in many more situations than we were able to

consider in this thesis.

An issue that has not yet been addressed is the question of adaptation time. A

practical system will have to adapt to changing environments quickly enough to keep

interference low. One obvious danger is that interference may suddenly appear from

a direction (distinct from the target direction) in which the array has greater than

normal sensitivity. If adaptation is too slow, the benefit of adaptive beamforming

will be lost. At the present time, we have little data on the magnitude and time-

scale of environmental variability. Consequently, it is unclear how best to evaluate

the adaptation characteristics of various proposed adaptive beamforming arrays,

although measurements of array response to the sudden appearance of a source or

to modulation of source position would certainly be valuable'. In the case of the

Griffiths-Jim beamformer, parameters can be adjusted to reduce adaptation time at

the cost of steady-state performance. (Compare, for example, the results for filter

lengths of 400 and 100 points in Figure 6.2 and recall that shorter filters adapt

faster). If a Griffiths-Jim beamformer cannot achieve adequate performance and

1 Informal measurements indicate that the beamformers used in this evaluation accomplish most
of their adaptation to a new jammer within 1 second.
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sufficiclntly fst Cladaptation simultaneously, then alternative, fast-adapting methods

(Cioffi and Kailatll, 1984; Lee, Morf and Friedlander, 1981) should ce cxIplorcdl,

although these ncethodls may be more dlifficult than the LMS method to realize in

a p1)ractical hearing aid.



Appendix A

Useful Matrix Identities

The following matrix identities are based on the Sherman-Morrison-Woodbury ma-

trix inversion lemma(Golub and Van Loan, 1983).

invertible,

(p-1 + Mt Q-1M)-I -p

Assuming that P and Q are

- PMt (MPMt + Q)- MP (A.1)

can be verified by direct multiplication with (p-1 + M t Q-1M).

(A.2)

can be derived from (A.1) by algebraic manipulation and can be verified by direct

substitution.

(MPMt + Q) - -Q-1 - -M (p-1 + Mt Q-1M) - Mt Q- (A.3)

is a restatement of (A.1) after the transformation {M, P, Q - Mt, Q-l, P-1}.
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Appendix B

Equivalence of Two Optimum Weights

Our goal is to show that, when the target is a stationary random process,

=(at Sz z it S-1

The received signal model and assumptions of stationarity and independence allow

us to write

s- 1S;X = (H S. t + SZZ) - '

Application of (A.3) gives

S-1
zzr = SZ-Z- S- (SS1 + S H)-1 t S-ZZx-(S ZZ-H\Ss,-ZZ

Using this equivalence and thece and thn (A.3) with M, P, Q 1, S$s, (t S;' 1 )-l) ,

( 1t s- e-N3-t S, U ) -- (t S-1 'H-?t S-z H (S-1 S1z 1i) HI Szl )
: 7i $s _ $$ + 7iX $-l 7-x it $-1

~~~~~~~x: s.4 +X
$' + ( S1Y 

Finally, applying these expansions to the original expression,

(Tt S;I H)
-1 1t s1

= ( t S )1-i t S-1
=X _ 4/ _ 

+ [ss- (S + 1 t S-Z1 it) -1

- i t~us1+usY>±Sz - rl zz 2 S-1'HS--++1P S-1 2)-1'H'

- s. it s; -1 (S-' + 1 it S$ 7)-1 ) -] Sz-1

= (It Sz 1-) 1 S-- 1

+ [s - $s (s - + 7tS ) (.-' + 2t S;Z )-]

= ( t SZ _)-' S- ,

and the original assertion is proven.
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