
Unsupervised Learning and Recognition of

Physical Activity Plans

by

Shuonan Dong

Submitted to the Department of Aeronautics and Astronautics
Engineering

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2007

@ Massachusetts Institute of Technology 2007. All rights reserved.

Author
Department of Aeronautics and Astronautics Engineering

August 23, 2007

Certified by..
Brian C. Williams

Professor
Thesis Supervisor

/ I/-'

Accepted by ...
David L. Darmofal

Associate Professovof Aeronautics and Astronautics
Chair, Committee on Graduate Students

AERO

MASSACHUMSE TM
OF TEOHNOLOGY

NOV O 6 2007

LIBRARIES

2

Unsupervised Learning and Recognition of Physical Activity

Plans

by

Shuonan Dong

Submitted to the Department of Aeronautics and Astronautics
on August 23, 2007, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

This thesis desires to enable a new kind of interaction between humans and compu-
tational agents, such as robots or computers, by allowing the agent to anticipate and
adapt to human intent. In the future, more robots may be deployed in situations that
require collaboration with humans, such as scientific exploration, search and rescue,
hospital assistance, and even domestic care. These situations require robots to work
together with humans, as part of a team, rather than as a stand-alone tool. The intent
recognition capability is necessary for computational agents to play a more collab-
orative role in human-robot interactions, moving beyond the standard master-slave
relationship of humans and computers today.

We provide an innovative capability for recognizing human intent, through statis-
tical plan learning and online recognition. We approach the plan learning problem by
employing unsupervised learning to automatically determine the activities in a plan
based on training data. The plan activities are described by a mixture of multivariate
probability densities. The number of distributions in the mixture used to describe
the data is assumed to be given. The training data trajectories are fed again through
the activities' density distributions to determine each possible sequence of activities
that make up a plan. These activity sequences are then summarized with temporal
information in a temporal plan network, which consists of a network of all possible
plans. Our approach to plan recognition begins with formulating the temporal plan
network as a hidden Markov model. Next, we determine the most likely path using
the Viterbi algorithm. Finally, we refer back to the temporal plan network to obtain
predicted future activities.

Our research presents several innovations: First, we introduce a modified repre-
sentation of temporal plan networks that incorporates probabilistic information into
the state space and temporal representations. Second, we learn plans from actual
data, such that the notion of an activity is not arbitrarily or manually defined, but
is determined by the characteristics of the data. Third, we develop a recognition al-
gorithm that can perform recognition continuously by making probabilistic updates.
Finally, our recognizer not only identifies previously executed activities, but also pre-

3

dicts future activities based on the plan network.
We demonstrate the capabilities of our algorithms on motion capture data. Our

results show that the plan learning algorithm is able to generate reasonable temporal
plan networks, depending on the dimensions of the training data and the recognition
resolution used. The plan recognition algorithm is also successful in recognizing the
correct activity sequences in the temporal plan network corresponding to the observed
test data.

Thesis Supervisor: Brian C. Williams
Title: Professor

4

Acknowledgments

First, I must thank my partner in life, Thomas Coffee, for spending much of his own

thesis writing time to talk through the major stumbling blocks in my research with

me, and for all the times he has cooked for me so I can have more time to work.

His intellectual support, unconditional devotion, and contagious smile have made the

worst of my days enjoyable, and the best of my days truly blissful.

I also tremendously appreciate my research advisor Professor Brian Williams for

his key insights and encouragement. Additionally, Dr. Andreas Hofmann was effec-

tively my second advisor, and Dr. Paul Robertson has been an excellent mentor.

They have offered invaluable advice leading to the completion of this research. This

thesis would not have been possible without their support.

To all my friends in the MERS lab, past and present, I say "thank you" for being

such an important part of my life for the past couple of years. In no particular order,

thank you, Shen Qu, for all our heart-to-heart conversations; Lars Blackmore, for

advice on how to succeed in life and how to be more British; Hui Li, for making our

lab such a fun place; Bobby Effinger, for being such a great co-TA; Julie Shah, for all

the quals help and fun conversations over soldering; Seung Chung, for being a great

mentor and such a fun person; Larry Bush, for providing juggling entertainment and

advice on life; Paul Elliott, for being an amazing code wiz; Steve Block, for making

the rovers dance; Tsoline Mikaelian, for patient help with model-based programming;

Stephanie Gil, for providing smiles that brighten the day; and Thomas Leaut6, for

writing a good thesis that I can refer to with formatting issues.

My parents, Fengzhuo Hu and Yu Dong, deserve more applause than I can express

here. They have been my motivators, my role models, and my best friends. They

have made me who I am, and given me the opportunity to explore what I can become.

They are the wind beneath my wings.

This research was in part funded by the National Science Foundation graduate

fellowship. The data used in this thesis was obtained from mocap.cs.cmu.edu. The

database was created with funding from NSF EIA-0196217.

5

"I am superior, sir, in many ways.

But I would gladly give it up, to be
human."

- Lt. Commander Data

6

Contents

1 Introduction

1.1 M otivation .

1.2 Problem Description

1.3 Previous Research. .

1.4 Approach and Innovations

1.5 Thesis Layout .

2 Background

2.1 Principal Component Analysis

2.2 Expectation Maximization for Unsupervised Learning .

2.3 Temporal Plan Networks

2.3.1 Temporal Plan Networks

2.3.2 Qualitative State Plans

3 Problem Formulation

3.1 Motion Capture Setup

3.2 Assum ptions .

3.3 Astronaut Robotic Assistant Example

3.4 Definition of a Data Sequence

3.5 Temporal Plan Network Redefined

3.5.1 General definition of a TPN used in this thesis .

3.5.2 Definition of a schedule

3.5.3 Definition of an activity

7

17

17

19

21

24

26

27

27

30

34

35

36

39

. 39

. 41

. 42

. 44

. 45

. 46

. 46

. 47

3.5.4 Definition of a duration . 47

3.5.5 Definition of a choice event . 48

3.6 Definition of a Plan Learning Problem 49

3.7 Definition of a Plan Recognition Problem 49

4 Statistical Plan Learning 53

4.1 O verview . 53

4.2 Formatting the Training Data to Be Used in Learning 55

4.2.1 Motion Capture Data . 55

4.2.2 Dealing with Data Scarcity . 56

4.2.3 Dealing with High Dimensionality 56

4.3 Unsupervised Activity Learning . 57

4.4 Extracting Activity Sequences . 61

4.5 Creating a Probabilistic Temporal Plan Network (TPN) 64

5 Probabilistic Plan Recognition 69

5.1 O verview . 69

5.2 Formatting the Observed Testing Data to Be Used in Recognition . . 71

5.3 Preliminaries: Notation and Setup for Plan Recognition 71

5.4 Represent a TPN as a Non-stationary Hidden Markov Model (HMM) 74

5.4.1 Staying in an Activity . 75

5.4.2 Moving to the Next Activity 76

5.4.3 Observation Model . 76

5.4.4 Initial Probabilities . 77

5.5 HMM Model Evaluation to Recognize Most Likely Path 77

5.6 Recognized and Predicted Activity Sequences 79

5.7 Simple Example of the Plan Recognition Process 81

6 Implementation 85

6.1 Plan Learning . 85

6.2 Plan Recognition . 90

8

7 Results 95

7.1 Evaluation of Success . 95

7.2 D ance D ata . 96

7.3 G olf D ata . 101

8 Conclusions 111

8.1 Future Advancements. 111

8.1.1 Representing parallel activities in plan 111

8.1.2 Enabling intelligent combination of trajectories 113

8.1.3 Determining the recognition resolution 114

8.1.4 Anytime algorithm for real-time incremental recognition . . . 114

8.2 Conclusions . 116

A Splines 119

B Encoding a TPN into XML 123

9

10

List of Figures

1-1 Overview of the plan learning and recognition inputs and outputs. . . 20

2-1 Mixture of two Gaussian clusters . 31

2-2 Example of EM on a 2-D two class problem. 34

2-3 Example temporal plan network. The double circle indicates a choice

event. 36

3-1 Marker placement in front and back 40

3-2 Example dance motion data (displayed in horizontal order). The mo-

tions are attitude/arabesque (frames 1-9), jete en tourant (frames 9-

12), and bending back(frames 12-20). 41

3-3 Operations for the wide-field planetary camera changeout during Hub-

ble Space Telescope repair and maintenance mission 43

4-1 Overview of the plan learning process 54

4-2 We use splines to generate new data when data is scarce. The process

is as follows: (a) Sample data evenly. (b) Add noise to sampled data.

(c) Create spline and interpolate new data sequence. 56

4-3 Example of running EM learning on some 2-D data sequences with two

clusters . 61

4-4 Activity trajectories corresponding to the data shown in Figure 4-3 . 63

4-5 A gamma distribution is unimodal and non-negative. 64

4-6 The temporal plan network derived from example activity and duration

sequences 68

11

5-1 Overview of the plan recognition process

5-2 Labels for trajectories and activities in a plan. Trajectories are labeled

s, while activities are labeled r. For each trajectory s, there are R,

activities. .

5-3 Duration distribution .

5-4 Temporal Plan Network .

5-5 Markov model of a particular trajectory in the TPN. Each activity time

slice as7) represents the rth activity in trajectory s at time step 'T since

the beginning of the activity. Transition probabilities are determined

by the duration distribution of each activity.

5-6 TPN of a simple example .

5-7 Activities shown with test sequence of example 2D data

5-8 Hidden Markov model derived from the example TPN

5-9 Recognized and predicted activity sequences of example problem . . .

7-1 Training data for dance motions .

7-2 Activity clusters for dance data .

7-3 Activity trajectories for dance data with 4 activities

7-4 Output TPN of plan learner on dance motions. Inside angle brackets

(a) are activity numbers; p and o- are mean and standard deviations

of activity duration. .

7-5 A look at the messages m over all observation time steps.

elements of the matrix are indicated by a dot.

7-6 Test results for dance motion with different number of

observed data sequence

7-7 Training data for golf motions

7-8 Activity clusters for golf data

7-9 Activity trajectories for golf data with 5 activities . . .

7-10 TPN learned from golf data assuming 5 activities . . .

7-11 Test results for three different golf motions

The non-zero

time steps in

12

70

72

73

74

75

81

81

82

83

97

97

98

99

99

. 100

. 102

. 102

. 103

. 103

. 104

7-12 Run times for individual iterations during recognition for swing, putt,

and pick up ball motions . 105

7-13 Activity trajectories for full golf data using 7 principal components,

w ith 5 activities . 106

7-14 TPN learned from full golf data using 7 principal components, assum-

ing 5 activities . 107

7-15 Run times for individual iterations during recognition using 7 principal

com ponents . 108

8-1 Current representation of a TPN without parallel activities 112

8-2 One way to represent parallel activities 112

8-3 A more compact representation of parallel activities 113

8-4 Two minimal representations of activity sequences (1) , (2) , (3) and

(1),(2),(4),(2),(3) . 113

8-5 A most likely path in the HMM that we have cached 115

13

14

List of Algorithms

6.1 Plan Learning 86

6.2 Expectation Maximization 87

6.3 Get Activity Sequence . 88

6.4 Make Temporal Plan Network 89

6.5 Plan Recognition 90

6.6 Get HMM states from TPN . .. 91

6.7 V iterbi . 93

6.8 G et Path . 94

15

16

Chapter 1

Introduction

This thesis desires to enable a new kind of interaction between humans and com-

putational agents, such as robots or computers, by allowing the agent to anticipate

and adapt to human intent. The intent recognition capability is necessary for agents

to play a more collaborative role in human-computer interactions, moving beyond

the standard master-slave relationship of humans and computers today. This thesis

provides an enabling capability for recognizing human intent, through statistical plan

learning and online recognition.

In this chapter, we will discuss the motivations for our research in Section 1.1 and

provide a problem description in Section 1.2. Next, we will review previous literature

related to intent recognition in Section 1.3, and present our approach to the problem

in Section 1.4. Finally, we outline the roadmap for the rest of the thesis in Section 1.5.

1.1 Motivation

In the future, more computational agents such as robots or embedded computers may

be deployed in situations that require interactions with humans, such as scientific

exploration, search and rescue, hospital assistance, and even domestic care. These

situations require robots to work collaboratively with humans, as part of a team,

rather than as a stand-alone tool. For example, researchers at NASA Johnson Space

Center are developing Robonaut, a humanoid robot, to assist astronauts during extra-

17

vehicular activities [4], like the camera changeout task executed during the Hubble

Space Telescope repair missions. Robonaut will be able to handle lower-skilled and

higher-risk tasks, enabling astronauts to work on more important and less dangerous

problems. Currently, Robonaut is teleoperated by humans off-site, which may be

unfavorable or infeasible for missions that are farther away or have long durations.

Ultimately, we desire robots like Robonaut to be intelligent enough to autonomously

interact with humans, so that they can play an independent role in a collaborative

task.

A down to Earth example of robots that interact closely with humans is in the

nursing home situation. Pineau et al. [42] have developed a mobile robot named Pearl

to assist elderly individuals with mild cognitive and physical impairments, as well as

support nurses in their daily activities. This robot specializes in reminding people of

events and guiding them through their environments, both of which are particularly

useful capabilities for a nursing home robot. Currently, Pearl uses synthesized speech

and a speech recognizer to query and identify a person's status, such as whether he or

she has taken medication yet. However, many elderly have difficulty understanding

the robots synthesized speech and have trouble articulating a response that the robot

can decipher. Therefore, we suspect that the robot's performance can be greatly

enhanced by the addition of a physical activity plan recognition capability as described

by this thesis. For example, plan recognition can enable the robot to identify a

person's motion of raising a pill to his or her mouth.

Although humans use a combination of verbal and non-verbal cues when perform-

ing collaborative tasks together, we often do not verbalize our plans. Computational

agents, however, need to infer intent, which exists in the form of courses of actions,

represented as plans. Thus, an agent needs to infer the collaborator's intent from

observing his or her motions [1, 21]. This thesis focuses on the non-verbal, physical

motion cues. When a medical assistant sees a doctor extending his or her hand toward

a scalpel, he or she may infer that the doctor intends to pick it up. Upon recognizing

this intent, the medical assistant may hold up the scalpel and make it readily avail-

able. Similarly, during physical human-robot collaborative tasks, it is useful for the

18

robot to anticipate what the human is doing based on his or her physical motions,

because the human is better assisted if the robot can anticipate need.

To enable this recognition of intent, the robot must first gain contextual knowledge

by learning a plan of how the task might be performed. In our example, a medical

assistant can infer that when the doctor reaches for a scalpel, he or she intends to

pick it up, because the assistant has seen similar situations before-the assistant has

learned that reaching for something often reflects the intent of picking it up. Of

course, an assistant may also learn that the doctor sometimes reaches for an item

to move it out of the way. Thus there are multiple plan options that an assistant

must keep track of. An agent in a similar situation when assisting a human needs to

learn the different plans that the human may perform. The agent represents all the

different possible plans together in a plan network.

Next, during an online collaborative situation, the agent needs to recognize likely

plans in the plan network from the new observations. When the medical assistant

observes the current situation and infer that the doctor will most likely intends to

pick up the tool, he or she is actually performing plan recognition by comparing the

observations with the previously learned plan network to determine which plan in the

plan network the doctor is most likely executing. In a similar way, a robot should be

able to use the plan network to recognize what a human is currently doing, in order

to anticipate the human's needs.

1.2 Problem Description

There are two main problems that this thesis focuses on: plan learning and plan

recognition. An overview of the plan learning and recognition problems is illustrated

in Figure 1-1.

Plan learning refers to the problem of deriving a plan network that describes a set

of training motions. We represent the actions of a human by the combined motions

of particular points on his or her body, so the training data are sequences of sampled

pose states at points of interest on the human's body throughout the duration of

19

Number of activities
(Recognition resolution)

Training data

- IFTemPlan Learner

Temporal plan network

Observed data

Am

Most likely plan trajectory

Figure 1-1: Overview of the plan learning and recognition inputs and outputs.

20

oPlan Recognizer

the motion. We want the output of the plan learning process to be a description of

the space of all possible plans, or a plan network, which is comprised of smaller units

called activities. To encode uncertainty of the motions, each activity is described by a

probability density over the state space and is associated with a probabilistic activity

duration.

Plan recognition refers to determining which activities the human collaborator

has executed already, and predict which activities the human might perform next,

given a plan network and observed data. The plan network is simply obtained from

the output of the plan learning process. The observed data is a sequence of states

that describe the motion of interest, similar in format to those of the training data.

The key to the plan recognition problem is that the observed data does not have

to be complete. By observing the human's motions for some small number of time

steps, we would like the plan recognizer to identify (1) previously executed activities

with corresponding schedules of when each activity began and ended, (2) the current

activity and how long it has been executed, and (3) predicted future activities and

most likely estimates of how long each might be executed.

1.3 Previous Research

In the past, many researchers have worked on the problem of enabling a computational

agent to classify or recognize what a human is doing. Applications span from identi-

fying gestures to recognizing handwritten letters to tracking a person's goals through

dialogue, and techniques range from machine learning to Bayesian inference to plan

decomposition methods. In this section, we discuss the work of other researchers and

how they relate to our work.

Many researchers have focused on gesture recognition [34, 58, 11] to learn physical

activities from data. Gesture recognition is the problem of extracting geometric data

from visual inputs, deriving a 2-D or 3-D shape model, tracking motion segments, and

then classifying the motions. Gesture recognition works very well for pre-separated

data because most gesture recognition algorithms use supervised learning techniques.

21

For example, Bobick and Wilson's gesture recognition algorithm [11] can distinguish

between segments of data capturing a hand wave versus other segments of data repre-

senting a pointing gesture. Similarly, Kadous [26] uses supervised learning to perform

classification on multivariate gesture data. However, during real world tasks, pieces

of data do not arrive in predetermined segments but rather a continuous stream.

Therefore a plan learning algorithm not only needs to classify motions into activities,

but should also automatically determine the separation between one activity and an-

other. In contrast to the work in gesture recognition, this thesis utilizes unsupervised

learning to handle automatic segmentation.

This thesis employs similar ideas as those from Barbi6 et al. [7], who use the un-

supervised Expectation Maximization (EM) learning algorithm to identify activities

from continuous physical data. We take their activity learning techniques a step fur-

ther by also learning plans. Knowing a person's plan, we can not only figure out what

activity a person is currently doing, but also make predictions as to what the person

will do in the future. The added capability of anticipating future activities makes

plan learning and recognition a more powerful tool than isolated activity learning.

Fox et al. [20] also present a learning algorithm similar to ours, used in an intro-

spective robot behavior modeling application. They assume that the behavior of a

robot when performing a task can be represented as a hidden Markov model (HMM),

and they proceed to learn this model using a variance of EM. The resulting behav-

ioral models allow the controller to reason about the robot behavior in the context

of executing a task. Although the work employs similar techniques as ours, such as

using EM to estimate the parameters of a stochastic model and Viterbi to deter-

mine most likely path in an HMM, its objectives are very different. Fox et al. are

specifically interested in learning how a robot accomplishes a task, whereas we are

interested in learning human motions, which are often more variable in execution.

Furthermore, our work is based in the context of identifying a plan in order to infer

intent, which requires anticipating many future activities to be executed beyond the

point of current observations. This is why our work incorporates the use of a plan

network. In contrast, Fox et al. are more interested in diagnosing a robot's behavior

22

from observations during the executing of a task.

Liao et al. [33] use learned models to infer human movements in the outdoor

environment. They can detect when a person's behavior deviates from their normal

pattern by evaluating the likelihood of an observed behavior in the context of a

learned hierarchical Markov model. The model also allows them to predict a person's

short term future movements, such as whether the person will turn left at the next

street corner, and distance goals, such as if a person is going to the store. Similarly,

Osentoski, Manfredi and Mahadevan [40] use a form of HMMs to model human motion

through indoor environments to give a monitoring robot the capacity to predict and

explain human activities. In both studies the human subject is abstracted to a point in

two-dimensional space because the motion of interest is of a larger scale. Both studies

use hierarchical HMMs, with the lowest level corresponding to a physical network of

locations and higher levels corresponding to the tasks that are typically performed at

these locations. Thus, these studies are concerned with large scale movement from

place to place in a mapped environment and their emphasis is therefore different from

our own.

Much plan recognition work have used qualitative representations of high and low

level activities described by strings such as "clean room" or "sweep floor." Kautz

and Allen's formal theory of plan recognition [27, 28] introduced a representation of

plans in hierarchical constructs that can be decomposed into qualitative activities.

Our plan representation differs because we keep track of the temporal ordering of

activities and describe activities probabilistically. Following Kautz and Allen's plan

representation, various researchers including Charniak and Goldman [14] and Pyna-

dath and Wellman [46] formulate plans into Bayesian networks, and others like Bauer

[9, 8] use Dempster-Shafer theory for recognition. Their representations are designed

for activities which can be sensed through discrete inputs, such as clicking a button

on a computer, whereas our representation is designed for activities with continuous

data, such as physical motions. Also, when manually decomposing plans into activi-

ties, it is unclear which actions should be considered primitive and which should be

considered higher-level. More importantly, during collaborative tasks, intent recogni-

23

tion should be performed continuously rather than only after some discrete activity

has been completed. The value of intent recognition during collaboration is that it

gives a collaborator the ability to estimate which activity a user is trying to execute,

and then offer aid as necessary.

Another important aspect of plan recognition that has been missing in most recent

literature is the consideration of temporal information. After Allen's presentation of

temporal relations [3, 2J, many researchers have worked on temporal planning, such

as [39, 6, 57, 19]. However, few have incorporated temporal information into plan

recognition. Suppose we observe a person reaching toward a lamp. If the reaching

motion is swift, we may infer that she is turning on the switch, but if her hand is

extended for a long period of time, we may instead conclude that she is trying to fix

the light bulb. Avrahami-Zilberbrand, Kaminka and Zarosim [5} include qualitative

temporal ordering in their plan recognition algorithm, but do not represent the metric

temporal relations. In contrast, our research specifically encodes and relies on metric

temporal relations to describe activity durations.

Avrahami-Zilberbrand et al, as well as others like Lesh, Rich and Sidner [32], use

plan recipes to look up the possible relations between activities. These plan recipe

libraries are pre-generated manually, which is undesirable because manually creating

a recipe library is tedious and may be somewhat arbitrary, because the process is

subject to the creator's opinion about what constitutes an activity. Instead, our work

learns the recipe library, which in our case is the plan network, from actual data.

1.4 Approach and Innovations

This thesis provides an innovative capability for recognizing human intent, through

statistical plan learning and online recognition. Our approach is to learn a proba-

bilistic representation of possible plans, represented by a probabilistic temporal plan

network (TPN), and then to track plans online using the TPN. A probabilistic TPN

is comprised of all possible sequences of activities and corresponding activity dura-

tion distributions that represent the training data. The plan activities are described

24

by a mixture of multivariate probability densities over the state space to reflect the

uncertainty of a human's motion. The number of distributions in the mixture used

to describe the motion is assumed to be given. Activity durations are described by

a probability distribution over time, since the exact timing of the activities that a

human performs is not precisely known. To learn the activities, we employ unsuper-

vised learning on the training data to automatically determine the mixture of activity

distributions. To learn entire activity sequences, the training data trajectories are fed

again through the activities' density distributions to determine each possible sequence

of activities that make up a plan. These activity sequences are then summarized with

the activity durations in a temporal plan network, which consists of a network of all

possible plans.

In the medical assistant example, the plan is the motion of picking up something.

The plan network consists of the different ways that the assistant has learned of how

this motion can be executed. In one possible plan, one activity might be a reaching

motion, described by the probabilistic region in the state space where this motion oc-

curs. The duration associated with this activity may have an average of a few seconds,

with some standard deviation. A sequence of several activities-for example, reach,

grasp, pick up-may be necessary to describe one possible plan, and all the possible

plans that the assistant knows form the plan network. For human assistants, the

network of possible plans are learned throughout life; for robotic assistants, the plan

network is learned through training. Once training is complete for some application,

the assistant is ready to perform recognition.

Recognition involves tracking the most likely activity sequence through a TPN

given a state observation sequence. Our approach first formulates the temporal plan

network as a hidden Markov model. Then we determine the most likely path using

the Viterbi algorithm. Finally, we refer back to the temporal plan network to obtain

predicted future activities.

In our example, the recognition process allows the assistant to observe the doctor

perform a reaching activity, determine the possible plans in the plan network that he

or she may be performing, and conclude the most likely one. This recognized plan

25

allows the assistant to anticipate the doctor's desired future activities and help him

or her perform them as needed.

This thesis presents several innovations: First, we introduce a modified represen-

tation of temporal plan networks that incorporates probabilistic information into the

state space and temporal representations. Second, we learn plans from actual data,

such that the notion of an activity is not manually defined, but is automatically deter-

mined by the characteristics of the data. Third, we develop a recognition algorithm

that performs recognition continuously by making probabilistic updates. Finally, we

not only recognize previously executed activities, but also can predict future activities

based on the plan network.

1.5 Thesis Layout

We present this thesis in the following manner: In Section 2, we review some back-

ground material for the Expectation-Maximization algorithm and temporal plan net-

works, and in Section 3, we present the formal problem formulation. We describe

the components of plan learning in Section 4, and we introduce the plan recognition

algorithm in Section 5. We present the plan generation and recognition algorithms in

detail in Section 6, and show results on motion capture data in Section 7. Finally, we

present possible future advancements in Section 8. This concludes our introduction

as we prepare to go into the details of our work.

26

Chapter 2

Background

This thesis assumes the knowledge of several existing algorithms and representations.

Here, we review background material for data reduction using principal component

analysis and unsupervised learning with the Expectation Maximization (EM) algo-

rithm, and we discuss the existing representations of temporal plan networks.

2.1 Principal Component Analysis

The data that we deal with is highly multidimensional because we track the (x, y, z)

positions of over thirty locations on the human body, producing on the order of one

hundred dimensions. To prevent computational space limitations, we choose to only

consider the features that most strongly distinguish the data. For example, a person's

hand motions may be more important than foot motions during a reaching task.

Principal component analysis (PCA) [25, 24 originally developed by Pearson [413,

is a fairly well-known method of compressing data with some small but acceptable

loss of accuracy. It is especially useful for data that has more dimensions than is

easily analyzable graphically. Researchers have used principal component analysis in

a myriad of different applications, including image processing [60, 53], economics [54],

biology [13], and even atmospheric sciences [45].

In our work, the data represents the combined position information at different

points on the body, sampled at some high frequency. We want to project the high

27

dimensional data onto a lower dimensional space defined by a set of principal compo-

nents. PCA performs an orthogonal linear transformation that transforms the data

to a new coordinate system such that the greatest variance by any projection of the

data comes to lie on the first coordinate (called the first principal component), the

second greatest variance on the second coordinate, and so on. PCA can be used to

reduce the dimensionality in a data set by retaining those characteristics of the data

set that contribute most to its variance, by keeping lower-order principal components

and ignoring higher-order ones. Such low-order components often contain the "most

important" aspects of the data.

The ordering of the principal components can be determined by the eigenvalues

of the covariance matrix, and the components themselves are the eigenvectors. We

can re-encode the data exactly as a function of the eigenvectors of the covariance

matrix written in a feature vector V, and the data given in principal components,

which we call X,. The encoding is given by X = VTX, where the re-encoded X is

assumed to have zero empirical mean. To encode the original data exactly, we would

need all m eigenvectors so that the dimensionality of the data is not reduced. PCA

creates an approximate function that achieves a dimensionality reduction by pruning

a subset of the eigenvectors that least contribute to the error in the approximation.

We can generate principal components from multidimensional data using the following

method:

1. Obtain data: Assume X = [x1 , X2,.... xn]T is a sequence of n data points,

where each data point xi [X1, X2,..., Xm] contains m dimensions. In other

words,

X1 11 - Xilm

X 2
X21 X2m

L Xn L Xn Xnm

2. Center mean at zero: To standardize the origin of the data, we recenter the

data means at zero. Let px = , xi be the mean of X. Then Xcen =

28

[xi - PX, x 2 - PX ... , xn - Px T. For clarity, we shall hereafter redefine X

to mean Xcen, and xi to mean xi - px, so that when we mention X, we actually

refer the zero-centered data.

3. Compute covariance matrix: Intuitively, covariance tells us how the data

values are correlated. The covariance has higher values when high data values

are correlated. Thus the covariance can tell us the ordering of "importance"

of the dimensions of the data, or which components are more "principal." We

compute the covariance matrix as follows: Let a, b E {1. . . m} be dimensions of

the data X, such that

Xla Xlb

Xa - X2a Xb= X2b

LXna LXnb

Let Uab = ;-i En 1 (Xia - AXa) (Xb - Pxb) be the covariance of the data for

the dimensions a and b. Then the covariance matrix is

[all1 ... Ulm1

aml U mm

4. Calculate the eigenvalues and eigenvectors of covariance matrix: The

set of eigenvectors v for Ex is defined as those vectors that when multiplied by

Ex, result in a simple scaling A of v. Thus, Exv = Av. The scaling factors A

are the eigenvalues. To find the eigenvalues, we can solve det (Ex - AI) = 0,

and to find the eigenvectors, we can solve (Ex - Al) v = 0. After finding the

eigenvectors, we convert them into unit vectors v = v to unify the scaling.

5. Form a feature vector and reduce dimensionality: Eigenvalues indicate

the importance of the dimension described by the associated eigenvector. Eigen-

29

vectors with larger eigenvalues describe more principal components of the data.

In order to rank the eigenvectors in terms of importance, we sort the eigenvectors

according to the corresponding eigenvalues in descending fashion to produce the

feature vector V = [Lmax A, .. , min A]. Now we can reduce the dimensionality

by choosing only the p most important dimensions (where p < m) to be our

feature vector: V = [Tmax A, ... , 9p].

6. Deriving principal components of data: We can now transform the data

X with dimensions n x m onto the feature vector V with dimensions m x p to

produce the principal components X, = XV.

We have now generated the first p principal components of the data, so we have

successfully compressed m dimensional data into the p most important dimensions.

To retrieve the original data, we use Xretrieved = VTXP + px. Generally, the retrieved

data will not match the original data exactly unless all the dimensions were included

in the feature vector, i.e. p = m. However, usually just a few principal components

are enough to produce retrieved data to within a small amount of error as the original.

2.2 Expectation Maximization for Unsupervised

Learning

Our plan learning problem is to generate a plan network of temporal activities, given

as input a sequence of states up to time t. Our approach is to encode the activities

as a mixture of Gaussians. This section reviews an algorithm for learning a mixture

of Gaussian model using unsupervised learning. The problem requires unsupervised

learning because the cluster labels are not known a priori. Expectation Maximiza-

tion is a well known and highly effective unsupervised learning algorithm that solves

exactly this problem [48, 23, 10, 18]. The explanation of EM presented here loosely

follows Russell and Norvig [48].

We will use a mixture of Gaussians to model the data because it allows us to

describe multimodal distributions. This is important because we are interested in

30

motions that are centered around multiple locations. Assume the number of clusters,

or classes, that describe the data is known to be k. Let y be a random variable

denoting the class, which can have values of 1,. .. , k. Let x be the state vector at

each data point with dimension p. Then the mixture distribution is given by

k

P (x) =I P (y =j) P(x | y =-A.
j=1

For a mixture of Gaussian model, clusters are described by multivariate Gaussians

with parameters

such that

By= {wj,I p, E},

where wj are normalized weights of each class, pij are the means, and Ej are the

covariances of each multivariate Gaussian distribution. Figure 2-1 shows an example

o o

0
0 0 0 0 0 =2y=1 og Oy

0%

y=1 , C O O
0

0

Figure 2-1: Mixture of two Gaussian clusters

of a mixture of two Gaussian clusters in 2-D. The ellipses are centered at the means

of the Gaussian distribution, and the shape of the ellipses are governed by the co-

variances. Cluster 2 has a smaller weight than that of cluster 1, or w2 < wi because

fewer data points are part of that cluster.

31

The mixture of Gaussian distribution is given by

k

P (x 16) = wj -P (x I pj, Ej) (2.1)
j=1

k

Zwj - (27)/2 1/2 exp - (x - 1) 1 (x - Aj), (2.2)

where p is the dimension of x, and IE| is the determinant of E.

If we knew which cluster each data point belongs, i.e. the assignments of y, we

can easily recover the Gaussian parameters of each cluster by selecting all the data

with the same label y = j and fitting the parameters of a Gaussian to them. On

the other hand, if we knew the Gaussian parameters of each cluster 0, we can, at

least in a probabilistic sense, assign each data point y to a cluster. However, neither

the assignments nor the cluster parameters are known. In this situation, the EM

algorithm initially makes a guess of the parameters, then determines how good the

guess is by computing the probability that each piece of data belongs to each class

(Expectation). After that, the Gaussian parameters of each cluster is refitted to the

the data, where each cluster is fitted to the entire data set with each point weighted

by the probability that it belongs to that cluster (Maximization).

The Expectation and Maximization steps are formalized in Equations 2.3 - 2.11.

1. E-step: Label Data. Assume X is an array of state vector data of length n

such that X = [x1 ... xn]T. Compute the probability that datum xi belongs to

class j using the update equation

S (j) P (y = j x i , ca), In b.e.r. k, i = 1. .a. n. (2.3)

Since P (yj = j I xi, Oj) cannot be readily determined, the actual calculation

32

must be performed using Bayes rule:

0 (1 i) <-P (yi = I I xi, 0j) (2.4)

= a- P (xi I yi = j,) -P (yi =j) (2.5)

a - P (xi A p, Ey) - CGy (2.6)

=a - Wi * (2r)p/2 E 11 2 exP (X ~ j)E (X - [)) (2.7)

where a is a normalization factor to enable the probabilities to sum to unity, zbj

is the estimated weights derived from the Maximization step in Equation 2.10,

p is the dimension of x, and IEjI is the determinant of E.

2. M-step: Update Parameters. Compute the class distribution parameters

w&, A[, and $j using the update equations

n

i=1

lbj hj(2.9)
n

n

Aj <(i) xi (2.10)

Ej <- P (j I i) (xi - Aj) (Xi - Aj), (2.11)
j=1

The Expectation step (E-step) determines the probability that datum xi belongs

to class j, or P (j 1 i), while the Maximization step (M-step) uses it to find new

parameters 0 by maximizing the log likelihood of the data. Wu [59] has proven

that Expectation Maximization always increases or maintains the log likelihood of

the data at every iteration. He has also proven that under certain conditions, the

point of convergence can reach a local maximum in likelihood. In some cases, it is

also possible for EM to reach a saddle point or local minimum. Figure 2-2 shows an

example of Expectation Maximization working on a simple 2-D two class problem.

In the two class problem in Figure 2-2, we make an initial guess of the parameters

33

Initial Conditions

+K+
+ +*

* 4+' '

5

4

3

2

1

0

5

4

3

2

1

0
0 1 2 3 4

X2

5

5

EM after step 1
5

2 +

0 '
0 1 2 3 4 5

X1

EM after step 4
5

4 +

3 + +

2

0
0 1 2 3 4 5

X1

EM after step 2
5

4 +

3 + +

2 +

0
0 1 2 3 4 5

01

EM after step 5
5

4 +

3Mp*

2+

+ +

0 1
0 1 2 3 4 5

X1

Figure 2-2: Example of EM on a 2-D two class problem.

of the two clusters. In this case, we choose two random points in the data as the

Gaussian means and take the covariance of the entire data set as the covariance of

each cluster. Every iteration of EM increases the log likelihood of the data so that the

estimated cluster parameters (represented by the ellipses) describe the data better at

each iteration.

2.3 Temporal Plan Networks

Our central problem is how to effectively encode the hypothesis space of plans that we

are recognizing. Here, we review a representation of temporally flexible plans called

temporal plan networks (TPNs). In terms of representing the hypothesis space, there

are several features of TPNs that are important for our task. First, it can represent

plans as a set of sequential activities. Second, activities are temporally extended.

34

0 1 2 3 4
01

EM after step 3

Third, the start and end times of events are specified partially through qualitative

and metric temporal constraints. Finally, and most importantly, a TPN is a compact

encoding of a hypothesis space of possible plans, not just a representation of a single

plan. The encoding is compact through the use of probabilistic choice operators.

This section reviews the representation of temporal plan networks (TPNs) as

used in previous research. We also outline the concept of qualitative state plans

(QSPs), which represent activities as constraints on the state space. The temporal

plan networks used in this thesis are inspired by existing definitions of temporal plan

networks and qualitative state plans.

2.3.1 Temporal Plan Networks

Central to plan recognition is a representation for the hypothesis space of plans.

This representation should satisfy three requirements. First, the representation of

plans should be expressive enough to capture the key properties of the plans that

we want to represent. Second, it should be a compact encoding of all possible plans.

Third, it should be effectively computable, that is, it should allow the recognizer to

search efficiently through the space of possible plans. The temporal plan networks by

Williams et al. [57, 29] provides these representation capabilities.

We give here an intuitive description of temporal plan networks based on Effinger

[19], keeping in mind that we will be using TPNs for different purposes and dif-

ferent capabilities. For a formal definition of TPNs used in this thesis, please see

Section 3.5.1.

Generally, a temporal plan network encompasses a simple temporal network, so it

is also a directed graph with events V and edges E labeled with temporal constraints

[1, u], where I is the lower temporal bound and u is the upper temporal bound. In

addition, an edge in a TPN can be associated with an activity, which, in planning

applications, may represent a command, state assertion, state request, or timing

constraint. In the recognition application of this thesis, an activity will describe a

particular region of motion. In addition to parallel and sequential activities, temporal

plan networks can also represent different possible activity combinations from which

35

one can be chosen. The event from which different possible branches of the plan stems

is called a choice event. A TPN can have multiple and nested choice events. Being

able to represent choices is a very important quality of TPNs for plan recognition

because we can formulate the plan recognition problem as determining which choice(s)

a human made when executing a task.

An example temporal plan network is shown in Figure 2-3. This example depicts

the plan of someone picking up a hammer and either striking a nail or extracting a

nail. The first activity of the event is picking up a hammer, which lasts between 1

and 6 time units. Following the completion of that activity at event v1 , the person

simultaneously holds the nail in place while either striking it or extracting it. The

choice event v2 is illustrated by a double encirclement of the event. Edges without

specific activities indicate no-ops.

[1, 4] V3 [2] V4 [0, 1]
extract nail

vo [0, cc] 6 strike nail [0, 0] 10,

Figure 2-3: Example temporal plan network. The double circle indicates a choice
event.

2.3.2 Qualitative State Plans

Our representation of activities is motivated by the activity representation in qual-

itative state plans (QSP). Researchers like L~aute [313 who are interested in robust

control of agile systems have developed qualitative state plans (QSP) to describe the

desired motion of a plant at a high level for the operator. Hofmann [22] has also

utilized qualitative state plans toward controlling a simulated humanoid biped. In a

Q SP, state trajectories are specified qualitatively as a series of feasible state regions

36

rather than sequence of specific states.

Activities in a QSP specify qualitative constraints on the state of the plant. For

example, a QSP activity aij = (vi, vj, cij) is located between events vi and vj in the

plan, and is associated with the constraints cij on the variable x, which is a tuple

consisting of a state variable s and control input u. Recall that a schedule T is an

assignment T : V '-* R of an event to a specific execution time. The state constraints

cij can include a start region Rs, such that x (T (vi)) E Rs, an end region RE such

that x (T (vj)) E RE, a remain-in region RV such that Vt E [T (vi) , T (vj)] , x (t) E Rv

and a go-through region R3 such that 3t E [T (vi) , T (vj)] for which x (t) E R3.

The structure of activities in a QSP is the motivator for the activities in the

temporal plan networks for plan learning in this thesis. In our problem, there are no

control inputs u, so x only consists of the state variable s. Then the activities we

eventually learn from the observed states can be described as some region of the state

space, similar in concept to those in QSPs. The difference is the description of that

region. For a formal definition of an activity in a plan that is used in this thesis, see

Section 3.5.3.

We have now completed our review of existing techniques that we use in our work.

The next chapter will present the formal statement of the problem we will address.

37

38

Chapter 3

Problem Formulation

This chapter describes the problem of plan learning and recognition more formally.

We first present a description of the environment from which our data is obtained

in Section 3.1 to ground the kinds of problems we focus on. Then we discuss the

assumptions of the problem and present a motivating example. Next, we formally

define the input data sequences in Section 3.4. The definition of a TPN is given in

Section 3.5, followed by the plan learning and plan recognition problem formulations

in Sections 3.6 and 3.7, respectively.

3.1 Motion Capture Setup

Our work uses the Vicon Motion Systems data obtained from Carnegie Mellon Uni-

versity Graphics Lab Motion Capture Database [44]. This motion capture system has

eight cameras, each recording 1000 x 1000 pixel resolution at 120Hz sample rate. The

marker set consists of 35 14mm markers placed around the whole body, the locations

of which are shown in Figure 3-1. All 34 symmetric markers are used in the learning

and recognition process, giving data in 102 dimensions, which is why we use principal

component analysis to reduce the dimensions of the data. Each test subject has a

calibrated skeleton model, and the motions can be visualized, like the dance move in

Figure 3-2.

Our goal is the following: Given training data like that obtained from the motion

39

Figure 3-1: Marker placement in front and back

40

Figure 3-2: Example dance motion data (displayed in horizontal order). The mo-
tions are attitude/arabesque (frames 1-9), jete en tourant (frames 9-12), and bending
back(frames 12-20).

in Figure 3-2, we would like to generate a temporal plan network that best describes

the range of possible activities. Then with the temporal plan network and new ob-

servations, we want to determine the most likely sequence of activities in the plan, or

recognized activity sequence, to which the observations correspond.

3.2 Assumptions

There are several assumptions we will make when approaching the plan learning

and recognition problems to ensure that our problem has an appropriate scope. In

general, we would like to focus on the problem addressed in the thesis and allow

other researchers to work on interesting, related, but non-core issues relating to our

problem.

We will first assume that the data provided to us is in a format readily usable by

our algorithms. Specifically, we assume that the position vectors of particular points

on the human subject can be obtained at some sampling frequency. This thesis uses

41

motion capture data which is readily available in this format. However, in practice,

a robotic agent may not have the capability to obtain such high resolution motion

capture data, and may need to rely on more conventional sensing techniques such

as cameras or laser range finders. The image processing community has done much

research to extract geometric information from image data [38, 21]. We trust that

researchers like Sigal [50] will ensure that extracting 3D position information from im-

ages is not beyond the capabilities of image processing. Thus we will demonstrate the

capabilities of our research only on motion capture data and assume the applicability

to other input formats.

We also assume that the frequency with which we sample the motion data is faster

than the rate at which a human subject can move, so that no important information

is lost during the data sampling process. Furthermore, we assume that sampling is

done at a constant frequency, so that the number of data points we sample directly

scales as the time lapsed during sampling.

During plan learning, we assume that a recognition resolution is known a priori,

meaning that we know beforehand whether we will be distinguishing motions that are

very similar or relatively different. This plays a key role in the plan learning process

because a higher recognition resolution is necessary for distinguishing more similar

motions, while a smaller recognition resolution is more optimal for distinguishing

very different motions. In plan learning, the recognition resolution is the number of

unique activity clusters that will be learned, which we denote as k. Section 8.1.3

gives some insights on how the recognition resolution might be automatically learned

in the future.

3.3 Astronaut Robotic Assistant Example

Now that we have stated our assumptions, we can provide a better idea of the problem

we will be solving with an example.

When an astronaut performs some task in space, such as in a telescope repair

mission, he or she follows a set of procedures outlined by the operations team. As an

42

example, Figure 3-3 shows a portion of the operations procedures for the wide-field

planetary camera changeout during the Hubble Space Telescope (HST) repair and

maintenance mission in 1993 [36]. Suppose we would like to design a robotic agent to

inform the astronaut of which activity he or she should be completing, and to ensure

that each activity is completed correctly. The agent would first need to know what

the task procedures are, and in what ways they can be performed by an astronaut.

We describe all the ways a person can complete a task procedure as a plan.

Goal: Replace the original WFPC I instrument in the HST

axial bay (axis - V3) with the second generation WFPC II in

the Space Shuttle cargo bay WFPC radial site.

In this exercise you will

* Deploy the forward and aft temporary parking fixtures
(TPF) with attached handholds.

* Install the handhold guide studs on each of the WFPCs.

* Adjust the (-V2) scuffplate and open the FGS#3 doors to
access the HST WFPC indicator lights.

* Retrieve, translate, and temporarily stow the WFPC I

with the aft handhold.

* Open and access the radial site.

* Translate the WFPC II with the forward handhold from the
radial site to the HST for installation.

* Install the WFPC II in the HST, close the FGS#3 doors,
secure the (+V2) scuffplate, and stow the forward
handhold on the forward TPF.

* Translate the WFPC I from the aft TPF to the radial
site, stow for return to Earth, and close out the radial
site.

* Return the aft handhold to the aft TPF and return both
TPFs to their original stowed positions.

Beginning position: At the start of the WFPC tasks you will

be facing the aft end of the Shuttle cargo bay at a
position approximately in line with the airlock hatch.

Figure 3-3: Operations for the wide-field planetary camera changeout during Hubble
Space Telescope repair and maintenance mission

Before a space mission, astronauts and ground support crew go through a series

of training sessions to get familiarized with the environment and task, sometimes

through immersive virtual environments like the one developed by Loftin and Kenney

to train over 100 members of the ground-support flight team before the HST mission

[36]. We propose that a robotic agent can learn an astronaut's plan by collecting

data during this type of ground training before the mission. We would like the plan

43

to contain both spatial and temporal information. As mentioned, we assume the

data consists of position vectors of certain points on the astronaut recorded at some

constant and fast sampling frequency. The first problem we address in this thesis is

how to learn a plan from training data.

Now suppose the agent has already learned the task procedure plan, and is as-

sisting an astronaut during a mission. To effectively monitor the progress of the

astronaut, the robotic agent must be able to identify which method the astronaut is

applying, what activities he or she has completed already, which activity he or she is

in the process of performing, and very importantly, what activities the astronaut will

need to complete in the future. The second problem we address in this thesis is how

to recognize the correct activity sequence that the human has executed, and using

the information in the plan, predict future activities that the human should perform.

3.4 Definition of a Data Sequence

A learning task begins with data. The motion capture data used in this research

consists of (x, y, z) position data of 1 different markers on the body, giving a total of

m = 3 - 1 states at each time step. We can now clearly state the input data sequence

to the problem in Definition 1.

Definition 1 A data sequence X is a sequence of n poses x, where n is the number

of data samples taken, and each pose state x = [x1 ,... , xM3 is a vector of the m

position data. We represent X as an n x m matrix of position data over time, or

X = [X1,..., Xn]T.

By combining the three position states of each marker of interest into one state

vector, the training data can represent combined motions. For example, a person

might be holding something with the left hand while reaching for something with the

right. These parallel activities can be derived either by learning over the combined

states of both hands, or by learning each hand and combining the resulting activities.

The choice depends on whether the motion of one marker is considered independent

44

of the motion of another marker or not. In our application, we assume a person uses

all parts of their body together to perform a task, so the data from all markers of

interest are simultaneously considered together in one state vector. This approach

limits our representation of the temporal plan network because parallel activities will

not be considered separately. However, when learning the activities of one person

performing a specific task, such as a dance move, this approach is acceptable and

appropriate because a person generally will not be multitasking. See Section 8.1.1

on future advancements for a discussion of potentially representing parallel activities

separately.

3.5 Temporal Plan Network Redefined

We gave a brief description of the current notion of a temporal plan network (TPN)

in Section 2.3.1. This thesis does not use all the current capabilities of a TPN, an

example of which is the lack of parallel activities mentioned in Section 3.4, but on the

other hand expands on certain aspects of it. One major addition is that the activities

in a TPN are represented as probabilistic regions in the state space, motivated in

concept by previous work on qualitative state plans discussed in Section 2.3.2. An-

other change is that instead of representing the durations of activities as bounded

temporal constraints as they currently are in a TPN, the activity durations are also

represented by probabilistic distributions.

With the additions, the output of plan learning is a particular kind of TPN in

which one choice event expands into all different plan trajectories. In the imple-

mentation presented in this thesis, the only choice event is in the beginning, and

plan trajectories that are different even in the slightest are represented separately.

Although this is a limitation in our implementation, the TPN is still valid and the re-

sults of plan recognition are the same. For a discussion of how we might combine the

representation of similar partial trajectories of a TPN in the future, see Section 8.1.2.

Another capability of the current TPN representation that is not used in this

thesis is the ability to represent temporal information between any two events. In

45

the plan recognition application, temporal information need only be associated with

activities, between adjacent events.

3.5.1 General definition of a TPN used in this thesis

We now provide the definition of a temporal plan network that will be used throughout

this thesis in Definition 2.

Definition 2 A temporal plan network P = (-, Ech, A, D) specifies an evolution

of the observed states over time, and is defined by a set S of all discrete events,

a set 'ec C 8 of choice events, a set A of activities defining probabilistic regions

over the observed states, and a set D of temporal distributions between two events

corresponding to an activity.

We illustrate a temporal plan network diagrammatically by an acyclic directed

graph in which the discrete events in S are represented by nodes drawn as circles,

choice events as double circles, and activities as numerals encased in angle brackets

along graph edges. Activity durations are represented by the duration distributions

on graph edges. An example TPN diagram is shown in Figure 4-6.

3.5.2 Definition of a schedule

Since we do not know a priori when exactly a person will reach some event in the

plan, we must encode the events to be temporally flexible. To enable this, we use a

schedule described in Definition 3 to represent the time when an event occurs. This

is the same definition of a schedule as that for simple temporal networks [171 and

qualitative state plans [31].

Definition 3 A schedule T for a temporal plan network P is an assignment T

E F-+ R of observed execution times to all the events in P.

In this thesis, we assume that schedules are measured relative to the first event in

the plan, which we call event eo. Thus T (eo) = 0.

46

3.5.3 Definition of an activity

Definition 2 describes a temporal plan network as P = (S, Ech, A, D), where A is a

set of activities that describe the region of motion in the state space probabilistically.

Definition 4 An activity a = (es, eE, r), where a E A, has an associated start event

es, an end event eE, and a probabilistic region in the state space r.

As Definition 4 states, every activity is between two events and is described by

some probabilistic region in the state space. The set of all activities A describes

the mixture of densities in the state space where the motion is observed. If we use

a mixture of Gaussians to describe the motion in the state space, then the activity

region is described by Definition 5.

Definition 5 An activity region r = N ([it, E) is a multivariate Gaussian in the

state space defined by the mean p and covariance E .

For example, if an astronaut were performing the procedure to "retrieve, translate,

and temporarily stow the WFPC I with the aft handhold" in Figure 3-3, he or she

may reach out and move the camera to the aft handhold position. The activity regions

might be along the line of the reaching motion, around the location of the camera,

and back near the location of the aft handhold.

Our use of an activity is significantly different from that in TPNs of previous

work, where an activity may represent a command, state assertion, state request, or

timing constraint. Previous work on temporal plan networks have been motivated

by planning applications, where the activities are known beforehand. In recognition

applications, however, the robotic agent knows nothing about individual activities

that a human is performing, so activities must be learned from the human's physical

motions.

3.5.4 Definition of a duration

All temporal information in a temporal plan network is encoded in D, which contains

a set of durations described in Definition 6. Technically, a duration can span between

47

any two events in the TPN, although in our application they will only span adjacent

events corresponding to an activity. Every activity has a duration.

Definition 6 A duration d = (es, eE, g), where d E D, has an associated start event

es, an end event eE, and a temporal probabilistic distribution g.

The duration is represented as a distribution of times. This is significantly different

from the temporal constraints in the TPNs used in previous work. As mentioned in

Section 2.3.1, temporal constraints are represented by a time interval [1, u], where 1

is the lower temporal bound and u is the upper temporal bound. In the recognition

application, however, we cannot use absolute intervals to represent possible activity

durations observed in a human's motion. Instead, we represent the durations as

distributions over time, as stated in Definition 7. This representation of duration is

not as restricting as the temporal constraints in previous TPNs because it allows an

activity to have any arbitrary duration, although certain durations are more likely

than others.

Definition 7 A duration distribution g = r (k, 0) is a gamma distribution of

durations governed by the shape k and scale 0 of the distribution.

We chose a gamma distribution to represent durations instead of a Gaussian dis-

tribution to ensure that all durations have non-negative values.

3.5.5 Definition of a choice event

A temporal plan network is different from a predetermined list of activities because it

encodes all the different ways a task can be completed. This is especially important in

recognition applications because the execution is done by a human subject who may

choose to perform a task in one of a myriad of different ways. To encode the general

methods of executing a plan, we employ a choice event as described in Definition 8

to represent the point at which multiple methods methods branch.

48

Definition 8 A choice event ech E Ech is an event such that of all activities aj =

(esj, eEj, rj, dj) for which the start event is the choice event, or esj = eeh, only one

of these activities will be recognized.

3.6 Definition of a Plan Learning Problem

The problem of plan learning is presented in Definition 9. It is in part motivated

by our desire to avoid manually generating a plan recipe, as in the case of [5, 32].

Instead, we would like to automatically learn the plan network from training data.

The plan learning algorithm will perform unsupervised learning on training data to

eventually generate a temporal plan network. The detailed approach of plan learning

will be discussed in Chapter 4.

Definition 9 Given a set of C training data sequences X = {X1,..., Xc} and the

recognition resolution k, the plan learning problem outputs a temporal plan net-

work P = (-E, EM, A, D), where each activity a E A encompasses one of k unique

activity regions that describe the set of training data sequences to a convergence fac-

tor of 6.

In practice, the only choice event is the first event, or Ech = {eo}, in the learned

temporal plan network because all paths, even if only slightly different, are treated

independently, as mentioned in Section 3.5. Furthermore, the set of durations D has

a one-to-one correspondence to the set of activities A because the plan learner does

not record time lapses between any two arbitrary events, only ones corresponding to

an activity.

3.7 Definition of a Plan Recognition Problem

After obtaining a temporal plan network, a robotic agent can now perform recognition

on newly observed data. The plan recognition problem is stated in Definition 10. The

detailed approach of plan recognition will be discussed in Chapter 5.

49

Definition 10 Given a temporal plan network P = (E, Se, A, D) and a newly ob-

served data sequence Xob = [x1 , . ., xnobs]T, the plan recognition problem pro-

duces a recognized activity sequence R and a predicted activity sequence B that de-

scribes the most likely past and future activities corresponding to XObS.

The key to the plan recognition problem is that the observed data does not have

to be complete. With data observed to some small number of time steps, nobs, we

would like to be able to identify (1) previously executed activities with corresponding

schedules of when each activity began and ended, (2) the current activity and how

long it has been executed, and (3) predicted future activities and most likely estimates

of how long each might be executed. We represent this information by a recognized

activity sequence R described in Definition 11 and a predicted activity sequence B

described in Definition 12.

Definition 11 A recognized activity sequence is a tuple R = (SR, AR, TR), where

AR are the recognized activities with corresponding events ER, and a schedule TR that

determines the recognized execution times of each event. The schedule of the last

recognized event, T (eiast) is equal to the time lapse between the first and last data

points in the observed data sequence.

The recognized activity sequence corresponds to a partial trajectory of the TPN

when the observed data is not complete. The schedule of the recognized activity

sequence is obtained from the observed data sequence, given the duration distributions

of the activities in the TPN. Since the observed data may not be complete, it can be

terminated in the middle of some activity. The recognized activity sequence encodes

the schedule of the last activity's end event as the time of the last observed datum.

Thus the recognized activity sequence provides (1) the previously executed activities

with corresponding event schedules, and (2) the current activity and how long it has

been executed.

Definition 12 A predicted activity sequence is a tuple B = (EB, AB, TB), where

AB are the recognized and predicted activities with corresponding events EB, and a

50

schedule TB that determines the recognized and predicted execution times of each event.

The schedule of the events in the predicted activity sequence is determined by the

schedule of the recognized activity sequence TR and the temporal plan network.

The predicted activity sequence encompasses all the information in the recognized

activity sequence, in addition to which it uses the corresponding trajectory in the

TPN to predict future activities. The schedules of previously executed activities are

the same as those in the recognized activity sequence. Schedules of future activities

reflect the most likely durations of those activities in the TPN. The predicted activity

sequence allows a robotic agent to anticipate a human's future motions.

51

52

Chapter 4

Statistical Plan Learning

To perform plan recognition, a robot needs to acquire a knowledge base of plans

that can be compared against data. To acquire this data, we must either directly

tell a robot the information we know, or it will need to learn the plans itself. Some

researchers have suggested providing a list of hundreds of thousands of common sense

actions to help computers to become smarter [35]. However, it would be extremely

tedious for a user to manually generate all task plans. Hence, we prefer the robot to

learn the knowledge of these plan from training data.

4.1 Overview

This chapter presents our method for plan learning. An overview of the plan learning

process is illustrated in Figure 4-1. In the beginning, unsupervised learning is used

to cluster the training data into the number of activities defined by the recognition

resolution. Each activity is described by a multivariate Gaussian N (gj, Ej) in the

state space. The training data sets are then used to determine the correct sequences

of these activities. Finally, the activity sequences are augmented with temporal in-

formation in a temporal plan network. This approach is different from past gesture

recognition work in that we use unsupervised learning, whereas gesture recognition

generally utilizes supervised learning, as in [26]. We also go beyond Barbie et al.'s

work [7] because we not only learn activities, but we also record the sequences and

53

durations of activities.

Training data

-

Number of
activities

Temporal plan network

Figure 4-1: Overview of the plan learning process

We will describe the input training data in Section 4.2 and present the principal

component analysis to reduce the dimensionality of the data. Section 4.3 then dis-

cusses how the EM algorithm is used to learn activities from data, and Section 4.4

describes the method by which activity sequences are extracted with associated dura-

tion distributions. Finally, Section 4.5 discusses how a TPN is created from activity

trajectories.

54

4.2 Formatting the Training Data to Be Used in

Learning

4.2.1 Motion Capture Data

Training data for the plan learner consists of multidimensional continuous state ob-

servations over time sampled at some constant frequency. This data can be obtained

by a variety of sensors. In this thesis, we use Vicon Motion Systems data obtained

from Carnegie Mellon University Graphics Lab Motion Capture Database, the same

database used and described in [44]. Motion capture data measures the (x, y, z) po-

sition states of various markers on the body. The motion capture system used for

the CMU database has eight cameras, each recording 1000 x 1000 pixel resolution at

120Hz sampling rate. The marker set consists of 35 14mm markers placed around the

whole body, of which 34 symmetric marker placements are used in this thesis.

We combine the three position states of each marker of interest into one state

vector. For example, the state vector for two markers is x = [X1, YI, z1i, x 2, Y2, z2]. We

describe a state vector as xi = [x1, X2 , ... , Xm], where m is the dimension of the state

vector. A training data sequence contains n state vectors measured at some sampling

frequency, and is represented as X = [xl, x2 ,. . , xn]. The dimension m of the state

vector must be the same in each training data sequence, but the lengths n of each

training sequence do not have to be the same.

Certain adjustments may need to be applied to the raw data to prepare it for

use. Specifically, we ensure that the training data sequences are all properly scaled

and co-originated. Proper scaling refers to the (x, y, z) position measurements being

of the same units. Proper co-origination refers to aligning the initial positions in

each training sequence to be the same. We make these adjustments without loss of

generality, since they do not change important qualities of the data.

55

4.2.2 Dealing with Data Scarcity

In certain circumstances, we may not have many training data sequences available.

When data is scarce, unsupervised learning still applies, but may be compromised

in terms of accuracy. Although having more real data is always a better solution,

we choose to use splines with noise to introduce a few new data sequences to bolster

the original data set when the data is scarce. Essentially the splines are a crude

dynamics model of the human's motion that captures smoothness. The process of

creating splines is as follows: First, some number of data points are sampled evenly

from an available training data sequence. Next, we add some noise to the sampled

data points and create a spline with it. Finally, we resample from the splines to

interpolate the new data sequence. For a more detailed discussion of splines, see

Appendix A. This process, illustrated in Figure 4-2, can be repeated to create more

new data sequences.

0*

(a) (b) (c)

Figure 4-2: We use splines to generate new data when data is scarce. The process is
as follows: (a) Sample data evenly. (b) Add noise to sampled data. (c) Create spline
and interpolate new data sequence.

4.2.3 Dealing with High Dimensionality

The high dimensionality m of the state vectors makes the training data hard to work

with. For example, classifiers do not scale well to high dimensions. Furthermore,

more computational power is required to run algorithms on such multidimensional

data, and they are difficult to represent graphically for user analysis. Therefore,

56

we use principal component analysis (PCA) to project to a lower dimensional space

that captures the most important features. Using the PCA method presented in

Section 2.1 to compute the principle components, we take a training data sequence

X1 X11 -- im

X2 X21 ... X2m

L Xn J L Xn1... Xnm

center the mean at zero by replacing X with X - pX, compute the covariance

matrix Ex, obtain the eigenvalues {A1,... , Am} and eigenvectors {91,. . . , {z} of

the covariance matrix, form a feature vector based on the sorted eigenvalues V =

[j ma A, . . , i'min A], extract the p : p < m most important dimensions of the feature

vector V, = [irmax,- .., 9,], and transform the data onto the feature vector to gener-

ate the principal components Xp = XV for training sequence X. Given C training

sequences and c E { 1, ... C}, each training data sequence, after going through PCA,

is represented by

Xc = 21 X2p

xncl -. -x ncp

The set {XI,. .. , Xc,... , Xc} describes the principal components (PC) of all the

training data. This set of data will be used throughout the plan learning process.

4.3 Unsupervised Activity Learning

To learn a plan from the PC data, we employ unsupervised machine learning on the

data. Specifically, we use the Expectation Maximization (EM) algorithm discussed

in Section 2.2 to cluster the training data into a mixture of Gaussians, similar to

Barbik's method [7]. The number of Gaussians, or recognition resolution, is supplied

by the user. We label this value k. Recall from 2.2 that the parameters of the Jth

57

Gaussian model include wj, which is a normalized weight on the cluster, 1j, which is

the mean of the Gaussian, and Ej, which is the covariance.

Given the set of training data {X 1, . . , Xc, ... , Xc}, we perform learning over

all the data sets together. To represent all training data together, we define an all-

encompassing state vector sequence X that vertically concatenates all of the data

sequences into one long sequence given by

X 2
X2

XXN

where N = EC n, is the total number of state vectors in all the training data

sequences.

Given the concatenated training data described as X and number of clusters k,

we initialize the model parameters for all j E {1, . . , k} with

1
Wi =

N.
Pj = Xq, + = 1

E= E (X).

In the initialization, the cluster weight parameters wj are set to a uniform likelihood

for all clusters. The means pj are initialized to evenly sampled state vectors xq in

X. Initializing the means to state vectors already in the data ensures that later when

we calculate probabilities of the state vectors from the probability density function

governed by pj and Ej, there is at least one data point that does not have a near

zero probability. This is important because our data has p dimensions, and Gaussian

probability density functions evaluate to small values for large dimensions. Often, if

a data point does not lie near the center, or mean state vector of a cluster, the proba-

bility density function at that data point will evaluate to a near-zero probability that

58

is beyond machine precision. If we initiate the cluster means Aj completely randomly,

it is often the case that all probability density functions for all clusters evaluate to

machine zero for all the data points, in which case unsupervised learning ceases to

work. Thus the means are initialized in such a way to prevent this problem. Finally,

the covariances for each cluster are all conservatively initialized to the covariance of

all training data.

We define Y = [Yi,..., YN]T as a vector containing the class labels corresponding

to each data point in X. Each label y2 is a variable with domain {1, ... , k}. Now we

can perform the EM learning algorithm as explained in Section 2.2:

1. E-step: Label Data. Given all the training data X = [x 1 , x 2 , ... , Xi-... , XN]

and the number of clusters k, compute the probability that datum xi belongs

to class j using the update equation

(4.1)

where

P (yj = j I xi, O) = a - P (xi I p E3) -Z (4.2)

= ae- iI 2-b,2I ~ 1, exp (X-p) j1(~)

(4.3)

by Bayes rule. The a is a normalization factor.

2. M-step: Update Parameters. Compute the class distribution parameters

59

P (j Ii) <- P (yj = j Ixi, j), 7J'= I... k, i = 1 ... N.

wj, Aj, and $j using the update equations

N

ny +- # (j| i)(4.4)
i=1

#i - j (4.5)
N

1 ~(4)
#- 1: P (I I i) Xi(4)

f i=1

ft +- P (j I i) (xi - Aj) (Xi - Aj), 47

We define a small value 6 such that the EM algorithm iterates until

[p-(t) - P - < 6,

where p = [i,. .. , PIT is the matrix containing all cluster means, and the parenthe-

sized superscript (t) indicates the iteration step. This allows the EM iteration to stop

when the model parameters have converged. It is optional to also define an absolute

maximum number of iteration steps to stop the iteration even if convergence is not

reached. This is only useful if run time or computation power is limited and we are

willing to compromise some accuracy.

As an example, we ran the EM algorithm on the arbitrary data sequences pre-

sented in 4.2.2. Allowing the recognition resolution k to be 2, EM outputs the two

classes, or activities, shown in Figure 4-3. The ellipses represent the covariances of

the two clusters, and the cluster means are located at the geometric center of the

ellipses. Each activity is labeled with an activity number from 1, . . . , k.

This simple example is shown here only to give an idea of how the EM algo-

rithm works. More extensive results using real motion capture data is presented in

Chapter 7.

Now we have learned the distinct activities. In the next section, we learn how

these activities combine into simple activity sequences.

60

EM after convergence with 5=0.0001
1.5

0

0. *

1* 0

00

0.5 2.

0 -

0 0.5 1 1.5
xl

Figure 4-3: Example of running EM learning on some 2-D data sequences with two

clusters

4.4 Extracting Activity Sequences

This section abstracts the data sequences into activity sequences and learns expected

activity durations for each unique sequence to prepare for representation as a TPN.

To do this, we first find the probability that a data point belongs to a particular

activity. Next, we find the most probable activity at each data point for each train-

ing trajectory. Finally, we compress this information as a sequence of activities with

durations. The key is that we now need to consider each training data sequence inde-

pendently, i.e. we consider the trajectories in the set {X 1, . . , Xc, ... , Xc} separately

instead of all together as X before. Previously, we were learning what the activities

are based on all training data; now we are determining what sequences of activities

exist in the training data.

For each trajectory Xc, we use the learned classifier to label each principal com-

ponent data point with its most likely activity. To accomplish this, we first find the

probability of activity yi = j given a single data point xi, where i = 1,. . . , nc, by

61

using Bayes rule:

.y) P (xi I yi =j) P (yi = j)P (yi = 3 1 xi) = k P x aP(i="

P (xi I y, Ej)wj

j P (Xi I Pi, Ej) wj

Next, to find the most probable activity at a particular data point, we take the argmax

over all the activities j:

yZ = argmax (P (yi j I xi))
i

(P (xi y E)w= argmax P (xi j, j) wJ
SEk_ P (xi I pyt, Ej) Wj

Now we find the most probable activity at every data point in a training trajectory

sequence, that is, we map

x1 y

X== X2Q Y2

X Xr -- >cc= *

Qc is a sequence of labeled activities, which we call an activity labeling, where

Qc = argmax [(iC].
i IP(X E|))_

We observe that an activity label will typically be repeated for several successive

data points. Hence, we encode this more compactly by collapsing the repeated se-

quences using a run-length encoding [56]. We introduce He as a run-length encoding

of Q,, so that Hc = [ac, dc], where ac is a sequence of activities and d, is its cor-

responding durations, such that successive activities are distinct. For example, if a

62

particular trajectory gives Q, = [3 3 3 3 3 5 5 2 2 21T T

3

5

2

5

2

3

because there are five 3's followed by two 5's followed by three 2's. Since Q, is an ac-

tivity trajectory, a, is the activity sequence in a trajectory, and d, is the corresponding

activity duration sequence.

Let's apply activity sequence extraction to the data used in our previous example

of Figure 4-3. There are two data trajectories and two labeled activities. Figure 4-4

shows the resulting activity trajectories (Q1 and Q2). In this example, the run-length

Activity Trajectories of Example Data

- - Traj1
Traj2

I
I
a
U

10 20 30 40 50 60 70 80
Data Frames i

Figure 4-4: Activity trajectories corresponding to the data shown in Figure 4-3

encodings of the activity trajectories are

2 30 2 33
and H 2 = -

1 38 [1 55]

We notice that the activity sequences of the two trajectories are the same, just with

different ranges of durations. Eventually, we want to summarize this information into

63

E
z
=3,

2

1

, then

a plan so that all trajectories with the same activity sequences can be represented

together as a plan trajectory with associated durations. The process of creating a

plan is discussed in the next Section.

4.5 Creating a Probabilistic Temporal Plan Net-

work (TPN)

Creating a temporal plan network involves learning a temporal activity sequence by

first learning the probability distribution of durations for each activity, and then

learning the prior probabilities of each plan.

Assume we have the activity sequences {al,... , ac} and corresponding activ-

ity duration sequences {d 1,..., dc} for all the PC data sets {1,..., C}. We first

combine duplicated activity sequences and summarize the duration information for

them. Let A, = JacI denote the number of activities in activity sequence ac. Let

S E {1,.... , S} denote each distinct activity sequence generated from all the train-

ing data C training trajectories, and let . Thus we can find a set of unique ac-

tivity sequences {A 1,..., As} ; {al,..., ac}. For each unique activity sequence

A., we define Dc, = {dc}cEC, as the set of corresponding duration sequences, where

C, = {c I a, = A8 } denotes the training sequences in C correspond to the unique

sequence s.

d
0

Figure 4-5: A gamma distribution is unimodal and non-negative.

Next, we learn the duration of each activity in each sequence. We model the

duration data Dc, as a two-parameter gamma distribution [15] F (k, 0) as shown in

Figure 4-5. We choose a gamma distribution instead of a Gaussian because the

64

durations sampled from a gamma distribution is guaranteed to be non-negative. The

gamma parameters k and 0 are related to the mean y and variance u2 by

p =kO

u =k0 2.

We find the mean and variance of the set Dc,:

A (Dc,) = C de
IDc, I

2 (D =Ec, (dc - pf (Dc,)) 2

a (Dc.)-=
JDcJ| - 1

where the element-wise product of two vectors ab or a2 is a vector containing the

products of the corresponding elements of the vectors. To find the parameters k (Dc')

and 6 (Dc.), we use

(1u (Dc8))2

k (Dc,) =p (Dc.)
U2 (Dc,,)

=02 (Dc.)6 (Dc') = (
fp (Dc.)

The special case of F (0, 0) is equivalent to a [0, 0] time bound, and F (0, oo) is equiv-

alent to a [0, oo] time bound.

Finally, we define a duration summary matrix

DS = [k (Dc,), 0(D.)]

to represent the abstracted duration information using the gamma distributions, en-

abling us to compactly represent the activity durations. The set of unique activity

sequences {A 1, ... , As} and corresponding durations {D 1 ,.. . , Ds} comprise two ma-

jor components of a TPN. The third component is the set of prior probabilities of

each plan, which we will discuss after presenting an example of creating the first two

components.

65

To illustrate the process of creating the activities and durations in a TPN, suppose

we have the following small number of C = 6 training trajectories:

3 15]

5 32

2 14]

3 191

5 28

2 12]

3

H2= 5

2

, H5 -

18

32 ,H3=

21

3 7

1 29

4 10

1 43

3 9

1 22

4 6

1 42

3 11

5 24

2 17

We identify that there are S = 2 unique activity sequences

3

5

2

, A 2 =

3

1

4

1

with corresponding

15

32

14

[18

32

21]
,[19

28

12

[111

24

17

I, Dc 2 =

9

22

6

42

7

29

10

43

66

.[

H6

Dc,=

where the mean and variance vectors are

yu(Dc1) =

y (Dc2) =

[15.75

29.00

16.00

8.00

25.50

8.00

42.50

[, 0.2 (Dcl) =

.2 (Dc2) =

12.89

14.67

15.37

1.99

24.50

8.01

0.50

I,

Hence, the activity duration sequence summaries D, = [k, 6] are

19.25

D= 57.33

16.66

0.82

0.51

0.96

,D2=

32.19

26.54

7.99

3583.12

0.25

0.96

1.00

0.01

The final component of plan learning is to compute the prior probability at which

each sequence occurs in training. These probabilities are used as prior for the recog-

nizer. We denote the set of trajectory probabilities as {pi, ... , Ps}. Each trajectory

probability is defined as the ratio of number of training sequences that correspond to

a particular trajectory to the total number of training sequences:

PS_ Ics I
ps=C

(4.8)

Given the learned activity sequences with duration distributions for each trajec-

tory in the plan and prior probabilities for each trajectory, we have all the components

of a temporal plan network. Each trajectory in the TPN is a possible plan to rec-

ognize. Thus we can describe the plan network as S possible trajectories spawning

from one choice event. The plan network for the example given above is shown in

Figure 4-6. Durations are labeled as gamma distributions of the form F (k, 0), where

67

F (0, 0) is equivalent to a [0, 0] time bound, and F (0, oo) is equivalent to a [0, oc] time

bound.

s=1, p, =
A 3

3 5 2
r (0, 0) y, y2 V3 V4 r (o, o)

F (19.25, 0.82) F (5 7.3 3, 0.5 1) F (16.66, 0.96)

r- (0, 0) V5 V6 V7 V8 V9 r (0, 0)
F (32.19, 0.25) F (26.54, 0.96) F (7.99, 1.00) F (3583.12, 0.01)

s = 2, p 2 =

Figure 4-6: The temporal plan network derived from example activity and duration

sequences

Finally, the temporal plan network is recorded in XML format. An example

snippet of XML code used to describe a small part of the TPN in Figure 4-6 is shown

in Appendix B.

68

Chapter 5

Probabilistic Plan Recognition

The problem of intent recognition is to infer the sequence of activities a human has

been performing and, most importantly, to predict which activities will occur in the

future. Thus the recognizer needs to do more than estimating activities matches

the current data, as was done in [7]; it must determine the most likely sequence of

activities that explain the observed data. This is the task of the plan recognizer. The

plan recognizer does not require the observed data to be a full sequence, i.e. upon

observing the first few data points, the plan recognizer is able identify a corresponding

most likely activity sequence in the plan. This requirement enables the recognizer to

not only determine which activities have been observed, but also predict activities

likely to occur beyond current observations.

5.1 Overview

This chapter presents our method of plan recognition. An overview of the plan

recognition process is illustrated in Figure 5-1. First, the TPN learned in Chapter 4

is represented as a Hidden Markov Model (HMM) by assigning transition probabilities

that capture the distribution of each activity's duration. Next, the Viterbi algorithm

is applied to the HMM to obtain the most likely sequence of activities. Finally, we

refer back to the TPN to determine the predicted activity sequence.

We first discuss how the test data is processed to be comparable to the training

69

Temporal plan network

Observed data
Most likely plan trajectory

Schedule of activities

Figure 5-1: Overview of the plan recognition process

data in Section 5.2, then we set up the nomenclature of the problem in Section 5.3.

We discuss the approach of representing the temporal plan network learned in Chap-

ter 4 as an HMM in Section 5.4, and proceed to finding the most likely sequence of

activities using the Viterbi algorithm in Section 5.5. We trace the steps to determin-

ing the predicted activity sequence in Section 5.6. Finally, we demonstrate the plan

recognition process on a simple example in Section 5.7.

70

5.2 Formatting the Observed Testing Data to Be

Used in Recognition

The observed data is presumed to be of the same format as the training data: in the

application used in this thesis, they are motion capture data of m dimensions. The

observed data is of the form

X1 X11 --- X1M

Xos X21 ... X2m

Xnobs nobs lnobsM

where the length of the observed data sequence nobs can be much shorter than those

of the training data, since the idea is to recognize the activity sequence based on only

the first few motions.

We reduce the dimensions of the test data using the same feature vectors identified

through PCA during learning. The test data only is re-centered according to the mean

of the training data and then transformed using the existing feature vector. More

specifically, following Steps 2 and 6 in Section 2.1, we center the test data so that

XobS is replaced by [X1 - Ax, X2 - [X, ... , Xnob, - ux]T, where px is the mean of

the training data, as obtained before. Then using the feature vector V, derived in

Section 4.2.3, we obtain the principal components of the test data XPOb, = XobsV,

which has dimensions nob.S X P.

5.3 Preliminaries: Notation and Setup for Plan

Recognition

Before delving into the details of plan recognition, we first introduce some notation

of the inputs. Specifically, we describe our representation of the activity labels of an

observed sequence, the indexes for referencing activities in a plan network, and the

71

details of an activity duration distribution.

We first introduce the notation used to describe the observation data labels. The

observed data Xp,,, is sampled at a constant rate -y, so the time steps t E {1, ... , nobs}

reflect the relative temporal measurement of the observed data. Therefore, we can

measure the duration between two different data points t = a and t = b by calculating

(b - a) x -y. Since y is a constant, we ignore it when discussing the recognition

algorithm. The vector Yobs = [yi, . . ., ynfl.]T denotes the activity labels corresponding

to each data point in Xpobs. There are k different activities. Each label yt is a single

valued variable with domain {1,... , k} that describes the appropriate activity for

data point xt. Part of the plan recognition task is to determine the values of the

labels in Yobs given the observed data Xpo,,.

Next, we present the notation for referencing activities in a TPN. We label the

trajectories and activities in a plan network with indexes s and r, as shown in Figure 5-

2, where s E {1,. . . , S} are indexes of trajectories, and r E {1, . . . , R,} are indexes

of activities within a trajectory. We refer to a particular activity in the plan as as,r,

where r < Rs, and as,,r can have values {1,..., k}.

r=1 r=2 ... r=R,

....................... 4

. r = R 2

Figure 5-2: Labels for trajectories and activities in a plan. Trajectories are labeled
s, while activities are labeled r. For each trajectory s, there are R, activities.

Finally, we discuss the details of representing a duration distribution to support

estimation and prediction. We define variable d,, as the best current estimate (at

time step t) of the duration of the activity as,,r corresponding to yt. We define tm as

the time step when the current activity first began, that is, tm = 1d 8 ,. As a

72

shorthand, we use T = t - tm +1 to denote the time elapsed since the beginning of the

current activity. If at time step t, the activity does not transition to a new activity,

that is, time step t is sometime in the middle of the activity, then we know that d,,

should be at least r, since d,,, anticipates the entire duration of the current activity.

The temporal plan network learned in Chapter 4 allows us to predict the distri-

butions over the durations of each activity as,,. An example duration distribution

is shown in Figure 5-3. The shaded region is the probability that the current ac-

~s~ v = asr)

ds~r

tm, V t

Figure 5-3: Duration distribution

tivity's duration ds,, is longer than the time elapsed since the activity began, or

P (ds,, r | y = as,,). In the example shown in the figure, a large amount of time

has elapsed since the beginning of the activity, so there is a low probability that the

activity duration is longer than the time elapsed so far. If elapsed time is short, we

would expect to take longer to reach the activity's duration and transition to a new

activity, so the probability that the activity's duration exceeds the time elapsed is

large.

We have presented the notation for an observed data sequence and a TPN, which

are inputs to the plan recognizer. The next section discusses the first step of the plan

recognition process.

73

5.4 Represent a TPN as a Non-stationary Hidden

Markov Model (HMM)

A temporal plan network is shown in Figure 5-4. We want to represent the TPN as a

Hidden Markov Model (HMM) in order to apply appropriate estimation techniques.

1, 21, 2) (3 ,1,3)

2 ,1 2 , 2 2 ,3

V0 v(k 2 ,02,) (k2 2 ,02 2) F(k2 ,3 ,0)2, '

Figure 5-4: Temporal Plan Network

Our activities in the TPN are time-dependent and have specific duration distri-

butions. A standard HMM, however, cannot model arbitrary state duration distri-

butions. Instead, we use a non-stationary representation of HMM based on Sin and

Kim's work [51] and Rabiner's discussion on inclusion of explicit state duration den-

sities in HMMs [47]. We expand the representation of a standard HMM such that

the transitions of a state to itself are described explicitly, as shown in Figure 5-5.

By considering activities at different time steps as different states, we can treat the

non-stationary HMM as a standard HMM, and hence can apply standard filtering

techniques.

Recall from 5.3 that we defined the time that an activity starts as tm = Zk1 ds,k,

and the time elapsed from the beginning of the activity to the current time is T =

t - tm +1. We represent an activity at time step t as a,(). These activities at particular

time steps are the states of the HMM. The observed test data are the observations,

and the prior probabilities are those derived in Chapter 4.

The sequence of events in a non-stationary HMM is described as follows: At time

tm, we enter into state a,. For the next T time units, we make transitions from that

state to itself with probabilities derived from the activity's duration distribution, as

74

Activity 1

a(')

s.1

a (2)
5,1

a5(3

Activity 2

a(')
s.2

a (2)
s.2

s,2

Activity 3

a(')

a (2)

a(3)
5.3

Figure 5-5: Markov model of a particular trajectory in the TPN. Each activity time
slice as9r represents the rth
of the activity. Transition
of each activity.

activity in trajectory s at time step T since the beginning
probabilities are determined by the duration distribution

will be shown in Section 5.4.1. The observations XbS = [x1, . . , Xns] T are assumed

to be independent. After all the self-transitions, we transition to the next state a(+1

with the transition probability derived in Section 5.4.2.

Next, we discuss the method of obtaining the transition and observation proba-

bilities.

5.4.1 Staying in an Activity

At each t, an activity as9r can transition either to itself a7sf+, corresponding to

the downward arrows in Figure 5-5, or to the next activity a1) corresponding to

the rightward moving arrows in Figure 5-5. Associated with each activity a5,,, is a

duration distribution similar to the one shown in Figure 5-3.

The probability of transitioning from an activity to itself at a particular time step

is dependent on the distribution of that activity's duration. For example, at time

steps soon after the beginning of an activity, i.e. when T is small, the probability of

staying in the same activity should be larger than for time lapses well beyond the

mean duration of the current activity. The time dependency prevents us from using

75

a simple self-cycling automaton with constant probability to represent an activity

transitioning to itself. The probability that an activity at time t transitions to itself

at time t + 1 should be the area of the region under the gamma duration distribution

curve [15] above t + 1, similar to the shaded region in Figure 5-3. It is governed by

P (a-,+) I al')) =P (ds,r> r + 1 I yt = as,r) (5.1)

= F (ks,, s,r) du (5.2)

ksr ksrle- du, (5.3)
0,9,, F (ks,,)J i+

where the gamma function [16] in Equation 5.3 is given by F (z) = f' (z-e-C d(,

which for positive integers z, reduces to F (z) = (z - 1)!. We define a small value E

such that any transition probability smaller than E is regarded as zero. This ensures

that the HMM will be bounded and finite.

5.4.2 Moving to the Next Activity

The transition probability of an activity as,, at time t to a new activity as,,+ at time

t + 1 is just the complement of the probability of staying in the same activity, or

P (a() I+a1r) - P (a|t 1) a(72) (5.4)

=1 - uks r-e du. (5.5)
Os"r (ks,r) fr+1

5.4.3 Observation Model

The observation probabilities of the Hidden Markov Model are given by the multi-

dimensional activity distributions in the state space. It is the probability that we

observe data point xt, given that we are in activity state a,,. This is simply the

evaluation of the multivariate Gaussian at the observed data point:

P (xt I yt = as,r) = P (Xt I ia,,r, Eas,) . (5.6)

76

5.4.4 Initial Probabilities

The initial probabilities of all the states in the Hidden Markov Model are such that

for each trajectory s,

P (y1= a,) = Ps (5.7)

P (y= a I r > 1,T> 1) = 0, (5.8)

where p, is obtained from Equation 4.8. Prior probabilities only exist for the first

activity at the first time step in each trajectory because they are the initial start

states. Hence, the priors on all other activities at all other time steps are zeros as

stated in Equation 5.8.

5.5 HMM Model Evaluation to Recognize Most

Likely Path

Part of the intent recognition problem is to determine the sequence of activities that a

human has performed from an observed sequence. Given a hidden Markov model that

models the transitions of activity states, we are interested in finding the most likely

path of hidden activity states that generated the observed sequence. We accomplish

this by applying the Viterbi algorithm on the HMM.

First, we define some shorthand notation. We denote the transition probability

from activity i to activity j as pij = P (yt+i = j I Yt = i), where i and j are distinct

activity states a(7) in the HMM. We denote the probability of observing xt during

activity i as oi (xt) = P (xt yt = i). The initial state probability is notated as ri =

P (yi = i).

Since we formulated the non-stationary HMM as a standard HMM in Section 5.4,

we can apply standard filtering techniques for HMMs. Given a Hidden Markov Model

A, the probability that the activity state is some j at the current time step t, given all

the observed data up to the current time step is called the forward probability ft (j).

77

After using Bayes' rule and the Markov property that observations at time t depend

only on the state at t, the unnormalized forward probability ft (j) is evaluated as

[49, 51, 12]:

ft (Yt =j) P (Yt = j 1 X1:t) (5.9)

-P (Xt Iy = J) P (yt = I Yt-1 i) ft-1 (Yt- = i). (5.10)

We write the forward probability in shorthand as

ft (j) = Oj (Xt) Pij ft-1 (i), (5.11)

where the forward probability is initialized to fi (j) = rj oj (xi).

To recognize the hidden activity sequence that a human has performed, we find the

most likely sequence of states through the hidden Markov model. We use a technique

similar to filtering to compute the probability of the most likely path that reaches

each state in the HMM, called the Viterbi algorithm [12]. To identify the most likely

state sequence, we keep pointers from each state back to the most likely state that

leads to it, and the sequence is identified by following the pointers back from the most

likely final state. We denote mi:t (yt = j) as the highest probability of any single path

ending in state j, at time t, given the observations from 1, ... , t. This probability is

given by

mi:t (Yt = j) = max P (y:t-i, yt = j I X1:t) (5.12)
Y1:t-1

=a P (xt I yt) max (P (yt = J I ytt1 = i) mi:t_1 (yt-i = j)), (5.13)

which in shorthand is

mi:t (j) = a oj (xt) max (pij ml:t1 (j)), (5.14)

where the path probability is initialized to in:1 (j) = 7rj oj (x1).

78

Now that we know the probability of the most likely path, we need to extract

that path to determine the most likely sequence. We start with the state j that gave

the largest path probability at the last time step t. Having calculated the most likely

path probability, we can determine which preceding state was the one to generate

mi:t (j), that is, what state we were in at time t - 1 if we arrive optimally at state

j at time t. We create a back pointer #t (j) for each state j that points to the most

likely preceding state i leading to the current state. The back pointer is defined as

#t (j) = argmax (pi mi:t1 (j)). (5.15)
i

To determine the most likely path, we trace the back pointer back to t = 1, so that

it-, = #t (it). We call the resulting most likely activity sequence A = [ii,... , it]T.

The Viterbi algorithm is a computationally efficient way of determining the most

likely sequence of states in a Hidden Markov Model. It uses recursion to maximize

computational efficiency by avoiding looking at every possible path in the model.

The Viterbi algorithm has a time complexity linear in the number of time steps t,

or, and a space complexity also linear in t. The Viterbi algorithm complexity with

respect to the number of states N in the HMM depends on the implementation of the

matrix product operation, since we implement transition probabilities and Viterbi

messages in matrix form. The complexity of matrix products is 0 (N 3) in the worst

case assuming a na'ive implementation so that the worst case Viterbi complexity is

o (t - N 3). Fortunately, the transition probability matrix is extremely sparse, for which

matrix product operations scale linearly with the number of non-zero elements. Our

encoding of the transition probability matrix has on the order of N non-zero elements,

so our Viterbi complexity is 0 (t - N).

5.6 Recognized and Predicted Activity Sequences

The final step in plan recognition is to associate the recognized activity sequence

with corresponding durations, and generate a prediction on future activities. We ac-

79

complish this by performing run-length encoding on the most likely activity sequence

obtained from the HMM, and referring back to the TPN for possible future activities.

Recall that the labels i in the most likely activity sequence A denote activities

at particular time steps as(,?. Similar to the method used in Section 4.4, we define

H as a run-length encoding of A, where A = [P1, &2, .. .] are the recognized activities

and a = [1, d2 , .. . are the durations. In addition to the relative time durations

d, we also determine the absolute transition times i = [ti, 2 , .. .] (relative to the

beginning of the observations) by cumulatively summing over a: Ti = E 1 dj.

The combination of the recognized activity sequence A in addition to either the

durations a or the schedule i form one of the outputs of the plan recognizer.

Next, we determine the other output of the plan recognizer, the predicted activ-

ity sequence, which we denote as d, and corresponding durations d. We first refer

back to the TPN to determine the plan that corresponds to the recognized activity

sequence. The activities of this plan are encoded as A*, and corresponding mean

durations are encoded as D*. The predicted activity sequence A is the same as the

corresponding TPN plan A*, which encompasses all the activities in the recognized

activity sequence A. The schedules of previously executed activities are the same as

those in the recognized activity sequence. Specifically, if h = a is the number of

encoded durations in the recognized activity sequence and n* = ID* is the number

of encoded durations in the corresponding TPN path, then dl:h_1 = dl:h_1. Dura-

tions of future activities reflect the mean durations of those activities in the TPN, or

dh+1:n* = (D*)h+:n.*. The predicted duration of the current activity takes the max of

either the current recognized activity duration or the corresponding activity duration

in the TPN, or ah = max (ah, (D*)h). Finally, we can determine the schedule of the

predicted activity sequence by cumulating over the durations: Ti = _j1 c.

The combination of the predicted activity sequence A in addition to either the

durations a or the schedule t form the final output of the plan recognizer.

80

5.7 Simple Example of the Plan Recognition Pro-

cess

We now demonstrate the plan recognition process on a simple example.

Suppose we learned the TPN given in Figure 5-6, where the activities 1 and 2 are

shown with the observed test sequence in Figure 5-7. The HMM converted from

1.5

1

X$C\J

0.5 F

r (0, OV) 2V2V

A =0. V, (1, 2) V2 I (25, 0.4) V

O p = 0.5

212
(0,0) (1, 5) F (9, 1.667) F (11.111, 0.9)

Figure 5-6: TPN of a simple example

Example observed sequence

- 4
0 . 0. 0. 0. 1 1. 1. .

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
xi

Figure 5-7: Activities shown with test sequence of example 2D data

the TPN is shown in Figure 5-8, where transition probabilities are derived from the

gamma duration distributions in the TPN. After the running Viterbi algorithm on the

81

0

I.
a

1 -"

I
I-,

< 2 > < 1 >

0.5

Start

0.5

a('

0.61

a (2)
1.1

0.38

a (3)
1.1

0.22

<2>

a('
2.1

0.82

a (2)
2.1

0.67

a (3)
2,1

0.55

0.39

0

.78

0.18

0 OZ

.45

a(')
1.2

1.00

a (2)

1.00

a (3)
1.2

1.00

<1>

a(1)
2.2

1.00

a (2)
2.2

1.00

a (3)
2,2

0.9999

0.00

0.9

0. 01

<2>

a(')
2,3

1.00

a (2)
2,3

1.00

a (3)
2,3

1.00

Figure 5-8: Hidden Markov model derived from the example TPN

82

HMM given the observed sequence, we obtain the recognized and predicted activity

sequences in Figure 5-9.

Activity Duration
2 3
1 7
2 1

(a) Recognized activity se-
quence

Activity I Duration
2
1
2

3
7
10

(b) Predicted activity se-
quence

Figure 5-9: Recognized and predicted activity sequences of example problem

83

84

Chapter 6

Implementation

This chapter presents the plan learning and plan recognition algorithms in more detail.

The components of plan learning are described in Section 6.1, and include learning

activity distributions with Expectation Maximization, obtaining activity and duration

summaries for all training sequences, and creating a temporal plan network with

this information. The components of plan recognition are discussed in Section 6.2,

and include converting a TPN into an HMM, using Viterbi to recognize most likely

trajectory, and referring back to the TPN to conclude the full predicted path.

Our research was implemented in a MATLAB 7.0 environment, with an additional

pointer package for creating tree type data structures, an xmtree package for stor-

ing data structures as XML files, a Graph Theory Toolbox for displaying graphs,

and a C3DServer package for reading data in c3d format. We will, however, present

the implemented algorithms in an environment independent manner. The two parts,

learning and recognition, are standalone modules that can be executed independently.

6.1 Plan Learning

Plan learning is designed to be executed offline. The plan learning pseudocode is laid

out in Algorithm 6.1, and closely follows the operations in Chapter 4. We first obtain

the training data using the GETDATA function, which outputs the training data in

two ways: X, which is the set of all C training data sequences {X 1 , ... , Xc}; and X,

85

which is the concatenated vector of all the data, or X= [X 1,..., Xc]f.

Algorithm 6.1 Plan Learning

1: [X, X] <- GETDATA()
2: [p, o-] +- EM (X, k)
3: for c = 1 to C do
4: H, <- GETACTIVITYSEQUENCE (X, yZ, a)
5: end for
6: tpn <- MAKETPN ({H 1 , . .., Hc}, p, a)

Next, the vector of all training data X and the user-determined recognition reso-

lution k denoting the number of activities are passed through the Expectation Maxi-

mization learning algorithm, which outputs a matrix [y containing k vectors describing

the multivariate mean of each activity, [Al,... , Pu]T, and a matrix E containing the

multivariate covariances of each activity, [E, ... , E,].

The EM implementation is laid out in Algorithm 6.2, and closely follows the

description in Section 4.3. Although in theory the parameters of the Gaussian mixture

can be initialized arbitrarily, in practice we set them to strategic values that do not

cause machine precision errors. Specifically, the mixture weights wj of each activity

cluster are initialized uniformly; the multivariate activity means pj are initialized to k

points chosen evenly out of the training data vector X to ensure that the Expectation

step (line 17 in Algorithm 6.2) does not evaluate to values smaller than machine

precision; and the covariances Ej of each activity are initialized to the covariance

of the entire training vector. The Expectation and Maximization steps are repeated

until convergence, which we define here to be the iteration at which the norm of the

difference in the /i vector between iterations is less than or equal to some small value

6.

After the multivariate activity parameters are learned, each training sequence

is independently put through a GETACTIVITYSEQUENCE function that produces

activity and duration summaries for each sequence, the details of which are presented

in Algorithm 6.3. This function records the most likely activity at each data point

in the training sequence (lines 8 - 13) as a vector a. It then performs run-length

encoding on a to generate the activity and duration summary.

86

Algorithm 6.2 Expectation Maximization
1: EM (X, k)

Input:
2: X, all training data [x 1 , ... , T

3: k, number of activity clusters
Output:

4: M, vector of multivariate activity means, [A1, ... ,
5: E, vector of multivariate activity covariances, [E,.. . , EZk

Notable local variables:
6: p, k x N probability matrix, such that pji = p (j I i), where j is an activity and i

is a data point

{ Initialize parameters for

for j = 1 to k do

pIj *Xq, q= -j]
Ej - Cov (X)

end for

start of algorithm}

while II A - Pold IjI > 6 do
{E-step: label data}
for i = 1 to N do

for j = 1 to k do
pji +- MULTINORMPDF (xi, pj, a-) - wj

end for
end for
Normalize p so that the probabilities at each time step sum to unity

{ M-step: update parameters}

for j = 1 to k do

nj +-N i~=1 Pji
Wj Nj

Pj +- Ei1Pjixi

Ej n pi (xi - Pj) (xi - pj

end for
1 old <- p

end while

87

7:
8:
9:

10:
11:
12:

13:
14:
15:
16:
17:
18:
19:
20:

21:
22:

23:
24:

25:

26:

27:
28:
29:

Algorithm 6.3 Get Activity Sequence
1: GETACTIVITYSEQUENCE (Xc, y, E)

Input:
2: Xc, one sequence of training data [x1 ,... xn T

3: M, vector of multivariate activity means, [Ai, .. . , I I]

4: E, vector of multivariate activity covariances, [Ei, ... , EZ]T
Output:

5: Hc, matrix of activity and duration summary vectors, [AC, Dc]
Notable local variables:

6: probs, n x k probability matrix of data given an activity
7: a, n x 1 vector of most likely activity at each data point

8: for i = 1 to n do
9: for j = 1 to k do

10: probsij +- MuLTINORMPDF (xi, pj, Ej)
11: end for
12: ai +- argmaxj (probsi)
13: end for
14: Hc <- RUNLENGTHENCODING (a)

After finding the activity and duration summaries for each training sequence, we

are ready to create a temporal plan network. We encode TPNs as a tree type data

structure, where each node in the tree is an activity. The variable tpn is a pointer to

the root node of the tree that represents the TPN. Each activity node in tpn contains

at least the following fields:

" start, the start event of activity, represented by a number

" end, the end event of activity, represented by a number

" name, the activity number

" [t, the multivariate Gaussian mean of the activity

" E, the multivariate Gaussian covariance of the activity

" times, vector of all durations for this activity from training data

* timesk, the k gamma parameter of the times vector (optional)

" times9 , the 0 gamma parameter of the times vector (optional)

88

9 prob, the prior probability of the trajectory

Algorithm 6.4 Make Temporal Plan Network
1: MAKETPN (H, yt, o)

Input:
2: H, the set of all training data summaries {H 1 ,.. . , Hc}
3: p, vector of multivariate activity means, [Al, .. . , Pk]]
4: E, vector of multivariate activity covariances, [El, . . , Ek

Output:
5: tpn, pointer to root node of tree that represents the TPN, initialized null

6: for all H, E H do
7: if A, is a new activity sequence then
8: Add A, as a new trajectory in tpn by doing the following:
9: Add A, to the name fields at each activity node in the new trajectory

10: Ensure that each activity's start is the previous activity's end
11: Add D, to the times vectors at each activity in the new trajectory
12: P Pname for each activity in the trajectory
13: E Ename for each activity in the trajectory
14: else
15: {A, has been encountered before}
16: Find the existing trajectory A, in tpn
17: Add D, to the times vectors at each activity in that trajectory
18: [timesk, timeso] +- GAMMAFIT (times) for each activity in the trajectory
19: end if
20: end for
21: For each existing trajectory in tpn, prob <- Itimesl /C

An activity that follows another will have a start event that is the same as the

preceding activity's end event. The times vector contains all the duration values of

the current activity that are part of the current trajectory in the training data. In

other words, the training data that describe the same trajectory will have the same

activity sequence, but perhaps not the exact same durations, so the times vector

at each activity contains all the potentially different durations at that activity. The

timesk and timeso variables are the parameters obtained from performing a gamma

distribution fit to the durations in the times vector. The prior probability prob of

each activity is the ratio of the number of times this trajectory appears, to the total

number of training trajectories.

The MAKETPN function goes through each activity and duration summary of

89

the training data as shown in Algorithm 6.4. It maintains a list of existing activity

trajectories. If an activity summary sequence has not been seen before, this sequence

is added as a new trajectory to the TPN by performing the actions in lines 9 -

13. If the activity summary sequence is in the list of existing trajectories, then the

times vector gets updated with the new duration value, and the gamma distribution

parameters timesk and times9 are recalculated. Finally, the prior probabilities prob

are calculated by the ratio of the number of elements in the times vector to the

total number of data sequences, to indicate how often the current trajectory occurs

in training data.

6.2 Plan Recognition

The plan recognition procedure is outlined in Algorithm 6.5, and closely follows the

operations in Chapter 5. First, it obtains the observed test data Xobs, which are

expressed in the same principal components as the training data. Next, information

from the temporal plan network is extracted to be represented in a Hidden Markov

Model so that we can run the Viterbi algorithm on it to extract the most likely path.

Algorithm 6.5 Plan Recognition

1: Xoob <- GETTESTDATA ()
2: a <- GETHMMSTATEsFROMTPN (tpn)
3: [im, q5] <- VITERBI (Xoob, a)
4: [recognizedPathSoFar, predictedTraj] <- GETPATH (Mnobs

The function GETHMMSTATEsFRoMTPN as presented in Algorithm 6.6 returns

a look up table a containing activity numbers, max durations, self-transitioning prob-

abilities, prior probabilities, activity means, and activity covariances for each trajec-

tory. The max duration is determined by the time at which the probability of sampling

a duration longer than the current time is less than some small e in the gamma distri-

bution. At each time step, the probability of making a self-transition, or continuing

with the same activity, is just the probability that the duration of said activity is

longer than the current elapsed time in the activity. Since we deal with discrete time

90

Algorithm 6.6 Get HMM states from TPN
1: GETHMMSTATEsFROMTPN (tpn)

Input:
2: tpn

Output:
3: a, look up table, initialized null

4: c +- some small value (eg. 0.001)
5: curArcs +- NEXTARCSINTPN (tpn, 0) {the arcs in TPN with start = 0}
6: a +- GETSTATES (curArcs, null, tpn, c)

Subfunction:
7: GETSTATES (curArcs, a, tpn, E)
8: if ISNULL (curArcs) then
9: a +- null

10: else
11: {Get the activity information}
12: curName +- curArcsi.name
13: p <- curArcsi.y

14: E +- curArcs1 .E

15: {Get the activity durations up to 1 - e from gamma CDF distribution}
16: maxDur <- [INvGAMMACDF (1 - E, curArcsl.timesk, curArcsi.timeso)

17: {Get self transition probabilities pij, given by duration gamma}
18: i +- [1, . .. , maxDur]
19: pSelf +- 1 - GAMMACDF (i, curArcsl.timesk, curArcs1.timeso)

20: {Get prior probabilities for the start of each trajectory}
21: if curName = 0 then
22: prior <- curArcs1 .prob
23: end if

24: {Run recursive function to get this information for whole TPN}
{curName, maxDur, pSelf, prior, p, E}

25: a +- GETSTATES (NEXTARCSINTPN (tpn, curArcs1 .end), a, tpn, e)
GETSTATES (curArcs2:LENGTH(curArcs), a, tpr, c)

26: end if

91

steps, we record the self-transition probabilities at all the discrete time steps in an

activity up to the max duration in a vector pSelf. The other items in the look up

table are taken directly from the TPN. We add activity information from the TPN

to the look up table recursively in a depth first manner so that all activities in one

trajectory are conveniently listed in order.

The structure of the HMM is implicitly encoded in the look up table. The states

of the model consist of all possible activities at all possible time steps until the max

duration at each activity. In other words, there are as many states in the HMM as

the sum of all the maxDur values in the look up table, which we will call NHMM.

All transition probabilities in the HMM are implicitly given by the self-transition

probabilities in the look up table because at each time step, an activity can only

transition to itself or the following activity.

In preparation for running Viterbi in Algorithm 6.7 to find the most likely path,

we first extract the transition probability matrix T and prior probabilities prior from

the look up table. The observation probabilities are obtained from the multivariate

Gaussian activity parameters. The Viterbi algorithm closely follows the description

given in Section 5.5. The first part of Algorithm 6.7 up to line 16 initializes the

parameters in preparation for updating the Viterbi messages through all the time

steps in the observed sequence in lines 17 - 26. The implementation takes advantage

of the sparsity of the matrices to reduce computation by only calculating observation

probabilities at non-zero values of the message. The Viterbi messages throughout all

time steps are recorded in a matrix m, and the back pointer indexes at every time

step are recorded in a matrix <5.

Using the back pointer matrix, we can retrace the most likely path determined

by Viterbi with Algorithm 6.8. Taking a run-length encoding of this recognized path

gives the recognizedPathSoFar, which is the currently recognized most likely par-

tial trajectory. Knowing the temporal plan network, however gives the advantage

that we can predict the entire trajectory. The function EXTRACTCORRESPONDING-

PATHINTPN in line 17 returns the activity and duration summary for the trajectory

corresponding to the recognized partial trajectory in the TPN. Finally, the true pre-

92

Algorithm 6.7 Viterbi
1: VITERBI (Xobs, a)

Input:
2: XobS, observed data sequence

3: a look up table
Output:

4: m, NHMM X nobs matrix of Viterbi messages at all HMM states for each time step
5: 4 , NHMM X nobs - 1 matrix of back pointer indexes

Notable local variables:
6: T, NHMM X NHMM transition matrix: Ti is probability of transitioning i -* j
7: prior, 1 x NHMM prior probabilities
8: o, 1 x NHMM observation probabilities at current time step

9: T <- GETHMMTRANSITIONS (a)
10: prior <- GETHMMPRIOR (a)
11: priorIndexes +- non-zero indexes of prior
12: for i E priorIndexes do
13: j +- GETACTIVITYNUMBERFROMHMMINDEX (i, a)
14: o <- GETHMMOBSERVED ((XobS)l , a, j)
15: end for
16: m, <- a -prior - o

17: for t = 2 to nobs do
18: mm *- maxi (Tij - mt-,,)

19: ot_- argmax4 (Ti -mt_1,,)
20: mmlndexes <- non-zero indexes of mm
21: for i E mmlndexes do
22: j <- GETACTIVITYNUMBERFROMHMMINDEX (i, a)
23: o0 +- GETHMMOBSERVED ((Xobs)t, a, j)
24: end for
25: mt +- a -o - mm
26: end for

93

dicted full trajectory ensures that the durations of the past activities agree with those

in recognizedPathSoFar.

Algorithm 6.8 Get Path
1: GETPATH (mlast, #, a)

Input:
2: miast, message at the last time step
3: #, matrix containing history of max message indexes
4: a, HMM look up table

Output:
5: recognizedPathSoFar, recognized path for observed sequence

6: predictedTraj, predicted trajectory based on observed sequence and TPN
Notable local variables:

7: path, nobs x 1 vector containing back pointer indexes

8: apath, nobs x 1 vector containing activity number corresponding to path

9: pathnO, b- argmaxj (miast)
10: apathneb, <- GETACTIVITYNUMBERFROMHMMINDEX(pathnobs, a)
11: for i = 1 to number of time steps in # do
12: Let j +- nobs - t

13: path <- #,pathj+1

14: apathy +- GETACTIVITYNUMBERFROMHMMINDEX (path, a)
15: end for

16: recognizedPathSoFar +- RUNLENGTHENCODING (apath)

17: predictedTraj +- EXTRACTCORRESPONDINGPATHINTPN (path, a)
18: rLen +- length of recognizedPathSoFar

19: predictedTraj1:rLen-1,2 +- recogniizedPathSoFarl:rLen-1,2
20: predictedTrarLen,2 +- max (predictedTrajrLen,2 , recognizedPathSoFarrLen,2)

94

Chapter 7

Results

We will now run our plan learning and recognition algorithms on the Vicon Motion

Systems data discussed in Section 3.1 to test the capabilities and analyze the perfor-

mance of our algorithms. We will look at the results on two different sets of data.

One set contains several different ballet dance moves, and the other contains common

motions during golf. We imagine that a robot may take on the role of a coach or

caddie, who can remind a dancer of the next move in his or her prepared program,

or prepare the correct club or ball to the golfer at the right time. Although these

are mostly recreational motions, we can imagine more serious scenarios during which

plan recognition can play an important role, such as a space ship monitor that can

remind an astronaut of the next task in an extravehicular procedure, or a nurse who

must hand a surgeon the right medical tool. One reason for choosing these particular

motion capture data for testing is that there were multiple executions of different but

related motions available in the database.

7.1 Evaluation of Success

We must first discuss what it means for a plan to be successfully learned. The input

of the plan learning process is a set of training data that can represent a variety of

different motions. For example, we might have five training trajectories for reaching

and picking up an object, and three trajectories for reaching and pushing away an

95

object. We, the human operators, know the "true" motion of each training data

beforehand. Plan learning performs learning on all the training data to try to group

the similar motions together. The output of the plan learning process is a network

of s possible motion plans. To evaluate the success of the plan learner, we compare

what we know about the training data to the plan network given by the plan learner.

The outcome may contain two undesirable conditions: multiple "true" motions are

learned as the same plan in the network, which we call a "lumping error;" or the same

real motion is learned as two different plans in the network, which we call a "splitting

error." Since we are interested in distinguishing different motions, a lumping error is

worse than a splitting error, i.e. it is particularly bad if the plan learner was unable

to distinguish the different motions and lumped them all as the same plan.

We assign a value of -2 for every instance of a lumping error, and a value of

-1 for every instance of a splitting error. The user can define the level of tolerable

error. For example, for a given run of the plan learning algorithm, we can choose

the maximum allowable number of error units to be at most twice the number of

different "true" motions in the training data. Thus an execution of plan learning

is considered successful if the number of error units it made is less than twice the

number of different motions in the training data.

During recognition, an observed sequence is identified as one of the plans in the

plan network. We, the human operators, know the "true" motion of the observed

sequence. We also know the true motion(s) in the training set that generated the plan

that the recognizer identified. If the true motion of the observed sequence matches

at least one of the motions that generated the identified plan, then we consider the

recognition process successful.

7.2 Dance Data

The first three principal components of the training data for three different dance

motions is shown in Figure 7-1. The training data has been normalized so that all

motions start from the same place. We used splines to fabricate additional data

96

C

0,
CL

E
0

C

0-

C
(D
C
0
CL
E
0

-U

.-

Attitude/arabesque, jete en tourant, bending back

Retire derriere, attitude/arabesque

3000 * Glissade devant, glissade derriere, attitude/arabesque

2000 -

1000, -

-2002- 0 1 1-

-3010 -
4000

2000 -

0

-10000

PC 2 -2000 -1 P X2

PC2P 1c

Figure 7-1: Training data for dance motaons

7All data

3000 s.-- -....-. ~-...Act ivit y 1
- - -- .Activity 2

2000 ,.- ..--- BM- Activity 3
--- - - - :Activity 4

-1000 ,---

-2000 ----

-3000.
4000- -

2000 -- 2

S1 4

0 x 10

PC2 -2000 -1PC 1

Figure 7-2: Activity clusters for dance data

97

to bolster the original due to data scarcity.

Figure 7-2 shows the results of running unsupervised learning with four activity

clusters on the three principal components of the training data. Running the EM

algorithm on a total of 9645 data points and recognition resolution of 4 took about

14 minutes on a standard PC. The plan learning is executed offline, so this is a

reasonable execution time. The execution time consisted of 31 EM iterations to reach

a convergence factor of J = 1.

-- Attitude/arabesque, jete en tourant, bending back
-"' Retire derriere, attitude/arabesque

Glissade devant, glissade derriere, attitude/arabesque

4

._._

z

2:

100 200 300 400 500 600 700 800
Data Frames

Figure 7-3: Activity trajectories for dance data with 4 activities

Sending each training sequence through Algorithm 6.3 to obtain the trajectories

produces results shown in Figure 7-3. We can now see the distinctly different activity

sequences and corresponding durations. Finally, we can create the temporal plan

network shown in Figure 7-4. In this case, the plan learner successfully learned the

plan network because it made no lumping or splitting errors, producing exactly three

plans for our three different dance motions.

98

I
8

0.0
o=0.0

/< >
G=0.0 6
a=0.0

0>
p=0 .
a=0.

<2> iI
p=85.7 9
a=1 4.3

<2>
p=486.0 7
a=58.1

<4> J <3> § <4> f <3> i
p16.3 110 =143.01 1 p-207.3 12 -277.2 13

F=3. I a=7.3 a=26.3 a=58.6 _

1 p=142.7"I2 p7=242.743 R=58.3 "4 g=335.3 5
a=0.6 a=0.6 a=0.6 a=0.6

Figure 7-4: Output TPN of plan learner on dance motions. Inside angle brackets (a)
are activity numbers; [and - are mean and standard deviations of activity duration.

We are now ready to do some testing with observed data. We run the recognizer

after 150, 400 and all time steps of the observed sequence, producing the results shown

in Figure 7-6. Note that initially after 150 time steps, the recognizer predicted an

incorrect most likely trajectory, which is not surprising since the person does not do

much during the first 150 time steps, or 1.25 seconds, that strongly differentiates the

motion. After 400 time steps, or about 3.3 seconds, the recognizer is clearly predicting

the correct trajectory. Finally, with the entire observed sequence, the algorithm is

CL,

CD,
U,

E

Co,

.0

0

200

400

600

800

) 500 1000 1500
HMM states

2000 2500

Figure 7-5: A look at the messages m over all observation time steps. The non-zero
elements of the matrix are indicated by a dot.

99

Training data
Testing data

2000-

00-

-200

0001
000 22

PC 2 -2000 -1 PC 1

(a) Partial dance test data with 150 time steps

Training data
* Testing data

2000-

0-

4000

2000 2

PC 2 -2000 -1 PC 1

(c) Partial dance test data with 400 time steps

Training data
- Testing data

2000,

0-

-2000:
-2000

2000 2

PC 2 -2000 -1 PC 1

Activity I Duration
2 1 486

(b) Predicted activity se-
quence for 150 steps data

Activity
2
1
4
1

Duration
145
245
58.3

335.3

(d) Predicted activity se-
quence for 400 steps data

Activity I Duration
2
1
4
1

3

le

145
245
60

409

(e) Full dance test data

Figure 7-6:

(f) Recognized activity se-
quence for full dance data

Test results for dance motion with different number of time steps in
observed data sequence

100

6'

0

E
0

.5
C
.0

able to recognize the durations that correspond to the identified activity sequence.

We can take a look at the resulting Viterbi messages over all the observed time

steps in Figure 7-5. The dots in the figure indicate the messages with non-zero

values. Of the 2542 HMM states, three states had initially non-zero prior probabilities,

which correspond to the beginning of the three trajectories in the TPN. The message

evolution over the time steps eventually eliminated the two incorrect trajectories after

around 230 time steps. The vertical dot patterns in the figure reflect the non-zero

transition probabilities from one activity at different time points to the beginning of

the following activity.

7.3 Golf Data

We now run the learning and recognition algorithms through some golf motion data.

Of the 30 data sequences available in the database, we used 27 for training data

and the remaining 3 for testing. No splines were used because we had at least 4

training data for each motion. The 3 principal components of the training data for

the different golf motions are shown in Figure 7-7.

Figure 7-8 shows the results of running unsupervised learning with five activity

clusters on the three principal components of the golf training data. Running the EM

algorithm on a total of 13,564 data points and recognition resolution of k = 5 took

about 34 minutes on a standard PC. This execution time included 35 iterations to

reach the convergence factor of J = 1. The complexity of each iteration in the EM

algorithm is 0 (N - k), where N is the number of data points and k is the number of

activity clusters.

Sending each training sequence through Algorithm 6.3 to obtain the trajectories

produces results shown in Figure 7-9, and are summarized by the temporal plan

network shown in Figure 7-10.

We can see that the swing and putt motions are sufficiently different from the

other motions that they can be easily distinguished. Specifically, the bottom three

trajectories in the TPN in Figure 7-10 summarize slightly different types of swing

101

Swing

- . Putt
-- * Place tee

Place ball
Pick up ball

2000 20

0 0
-2000

PC 2 -2000 -4000

4000

PC 1

Figure 7-7: Training data for golf motions

All data

-- - -- -Activity 1
--- Act ivit y 2

- --- - Activity 3
- - -- - - -Activit y 4

--- Act ivit y 5

2000

2000 4000

or" -2 -00 40

Figure 7-8: Activity clusters for golf data

102

CO)

a)
0a
E
0

CL

2000,

1000,

01

-1000,

-200
4000

0

0

2000

1000

0

-1000

-2000
4000

000

PC I

5

4

3 F-

2

1

*.!o-J'pqpI N

I
J
[L
J
I
.1
ILtF

~19
II

.3 .. IEJrNir~14~iAwwJ~J~j

100 200

IIIII
I
I

.1

500300
Data Frames

400

I

600

Figure 7-9: Activity trajectories for golf data with 5 activities

x <5> z <2> = <3> =*
3 p=48.8 534g=11.FT5p=315.06

a=-17.1 (Y=1 7.0 cy=63.5

> 28=65.7 29-99.7 3 0j-298. 3 1 p=1 13. 32
0. a=32.6 a=27.4 a=54.6 a=45.2

O0
0.0 9

CY . 5p=-220.& 6p=266.I
1p=0.0 a=-50.4 a=1 26.5

0
-0. <> < 1 9

090 16=9. -1 7=1.0 -1 8t=18.0 -'9p=1 23.0-20p=9.0 21p7.0 2=268.6-23p=.

a- =0. 0 a=0.0 G-=0.0 0=0.0 G-=0.0 a=0O.0 a=0.0 CF=0.0
CF 0

tL 0 <5> <2> <3> <4> <3> <2> <1>
(Y=O. g=1 40.7 p=3.9 -T1 0p=1 8.6--1 ip=122. L 12p=9.0 -T1 3t=7.0 --1 p140.;f 15

a=-43.3 a=4.7 cr=2.6 (Y=10.1 a=-1.2 a=-0.6 a=-31.1

1 g=162.0 2=22.0- g=131.64 p=10.0-5
0-=0.0 CF=0.0 G=0.0 (Y=O.0

p=8.0 6 p-114.077
o=O.O a=0.0

Figure 7-10: TPN learned from golf data assuming 5 activities

103

Swing
-- Putt

Place tee
Place ball

-- Pick up ball

E
z

Z.%

FEW -- !

-- -- i " 9%--Vwr-

Training data
2000,... Testing data

0-

-200
5000

0 0
PC 2 -5000 -5000 i'c 1

(a) Swing

Training data
2000,.- Testing data

00

-200
5000

0 0
PC02 -5000 -5000 PC 1

Activity
5
2
3
4
3
2
1

Duration
88
7

20
118
9
8

140.9

ce,

0
CL

0

0

(b) Recognized activity se-
quence for golf swing

Activity Duration
5
2

169
389

5000

(c) Putt

Training data
2000- Testing data

0-

-2000
5000

0 0
PC 2 -5000 -5000 PC 1

(e) Pick up ball

(d) Recognized activity se-
quence for golf putt

Activity
5
2
3
2

Duration
89
80

283
116

5000

(f) Recognized activity se-
quence for picking up ball

Figure 7-11: Test results for three different golf motions

104

5000

C

L)

C
0
CL
E
0

CL

C

U)

0C-
E
0

CL
0.

(C

motions, thus incurring an error of -2 for splitting twice. The trajectory of (5), (2)

summarizes the distinct putt motion. On the other hand, the motions of placing tee,

placing ball and picking up ball all consist of the person bending over and reaching.

Since the position of objects are not tracked in these motion capture data, it is

unsurprising that the recognizer has a difficult time distinguishing between these

motions, as it was hard for us, also, to tell apart the different bending motions when

viewing the skeletal animations. In this case, the plan learner splits all three bending

motions across two plans, incurring errors of -3 for splitting, -2 x 2 for lumping for

each of the 2 plans. Thus in total, the plan learner makes a total error of -13, which

fails our success criteria.

Although the plan learner is unable to distinguish the three bending motions, we

still run the recognition algorithm on our three test cases to see how it performs

on the portion of the plan network that was distinguished, i.e. the swing and putt

motions. The results of recognizing the three test motions is shown in Figure 7-11. We

see that each of the motions are recognized correctly. The run time for recognizing

C
0

cc~

a)
CL

E
C

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0

- Swing
Putt
Pick up ba

-'

-

100 200 300 400
Iteration step in observed data

500

Il

600

Figure 7-12: Run times for
and pick up ball motions

individual iterations during recognition for swing, putt,

105

a whole observation sequence is on the order of 10 to 200 seconds on a standard

PC. However, if the recognition algorithm were run incrementally, each recognition

iteration occurs within less than 0.8 seconds. Figure 7-12 shows the run times at each

iteration for the different motions. We notice that the run times increase when there

are more possibilities for recognizing the observed data, and decrease rapidly after

some distinguishing action is detected and many possibilities are eliminated.

To seek better performance from the plan learner with the golf data, we re-ran

the plan learning algorithm using 7 principal components of the 102 dimensional

data with 5 activities, which took roughly 140 minutes of offline computation time.

Figure 7-13 shows the activity sequences of the training data, and we can see that

there is slightly more differentiation in the bending motions than learning with only

the three principal components before. Figure 7-14 is the temporal plan network

given by the learner. We see that all the swing motions have been grouped as the

E

23

Swing --- Puff Place tee Place ball - Pick up ball

100 200 300 400 500 600
Data Frames

Figure 7-13: Activity trajectories for full golf data using 7 principal components, with
5 activities

bottom trajectory in the TPN, and all the putt motions as the next two. The bending

106

motions, however, have been differentiated a bit more. For example, the movement

to pick up a ball are described by the top three trajectories in the TPN beginning

with (5) , (2) , (3) , (2) , (4). The total error in this TPN is -9, which is significantly

better than the performance using only three principal components.

41p=167.0 42 p=100.0 4 31 = 112.0 44 p=43.0 -45=48.0 469=145.0 47
a=0.0 a=0.0 a=0.0 a=0.0 Cr=0.0 a=0.0

<5> <2> Alt <3> Nit <2> a <4> mm <2> at <4>?o
p1=131.0 p=112.0 p=97.0 p=36.0 p=101.0 3 =18.0 =83.0 40
a=0.0 a=0.0 a=0.0 a=0.0 a=0.0 a=0.0 a=0.0

.0 p=135.5 '3=-115.5 p=9. p=70 p1102

. a=38.9 (Y=6.4 cF=3.5 a=4.2 cy=7.1

g. p29.0 p=63.0 -2V=1 6.0 p=3t-97.0 p=R-282.0 p25=33.0 26
b Y=0.0 a=0.0 Cr=0.0 a=0.0 Cr=0.0 a=0.0

-00

-0. 15=93.0 16=125.0 17p=117.0 18p=1910 19
a - a=0.0 a=0.0 a=0.0 a=0.0

pi=95.0 1=130.4 39=251.8 14
c. =23.8 cr=95.0 cT=1 44.2

L= p=95.7 p9=510.7-10
T= 0 a=27.3 a=22.0

p486.3
a=80.0

1 143.3 2 g=149.0 3 p=6.0 4 p1=154. 5

a=43.5 a=11.4 a=0.7 a=53.2

Figure 7-14: TPN learned from full golf
5 activities

data using 7 principal components, assuming

We now perform recognition for the picking up ball test motion in Figure 7-11(e)

using 7 principal components. The recognizer was able to correctly identify that the

motion was picking up a ball instead of generically bending over. The recognized

activity sequence with corresponding durations is given in Table 7.1. The recognition

process takes on the order of 30 to 60 seconds for the entire observed data, and the

incremental computation times are shown in Figure 7-15. It seems that the run times

of the recognizer are not much affected by the number of principal components used

in describing the data, but they are reduced from those in Figure 7-12 because of the

107

added differentiability with more principal components.

Activity I Duration
5
2
3
2
4

126
123
77
28

214

Table 7.1: Pick up ball motion recognized

We note that the plan learning and recognition algorithms do not require very

many training data to work. In this case, we only used 27 training sequences, with 5

or fewer training sequences for some types of motions. Certainly, for more accurate

results, more training sets are necessary, but even with very few training sequences,

the plan learner and recognizer is guaranteed to produce a result.

0

U

E
C

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 7-15:
components

Swing
Putt
Pick up ball

50 100 150 200 250 300 350 400 450 500 550
Iteration step in observed data

Run times for individual iterations during recognition using 7 principal

To better see how the performance of plan learning varies with the number of

activities k, we ran the learning algorithm on the golf data with different numbers

of activities, ranging from 1 to 10, using 7 principal components. The results are

summarized in Table 7.2.

108

k # Lumping # Splitting Total Error
1 4 0 -8
2 6 5 -17
3 4 3 -11
4 3 11 -17
5 2 6 -10
6 3 9 -15
7 1 7 -9
8 3 8 -14
9 1 7 -9
10 1 8 -10

Table 7.2: Performance of learner as k changes

There are several things we notice from the results: First, there tends to be

more error for small numbers of activities, because the learner has a harder time

distinguishing different activity sequences. Secondly, the error levels off and even

worsens around 7 activities because more activities do not encode much more new

information, and tends to split the same motions into multiple plans. Finally, we

observe an interesting pattern that performance with even number of activities tends

to be worse than with odd number of activities. This could be due to the geometric

asymmetries in the state space of the training data. Following our success criteria,

the smallest number of activities that enables a successful plan learning is 5 for the

set of golf training data.

We also ran our plan recognizer on the TPNs generated for each k using the

pick up ball test data. In each case, the recognizer was able to identify a recognized

activity sequence that corresponded to at least one of the pick up ball training data,

thus satisfying our success criteria for recognition.

109

110

Chapter 8

Conclusions

This chapter presents several ideas for future expansion of this research. Section 8.1.1

discusses the possibility of representing parallel activities in a temporal plan network,

while Section 8.1.2 presents an idea for automatically combining similar partial tra-

jectories in a plan. Furthermore, we consider the prospect of learning the recognition

resolution rather than provide it a priori in Section 8.1.3, and outline a possible incre-

mental algorithm for recognition in Section 8.1.4. Finally, we conclude our discussions

and summarize our contributions in Section 8.2.

8.1 Future Advancements

We provide some ideas for expanding the capabilities of the research in this thesis.

Most of these ideas have not been proven to work, but are conceptually compelling.

8.1.1 Representing parallel activities in plan

Instead of learning and recognizing the activities of only one human subject, we

might want to recognize the activities of two or more persons working together. In

this case, the actions of each person are independent, and we would need a way to

represent parallel activities in the learned temporal plan network. Figure 8-1 shows

a generic TPN in the current representation used in this thesis. One possible way

111

Figure 8-1: Current representation of a TPN without parallel activities

to represent two independent persons acting in parallel is to represent each possible

combination of activities separately, as shown in Figure 8-2. This is a valid temporal

Figure 8-2: One way to represent parallel activities

plan network, but the representation can be inefficient in some cases. For example,

if when person A performs one activity sequence, person B can perform a variety of

possible sequences, then each of these combinations will be represented separately by

the method in Figure 8-2.

A slightly better representation in this case would be to first branch on the pos-

sible activity sequences of person A, and then for each, branch on possible activity

sequences of person B, as shown in Figure 8-3.

These methods can be extended to represent parallel activities for multiple per-

sons. If there are n persons, and each person has s different activity sequences to

choose from, then the worst case representation of the parallel TPN grows as 0 (sn).

Thankfully, however, worst case branching does not usually occur in practice, as one

112

parallel person A
branching

Q person B

Figure 8-3: A more compact representation of parallel activities

person's activity choices will be limited by other people's choices.

8.1.2 Enabling intelligent combination of trajectories

Combining portions of trajectories that are similar is a tricky problem. Suppose

we have two simlar activity sequences: one that is (1) , (2), (3) and another that is

(1) , (2) , (4). We can easily combine the first two activities and have the last activity

branch from a choice event. However, what if one activity sequence is (1) 7(2), (3)

and the other is (1), (2) , (4), (2) , (3)? There is not one unique solution, as can be

seen in Figure 8-4.

Figure 8-4: Two minimal representations of activity sequences (1), (2), (3) and
(1)1,(2)1,(4)1,(2) , (3)

We propose that the issue of minimally representing a temporal plan network

can be considered an application of learning a minimal deterministic finite automata

(DFA). This kind of problem has been proven to be NP-hard [43] in the worst case, but

tractable in the average case. Several researchers have been able to create algorithms

that successfully learned DFAs from data of binary sequences [30]. We suspect that

a similar method may be derived to minimally represent a temporal plan network.

113

8.1.3 Determining the recognition resolution

The plan learning algorithm used in this thesis requires two inputs: the set of all

training data, and the recognition resolution. The recognition resolution is the num-

ber of activity clusters that will be identified during EM learning. Throughout this

thesis, we assumed that we know something about the training data a priori that

enables us to pick the correct recognition resolution. However, in many applications,

we may not intuitively know how many activity clusters to choose. One possible way

to determine the recognition resolution is by obtaining it from the training data using

a v-fold cross-validation technique [52].

We can first divide the all-encompassing training data vector X into v random

and roughly even sections. Next, we can perform unsupervised EM learning on v - 1

sections, and classification testing on the remaining section of data. Cross-validation

occurs by switching the section of data on which we perform learning versus testing.

The classification errors are reflected by the average negative log-likelihood computed

for the data points in the test section. The classification errors are aggregated, or

averaged, over all v cross-validation cases. For some given recognition resolution k,

we perform v-fold cross-validation to determine the corresponding classification error.

Thus we can perform v-fold cross-validation over a variety of recognition resolutions

to find the one that produces the lowest classification error.

We know that there is generally an optimal recognition resolution because small

numbers of clusters may not explain the data well enough, producing large classi-

fication errors, and large numbers of clusters may overfit the data, also producing

large classification errors. Thus v-fold cross-validation can identify the recognition

resolution that gives best results.

8.1.4 Anytime algorithm for real-time incremental recogni-

tion

In practical recognition applications, new data arrives at a high frequency, and recog-

nition must occur fast enough to be useful. First, we propose performing incremental

114

recognition by storing previous Viterbi messages in memory and updating only the

most recent message. We also keep track of the previous most likely path, so that if

the new back pointer points to the same previous back pointer, then there is no need

to retrace all other back pointers-we just use the previously stored most likely path.

This is a simpler version of the incremental Viterbi method used by Minka et al. in

the image decoding application [37].

a (' a (') ..-----......--- a ()

a (2) / (2) a (2)
s,1 s,2 s.3

a(3) a(3) a(3)
s.1 s, 2 s.3

Figure 8-5: A most likely path in the HMM that we have cached

For example, in Figure 8-5, the highlighted path is the most likely path at the

previous time step. Suppose at the next time step, the Viterbi message concludes

that the most likely HMM state is a'), which has a back pointer to a('. Then we

immediately know that the most likely path is now the highlighted path, plus the

new state a('. If the current HMM state has a different back pointer, such as a(2,

then we will have to follow the back pointers to find the new most likely path. As

iteration proceeds, however, the best path often becomes invariant as the recognizer

becomes more certain that it is identifying the correct path, so this method of caching

the previous most likely path at each iteration can greatly improve the recognizer's

efficiency.

Even with the added efficiency, however, the recognizer still may not execute

faster than the rate at which new data arrives. This calls for the need of an anytime

algorithm. One method for an anytime recognizer is to perform iterative recognition

115

on the segment of data obtained during the last recognition session. While the current

recognition session is executing, a new segment of data has arrived and is cached for

use during the following recognition session.

8.2 Conclusions

In this thesis, we presented a plan learning and recognition capability to enable a

computer or robotic agent to learn the temporal plan network of a human executing

some set of tasks, and then perform recognition on newly observed motions. Our plan

learner employed unsupervised learning on training data to determine the activity

clusters describing the motions, and then created a temporal plan network based on

the activity trajectories of the training data, such that all activities and durations

were represented probabilistically. Following this process, our plan recognizer encodes

the temporal plan network as a hidden Markov model to determine the most likely

activity sequence based on the observed data. It then refers back to the temporal

plan network to obtain the predicted activity sequence containing most likely future

activities.

Past research in recognition have often focused on identifying gestures, where data

were pre-segmented, so different forms of supervised learning techniques could be per-

formed [26]. In contrast, this thesis employed unsupervised learning to automatically

detect the activity segmentation in continuous state data. Futhermore, previous re-

search in plan recognition have often been limited to discrete activities [14, 46, 9], and

thus were unsuitable for recognizing physical motions as in our applications. Addi-

tionally, some past plan recognition algorithms assumed the existance of plan recipes

[5, 32), forcing the user to manually create a plan recipe before using the algorithms.

Our research was designed for recognition of continuous physical motions, and in-

stead of manually creating a plan recipe, our algorithm automatically learned a plan

network from training data.

This thesis presented several innovations: First, we introduced a modified repre-

sentation of temporal plan networks that incorporates probabilistic information into

116

the state space and temporal representations. Second, we learned plans from actual

data, such that the notion of an activity is not arbitrarily or manually defined, but is

determined by the characteristics of the data. Third, we developed a recognition al-

gorithm that can perform recognition continuously by making probabilistic updates.

Finally, our recognizer could not only identify previously executed activities, but

could also predict future activities based on the plan network.

We demonstrated the capabilities of our algorithms on motion capture data using

a simple dancing example, followed by a more complex golfing scenario. Our results

showed that the plan learning algorithm was able to generate reasonable temporal

plan networks, depending on the dimensions of the training data and the recognition

resolution used. The plan recognition algorithm was also successful in recognizing the

correct activity sequences in the temporal plan network corresponding to the observed

test data.

We have discussed some possible future areas of expansion, and we feel that plan

learning and recognition is a valuable field of research, as it provides a necessary step

toward making more intelligent, interactive, and useful robots.

117

118

Appendix A

Splines

As discussed in Section 4.2.2, when we have a scarcity of data, we employ a method

of essentially duplicating the existing data, and adding some amount of noise to the

newly created data. In order to ensure that the resulting data is smooth, we first

evently sample some relatively small number of data points from the original data,

add a certain amount of Gaussian noise to the data points, and interpolate a new

data sequence by applying a cubic spline function. We label the number of data

points sampled as q, and the sampled data as control points. This section will discuss

the details of the cubic spline function, closely following the explanation provided by

Weisstein [55].

Given q control points, a cubic spline is constructed from q - 2 piece-wise cubic

polynomials passing though all control points. The second derivative of the polyno-

mials at the end points are set to zero to complete the necessary system of equations.

We now present the process of creating one-dimensional splines, which can be extrap-

olated to multiple dimensions.

Suppose our set of control points are (Yi, Y2, . . . , Yq), and that the Zth piece of the

spline is represented by

Yi (t) = ai + bit + cit 2 + dit 3 , (A.1)

where i = 1, 2,. . ., q - 1 and 0 < t < 1 so that each piece of spline's end points occur

119

at t = 0 and t = 1, or in other words,

Y (0) = yj = a

Y (1) = yi+1 = ai + bi + ci + di.

Taking the first derivative at each spline's end points produces

Yj' (0) =d =bi
dt

Y (1) - dyi+l = bi + 2ci + di.
dt

We can now solve Equations A.3 - A.5 for the coefficients, which gives

ai = y 2

, dy;

ci = 3 (yi+i - Yi) -

di = 2 (yj - yi+i) +

2dy' dy+ 1
dt dt

dy+ dyi+ 1

dt dt

So now we need to solve for the derivatives.

The internal boundary conditions require that the boundary points, first deriva-

tive, and second derivative are all compatible between two pieces of splines Y and

Yi+1. Specifically, the internal boundary conditions are

Yi (0) = y

Yi (1) = Y+1 (0) = Yi+1

(A.10)

(A.11)

(A.12)

(A.13)

120

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

Yi, (1) =YiI+1 (0)

Yi" (1) =Yi'+' (0) .

The external boundary conditions ensure that the end points of the spline satisfy

Y1 (0) = Yi (A.14)

Y- 1 (1) = yq. (A.15)

Equations A.11 - A.15 provide 4 (q - 1) + 2 = 4q - 2 relations for the 4q unknowns.

Thus we include the two extra boundary conditions requiring the second derivative

at the end points to be zero, or

Y" (0) = 0 (A.16)

YqWe (1) = 0. (A. 17)

We can now express all these equations in a tridiagonal system

2

1

1

4

1

1

4

1

1

4 1

1 4

1

1

2

d

Y1

Y2

y3

y4

Yq-1

Yq

3

3

3

3

3

3

(Y2

(y3

(y4

(y5

(yq

(yq

- Yi)

- Yi)

- Y2)

- y3)

- Yq-2)

- Yq-1)

(A.18)

Solving the tridiagonal system gives the derivatives at each piece of spline's end

points, which can be used to find the spline coefficients using Equations A.7 - A.9.

This same method can be used to generate splines in multiple dimensions.

121

122

Appendix B

Encoding a TPN into XML

Our plan learning algorithm encodes temporal plan networks in XML format. The

following is an example excerpt of the XML code that discribes Figure 4-6 in Sec-

tion 4.5.

<root>

<choices>

<choice>

<start>

0

</start>

</choice>
</choices>
<tpn>

<arcs>

</arcs>

<arcs>

<start>

1

</start>

<end>
2

</end>
<timesk>

19.25

</times-k>

<timestheta>

123

0.82
</times-theta>

<activity>

<name>

3
</name>

<mu>
[1.0039,0.9070]

</mu>

<sigma>

[0.0820,0.0562;0.0562,0.07201

</sigma>
</activity>

<prob>
0.2

</prob>
</arcs>

</tpn>
</root>

124

Bibliography

[1] J. K. Aggarwal and Q. Cai. Human motion analysis: A review. Computer Vision
and Image Understanding: CVIU, 73(3):428-440, 1999.

[2] James F. Allen. Planning as temporal reasoning. In James F. Allen, Richard
Fikes, and Erik Sandewall, editors, KR'91: Principles of Knowledge Represen-
tation and Reasoning, pages 3-14. Morgan Kaufmann, San Mateo, CA, 1991.

[3] James F. Allen. Time and time again: the many ways to represent time. Inter-
national Journal of Intelligent Systems, 6:341-355, 1991.

[4] R.O. Ambrose, H. Aldridge, R.S. Askew, R.R. Burridge, W. Bluethmann,
M. Diftler, C. Lovchik, D. Magruder, and F. Rehnmark. Robonaut: NASA's
space humanoid. IEEE Intelligent Systems and Their Applications, 15(4):57-63,
August 2000.

[5] Dorit Avrahami-Zilberbrand and Gal A. Kaminka. Fast and complete symbolic
plan recognition. In International Joint Conference on Artificial Intelligence,
Scotland, Edinburgh, 2005.

[6] Fahiem Bacchus and Froduald Kabanza. Planning for temporally extended goals.
In Proceedings of the Thirteenth National Conference on Artificial Intelligence
(AAAI-96), pages 1215-1222, Portland, Oregon, USA, 1996. AAAI Press / The
MIT Press.

[7] Jernej Barbie, Alla Safonova, Jia-Yu Pan, Christos Faloutos, Jessica Hodgins,
and Nancy Pollard. Segmenting motion capture data into distinct behaviors.
ACM International Conference Proceeding Series, 62:185-194, 2004.

[8] Mathias Bauer. Integrating probabilistic reasoning into plan recognition. In
Proceedings of the 11th European Conference on Artificial Intelligence (ECAI
'94), pages 620-624, 1994.

[9] Mathias Bauer. A Dempster-Shafer approach to modeling agent preferences for
plan recognition. User Modeling and User-Adapted Interaction, 5(3-4):317-348,
1996.

[10] Jeff Bilmes. A gentle tutorial on the EM algorithm and its application to pa-
rameter estimation for Gaussian mixture and Hidden Markov Models. Technical
Report ICSI-TR-97-021, University of Berkeley, 1997.

125

[11] Aaron F. Bobick and Andrew D. Wilson. A state-based technique for the sum-
marization and recognition of gesture. In Fifth International Conference on
Computer Vision (ICCV'95), pages 382-388, Cambridge, MA, June 1995.

[12] Roger Boyle. Viterbi algorithm. From http://www.comp.leeds.ac.uk/roger/
HiddenMarkovModels/html-dev/viterbi-algorithm/slpgl.html, 2007.

[13] Richard Cangelosi and Alain Goriely. Component retention in principal compo-
nent analysis with application to cDNA microarray data. Biology Direct, 2(1):2,
January 2007.

[14] Eugene Charniak and Robert P. Goldman. A Bayesian model of plan recognition.
Artificial Intelligence, 64(1):53-79, 1993.

[15] Carroll Croarkin and Paul Tobias, editors. NIST/SEMA TECH e-Handbook of
Statistical Methods, chapter 1.3.6.6.11. Gamma Distribution. National Institute
of Standards and Technology, July 2006.

[16] Philip J. Davis. Gamma function and related functions. In Milton Abramowitz
and Irene A. Stegun, editors, Handbook of Mathematical Functions with Formu-
las, Graphs, and Mathematical Tables, chapter 6. Superintendent of Documents,
U.S. Government Printing Office, Washington, DC, 1972.

[17] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks. Ar-
tificial Intelligence, 49(1-3):61-95, 1991.

[18] Arthur Dempster, Nan Laird, and Donald Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society,
39(1):1-38, 1977.

[19] Robert Effinger. Optimal temporal planning at reactive time scales via dynamic
backtracking branch and bound. S.M. Thesis, Massachusetts Institute of Tech-
nology, Department of Aeronautics and Astronautics, September 2006.

[20] Maria Fox, Malik Ghallab, Guillaume Infantes, and Derek Long. Robot in-
trospection through learned Hidden Markov Models. Artificial Intelligence,
70(2):59-113, February 2006.

[21] D. M. Gavrila. The visual analysis of human movement: A survey. Computer
Vision and Image Understanding: CVIU, 73(l):82-98, 1999.

[22] Andreas Hofmann. Robust Execution of Bipedal Walking Tasks from Biomechani-
cal Principles. Ph.D. Thesis, Massachusetts Institute of Technology, Department
of Electrical Engineering and Computer Science, January 2006.

[23] Robert Hogg, Joseph McKean, and Allen Craig. Introduction to Mathemati-
cal Statistics, pages 359-364. Pearson Prentice Hall, Upper Saddle River, New
Jersey, 2005.

126

[24] J. Edward Jackson. A User's Guide to Principal Components. John Wiley &
Sons, New York, 1991.

[25] Ian T. Jolliffe. Principal Component Analysis. Springer-Verlag, second edition,
2002.

[26] Mohammed Waleed Kadous. A general architecture for supervised classification
of multivariate time series. Technical Report UNSW-CSE-TR-9806, University
of New South Wales, Department of Artificial Intelligence, School of Computer
Science & Engineering, September 1997.

[27] Henry Kautz. A formal theory of plan recognition and its implementation. In
J. Allen, H. Kautz, R. Pelavin, and J. Tenenberg, editors, Reasoning about Plans,
pages 69-125. Morgan Kaufman, San Mateo, CA, 1991.

[28] Henry A. Kautz and James F. Allen. Generalized plan recognition. In Fifth
National Conference on Artificial Intelligence (AAAI-86), pages 32-37, Menlo
Park, CA, August 1986. AIAA Press.

[29] P. Kim, B. C. Williams, , and M. Abramson. Executing reactive, model-based
programs through graph based temporal planning. In International Joint Con-
ference on Artificial Intelligence, volume 17, pages 487-493. Lawrence Erlbaum
Associates LTD, 2001.

[30] Kevin J. Lang, Barak A. Pearlmutter, and Rodney A. Price. Results of the Ab-
badingo one DFA learning competition and a new evidence-driven state merging
algorithm. Lecture Notes in Computer Science, 1433:1-12, 1998.

[31] Thomas L6aute. Coordinating agile systems through the model-based execution
of temporal plans. S.M. Thesis, Massachusetts Institute of Technology, Depart-
ment of Aeronautics and Astronautics, August 2005.

[32] Neal Lesh, Charles Rich, and Candace Sidner. Using plan recognition in human-
computer collaboration. In Seventh International Conference on User Modeling,
pages 23-32, 1999.

[33] Lin Liao, Donald J. Patterson, Dieter Fox, and Henry Kautz. Learning and
inferring transportation routines. Artificial Intelligence, 171(5-6):311-331, April
2007.

[34] Jeroen Lichtenauer, E. A. Hendriks, and M. J. T. Reinders. 3D versus 2D pose
information for recognition of NGT signs. In 27th Symposium on Information
Theory, Benelux, 2006.

[35] Hugo Liu and Push Singh. Commonsense reasoning in and over natural language.
Lecture Notes in Computer Science, 3215:293-306, October 2004.

127

[36] R. Bowen Loftin and Patrick J. Kenney. Training the Hubble Space Telescope
flight team. Computer Graphics and Applications, IEEE, 15(5):31-37, September
1995.

[37] Thomas P. Minka, Dan S. Bloomberg, and Kris Popat. Document image decoding
using iterated complete path search. Document Recognition VIII, January 2001.

[38] T. Moeslund, A. Hilton, and V. Krueger. A survey of advances in vision-based
human motion capture and analysis. Computer Vision and Image Understanding,
104(2-3):90-127, 2006.

[39] Paul Morris and Nicola Muscettola. Execution of temporal plans with uncer-
tainty. In Seventeenth National Conference on Artificial Intelligence (AAAI-00),
pages 491-496. AAAI Press/The MIT Press, 2000.

[40] Sarah Osentoski, Victoria Manfredi, and Sridhar Mahadevan. Learning hierar-
chical models of activity. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, Sendai, Japan, 2004.

[41] Karl Pearson. On lines and planes of closest fit to systems of points in space.
Philosophical Magazine, 2:559-572, 1901.

[42] Joelle Pineau, Michael Montemerlo, Martha Pollack, Nicholas Roy, and Sebastian
Thrun. Towards robotic assistants in nursing homes: challenges and results.
Robotics and Autonomous Systems, 42(3-4):271--281, 2003.

[43] Leonard Pitt and Manfred K. Warmuth. The minimum DFA consistency problem
cannot be approximated within any polynomial. In Twenty-First Annual ACM
Symposium on Theory of Computing, pages 421-432, Seattle, WA, May 1989.

[44] Nancy Pollard, Jessica Hodgins, Marcia Riley, and Christopher Atkeson. Adapt-
ing human motion for the control of a humanoid robot. In Proceedings of the
IEEE International Conference on Robotics and Automation, volume 2, pages
1390-1397, Washington, D.C., May 2002.

[45] Rudolph W. Preisendorfer. Principal Component Analysis in Meteorology and
Oceanography. Elsevier Science Publishing Company, Amsterdam, December
1988.

[46] David V. Pynadath and Michael P. Wellman. Accounting for context in plan
recognition, with application to traffic monitoring. In Proceedings of the Eleventh
Conference on Uncertainty in Artificial Intelligence, pages 472-481, San Fran-
cisco, 1995. Morgan Kaufmann.

[47] Lawrence R. Rabiner. A tutorial on Hidden Markov Models and selected appli-
cations in speech recognition. IEEE, 77(2), February 1989.

128

[48] Stuart J. Russell and Peter Norvig. Artificial Intelligence A Modern Approach,
section 20.3, pages 724-727. Pearson Education, Inc, Upper Saddle River, New
Jersey, second edition, 2003.

[49] Stuart J. Russell and Peter Norvig. Artificial Intelligence A Modern Approach,
section 15, pages 537-551. Pearson Education, Inc, Upper Saddle River, New
Jersey, second edition, 2003.

[50] Leonid Sigal and Michael J. Black. Predicting 3D people from 2D pictures. In In-
ternational Conference on Articulated Motion and Deformable Objects, Andratx,
Mallorca, Spain, July 2006. Springer LNCS 4069.

[51] Bongkee Sin and Jin H. Kim. Nonstationary Hidden Markov Model. Signal
Processing, 46(1):31-46, September 1995.

[52] Inc StatSoft. Electronic Statistics Textbook, chapter Cluster Analysis. StatSoft,
Tulsa, OK, 2007.

[53] Michael E. Tipping and Christopher M. Bishop. Mixtures of probabilistic prin-
cipal component analysers. Neural Computation, 11(2):443-482, 1999.

[54] Seema Vyas and Lilani Kumaranayake. Constructing socio-economic status in-
dices: how to use principal components analysis. Health Policy and Planning,
21(6):459-468, October 2006.

[55] Eric W. Weisstein. Cubic spline. From Math World-A Wolfram Web Resource:
http://mathworld.wolfram.com/CubicSpline.html.

[56] Eric W. Weisstein. Run-length encoding. From Math World-A Wolfram Web
Resource: http://mathworld.wolfram.com/Run-LengthEncoding.html.

[57] Brian Williams, Phil Kim, Michael Hofbaur, Jon How, Jon Kennell, Jason Loy,
Robert Ragno, John Stedl, and Aisha Walcott. Model-based reactive program-
ming of cooperative vehicles for Mars exploration. Int. Symp. on Artificial In-
telligence, Robotics and Automation in Space (ISAIRAS-01), 2001.

[58] Andrew D. Wilson and Aaron F. Bobick. Using Hidden Markov Models to
model and recognize gesture under variation. International Journal on Pattern
Recognition and Artificial Intelligence, Special Issue on Hidden Markov Models
in Computer Vision, 2000.

[59] C. F. Jeff Wu. On the convergence properties of the EM algorithm. The Annals
of Statistics, 11(1):95-103, 1983.

[60] Wenyi Zhao, Arvindh Krishnaswamy, Rama Chellappa, Daniel Swets, and John
Weng. Discriminant analysis of principal components for face recognition. Face
Recognition: From Theory to Applications, pages 73-85, 1998.

129

