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Abstract

As robots enter the social environments of our workplaces and homes, it will be important
for them to be able to learn from natural human teaching behavior. My research seeks to
identify simple, non-verbal cues that human teachers naturally provide that are useful for
directing the attention of robot learners. I conducted two novel studies that examined the
use of embodied cues in human task learning and teaching behavior. These studies mo-
tivated the creation of a novel data-gathering system for capturing teaching and learning
interactions at very high spatial and temporal resolutions. Through the studies, I observed
a number of salient attention-direction cues, the most promising of which were visual per-
spective, action timing, and spatial scaffolding. In particular, this thesis argues that spatial
scaffolding, in which teachers use their bodies to spatially structure the learning environ-
ment to direct the attention of the learner, is a highly valuable cue for robotic learning sys-
tems. I constructed a number of learning algorithms to evaluate the utility of the identified
cues. I situated these learning algorithms within a large architecture for robot cognition,
augmented with novel mechanisms for social attention and visual perspective taking. Fi-
nally, I evaluated the performance of these learning algorithms in comparison to human
learning data, providing quantitative evidence for the utility of the identified cues. As a
secondary contribution, this evaluation process supported the construction of a number
of demonstrations of the humanoid robot Leonardo learning in novel ways from natural
human teaching behavior.
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Chapter 1

Introduction

How can we design robots that are competent, sensible learners? Learning will be an

important part of bringing robots into the social, cooperative environments of our work-

places and homes. But social environments present a host of novel challenges for learning

machines. Learning from real people means no carefully labeled data sets, no clear-cut

reward signals, and no obvious indications of when to start learning and when to stop.

Social environments are typically cluttered and dynamic, with other agents altering the

world in potentially confusing or unpredictable ways. People working alongside of robots

may be largely unfamiliar with robotic technology and machine learning and, to make

matters worse, will expect a robot to adapt and learn as quickly and "effortlessly" as a real

human teammate.

To address these issues, and inspired by the way people and animals learn from oth-

ers, researchers have begun to investigate various forms of social learning and interac-

tive training techniques, such as imitation-based learning [Schaal, 1999], clicker train-

ing [Blumberg et al., 2002], learning by demonstration [Nicolescu and Matari4, 2003], and

tutelage [Breazeal et al., 2004].

Most existing approaches to socially guided learning take an all-or-nothing approach

to interpreting the human's behavior. The human's behavior or directives are either du-



plicated exactly, as in imitation or verbal instruction, or else used simply as feedback indi-

cating the success or failure of the robot's actions, as in reinforcement learning and clicker

training. I seek a more flexible approach spanning this range of interpretation. This thesis

advances a model wherein the human's behavior is viewed as a communicative, dynamic

constraint upon the robot's exploration of its environment.

This thesis is focused on the question of how the embodied presence of the teacher

directs and constrains the learner's attention and bodily exploration. How does the body

pose and activity of the teacher help to identify what matters in the interaction? By de-

signing a robotic system with the right internal representations and processes, coupled in

the right ways to the complexity of the human system, I aim to enable a human teacher to

effectively guide the robot.

My research seeks to identify simple, non-verbal cues that human teachers naturally

provide that are useful for directing the attention of robot learners. The structure of social

behavior and interaction engenders what I term "social filters:" dynamic, embodied cues

through which the teacher can guide the behavior of the robot by emphasizing and de-

emphasizing objects in the environment.

This thesis describes two novel studies that I conducted to examine the use of social

filters in human task learning and teaching behavior. Through these studies, I observed

a number of salient attention-direction cues, the most promising of which were visual

perspective, action timing, and spatial scaffolding. In particular, I argue that spatial scaf-

folding, in which teachers use their bodies to spatially structure the learning environment

to direct the attention of the learner, is a highly valuable cue for robotic learning systems.

In order to directly evaluate the utility of the identified cues, I constructed a number

of learning algorithms. I situated these learning algorithms within a large architecture

for robot cognition, augmented with novel mechanisms for social attention and visual per-

spective taking. I evaluated the performance of these learning algorithms in comparison to

human learning data on benchmark tasks drawn from the studies, providing quantitative

evidence for the utility of the identified cues. As a secondary contribution, this evaluation



process supported the construction of a number of demonstrations of the humanoid robot

Leonardo learning in novel ways from natural human teaching behavior.

1.1 Human Studies and Benchmark Tasks

I conducted two studies that examined the use of embodied cues in human task learning

and teaching behavior. The studies focused on embodied, non-verbal cues through which

human teachers emphasize and de-emphasize objects in the learning environment. The

first study examined the role of visual perspective taking in human learning. The second

study was more open-ended, and was designed to capture observations of a number of

dynamic, embodied cues including visual attention, hand gestures, direct object manip-

ulations, and spatial/environmental scaffolding. This study motivated the creation of a

novel data-gathering system for capturing teaching and learning interactions at very high

spatial and temporal resolutions.

While a broad set of attention-direction cues were observed in the second study, a sur-

prising result was the prevalent and consistent use of spatial scaffolding by the human

teachers. The term spatial scaffolding refers to the ways in which teachers use their bodies

to spatially structure the learning environment to direct the attention of the learner. One

of the main contributions of my work is the empirical demonstration of the utility of spa-

tial scaffolding for robotic learning systems. In particular, this thesis focuses on a simple,

reliable, component of spatial scaffolding: attention direction through object movements

towards and away from the body of the learner.

Both of the human studies involved learning tasks that were designed to be closely

matched to the Leonardo robot's existing perceptual and inferential capabilities. This

served two purposes. First, it meant that the recorded observations would be directly

applicable to the robot's cognitive architecture. Second, it allowed for the creation of a

benchmark suite, whereby the robot's performance on the benchmark learning tasks could

be directly compared to human learning performance on similar or identical tasks. This



comparison provided direct, quantitative evidence for the utility of the attention-direction

cues identified through the studies.

1.2 Robotic Learning Algorithms and Cognitive Architecture

In order to directly evaluate the utility of the cues identified in the studies, including vi-

sual perspective, action timing, and spatial scaffolding, I constructed a number of learning

algorithms. I situated these learning algorithms within a large architecture for robot cogni-

tion, augmented with novel mechanisms for social attention and visual perspective taking.

Designing an integrated learning system in this way supported not only the direct eval-

uation of the robot's performance on the study benchmark tasks, but also a number of

demonstrations of interactive social learning.

I believe that socially situated robots will need to be designed as socially cognitive

learners that can infer the intention behind human instruction, even if the teacher's demon-

strations are insufficient or ambiguous from a strict machine learning perspective. My

approach to endowing machines with socially-cognitive learning abilities is inspired by

leading psychological theories and recent neuroscientific evidence for how human brains

might infer the mental states of others. Specifically, Simulation Theory holds that certain

parts of the brain have dual use; they are used to not only generate behavior and mental

states, but also to predict and infer the same in others [Davies and Stone, 1995, Barsalou

et al., 2003, Sebanz et al., 2006].

My research introduces a set of novel software technologies that build upon a large

architecture for robotic behavior generation and control developed by the Personal Robots

Group and based on [Blumberg et al., 2002]. My research extends the mechanisms of at-

tention, belief, goals, and action selection within this architecture. Taken together, these

changes result in an integrated architecture we call the "self-as-simulator" behavior sys-

tem, wherein the robot's cognitive functionality is organized around an assumption of

shared social embodiment - the assumption that the teacher has a body and mind "like



mine." This design allows the robot to simulate the cognitive processes of a human inter-

action partner using its own generative mechanisms. The architecture was designed for

and evaluated on the 65 degree of freedom humanoid robot Leonardo and its graphical

simulator.

This thesis introduces and describes the technologies behind the self-as-simulator be-

havior system. These include: mechanisms for understanding the environment from the

visual perspective of the teacher, social mechanisms of attention direction and emphasis,

and a unified framework for social action recognition and behavior generation. The details

of these mechanisms are presented in chapter 3.

1.3 Interactive Learning Demonstrations

In addition to comparing the learning performance of our cognitive architecture against

that of human learners on benchmark tasks drawn from the studies, this thesis presents

a pair of demonstrations of the Leonardo robot making use of embodied cues to learn

in novel ways from natural human teaching behavior. In the first demonstration, the

Leonardo robot takes advantage of perspective taking to learn from ambiguous task demon-

strations involving colorful foam blocks. The second demonstration features Leo making

use of action timing and spatial scaffolding to learn secret constraints associated with a

number of construction tasks, again involving foam blocks. Leonardo is the first robot to

make use of visual perspective, action timing, and spatial scaffolding to learn from human

teachers.

This document proceeds as follows. Chapter 2 describes the two studies of human

teaching and learning behavior, and the novel data-gathering and analysis system that

was designed to support this work. I discuss the embodied attention-direction cues ob-

served through the studies, and argue that visual perspective, action timing, and spatial

scaffolding are particularly promising cues for robot learners. Chapter 3 introduces the

learning algorithms that were developed to empirically evaluate these embodied cues. I



also provide a detailed description of the robot's cognitive architecture and its novel mech-

anisms of social attention and visual perspective taking. Chapter 4 presents the robot's

learning performance on the study benchmark tasks, providing quantitative evidence for

the utility of the identified cues. In addition, I describe the interactive demonstrations of

the Leonardo robot making use of dynamic, embodied cues to learn from natural teaching

behavior. Finally, chapter 5 provides some concluding thoughts and discusses some plans

and possibilities for future research.



Chapter 2

Embodied Emphasis Cues

In this chapter, I describe two studies that I conducted to examine the use of embodied

cues in human task learning and teaching behavior. The studies focused on embodied,

non-verbal cues through which human teachers emphasize and de-emphasize objects in

the learning environment. The first study examined the role of visual perspective tak-

ing in human learning. The second study was more open-ended, and was designed to

capture observations of a number of dynamic, embodied cues including visual attention,

hand gestures, direct object manipulations, and spatial/environmental scaffolding. This

study motivated the creation of a novel data-gathering system for capturing teaching and

learning interactions at very high spatial and temporal resolutions.

While a broad set of attention-direction cues were observed in the second study, a sur-

prising result was the prevalent and consistent use of spatial scaffolding by the human

teachers. In this chapter, I present quantitative results highlighting a simple, reliable, spa-

tial cue: attention direction through object movements towards and away from the body

of the learner.

Both studies involved learning tasks that were designed to be closely matched to the

Leonardo robot's existing perceptual and inferential capabilities. This served two pur-

poses. First, it meant that the recorded observations could be used to inform and revise the



robot's cognitive architecture. Second, it allowed me to create a benchmark suite so that the

robot's performance on the benchmark learning tasks could be directly compared to hu-

man learning performance on similar or identical tasks. This comparison, described in the

following chapters, provided direct, quantitative evidence for the utility of the promising

attention-direction cues identified through the studies: visual perspective, action timing,

and spatial scaffolding.

2.1 Background and Related Literature

There has been a large, interesting body of work focusing on human gesture, especially

communicative gestures closely related to speech [Cassell, 2000, Kendon, 1997, McNeill,

1992]. A number of gestural classification systems have been proposed [Kipp, 2004, Mc-

Neill, 2005, Nehaniv et al., 2005]. Others have focused on the role of gesture in language

acquisition [Iverson and Goldin-Meadow, 2005], and on the use of gesture in teaching

interactions between caregivers and children [Zukow-Goldring, 2004, Singer and Goldin-

Meadow, 2005].

In the computer vision community, there has been significant prior work on technical

methods for tracking head pose [Morency et al., 2002] and for recognizing hand gestures

such as pointing [Wilson and Bobick, 1999, Kahn et al., 1996]. Others have contributed

work on using these cues as inputs to multi-modal interfaces [Bolt, 1980,Oviatt et al., 1997].

Such interfaces often specify fixed sets of gestures for controlling systems such as graphical

expert systems [Kobsa et al., 1986], natural language systems [Neal et al., 1998], and even

directable robotic assistants [Ghidary et al., 2002, Severinson-Eklundh et al., 2003, Fransen

et al., 2007].

However, despite a large body of work on understanding eye gaze [Perrett and Emery,

1994, Langton, 2000], much less work has been done on using other embodied cues to infer

a human's emphasis and de-emphasis in behaviorally realistic scenarios. It is important

to stress that tracking the human's head pose, which is a directly observable feature, is

quite a different thing from extrapolating from this feature and other related features to



infer the human's object of emphasis, which we might think of as an unobservable, mental

state. There has been a small amount of related work on mapping from head pose to

a specific attentional focus, such as a driver's point of interest within a car [Pappu and

Beardsley, 1998] or the listener that a particular speaker is addressing in a meeting scenario

[Stiefelhagen, 2002].

One of the important contributions of my work is the analysis of spatial scaffolding

cues in a human teaching and learning interaction, and the empirical demonstration of the

utility of spatial scaffolding for robotic learning systems. Spatial scaffolding refers to the

ways in which teachers use their bodies to spatially structure the learning environment

to direct the attention of the learner. In particular, my work identifies a simple, reliable,

component of spatial scaffolding: attention direction through object movements towards

and away from the body of the learner. It is important to note that spatial scaffolding may

be effective through social mechanisms or through nonsocial mechanisms implicit in the

layout of the learning space. The learner may be directly interpreting the bodily gestures

of the teacher, or it may be that the teacher is simply creating organization for the spatial

direction and extent of the learner's attention. Space itself, as mediated by the bodily

orientation of attention, has been shown to be a powerful factor in conceptual linkage

and word learning in children [Smith et al., 2007]. It may well be the case that social and

nonsocial mechanisms play a combined role in learning through spatial scaffolding.

The first study presented in this chapter examined the role of visual perspective taking

in human task learning. A number of related studies have examined aspects of human

perspective taking, most notably in false-belief reasoning [Wimmer and Perner, 1983]. Re-

searchers have examined the role of visual perspective taking in language-mediated col-

laboration between people working face-to-face [Keysar et al., 2000, Hanna et al., 2003] as

well as in distributed teams [Jones and Hinds, 2002]. Others have studied the role of spa-

tial perspective taking in demonstrations of physical assembly tasks [Martin et al., 2005].

The study described in the following section is unique in its focus on strictly non-verbal

interaction and on the potentially critical role of the teacher's visual perspective in disam-

biguating task demonstrations.



2.2 Perspective Taking Study

Figure 2-1: The four tasks demonstrated to participants in the study (photos taken from the
participant's perspective). Tasks 1 and 2 were demonstrated twice with blocks in different
configurations. Tasks 3 and 4 were demonstrated only once.

The first study examined the role of visual perspective taking in human learning, and

enabled the creation of benchmark tasks with which to evaluate the robot's perspective

taking abilities and analyze the utility of visual perspective as an information channel for

automated learning systems.

2.2.1 Task Design and Protocol

Study participants were asked to engage in four different learning tasks involving foam

building blocks. I gathered data from 41 participants, divided into two groups. 20 partic-

ipants observed demonstrations provided by a human teacher sitting opposite them (the

social condition), while 21 participants were shown static images of the same demonstra-

tions, with the teacher absent from the scene (the nonsocial condition). Participants were



asked to show their understanding of the presented skill either by re-performing the skill

on a novel set of blocks (in the social context) or by selecting the best matching image from

a set of possible images (in the nonsocial context).

Figure 2-1 illustrates sample demonstrations of each of the four tasks. The tasks were

designed to be highly ambiguous, providing the opportunity to investigate how differ-

ent types of perspective taking might be used to resolve these ambiguities. The subjects'

demonstrated rules can be divided into three categories: perspective taking (PT) rules,

non-perspective taking (NPT) rules, and rules that did not clearly support either hypothe-

sis (Other).

Figure 2-2: Input domains consistent with the perspective taking (PT) vs. non-perspective
taking (NPT) hypotheses. In visual perspective taking (left image), the student's attention
is focused on just the blocks that the teacher can see, excluding the occluded block. In
resource perspective taking (right image), attention is focused on just the blocks that are
considered to be "the teacher's," excluding the other blocks.

Task 1 focused on visual perspective taking during the demonstration. Participants

were shown two demonstrations with blocks in different configurations. In both demon-

strations, the teacher attempted to fill all of the holes in the square blocks with the available

pegs. Critically, in both demonstrations, a blue block lay within clear view of the partic-

ipant but was occluded from the view of the teacher by a barrier. The hole of this blue

block was never filled by the teacher. Thus, an appropriate (NPT) rule might be "fill all

but blue," or "fill all but this one," but if the teacher's perspective is taken into account, a

more parsimonious (PT) rule might be "fill all of the holes" (see Fig. 2-2).

Task 2 focused on resource perspective taking during the demonstration. Again, par-



ticipants were shown two demonstrations with blocks in different configurations. Various

manipulations were performed to encourage the idea that some of the blocks "belonged"

to the teacher, whereas the others "belonged" to the participant, including spatial sepa-

ration in the arrangement of the two sets of blocks. In both demonstrations, the teacher

placed markers on only "his" red and green blocks, ignoring his blue blocks and all of

the participant's blocks. Because of the way that the blocks were arranged, however, the

teacher's markers were only ever placed on triangular blocks, long, skinny, rectangular

blocks, and bridge-shaped blocks, and marked all such blocks in the workspace. Thus, if

the blocks' "ownership" is taken into account, a simple (PT) rule might be "mark only red

and green blocks," but a more complicated (NPT) rule involving shape preference could

account for the marking and non-marking of all of the blocks in the workspace (see Fig.

2-2).

Task 3 and 4 investigated whether or not visual perspective is factored into the un-

derstanding of task goals. In both tasks, participants were shown a single construction

demonstration, and then were asked to construct "the same thing" using a similar set of

blocks. Figure 2-1 shows the examples that were constructed by the teacher. In both tasks,

the teacher assembled the examples from left to right. In task 4, the teacher assembled the

word "LiT" so that it read correctly from their own perspective. The question was, would

the participants rotate the demonstration (the PT rule) so that it read correctly for them-

selves, or would they mirror the figure (the NPT rule) so that it looked exactly the same as

the demonstration (and thus read backwards from their perspective). Task 3, in which the

teacher assembled a sequence of building-like forms, was essentially included as a control,

to see if people would perform any such perspective flipping in a non-linguistic scenario.

2.2.2 Results

The results of the study are summarized in Table 2.1 where participant behavior was

recorded and classified according to the exhibited rule. For every task, differences in rule

choice between the social and nonsocial conditions were highly significant (chi-square,

p < 0.001). The most popular rule for each condition is highlighted in bold (note that,



Table 2.1: Differential rule acquisition for study participants in social vs. nonsocial condi-
tions. ***: p < 0.001

Task Condition PT Rule NPT Rule Other p
Task 1 social 6 1 13

nonsocial 1 12 8 ***
Task 2 social 16 0 4

nonsocial 7 12 2 ***
Task 3 social 12 8 -

nonsocial 0 21 -

Task 4 social 14 6
nonsocial 0 21 -

while many participants fell into the "Other" category for Task 1, there was very little rule

agreement between these participants). These results strongly support the intuition that

perspective taking plays an important role in human learning in socially situated contexts.

However, a critical question remains: can a robot, using a simple learning algorithm

and paying attention to the visual perspective of the teacher, exhibit the differences in rule

choice observed in human learners? Is visual perspective a sufficiently informative cue

to support automated learning from natural teaching behavior? In the next chapter, I de-

scribe a learning algorithm that I constructed to answer this question, along with the visual

perspective taking mechanisms that I incorporated into the Leonardo robot's cognitive ar-

chitecture. In chapter 4, I present the learning performance of the robot on benchmark

tasks drawn from this study, providing evidence of the utility of visual perspective as an

information channel for automated learning systems.

2.3 Emphasis Cues Study

The first study examined how teachers implicitly emphasize and de-emphasize objects

through their limited visual perspectives. In this section, I describe a second study that

was more open-ended. This study was designed to capture a range of dynamic, embod-

ied cues through which emphasis and de-emphasis are communicated by human teachers.



These cues included visual attention, hand gestures, direct object manipulations, and spa-

tial/environmental scaffolding.

The study employed a novel sensory apparatus to capture embodied teaching and

learning behavior with very high spatial and temporal resolution. This apparatus com-

bined machine vision technologies including motion capture and object tracking with

other technical interventions such as instrumented mechanical objects with which study

participants interacted.

The study had a number of goals. First, to produce a high-resolution observational data

set that would be interesting to myself and to other researchers in its own right. Second, to

provide data sufficient for identifying and implementing heuristics for tracking a number

of important dynamic emphasis and de-emphasis cues that teachers provide in a realistic

teaching domain. Finally, to produce a set of benchmark tasks with which to automatically

evaluate the identified cues - by demonstrating an automated learning system, attending

only to a handful of simple cues, learning "alongside of" the real human learners.

This section proceeds as follows. I first introduce the teaching/learning tasks that study

participants were asked to engage in. I then describe the design and construction of the

sensory apparatus and data collection tools that were created to collect high-quality obser-

vations of the study tasks. Next, I describe the execution of the study itself, and discuss

some qualitative observations of the participants' teaching and learning behavior. Finally,

I describe the automated data analysis tools that were created to detect and measure the

teachers' emphasis cues, and present the quantitative results generated by these tools.

While a broad set of attention-direction cues were observed in this study, a surprising

result was the prevalent and consistent use of spatial scaffolding by the human teachers.

In particular, the quantitative results highlight a simple, reliable, spatial cue: attention

direction through object movements towards and away from the body of the learner.



2.3.1 Task Design and Protocol

A set of tasks was designed to examine how teachers emphasize and de-emphasize objects

in a learning environment with their bodies, and how this emphasis and de-emphasis

guides the exploration of a learner and ultimately the learning that occurs.

The study centered around three types of tasks. The first two types of tasks involved

colorful foam building blocks similar to the blocks used in the perspective taking study.

The third type of task involved motorized "puzzle" boxes, shown in figure 2-4. Each study

session included two of the first type of task, three of the second type, and three of the third

type, for a total of eight tasks per study session.

I gathered data from 72 individual participants, combined into 36 pairs. Each study

session lasted approximately 45 minutes.

Participants were combined into pairs, and were asked to engage in all eight of the

study tasks. For each pair, one participant was randomly assigned to play the role of

teacher and the other participant assigned the role of learner for the duration of the study.

For all of the tasks, participants were asked not to talk, but were told that they could

communicate in any way that they wanted other than speech. Tasks were presented in a

randomized order. For all of the tasks, the teacher and learner stood on opposite sides of

a tall table, with either the foam blocks or the puzzle boxes laid out between them on the

tabletop. Participants were given general verbal instructions for each type of task by the

experimenter, and then were handed printed instructions on note cards for each specific

task.

The first type of task was a non-interactive, demonstration task, designed to examine

how teachers draw attention to a subset of objects in the environment. The teacher was

asked to construct three successive demonstrations of a particular rule, that involved plac-

ing markers on some of the foam blocks and not placing markers on others of the blocks.

The first rule (Task la) was to "put markers on all of the red and green blocks that aren't tri-

angles." The second rule (Task Ib) was to "put markers on all the rectangular (and square)



blocks that aren't red." After each of the teacher's three successive demonstrations, the

learner was asked to write down their current best guess as to what the rule might be.

To make the teacher's job more difficult, the teacher was only given six markers, which

was not enough to successfully demonstrate the rule over all of the blocks on the table: the

rule in Task la matched ten of the blocks on the table, while the rule in Task lb matched

nine. Thus, one of the interesting questions for this task was how would the teacher over-

come this resource limitation to successfully communicate the rule. How would teachers

differentiate demonstration blocks from distractor blocks (blocks that matched the rule but

that necessarily would go unmarked)? Other questions of interest at the outset were how

the teachers would arrange their demonstrations spatially and how they would transition

from one demonstration in the sequence to the next demonstration.

The same 24 foam blocks were used for all of the tasks involving blocks. These 24 blocks

were made up of four different colors - red, green, blue, and yellow, with six different

shapes in each color - triangle, square, small circle, short rectangle, long rectangle, and a

large, arch-shaped block. At the beginning of each task, the experimenter arranged the

blocks in a default, initial configuration, shown in figure 2-9. This initial configuration

was designed to seem random, and featured a fairly even distribution of the different

colors and shapes into the four quadrants of the tabletop. The blocks were reset into this

initial configuration between every task, with the exception of Tasks la and ib, where the

teachers were allowed to continue on from their demonstrations of the first rule into their

demonstrations of the second rule.

The second type of task also involved teaching with foam blocks, but in a more interac-

tive setting. The tasks were secret constraint tasks, where one person (the learner) knows

what the task is but does not know the secret constraint. The other person (the teacher)

doesn't know what the task is but does know the constraint. So, both people must work

together to successfully complete the task. For each of the tasks, the learner received in-

structions, shown in figure 2-3, for a figure to construct using the blocks. In Task 2a, the

learner was instructed to construct a sailboat figure using at least 7 blocks; in Task 2b, a

truck/train figure using at least 8 blocks; and in Task 2c, a smiley face figure using at least



Construct using at least 7 blocks: Construct using at least 8 blocks:

O 0 0 0

Construct using at least 6 blocks:

Figure 2-3: Task instruction cards given to learners in Task 2.

6 blocks. The block number requirements were intended to prevent minimalist interpreta-

tions of the figures (and thus very quick solutions to the tasks). When put together with the

secret constraints, the number requirements turned tasks 2a and 2b into modestly difficult

Tangram-style spatial puzzles.

The secret constraint handed to the teacher for Task 2a was that "the figure must be

constructed using only blue and red blocks, and no other blocks." The secret constraint

for Task 2b was that "the figure must include all of the triangular blocks, and none of the

square blocks," and for Task 2c, that "the figure must be constructed only on the left half of

the table (from your perspective)." At the end of each task, the learner was asked to write

down what they thought the secret constraint might have been.

These tasks were designed to examine how the teacher would guide the actions of the

learner. Would they interrupt only when the learner made a mistake, or would they pro-

vide guidance preemptively? Would they remove mistakenly placed blocks or possibly

provide correct replacements? Would they direct the learner towards specific blocks ges-

turally (by pointing or tapping), or by handing them specific blocks to use, or might they

provide assistance by organizing the blocks spatially for the learner? The interactive set-

ting of these tasks provokes a rich range of questions for analysis, which I will return to



Figure 2-4: One of the motorized puzzle boxes. Left: box closed with blue status light
illuminated. Right: box open with orange status light illuminated.

later in the section.

The third type of task followed a similar secret constraint task setup, but applied to

the domain of sequence learning. Participants interacted with a pair of mechanical puzzle

boxes, one with blue controls and one with red controls (as in figure 2-4). The puzzle boxes

were designed as follows. Each box has three squishy, silicone controls: a button, a left-to-

right slider, and a left-to-right switch. The controls were designed to be easy to manipulate

for the Leonardo robot as well as for a human. In addition to the controls, each box has five

colored status lights, and a motorized lid that opens and closes based on changes in box

state. Additionally, changes in box state can cause songs and other noises to play through a

nearby speaker. Since the boxes are controlled by a computer, the experimenter can design

arbitrary mappings between control manipulations, status light changes, box openings

and closings, and auditory events (a similar experimental setup, used for studying causal

learning in children, is described in [Gopnik et al., 2001] and [Schulz and Gopnik, 2004]).

In the study setup, both boxes were arranged on the tabletop so that the controls faced

the learner (see figure 2-13). For these tasks, the learner was instructed that their job was

to discover the specific sequence of manipulations of the box controls that would cause a

song to play (in this case, a highly enthusiastic, game show-style song). The teacher was

instructed to help the learner accomplish this task using the secret hints that they would

be provided with - additional information that they could use to guide the actions of the

learner.



For Task 3a, the hint provided partial sequence information: "When the orange light

goes on: first the red slider and then the red switch must be flipped. - When both lights

turn green: the slider on the blue box must be flipped." For Task 3b, the hint provided

some information about the box controls: "The blue slider and the blue button and the red

switch are all bad. - The other controls are good." Finally, for Task 3c, the hint provided

information about the status lights: "The lights on the blue box are distractors. The lights

on the red box are helpful."

For these box puzzle tasks, I was looking for: how the teacher might direct the learner

towards particular controls gesturally or through direct manipulation, how they might

direct the learner's attention towards important state changes, how they might guide the

learner away from unhelpful controls and states, and so on.

Now that I have described the tasks that study participants were asked to perform,

I move on to a discussion of the sensory apparatus and data-gathering tools that were

created to record their behavior.

2.3.2 Data-Gathering Overview

In order to record high-resolution data about the study interactions, I developed a data-

gathering system which incorporated multiple, synchronized streams of information about

the study participants and their environment. For all of the tasks, I tracked the positions

and orientations of the heads and hands of both participants, recorded video of both par-

ticipants, and tracked all of the objects with which the participants interacted. For Tasks

1 and 2, I tracked the positions and orientations of all of the foam blocks. For Task 3, I

recorded the states of the lights and controls of both puzzle boxes.

The data gathering system was designed to satisfy a number of goals. First, it was

important to minimize the burden that the sensory system might impose on study partic-

ipants, and thus the effect that it might have on the naturalness of their behavior. Second,

it was important for the recording system to be able to be controlled by a single experi-

menter. Finally, it was important for the recording system to automatically digitize and



synchronize all of the sensory streams on the fly, to minimize any time-consuming manual

processing of the data that might be required after the conclusion of the study. Synchro-

nization of the various sensory streams enabled the simultaneous playback of all of the

recorded data for the purposes of visualization and analysis at the end of the study.

The data gathering system consisted of a collection of specialized modules which man-

aged the different sensory streams, and a central module which kept track of the study

state and which was responsible for the synchronization of the other modules. In order to

track the heads and hands of the participants, a motion capture system was used in combi-

nation with customized tracking and recording software. To track the foam blocks in Tasks

1 and 2, a machine vision system was created and embedded within a special illuminated

table that was constructed for the study. Video digitization and compression software was

used to record from two camcorders mounted in the study environment. Finally, an ad-

ditional module recorded the states of the two puzzle boxes used in Task 3. In total, the

system managed data from 13 cameras and 6 different streams of information.

The study took place in the space in front of the Leonardo robot. The study made use

of a number of the robot's cameras as well as the robot's networking infrastructure. Com-

munication between the different recording modules was accomplished using a part of the

robot's software architecture called IRCP (the Intra-Robot Communication Protocol). The

modules communicated with each other over a dedicated gigabit network, allowing for

high-bandwidth data transfer. This reuse of the robot's environment and infrastructure

was for more than just the sake of convenience. It made possible a rapid transition from

having the robot learn from sensory data recorded during the study interactions to hav-

ing the robot learn live from highly similar sensory data generated by people interacting

directly with the robot.

In the following sections, I describe the sensory modules and physical materials which

were the essential parts of the data gathering system.



2.3.3 Motion Capture: Tracking Heads and Hands

In order to accurately track and record the head and hand movements of the study par-

ticipants, I employed a Vicon motion capture system along with customized tracking and

recording software.

Our Vicon system uses ten cameras with rapidly-strobing red light emitting diodes to

track small retroreflective spheres that can be attached to clothing and other materials. The

positions of these trackable markers can be determined with very high accuracy within the

volume defined by the cameras - often to within a few millimeters of error at a tracking

rate of 100-120Hz. The most common use for such systems is to record human motion data

for 3D animation used in films and video games.

However, the Vicon system is designed to track a single human wearing a full-body

motion capture suit, and thus its software is not well suited for tracking multiple independently-

moving objects. The software is very sensitive to the presence of extraneous markers and to

object occlusion. All tracked objects are required to remain in the environment at all times;

if objects are removed, the software performance becomes slow and unreliable. These soft-

ware design flaws can lead to frequent crashes, which can jeopardize data gathering from

human subjects.

To address these issues, I developed a software toolkit for tracking rigid objects us-

ing the raw data provided by the Vicon system about individual marker positions. The

toolkit identifies objects in the scene by searching for matches to tracking templates which

specify the pairwise distances between markers mounted to the objects. The markers can

be attached to the objects in any arrangement, with more distinguishable configurations

leading to greater tracking reliability and lesser sensitivity to sensor noise and occlusion.

The toolkit supports the 3D, graphical visualization of live or recorded tracking data

(see Figure 2-5) and allows for rapid, on-the-fly calibration of tracking templates as well

as object bounding boxes and forward vectors. The toolkit is robust to missing objects,

partially- and fully-occluded objects, intermittent tracking of individual markers, and the

presence of extraneous markers and objects.



Figure 2-5: Graphical visualization within the object tracking toolkit, with two toy objects
and a tracked head and hand with calibrated forward vectors.

For the data-gathering setup, I needed to attach reflective markers in rigid configura-

tions to the heads and hands of the study participants. To this end, I constructed a set of

large, wooden "buttons" that could be sewn onto various articles of clothing. The buttons

were constructed by cutting 4-inch square pieces from a thin sheet of plywood, with four

small holes per square.

For the heads, I purchased two baseball caps with elastic headbands. The caps featured

two different MIT logos, which were selected as a neutral affiliation that most of the study

participants had in common (as opposed to, say, the logo for a professional sports team,

which could be quite divisive). A single wooden button was sewn onto each hat. Then,

the buttons were covered with adhesive-backed Velcro, and the reflective Vicon markers

were attached to the Velcro in unique configurations (see figure 2-6).

For the hands, I purchased two sets of spandex bicycle-racing gloves with adjustable

wrist straps. The gloves were chosen because they were very lightweight, and left the

fingers of the study participants free. Buttons were sewn onto the backs of each glove,

and again the buttons were covered in Velcro and outfitted with unique arrangements of

reflective markers.

person



Figure 2-6: Hats, gloves, and rings outfitted with trackable markers.

Additionally, to track the index fingers of the participants, I constructed four small
rings. Each ring consisted of a very small reflective marker sewn onto a thin strip of
double-sided velcro. By rolling the strips of velcro more or less tightly, the rings could
be sized to fit any finger.

The baseball caps were worn backwards by the study participants so that their faces
would not be occluded from each other or from the cameras. The index finger rings were
worn between the first and second knuckle from the tip of the finger. The sizing of the
trackable clothing seemed to work out very well: most study participants reported a com-
fortable fit for the apparel.

While the motion capture system was very well suited for tracking the positions and
orientations of the participants' heads and hands, it was ruled out as a method for tracking
the foam blocks in Tasks 1 and 2. The blocks were too small, and too numerous, to attach
unique marker configurations to each block. Further, the density and proximity of the
blocks on the tabletop would have caused problems for the template finding algorithm,
as well as for the underlying dot finding algorithm used by the Vicon system. Finally, the
markers on the blocks would have been frequently occluded by the hands of the partici-
pants, and often at the most critical of moments: when the participant was interacting with



the block!

In the following section, I discuss a better solution for tracking the blocks: a specially

constructed, illuminated table with an embedded machine vision system.

2.3.4 The Light Table: Tracking Object Movement

In order to accurately measure the positions and orientations of the colorful foam blocks,

a special illuminated table was constructed which tracked blocks on the table's surface.

A camera mounted underneath the table looked up at the blocks through the transparent

tabletop. The blocks were tracked using a machine vision system which combined color

segmentation, shape recognition, and object tracking, as described later in this section.

Figure 2-7: Initial assembly of the light table, with detail of the frosted acrylic top.

The basic table consisted of four cylindrical metal legs and a clear acrylic tabletop (see

figure 2-7). The tabletop measured two feet by four feet, and was one-half of an inch

think. Acrylic was chosen instead of glass because it is much lighter and harder to break,

and thus required a much less extensive support structure under the table, resulting in a

clearer view for the camera. The legs were adjustable length, and were set to make the

tabletop 38 inches high, a good height for people standing on either side of the table to



Figure 2-8: Light table component details. Top left: lights and camera mounted underneath
the table. Top right: screens for diffusing the lights and preventing reflective glare. Bottom
left: attachment of skirt and screen to table. Bottom right: clamp for holding the lights in
place.

interact with objects on the tabletop. The legs were attached to the four comers of the table

using machine screws set into the bottom surface of the tabletop, leaving the top surface

completely smooth.

After the table was constructed, the acrylic top was frosted using a rotary sander and

fine-grained sandpaper. Frosting was both for aesthetic purposes as well as for the benefit

of the machine vision system. Frosting turned the tabletop into a thin, diffusive surface,

meaning that objects pressed against the tabletop could be seen very clearly from below,

but would become more and more diffuse as their distance up from the table surface in-

creased. Thus, the blocks could be seen in sharp detail by the camera underneath the

table, but the distracting effects of other objects such as hands, clothing, and external light

sources were somewhat mitigated.

A skirt was constructed for the table using a long piece of white canvas cloth. The skirt

was attached to the table perimeter using adhesive-backed Velcro, allowing for easy access



to the electronics and other materials underneath the table, as shown in figure 2-8. White

canvas was selected to support the even diffusion of light underneath the table.

Significant care was taken to ensure a consistent, optimized lighting environment for

the camera, and to ensure a consistent geometrical relationship between the camera, the

lights, and the table surface. Four lights were installed underneath the table, each attached

to a different table leg using a strong clamp and zip tie. The bulbs used were 75-watt-

equivalent, compact fluorescent bulbs. To optimize the color separation of the foam blocks,

it was determined that the best setup was to use a mix of two "warm white" (2700K color

temperature) and two "cool white" (4100K) bulbs, with similarly colored bulbs positioned

diagonally across from each other.

Since the tabletop was somewhat reflective, the bright lights introduced four "hot"

spots where blocks placed directly above the lights were invisible to the camera. To solve

this problem, two large screens were constructed out of vellum paper to diffuse the lights.

The screens were mounted at an angle, sloping down towards the camera from high up on

the table legs, and attached to the inner side of the skirt. With the screens in place, the table

surface was illuminated brightly and evenly. Other light sources that impinged upon the

camera, such as the overhead lights directly above the table, were turned off or removed.

Care was also taken in the positioning of the Vicon cameras so that the LEDs mounted on

those cameras did not shine directly into the camera under the table.

Images of the table surface were provided by a Videre Design DCAM firewire camera.

While this is a stereo camera system, images from only one of the cameras were used to

track the blocks. The camera was selected because it provided good image quality, and

had a field-of-view which was well matched to the dimensions of the table.

Camera images were captured by a Linux machine running frame grabbing software,

and streamed uncompressed across the gigabit network. This setup supported both live

processing as well as recording of the camera images. Images were provided at a resolution

of 320 by 240 pixels, at approximately 17Hz. During the study, camera images were time

stamped and saved directly to disk as sequences of minimally-compressed JPEG images.



Figure 2-9: Final setup of the light table, with overhead view of the initial blocks configu-
ration and detail of the rope bumpers on the foam blocks.

The final setup of the table and blocks is shown in figure 2-9. A few additional details

should be noted. While the camera could see most of the table surface, it could not see

blocks placed directly above the table legs or on the far edges of the table. So, thin borders

were drawn on either side of the table using black electrical tape to delineate the preferred

workspace for the blocks. When participants were first introduced to the blocks, they were

told that they could do whatever they wanted with the blocks - pick them up, pass them

around, put them on their head - but that when they put the blocks down, they were

asked to place them flat (as opposed to stacked up) and between the two black lines. The

participants were given no other instructions or constraints about the blocks.

As can be seen in figure 2-9, rope bumpers were constructed and placed around the

perimeter of each block, midway down the sides. The bumpers were constructed using

clothesline, and attached to the blocks using dressmaker's pins. The bumpers assisted

the machine vision system in two ways. First, they ensured a minimum spacing between

adjacent blocks, reducing the likelihood that two blocks of the same color, placed next

to each other, would be perceived as one large block of that color. Second, the bumpers

introduced a subtle affordance cue about which block face should lie on the tabletop, since



Figure 2-10: Color segmentation converted each incoming image into four separate color
probability images, one for each color of block. These probability images were thresholded
to create binary color masks.

the blocks would stick up at an odd angle if placed down on one of the faces to which the

bumper was attached. This simplified the job of the block shape recognition algorithm.

Additionally, reflective markers were mounted in each corner of the table so that the

position and orientation of the table itself could be tracked by the motion capture system.

I now turn to the machine vision system that was created for tracking the blocks. Cam-

era images of the table surface were processed in a number of stages. First, color segmenta-

tion was used to identify pixels that were associated with the red, green, blue, and yellow

blocks. Next, a blob finding algorithm identified the locations of possible blocks within

the segmented images. Then, a shape recognition system classified each blob as one of

the six possible block shapes. Finally, an object tracking algorithm updated the positions

and orientations of each block using these new observations in conjunction with historical

information about each block.

Color models were constructed for each of the four block colors in the study. An inter-

face was developed so that color models could be built interactively by the user, by clicking

directly on live or recorded images from the camera. Pixels selected by the user for a given

color were collected into a sample set and projected into the hue-saturation-value (HSV)

color space. The value component for each sample was discarded, resulting in a sample



Figure 2-11: The block shape recognition system produced an estimate of the shape, orien-
tation, and position of each blob of color in the image.

set of hue-saturation pairs. Next, a gaussian mixture model was fitted to these samples

using expectation maximization (EM). To increase computational efficiency, these mixture

models were then discretized into two-dimensional histograms. Thus, the color calibration

process resulted in the creation of four hue-saturation histograms, one for each color.

During the color segmentation process, each incoming image was converted to the HSV

color space. Then, histogram back-propagation was performed to create a color probabil-

ity image for each of the four color models. These color probability images were then

thresholded to create binary images (color masks), where each pixel in the image indi-

cated whether or not the corresponding pixel in the original image matched the given

color model.

Each color mask (thresholded color probability image) was then handed to a blob find-

ing algorithm. The blob finder performed a depth-first search over the color mask to iden-

tify every contiguous region of the given color in the image. All blobs smaller than a given

minimum size threshold were discarded, and the remaining blobs were handed to the

shape recognition system.

The shape recognition system was responsible for classifying each blob as one of the

six possible block shapes, and also for estimating the position and orientation of each blob

given its shape classification. The system first calculated a number of important, differen-



Figure 2-12: Block tracking. In the middle image, the shape recognition system is confused
because two of the green blocks have been blobbed together, producing an incorrect clas-
sification. The block tracking system (right image) corrects this mistake using historical
information.

tiating features for each blob, such as its mass, length-to-width ratio, symmetry, and so on.

The system then used a classification tree operating on these geometrical features to assign

a shape classification to each blob, or to reject the blob as not being a good match for any

of the possible shapes.

Finally, an object tracking algorithm used the classified blobs to update the tracked

positions and orientations of each block using the new observations in conjunction with

historical information about the blocks. Since the shape recognition system typically pro-

duced very high-fidelity results, the object tracking algorithm could be implemented rela-

tively simply. The algorithm made use of the fact that, for the most part, all 24 of the blocks

would be on the table at all times, except for brief periods of movement when blocks might

disappear from one part of the table and reappear on another part of the table.

The tracking algorithm used a three-tier system whereby each tracked block could lay

"claim" to one of the newly classified blobs. Conflicts were resolved based on which block

was closest to the claimed blob. While blocks could temporarily lay claim to blobs whose

shape did not match their own, their positions and orientations would only be updated

when they were matched to blobs with the same color and shape. In the first tier, blocks

could lay claim to "strong matches," nearby blobs whose color and shape matched their

own. Next, unmatched blocks could lay claim to "loose matches," nearby blobs whose

color matched their own but whose shape did not. These loose matches were only allowed

to be claimed for a short period of time. Finally, unmatched blocks became "free agents"



after a short period of time, and were allowed to claim any unclaimed blob on the table

whose color and shape matched their own.

The object tracking algorithm worked very well, and was successful at cleaning up

many of the mistakes that would occasionally arise from sensor noise, adjacent blocks of

the same color being temporarily blobbed together, and other factors. Overall, I was very

pleasantly surprised at the accuracy of the vision system in measuring the positions and

orientations of the blocks over the course of the study.

2.3.5 The Puzzle Boxes: Tracking Object Manipulation

r 'm

Figure 2-13: Puzzle boxes in the study environment, on top of the light table.

During study Task 3, the states of the lights and controls of both puzzle boxes were

recorded. Since the boxes were computer-controlled, this recording module was quite

easy to implement. No sensors were required beyond those already present in the box

switches and buttons. On each update tick, the control software simply recorded a time

stamp, along with the current states of all of the box controls, lights, and auditory events.

Recording took place at approximately 60Hz.

In order to track the positions and orientations of the two boxes relative to the partici-



pants' hands and heads, reflective markers were mounted on each box, so that they could

be tracked by the motion capture system. The full setup of the puzzle boxes in the study

environment is shown in figure 2-13.

2.3.6 Video Recording

Figure 2-14: Two camcorders were mounted around the study area.

In order to record video of the two participants, two Sony camcorders were mounted at

the periphery of the study area (see figure 2-14). Both cameras were mounted high so as to

have a relatively unobstructed view of the tabletop, with one camera angled towards the

hands and face of the teacher and the other camera angled towards the learner. Addition-

ally, the cameras were aimed so as to avoid looking directly at any of the Vicon cameras,

whose strobing red LEDs caused undesirable streaks and artifacts in the camcorder image.

Instead of being recorded to tape, the camcorder video was digitized and compressed

live during the study interactions, preventing a considerable amount of work and tedium

at the end of the study. This had the important additional benefit that the video could be

automatically time stamped and synchronized with the other sensory streams.

To process the camcorder video, I used the BTV Pro shareware application created by



Ben Bird. The software was set up to record the camera data as MPEG-4 compressed video

streams with a resolution of 640 by 480 pixels. In order to automatically start and stop

this recording process, a wrapper module was created using our software codebase. The

wrapper module received start and stop commands over the network from the central

study module, which were then relayed to the BTV Pro application via the AppleScript

scripting language. A small but noticeable delay (about 1 second) was associated with

starting and stopping the recording process. In order to accommodate this, the wrapper

module sent receipts back to the central module with the actual recording start and stop

times, enabling accurate synchronization of the video data.

2.3.7 Data Stream Management and Synchonization

A central recording module kept track of the study state and managed the synchronization

of the other recording modules. The central module was designed to be controlled via a

simple graphical user interface as well as via a wireless presentation remote, giving a single

experimenter the ability to control the complete recording infrastructure. A simple display

presented the status of the various recording modules: "idle," "recording," or "off-line."

Using the remote, the experimenter could advance to the next task in the random task

sequence, and also start and stop recording for each task.

The central recording module generated a log of task start and stop times for each

study session. The module was responsible for sending start and stop commands over the

network to the other recording modules, along with information about which file names

to use for the various data streams.

The video recording processes which controlled the two camcorders ran on two sep-

arate Macintosh tower computers - a G5 Power Mac and an Intel Mac Pro. The other

recording modules, which recorded the motion capture data, the puzzle box data, and the

stream of images from the light table camera, were all run on the same computer as the

central module - a 4-processor, 3GHz Intel Mac Pro. Thus, with the exception of the video

recording modules, which were synchronized as described in the previous section, the



other modules could all be synchronized using the main computer's system clock, which

was used to time stamp all of the remaining data streams.

2.3.8 Study Execution and Discussion

I now turn to a discussion of the execution of the study itself, and present some qualitative

observations about the teaching and learning behavior exhibited by participants on the

various study tasks.

As mentioned above, data was gathered from 72 study participants, grouped into 36

pairs. In total, over 130 gigabytes of raw data was recorded, representing approximately

10 hours of observed task interaction. Over the course of the study, the data gathering

framework performed very well and with minimal loss of data, meaning that none of the

study interactions were dropped or discarded from the final data set. On two occasions, the

data from one of the two camcorders was interrupted, but in both cases the connection was

restored in under a minute. These were the only problems encountered with the recording

systems.

My analysis focused on two of the study tasks: Tasks 2a and 2b, two of the secret-

constraint tasks involving the foam blocks. These tasks were selected because the were the

most vigorously interactive tasks in the study (and also, interestingly, the tasks that study

participants seemed to enjoy the most). Since neither participant had enough information

to complete the task on their own, these tasks required the direct engagement and coopera-

tion of both participants. Correspondingly, I observed a rich range of dynamic, interactive

behaviors during these tasks.

To identify the emphasis and de-emphasis cues provided by the teachers in these tasks,

an important piece of "ground-truth" information was exploited: for these tasks, some of

the blocks were "good," and others of the blocks were "bad." In order to successfully

complete the task, the teacher needed to encourage the learner to use some of the blocks in

the construction of the figure, and to steer clear of some of the other blocks. In Task 2a, the

blue and red blocks were "good," while the green and yellow blocks were "bad." In Task



2b, the triangular blocks were good, the square blocks were bad, and the remaining blocks

fell into a neutral "other" category.

To set the stage, I will first describe two pairs of study interactions before diving into

a more detailed analysis of the observed cues. The first pair of interactions were for Task

2a, where the goal was to construct a sailboat figure using only red and blue blocks. In

one recorded interaction (session 27), the teacher is very proactive, organizing the blocks

almost completely before the learner begins to assemble the figure. The teacher clusters

the yellow and green blocks on one side of the table and somewhat away from the learner.

The learner initially reaches for a yellow triangle. The teacher shakes her head and reaches

to take the yellow block back away from the learner, before continuing to organize the

blocks. The learner proceeds to complete the task successfully.

In another recorded interaction (session 7), the teacher's style is very different. Instead

of arranging the blocks ahead of time, he waits for the learner to make a mistake, and then

"fixes" the mistake by replacing the learner's block with one that fits the constraint. When

the learner positions a green rectangle as part of the mast of the sailboat figure, the teacher

quickly reaches in, pulls the block away, and replaces it with a red rectangle. Later, the

teacher fixes a triangular part of the sail in a similar way, after which the learner completes

the task successfully.

The second pair of interactions were for Task 2b, where the goal was to construct a

truck/train figure using all of the triangular blocks, and none of the square blocks. In

one interaction (session 2), the teacher provides some very direct structuring of the space,

pulling the square blocks away from the learner and placing the triangular blocks in front

of her. In contrast, in another interaction (session 21), the teacher almost entirely refrains

from moving the blocks. She instead provides gestural feedback, tapping blocks and shak-

ing her hand "no" when the learner moves an inadmissible block, and nodding her head

when the learner moves an acceptable block.

As these descriptions suggest, I observed a wide range of embodied cues provided by

the teachers in the interactions for these two tasks, as well as a range of different teaching



Table 2.2: Cues of positive emphasis. Embodied cues provided by the teacher and directed
toward good blocks.

Simple Hand and Head Cues

tapping with the index finger
touching with the index finger
pointing
framing with both hands of clustered good blocks
targeting by gaze
Block Movement Cues
block movement towards learner's body or hands
block movement towards center of table
addition of block to figure (often, via replacement of a bad block)
placement of blocks along edge of table closest to learner
clustering with other good blocks
Compound Cues
head nodding accompanying pointing or hand contact with block
head nodding following learner's pointing or hand contact with block
shrugging gesture following learner's block movement - "I don't know/seems OK"
"thumbs up" gesture following pointing or sequence of pointing gestures
pointing back and forth between clustered good blocks and the learner
Emphasis Through Inaction
observation of learner's actions, accompanied by lack of intervention
passing over block in process of providing negative emphasis

styles. Table 2.2 enumerates some of the cues of positive emphasis that were observed.

These were cues provided by the teachers and directed towards good blocks, in the pro-

cess of guiding the learners to interact with these blocks. Table 2.3 enumerates some of

the negative cues that were observed, which tended to steer the learners away from the

targeted blocks.

Positive cues included simple hand gestures such as tapping blocks, touching blocks,

and pointing at blocks with the index finger. Teachers sometimes used both hands to frame

the space occupied by single good blocks or collections of blocks to use. These cues were

often accompanied by gaze targeting, or looking back and forth between the learner and

the target blocks.



Table 2.3: Cues of negative emphasis. Embodied cues provided by the teacher and directed
toward bad blocks.

Simple negative cues included covering up blocks with the hands, preventing visibil-

ity of and physical access to the blocks. Blocks were occasionally held fast by the teachers,

so that they could not by used by the learners, or were kept in prolonged contact by the

teachers despite the proximity of the learner's hands. Teachers would occasionally inter-

rupt reaching motions directly by blocking the trajectory of the motion or even by touching

or (rarely) lightly slapping the learner's hand.

A number of compound cues were observed, often involving the specification of a

particular block via pointing or tapping, accompanied by an additional gestural cue sug-

gesting the valence of the block. Such gestures included head nodding, the "thumbs up"

gesture, and even shrugging, which often seemed to be interpreted as meaning "I'm not

Simple Hand and Head Cues
covering blocks with the hands
holding blocks fast with the fingers
prolonged contact with blocks despite proximity of learner's hands
interrupting learner's reaching action by blocking learner's hand
interrupting learner's reaching action by touching or lightly slapping learner's hand
Block Movement Cues
block movement away from learner's body or hands
block movement away from center of table
removal of block from figure (sometimes followed by replacement with a good block)
placement of blocks along edge of table closest to teacher
clustering with other bad blocks
interrupting the learner's reaching action by grabbing away the target block
Compound Cues
head shaking accompanying pointing or hand contact with block
head shaking following learner's pointing or hand contact with block
"thumbs down" gesture following pointing or sequence of pointing gestures
vigorous horizontal "chop" gesture
hand "wagging" gesture (with index finger or all fingers extended)
large "X" symbol formed using both forearms
Emphasis Through Inaction
passing over block in process of providing positive emphasis



sure, but it seems OK." Teachers nodded in accompaniment to their own pointing gestures,

and also in response to actions taken by the learners, including actions that seemed to be

direct queries for information from the teacher.

Correspondingly, a number of compound, negative cues were observed. These in-

cluded head shaking, the "thumbs down" gesture, and side-to-side finger or hand wag-

ging gestures. A number of teachers used a vigorous horizontal "chop" gesture to identify

bad blocks (with the palm down, the hand starts out near the center of the body and then

moves rapidly outward and down). Another negative gesture was a large "X" symbol

formed using both forearms.

Inaction, in some contexts, was another important emphasis cue. When the teacher

watched the learner's actions and did not intervene, this often seemed to be interpreted

as positive feedback. In a similar vein, when the teacher's gestures passed over partic-

ular blocks on the way to provide negative or positive feedback about other blocks, the

passed-over blocks could be seen as implicitly receiving some of the opposite feedback.

For example, when the teacher left some blocks in place, while selecting other blocks and

moving them away from the center of the table, the blocks left behind seemed to attain

some positive status.

Another important set of cues were cues related to block movement and the use of

space. To positively emphasize blocks, teachers would move them towards the learner's

body or hands, towards the center of the table, or align them along the edge of the table

closest to the learner. Conversely, to negatively emphasize blocks, teachers would move

them away from the learner, away from the center of the table, or line them up along the

edge of the table closest to themselves. Teachers often devoted significant attention to

clustering the blocks on the table, spatially grouping the bad blocks with other bad blocks

and the good blocks with other good blocks. The learner's attention could then be directed

towards or away from the resulting clusters using many of the gestural cues previously

discussed. These spatial scaffolding cues were some of the most prevalent cues in the

observed interactions. In particular, the teachers in the study, with very few exceptions,

consistently used movements towards and away from the body of the learner to encourage



the use of some of the blocks on the table, and discourage the use of other blocks.

Having observed this collection of embodied emphasis cues, my next step was to es-

tablish how reliable and consistent these cues were in the recorded data set, and most

importantly, how useful these cues were for robotic learners. In the next section, I describe

the tools I developed for automatically analyzing some of these cues and generating quan-

titative data about their reliability. In later chapters, I describe the development of an even

more powerful tool: a robotic learning architecture for directly assessing the utility of these

cues for automated learning systems.

2.3.9 Data Analysis Tools and Pipeline

In this section, I describe the automated data analysis tools that were created to detect and

measure the emphasis and de-emphasis cues that teachers provided in the study. I then

present the quantitative results generated by these tools.

For all of the quantitative and evaluative data presented in this thesis, a cross-validation

methodology was followed. All of the data analysis tools and learning algorithms were im-

plemented and tested using a small set of study interactions, pulled from just 6 of the 36

study sessions. Reported data were generated by running these same tools and algorithms

over the remaining 30 study sessions. While these sessions did not represent completely

"blind" data, since I was present when their data was initially collected, I believe that

this methodology was nevertheless valuable for minimizing the risk of overfitting by the

systems presented in this thesis.

I developed a set of data visualization tools to assist with the playback and analysis

of the study data. My data visualization environment is shown in figure 2-15. Using a

simple graphical interface, the user could select a study session by number and choose

a particular task to load in for analysis. A time scrubber allowed the user to control the

position and speed of playback of the synchronized data streams. The two windows at the

bottom of the screen displayed camcorder footage from the two different camera recording

angles. In both shots, the teacher is on the left and the learner is on the right. The big blue



Figure 2-15: Data visualization environment.

window presented the motion capture data, with tracking information about the position

and orientation of the table, heads, and hands. The window on the right of the screen

showed the view from the under-table camera. In this view, the teacher is at the top of

the screen and the learner is at the bottom. This environment could also be run in "batch-

mode" for automated traversal and analysis of the data set.

As mentioned previously, my quantitative analysis focused on two of the study tasks:

Tasks 2a and 2b, two of the secret-constraint tasks involving the foam blocks. To analyze

the behavioral data for these tasks, I developed an automated pipeline for extracting high-

level events from the raw, recorded sensor data. This pipeline proceeded in a number of

stages. In the first stage, the recorded data about the positions of the reflective markers

was run through the rigid object tracking system, producing a trace of the positions and
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orientations of the heads, hands, table, and boxes (for more information on this system, see

section 2.3.3, above). Also in this stage, the images from the under-table camera were run

through the block tracking system, producing a trace of the positions and orientations of

all of the foam blocks (see section, 2.3.4, above). By recording the output of these tracking

systems, I produced compact streams of information about the objects in the study envi-

ronment, information that could then be randomly traversed and queried in later stages of

processing.

Figure 2-16: The blocks were mapped into the coordinate frame of the motion capture
system, allowing for 3D visualization and analysis of all of the tracked objects. On the
right, the scene is shown from a point of view over the learner's shoulder. The learner's
right hand, shown as orange dots, is hovering over the red triangular block.

In the next stage, the tracking information about the foam blocks was mapped into the

coordinate system of the motion capture system, so that all of the tracked study objects

could be analyzed in the same, three-dimensional frame of reference. To accomplish this,

a correspondence was established between four pixel locations in the under-table camera

image and four positions that were specified relative to the rigid arrangement of reflective

markers attached to the table. The four locations that were selected were the endpoints of

the black tape lines that delineated the block tracking region, since these spots could be

easily identified from both below the table as well as from above. These four correspon-

dence points were used to calculate a linear transformation for mapping between image

coordinates and the spatial coordinates of the motion capture system. A simple interface

was created which allowed the user to click on the correspondence points in the camera im-

age stream. Luckily, the mounting of the under-table camera proved to be steady enough



that the camera did not move perceptibly relative to the table over the course of the study,

so this correspondence only needed to be specified once for the entire set of collected data.

With all of the study objects now in the same frame of reference, the next stage of pro-

cessing used spatial and temporal relationships between the blocks and the bodies of the

participants to extract a stream of potentially salient events that occurred during the inter-

actions. These events included, among other things, block movements and hand-to-block

contact events, which were important focal points for my analysis. My processing system

recognized these events, and attempted to ascribe agency to each one (i.e., which agent -

learner or teacher - was responsible for this event?). Finally, statistics were compiled look-

ing at different features of these events, and assessing their relative utility at differentiating

the "good" blocks from the "bad" blocks.

In order to recognize block contact events, a "grab" location for each hand was esti-

mated by aggregating a number of examples of grasping by the given hand, and looking

at the position of the grasped block relative to the tracked location of the hand (grasping

typically occurred in the palm, whereas the reflective markers were mounted to the glove

on the back of the hand). Subsequent block contact events were recognized by simply

thresholding the distance between this "grab" location and the centroid of potential target

blocks.

A detector for raw block movements was constructed on top of the block tracking sys-

tem, and primarily looked at frame-to-frame changes in position for each block to classify

motion. A small distance threshold was used to classify block motion rather robustly.

To recognize temporally-extended block movements, this raw motion detector was com-

bined with a simple temporal filter which filtered out very brief movements as well as brief

moments of stillness within extended movements, thus smoothing out block motion tra-

jectories. Agency was ascribed to each recognized block movement event by determining

whose hand was closest to the given block throughout the duration of the movement.

By running the interaction data through these event recognizers, I produced a stream

of sequential event information corresponding to some of the high-level actions taken by



the study participants during the tasks. I then analyzed some interesting features of these

events to assess their relative ability to differentiate good blocks from bad.
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Figure 2-17: Change in distance to the body of the learner for block movements initiated
by the teacher. Negative values represent movement towards the learner, while positive
values represent movement away from the learner.

One of the most interesting features that I analyzed was movement towards and away

from the bodies of the participants. The results of my analysis are summarized in fig-

ures 2-17 and 2-18. As can be seen in figure 2-17, the aggregate movement of good blocks

by teachers is biased very substantially in the direction of the learners, while the aggre-

gate movement of bad blocks by teachers is biased away from the learners. In fact, over

the course of all of the 72 analyzed interactions, teachers differentiated the good and bad

blocks by more than the length of a football field in terms of their movements relative to

the bodies of the learners.

Looking at individual movements, travel towards and away from the body of the

learner was strongly correlated with whether or not the given block was good or bad.
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Movements Towards Learner by Block Type Movements Away From Learner by Block Type

Figure 2-18: Movements towards the body of the learner initiated by the teacher were pre-
dictive of good blocks. Movements away from the body of the learner were predictive of
bad blocks. The differentiating power of these movements increased for more substantial
changes in distance towards and away.

Movements towards the body of the student were applied to good blocks 42% of the time,

bad blocks 32% of the time, and other blocks 26% of the time. For movements that changed

the distance towards the learner by more than 10cm, these differences were more pro-

nounced: 70% of such movements were applied to good blocks, 25% to other blocks, and

just 5% to bad blocks. For changes in distance of 20cm or greater, fully 83% of such move-

ments were applied to good blocks versus 13% for other blocks and 5% for bad blocks.

A similar pattern was seen for block movements away from the body of the learner, with

larger changes in distance being strongly correlated with a block being bad, as shown in

figure 2-18.

These results are very exciting for a number of reasons. First, I have used an entirely

automated data processing system to produce quantitative results that match up well with

the qualitative observations of what happened in the interactions between the study par-

ticipants. This is an encouraging validation of my data-gathering technology and method-

ology. Second, I have identified an embodied cue which might be of significant value to
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Movements Within 5 Seconds by Block Type

Figure 2-19: Learners moving a block, followed by teachers moving the same block within
5 seconds, was highly indicative of the given block being bad.

a robotic system learning in this task domain. The results suggest that such a robot, ob-

serving a block movement performed by a teacher, might be able to make a highly reliable

guess as to whether the target block should or should not be used by measuring the di-

rection and distance of the movement. Such a cue, which can be interpreted simply and

reliably even within the context of a chaotic and fast-paced interaction, is exactly what I

was looking for.

Another feature that I analyzed was the timing of the actions taken by the teacher

relative to the actions of the learner. The results are summarized in figure 2-19. As can be

seen, when the student moves a block, and then the teacher moves the same block within

5 seconds, the given block is good only 23% of the time, bad 68% of the time, and other 8%

of the time. Thus, I have identified another highly reliable cue that a robot might be able

to use to discover which blocks to steer clear of in this task domain.
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2.4 Summary: Cues That Robotic Learners Need to Understand

In this chapter, I have presented the results of two studies highlighting the usefulness

of embodied cues including visual perspective, action timing, and spatial emphasis to hu-

mans engaging in realistic teaching and learning tasks. These are clear, useful cues that real

teachers provide and that real learners take advantage of. Robots should also pay attention

to these cues in order to learn more naturally and effectively from humans in social envi-

ronments. In the next chapter, I describe a pair of learning algorithms that I constructed

to directly evaluate the utility of these cues, and describe the mechanisms of social atten-

tion and visual perspective taking that I incorporated into the Leonardo robot's cognitive

architecture. In chapter 4, I present the learning performance of the robot on benchmark

tasks drawn from the two studies, providing quantitative evidence for the utility of visual

perspective, action timing, and spatial scaffolding as attention-direction cues for robotic

learning systems.



Chapter 3

Learning Algorithms and Architecture

In this chapter, I describe a pair of learning algorithms that I constructed to evaluate the

utility of the cues identified in the studies: visual perspective, action timing, and spatial

scaffolding. I situated these learning algorithms within a large architecture for robot cogni-

tion, augmented with novel mechanisms for social attention and visual perspective taking.

Designing an integrated learning system in this way supported not only the direct evalu-

ation of the robot's performance on benchmark tasks drawn from the studies, but also a

number of demonstrations of interactive social learning.

In this chapter, I first provide an overview of the self-as-simulator cognitive architec-

ture. I then describe the key components of this architecture, focusing on mechanisms for

understanding the environment from the visual perspective of the teacher, social mecha-

nisms of attention direction and enhancement, and a unified framework for social action

recognition and behavior generation. Finally, I describe the algorithms that I developed

within this architecture for learning tasks from human teaching behavior, and describe

how these algorithms take advantage of visual perspective, action timing, and spatial scaf-

folding cues.

The architecture, along with all of the demonstrations and evaluations described in this

thesis, was designed to run on the 65 degree of freedom humanoid robot Leonardo and its

graphical simulator, shown in figure 3-1.



Figure 3-1: The Leonardo robot and graphical simulator

3.1 Self-as-Simulator Cognitive Architecture

My approach to endowing machines with socially-cognitive learning abilities is inspired

by leading psychological theories and recent neuroscientific evidence for how human brains

might infer the mental states of others and the role of imitation as a critical precursor.

Specifically, Simulation Theory holds that certain parts of the brain have dual use; they are

used to not only generate our own behavior and mental states, but also to predict and in-

fer the same in others. To understand another person's mental process, we use our own

similar brain structure to simulate the introceptive states of the other person [Davies and

Stone, 1995, Gallese and Goldman, 1998, Barsalou et al., 2003].

For instance, Gallese and Goldman [Gallese and Goldman, 1998] propose that a class

of neurons discovered in monkeys, labeled mirror neurons, are a possible neurological

mechanism underlying both imitative abilities and Simulation Theory-type prediction of

the behavior of others and their mental states. Further, Meltzoff and Decety [Meltzoff and

Decety, 2003] posit that imitation is the critical link in the story that connects the function

of mirror neurons to the development of mindreading. In addition, Barsalou [Barsalou

et al., 2003] presents additional evidence from various social embodiment phenomena that

when observing an action, people activate some part of their own representation of that

action as well as other cognitive states that relate to that action.



Inspired by this theory, my simulation-theoretic approach and implementation enables

a humanoid robot to monitor an adjacent human teacher by simulating his or her behavior

within the robot's own generative mechanisms on the motor, goal-directed action, and

perceptual-belief levels. This grounds the robot's information about the teacher in the

robot's own systems, allowing it to make inferences about the human's likely beliefs in

order to better understand the intention behind the teacher's demonstrations.

Recognition/Inference (Mindreading)

Generation

Figure 3-2: System architecture overview.

An overview of the robot's cognitive architecture, based on [Blumberg et al., 2002]

and [Gray, J. et al., 2005], is shown in Figure 3-2. The system diagram features two concen-

tric loops highlighting the primary flow of information within the architecture. The outer

loop is the robot's main behavior generation pipeline. Information from the environment

is provided by the robot's sensors. Incoming sensory events are processed by the Percep-

tion System, which maintains a tree of classification functions known as the percept tree.

Perceptual information extracted by the percept tree is then clustered into discrete object

representations known as object beliefs by the robot's Belief System. Object beliefs encode

the tracked perceptual histories of the discrete objects that the robot perceives to exist in

its environment.



The robot's object beliefs, in conjunction with internal state information, affect the de-

cisions made by the robot's planning and action selection mechanisms. These action de-

cisions result in commands that are processed by the robot's Motor System. The Motor

System is a posegraph-based motor control system that combines procedural animation

techniques with human-generated animation content to generate expressive movements

of the robot's body. The Motor System ultimately controls the motors which actuate the

physical body of the robot, and also controls the virtual joints of the animated robot in the

robot's 3D graphical simulation environment.

The inner loop in Figure 3-2 is not a loop at all, but rather two separate streams of

information coming in from the robot's sensory-motor periphery and converging towards

the central cognitive mechanisms of action selection and learning. These incoming streams

highlight the dual use of the robot's cognitive mechanisms to not only generate the behav-

ior of the robot, but also to recognize the behavior of human interaction partners and infer

their mental states.

My implementation computationally models simulation-theoretic mechanisms through-

out several systems within the robot's overall cognitive architecture. Within the motor sys-

tem, mirror-neuron inspired mechanisms are used to map and represent perceived body

positions of another into the robot's own joint space to conduct action recognition. Leo

reuses his belief-construction systems, and adopts the visual perspective of the human,

to predict the beliefs the human is likely to hold to be true given what he or she can vi-

sually observe. Finally, within the goal-directed behavior system, where schemas relate

preconditions and actions with desired outcomes and are organized to represent hierar-

chical tasks, motor information is used along with perceptual and other contextual clues

(i.e., task knowledge) to infer the human's goals and how he or she might be trying to

achieve them (i.e., plan recognition).

In the following sections, I describe the most salient components of this architecture:

the mechanisms of visual perspective taking and belief inference, the mechanisms of social

attention, and the unified framework for social action recognition and behavior generation.



3.2 Perspective Taking Mechanisms

I turn now to the robot's visual perspective taking mechanisms. While others have iden-

tified that visual perspective taking coupled with spatial reasoning are critical for effec-

tive action recognition [Johnson and Demiris, 2005], understanding spatial semantics in

speech [Roy et al., 2004], and human-robot collaboration on a shared task within a physi-

cal space [Trafton et al., 2005], and collaborative dialog systems have investigated the role

of plan recognition in identifying and resolving misconceptions (see [Carberry, 2001] for

a review), this is the first work to examine the role of perspective taking for introceptive

states (e.g., beliefs and goals) in human-robot learning tasks.

3.2.1 Belief Modeling

In order to convey how the robot interprets the environment from the teacher's perspec-

tive, I must first describe how the robot understands the world from its own perspective.

This section presents a technical description of two important components of the cogni-

tive architecture: the Perception System and the Belief System. The Perception System

is responsible for extracting perceptual features from raw sensory information, while the

Belief System is responsible for integrating this information into discrete object representa-

tions. The Belief System represents an integrated approach to sensor fusion, object tracking

and persistence, and short-term memory.

On every time step, the robot receives a set of sensory observations O = {0, 02, ... , ON

from its various sensory processes. As an example, imagine that the robot receives infor-

mation about buttons and their locations from an eye-mounted camera, and information

about the button indicator lights from an overhead camera. On a particular time step, the

robot might receive the observations O = {(red button at position (10,0,0)), (green button

at (0,0,0)), (blue button at (-10,0,0)), (light at (10,0,0)), (light at (-10,0,0))}. Information is ex-

tracted from these observations by the Perception System. The Perception System consists

of a set of percepts P = {Pl, P2, ..., PK}, where each p E P is a classification function defined



such that

p(o) = (m, c, d), (3.1)

where m, c E [0, 1] are match and confidence values and d is an optional derived feature

value. For each observation oi E 0, the Perception System produces a percept snapshot

si = {(p, m, c, d)ip E P, p(oi) = (m,c, d),m * c > k}, (3.2)

where k E [0, 1] is a threshold value, typically 0.5. Returning to the example, the robot

might have four percepts relevant to the buttons and their states: a location percept which

extracts the position information contained in the observations, a color percept, a button

shape recognition percept, and a button light recognition percept. The Perception System

would produce five percept snapshots corresponding to the five sensory observations, con-

taining entries for relevant matching percepts.

These snapshots are then clustered into discrete object representations called beliefs by

the Belief System. This clustering is typically based on the spatial relationships between

the various observations, in conjunction with other metrics of similarity. The Belief System

maintains a set of beliefs B, where each belief b E B is a set mapping percepts to history

functions: b = {(Px, hx), (py, hy), ... }. For each (p, h) E b, h is a history function defined such

that

h(t) = (m', c', d') (3.3)

represents the "remembered" evaluation for percept p at time t. History functions may

be lossless, but they are often implemented using compression schemes such as low-pass

filtering or logarithmic timescale memory structures.

A Belief System is fully described by the tuple (B, G, M, d, q, w, c), where

* B is the current set of beliefs,

* G is a generator function map, G : P G, where each g E G is a history generator

function where g(m, c, d) = h is a history function as above,



* M is the belief merge function, where M(bl, b2) = b' represents the "merge" of the

history information contained within bl and b2,

Sd = dl,d 2, ..., dL is a vector of belief distance functions, di : B x B -

Sq = q, q2, ..***, qL is a vector of indicator functions where each element qi denotes the

applicability of di, qi : B x B -- 0, 1},

* w = w1, w2,..., WL is a vector of weights, wi E R, and

* c = c1, 2, ... , Cj is a vector of culling functions, cj : B - {0, 1}.

Using the above, I define the Belief Distance Function, D, and the Belief Culling Function,

C:
L

D(bl, b2) = wiqi(bi, b2)di(bl, b2 ) (3.4)
i=1

C(b) = -c1 (b) (3.5)
j=1

The Belief System manages three key processes: creating new beliefs from incoming

percept snapshots, merging these new beliefs into existing beliefs, and culling stale beliefs.

For the first of these processes, I define the function N, which creates a new belief bi from

a percept snapshot si:

bi = N(si) = {(p, h)I(p, m, c,d) E si,

g = G(p), h = g(m, c, d)} (3.6)

For the second process, the Belief System merges new beliefs into existing ones by

clustering proximal beliefs, assumed to represent different observations of the same object.

This is accomplished via bottom-up, agglomerative clustering as follows.

For a set of beliefs B:

1: while 3bx, by E B such that D(bx, by) < thresh do

2: find bl, b2 E B such that D(bl, b2) is minimal



3: B <- BU {M(bl, b2)} \ {b, b2}

4: end while

I label this process merge(B). Finally, the Belief System culls stale beliefs by removing all

beliefs from the current set for which C(b) = 1. In summation, then, a complete Belief

System update cycle proceeds as follows:

1: begin with current belief set B

2: receive percept snapshot set S from the Perception System

3: create incoming belief set B1 = {N(si)lsi E S}

4: merge: B -- merge(B U BI)

5: cull: B <- B \ {bb E B,C(b)= 1}

Returning again to the example, the Belief System might specify a number of relevant

distance metrics, including a measure of Euclidean spatial distance along with a number of

metrics based on symbolic feature similarity. For example, a symbolic metric might judge

observations that are hand-shaped as distant from observations that are button-shaped,

thus separating these observations into distinct beliefs even if they are collocated. For the

example, the merge process would produce three beliefs from the original five observa-

tions: a red button in the ON state, a green button in the OFF state, and a blue button in

the ON state.

The Belief System framework supports the implementation of a wide range of ob-

ject tracking methods, including advanced tracking techniques such as Kalman filters

[Kalman, 1960] and particle filters [Carpenter et al., 1999, Arulampalam et al., 2002]. The

ability to specify multiple distance metrics allows sophisticated, general-purpose tracking

methods such as these to operate side-by-side with hand-crafted rules which encode prior

domain knowledge about object categories, dynamics and persistence.

3.2.2 Perspective Taking and Belief Inference

I now describe the integration of perspective taking with the mechanisms for belief mod-

eling discussed above. Inferring the beliefs of the teacher allows the robot to build task
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Generation

Figure 3-3: Architecture for modeling the human's beliefs re-uses the robot's own architec-
ture for belief maintenance.

models which capture the intent behind human demonstrations.

When demonstrating a task to be learned, it is important that the context within which

that demonstration is performed be the same for the teacher as it is for the learner. How-

ever, in complex and dynamic environments, it is possible for the instructor's beliefs about

the context surrounding the demonstration to diverge from those of the learner. For ex-

ample, a visual occlusion could block the teacher's viewpoint of a region of a shared

workspace (but not that of the learner) and consequently lead to ambiguous demonstra-

tions where the teacher does not realize that the visual information of the scene differs

between them.

To address this issue, the robot must establish and maintain mutual beliefs with the

human instructor about the shared context surrounding demonstrations. The robot keeps

track of its own beliefs about object state using its Belief System, described above. In

order to model the beliefs of the human instructor as separate and potentially different

from its own, the robot re-uses the mechanism of its own Belief System. These beliefs that

represent the robot's model of the human's beliefs are in the same format as its own, but



are maintained separately so the robot can compare differences between its beliefs and the

human's beliefs.

As described above, belief maintenance consists of incorporating new sensor data into

existing knowledge of the world. The robot's sensors are all in its reference frame, so

objects in the world are perceived relative to the robot's position and orientation. In order

to model the beliefs of the human, the robot re-uses the same mechanisms used for its own

belief modeling, but first transforms the data into the reference frame of the human (see

Fig. 3-3).

Leo's belief about Button:

I position: front side
state: on off

Leo's model of human's belief about Button:

position: front side
state: on | off

Button Visible to Human

Time

Human Arrives Leo Moves Button Button Human removes
Behind Occlusion Turned OFF Occlusion

Figure 3-4: Timeline following the progress of the robot's beliefs for one button. The robot
updates its belief about the button with any sensor data available - however, the robot only
integrates new data into its model of the human's belief if the data is available when the
human is able to perceive it.

The robot can also filter out incoming data that it believes is not perceivable to the hu-

man, thereby preventing that new data from updating the model of the human's beliefs.

This incoming data might come from an object that resides outside the visual cone of the

human (determined by the human's position and head orientation). Additionally, if the

robot perceives an occlusion, data coming from objects on the opposite side of that oc-

clusion from the human can be filtered before updating the robot's model of the human's

beliefs.

Maintaining this parallel set of beliefs is different from simply adding metadata to the

robot's original beliefs because it reuses the entire architecture which has mechanisms for



object permanence, history of properties, etc. This allows for a more sophisticated model

of the human's beliefs. For instance, Fig. 3-4 shows an example where this approach keeps

track of the human's incorrect beliefs about objects that have changed state while out of

the human's view. This is important for establishing and maintaining mutual beliefs in

time-varying situations where beliefs of individuals can diverge over time.

3.3 Social Attention Mechanisms

In this section, I introduce another important system integrated into the robot's perceptual

pipeline: the mechanisms of social attention that help to guide the robot's gaze behavior,

action selection, and learning. These mechanisms also help the robot to determine which

objects in the environment the teacher's communicative behaviors are about.

Shared attention is a critical component for human-robot interaction. Gaze direction in

general is an important, persistent communication device, verifying for the human partner

what the robot is attending to. Additionally, the ability to share attention with a partner is

a key component to social attention [Scassellati, 2001].

Figure 3-5: Saliency of objects and people are computed from several environmental and
social factors.

Referential looking is essentially "looking where someone else is looking". Shared at-

tention, on the other hand, involves representing mental states of self and other [Baron-



Cohen, 1991]. To implement shared attention, the system models both the attentional focus

(what is being looked at right now) and the referential focus (the shared focus that activity

is about). The system tracks the robot's attentional focus, the human's attentional focus,

and the referential focus shared by the two.

Figure 3-6: Leo in his workspace with a human partner. The human's attention on the toy
influences the robot's attention as well as the referential focus.

Leo's attentional system computes the saliency (a measure of interest) for objects in the

perceivable space. Overall saliency is a weighted sum of perceptual properties (proximity,

color, motion, etc.), the internal state of the robot (i.e., novelty, a search target, or other

goals), and social cues (if something is pointed to, looked at, talked about, or is the ref-

erential focus saliency increases). The item with the highest saliency becomes the current

attentional focus of the robot, and determines the robot's gaze direction [Breazeal, 2002].

The human's attentional focus is determined by what he or she is currently looking at.

Assuming that the person's head orientation is a good estimate of their gaze direction, the

robot follows this gaze direction to determine which (if any) object is the attentional focus.

The mechanism by which infants track the referential focus of communication is still

an open question, but a number of sources indicate that looking time is a key factor. This

is discussed in studies of word learning [Baldwin and Moses, 1994, Bloom, 2002]. For



example, when a child is playing with one object and they hear an adult say "It's a modi",

they do not attach the label to the object they happen to be looking at, but rather redirect

their attention to look at what the adult is looking at, and attach the label to this object.

For the referential focus, the system tracks a relative - looking - time for each of the

objects in the robot's environment (relative time the object has been the attentional focus

of either the human or the robot). The object with the most relative - looking - time is

identified as the referent of the communication between the human and the robot. Fig. 3-6

shows the robot and human sharing joint visual attention. The robot has tracked the hu-

man's head pose and pointing gesture to determine the human's attentional focus, which

in turn made this object more salient and thus the robot's own attentional focus, thereby

casting it as the referential focus of the communication.

While these attentional saliency mechanisms do not play an important role in the learn-

ing algorithms described at the end of this chapter, they are a critical part of the interactive

demonstrations discussed in chapter 4. The saliency mechanisms, in conjunction with the

learning algorithms, directly influence the robot's gaze and choice of action as it responds

to the cues provided by the human teachers. In particular, the robot's gaze is a crucial feed-

back channel in these interactions, making the state of the robot's cognition and learning

more transparent and guidable for the human teacher.

3.4 Unified Social Activity Framework

The final important element of the self-as-simulator cognitive architecture is its unified

framework for social action recognition and behavior generation. In the activity frame-

work, the actions of the other are interpreted as learning-directed communications which

constrain the exploratory behavior of the robot. As an example, imagine that a person in

the environment points to a box. They might be initiating any of a number of different

interactions. Do they:

* want to play an imitative game? (imitation)



* want me to engage with the box or its contents? (teaching)

* want the object in the box for themselves? (collaboration)

How I interpret the person's actions will have a profound effect upon my subsequent be-

havior. Gauging their intent correctly is important for the success of the interaction. I seek

to build robots that can flexibly and adaptively engage in this process of interpretation,

making good initial guesses and recovering gracefully from mistakes. By responding sen-

sibly to the actions of the human, the robot will be well situated to take advantage of the

natural guidance that the human can provide.

3.4.1 Action Representation: Process Models

In this section I introduce a new action representation for the robot, motivated by the need

for a probabilistic, integrated framework for action recognition, production, and expecta-

tion. I see such a framework as a key piece of the simulation theoretic approach to social

interaction, collaboration, and learning, where it is critical to establish a common ground

between the behavior of the self and the behavior of the other.

At the heart of the action representation is the action tuple, a learning-friendly repre-

sentation based on [Blumberg et al., 2002]. An action tuple represents a basic, temporally-

extended action undertaken by the robot or another agent. An action tuple A is fully

described by the tuple (t, a, o, d, g), where

* t is the triggering context, an expectation about the state of the world when the action

begins,

* a is the physical action,

* o is the object in the world that the physical action relates to,

* d is the do-until context, an expectation about the state of the world during the action

and when the action finishes, and



* g indicates the agent who performs the action, important in a collaborative scenario.

In order to create a flexible framework which encompasses action recognition, produc-

tion, and expectation, I embed the action tuple within a more sophisticated representation

called a process model. A process model M is described by the tuple (S, n), where

* S = {A 1, A 2, ... , AK) is a set of action tuples, and

* n is a next-state expectation function.

The function n is defined such that n(.) = (Fn, Pn), where

* Fn = {M 1, M2, ... M1} is a set of possible future process models, and

* Pn: FN - [0, 1] is a probability distribution function, Yz=1 p(Mj) = 1.

I denote the simplest process model, which specifies a single action tuple A' and which is

agnostic about future states, as MA', MAI = ({A'}, *).

The process model representation is strongly related to other action representations for

learning which support temporal abstraction, such as options [Sutton et al., 1999, Singh

et al., 2005], and indeed parts of the process model framework have been implemented us-

ing the options formalism. The representational framework is also inspired by temporally-

sophisticated action recognition techniques such as past-now-future networks [Pinhanez,

1999] and event logic [Siskind, 2001], and is clearly related to representations from the

planning literature [Allen, 1994, Weld, 1994]. The process model framework is a relatively

simple implementation based on these established techniques; the technical details and

terminology are introduced here to support the discussion of my novel approach to explo-

ration and social guidance.

I now provide a sketch of how process models can be used for action generation, which

will be useful for my subsequent discussion of how recognized actions can be used to con-

strain the robot's exploration of its environment. Fig. 3-7 contains a description of the core



action selection algorithm for process models. The action selection mechanism maintains

a set of core process models C, along with a working set of process models W. The core

process models represent the robot's built-in, learned, or remembered models of its own

behavior and the behavior of others in its environment. Each core process model is a seed

for generating an extended interaction with the world. The working set represents the

process models currently under consideration for describing the state of the environment

and the present interaction.

Our action selection mechanism maintains a set of core process models C, along with a working set of
process models W. Action selection proceeds as follows:

1: initialize the working set to the core set: W +- C
2: compute the probability distribution function r : W -4 [0, 1] based on the applicability of each

M E W in the current sensorimotor context
3: for each time step do
4: compute the biased probability distribution function b : W -4 [0, 1] based on r and the system's

goals and other biases
5: execute process model M' by selecting probabilistically over b
6: collect the selection set Q = {the I models M E W that are most consistent with M'}, where 1

is a constant that can vary with processing constraints
7: initialize the set of expected future models E = 0 and the probability distribution function s :

E -+ [0, 1]
8: for each M E Q do
9: compute n(.) = (F,,pn)

10: E- EUF,n
11: s(f) <- r(M) -p,(f) for each f c F,
12: end for
13: renormalize s over E
14: update the working set: W +- E U C
15: receive new perceptual information from the world
16: update r based on s and the applicability of each M E W in the current sensorimotor context
17: end for

Figure 3-7: Action selection algorithm for process models.

On every time step, a probability distribution function r is computed over the process

models in the working set which encodes the applicability of each model given the current

sensorimotor context. This distribution is then biased by the system's current goals, and

the resulting biased distribution is sampled to select a process model M' for execution.

The system then identifies the set of models, called the selection set, that are still applicable

given the choice of action. As an example, imagine that the robot has decided to open a

box. Multiple extended processes might be consistent with this behavior: opening the box

might facilitate the retrieval of a tool from the box, or it might enable the human to store a

toy in the box, and so on. All of these process models would be included in the selection

set, as long as they are not explicitly ruled out by the current context.



Once the selection set is assembled, it is used to generate an expectation about the next

state of the world. This expectation consists of a set of possible future process models,

along with a probability distribution over these models. This expectation set becomes the

working set for the next time step, after any missing core models are added back in. The

action selection mechanism makes sure that the working set always contains each core

process model, including those that are highly unlikely given the current scenario. This

guarantees that while the system devotes most of its attention to the most likely models, it

can still respond to unexpected events that may necessitate a change of strategy.

3.4.2 Exploration Representation: Interpretation Modes

In this section, I introduce my approach to using the perceived actions of the other as dy-

namic constraints on exploration. As described in the previous section, the process model

representation supports an integrated framework for action production and recognition.

Using the same representation for both production and recognition greatly simplifies the

problem of shaping the robot's behavior through perceived social action.

The robot's exploration mechanism maintains a set of interpretation modes D, where

each I E D corresponds to a particular exploration strategy, generating possible behavioral

responses to the perceived action of the other. Specifically, each I C D is a mapping such

that I(M) = V, where V is a set of process model variants on M.

The robot's exploration system operates by observing the actions of the human and

building process models of their behavior. When a model M' is recognized, the system

selects an interpretation mode I' E D, evaluates I'(M') = V', and incorporates V' into the

robot's current set of working models W. If pursuing one of these new process models

results in a favorable outcome, the new model may be added to the robot's set of core

process models for later use, exploration, and refinement.

Each interpretation mode is an implementation of a different learning question. In

selecting a particular mode, the system takes a stance about how it should focus its explo-

ration of the environment at the current time. In my implementation, each interpretation



mode produces variants of the perceived action that are focused around different, specific

components of the action tuple representation. This implementation induces a hierarchy

of learning questions roughly as follows:

* trigger: why?

* action: how?

* object: where?

* do-until: to what end?

* agent: who?

A related idea is the taxonomy of learning strategies that often appears in the imitation

literature. Placed into a similar framework, it might look something like this:

* action: mimicry

* object: stimulus enhancement

* do-until: goal emulation

These strategies, however, are based on a direct mapping of the behavior of the other onto

the behavior of the self. My productive, exploration-driven framework, while consistent

with these strategies, aims to be more flexible. The strategies undertaken through my

system might be better described as follows:

* trigger: context-space exploration

* action: motor-space exploration

* object: object-space exploration

* do-until: goal-space exploration



e agent: agent-space exploration

Thus, each interpretation mode focuses the robot's exploration around a particular as-

pect of the human's behavior. In this framework, the human's actions are viewed as in-

tentional communications aimed at drawing the robot's attention to important features of

the interactive environment. The human is not a teacher or collaborator per se, but rather

a dynamic guide for the robot's behavior.

As an example, imagine that the robot has two interpretation modes, Iaction and Iobject-

The first focuses the robot's exploration around the human's physical activity, while the

second focuses exploration around the object implied by that activity. Imagine that the

human in the environment starts to point at a box. The system, perceiving this activity,

builds a partial action tuple representation A' = (*, pointing, box, *, agent-A) and embeds

this action tuple within process model MA' = human-points-at-box. Then possible results

for applying the two interpretation modes might be:

Iaction (MA,) = {leo-points-same, leo-points-mirrored,

leo-points-at-box}

Iob ject(MA) = {leo-opens-box, leo-lifts-box,

leo-slides-box}

Thus the Iaction interpretation mode produces process models exploring different aspects

of the pointing behavior, while the lobject interpretation mode produces models exploring

different interactions with the target of the pointing behavior.

3.5 Learning Algorithms

In this section, I describe the two algorithms that I developed within the self-as-simulator

architecture for learning tasks from human teaching behavior. The first algorithm was a

schema-based goal learning algorithm that was augmented to take advantage of visual



perspective cues to learn tasks both from the perspective of the robot as well as from the

perspective of the human teacher. The second algorithm was a simple, Bayesian, con-

straint learning algorithm that was designed to take advantage of the action timing and

spatial scaffolding cues that were identified through the second study. These algorithms

supported both the quantitative evaluation of the utility of the identified cues, as well as

a number of demonstrations of interactive learning from human teachers, as described in

the following chapter.

3.5.1 Task and Goal Learning

I believe that flexible, goal-oriented, hierarchical task learning is imperative for learning

in a collaborative setting from a human partner, due to the human's propensity to com-

municate in goal-oriented and intentional terms. Hence, I employed a hierarchical, goal-

oriented task representation, wherein a task is represented by a set, S, of schema hypothe-

ses: one primary hypothesis and n others. A schema hypothesis has x executables, E, (each

either a primitive action a or another schema), a goal, G, and a tally, c, of how many seen

examples have been consistent with this hypothesis.

Goals for actions and schemas are a set of y goal beliefs about what must hold true in

order to consider this schema or action achieved. A goal belief represents a desired change

during the action or schema by grouping a belief's percepts into i criteria percepts (indi-

cating features that holds constant over the action or schema) and j expectation percepts

(indicating an expected feature change). This yields straightforward goal evaluation dur-

ing execution: for each goal belief, all objects with the criteria features must match the

expectation features.

Schema Representation:

S= {[(E1...Ex), G, c]p, [(E1...Ex), G, c]...n}

E=alS
G = {B1...By}

B = Pcl...Pci U PEI"'.PEj



For the purpose of task learning, the robot can take a snapshot of the world (i.e. the

state of the Belief System) at time t, Snp(t), in order to later reason about world state

changes. Learning is mixed-initiative such that the robot pays attention to both its own

and its partner's actions during a learning episode. When the learning process begins,

the robot creates a new schema representation, S, and saves belief snapshot Snp(to). From

time, to, until the human indicates that the task is finished, tend, if either the robot or the

human completes an action, act, the robot makes an action representation, a = [act, G] for

S:

1: For action act at time tb given last action at ta

2: G = belief changes from Snp(ta) to Snp(tb)

3: append [act, G] to executables of S

4: ta - tb

At time tend, this same process works to infer the goal for the schema, S, making the goal

inference from the differences in Snp(to) and Snp(tend). The goal inference mechanism

notes all changes that occurred over the task; however, there may still be ambiguity around

which aspects of the state change are the goal (the change to an object, a class of objects,

the whole world state, etc.). My approach uses hypothesis testing coupled with human

interaction to disambiguate the overall task goal over a few examples.

Once the human indicates that the current task is done, S contains the representation of

the seen example ([(E1...Ex), G, 1]). The system uses S to expand other hypotheses about

the desired goal state to yield a hypothesis of all goal representations, G, consistent with

the current demonstration (for details of this expansion process see [Lockerd and Breazeal,

2004]; to accommodate the tasks described here the system additionally expands hypothe-

ses whose goal is a state change across a simple disjunction of object classes). The current

best schema candidate (the primary hypothesis) is chosen through a Bayesian likelihood

method: P(hlD) oc P(DIh)P(h). The data, D, is the set of all examples seen for this task.

P(DIh) is the percentage of the examples in which the state change seen in the example is

consistent with the goal representation in h. For priors, P(h), hypotheses whose goal states

apply to the broadest object classes with the most specific class descriptions are preferred



(determined by number of classes and criteria/expectation features, respectively). Thus,

when a task is first learned, every hypothesis schema is equally represented in the data,

and the algorithm chooses the most specific schema for the next execution.

3.5.2 Perspective Taking and Task Learning

In a similar fashion, in order to model the task from the demonstrator's perspective, the

robot runs a parallel copy of its task learning engine that operates on its simulated repre-

sentation of the human's beliefs. In essence, this focuses the hypothesis generation mech-

anism on the subset of the input space that matters to the human teacher.

At the beginning of a learning episode, the robot can take a snapshot of the world in or-

der to later reason about world state changes. The integration of perspective taking means

that this snapshot can either be taken from the robot's (R) or the human's (H) belief per-

spective. Thus when the learning process begins, the robot creates two distinct schema

representations, SRobot and SHum, and saves belief snapshots Snp(to, R) and Snp(to, H).

Learning proceeds as before, but operating on these two parallel schemas.

Once the human indicates that the current task is done, SRobot and SHum both contain

the representation of the seen example. Having been created from the same demonstration,

the executables will be equivalent, but the goals may not be equal since they are from

differing perspectives. Maintaining parallel schema representations gives the robot three

options when faced with inconsistent goal hypotheses: assume that the human's schema is

correct, assume that its own schema is correct, or attempt to resolve the conflicts between

the schemas. The evaluation discussed in the following chapter focuses on the simplest

approach: take the perspective of the teacher, and assume that their schema is correct.

3.5.3 Constraint Learning from Embodied Cues

In order to give the robot the ability to learn from the embodied cues identified in the

second study, I developed a simple, Bayesian learning algorithm. This algorithm was es-



sentially a fuzzy, probability-based variant of the schema learning mechanism described

above. The algorithm was designed to learn rules pertaining to the color and shape of the

foam blocks used in study tasks 1 and 2.

The learning algorithm maintained a set of classification functions which tracked the

relative odds that the various block attributes were good or bad according to the teacher's

secret constraints. In total, ten separate classification functions were used, one for each of

the four possible block colors and six possible block shapes.

Each time the robot observed a salient teaching cue, these classification functions were

updated using the posterior probabilities presented in the previous chapter - the odds of

the target block being good or bad given the observed cue. For example, if the teacher

moved a green triangle away from the student, the relative odds of green and triangular

being good block attributes would decrease. Similarly, if the teacher then moved a red

triangle towards the student, the odds of red and triangular being good would increase.

At the end of each interaction, the robot would attempt to identify the secret constraint

being taught by the human teacher. First, the robot identified the single block attribute

with the most significant good/bad probability disparity. If this attribute was a color at-

tribute, the constraint was classified as a color constraint. If it was a shape attribute, the

constraint was classified as a shape constraint. Next, all of the block attributes associated

with the classified constraint type were ranked from "most good" to "most bad." Thus, if

red was identified as the attribute with the most pronounced probability disparity, then all

of the color attributes - red, green, blue, and yellow - would be ranked according to their

relative probabilities of being good vs. bad.

It should be noted that this learning algorithm imposed significant structural con-

straints on the types of rules that the robot could learn from the interactions. For example,

the robot could learn rules about colors or rules about shapes, but not rules combining both

color and shape information. The space of rules that the robot considered was thus much

smaller than the space of rules entertained by the human learners. However, this space

was still large enough to present a significant learning challenge for the robot, with low



chance performance levels. Most importantly, this learning problem was hard enough to

represent an interesting evaluation of the usefulness of the teaching cues identified in the

previous chapter. The core question was: would these teaching cues be sufficient to sup-

port successful learning? The following chapter presents the evaluation that I conducted

to answer this question, along with a number of demonstrations of the Leonardo robot

learning interactively from natural human teaching behavior.



Chapter 4

Evaluations and Demonstrations

In this chapter, I compare the learning performance of Leonardo's cognitive architecture

against that of human learners on benchmark tasks drawn from the two studies. This

comparison provides quantitative evidence for the utility of visual perspective, action tim-

ing, and spatial scaffolding as attention-direction cues for robotic learning systems. As a

secondary contribution, this evaluation process supported the construction of a pair of

demonstrations of the Leonardo robot making use of embodied cues to learn in novel

ways from natural human teaching behavior. In the first demonstration, the Leonardo

robot takes advantage of perspective taking to learn from ambiguous task demonstrations

involving colorful foam blocks. The second demonstration features Leo making use of ac-

tion timing and spatial scaffolding to learn secret constraints associated with a number of

construction tasks, again involving foam blocks. Leonardo is the first robot to make use of

visual perspective, action timing, and spatial scaffolding to learn from human teachers.

4.1 Visual Perspective Taking Demonstration and Benchmarks

The first evaluation centers around attention direction via visual perspective taking. In the

demonstration, the Leonardo robot takes advantage of perspective taking to learn from



ambiguous task demonstrations involving colorful foam blocks. As an evaluation, I com-

pared the robot's task performance against the performance of study participants on iden-

tical learning tasks.

The tasks from the first study were used to create a benchmark suite for the robot.

In the robot's graphical simulation environment, the robot was presented with the same

task demonstrations as were provided to the study participants (Fig. 4-1). The learning

performance of the robot was analyzed in two conditions: with the perspective taking

mechanisms intact, and with them disabled.

Figure 4-1: The robot was presented with similar learning tasks in a simulated environ-
ment.

The robot was instructed in real-time by a human teacher. The teacher delineated task

demonstrations using verbal commands: "Leo, I can teach you to do task 1," "Task 1 is

done," etc. The teacher could select and move graphical building blocks within the robot's

3D workspace via a mouse interface. This interface allowed the teacher to demonstrate a

wide range of tasks involving complex block arrangements and dynamics. For the bench-

mark suite, the teacher followed the same task protocol that was used in the study, featur-

ing identical block configurations and movements. For the purposes of perspective tak-

ing, the teacher's visual perspective was assumed to be that of the virtual camera through

which the scene was rendered.



Table 4.1: High-likelihood hypotheses entertained by the robot at the conclusion of bench-
mark task demonstrations. The highest likelihood (winning) hypotheses are highlighted
in bold.

Condition
with PT
without PT
with PT
without PT
with PT
without PT

High-Likelihood Hypotheses
all; all but blue
all but blue
all red and green; shape preference
shape preference
rotate figure; mirror figure
mirror figure

Table 4.2: Hypotheses selected by study participants following task demonstrations. The
most popular rules are highlighted in bold.

As the teacher manipulated the blocks, the robot attended to the teacher's movements.

The robot's task learning mechanisms parsed these movements into discrete actions and

assembled a schema representation for the task at hand, as detailed in previous sections. At

the conclusion of each demonstration, the robot expanded and revised a set of hypotheses

about the intended goal of the task. After the final demonstration, the robot was instructed

to perform the task using a novel set of blocks arranged in accordance with the human

study protocol. The robot's behavior was recorded, along with all of the task hypotheses

considered to be valid by the robot's learning mechanism.

Table 4.1 shows the highest-likelihood hypotheses entertained by the robot in the var-

ious task conditions at the conclusion of the demonstrations. In the perspective taking

Task
Task 1

Task 2

Task 3
&4



condition, likely hypotheses included both those constructed from the teacher's perspec-

tive as well as those constructed from the robot's own perspective; however, as described

above, the robot preferred hypotheses constructed from the teacher's perspective. The

hypotheses favored by the learning mechanism (and thus executed by the robot) are high-

lighted in bold. For comparison, Table 4.2 displays the rules selected by study participants,

with the most popular rules for each task highlighted in bold.

For every task and condition, the rule learned by the robot matches the most popular

rule selected by the humans. This strongly suggests that the robot's perspective taking

mechanisms focus its attention on a region of the input space similar to that attended

to by study participants in the presence of a human teacher. It should also be noted, as

evident in the tables, that participants generally seemed to entertain a more varied set of

hypotheses than the robot. In particular, participants often demonstrated rules based on

spatial or numeric relationships between the objects - relationships which are not yet

represented by the robot. Thus, the differences in behavior between the humans and the

robot can largely be understood as a difference in the scope of the relationships considered

between the objects in the example space, rather than as a difference in this underlying

space. The robot's perspective taking mechanisms are successful at bringing the agent's

focus of attention into alignment with the humans' in the presence of a social teacher.

4.2 Emphasis Cues Benchmarks

Tasks 2a and 2b from the second study study were used to evaluate the ability of Leo's

cognitive architecture to learn from cues that human teachers naturally provide. The robot

was presented with the recorded behavioral data from these tasks, and its learning perfor-

mance was measured. Care was taken to make sure that the robot could only use the cues

provided by the teacher and not those of the learner (and thus possibly "piggy-back" on

the human learner's success).

The robot processed the recorded study data using the same analysis pipeline as de-

scribed in section 2.3.9. The foam blocks and the heads and hands of the study participants



@0 Event Log

event4: teacher moved the blue triangle
:ewrn: student moved the green triangle

event2: teacher moved the green triangle
eventtl: teacher moved the red triangle
vntO: student moved the blue triangle

Figure 4-2: The robot was presented with the recorded study data, from which the teachers'
cues were extracted.

were tracked and mapped into the same three-dimensional coordinate system. Salient

events such as block movement and hand contact were identified, and agency was as-

signed for each event to either the teacher or the learner. From this stream of event infor-

mation, two types of teaching cues were extracted: movements by the teacher towards and

away from the body of the student, and movements by the teacher following movements

by the student.

The robot employed a Bayesian constraint learning algorithm to learn from these cues,

as described in section 3.5.3. Each time the robot observed a salient teaching cue, the al-

gorithm updated the classification functions which tracked the relative odds of each block

attribute being good or bad. At the end of each interaction, the robot identified the single

block attribute with the most significant good/bad probability disparity. Based on this

attribute, the secret constraint was classified as either a color-based constraint or a shape-

based constraint. Next, all of the block attributes associated with the classified constraint



type were ranked from "most good" to "most bad." The resulting ranking was recorded

for each observed task interaction.

After each observed task, the robot was simulated "re-performing" the given task in a

non-interactive setting. The robot followed the rules extracted by its learning algorithm,

and its performance was gauged as correct or incorrect according to the teacher's secret

constraint. Thus, in addition to measuring whether or not the robot extracted the correct

rules, I assessed whether or not the robot would have completed the task successfully

given the observed teaching behavior.

A cross-validation methodology was followed for both of the benchmark tasks. The

robot's learning algorithm was developed and tested using 6 of the 36 study sessions. The

robot's learning performance was then evaluated on the remaining 30 study sessions, with

30 recorded interactions for Task 2a and 30 recorded interactions for Task 2b.

The performance of the human learners and the robot on the benchmark tasks is pre-

sented in tables 4.3 and 4.4, respectively. Human performance was gauged based on the

guesses that the learners wrote down at the end of each task about the secret constraint.

For both tasks, the secret constraint involved two rules. In Task 2a (building a sailboat), the

rules were that only red blocks and blue blocks could be used in the construction of the fig-

ure (or equivalently, that green and yellow blocks could not be used). In Task 2b (building

a truck), the rules were that the square blocks could not be used in the construction of the

figure, while the triangular blocks had to be used. The performance of the human learners

was gauged using three metrics: whether or not they correctly identified the rules as being

color-based or shape-based (Rule Type Correct), whether or not they correctly specified ei-

ther of the two rules (One Rule Correct), and finally, whether or not they correctly specified

both rules (Both Rules Correct).

As can be seen in table 4.3, the performance of the human learners was quite high for

both tasks. The rule type was identified correctly nearly 100% of the time, with both rules

specified correctly 87% of the time for the Sailboat task, and at least one rule specified

correctly 87% of the time for the Truck task. Interestingly, for the Truck task, both rules



Table 4.3: Performance of the human learners on study tasks 2a (Sailboat) and 2b (Truck).

Task Rule Type Correct One Rule Both Rules
(color / shape) Correct Correct

Sailboat 30 (100%) 27 (90%) 26 (87%)
Truck 29 (97%) 26 (87%) 4 (13%)

were specified correctly in only 4 instances (13%). In this task, the two rules were partially

redundant: not being able to use the square blocks required the use of some, but not all, of

the triangular blocks. Similarly, using the triangular blocks was most easily accomplished

by covering some, but not all, of the square-shaped regions of the figure. Thus, the teachers

could guide the learners most of the way towards the correct completion of the figure by

either encouraging the use of the triangular blocks or discouraging the use of the square

blocks. This may explain some of the disparity between the success rate for specifying

both rules and the success rate for specifying either one of the rules.

The performance of the robot is presented in table 4.4. As described in section 3.5.3, af-

ter observing the task interaction, the robot tried to identify the most salient block attribute

- the attribute with the most significant good/bad disparity. This attribute was then used

to classify the constraint type as either color or shape. Then, the robot ranked all of the

attributes associated with the classified constraint type, ordering them from most good to

most bad. The robot's performance was assessed via a number of measures. Rule Type

Correct assessed whether or not the robot classified the constraint type correctly. One Rule

Correct assessed whether or not the attribute that the robot identified as the most salient

was indeed one of the task rules (and whether or not that attribute was correctly identi-

fied as good vs. bad). Both Rules Correct assessed whether or not both rules were ranked

correctly in the ranking of salient block attributes. For the Sailboat task, this required red

and blue to be the highest-ranked attributes, and yellow and green to be the lowest-ranked

attributes. For the Truck task, this required triangular to be the highest-ranked attribute,

and square to be the lowest-ranked attribute. Finally, the table presents how often the robot

completed the task successfully, when it was simulated re-performing the task following

its observation of the interaction.



Table 4.4: Learning performance of the robot observing benchmark task interactions. Per-
formance is measured against rules that participants were instructed to teach. Truck* ad-
justs for a number of instances of rule misunderstanding by the human teachers (see ac-
companying text).

Task Rule Type Correct One Rule Both Rules Correct Performance
(color / shape) Correct Correct

Sailboat 24 (80%) 22 (73%) 21 (70%) 21 (70%)
Truck 28 (93%) 20 (67%) 10 (33%) 23 (77%)
Truck* 28 (93%) 23 (77%) 14 (47%) 23 (77%)

The robot's performance results are very exciting. The robot was able to identify the

constraint type 80% of the time in the Sailboat task and 93% of the time in the Truck task.

The attribute that the robot identified as most salient correctly matched one of the task

rules 73% of the time in the Sailboat task and 67% of the time in the Truck task. The robot's

attribute ranking correctly matched both task rules 70% of the time for the Sailboat task and

33% of the time for the Truck task. The robot's re-performance of the task was successful

70% of the time for the Sailboat task and 77% of the time for the Truck task.

Additionally, in the Truck task, the robot was able to correctly match the rules identified

by the human learners in a number of instances where the human teacher misunderstood

the specified rule. In four cases, the teacher taught the rule "all rectangles are bad" instead

of "all squares are bad." This rule was identified by both the human learner and the robot

in all four instances. The Truck* row in the table credits the robot with success in these

cases, with correspondingly higher performance numbers. Essentially, this compares the

robot's performance to the rules that the learner identified, rather than the rules that the

teacher was instructed to teach.

Taken together, the results suggest that the robot was able to learn quite successfully

by paying attention to a few simple cues extracted from the teacher's observed behavior.

This is an exciting validation both of the robot's learning mechanisms as well as of the

usefulness of the cues themselves. These dynamic, embodied cues are not just reliable at

predicting whether blocks are good and bad in isolation. They are prevalent enough and



consistent enough throughout the observed interactions to support successful learning.

4.3 Emphasis Cues Demonstration

Finally, I created a demonstration which featured Leo making use of action timing and

spatial scaffolding to learn from live interactions with human teachers, in a similar, secret-

constraint task domain. A mixed-reality workspace was created so that the robot and

the human teacher could both interact gesturally with animated foam blocks on a virtual

tabletop.

Figure 4-3: The robot took advantage of action timing and spatial scaffolding cues to learn
through a live interaction with a human teacher.

The human and the robot interacted face-to-face, with a large plasma display posi-

tioned in between them with the screen facing upwards, as shown in figure 4-3. Twenty-

four animated foam blocks were displayed on the screen, matching the colors and shapes

of the blocks used in the study. The dimensions of the screen and the virtual blocks also

closely matched the dimensions of the tabletop and blocks in the study.



The robot could manipulate the virtual blocks directly, by procedurally sliding and ro-

tating them on the screen. To provide feedback to the human teacher, the robot gesturally

tracked these procedural movements with its hand outstretched, giving the impression

that the robot was levitating the blocks with its hand. The robot also followed its own

movements and those of the human with its gaze, and attended to the teacher's hands and

head. Additionally, the robot provided gestures of confusion and excitement at appropri-

ate moments during the interaction, such as when the robot was interrupted by the human

or when the figure was completed successfully.

The human teacher wore the same gloves and baseball cap as were worn by the par-

ticipants in the study. The teacher's head and hands were tracked using the same motion-

capture based object tracking pipeline. The human manipulated the virtual blocks via a

custom-built gestural interface, which essentially turned the plasma display into a very

large, augmented touch screen (see figure 4-4). The interface allowed the teacher to use

both hands to pick up, slide, and rotate the blocks on the screen. The teacher could select

a particular block by touching the screen with their fingertips, at which point the selected

block would become "stuck" to their hand. In the 3D graphics environment, the selected

block would follow the translation and rotation of the teacher's hand, and would continue

to do so until the teacher put down the block by again touching the screen. In this manner,

the teacher could manipulate any block on the screen, including blocks being moved by

the robot (an interruption which would often be followed by a gesture of confusion by the

robot).

The robot could be instructed to build any of a number of different figures. The silhou-

ettes of these target figures were specified ahead of time via a simple graphical interface.

During the interaction, the robot selected which blocks to use to complete the figures, in-

corporating the guidance of the human teacher. An example of a successfully completed

figure is shown in figure 4-4, which should be recognizable as the truck figure from study

Task 2b. As is suggested in the figure, the teacher has moved the square blocks away from

the robot (towards the bottom of the screen), causing the robot to use the triangular and

small rectangular blocks to complete the figure.
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Figure 4-4: A gestural interface (left) allowed the human and the robot to interact with
virtual foam blocks. A figure planning algorithm allowed the robot to use a simple spatial
grammar to construct figures (right) in different ways, incorporating the guidance of the
teacher.

A figure planning algorithm allowed the robot to use a simple spatial grammar to con-

struct the target figures in different ways. This allowed for flexibility in the shapes as

well as the colors of the blocks used in the figures. The spatial grammar was essentially

a spatially-augmented context-free grammar. Each rule in the grammar specified how a

particular figure region could be constructed using different arrangements of one or more

blocks. For example, one rule in the grammar specified three alternatives for constructing

square figure regions: (1) using one square block, (2) using two triangular blocks, or (3) us-

ing two small rectangular blocks. Similar rules specified the alternatives for constructing

rectangular figure regions, circular regions, triangular regions, and so on.

The use of such a grammar imposed some strong restrictions on how the target figures

could be constructed, and more open-ended planning techniques are certainly imaginable.

However, this approach allowed the robot to be quite flexibly guided by the teacher's be-

havior, and allowed it to clearly demonstrate its understanding of the constraints it learned

through the interaction.

For each rule in the grammar, a preference distribution specified an initial bias about

which alternatives the robot should prefer. For the example of square figure regions, this

distribution specified that the robot should slightly prefer the solution involving just one

square block over the solutions involving two triangular or rectangular blocks. During the



Figure 4-5: Interaction sequence between the robot and a human teacher. (1) The robot
starts to construct a sailboat figure as the teacher watches. (2) The teacher interrupts an
incorrect addition to the figure, and then (3) moves preferable blocks closer to the robot. (4)
The teacher watches as the robot continues to construct the figure, and finally (5) completes
the figure successfully, using only blue and red blocks. (6) After the teacher leaves, the
robot constructs a new, smiley-face figure following the learned constraints.

interaction, the figure planning algorithm multiplied these distributions by the estimated

probability of each available block being a good block, as inferred from the teacher's em-

bodied cues. The resulting biased probability distribution governed the robot's choice of

which block to use at each step in constructing the figure.

The preference distributions in the grammar were typically skewed only slightly, and

thus could be easily overridden by the teacher's guidance. For example, in the absence of

any instruction, the robot would use single square blocks to complete square regions in the

figures. However, if the robot estimated that triangular blocks were, for example, twice as

likely to be good as square blocks given the teacher's behavior, the triangular blocks would

be used instead.

The robot employed the same learning algorithm as was used to learn from the recorded

study data, and employed the same tracking algorithms to identify the teacher's embod-

ied cues. As the interaction progressed, the robot updated its estimates of whether or not



each block attribute was good or bad, and used these estimates to bias its action selection,

as discussed above. Thus, if the teacher slid a green triangle closer to the robot, the odds

of the robot attending to and using green blocks and triangular blocks would increase. If

the teacher slid the block away from the robot, the odds of the robot ignoring such blocks

would increase.

Figure 4-5 shows off an interaction sequence between the robot and a human teacher.

The robot, instructed to build a sailboat figure, starts to construct the figure as the teacher

watches. The teacher's goal is to guide the robot into using only blue and red blocks to

construct the figure. As the interaction proceeds, the robot tries to add a green rectangle

to the figure. The teacher interrupts, pulling the block away from the robot. As the robot

continues to build the figure, the teacher tries to help by sliding a blue block and a red block

close to the robot's side of the screen. The teacher then watches as the robot completes the

figure successfully. To demonstrate that the robot has indeed learned the constraints, the

teacher walks away, and instructs the robot to build a new figure. Without any intervention

from the teacher, the robot successfully constructs the figure, a smiley-face, using only red

and blue blocks.





Chapter 5

Conclusion

In this chapter, I present a brief summary of the contributions of my work. I then present

some concluding thoughts and a discussion of plans and possibilities for future research.

5.1 Contributions

My thesis research resulted in a number of specific contributions:

I conducted two novel studies that examined the use of embodied cues in human task

learning and teaching behavior. To carry out these studies, I created a novel data-gathering

system for capturing teaching and learning interactions at very high spatial and tempo-

ral resolutions. Through the studies, I observed a number of salient attention-direction

cues, the most promising of which were visual perspective, action timing, and spatial scaf-

folding. In particular, spatial scaffolding, in which teachers use their bodies to spatially

structure the learning environment to direct the attention of the learner, was identified as

a highly valuable cue for robotic learning systems.

I constructed a number of learning algorithms to evaluate the utility of the identified

cues. I situated these learning algorithms within a large architecture for robot cognition,

augmented with novel mechanisms for social attention and visual perspective taking.



I evaluated the performance of these learning algorithms in comparison to human

learning data, providing quantitative evidence for the utility of the identified cues. As

a secondary contribution, this evaluation process allowed me to construct a number of

demonstrations of the Leonardo robot taking advantage of embodied cues to learn from

natural human teaching behavior. Leonardo is the first robot to make use of visual per-

spective, action timing, and spatial scaffolding to learn from human teachers.

5.2 Future Work

Finally, I present some thoughts on plans and possibilities for future research stemming

from this work.

5.2.1 Additional Embodied Emphasis Cues

My analysis of the second study focused on just one of the three study tasks, and on only a

handful of the embodied emphasis cues observed during the task. I am interested in using

the automated analysis tools that I created to generate quantitative data about some of the

other cues enumerated in chapter 2, as well as about the cues observed during tasks 1 and

3. This would be interesting both to better understand the use of these cues in the learning

interactions, as well as to improve the robot's ability to learn from the recorded data.

I am interested in looking more closely at how the teachers spatially cluster the blocks

in tasks 1 and 2, drawing the learner's attention to the salient block features. I am also

interested in looking at head shaking and nodding cues, hand gestures such as tapping

and finger-wagging, and cues communicated through gaze and eye contact between the

teacher and the learner.

Additionally, the recorded data for task 3 contains a great deal of information about

how teachers and learners communicate in a sequence learning domain. Cues of interest

here include how teachers guide the actions taken by the learners, and how they convey

constraints in the space of available actions and identify salient perceptual events.
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5.2.2 Cues for Regulating the Learning Interaction

The recorded data set also seems to contain some very interesting observations of how

learners and teachers regulate the pacing and turn taking in learning interactions. A fluid

continuum seems to exist between teacher-guided demonstration and learner-guided ex-

ploration, and it might be quite valuable to better understand the cues that can establish

and modify where a particular interaction lies in this continuum.

Some simple cues in the data set seemed to regulate the pacing of the learner's actions

and how much attention was paid by the learner to the teacher. In task 3, for example, an

important cue seemed to be the proximity of the teacher's hands to the box controls. If the

teachers kept their hands close to their own bodies, the learners would often proceed quite

quickly with their actions. As the teachers raised their hands and moved them towards the

controls, the learners actions would tend to slow, and their attention to the teacher would

seem to increase. More generally, an important cue across many of the task interactions

seemed to be how much the teacher was intruding into the learner's "space" versus how

much they were just observing and leaving the learner alone.

5.2.3 Robots as Teachers

I used the data about the types of useful, embodied cues that human teachers naturally

provide to build a robotic system that could learn in novel ways from human teaching

behavior. You could also imagine using this very same data to build a better robot teacher,

one that could provide appropriate, non-verbal cues and that could structure its demon-

strations in a way that was highly understandable to human learners.

One could imagine a compelling demonstration of such teaching based on a "tele-

phone" style series of interactions. The robot could be taught something new by a human

expert, and then could proceed to teach that same skill or task to human novices. There

is quite a bit of interesting work that could be done to frame this interaction and develop

methods for evaluating its success.
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5.2.4 Dexterity and Mobility

Finally, I am excited to extend the demonstrations of robot social learning presented in

this thesis to a robotic platform featuring both dexterity and mobility. The ability to move

around and grasp objects would allow the interaction to be fully grounded in the physi-

cal world, supporting the exploration of a wider range of embodied teaching cues. I am

fascinated by the challenges presented in designing a robotic system that can learn from

human teachers through interactions in real, physical space.

As robots enter the social environments of our workplaces and homes, it will be im-

portant for them to be able to learn from natural human teaching behavior. This thesis

has presented some concrete steps towards this goal, by identifying a handful of simple,

information-rich cues that humans naturally provide through their visual perspective, ac-

tion timing, and use of space, and by demonstrating a robotic learning system that can take

advantage of these cues to learn tasks through natural interactions with human teachers.

By continuing to explore the information contained within our nonverbal teaching cues,

we will not only make progress towards a better understanding of ourselves as social ac-

tors and learners, but also enable the creation of robots that fit more seamlessly into our

lives.
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