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Abstract

A new thermal to electric conversion scheme based on an excitation transfer and

tunneling mechanism is studied theoretically. Coulomb coupling dominates when the

hot side and the cold side are very close. Two important concepts went into the

device scheme: (1) Coulomb coupling, to try to increase throughput power (which is

not subject to blackbody limit), and (2) a quantum dot implementation, to restrict

number of states, to try to increase efficiency. Modeling efforts from Bloch equations,

brute force numerical simulations, and the secular equations partitioning method are

discussed. A hot-side quantum dot design of the device is considered. Alternative

implementation where the hot-side is a plain sheet of metal or aluminum oxide is

analyzed. We found that the model power/area is higher than the blackbody limit,
and the predicted conversion efficiency is very high.
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Chapter 1

Introduction

There has been a consistent increase in oil price in the past decade (see Figure 1-1

[1]), and the continued availability of oil at low cost over the next decades has been

cast in doubt [2]. Since oil is our primary source of energy, this poses an energy

security issue. There are a variety of renewable energy systems that could potentially

replace oil energy, including hydropower, wind energy, bio-power, geothermal power,

solar thermal power, and photovoltaics.

1.1 Thermophotovoltaics

We have been encouraged by a group at Draper Laboratory who works on a particular

type of photovoltaics called the thermophotovoltaics (TPV) [3]. The basic idea of

TPV is to produce electricity from heat through radiation. Please see Figure 1-2 [4].

There is a hot side emitter at a higher temperature that emits thermal radiation.

The radiation travels through a gap and then impinges on a cold side photodiode at

a lower temperature, which converts the radiation into electricity.

There are two important parameters associated with a TPV system, namely the

power density per unit area and the conversion efficiency. A TPV system with higher

power density can convert more power per unit area, and hence is more economical

for fixed cost per unit area, leading to reduced costs. Also, if the conversion efficiency
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is higher, then less fuel is needed to generate power, leading to reduced expense and

fewer pollutants.

The TPV system is limited in power per unit area by the blackbody radiation.

In free space, the blackbody radiation total power per unit area is UT4 , where a is

the Stefan-Boltzmann constant and T is the absolute temperature. Inside a medium

of refractive index n, the speed of light is lowered by a factor of n and the density

of modes is increased by a factor of n3 , and therefore the radiation is increased by

a factor of n2 [5]. However, when the radiation exits the medium it suffers from

internal reflections and the radiation is lowered by a factor of n2 . The amount of

radiation coming out of the medium is still limited by the free space o-T 4 and that is

the maximum power the cold side photodiode can possibly convert.

In addition to the radiation limit, the TPV system has a spectral issue that im-

pacts its conversion efficiency. On the one hand, photons with energy lower than

the bandgap of the photodiode do not create electron-hole pairs and are responsible

for heating the cell [3]. On the other hand, for high-energy photons, the difference

between the photon energy and the bandgap is also lost to cold-side heating [3]. In

order to improve the conversion efficiency we would like the photons to have energies

just above the bandgap. Therefore, in a typical TPV scheme there is a spectral filter,

placed in between the emitter and the diode, which ideally selects photons of the

right energies and reflects back the rest of the radiation (Figure 1-3 [6]).

1.2 Micro-gap thermophotovoltaics (MTPV)

The group at Draper Laboratory has worked on a sub-type of TPV called micro-gap

thermophotovoltaics (MTPV). In typical TPV where the distance (or gap) between

the diode and the emitter is much larger than the wavelength of the light, the ra-

diation heat transfer is limited by the blackbody radiation aT 4 , as discussed above.

However, in micro-gap thermophotovoltaics (MTPV), the gap is small (in the submi-

cron regime) and the energy within the hot radiator can evanescently couple to the
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Heat

Figure 1-3: A typical TPV system [6]

TPV photodiode, as a result the thermal radiation inside the hot emitter can tunnel

through the gap into the cold side photodiode, leading to a higher radiation limit of

n 2-T 4 for a hot side medium of refractive index n [4, 5}. To take into account the

frequency-dependent nature of the refactive index, n2 should be averaged over the

blackbody spectrum:

0 87rhv 3  2 (v)dv
c0 c(eh/n-- 2( d

(n2 ) 0 87hv
10 c3(ehl/kBT - 1)

Figure 1-4 [4] shows schematically how decreasing the gap between the hot emitter

and the photovoltaic diode leads to an enhancement in power transfer.

1.3 Quantum-coupled single-electron conversion scheme

TPV and MTPV convert radiation coming from the hot side into electricity on the

cold side. This is a photon exchange coupling; namely, an electron on the hot side

emits a photon and an electron on the cold side accepts the photon. There exists

another type of coupling: Coulomb coupling. Basically energy can be transferred

from a hot-side electron to a cold-side electron through the Coulomb force between

the two electrons. The magnitudes of the photon exchange coupling and the Coulomb
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Figure 1-4: Decreasing the gap between the hot emitter and the photovoltaic diode
leads to an enhancement in power transfer [4]

coupling have different distance dependences. The Coulomb coupling has a 1/R 3

dependence on distance while the photon exchange coupling has a 1/R dependence.

Shown in Figure 1-5 are the normalized matrix elements for these two types of coupling

as a function of distance between two electrons in free space. The calculations are

done using the expressions in [7]. We see from Figure 1-5 that the Coulomb coupling

dominates over the photon exchange coupling at narrow distances roughly shorter

than A/27r. However, at larger distances the Coulomb coupling decays rapidly.

If we bring the photodiode close to the hot side emitter, would the Coulomb cou-

pling lead to increased power throughput? In free space the Coulomb coupling is

significant at short distances narrower than a couple hundred nanometers. In di-

electrics Coulomb coupling is only significant at even shorter distances. Therefore,

we would need a surface photodiode to take advantage of the Coulomb coupling.

There is not such a photodiode at present of which we are aware. We are there-

fore motivated to propose a new single-electron thermal to electric conversion scheme
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Figure 1-7: The cold-side electron receives energy transfer from the hot-side and
becomes excited.
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Figure 1-9: The cold-side electron tunnels into the high-voltage electron reservoir.
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Figure 1-10: The cold-side electron does work on the load and then arrives at the

ground reservoir.
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which could accept energy and convert it to electrical work near the surface interface

with a very narrow gap.

Please see Figures 1-6 to 1-10 for a schematic of this proposal and its operation.

A hot-side emitter and a cold-side converter are separated by a vacuum gap. On

the hot-side, there is a potential well holding two levels which communicate with

an electron reservoir represented as a square. On the cold-side, there is a potential

well holding two levels with energy spacing matched to that of the hot side potential

well. There is another potential well on the cold-side holding only one level resonant

with the excited state of the first cold-side well. The ground-state of the first cold-

side well communicates with a ground electron reservoir while the level in the second

cold-side well is coupled to an electron reservoir at a higher voltage. The two cold-

side reservoirs are connected through a load. Note that the quantum well on the

hot-side leads to two levels only to simplify the model; as such it stands in for more

complicated versions of the scheme with more levels on the hot-side.

The hot-side reservoir is at a higher temperature, and it provides an excited electron

into the hot-side potential well. The cold-side ground reservoir provides a ground-

state electron into the first cold-side well. This is the initial configuration shown in

Figure 1-6. The excitation of the hot-side electron is then transferred to the cold-side

electron via Coulomb coupling, and we arrive at Figure 1-7. The excited electron on

the cold-side then tunnels into the second cold-side well (Figure 1-8) and relaxes into

the high-voltage reservoir (Figure 1-9). An electron from the high-voltage reservoir

comes out to do work on the load, arriving at the ground reservoir (Figure 1-10). The

cycle then restarts (Figure 1-6).

The conversion scheme that we propose here has several features. First, it is a

single-electron conversion process in the sense that the cold-side current is produced

one electron at a time. It is also a surface converter that is sitting right against the

gap, taking advantage of the short-ranged Coulomb coupling. Since the conversion

does not rely on the photon exchange coupling, there is no blackbody radiation limit
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to this scheme.

One possible way to implement this single-electron conversion scheme is to use

quantum dots. Shown in Figure 1-11 are three quantum dots implementing the po-

tential wells. The hot-side dot and the cold-side dot have matched level spacings

and they face each other across the gap. The second cold-side dot (one-level dot)

is positioned next to the first cold-side dot (two-level dot) to provide tunneling pos-

sibilities. Initially the ground bus provides an electron into the two-level dot. The

electron then gets promoted to an excited state via Coulombic energy transfer. The

excited electron subsequently tunnels into the one-level dot before relaxing into the

high-voltage bus to do work on the load.

The wavefunction of the excited level of the two-level dot has a peak in the upper

half of the dot. On the other hand, the ground state wavefunction of the two-level dot

has a peak in the middle of the dot and is of lower value than the excited level in the

upper half of the dot. The one-level dot 2 horizontally points to the upper half of the

two-level dot and the one-level dot level couples to the excited state of the two-level

dot preferentially due to the spatial configuration. In addition, the excited state of the

two-level dot is more extended and it couples to the one-level dot more strongly due

to its higher tunneling probability. The ground bus branch is horizontally positioned

away from the center of the two-level dot. Due to this spatial orientation, the ground

bus coupling to the excited level of the two-level dot is much smaller than the coupling

between the ground bus and the ground state of the two-level dot.

Pumping one electron at a time produces only a small current, but if we have a lot

of these device units repeated over the cold-side surface, the output can be significant.

Figure 1-12 shows the array of device units on the cold-side surface. The periodicity

of the device units is assumed somewhat arbitrarily to be 1000 A x 1000 Adue to

historical reasons. This choice has an impact on our calculated power density for the

conversion scheme because the throughput is directly proportional to how dense the

device units are packed. The shaded vertical rectangles are the two-level dots, namely
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Figure 1-11: A quantum dot implementation of the single-electron conversion scheme.

the active area where the excitation transfer occurs. The active area represents the

minimal area required for each device unit to function. With our assumed 1000 A
periodicity, the active area only takes up about 0.0065 of the cold-side surface.

1.4 Power per unit area

We compare the performances of TPV, MTPV, and quantum-coupled conversion

scheme in Figure 1-13. The figures for TPV are taken from the experimental results

of [8]. The numbers for MTPV are experimental results from [4] done at 0.12 pm

gap. The values for the quantum-coupled conversion scheme are computed from our

model of the aluminum oxide emitter design described in chapter 15. Figure 1-13

shows the total thermal power transferred from the emitter to the TPV diode or

quantum converter, versus the hot-side temperature. Also shown are the blackbody

limit -T4 for TPV and the evanescent coupling limit n2 uT 4 for MTPV, where n2 is

the averaged refractive index of silicon for the case of [4]. We see that the TPV power

is an order of magnitude or more below the blackbody limit, and the MTPV power
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is also an order of magnitude lower than the evanescent coupling limit. Also shown

in the graph are the calculated data points for the quantum-coupled single-electron

conversion scheme assuming a 1 nm gap and a 5 nm gap. We have presented the

theoretical results in power per unit area with the assumed 1000 A periodicity (the

stars in the graph) and in power per unit active area (the squares in the graph). It

is clear that the quantum-coupled conversion scheme can exceed both the free-space

blackbody and the evanescent coupling limits on a per unit active area basis.

1.5 Efficiency

In addition to the power figure, we are also interested in the conversion efficiency.

The maximum thermal to electric conversion efficiency is the Carnot limit, which is

obtained when the entropy is conserved during the conversion process. For the TPV

system, excitation transfer causes an electron-hole pair creation. Both the electron

and the hole see many accessible states, and entropy is hence produced. (Note that

there are other sources of entropy generation in TPV. This is one example associated

with the photodiode.) For the single-electron conversion scheme, we start off with
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Figure 1-13: Thermal power for TPV, MTPV, and quantum-coupled conversion
scheme. The values for TPV and MTPV are experimental results from [8] and [4]
while those for the quantum-coupled case is from our calculations described in later
chapters.

one state, a two-electron product state with the hot-side electron excited and the

cold-side electron at ground. After the excitation transfer we end with one state,

a two-electron product state with the hot-side electron at ground and the cold-side

electron excited. Entropy is conserved in this excitation transfer process as we have

restricted the number of states. Of course entropy can still be introduced via the

finite lifetime of the excited level of the first cold-side potential well, and through

thermalization into the reservoirs. Our calculations have attempted to capture these

aspects of the problem as well.

Note that here we are exploring the idea of restricting the states to conserve entropy

in the hope of improving the efficiency. The proposed quantum dot implementation
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34



may be out of reach of current technology but our goal here is to provide initial

theoretical investigations.

Figure 1-14 shows the conversion efficiency for TPV [8] and the quantum-coupled

scheme, along with the Carnot limit, the fundamental upper bound of thermal to

electric conversion efficiency. The efficiency for MTPV is not reported in [4]. The

1 nm gap and 5 nm gap cases have the same efficiency and therefore only one data

point is shown for the quantum-coupled scheme. We see that the potential conversion

efficiency for the quantum-coupled scheme is high, approaching the Carnot limit, while

the efficiencies for TPV are below 30% of the Carnot limit. Note that in our present

calculation we have neglected Coulomb-coupled heat flow, which is expected to be

the dominant loss mechanism. We have derived a formula for the evaluation of this

loss in Appendix C and a calculation will be carried out in the future.

1.6 Overview of thesis

Figure 1-15 shows the road map of the thesis. General models for the quantum-

coupled single-electron conversion scheme are first developed. These include the

Bloch equations model, the brute-force numerical approach, and the secular equa-

tion partitioning method. To apply the general model to a specific design, we need

to estimate the various parameters associated with each design. For this purpose,

parameter estimation models are constructed for calculating the Coulomb coupling

strengths, the electron wavefunctions and energies, and the relaxation times. Finally,

we combine the above modeling efforts together to compute numerical performance

figures for the different designs of the conversion scheme.
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Conversion scheme modeling:

Bloch equations
Brute force numerical
Secular equations

Parameter Estimation models:

Electrostatic potentials
Quantum dot model
Relaxation times
Image charge model

Numerical calculation results:

Quantum dot design
Dielectric design
Metal design

Figure 1-15: The various components of the thesis and their organizations.
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Chapter 2

Bloch equations modeling

The first modeling attempts focus on a Bloch equation description of the quantum-

coupled conversion scheme. Bloch equations are evolution equations for the expecta-

tions of quantum variables. They are analogs to the classical equations of motion and

they allow easier interpretations and understandings of complex quantum systems.

Nuclear magnetic resonance (NMR), masers, and lasers have all been developed with

the aid of Bloch equations [9]. When applied to our quantum-coupled conversion

scheme, the model results in some understandings about the behavior of the device

but it runs into difficulties when trying to simulate the off-resonance characteristics.

The reason is that it is hard to introduce losses into Bloch equations in such a way

that they are consistent with thermodynamics. Below we give a detailed description

of this initial model.

2.1 The conversion scheme

The scheme in its simplest implementation involves a two-level system on a hot-side

that is coupled through a very thin gap to a two-level system in a cold converter. (See

Figure 2-1). The upper state of the two-level system has the possibility of tunneling

through a barrier to a level in a second quantum well that is coupled to an external

circuit. The return path of the external circuit leads to population of the lower level
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Hot-side Emitter gap Cold-side Converter

high voltage

...... _e .... load

ground

Figure 2-1: Schematic of quantum coupled thermal to electric conversion scheme. The

hot-side is at an elevated temperature relative to the cold-side. There is a vacuum

gap separating the hot and the cold-sides. A two-level system on the hot-side is

matched to a two-level system on the cold-side. The upper state of the cold-side two-

level system has the possibility of tunneling through a barrier to a level in a second

quantum well that is coupled to an external circuit.

of the two-level system in the cold converter.

The structure of the scheme is as discussed in Chapter 1. On the hot-side, we see a

two-level system that is coupled to a reservoir in thermal equilibrium at an elevated

temperature. Both levels of the quantum well are assumed to communicate with the

reservoir. On the cold-side, we see matched quantum well levels that are coupled with

a reservoir in thermal equilibrium at room temperature. In addition, we see a second

quantum well on the cold-side containing a single level on the other side of a barrier,

which can be accessed by the cold-side two-level system through tunneling. This single

level is coupled to a second cold-side reservoir, one which has an elevated Fermi level

relative to the first cold-side reservoir. Both cold-side reservoirs are assumed to be at

room temperature.

38



The basic idea is that Coulomb coupling with the hot-side two-level system re-

sults in promotion of carriers on the cold-side two-level system, and this leads to an

enhanced voltage and current flow capable of doing electrical work.

The model is highly idealized in that it is the simplest version that implements the

basic scheme, but we expect it to capture many important features of the scheme. Our

approach initially is to specify the minimum possible implementation that has only

enough pieces and parts to function as designed, such that the problem of modeling

is thereby simplified. Our goal in what follows is to develop a theoretical model for

this system.

2.2 A simplified quantum model

The scheme under discussion is interesting theoretically, in that it includes pieces

that are fundamentally quantum mechanical (two-level systems, tunneling, and a

quantum coupling effect), pieces that are statistical mechanics problems (the various

reservoirs), and pieces that are classical (the current and voltage characteristic of the

resistor and external circuit). To model this, we propose to begin with the quantum

mechanical part of the problem. The underlying Hamiltonian must be specified, and

the quantum problem must be analyzed. The analysis that we propose here involves

the use of Ehrenfest's theorem in order to develop an equivalent "classical" model in

terms of rate equations associated with the different states. The specification of this

classical model can include coupling with the different reservoirs, where the statis-

tical mechanics is implemented through the thermal relations between the different

relaxation and source terms. In the end, the resulting model will produce a current

and voltage relation for the emitter and converter as an electrical device, and we can

then use circuit models to analyze the power delivered to the load. The efficiency of

the device can be determined from the results of the analysis.
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The underlying Hamiltonian of the two quantum well structures is of the general

form

[= Ti + V + [T2 + V2 + 12

The simplest version of the problem comes about by assuming a one-dimensional

spatial dependence in each of the two coupled quantum well structures. In this case,

we would obtain a Hamiltonian of the general form

F h2 192 1 F ,2 892 1H = 2m1 z2 + V(zi) + 2 ± V2 (z2 )] + U(zi, z2 )
I 2mi Bz, 2m2 (9Z2.

2.3 Single-particle basis states

We can simplify the problem further by restricting the associated Hilbert space. The

idea is that most of the important physics involves only a few states. Hence it makes

sense to recast the Hamiltonian in terms of the different states of interest. On the

emitter side, we assume that the well and barrier is designed so that there are two

single-particle states of interest - a ground state and an excited state of the quantum

well. We will define these states as solutions of

jj2 d 2[ 2mZ + Vi(zi) ui(zi) = E' ui(zi)

d 2 2 + V(zi)] U2(Z1) = E2 U2(ZI)
2m, dziI

where V(zi) is a modified version of the potential on the hot-side which has no

allowed region to the left of the quantum well. The two quantum states of the hot-
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side quantum well are ui and u2 , with energy eigenvalues Eh and E. In addition, we

use uo to denote the zero-particle state on the hot-side with energy eigenvalue Eg.

On the cold-side converter, we assume that the quantum well structure is designed

so as to produce three relevant states. In general, these states will be a function of the

difference between the Fermi level of the two reservoirs, and will involve contributions

to the wavefunction in both wells. To simplify the underlying picture, we propose

to work with cold-side single particle states that are simpler. We assume that the

quantum well near the gap is designed so that two levels are produced that match

the two levels on the emitter side of the gap, and that these states can be taken as

solutions to

h 2 d2

2 d 2 + V(Z2) 0 1 (z 2 ) = El 01(Z2)
2M2 dz2

rh2 d2

- 2 + V(Z2) 02 (Z2) = E2' #2(Z2)
2m 2 dz 2  2

In this case, the potential V(z 2 ) is modified to eliminate any allowed region to the

right of the quantum well. The two quantum states of the cold-side well are #1 and

#2, with energies Ec and Ec.

We assume that the well on the right of the cold-side converter supports only a

single bound state. We propose to model this state through

~ h 2 d2

- 2 + V2'(Z2) 03(Z2) = E3 #3(Z2)
2m 2 dz2  .

where V '(z 2 ) is a modified version of the cold-side potential that has no well next to

the gap. The associated wavefunction is #3 with energy Ec. Similar to the hot-side,

we use #0 to denote the zero-particle state on the cold-side with energy eigenvalue

Eg.
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2.4 A restricted Hamiltonian

We can construct a restricted Hamiltonian in terms of the single-particle basis states

described above. The resulting restricted Hamiltonian is of the form

H = Jui) E' (uil + 1U2) E2 (u21 ± 1) Ef (#1 + 1#2) E1 (#21 + 1#3) E' (#o3

+ U[ui# 2)(u20iI + 1U201)(u1i211 + V[10 2)(#31 + 193)(#211 (2.1)

In this restricted Hamiltonian, we have used U for the matrix element

U = ( u1(zi)# 2(z2) I U(zi, z2) I u2(zl)# 1(z2) )

We have also used V for the matrix element

V = K #2(z2) 1 V2 (z2 ) 1 #3(z2) )

In this restricted model, we assume that the tunneling probability for transitions

from the lower state of the cold-side quantum well near the gap to the quantum well

on the right of the converter is much smaller than for the excited state.

2.5 Finite basis model

To analyze the restricted Hamiltonian, it is appropriate to make use of a finite basis

expansion. We choose a basis expansion of the form

2 3

X (zI, z2, t) =
j=O k=O

The evolution equations for the coefficients are
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ih cu(t)dt

h-c 12 (t)dt

ih c21 (t)

dt

h-c 1 3 (t)dt

c 22 (t)dt

dth-c 23 (t)

dt

ih-c 20 (t)

h cio(t)dt

h coi (t)dt

ihco2 (t)
dt

ih-C 03 (tdt

(Eh + Ec) cii(t)

= (Eh + Ec) c12 (t) + U c21(t) + V c13 (t)

= (Ej + Ec) c21 (t) + U c12 (t)

= (Eh + Ec) c13(t) + V c12(t)

= (Eh + E2) c22 (t) + V c23(t)

= (Eh+ E3) c 23 (t) +

= E2 c2 0(t)

= Et cio(t)

Ec coi(t)

= E2 co2 (t) + V co3 (t)

= Ec cD3(t) + V c02(t)

h coo(t) = (Eo +
dt

V c22 (t)

Eh) Coo(t)
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2.6 Evolution of the occupation probabilities

To include the statistical and classical physics of the overall model in with the quan-

tum mechanical model, we require a description in terms of probabilities (that is, to

obtain a Bloch equation equivalent or density matrix description). We begin with

a computation of the evolution equations for the level occupation probabilities. We

assume here that U and V are real.

d
Lci(t)I2

d C12(t)12
dt

-0

U c*2 c 2 1 - c 1 2 c*1 V [c*2ci 3 - c12c*3 ]

dIc 2 1(t)12 
=

d Ci3(t) 12 -
dt

dcI22(t)12 
=

dt

dIc 23(t)| 2 
=

d

-Ic20(t)1
2 =

dt

d
dIcio(t)12

d
Icoi(t)I2

U

V
h

V
h

c1 c2ic*2 ]

c* 3c12 - c13 c*2

c2 2c 23 - c 22 c23

c* 3 c 22 c 23 c22

0

-0

-0
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d C02 (t)2
|ct )|

Ico 3(t)12
dt

dIcoo(t)12

V
h

V
~h

[

[

c02co3 c02c*31

cO3co2 -- coc 2I
= 0

Antisymmetric combinations of the coefficients arise in the coupled evolutions equa-

tions for this problem. The associated evolution equations are readily computed. We

obtain

E + Ej - E h- E
h [c*2c21 + c12c21]

+ 2U [Ic21 12 - Ic1212]
V

[ c1 C 3 + c2 1c*3I

c*2c13 - c12c*3] E - E [ct [
h C*2C13

+2V 12 - 12
+ h I I 132 - C122 I

U
+h [c*1c13 + c21c*3I

E +Ej- Elh- E

Ec*3c12 + c13 c*2

C13C21 7 cici 1

U

c*3C21 + c13c21I

V *

+ c12c21 + c12c2*1
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d c* 2c21 - c12c*1

d
+ c12c13]
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d [C2C23 - c22c 31

L i

d [c 3co2 - co *c32 ]

- + 2 V 12 _ 12]C*2C23+ C22C23 + h IC23| I C22|

E3 - E2 [ *
h C*3CO2 + c03C0*2] 2V I 2 C031]

There are also symmetric combinations of coefficients that arise in the problem which

are also readily computed. We obtain

E + Ei - E - E2 [c*2c21 - c 1 2 c21]dSC*2C21 + C12C21]

c1 2 c1 3 c 12 c*1 3[ 2 c13 + c12c 3j

d [
d c13c21 +C13C21

- E2= c

E + Ej - E h- Ef
= h

U ~c*3c21 - ci3c*n1

[ c1C13 - C2 1C*3

U c*13c12 - cic*1 2 ~

d [
c* C22C23 + C22C 23J

c2 2 c 2 3 c 2 2c 2 3

= h
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+ V [cicl 2 - c 21c* 2]



d **
t [C03 C02 + C03 C* 2

=- Ej- E) C03 CO2 C0 3 C 2

2.7 Generalized Bloch equations

The form of the evolution equations is similar to that of the Bloch equations that

arise in the analysis of the two-level system. We would like to write the evolution

equations that we have obtained in a similar form. To do so, we introduce a new

notation for the different combinations of the coefficients. In the case of the level

probabilities, we write

Nik(t) = |Cjk(t)2

For the symmetric combinations, we write

QA(t) c12c2 1 + c 12c2 1

QB(t) =c 2c 13 + C12C13

Qc(t) = c*3 c21 + c13c*1

QD(t) = c22c 23 + c 22c2 3

QE(t) = co2 co3 + co2cO3

For the antisymmetric combinations, we write
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A 12C21 ~ 12C21PA (t)-ctci-ccl

B) c12C13 - C12 C13

CC13C21 C1 3 C21PC (t) -

PD (t) 22C23 C22C23

E C02CO3 -C02C03FE (t) -= o~~

In terms of these variables, the evolution equations become

d
dN11(t) = 0dt

d U
-N 1 2 (t) = -PA(t) +dt h

d U
-N 2 1 (t) = - -PA(t)

d V
_N 13 (t) = h -P (t)

d V
-N 2 2(t) = PD(t)
dt h

d V
-N 23 (t) = hPD(t)

dtdN20 (t) =0

V
PB (t)h
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d
N1 0(t) = 0

d
-N 01 (t) =

dt

d

-N 03(t) -
dt

dNoo(t)

0

V PE(t)

- PE(t)

=0

The evolution equations for the symmetric combinations becomes

d
dQA(t)

dt
QB(t)

d
Qc(t)d

dt

= (Q21 - W21 ) PA(t) -- Pc(t)

W3 2 PB (t) +

= (Q21 - W3 1) Pc(t)
V PA M

- Ah )

-QD(t) = W32 PD(t)

dt

+QE (t) = W32 PE (t)

The evolution equations for the antisymmetric combinations become
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- (Q2 1 - W21) QA(t) + 2U N21(t)

- W32 QB(t) + V N13(t) - N12(t)

- (Q2 1 - W31) Qc(t) + +QA(t)

+ Qc(t)

- -QB(t)

dt
PFD~ =

2 V
-W 3 2 QD(t) + 27- [N23 (t) - N 22 (t)I

d
SPE (t)

dt -W 32 QE (t) + N03 (t) N0 2 (t)]

In writing these equations, we have used the notation

hQjk = E - E

hwjk = Ejc- Ek

2.8 Discussion

We have developed a set of evolution equations for the populations and polarizations

(symmetric and antisymmetric combinations) of the two-electron product states for
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dPB (t)

d PC M
Pd t )=



the simplified quantum model incorporating the Coulomb and the tunneling cou-

plings. What is still missing in our model is the losses, or the relaxations between the

quantum well states and the reservoirs. This will be the goal of the next chapter.
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Chapter 3

Reservoir and relaxation

It is well-known that when a state is coupled to a continuum of states (reservoir), it

decays (relaxes) exponentially into the reservoir with a rate given by the Golden Rule

[10]. Including a large number of states into a model can be overwhelming. In the

case of NMR and lasers what is often done is to include such a loss mechanism by

adding a phenomenological term n/T into the Bloch equations, where n is, say, the

population of a level and T is the relaxation time associated with that level. We now

attempt to follow the same approach to incorporate such incoherent relaxations into

the model. Please see Figure 3-1. For the sake of simplicity, we model the reservoir

as quantum levels uo(zi), Oa(Z2), and 5b(Z2). uo(zi) aligns with ul(zi) and 0a(Z2)

aligns with #1 (z 2 ). When there is no voltage difference between the two reservoirs

on the cold-side, #b(Z2) aligns with 0a(Z2). When a voltage drop occurs between the

two reservoirs, #b(z2) deviates from its original energy level and no longer aligns with

#a(Z2) and #1 (z 2 ). We assume there are relaxations between uo(zi) and u1 (zi), uo(zi)

and u 2 (zi), #1(z 2 ) and #a(z2), 0 3 (z 2 ) and #b(Z2). For now we assume 0 2 (z 2 ) does

not relax into the reservoir. The relaxations can be described in the following set of

equations.

d n-
dtnj + - = E Ajknk

Y k
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-U2 2- 3-

U - U1 1 - a RL b

Figure 3-1: Single-level Reservoir. The reservoirs are represented by single levels,
pointed to by thick arrows in the figure. This is an over-simplification but it facilitates
the construction of our Bloch equation models. In a later subsection we will correct
the equilibrium values to better reflect the properties of reservoirs.

where we define

-Aj

The quantity T is the relaxation time constant associated with a quantum level j
which indicates how long it takes for an electron occupying state j to relax into other

states. Since the u2 (z 2) state does not relax into a reservoir, the relaxation time T2

is infinity.

Due to the conservation of particles, the summation over j of all the relaxation

equations should be zero.

d
n = 0 = ZAknk

t ij,k

Collecting all the nk terms gives the following:
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n ZAkk = 0

Because there is no particular restriction on nk, the coefficient in front of nk should

be zero.

Ak= Akk + Z Aik = 0
j7 k

An additional set of equations can be obtained through detailed balance:

Ai = gi ( __ - E - (p - p))
=_ -exp -TAji 9i kT

where the p is the Fermi level of the material in which the quantum level resides, and

gi and gj are the degeneracies of the two levels. In our model we simply assume the

degeneracies are all equal to 1.

Our problem at hand is a two-electron one, with our Bloch equations expressed in

terms of two-electron occupation probabilities and polarizations. To generalize the

one-electron relaxation equations into two-electron ones, we first define two-electron

occupation probabilities and products of two single-electron occupation probabilities,

and then use the chain-rule to derive the relaxation equations.

Ni = ninj (3.1)

= ZAjkn h n +

E AckNik
k

+

S Ainin
k

k
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d
-N-

invoking the definitions of relaxation times,

d
Ni + Nij

Z AckNik +
kAj

1
-A TcT3

-A. =1

1 1

T Tii= SAckNik +
k~j k j

Given the above general equations, we can write out the specific Bloch equations.

First of all, we need to express the Aij coefficients into relaxation time constants. On

the hot-side:

1
Ach 1 1

-(E h

A10 = Ao1 e *Ta T

h 1
A h - Ah =

A 2 +A 2 = ==>

1

__1

-2A2 = Th2

A constraint on the relaxation times is identified through detailed balance:

A h 1 I_
20 _ O T

Ah -1
02 T2

-q(Eh - Eu)

=e k Th

55

Ac N.- -A hN i= S AhNkj
k~j



On the cold-side:

Ac, + Ac, = 0 -. Ac- AC _ 1

A a = A h (E E )

Ala = Aa1 k Tc =A-1

1 1
Tf Tg

AC3 = -Ac 3 =

- (Ejc- Eb)
Sk Tc

Acb3 
T3C

-(E -Eg)
e k Tc +

- A-bA= T T

A restriction on the relaxation times can be similarly obtained:

1 1
A a _ T Ti _ (Eg-E -q(p,-yca))

A h -(Ec-Ec) = e k Tc
ab 1 e k _c

The Tjc

Given the above relations, we are ready to write out all the Bloch equations. Polar-

izations terms are incorporated to account for the effects of quantum coupling.

dNo, + No,
dt Tic

1
+

TI

(Eh-E ) 1
e k Th

+ =h
T2

Noa N11 N21+ +
TICT T2
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Acb3 + AC3= 0 -- :>

-(Eyc--AE )

Acb = Ac 3 e k c

Aab + A3b + Ac= 0 ==- A'b =

(3.2)

A c C C+A +A - 0 =#, Ac Ac - Ac -la ba aa ba la aa



d 1
N2 + 0N2  ±

dt h

(E 
-

e k Th N 12  N 22  V
TTh T PE

(E-E)

1 e kh

1 T

d 1 11-N 23 + N 23  + Tdt LT3 +T 2J

d
- Nob +dt

1
1

(E3- Eb)

N 13  N 23  e TEc

T +Th +NOb T

1 ] Na N 01

N 02  U V
Th+ hPA + h PB

- (E3C- Eb)

N 03  e k Tc

Tjh +Nlb T

1

T

(Eh-Eo)

N2a e k Th
N~.+ No1 

h

(Eh-Eo)

e k Th

V
- PB
h

U

h PA

V
N+2 Th PDT2h

(E{- Eb) _(E - _Eoh)
e k Tc e k Th V

N2b + N 03  h D

(E 2 - Eh)

1 1 e TNos + TI

-(E c-Ebc)

N0  Nib N2b -(E -E-(pg-p')) e k Tc

+ T T + ±Noae k - TJ
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d N 03
Ndt+N3C

(3.3)

d
N +

dt

d
-N 12 +

dt

d
-N 13dt

d
-N 21dt

V
SPE
h

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3-9)

(3.10)

d
-N 22dt

+ N 22 +

(3.11)

+ N13 T I

1 + T3

+ N21 +h



(E2 - EO)

d 1 1 k Th No, Nia N2a (Eb-Ea - (p -p)[ + 1jh + (4~~l) Tk TTTNOa+ NOa + + T+T + Noe k Tc

(3.12)

d 1
-N1b+ Nb I- +
dt [Tbc

d ~1
-N 1 a + N1a--
dt [TaT

1
-
TI I

1
+ -

T 1

-( - Eb)

N 13  Nb (E--Ea - (e -pa)) 1 k Tc
= -+ +±Nae- kTc -- -(E-

Tk TTT

(3.13)

N1 1  Noa (E -E, - (p jp ))

=- + Th + N1be k Tc -

Tf Th T1
- (--4

TIC
(3.14)

d F1
-N 2a +N 2adt Tao

1

+ -2

(Eh-E )

N21  Noae k Th

TIC T2I (Ej-EC - (pC3y ~))
-i [1

k Te

d 1
-N2b +N2b -
dt [Tbc

(EhEh)

N23  Nob e k Th (Eb-Ea - (p -ti))
+ h + N 2 a e~ k Tc

T3C T2

F 1

(3.16)

In order to facilitate discussion, we define the following equivalent relaxation times,

keeping in mind that we are assuming a lossless level 2 and its lifetime is infinite,

Tc = oo:

(Eh -Eh)

1 k1 1 e kTh

+ TTT +

1

T02

(Eh-E)

1 e k Th

- + h
T? T2

(3.17)

(3.18)
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[T 1

- (--
Tic

(3.15)

(EC--E )

Sk Tc

T3CJ



(E2--E )

1 e kTh

+ h+ h

1 T2

_1 1I- -+

T- Tf Th

12 _ 1

1 _1

T13  T

T21 Tic

1

1

1 _ 1

1 T

1

Tbc

Ta

1 _1

Tlb Tb

1 _ 1

Tia Ta

1 _1

T2a Ta5
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1

1

1

1

2

(E- Eg)

e kTh
+ h

(E -E )

1 e Th

1 T2h

1

+Th

1

1

2

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

1

Tob

Toa

(3.28)

(3.29)

(3.30)



1 1 1
T~b + T2

(3.31)

We similarly introduce relaxation terms into the evolution equations for the polariza-

tions:

d QA (t)
QA(t) + TA =

(Q2 1 -- W2 1) PA(t)

-(Q 21 --W 2 1) QA (t) +
21 [N21(t) - N 1 2 (t)] + -Qc(t) (3.33)

h

dQB(t) +
QB M)

TB
w32 PB(t) + U P(t

2V
-w 32 QB(t) + h N13(t) -N 12 (t)

U
+ h-Qc(t)

d Qc( t) _V UdQc(t) + TC = (Q21-31) PC(t) - PA(t) - P(t)

- (Q2 1 - w31) Qc(t)
V U

+ _QA(t) - -QB(t)
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V PC
h Pct

d
PFA t +

PA (t)

TA

(3.32)

d
~PB(t) +

PB(t)

TB

(3-34)

(3.35)

d
~Pc(t) +±PC(t)

TC

(3.36)

(3.37)



d QD(t)
dQD(t) + TD w32 FD(t)

+PD (t) + PD (t) W32 QD(t) + N23(t) -N22(t)]

QE(t) + QE(t) W32 PE(t)
dtE TE

d PE(t)
PE(t) + TE -W 3 2 QE(t) + 21 [No2(t) -No3 (t)1

3.1 Equilibrium values

We have specified above a set of coupled Bloch equations. The source constant terms

to the Bloch equations are the occupation probabilities of the two-electron reser-

voir states No, and N which are products of the single-electron thermal equilibrium

values according to Eq.(3.1). Below we calculate the single-electron equilibrium prob-

abilities. Let us look at the hot-side relaxation equations:

d h h_ ~
n h + 0 1 2

d h + __ n
_ni+

(3.42)

(3.43)

d n hdh 2
dt2+T2
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(3.44)

(3.38)

(3.39)

(3.40)

(3.41)

n h [ 1 ]



We solve for the equilibrium values by demanding the derivatives to be zero, which

leads to

nh = n=2 0

n h n h
1 0

1 1
0 ~ 1j

12'

Eh -Eh
-k Th

Since we assume the existence of one single electron residing on the hot-side, we have

nh + nh + n =
n0 + 1 + 2~ (3.47)

which results in

nh,o = nh,O

h,O=

Eh - Eh

Eh -Eh

e k Th

Eh - Eh

2+e kTh

(3.48)

(3.49)

where the 0 in the superscript indicates equilibrium value. Similarly for the cold-side

we have relaxation equations:

d C
- n

ncnc
+ -a = 1

T TC

nc nc
+ -I = - a

Tf Ti

(E -E )

+ nc kT
b Tic

+ nca
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(3.45)

(3.46)

d
dt a

(3.50)

(3.51)

-1c al (3.52)



- (E3C- Eb)

d nc e kTc

dt 3 Tc b Tcs 3 a

as well as conservation of probability and constraint on relaxation times

n1 + n"c + nr + nc = 1

1 1
Tc Tc (E -E -(p4-p))

1 -(E-E) 
k T,

_ 3

Solving these equations with the derivatives being zero gives the equilibrium values

n O n ; " =

12' =

a =

nc'O13

1
Eb- Ea - (b - Ma) (E3--Ea - (pg -

2 +e kTc k c

_Esr-Eac-(prg-yC)
k Tc

(E - Ea - (pb - Aa)) E31-Eal - (pg - pa)

2 + k re + kT

_ E E- - - -y )
k T,

Eb - Ea - (pb - pc) E_-E - ( - p)
2 + e- k Te + e k Tc

3.2 Coherence times

We have previously established the two-electron occupation relaxation times from the

one-electron ones. In this section we derive the relationship between the polarization

relaxation times (coherence times) and the occupation relaxation times, following

the same approach as in Problem 24.5 on pp.496 of [10]. Suppose we have a simple

situation where a coupling V exists between two states, state 0 and state 1. These

two states communicate with a reservoir and we assume that the effects of relaxation

into the reservoir can be represented as a loss in probability amplitude with lifetimes
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(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)



7 0 and ,i for the two corresponding states. We then write down an empirical model

dn CO(t) + CM
Ldt +

ih [+Ci(t) + c1M)

= Eo co(t) + V ci(t)

= E1 c1(t) + V co(t).

With the definition of occupation probabilities and polarizations,

No(t) = Ico(t) 12

N1(t) = IC1(t)12

Q = c*ci + c* cO

-Cc 1 -* cCO
P =eC* cth c a

we write down the Bloch equations

d
-N0dt

d
dt

+ P (+
(o TO T

+
No

To/2

T1 /2

V
P

V
- P
h

= - (EEo) Q +
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(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

dP
dt

(3.65)

(3.66)

(3.67)- No)



d 1 1- Q + Q - + - )dt (71 TO
(3.68)h P.

If we denote To as the state 0 relaxation time, T as the state 1 relaxation time, and

T as the coherence time, we can deduce from the above equations

TO = T(3.69)
2

2

1 _ 1
T 2

(3.70)

(3.71)
(11- + 1TO T1

The above equations suggest the following relationships between the coherence times

and occupation relaxation times for our model

(1 1

T12 T21)

T12 T13)

T13 T21)

T22 T23)

T 02 T03

65

1

TA

1
TB

TC
1

1

TD

1

TE

_1

2

1

2

2
1

2

1

2

(3.72)

(3.73)

(3.74)

(3.75)

(3.76)



3.3 The steady-state limit

As is typical in this kind of problem, the polarization terms will be nearly static,

while the level population terms will be slowly varying. Of interest to us is the limit

in which the level populations are time independent. In this limit, we can obtain the

various quantities by solving the following matrix equation, treating No, as an input

source to our system of equations. We define

AQ = Q21 - wi

AW = Q 2 1 - W 2 1

(3.77)

(3.78)

We make some definitions of

nonzero elements:

matrices: M, is a 24 x 12 matrix with the following

1
M1 (1, 1) = ,

T E

M1 (2,4) = 2

M 1 (4, 2) = ,

1
M1(6, 6)

TA

M1 (7, 7) =
TA

U
M 1(8, 11) =

M1(1, 2) = -W32

V
M1 (2,5) = -2 -

1
M1(4,4) = ,

T02

M1 (6,7) -Aw

V
M1(7, 10) = ,Ih

,M1(8,17) =V ,

M1 (8, 11) -AQ , M(9,8) =W3 2 ,

M1(10, 7)= - V, M(10, 9)= - , M1(10, 10) 1 ,
h h TC

1
M1 (2, 2) =

TE

1
M1 (3, 12) = -T

1

M1 (5, 5) =
T03

M1 (7,6) = Aw

M1 (8,9) =-W32

1
M 1(8, 10) = T

TC

-U
M1(9, 10) =

h

M(10, 11) = -AQ
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M1 (2, 1) = W32

1
M1(3, 3) = ,

V
M1 (5, 2) =

M1(6, 11)- ,

1
M1(8, 8) =

TB

U
M1 (8, 9) =

1
M 1(9,9)



V
M1 (11,6) h

1
M 1 (12,3) = T ,

M1 (13,9) - I,

U
M 1(11, 8) = ,-

h

M1(12,12) = - ,

M1 (14,5) =
1

M1 (11, 10) = AQ

1
M 1 (13, 4) =

V
M1 (14, 9) = '

1
M1 (11, 11) = T

TC

U
M1 (13,7) = -

V
M 1 (15,9) = -

M1 (17,7) = ,

(E --E )

e kr T
M1 (18, 4) = e Th

M 1(21, 12) = -1/Tf

(E2-E )

M 1(19,5)= Th
T2

M 2 is a 24 x 12 matrix with the following nonzero elements:

M 2(3,5) = ,1
2

-1
M 2(5,7) = T

T2

M 2(9, 1) = 2 h'
-(E -- E

M2 (14, 10) e Tc

-T3C

M 2 (16, 6) = 2 -

M I
M2(18, 5) = ,

h

M2 (19, 12) =

M 2(21,9) =

M2 (22, 10) =

- (q-EC(CEj-Eg)

M 2(4,1) = ,

-(E-E))

M2(5, 8) = -Tc ,

M2(9,2) =
V

-2-
h

M 2(15, 3) =

M 2(16,7) = -2 ,

M2 (18, 7) = ,
T2 2

kTc ,M 2(20,8) = ,

1

la , M 2 (21, 10) = -Acab ,

11
T M 2(23, 5)

Tia 1i

M 2(4,6) =
-1

T h

U
M 2(7, 1) = 2 ,

M2 (13, 1) =

1

1
Tjh,

M 2(16,3) = -W32

M 2 (5, 2) =
-1
Th

M 2 (7, 2) =

M 2 (14, 2) =

U
-2-

1

1
M 2 (16,4) = TD

M(71~ 1M2(17,5) 21 , M 2(17,11)=--

V 1
M 2(19, 5) = - , M 2(19,8) =

h T23

1
M2 (20, 10) = T ,

T2

1
M 2(22,2) = T '

1
M2 (23, 11) = T

M2(20, 12) = h

M2(22, 9) = -Aca

M2 (23, 12) = -Aab

67

M 1(17, 3)

(E- E )

e k Th

M 1(20,5) = -1/T3 ,c



(E -Eo)

1 e k Th 1
M 2(24, 7) = , M 2(24, 8) = , M 2(24, 11) = -Ac, M 2(24, 12) T

h bbTsc -T2^ T2b

Matrix M is composed of matrices Mi and M2 :

M (M M 2 ) (3.79)

X is a 24 x 1 column vector, with the following elements: X(1) = QE, X(2) =PE,

X(3) No1 , X(4) N02 , X(5) = N03 , X(6) = QA, X(7) PA, X(8) = QB,

X(9) PB, X(10) Qc, X(11) PC, X(12) = Nil, X(13) N1 2 , X(14) N 13 ,

X(15) = QD, X(16) = PD, X(17) = N21, X(18) = N2 2 , X(19) = N2 3 , X(20)

Nob,X(21) = Nia, X(22) = Nib, X(23) = N 2 a, and X(24) = N2b.

Y is a 24 x I column vector, with three non-zero elements: Y(3) = N?, Y(21) Noa

and Y(23) = NOaA'b.

Solving the matrix equation M - X = Y would give us the values of the quanti-

ties involved in this model. However, the equation is too complicated to be solved

analytically and therefore must be solved numerically.

3.4 Discussion

We have introduced losses into our Bloch equation model of the quantum-coupled

thermal to electric conversion device. We have also included the thermodynamics

aspect by deriving the equilibrium values associated with the states. Taking the

steady-state limit, we arrive at a set of equations from which all the quantities essential

to the device performance can be solved. In the next chapter we dwell on the device

characteristics and see what the model tells us about the behavior of the device.
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Chapter 4

Device characteristics

Given the Bloch equation model developed in the previous two chapters, we are now

in a position to compute the key device performance figures. First of all, we are

interested in finding the current that would flow on the cold-side. The current is the

electron charge multiplied by the rate at which an electron at 1#3) relaxes into the

reservoir. Since the hot-side electron could be at level luo), ul1 ), or 1u2 ), the current

is a sum of three terms:

current = q No3 - Nob + N 1 3 - Nlb + N 2 3 - N 2b (4.1)
T T T I

In subsequent discussions we denote the current as I. We can express the current in

terms of the polarization terms by substituting Equations (3.4), (3.7), and (3.10) into

Equation (4.1), noting that time derivatives are zero in the steady state limit:

F (E2-E j)

N03 - Nob N 1 3 - Nlb [N 23 - N2b N03  e kTh N 13  N23  VJ+ +Lmh N03e + -f-h P +
T3 T3 T3 Tj N T2 + T2 h

h~

'E 2-E )
N13  N03  V N23  e k Th V
T T - B] + + N03 T-PD +[T 1hT h h hh~h + 0 -T2
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V V
PB - -PD

h h

We can further re-express above expression. From Equation (3.3) we have:

N 12  N0 2

Th Tjh

(E -EO)

= No2
T2

From Equation (3.6) we have:

From Equation (3.9) we have:

(E- E)

ek Th

N0 2 Th
2

Summing up the above three equations we obtain:

U
-PA=h

V
h

V
-- PB-

V
- PD
h

I
(4.6)

The calculation of current is hence reduced to the calculation of PA.

4.1 Power and efficiency

The thermal power transferred from the hot-side to the cold-side is equal to the

energy difference between 1u2) and Jui) multiplied by the rate at which Iu2(zi)015(z 2))

transitions to fuI(zi)# 2 (z 2 )). We can see from Eq. (3.8) that this rate is LPA. The

left-hand side of Eq. (3.8) is the increase rate of N2 1 plus the relaxation rates from N2 1

to other states. The right-hand side of Eq.(3.8) is the relaxation rates from N2a and

70

V P E

= h E -
(4.2)

N 22

T h

V

h
(4.3)

U
- PA
h

V
+ PBh

N 12

Th
N02 (4.4)

N 2 2

T h

V
h D

(4.5)



No, into N21, minus the rate of transfer from N2 1 to N 12. Therefore we identify the

last term in Eq. (3.8) LPA as the transfer rate from Ju 2 (zi)#1(z 2)) to Ui (zi)q 2 (z2 )).

Hence, the power transferred is:

hU U
PT = power transferred = (E2h - El) -PA = Q2 1  PA (4.7)

The power delivered to the load is equal to the current multiplied by the voltage drop,

which is in turn equal to the difference in Fermi levels divided by electron charge:

U -

PD = power delivered = current x voltage drop = q PA - M (4.8)
h q

The efficiency of the device would be the ratio of power delivered over power trans-

ferred:

efficiency = b- (4.9)
E2 - E h

Hereafter we may denote the power transferred as PT and the power delivered as PD.

Also, we denote q AV = pc - p and AE = E2h- E h

4.2 Calculation of PA

Even though we could solve for PA (and therefore current and power) numerically

as mentioned before, we would like to have some more analytical understanding.

There is much algebra but the main goal is to arrive at Eq. (A.53), showing that

PA Oc (n2'o n i' - n '"). The detailed calculations are done in Appendix A.

4.3 Case of on-resonance

The most important situation in a physical device corresponds to the most trivial

mathematical limit of the equations under discussion. We would expect the largest
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throughput under conditions where there is a resonance between the hot-side quantum

well and the cold-side quantum well, and in addition where there is a resonance

between the excited state of the quantum well on the left side of the converter and

the single state on the right side of the converter. In the case that the different

two-level models are in resonance, we have

Aw = Q21 - W21 = 0 (4.10)

In the event that there is a resonance between the two converter levels, we have

(4.11)W32 = 0

This is consistent with

AQ = Q 21 - W 3 1 = 0 (4.12)

In this section, we assume the case of on-resonance and denote E2h - E h = Ej - E'=

AE.

From previous discussions we know current = qLPA, which is proportional to

nh,o ncO nh,O ncO
~2 1l -~ 123

AEE E~C q A~V

e k Th - e k Tc e kTc

Eb - E b - ( ) - pa)

+ e k T,
EC-E - (p C - )3 a k aI

+ -e k T, I

Since Ej - Ea = AE, the numerator in the above equation can be re-written as

_ AE AE =AVe k Th - e kTc e kTc =e k Th [ - eAE( ' - +
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(4.13)

(4.14)

E4 - Eoh

+ e k Th 12



U2 - 02 0 _ Relaxation causes
3 _ energy loss

0 0#
U0  Ui-$( 1 -

a
Load
provides .b

RL

Figure 4-1: Negative-voltage case. In this regime, the load is providing power to heat
up the cold-side, which is also receiving heat from the hot-side. We want to avoid
operating in this range of voltage.

The sign of current is dependent on the exponent

AE (1 1 )+qAV

k Th TC k Tc

and hence we identify four regimes of operation, depending on the efficiency q V-ZAE

(1) V < 0:

In this case, both I and PT are positive, and PD is negative. The hot-side and the

load are both providing power to heat the cold-side. Energy is lost when an electron

relaxes from 03 to Ob. The efficiency is negative in this case. Please see Fig 4-1.

(2) Th-T- < q <V1-
Th AE

I, PT, are negative, which means the cold-side is giving energy to the hot-side. PD

is negative, which means the load is providing the cold-side with energy. Efficiency

smaller than 1 gives IPT > IPD|, which says the cold-side gives the hot-side more
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PT

Relaxation absorbs
energy to cool

u2 0$2 -4 -cold side
- C3

'----__ 
b

0 0 Load
0  0- 1 Oa provides

energy

RL

Figure 4-2: "Efficiency" greater than Carnot but smaller than 1. In this regime, the

device functions like a refrigerator where the load is a power source providing energy

into the system to cool the cold-side down and to heat up the hot-side.

power than it receives from the load; hence the cold-side is being cooled and the

energy is lost when an electron jumps from cb to 0 3. Please see Fig 4-2. The device

in this case acts as a refrigerator, which is a very interesting limit that we have not

explored.

(3) 1 < q :

I, PT,and PD are again all negative. Efficiency greater than 1 gives IPDI > PTI,

which says the cold-side gives the hot-side less power than it receives from the load;

hence the cold-side is being heated and it gains this energy when an electron relaxes

from #b to #3. Please see Fig 4-3.

(4) 0 < q sV <Th-.AE - Th

This is the normal mode of operation for the device. The current and the power

transferred are both positive and the efficiency is within the Carnot limit. Energy

loss occurs when an electron relaxes from 03 to #b. The efficiency increases linearly
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U2

U1
0

$1

Relaxation gives energy
to heat cold-side

O RRL

Load
provides
energy

Figure 4-3: "Efficiency" greater than 1. In this regime, the cold-side load is actually
a battery providing power to the cold-side. A fraction of this power is transferred to

the hot-side. In short, a battery is heating both the cold-side and the hot-side in this

case.

cj 3

Work
-a done

on load

RL

Relaxation causes
energy loss

OIb

Figure 4-4: "Efficiency" between 0 and Carnot limit - normal operation mode. In

this regime, the device functions as a thermal to electric converter consuming heat

from the hot-side and producing electricity on the cold-side. The efficiency increases

linearly with the voltage but the current decreases with increasing voltage, and the

efficiency reaches the Carnot limit at zero current.
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with voltage as is evident from Eq. (4.9). When q "V - Th-Tc, the current is zeroAE Th

and the efficiency reaches the Carnot limit. Please see Fig 4-4.

4.4 Equilibrium values revisited

In the above model we have used quantum levels to represent the reservoirs, and

the equilibrium values obtained are thus different from the more realistic case where

the reservoirs are not simplified to quantum levels. In this section we consider the

equlibrium values in the latter setting.

We ignore spin in our analysis and hence the degeneracy of each quantum level is

1. Also, we ignore the possibility of multiple-electron occupation on either hot or the

cold-side. The partition function on the hot-side is:

_( Eh _,h ) 
(EOh-Myh

Zh = 1 + k i + k Th (4.15)

We denote n h'", n ' , and n '" as the equilibrium values for the no-electron occu-

pation probability, one-electron occupation probability on 11(zi)), and one-electron

occupation probability on 1k(zi)). These values are:

n hO = (4.16)

n '" k Th(4.17)
Zh

hO e k Th (4.18
n 2  Zh (4.18)

Similarly, the cold-side partition function and equilibrium occupation probabilities

are as follows. Note that there is no equilibrium value for the occupation probability
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of 0 2(z2 ) as the quantum level does not relax to the reservoir.

_ Elc:, ) E3 - j C

Z = + e ' + k TC (4.19)

nco 1 (4.20)a 
Ze

c,0 = k (4.21)ni zC

_ E3 -A3

c'0 = k (4.22)

This change in equilibrium values would only affect the absolute magnitude of the

current, but the three regimes of operation for the device would still hold true, as the

ratio of n' to n '0, and the ratio of n'0 to nc , remain unchanged.

4.5 Numerical results

We present an example calculation of the device characteristics in the normal op-

eration mode using the above model. In this calculation the hot-side is assumed

to be at 600 K and the cold-side is at 300 K. The single-electron relaxation times

are assumed to be T = 1/(27r) ps. The Coulomb and tunneling matrix elements

are: U = 2V = 2h/r. Each device, or pixel, is assumed to occupy an area of

1000 A x 1000 A= 10-10 cm 2 . The level spacing is: AE = 0.1 eV. Fermi levels

fh and p' are at energy level 0 eV, same as E h and E. Fermi level /I is dependent

on the voltage. Note here we are under the on-resonance assumption and different

voltage points actually correspond to different devices on-resonant at the particular

voltages.

Figure 4-5 shows the current versus voltage characteristics. The short-circuit

current is 15.5 nA/pixel. With an assumed pixel area of 10-10 cm 2 , the short-circuit
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voltage (mV)

Figure 4-5: Current versus voltage characteristic for the on-resonance case, which
refers to a set of devices, each of which has level 3 matched to level 2 at the particular
voltage.

current density is 155 A/cm2. The open-circuit voltage is as expected from the

analytical argument AE/q x Carnot limit = 50 mV. Figure 4-6 shows power

delivered to the load per pixel versus voltage. The peak power is 0.29 nW/pixel or

2.9 W/cm 2 at the voltage of 30 mV, with corresponding efficiency of 30%, as can

be seen from the efficiency versus voltage plot of Figure 4-7. The efficiency plot is a

straight line consistent with above analytical derivations. According to Eq. (4.6) and

Eq. (4.7), the thermal power transferred is simply the current multiplied by AE/q

and is not plotted here.

4.6 Discussion

The Bloch equation modeling yields some understanding of the device behavior and

the results indicate that this new thermal to electric conversion scheme could po-

tentially have high efficiency and high power throughput. However, an issue arises

when we try to model the device in the off-resonance case. For a single device, if

we increase the voltage by AV then the Fermi level of reservoir b increases by AV.
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10 20 30
voltage (mV)

40 50

Figure 4-6: load power as a function of voltage for the on-resonance case. The on-

resonance case refers to a set of devices, each of which has level 3 matched to level 2

at the particular voltage.

10 20 30
voltage (mV)

40 50

Figure 4-7: Efficiency as a function of voltage. Each point on the curve corresponds to

a different device with level 3 matched to level 2 at that particular operating voltage.

The efficiency approaches the Carnot limit 0.5 as the voltage approaches 50 mV
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Since level 3 relaxes to reservoir b, level 3 energy also increases by AV. As a result,

the value of n"O does not change with AV and therefore the current and thermal

power transferred would not change with AV. This is erroneous as the load power

increases with AV and for sufficiently large AV the load power would exceed the

thermal power, breaking the law of conservation of energy.

The above contradiction indicates that the Bloch equations amended with phe-

nomenological relaxation terms are inconsistent with thermodynamics and thus a

different model needs to be developed to more sensibly simulate the device char-

acteristics. However, even though the model breaks for the off-resonance case, the

on-resonance case results from Bloch equation modeling still give us decent intuition

about the device and these results are not far off from those obtained with the more

sophisticated model described in Chapter 7.
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Chapter 5

Brute force numerical approach

and the secular equations

partitioning method

As pointed out at the end of the last chapter, the issue with the Bloch equation ap-

proach is that relaxation to the reservoirs can not be modeled correctly with the added

phenomenological terms in Bloch equations. To solve this problem, one method is to

approximate the reservoirs as many discrete levels spread over an energy spectrum,

each coupled to the quantum well levels with a matrix element. We can then solve the

system dynamics with Schrodinger's equation numerically. This approach has been

demonstrated in section 24.3 of [10]. In principle, denser levels and a wider energy

spectrum lead to a better approximation of the reservoir, but experience shows that

the energy spacing between two adjacent levels only needs to be on the order of the

coupling matrix element and the number of levels only needs to be a couple hundreds

for the technique to give sensible results. In this chapter we solve some example

problems with this brute-force numerical approach. We also cross-check the validity

of the results by the use of the secular equations partitioning method, which will be

further explained in the next chapter.
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5.1 Basic demonstration

To show how the brute-force numerical approach works, we first consider a simple

problem depicted in Figure 5-1. Since this exercise is for demonstration purposes,

for simplicity h is taken to be 1 and the units of quantities are of less concern at the

moment. On the left-hand side there is a reservoir called continuum oe that consists of

600 levels with energies evenly distributed between -300 and 300. On the right-hand

side there is an exactly the same reservoir called continuum /. In between these two

reservoirs is a single discrete level 'J' that is coupled to each of the levels in the two

reservoirs with matrix element W = 1. The energy of P 1 is zero: El = 0.

Suppose the wavefunction starts out at state T1. Due to the couplings to the

reservoir level, over time the wavefunction will spread out to other states and the

occupation probability of T, will decay. Then the wavefunction will oscillate back

onto state I1 , and therefore we would have an oscillatory behavior of the level XI1

occupation probability. If the two reservoirs are true continua, the wavefunction will

simply decay away and never oscillate back, with a decay rate given by the Golden

Rule. Our numerical model has finite levels and is not a true continuum but the initial

decay behavior predicted by the numerics will be close to that of a true continuum,

as long as we use enough levels to represent the reservoirs. Figure 5-2 shows the

occupation probability of T, as a function of time. The asterisks are the numerical

data points computed from the above mentioned model while the green line is the

exponential fitting. The decay rate obtained from the fitting is F = 12.4 while the

one obtained from the Golden Rule is:

2 2 600
S= -W2p (E = E1 ) = 27r x 2 x ~ 12.57

h 600

The two numbers obtained above are close to each other, which gives us some confi-

dence in the feasibility of the numerical approach.
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Figure 5-1: Schmatics of the basic demonstration problem. There is one discrete level
T 1 coupled to two reservoirs, continuum a and continuum 3. Each of the reservoir
is modeled as 600 even distributed levels over the energy range -300 to 300. The
coupling matrix element between I, and each of the reservoir level is 1. Oo is a level
in continuum a while I, is a continuum 3 level that is resonant with Po.

5.2 Transition probability

In the following calculations we have used more states, 1201 levels with energies evenly

distributed between -300 and 300 to better model each reservoir. In this case, the

Golden Rule decay rate of state I is F = 25.13.

Suppose the wavefunction initially starts off at a level TO in continuum a, we

compute the occupation probability at the resonant level P, in continuum / as a

function of time. Figure 5-3 shows the transition probability versus time for EO = 0.

The probability increases exponentially in the beginning, but it reaches maximum

value 1 and starts decreasing at time = 12.5 due to the reflection back to state P1 .

The initial increase rate of the P, occupation probability can be thought of as the

transition rate from To to I,. A summation of transition rates over all the reservoir

levels would give us the electron flux from reservoir a to reservoir 3. This is basically

how the numerical approach could be used to calculate device figures such as current

and power.
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Figure 5-2: Decay of the occupation probability of state T, over time. The asterisks
are the data points from the numerical model with the green line is the exponential
fitting.
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Figure 5-3: Transition probability from state TO in continuum o to a resonant state
T, in continuum 13 with the resonant energy EO = E, = 0. The probability
increases exponentially with time in the beginning and then at time = 12.5 it reaches
maximum 1 and starts decreasing.
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1.
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Figure 5-4: Transition lineshape for the basic demonstration problem. The cirlces
are the data points obtained from the numerical model, while the green line is the
lineshape obtained from the secular equations partitioning method augmented with
loss.

If we choose a different TO with a different energy, the transition probability would

be different because of the presence of level T 1. The transition probability is higher

if EO is closer to E1 .

Figure 5-4 shows the lineshape of the transition probability versus EO at time

t = 12.5. The circles are the data points obtained from the numerical model,

while the green line is the lineshape obtained from the secular equations partitioning

method, which will be described in the next section. The linewidth is as predicted

from the BW theory to be F/2 = 12.57. The results of the numerical approach

and the BW theory match fairly well, which is an indication of the validity of both

approaches.
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5.3 Secular equations partitioning method

A secular equations partitioning method by L6wdin [11, 12] could be used to analyze

the type of problems we are considering. Secular equations are basically the set

of algebraic equations or Hamiltonian matrix obtained from finite-basis expansion.

We partition the basis states into ones (subset A) which we concentrate our interest

on and ones (subset B) which are of less concern to us. We can solve for states

in subset B in terms of states in subset A and then substitute back into the full

Hamiltonian matrix to obtain the effective Hamiltonian for subset A. We can then

focus on subset A with the effective Hamiltonian matrix which already takes into

account the influence of subset B. The original secular equations partitioning method

is for loss free problems. However, in our problem loss F is present. We extend

the secular partitioning method to include loss by incorporating an imaginary part

-ihF/2 into the energy of the level. Applied to our example, we have the following

secular equation:

EI1 = E1 1I 1 + WPO - ihT 1
2

Rearranging terms gives:

WIo
E - El + 'h r

State T1 eventually relaxes into T, and therefore:

'I'r -ihjWPo

2 E - E 1 + ih

We have now substituted out I, from our equations. Since we start off at To, we

take TO = 1 and obtain the lineshape (remembering that we have taken h and W

to be 1):

2 
r

2 IW21 . 2 (F/2)2

(E - E1 ) ± h2 (E - Ei) + (F/2)2
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Figure 5-5: Two continuua coupled through two discrete levels. There are two discrete
levels ' 1 and T 2 in between the two continua. 1 and '2 are coupled with matrix
element V. T1 is coupled to each of the continuum oz level with matrix element W
while 'P2 is coupled to each of the continuum #3 levels with matrix element W. T, is
a level in continuum 0 that is resonant with level TO in continuum a.

5.4 Two discrete levels case

To show the generalizability of this numerical approach, we consider a more com-

plicated problem in this section. Please see Figure 5-5. In this case, there are two

discrete levels, T, and 'P2, in between the two continua. '1 and '2 are coupled

with matrix element V. '1 is coupled to each of the continuum a level with matrix

element W while '2 is coupled to each of the continuum / levels with matrix element

W. Again, each continuum consists of 1201 levels with energies evenly distributed

between -300 and 300. h is assumed to be 1 for the sake of convenience. The fol-

lowing values for the parameters are used: W = 1, E1 = 10, E 2 = -10, V = 20.

The wavefunction starts out at state To, and then evolves according to Schrodinger's

equation. The decay rate of '1 and '2 is calculated from the Golden Rule:

27 W1200
S= W2p (E = E1) = 27r x 2 x ~~ 12.57

h 600

We look at the transition probability IW',12 over time, plotted in Figure 5-6 for the

case of EO = 10. The transition probability first increases exponentially, but at time
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Figure 5-6: Transition Probability from state To in continuum a to a resonant state

T, in continuum 3 with the resonant energy EO = 10. The probability increases
exponentially with time in the beginning and then at time = 12.5 the simulation
becomes invalid due to reflections back from the reservoir levels.

12.5 there is a discontinuity in slope. We attribute this discontinuity to our use of

finite levels to represent continua and the simulation is only valid before this point.

The lineshape can be computed using the secular equations partitioning method. The

algebraic secular equations are:

E - I, = E1 I 1 + WPO + VP 2 - ih r12

E -F2 = E 2 - 2 + V - 1 - ih I 22

which give

which in tuVWrO g the i
2 (E - E1 + ihl:) (E - E2 + 1)-V

which in turn gives the lineshape
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Figure 5-7: Transition lineshape for the two discrete levels problem. The cirlces
are the data points obtained from the numerical model, while the green line is the
lineshape obtained from the infinite-order Brillouin-Wigner theory.

I1PY 2 = I - I' 2f
2

2(E

Ei + E2

2

IhFVWP
4

- E+) + F2h2] [(E - E_) + 2h2]

1
/(E1 - E2) 2 +4V 2

Figure 5-7 shows the transition probability lineshape. The circles are the data points

generated by the numerical model, while the green line is secular equations partition-

ing method lineshape. The results obtained from these two methods again match,

which indicates that both methods can be extended to solve more general and com-

plicated problems.
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5.5 Discussion

We have seen how the brute force numerical approach works and how it could be

generalized to compute transition rates between discrete levels and continua (reser-

voirs). However, our device has one reservoir on the hot-side and two reservoirs on

the cold-side. Due to the presence of Coulomb coupling, two-electron states need to

be used and two-electron reservoirs, namely products of two one-electron reservoirs,

need to be modeled. To accurately represent these reservoirs would require the use of

a lot of levels and the simulation time would be long. Therefore it is foreseeable that

using the brute-force numerical approach would lead to slow progress. In addition,

the numerical model simply gives us some numbers and we would have little under-

standing of the results. We would much prefer some more advanced approach that

would allow analytic checks and more intuition. We have seen that the secular equa-

tions partitioning method augmented with loss yields results matching those of the

numerical approach. Given its validity and analytic capabilities, we use the secular

equations partitioning method in the following chapter to solve our device problem.
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Chapter 6

Secular equations partitioning

method modeling

In this chapter we present the device modeling results from the augmented secular

equations partitioning method. As described in the last chapter, we can partition

the full secular equations to give us an effective Hamiltonian matrix focusing on the

subset of states which are of interest to us. There are a lot of states involved in

our model and we wish to reduce the system to those states crucial to computing

the device performance. We follow an approach similar to that described by L6wdin

[11, 121. The original method did not include loss and we have extended the approach

to include loss properly. Please note that the notations used in this chapter might be

different from those used previously. Before jumping into the analysis of the device,

let us review the basic model. Please see Figure 6-1. One sees that there are five

discrete energy levels in the problem: levels a and b on the hot side; and levels 1, 2,

and 3 on the cold-side. In addition, one sees five different sets of continuum states

associated with the five different reservoirs: reservoirs Ra and Rb on the hot side,

with associated continuum states denoted by ra and rb; and reservoirs R 1 , R 2 , and

R3 on the cold-side, with associated states denoted by ri, r 2 and r3 .

To model the device, we require a set of two-electron state definitions. It will be

convenient to adopt a bra and ket notation for the two-electron states such as Ira, 2).
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Figure 6-1: Model of the device. On the hot-side, the optical transition is modeled as
two discrete levels, each of which is coupled to a reservoir and the two reservoirs are
connected and have the same Fermi level. There are two levels in the first cold-side
well and one level in the second cold-side well. Coulomb coupling between the hot-side
levels and the first cold-side well levels exists across a vacuum gap. The excited level
of the first cold-side well is coupled to the level in the second cold-side well through
tunneling.

The 24 possible combinations of two-electron states are listed in Table 6.1.

Table 6.1: List of possible two-electron states.

HOT-SIDE COLD-SIDE POSSIBLE STATES
discrete discrete la, 1), Ib, 1), la, 2), |b, 2), la, 3), and 1b, 3)
discrete continuum la,ri), jb,ri), Ia,r2), Ib,r 2), Ia,r 3 ), and Ib,r3)

continuum discrete Ira, 1), rb, 1), Ira, 2), Irb, 2), Ira, 3), and Irb,3)
continuum continuum Ira, ri), rb, rl), Ira, r2), Irb, r2), Ira, r3), and Irb, r3)

6.1 Model Hamiltonian

To analyze the device dynamics, we require a model Hamiltonian that is relevant

to the two-electron states. The simplest such Hamiltonian is one in which states

are coupled with interaction terms that are relevant to the problem. For example,

93

Hot-side Emitter



consider the coupled-channel equation for a two-electron state Ib, 1) which contains

an excited electron on the hot-side, and a ground state electron on the cold-side:

Elb,1) = (Eb+E)b,1) + Ula,2) + Wblrb,1) + Wilb,ri) (6.1)

The diagonal term is simply the combination of the two one-electron energies Eb and

E1 . The Coulomb interaction between the two electrons produces a dipole-dipole

coupling which lowers the hot-side electron and raises the cold-side electron. The

associated interaction strength for this coupling is U. There are in addition loss

terms that couple the discrete states to continuum states; these are parameterized

by Wb and W 1. All of the coupled-channel equations together combine to form a

very large eigenvalue problem, since there are two-electron basis states involving one-

electron continuum states on both the hot-side and the cold-side. The couplings that

we have included in the model under discussion are illustrated in Figure 6-2. Though

not directly relevant to our current discussion, the three-level system consisting of

the states Ib, 1), Ia, 2), and Ia, 3) has some interesting bandwidth behaviour and it is

further discussed in Appendix B.

6.2 Transition rate

To extract a transition rate from such a model is not difficult in principle. We compute

the transition rate for an effective transition from an initial continuum state (with

electrons in the Rb and R 1 reservoirs) to a final continuum state (with electrons in

the Ra and R 3 reservoirs). We begin by selecting initial one-electron reservoir states

rb and r1 to make Irb, ri), with a total energy E = Eb + EI, where Eb is the energy of

reservoir state rb and cl is the energy of reservoir state ri. The final state is taken to

be ITa, r 3 ), with the same total energy E = Ea + E3, where ca is the energy for reservoir

state r,, and E3 is the energy for the reservoir state r3. The transition rate between

these two states is
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Figure 6-2: Level diagram showing the couplings among the two-electron states. Each

state consists of a hot-side electron state and a cold-side electron state. Initially the

hot-side electron occupies a reservoir level Tb while the cold-side electron occupies the

reservoir level ri, and the two-electron state is denoted Tj in continuum a on the left-

hand side of the figure. After the excitation conversion process the hot-side electron

ends up in a reservoir level ra and the cold-side electron is promoted to reservoir level

r3 , and the two-electron state is denoted Ts in continuum / on the right-hand side

of the figure.
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"(E) = -I (ra, r3IUeff (E)Irb, rl)12p(E) (6.2)

The effective interaction Ueff is obtained by eliminating algebraically all other basis

states in the eigenvalue equation (which is possible since the energy is fixed). This

procedure is discussed in the next chapter.

6.3 Summation over initial states

The current which flows from the reservoirs Rb and R 1 can be calculated by sum-

ming the transition rate over all initial states. In summing over these states, we need

to weigh the states by their occupation probability (assuming thermal equilibrium

within the reservoirs). Similarly, we also need to weigh the final states by the (ther-

modynamic) probability that they are not occupied. Taking these issues into account,

we write for the current

I - ef dEb fdcl dca J d 3 Pb(Eb)P1(E1)Pa(Ea)P3(63)

27 (ra, r3lUeff (61 + Eb)jrb,r)I12 6(Eb +l - Ea - 63)

Pb(Eb)P1(61)[ - Pa(Ea)l - P3(63)] - Pa(Ea)P3(E3)[1 - Pb(Eb)]1 - P1(E1} (6.3)

One sees in this equation contributions both in the forward direction (starting from

Irb, ri)), and in the return direction (starting from Ira, r 3 )). The integrations are

taken over the one-electron continuum states associated with the initial and final

two-electron states. The associated one-electron density of states functions are pb(eb),

P1(61), Pa(Ea), and p3(E3). The one-electron occupation probabilities are pb(eb), p1(61),

Pa(Ca), and p3(E3). These are given by

1 1
) +(fLa)/kTh Pbb 1+ e(C(b)/kTh

(6.4)
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1 1
1 + e(Ei-p1)/kTc ( = 1 + e(E3-3)/kT

In these formula, the different p, are the Fermi levels associated with the reservoir

Rj.

6.4 Power and efficiency

The basic operation of the converter is straightforward: an electron in the ground

state on the cold-side is promoted by excitation transfer due to Coulombic quantum

coupling from the hot-side; it tunnels to level 3 and then eventually goes into reservoir

R 3 which is at an elevated voltage; an electron goes from this reservoir into the

circuit where work is done on the load; and finally an electron from the circuit rejoins

reservoir 1 which is at ground. To characterize the device, we need to determine both

the power delivered from the hot-side and the power delivered to the load, from which

we can calculate the efficiency.

6.4.1 Power delivered from the hot-side

The calculation of the thermal power Pth delivered from the hot-side involves mul-

tiplying individual transition rates within the integral that makes up the current by

the electron energy difference on the hot-side. We obtain

Pth dEb Jd6del J dEa dE3 Pb(<b)P1(E1)Pa(a)P3(E3)

27 (ra,0r3Ueff(fl + Eb)Irb,?r1l2 6 (1 b + 1 - Ea - 63) (Nb - a)

{Pb(Eb)PI(1)I[l - Pa(Ea)l[l - P3(E3)1 - Pa(6a)3(E3)[1 - Pb(Eb)]l - Pi(El)]} (6.5)
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6.4.2 Power delivered to the load

The power delivered to the load can be calculated directly from the product of the

current and the voltage drop on the load. The voltage drop on the load is

VL .3-/Z1 (6.6)
e

Consequently, we obtain for the load power PL

PL = VLI (6.7)

6.4.3 Efficiency

The device efficiency is the ratio of the load power to the thermal power

rL =(6.8)
Pth

Individual forward and reverse current paths in this model are in detailed balance,

so that one would expect that the efficiency would be constrained by the Carnot

limit. We have found this to be so in our calculations. One can also derive this from

the basic model, by working with the occupation probabilities that appear in the

integral that defines the current [Equation (6.3)]. The term in brackets that contain

the occupation probabilities can be written in the form

Pb(Eb)P1(E1)[1-Pa(Ea)][-1P3(E3) - Pa(Ea)P3(E3)[1-Pb(Eb)][1P1(El)} =

E a ,a E3 - 3  EbI! - _1_el __i

e kTh e kTc -e kTh e kT(

(+Ie 1+ eT 1+e ) ) (6.9)

One sees that the electron flow is positive when the numerator is positive, which

occurs when
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E- P-a +63 - P-3 > b - 11b + E - P~i

Th Tc - Th TC

which reduces to

P3 - < (Pb - Ea) ThTc (6.10)
(Th

remembering that Eb - Ea = 63 - 61 from energy conservation. Since the incremental

power delivered to the load is proportional to P3 - M1, and the incremental thermal

power is proportional to Eb - Ca, the incremental efficiency for each contribution is

(P3 - i1)/(Eb - Ca). If the incremental thermal power is positive, then either (1)

electron flow is positive and the energy quanta transferred Eb - Ea is positive or (2)

electron flow is negative and the energy quanta transferred Cb - Ea is negative. In

both cases we have that the incremental efficiency for each contribution satisfies the

Carnot limit

P3 - P1 Th -Tc (6.11)
Eb - Ea Th

When this inequality is not satisfied, the incremental thermal power is either zero or

negative, and the associated contribution does not improve device operation.
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Chapter 7

Secular equations partitioning

method calculation

In the previous chapter we have specified a model for our device and derived ex-

pressions for the various performance figures, assuming that the effective interaction

Ueff is known. In this chapter we describe how to use the partitioning technique to

eliminate intermediate states and arrive at an expression for the effective interaction.

This type of calculation has been carried out for the effective couplings between the

donor and acceptor states in aggregated molecular assemblies [13]. The calculation in

[13] does not include loss terms while here we have incorporated loss appropriately.

Our model is a special case of a more basic problem. Suppose there are two reser-

voirs connected through arbitrary levels and we want to calculate the flux between

the two reservoirs. Specifically, we want to compute the flux from an initial state I'

to a final state I'. The intermediate levels are denoted as I''s. The initial state and

the final states are resonant at energy E. The initial states constitute a continuum

a and the final states constitute a continuum 3.
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Figure 7-1: Energy level diagram of basic problem. Initial state Tj resides in contin-

uum a while the final state Tf resides in continuum 3. They are connected through

a network of intermediate states Tj's.

7.1 Basic sector equations

See Figure 7-1 for an illustration of the basic problem. We use the secular equations

partitioning method to solve this problem. First we write down algebraic sector

equations, assuming the coupling matrix elements V's are all real for the sake of

simplicity:

E Pj = Hi T + E Vi TJ
joilf

(7.1)

E XF = H7 Tj + Z Vg Ty + Vji ri + V 'I'f
ji' ,3,f

(7.2)

(7.3)E Tf = HJ Tf + E Vfj 4'
joif

Each level might be coupled to a reservoir with a decay rate IF into the reservoir.
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Figure 7-2: Lossy level T, coupled to a continuum of states Tj's with matrix elements

Wj's

Taking this into account, the H's are defined as:

Vp, Hp = Ep - ih h. (7.4)
2

where Ep is the energy of level p and the imaginary part is the loss term.

7.2 Loss term

Here we explain the derivation of the loss term. Suppose we have a lossy level XJ1

coupled to a continuum of states 'I''s with matrix elements W's. (See Figure 7-2).

We write down the secular equations:

E T1 = ElT 1 + ZWj T (7.5)

j#1

E Pj = Ej T + W IF1  (7.6)

Substituting Eq. (7.6) into Eq. (7.5) gives
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E T1 = E 1 1 + E
j#1

We evaluate the second term in the above equation:

1| 2 p(Ej)dE-
E - E

- 1W|2 p(Ej)dE -
C1 Ej - E

|W12 p(Ej)dE-
fC2 E - E

where contour C1 consists of two line paths E= -oo E - E and Ej = E + c ~ o,

and contour C2 is a hemisphere Ej = E + E -eOO = -7r-~ 0. In the limit c -+ 0+,

the two contour integrals become:

|1 2 p(E) dE2

C1 E3 EjOEE,( /

luj 12
E- - E

which is the self-energy term, and

Ej -~ E f'dEj -4-il jl2p(Fj)= - i2

which is the loss term, and F here is the Golden Rule decay rate of level I,.

7.3 Vector and matrix notation

We introduce some matrix notations to facilitate our discussion.

1. Tj is the column vector of all xI''s.

2. K is the coupling matrix among the I''s:

Vpq = i, f

Because Vpq is assumed real,

(K)-

Vq = Vqp
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= Hp 6pq + Vpq

W 2 - E-
E- Ej

W.
E - Ej

Spi -I

(7.7)



Therefore K is symmetric.

3. V is the coupling column vector between I' and I''s:

(V)I= V(78

4. V is the coupling column vector between

( V)

'IW and T''s:

= V j

7.4 Vector and matrix equations

With the above definitions, we rewrite the algebraic sector equations into matrix

equations:

E TP = Hi P + (V)T XJ (7.10)

(7.11)E - + V f + V qf

E Tf= Hf JP J+ ()V ) aF (7.12)

From eq. (7.11),

=I E - 1- Ti + V (7.13)

Substituting eq. (7.13) into eq. (7.10), we obtain

E Tj = Hi Tj + UPi Tj + Uif Tf (7.14)

where
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Uii = (Y . E - (. Y

Substituting eq. (7.13) into eq.

i )T [E - X- Vf

(7.12), we obtain

E T5 = Hf Pf + Uff 'f + Up TP

Uf f (-f)T .[E

(v )
Up i (V - [E

Ufp is equal to Uij:

Uif = UI,= E - - f]T

- r[~ ]1.Vf] T v V (Vf) T . [E- r]Qv =1- U

Note that Uif is equal to its transpose because Uif is a scalar.

7.5 Effective matrix element

In the previous chapter we have described how to compute the device performance

given the matrix element Ueff(E). Here we give the detailed calculation of Ueff(E).

We apply the theory in the last section to our device. Please refer back to Figure 6-2.

Let us define the real and imaginary parts of K:

K A- i h . (7.20)
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(7.16)

where

(7.17)

(7.18)

(7.19)

(7.15)
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where A contains the real components of K, namely the energy terms, and I contains

the imaginary components of K, namely

the matrices are listed with the following

1b, 1), la, r 2 ), la,2), la,3), Ira,2), Iar), an

Eb+ Ei

0

W1

0

0

0

0

0

0

0

Eb+E1

Wb

0

0

0

0

0

0

0

r,

0

0

0

0

0

0

0

0],r

0

0

0

0

0

0

0

0

W

Wb

Eb+E1

0

U

0

0

0

0

0

0

]b,1

0

0

0

0

0

0

0

0

0

Ea+E 2

W 2

0

0

0

0

0 0

0 0

0 0

Fa,r2  0

0 ra,2

0 0

0 0

0 0

0 0

the loss terms. The columns and rows of

order of intermediate states: 1b, ri), |rb, 1),

id Ira, 3).

0

0

U

W 2

Ea+E 2

V

Wa

0

0

0

0

0

0

0

Fa,3

01

0

0

0

0

0

0

V

Ea+E 3

0

W3

Wa

0

0

0

0

0

0

Fra,2

0

0

0

0

0

0

Wa

0

Ea + E 2

0

V

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Fa,r3  0

0 Fra,3

0 0

0 0

0 0

0 0

0 0

W3 Wa

0 V

Ea+E 3  0

0 Ca+E 3

(7.21)

(7.22)

The energy of the system is

E =b + Ei = Ca + E3 .

The P's are obtained from the Golden Rule:
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bri = W1 2 Pb (eb)

Frb,1 = W1 P1 (El)

bF,1 = Wb2 Pb (E - E) +
h P1 (E - Eb)

Fa,r2 = W pa (Ea)

Fa,2  = h

Pa,3 =

Wa2 pa (E E 2 ) +

W Pa (E - E 3 ). +

h 2

W

h W

P2 (E - Ea)

P3 (E - Ea)

Fra,2 = 2

2w

Fa,r3 =

Fra,3 = 27

W P2 (62)

Wa2 Pa (Ea)

W P 3 (E3 )

The coupling column vectors for the initial and final states are

V = [Wb W 1
0 0 0 0 0 00 ]T

T

0 0 0 0 0 0 Wa W3I
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(7.23)

(7.24)

(7.25)

(7.26)

(7.27)

(7.28)

(7.29)

(7.30)

(7.31)

and

V = [0



Therefore the effective matrix element between the initial state and the final state is

Ueff=Ufi=(V ) [E- -

7.6 Discussion

We have specified the expression for the effective coupling matrix element Ueff, which

along with the model presented in the previous chapter gives a way to calculate all the

device characteristics of interest to us. In the next chapter we embark on numerical

evaluations of our model.
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Chapter 8

Results from secular equations

partitioning method

We previously calculated numerical figures such as current and load power with the

Bloch equations model. It was recognized that the Bloch equations were inconsistent

with thermodynamics and could not give sensible results for the off-resonance case.

The brute-force numerical approach presents an alternative to the Bloch equations

but using it to analyze complex problems is costly both in terms of development time

and simulation time. However, the validity of the brute-force numerical approach

seems good as the method gives results matching those from the secular equations

partitioning method. In the previous two chapters we have been developing formula-

tions for the device characteristics using the secular equations partitioning method,

and in this chapter we apply numerical parameters to the formulations. The on-

resonant current and power figures are comparable to those from the Bloch equations

model, and we have also successfully analyzed the off-resonant case.

8.1 Numerical values

In the calculations described in this section, we take the hot-side temperature Th to

be 600 K, and the cold-side temperature Tc to be 300 K. The quantum well on the

hot-side has energy levels separated by 100 meV. This energy separation, denoted

109



by AE, was selected because it maximizes the load power given the temperatures.

We have assumed that the quantum well on the cold-side has energy levels matched

to those on the hot-side. The Fermi levels pa, Pb, and pi are set to ground, and

assumed to be matched to the energy of levels a and 1 (also as a result of load power

optimization). The tunneling matrix element V is defined in terms of the associated

Rabi oscillation frequency

Q = = 27r x 1012 rad (8.1)
h sec

We have assumed that the coupling between the levels of the hot-side quantum well

and the first cold-side quantum well is twice the tunneling matrix element

U = 2V

This choice maximizes load power. For simplicity, we have taken all of the relaxation

times for transitions from the one-electron states a, b, 1 and 3 to be matched to the

coherent transitions

Fa = Fb = F1 = F3 = Q

Simulations indicate that the highest load power values are obtained when the decay

rate of these important discrete levels to their respective reservoirs are matched to

the coherent transition rates.

We model each reservoir as a continuum of levels with a uniform density of states

independent of energy. A quantum well level is coupled to each level in a reservoir

with a constant matrix element W. These coupling matrix elements are assumed to

be a thousand times smaller than the tunneling coupling (couplings to a continuum

involve small individual matrix elements; for given relaxation times our results are

independent of the choice of these couplings as long as they are sufficiently small):

W1 = W 2 W = Wb = 103
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The density of states p for the reservoir is defined such that the Golden Rule is

satisfied for the chosen decay rate F and matrix element W:

hi?
= 27rJW| 2

The density of states for reservoir R 2 is assumed to be the same as that of reservoir

R1 : P2 = pi. The matrix element W2 is such that the Golden Rule is satisfied:

W2 =F2 -
27rp2

An individual device occupies a quantum dot, or a pixel, and the number of pixels

that can be packed into a unit area determines the power and current density of an

array of the device. In this calculation we have assumed that a single device occupies

an area of 120 nm x 120 nm, or 6.9 x 10' devices/cm 2. Examples of quantum dot

arrays with small dot sizes and small inter-dot spacings include a ZnS quantum dot

array with dot diameter 2.66±0.22 nm and spacing 12 nm [14], and close packed

quantum dots with tunable diameter 3-10 nm of various materials [15]. A dense

array (- 101" dots/cm 2 ) of InAs quantum dots of size 12±1 nm in GaAs substrate

have been fabricated and characterized [16]. InSb quantum dots in a GaSb matrix

with lateral size -10 nm and density - 6 x 1010 cm- 2 have also been reported [17].

8.2 Level 2 loss

Loss from level 2 (the excited state of the cold-side quantum well near the gap)

has a different effect on the system than the loss associated with the other levels.

For example, transitions from reservoir R 1 to level 1 sustain the population of level

1, allowing the device to function hence such transitions are critical to the device

operation. Similarly, the thermalization of level 3 to reservoir R 3 is required for

current to be provided to the load. Loss in the case of level 2 simply drains electrons

that otherwise might have delivered power to the load. In this case, loss from level 2

directly reduces efficiency and degrades device performance.
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Figure 8-1: Efficiency as a function of voltage for case with zero level 2 loss. Each
point on the curve corresponds to a different device with level 3 matched to level 2
at that particular operating voltage. The efficiency approaches the Carnot limit 0.5
as the voltage approaches 50 mV. The dashed line is the linear efficiency from the
Bloch equation analysis

It is useful to consider device performance in the idealized limit when the loss from

level 2 is set to zero. Although there are a variety of issues involved in the physics

and modeling that are probably worthy of comment, we elect to dispense with them

for the purposes of this discussion, and simply present the results for efficiency as a

function of voltage in Figure 8-1. In this plot, we show results from calculations that

correspond to a collection of different devices, each one designed so that level 3 is

matched to level 2 at the operating voltage, and each run with an optimum electrical

load. One can see that the efficiency is essentially

P3 - Al (8.2)
AE

most of the way to the Carnot limit, which is what we have obtained in the Bloch

equations analysis. In essence, the promotion of the cold-side electron due to excita-

tion transfer from the hot-side leads to an energy of Eb - Ea that can be used to drive

a load at voltages up to
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Figure 8-2: The maximum efficiency obtainable for each given level 2 loss. The
efficiency shown is normalized to the Carnot limit. As the loss increases from 0 to
0.2V/h, the peak efficiency drops from 0.9 of the Carnot limit to half of the Carnot
limit.

AE(T - T
VL e (8.3)

e Th

At voltages less than this maximum, we are not using the transferred energy efficiently,

and hence the device efficiency is reduced proportionally. We are not able to maintain

efficiency up to the Carnot limit since there is a spread in the distribution of electron

energies transferred.

In Figure 8-2 we show the peak efficiency obtainable as a function of level 2 loss.

One sees a rapid reduction in efficiency with increasing level 2 loss, such that the

maximum device performance reaches half the Carnot limit approximately when

I2 = 0.2 = 0.2 Q (half Carnot limit) (8.4)
h

This places a premium in this type of scheme in working to preserve level 2 population

as much as possible. In the calculations that follow, we have adopted a value of
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F2 = 0.1- = 0.1 Q (simulations) (8.5)
h

which leads to a maximum efficiency of about 60% of the Carnot limit.

8.3 Results with moderate level 2 loss

In Figure 8-3, we show current as a function of voltage. Two plots, one for the on-

resonance case (solid curve) and the other for the off-resonance case (dashed curve),

are superimposed on the same graph. The on-resonance case again refers to the

results for a set of devices, each one designed so that level 3 is matched to level 2 at

the operating voltage. The off-resonance case is the characteristics for a particular

device of which level 3 energy is equal to 70 meV when the voltage across the load

is zero. When the voltage changes, level 3 energy changes along because level 3 is

coupled to reservoir R 3 of which Fermi level P3 changes with the voltage, assuming

reservoir R 1 is at ground. Therefore for the off-resonance case level 3 is only matched

to level 2 at the voltage of 30 mV when the level 3 energy is raised from 70 meV to

100 meV. We see from Figure 8-3 that the on-resonance case short-circuit current is

about 18 nA/pixel. With an assumed pixel area 120 nmx 120 nm=1.44x 10- 10cm 2 ,

the short-circuit current density is estimated to be around 125 A/cm2 . The open-

circuit voltage is approximately AE x (Carnot efficiency)/e = 50 mV as indicated by

Eq. (8.3).

For the off-resonance case, levels 2 and 3 are matched when the voltage is equal

to 30 mV, and the off-resonance curve coincides with the on-resonance curve at this

voltage. Away from this voltage, the current becomes suppressed as the mismatch

between levels 2 and 3 increases. The range of voltage where the off-resonance current

is within a half of the on-resonance current is about ±10 mV, which indicates the

flexibility in the operating voltage for a single device. Thinking of the levels 2 and

3 mismatch from another perspective, if we fix P3 - P1 = 30 meV and all other

parameters while varying E3 , we obtain a line-shape (shown in Figure 8-4). It has
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Figure 8-3: Current versus voltage characteristic for the on-resonance (solid curve)
and off-resonance (dashed curve) cases. The on-resonance case refers to a set of
devices, each of which has level 3 matched to level 2 at the particular voltage. The
off-resonance case is the results for a device of which level 3 energy is equal to 70
meV when the voltage is zero.

a Lorentzian dependence with a FWHM of 13 meV, which is a consequence of the

choice of T in the design. This is relevant to the device tolerance on the level energies.

If we instead vary E 2 , we again find a Lorentzian line-shape (see Figure 8-5) but the

width 11.6 meV is slightly smaller. This is due to the fact that changing level 2

makes not only the tunneling transition off-resonant, but it also changes the degree

of resonance for the excitation transfer from the hot-side.

Figure 8-6 shows the power delivered from the hot-side as a function of voltage

with the solid curve being the on-resonance case and the dashed curve being the

off-resonance case. The maximum thermal power occurs at short-circuit and is equal

to 2.12 nW/pixel or 14.7 W/cm 2 for an assumed pixel area of 120 nmx 120 nm.

This level of thermal power is comparable to the value 12.50 W/cm2 of a micron-gap

thermo-photovoltaic cell that has been reported in the literature [4].
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Figure 8-4: Line-shape for the current when level 3 energy is varied while fixing all

other parameters. A Lorentzian dependence is observed and the FWHM is 13 meV.

0
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Figure 8-5: Line-shape for the current when level 2 energy is varied while fixing all

other parameters. A Lorentzian dependence is observed and the FWHM is 11.6 meV.
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Figure 8-6: thermal power delivered from the hot-side as a function of voltage for the
on-resonance (solid curve) and off-resonance (dashed curve) cases. The on-resonance
case refers to a set of devices, each of which has level 3 matched to level 2 at the
particular voltage. The off-resonance case is the results for a device of which level 3
energy is equal to 70 meV when the voltage is zero.

Figure 8-7 shows the power delivered to the load as a function of voltage. The solid

curve is again the on-resonance case and the dashed curve is the off-resonance case.

The load power reaches maximum 0.335 nW/pixel, or 2.33W/cm 2 , at the voltage

of 30 mV. From Figure 8-6 we see that the power delivered from the hot-side at

this voltage is 1.38 nW/pixel or 9.58 W/cm 2 for the assumed pixel area, and hence

the efficiency at this voltage is 2.33/9.58, or 24.3%, which is slightly lower than

the maximum efficiency 28% achievable at the voltage of 40 mV. Recall that these

power values are obtained under the assumption of 1.44x10-10 cm 2 pixel area, but

in principle this number can be made smaller. For example, the active area of the

design in Chapter 11 is only 6.53x 10-13 cm 2. A smaller pixel area would lead to a

larger power value.
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Figure 8-7: Load power as a function of voltage for the on-resonance (solid curve)

and off-resonance (dashed curve) cases. The on-resonance case refers to a set of

devices, each of which has level 3 matched to level 2 at the particular voltage. The

off-resonance case is the results for a device of which level 3 energy is equal to 70

meV when the voltage is zero.

8.4 Optimization

We can optimize the load power by changing AE. The rest of the device parameters

are assumed to be the same as in the last subsection (Th = 600 K, Tc = 300 K,

V = hQ = F's, U = 2h, W's= 10-3hQ). Figure 8-8 shows contours of equal load

power as AE and the efficiency are varied (the efficiency is varied by changing the

voltage). Next to each contour is a number indicating the value of load power in units

of 0.1 nW/pixel. We see that the choice of AE = 100 meV maximizes the load power

when the matrix elements and relaxation times are fixed.

Our choice of U also maximizes the load power for fixed matrix element V = hQ

and other device parameters (Th = 600 K, Te = 300 K, F's= hQ, AE = 100 meV).

The value of AE is 100 meV in accordance with the previous optimization. Figure

8-9 shows the contours of load power when matrix element U is varied and when

the efficiency is changed by varying the voltage. Next to each contour is a number
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Figure 8-8: Optimization of load power by varying AE and the efficiency while fixing

all other parameters. For a particular AE value, variation of the efficiency is achieved

by increasing the voltage from OV up until the maximum efficiency is reached. Con-

tours of equal load power are shown in the graph. Next to each contour is a number

indicating the value of load power in unit of 0.1 nW/pixel. It can be seen that load

power is maximized at AE = 100 meV and efficiency 24%.
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Figure 8-9: Optimization of load power by varying U and the efficiency while fixing all
other parameters. For a particular U value, variation of the efficiency is achieved by
changing the voltage. Contours of equal load power are shown in the graph. Next to
each contour is a number indicating the value of load power in unit of 0.1 nW/pixel.
It can be seen that load power is maximized at U = 2Q x h and efficiency 24%.

indicating the value of load power in unit of 0.1 nW/pixel. The maximum power 3.35

W/cm2 is obtained at U = 2Q - h and the corresponding efficiency is 24.3%. It is

observed that further increase in U decreases the power. An explanation is that when

the Coulomb coupling is large, an electron promoted to level 2 is quickly de-excited

to level 1 to transfer energy back to the hot-side, and there is not enough time for

the electron to tunnel to level 3. On the other hand, when U is small, energy transfer

across the vacuum gap becomes the bottleneck of the conversion process and the

power drops with decreasing U.

8.5 Discussion

We have presented a model for analyzing the characteristics of the new thermal to

electric conversion scheme. Example calculations have been done which indicated the

potential competitiveness of the scheme. We would like to move towards calculations

for more specific material and dimension designs of the device, which are developed
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in the following chapters.
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Chapter 9

Electrostatic potentials near a gap

This chapter is reproduced from Prof. Peter Hagelstein's notes with the same title.

The electronic file for the original notes has been lost. Also, there are some typos

and missing definitions in the document. Therefore, the corrected version is included

here as a chapter for completeness and easier reference.

Up until this point we have been applying assumed parameters into our model to

obtain numerical results. A key parameter is the Coulomb coupling matrix element

U. We would like to calculate this matrix element given the gap thickness and the

materials on both sides of the gap. Therefore, we need to compute the Coulomb inter-

action energy between electrons residing in the hot-side and the cold-side materials.

We first consider solving the electric potential for a two-media problem using the

method of image charge (see for example [18]). The image charge method has an ad-

vantage of easy generalizability into the three-media problem via the use of reflection

and transmission coefficients.

9.1 The two-region problem

We begin with a consideration of the simple two region problem, for which a simple

exact analytic solution is available. The situation is illustrated in Figure 9-1.
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Figure 9-1: Charge q above a boundary between two dielectric regions.

We are interested in developing solutions to the Poisson equation

-V - (EV<D) = p

for this arrangement of charge and dielectric constants.

It is known that a solution can be constructed in the form

(P (r)
{ + A

47rei (z-h)
2
+p

2  -(z+h) 2+p2

B

(z-h)
2±p

2

z>Oz --

where A and B are constants to be determined by matching the boundary conditions.

The boundary conditions at the boundary between the dielectrics are given in terms

of the electric fields in the two regions

f - (E 1 - E2E 2 )

ni x (E1 E2)

=0

=0
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where the field is determined from the potential from

E= -V4

in the two regions.

The second of these conditions can be met by making the potential continuous

across the boundary

4 1(p,0) = 4D2(P,0)

The first of these requires that the derivatives in z satisfy

62 D2 (P , Z )~=z Z2

Matching the boundary conditions on our solutions in the two regions leads to the

two constraints

(p, Z)
E 9 1 =

q + A = B
4r 1 A

61 [4 - A]
47rc,

= e2 B

This leads to explicit expressions for A and B

A = E E2

47c, (El + 62

27r (Ei + 62)

The solution that results is

{ 47rEi (z-h) 2
+p

2 
47

q --
27r(El + E2) ,(z-h)

2 ±p2

TEi /(z+h) 2 +p2
(El + E 2
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(9.1)

(9.2)

D(r)
z>



9.2 Thinking about the problem in terms of reflec-

tion and transmission

We would like to extend the two-region problem to a more complicated three-region

problem. To facilitate this generalization, it is useful to re-examine our solutions to the

two-region problem. Note that the form of the solution for the two-region problem

is similar in form to solutions to wave equations. In such problems, an incident

wave encounters a discontinuity, and one finds reflected and transmitted waves. The

electrostatic problem under discussion of course has no waves; however, we can see a

similar form in the solution that we constructed. The electrostatic field of the charge

encounters a discontinuity in the dielectric, which gives rise to an image charge field

in the upper sector (which is a reflection of sorts), and a field that penetrates into

the region with a different dielectric region. We might write the solution in terms of

a reflection and transmission coefficient

q +r q z>0
__ 47rEj N(z-h)

2
+p

2  47rEl V(z+h)2 +p 2

t q z<0
47rf2 f(z-h)2 +p2

where
El - E2

El + C2

1 2

2c
El + 62

We note the similarity between these coefficients, and coefficients that one finds for

wave-interface problems.

If we think of the potential solution in this way, then it provides some intuition as

to how to go about constructing a potential solution for the three-dielectric problem

considered in the next section.
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Figure 9-2: Three-region electrostatic problem with a charge above a gap between

two dielectric regions

9.3 The three region problem

We now consider the development of solutions to the Poisson equation in the case of

a charge situated over a gap between two dielectric regions as illustrated in Figure

9-2.

Based on the discussion given above for the two-region problem, we can extend

the basic approach to develop solutions for the three-region problem. The idea is to

imagine an image charge calculation in which the amplitudes of the image charges

are determined from combinations of reflection and transmission coefficients. For

example, we develop a solution from an image charge expansion that can be written

formally as

n = wO + i1 + th 2 +

In which (Do is the solution in the case that no boundary interactions are included.
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q z> 0
4[ ,r1 (z-h)

2
+p

2  -

o 0 - L < z <0

0 z <-L

The next term in the expansion includes terms that involve a reflection or transmission

at a single boundary

r101 q z > 0
4-7rEi (z+h)2+p

2

I= t q1 q - L < z < 0
47rEO (z-h)

2
+p

2

0 z<-L

Based on the discussion above, we may write

E - 60
ci + E

=o 2EO
61 + 6o

The notation for transmission to, is that the solution begins in region 1 and ends up

in region 0. The notation for the reflection r 101 is that the solution begins in region

1, encounters a boundary with region 0, and then reflects back into region 1.

The next term in the expansion involves terms with two boundary interactions.

We have

0 z>0

12 = r 0 20 t0 1  q - L < z < 0
4 7reo - (z+h+2L)2+ p 2

t20tO1 q z < -L
47rE2 ( z-h)

2
+p

2

The associated reflection and transmission coefficients are

60 - 62
020 + 2
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262
t20 

C

EO + 62

In general, we will have

Ei - Ej
riji g 6 i + Ej

The next term in the expansion involving three boundary interactions is

4wei (z+h+2L)2 4-p2

(1)3 7-1r20- q
I= O 20tOi 4 7rEO (z-h-2L)2

+p
2

0

z > 0

-L < z < 0

z<-L

We can continue to develop such solutions at will. The next one can be written as

0

4 To0Tooro2tol41rEON/(z+h+4L)2+p2

t207r010ro20tO1 - q
4.r.2Tsb t (z-h-2L)2 +p2

9.3.1 The solution below the gap

z>0

- L < z < 0

z < -L

From the discussion given above, we may develop a solution for the region below the

gap with dielectric constant 62. We may write

D(2) = t 20 tO1 V + t 2oro10rO20 t0 l 4 + - - -
4rE2 V(z - h) 2 + p2  47iE2)(z - h- 2L)2 + P2

This can be developed somewhat more compactly in series notation. We have

D(2)(r) = t 2 0tol z [rojor20]
4rc2 (z - h - 2nL)2 ± p2

We recall that
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r 2 (E0 - 61 (60 - E2)

6E0 + E, / 60 + 2

(2 1 + 61) (60 + 62)

The solution for z < -L is then

(2) 4EoE2 +
(60 + E1) (E0 +| E2) n=0

n
C0 - 61

(6o + Ei)

60 - 62 n

60 + 622

q

47r62 l(z -h --2nL)2 +)9 2

If we have another charge q situated at z < -L, then the Coulombic interaction

energy between the charge in medium 1 and the charge in medium 2 is

(r) _46062 6 61

(r 0 + 61) (60 + 62) 0 ± 61

60 - 62 )n

60 + E2 4-rE2 (z - h - 2nL)2 + p 2

(9.3)

9.3.2 The solution above the gap

We can similarly develop a solution in the region above the gap for z > 0.

solution in this region is

(D ()(r) = + r 1 0 1
47re1 I(z - h) 2 + p2 f(z + h) 2 + p 2

+ t(z2±2)q + + tjor0201rojort2Otl
47rE 1 f(z + h+ 2L) 2 + P 2

q +
47rcjq (z+ h±4L)2 +p 2

This can be written more compactly as

CD + r 101
47rEi ,(z - h)2 + p2 47r61 V(z + h) 2 + p 2
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+ E toi [ro2 oro1O]"-I r0 20 tO1  q +-
47rc1 V(z + h + 2nL) 2 +p 2

Substituting in for the various reflection and transmission coefficients leads to

q z +47rc, (z -h)2 ±p'2
(\ - O q

E1 + CoJ) 47re 1 (z +h) 2 +p'2

4Eoci +o -(:n -

(+ -0+ iCO + E1) _=1 (6 + ei

n
E - C2
6O + 62)

q +
47rc, V(z +h ±2L) 2 + P2

9.3.3 The solution within the gap

Finally, we may use the results above to develop solutions within the gap region. We

may write

<b(O) = to, q + r 02 0tO1

4irc0 V( z - h) 2+ p2 41rco f(z + h+ 2L)2 + p2

+ r010r 20tO1  r020r0 10rO20tO1  +-
4wco (z - h - 2L)2 +p 2  47rEo (z + h+4L)2 + p2

we may write this more compactly as

a a

00

= [roioro20on toi
n=O

[ro1 oro2 0] r 20 tOl

q

47re0co ~ 2L 2 p

q
+ n

n=O 47roV[z + h + 2(n + 1)L]2 + p2

If we substitute in for the various reflection and transmission coefficients, we obtain
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Figure 9-3: The dotted lines are the equipotential lines for an example three-region
problem with q/47 taken to be 1 and c0 = 1, El = E2 = 10, h = 5, and L = 10.

( 
2o60

Ej + EC ) n=0

/ n
60 - Jn

60 + El

n
60 - 62

60 + E2,

q

47rc0 V/(z -h --2nL) 2 + p 2

+ ( 2Eo
E1 +| E0

n =0

E0 -- E

60 + E11

60 - 62\ (n+1)

E0 + 62)

q

47rcOy/[z±+ h±+2(n + 1)111 + p2

As a demonstration, in Figure 9-3 we compute the field solutions and plot the equipo-

tential lines for a three-region problem.

9.4 Hamiltonian for dipole-dipole interaction across

a gap

We are interested in the development of a Hamiltonian for two dipoles that are sepa-

rated by a gap. To develop an appropriate expression, we begin with the interaction
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energy between two charges on either side of the gap

Uij 4cE2 EO -- I) n EO - E2n(94
(U O + E)(o + 2 ) _ EO + E 0+2 (94)

47re 2 V'(zi - z + 2 + (x - sr) 2 + (y, - yj)2

where we assume that the charges are located such that zi > zj.

The dipole-dipole Hamiltonian is obtained through a process of linearization. For

example, supposed that the charge associated with each radiator is localized in the

vicinity of some center position, so that

xi = Xi + 6xi

yi = Yi + jy

zi = Zi + Szi

xj = Xj + 3xj

Yj = Y + jy,

zj = Zj + 6z3

We consider the X, Y, and Z variables to define center of mass positions of the

radiators, and the 6x, 6y, and 6z coordinates to keep track of the location of the

charge relative to the center of mass coordinates. In this case the static interaction

becomes
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= 4EOE2 6 -- El) n

(EO + C2) n=O (CO + E1

E0 - E2

60 + 62

x qiqj
41r6 2 /(Zj - Z, + 6zj - 6z3 + 2rnL)2 + (Xi - Xi + 6xj - x )2 + (y -Yg + 6y, - 6y32

The next step is to linearize this expression. For this purpose, it is convenient to

introdue new quantities in order to simplify the notations somewhat. We define the

difference vector

ARiin = i(Xi - Xj) + y(Yi - Y) + 1z(Zi - Zj + 2nL)

We also define the deviation vectors

ri = 3x2  + ly 6Yi + iz6 zi

r= ix6xj + iy6yj + iz;6 z

With these definitions, we may rewrite the interaction energy as

46o2
=(60 + E1)(0 + 62)

z(60 -- E1

n=O O + 61 )

qiqj
47rE2 IzARii, + (ri - rj)

We note that

1

IAR iyj + (ri - rj)

1

'[ARin12 + 2ARijn - (ri - rj) + Iri - rjI2

This can also be written as

1

|ARijn + (ri - rj)f
1

|ARij,|

1

1+ 2ARij,-(ri-rj)
IARij.|2
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We recall that the Taylor expansion of 1l + x is

1 1
= - 1-x

1+±x 2

35+ --x2 _ __ 3 +
8 16

Consequently, we may expand to obtain

1

ARiJn + (ri - rj)|

AR.n -(ri - rj)

JA Rz 1n2

1 Iri - rj

2 1ARiin 12
3 [ARijn - (ri - rj)]2
2 1ARijn|4 -1

Here we have kept terms up to second order in ri - rj. This can be recast as

1

Rijn + (ri - rj)I

A Rijn - (ri - rj)

IARijn I

1Iri - r j 2

2ALyRin 13
3 [ARijn - (r - rj)]2
2 1 ARijn 15

From this we are able to extract the dipole-dipole interaction. The terms in this

series that are responsible are the ones involving a single occurrence of ri and a single

occurrence of rj. These terms are

+ ri - rjI

1 ARijn3

3(ri -A*Rin)(ARiin - ri)

Using this result, we may obtain the dipole-dipole Hamiltonian Hint

46062
(int ~(62
(60 + Ei)(EO + E2)
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00'

X E 60 ~ 61 n 60 - E2 ) 1 di * dj
xy

n= 0 + 61 60 + 62 47r6 2 IARIjn 3

where dk is the dipole operator

dk - qkrk

This can also be written as

Hint 46062
=int ~ )Eo 2

(0 + EJ) (E E2)

:O -:E2 ) n713 di -d - 3(di- lijn)(lijn - d)]
EO + E2 47E2|ARijn|I

where

ARin
1iin iARijn|

9.5 Discussion

We have derived the classical expression for the interaction energy between a pair of

electrons located in two media separated by a gap. We can apply this result to obtain

the Coulomb coupling matrix element U by taking the expectation of the interaction

energy over the product electron states of the hot-side and the cold-side. Namely,

U = (b, 11UjI a, 2) where states a, b, 1, and 2 are as defined in Chapter 7 and Ugj is

as in Eq. 9.4. In the next chapter we then aim to calculate the wavefunctions of the

electrons for a given design of the quantum wells. In this chapter we have also derived

a formula for the dipole approximation of the interaction energy, which will be useful
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later on for analyzing the case where the hot-side material consists of a continuum of

small absorbing dipoles.
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Chapter 10

Numerical modeling of quantum

dots

In our quantum-coupled conversion scheme we have assumed the existence of quantum

wells containing one or two discrete levels. To implement such wells one can embed

a semiconductor material with a lower conduction bandedge in a matrix of another

semiconductor material with a higher conduction bandedge, forming a quantum dot.

Given suitable conduction bandedge difference between the two materials, we can

expect one or two discrete electron states to reside in the dot if the dot size is small

enough. In this chapter we briefly explain the numerical method used to compute the

energies and wavefunctions of the dot states.

10.1 Simple potential

Let us consider a quantum well sitting against a vacuum gap with conduction band-

edge profile as depicted in Figure 10-1. Material 2 has an elevated conduction band-

edge relative to that of material 1. The potential goes to infinity at the boundary

with the gap as the electron should not escape into the vacuum gap. A bound-state

of the quantum well satisfies the time-independent Schrodinger's equation:
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h2 d 1 d@ (x)
(dx V(x) -O(x) = E - O(x) (10.1)2 dx ((x) dx

where V(x) is the potential profile and m(x) is the space-dependent effective mass

of the electron. Region 1 consists of a homogeneous material with electron mass

denoted m 1 . Region 2 consists of another homogeneous material with electron mass

denoted M2 . Within region 1 or region 2, the mass is constant and we can write the

Schr6dinger's equation as

h 2 d2
0(X) + V(x) -O(x) = E -O(x)

2m dx2

From Eq. 10.1, the following boundary conditions need to hold at the boundary

between the two materials (x = d) to avoid impulses in the wavefunction:

=(d-) = (d+) (10.2)

1 do(X) _ 1 dO (x) (10.3)
m, dx x=d- m 2 dx x=d+

10.2 Numerical scheme

We can solve the Schr6dinger's equation numerically via finite-difference schemes.

Lets suppose we put N1 - 1 grids in region 1 and N 2 - 1 grids in region 2. See

Figure 10-2. We can use a simple three-point differencing scheme for the second

derivative (with O(h 2) error where h is the spacing between adjacent grids on the x

axis), resulting in the following equation:

h2 -_ - 20j + V@j+l
+ V(xj) - j = E - j

where m is equal to mi in region 1 and equal to M 2 in region 2. The above equation

applies to grids of which neighboring grids are well-defined without any problem, but

for grids near the boundaries we need to take extra care. What are the values of the
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material 1
region 1

material 2
region 2

.9

d x
Figure 10-1: One-dimensional potential profile for a quantum well sitting against the

gap. Material 2 has an elevated conduction bandedge relative to that of material 1.

The potential goes to infinity at the boundary with the gap.
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wavefunction at the boundary? The wavefunction should be zero at the gap boundary

as the potential is infinity there: Oo = 0. Since a bound-state wavefunction decays

away exponentially in region 2, we take VN1+N 2 -1 = 0. At the boundary between

region 1 and region 2, we are subject to the boundary conditions Eq. (10.2) and Eq.

(10.3). Denoting the wavefunction at the boundary to be #, we can use a simple

two-point differencing scheme with O(h) error to express Eq. (10.3):

1 VN 1 -1 _ 1 ON 1 -~

M1 h M2 h

which solves to give

2 - N-1 I- m 1  N1 (10.4)
m 1 + m 2

The Schr6dinger's equation at XN 1 -1 is originally:

2 h2 -20Nl + ONl2] + V(XN 1 -1) -N 1 -1 = E -ONi-1 (10.5)

We eliminate # by applying Eq. (10.4) into the above equation to obtain:

h 2 -2mI - M2 O,1+ 2mi + m2 N- V(NIO11EON1
2m, - h 2 [(-mi+ M2  9N 1 1 (2m 1 ±m 2  N-2 +-(xN1l9N 1 1 =E-N 1 -

(10.6)

We can construct a similar equation for grid XN 1 . Altogether, we can obtain a matrix

equation of the following form:

where 4' is a column vector containing 01, 02,- - -, 4N 1+N 2-2- The above is a matrix

eigen problem and we can use any of the available matrix packages to solve for the

eigen-values and eigen-vectors to give us the energies and wavefunctions of the bound

states.
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Region 1 Region 2

......... N1_2 N1 ............ N1 +N2-3
x

1 2 N1-1 N1+N2-2

Figure 10-2: Finite-difference scheme with the grid discretizations shown.

10.3 Order of error

We have described the basic approach to solving bound-state energies and wave-

functions of one-dimensional quantum wells. This approach can be generalized to

solve two-dimensional and three-dimensional potential well problems. One important

point to note is the order of error. In the above example we have used a 0(h 2 ) three-

point differencing scheme for the second derivative and a 0(h) two-point differencing

scheme for the first derivative of the boundary condition. Altogether, the accuracy

is limited by that of the boundary condition and the overall error is of order 0(h).

Therefore, to achieve desired accuracy one would need to match the order of error

for both the second derivative discretization of Schr6dinger's equation and the first

derivative discretization of the boundary condition. In this chapter we demonstrate

the numerics with three-point differencing scheme for the second derivative and two-

point differencing scheme for the first derivative for the sake of clarity. In the next

chapter we describe a quantum dot implementation of our device, and in calculating

the three-dimensional wavefunctions of the dot states we have used a six-point differ-

encing scheme for the second derivative and a five-point differencing scheme for the

first derivative, resulting in 0(h 4 ) order of error (see pp. 914 of [19] for the associated

formulae). Using a higher point differencing scheme could increase the error order

but would also require more grids, leading to a longer simulation time. To keep the

run time manageable, we have used six grids in each of the regions in each of the di-
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mension for the three-dimensional quantum dot problems. Even though the relatively

low number of grids might lead to some error, the analysis suffices here as our focus

is on the new thermal to electric conversion scheme and not on precise calculations

of quantum dot wavefunctions.

10.4 Two-dimensional scheme

We describe how to generalize the numerical method to solve two-dimensional prob-

lems. Figure 10-3 shows a two-dimensional well sitting against an infinite potential

wall. The potential is lower inside the square and higher outside, and it goes to in-

finity at the wall to the right of the square. We put grids on the x-y plane as shown

in Figure 10-4. The numbering of the grids starts from the upper left and increases

from right to left and top to bottom. There are n grid points in each row. The line

on the right indicates the infinite wall while the square indicates the potential well.

The Schr6dinger's equation reads

h-V 1( (x, y) + V(x, y)'(x, y) = E - 0(x, y)2 m(x, y)

Inside a homogeneous region, the Schr6dinger's equation can be expanded as

2m x2 + Dy22 (XY) + V(X,Y)y(x,y) = E- (x,y)

Differencing gives

2m + J + \~j, yjVjJ

where hx is the spacing between adjacent grids on the x axis and hy is the spacing

between adjacent grids on the y axis. For the boundary condition we can use the

one-dimensional result Eq. 10.4. For example, Figure 10-4 shows a boundary relation

in the y direction among 4 'k-n, #, and $k:
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# m1- k-n ± - m2 -)k (10.7)
m 1 + m 2

where m, is the electron mass inside the well and m 2 is the electron mass outside the

well. Figure 10-4 also shows a boundary relation in the x direction among V_, 6, and

0= *M -'g + m 2 -49- 1  (10.8)
m 1 + m 2

We use Eq. (10.7) and Eq. (10.8) to eliminate 4 and 0 from the differenced Schr6dinger's

equations, similar to the one-dimensional case of going from Eq.(10.5) to Eq. (10.6).

Therefore we can construct and solve a matrix eigen problem for a column vector

containing all the 4,'s. Figures 10-5, 10-6, and 10-7 show the three bound-state

wavefunctions for an example two-dimensional potential well as described above. The

well has a width of 45 A in the x direction and a width of 145 A in the y direction.

The potentail inside the well is 697 meV lower than that outside the well. The ef-

fective electron mass outside the well is 0.067mo, where mo is the free electron mass.

The effective electron mass inside the well is 0.024mo. The calculation is done with

a six-point differencing scheme for the second derivative and a five-point differencing

scheme for the first derivative, The number of grids used is 120 in the x direction and

90 in the y direction. We can see from the figures that in the x direction the well is

only wide enough to hold one state while the well is wider in the y direction. The

well holds three states and the excitations are in the y direction.

10.5 Three-dimensional problem

In this section we consider a three-dimensional potential well problem. Figure 10-8

shows a cubic shape quantum dot sitting against an infinite wall. The potential at

the wall is infinite and the potential inside the well is lower than that outside the

well. The Schr6dinger's equation reads
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Figure 10-3: Two-dimensional potential well sitting against an infinite wall.
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Figure 10-4: Grid discretizations for the two-dimensional potential well problem.
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Figure 10-5: Normalized ground-state wavefunction of the two-dimensional potential
well.
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Figure 10-6: Normalized first-excited wavefunction of the two-dimensional potential
well.
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Figure 10-7: Normalized second-excited wavefunction of the two-dimensional poten-

tial well.

-- V ( V(, z + V(x, y, z)(x, y, z) = E -' (x, y, z)
2 m(x, y, z)

Inside a homogeneous region, the Schr6ndiger's equation can be expanded as

h2 192 a2 a2-
- 5X±2 + 5 2 ]+ b(X y, z) + V(x, y, z)?(x, y, z) = E - (x, y, z)
2m Ix y z

We discretize the problem with grids shown in Figure 10-9. The numbering of the

grid increases with increasing x coordinate, then increasing y coordinate, and finally

increasing z coordinate. There are n grid points in the x direction and g grid points

in the y direction. Differencing the Schr6dinger's equation gives

146



h2 Oj_1- 2Vkj +±j+ OV~i ~-n - 2V/% + 4
Oj+n V)3 -n-g - 2~ ~~-

2m _ h h2 h2

+V(xj, yj, zj)oj = E - Oj

where hx is the spacing between adjacent grids in the x direction, hy is the spacing

between adjacent grids in the y direction, h, is the spacing between adjacent grids in

the z direction. The boundary condition Eq. 10.4 still applies in the three-dimensional

case. Again, a matrix eigen problem for the vector of O's can be developed and solved.

We calculate the bound states for the problem of 45A x 145A x 45A size quantum

dot in the x, y, and z directions with the potential inside the dot being 697 meV

lower than outside. The effective mass inside the dot is 0.024 mo and that outside

the dot is 0.067 mo. The calculation is done with a six-point differencing scheme

for the second derivative and a five-point differencing scheme for the first derivative,

The number of grids used is 24 in the x direction, 18 in the y direction, and 18 in

the z direction. Figures 10-10, 10-11, and 10-12 show the cross-sectional view of the

normalized ground-state wavefunction in the x-y, x-z, and y-z plane. Figures 10-13,

10-14, and 10-15 show the cross-sectional views for the first excited state. Due to the

additional dimension leading to a lower level of confinement, this three-dimensional

potential well only has two bound states as opposed to three as in the case of the

two-dimensional potential well. It can be seen that in the x and z directions the well

holds only one state while in the y direction the well is wider and holds one more

excited state.
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Figure 10-9: Grid discretizations for the three-dimensional potential well problem.
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Figure 10-10: x-y cross-section view through the center of the quantum dot for the
normalized ground-state wavefunction of the three-dimensional potential well prob-
lem.
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Figure 10-11: x-z cross-section view through the center of the quantum dot for the
normalized ground-state wavefunction of the three-dimensional potential well prob-
lem.
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Figure 10-12: y-z cross-section view through the center of the quantum dot for the

normalized ground-state wavefunction of the three-dimensional potential well prob-

lem.
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Figure 10-13: x-y cross-section view through the center of the quantum dot for the

normalized first-excited state wavefunction of the three-dimensional potential well

problem.
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Figure 10-14: x-z cross-section view through the center of the quantum dot for the
normalized first-excited state wavefunction of the three-dimensional potential well
problem.
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Figure 10-15: y-z cross-section view through the center of the quantum dot for the
normalized first-excited state wavefunction of the three-dimensional potential well
problem.
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Chapter 11

Quantum dot design, issues, and

parameters

We have done much analysis on the quantum-coupled thermal to electric conversion

scheme. To further explore the feasibility of such a scheme, we present a particular

design of the device where quantum dots are used to implement the potential wells of

the scheme. Even though the precise fabrication of the device seems difficult, there

has been evidence showing research progress towards the various components essential

to the implementation of the design.

11.1 Design basics

Here we outline the basic quantum dot design of the thermal to electric converter.

Please refer to Figure 11-1. The hot-side consists of a semiconductor substrate with

a quantum dot on the surface having two levels matched to those of a cold-side dot.

There is a doped layer of semiconductor underneath the hot-side dot which acts as a

reservoir. Across the gap, the cold-side has two quantum dots on the surface. Dot 1

has two levels (levels 1 and 2) and they couple to the hot-side dipole via a Coulomb

interaction. Dot 2 has one level (level 3) and it couples to the excited level (level

2) of dot 1 through tunneling. The lower level (level 1) of dot 1 relaxes to reservoir

1, which is at ground voltage. The dot 2 level relaxes to reservoir 2 which is at an
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Hot-side Dot 1x

Hot-side dot

Dot2

Gap
Reservoir 1

Reservoir 2

Cold-side

Figure 11-1: An example implementation of one unit of the device. The hot-side has
a dot facing dot 1 across the gap. The hot-side dot has two levels matched to those
of dot 1. Dot 1 holds two levels and dot 2 holds one level. The dots are presumed
to be implemented in a substrate that is not shown. There is a layer of reservoir
underneath the hot-side dot which is also not shown. Reservoir 1 is at ground while
reservoir 2 is at an elevated voltage. The unit is repeated over a larger area with
common reservoirs 1 and 2.

elevated voltage. Reservoir 1 has a branch off the bus in order to couple the lower

level of dot 1. The branch is horizontal to dot 1 and it faces the center of dot 1

with a distance. Reservoir 2 is parallel to dot 1 and it runs on the surface next to

dot 2 with a distance. The cold-side structure is repeated over the surface with the

reservoir 1 buses linked together and the reservoir 2 buses linked together. Reservoir

1 and reservoir 2 are connected through the load. Figure 11-2 shows an array of the

device units and their interconnections.

11.2 Materials and dimensions

The hot-side is at temperature 600 K and the cold-side is at 300 K. Dot 1 has a

x x y x z dimension (145 A) x (45 A) x (45 A) and is implemented using InAs. The

energy separation of the dot 1 levels is 92 meV. Both reservoir 1 and reservoir 2 are
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Figure 11-2: A schematic showing how the individual device units might be inter-

connected. The dots are presumed to be implemented on a substrate that is not

shown.
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made up of n-type InAs with 6 x 1018 cm-3 doping. The hot-side is made up of InAs

quantum dots on GaAs matrix, with the dots having the same size as the cold-side dot

1. The hot-side dot and the cold-side dot 1 are aligned such that they face each other

across the gap. There is a layer of n-type 2.1 x 1018 cm- 3 doped InAs 65A below

the hot-side dots. On the cold-side, dot 2 is assumed to be InAs, with dimensions

(45 A) x (45 A) x (70 A), and is horizontally pointing to the top part of dot 1. The

wavefunction of the excited level of dot 1 has a peak in the upper half of the dot in

x direction. On the other hand, the ground state wavefunction of dot 1 has a peak

in the middle of the dot and is of lower value than the excited level in the upper

half of the dot. Therefore, having dot 2 horizontally pointing to the upper half of

the dot makes the dot 2 level couple to the excited state of dot 1 preferentially due

to the spatial configuration. In addition, the excited state of dot 1 is more extended

and it couples to dot 2 more strongly due to its higher tunneling probability. Dot

2 holds a level that is lower than the excited level of dot 1 by 40 meV such that

at a voltage of 40 mV they become resonant. Note that Figure 11-1 is not drawn

to scale. The distance between dot 1 and dot 2 is 35 A. The reservoir 1 branch

with transverse size (10 A) x (10 A) is horizontally positioned 30 A away from the

center of dot 1. Due to this spatial orientation, reservoir 1 coupling to the excited

level of dot 1 is much smaller than the coupling between reservoir 1 and the ground

state of dot 1. Reservoir 2 is located 30 A away from dot 2 and it has a transverse

size of (45 A) x (45 A). The substrate on the cold-side is GaAs. The gap thickness

is assumed to be nanometer-scaled. Gaps of 5-15 nm are well within the present

state of the art [20] and a nanometer gap has been used to demonstrate cooling by

room-temperature thermionic emission [21].

We have picked the material choice of InAs/GaAs because this is one of the most

extensively studied quantum dot systems. The purpose of the substrate is to hold

the dots and reservoir in place and also to provide finite barrier between the dots for

tunneling to be possible.
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11.3 Fabrication issues

The fabrication of quantum dots presents a challenge. The quantum dots need to meet

two criteria. First of all, the dots need to be small enough to contain only one or two

states. One common method of quantum dot fabrication is the Stranski-Krastanow

(SK) growth mode, namely strain-induced self-organization growth of quantum dots

[22]. Using the SK growth, InAs/GaAs quantum dots containing as few as three

states have been reported [23] (flat elliptical lens-shaped dots with height 2.5 nm and

base length 25 nm) and it is conceivable that fewer-state dots are achievable. Second,

precise positioning of the dots is required. Using pre-patterned templates with the

SK method, growth of InAs/GaAs dots on designated areas has been carried out

[24, 25, 26, 27], but exact positioning of single quantum dots is still difficult.

There are other nanofabrication techniques aside from the SK method. Electron

beam lithography has been shown to produce resist dots of approximately 5 to 6

nm[28]. Scanning tunneling microscope lithography has been used to fabricate 15 nm

wide trenches in Si [29]. Dip-pen nanolithography has been used to write alkanethiols

with 30-nanometer linewidth on a gold thin film [30] and to deposit AuC12 H25 S (2.5

nm in diameter) gold nanocluster islands (lateral dimensions 67 nm x 72 nm) on

a silica surface. It is possible that these methods could be adapted to construct

nano-structures demonstrating the quantum properties we desire.

Another fabrication issue is the highly ordered nano-sized reservoir array as shown

in Figure 11-2. The reservoir branch that couples to the cold-side dot requires smaller

dimension and might be implemented as conductive carbon nanotubes. The size of

single-well carbon nanotubes is typically 1 to 3 nm in diameter [31]. The reservoir

interconnects could potentially be of larger sizes and might be implemented as doped

regions or semiconductor nanowires. Doped regions can be shaped by resist of which

resolution can be 5 to 6 nm with electron beam lithography [28]. Good control over

the diameter and length of nanowires has been demonstrated in nearly monodisperse

indium phosphide nanowires of diameters 10, 20, and 30 nm and lengths 2, 4, 6,
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and 9 prm [32]. Doping is required to make the nanowires into electron reservoirs

and we have seen examples of B-doped silicon nanowires of diameter 150 nm and

P-doped silicon nanowires of diameter 90 nm [33]. Connecting individual wires into

the complex branched array structure of Figure 11-2 presents a great challenge, which

would require further research.

11.4 Parameter estimations

Having specified a design of the device, we wish to evaluate its performance. Before

we can do so, we need to estimate the various material parameters associated with

the design.

11.4.1 Quantum dot parameters

A calculation of the energy levels in InAs/GaAs quantum dots is performed in [34]

and we use their conduction band discontinuity of 697 mV in this work. Unlike [34]

which assumes a unique effective mass 0.067 throughout the structure, we use the

InAs effective mass 0.024 in the InAs region and the GaAs effective mass of 0.067 in

the GaAs region. The two levels in dot 1 are computed to be 525 meV and 617 meV

above the conduction bandedge of InAs. The level in dot 2 is computed to be 577 meV

above the conduction bandedge of InAs. Following the numerical method described

in the previous chapter we calculate the quantum dot wavefunctions. The Coulomb

coupling matrix element is obtained by applying the wavefunctions to the three-region

Coulomb interaction energy result using Eq. 9.3. As is done in [35], we use the square

of the refractive index at the transition frequency as the dielectric response in Eq. 9.3

instead of the static dielectric constant. The tunneling matrix element is estimated

to be V = 3.3 meV, which matches a relaxation time of h/V = 0.2 ps.

11.4.2 Fermi levels

Solving the following equation gives the Fermi level of the reservoir:
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ND = NcF1/2 (Tc)

where ND is the doping level and N, is the effective density of states of the conduction

band of InAs 8.7 x 1016 cm- 3 . F11 2 is the Fermi-Dirac integral of order 1/2. rq is

the normalized energy spacing between the Fermi level and the conduction band edge

77c = (EF - Ec)/kT. Both the hot-side and the cold-side reservoirs are solved to

have the Fermi level above the conduction band edge by 525 meV, matching the

ground-state energy of dot 1 and the hot-side dot.

11.4.3 Relaxation times

The relaxation times on the hot-side dot levels is estimated using the approach de-

scribed in Chapter 13. For the hot-side dot, the ground state relaxation time is

calculated to be 0.2 ps while that of the excited state is estimated to be 0.06 ps. On

the cold-side, level 1 and level 3 also have a relaxation time of 0.2 ps. The relaxation

of level 2 is considered below.

11.4.4 Loss

As noted before, the relaxation of level 2 in dot 1 constitutes loss. This relaxation

consists of three components. The first component is the phonon-assisted relaxation.

The second component is the relaxation into reservoir 1. The last component is the

relaxation into surface states. The phonon-assisted [23] relaxation is characterized by

a relaxation time of 37 ps from [23]. The level spacing between the two levels in dot

1 is 92 meV, which is 20 meV detuning from 72 meV, a multiple of the GaAs LO-

phonon energy hwo=36 meV. This detuning is the same as that in [23] and therefore

we use their measured lifetime of 37 ps as the phonon-assisted loss relaxation time of

the excited level in dot 1. This lifetime of QD levels is considerably longer than that

of bulk or two-dimensional heterostructures because there are no levels to relax to

at hwo harmonies; namely, the density of states is restricted. In addition, the pola-

ronic nature of the confined electron coupled to the phonon [23] results in inefficient
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phonon-assited relaxation, and therefore implementing the cold-side with quantum

dots has an advantage of lower loss compared to the two-dimensional heterostructure

implementation.

The lifetimes for the relaxations into reservoir 1 and the surface are estimated using

the approach described in Chapter 13. The lifetime of level 2 relaxation into reservoir

1 is estimated to be 20 ps. The relaxation time into the surface states is dependent on

how far the dot is from the surface and in principle can be made long. A discussion on

the relaxation into surface states is deferred to Chapter 13. Here we only consider the

effects of the phonon-assisted relaxation of lifetime 37 ps and relaxation into reservoir

1 of lifetime 20 ps. The total equivalent relaxation time is

+ _ ~ 13 ps
20 ps 37 ps

11.5 Discussion

A specific quantum dot design of the proposed thermal to electric conversion has been

decribed and the various parameters associated with the design have been estimated.

We are now in a position to apply the parameters to our augmented secular equations

model and to obtain numerical device characteristics, which will be the topic of next

chapter.
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Chapter 12

Numerical results

In the last chapter we have given a quantum dot design of the quantum-coupled single-

electron conversion scheme. We have also given specific values to all the essential

parameters of the design except the Coulomb coupling, which is dependent on the

gap thickness. In this chapter we present numerical results of the device performance

for the case of 5 nm gap, and also give the gap-dependence of the load power.

12.1 Load power and efficiency

For a gap of 5 nm, the Coulomb coupling matrix element U is 2.5 x 10 4 eV. We

assume each device unit occupies an area of 1000 A x 1000 A. We assume that at

this size dot 1 only couples to the hot-side dot directly across the gap and it does

not couple to other hot-side dots 1000 A or further away. The calculated device load

power as a function of voltage is shown in Figure 12-1. The load power is similar to

a parabolic curve of a typical thermoelectric device characteristic with the maximum

value occurring somewhere in the middle of the voltage range. The maximum load

power is 23 mW/cm 2 at a voltage 27.5 mV with a corresponding efficiency of 26%.

The calculated conversion efficiency along with the dashed line Bloch equations

result q -V/A E is plotted in Figure 12-2, where q is the electron charge, V is the volt-

age, and AE is the energy spacing of the dot 1 levels. Intuitively, after an excitation
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transfer occurs, one electron on the cold-side receives energy AE and then does work

q- V on the load. Therefore, we expect the efficiency to be simply q- V/AE. However,

there are complications to this simple argument. First of all, because the dot levels

have finite relaxation times, their energies have spreadings due to the energy-time un-

certainty relation. Therefore the excitation received from the hot-side is not exactly

AE. Second, the excited level of dot 1 has a relaxation that constitutes loss and this

degrades the efficiency.

Please refer to Figure 12-2. Initially the efficiency increases with voltage roughly

following the q - V/AE line until it reaches its maximum value 43% at 42 mV. The

loss takes greater effects beyond this point and the efficiency drops rapidly with

further voltage increase. The corresponding load power at the maximum efficiency is

8 mW/cm2 .

The efficiency is rather independent of the gap thickness for a given device, but the

load power is strongly dependent on the Coulomb coupling matrix element and thus is

dependent on the gap. Figure 12-3 shows the maximum load power for gap thickness

1 nm through 10 nm. The maximum load power drops from 257 mW/cm2 at 1 nm

to 3.4 mW/cm 2 at 10 nm. The thermal power follows a similar gap-dependence to

go from 1.66 W/cm 2 at 1 nm to 152 mW/cm2 at 5 nm to 23 mW/cm2 at 10 nm.

At larger gap thickness, the dipole-dipole interaction energy has a 1/R 3 dependence,

where R is the distance between the two dipoles. The Coulomb matrix element U

thus has a 1/R 3 dependence and is small at large gaps. The current and power then

have a U 2 Golden rule dependence and the dependence on distance is 1/R 6 .

12.2 Comparison with TPV and MTPV

We compare the performance of the quantum dot design with that of TPV and

MTPV. The figures for TPV are taken from the experimental results of [8]. The

numbers for MTPV are experimental results from [4] done at a 0.12 1um gap. Figure

12-4 shows the total thermal power transferred from the emitter to the TPV diode
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Figure 12-1: Load power versus voltage for a 5 nm gap implementation of the design.
The maximum load power is 23 mW/cm 2 at voltage 27.5 mV with a corresponding
efficiency of 26%.
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Figure 12-2: Efficiency versus voltage for a 5 nm gap implementation of the de-
sign. The maximum efficiency is 43% occurring at voltage 42 mV with load power 8
mW/cm 2.
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Figure 12-3: Maximum load power for gap thickness from 1 nm to 10 nm. The

maximum load power drops from 257 mW/cm 2 at 1 nm to 3.4 mW/cm2 at 10 nm

or quantum converter. Also shown are the blackbody limit uT 4 for TPV and the

evanescent coupling limit n2c-T 4 for MTPV, where n2 is the averaged refractive index

of silicon for the case of [4]. The calculations for the quantum dot design assume a

lower temperature of 600 Kelvin and we have presented two results, where the higher

power case corresponds to a design with 1 nm gap and the lower one corresponds to

a design with 5 nm gap. Both power per unit area and power per unit active area

are presented. Note that the load power for our device is dependent on the density

of device units, and we have assumed a 100 nm x 100 nm device unit area. Recall

that the active area fill factor assumed is 0.0065 and the power per unit active area

represents the potential power the device can achieve. It is clear from Figure 12-4

that the TPV power is an order of magnitude or lower than the blackbody radiation

limit and the MTPV power is also an order of magnitude lower than the evanescent

coupling limit, while the quantumd dot design of the single-electron conversion scheme

can potentially exceed these limites by orders of magnitude.

Figure 12-5 shows the conversion efficiency for TPV [8] and the quantum-coupled

scheme, along with the Carnot limit, the fundamental upper bound for thermal to
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Figure 12-4: Thermal power for TPV, MTPV, and quantum dot design with 1 nm

and 5 nm gaps. The values for TPV and MTPV are experimental results from [8]

and [4]

electric conversion efficiency. The efficiency for the MTPV is not available. The 1 nm

gap and 5 nm gap cases have the same efficiency and therefore only one data point is

shown for the quantum dot design. We see that the potential conversion efficiency for

the quantum dot design is high, approaching the Carnot limit, while the efficiencies

for TPV are below 30% of the Carnot limit. Note that in our present calculation we

have neglected Coulomb-coupled heat flow, which is expected to be the dominant loss

mechanism. We have derived a formula for the evaluation of this loss in Appendix C

and a calculation will be carried out in the future.

12.3 Constraints

The load power is constrained by how fast electrons can be transported between

the quantum dots and the reservoirs, namely the relaxation times, and how fast the

excitation can be transferred from the hot-side to the cold-side, namely the Coulomb

coupling. It appears that with this design, the Coulomb coupling matrix element

is the bottleneck to the load power. For the quantum dot design at 5 nm gap, the
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Figure 12-5: Efficiency for TPV and quantum dot design. The efficiency for the
quantum dot design with 1 nm gap and that for 5 nm gap are the same and only one
data point is shown for the qauntum dot design. The values for TPV are experimental
results from [8]. There is no efficiency value reported in [4] for MTPV.
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Coulomb coupling matrix element is U = 2.5 x 10-4 eV, corresponding to a time scale

of h/U = 2.6 ps, an order of magnitude slower than the relaxation time 0.2 ps.

The Coulomb coupling matrix element is constrained by two factors. First, the

high dielectric constants of the hot-side and cold-side semiconductors decrease the

interaction energy between a hot-side electron and a cold-side electron. Second, the

transition dipole moment between the two levels in dot 1 is small, due to the small

size of dot 1 and arising from the limitation that dot 1 has only two levels.

12.4 Discussion

We have shown that a quantum dot design of the quantum-coupled conversion scheme

could lead to high efficiency and decent load power. There is no fundamental limit

such as the blackbody limit or the evanescent coupling limit to the power of our device,

and the calculations have shown that indeed the power of the quantum dot design

of the single-electron conversion scheme could greatly exceed those limits. Also, the

predicted efficiency of is very high.

It is natural to ask if there exists an alternative design of the quantum-coupled

single-electron conversion scheme, and in the next chapter we consider such a design.
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Chapter 13

Relaxation times

Relaxation times are important paramters critical to the function of our proposed

device. In this chapter we consider how to estimate the loss relaxation time of level 2

in dot 1 and the lifetime of relaxations into reservoirs for other levels. As mentioned

in Chapter 11, the loss relaxation time of level 2 consists of phonon-assisted relaxation

and relaxations into reservoir 1 and surface states. In our design, the InAs dots are

right on to the surface, and therefore we expect the interactions of the quantum

dots (QD) levels with surface states to degrade the QDs' optical properties [36] and

contribute to loss. In order to reduce loss, we could position the QDs underneath the

surface to decrease these interactions at the expense of weaker Coulombic coupling

between the hot-side and the cold-side dots. Here we investigate how the loss is

affected by the distance between the QDs and the surface.

13.1 Measurement

The photoluminescence (PL) intensity and the corresponding lifetime are measured

for InAs QDs in a GaAs matrix with varying distances to the surface [36]. Note

that the lifetime measured in [36] is that of electron-hole pair creations and not

intersubband transitions as in our thermal to electric conversion scheme. However,

this lifetime still contains information about the effects of the surface states. The

emission lifetime decreases from 550 ps for the distance to the surface of 51 nm
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to 65 ps for the distance of 9 nm [36]. This decrease in lifetime is caused by the

competition between the capture of the photocarriers in the QDs and the surface

states [37]. Therefore the capture of the carriers by the surface states is on the order

of 65 ps for the distance of 9 nm to the surface. Note that as the distance to the

surface decreases, the linewidth increases faster than the decrease in lifetime [36] due

to the partial strain relaxation in the thin layer between the QDs and the surface [37]

and this effect should not be mistaken as the surface states effects. As the distance

to surface is decreased further from 9 nm, the surface states effects would be more

pronouned and potentially could be detrimental to the efficiency of our device. To

control the distance to the surfaceof the QDs, one first grows InAs QDs on GaAs

surface and then caps the QDs with GaAs growth of desired thickness [37].

13.2 Simple one-dimensional analysis

In this section we describe a simple model for the relaxation caused by the surface

states. Plotted in Figure 13-1 is the normalized wavefunction magnitude squared

(1p12) versus the distance to the surface for a ground state electron residing in a one-

dimensional InAs quantum well of width 1.5 nm sandwiched by GaAs layers. There is

not a numerical value for the QD height given in [36], and our choice of 1.5 nm width

is a result of fitting our calculation to the measured lifetime for the distance of 9 nm

in [36]. Note that the discontinuity in slope comes from the different effective masses,

0.067 for GaAs and 0.024 for InAs. The two vertical lines in the graph at 9 m and

10.5 nm indicate the two InAs/GaAs boundaries. The GaAs region to the right of the

InAs region, denoted region II, is assumed to extend to infinity. The GaAs region to

the left of the InAs region, denoted region I, has a width of 9 nm and its left boundary

is the surface to the gap. In our calculation we have assumed that the wavefunction

slope going into the surface is zero. Following the Gamow approximation approach

in section 8.5 of [10], an estimation of the decay rate -y, caused by the surface states

is

168



E
S 10

C,,

(D 10~
70)

E

0

a)O -4

3: 2 4 10

hk

0 2m x (width of InAs well)

where k is the wavenumber and m is the electron effective mass, both in the InAs

region. The variable a is the decay constant of the electron wavefunction in region

I. Here d refers to the thickness of region I. The variable f denotes the chance of

an electron approaching the surface getting captured by the surface states, and it

is assumed to be 1 in this calulation. The reasoning behind this expression is as

follows. An electron rattles inside the well with a velocity hk/m. Therefore the rate

at which the electron hits the left boundary of the well is 2mx(width hk The2x(wdhof InAs well)ITh

tunneling probability for the electron to tunnel to the surface is e 2 ad. Multiplying

the above two quantity with the chance of surface state capture gives us the Gamow

approximation [10].
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When the QD's are away from the surface, the QD's have a PL lifetime of 550 ps.

Therefore, the total PL decay rate is the sum of contributions from the surface and

the bulk 550 ps decay:

1
550 ps

and the expression for the lifetime is

T = (2 e - 2ad + (13.2)
2m x (width of region I) 550 ps}

Shown in Figure 13-2 are the measured lifetimes from [36] and the calculated lifetimes

for various distances to the surface. The lifetime is predicted to drop dramatically as

the distance shortens. There are several ways of increasing the lifetime of the electron.

First of all, we can increase the width of the InAs well, leading to a lower energy and

less extended electron state, hence lowering the interactions between the electron state

and the surface states. Figure 13-3 shows the improvement in lifetime if the InAs well

is made 3 nm wide. We can also use a material with a higher conduction bandedge

for region I, effectively increasing the barrier height of region I and protecting the

electron in the well from interacting with the surface states. Figure 13-4 shows the

effect on the calculated lifetime when region I has a band edge 500 meV higher than

that of GaAs. Finally, we can use a material with a heavier electron mass for region

I to make it more effective in separating the electron from the surface states. Plotted

in Figure 13-5 is the longer estimated lifetime for the case of an 0.2 effective mass

carrier in region I.

13.3 Surface modifications

Functionalization of the surface could supress surface state density and improve the

carrier lifetime of QDs. This has been demonstrated in the case of self-assembed

1.6 nm octadecylthiol (ODT) monolayer on the GaAs surface [38]. Growth of ODT

monolayer on the GaAs surface suppresses the surface state densities by arsenide-
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Figure 13-3: Calculated lifetime for the case of an increased InAs well width to 3 nm
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sulfide coupling [38]. The PL intensity is increased by up to a factor of 1.9 after

the coating of the ODT monolayer for the cases of InAs QDs 10, 20, and 30 nm

underneath the surface. We would also expect improvement in relaxation time after

the functionalization of the GaAs surface. The chemical stability of the ODT coating

is good as the PL intensity is measured to be pretty much the same after leaving

the sample in air at room temperature for a month [383. The thermal stability of

the ODT coating is also good as demonstrated through the PL measurement after

heating the sample at 573 K [38].

13.4 Bulk defects

There exist defects and impurities in GaAs and other III-V semiconductors [39].

Hydrogen can be used to neutralize or passivate these defects and an increase by

a factor of up to 50 has been observed in the room-temperature emission of bulk

InAs/GaAs self-assembled QDs subjected to a hydrogen-passivation treatment [39].

The 37 ps lifetime measurement of [23] was done on a sample without any passivation

step [40], and hence it is possible to reduce the loss of level 2 via suitable bulk (and

surface) passivations.

13.5 Discussion

It has been shown experimentally that bringing quantum dots closer to the surface

decreases their lifetime due to carrier capture by the surface states. The measured

capture time 65 ps at a distance of 9 nm to the surface is longer than the level 2

lifetime estimate of 13 ps mentioned in Chapter 11. Quantum dots closer than 9

nm to the surface could potentially have much shorter lifetimes, but using a better

barrier material for region I or increasing the width of the InAs region could lead to an

improved capture time. Furthermore, organic materials can be grown to functionalize

the surface, reducing the surface state density and increasing the capture time. Loss

can also come from bulk defects in addition to surface states, and hydrogenation has
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element with respect to

been shown to be effective in passivating the bulk defects to reduce loss.

From our analyses so far it is clear that there is a tradeoff between the level 2 loss

to surface states and the distance between the QD and the surface. The larger this

disance is the smaller the Coulombic coupling matrix element would be. However,

does this distance have the same impact on the Coulombic coupling matrix element as

the gap thickness? From Eq. 9.4 it seems that increasing the distance to the surface

would have less effect on the Coulombic coupling matrix element than increasing

the gap thickness, as the gap thickness is amplified by the number the reflections.

This is indeed the case. Shown in Figure 13-6 is a contour plot of the Coulombic

coupling matrix element with respect to the distance to the surface and the gap

thickness calculated from Eq. (9.4) for two electrons each residing 22.5 A underneath

the surface of a GaAs cold-side and a GaAs hot-side. It is seen that the Coulombic

coupling matrix element decreases slower for increasing distance to the surface than

increasing gap thickness.
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13.6 Hot-side relaxation time

The above Gamow approach can also be used to estimate the hot-side relaxation time.

On the hot-side, there is a heavily doped layer 65 A underneath the dot. We can think

of the electron in the dot as rattling back and forth. Every time the electron hits the

boundary of the dot it has a chance of tunneling out of the dot. If the electron tunnels

out of the dot and travels towards the doped layer, it gets captured when it reaches

the doped layer. The doped layer thus acts like a surface in the above surface capture

problem. We follow the above one-dimensional estimation using the dot height 45 A

as the width of the InAs region and 65 A as the distance to the surface. Using Eq.

13.1, the relaxation time for the ground state is calculated to be 0.2 ps and that of

the excited state is estimated to be 0.06 ps.

13.7 Cold-side dot 1 relaxation times into reser-

voir 1

We can apply the Gamow approximation to obtain the relaxation times into reservoir

1. Please refer to Figure 11-1. An electron in dot 1 is rattling back and forth in the z

direction and it has a chance of tunneling out of the dot. Once it leaves dot 1, it has

a chance of reaching the reservoir 1 branch provided that the electron's x position

matches that of the reservoir 1 branch. The expression for the relaxation rate into

the reservoir is thus:

hk e 2ad .p

2m-w

where k is the wavenumber in dot 1 and m is the electron effective mass in dot 1. The

variable a is the decay constant of the electron wavefunction in the GaAs region. w

is the width of the InAs dot in the z direction. The variable d refers to the distance

between dot 1 and the reservoir 1 branch. THe variable p is the probability that

the electron in dot 1 has an x position matching that of the reservoir 1 branch. The
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probability that an electron reaching the reservoir will be captured is taken to be

one. The excited state wavefunction of dot 1 has a zero at the center of the dot which

the reservoir 1 branch faces. On the other hand, the ground state wavefunction has

a maximum at the center of the dot. Therefore, we would expect the ground state

relaxation time to be much shorter than that of the excited state. Using the above

expression we calculate the relaxation rates and hence the relaxation times for the

two levels in dot 1. The ground state has a relaxation time into reservoir 1 of 0.2

ps while that of the excited state is computed to be 20 ps. We similarly obtain the

relaxation time into reservoir 2 for the dot 2 level to be 0.2 ps.

13.8 Summary

We have used the Gamow approximation to estimate the loss caused by the surface

states, and we have shown that the loss can be reduced by changing the distance

to the surface and the material choice of the design. The literature also suggests

the use of hydrogen passivation to reduce loss. The Gamow approximation has also

been applied to the calculations of the hot-side and cold-side relaxation times into

the reservoirs to obtain the parameters in Chapter 11.
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Chapter 14

Thermal radiation loss

We have previously focused on level 2 loss as the main source of loss. However,

the thermal radiation from the hot-side would be absorbed by the cold-side. In this

chapter we estimate this source of energy loss. Note that dipole-dipole Coulomb

coupling dominates the heat loss, but estimates were not available at the time the

thesis was written.

14.1 Thermal radiation

The thermal radiation inside an infinite homogeneous material can be obtained from

combining Eq. (7.84) and Eq. (7.96) in [41]

00
R= P(E)dE

P(E) is the spectrum of the radiation

27rcE 3rn2 (E)

(hc)3(eE/kBT 1)'

where E is the energy of the photon, c is the speed of light in vacuum, h is Planck's

constant, kB is Boltzmann's constant, T is the absolute temperature, and n(E) is

the frequency-dependent refractive index. The factor of n2 (E) is included because

of the small gap used in our design [5]. When the gap is large, the expression for
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the radiation power spectral density does not have the factor n2 (E) as in the above

equation. However, it has been observed that the heat transfer increases as the gap

decreases [42, 43, 44], and at our small gap it is suitable to include the factor n2 (E)

as explained in [5].

14.2 Thermal radiation in a finite material

Since our device relies on surface structures for the thermal to electric conversion, in

principle the hot-side and the cold-side can be thin. (See Figure 14-1). The hot-side

has two boundaries H1 and H2. The cold-side has two boundaries C1 and C2 . The

hot-side has a finite thickness of dH and the cold-side has a finite thickness of dc.

The question is how much radiation the hot-side emits. Let us first consider the case

as depicted in Figure 14-2 where the hot-side is semi-infinite, extending beyond H1

to the left infinitely. The radiation going through boundary H1 is P. Going through

a distance of dH, this radiation would be reduced to P - e--HdH, where aH is the

absorption coefficient of the hot-side material and it could be temperature-dependent.

The total radiation at boundary H2 is P, which consists of the contribution from the

material to the left of H1 and the contribution from the material between H1 and

H2. Since we know the contribution from the material to the left of H1 is P -e-HdH)

the thermal radiation at H 2 for a hot-side with thickness dH is P ' [1 - eH-andH1, as

shown in Figure 14-3. The radiation spectrum for a GaAs hot-side of thickness 1 pum

is shown in Figure 14-4.

14.3 Transmissions

The thermal radiation needs to be transmitted through boundaries H2 and C1 to

enter the cold-side. (See Figure 14-5). At each boundary the radiation is reduced due

to reflection. The reflection coefficient can be obtained from Eq. (8-140) in [451:

1+1/
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dH dc

Figure 14-1: Finite-thickness of hot-side and cold-side

H1
H2
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p P-e-aHdH
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1.4 d H

Figure 14-2: Thermal radiation for the case of a semi-infinite hot-side.
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Figure 14-3: Thermal radiation for the case of a hot-side with finite thickness
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Figure 14-4: Radiation spectrum for GaAs of finite thickness 1 pum.
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where E is the dielectric constant of the hot-side or the cold-side. The amount of

radiation impinging on H2 is

P - [1 - e-aHdH

The amount of radiation transmitted through H 2 is

P1 = P - [1 - e- HdH] [1 -- PH 2

where PH is the reflection coefficient for H2. The amount of radiatioin entering into

the cold-side is then

Pi [1 - iFv1 2]

where Pc is the reflection coefficient for C1. The amount of radiation finally reaching

C2 is

P1 [1 - |FC12 . e-acdc,

where ac is the absorption coefficient of the cold-side. Therefore the amount of

radiation absorbed on the cold-side is

pi [1 - iFC 2 . [I - e-acdc

The radiation that is not absorbed by the cold-side can be recycled by putting a

reflector in back of the cold-side or using a TPV cell to convert the radiation.

14.4 Estimated loss

We use the above expression to evaluate the thermal radiation loss on the cold-side.

Figure 14-6 shows the loss as a function of the hot-side thickness and the cold-side

thickness. The achievable load power is greater than 50 mW/cm 2 for gaps smaller

than 3 nm (Figure 12-3). When the hot-side and the cold-side thickness are less than
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Figure 14-5:
cold-side

Amounts of radiation at various boundaries of the hot-side and the

1 pm the thermal radiation loss is less than 1.3 mW/cm2 , which is small compared

to the achievable load power of 50 mW/cm2
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Chapter 15

Hot-side dielectrics design

In the previous chapter we have presented a quantum dot implementation of the

quantum-coupled thermal to electric conversion device. One of the difficulties as-

sociated with that design is the spatial alignment of quantum dots on the hot-side

with quantum dots on the cold-side. In addition, the hot-side temperature is limited

as quantum dots diffuse at high temperatures and the device ceases to function as

modeled at high temperatures. An alternative approach is to replace the hot side

simply with a dielectric material that absorbs at the transition energy 92 meV of the

cold-side dot 1. The transition energy is the energy difference between the two levels

in dot 1. In this chapter we describe modeling and simulation results for such an

implementation.

15.1 Basic model

Please see Figure 15-1 for an illustration of the device. The hot-side is now a dielectric

material absorbing at the energy of 92 meV. The loss of an absorbing dielectric can

be modelled as a reservoir comprising a continuum of harmonic oscillators [46]. Here

we take the simple view of treating the loss as a reservoir of two-level dipoles. The

circled two-level dipoles in Figure 15-1 represent the reservoir of dipoles responsible

for the absorption of light. When the dielectric is heated, the excited electron in

each dipole can transfer its excitation to the cold-side through Coulomb interaction
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and the transferred excitation can be turned into electrical work through the same

cold-side converter as described previously. Shown in Figure 15-2 is the two-electron

level diagram constructed for a reservoir of dipoles of level a and level b coupled to

the cold-side quantum dot levels through a Coulomb interaction matrix element U.

Transitions from state Ib, ri) to state la, r3) represent pumping electrons from state r1

in reservoir R 1 to state r 3 in reservoir R 3 to do electrical work. Transitions from state

I b, ri) to state Ia, r2) represents energy transfer from the hot-side to the cold-side to

excite an electron to level 2, but the electron loses its energy and relaxes into reservoir

R 2 , contributing to loss.

Following a similar approach to that of Chapter 6, we obtain the effective coupling

matrix element Ueff between state Ib, ri) and state Ia, r3 ):

Ueff =UVW1W3
db,l(da,2da,3 - V 2 ) - U 2 da,3

where

db,1 = i - E1 + ihi,1/2

da,2  hw + Ei - E 2 + Zhfa,2 /2

da,3 = hw + Ei - E 3 + ihIa,3 /2

2,7r w
Fbl - Pi(E1)

27r2
a,2 = -W2 p 2 (hW + El)

a,3 = hW3p 3 (hW + El)
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The notations are as follows. ic is the reservoir state r1 energy. El, E2 , and E 3 are

the energies of the cold-side levels 1, 2, and 3. W 1 , W 2 , and W 3 are the coupling

matrix elements between levels 1, 2, 3 and their associated reservoir levels. p1, P2,

and p3 are the reservoir density of states. The energy spacing between the two levels

a and b of the hot-side dipole is hw.

In the last chapter, at a gap of 5 nm the Coulomb matrix element U between the

hot-side and the cold-side quantum dot dipoles is calculated to be 2.5 x 10 4 eV, or

h/U = 2.6 ps, which is ten times longer than the cold-side relaxation rate. Even for

a gap of 1 nm, the h/U = 0.76 ps is still long. The hot-side dielectric dipoles are

expected to be smaller than the transition dipole moment of an artificial quantum

dot. In addition, most of the dipoles are distributed further away in the bulk of the

hot-side. Hence the matrix element U between the hot-side dielectric dipoles and the

cold-side quantum dot dipole is much smaller than the cold-side relaxation rates. In

this case, we approximate the effective matrix element Ueff by omitting the U term

in the denominator and we obtain

Ueff VWW 3

U db,(da,2da,3 - y2)

The contribution from a hot-side dipole of level a and level b with energy spacing hw

to the device current is then

Idipole = qjU12 fd 1 p1 (e1)p3(Ei + hW) |(ra,r 3 | UIrI, r)I2

xf{pio(w)p 1(e1 ) [1 - P3(E + hw)] - Phigh(W)P3(E1 + hw) [1 -Pl(El

where pio,(w) is the thermal equilibrium probability that the dipole is in its lower

energy state (level a) and phigh(w) is the probability that the dipole is in the higher

energy state (level b). The values of these two probabilities are

1
Plow(L') = 1 + e-hw/kTh
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e-hw/kTh
PhighW) = 1 ± e-hw/kT

To calculate the total device current, we integrate through all the dipoles with dif-

ferent frequencies and spatial positions. Because the dipoles in principle can have

arbitrary orientation, we use the averaged Coulomb matrix element squared in the

following expression.

From Chapter 9 we see that the dipole interaction energy between a hot-side dipole

dj and a cold-side dipole di is

U = 4 6 0 2 Id , I
(CO+ EI0)(O +E2)

x 0 O ± n EO 6 2 /

n=O(EO + El (EO + E2
1 3  di - ni - 3(di - ijn)(ijn -ny)

47rE2jA RijnI

where ii is the unit vector in the direction of dj, and lijn is a unit vector in the

direction of di - dj. The hot-side dipole in principle can have a random orientation,

and we do an averaging to relate the expectation of the Coulombic matrix element

squared to the dipole moment:

(1 12  2 1T6 ± j 1~d 2  K 0 z ( _ -612)(022 00 +6
(IUI r(EO + E1)2(EO + E2 )2 (EO + E1 (EO + E2)

1
IZaRg 371

x d - 3(d .f) 2)

37r(co + E1)2(Eo + 62)2

Co +2

n=0 60 +E21

(O - 62 E2

EO + E2
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1 d (
XIAR.n 1

3 Idi - 3(di * 2inIj

We define f(r, w) as

2

37r(Eo + 61)2(60 + 62)2
n=O0

/n

(60 - E1

CO ± 621
6O - 62

60 + 62/

1

1 A 11j n 3 [di - 3(di * 2ijn)

The total current with contributions from all the dipoles is expressed in the following

integral:

Itotal = 27q d3 rp,

X I U(ra, r l U rb, r1) 2Phigh (W)P1 E6)

J dwp (w)Id3 12f (r, ) dcp()p 3 (Cl + h )

[1 - p3(6 + hW)]

-Plow(W)P 3 (6i + hW) [1 - p1(E1)]}

where p, (assumed uniform) and p, are the spatial and spectral density of dipoles in

the dielectric.

15.2 Absorption and dipoles

The equation relating the photoabsorption rate per unit volume and the dipole mo-

ments and the density of dipoles is from the Golden Rule [47]

7= Idl2IEo12p(E) (15.2)

where 'y is the absorption rate, d is the dipole moment, Eo is the electric field of the

light, and p(E) is the density of dipoles per unit energy. Expressing -Y in terms of the

absorption coeffcient [47], we get

aS
(15.3)
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Hotside

U

Coldside

24

A
V , 3

V2=R

WI

T1 load

Figure 15-1: A schematic for the device structure with the hot-side being a dielec-
tric material absorbing at the energy of 92 meV. The absorption of the dielectric
is modeled as due to a reservoir of two-level dipoles each of which is circled in the
diagram

{b, R1}

__1b, rl> ja,3> W3W iv........... .................

b,1> U ,

W2

-- la, r2>

{a, R2 1

{a, R31

-a, r3>

Figure 15-2: Two-electron level diagram constructed for a reservoir containing dipoles
of level a and level b coupled to the cold-side quantum dot levels.
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The intensity can be computed from the expectation value of the Poynting vector

operator [47]

S = |(E x H)|

Applying the field operators quantized in a lossy medium [48]:

S = ((Eo + E*) (Eo -(n+ik)+E*(n -ik))) = 4n 110 (Re{Eo}2) = 2n EOIEo12
01 01 F/1 O

(15.4)

where n is the real part of the refractive index. Combining equations (15.2), (15.3),

and (15.4) gives the absorption coefficient

e= n -7d12p(E)

The quantity p(E) actually encompasses

is the spatial density of dipoles: pr. The

level dipoles with energy spacing hw: pw.

probability that the dipole is in its lower

have the following equation

three components. The first component

second component is the density of two-

The third component is the equilibrium

enegy state, namely plow. Altogether we

a(w) = n(w) rFWjdI2PowPrP(W)

ri(w) 1rw I d 2prp, (w)
1 + ehwkT oL

Therefore we can express the integral involving the hot-side dipole moments, occupa-

tion probability, and density of states, as a function of the absorption coefficient:

jdj2prp 0 (w)pL(w) = a(W) (15.5)
/10 nrw

Similaraly

(15.6)Jdj2Prphigh(W&)po(W) = e-h/kTa -

r6o n rw
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From Eq. (15.1), Eq. (15.5), and Eq. (15.6), we formulate an expression for the

current that can be evaluated given the refractive index and absorption coefficient

data of the materials and the cold-side dipole moment Id l:

Itotal d3r dwf (r, w)(w) 2q d2fEic11(r, r3 Ueffr, r1)2P1(El)P3 (El+hW)
I n ](w)hw pE j U

x{e-hw/kThpi(El) [1 - P3 (Ei + hW)] - P3(63 + hW) [1 - P1('El)]

We can evaluate the above expression to obtain the load current. A similar formula

can be derived for the loss current. Dividing the load current by the sum of the load

and the loss currents gives us the efficiency.

15.3 Aluminum oxide A12 0 3 results

We apply the model described above to the case where the hot-side is aluminum ox-

ide A12 0 3 as this material has absorptions around the energy of 92 meV. The room

temperature optical constants of aluminum oxide are obtained from [49]. The absorp-

tion coefficient for the temperature of 600 K is inferred from the room temperature

values through Eq. 15.5. There appears to be two sets of inconsistent data from [50]

and [51], and we have chosen to use the data from [50]. We have used the data for

the ordinary polarization because it has one plane of polarization as opposed to the

extraordinary polarization which is only in one direction. Therefore, we expect the

data for the ordinary polarization to play a dominant role.

Figure 15-3 shows the load power as a function of voltage for the case of an alu-

minum oxide hot-side with a 5 nm gap. The maximum power is 76 mW/cm2 at the

voltage of 29 mV with a corresponding efficiency of 28%. Figure 15-4 shows the effi-

ciency as a function of voltage. The maximum efficiency is 42% at 41 mV. The load

power corresponding to a maximum efficiency is 34 mW/cm2
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The power has a dependence of 1/R' for the hot-side quantum dot design, but

the dependence for the hot-side dielectric case is slower. The maximum load power

drops from 620 mW/cm2 at a 1 nm gap to 0.03 mW/cm 2 at a 100 nm gap. The

load power is higher than that of the quantum dot design. The maximum thermal

power drops from around 4 W/cm 2 at 1 nm gap to 478 mW/cm 2 at 5 nm gap to

0.2 mW/cm2 at 100 nm gap. At larger gaps, the dipole-dipole interaction decreases

as 1/R 3 and the Coulomb coupling matrix element squared decreases as 1/R 6. The

volume of dipoles the cold-side dipole couples to increases as R3 . Therefore the overall

dependence is 1/R 3 . We can show this more formally. If we integrate the Coulomb

matrix element squared over the hot-side dipole located at z below the surface with

a lateral displacement p from the cold-side dipole we obtain:

j 2 dz 2pdp 1 2, dR) 2irp/Rd(p/R)
J o ((z + R) 2 + p2 )3/ 2  JoR3 J o ((z/R + 1)2 + p2 /R 2 )3/ 2

0 * * 27xdx= dt
R3 J0  ((t 1) 2 + X 2 )3 / 2

The efficiency is rather independent of the gap thickness from this model. There

are parasitic losses that we have not considered. Thermal radiation from the hot-side

can be absorbed on the cold-side and this loss is discussed in the next section. In

addition, heat transfer via Coulomb coupling between the dipoles on the two sides

leads to loss as well. This loss has not been evaluated.

15.4 Thermal radiation loss

The thermal radiation emitted from the hot-side can also be absorbed on the cold-

side to give loss. Therefore, we would like to minimize this radiation. As discussed in
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Figure 15-3: Load power as a function of voltage for the hot-side aluminum oxide de-
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load power of 34 mW/cm2
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Figure 15-5: The maximum device load power (with 5 nm gap) and the thermal
radiation as a function of the hot-side thickness.

Chapter 14, decreasing the hot-side thickness reduces the thermal radiation. However,

in the hot-side dielectrics design decreasing the hot-side thickness reduces the amount

of emitter dipoles on the hot-side and hence decreases the power throughput. Figure

15-5 shows the maximum device load power per unit active area (with a 5 nm gap) as

well as the thermal radiation versus the hot-side thickness for the hot-side aluminum

oxide design. We can see clearly the trade-off between increasing the load power and

decreasing the thermal radiation. Figure 15-6 shows the spectrum of the thermal

radiation for the hot-side thickness of 10 nm.

Alternatively we can decrease the cold-side thickness while keeping the infinite

hot-side thickness. Following the approach described in Chapter 14 we calculate this

loss as a function of the cold-side thickness (Figure 15-7). For a cold-side thickness

of less than 300 nm, the thermal radiation loss would be less than 1 mW/cm 2 and

small compared to the load power of 620 mW/cm2 which is achievable at a gap of 1

nm and 76 mW/cm 2 achievable at a gap of 5 nm.
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15.5 Summary

We have described a design where the hot-side is free of the restriction of quantum

dot alignment with the cold-side. Instead, a dielectric which absorbs at the cold-side

transition energy 92 meV is used as the hot-side. The load power is increased and has

a slower dependence on gap thickness due to the presence of a reservoir of dipoles in

the dielectric. In addition, the hot-side dielectric can operate at a higher temperature,

which is detrimental to the hot-side quantum dot design as at high temperatures the

quantum dots suffer from diffusion. Another advantage of this design is the potential

for higher throughput. A hot-side dielectric material with a stronger absorption at

92 meV would increase the load power of such a device.
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Chapter 16

Quantum model of the image

charge

We have examined the case where the hot-side emitter is an aluminum oxide dielectric.

Another possibility for the emitter is a material that supports surface carriers, for

example a conductor or a highly-doped semiconductor. An electron q in the cold-side

dot 1 induces an image charge on the hot-side if the hot-side is a good conductor.

The Coulomb interaction between chagre q and the induced image charge could lead

to excitation transfer. Our model described in previous chapters can be adapted

to analyze this situation, but we need to figure out a way to calculate the coupling

matrix element U. The strategy here is to first construct a classical model and a

quantum model for the same problem and then extract matrix element U from the

classical result. Below we detail the derivations.

16.1 Classical equation of motion

Let us first consider a problem similar to the three-region problem in Chapter 9 but

with the charge q oscillating back and forth as d cos(wt). The gap thickness is L and

charge q is located distance h from the boundary between medium 1 and the gap.

Medium 2 is assumed to be a metal, a semi-metal, or a highly-doped semiconduc-

tor. Refer to Figure 16-1. Charge q moving above a metal surface with distance R
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p =d-cos(wt) z
qz
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gap E- L

E=E2~ C2/

Figure 16-1: Charge q oscillating above a three-region configuration.

experiences a friction force due to its effect on the image charges in the metal [521.

Depending on whether charge q is moving parallel or vertical to the metal surface,

the friction coefficients in Gaussian c.g.s units are [53, 54]

7 _ q2
161rorR3

q2

87ruR
3

where a is the conductivity of the metal. Note that the above results assume the

condition of a good conductor (Eq. (24) of [54]):

cV
-«1

-h

where c is the speed of light in vacuum and v is the velocity of charge q. What the

above criterion says is basically that the conductivity of the material needs to be

sufficiently high for the friction coefficients to hold. In our three-region problem the

electric field needs to transmit through the boundary between medium 1 and the gap.

Thus we amend the above two equations by introducing the transmission coefficient

tio to obtain

167ra(h + L) 3
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t10 q2

8irc(h+ L)3

where

= 2c -
El + 60

If there is no friction force, charge q oscillates as p = d -cos(wt) and it experiences an

external force mdw2 cos(wt). With the existence of the friction force from the image

charges and assuming medium 1 has a relaxation time - 1 , the motion of charge q is

governed by the following classical equation of motion:

T[d 2p + 1 F dp]m + - + = - mw2 d cos(wt)
7t 1 dt_

where F is equal to the parallel friction coefficient F,, or vertical friction coefficient F1

depending on the orientation of charge q motion. Solving the above equation gives

p(t) = Re( -mdw
2ewt

-mw 2 + im(1/ 1 + F)

For the sake of clarity, we change the phase and rewrite p(t) as

- Mmdw
2 sin(wt)

-m2cW'
4 + m 2 (1/ir + F) 2

and the friction force is

Fmdw3 cos(Wt)

f) -m2W4 + m 2 (1/7 1 + F)2

16.2 Two-level approximation

The simplest quantum model for the image charge is a two-level approximation. The

two levels are degenerate because the image charge is a free carrier. Let's denote the

image charge two levels as I#a) and 10b). The oscillating charge q is also modelled as
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two levels 1#1) and 1#2). The image charge and charge q have individual Hamiltonians

Hi = |$a)Ea(OaI + |$b)Eb($b|

Hq #10)E1(o1| + 1# 2 )E 2(#52 1

where subscript i stands for image charge and q stands for charge q. Note that the

energy spacing of charge q satisfies (E 2 - E1h = w in correspondence to the classical

problem.

The electrostatic coupling between the image charge and charge q is represented

as

U = U IIa)|10 2)(/ b IK 1$I ) I |$b)I101)(OaI1(0 2 | + U |[Ia)|1)($bI1/ 2| + I$b)I12)| (Oa 10l1

Note that |0a) and 10b) are degenerate and hence there are twice as many terms in

the above equation as the number of U coupling terms in Eq. (2.1).

The overall Hamiltonian is then

ft = f, +, q +U.

For a product wavefunction of the image charge and charge q

0' = Oij(t)'q (t)

the Schr6dinger's equation reads

= ihlv) at + ihl4'q at

= 10q) (fihI4')) + (U01'q)) )0i) + I0i) (kq|4'q)) + (0zIV) ) 10q)
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We decompose the above equation into the following two equations

= 1'q) (ftiloi))

= kbi) (ftqI4g))

+ (Olig)) K@i)

+ (Olki)) |bq)

multiply Eq. (16.1) by (?/q gives the evolution equation for the image charge:

h a tiIVi) + (Oq I &Iq) I Oi) (16.2)

In order to infer the matrix element U from the classical equations, we construct a

charge q wavefunction that would match the classical results (w1 = E 1 /h,W2= E2/h):

17Pq) = CI(t)10) + c2(t)1# 2)

where

ci(t) rie-iw'

c2(t) r 2 e i2t

(16.3)

(16.4)

and

mdw2

fm2w 4 + m 2 (l/r, ±17)2

mdw2

m 2 w 4 ± m 2 (1/Tq +

1 - mdW2

m2w4 ± m 2 (i + F)21- 2W +w M )2]

mdW
2

m 2w 4 ±M2 1 + ])2 I
Note that r1 and r 2 satisfy
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I 1[r = 1
2

1
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7r + r =22 2

r 1 - r 2 =

1

md2 2

21m 2w 4 + m 2 (1/T + 1)2
(16.5)

We assume the dipole length of 11) and 1#2) to be d and they are out of phase by

(#2PI0#1) = de"/2

The expectation of the position of the wavefunction matches the oscillation in the

classical model

(V1qIP I4q) = r 2(K1ipI1) + r2(02|IPl2) + 2Re{c*c1(# 2 |pl#1)}

From Eq. (16.3), Eq. (16.4), and Eq. (16.5) we see that the oscillation term in the

above equation is

2Re{c*c1 (#2 |pI10)} =
mdw sin(wt)

Vm2W4 + m(1/ g + F)2

which corresponds to the oscillation as described in Eq. (16.1). Given the wavefunc-

tion 11), we evaluate the coupling matrix element in Eq. (16.2):

(4qIUIq) = U [|1a) (c*c2 + cIc*) (|bI + 10b) (c*c2 + clc2*)

Umw 2 cos(Wt) I Oa) (Ob
m2W4 + m(1/rg + F)2

(Oa I]

+ |#)(#a|

Therefore, the equivalent coupling matrix element between the two image charge

levels is

U(t) =
Umw 2 cos(wt)

/mw24 + m(1/r + ]F)2
(16.6)

From Eq. (18.6) in [10], a forced two-level system has a coupling matrix element
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U(t) = - F(t)(#ajpjqb) (16.7)

where the force F(t) is the force on the image charge, and is equal to the negation of

the force on charge q:

F(t) = - f(t) = -FmdW3 COS(Wt)

Vmw 4 + m(1/,r + F) 2

The image charge dipole length is presumed to be the same as the charge q dipole

length (#aIP9b) = d. Therefore Eq. (16.7) becomes

U (t) = -Fmd2W 3 cos(Wt)

U mw4 + m(1/T1 + F)2

Compare the above equation with Eq. (16.6) gives

U = - Fwd 2  (16.8)

which is the Coulomb coupling matrix element between charge q and the induced

image charge.

16.3 Example calculations

We compute the case where the hot-side is metallic barium and the cold-side is the

same as in previous dot-dot and dielectric-dot designs. The choice of barium is because

it has a relatively high resitivity. Barium has a resistivity of 6 x 10-7 ohm -m at 273

K [55], assuming a linear temperature dependence of resistivity [55], we expect the

resistivity at 600 K to be 1.32 x 10-6 ohm -m or 1.47 x 10-16 s in c.g.s. unit. The

electron charge is 4.8 x 1010 esu. The dipole length in dot 1 of the cold-side is d =

3.5 nm and the energy spacing between the two levels in dot 1 is 92 meV, which is

equivalently w = 1.4 x 1014 S-1. Given the dot size (145 A) x (45 A) x (45 A), we

take h to be the dot-center value 22.5 A. Medium 1 is GaAs with a refractive index

squared 10.69 at 92 meV, interpolated from [56]. Assuming we have a tiny gap of
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L = 5 nm, the parallel friction coefficient is

ll = tioqh2 - = 3.03 x 10-19 gm - sec- 1 = 3.03 x 10-22 kg - sec-1
167ro-(h + L)3

From Eq. (16.8) the Coulombic coupling strength is 3.25x 10-6 eV. The relaxation

time of barium at 273 K is 1.9 fs [551. Assuming an inverse linear temperature

dependence, the relaxation time at 600 K is approximately 0.86 fs. Given the above

parameters, we can compute the device performance. The efficiency (Figure 16-2) is

slightly lower but is in general agreement with those obtained for the dot-dot and

dielectric-dot designs. The load power (Figure 16-3) has similar shape but is almost

six orders of magnitude smaller than that of the dielectric-dot design due to the small

Coulombic coupling matrix element. Note that the plasma frequency of barium (with

free electron density 3.15 x 1028 m- 3 [55]) is

WP /3.15 x 1028 . (1.6 x 01-19)2 = 1016 rad/s
9. 101 rad/9.1 x 10-31 . 8.85 x 1012

Therefore the cold-side dot 1 transition with frequency 1.4 x 1014 rad/s couples very

weakly to the plasmon which is far off resonance. It is possible to replace barium with

a doped semiconductor with a plasma frequency matched to the cold-side transition

energy to enhance the coupling.

16.4 Discussion

The above analyses are only valid when the emitter is a good conductor, as noted

in the first section. However, when the conductivity is high, the friction coefficient

would be low, leading to a small Coulomb coupling matrix element U and low load

power. It is possible to use less-conducting materials (with lower plasma frequencies)

for the emitter in the hope of increasing the Coulombic coupling. However, it would

require further modeling efforts to anaylze such cases.
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Figure 16-2: Efficiency as a function of voltage for the hot-side barium design. The
maximum efficiency is 39% at the voltage 40.4 mV with corresponding load power
5.784x 10-6 mW/cm 2

x 10-

1

CI
0

0.8

0.6

0.4

0.2

0 10 20 30
voltage (mV)

40

Figure 16-3: Load power as a function of voltage for the hot-side barium design. The
maximum load power is 10- 5 mW/cm 2 at the voltage 28.4 mV with corresponding
efficiency 26.6%
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Chapter 17

Conclusions

The thermal to electric conversion scheme analyzed in this thesis work is based on

two concepts - (1) use of Coulomb coupling to increase throughput power/area, and

(2) restriction of levels to try to improve efficiency. Coulomb coupling seems to work

in our model, at least per unit active area. One can exceed the black body limit with

Coulomb coupling, but the gap has to be very small. We found good power per unit

active area at nano-scale gaps (see Figure 17-1 for a plot of the load power per unit

active area for the case of alumina hot-side at 5 nm gap).

The designs also achieve very high efficiency, because efforts have been made to

conserve entropy. The excitation transfer via Coulomb coupling is isentropic. The

electron tunneling process is also isentropic. This model allows one in principle to

keep the losses low and efficiency high.

Note that in our present calculation we have neglected Coulomb-coupled heat flow,

which is expected to be the dominant loss mechanism. We have derived a formula for

the evaluation of this loss in Appendix C and a calculation will be carried out in the

future.

As mentioned in Chapter 4, the quantum-coupled single-electron conversion scheme

can act as a refrigerator when the voltage is in a certain range. This application has
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Figure 17-1: Load power per unit active area for the hot-side alumina design at 5 nm

gap

not been properly analyzed and further explorations are needed.

17.1 Models

We have developed several models for analyzing our proposed thermal to electric

conversion scheme. The first Bloch equations model gives good intuition on the

device behavior and the different operation regimes. The Bloch equations model can

also be easily evaluated to give numerical device characteristics. However, it is shown

that the Bloch equations model is inconsistent with thermodynamics. The brute-force

numerical approach is put forth as an alternative method for analyzing the scheme.

Even though the brute-force numerical approach works well on simple problems, this

approach is very computation-costly and it is not feasible to generalize the method

to model complex problems such as our conversion scheme. The secular equations

partitioning method augmented with loss is then developed as our working model.

This model is consistent with thermodynamics and gives sensible numerical results.
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To apply the secular equations model to specific designs, we considered detailed

calculations of the Coulomb interaction energy and quantum dot electron wavefunc-

tions, which give us the input parameters to the secular equations model. A design

that can be readily analyzed by the secular equations model is a basic quantum dot

design of the conversion scheme, where both the hot-side emitter and the cold-side

converter consist of an array of quantum dots. It is also realized that the hot-side

emitter can be replaced by a dielectric material or a conductor. Models for these two

cases are developed and the device performance is analyzed.

17.2 Original contributions

Given a new quantum-coupled thermal to electric conversion scheme, this thesis work

aims at understanding and analyzing the behavior and potential of devices imple-

menting the new conversion scheme.

The full set of Bloch equations is developed based on an initial analysis by Prof.

Hagelstein. Equilibrium values are incorporated into the equations. Expressions for

the device figures such as current, power, and efficiency are derived. The Bloch equa-

tions are simplified to allow interpretations of the different regimes of device operation.

Bloch equations are evaluated numerically to give device characteristics for the on-

resonance case. Inconsistency between the Bloch equations and thermodynamics is

identified when analyzing the off-resonance case.

In wrestling with the proper inclusion of loss in our models, A brute-force numerical

method is implemented to solve simple problems. Secular equations partitioning

method is extended to include loss and to verify the results from the brute-force

numerical approach. The secular equations model is developed for the conversion

scheme and expressions for the device characteristics are derived. Non-uniform grid

Simpson integration in energy and matrix inversion with LU decomposition is used

to implement the numerical simulations from the secular equations model.
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Finite-difference equations for the one-dimensional, two-dimensional, and three-

dimensional Schrodinger's equation are developed for the potential well problems. A

quantum dot design of the thermal to electric converter is constructed. Quantum dot

electron wavefunctions and energies are calculated from the finite-difference method.

The device performance of the quantum dot design is numerically evaluated. An

adapted model for the hot-side dielectric design is developed and implemented to give

numerical results. Another model for the hot-side conductor design is constructed and

numerical simulations are carried out.

17.3 Future prospects

The new thermal to electric conversion scheme seems to have an advantage of having

a high efficiency exceeding 40% and load power per unit active area larger than 10

W/cm2 (for a hot-side alumina design at 5 nm gap). To further improve the load

power, one may explore the possibility of increasing the load power by packing the

device units more densely. One may also try to use materials with lower dielectric

constants in the hope of increasing the Coulomb coupling. Also, it is possible to

obtain a larger transition dipole on the cold-side by using different materials. For

the hot-side dielectric design, one possibility is to find highly absorbing (emitting)

dielectric materials at the conversion frequency to increase the load power. Using

doped semiconductors as the emitter is one case that has not yet been properly

analyzed and further modeling is required.

The cold-side converter presents great fabrication challenges. As described in Chap-

ter 11, research in the fields of quantum dot and nanowire fabrication has shown

promising results. Other nano-structures which we have not considered might also

exhibit similar quantum effects to be used to implement the conversion scheme. It

is our hope that this work would stimulate further research efforts in both nano-

fabrication methods and energy conversion concepts.
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Appendix A

PA computation

In this and subsequent subsections, we may denote E- Eh - = AE, and

ALL'- = AV, where q is the electron charge. We assume that Nob, Noa, Nib, Nia,
q

N2b, and N2a are all constants equal to their equilibrium values and act as sources to

our system of equations. In order to make this assumption consistent with our Bloch

equations, we need to make T,, = T = 0 so that changes on the rest of the N's do

not result in changes on Nob, Noa, Nib, Nia, N2b, and N2a.

From equations (3.35), (3.34), (3.37), (3.36), and (3.33), we can eliminate QC and

Pc to obtain the following two equations:

PA iA + PB Z'B =

PA JA + PB JB =

2 [N21 - N 12 ]

2 V [N13 - N 12]

V)2 AQTCV
-J 0  TC + B

hT h +h0 c+ (-3 a+ ( 2T
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1
- ±

TA

(A.1)

(A.2)

(A.3)



vU
B TC -h h

U
h W3 2 TB

_L + Q2 TC + (h)2 TA +

JA C-U T0 +h h
W 32 AQ r L [TB + TC] AQ

+ (AQ) 2 TC + (L)2 TA + (

(U)2
+ w3 2 B + C

W52 (L) 2 [TB + TC TB

(AQ) 2 TC + () TA +

The strategy for solving PA is then to first express N2 1 , N 13 , and N 1 2 in terms of PA

and PB, and then along with the above two equations we can compute PA.

A.0.1 Solving NA21

We repeat below equations 3.8, 3.2, and 3.5 in the steady-state limit:

N21 N2a
=21 +

No1e~ Th

T h

U
h

No1  NOa Ni+ N2 1

To~ + 1 T2

Nil

(A.7)

(A.8)

(A.9)Na No1

T+ Th

Eliminating N11 from equations A.8 and A.9 gives

TN
No, -

T1 Th Th
= N21 H + NOa

T2 1i
ip (A.10)

From the above equation and equation (A.7) we eliminate No, to obtain the following
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.1
JB T

TB

(A.5)
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equations, where

-AE

ek Th

T 2 1

w
U
h

AE ThTT1W AE
e k Th T2w + Noa +Nla + -e k Th T N2a

TI T1 Ti 2

(A.12)

If we let PA= 0, then the starting three equations in this subsection are the same as

those that would have been satisfied by the equilibrium values. Hence we can replace

all the source terms in the above equation with the equilibrium value of N2 1 :

N 2 1 = dA PA + n 1'n' (A.13)

where n2 ' and n'" represent the hot side occupation probability on U2 (zi) and the

cold side occupation probability on < (z 2 ), and dA is defined through

iT2 h
dA AE h

e T h -Th
T21 T2 W - yl

(A.14)

We can show that the denominator in equation (A.14) is positive.

(3.23),

> 1

From equation

(A.15)

Substitue the definitions of To, equation (3.17) and the definition of T11 equation(3.20)

into the definition of w equation (A.11),

212

T h Tu
W To1 Tjh

(A.11)

T h Th +Tc
_2_ T2

T21 Tic



T T11 T Th Th -(E2-E)
W - 1 T + + Te k Th

Th Tjc Th±T ~
Th -(E4-E)

> h k Th (A.16)
2

Substituting inequalities (A.15) and (A.16) into the denominator of equation (A.14)

shows that the denominator is positive.

A.0.2 Solving N13

We repeat equations (3.7), (3.4), (3.3), (3.41), (3.10), (3.10), (3.39), and (3.6) in the

steady-state, double-resonance limit.

N 13 _ N03  N1b V
1+ (A.17)

N03
=03

N 13  N2 3  Nob V PE

+ T+ Tj h E

N0 2  N 12  N 2 2  V

+0 T2IE

2V
PE h E [N02 - N03]

T2 - + T2PD

AE
N 2 2  N02e k Th V

T22 T PD

2V
PD -TD [N 23 - N22]

N12  N0 2  U V
+ PA + PB

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)
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Substituting equation (A.23) into equations A.22 and A.21 gives

N22 1 + 2 (TD 2

A E '2
ek Th

N0 2 h +h2

N 23 + 2 QTD)
N2b

T+C

e Th

N03 T

Eliminating N22 from the above two equations gives

AE

e k Th

N02 T 2 )2TD +±

2 AE

+ 2 TD N 03  h
IT22t~ h\ T

where w 2 3 is defined as

1 1
W23 = - -

T23 T22
+ 2

h T22
+ ITD

T23 )

Substituting equation A.20 into equations A.19 and A.18 gives

N02 [ + 2 (TE) 2
N 12  N 2 2 2 (V)

2

TPT2

V2 TE
_N 13  N23  Nob (V 2  N (A.30)

Th++ + 2 (V), TEN02
+2 T~

Eliminating N0 2 from the above two equations gives
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TD N23 (A.25)

TD N 22
(A.26)

N23 W23 =
± N2b

TA )
(A.27)

(A.28)

TE N03

N+ 03

(A.29)

+ 2 (



N12 2N03 W03 h (V)2TE + +23E +
N23

2
+(A31

(A.31)

, where w03 is defined as

w03

Eliminating N 2 2 from equations A.25 and A.29 gives

N0 2  W02 + + 2 ()TD 2

+ + 2 h TD [j + 2 ( TE N03

Eliminating N 12 from the above equation and equation (A.24) gives

(V 2 TDN02 W02 = 2 DN 23 +
LT22

+ 2 QV) TD] (N 0 3 2 (V)2 TE + PA ~ -BhA34
(A.34)

where w02 is defined as

W12 + 2 ( TE]ET2 1[T2+ 2 (V)2 TD

Eliminating N23 from equations (A.26) and (A.34) gives
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+ 2 ) (A2+ TE (A.32)

(V2 TDN23T
hJ T2hN2

(A.33)

AE

e k Th

(Th)
2

~1 1T2 TD(A235) 
2

(A.35)



N0 2 e02 =N 03 e03 + (N 26 2 Vj) 2 h +W 23 U A+ W23 VPB) I+ 2Q(V) TD]

(A22D
(A.36)

where d03 , d02 , e02 , e03 are defined as follows:

[1 (V2
2 + 2 TED

e k Th
- h

2

d02 e kh 2 D)

ew2 W02 W03 - 4

S2 2 3 (V)
2

)4 (T 2e km

e03 2 + 2 (V)TD [T h E W23

Eliminating N2 3 from equations (A.26) and (A.30) gives

N03 d03 =N13 +

+ N0 2 e~2 (

1T2 (V\21

TD

Eliminating N0 2 from the above equation and equation (A.36) gives

No3 d03 - e3
1eL2 I

= N13T2 +
TI
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d03 - w2 3

I + Q)2

T22 + D

TE

(A.37)

(A.38)

(A.39)

(A.40)

+ NObW 23
NoTh

+ 2w 23 (V) 2 TE (A.41)



I (V 2 TVl2 TL db2 (do2 U d0 2 V Nob
+2 - TD N2b -- + 2 + W23 -A + B +

\T22 T T2T3 e02 e02 h eo2 h TjJ
(A.42)

Eliminating N 13 from the above equation and equation (A.17) gives

f A U V fA 12] p2 1 NObW23
N13 h13  f A PA - -- - i PB + f2b N2b +Nb (A.43)

f03 h Th h Lfo3 T A3 Ti ± T3 fO3Th

,where fo3, f2b, fA, and h13 are defined as follows

fo3 - d03 - d0 (A.44)
C-02

d0 2 [1 (V2
fA = 23- + 2  - TD (A.45)

e02 T2 2 h

h13 = 1 - W23 (A.46)
T13 (Th)2 f03

Following a similar argument as in last subsection, if we let PA = PB PD = PE

0, then the starting equations should be satisfied by the equilibrium values. If we

further demand N0 2 = N03 and N 23 = N 22 , then the two quantum coupling

equations (A.20) and (A.23) would be satisfied. We can make this demand because

#2 (z 2 ) does not relax to a reservoir and hence without quantum coupling the values

hO
of N02 , N 12 , and N 22 are undetermined. We denote ni'j as the equilibrium hot side

occupation probability on ul(zi) and n" as the equilibrium cold side occupation

probability on 0 3 (z 2 ). Grouping all the source terms into a single equilibrium term,

N 13 can then be re-expressed as
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where

(A.47)N13 = 3n n' + CA PA + CB PB

CA - fA U

f03 TI' h13 h

V

(A.48)

(A.49)EfA
f3 T~h

A.0.3 Solving N12

Our goal is to express N 12 in terms of PA, PB, and a source term. We can do this by

successively expressing N 12 in terms of N0 2 , N0 3 , ,N 13 , and finally only PA, PB, and

source terms. We invoke in sequence equations (A.24), (A.36), (A.17), and (A.47).

The result is:

N1 2 = n'n'+ ya PA + YB PB (A.50)

where

eo3 Th

e 0 2 T 13

yB - e03 T0h CB
e0 2 T13

V

U
h

W 2 3

e02

[1W23

eo2

[T22

+ 2 V)

V
h ) 

2

TD + Th]

+ T eo2 + e3
+T, e02

(A.51)

(A.52)

We can solve for PA from equations (A.2), (A.1), (A.13), (A.47), and (A.50).

d U
ad - bc h 2( h O cO h O C' 'n2)n1 - n1 n3 )
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(A.53)

-13

TD



a = ZA + 2- (yA

b = ZB

C = JA + 2- [yA

d = jB + 2 v [YB
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Appendix B

Probability transfer in a

three-Level system

A kind of three-level system is encountered in Chapter 7 as well as in quantum

computation application [57]. In such a system, we have three levels where level 1

and level 2 are coupled with matrix element U, while level 2 and level 3 are coupled

with matrix element V. See Fig. B-1 for an energy diagram of the system. The

energies of the three levels are El, E2, and E3, respectively, and we also denote

E = E3. Levels 1 and 2 are resonant and we assume El = E2 = 0 without loss of

generality. U and V are assumed to be positive real numbers for ease of analysis. The

system starts off at level 1 and then it oscillates among these three levels. We ask the

question of what the maximum probability transfer to level 3 can be. A closed-form

solution for the general case is difficult to obtain, but it exists in certain limiting

cases.

V

_ U _

Figure B-1: Energy level diagram for the three-level system.
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B.1 The case of U >> V

In this case, we treat V as a perturbation. The total Hamiltonian and the unperturbed

Hamiltonian are

0 U 0 0 U 0

H= U 0 V Ho= U 0 0

0 V E 0 0 E

The perturbation matrix is:

0 0 0

H'I 0 0 1 .

0 1 0

Therefore we have: H Ho + V H' The unperturbed wavefunctions are:

1/ v1 -1/V 1 [ 0
Ux = 1/V2 , uy = 1/d ,/2 uz = 0 .

0 0 1

The unperturbed energies are U, -U, and E, respectively. We carry out station-

ary perturbation theory [58] to first order and obtain the following three perturbed

wavefunctions:

V U
72 NF2(E2-U2)

1 7 1 7 V E (B. 1)

.ve (U-E) 1. [ (U+E)

We start off at level 1, which is represented by the vector 1 0 0 T After dot

products with the perturbed wavefunctions to obtain superposition coefficients, we

obtain the time evolution of the wavefunction:

. 1 [ . 1 F vU
72I I 1 I (E

2
-U

2
)

()- e-I - U V 1 it
V2 v2 v' (E2 - U2) (E

2
-U

2
)

. V2(U-E) _ L v'2Z(U+E) .
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The maximum probability at level 3 is then

Pmx= I V -11 V 11U V 1(B2
max 2(U-E) 2(U+E) (E2-U2) '

The first two terms on the right hand side is determined by which of the following

two has greater absolute value:

V V VU (B.3)
2(U+E) 2(U-E) (U 2 -E 2 )

V V -VE- - (B.4)
2(U + E) 2(U - E) (U2 - E2 )

B.1.1 The case of E ~ U or E < U

If E ~ U or E < U, the absolute value of equation(B.3) is about equal to or greater

than that of equation(B.4), and therefore

Umax ( UV + 2 4U 2 V 2  (B.5)
mx (E 2 - U2) (2 - U2) (E + U)2 (E - U)2

Equation(B.5) obviously breaks down when E = U >> V. What should Pmax be in

this case? In this case, we have the Hamiltonian

0 U 0

H= U 0 V-

0 V U

It is easy to see that the eigenvalues are approximately U , U and -U (remember V is

small). The eigenvector corresponding to -U is approximately 1/,2 -1/v'2 0 1 T

from the splitting of the first two levels. The approximate eigenvectors corresponding

to the approximate eigenvalue U has the form: [ a a b ,where 2a 2 + b2 = 1

for normalization. In order to know the ratio between a and b, we need a better

approximation on the eigenvalues. Let Q(x) be the characteristic polynomial of H.
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We have

Q(x) = det(H - x13 ) = x 2 (U - x) + V 2 x + U2 (x - U).

Suppose xO U is a root of Q(x). Let y = xo - U. y is small and

0 =Q(y + U) = -(y + U) 2y + V 2(y + U) + U2 yV 2U -2Uy 2.

As a result,

V

It is easy to see that the approximate eigenvector corresponding to the approximate

eigenvalue U t is [I
[2

and from the three approximate eigenvectors we

obtain
P 1 1

Pmax (E = U) = (2 - )2
2 V/2 2

Since probability transfer in a two-level system has a Lorentzian behavior [9], we

expect a similar form for Pmax. Assuming a Lorentzian width parameter b:

Pmax =
4 U 2 y2

(E + U) 2 [(E - U) 2 + b]

1
Pmax (E = U) = - -> b = 2 V 2

2

Due to symmetry, we need a width parameter for the (E + U) 2 term as well

Rmax -

4 U 2 V 2

[(E + U) 2 + 2 V 2 ] [(E - U) 2 + 2 V2]*

Renormalize to get Pmax (E = U) = 0.5

Pmax =
V2(4 U2 +2 V 2 )

[(E + U) + 2 V 2 ] [(E - U) 2 + 2 V2]
(B.6)

B.1.2 The case of E >> U >> V

If E >> U >> V, equation (B.4) is the dominating term in equation (B.2),
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Figure B-2: Comparison of the exact solution with approximate analytical solutions

(B.6) and (B.7) for U = 100 V.

V 2 _V E ]2 2

Pmax (2(U E) 2(U+E)) (U2 - E2) E2(B.7)

In Fig B-2, we compare the exact solution [57] of Pmax and the approximate analytical

functions, equations (B.6) and (B.7), for the case of U = 100 V . We only plot the

positive E range as Pmax is symmetric in E. We see that the functions are good

approximations in respective limits (E < U or E ~ U, and E >> U) and they are

not so accurate in the transition region of E.

We denote Pmax to be an approximate solution of Pmax and the relative error to

be c = IPmax - Pmaxl/Pmax. In Fig. B-3 we show a log plot of the relative error for

equation (B.6). As expected, the estimate is only good when U is much bigger than

V and E is not too much greater than U. In Fig. B-4, the log relative error plot

for equation (B.7) is shown. It is accurate in the large E limit, regardless of whether

224

U=1 OOV109goPmax



1og10(E)

54

04

-54

4

og,(V/U) logl 0(E/U)

Figure B-3: Error plot for the approximate solution Eq. (B.6).

V << U or not, because when E is sufficiently large, level 3 is far away and the first

two levels is like a two-level system, and the perturbed wavefunctions equation (B.1)

is a good estimate.

B.2 The case of V >> U

We consider the case when E = 0 first. In this case the Hamiltonian is diagnosable

[57], and the eigenvectors are

[V/VV 2 +U 2

0

-U/VV 2 +U 2

U/ 2(V 2 +U 2 )

1/V

V/ 2(V 2 +U 2 )

I,[U! 2(V 2 +U 2 )

1/ V

V/V2(V 2 +U 2 )

with eigenvalues 0 , U2 + V 2, and - U2 + V 2, respectively. Pmax is then calculated

to be
4 U2 V2 4 U 2

Pmax (U2 V2) 2 v 2 (B.8)

As argued before, when E >> V >> U, approximate eigenvectors from equation

(B.1) are good estimates and hence equation (B.7) applies. However, equation (B.7)
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Figure B-4: Error plot for the approximate analytical solution Eq. (B.7).

blows up when E goes to 0, and yet we know the finite value of P,, at E= 0. Again,

we need a Lorentzian width b:

V 2

Pmax E2
x E 2 + b

4 U2  V4

Pmax (E =0) = y2 #- b U
V2  4 U2

Therefore,
V 2

Pmax = V4 (B.9)
E 2 + 4 U2

In Fig. B-5, we compare the exact solution [57] of Pmax and the approximate

analytical functions, equation (9) for the case of V = 100 U . We see that the

analytical solution is a good approximation overall. In Fig. B-6 we show a log plot of

the relative error for equation (9). The estimate is accurate when U is much smaller

than V.
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B-5: Comparison of exact solution with the approximate analytical solution

V = 100 U.
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Figure B-6: Error plot for the approximate analytical solution Eq. (B.9).
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B.3 Interpretation

In the U >> V limit, the first two levels behave as a two-level system, and there

is a level-splitting of magnitude U. Hence we have a peak of Pmax at E = ±U as

indicated by Eq. (B.6) and Fig. B-2. The width of this peak is proportional to V,

which is reminiscent of a two level system [9] except with a v 2 factor, possibly due

to the fact that level 3 is only coupled to level 2 not coupled to level 1.

In the large E limit, level 3 is far away from levels 1 and 2. Level 3 practically only

sees one level (levels 1 and 2 lumped together) and Pmax goes down as V 2 /E 2 , same

as the large E limit for a two-level system [91.

In the V >> U limit, Pmax is a Lorenzian peaked at E = 0. The width of the

Lorenzian is proportional to V 2 /U, and therefore when U is small compared to V we

have large bandwidths. The reason for this is that when V is much stronger than U,

level 2 and level 3 are strongly coupled and the coupling between level 1 and level 2

is the bottleneck of the probability transfer. Therefore, off-resonance effect between

level 2 and level 3 does not become significant until these two levels are very far apart.

B.4 Lossy case

Equation (B.9) suggests that when U << V broad bandwidths are generated given

small U's. Would this hold true in a more realistic system? In such a system there

would be presence of loss which reduces the bandwidth. Consider the following case

where the original three-level system is coupled to three reservoirs. See Fig. B-7

for a schematic. Reservoir a is modeled as a whole spectrum of levels with each

level coupled to level 1 with matrix element W1. The Golden Rule rate for level 1

relaxation to reservoir a is 1. Reservoir a has density of states pa (E). Similarly,

reservoir Q is modeled as a spectrum of levels with each level coupled to level 3 with

matrix element W 3. The Golden Rule rate for level 3 relaxation into reservoir 3 is

F 3 . W 3 and W are assumed to be positive real. Reservoir # has density of states
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Figure B-7: Schematic for a lossy three-level system.

p, (E). Level 2 is coupled to each level in reservoir L with matrix element WL and

has loss characterized by the Golden Rule rate FL. If an electron starts off at level

i in reservoir a, it goes through the three-level system and ends up at a resonant

level Tf in reservoir 13. We consider the total flux from reservoir a to reservoir #,
obtained by integrating the transition rate between each resonant states 'i' and Tf

over the whole energy spectrum. We are interested in finding out the bandwidth of

such flux and how the bandwidth is affected by loss.

B.4.1 Secular Equations Partitioning Method

We use the augmented secular equations partitioning method to calculate the flux.

Let E be an eigen-energy of the system. The H's are the energies of the corresponding

levels adjusted with imaginary part to take into account losses,

H1  El - ih
2

H 2 =E 2 - ih
2

H 3 = E 3 -ih-
2

We write out scalar sector equations

(B.10)E IF= Hz T + W T1
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EP 1 = H 1 1 + U Tj + W1 Ti

E T 2 =H 2 2 + U P 1 + V P 3

EXF3  H3 T 3 + V P 2 + W 3 P5

E Tf = Hf T1 + W3 P 3

rewrite equations (B.11), (B.12), and (B.13) into a matrix equation

E

91
P2

P3]

H1 U 0

U H2 V

0 V H3 ['1

J3

+ [Wi1

0

0

,which leads to

-[P- 1
P2

P3]

E-H 1 -U 0

-U E - H 2 -V

0 -V E-H3

-1

CW1

0

0

-I
Substituting eq. (B.14) into eq. (B.10) we obtain

E Fi = i i + UPi Ti + Uj f I

, where
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(B.11)

(B.12)

(B.13)

vi +[

0

0

W3

0

0j

W3

(B.14)

Tj +



E-Hi -U 0 0

Ui i = Wi2 I 1 0 0 -U E -- H2 -V 0

L 0 -V E-H3 J 1

E-H1 - U 0 0

Uif = W1 W 3 1 0 0 -U E - H2  -V 0

0 -V E-H3 1

Uif is the equivalent coupling matrix element between Ije and 'Ff. The transition rate

from 4' to I' is obtained from the Golden Rule to be 27r1Uif| 2 P3 (E) /h. If we denote

pi and P3 to be the chemical potentials of reservoir 1 and reservoir 3, respectively,

and we denote T and T3 to be the reservoir temperatures, the thermal equilibrium

occupation probabilities for I' and Ff are pi (E) = 1/ (1 + exp{-E/kT}) and pf =

1/ (1 + exp{-E/kT 3}). The forward flux from T' to 'Ff is proportional to pi (1 - pj).

Similarly, the backward flux from Tf to TJ is (1 - pf) pf. Therefore, the total flux

from reservoir 1 to reservoir 2 is

flux = [pi (1 - pf) - (1 - pi) pf] 27rIUif| 2pi (E) P3 (E) /h x dE. (B.15)

B.4.2 Numerical results

When E 3 varies, the system goes off-resonant and only the term |Uif 2 changes in eq.

(B.15). To investigate the effect of off-resonance on the flux, we hence only need to

consider the following integral as a function of E 3 : f |UfiI2dE, hereafter referred to as

the core integral. An example lineshape of the core integral is shown in Fig. B-8 for

the following choices of parameters: WR = 27r - 1012 S- 1 , V = WR - h, E1 = E 2 = 0 eV,

F1 = F3 = 1/WR, U = 0.01V, and FL = 100V/h. We can fit the lineshape with a

Lorentzian and obtain the Full Width -Half Maximum (FWHM). Another example

lineshape is shown in Fig.B-9 for the same set of parameters except FL = 0-01V/h.
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Figure B-8: Lineshape for U = 0.01V and FL bOy/h-

In this case of smaller FL, there is a dip in the peak but the two sides still tail off

as Lorentizan and we can again fit the lineshape with a Lorentzian to obtain the

FWHM. In Fig. B-10 we show the width as a function of loss FL and coupling U, all

normalized to coupling V. Large widths are created with small U's, but the presence

of loss reduces the widths. This is counter-intuitive as normally loss contributes to the

uncertainty of the level 2 energy and hence should increase the bandwidth. In reality

though the effect of flux lost into reservoir L dominates over the increase in level 2

energy uncerntainty and hence the bandwidth is reduced when the loss increases.

B.5 Conclusion

We have shown analytically how a large bandwidth can exist in probability transfer

through a sequential three-level system given that the on-resonant coupling is much

weaker than the off-resonant coupling. This phenomenon is counter-intuitive and

may have potential applications. We have also demonstrated that the presence of

loss reduces the bandwidth.
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Figure B-10: FWHM as a function of FL and U.
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Appendix C

Coulomb coupling loss

From Chapter 9 we see that the dipole interaction energy between a hot-side dipole

dh and a cold-side dipole dc is

4eo6 2 dh ldcl
U = ( 1)(O+2)

00 +
E 0 _-6

x= O+6
-o - 2 

6o + 62

1

47r62 I ARchn 13 nn-- 3(fic -chn)ichn - fh)

where nh is the unit vector in the direction of dh, fn is the unit vector in the direction

of d0, and lehn is a unit vector in the direction of dc-dh. The hot-side and the cold-side

dipoles in principle can have a random orientation, and we do an averaging to relate

the expectation of the Coulombic matrix element squared to the dipole moments:

E 2 dh 12 dc 12 00

(IU12) 0
ir(EO + E1)2(Eo + (2)2

(o _ E
co + Ei

o - E2

Eo + E2

1
IARchn13

fic - 3(fic 'chn)(Ichn nh) 2

E 121 12

37r(Eo + 61) 2(Eo + E2) n=O EO + E2
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nl -- 3 (fc (ichn ) h )

where the last term is evaluted by Mathematica to be

27r dO
nc-fi - 3 I 27r

d5
27r [cos(O - q) - 3COSOCos#]2

4

We define f(rh, r, w)

5 2

127r(co + E1)2(60 + E2 )2
: 60 - )1

n=O EO + E2

nEO - 62

CO + 62)

From similar arguments to that of the previous chapter, we obtan the expression for

the Coulomb coupling loss:

loss =
h I d3rh

Idarephp,"I dwhwp (w)p,(w)hdh12 |dc 2 f (r, rc) [ihighPhow -ighPow]

Making use of equations 15.5 and 15.6 for both the hot-side and the cold-side, we

arrive at the following expression for the loss:

loss = 2EO d3 rh
T/p0

Jd3r J dwf(rh, r,w) ah(W)ac

wnh (w) nc(w)
e-hwkT _ e- hwlkTI

235

f (r, rc, w) =
1 2

IARchn13

fh)2)
x - 3 2( c -

2)

(nic - chn )Ichn - na



Bibliography

[1] Wikipedia. http://en.wikipedia.org/wiki/ OiLprice-increases-of-2004_and-2005

[2] Robert C. Armstrong and Ernest J. Moniz. Report of the energy research council.

MIT Energy Research Council, May 2006.

[3] M. Laroche, R. Carminati, and J.-J. Greffet. Near-field thermophotovoltaic en-

ergy conversion. Journal of Applied Physics, 100, September 2006.

[4] R. DiMatteo, P. Greiff, D. Seltzer, D. Meulenberg, E. Brown, E. Carlen,

K. Kaiser, S. Finberg, H. Nguyen, J. Azarkevich, P. Baldasaro, J. Beausang,

L. Danielson, M. Dashiell, D. DePoy, H. Ehsani, W. Topper, K. Rahner, and

R. Siergiej. Micron-gap thermophotovoltaics (mtpv). In AIP Conference Proceed-

ings, volume 738 of THERMOPHOTOVOLTAIC GENERATION OF ELEC-

TRICITY: Sixth Conference on Thermophotovoltaic Generation of Electricity:

TPV6, pages 42-51, November 2004.

[5] Janet L. Pan, Henry K. H. Choy, and Clifton G. Fonstad Jr. Very large ra-

diative transfer over small distances from a black body for thermophotovoltaic

applications. IEEE TRANSACTIONS ON ELECTRON DEVICES, 47:241-249,

January 2000.

[6] Ivan Celanovi and Prof. John Kassakian. Photonic crystals for ir and near-

ir applications: thermophotovoltaics, thermal radiation sources, ir sensors and

beyond. LEES Colloquium at MIT, February 2005.

[7] Peter L. Hagelstein. Basic issues in electromagnetic coupling. unpublished.

236



[8] Bernard Wernsman, Richard R. Siergiej, Samuel D. Link, Robert G. Ma-

horter, Marc N. Palmisiano, Rebecca J. Wehrer, Robert W. Schultz, Gregory P.

Schmuck, Rowan L. Messham, Susan Murray, Christopher S. Murray, Fred New-

man, Daniel Taylor, David M. DePoy, and Thomas Rahmlow. Greater than 20%

radiant heat conversion efficiency of a thermophotovoltaic radiator/module sys-

tem using reflective spectral control. IEEE Trans. Electron. Dev., 51:512-515,

March 2004.

[9] C. Cohen-Tannoudji et al. Quantum Mechanics. Wiley-Interscience, 1977.

[10] Peter L. Hagelstein, Stephen D. Senturia, and Terry P. Orlando. Introductory

Applied Quantum and Statistical Mechanics. Wiley-Interscience, 2004.

[11] Per-Olov Lowdin. A note on the quantum-mechanical perturbation theory. The

Journal of Chemical Physics, 19:1396-1401, July 1951.

[12] Per-Olov Lowdin. Studies in perturbation theory part i. an elementary iteration-

variation procedure for solving the schrodinger equation by partitioning tech-

nique. Journal of Molecular Spectroscopy, 10:12, 1963.

[13] Gregory D. Scholes, Xanthipe J. Jordanides, and Graham R. Fleming. Adapt-

ing the f6rster theory of energy transfer for modeling dynamics in aggregated

molecular assemblies. J. Phys. Chems. B, 105:1640-1651, February 2001.

[14] S. Lee, C. Mao, C. E. Flynn, and A. M. Belcher. Ordering of quantum dots using

genetically engineered viruses. Science, 296:892-895, May 2002.

[15] S. Coe-Sullivan, J. S. Steckel, W. K. Woo, M. G. Bawendi, and Bulovic V. Large-

area ordered quantum-dot monolayers via phase separation during spin-casting.

Adv. Funct. Mater., 15:1117-1124, April 2005.

[16] M. Grundmann, J. Christen, N. N. Ledentsov, J. Bohrer, D. Bimberg, S. S.

Ruvimov, P. Werner, U. Richter, U. Gosele, H. Heydenreich, V. M. Ustinov,

A. Yu. Egorov, A. E. Zhukov, P. S. Kop'ev, and Zh. I. Alferov. Ultranarrow

luminescence lines from single quantum dots. Phys. Rev. Lett., 74:4043, 1995.

237



[17] A. F. Tsatsul'nikov, S. V. Ivanov, P. S. Kop'ev, A. K. Kryganovskii, N. N.

Ledentsov, M. V. Maximov, B. YA. Mel'tser, P. V. Nekludov, A. A. Suvorova,

A. N. Titkov, B. V. Volovik, M. Grundmann, D. Bimberg, and Zh. I. Alferov.

Formation of indium antimonide qauntum dots in a gallium antimonide matrix.

Microelectronic Engineering, 43:85-90, 1998.

[18] Markus Zahn. Electromagnetic Field Theory: A Problem Solving Approach.

Krieger Publishing Company, 2003.

[19] Abramowitz and Stegun. Handbook of Mathematical Functions. Dover Publica-

tions.

[20] Y. Hishinuma, T. H. Genalle, B. Y. Moyzhes, and T. W. Kenny. Refrigeration

by combined tunneling and thermionic emission in vacuum: Use of nanometer

scale design. Appl. Phys. Lett., 78:2572, April 2001.

[21] Yoshikazu Hishinuma, Theodore H. Geballe, Boris Y. Moyzhes, and T. W. Kenny.

Measurements of cooling by room-temperature thermionic emission. J. Appl.

Phys., 94:4690, October 2003.

[22] I. N. Stranski and Von L. Krastanow. Akad. Wiss. Lit. Mainz Math.-Natur. Kl.

IIb, 146:797, 1937.

[23] S. Sauvage, P. Boucaud, R.P.S.M. Lobo, F. Bras, G. Fishman, R. Prazeres,

F. Glotin, J. M. Ortega, and J.-M. Gerard. Long polaron lifetime in in-

dium arsenide/gallium arsenide self-assembled quantum dots. Phys. Rev. Lett.,

88:177402, April 2002.

[24] M. H. Baier, S. Watanabe, E. Pelucchi, and E. Kapon. High uniformity of site-

controlled pyramidal quantum dots grwon on prepatterned substrates. Appl.

Phys. Lett., 84:1943-1945, March 2004.

[25] J H Lee, Zh M Wang, B L Liang, K A Sablon, and N W Strom. Size and

density control of inas quantum dot ensembles on self-assembled nanostructured

238



templates. Semiconductor Science and Technology, 21:1547-1551, September

2006.

[26] Ritsuo Ohashi, Tomohiko Ohtsuka, Narihisa Ohta, Akira Yamada, and Makoto

Konagai. Position control of inas quantum dots by afm oxidation. Thin Solid

Films, 464-465:237-239, 2004.

[27] D. Schuh, J. Bauer, E. Uccelli, R. Schulz, A. Kress, F. Hofbauer, J.J. Finley,

and G. Abstreiter. Controlled positioning of self-assembled inas quantum dots

on (110) gaas. Physica E, 26:72-76, 2005.

[28] M. J. Lercel and H. G. Craighead. Sub-10 nm lithography with self-assmebled

monolayers. Appl. Phys. Lett., 68:1504-1506, March 1996.

[29] F. Keith Perkins, Elizabeth A. Dobisz, Susan L. Brandow, Jeffrey M. Calvert,

John E. Kosakowski, and Christie R. K. Marrian. Fabrication of 15 nm wide

trenches in si by vacuum scanning tunneling microscope lithography of an

organosilane self-assmebled film and reactive etching. Appl. Phys. Lett., 68:550-

552, January 1996.

[30] Richard D. Piner, Jin Zhu, Feng Xu, Seunghun Hong, and Chad A. Mirkin.

"dip-pen" nanolithography. Science, 283:661-663, January 1999.

[31] Riichiro Saito, Gene Dresselhaus, and Mildred S. Dresselhaus. Physical Proper-

ties of Carbon Nanotubes. Imperial College Press, 1998.

[32] Mark S. Gudiksen, Jianfang Wang, and Charles M. Lieber. Synthetic control

of the diameter and length of single crystal semiconductor nanowires. J. Phys.

Chem. B, 105:4062-4064, April 2001.

[33] Yi Cui, Xiangfeng Duan, Jiangtao Hu, and Charles M. Lieber. Doping and

electrical transport in silicon nanowires. J. Phys. Chem. B, 104:5213-5216, June

2000.

239



[34] J.-Y. Marzin and G. Bastard. Calculation of the energy levels in indium ar-

senide/gallium arsenide quantum dots. Solid State Commun, 92:437-442, July

1994.

[35] Maria Francesca lozzi, Benedetta Mennucci, and Jacopo Tomasi. Excitation

energy tranfer (eet) between molecules in condensed matter: A novel application

of the polarizable continuum model (pcm). J. Chem. Phys., 120:7029, April 2004.

[36] C. F. Wang, A. Badolato, I. Wilson-Rae, P. M. Petroff, E. Hu, J. Urayama, and

A. Imamoglu. Optical properties of single inas quantum dots in clsoe proximity

to surfaces. Applied Physics Letters, 85:3423-3425, October 2004.

[37] S. Fafard. Near-surface inas/gaas quantum dots with sharp electronic shells.

Applied Physics Letters, 76:2707-2709, May 2000.

[38] Klaus Adlkofer, Eric F. Duijs, Frank Findeis, Max Bichler, Artur Zrenner, Erich

Sackmann, Gerhard Abstreiter, and Motomu Tanaka. Enhancement of photo-

lumineschence from near-surface quantum dots by suppression of surface state

density. Phys. Chem. Chem. Phys., 4:785-790, January 2002.

[39] E. C. Le Ru, P. D. Siverns, and R. Murray. Luminescence enhancement

from hydrogen-passivated self-assembled quantum dots. Applied Physics Letters,

77:2446-2448, August 2000.

[40] S. Sauvage, P. Boucaud, F. H. Julien, J.-M. Gerard, and V. Thierry-Mieg. Intra-

band absorption in n-doped inas/gaas quantum dots. Applied Physics Letters,

71:2785-2787, September 1997.

[41] Daniel V. Schroeder. An Introduction to Thermal Physics. Addison Wesley

Longman, 1999.

[42] G. A. Domoto, R. F. Boehm, and C. L. Tien. Experimental investigation of

radiative transfer between metallic surfaces at cryogenic temperatures. ASME

Journal of Heat Transfer, 92:412-417, August 1970.

240



[43] C. M. Hargreaves. Anomalous radiative transfer between closely-spaced bodies.

Physics Letters A, 30:491-492, December 1969.

[44] S. S. Kutateladze, N. A. Rubtsov, and Ya. A. Bal'tsevich. Effect of magnitude of

gap between metal plates on their thermal interaction at cryogenic temperatures.

Sov. Phys. Dokl., 23:577-578, August 1978.

[45] David K. Cheng. Field and Wave Electromagnetics. Prentice Hall, 1989.

[46] Bruno Huttner and Stephen M. Barnett. Quantization of the electromagnetic

field in dielectrics. Phys. Rev. A, 46:4306-4322, October 1992.

[47] Peter L. Hagelstein. On the intersubband scheme with coulomb coupling. un-

published.

[48] Reza Matloob and Rodney Loudon. Electromagnetic field quantization in ab-

sorbing dielectrics. Phys. Rev. A, 52:4823-4838, December 1995.

[49] Edward D. Palik. Handbook of optical constants of solids III. San Diego : Aca-

demic Press, 1998.

[50] T. Tomiki, Y. Ganaha, T. Futemma, T. Shikenbaru, Y. Aiura, M. Yuri, S. Sato,

H. Fututani, H. Kato, T. Miyahara, J. Tamashiro, and A. Yonesu. Anisotropic

optical spectra of o-al203 single crystals in the vacuum ultraviolet region. ii spec-

tra of optical constants. J. Phys. Soc. Jpn., 62:1372-1387, 1993.

[51] R. H. French, H. Mullejans, and D. J. Jones. Optical properties of aluminum ox-

ide determined from vacuum ultraviolet and electron energy loss spectroscopies.

J. Am. Ceram. Soc., 81:2549-2557, 1998.

[52] Dominik Horinek and Josef Michl. Surface-mounted altitudinal molecular ro-

tors in alternating electric field: Single-molecule parametric oscillator molecular

dynamics. Proceedings of the National Academy of Sciences, 102:14175-14180,

October 2005.

241



[53] M. S. Tomassone and A. Widom. Electronic friction forces on molecules moving

near metals. Phys. Rev. B, 56:4938, August 1997.

[54] Timothy H. Boyer. Penertration of the electric and magnetic velocity fields of a

nonrelativistic point charge into a conduting plane. Phys. Rev. A, 9:68, January

1974.

[55] Neil W. Ashcroft. Solid State Physics. Holt Rinehart and Winston, 1987.

[56] Sadao Adachi. Optical constants of crystalline and amorphous semiconductors

numerical data and graphical information. Boston: Kluwer Academic Publishers,

1999.

[57] M. H. S. Amin. Rabi oscillations in systems with small anharmonicity.

Temperature Physics, 32:198-204, March 2006.

[58] L. I. Schiff. Quantum Mechanics. McGraw Hill, 1968.

242

Low


