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Abstract

To date, the decision support models developed to assist an airline that is facing disruption
of its normal operating schedule have, with very little exception, ignored the special con-
sideration that operations at hub airports require. Instead of considering the dependencies
induced by flights full of connecting passengers, models have incorrectly tended to view the
passengers of these flights as either terminating at the hub, or continuing on the same flight
(through passengers). In addition, the objective function of many models is based solely
on customer service metrics, a situation at odds with the airline as a profit-maximizing
organization.

Due to the two limitations just described, we believe that the existing models are of
limited use to airlines who seek to maximize profit by operating a schedule of flights over a
hub-and-spoke network. Unfortunately, this describes the majority of the large U.S. airlines.

In this research we present a series of three mixed integer models that are free from
the above limitations. We then test and compare the models using a real-world scenario
involving over 300 flights spanning 14 hours. One model stands out and is able to solve the
real-world scenario in real time. In addition, we present an extensive literature review and
classification of the decision support models developed to assist an airline facing schedule
disruption.
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Chapter 1

Introduction

This chapter introduces the context of the research described in this thesis. First we describe

the current state of Air Traffic Flow Management (ATFM) in the United States and how

ATFM is expected to evolve in the next 5 to 10 years. Then we introduce and define

irregular operations, the airlines' response to a disruption in their planned schedule. Next

we describe hub-and-spoke networks and the corresponding banking operations which are

particularly sensitive to schedule disruption. Then we give some advantages of using profit

maximization as the objective function for decision support models. Finally we describe

the problem scenario considered in this thesis, followed by the contributions of this research

and an outline of the rest of the thesis.

1.1 The Coming Changes in Air Traffic Flow Management

Air Traffic Flow Management (ATFM) is the management and control of aircraft operating

through airports and airspace sectors in a manner that achieves safe, orderly and efficient

movement of traffic. In the United States ATFM is poised to undergo some evolutionary,

yet dramatic, changes. The primary elements of the change are captured in the phrase

collaborative decision making (CDM). CDM is an evolutionary step from an environment

of centralized decision-making by the FAA to a partially-decentralized one, where each

airline is directly involved in the decision-making process and thus has the flexibility to

manage its own operations according to its own priorities and objectives. CDM completely

reverses the current system: today, the airlines provide information to the FAA, who as

centralized decision maker makes unilateral decisions (with limited adjustments available



to the airlines); under CDM, the FAA will inform the airlines about the state of the system

and allocate constrained resources among the airlines, then the airlines will make their own

decisions based on this knowledge.

There are a number of factors pushing this evolutionary change. First, as system demand

grows without a corresponding increase in supply, ATFM is becoming increasingly important

to the smooth operation of the air traffic system and to the efficient utilization of today's

resources. Unfortunately, the rules, policies and procedures currently in place are inflexible

and too restrictive, and are thus preventing ATFM from reaching its full potential [20].

Second, new technologies are emerging, ranging from GPS navigation systems to automated

decision support tools, that enable the participants in the air traffic system to efficiently

deal with the dynamic and uncertain environment of ATFM-uncertainties and dynamism

that were heretofore inefficiently dealt with through unnecessary and overly-restrictive rules.

And third, the airlines have expressed their preference for a decentralized decision-making

environment [13].

One area that will undoubtedly change-in fact, hopefully to the point of disappearing-

is the FAA ground-holding program. Under the present system, when the number of antic-

ipated arrivals at an airport exceeds its capacity, the FAA assigns landing times to these

arrivals on a first-come, first-served basis. (In practice each flight is given a window of time

to land at the destination airport.) The FAA then calculates the delay times resulting from

these assignments, and holds these flights at their origin airport for the length of the delay.

This process is called a Ground Delay Program (GDP), and its motivation is that when

delay is inevitable it is cheaper and safer to take this delay on the ground rather than in

the air (air delay is typically taken either by circling a destination airport or traveling at

slower speeds en route).

The current system does allow the airlines to make limited adjustments to the landing

assignments, or arrival slots, they are given under a GDP. The adjustment process is often

initiated by a cancellation, which opens up an arrival slot. The airline can then move up, or

substitute, a later flight into the open slot, thereby reducing the delay of that flight. And

since this step opens up another slot-that one originally assigned to the moved-up flight-

the airline can thus engage in a string of substitutions that in the end allows one flight

cancellation to reduce the delays of several flights. Today, this substitution process is the

primary rescheduling tool available to airlines during GDPs. Unfortunately, the GDP and



slot substitution process has a number of restrictions and inefficiencies. For instance, the

FAA assigns landing times on the assumption that all flights have equal priority. Obviously

the airlines do not view all flights as equal, but there is presently no means for their priorities

to influence the assignment process.

Under the proposed partially-decentralized scenario, when demand exceeds supply at an

airport the FAA will execute an arrival slot rationing program (typically but not necessarily

based on the original schedule, or 'ration-by-schedule'), and will then inform each airline

of the time window and number of its arrival slots. The airlines will then themselves

decide how to assign their flights to their arrival slots, based on their unique priorities and

objectives. (The airlines will also be free to decide when these flights depart from their origin

airports, in effect deciding the balance between ground-based and airborne delay.) The

airlines then submit their assignments to the FAA, perhaps for approval. It should be noted

that this process is dynamic: as conditions change, the airlines may see their arrival slot

allocation either increase or decrease. This new process involves collaboration, cooperation,

coordination, and information sharing between the FAA and the airlines, characteristics

that will be typical of ATFM in the future.

Most of the existing ATFM decision support models were formulated-and appropriately

so-under the restrictive FAA slot swapping regulations. However, collaborative decision

making has been labeled a high-priority near-term effort and is gaining increased momentum

in the aviation community [20]. Models formulated with this new environment in mind will

both display today the benefits of the upcoming decentralized ATFM and will be used

tomorrow as first-generation tools when the evolution is complete.

1.2 Irregular Operations

In response to demand-capacity imbalances caused by congestion or weather or both, air-

lines enter into irregular operations, or the management of and recovery from disruptions to

scheduled service. Irregular operations can be initiated to handle relatively modest changes

in schedule, for example due to congestion or mechanical breakdowns, or to handle heavy

delays and cancellations mainly caused by severe weather. Dealing with such major disrup-

tions to scheduled operations is sometimes called high-volume irregular operations.

Weather can cause an airport's capacity to accept arriving flights to be reduced either



incrementally, due to the increased separation requirements of IFR flight, or drastically,

due to the inability to safely land aircraft at all. For example, cloud cover might reduce

capacity by 10-15%, whereas a severe thunder squall with high winds can reduce capacity

to near zero. Reductions of the second type are typical of the problem scenarios that the

models described in this thesis are intended to help solve; although the models can solve

scenarios involving any capacity reduction, those situations with a severe reduction often

have the greatest need for automated support. Solutions to these scenarios are not trivial:

aircraft rescheduling and rerouting decisions produce flight cancellations and delays that

affect maintenance scheduling, crew scheduling, and of course passengers.

As we will see in the Literature Review and Classification chapter, irregular operations

often involves two highly dependent steps: schedule reduction and schedule recovery. Al-

though the models in this thesis are intended to assist primarily in schedule reduction,

the importance of schedule recovery and its dependence on schedule reduction are realized,

and mechanisms are available to ensure that the models' recommendations facilitate the

recovery process.

1.3 Hub-and-Spoke Networks

In the aftermath of airline deregulation in 1978 most U.S. airlines adopted hub-and-spoke

networks for their domestic operations. Hubbing, the process of routing origin-destination

traffic through a connecting airport rather than serving it non-stop, offers many advantages

for airlines as well as their passengers, all based on the following principle: under hubbing, a

flight from a given origin to the hub can be used by passengers having different destinations,

and a flight from the hub to a given destination can be used by passengers coming from

multiple origins.

For airlines, consolidating traffic flows to meet at a common point for redistribution

maximizes the number of markets served by their network of flights. Hubbing also allows

the airlines to take advantage of economies of aircraft size, achieve high levels of aircraft

utilization, and in general optimize the efficiency and productivity of flight operations.

For passengers, hubbing results in an increased frequency of service in a given origin-

destination market, and in markets not large enough to support direct service, it is respon-

sible for the very existance of service.



The successful use of hubbing requires careful scheduling to balance the conflicting goals

of linking the greatest number of city pairs, while minimizing the time that passengers spend

at the hub and maximizing the utilization of aircraft. To achieve this balance, many flights-

called an arrival bank-are scheduled to arrive at a hub airport within a short interval of

time. After a minimum connecting time needed for redistribution of passengers and their

baggage and for aircraft servicing, many flights-called the departure bank-are scheduled

to depart from the hub.

We assume in this thesis that in order to maximize the number of markets served, arrival

and departure banks do not overlap, an assumption typically borne out in practice. There

are, however, some scheduling scenarios (beyond the scope of this thesis) in which these

banks will legitimately overlap (see [7]). Also note that in this thesis we may refer to arrival

banks as inbound banks, and departure banks as outbound banks.

The careful scheduling required for efficient hub operations results in a critical problem:

schedules are now acutely sensitive to even the tiniest disruption, due to the existance

of bank-induced dependencies. For example, the effect of delay is no longer confined to a

single flight, as a single inbound delay (FAA-imposed or otherwise) may cause the airline

to impose multiple outbound delays in an attempt to maintain the integrity of the bank,

to accommodate connecting passengers. But if the outbound delays are too excessive, an

airline may choose to 'separate' the delayed inbound flight from its bank, in which case

the outbound bank of flights will not wait for its arrival. The cost of separation is that

the connecting passengers on the separated inbound flight will now miss their connections

to flights in the outbound bank, and will be delayed at the hub airport for some period

of time. This trade-off between outbound flight delay and inbound flight separation is the

main innovation of the models presented in this thesis.

As we will see in the literature review of Chapter 2, very little work in aviation opera-

tions research related to irregular operations has considered the bank-induced dependencies

due to hub operations, which is unfortunate since hub-and-spoke networks appear here to

stay. Ghobrial and Kanafani [8] expect network hubbing to continue, as projected by a

network equilibrium model, and Dennis [7] agrees, saying that "the laws of mathematics

and geography mean that the advantages of hubs are here to stay."



1.4 Airlines are Profit-Maximizing Organizations

That the U.S. airlines are profit-maximizing organizations seems to be common knowledge,

yet many aviation decision support models seem to forget this. Instead, we see statements

like "an airline's first priority is to keep the number of cancellations to a minimum" and

objective functions that minimize passenger delay minutes, minimize the number of passen-

gers missing connections, minimize the maximum delay, or maximize on-time performance,

as if the airline were a public transit organization. Of course, these metrics are enormously

important and by no means are we suggesting that they be ignored. But a single-minded

focus on passenger service, especially when taken to an extreme (i.e., optimized for), can

be very detrimental to the bottom line.

We suspect that operation-based objective functions are chosen over profit-based ones

because, while the former are easy to quantify, the latter require estimation of costs that are

often unknown. But ignoring the issue does not make it go away. It is our strong opinion

that any decision support tool intended for use by an airline should have profit maximization

as its objective function; if not, the reasons for choosing a different objective function over

profit maximization should be clearly stated. Since scheduled operations were presumably

constructed with profit maximization in mind, for irregular operations decision support

models it is sufficient to minimize the total cost of changes to scheduled operations.

Using maximization of profit as the objective function has the further advantage of using

dollars as a universal common denominator. At least three advantages arise from this:

* While some models are touted for their ability to either minimize customer dissatisfac-

tion or maximize schedule execution smoothness, they cannot examine the trade-off

between these often-conflicting goals. But if the costs associated with these metrics

can be estimated and applied, the trade-off can be captured and solved.

* Most models cannot account for all operating constraints due to the limitations put

on the size and complexity of the models by real-time solution requirements. But

these missing constraints can be indirectly represented in the cost variables of a profit-

maximizing objective function. For instance, a flight using an aircraft with impending

maintenance requirements may have high cancellation costs if the destination of the

flight has a maintenance depot.



* The airlines often have differing philosophies concerning irregular operations and

rather than construct a new model for each philosophy, a model that maximizes profit

should be of use to all airlines, since their differing philosophies can be expressed

through assigning different values to the input cost variables. For example, one op-

erating philosophy is "one bank on time is better than two banks delayed," and with

the proper cost structure (high bank spread costs and high flight separation costs)

this philosophy will be represented in the model's solutions.

1.5 The Problem Scenario

The scenario addressed by the models in this thesis is the following: severe weather strikes

an airline's hub airport and arrival capacity is reduced. In accordance with the partially-

decentralized ATFM environment described in Section 1.1, the FAA notifies the airline of

its arrival slot allocation and the airline must thus make a real-time tactical decision about

how to reschedule its banks of flights into the hub, through assignment of flights to the

limited arrival slots. Specifically, the airline must decide whether to delay the completion

time of a bank and by how much (called 'spreading the bank'), and it must choose a subset

of flights to stay in the bank, separating or canceling the rest.

It is important to realize that since the constrained resource in this scenario is arrival

slots, delays and cancellations are inevitable. This point is made because many model

formulations in the literature treat cancellation and delay as a somewhat optional strategy

to achieve other ends (for instance, delaying flights to avoid canceling too many [21], or

delaying and canceling flights to maintain schedule balance [12]); these formulations do not

include constrained arrival slots.

1.6 Contributions and Outline

This research makes the following two primary contributions:

1) We explain the importance of including bank-induced dependencies in decision sup-

port models, and we present, as an improvement to a previous model, a series of decision

support models that an airline can use to tactically schedule arriving banks of flights into a

hub airport in reduced-capacity situations. We test the models using a real-world scenario,

and discover that one of them finds optimal solutions in real-time.



2) We present an extensive literature review and classification of the decision support

models developed to date for an airline to use during irregular operations.

Chapter 2 contains a literature review that examines other models that have been formu-

lated for irregular operations and classifies these models according to the problem scenario

they are meant to solve. Chapter 3 introduces and critiques Milner's Cancellation/Delay

Model, the evolutionary forefather to the new models of this thesis; these new models are

then presented and explained in Chapter 4. In Chapter 5 we test and compare the new

models using a real-world scenario, and Chapter 6 offers a conclusion and a look at future

research.



Chapter 2

Review and Classification of

Decision Support Models for

Irregular Operations

2.1 Introduction

Irregular operations in aviation is the subject of a fair amount of previous and ongoing

research, and the decision support models that have been developed can be categorized as

those intended for airline use, and those for use by the FAA. In this chapter we first review

those models in the first category-intended for airline use--and then we classify these

models according to the different problem scenarios they are intended to solve. Finally, we

close this chapter by reviewing the few models developed for the FAA that explicitly include

banks of flights and their special dependencies.

2.2 Review of Models for Airline Use

Vasquez-Marquez [19] describes a network-based heuristic algorithm implemented at Amer-

ican Airlines in 1989 that reduces passenger delays due to ground hold programs. Called

the Arrival Slot Allocation System (ASAS), the heuristic takes the flight schedule, the

FAA-assigned times of arrival, and one or more flight cancellations as input and returns a

slot substitution sequence that approximately minimizes overall passenger-delay minutes.

A disadvantage of the approach is that all passengers are considered to be terminating;



that is, the additional delay that passengers incur while waiting for their connections is not

considered. ASAS is an interactive decision support tool, and the human controllers are

encouraged to use any additional knowledge they have to influence the heuristic's solution.

In 1990, Teodorovic and Stojkovic [17] published a model and a heuristic solution algo-

rithm that produces a new daily schedule and aircraft rotation when an airline is faced with

a shortage of aircraft. The model (and algorithm) has a two-part objective function: the

primary objective is to minimize flight cancellations; any ties are broken by choosing the

solution with minimum overall passenger delay on the flights not canceled. The usefulness

of the model is called to question by Cao and Kanafani [3], who show that the model has

a trivial optimal solution-the original schedule.

Teodorovic and Stojkovic [18] have extended their earlier work by accounting for ad-

ditional operational constraints (crew requirements receive the greatest emphasis). Es-

sentially, after any change to an airline's operational schedule, they produce entirely new

aircraft and crew rotations for the affected fleet type. Since this is a difficult problem,

they use a heuristic approach that in some cases produces a worse solution than the naive

approach of canceling the sequence of flights directly affected by the disturbance [18]. The

first step of their algorithm is finding a new crew rotation for the flight schedule according to

the same two-part objective function as in their previous work, bearing in mind the appro-

priate crew operating constraints. Presumably, if the schedule disturbance is due to aircraft

problems the existing crew rotation could be used, but they don't mention this. Each crew

rotation is now considered to be a single 'big leg', and the second step is finding an aircraft

rotation over the resulting schedule made up of these 'big legs', again according to the ob-

jective function and bearing in mind the appropriate operating constraints. The final step

is checking the aircraft rotation schedule against maintenance requirements. If there are

no maintenance conflicts the algorithm is finished; otherwise, the human dispatcher must

modify the model inputs (for example, by canceling a flight or changing a flight's departure

time) and then re-run the algorithm. One effect of the 'big leg' approach is that a crew will

be assigned to a single aircraft for their entire rotation; it seems that this restriction could

greatly limit both the number of feasible solutions and the quality of the algorithm solu-

tion. In addition, since the objective function minimizes flight cancellations with no regard

to delay, the new aircraft rotation could produce new departure times involving significant

amounts of delay. Teodorovic and Stojkovic present two heuristic approaches for finding the



new aircraft and crew rotations. The first uses the first-in, first-out principle, where every

arriving aircraft or crew is assigned to the first available departing flight. The second uses

a sequential approach based on dynamic programming. That neither of these approaches

involves any optimization techniques, together with the fact that the overall algorithm is

also sequential accounts for the potentially poor performance mentioned earlier. In the

final analysis, the algorithm can best be described as an automation of the way a human

dispatcher might go about finding a solution somewhat better than the naive approach,

and therefore its usefulness is probably limited to finding feasible solutions to larger-sized

problems.

In 1993, Jarrah et al [12] introduced the paradigm of using minimum-cost network

flow models to find an operable, system-balanced flight schedule when aircraft shortages

disrupt an airline's scheduled network of flights. They present two models, one that uses

flight delay (only) at a single airport to absorb the aircraft shortages and one that uses

flight cancellations (only) across multiple airports to absorb the shortages; both models

allow aircraft swapping between flights and the use of spare aircraft. They use a recursive

cost equation to capture the downline effects of delay, and the equation includes the cost

of missed connections. When discussing the limitations of their work, they acknowledge

the hub-and-spoke system, but conclude that including bank-related dependencies when

determining cancellation and delay costs is too difficult. The delay model was implemented

at United Airlines [16]; the implementation allows human controllers to use their knowledge

and experience to tailor the inputs of the model.

Cao and Kanafani [3, 4] are extending Jarrah et al's work to simultaneously consider both

cancellations and delays, and the trade-off between them, when finding an operable, system-

balanced flight schedule. In essence, they have taken Jarrah et al's delay model's single-

airport representation and extended it to include multiple airports, flight cancellations, and

ferrying of spare aircraft. Their objective function is profit maximization, and they compute

explicit downline delay costs.

Yan and Yang [21] use a time-space network as a framework for simultaneously making

delay, cancellation, and ferrying decisions to recover from a single aircraft shortage. Their

model returns fleet flows, not aircraft routings, but the biggest deficiency is in their objective

function. Their stated primary objective is to minimize the time that the airline's schedule

is perturbed, but in reality they only bound this recovery time. Their method is to allow



the repaired aircraft to be ferried to any airport in the airline's network, guaranteeing

a feasible solution, with the recovery ending time being a function of these ferry times,

among other things. Inside the resulting time bound, their model now finds the fleet flow

that maximizes operating profit, their secondary objective. The deficiency is the primary

importance given to minimizing the recovery time, for it is easy to see that this strategy

omits from consideration potential low-cost solutions. For instance, it may be the case that

the repaired aircraft can be absorbed back into the schedule at the station it was repaired

at, but at a time shortly past the computed time bound. Unfortunately, the model is not

allowed to consider this solution, and instead may suggest ferrying the aircraft to a distant

location, certainly a more expensive solution.

Clarke [5, 6] is developing an ambitious model to assign aircraft to flight sequences when

severe weather disrupts an airline's operations. The objective function of his model mini-

mizes cost, and the model considers such factors as loss of revenue due to spill, arrival slot

constraints, crew availability, airport ground capacity, seating capacity, and maintenance-

related aircraft utilization bounds, although not all as hard constraints. Clarke is also

developing both heuristic and optimal solution methodologies; the results of applying the

methodologies to realistic-sized problems have not yet been reported.

None of the models discussed thus far considers banks and their special dependencies.

While some of the models include the concept of connecting passengers, most of the models

consider all passengers to be terminating at the destination airport. This approach is

particularly dangerous for models whose objective function is the minimization of passenger

delay. Reducing the delay of an inbound flight full of connecting passengers by 15 minutes is

a hollow improvement if the outbound flights those passengers are connecting to are delayed

even longer.

One of the first decision support models to consider banks and their special dependencies

is found in a 1994 MIT term paper by Mette [14]. He developed a sequential heuristic

algorithm for scheduling the flights of an outbound bank when the inbound bank experienced

delays. The heuristic, which minimizes cost, considers the trade-off between the costs of

delaying outbound flights to allow connections from the inbound bank and the costs of

missed passenger connections if the outbound flights are not delayed. While the heuristic

does include the availability of spare aircraft, it does not take into account the possibility

of flight cancellations in either the inbound or outbound banks. Another shortcoming is



the heuristic's naive use of the First-Idle-First-Used principle when assigning aircraft from

the inbound bank to flights of the outbound bank; the assumption is made that an aircraft

can be assigned to an arbitrary flight simultaneously and at zero cost. Finally, as befits a

term paper, the heuristic is not particularly elegant and it was not executed on examples

of realistic size.

Milner [15] took an extensive look at how the airlines might both participate in and

respond to the allocation of arrival slots in a partially-decentralized ATFM environment.

To increase airline participation, he proposed a market-based approach to allocation-

an auction of arrival slots, administered by the FAA. To determine airline response, he

formulated a number of models, intended for various users and uses, that account for the

bank structure of flights scheduled into hub airports. For his Cancellation/Delay Model

with Connection Information-discussed in the next chapter and improved on in Chapter

4-he devised a heuristic solution technique based on dynamic programming. His work is

the basis for a large majority of the research described in this thesis.

2.3 Classification of Models for Airline Use

Table 2.2, found at the end of this chapter, gives a classification of the irregular operations

decision support models intended for airline use developed to date. For each model we

give the author and year of publication, the classification of the model according to the

problem scenario the model is intended to solve, the constrained resources of the problem

scenario that prevent the schedule of flights from being executed as planned, the solution

strategy used to solve the model, the objective function of the model (primary objectives are

denoted by (1), secondary objectives by (2)), an indication of whether the model considers

banks of flights and their dependencies, and an indication of whether the model has, to our

knowledge, been used operationally by an airline.

The first category of models reschedules flights when a resource shortage occurs. Sched-

ule reduction is not considered; in other words, all flights are scheduled. It should be noted

that there are many similar models intended to be used by the FAA that could be modified

for airline use. The second category of models does include flight cancellations in the mod-

els' decision-making process, allowing schedule reduction. Like the rescheduling models, the

scope of the reduction models developed so far has been limited to flights at a single airport;



the effects of solutions on the airline's network of flights is not directly considered, but can

be indirectly considered through the input costs of the models. Since improvements in the

reduction process have the greatest pay-off at airports with a large number of operations,

these reduction models have been a natural fit to consider bank operations at hub airports.

Although the two models presently in this category both assume a partially-decentralized

ATFM environment, a reduction model could be formulated to operate in the present envi-

ronment. The third category of models addresses schedule recovery in the face of aircraft

and/or crew shortages. Since the goal of these models is an operable, system-balanced

network of flights, their scope is the entire network of flights. Although the shortage is

typically absorbed into the present schedule via flight cancellations and/or delays, it should

be noted that schedule reduction is by no means an inherent part of the solutions these

models return. Ideally, the aircraft shortage can be absorbed by utilizing the slack time

built into the operating plan of the airline.

Are the recovery models a generalization of the reduction models? There does not

appear to be a uniform answer. It does seem that arrival slot constraints could, in theory,

be added to some of the recovery models, but only in the form of side constraints, which will

affect the performance of the minimum-cost network flow models. Also, it is not obvious

how to include such concepts as banks, bank spread, and flight separation in the existing

recovery models. Instead, in their current form the reduction and recovery models can be

applied sequentially to determine an overall solution. A reduction model will assign banks

of flights to limited arrival slots, and due to flight cancellations and delays, its solution will

result in aircraft shortages at the destination airport and aircraft surpluses at the originating

airports. Using these shortages and surpluses and the reduction model's flight schedule as

input, a recovery model can then produce an operable schedule for all remaining flights.

The reduction model can assist in the recovery step by including the costs of recovery in its

input costs. For example, flights from an airport that has very little activity may have high

cancellation costs, to reflect the fact that recovering a surplus aircraft from that airport

may be difficult. Of course, keep in mind that in those situations in which the airline has

no control over the reduction step, for instance when an aircraft becomes unavailable due

to mechanical problems, the recovery model can be executed directly.

Unfortunately, applying the reduction and recovery models sequentially is not ideal. This

gives rise to the final category in our classification: models that solve schedule reduction



and recovery simultaneously. To our knowledge, Clarke's is the first attempt to solve the

problem in this way.

2.4 Review of Models for FAA Use

Models that assist the FAA in improving air traffic flow management, most frequently by

suggesting improved ground-holding programs, are for the most part beyond the scope of

this thesis. The objective of those models is generally to assign every flight to an arrival slot,

minimizing delay in some way. Rarely are flight cancellations an option or bank-induced

dependencies considered. There are a couple exceptions, which we review in this section.

Hoffman and Ball [11] present and compare four model formulations, each having an

alternative way of adding banking constraints to the Single-Airport Ground Holding Prob-

lem. Since the output of their models is a ground-holding program, flight cancellations

are not an option; that is, all flights must be assigned to an arrival slot. Their approach

to banks is to enforce a fixed-length time window for the arrival of bank flights-called

the bank width-to prevent bank spread. Unfortunately, explicitly enforcing a bank width

prevents the model from considering more general solutions, of which one may be optimal.

For example, consider the scenario described in Table 2.1, in which the bank width is set

to three time periods. Now, due to the bank width requirement, the fifteen bank flights are

forced to arrive only during time periods two through four, which has the following undesir-

able results: first, the three arrival slots during time period one are left unused, needlessly

wasting three scarce resources. Second, even though there are 18 arrival slots and 18 flights,

the three independent flights will be unnecessarily delayed to time period five or later as

it is unlikely that any of those flights can be moved up to arrive in time period one, three

time periods earlier than scheduled. Third, at least three of the bank flights (for example,

the three that could have arrived during time period one) are unnecessarily delayed at their

origin airport. While it is true that the inbound bank cannot be completed until time period

four in either case, given the presence of terminating passengers, the shuffling of connecting

passengers and their baggage, and the importance of on-time dependability statistics, it

seems preferable for flights to arrive at the hub as early as possible and wait there for the

inbound bank to complete. Finally, we note that if the capacity in time periods two through

four is reduced any further, the models will find no feasible solutions.



Time Period Capacity Scheduled Activity

1 3 Five arriving bank flights
2 5 Five arriving bank flights
3 5 Five arriving bank flights
4 5 Three arriving independent flights

Table 2.1: A Schedule with Bank Width of Three Time Periods

In their paper on the air traffic flow management problem with enroute capacities,

Bertsimas and Stock [2] discuss how their model can be extended to account for banks of

flights (the extension has apparently not been implemented). Their approach is to minimize

the time between the arrival of the first flight and the last flight of the inbound bank.

Although this approach is slightly different from that used by Hoffman and Ball, it suffers

from the same shortcomings: arrival slots may be needlessly wasted, and both bank flights

and independent flights may be unnecessarily delayed. However, their approach does not

suffer from the problem of finding no feasible solutions, as the bank is allowed to spread

out, if needed. Finally, although they do not mention it, when adding the minimization of

bank spread to the objective function they will probably need to introduce a bank spread

cost to maintain compatibility with the current objective of cost minimization.

Time Period Capacity Scheduled Activity



Author and Classification Constrained Solution Strategy Objective Function Banks? Imple-
Year Resources mented?

Teodorovic et ux Recovery Aircraft Heuristic Algorithm Min cancellations (1) No No

1990 Min passenger delay (2)

Teodorovic et ux Recovery Aircraft, Crew Heuristic Algorithm Min cancellations (1) No No

1995 Min passenger delay (2)
Jarrah et al Recovery Aircraft Network-based Minl cost No Yes

1993 Optimization

Cao and Kanafani Recovery Aircraft Integer Programming Max profit No No

1996 Approximation

Yan and Yang Recovery Aircraft (single) Network-based Heuristic Min time of recovery (1) No No

1996 and Optimization Max profit (2)

Clarke Reduction Arrival slots, Not yet reported M in cost No No

? and Recovery Aircraft

Table 2.1: A Classification of Irregular Operations Decision Support Models for Airline Use



Chapter 3

Milner's Cancellation/Delay

Model with Connection

Information

3.1 Introduction

In 1995, Milner [15] presented his Cancellation/Delay Model with Connection Information.

(Although the name suggests it, Milner's model does not include any connection information

and will hereafter be referred to as the Cancellation/Delay Model.) Milner's model does

represent a significant advance over prior work, as it explicitly includes the bank-induced

dependencies of hub operations. Unfortunately, Milner's model contains rather severe er-

rors and other shortcomings; fortunately, these errors and shortcoming are correctable, as

will be seen in the models presented in the next chapter. This chapter describes the Can-

cellation/Delay Model, and discusses the opportunities for improvement associated with

it.

3.2 Model Description

The Cancellation/Delay Model's input and decision variables are shown in Figure 3-1, and

the model formulation is given in Figure 3-2 (see pages 109-113 of [15]). The input variables

are mostly straightforward. Note that every flight belongs to a bank (i.e., there are no

independent flights). Rescheduling a canceled flight is an indirect method of separating the



Input Variables

F a set of flights, each having a scheduled arrival time
B a set of banks, each having a scheduled completion time equal to the

scheduled arrival time of the latest flight in the bank
T a set of discrete time periods (each 15 minutes in length)
mt the number of arrival slots allocated to the airline in time period t
Wbt the cost of spreading bank b to complete at time period t
cfo the cost of canceling flight f
dst the benefit of rescheduling the canceled flight f at time t

Decision Variables

Zbt 1 if bank b is assigned to be completed at or before time t; 0 otherwise
Yft 1 if flight f is assigned to arrive at or before time t; 0 otherwise
Yfo 1 if flight f is canceled; 0 otherwise

y~t 1 if canceled flight f is rescheduled to arrive at or before time t; 0 otherwise

Figure 3-1: The Cancellation/Delay Model's Input and Decision Variables

flight from its bank; of course, the rescheduling benefit should decrease over time. Similarly,

we expect the bank spread cost to increase over time. Since severe weather may completely

shut down a runway, we allow the number of arrival slots in a given time period to be

greater than or equal to zero. Three of the four decision variables have the so-called 'step

function' behavior (enforced in the model's constraints). That is, when they become 1 at

some time period t, they stay 1 through all successive time periods.

The objective function minimizes the costs of bank spread and flight cancellation; a

benefit is credited if a canceled flight is rescheduled for a later time. Constraint 1 ensures

that all banks are eventually completed. Constraint 2 ensures that a bank is not completed

until all its flights have either arrived or, in conjunction with Constraint 3, have been

canceled. Constraint 3 prevents banks from overlapping; that is, a flight in a given bank

cannot arrive until all preceding banks have been completed. Constraint 4 prevents a flight

from being rescheduled (a positive action, since a benefit occurs) unless the flight has been

canceled. Constraint 5 is the set of arrival slot capacity constraints. Constraints 6 through

8 enforce the step-function behavior of three of the decision variables. Constraint 9 enforces

integrality of all decision variables.

The model also implicitly constrains flights from arriving before their scheduled arrival

times and banks from being completed before their scheduled completion times. This is



Minimize w bt(Zbt - Zbt-1) + cf0oYf - -" d' (U t - Yt- 1)
bt f ftb t f f t

subject to

ZbT = 1 V b (1)

Zbt • Yft V f E b,V b,t (2)

Yft Zbt + YfO VY b' < b, V t, V f E b, V b (3)

y t - Yfo V f, t (4)

Z((yft - Yft-1) + (y't - y•t-i)) < me Vt (5)
f

Yft > Yft-1 V f, t (6)

Y St Yft-I V f, t (7)
Zbt > zbt- 1 V b, t (8)

zbt, Yft, Yft Yfo E {0,1} (9)

Figure 3-2: The Cancellation/Delay Model

enforced by not defining the yft's and ySt's for time periods before flight f's scheduled

arrival time and the Zbt'S for time periods before bank b's scheduled completion time.

3.3 Errors in the Model

The formulation of the Cancellation/Delay Model shown in Figure 3-2 contains two errors,

one that causes the model to incorrectly have no feasible solutions in certain instances,

and one that causes the model to produce output that in almost all instances must be

post-processed to be useful.

The first error occurs in Constraints 2 and 3. Notice that, according to Constraint 2, for

a bank to be completed every flight in that bank must be assigned to an arrival slot, even

if that flight is canceled. Proof that this is possible is seen in Constraint 3, which allows a

canceled flight to be assigned to an arbitrary arrival slot. The result is that canceled flights

are unnecessarily consuming a scarce resource-arrival slots-and when the total number

of flights exceeds the total number of arrival slots (over all time periods), the model can

find no feasible solution (incorrectly so, since the cancellation of all flights should always be

a feasible solution).

This error can be corrected by changing Constraints 2 and 3 as shown in Figure 3-3.



Zbt < Yft + Yf V f b,V b, t (2)

Yft < Zbt V b' < b, V t, V f E b, Vb (3)

Figure 3-3: The Corrected Cancellation/Delay Model

Now, as seen in Constraint 2, a bank is completed when all its flights have either arrived

or been canceled. Furthermore, there is no reason for yfo to appear in Constraint 3, and

it has been modified accordingly. Now, when the total number of flights exceeds the total

number of arrival slots (over all time periods), some flights are canceled and some assigned

to the available arrival slots.

The second error of the Cancellation/Delay Model is that flights are allowed to 'slip',

capacity permitting, inside the time span of their bank. A simple example will elucidate

this point. For simplicity, let us assume that each time period has infinite capacity. Let us

further assume that a bank has three flights, scheduled to arrive one each at time periods

1, 2, and 3, and thus the bank is scheduled to be completed at time period 3. A solution

in which the flights arrive at their scheduled arrival times has the same objective function

value as a solution in which all three flights 'slip' to arrive at time period 3, the bank's

scheduled completion time. (Note that the bank itself is not spread in either case, nor are

any flights canceled; in fact, both solutions have an objective function value of zero.) Due

to this slipping behavior the model cannot be used operationally without undergoing some

type of post-processing, since its solution includes (possibly large) amounts of unnecessary

flight delay. This error can be corrected by including flight delay costs in the objective

function.

3.4 Shortcomings and Other Suggestions

The Cancellation/Delay Model has a handful of other shortcomings that are not severe

enough to be labeled errors but which are important enough to be addressed by newer

models (and indeed are addressed by the models described in the next chapter). Specifically,

newer models should:

* be more general, by being able to accommodate schedules having both flights that can-

not be separated from their bank and independent flights. (The Cancellation/Delay



Model probably can accommodate independent flights, but only through the construc-

tion of 'one-flight banks'. However, this technique requires artificial bank information

and is inefficient, since the artificial bank unnecessarily expands the number of decision

variables and constraints.)

* be more realistic, by incorporating flight delay costs-surely a cost of interest to the

airlines-in their objective functions. (And as just discussed, including flight delay

costs will correct one of the two errors in the Cancellation/Delay Model.)

* be more intuitive and easier to understand. For instance, the Cancellation/Delay

Model's unusual 'cancellation-rescheduling' method, which is intended to model flight

separation, requires flights to incur their cancellation cost prior to receiving a reward

for being rescheduled and adds complexity to understanding the model.

* refrain from enforcing administrative policies through 'soft' constraints (i.e., con-

straints that do not reflect any physical laws) when those policies can be enforced

through appropriate costs in the objective function. For example, Constraint 3 in

the Cancellation/Delay Model prevents banks from overlapping; in Milner's words,

"this models the goal of airlines to keep banks from spreading so that passengers may

transfer quickly." However, bank spread is quite different from bank overlap (after all,

if a preceding bank is spread an arbitrary amount, bank overlap is avoided by simply

delaying the start of the succeeding bank), and it seems that if low bank spread is

desirable, this can be reflected in high bank spread costs.

We conclude that while Milner understood the importance of explicitly considering bank-

induced dependencies when solving the schedule reduction phase of irregular operations, his

models contain numerous opportunities for improvement.



Chapter 4

Some New Bank Scheduling

Models

4.1 Introduction

We present three new bank scheduling models in this chapter; all three models solve the

problem scenario described in Section 1.5. The first model is the result of applying the op-

portunities for improvement outlined in the previous chapter to Milner's Cancellation/Delay

Model. The second model is the result of replacing the step-function variables of the first

model. The third model takes advantage of the fact that the cancellation decision variables

turn out to be unnecessary and is thus the result of removing those decision variables from

the second model. After presenting the models we fully explain the meaning of the input

cost variables that are so important to both the solution and the solution run-time of the

models. We then describe a suite of small test cases that validate the behavior of the models.

We conclude the chapter by describing how the models were implemented and explaining

an implementation technique that turns out to be crucial to obtaining model solutions in

real-time.

4.2 Improving Milner's Cancellation/Delay Model

The model presented in Figures 4-1 and 4-2 is the result of improving Milner's Cancella-

tion/Delay Model by correcting the two errors and rectifying the four shortcomings identified

in the previous chapter.



Input Variables

F a set of flights, each having a scheduled arrival time af
IF the subset of independent flights (all other flights belong to a bank)

the subset of flights that cannot be separated from their bank
B a set of banks, each having a scheduled completion time cb equal to the

scheduled arrival time of the latest flight in the bank
T a set of discrete time periods (each 15 minutes in length)
mt the number of arrival slots allocated to the airline in time period t
dbt the cost of spreading bank b to complete at time period t
dft the delay cost of flight f arriving at time period t
cf the cost of canceling flight f
sf the cost of separating flight f from its bank

Decision Variables

Zbt 1 if bank b is assigned to be completed at or before time t; 0 otherwise
Yft 1 if flight f is assigned to arrive at or before time t; 0 otherwise
Xf 1 if flight f is canceled; 0 otherwise
wf 1 if flight f is separated from its bank; 0 otherwise

Figure 4-1: The First Model's Input and Decision Variables

The input variables have been expanded. First, the set of flights now includes a subset of

independent flights, or flights that are not part of a bank. These might be flights from origins

whose demand to the hub is large enough to fill an aircraft without connecting passengers, or

flights that have connecting passengers but also have travel times, restrictions at the origin

airport, or other scheduling problems that prevent the flight from being a formal part of

the bank. In either case, since these independent flights are also competing for the scarce

number of arrival slots, it is important that the model include them. Second, the set of

flights also includes a subset of flights that belong to a bank that cannot be separated from

their bank. These might be a small number (four or five) of large-capacity flights in each

bank that historically have carried and exchanged such a volume of connecting passengers

that the bank has no meaningful definition without them. Since these flights cannot be

separated, unless they are canceled (a necessary option for feasibility in complete shutdown

situations) the bank must be spread, if necessary, to accommodate their arrival. We point

out that this subset can always be empty if no flights have these characteristics. Third,

we have added flight delay costs and an explicit flight separation cost, which allows us to

remove the rescheduling benefit. The full meaning of all four cost variables are discussed in
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Figure 4-2: The First Model
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Section 4.5.

Flight separation is now included as a decision variable. Note that the notation for

a handful of the input and decision variables has been changed to be, we believe, more

intuitive.

The objective function minimizes the total cost of changes to scheduled operations by

minimizing the sum of the costs of spreading a bank, delaying a flight, canceling a flight, and

separating a flight. Constraint 1 ensures that all banks are eventually completed. Constraint

2 ensures that a bank is not completed until all its flights have either arrived, been canceled,

or been separated. Alternatively, this constraint ensures that all flights belonging to a bank

either arrive or are canceled or separated. Constraint 3 ensures that all flights that are

separated from their bank eventually arrive (our definition of separation implies eventual

arrival; of course, flights that are canceled are in some sense separated from their bank as

well). Since so far we have only considered flights belonging to a bank, Constraint 4 ensures

that all independent flights are either flown or canceled. Constraints 5A and 5B represent

the set of arrival slot capacity constraints. Constraints 6 and 7 enforce the step-function

behavior of two of the decision variables. Constraint 8 enforces the inability to separate

those flights so designated. Constraint 9 enforces integrality of all decision variables.

We also implicitly constrain flights from arriving before their scheduled arrival times

and banks from being completed before their scheduled completion times. This is enforced

by not defining the yft's for time periods before flight f's scheduled arrival time and the

Zbt's for time periods before bank b's scheduled completion time. If it turns out we want

flights to possibly arrive or banks to possibly complete earlier than scheduled, it is a simple

matter to define these decision variables for the appropriate time periods.

The output of the model is the optimal-cost bank and flight schedule. All flights will

be either flown or canceled. If a flight originally in a bank is flown, it will either remain in

its bank or be separated. Each flown flight is assigned an actual arrival time; if this time is

later than its scheduled arrival time, the flight has been delayed. Each bank is assigned an

actual completion time equal to the latest actual arrival time of flights that have remained

in the bank; if this completion time is later than its scheduled completion time, the bank

has been spread.



4.3 Replacing the Step-Function Variables

After applying the first model to various test cases and real-world scenarios, and analyzing

the structure of the model itself (i.e., examining the number and type of constraints and

decision variables), it became clear that the step-function behavior of the yft and Zbt decision

variables is very costly to implement. For instance, when applying the first model to the

real-world scenario described in the next chapter (8 banks, 304 flights, and 64 time periods),

Constraints 6 and 7-those that enforce the step-function behavior-account for 51% of the

constraints. So it is clear that if we can remove those constraints without adding additional

ones, the size of the model will be significantly reduced.

Are the step-function variables necessary? An examination of the first model reveals

that they are not. Are the step-function variables desirable? Milner does not indicate why

he defined the decision variables of his Cancellation/Delay Model this way, but we sus-

pect that he was influenced by Bertsimas and Stock [2]. Bertsimas and Stock discovered

their model had numerous constraints of the form Et yft = 1. After introducing the step-

function behavior, these constraints can be rewritten as YfT = 1; then, the constraints and

an equal number of decision variables can be removed from the formulation, as YfT = 1 can

be handled as known parameters of the model. However, our ability in the present case

to take advantage of this simplification is limited. While Constraint 1, ZbT = 1, does have

the required form and can indeed be treated as a parameter, these constraints account for

a very small percentage (less than 0.05% in the real-world scenario) of the total number

of constraints. The overwhelming majority of constraints deal with flights and we do not

have any constraints of the form YfT = 1, since due to the possibility of cancellation we

are not certain, unlike Bertsimas and Stock, whether any given flight will eventually arrive.

(Incidentally, Bertsimas and Stock also state that the step-function variables of their model

define connectivity constraints that are facets of the convex hull of solutions, a situation

that they believe is responsible for an LP relaxation solution that is almost always inte-

gral. However, anecdotal evidence has suggested that a new model with the step-function

variables replaced outperforms their original model.)

In any case, it seems worthwhile to compare the performance of a model with the step-

function variables replaced to that of the first model. The second model, shown in Figures 4-

3 and 4-4, is equivalent to the first model with the step-function variables replaced. The



Decision Variables

Zbt 1 if bank b is assigned to be completed at time t; 0 otherwise
yft 1 if flight f is assigned to arrive at time t; 0 otherwise
xf 1 if flight f is canceled; 0 otherwise
wf 1 if flight f is separated from its bank; 0 otherwise

Figure 4-3: The Second Model's Decision Variables
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Figure 4-4: The Second Model

objective function and the constraints of the second model have precisely the same meaning

as those of the first model.

4.4 Removing the Cancellation Decision Variables

A further simplification can be made when one realizes that the cancellation decision vari-

ables are not explicitly needed. Instead, a flight is canceled if it does not arrive during

any time period; mathematically, xf = 1 - Et Yft. The third model, shown in Figures 4-

5 and 4-6, is the result of this new approach and some algebraic substitution. This third

model prompts us to think differently about flight scheduling. Whereas before our paradigm



Decision Variables

1 if bank b is assigned to be completed at time t; 0 otherwise
1 if flight f is assigned to arrive at time t; 0 otherwise
1 if flight f is separated from its bank; 0 otherwise

Figure 4-5: The Third Model's Decision Variables
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Figure 4-6: The Third Model

was that "all flights will arrive as scheduled, subject to delay or cancellation due to arrival

capacity," now our paradigm is that "all flights will be canceled, but we try to reduce this

number by scheduling flights, subject to arrival capacity, to arrive as close to their scheduled

arrival times as possible." Note that the problem scenario has not changed at all, but the

way the model is formulated has changed our view of the scenario's solution methodology.

The new objective function is the result of the algebraic substitution. It is still the

minimization of the sum of the same costs as before, but now the cancellation cost of each

flight represents a fixed cost always present; if we schedule a flight, a credit equal to its

cancellation cost is received. Note that the fixed cancellation costs could be removed from

the objective function, but we keep them in to make the objective function value meaningful.

Zbt

Yft
Wf



Constraint 1 still ensures that all banks are eventually completed. Constraint 2 is needed

to ensure that the implicit cancellation decision variables (1 - Et Yft) remain binary; it

essentially replaces zf E {0, 1}. Without this constraint, due to the cancellation cost credit

in the objective function, the model will schedule the same flight multiple times to receive

multiple credits. Constraint 3 is the result of algebraic substitution. It says that if a flight

in a bank is scheduled to arrive after its bank has been completed, that flight must be

separated from its bank. Constraints 4, 5 and 6 are the same as before.

Note that Constraints 3 and 4 of the second model have disappeared. Constraint 3, which

said that a separated flight must eventually arrive, is now captured in the new Constraint

3 of the third model, which reverses the rule and says that any flight scheduled to arrive

outside the bank must be separated. Constraint 4 has been reduced to a tautology, as the

algebraic substitution produced 1 = 1.

4.5 Explaining the Cost Variables

The models in this chapter have four mutually-exclusive input cost variables: bank spread

costs, flight cancellation costs, flight delay costs, and flight separation costs. Bank spread

costs represent the costs incurred when an inbound bank is late in being completed. When

this happens, the 25 to 50 flights in the corresponding outbound bank must now be delayed

to wait both for connecting passengers from the inbound bank and possibly for aircraft

from the inbound bank assigned to these flights. Bank spread costs can be avoided by

separating the delayed inbound flights from their bank. The cost of separation is that

connecting passengers on the separated inbound flight will not make their connections, as

the outbound bank will now not be delayed for them. The models in this chapter capture

the trade-off between the cost of flight separation and of bank spread.

Any flight that is not flown incurs a flight cancellation cost. Any flight that arrives

after its scheduled arrival time incurs a flight delay cost. It is important to understand the

distinction between flight delay and flight separation costs. Delay costs are independent

from separation costs, since passengers on a flight that is delayed but not separated will

make their connections to the outbound bank, as the completion time of the inbound bank

will be delayed, if necessary to include the flight (recall that if the inbound bank is spread,

the start of the outbound bank is delayed accordingly). Any flight that is separated is by



2
A
r
r
iv1
a
1 L III

1 2 3 4 5 6 7 8 9

Time Period

Figure 4-7: Scenario Used For Behavioral Validation

definition also delayed, and will incur each of the two costs.

4.6 Validation Through Behavioral Analysis

Before applying the models of this chapter to real-world scenarios, we wish to satisfy to

ourselves that the models behave as expected when applied to some small test cases having

obvious solutions. In this section we describe a suite of six test cases, and report that all

three models behave as expected when applied to the suite.

The scenario that produced the test cases is described in Figures 4-7 and 4-8. It involves

nine time periods, eleven flights and three banks each having three flights. Two of the flights

are independent and two cannot be separated from their bank. The test cases are generated

by varying arrival capacities and costs; unless otherwise stated, all costs are greater than

zero.

CASE 1

Every time period was given ample capacity. As expected, the models returned a sched-

ule having zero costs, all banks completing on time, and all flights arriving on time.

CASE 2

No capacity was given at all. As expected, all three models returned a schedule having

all flights canceled and a cost equal to the sum of the cancellation costs of all flights.

CASE 3

Capacity for eleven flights was given to time period nine, and both bank spread and

flight delay costs were set to zero. As expected, all three models returned a schedule having

no cancellations, zero cost, and all flight arrival times and bank completion times delayed

_j_



Flight Number

1 1 1
2 2 1
2 3 1
3 4
4 5* 2
4 6 2
5 7
5 8 2
6 9* 3
7 10 3
8 11 3

* inseparable flights

Figure 4-8: Specific Flight Arrival Times

until time period nine.

CASE 4

Capacity for eleven flights was given to time period nine, and both flight cancellation

and bank spread costs were set to zero. As expected, all three models returned a schedule

having zero costs and all flights canceled.

CASE 5

Capacity for eleven flights was given to time period nine, with costs set as follows: high

bank spread costs, zero flight delay costs, and higher flight cancellation costs than flight sep-

aration costs. As expected, all three models returned a schedule having independent flights

delayed until time period nine, separable flights separated from their bank and delayed to

arrive in time period nine, and inseparable flights canceled.

CASE 6

Capacity for eleven flights was given to time period nine, with costs set as follows: high

bank spread costs, zero flight delay costs, and higher flight separation costs than flight

cancellation costs. As expected, all three models returned a schedule having independent

flights delayed until time period nine, and all bank flights canceled.

Arrival Time Bank Number



4.7 Implementing the Models

The three models described in this chapter were solved using CPLEX Version 4.0 on a Sun

SPARCstation 20. A C program was used to generate the inputs to CPLEX, to call the

CPLEX Mixed Integer Solver, and to print out the results. This section gives some insight

into how the models were implemented.

One implementation technique we used that reduces the size of the models is to remove

from the solution process those decision variables having a constant value. For example,

constraint (1) of the first model is ZbT = 1, V b, which says that all banks must eventually be

completed. Since the value of this set of decision variables is already known, the ZbT'S can

be removed from the objective function and any zbT's in the constraints can be replaced by

the value 1. This allows constraint (1) to disappear. (Note that when we report the final

objective function value, we account for the ZbT'S to keep the value meaningful.) Similarly,

all three models have the constraint wf = 0, V f E (, which enforces the inability to separate

those flights so designated. This constraint is implemented by not defining the appropriate

wf's, which in effect gives them the value 0. The wf's are also not defined for all independent

flights, since separation is not a possible decision for those flights. Finally, recall that the

yft's are not defined for time periods before flight f's scheduled arrival time, and the Zbt'S

are not defined for time periods before bank b's scheduled completion time.

But the most important implementation technique is our ability to relax the integrality

constraint for a significantly-sized group of decision variables. Specifically, in each of the

three implementations we relaxed the yft decision variables from binary to continuous. (We

did discover that it is crucial to performance to use the CPLEX bounding mechanism to

bound the continuous variables between 0 and 1.) The yft's make up the large majority of

the decision variables, and for the full scenario this relaxation applies to over 90% of the

decision variables. We found this relaxation to produce a tremendous improvement in the

models' solution run-times. Some quantitative examples of the improvement due to this

relaxation are shown in the next chapter.

Of course, we are able to make this relaxation only because we are confident that the

yft's will be either 0 or 1 without being constrained to those values. There are three

requirements that ensure that this will likely happen: first, flight delay costs must strictly

increase as a function of time (which mirrors reality); second, the arrival slot capacities of



each time period must be integer (which also mirrors reality); and finally, the other decision

variables must continue to be constrained to binary. When these requirements are satisfied,

the models have no incentive to assign fractional values to the yft's. However, since we can

construct cases in which a solution having fractional values has an equal objective function

value as a solution having only integer values, we explicitly check all solutions for fractional

results; to date, none have been observed.



Chapter 5

Computational Results Using A

Real-World Scenario

5.1 Introduction

In this chapter we use a real-world scenario to both compare the three models to each other

and to test their limits. First we describe the real-world scenario and how we constructed

our test cases from it. After a short section describing the size of the models when solving

the test cases, we move into comparisons and testing and we give the results of four different

arrival slot capacity levels. We conclude by giving some quantified benefits of the integrality

relaxation implementation technique.

5.2 A Real-World Scenario

We chose US Airways' flight schedule at Pittsburgh International Airport for our real-world

scenario. While there are larger hub airports (for example, American at Dallas/Fort Worth

and Delta at Atlanta Hartsfield), US Airways' operations at Pittsburgh International in-

volve some of the largest banks in the country [1]. We obtained data for both US Airways'

scheduled operations and actual operations for the month of August 1996 (Consolidated

Operations and Delay Analysis System (CODAS) data, through the Airline Service Quality

Performance (ASQP) program). After examining the data we decided to focus on Wednes-

day, August 7 and Thursday, August 8. US Airways' schedule is identical on both days,

consisting of 306 inbound flights (and 306 outbound flights). The schedule contains two
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Figure 5-1: Scheduled Operations

Bank Flights Start

pm 5 pm 7 pm 9 pm

for August 7 and 8, 1996

End
End

7:05 am
8:23 am
10:37 am
1:00 pm
2:55 pm
4:26 pm
6:49 pm
8:15 pm

7:45 am
9:00 am
11:15 am
1:45 pm
3:29 pm
5:05 pm
7:36 pm
8:50 pm

Table 5.1: Inbound Banks

outliers that we did not include in our scenario: the first flight of the day, which arrives at

5:33 am, 62 minutes earlier than the second flight, and the last flight of the day, which ar-

rives at 11:08 pm, 110 minutes later than the penultimate flight. It did not seem worthwhile

to extend the timeline from 15 hours to 18 hours simply to include those two flights.

Figure 5-1 shows the number of scheduled arrivals per fifteen-minute time period, with

the scheduled departures shown in the background. The definition of the banks is remark-

able, and it is obvious that US Airways has eight inbound/outbound banks scheduled.

Tables 5.1 and 5.2 show how we broke the schedule into banks; the 304 inbound flights

consist of 291 bank flights and 13 independent flights. The nearly-uniform time gap of
thirty minutes between the last arrival of the inbound bank and the first departure of the
outbound bank was not our doing, the schedule actually works that way.

We chose August 7 and 8 for our scenario because of the significant difference in actual
operations on the two days. August 7 was sunny and dry, while August 8 had afternoon
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8:15 am
9:30 am
11:45 am
2:15 pm
3:55 pm
5:30 pm
8:00 pm
9:20 pm

8:35 am
10:15 am
12:30 pm
2:55 pm
4:25 pm
6:05 pm
8:30 pm
9:55 pm

Table 5.2: Outbound Banks

0 Inbound flights
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Figure 5-2: Actual Operations for August 7, 1996
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Figure 5-3: Actual Operations for August 8, 1996

thunderstorms and 1.28 inches of rain [10]. Figure 5-2 shows the actual operations for

August 7. Only one of the 304 arrival flights was canceled. The banks are still well-defined,

although not as precise as in Figure 5-1. This flattening of the banks is inevitable, as US

Airways routinely schedules more flights to arrive in a fifteen-minute time period than is

physically feasible. For example, on August 7 there was one actual instance of 17 arrivals

in a fifteen-minute period, but for the most part 14 to 16 arrivals per fifteen-minute period

is the maximum observed. But because the schedule includes instances of 18, 20, and 22

arrival flights per fifteen-minute period, flattening must occur.

Figure 5-3 shows the actual operations for August 8. It is easy to see when the thunder-

storms arrived. Fifty-two of the 304 arrival flights were canceled; of the 52 cancellations,

four occurred before noon, for reasons presumably not related to the weather.

Our scenario thus consists of eight inbound banks, each having a scheduled completion

time, and 304 flights, 13 of which are independent, each having a scheduled arrival time.

The scheduled arrivals start at 6:35 am and end at 9:20 pm. To allow for delays, the timeline

of our model will consist of 64 fifteen-minute time periods, starting at 6:35 am and ending

at 10:35 pm. For each bank, we arbitrarily designate approximately 15% of the flights to

be inseparable.

Since we wish to see how the performance of our models is affected by the size of the flight

schedule, we construct a series of partial schedules from our real-world scenario. Table 5.3

shows the characteristics of each partial schedule. Note that each partial schedule includes

one additional bank and its corresponding flights, and is cumulative of all the schedules

before it. Schedule8 is the full scenario.

I ,,

M



# of Banks # of Flights* # of Time Periods

Schedulel 1 19 10
Schedule2 2 57 15
Schedule3 3 102 24
Schedule4 4 142 34
Schedule5 5 174 41
Schedule6 6 219 48
Schedule7 7 259 58
Schedule8 8 304 64

*includes those independent flights scheduled to
arrive before the last bank's completion time

Table 5.3: The Partial Schedules

We still must assign values to the four cost variables. Since the relative values of the

cost variables will affect the character of the output (for example, high flight cancellation

costs and high bank spread costs will induce an output having many flight separations), we

construct three cost structures. Having multiple cost structures allows us to test whether

each one has a different best-performing model, or whether a single model performs best

regardless of the cost structure.

The first cost structure, labeled Costl, is our intuitive attempt to mirror reality. Recall

that all the model requires is relative, not absolute, cost values, so we arbitrarily choose

flight delay costs and go from there. Specifically, we let flight delay costs range from

$8 to $12 per time period of delay (costs in a range are chosen randomly from a uniform

distribution over that range, rounded to the nearest whole dollar). A flight delayed by three

hours might as well be canceled, so we set flight cancellation costs to be twelve times flight

delay costs, or ranging from $96 to $144. The aircraft, crew, and connecting passengers of a

separated flight may need to wait two hours for the next outbound bank before continuing,

so we set flight separation costs to be eight times flight delay costs, or ranging from $64 to

$96. Finally, since each time period of inbound bank spread will cause all the flights in the

corresponding outbound bank to be delayed by one time period, we set bank spread costs

to be the summation of the resulting delay of the outbound flights (the delay costs for each

outbound flight range from $8 to $12 per time period of delay). Although we have used

a linear function for flight delay costs and bank spread costs, our models can handle any

general cost function.

Name



Test Case I Model 1 I Model 2 { Model 3

169 variables (76.9%) 170 variables (76.5%) 151 variables (86.1%)
Schedulel 249 constraints 135 constraints 120 constraints

899 entries (2.1%) 1019 entries (4.4%) 701 entries (3.8%)
603 variables (80.3%) 605 variables (80.0%) 548 variables (88.3%)

Schedule2 929 constraints 491 constraints 444 constraints
3466 entries (0.62%) 4472 entries (1.5%) 3225 entries (1.3%)
1534 variables (85.4%) 1537 variables (85.2%) 1435 variables (91.3%)

Schedule3 2547 constraints 1307 constraints 1223 constraints
9660 entries (0.25%) 16119 entries (0.80%) 12743 entries (0.73%)
2943 variables (88.7%) 2947 variables (88.6%) 2805 variables (93.0%)

Schedule4 5125 constraints 2592 constraints 2474 constraints
19600 entries (0.13%) 41422 entries (0.54%) 34629 entries (0.50%)
4259 variables (90.0%) 4264 variables (89.9%) 4090 variables (93.8%)

Schedule5 7545 constraints 3788 constraints 3644 constraints
28956 entries (0.09%) 69661 entries (0.43%) 59627 entries (0.40%)
5957 variables (90.9%) 5963 variables (90.8%) 5744 variables (94.3%)

Schedule6 10594 constraints 5265 constraints 5087 constraints
40755 entries (0.06%) 108958 entries (0.35%) 94722 entries (0.32%)
8595 variables (92.1%) 8602 variables (92.0%) 8343 variables (94.8%)

Schedule7 15501 constraints 7650 constraints 7438 constraints
59791 entries (0.04%) 185579 entries (0.28%) 164326 entries (0.26%)
10659 variables (92.4%) 10667 variables (92.3%) 10363 variables (95.0%)

Schedule8 19271 constraints 9483 constraints 9236 constraints
74409 entries (0.04%) 247083 entries (0.24%) 220270 entries (0.23%)

'Entries' refers to the number of non-zero
entries in the CPLEX input matrix

Table 5.4: Size of the Models

The second cost structure, labeled Cost2, discourages flight cancellations by increasing

cancellation costs by a factor of five, to range between $480 and $720. The third cost

structure, labeled Cost3, encourages flights to remain in their bank by both increasing

flight separation costs by a factor of two, to range between $128 and $192, and by lowering

bank spread costs by a factor of two, by decreasing outbound flight delay costs to range

between $4 and $6 per time period of delay.

We now have eight test schedules and three cost structures, giving us 24 test cases to

apply to different arrival capacity scenarios. Before giving the computational results of

applying different capacity scenarios, we discuss how the size of the models varied for the

different test schedules.

5.3 Size of the Models

·



Model 1 Model 2 Model 3

Costl Cost2 Cost3 Costl Cost2 Cost3 Cost1 Cost2 Cost3
Schedulel 0 0 0 0 0 0 0 0 0
Schedule2 2 2 2 0 0 0 0 0 0
Schedule3 10 14 9 0 0 0 0 1 0
Schedule4 30 53 24 1 1 1 1 2 1
Schedule5 55 114 53 2 2 2 2 4 2
Schedule6 99 n/a 90 5 5 5 3 8 3
Schedule7 187 n/a 177 9 9 9 5 13 5
Schedule8 n/a n/a n/a 16 16 16 6 19 6

For entries marked 'n/a', CPLEX
terminated unnaturally

Table 5.5: Results of Test Suite 1, in CPU seconds

Table 5.4 shows the size of the models for the eight test schedules. As expected, due to the

replacement of the step-function variables, Model 2 has far fewer constraints and far more

non-zero matrix entries than Model 1; the number of decision variables is virtually identical,

as is the percentage of those variables (shown next to the number of variables) that are being

relaxed from binary to continuous (essentially all the yft's). Comparing Model 2 to Model

3, we see that the effect of removing the cancellation decision variables is to decrease the

number of decision variables, constraints, and non-zero matrix entries. Furthermore, the

percentage of decision variables that are relaxed from binary to continuous has increased.

Finally, Table 5.4 also shows the density of each model instantiation, given after the

number of non-zero entries as the percentage of non-zero entries in the CPLEX input matrix

(density % = entries/ (variables * constraints)). Here the effect of including step-function

variables is quite noticeable. For Schedule8, Models 2 and 3 are six times as dense as Model

1.

5.4 Results of Test Suite 1: Ample Arrival Capacity

For our first test suite we allocated 25 arrival slots to each time period. Essentially the

models are simply verifying that the schedule can be executed as planned. The cost of the

solution in all cases was zero. As shown in Table 5.5, we see that Models 2 and 3 are much

faster than Model 1, that for the second cost structure Model 2 slightly outperforms Model

3, and that each model took longer to solve the second cost structure. Recall that the



Model 1 _ Model 2 Model 3
Cost 1 Cost2 Cost3 Cost1 Cost2 Cost3 Cost1 Cost2 Cost3

Schedulel 0 0 0 0 0 0 0 0 0
Schedule2 3 3 2 0 0 0 0 0 0
Schedule3 3600+ 3600+ 14 3600+ 3600+ 2 1 2 1
Schedule4 3600+ 3600+ 43 3600+ 3600+ 8 2 4 2
Schedule5 3600+ 3600+ 72 3600+ 3600+ 15 3 8 3
Schedule6 3600+ 3600+ 105 3600+ 3600+ 15 5 12 4
Schedule7 3600+ 3600+ n/a 3600+ 3600+ 59 6 20 7
Schedule8 3600+ 3600+ n/a 3600+ 3600+ 80 8 27 8

For entries marked 'n/a', CPLEX
terminated unnaturally

Table 5.6: Results of Test Suite 2, in CPU seconds

second cost structure discourages flight cancellations. Our speculation is that this forces

the models to spend more time considering the trade-off between flight separation and bank

spread.

5.5 Results of Test Suite 2: Normal Arrival Capacity

For the second test suite we allocated 15 arrival slots to each time period, representing

regular operations on a sunny, dry day. Table 5.6 gives the computational results. As

expected, solution times are slower than those in the first test suite. Now that the capacity

constraints are active, Model 3 is showing its superiority. In fully half the cases, Models

1 and 2 took over an hour to solve (we used CPLEX's time limit function to halt their

execution at the one hour point), while Model 3 took 27 seconds at most. It is not clear

why Model 2, after outperforming Model 3 in the first test suite for the second cost structure

did so poorly on the second cost structure here. Nor is it clear why Models 1 and 2 were

able to solve the third cost structure in real-time, but not the first or second. What is clear

is the marked effect that different cost structures can have on a model's solution time.

The specific objective function value of each solution does not add any insight, but

we do point out that since the three models are equivalent, for a given schedule/cost pair

the three models all have the same objective function value. But if the three models are

equivalent, how can their solution times vary so dramatically? The answer is that while

the models have an equivalent set of integer feasible solutions, their formulations and thus



Model 1 Model 2 Model 3

Costl Cost2 Cost3 Costl Cost2 Cost3 Cost1 Cost2 Cost3

August 8 3600+ 3600+ 3600+ 3600+ 3600+ 98 4 124 4

Table 5.7: Results of Test Suite 3, in CPU seconds

Cost I
Cost2
Cost3

Bank Flight Flight Flight
Spread Delays Cancellations Separations

0 34 53 10
1 51 3 54
0 34 62 0

Table 5.8: Solution Characteristics of the Cost Structures

their linear programming relaxations are very different, which affects the performance of

the branch-and-bound solution methods used by the integer optimization.

Finally, had US Airways' planned schedule been more realistic and limited planned

arrivals to 15 arrivals per time period, we would expect the solution run-times to be similar

to those for the first test suite. The lesson learned here, which is no surprise, is that for

problem scenarios in which the arrival slot capacity constraints will be active due to bad

weather, allowing the planned schedule to also activate the constraints can severely hamper

the models' performance.

5.6 Results of Test Suite 3: August 8, 1996

Our third test suite is based on the actual operations of August 8, 1996. Since the model

will be executed over the period of irregular operations, we start the timeline at 2:50 pm,

the estimated start of the ground hold program, and continue until our typical ending time

of 10:35 pm. Since we assume that all the banks and flights scheduled before 2:50 pm

have arrived (Figure 5-3 indicates that this was the case), our scenario consists of the flight

schedule starting at 2:50 pm. Specifically, it consists of 31 time periods, four banks, and

160 flights. We assume that US Airways' actual arrivals during the ground hold program is

representative of the number and distribution of the arrival slots they were allocated, and

thus the models' arrival slot constraints are set to mirror the actual arrivals. Specifically,

from 2:50 pm until 7:20 pm we allocate a total of 32 arrival slots, an average of less than

two slots per time period. Since the arrival slots mirror the actual landings, the distribution



Model 1 Model 2 Model 3

Cost1 Cost2 Cost3 Cost Cost2 Cost3 Cost1 Cost2 Cost3
Schedulel 0 0 0 0 0 0 0 0 0
Schedule2 3600+ 3600+ 6 3600+ 3600+ 2 2 2 2
Schedule3 3600+ 3600+ 46 3600+ 3600+ 26 19 27 11
Schedule4 3600+ 3600+ 253 3600+ 3600+ 265 129 294 61
Schedule5 3600+ 3600+ 641 3600+ 3600+ 1713 374 1398 136
Schedule6 3600+ 3600+ 3600+ 3600+ 3600+ 3600+ 1315 3600+ 414
Schedule7 3600+ 3600+ 3600+ 3600+ 3600+ 3600+ 3600+ 3600+ 1033
Schedule8 3600+ 3600+ 3600+ 3600+ 3600+ 3600+ 3600+ 3600+ 2685

Table 5.9: Results of Test Suite 4, in CPU seconds

of the slots can be seen in Figure 5-3 between 2:50 pm and 7:20 pm. We assume that the

ground hold program ended at 7:20 pm, and we allocate the normal fifteen arrival slots per

time period from that point onward.

The results of this test suite are given in Table 5.7. With one exception, only Model

3 was able to find an optimal solution in less than one hour. For cost structures one and

three, it only required four seconds, and for cost structure two, 124 seconds. Model 2 was

able to solve the third cost structure in 98 seconds.

We use the solutions of this test suite to examine the different solution characteristics

induced by the cost structures. Table 5.8 shows the number of banks spread, flights delayed,

flights canceled and flights separated for each solution. Using the first cost structure resulted

in 53 of the 160 flights being canceled, whereas US Airways actually canceled 43 of the 160

flights. As expected, the increased cancellation costs of the second cost structure resulted

in a large reduction of cancellations, and thus an increase in the number of flights either

delayed or separated. The increased separation costs of the third cost structure had a

similar expected result. Finally, we note that none of the cost structures induced significant

bank spread.

5.7 Results of Test Suite 4: Restricted Arrival Capacity

Our fourth test suite tests the performance limits of all the models by allocating just 5

arrival slots per time period for the entire day. As shown in Table 5.9, beyond Schedule4

even the real-time performance of Model 3 begins to degrade. While Model 3 performed

well under the 4 1/2 hours of severely reduced capacity found in the August 8 test suite,

we conclude from this example that the real-time performance limit of Model 3 is reached



Test Suite # Model # Schedule # Cost # Relaxed Time Unrelaxed Time

1 1 4 1 30 29
1 1 4 2 53 55
1 1 4 3 24 25
1 2 8 1 16 19
1 2 8 2 16 20
1 2 8 3 16 19
1 3 8 1 6 7
1 3 8 2 19 20
1 3 8 3 6 7

2 1 2 1 3 44
2 1 2 2 3 40
2 1 2 3 2 33
2 2 2 1 0 13
2 2 2 2 0 16
2 2 2 3 0 29
2 3 8 1 8 3600+
2 3 8 2 27 3600+
2 3 8 3 8 162

August 8 3 - 1 4 3600+
August 8 3 - 2 124 3600+
August 8 3 - 3 4 3600+

Table 5.10: Effects of Integrality Relaxation; Times are in CPU seconds

when severe reduction of capacity extends to eight hours or more.

5.8 Effects of Integrality Relaxation

Finally, we wish to quantify the benefits of relaxing the Yft decision variables from binary

to bounded continuous. Table 5.10 shows the comparison of the relaxed solution times to

the unrelaxed solution times for a sample of the test cases described in this chapter. For the

first test suite involving ample arrival capacity, we discern no substantial benefit from using

the relaxed version. For the second test suite involving normal arrival capacity, we begin to

see some differences; in particular, Model 3's solution run-times increase dramatically for

Schedule8 under the first and second cost structures. Similarly, for the August 8 test suite,

the unrelaxed version of Model 3 is unable to duplicate--or even come close to-the results

of the relaxed version. We conclude that relaxing the yft decision variables is a significant

factor in being able to obtain solutions in real-time.



Chapter 6

Conclusion and Future Research

6.1 Conclusion

We presented in this thesis a series of tactical optimization models that an airline can use to

assign banks of flights to scarce arrival slots in a partially-decentralized ATFM environment.

We used a real-world scenario involving over 300 flights and 16 hours of operations to show

that models that account for the bank-induced dependencies of flights into a hub airport

can find optimal solutions in real-time. Our first model is an improvement to Milner's

Cancellation/Delay Model, our second model is the result of replacing the costly step-

function variables, and our third model is the result of removing the unnecessary cancellation

decision variables. Even though all three models are equivalent in integer feasible solutions,

the third model has the fewest constraints and decision variables and has a structure that

results in very quick solution times. Crucial to the performance of all three models is our

ability to relax the integrality constraints of over 90% of the decision variables. Additionally,

we saw that by varying the relative values assigned to the cost input variables, both the

character of and the time needed to obtain the solutions changed significantly.

Since the solutions of the models in this thesis reduce a flight schedule through flight

delays, cancellations and separations when constraints are placed on arrival capacity, we

classify them as schedule reduction models. Our models can handle any degree of arrival

capacity scarcity, which is important since "the successes and failures of ATFM programs

are most visible-and most critical to system performance--when the demand-capacity im-

balance is most unfavorable" [13]. However, while our models provide local solutions to

quickly-developing situations by assigning flights to limited arrival slots, the solutions do

53



not result in an operable, system-balanced schedule of flights. This type of solution is best

obtained by using schedule recovery models, which modify an airline's flight schedule and

aircraft rotation when unforeseen perturbations to the established schedule arise. Unfortu-

nately, it does not appear that these recovery models can be easily extended to account for

either bank-induced dependencies or limitations on arrival slots. Instead, the overall prob-

lem can be solved by decomposing it into separate reduction and recovery steps, facilitated

by including recovery costs in the cost variables of the schedule reduction models.

Even though a partially-decentralized ATFM environment in which the airlines have

greater decision-making power is not in place yet, we believe our models make a contri-

bution today by modeling the airlines behavior in and quantifying the benefits of the new

environment. Indeed, [13] says that "modeling airline behavior and quantifying the benefits

of alternative ATFM concepts are the most challenging aspects of evaluating decentralized

ATFM." Once the environment these models are formulated under is in place, we hope that

the models can be developed into operational decision support tools to assist the airlines in

the resolution of irregularities.

6.2 Future Research

There are many ways the models presented in this thesis can be improved, for example by

increasing the realism they capture and by expanding the scope of the problem scenarios

they solve. We describe some of these opportunities for improvement in this section.

6.2.1 Dealing with Uncertainty

Our models make the implicit assumption that the arrival slot allocations made by the

FAA are deterministic but we know that this is not true in reality since the allocations

depend on uncertain weather forecasts. Dealing with uncertainty in ATFM is the topic

of much previous research; as a result, there are many starting points for considering how

to incorporate uncertainty into our models. One interesting approach involves the use of

scenario analysis [9].

An interesting problem arises when an airline makes an operational decision based on a

given allocation and then that allocation is subsequently reduced. The schedule reduction

model should be re-optimized given the new allocation, but some of the affected flights



might already be airborne. Fortunately, our models can account for this through the cost

variables; specifically, we will assign a greater delay cost and a much greater cancellation

cost to airborne flights than to flights still on the ground. Any delay the model assigns to

an airborne flight will obviously be taken in the air, while a cancellation decision for that

flight will mean either returning to the origin or diverting to another destination.

6.2.2 Disaggregating the Banking Operations

While our models assume that each bank flight has a fixed separation cost, in reality the

separation cost of a flight is not known until the disposition of all the other flights in the

bank is known. For example, consider two through flights, broken into inbound flight Al and

outbound flight A2 and inbound flight B1 and outbound flight B2. When a large number

of passengers on flight Al are connecting to flight B2, if flight B1 is canceled or separated

we expect the separation cost of flight Al to be reduced, since it now does not matter if

those passengers connecting from flight Al to flight B2 arrive in the bank (assuming that

no spare aircraft are available to fly flight B2 as scheduled). A similar argument can be

made for bank spread costs: as more and more inbound flights involving aircraft assigned to

outbound flights are canceled and separated, we expect the bank spread costs to be reduced

as there are fewer outbound flights that will be delayed due to the bank spread.

Essentially, our current models approximate these dynamic costs through the use of ag-

gregate bank spread costs and fixed flight separation costs. An opportunity for improvement

is to explicitly account for the changing costs and dependencies just mentioned. A prelim-

inary model considering these factors has been formulated, and since some non-linearities

in the objective function are introduced, the next step is defining new decision variables to

remove the non-linearities.

6.2.3 Estimating the Input Cost Variables

As we saw in this thesis, the input costs drive both the solution characteristics and the

solution run-times of the models. Unfortunately, many of these costs are unknown, even to

the airlines; however, as we argued in the first chapter, we do not believe that this justifies

a departure from a cost minimization objective function. Instead, we propose that greater

effort should be made in estimating the costs. Since most irregular operations decision

support models make the shaky assumption that these costs are available, such an effort



should have great benefit to the aviation operations research community. Indeed, it seems

futile to continue to devote a great deal of effort to developing new and improved models

without recognizing that such models are of little value without reasonably accurate cost

estimates.

Schedule reduction models that only address problem scenarios of limited scope are

especially dependent on accurate costs. For example, since the reduction models in this

thesis do not explicitly account for some important operating constraints, we would like to

implicitly represent them in the input costs. For instance, we would like the cancellation

cost of a flight to be a function of the difficulty of recovering the stranded aircraft back

into the schedule (among other things) and the delay cost of a flight to be a function of

the amount of available downline slack time it its aircraft's rotation (among other things).

Thus, an important topic of future research is devising a set of cost-estimation equations

that are functions of known data such as passenger totals, individual passenger connections,

critical departure times, etc.

6.2.4 Expanding the Problem Scenario

The models of this thesis schedule the arriving flights at a hub airport, a problem scenario

of fairly limited scope. While we believe that solving this scenario in real-time is a con-

tribution and that many of the operating factors missing from the problem scenario can

be implicitly represented in the cost variables (recall the previous section), extending the

models to expand the scope of the problem scenarios considered is a significant opportunity

for improvement. For instance, it should be straightforward to expand the models to also

schedule the outbound banks at the hub airport, especially if done in conjunction with

disaggregating the banking operations. The new models can consider aircraft rotations,

crew rotations, passenger connections and the availability of spare aircraft at the hub, as

appropriate, and will of course explicitly include the effects of inbound cancellations and

delays on outbound operations.
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