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Abstract

Upper and lower bounds to the probability of error for convolutional codes are pre-
sented. The lower bound is derived for an optimum decoder with convolutional codes
in which each of the V channel symbols generated per encoder shift may have a different

"constraint length," This lower bound is of the form P(E) > exp _K*V[EL(R)—OI(K*)]'
where K*V is the sum of the V generator lengths and OI(K*) is a function that

approaches zero as K* approaches infinity, An ensemble average upper bound is
derived for multiple generator length convolutional codes with optimum decoding, This

upper bound may be written as P(E) < exp —K*V[EU(R)—OZ(K*)], provided that the length

of the second shortest generator is proportional to K*. For R = Eo(l), EL(R) = EU(R)
on symmetric channels,

The Fano sequential decoding algorithm is also investigated. An upper bound to the
th

a’ moment of decoder computation is obtained for arbitrary decoder bias B and a <1.
An upper bound on error probability with sequential decoding is derived for both sys-
tematic and nonsystematic convolutional codes. This error bound involves the exact
value of the decoder bias B. It is shown that there is a trade-off between sequential
decoder computation and error probability as the bias B is varied. It is also shown that
for many values of B, sequential decoding of systematic convolutional codes gives an
exponentially larger error probability than sequential decoding of nonsystematic convo-

lutional codes when both codes are designed with exponentially equal optimum decoder
error probabilities.
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I. INTRODUCTION

Most modern statistical work in communication theory stems from Shannon's1 proof
of the coding theorem, in 1948. Communication is essentially the process of transmitting
information from one point to another through a noisy channel. A simple example of a
noisy channel is the discrete memoryless channel (DMC). If symbbl i, one of I possible
symbols, is inserted into the DMC, one of J symbols, for example, symbol j, is
received. The relationship between the symbols i and j is known only through a set
of probabilities P(j/i). This set of 1J transition probabilities completely characterizes
the channel noise. The DMC is a somewhat idealized model of a noisy channel with
digital input and with quantized or digital output.

In designing communication systems, a specific signal is assigned to each of the
M messages which the system might be called upon to transmit. If the transmission
is to be over a DMC, these signals are sequences of channel input symbols. The selec-
tion rule that assigns a transmitted signal to each possible message is called the code.
The coding theorem demonstrates the existance of codes that achieve arbitrarily low
probability of erroneous communication if and only if the information transmission

rate R is less than some maximum rate C, which is called the channel capacity.

Perhaps the key words in the coding theorem are demonstrates and existence.
Shannon demonstrated the coding theorem by showing that at least one code in a very
large collection or ensemble of codes can achieve arbitrarily low probability of errone-
ous communication if the information rate R is less than the channel capacity C.
Unfortunately, the coding theorem does not specify which codes give a low probability
of error. The question of which codes give good performance has been addressed by
many authors in the last twenty years. In 1950, R. W, Hamrning2 presented the first
error-correcting code. This Hamming code was the forerunner of many block codes
presented by numerous authors. These block codes generate a block of N channel
symbols when given a block of K information symbols. Much research has been
done on block codes and the results have been presented in detail by Peterson,3
Ber‘lekamp,4 and Gallager.5 In many applications, the information symbols to be
transmitted arrive at the encoder serially, rather than in large blocks. A type of code
that takes advantage of the serial nature of incoming data is the convolutional code first
presented by Elias.6 Convolutional codes have not been studied as much as block codes.
This report presents several significant results about convolutional codes.

Convolutional codes can be most easily explained by describing the encoder. More-
over, this description will enable us to define a set of convolutional code parameters
which will be used throughout this report. A convolutional encoder is shown schemat-
ically in Fig. 1. Information symbols from a g-letter alphabet are shifted serially into
a (K+1)-stage shift register. We have taken the length of the shift register, often called
the constraint length of the code, to be K + 1 instead of K; this notational change sim-
plifies the later algebra. In order to make each information symbol a member of the
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Fig. 1. Convolutional encoder.

finite field GF(q), q is restricted to be an integer power of a prime. After each infor-
mation register shift, V channel symbols (phase 1 through phase V) are generated in
parallel. These parallel channel symbols are commutated, added to a known but ran-
domly selected sequence r and transmitted through a discrete memoryless channel,
This random sequence can be omitted in most circumstances, but it simplifies the anal-
ysis. Each of the V channel symbols is a weighted sum of the K + 1 information
symbols stored in the shift register plus the appropriate member of the sequence r. All
weights and elements of r are selected from GF(q) and the mathematical operations

in the encoder are performed in GF(q). After the V channel symbols are generated,
the information register is shifted to bring in the next information symbol, and another
V channel symbols are generated. Let tV d be the phase v channel symbol generated

£l

immediately after the dth information symbol id enters the encoder. Then

K+1
tv,d= Wv,bid+l—b+rv,d l<svsy, (1)
b=1
where Yo b is the weight attached to the information symbol in the bl':h shift-register

stage in determining the phase v channel symbol, and ry. d is the appropriate member
of r.

One of the most difficult problems in coding theory is to find a decoder that is simple
enough to be implemented for codes that are complex enough to give a low probability
of error. Massey7 has presented a simple threshold decoding algorithm which provides
a good decoder for some simple but useful convolutional codes. Unfortunately, thresh-
old decoding cannot be applied to the more powerful convolutional codes that are neces-
sary to achieve good performance on channels with high noise levels. Despite its
limitations, threshold decoding is used in some current communication systems because
it provides an extremely efficient method of decoding some simple convolutional codes
that are suitable for many less noisy channels. Sequential decoding, invented by



Wozencra\ft,8 is a more powerful decoding algorithm for convolutional codes. Sequential
decoding is applicable to all convolutional codes and works at data rates much nearer
channel capacity than threshold decoding. These advantages of sequential decoding are
bought at the cost of a more complicated decoding algorithm.

An important subclass of convolutional codes is the family of convolutional codes
in which one of the transmitted symbols is the information symbol that most recently
entered the encoder plus the appropriate member of the random sequence r (we assume
that r is known at the decoder). Such codes are called systematic convolutional codes.
Let us assume that the phase 1 channel symbol is the systematic channel symbol. Thus

for a systematic convolutional code
t,a% gt T, e (2)

and tz, d through tV, d the parity symbols, are generated according to Eq. 1' Systematic
convolutional codes are of both theoretical and practical interest for several reasons.
First, systematic convolutional codes are free from "noiseless error propagation” as
demonstrated by Massey and Sain; however, many nonsystematic convolutional codes
exhibit this type of error propagation. In noiseless error propagation, two or more
information sequences differing in infinitely many information symbols produce chan-
nel sequences differing in only finitely many channel symbols. Such nearly identical
channel sequences are impossible for the systematic convolutional code because the
phase 1 channel symbol must differ whenever corresponding information symbols dif-
fer, Second, most easily implemented decoding algorithms for convolutional codes work
well only if past decoding decisions have been correct. In the event of a decoder failure,
some reasonable estimate of the transmitted information may be made simply by using
the received phase 1 channel symbols of a systematic convolutional code. Third, in
large communication systems where both inexpensive terminals and expensive highly
reliable terminals are required, a systematic convolutional code may be used through-
out. In such a system, inexpensive terminals would look at just the received system-
atic channel symbols, while expensive terminals would look at the whole convolutional
code with a good decoder. Moreover, such a system with a systematic convolutional
code would be compatible with equipment that was built before the error-correcting code
was added.

The class of systematic convolutional codes can be generalized into the class of
multiple generator length convolutional codes. In the systematic code, w 1,1° 1 and

through w all equal zero., These zero weights indicate that the contents of

w
1,2 1, K+1
the second through (K+l),';h stages of the encoder shift register cannot affect the sys-
tematic channel symbol. Suppose now that the communication system designer wishes
2,1 through W) K+l so that only the first k2 +1

of these weights may be nonzero. We shall denote this as the case in which the second

to restrict the K + 1 encoder weights w

generator G2 has length k2 + 1. Likewise the communication system designer might
wish to restrict the length of GV to be kV + 1. The integer kV may assume any value



between 0 and K. If kV were chosen greater than K, the phase v channel symbol would
depend on information symbols that had passed out of the encoder shift register and out
of the encoder's memory. Although the kv may be selected arbitrarily, there is no loss
of generality if we number the generators such that k1 < 1«12 s ... S kV. Multiple gen-
erator length convolutional codes were first suggested by K. L. Jordan? of Lincoln
Laboratory, M.I.T. Jordan's suggested use for the multiple generator length convolu-
tional code consists in using a systematic code (kl =0) with a short phase 2 generator, and
a long phase 3 generator. With this code, the receiver could use the received system-
atic symbols to make some reasonable estimate of the transmitted data after a decoder
failure.Once the receiver had made reasonable guesses about k2 consecutive informa-
tion symbols, it could also use the phase 2 received symbols in decoding. Finally, after
the decoder had hypothesized k3 consecutive information symbols, it could also use
received phase 3 channel symbols. Such a restarting procedure can obviously be
extended to V generators. Additional uses of the multiple generator length convolutional
code also suggest themselves. If the code were designed with a systematic generator, a
short generator and two long generators (for example, k3 =k4= 2k2), simple inexpensive
terminals could just look at the phase 1 and phase 2 symbols. Such a hybrid scheme is
useful only if the G2 generator permits some simple form of decoding, for example,
threshold decoding.

The V channel symbols produced per shift of the encoder register depend only upon
the encoder weights, the additive sequence r, and the K + 1 information digits that most
recently entered the encoder. The initial state of the encoder shift register is assumed
to be known at the decoder and is generally the all-zero state. This dependence upon a
series of past events suggests a treelike structure with q new alternatives (branches)
arising at each shift of the encoder register. Figure 2 illustrates the beginning portion
of the tree associated with some convolutional code. The symbols on each branch of the
tree in Fig. 2 are the channel symbols that would be transmitted if the encoder were
encoding the message represented by that particular path through the tree. The convolu-
tional code used to generate the tree in Fig. 2 is a systematic convolutional code

WithV=3,k2=k3=3,q=2,£=0,w = w = 0and w

3,3 2,2 2,1 W2, 37 Wy 4=
w3’ 1= w3’ 5 = W3’4 =1, In Fig. 2, an upward branch represents the event of a binary
zero entering the encoder.

We shall examine both optimum and Fano-type sequential decoding of multiple
generator length convolutional codes. In Section II, we derive a lower bound to

error probability for any convolutional code. This bound is of the form
* *
P(E) = exp -K V[EL(R)—O:,’(K ):} s (3)
where

*
KV=kl+k2+... +kV,
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Fig. 2, Beginning portion of a tree.

and 03(K*) is a function of K* which goes to zero as K* approaches infinity. This
lower bound is valid for all decoding algorithms and all convolutional codes. The lower
bound error exponent EL(R) is obtained by a geometric operation on a lower bound error
exponent for block codes eb(r). This geometric procedure may be used to obtain a
valid EL(R) from any eb(r). Section III considers upper bounds to error probability
for multiple generator length convolutional codes with optimum decoding. These opti-
mum decoding upper bounds on error probability indicate the capability of the convolu-
tional codes themselves, Such optimum decoder results are useful as a reference
standard when analyzing practical but suboptimum decoders. These upper bounds are
derived by upper-bounding the average probability of error for a large collection or
ensemble of codes. The probability of error for some code in the ensemble is less than
or equal to the ensemble average probability of error. Thus, these ensemble average
upper bounds on error probability are also upper bounds to the probability of error for
some code in the ensemble. For analytical reasons discussed in Section III, we have
used the ensemble of codes in which the encoder weights may be changed after each
encoder shift. For equal generator length convolutional codes these ensemble average

upper bounds on error probability take the form

P(E) < const exp —KVEU(R). (4)

In Section III we find that the error bound in inequality (4) is still valid for multiple gen-
E 3

erator length convolutional codes if KV is replaced by the more general term K V (the

sum of the generator lengths), provided that either (i) all kv except k1 equal K or



(ii) if V =3, k?. is "not too short." The words "not too short" in case ii imply an
asymptotic rather than absolute convergence. Finally, in Section IV, we consider using
the Fano10 sequential decoding algorithm for multiple generator length convolutional
codes., We find that sequential decoding has an upper-bound error exponent EUS(R, B)
which is a function of decoder bias B and differs for systematic and equal generator
length convolutional codes. For most values of B, EUS(R, B) is strictly smaller (indi~
cating larger error probability)for systematic convolutional codes than for equal genera-
tor length convolutional codes, even though both codes have identical optimum decoder
error exponents EU(R). The value of EUS(R, B) may be increased by raising the bias B.
Unfortunately, increasing B also increases decoder computation. In Section IV, we ana-~-
lyze this trade-off between error probability and decoder computation in sequential
decoders., Forney's simula’cions'.lz demonstrate these effects. Finally, Section V dis-
cusses the implications of these results and makes suggestions for further research.
A mathematical dilemma arises in discussing optimum decoders for convolutional
codes. The dilemma is that the decoder must make a decision involving some signal
sequence that may never end. This dilemma can be circumvented by requiring that
information digits be encoded in sequences of at most L information symbols. Once
L consecutive information symbols have been shifted into the encoder, K information
zeros are shifted into the encoder before any additional message-dependent information
symbols are allowed to enter the encoder. This terminating sequence of K informa-
tion zeros returns the encoder to its initial state just before the next sequence of
L information symbols begins to enter the encoder. This return to the initial state
makes the encoding of the next sequence of L information symbols appear to be just
like the encoding of those symbols in a fresh encoder with an all-zero initial state.
With periodic resetting, the convolutional encoder may be thought of as a block
encoder that generates a sequence of (L+K)V channel symbols to encode a message
of L information symbols, Analytically, resetting allows a straightforward defini-
tion of optimum decoding, and hence allows us to express the error-correcting
capability of convolutional codes. In practice, resetting allows the receiver to
restart some practical, but suboptimum, decoder that has been confused by a par-
ticularly noisy sequence of received symbols. These suboptimum decoders may be
restarted because each "block" of (L+K)V channel symbols is decoded independently.
Implementing such a resetting procedure decreases the true data rate from its
nominal value of

In (q)
R=—%;

(5)

to R(L/L+K). Normally the value of L is two or three orders of magnitude greater
than K and the small rate loss is ignored.



II. LOWER BOUND ON THE PROBABILITY OF ERROR

Techniques recently developed by Jacobs and Berlekamp,12 Viterbi, 13 and Forney14
may be generalized to lower-bound the probability of error for multiple generator length
convolutional codes. Suppose that L is very large and that the decoder is given the first
L-L" information symbols. The decoder must then correctly decode the last L." infor-
mation symbols if no communication error is to occur. There are many decoding rules
that the decoder, given the first L-L" information symbols, could adopt. Since the first
L-L" information symbols are already known to the decoder, each of these rules for the
assisted decoder produces some estimate of the last L." information symbols. There is
some probability of error for each of these assisted decoder decision rules. The opti-
mum (lowest probability of error) decoding rule for the aided decoder has a probability

of error that we denote as P(EL,,/I Note that P(EL,,/IL_L,,) is not a conditional

).
L_Lll
probability but an average over all sequences of L-L" information symbols. Let P(E)
denote the probability of error for the optimum unaided decoder (the maximum-likelihood

decoder) that is not given the first L-L" information symbols. Then,
P(E) = P(ELn/IL_Ln) (6)

because the decision rule for the optimum unaided decoder was one of the possible deci-
sion rules for the aided decoder, and P(EL,,/IL_L,,) is the minimum probability of error
for all possible aided decoder decision rules. Inequality (6) may be interpreted as a
mathematical statement of an intuitive notion. Namely, the aided decoder can do no
worse than the unaided decoder because the aided decoder can always ignore the infor-
mation symbols it has been given and imitate the unaided decoder.

The channel symbol sequence cannot depend upon any of the last L" information sym-
bols until the first of these last L" information symbols enters the encoder. Since the
channel is memoryless, the aided decoder need only consider those received symbols
that depend on the last L" information symbols. For any given choice of the first L-L"
information symbols, the encoder with resetting defines L"V channel symbols while the
last L" information symbols are entering the encoder. During resynchronization, all
phase v channel symbols must be the same for any message after the first kv informa-
tion zeros in the resynchronizing sequence have entered the encoder. These phase v
channel symbols which must be the same simply reflect the fact that the information
symbols in L" have been shifted so far down the register that they are no longer within
the first kv + 1 stages. For a memoryless channel, these channel symbols which must
be identical for all messages need not be considered at the decoder. Thus, during
resynchronization, the encoder defines K*V = kl + kz + ...+ kV channel symbols which
are truly dependent upon the last LL" information symbols. Hence there is a total of
N = (L"+K*)V channel symbols dependent upon the last L" information symbols. There
are M = qL“ choices for the last L." information symbols. Since the first L-L" informa-

tion symbols are given the aided decoder, the aided decoder is just decoding one of



M possible messages that was encoded in a sequence of N channel symbols. For any
choice of the first L-L" information symbols, the convolutional encoder's assignment of
a sequence of N channel symbols to each possible sequence for the last LL" information
symbols is just the generation of some block code. This block code transmits one of M
messages by a sequence of N channel symbols. The block code produced by the convolu-
tional encoder can have no lower probability of error than the best block code that trans-
mits one of M messages with a sequence of N channel symbols. Using inequality (6), we

have now argued that

P(E) = P(EL,,/IL_L,,) 2 P(E for best code using N symbols (7)
to transmit one of M messages).

Shannon, Gallager, and Berlekamp15 have shown that the probability of error for the
best possible code using N channel symbols to transmit one of M messages over a dis-

crete memoryless channel may be lower-bounded as

P(E for best code using N symbols = exp -N[eb(r)-—o(N)], (8)
to transmit one of M messages),

where o(N) is a function that approaches zero as N approaches infinity, and

ln (M)

N (9)

T =

We shall leave eb(r) temporarily unspecified, in order to show that subsequent manipu-
lations are not dependent upon a specific form of eb(r). Recalling that K~ was defined

such that
s
K V=k1+k2+l‘:3+...+kV
and defining g such that
sk
L" = gK s
we may combine Egs. 7 and 8 to show that
* *
P(E) = exp —N[eb(r)-o(N)] = exp -K V[(g+l)eb(r)-ol(K )}.
3 *
where ol(Kg) is a function of K”< which approaches zero as K approaches infinity,

In (M) g 1ln(q) g
TSN Tg+1l V. T g+l

R,

and R is the nominal data rate of the convolutional code as defined in Eq. 5.

We may write

P(E) > exp -K*VLEg(R)—ol(K*)] (10)

if we define Eg(R) such that



g
E_(R) = (g+1) e (o7 R). (11)
g b \g+l

Up to this point, we have implicitly assumed that g is a multiple of I/K*; however,
in the asymptotic case of large I{>°< the difference between any non-negative value of g
and the nearest multiple of l/K may be represented as a function o (K*) that approaches
zero as K approaches infinity. Thus, Eqgs. 10 and 11 are valid for all non-negative g.
In particular, inequality (10) must hold for that value of g which gives the largest prob-
ability of error; that is, inequality (10} must hold for the value of g that minimizes
Eg(R). Thus, we may lower-bound the probability of error for a multiple generator

length convolutional code as

P(E) = exp -K v[ L(R)—o3(K*)], (12)
where
E_(R)= in [(gH)eb (—f—l- R)]. (13)
g>0 g

1
Forney 4 has developed a geometric method of finding EL(R) from any lower-bound

block code exponent eb(r). Figure 3 shows a typical eb(r) curve. Consider the points RO

Fig. 3. Construction of EL(R).

and Ro on the rate axis. The straight line connecting the point R on the rate axis

g+ 1

g
and e <§+—1 Ro) on the eb(r) curve intersects the E(R) axis at the point (g+1) e (gﬁl R )
Changing the value of g simply moves the point

g+ 1 R along the rate axis between

0 and RO. Thus, L(Ro) is the lowest E(R) intercept of any straight line passing through



the rate axis at RO and touching the curve eb(r). If the eb(r) curve is smooth, EL(RO)
is the E(R) axis intercept of the straight line from RO which is tangent to the eb(r) curve.
Repeating this construction for each possible RO, we obtain the EL(R) curve from the

eb(r) curve. In Fig. 3, this construction has been completed to show EL(R).

10



III. UPPER BOUND ON THE PROBABILITY OF ERROR FOR
MULTIPLE GENERATOR LENGTH CONVOLUTIONAL
CODES WITH OPTIMUM DECODING

A measure of performance for any code is the probability of erroneous communica-
tion with the optimum decoder. Calculating the probability of error for any specific code
is so complicated that it is virtually impossible to find the best code in a set of codes.
This immense problem of detailed code selection may be avoided by finding the average
probability of error for a very large collection or ensemble of codes. This ensemble
of codes contains every possible code that could ever be used for a given design tech-
nique. One ensemble of multiple generator length convolutional codes might be the
collection of all multiple generator length convolutional codes with given kl’ kz, ce kV.
Unfortunately, there are both theoretical and practical problems with this ensemble of
"fixed-generator" convolutional codes. These problems can be avoided by using the
ensemble of convolutional codes with a fixed kl’ “e kV in which Wil < 1 and all
remaining nontrivial encoder weights are reselected after each shift of the information
storage register. Each new weight in the encoder is selected from GF(q), with all
weights being equally probable. This randomly reselected weights ensemble of multiple
generator length convolutional codes is analogous to the ensembles of convolutional
codes used in all "random-coding" upper bounds on the probability of error.

Under the assumption that all messages are equally likely, the optimum decoder for
any code is the maximum-likelihood decoder which operates on the entire received
sequence. For the periodically reset convolutional code, the maximum-likelihood
decoder considers Y the entire sequence of (L+K)V received symbols. Let X =~ denote
the channel sequence that the encoder assigns to the message m. The maximum-
likelihood decoder estimates that message M was transmitted, where M is the value
of m that maximizes the conditional probability P(X/zm). Erroneous communication
results if the decoder selects any message sequence m' that is not identical to the
encoded message sequence mg. There are two different probabilities of error which
may be of interest. First, one may be interested in the probability that some particu-
lar information symbol was decoded incorrectly. Second, one might be interested in
the probability that any of the L information symbols was incorrectly decoded.

The structure of the convolutional encoder is such that the transmitted sequences
for two messages must be identical during those time intervals in which the con-
tents of the encoder shift register are identical for the two messages. For example,
let m, be an incorrect message differing from the correct message m, only in the first

information symbol. The corresponding channel sequences gi_m and X must be iden-
1 )

tical after the first information symbol leaves the encoder. Let us consider a multiple

91 v kV' By defi-

nition, only the kV + 1 information symbols that most recently entered the encoder are

generator length convolutional code with generator lengths ki, k

11



involved in the determination of the phase v channel symbol. Thus, the channel

sequences gm and __}_gm must be identical for all but the first k1 + 1 phase 1 channel
0 1
symbols, the first k2 + 1 phase 2 channel symbols, ..., and the first kV + 1 phase V

channel symbols. Thus, §m0 and X . must be identical in all but V thytk, +... +kV=
%
V(14K ) channel symbols. This matter of identical channel symbols for different mes-

sage sequences may be generalized as the concept of diverging and merging sequences.
Two information sequences are merged for a specific phase v channel symbol if the
kv + 1 information symbols most recently entering the encoder are the same for both
messages. If two message sequences are not merged for a specific channel symbol,
they are said to be diverged for that channel symbol. Thus, two information
sequences are merged at a specific channel symbol only if that channel symbol must

be identical for both messages for any code with the same set of kv's.

CHANNEL
SYMBOL
PHASE
1
2
: // iy
INFORMATION  [XIXT [ Ix] T T T IXIxIxIxI T T T T T ITILTITLILITIT]

DIFFERENT?

Fig. 4. Divergence diagram,

The number and location of channel symbols at which a given incorrect message
sequence is diverged from the correct message may be found with the aid of dia-
grams such as that in Fig. 4. The nth division of the box labeled "information differ-
ent?" represents the nth information symbol in the message sequence. An x placed in
a division of the "information different ?" box indicates that the corresponding symbol
of the incorrect message m' differs from its counterpart in the correct message mg.
The column labeled "channel symbol phase" lists the phase of each of the V channel
symbols generated after an encoder shift. Merged channel symbols are represented
by the unshaded regions in Fig. 4, and diverged channel symbols are represented by
the shaded regions. The rule for determining shaded regions in a divergence diagram
is that the area representing a phase v channel symbol is shaded if and only if there
is an x either in the division of the "information different?" box immediately below
that area or in one or more of the kv divisions of the "information different?" box
immediately to the left of that division.

The maximum-likelihood decoder decides that message M was transmitted only

12




if ! is the value of m that maximizes the conditional probability P(X/g(m). Hence a
decoder error can occur only if

PY/X ) ap(g/)_gm > (14)
0

for any m' # mg,. The equality in (14) is used to denote the possibility that a decoder
error will occur if m' and m have equal a posteriori probabilities. Dividing both sides
of inequality (14) by P(S_(/}_{m ) , we find that an error can occur only if

0

P(Y/Xm,)

_— =1 (15)
P(Y/Xmo)
for any m' # m. Since the channel is assumed to be memoryless, each conditional prob-
ability in the likelihood ratio is the product of individual channel symbol transition prob-
abilities. In general each particular m' is merged with m, for some channel
symbols. The transmitted sequences }_imo and g_{m, are identical at these merged chan-
nel symbols. Hence the individual channel symbol transition probabilities P(yi/ Xm'i)
and P(yi/xmoi) are identical for these merged channel symbols. The numerical value
of the likelihood ratio in (15) is unchanged if these common factors are cancelled in the
numerator and denominator. Thus in determining whether a specific m' may be decoded
instead of m,, we need only consider those received channel symbols at which m' is
diverged from m,.
If a diagram such as that in Fig. 4 were drawn for an entire incorrect message m',
there would be L + K encoder shifts represented. In general there would be several,
say h, disjoint shaded regions in the diagram. Each of these disjoint shaded regions
would represent divergence of the incorrect message from the correct message and sub-
sequent remerging with it. We may view each disjoint shaded region as arising out

of some subsequence of m' which is divergent from m, at exactly those channel sym-

0
bols involved in that particular shaded region. Hence any incorrect message sequence
m' may be viewed as a number of divergent information subsequences joined together

by information subsequences identical to the corresponding parts of m Because

the channel is memoryless, the likelihood ratio in inequality (15) is just ghe product

of the likelihood ratios calculated for each of the h divergent information subsequences
inm'. Furthermore, we now show that the incorrect message m' can be decoded only
if the likelihood ratio for each divergent subsequence of m' is greater than or equal to
one. Suppose that the ith (i <h) divergent subsequence of m' has a likelihood ratio
that is less than one. Suppose there is a message m* with the same over-all likeli-

liood ratio as m', except that the likelihood ratio for the ith

divergent subsequence is
* *
replaced by one. Then m has a larger likelihood ratio than m' and m will be decoded

in preference to m'. But the incorrect message that is identical to m' in all but the
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ith divergent subsequence and identical to m in that subsequence is just such an m*.
Thus an incorrect message m' cannot be decoded unless the likelihood ratio for each
divergent subsequence is greater than or equal to one.

Each divergent subsequence of any incorrect message sequence m' (each continu-
ous shaded region of the divergence diagram for m')may be characterized by a number b
such that m' and m, are phase V diverged for exactly b + K + 1 encoder shifts. Since
the phase V generator is the longest generator (kV Zkv_l =, ., kl) and K = kV, the
total length of the divergent region will be b + K + 1 information symbols. In order for
complete remerging to occur after b + K + 1 encoder shifts, the last K information sym-
bols in the divergent subsequence must be identical to the corresponding symbols of mg.
Since each incorrect message has a divergence diagram, we may classify incorrect
message sequences by their divergence-diagram patterns. In particular, we may

enumerate all incorrect messages by enumerating all divergence diagrams,

3.1 BASIC LEMMA

We shall derive a basic lemma upper-bounding the ensemble average probability of
decoding an incorrect information subsequence with a divergence pattern from a certain
family of divergence patterns. This family of divergence patterns is rather hard to
motivate and the reader will have to be patient with a good deal of algebra before the
desired result is reached. Quite a bit of complexity arises out of the need to consider
systematic convolutional codes in which k1 = 0 and W= 1. The family of divergent
information subsequences which we wish to consider is the set of all divergent subse-
quences that are fully merged at the (j—l)th encoder shift, diverge at the jth encoder
shift, remain at least partially diverged for exactly b + K + 1 encoder shifts, and have
the same pattern of diverged phase 2 through phase V channel symbols. Figure 5 shows
several members of this family of divergence diagrams. Let us call this family of
incorrect subsequences Mjpb’ where p is an index indicating the pattern of diverged
phase 2 through phase V channel symbols,

Let ﬁl—p; denote the ensemble average probability of decoding some incorrect
instead of the corresponding subsequence of m

message subsequence in M. . We may

g ipb 0

upper-bound P(Ejpb) by using techniques first developed by Gallager16 for block codes

and later extended by the author17 to systematic convolutional codes. The ensemble of

multiple generator length convolutional codes is the set of all convolutional codes with
2’ A%

reselected after each shift of the encoder shift register. The only encoder weights con-

fixed k,;, k .. k{, in which w, = 1 and all other nontrivial encoder weights are

sidered as trivial are those required to be zero by the kv + 1 length of the phase v gen-
erator. The randomly selected weights are from the finite field GF(q), with all values
being equally probable for each weight subject to reselection.

Since we are dealing with the set of all incorrect messages with a fixed pattern p
of diverged phase 2 through phase V channel symbols, let us examine the possible pat-
terns p. The fixed pattern p of diverged phase 2 through phase V channel symbols
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Fig. 5. Three divergence diagrams with the same
pattern of diverged phase 2 through phase V
channel symbols.

will have several, say D,, runs of diverged phase 2 channel symbols. Each of these
runs of diverged phase 2 channel symbols must be separated by one or more merged
phase 2 channel symbols (but not by any merged phase V channel symbols, since the
pattern must be continuous). A study of the divergence-remerger mechanism and
the requirement that k1 < k.2 < k3 < ,.,. € kv shows that if the phase v channel sym-
bol is merged with mg, then the corresponding phase j channel symbol is also merged
for all j sv. Likewise, if the phase v channel symbol is diverged from m, at any
encoder shift, the corresponding phase j channel symbol is diverged for all j =v. If
the phase 2 channel symbols are merged and a symbol of m' differing from the corre-
sponding symbol of m, were about to enter the encoder, there must be a phase 1 diver-
gence and the phase 2 through phase V channel symbols must also diverge if they are
not already diverged from mg. Moreover, a phase v merger cannot occur until a
phase v - 1 merger occurs. Thus, the "skyline" in the divergence pattern p may slowly
fall off as one moves to the right, but must always rise as high as possible whenever

it rises at all,

An examination of the information symbols in some m" subsequence in M'pb will aid
in the proof of the lemma. As discussed above, let us assume that there are D2 distinct
runs of diverged phase 2 channel symbols. I the desired pattern of diverged phase 2
channel symbols is to occur, the information symbols of m" must satisfy four conditions.
These conditions must hold for each distinct run of diverged phase 2 channel symbols
and are most easily stated if we assume that a run of diverged phase 2 channel symbols
isc + kz + 1 channel symbols long. First, the symbol of m" corresponding to the first
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symbol of this run of diverged phase 2 channel symbols must differ from the corre.
sponding symbol of mg. Second, the information symbols of m" corresponding to the
second through ¢ symbols of this run are arbitrary, except for the restriction that no
consecutive k2 + 1 information symbols be identical to the corresponding symbols of
mg. Third, the information symbol of m" corresponding to the (c+1)th symbol of the
run of diverged phase 2 channel symbols must differ from the corresponding symbol

of mg. Fourth, all subsequent symbols of m" must be identical to the corresponding
symbol of m, until the start of the next run of diverged phase 2 channel symbols., This
latter run of matching information symbols must be at least k2 + 1 symbols long in order
for there to be a phase 2 merger to terminate the run of diverged phase 2 channel sym-
bols, The first condition is necessary if the run of diverged phase 2 channel symbols
is to start at the desired place. The second condition ensures that the run of diverged
phase 2 channel symbols does not end before the desired spot. The third and fourth
conditions are necessary if the run of diverged phase 2 channel symbols is to end at the
right place and if there are to be no phase 2 divergences before the start of the next
run.

What implications do the above conditions on m" have on the sequence of channel
symbols? These implications are best found if we continue to consider the run of
c +k2 +1 diverged phase 2 channel symbols. The third and fourth conditions require that
the phase v channel symbols merge k- k, steps after the end of the run of diverged
phase 2 channel symbols unless another run of diverged phase 2 channel symbols starts
at or before that step. Thus the lengths of the runs of diverged phase 2 channel
symbols and the spacings between these runs completely determine the pattern p for a

fixed set of kv's. The third condition and the random reselection of w through

1,2

Wy ko +1 imply that the k1 phase 1 channel symbols corresponding to the (c+2)th through
i |

(c+1+k1)th symbols of the run are equally likely to be any sequence of k1 g-ary symbols

independent of _)_(m and mg. Furthermore, the fourth condition implies that all phase 1
0 )t

channel symbols after the (c+1-i~k1 h symbol of the run are merged until the start of the

next run of diverged phase 2 channel symbols. Thus, arun of c + k2 + 1 consecutive
diverged phase 2 channel symbols implies at most c + k1 + 1 diverged phase 1 channel
symbols and (from above) a run of ¢ + 1 information symbols in m" which need not
be identical to the corresponding symbols of m,. Because e 1, the c + 1 phase ]
channel symbols corresponding to the first ¢ + 1 symbols of the run are a one-fo-one
function of the ¢ + 1 information symbols that may differ from the corresponding sym-
bols of mg. That is, for each code (given sequence of encoder weights and fixed r}
there is exactly one subsequence of ¢ + 1 phase 1 channel symbols for each sub-
sequence of ¢ + 1 information symbols differing from the corresponding subsequence
of m,.

0

Now let us suppose that the pattern p has Dz distinct runs of diverged phase 2
channel symbols and prz diverged phase 2 channel symbols in all. We may repeat
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the argament above for each of these runs., Thus, the pattern p has Dzk1 phase 1
channel symbols that are selected statistically independently of )_(m and m,. More-
0

over, the pattern p has N - Dzk2 phase 1 channel symbols that constitute a one-

pb2
to-one map of the prz - Dzk2 symbols of m" that may differ from the corresponding
0 pb2 D, (ky—k))
phase 1 channel symbols, which is the maximum number of phase 1 channel sym-

symbols of m As a check we note that we have accounted for N

bols that may be diverged for any m" in Mjpb'

The reselection of encoder weights guarantees that over the ensemble of codes, each
diverged phase 2 through phase V channel symbol is equally likely to be any g-ary

symnbol independent of _)_(m and mg. We may combine the diverged phase 2 through

0
phase V channel symbols with the 1')21:{1 phase 1 channel symbols which are equally

likely to be any q-ary sequence to form Xm X is the set of channel symbols

llr' m"r
which in the ensemble are equally likely to he any g-ary symbol independent of m

and }_im for any m" in M. The subscript r in the name Xm"r indicates that the

b
0 Jp
symbols in Xm“r are randomly selected by the code independently of m and _)_(mo.

Likewise, we may define .Xm as the set of prz - Dzk2 channel symbols which con-

"1

stitutes a one-to-one map of the N - Dzkz information symbols of m" that may

pb2
differ from the corresponding symbnls of the correct message mg. Hence, X

mllr
and Xm"l contain all of the channel symbols at which any m" in Mjpb may be
diverged from m

0 Thus, we need only consider the received channel symbols cor-
responding to Xm "y and Xm"l in determining whether any information subsequence
m" in Mjpb may be decoded instead of the corresponding part of m,. Notational
problems will be simplified if we let Yr denote the part of the received sequence Y
corresponding to the symbols in Xm"r' Similarly, we may define Yl’ Xm , and

r
0
Xm 1
0

We may use the random nature of the ensemble to derive an upper bound on

p( Ej pb/Y erXmO leOrmO

), the ensemble average probability of decoding some

incorrect message subsequence in M]‘pb’ given that m, was encoded as zim and

0

0
that Y was received. The maximum-likelihood decoder can decode an incorrect mes-
sage suhsequence m" in ?V[]. only if the code sequence for m" was selected such

that

ph

P(Y]Yr/XmO IXmOr>

>1, (16)

The structure of the encoder (w1 17 1) is such that the channel sequence selected for
m" is not enitrely independent of the channel sequence for m. Using a union bound to
account for all m" in Mjpb’ it follows that
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( o/ Y1 %m 1%m rmo)S Z ZP(X 1 X e/ Y)Y Xy 1%y o o)
0ol ™o - ol ™y
jpb

(17)

where the rightmost summation is over all Xm " and X for which inequality (16)

m'"r
holds. The rightmost summation (17) is simply the probability that the randomly
selected code assigned an X "IX "y leading to the decoding of m", for the given
Y., Y, X ,» and X . Since the code is selected before encoding and transmission
1 r mol mg,r

begin, the codewords must be independent of the received sequence Y. Thus,

P(X n X/ Y10 X IXmOrmO) = P(Xm“lxm"r/xmolxmormo)'

0

Whenever inequality (16) is satisfied,
<
P( Xm "IXm"r/XmO IXmormO ) P( Xm "le "r/XmO IXmormO )

P(Y,Y /X X)) °

P(Yer/X X )

X

mol m,r

for any s 20. We may now upper-bound the right-hand side of inequality (17) by

<

P Ejpb/YerXm X, M Z Z P xm,,lxm,,r/xm 1 X, My

om0 "eM. . all X g X 0" 70

m jpb m"1m"r

S

P(Y Y /X "IXm"r)

X

/X )

( 01 mor
(18)

One is an equally valid upper bound for any probability; thus, we may upper-bound
P( b/Yl r m le r O) by the minimum of one and the right-hand side of inequal-

ity (18). A frequently used inequality_ (see Gallager5) states that if u and v are

positive numbers,

l-p,p

min (u,v) S u
for all p in the range 0 < p < 1. Using this inequality to upper-bound the minimum

of one and the right-hand side of (18), we find that
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ipb Xm " IXm iy

P(YY/X w1 X w)
1 m7r X (19)

T ]

Ol mor

The condition in the probability on the left-hand side of inequality (19) may be

removed by taking the expectation over the conditioning event. Thus,

<
P(Epr) Z z z P(YIYI_/XmOIXmOrm()) P(XmOleor/mo)
Yer mg

mol mOI‘

X P(m,) Z Z P( X IXm"r/XmO leormO>

nEM.
m jpb

P(YY/X WX )18
X 1" m"r ) (20)

(lr/X

mol mor)

The statistical independence of the channel noise and the message m, guarantees that

P(Yer/Xm IXmOrmo) = P(Y Y /x X r).

0 Mg 0

Moreover, the memoryless channel permits the factoring of P(Y Y /X 1er) as

PY Y /X1 X y) = POY /X ) POY/X

ml mr :

Substituting these two relations in the right-hand side of inequality (20) and setting
s = 1/(14p), we find that

PELDS) ) ) ) ) P (Xeng X e/ o) Plmg) P(¥,/%,, 1)1/(1+p)
Y1 Ye Mo X1 Fr o0 0
P(Yr/Xmor>l/(l+p) E z Z

m"EMpb m"l m"r

1/(1+p) 1/(1+p)
X P (Xm“IXm"r/XmOleormO) P(Yl/Xm'.'l) P(Yr/Xm"r)

(21)
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Several properties of the ensemble of multiple generator length convcluticnal codes
allow additional simplification of the right-hand side of inequality (21), IL.et us denote
the number of diverged phase 2 through phase V channel sytabols in the paticrn p as
Nbp'
K, Nbp
bol sequences Xm01 and XmOI‘ are equally likely to be any sequence of prz Dzk2

and Nbp + ]_)zk1 g-ary symbols, respectively, for any o, Moreover, the random

For a systematic convolutional code with k, = 0 and &ll other kv‘s eqgual to

1
= (b+1+4K) (V-1), The randorm additive sequence r ensures that the channel sym-

sequence r ensures that all X sequences are equally probable for any given X _
- myr mol

and mg. Thus

P(Xmo IXmOr/m0> = Q(Xmol ) Q<Xmor) ’

where Q( ) is the probability assignment in which all sequences occur with equal proba-
bility. The reader should note that the exact numerical value of Q( ) is dependent upon
the length of the sequence of g-ary symbols that is the argument of Q( ). The dis-
cussion above indicates that for any m" in Mjpb the sequence Xm"r is equally likely

to be any sequence of g-ary symbols independent of),(m and mg. Since there are dif-

0
ferent encoder weights used in generating Xm"l and Xm"r
of X ,,. Thus
m"l

P (Xm"le"r/XmoleOrmO) = P(Xm,,r/xm,,lxmolxmormo)

s Xm "y is also independent

x P (xm n /Xmo leOrmO)

er

Q(Xm"r) ( "1/ 1 0 m )

Substituting these equations in the right-hand side of inequality (21) and performing some
algebra, we find that

5@;;,‘<Z z Z Q(x, ) P(Y, /X[nol)l/(l+p)
1

O

1/(1+p)
XZ P(m,) Z QX wy) PIY, /X

"l‘
m() Xm "y
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Xmormo) P(Yl/Xm"l)l/(Hp) : (22)

X Z Z 134 (Xm"l/Xm

01
"M,

m"l

The summations over m" & Mjpb and Xm ny are difficult to perform because of math-
ematical difficulty in expressing the requirements on the m" in Mjpb' The one-to-one
mapping from information subsequences m" in M'pb into channel symbol sequences
Xm“l ensures, however, that for each code in the ensemble there is a unique Xm "
subsequence for any specific m". Hence for any specific code and fixed m",

P(X

m"l/XmolX rmo) is unity for one specific Xm"l and zero for all other possible

Mo
Xm"l'
over sequences Xm"l‘ Because of the one-to-one nature of the mapping from m?" into

X "
m"l
summation more than once. The right-hand side of inequality (22) is not decreased if

Thus, the summation over m" & Mjpb may be viewed as just a summation
subsequences, no possible Xm,,1 subsequence enters the combined m" and Xm"l

this implied summation over Xm"l subsequences is expanded to include all possible
Xm,,1 subsequences instead of just those Xm,,1 required by the code and by the condi-

tionm" € Mjpb‘ Finally, note that

—(N -D_k.)
QX 1wy =4 pb2 2720 or equivalently that

(N -D_k.)
pb2 T272" _
Q(Xm“l) q - 1-

Thus

E T < 1/(1+p)
P(E ;) < YZ Z z Q(Xm01> P(Yl/Xmol> p

y Z Q<Xmor)P(Yr/Xmor>1/(1+p)

x Z QX o) P(¥ /%, )00
X
m

(N, .-D,k.) p
X Z q PPZ 22 Q(Xm..1>P(Yl/xm,.l)l/‘“”}. (23)

Xmm

X and X__,  are different indices of summation in identical summations, and X
m,r m"r mol
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and Xm"l are also different indices for identical summations. Thus

-D_k 1+p
msqpmpbz zz)z z Q(Xml)P(Yl/Xml)l/(l+p)
Yl Xml
1+p
x Y 1) ax)ey/x Vel (24)
Yr er

Since the channel is memoryless, the right-hand side of inequality (24) may be further
simplified. The subsequence er may be any sequence of Nbp + D2k1 gq-ary symbols
with equal probability., Numbering these channel symbols in some way, we may write

Nbp+D2k 1

= T7 QUx__.),

Q Xm i=1 mril

r)
where Q(xmri) is the probability assignment on the ith letter of er. For the memory-
less channel, P(Yr/er) is the product of the individual channel transition probabilities.

Using the same numbering scheme for the symbols of Yr as for the symbols of er,

we have
Nbp+D2k1
P(Yr/er) = YZ; P(yri/xmri)‘
Hence,

/ 1+p
1/(1+p)
z Z QUX ) P(YI_/er)
Y (X
r mr
Nop*Daky
Yoo ) Ay oy T
i=1
y N X
1 Nppr | 1 xNbpr
1+p
Ve h (25)

x Q(eri) P(yri/xmri)

A little thought shows that the order of summation and multiplication may be

interchanged in the right-hand side of Eq. 25. Thus
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l+p

1/(1+p)
2 2 AX, ) P(Yr/Xm y1/(14p
Y

r
r er
N +Dk l+p
7T > ZQ(X RE AV SR AL S (26)
yI‘l

The term in braces on the right-hand side of Eq. 26 is identical for each i. Thus, fol-

lowing Gallage:r"s16 notation,

14+p
1/(1+p) - _
z z Q(er) P(Yr/er) = exp (Nbp-i-Dzkl) E;(p, Q), 27)
Y X
r mr
where
1+p
Eq(p, @ = -In| ) [ ) qui) ae/p/*0) . (28)
1\ 4
A similar argument shows that
1+p
> D@y pyy/x YO e ~(N_p,=D,k,) Eq(p, Q). (29)
1

Equations 27 and 29 may be substituted in the right-hand side of inequality 24 to
show that
_— p(N . _-D,k,)
P(E. .,)sgq pb2 "272 exp ~[N

- { -
b Dty =k 4N ] Eqlp, Q).

pb2
The notational cumbersomeness of this upper bound on P(E.pb) may be decreased if we
remember that prz Dzk2 is the total number of possibly differing information sym-
bols in m" consistent with the pattern p. Moreover, prz - Dz(kz_kl) is the total num-
ber of possibly diverged phase 1 channel symbols consistent with the pattern p.

We may summarize by stating a lemma that we have just proved.
Lemma:

Let M, b be the set of all incorrect messages completely merged with m, at the
(j—l)th encoder shift, diverging at the jth encoder shift, not completely merging until
the (j-l—b+K+l)JCh encoder shift, and having a fixed pattern p of diverged phase 2 through
phase V channel symbols. Let E—’(_E-E be the ensemble average probability that an
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optimum decoder will decode any m" in M,

ipb instead of the corresponding subse-

quence of m Then

0
p(I)

_— o _
P(Ejpb) <gq exp (N1p+Nbp) EO(P,Q) (30)

for any p such that 0 < p < 1, where N, is the number of diverged phase 2 through

phase V channel symbols in the patternbg, Ip is the number of possibly differing infor-
mation symbols implied by the pattern p, and Nlp is the number of possibly diverged

phase 1 channel symbols implied by the pattern p. We have used the phrase "possibly
differing information symbol" to denote information symbols in m" which the pattern p

does not require to be identical to the corresponding symbol of m The phrase "pos-

0
sibly diverged phase 1 channel symbol" has the analogous meaning.

The reader should note that the pattern p of diverged phase 2 through phase V chan-
nel symbols is fixed for all m" in Mjpb’ but that all patterns of diverged phase 1 channel

symbols consistent with the pattern p are included.

3.2 ERROR PROBABILITY FOR SYSTEMATIC CONVOLUTIONAL CODES

We may use the lemma (30) to derive an upper bound to the ensemble average prob-
ability of erroneous communication for a systematic convolutional code with maximum-
likelihood decoding. A systematic convolutional code has k1 = 0 and all other kv's equal
K. There is no difficulty added in considering the larger family of convolutional
codes in which k1 is arbitrary and all other kv's equal K. First, let us deter-
mine what patterns of diverged phase 2 through phase V channel symbols are consistent
with the generator lengths used. Since k2 = k3 =... = kV = K, the phase 2, phase 3, ,.
and phase V channel symbols must all diverge and merge together. Thus, the only
possible patterns of diverged phase 2 through phase V channel symbols are long blocks
of diverged channel symbols in which all phase 2 through phase V channel symbols in
the block are diverged. Because of the requirements for a phase V merger, this long
block of diverged channel symbols must be K + 1 information register shifts long or
longer. Suppose that the length of this block of diverged channel symbols isb + K + 1
information register shifts. As discussed in section 3.1, the K information symbols
corresponding to the last K encoder shifts in this block must be identical to the corre-

sponding symbol of m Thus, a block of b + K + 1 diverged phase 2 through phase V

channel symbols impl(i)es b + 1 possibly differing information symbols in m". Likewise,
this block of b + K + 1 diverged phase 2 through phase V channel symbols implies
b+1+ k1 possibly diverged phase 1 channel symbols. Setting Ip =_E_+_-_1_, Nlp =b+l +k1,
and Nbp = (b+K+1) (V-1), we may use the lemma to upper-bound P(Ejb), the ensemble
average probability of the decoder's selecting some incorrect message subsequence
that is completely merged at the (j-—l)th encoder shift, diverges at the jth shift, and
completely remerges with m, immediately after the (j+b+K+1)th encoder shift.

Thus
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P(Ey) < a”P*) exp [0+ 1IVHK(V-1)4k,] Eq(p, Q). (31)

The upper bound on P(Ejb) may be used to find an upper bound on m, the
ensemble average probability that any of the L information symbols in the block is
decoded incorrectly. If any of the decoded information symbols is incorrect, the
decoder must have decoded some m" in some M'pb' For the codes under consideration,
there is only one pattern p of diverged phase 2 through phase V channel symbols
diverging at the jth encoder shift and remerging at the (j+b+K+l)th encoder shift. Using
a union bound to account for all j and for all b, we find that

L-j

L
BB <) ), PlE,). (32)
=1 b=0

Using inequality (31) to upper-bound the members of the double summation in the right-
hand side of (32), we find that

P(E,; ) S exp —[K(V-1)+k,] E(p, Q)

L~j
X Z z exp —(b+1) V[Eo(p,Q)—pR], (33)
j=1 b=0

where R is the nominal data rate of the convolutional code

In (q)
R=—F—.

Since L may be arbitrarily large, we shall neglect the small rate loss occurring because
of the periodic resetting.
The right-hand side of inequality (33) is not decreased if the upper limit of the

%
b summation is raised to infinity. The infinite sum over b converges if and only if

pR < Eo(p, Q) for some p 0spsl, (34)

Taking the infinite sum over b and the finite sum over j, we find that

P(

) 1
Eplock) < T VE_ | exp ~[K(V-1)+k, ] E)(p. Q) (35)

where

*Note: The reader may wonder at the wisdom of raising the upper limit of the b sum-
mation to infinity and then requiring that the infinite converge. Such a convergence
condition is prudent in that if the infinite sum did not converge, the L power term in
the finite sum would dominate and give a bound that is exponentially increasing with
the length of the information sequence.
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Eq(p.Q) = pR >€>0 and 0 < p < 1, (36)

In order to obtain the tightest upper bound on m, we select that value of p which
maximizes Eo(p,Q), subject to the convergence condition of Eq. 36, Grallager16 has
shown that this tightest bound may be obtained by selecting the largest value of p which
satisfies the dual conditions listed in (36).

The upper bound on P(Ejb) may also be used to upper-bound P(Esy-mbol)’ the
ensemble average probability that any specific information symbol was decoded incor-
rectly. If the wtlrl symbol of the decoded information sequence is erroneous, it is erro-
neous because either some m" subsequence with any b and j = w was accepted or

because some m" subsequence with b 2i and j = w - i was accepted. Using a union bound,
J

we find
L-1 L-i
P(Esymbol)s z Z P(Eib)‘
i=0 b=i

Raising the upper limits of both summations to infinity and using the upper bound on

P(Eib)’ we obtain

P(Egymbol) S €XP -[K(V-1)+k,] E(p, Q)

X
8
V18

exp —(b+1) V[Eo(p,Q)—pR].

0 i

-
1]

Expressing the summations on the right-hand side in a different form, we have

P(Esymbol) < exp -K(V-1) + kIEO(p,Q)
o0
X z (i+1) exp —(i+1) V[Eo(p, Q)—pR]. (37)
i=0

If the dual conditions of Eq. 36 are met, the infinite summation in the right-hand side

of inequality (37) converges and

eVe

Ve

) <
(e —1)2

P(E symbol

exp —[K(V-1)+k, ] E (p, Q). (38)
The awkward appearance of the dual conditions in Eq. 34 may be removed by defining
E,(1,Q)

EU(R) = min
Eo(p, Q) with p such that Eo(p, Q)-pR = €>0, (39)
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We have defined K*V such that for these codes
sk
KVs= k1 + K(V-1),

We may use the definition of EU(R) to write

—_ 1 *
P(Eblock) s *V—E—l exp -K VEU(R) (40)
e -
and
otVe «
g = -
P(Esymbol) (eV€_1)z exp -K VEU(R). (41)

If Q( ) is the probability assignment that maximizes E (p, Q) as a function of 9_, a
result by Shannon, Gallager and Berlekamp 15 shows that EL(R) = EU(R) for R = EO(I,Q).

E(R)
/} EL R convoLUTIONAL

#EUR convoLUTIONAL

& E Rhpock
Fig. 6. E(R) curves for block
and convolutional codes
on a typical channel.
Eul® pLock

The class of channels for which Q( ) maximizes Eo(p,Q_) as a function of Q includes
symmetric channels. Thus, the upper bounds on error probability in inequalities (40)
and (41) are exponentially tight for many channels of interest. Figure 6 shows E (R)
and EU(R) for a typical channel and compares these error exponents w1th the analogous
terms for block codes (see Gallager ) of similar encoder complexity K V

3.3 ERROR PROBABILITY FOR MULTIPLE GENERATOR LENGTH
CONVOLUTIONAL CODES

We now use the lemma presented in section 3.2 to derive an upper bound to the

probability of error for multiple generator length convolutional codes with optimum
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decoding. The lemma gives an upper bound to P(E. . ), the ensemble average proba-

ipb
bility of decoding any incorrect information sequence m" which is completely merged

with m, at the (j-—l)th encoder shift, diverges from m, at the jth shift, completely

remerg,?es with m, immediately after the (j+b+K+1)th encoder shift, and has a fixed pat-
tern p of diverged phase 2 through phase V channel symbols. If an information sym-
bol is erroneously decoded, some m" with some j, p, and b must have been decoded

instead of the corresponding subsequence of mg. Using a union bound, we may upper-

bound P(Eblock) by the expression

L
P(Eblock) s Z Z Z P(Ejpb). (42)

1 p b

In order to use the lemma, we must have some way of knowing how many patterns p

there are with N.
bp

the pattern p implies Ip possibly differing information symbols, and Nlp possibly

diverged phase 2 through phase V channel symbols and for which

diverged phase 1 channel symbols. Let N(Ip, Nlp bp) be the number of such patterns p.
Then using the lemma, we find
L
P(Epock) block Z Z z N(Ip’ Nlp’ Nbp)
j=1 b
p(Ip)
X q exp -(N1p+Nbp) Eo(p, Q) (43)

for any p, 0 < p < 1. Since the parameter b is essentially determined by the pat-
tern p, we may include the b-summation in the p-summation for convenience.

In order to calculate a value for the upper bound in inequality (43), we must know
N(Ip, Nlp’ Nbp)' A general way of solving combinatorial problems is with the combina-
torial generating function. Since communication-oriented engineers are seldom familiar
with combinatorial generating functions, we shall present a short introduction to com-
binatorial generating functions. If this introduction is too brief, the reader may consult
a book on combinatorial analysis (for example, Riordan18 or Liulg).

Combinatorial generating functions are best taught by example. Consider three

objects labeled x,, x,, and x;. Form the algebraic product

(1+Xlz)(1+xzz)(1+x3z) =1+ (xl+x +x

2 ¥%3)z

+(x +xx+xx)z2

173 72

+ (XIXZ

The coefficient of zh in the right-hand side of (44) contains one additive term for each

x3)23. (44)
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combination of three x's taken h at a time. Hence the number of combinations of three
things taken h at a time is the coefficient of zh with all three x's set to one. We may
readily extend this result to combinations of N things taken h at a time by using N fac-

tors of (]+xiz) instead of three. The polynomial

N
F(z) =] (1+x,2) (45)
i=1

is called the combinatorial generating function of N things with no object selected more
than once. The principal property of this generating function is that the number of com-
binations of N things taken h at a time is just the coefficient of the term zh when all
x's are set to one. In expression (45), each factor of the product is a binomial
indicating in terms of 1 and Xz the fact that the object X; may not or may appear in
any combination. The product generates combinations because the coefficient of z

is obtained by picking unity terms from n-h factors and terms like X;Z from the
remaining h factors in all possible ways. The factors in (45) are limited to two terms
because no object may appear more than once. If the object X; may appear 0,1, 3 or

5 times, the generating function is altered by writing
3 5
[1+xiz+(xiz) +(xiz) ]

in place of (l+xiz).

Let us conclude this introduction to combinatorial generating functions by finding
H(y, z), the generating function for combinations of objects taken from two different sets
of objects. Let F(y) be the generating function of combinations of objects in the first
set, and G(z) be the generating function of combinations of objects taken from the second
set. Any combination of objects taken from the first set may be paired with any com-
bination of objects taken from the second set. Thus the number of combinations of
i objects from the first set and j objects from the second set is just the product
of the number of combinations of i objects from the first set and the number of
combinations of j objects from the second set. Thus

H(y, z) = F(y) G(z).

If all the x's (object name indicators) are set to one, the coefficient of yizj in H(y,z) is the
number of ways of selecting i objects from the first set and j objects from the second
set. The number of ways of selecting a total of k objects from the two sets combined

is just the sum over i of coefficients of all yizk_'i terms in H(y, z). Hence the num-
ber of combinations of k objects selected from the two sets combined is just the coef-
ficient of the zk term in H(z, z). If we are interested in knowing only the number of
combinations without enumerating these combinations, we may set the xi's equal to one
when the generating function is written.

Let us now use combinatorial generating functions to determine the number
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N( Ip, Nlp’ Nbp) in the right-hand side of inequality (43). In this particular case, there
are three different kinds of objects involved in the combinations. Thus the generating
function must be a polynomial of three different variables. Let F(u, dl’ d) be the gen-
erating function of the number of patterns p of pr diverged phase 2 through phase V
channel symbols in which the pattern p implies Ip possibly differing information sym-
bols, and Nlp possibly diverged phase 1 channel symbols. Hence,

F(u,d;,d) = Z z z N(L, Ny Ny ) u(Ip)d(lNlp) o bp) (46)
T Nip Npp

Since the lemma in section 3.1 was developed by looking at distinct runs of diverged
phase 2 channel symbols, let us continue to look at runs of diverged phase 2 channel sym-
bols. We may divide the pattern p into a number of distinct segments, Let us define
a segment of the pattern p as the portion of the pattern following (and including) the start
of a run of diverged phase 2 channel symbols and preceding the next run of diverged
phase 2 channel symbols. By definition, the last segment of the pattern p terminates
when there is a complete remerger. If the notation of section 3.1 is used, a pattern has
D, segments. In Fig. 5, each segment of the pattern is underscored with a brace. In
the simplest case, there is only one segment in the pattern p. Let T(u, dl’ d) be the
part of F(u, dl’ d) representing this terminating segment. In the next most simple case,
there will be one earlier nonterminating segment in the pattern preceding the last and
terminating segment. Let E(u, dl’ d) be the factor of the generating function representing
this nonterminating segment. Since the terminating and nonterminating segments are
independent entities, the term of F(u,dl,d) representing this two-segment pattern
is just T(u,dl, d) E(u,dl, d). In general there may be i nonterminating segments in
the pattern. E(u,dl,d) is the factor of a combinatorial generating function repre-

senting one of these earlier segments. Thus

o0
F(u,d;,d) = T(u,d, d) Z [E(w,d,, O] ¢. (47)
i=0

The combinatorial properties of the terminating segment of the pattern differ from
those of the earlier segments. Since the terminating segment is the simpler case, let
us consider it first, This terminating segment must end with a complete remerger. This
remerging part of the pattern must be preceded by a run of 1«:2 + 1 or more diverged
phase 2 (and hence diverged phase 2 through phase V) channel symbols. Let this run
of diverged phase 2 channel symbols be ¢ + k2 + 1 symbols long. From section 3.1, we
remember that such a run of diverged phase 2 channel symbols implies arun of ¢ + 1
possibly differing information symbols and ¢ + 1 + k1 possibly diverged phase 1 channel
symbols. A divergence diagram for this terminating segment is shown in Fig. 7.
Measuring the shaded area in Fig. 7, we find that this terminating segment has
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Fig. 7. Terminating segment.

(c+l4k,)(V-1) +(k,-k,) +(k,~k,) +... +(k~k,) diverged phase 2, phase 3, ... or phase V
channel symbols. Using the definition of K*,

*
KV=k1+k2+k3+... +kv,

*
we find that this terminating segment has a total of (c+1)(V-1)+K - k1 diverged phase 2
through phase V channel symbols. The number c may be any non-negative integer.
If we let ub represent a string of b possibly differing information symbols, d? repre-

sent ¢ possibly diverged phase 1 channel symbols, and a" represent n diverged phase 2,

phase 3, ... or phase V channel symbols,
% (o4, (etl¥ky) (V-1)(c+])+K V=k,
T(u,dl, d) = Z u (dl) d . (48)

c=0

By the definition of combinatorial generating functions, the coefficient of ubdcdn

T(u,dl,d) is the number of terminating segments with n diverged phase 2 tilrough
phase V channel symbols, a string of b possibly differing information symbols and
¢ possibly diverged phase 1 channel symbols.

The nonterminating segments of the pattern p are identical to the terminating seg-
ment, except that they must end at or before a complete remerger. There are many pos-
sible divergence diagrams for nonterminating segments. Each of these divergence
diagrams takes the same form as the divergence diagram in Fig. 7, except that the run
of merged phase 2 channel symbols at the end of the segment may assume any length
between one and kV —kz. The number of diverged phase 2, phase 3, ... or phase V channel
symbols implied by a run of v merged phase 2 channel symbols at the end of the segment
is given by the function f(v).
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(v(V-2) 0<v<k, -k

£(v) = {E(k,=k,) + [v=(k;-k,)] (V=3) ky, -k, <v<k, -k

f(k

L

If the form of f(v) seems a bit difficult to see, the reader may be aided by

k ) + [v=(k

- - < -
v-1"%y-2 ky-1 ~kp < v s (ky=ky). (49)

v-17%,)] v

Table 1 in which the number of diverged phase 2, phase 3, ... or phase V
channel symbols implied by a string of v merged phase 2 channel symbols

Table 1. f(v) for a specific code with explanatory remarks,

Number of diverged
phase 2,... or phase V

v channel symbols Remarks

1 3 phases ! and 2 merged
2 6 phases 1 and 2 merged
3 9 phases 1 and 2 merged
4 12 phases 1 and 2 merged
5 14 phase 3 also merged

6 16 phase 3 also merged

7 17 phase 4 also merged

8 18 phase 4 also merged

9 19 phase 4 also merged
10 undefined complete remerger

is given for the code in which V = 5, k1 =1, k2 = 4, k3 = 8, k4 = 10, and k5 = 13. The
nonterminating segments have (c+l+k2) (V-1) + f(v) diverged phase 2, phase 3, ... or
phase V channel symbols. Such a terminating segment has a string of ¢ + 1 possibly
differing information symbols and implies ¢ + 1 + k1 possibly diverged phase 1 channel
symbols. As above, the number c¢ may be any non-negative integer. The number v
may be any integer between one and kV - kz' Thus

k.,~k
0 V 2
(ctl+k;) (c+l+k NV-1)
E(u,dl,d) = Z u(C‘l“l)dl 1 d 2 E df(V) . (50)
c=0 v=1

Substituting Eq. 48 and 50 in Eq. 47, we find
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©0 £
(c+1) (k) (K*V=k.)
Flu,d;,d) = z [udld(v_l)] 2 Vq 1

(ky) (V-1)(k,)
ld 2

o0 o0
(c+l)
X Z Z [udld(v_l)] d

x z afv s (51)

v=1
(1) (N
From Eq. 46, we see that the coefficient of u p d1 1p’ Nbp
ber of patterns of Nbp diverged phase 2 through phase V channel symbols with Ip pos-
sibly differing information symbols and Nlp possibly diverged phase 1 channel symbols.
The summation over all p and b in the right-hand side of inequality (43) is just the

) (N, )

Ip d bp is N(Ip,N }, the num-

same as the summation over alll , N, , and N, . Thus
p’ T 1lp bp

L
P(Eblock)s Z Z Z z N(Ip’NIp’Nbp)
=1 Ip Nlp Nbp
p(I )
(52)

p -
q exp (N1p+Nbp) Eo(p, Q)

Comparing the right-hand side of Eq. 46 and the term in braces in the right-hand side

of inequality (52), we find that the two expressions are identical if u = qp, d1
exp —Eo(p, Q), and d = exp -Eo(p, Q). Thus after performing the j-summation, we find

that

P(Eblock) < L X F[qp. exp -Eo(p, Q), exp ~E;(p, Q)} ,

where F[u,dl ,d]is the combinatorial generating function from Eq. 51, and 0 Sp <1, Thus

0

— * (c+l)
P(Eplock) S L{exp -K VE (p, Q) X z [qp exp -VEO(p,Q)]

c=0

o0

X Z (exp [k, (V-1)+k ] E;(p. Q)

(c+1)
[qp exp ~VEg(p, Q):I

i

kyk,
X Z exp —f(v) Eo(p,Q)
(53)

=1

<
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for any p, in the range 0 < p < 1,
Inequality (53) is meaningful only if the infinite summations over ¢ and i converge.
The infinite summation over ¢ converges only if

qp <exp + VEO(p, Q)

for some p, 0 < p € 1. The nominal data rate R of the code is given by

In (q)
v -

R =

Thus the convergence condition for the c-summation is equivalent to the requirement
that

Eo(p,Q) -pR=€20 (54)
for some p in the range 0 < p < 1, If this convergence condition is met,

Sre T L
P(Eblock) < eVE

*
exp -K VE(p, Q)
1

1
X Z ;ﬁj exp —[kZ(V—l)+kl] Eo(p,Q)

x Z exp ~£(v) E,(p, Q) | [ - (55)

v=1

The i-summation converges if the quantity in braces on the right-hand side of inequal-
ity (55) is less than one. Rather than check i-summation convergence for a number
of specific codes and channels, we shall look for an asymptotic result. Let

us consider convolutional codes in which the length of each generator is proportional

to K. For this type of code,
kv = [rVK+1J,

where r, is some fraction, and the notation ij means the greatest integer less than or
equal to x, For a systematic code r, =0. The convergence condition on the

i-summation is met if

kV—k2

Z exp ~f(v) X E;(p, Q) {eXP “K[r,(V-1)+r,] Eo(p,Q)} <eVE -1,

v=1

This asymptotic convergence condition is still difficult to evaluate, because of the
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dependence upon the function f(v). This difficulty may be circumvented by noting that
there are exactly kV ~ k2 terms in the v-summation and that each of these terms is less
than or equal to one for non-negative values of EO(p,Q). Thus, the i-summation con-
verges if

Ve,

(K-k,) exp —K[rZ(V—1)+rl] Ey(p, Q) <e
A further simplification results if we use a truncated Taylor series for eVe and upper-
bound K - kz by K. With this simplification, the convergence condition is more strin-
gent, but the i-summation is more readily performed for the general case. With this

simplification, we find that the i- summation converges if
K exp —K[rz(V—l)+r1] Eo(p, Q) < Ve.

Since

Ka

lim Ke 2=0

K0

for all positive a, there must be a finite Kn such that the i-summation converges for

allK = Kn’ provided that rZ(V—l) try is greater than zero. The fraction r. is zero

1
for a systematic code. Hence if r, is greater than zero, the i-summation converges

for K (and kz) large enough, and we may upper-bound by the expression

grpe—— L. %
P(EbIOCk) < e . exp -K VEO(p,Q) (56)
e -1~-Ve

when inequality (54) is satisfied and K = Kn' Following the procedure in section 3.2,
we may minimize the right-hand side of (56) over all p in the range 0 < p < 1, which
satisfy inequality (54). This minimum occurs at the maximum possible value of p in
the range 0 < p < 1 which satisfies inequality (54). Thus, when k2 grows linearly
with K and K ZKn

L %*
block) S exp -K VEU(R)’ (57)

P(E
e €-1-vVe

where EU(R) is the upper-bound exponent defined in Eq. 39.
Following section 3.1, we may also derive an upper bound on P(Esymbol)' The upper

(1)) (N, ) (N

)
1) may be found by multiplying each term u b d1 1p d bp

bound on P(Esymbo by Ip, the
number of information symbols in error for the pattern p, before setting u = qf and

d; =d=exp —Eo(p, Q). This multiplication may be easily done by taking u times the
derivative of F(u,dl,d) with respect tfo u. The implied convergence conditions are
the same as those encountered in upper-bounding P(Eblock); however, the asymptotic
i-summation convergence is slower than that in P(Eblock)' if r, > 0 the i-summation

eventually converges and
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eVe

E ) <
symbol (eVe_l)Z _ (Ve)z

*
P( exp - K EU(R) for large enough K, (58)

The reader may wonder whether some form of absolute rather than asymptotic con-
vergence is possible for the i-summation. Such an absolute convergence condition would
prove inequalities (57) and (58) for all K and k2 = 0, and not just for K ZKn and k2 pro-
portional to K. Such an absolute convergence condition is impossible. The impossibility
of such an absolute convergence condition may be seen by considering the multiple gen-
erator length convolutional code in which V = 0, kl = k2 = k3 =0 and k4 = K. For this
particular code, the phase 1, phase 2, and phase 3 channel symbols are essentially
repetitions of the systematic channel symbol. Let us consider these three repetitions
of the systematic channel symbol as the input to a single channel with q3 inputs and q3
outputs and the phase 4 channel symbol as the input to the original channel. A slightly
generalized form of the sphere-packing lower bound (see Shannon, Gallager and
BerlekamplS) shows a contradiction, in that there is a lower bound to the probability of
error that is exponentially larger than the hypothesized upper bound.

This generalization of the sphere-packing bound involves modifying the bound to cover
codes in which the transmitter is allowed N1 uses of one channel and N2 uses of
a second channel. When this generalized form of the sphere-packing bound is sub-
stituted in the lower-bounding calculations of Section II, the contradiction becomes
apparent. The proof of the generalized sphere-packing bound is identical to the proof
given by Shannon, Gallager and Berlekamp,15 except that the fixed composition codes
must cover both channels, and the final removal of the fixed composition assumption
must account for both channels. Since this extension of the sphere-packing bound is

quite straightforward but tediously long, it will not be reproduced here.

3.4 EXTENSION TO CONVOLUTIONAL ENCODERS WITH SEVERAL
SHIFT REGISTERS

Up to this point, we have assumed that the convolutional encoder contains only one
information shift register. Hence we have assumed that the rate of the code is

In (q)
R=—.

Let us now suppose that we wish to communicate S(S<V) streams of information
instead of one. We may modify the convolutional encoder by using S information
storage registers instead of one. With this modified encoder, S information sym-
bols enter the encoder per encoder shift. All S information storage registers are
shifted together. A transmitted channel symbol is still a weighted sum of the con-
tents of the information storage registers. If we let i d(s) denote the dth information

symbol entering the sth information storage register, Eq. 1 becomes
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K+l S
N (s),
te,d = Yo d  ld+l-b
b=1 g=1

) 4 p 1<v <V,
vd

where W, b(s) is the weight attached to the information symbol in the bth stage of the

sth information storage register in determining the phase v channel symbol, and rs 4

’

is the appropriate member of the sequence r.
We may prove a lemma like that in section 3.1 if we require

(s) _
Wi, s =1

for all s in the range 1 < s < S, and if we require that the encoder weights not be
(s) (1)
b v,b
for any i # s. This last restriction is essentially a restriction that a given parity sym-
h

restricted in such a way that w, must equal zero when w need not equal zero

bol either depends on the contents of the kt stage of all shift registers or is independent
of the contents of the kth stages of all information-storage shift registers.
The proof of the lemma analogous to the lemma in section 3.1 follows the proof in

section 3.1, The only change is that Xm the set of channel symbols which is a one-

lll’
to-one map of the possibly differing information symbols includes S channel symbols
and S information symbols per encoder shift, instead of just one channel symbol and
one information symbol per shift. In this modification of Xm "y
in Xm " which were transferred to Xm"l are dropped from Xm e Once this change in

those channel symbols

diverged channel symbol classifications is made, the proof follows section 3.1, Since
the proof in section 3.1 is notationally complicated, a slightly modified repetition of
that proof would be tediously boring and impart little new knowledge of basic techniques.
Thus the proof of this modified version of the lemma will be omitted.
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IV. SEQUENTIAL DECODING

Sections II and III presented lower and upper bounds to the probability of
erroneous commaunication for multiple generator length convolutional codes with
optimum decoding. Unfortunately, optimum systems are often too expensive to
build in a world of limited resources., The extreme cost of most optimum sys-
tems does not make analysis of the optimum system totally meaningless, since
there is much to be gained from knowing how a given system compares with
the best possible, Wozencraf’c8 proposed a technique, later modified by Fano,10
which provides a practical algorithm for decoding convolutional codes. This
sequential decoding algorithm has been studied extensively for equal generator
length convolutional codes by Yudkin,20 Niessen,21 Savage,22 and Falconer.23 We
shall now examine sequential decoding for multiple generator length convolutional
codes. The proofs given here will be limited to the case of systematic con-
volutional codes (k.1 = 0, all other kV = K); however, in section 4.4 the exten-
sion of the results derived here to the general case of multiple generator length

convolutional codes will be discussed. In upper-bounding the probability of error

for systematic convolutional codes with sequential decoding, we find that P(E),

the ensemble average of probability of error, may be upper-bounded as
_— *
P(E) < const exp-K VEUS(R’ B),

where

*
KV=k1+k2+k3+...kV=K(V—l).

The sequential decoding upper-bound error exponent EUs(R’B) is a function of the
decoder parameter called bias B. EUS(R, B) is maximized for the same value of bias
that minimizes average computation for equal generator length convolutional codes. On
the other hand, we find that for systematic convolutional codes, EUS(R, B) is not maxi-
mized for the bias that minimizes the moments of computation, To the author's knowl-
edge, this trade-off between error probability and computation in the sequential decoding
of systematic convolutional codes is a new analytical result. Forney'sll simulations of

sequential decoding show this trade-off between computation and error probability.

4.1 SEQUENTIAL DECODING ALGORITHM

We shall give a brief summary of sequential decoding as presented by Gallager.5 In
keeping with the summary nature of this section, certain theorems will be stated
without proof,

Sequential decoding stems from the idea of decoding the received message one
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information symbol at a time rather than decoding all information symbols simulta-
neously as in maximum-likelihood decoding. The tree nature of the code facilitates this
symbol-by-symbol decoding. For binary symbols, the first step in the tree (first infor-
mation symbol to enter the encoder) must be either a binary one or a binary zero. If
the decoder correctly decodes this first step, it will have only two possibilities to con-
sider as second steps. If such step-by-step decoding were possible, the computation
required to decode the message would be reduced because the decoder would not have

to consider every message in its entirety. One of the problems with such a step-by-
step decoder is that the decoder will occasionally make an incorrect decision at some
step and go off the correct path. Unless the decoder is able to back up to reconsider
previous decisions, such an incorrect decision will send the decoder permanently off
the correct path,

An example will serve to illustrate this decoding idea and the problems inherent
in it. Let us use the convolutional code discussed in the introduction for which the
beginning portion of the channel symbol tree is shown in Fig, 2, For simplicity, let us
assume that the channel is a binary symmetric channel. Thus, each channel symbol
transmission is statistically independent of all other transmissions, and receiving the
transmitted symbol is more likely than receiving its binary complement. If the first
five information symbols are 10000, the channel sequence begins with 111 001 010 011
000 where a space indicates a shift of the encoder register. Suppose that the received
symbol sequence begins with 110 001 010 111 000. At the first node, the decoder
knows that either 111 or 000 was transmitted. Given that 110 is received, it is more
likely that 111 was transmitted than 000. Thus, the decoder tentatively decides that
the first information symbol is binary 1 which corresponds to the 111 transmission.
Assuming that the first information symbol is a binary 1, the second set of three trans-
mitted channel symbols must be either 001 or 110. Given that 001 was received, 001
is more likely to have been transmitted than 110. Now the decoder tentatively decides
that the second information symbol is binary 0 corresponding to a 001 transmission.
Continuing in this manner, the decoder tentatively decodes the first five information
symbols as 10000. On the other hand, suppose that the received sequence begins with
010 001 010 011 000. This time the decoder tentatively decides that the first informa-
tion symbol is a binary 0. If the first information symbol is a binary 0, the second set
of three transmitted channel symbols must be either 000 or 111. Since 001 was received,
the decoder will tentatively decide that the second information symbol is binary 0. The
decoder could continue and tentatively decide that the third information symbol is binary
0 and that the fourth information symbol is a binary 1. If these four hypothesized infor-
mation symbols are correct, four channels errors must have occurred in twelve trans-
missions. This high error rate for the hypothesized message may be explained in one
of two ways: either the channel was abnormally noisy during the twelve transmissions
or the hypothesized message is incorrect. The decoder should now begin to reconsider
its past decisions. If it reconsiders its choice of the first information symbol, it will
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find an information sequence 10000 which implies only two errors in twelve transmis-
sions. This later hypothesis is a more likely hypothesis which the decoder can reach
after reconsidering its first tentative decoding decision.

The question of when the decoder should reconsider earlier decisions is all impor-
tant. If the decoder reconsiders past decisions with great hesitancy, it will have to dis-
card a large amount of work in backing up to reconsider earlier decisions. On the other
hand, if the decoder reconsiders too quickly, it may discard correct tentative decisions
and eventually have to reconsider the reconsideration.

Fatno10 proposed a specific algorithm for determining when the decoder should back
up to reconsider and when it should move farther into the tree. This algorithm has been
so widely used that it is now commonly called "the sequential decoder." Let X =
(Xll' R TR xVh) be the first Vh digits of the channel sequence for some as yet
unnamed message, and Yh = (yll' . 'yVh) be the first Vh digits of the received symbol
sequence. Define the function I‘(Xh, Yh) by

Y, - ii <P(y 11 >—B, (59)

wlyy;)

where w(j) is the nominal probability of the output j,

w(j) = ZQ(i) P(j/i), (60)

and B is an arbitrary bias term to be selected later from the range 0 < B < C. Let us
call F(Xh, Yh) the value of the hypothesis Xh' If the resynchronization technique is used,

decoding the message that corresponds to the X which maximizes I (XL K YL +K)

L+K
gives an optimum decoder for memoryless channels. Since we want a decoder that

demands less computation than the optimum decoder, we must rely upon other properties
of the function I"(Xh, Yh).

capacity C, it can be shown that the expectation (over channel noise and code selection)

If the Q(i) are the input probabilities that achieve channel

of F(Xh, Yh) is hV(C-B) along the correct path and less than -hVB along any completely
diverged incorrect path.

In terms of T', our suboptimum decoder is to hypothesize an X through the tree in
such a way that F(Xh, Yh) increases with h. If I" starts to decrease with increasing h,
the decoder is probably on a wrong path and should go back to re-examine past decisions.
The Fano sequential decoding algorithm is a set of rules for moving from one hypothesis
to another. There are three basic moves forward, lateral, and backward. On a forward
move the decoder goes one branch to the right in the message tree; that is, the decoder
hypothesizes the next symbol entering the encoder. Instrumentally this corresponds to
shifting the decoder's replica of the encoder one place to the right and inserting the

hypothesized value of the next information symbol into the left end of the replica shift
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register. Since the new hypothesized message sequence differs from the previously
hypothesized message sequence only by having the newest information symbol added to

it, the new value of I'" can be easily found from the previous value of I' by the equation

v
Pyn/Xon)
I(X,, ¥) =[x, .Y, )+ Z In <_______ -B
w(yvh)

v=1
The digits involved in this calculation are simply the V channel input symbols coming
out of the replica encoder and the channel symbols in the pth group of V received chan-
nel symbols. On a lateral move, the decoder considers another possible hypothesis at
the same depth (h-value) into the tree. On a backward move, the decoder goes one
branch to the left in the message tree; that is, the decoder backs up to reconsider its
hypothesis of the information symbol immediately preceding the information symbol
which it was last considering. The new value of I' may be calculated by subtracting
off the last term in the h-summation expressed in Eq. 59. The algorithm used in
moving from one node to another is Gallager'55 presentation of the algorithm due to
Fano.lo This algorithm is given as a set of rules in Table 2. The rules involve the

value Fh of the node currently hypothesized, the value T" of the node one step to the

h~1
left of the current node and a threshold T. The value of T is constrained to change in

Table 2. Rules for decoder motion,

Conditions on Node Action to Be Taken
Previous Comparison of 1-‘h—l and I1h Final Move
Move with initial threshold Threshold
ForL 1"h_1 <T+ A, I‘h =T Raise” Ff
ForL rh—l 2T+4, I, 2T No Change FT
ForL 1"h_1 arbitrary, I"h <T No Change L or BI
B 1"h_1 <T, I"h arbitrary Lower by A FT
B 1"h_1 s T, I"h arbitrary No Change L or BI

3* .
Add j to threshold where j is chosen such that T + jA < Fh <T+ (G+1)A.

Move forward to the first of the q nodes stemming from the current node
(assuming some predetermined ordering of the q nodes),

iMove laterally to next node differing from current node only in the final
branch (assuming the same ordering as above): if the current node is the
last of the g nodes, move backward.
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increments of some fixed number A. The changes in T are determined by the algo-
rithm. The only boundary conditions are that the initial value of T be zero, that 1"O =0
(I at the starting node equal zero) and that 1"_1 = —~00, This last boundary condition
simply prevents the encoder from ever backing completely out of the tree.

Fano 0 discovered and Gallager5 has mathematically proved several properties of
the sequential decoding algorithm presented above. Let us define a descendant of the
node Xh as a node to the right of Xh which is reached by a path that branches out from
Xh' Hence, a descendant of Xh is a node reached by a path that coincides with Xh for
the first h encoder shifts. Let us also define an F-hypothesis as a hypothesis for which
the next move is forward. The first property of the algorithm is that for every node
which is ever F-hypothesized, the final threshold T on this first F-hypothesis is related
to the value I' of the node by the inequality T < I' <T + A, Moreover, the final thresh-
old on each subsequent F-hypothesis of this node is A below the final threshold on the
previous F-hypothesis of the node in question. Second, if the node Xh is hypothesized
with final threshold T, then every descendant of Xh for which the path from Xh is above
T must be F-hypothesized with final threshold T before Xh can be rehypothesized. The
first property demonstrates that the algorithm does not loop, in that no mode can ever
be hypothesized twice with the same threshold. The first and second properties com-
bine to give us a way of determining the probability density function for the number of

decoder moves necessary to decode a message.
4.2 COMPUTATION IN SEQUENTIAL DECODING

The intent of sequential decoding is to provide effective decoding with a device that
is less complex than the maximum-likelihood decoder. The exact sequence of decoder
moves is determined by the received sequence and the decoder algorithm., Thus the
number of decoder moves required to decode a block of L information symbols is a ran-
dom variable. There can be at most q -1 lateral moves and one backward move for each
forward move of the decoder. Thus we may upper-bound sequential decoder computation
by upper-bounding the number of F-hypotheses. Let WO be the number of F hypotheses
made from the origin node and from all incorrect nodes stemming from the origin node.
A combination of a lower bound derived by Jacobs and Berlekamp12 and upper bounds
derived by Savage,Zz 1-7‘3.1coner23 and Jelinek24 shows that the random variable
WO has a Pareto distribution such that

a

Pr (W0>N) ~ N~ (61)
for sufficiently large N when B = R, and
Ey(a,Q)
R=——01— (62)
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when the channel is one of the channels for which the input assignment Q maximizes
Eo(a,g) over Q. The chief characteristic of the Pareto distribution on W0 is that the

rth moment of WO is bounded for all r < a and for no r = a. This characterization of

the Pareto distribution leads us to desire a bound on the ath moment of WO'
For the finite constraint length convolutional encoder used here we must consider

the problem of remergers. Previous discussions of computation in sequential decoding

have assumed an infinite constraint length code which eliminates remergers. We would

like to upper-bound the ath

moment of the number of computations made on the first cor-
rect node and all incorrect descendants of the first correct node. Remergers make such
a computation difficult, in that remergers allow the decoder to reach a correct node by
following some path of incorrect nodes until a remerger occurs. The question arises
whether we consider correct nodes reached by incorrect paths as "incorrect descen-
dants" or "correct descendants." We shall take the latter option here and redefine W0
to be the number of F-hypotheses made on incorrect paths diverging at the first encoder
shift before each of these paths merges with the correct path. This redefinition of WO
does not lead to an absolutely tight upper-bound on computation, because of the expo-
nentially growing number of "correct descendants" or remerged nodes. It is conjectured
that this redefinition of W0 gives some reasonable estimate of computation per decoded
information symbol despite the exponentially growing number of correct descendants.
Experimental evidence obtained by Forney11 indicates that this conjecture is correct.
Finally, this redefinition of W leads to a result which is identical to that obtained for
infinite constraint length nonsystematic convolutional codes.

At a depth h into the tree there is a total of qh nodes. One of these qh nodes is the

correct node, and qh_K—l

are nodes that have merged with the correct path. With this
new definition of W, the only nodes at depth h that we must consider are those nodes
reached by a path that does not completely remerge with the correct path until h + 1 or
more steps into the tree. Let m' be some incorrect message subsequence that we must
consider when bounding the number of computations in W on nodes at depth h 1n1:o the
tree. The last information symbol at which m' and mg d1ffer before the (h+1) mfor-
mation symbol must enter the encoder at the hth or (h—l) ...oO0r (h-K) encoder
shift. If the last 1nformat10n symbol at which m' and m, differ had entered the encoder
before the (h- K) shlft, m' and m, would be completely merged at the hth encoder shift
contradicting the definition of m'. Let Nhi be the set of all incorrect nodes h steps into
the tree reached by paths diverging from m, at the first encoder shift, which do not
completely remerge with m, until after the hth encoder shift, and for which the last dif-
fering information symbol before the (h+1)Jch encoder shift enters the encoder at the
(h—i)th encoder shift. If WOhi denotes the number of F-hypotheses made on nodes in Nhi’
o- )

h=0 1

W

DR

0

1
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The number WO is a random variable dependent on both the channel noise and the

code selected. We shall avoid the problem of code selection by taking a statistical aver-
age over both the channel noise and the ensemble of all possible codes. This ensemble

11 = b

k1 = 0, and all other nontrivial encoder weights are randomly reselected after each

encoder shift. Generalizing a proof first presented by Falconer,?‘3 we shall derive an

of codes is the set of all convolutional codes for which k2 = k3 =,..= kV =K, w

upper bound on the ath moment of the random variable WO for a suchthat 0 €<a < 1.
A standard inequality shows that

a
( Exi ) < Z (xi)a (63)

for all a suchthat 0 <a < 1. Thus

) K ) K
a a
0° Z Z Woni | S Z Z (Woni) (64)
h=0 i=0

h=0 i=0
We must now derive an upper bound on (W

a

Ohi)a‘ The two properties of the decoding

algorithm proved by Gallager may be combined to show that a given incorrect node at
depth h may be F-hypothesized for the jth time only if

[0}

Tovny = Toain * G-2)4, (65)

where I’ is the value I' of the incorrect node m' at depth h, and F(r)nin is the min-

m' (h)
imum of I'" along the whole correct path. We shall subsequently denote Pm' (h) simply
as I‘k’l. Equation 65 is true because the incorrect node m' at depth h must be

F-hypothesized first with a final threshold T such that

T<T_ <TH+A,

h
At each subsequent F-hypothesis of m', the final threshold is lower by A than the pre-

vious final threshold. Once the threshold has been lowered below re the entire cor-

rect path must be hypothesized before the threshold is lowered arggiln. If the entire
correct path is hypothesized, decoding stops and the threshold goes no lower. Thus m'
can be hypothesized only once after the threshold is lowered below r;)nin' Hence m' can
be hypothesized the jth time only if

o]
1"i1+A—I‘mi
A

2 > (j-1)

which is equivalent to the form in (65).
Let us define
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. o .
1 1fI‘i,1—I"d—(J—2)A>0

(r 139 -

where I"g is the value for the dth node of the correct path }_(0.

0 otherwise

Summing over all nodes in Nhi’ we find that

[o0]

Woni < Z Z ¢d<r‘h’ Ty J')’

m' ENhi j=1

where d is selected such that

=1°

o
1-‘cl - “min’

Since d is a random variable, we are faced with the problem of selecting the right value
of d. This problem of finding the correct d is eliminated if we include all d in the

summation, thereby upper-bounding WOhi'

:
eSS T )

=1 d=0 m' EN,,

Using inequality (63) on the j summation and the d summation, we find that

ha a
0h1 Z Z z ¢d(1“'h’1“§,j) . (66a)

j=1 d=0 | m' ENhi

For all s = 0,
¢d(l'" , Fg,j) < exp S[I‘i,l—l"g—(j—Z)Aj]. (66Db)

a
We may upper bound (WOhi)

inequality (66a). Appendix A upper-bounds the resulting expectation. From Appendix A,

0
Z E > ) Pa/E, mg P, /mg) Pimg)
=0 ¥ X m 0 0

mg, 0

by substituting this inequality in the right-hand side of

(W

<

0h1

"MS

-1

s| ! —I‘°—(j—2)A}

x Z ) P Yy mo) e it NG
PEN, X 0
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where X denotes the channel sequence leading to node m' in Nh

m'h i
Further simplification of the right-hand side of inequality (67) closely parallels the

steps used in section 3. 2. Now, we shall stress those points at which the arguments
differ and skip lightly over those points of the argument that are identical to those in
section 3.2, We have restricted our attention to systematic convolutional codes (k1 = 0,

all other kV = K). Here it will be convenient to divide the symbols of X i into three

'h
groups: (i) Xrn'p’ those h(V-1) diverged phase 2 through phase V channel symbols at

which Xm, is equally likely to be any q-ary symbol independent of m, Km and the rest
0

of }_§m,; (ii) Xm's’ those (h~i) systematic (phase 1) channel symbols that are a one-to-

one map of the information sequences in m' for any given code; and (iii) X those

m't’
i phase 1 channel symbols that must be identical to the corresponding symbol of Xm
0

for all m' in Nh The symbols in Xm's are the first h-i phase 1 channel symbols gen-

i-

erated, and those in X are the last i phase 1 channel symbols generated before the

m't
(h+1)th encoder shift. Combining the basic properties of the three different groups of

symbols in X and the requirement that the codewords be independent of the received

m'h
channel symbols, we find

P(Xm,h/XE_(momo) = Q(Xm‘ p) P(Xm‘s/XmO mO) G(Xm‘t’ Xmot)’
where Q( ) is the probability distribution in which all sequences are equally likely (see

section 3. 2) and

6(Xm't’ Xmot) =
0 otherwise.

For any specific code, the one-to-one map from m' sequences into XmlS makes the
m' summation in the right-hand side of inequality (67) just a summation over a set of
nonidentical Xm's terms. The right-hand side of inequality (67) is not decreased if
the summation over Xm,S terms is increased to include all Xm's terms. Finally, ?Em

is equally likely to be any q-ary sequence independent of m;. Since 0

Qx_,)=a"®Y or ¥ Vax -1,

we may combine the preceding arguments to show that

——— ot . hod

0

a

) s| I} __1-.0]
q(h-—l) Z Z z Q(Xm's)Q(Xm'p)6(Xm't’xmot) e L B 7d . (68)

m'p “m's “m't
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Inequality (68) is further simplified by treating the sequences Em" _}gm and Y on
0

a symbol-by-symbol basis. As in section 3. 2,

Qx_\ =1 1 Q(x2,) (69)
( mo) n=1 v=1 ° vo/’

The memoryless channel ensures that

/ L+K V 10
P(Y/X =10 I Ply, /x ) (70)
( mo) n=l v=l vn’ “vn
Finally, defining
Q(x! n) if vn pair indicates a symbol
v inX_, orX_ ,
o m's m'p
Pvn(x{rn/ Xvn) - o
é(x' VX ) if vn pair indicates a symbol
vn’ “vn in X
m't
we may write
V h o
Q(Xm‘s) Q(Xm'p) 6(Xm't’Xmot) = vrzll nl;[l Pvn Xl/n/xvn)' (71

Defining G such that
G = max [d, h],

we may substitute Egs. 59 and 69-71 in inequality (68) to show that

o < ie-sa(j—zmi }: Z Z Z [ﬁ %1 Q(x2,) P(yvn/xf;n)]
d

. n=1 v=
Jj=1 =0 |y y o (o]
11 VG X1 Xva
d Vv wl(y.. ) sa
XM o —vr B
n=1 v=1 (o]
P(Vyn/%n)
s a
— 1
% g2(h-1) Z %I‘ }/I b (x5O ) P on/%yn) -SB (12)
e - ~ vn\'vn’ “vn :
< o n=1 v=1 wly. )
11 Vh vn

Let us first consider those d for which d = h; hence, G =d. We may interchange
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the order of summation and multiplication in the right-hand side of (72). After collecting

terms, we may write the quantity in braces as

1 z EQ(Xff)n) P(yvn/xx(;n)l_saL
y

vn X
vIL

.V h
qa(h—l) o 1
v=1l n=

a

1 ' S
x Z Pvn(xvn/ Xon! P(yvn/ Xon)
Xun

v d N o o \ 52 sa _saB
) vl;ll n=ll_rI1+1 Z Z Q(XVI’I> P(yvn/xvn) w(yvn) € ’
Yon %

vn vn

. _ . . O - (o] 1
At those i vn-pairs for which Pvn(xvn/x{m) 6(x ) X )

vn vn
) D, Q) P(y/x")l“sa{z P (' /%°) P<y/x'>s]
Y «© x!'
= Zz Q%) P(y/x%) 1752 py/x°)52 = 1, (73)
y .o

Holder's inequality states that for positive random variables U and W

1/o —l/ﬁ
wPy T,

UW < (U°)

where ¢ and B are positive numbers such that

Q=

1
+a= 1.
g

Restricting s such that 0 < sa < 1 and using Holder's inequality on the y summation, we
may upper-bound those terms in the first product for which P__ (x! /Xvn) = Q(x{m).

vn'“vn
- ‘ a
) ) Qe Bly/so) o p P (x /x°) P(y/X')S:'
Y 4© >4
sa
1/(1-sa) 1-sa a L
< Z Z Q%) Py/x) 5% Z[Z Qx') P(y/x)s]
Y | x° y Lx'
= exp —[(l—sa) EO %,Q)Aksan(-l—;—s—,Q)i], (74)

48




where Eo(p, Q) was defined in section 3.2 as

1+p
E,(p, Q) = -In z<§ Q) P(y/x)l/(”‘”) . (75)
X

y

Holder's inequality may again be used on the y summation to upper-bound those terms

involving Q(xo), P(y/xo), and w(y) in the second product.

z ZQ(X ) Ply/x°) l-sa §)52 .SaB

l-sa

1/(1-sa) _ sa
< oSaB Z(ZQ(X ) Ply/x0) 1" sa> Z(w(y)sa>1/sa
¥ \x y
= exp —[(l—sa)E (1 3’ Q) SaB] (76)

It can be verified for the binary symmetric channel that these uses of Holder's equality
are satisfied with equality. We may combine inequalities (73), (74), and (76) to show that
the quantity in braces on the right-hand side of inequality (72) may be upper-bounded as

q®P Y exp -(hV—i)[(l—sa)EO : sa’Q> +saE0(l Q)}

X exp —(d-—h)V[(l-—sa)EO(1 “sa’ Q) saB]

for d = h. Let us now consider the case for which h = d. Techniques similar to those
used above show that for h > d, the quantity in braces in the right-hand side of inequal-

ity (72) may be written

qa(h—i) ﬁl 1 Z Z Q( vn) P yvn/xxc;n)l-sa

n=1 v=1
Yyn *vn
a
' o} , 1S
X( Z G Xvn/xvn) POon/®m) >
Xon
0 : -sa
* n"gﬂ v=1 Z z Q( vn) P yVn/xvn) w(yvn)
Jvn x
a
! o s -sB
(PECTARER
Xon
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Expressions (73) and (74) allow simplification of each vn term in the first product term.
Again, we may use Holder's inequality on the y-summation for those vn-pairs in the

_ . . _ . .
second-product term for which Pvn(Xvn/Xvn) Q(Xvn)' Remembering that

wly) = Z Qi) P(y/i),
i

we may upper-bound these terms as

— a
> ) a6 P/ w(y>'sa<z Pn(x!/x%) Ply/x')® e‘SB>

Y 4© x!

<) (otn!s2)/1-s2) e B 1 (D awe ply/x 25 *
Y v\ %
= exp -[saEO(I;s’ Q) + saB] -

Finally, we must deal with those terms in the second product for which Pvn(x;m/xsn> =

ﬁ(x' x° ) There is a total of i vn-pairs in (76a) at which Pvn(x' /xo) = 6(x',xo). Let

vn’ “vn
td be the number of channel symbols in X occurring after the dJEh step and before the

m'h
(h+1 )th step in the tree for which Pvn(x'/xo) = 6(x, XO). Hence td is the number of merged
channel symbols occurring after the presumed minimum I'" on the correct path and before
the total merger of mg and m', Thus there arei - td terms in the first product term of

(76a) for which Pvn(x'/xo) = §(x', x°).

which P_(x'/x°) = 6(x', x°),

For those td terms in the second product term in

L a
D ) QR A w5 () B e /x®) Ply/x)® TP
Y ¥° x'
e sa
- P(y/x")
. o-saB Z Z Qx°) P(y/xo) e
7y o w(y)
X
= exp —-[n(sa)+saB], (78)
where
P(y/x)\°*
p(sa)=-In z ZQ(X) P(y/x) | —— . (79)

7 % w(y)
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By using relations (73), (74), (77), and (78), we may upper-bound the quantity in
braces on the right-hand side of inequality (72) by the quantity

qa(h—i) eXp(‘[dV"(i‘td)][(l_Sa)E (1 sa’ Q)+saE0(— Q):D

X exp(—[(h—d)V-t d][saEO(-l—'é'—s-, Q) N saBD

X exp(—td[H(SaHS&B]),

provided d < h. Collecting terms, we find that the upper bounds on the quantity in braces
on the right-hand side of inequality (72) are identical for d 2h and d <h, since td =0
for d 2h. Thus,

(WOhi)a < i e~sa(j-2)a exp(—hV[ saEO(I—;—E> + saB-aR])
=1
X q.i exp( {(1 sa)EO i sa’ Q)+saE —— Q)}>

X i exp(—dV[(l—sa)EO l-s-_:a’ Q) —saB])

d=0
} (80)

Xexp[-td{p(saH(l-sa)EO I—sa

where

In g
R= ~
For future reference we have enclosed in braces those terms in (80) resulting from

channel symbols at which m' and m, are partially merged (phase 1 merged for

0
systematic convolutional codes). Eventually we shall set the contents of the braces to
zero in order to examine the result for equal generator length convolutional codes
(k1=k2.. c=ky).

Appendix B shows that
m(sa) + (1-sa) Eg (122, Q) (81)
for all sa. Thus, the right-hand side of inequality (80) is upper-bounded if td is upper-

bounded by its largest value i. Substituting in inequality (64) and performing the
j=-summation, we find that
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—

"4

o

<% N . 5,12, @)))
\l_e_saA q exp|-i| p(sa)-sa o\ ]

i=0

0

X Z exp(—-hV[san ( 1 ;S

h=0

+ saB-aR})

o0

x Z exp -dV[(l-sa)Eo ey Q) saB]) (82)
d=o

The i-summation in inequality (82) contains a finite member of terms. Thus (Wo)a is
bounded if both the d- and h-summations are bounded. These two geometric series are
bounded if

l-s
R < sEO(—S-, Q) + sB (83)
and
0 1- sa’ Q)
B<———r— sa (84)
1l - sa

In using the upper bound on Wg we must remember the conditions 0<a <1 and
0<sa<l.

We may summarize by stating a theorem that we have just proved. Let W0 be the
number of sequential decoder hypotheses made on incorrect paths diverging at the origin
before these paths completely remerge with the correct path, then Wg‘ is bounded for
0 <a<sl1if

R < sEo(—lfl, Q) +sB (85)

and

=)

B< vy (86)

1 - sa

for some s such that 0 < sa <1.
Setting s = 1/(1+a) and B = R, we find that the two conditions for boundedness of W

become identical and that W0 is bounded for a in the range 0 < a < 1 if

E (2, Q)

R < 2
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2 o pe .
This special case for B = R agrees with a result of Falconer 3 for infinite constraint

length convolutional codes. As we have mentioned, Jacobs and Berlekamp12 have

derived a lower bound to sequential decoder computation which states that the ath

moment of WO is unbounded if
E(a)

RZa,

where Eo(a) is the maximum oyer all possible Q of the function Eo(a,g). For symmetric
channels Eo(a) = Eo(a, Q), and the result derived here is exponentially 'cigl;:lf1 for B= R.

As far as the author knows, the present work is the first to deal with the a™ moment of
computation in sequential decoding with B # R. Yudkin20 dealt with generalized bias

terms but only for first moments of computation with equal generator length codes.

Falconer23 dealt with all a for 0 <a <1 but only for B = R. For equal generator length
convolutional codes, B = R gives an optimum result. We shall illustrate circumstances
in which we may wish to use a bias that is unequal to the rate.

We may find the largest value of a in the range 0 <a <1 for which the ath moment
of W0 is bounded by finding the largest sa for which inequality (86) is satisfied and the
smallest s for which inequality (85) is satisfied. Dividing the maximum value of sa by
the minimum value of s gives the maximum possible value of a for which the ath
moment of W0 is bounded. If the calculated maximum value of a is greater than one,
we must acknowledge the restriction that a be less than or equal to one. From the
Pareto nature of the random variable WO we may conclude that

(a )
Pr (W >N) = N max’,

A computer program was written to evaluate a ax for several bias levels on a
binary symmetric channel with R = .346 nat (R = .5 bit/channel use). Forney11 has
performed some computer simulations of sequential decoding with B # R. In Table 3 the
simulation value of A ax is compared with the value of A ax calculated from the theory
developed here. In compiling Table 3, we have conjectured that the restriction 0 <a <1
. may be removed. We have been unable to prove this conjecture; however, the results
obtained by using this conjecture are encouraging. For those & ax less than one, the
theoretical development presented here predicts the simulated value of a ax more
closely than any other theoretical result known to the author.

A geometric construction allows us to find the limiting values of s and sa in inequal-
ities (85) and (86). Figure 8 is a plot of the function Eo(p Q) for p 2 0. Consider the
point (-1,-B). Select a point p =

S on the p axis. Draw a straight line connecting the

points (-1, -B) and[ (1 =8, Q):I The slope of this line is just
E,(*2, Q) + B
s l-s
S Eraa sEO(—;—, Q) +5B.
s
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Table 3. Comparison of measured and theoretical value of the Pareto
exponent a nax for a binary symmetric channel with V = 2

and R = 0.376.

The letter "c¢" follows those theoretical

A ax that are the result of conjecture rather than proved
theorems.
BS . .

Pc.i'ocbrz‘a.%?lsi?c;er Bias & ax Theoretical A ax Measured
9/256 .326 1.26 ¢ 1.29
9/256 .381 l1.24 ¢ 1.29

10/256 .332 1.15 ¢ 1.15
10/256 .386 1.11 ¢ 1.12
11/256 .339 1.05 ¢ 1. 06
11/256 .390 .98 .95
12/256 .344 .95 . 96
12 /256 .394 . 86 .88
Eq (p, Q)
Y sLoPe B
AN
SLOPE Ropoe Fig. 8. Rprop construction.

Thus, the slope of this line is the quantity in the right-hand side of inequality (85).
this value of s, inequality (85) is satisfied for all R less than the slope of the line

connecting the points (-1, -B) and [—1—;—8 Eo(-l—éi Q)} Hence for a given R, the small-
est value of s (largest p) for which inequality (85) holds is that value of s corre-

sponding to the straight line through the point (-1, -B) with slope just greater than R.
Having found the minimum value of s, let us find the maximum value of sa for which
inequality (86) is satisfied. Consider the straight line of slope B passing through the
origin. The intersection of this straight line and the E 0(p, Q) curve occurs at the point

at which

S

- SLOPE SE

1-S
(—S—') + SB
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PB = E (. Q).
Setting p = sa/(l-sa), we find that this intersection occurs at that sa for which
sa
E0 l-sa’ Q)
B —F%3 -
1 - sa

Hence, for given B, the largest value of sa (largest p) that satisfies inequality (86) is

the value of sa at the intersection of the curve E ( , Q) and the straight line through

—Sa_
O\1l-sa
the origin with slope just greater than B.

We may interpret inequality (85) as stating that decoder computation is completely

unbounded it

l-g
R = max[sE (—— Q) +sB]. (87)
PTOL sy o\ s

Completely unbounded decoder computation indicates anomalous decoder performance.
In his simulations, Forney observed that the decoder fails to back up to correct past
errors if B is too small for a given rate R. We may interpret this error propagation
as arising from the anomalous decoder behavior when inequality (85) cannot be satisfied
for any s. From the geometric construction above, we see that R ro is just the slope
of the steepest line intersecting the Eo(p, Q) curve and passing through (-1, -B). This
steepest line is tangent to the E o(p, Q) curve. Analytically, S the maximizing value
of s satisfies the condition

l—sm l—sm
E'0 S s = smE0 s_'Q> +smB. (88)

Multiplying both sides of (88) by (l—sm)/sm, we find that

l—sm l-sm l-sm l-sm
EO( S > Q) °< S ) E‘O< S ,Q> = smE0< S , Q) + smB- B. (89)

m m / m m

The right-hand side of Eq. 89 is just Rprop

the maximum of Eo(p, Q) over all probability assignments Q, the left-hand side of (89)
15

- B. For those channels in which Eo(p, Q) is

is just the sphere-packing exponent derived by Shannon, Gallager and Berlekamp.
Symmetric channels are included in the set of channels for which E 0(p, Q) is the maxi-
mum over all Q of Eo(p,g_). Hence for symmetric channels,

(R )=R

EspBprop prop ~ B (90)

where ESP(R) is the sphere-packing exponent derived by Shannon, Gallager and

15 . . . .
Berlekamp. "In Fig.9, Rprop is the value of R at the intersection of the curves Esp(RprOp)
and Rprop"B' Using constructions such as that in Fig. 9, we may determine the
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minimum bias necessary to achieve a given value of Rprop'

Fig. 9. Construction of Rprop from

the sphere-packing exponent.

R
prop

A computer program was written to evaluate Rprop as a function of B for a binary
symmetric channel. Figure 10 shows a plot of R rop as a function of B for a binary
symmetric channel with crossover probability 3/64.

060

040
. Fig. 10. R as a function of bias for a binary
ROP prop

symmetric channel with p = 3/64.
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The theorem on the moments of Wo may be extended to allow the node of initial
divergence to be the nth node on the correct path rather than just the first node on the
correct path. The statistical description of the tree stemming from any node on the
correct path is identical to the statistical description of the origin node except that all
the I" values have a constant added to them. The lemma on the number of computations
at a node is unchanged and the proof is the same regardless of the node at which the
divergence begins. This bound on—VFi does not strictly lead to a bound on the distribution
of computation per decoded information symbol because the number of remerged nodes
grows exponentially with the block length L (which we have assumed to be very large).
We may conjecture that the bound above leads to a useful estimate of the computation per
decoded symbol. Simulations conducted by Forney11 and Niessen?! indicate that this

conjecture produces reasonably accurate results.
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4.3 ERROR PROBABILITY FOR SEQUENTIAL DECODING

In order to upper-bound the probability of error for sequential decoding, we must
examine the sequence of I' values assumed by an incorrect path and by a correct path.
When an incorrect path and the correct path are completely merged, the I'-value incre-
ments are identical for both paths. Let us begin with a simple case. Consider the set
of incorrect message subsequences that diverge at the origin and remerge with the cor-
rect message c+ K encoder shifts later. Call this set of incorrect message subsequences
M1 ¢ Let us find an upper bound to P(Elc)’ the ensemble average probability of decoding
some m' subsequence in Mlc instead of the corresponding subsequence of m. As the
reader might expect, the location of the minimum I' along the correct path plays an
important part in the error mechanism. Two separate cases must be considered. First,
we shall examine those cases in which me occurs at or before the end of the diverged
channel symbols for m'. Second, we shall examine the case in which F?nin occurs after
the end of the diverged channel symbols for m'. Let us use the notation of section 4.2,
in which the minimum I' along the correct path is presumed to occur d steps into the
tree. With this notation, the first case corresponds to d < ¢ + K, and the second case
corresponds tod > c + K,

For the first case, (d<c+K), there can be no decoder error if the decoder never
hypothesizes any completely merged descendant of m'. Thus, there can be no error if
the decoder never makes any forward hypotheses from the last diverged node of m'.

Hence for d <c + K, we may upper-bound IT‘(E1 c) by upper-bounding the ath moment of
the number of first F hypotheses made from the last diverged nodes of all m' in M 1
This last diverged node of m' occurs c + K steps into the tree. This moment of com-
putation is justthe h=c+ K, i = K, j=1 term in the right-hand side of inequality (80).
Since we have only assumed d < ¢ + K, we must consider each possible value of d
between zero and c + K. Using a union bound to account for the various possible values
of d, we may upper-bound P(Elc).

g saA l-s
P(E1 c) <e exp —CV[ san(T, Q) +saB—aR]
l1-g
exp -KV[saEO(T, Q) + saB]

exp +K {(1 sa)Eg (725, Q) +saE, (—— Q)}

c+K
X z exp -dV[(l—sa)Eo ’1'%5 Q)—saB]
d=0
exp --td{u(sa.H(l—sa.)E0 = sa’ Q)} (91)
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In writing (91), we have used the convention introduced in section 4.2 of enclosing
in braces those terms that are equal to zero for equal generator length convolutional
codes. The ath moment of the number of first F-hypotheses made from the last diverged
nodes of all m' in Mlc is an upper bound to the probability of error because one or more
F hypotheses implies a probability of error upper-bounded by one for that particular code
and noise sequence, and the ath power of one or more F hypotheses is not less than one.
Up to this point, inequality (91) has been established for d < ¢ + K. This paragraph
shows that inequality (91) is also valid for d>c+K. For d > ¢ + K, we could also upper-
bound ch) by upper-bounding the ath moment of the number of first F-hypotheses

made from the last diverged nodes of all m' in M ¢’ Unfortunately, such a technique does

not lead to the tightest upper bound for d = c + K.1 A tighter upper bound on P(Elc) is
obtained by noting that no decoder error can occur if one condition is met. This condition
is that the minimum T'° over the first c + K nodes be greater than or equal to I‘;: axt A,
This condition is really a series of subconditions that I"'C+K +A< 1"2 for all 0 sg<c+K,
This condition guarantees that whenever a path beginning with m' is hypothesized, the

same path beginning with the corresponding part of m, is also hypothesized. The T'-

value increments for merged messages must be ident?cal. Hence after ¢ + K steps into
the tree, the I' increments on any path beginning with m' must be identical to the T
increments on the corresponding path beginning with m,. But the condition P'c+K +A L
F2+K implies that the I' value of the c + Kth step on the path beginning with m' is more
than A below the I' value of the corresponding step on the path beginning with m_. Thus,
if F?nin occurs ¢ + K or more steps into the tree, the minimum I' along any path
beginning with m' is more than A below the minimum I'" on the same path beginning with
m_. Thus, the path beginning with m

0 0
with m'. Once the minimum I" on the path beginning with m is passed, the threshold

must be hypothesized before the path beginning

goes no lower and the path beginning with m' can never be completely hypothesized. If
an error is defined as occurring only when the decoder completes its computation and
gives the wrong information sequence, an error contributing to P(Elc) can occur only
if one or more of the subconditions is not met. Thus, an error contributing to P(Elc)
can occur only if I‘; < P'c+K + A for some 0 <g <c + K. Such an error contributing to
P(EIC) can occur only if

Fl‘:-f-K - 1_'; =-A (92)
for some 0 < g < ¢ + K. The condition in (92) is just the condition for the first F=-
hypothesis from the last diverged node of m', provided the minimum I° occurs g steps
in the tree. Hence, for d>c+K, P(Elc) may be upper-bounded by upper-bounding the ath
moment of the number of m' in Mlc for which inequality (92) is satisfied. For a fixed g,
this moment is just the h=c+K, i=K, j=1, g=d term in the right-hand side of inequal-
ity (80). Using the union bound over the different values of g, we may upper-bound —P_(—]—L‘—l:i
for d>c+K by the sum of these moments from g=0 to g=c+K. But this sum is just the
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right-hand side of (91) with d replaced by g. Hence inequality (91) also holds for
d > ¢c + K. Here again, the ath moment of the number of m' in Mlc for which (92) is sat-
isfied is an upper bound to the probability of error because one or more m' satisfying
(92) implies an error probability that is upper-bounded by one, and the ath power of one
or more m' is still more than one. Thus, inequality (91) is valid, irrespective of the
location of the minimum I' along the correct path.

The d-summation in the right-hand side of inequality (91) is the sum of a finite num-

ber of terms. The number td is dependent upon d, in that t, is the number of merged

d
channel symbols occurring after the dth step and before the end of the diver-

gence at the (c+K)th step. For the case in point, namely systematic convolutional codes

K if 0 sd<c

K-i ifd=c+i for 0 =i €KL

Since the d-summation is a sum of ¢+ K + 1 terms, it is upper-bounded by c+ K +1
times the largest term in that sum. The largest term in the d-summation may be found
by writing out the d-summation with the correct t d values. A good bit of notational

cumbersomeness will be saved if we let

_ _ _ sa -
r, = exp V[(l sa)E (7221 Q) saBj|

and

r, = exp -[p(sa) + (l-s:a.)E0 lf:a’ Q):‘

With this notation, the d-summation in (91) is equal to

Ne-1 K
()1 T e eyt (93)
'\d=0 i=0

Thus, the d-summation in(91)is the sum of a finite number of terms from two geometric
series. Each of these geometric series is dominated either by the first or last term in

that series. Thus either 1, (rl)(c_l), (rl)C or (rl)c(r1 /rz)K dominates the bracketed

term in (93). But the term (rl)(c_l) is dominated by either 1 or (rl)c. Hence, the
d-summation in the right-hand side of (91) may be upper-bounded by (c+K+1)A, where

A = max < (rz) (r1
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Substituting this result in the right-hand side of (91), we find that

r l-s
exp -cV san(—s—, Q) + saB-aR

exp -KV[san(l%s , Q) + saB]

exp -K {p(sa) —san(—l—;—s ) Q)}

exp - cV|:saE (l S, Q) + (l-sa)E ( sa Q) —aR]

l-sa’

l-s
P(El c) < Jcmax ﬁ exp —KV[SaEO(T , Q) + saB:l

exp -cV[saE (l S, Q)+(1 sa)E0 1 sa Q)-aR]

exp —KV[san(l—;—s—, Q) + 1-sa) B (12, Q)}

exp +K {san( Q) + (1-sa)Ej( 12 sa’ Q)}
(94)

where

= (c+K+1) €532,
The maximum over the first two terms in the right-hand side of inequality (94) is
that term for which exp -cV[ ] is largest. If we define

(1-sa) E f%a Q) (95)
the largest exp -cV[ ] term is equal to exp —CV[ san(l—;—S, Q) + EB(sa)-aR].

In this report, error exponents E(R) are presented on a per diverged tail bit
basis, Essentially, we are looking for an error exponent such that exp —K*V X E(R) =
exp —(k1+k2+k3+. . .+kV) E(R) is an upper bound to the probability__o_f_irror. Since we
shall eventually sum over all possible c¢ for a union bound on P(El), the term E(R)
must come from the other terms in the right-hand side of (94). For systematic con-
volutional codes, K*V = K(V-1). Rearranging terms in the right-hand side of (94)
and using Eq. 95, we find
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rexp —cV[san(-l—;—s, Q) + EB(sa) —aR]

* l-s p(sa)+ saB
exp-K'V saEO(-—S—, Q) tsaB+ Ty o1 |

]-:’(E1 c) <Jcmax ﬁ ___________________________

exp —cV[saE( , Q) + (1- sa)E(l )-aR}

exp -K*V{san(%s-, Q) + (l-sa)Eo(-l-f—:;, Q)].

(96)

The corresponding results for equal generator length convolutional codes are obtained
by setting K =K and setting to zero those terms enclosed in braces.

In order to obtain the tightest (smallest) upper bound on P(Elc), we may minimize
the right-hand side of (96) over all 0 <sa <1 and 0 €a <1. The maximum over the two
different expressions in the right-hand side of (96) is used only to select the largest term
from a number of terms in a union bound. Thus the values of s and a in each of the
two expressions on the right-hand side of (96) may be selected independently. For the

lower expression in (96), let us select s = 1/(1+a). Hence

.
exp —cV[san(lg—s , Q) + EB(sa) —aR:I

* l1-s p(sa)+ saB
exp~-K V san(-—E-—-, Q) + saB + V-1

P(E, ) SJ max === === ===—==———- -~ -

exp -cV[Eo(a. Q) -aR]

exp -K*V[Eo(a, Q).
L (97)

We shall now extend (97) to errors occurring because some string of ¢ incorrect

information symbols starting at the jth step was decoded instead of the corresponding
subsequence of m. Similarly ‘;1?1 Mlc’ we define M'c as the set of incorrect information
subsequences diverging at the j encoder shift and completely remerging ¢ + K encoder
shifts later. The conditions for accepting some m' in M‘c are identical to the conditions
for accepting some m' in M1 o except that all I'-value minima are taken only from the
jth node of the correct message onward, and all I' values are changed by the addition

of a constant representing I'.. Since the error conditions involve I'-value differences,

this additive constant does not change the ensemble average probability that these con-

ditions occur. Thus P(E ), the ensemble average probability that the sequent‘lal decoder
will accept some string of ¢ incorrect information symbols starting at the J node may
be upper=-bounded as
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exp -cv[san(i—;—s , Q) + EB(sa)-aR]

* l-g p(sa)+saB
exp~-K V saEO(—S, Q) +saB+ N o

PE.)sSsI max <—————-—-= . _ _ __ . . _ _____-=<
jc c

exp -cV[EO(a, Q)-aR]

| exp —K*V[Eo(a, Q)].

(98)

(See Gallager5 for additional details.) Following the steps in section 3.2, we may use

inequality (98) to obtain upper bounds on both P(Eblock) and P(Esymbol)' As in

section 3. 2,

L-j
PEyiock! S Z Z P(ch)'
j=1 c=1

As in section 3.2, the c-summation must converge. This c-summation converges if the

choice of s and a in the upper term in the right-hand side of (98) is restricted so that

-

1~
saEO(—S~S, Q) +Epg(sa)- aR 2 € >0 (99)

and if the choice of a in the bottom term is restricted so that

Eo(a, Q) -aR=¢€e>0, (100)

If conditions (99) and (100) are met,

NESIS Ve
+
1-e~VE (l_e—Ve)z

P(Epock) < Le

exp -K*VEI (R, B)

exp -K VE, (R)
(101)

where

l-s p-(sa)+saB}
El(R’ B) = max ?aEO(T’ Q)+saB+ Vo1 [

in which the maximum is over those 0 < sa <1, 0 <a <1 for which (99) is satisfied, and

EZ(R) = max[Eo(a, Q):,
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in which the maximum is over those 0 < a < 1 for which (100) is satisfied, The maximi-
zation over a in EZ(R) is identical to the maximization over p in section 3,2. Thus,
EZ(R) equals EU(R), the upper-bound error exponent for the optimum decoder. After

some algebraic manipulations we find

Ve
_— Al K+l e *
P(Ep o) She” | Fe * —ve 3| exp K VE(R,B),
e -1 (e ~-1)
where
'EI(R,B)

Ey (R, B) = min
E 4(R)

and EU(R) is the optimum decoder upper-bound error exponent defined in section 3. 2.

Following section 3.2, we may upper-bound P(Es
RES DAL

+
n? @

P(E

) <e
symbol (eVG_ 6_1)

The two terms in EUS(R,B) arise from two different causes. The term EI(R,B)
reflects the bias and represents errors occurring because of limited computation in
sequential decoding. On the other hand, the EU(R) term in EUS(R. B) represents a
certain residual error probability in sequential decoding which remains even if the bias
is increased without limit. This residual error probability has the same error exponent
as optimum decoding. Hence sequential decoding has the potential of giving almost
optimum probabilities of error, provided that the bias is selected properly. Although
a large bias will give a lower probability of error in the EI(R’ B) term, section 4.2
shows that larger biases require more sequential decoder computation. This trade-off
between error probability and computation load must be considered when selecting the
bias for a sequential decoder.

Plots of EUS(R, B) for systematic and nonsystematic convolutional codes are shown

in Fig. 1la and llb, respectively. The lower value of E_. (R, B) for systematic con-
K{sat+saB Us
volutional codes results from the term V-1 which is negative for systematic

convolutional codes and zero for nonsystematic convolutional codes. Figure 12 shows
the Pareto exponents for the biases used in Fig. 11.

For V=2 systematic convolutional codes, EUS(R, B) does not equal the optimum error
exponent until B is much larger than the B required for the same error probability with
equal generator length convolutional codes. The requirement of a larger B for a given
error exponent with sequential decoding of systematic convolutional codes requires more
computation because 3 hax’ the Pareto exponent, is smaller for larger B (see Fig. 12).

This slower approach to optimality for systematic convolutional codes occurs because
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Fig. 11. (a) E(R) for optimum and sequential decoding of a systematic
V = 2 convolutional code on a binary symmetric channel.
p = 3/64.
(b} EUS(R, B) for equal generator length codes on the same
channel as in (a).
6
T\
a - Fig. 12. Pareto exponent a for the
max
biases and rates of Fig. 11.
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o
K(sa)+saB
the term V-1 is negative for all but equal generator length convolutional codes.

Experimental testing of error probability bounds is exceedingly difficult because
immense amounts of data must be collected to accurately determine small probabilities.
No such data are currently available for sequential decoding; however, Forney11 has
observed larger error frequencies for systematic convolutional codes than for non-
systematic convolutional codes of the same effective constraint length K*V.

An intuitive feeling for the differences between systematic and nonsystematic con-
volutional codes in sequential decoding is gained by examining Eq. 59. The decoder
considers nodes by their I' values, with higher I'" values indicating higher probability
of decoder acceptance. Consider the last diverged node of an incorrect message which
differed from the correct message only at the origin.
length «.

Assume an effective constraint
For a nonsystematic convolutional code, the I' value of this last diverged
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node is the biased sum of the received log-likelihood ratios of k + V diverged channel
symbols. With a systematic convolutional code, the I" value of this last diverged node
is the biased sum of the received log-likelihood ratios of k + V diverged channel symbols
Vfl merged channel symbols. On the average, the biased sum of the log-likelihoods
for the Vf_l- merged channel symbols is positive. This positive quantity inflates the

and

I" value of the last diverged node, thereby making its acceptance more likely.

4.4 DISCUSSION OF SEQUENTIAL DECODING FOR MULTIPLE
GENERATOR LENGTH CONVOLUTIONAL CODES

There are many conceptual as well as notational problems that arise in any attempt
to extend the results of sections 4.2 and 4. 3 to multiple generator length convolutional
codes.

The major conceptual problem is that there is still no known way to rigorously upper-
bound the computation for sequential decoding if remergers occur in the code tree. As
discussed in section 4. 2, the number of remerged or correct nodes grows exponentially
with L, the data block length. The only rigorous bounds on computation for sequential
decoders with remerging trees restrict the decoder's backward motion to one constraint
length. Such a restriction is not used in practice and the results obtained with this
restriction may be somewhat artificial. Since the problem of bounding computvation in
sequential decoding with remerging trees has not been solved, we must refrain from
building too extensive a theoretical structure based on conjecture. Despite the problems
of developing rigorous bounds to computation for sequential decoding on code trees with
remergers, there are several things that may be said about sequential decoding of
multiple constraint length convolutional codes.

The results derived in section 4. 2 are also valid for arbitrary B in an infinite con-
straint length convolutional code that has no remergers. Thus the results in section 4.2
do present some fundamental limit to the computation in sequential decoding. Second,
we could repeat the arguments and conjectures of section 4.2 and upper-bound the
number of F hypotheses made on all nodes that are reached by paths diverging at the
origin and then remerging completely with no partial remergers in the middle. If such
an argument were made, we would find that the same conditions must hold if the ath
moment of computation on this limited set of nodes is finite. Thus, the results of
section 4.2 are closely related to decoder computation for multiple generator length
convolutional codes; however, we must be careful not to build too large a theoretical
structure on a nonrigorous foundation.

Arguments similar to those in section 4.3 may be used to upper~bound the ensemble
average probability of error for multiple generator length convolutional codes with
sequential decoding. The difficulty in completing such an argument lies in finding t

d

which is the number of merged channels symbols between the assumed location of F?nin
and the end of the divergence. For divergence patterns in which a phase 2 remerger

precedes a final divergence and remerger, t d is a rather complicated function of d. We
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could find t d through combinatorial generating function arguments as in section 3. 1;
however, such a combinatorial argument is rather involved and would give little addi-
tional insight at the cost of an exceedingly large amount of calculation. We may estimate
the error exponent by considering the subsets of incorrect messages that start with a
string of ¢ + 1 different information symbols and then completely remerge without any
more divergent subsequences. Repeating the argument in section 4.3 for just these sub-
sets of incorrect messages, we find that the component of a union bound representing
just the probability of erroneously decoding some incorrect message in these subsets

is upper-bounded by the expression

ke
P(Esubset) < const. exp -K VEUS(R, B),
where
E 4(R)
EUS(R, B) = min
E, (R, B).

EU(R) is the optimum decoder error exponent, and

i *
EI(R’ B) = max [jsan(l—;-s-, Q) +saB + KI"{I*{ {p.(sa)+saB}], (102)

with the maximum taken over those 0 < sa <1 and 0 < a < 1 for which
E (ﬁ Q)+E (sa) -aR > € > 0.
o\ s’ B

The result in Eq. 102 is found by recognizing that there are K*V diverged channel sym-
bols and (K—-K*)V merged channel symbols occurring after the (c+l)th encoder shift.
{cf. sec. 4.3). Although the "error exponent" presented here is obviously not rigor-
ously proved, the author conjectures that this "error exponent" provides a useful
estimate on the probability of error. No rigorous derivation of random-coding upper
bounds on P(E) can give a larger error exponent because the upper bound must include
the probability of selecting an incorrect message in the subsets of incorrect messages

considered here.
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V. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH

The upper and lower bounds on the probability of error for optimum decoding of mul-
tiple generator length convolutional codes present a reference standard for evaluating
other decoding algorithms for convolutional codes. The value of this reference standard
is shown by the agreement of the upper and lower bounds for rates greater than Eo(l , Q).
Further confidence in the tightness of the upper bound follows when one notes that this
upper bound on the probability of error for convolutional codes is the analog of the
random-coding bounds on the probability of error for block codes.

With this reference standard, we may evalutate sequential decoding for various mul-
tiple generator length convolutional codes. Perhaps the most surprising result in this
report is the result showing that sequential decoding is substantially suboptimum for
systematic convolutional codes when B = R and that this suboptimality can be reduced
by making the bias larger., Unfortunately, the decrease in the probability of error for
increased bias can only be purchased at the cost of increasing computation. This trade-
off between computation and error probability should be taken into account when selecting
the bias for sequential decoders that will be working on convolutional codes having dif-
fering generator lengths. The old rule of sequential decoding, "set B = R," gives good
results for equal generator length convolutional codes but eliminates any trading between
computation and error probability for multiple generator length convolutional codes. An
additional way of decreasing the probability of error is to use a longer encoder constraint
length K. At the encoder, this increase in K is generally very simple and cheap to
implement. Unfortunately, increasing K may substantially increase decoder cost if
there is a need either for a longer high-speed storage register or for longer decoder
registers than are provided in the computer at hand, These cost problems of selecting
a given constraint length are too specific to be addressed directly in a general paper.
However, in selecting the parameters of a sequential decoding system, one should weigh
the selection of constraint length, generator length and decoder bias,

I can offer several suggestions, some negative, for further research in the general
area of convolutional codes,

First, in any research, one should address those problems whose solution will
increase the understanding of the phenomena, I feel that the upper and lower bounds
on error probability for optimum decoders give sufficient insight to put the optimum
decoder problem to rest, If new techniques of upper-bounding block code error proba-
bility are discovered, these techniques should also be applied to convolutional codes,
Until such new bounding techniges arise, improvements in the upper bound presented
here will be restricted to finding smaller €'s and giving more coherent presentations.

Second, the bound on sequential decoder computation for arbitrary bias was derived
only for the first and lower moments, An investigation of higher moments of computa-
tion for arbitrary bias would be helpful. Present techniques would require that these
moments be calculated for "random tree codes" rather than convolutional codes,
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Results derived by Satvatge22 and recent work by Jelinek’% may provide some clues to
solving this problem.

Third, it would be satisfying to rigorously extend the results of sections 4, 2 and 4.3
to all multiple generator length convolutional codes instead of systematic convolutional
codes, The difficulties encountered in such an extension are discussed in section 4, 4.

Fourth, one may wish to consider other modifications to the sequential decoding algo-
rithm other than just changing the bias. For example, the decoder might be modified
to place more reliance on those received channel symbols coming from the longer gen-
erators. Such a modification would make the later stages of a partial remerger appear
less like a correct path and more like an incorrect path. Research into the problem of
sequential decoder modifications would reveal whether these modifications constitute a
genuine improvement or whether there is some hidden cost in computation or error prob-
ability. Such studies as this would be best accomplished as an interplay between theo-
retical development and simulated operations.

Fifth, some attention might be given to the problem of restarting a sequential decoder
after the decoder buffer has overflowed during a long search., This problem, which par-
tially motivated this research, was left unanswered as the more fundamental problem of
error probability arose,

Sixth, the random reselection ensemble of convolutional codes, which was used
throughout this research, is a bit unreal, in that few users will tolerate such weight
changing in the encoder. This somewhat unrealistic ensemble permits a much easier
derivation of the results, An investigation of the features of random reselection ensem-
bles and fixed generator ensembles would perhaps reveal whether this assumption of

reselected generators is essential to the results derived here or is just a convenience,
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Appendix A

In this appendix the right-hand side of inequality (66a) is upper-bounded. Substituting
inequality (66b) in the right-hand side of inequality (66a), we find that

. a

0 0
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Let us now examine the expectation on the right-hand side of inequality (A. 1).
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The conditional expectation E is over the choice of all channel sequences
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Let Xm'h denote the codeword sequence leading to node m' in Nhi' Interchanging
the order of addition and expectation in the right-hand side of inequality (A.3), we find

that
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Substituting inequality (A. 4) in the right-hand side of (A. 1), we obtain inequality (67)
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Appendix B

The purpose of this appendix is to show that

p(sa)+ (1-sa) Eo(1 fza’ Q) <0

for all values of the argument sa, From Eq. 31,

P(y/x)\°®
p(sa)=-In Z EQ(X) P(y/x) .
y X

w(y)

Since p(sa) is the negative of a semi-invariant moment-generating function, p(sa) is con-
vex M, Moreover direct differentiation and a result by Gallager5 show that (l-sa)
Q) is convex N, Thus

0(1 — is also convex l, Thus p(sa) + (1-sa) Eo(l =

there is a unique maximum of p(sa) + (l1-sa) Eo(l Q) and this maximum occurs when

sa’

d—(g;)‘; (sa)+ (1-sa) E (122, Q)]

Direct differentiation shows that this maximizing condition occurs for sa = 0. But
1(0) + E(0,Q) = 0.

Thus the maximum of p(sa)+ (1-sa) EO(I e Q) is zero.
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