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Abstract

Exokernel operating systems export much of the raw hardware interface to applica-
tions, allowing each application to provide its own operating system abstractions and
interfaces. While this removes the burden of dealing with sub-optimal abstractions
that traditional operating systems force on applications, there are potential costs of
higher memory and disk consumption by applications that are statically linked with
large amounts of Library Operating System (LibOS) code. This increase in appli-
cation size can result in poor cache performance, increased paging to disk, slower
process load times and possible upper limits on the number of concurrently running
applications. As most applications are expected to use the same LibOS, or large por-
tions thereof, use of LibOS's as shared libraries would alleviate much of this problem.
Since traditional mechanisms for loading shared libraries rely on high level operating
system abstractions, implementing a LibOS as a shared library presents a difficult
bootstrapping problem: How to read the file and virtual memory systems from disk
without a file or virtual memory system?

This thesis presents a design and implementation of a solution to this problem.
A Shared Library Server (SLS) is implemented, which provides access to basic file
I/O and VM routines via a simple inter-process communication (IPC) interface. A
small startup library is built that performs the same process as traditional shared
library loaders but using the SLS to read files from disk and manipulate the virtual
memory of the loading process. As such, it does not rely on the functionality provided
by the LibOS. This startup library is statically linked with the application, adding
approximately 27 KBytes to the application, as opposed to the entire LibOS code,
which is currently more than 680 KBytes. This greatly reduces the size of applications
and speeds up the process execution times.
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Chapter 1

Introduction

Exokernels are operating systems that are designed with a new interface for pro-

cess/kernel interaction. The driving principle behind exokernels is to give applica-

tions as much control over hardware resources as possible. This design leads to the

removal of most, if not all, abstractions that are provided by traditional kernels.

These abstractions are typically provided in user level library operating systems (Li-

bOS's). Each application is linked with the LibOS that the developer wishes to use,

and becomes part of the user-space code. The operating system abstractions and

interface can thus be customized on a per-application basis, forcing applications to

pay for only the abstractions that they want or need. This ability to provide custom

operating system abstractions would be prohibitively expensive if processes using the

same LibOS could not share code, though.

The inclusion of large amounts of LibOS code for each application has clear per-

formance and resource implications. As we expect most applications will be linked

against a standard LibOS with a UNIX-like interface, much of this code will be the

same for many applications. The fact that this significant amount of code will be

common amongst many processes presents an even stronger argument for the use of

shared libraries than in traditional systems.

Shared libraries allow common collections of code to be shared by multiple ap-

plications, thus reducing the amount of redundant disk and memory usage. These

libraries are linked into shared object files, and are loaded, if necessary, and mapped



into the application address space before the program begins. Typically, applications

have a small startup code section that is run at startup and that loads the necessary

shared libraries into the address space. This code reads data stored in the application,

which contains the name and version number for the shared libraries it was linked

against, and uses the file system and virtual memory interface to place an image of

each shared library into memory and then patch indirection tables for each symbol

that is defined in a shared library so that it contains the correct address.

This process is not trivial, often relying on rather high level file system and memory

system operations to read shared libraries from disk and place them in memory. In

traditional systems, these abstractions are provided by the kernel or via subsystems

that are running and universal for the entire system. In exokernel systems, though,

these abstractions and functions are provided by the LibOS. Thus, loading the LibOS

as a shared library leads to the bootstrapping problem of how to load the LibOS from

disk into memory, when the ability to do so is dependent on code in the LibOS.

In this thesis, this problem is solved by a Shared Library Server (SLS) and startup

library that provides enough I/O and memory functionality to perform the operations

necessary to load shared libraries into a process's environment. This is accomplished

through a limited interface for the required operations which is provided via inter-

process communication (IPC) between the process that is attempting to load shared

libraries and the SLS. This way, with a small amount of IPC abstraction implemented,

and another set of abstraction semantics agreed upon, the process has access to a set

of high-level abstraction functionality.

This thesis describes the design and implementation of the SLS and alternative

solutions to this problem. The current implementation is for Xok, an exokernel de-

veloped on the Intel x86 platform. In Chapter 2, issues surrounding shared libraries

are discussed. Then, in Chapter 3, attributes of exokernels, and Xok in particular,

that affect the use of shared libraries and the implementation of a shared library

mechanism are discussed. In Chapter 4, design principles that were used to guide

the development of a solution are described. Chapter 5 describes the solution that

was implemented, including a design overview, discussion of the implementation is-



sues encountered and an analysis of this solution compared with the design principle

objectives. Several alternative solutions are also discussed and analyzed. Chapter 6

makes a performance analysis of the proposed solution and one of the alternatives

that has also been implemented. Chapter 7 draws conclusions from the results and

describes future work directions.



Chapter 2

Shared Libraries

2.1 Background

Shared libraries enable multiple applications to share common libraries or collections

of functions. The concept of sharing physical memory between processes was origi-

nally described and implemented in the Multics Project[2]. Several more robust and

abstract implementations have been implemented since then. Most UNIX systems

today implement a version based on that which was designed for System V[1]. This

design allows shared libraries, which may themselves be reliant on other shared li-

braries, to be compiled. These shared libraries export a set of text and data symbols

that applications may be linked against. Applications that uses shared libraries have

a small amount of code that is run during startup, which loads the needed shared

libraries into memory, performs any run-time relocations necessary and then jumps

to the user-defined main() routine. Numerous optimizations on this implementation

have been proposed and implemented, most notably by Ho and Olsson[4]. Addition-

ally, many implementations of shared libraries allow for on-the-fly symbol relocation,

which allow the process to replace functions during runtime without modifying the

text segment.



2.2 Issues

Shared Libraries allow for multiple applications that use a common set of functions to

load the code for those functions once and share the memory between those processes

that rely on it. This is done by mapping a single physical memory page, or set of pages,

into multiple process virtual address page tables, allowing each process to see the

physical pages in their address space. This can have a number of benefits, including

decreased resource consumption, increased application load speed and development

environment improvements. But there are also some issues that need to be resolved in

order to enable the sharing of code between processes. These include ensuring that the

address references in the shared library text segment valid in each process environment

and implementing a useful application development environment interface to use of

these libraries.

2.2.1 Enabling Physical Memory Sharing

A large part of the benefits that using shared libraries achieves comes from the fact

that physical memory is conserved. In a hierarchical memory system with cache,

primary memory and paging to disk, this can greatly improve the performance of

applications because references are more likely to serviced by faster memory as there

is less physical memory in use for a given workload. In systems with absolute con-

straints on the amount of memory available, this can greatly increase the number of

applications that can be run simultaneously.

In order share code between applications in memory, the code must be exactly the

same for each application. Given this, either the environments, or certain portions

thereof, of all involved processes must be identical, or there must be a way to mask

the differences. For instance, the addresses of locations in the shared library code

that are referenced from within the shared library must be the same for all processes,

or there must be a mechanism to determine the addresses.

This requirement leads to the most central issue involved in shared library systems,

that of symbol resolution. There are several ways to ensure that a symbolic reference



to a particular location in a shared library is resolved correctly at run-time. First, and

most basic, is to require that a given shared library always be loaded into the virtual

address space at the same location. This scheme is depicted on the left of Figure 2-1.

This both allows the application to know where symbols in the shared library will

be loaded at link-time, but internal references to symbols within the shared library

are also known when the shared library is compiled. This proposal is possible, and

has even been implemented in some systems. However, more robust solutions are

possible.

The more common implementation involves indirection tables for symbols in the

shared library. Both the application which use shared libraries and the shared libraries

themselves have a data area which is populated with the actual addresses of the

symbols when the shared library is loaded. Each process environment has private

copies of these tables. This can be seen in the center of Figure2-1. All references to

symbols in the shared library, both from the application and the shared library itself,

consist of loading the actual address from the appropriate table and then jumping to,

loading from, or writing to the correct address. Shared libraries can also reference

internal symbols through relative offset instructions. These instructions allow jumps,

loads and stores that are addressed as offsets from either the current program counter

or some other register. Since the relative offsets of symbols are known when the

shared library is compiled, these offsets can be hard-coded into the shared libraries

and will be correct independent of the load address of the library. This optimization is

depicted on the right side of Figure 2-1. However, relative offset references eliminate

the potential of replacing these symbol bindings at run-time, and thus are usually

only used for references to local symbols, that is, symbols which are purely internal

to a given object file, and thus would not be dynamically replaceable.

While this method involves an extra level of indirection for each external symbol

reference, the performance loss tends to be small and the benefits of being able to load

the libraries at any address and modify the tables at run-time are large. Modifying

the indirection table during run-time would allow, for example, a word processor to

be linked against a generic printer driver interface, and load and unload drivers for



Scheme 1 Scheme 2 Relative Offset Optimization

I I J ---
Process address Shared Library Application or Library Reference to absolute Reference to relative

space text segment indirection table text or data address text or data address

Figure 2-1: Three ways of ensuring correct resolution of addresses in shared libraries.

specific printers while running, instead of including every possible printer driver in

the application statically.

2.2.2 Application Development Environment

Another issue that must be resolved when designing a shared library implementation

is that of how they will be used or referenced during the application development pro-

cess. Typically, shared libraries are compiled into . so files which are linked against

when building applications. The application, instead of including the shared library

in the actual application, merely contains a reference to the shared library its version

number. This process decouples the shared library and application development pro-

cess. This allows the shared library to be updated, to some degree, without requiring

applications that use it to be recompiled.
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Compile_Application
Determine which symbols are defined in shared libraries
Allocate Indirection Table for shared library symbols
Convert references to these symbols to indirections through table
Create DYNAMIC data structure which contains, for each library :

Names of shared libraries
Major and minor revision numbers

BeginApplication
Load process text and data segments into memory
FOREACH shared library in DYNAMIC structure

LoadSharedLib(lib-name, major_rev, minor_rev)
Jump to main

LoadShared_Lib (lib-name, majorrev, minor_rev)
Search paths for shared lib.name
If found and (major revision number == majorrev)

If (minor revision number < minorrev)
Warn user that library may be out of date.

Map shared library text and data segment into address space
Patch indirection table contents for application and library
If library_name was linked against shared libraries itself

FOREACH shared library that (lib.name) uses,
Load_Shared_Lib(newlib.name, major_rev, minor-rev)

Else, print error and die

Figure 2-2: Pseudocode for shared library compilation and loading in System V UNIX

2.3 Implementation

Different operating systems implement shared libraries with a variety of the previously

described concepts. The method that was chosen for this thesis is based on the System

V UNIX implementation[1]. The source code for this method is derived from the

implementation in the OpenBSD UNIX distribution and modified to work in the Xok

environment. Figure 2-2 shows the process by which applications that used shared

libraries are compiled and executed.



2.3.1 Compilation, Linking and Loading Applications

This design uses a combination of indirection tables and relative references. Each

process (or shared library) which is dependent on one or more shared libraries has an

indirection table for all symbols that are defined by the shared libraries.' References

to these symbols are indirected through this table. When the process is initiated,

a small amount of startup code is run that loads the shared library somewhere into

the process's address space. Based on the location of where the shared library was

loaded, the startup library fills in the indirection tables with the correct locations of

the symbols. If any of the shared libraries loaded are themselves dependent on other

shared libraries, these secondary shared libraries are loaded as well and the process

is continued recursively until all needed libraries have been loaded and the relevant

tables have been populated.

In loading the shared libraries, typically there are built-in routines for mapping a

disk file or set of disk blocks into a region of virtual memory. These calls will load

the disk blocks into physical memory and then insert the appropriate mappings for

those physical pages into the process's virtual page table. In cases where those disk

blocks are already resident in physical memory, all that needs to be done is to insert

the mappings for those pages into the new process's page table. This is how physical

memory is shared. Using this technique, an arbitrary number of processes can see the

same shared library in their address space at different virtual addresses while only

one copy of it is actually resident in physical memory.

2.3.2 Optimizations

Once this has been done, the user defined code can be executed since the indirections

will be correct in the current environment. In reality, many implementations actually

perform some of these symbol address calculations lazily. In particular, references to

text segment symbols are left as the address to a special routine. When a process

iActually, many linkers calculate all references to external symbols through an indirection table
when an application is linked against shared libraries, not just symbols in the shared libraries.
Addresses of application symbols are contained in an initialized data area and read from disk.



attempts to jump to a function address, it actually jumps to this handler routine

which then determines where the text address really is, replaces the entry in the

table with this value and then jumps to this address. This is especially useful for

applications that are linked against large shared libraries but which use only a few

procedures. Thus, only the portions of the indirection table which are actually used

are filled in.

2.3.3 Compiling Shared Libraries

Shared libraries themselves are compiled as Position Independent Code (PIC) in this

implementation. This involves making the code of the library independent of the

address it is loaded at. There are several ways this could be done. One is to implement

all loads and stores as program counter relative instructions. As such, the 'address' of

a symbol is how far it is from the instruction referencing it. Typically, however, this

is performed through an indirection table similar to that with which the application

references shared library symbols. This table, actually two tables: one for for data

symbols and one for text symbols, is generated by the linker and it is at a known

relative offset from the code. Without some mechanism of allowing a shared library

to exist unmodified at different virtual addresses, all shared libraries would have to

be loaded at a predetermined address which would limit the number shared libraries

one would be able to load.

2.3.4 Benefits

This design offers a number of benefits. First, overall system resources consumption

is reduced. When an application attempts to load a shared library that is being

used by another application, the memory consumption for that shared library is

amortized over all processes that use it. This can be quite a significant saving, as

the sizes of typical shared libraries as seen in Table 2.1 can be quite large compared

with the actual processes. For instance, libc. so is used by almost every application

written in C, so on a typical multi-user system, the number of processes sharing this



Shared Library Size in KBytes
libc.so.15.0 464
libg++.so.27.1 305
libcurses.so.3.1 104
libtermlib.so.2.0 83
libtermcap.so.0.0 9

Table 2.1: Typical Shared Library Sizes on x86 OpenBSD

library can be in the hundreds. While each process, were it linked statically would

admittedly not necessarily need all of the code in libc. so, the memory saving are

still quite significant. Additionally, since the processes that rely on a shared library

don't include the code in their own binaries, only one copy of the library needs to exist

on disk. While disk space is inexpensive, it is not free, and this can provide significant

reductions in disk usage. More importantly, with the reduction in the physical disk

space used to store applications, both the disk buffer cache and the main memory

cache performance improves.

Additionally, this process can improve performance. For short running applica-

tions, the time needed to load the process from disk can be significant. The use of

shared libraries allows this to be reduced by eliminating the need to load much of

the code when a process is initiated. Additionally, and probably more importantly,

with the reduction of overall memory consumption, page faults are less frequent so

applications run faster in the general case. The only drawback is that references into

shared libraries pay an indirection cost of looking up the address in a table.

Finally, one side benefit of this implementation of shared libraries is that system

evolution is greatly aided. Shared libraries can be compiled and maintained indepen-

dently of the applications which use them. Thus, if an implementation of a routine

in a shared library proves to be inefficient or incorrect the library can be modified

and recompiled. Then, every process which is dependent on that library will be able

to use the new version without having to be recompiled. Only when major changes

to the shared library, such as the interface to existing functions are changed or new

functions are added, do the applications that use them need to be recompiled. Typ-



ically, older versions of the library are left available so that programs that have not

been recompiled still function correctly; they merely do not take advantage of the

new library. The determination of which version of a shared library is made via the

major and minor revision numbers of a library, which are appended to the end of the

file names. For instance, libc. so. 14.0 and libc. so. 15.0 represent different ma-

jor revisions of libc . so while libc. so. 14.0 and libc. so. 14. 1 represent different

minor revisions which are interchangeable.



Chapter 3

Problem: Shared Libraries for

Exokernels

Exokernels can provide significant performance improvements as compared to tra-

ditional operating systems. However, due to their design, sharing text segments of

LibOS's is important. Unfortunately, traditional mechanisms for doing so do not

work.

3.1 Background

Exokernels are operating systems that are designed with the principle of exporting as

much information and control of hardware resources as possible to the application.

As Engler, Kaashoek and O'Toole state, "Traditional operating systems limit the

performance, flexibility and functionality of applications by fixing the interface and

implementation of operating system abstractions..." [3] While giving the application

the ability to customize such interfaces and implementations allows them to achieve

maximum performance and flexibility, requiring the user to program at such a low

level would be impractical and burdensome for most applications. The solution is

to implement useful sets of operating system abstractions in one or more Library

Operating Systems (LibOS's), which applications can include to provide a useful

high-level interface to the hardware resources.



The current exokernel operating system that is under development runs on x86 ar-

chitectures and is called Xok[5]. The previous version, Aegis, ran on MIPS machines.

Currently, a LibOS, ExOS, has been implemented which provides abstractions and

semantics roughly equivalent to BSD4.4.

The unique design of exokernels has several implications on the use of shared

libraries. The design makes the use of shared libraries much more significant in

system performance. While traditional operating systems share such code implicitly

in the kernel, sharing LibOS code in an exokernel system would significantly reduce

the physical memory usage. Unfortunately, the design also makes a shared library

system much more difficult to implement.

3.2 Increased Benefits for Shared Library Usage

Since exokernels move much of the functionality of traditional operating systems into

user level library operating systems (LibOS's), a typical statically linked application is

much larger than the same application on a UNIX-like operating system (in the ExOS,

the increase is more than 500 KBytes). Most applications in an exokernel environment

will be linked against one or a few LibOS libraries which provide a common set of

OS interfaces. The ability to pull the LibOS code out of the application and put

it in a shared library would have enormous effects on the disk space required by

the typical suite of application available as well as the physical memory required to

keep multiple applications resident. It would also drastically reduce the time needed

to load applications, eliminating the need to read more than 500 KBytes of ExOS

information every time an application starts up when the application code can be

as small as several kilobytes. Additionally, with large amounts of LibOS code being

shared between processes, buffer and main memory cache performance will improve.



3.3 Difficulties using Shared Libraries

Unfortunately, exokernels make it rather difficult to implement shared library systems.

The traditional method, as implemented in the startup library and the run time linker

(common. c and id. so in most UNIX systems) does not work for the fundamental

reason that it relies on the existence of high level OS system calls (such as open,

read, mmap, etc.) that are provided by the LibOS in an exokernel system, and thus

are not available to load the LibOS. This problem is harder than it may seem, since

many of these calls require significant portions of the LibOS to operate properly, so

duplicating the functionality in the startup code is not a satisfactory option.

Additionally, ExOS code often relies on data structures that are used by the

startup code. Shared libraries cannot have any undefined external references including

references to data or text symbols in the application that loaded (except through

explicit pointer passing) Since the startup code must have these symbols defined,

and the space allocated, in order to run, and the LibOS must be able to reference the

same data, ExOS needs to learn what the locations of these symbols are somehow. For

instance, data structures which contain information about the process environment

and file descriptor tables are initialized before ExOS is loaded, but used quite heavily

in ExOS. ExOS has no way of knowing when it is compiled where those data structures

will be, so some mechanism for informing it once it is loaded must be implemented.

Thus, in order to implement a shared library system, the following obstacles must

be overcome. First, processes must be able to access the file system without the

LibOS. Ideally, this includes both local disks as well as any remote file systems, such

as NFS or AFS, that are available. Additionally, it must also be able to manipulate

its virtual address space in a way that allows the mapping of the shared library to

take place in cases when the shared library is already in memory. Both of these tasks

must also be accomplished without 'reimplementing' another LibOS in the startup

code. Finally, a mechanism needs to be in place that allows the startup code to

update the data structures in the LibOS once it is loaded.



Chapter 4

Design Principles

In attempting to solve these problems, several design principles were formulated.

These principles enumerate what the design goals of the solution are with their rela-

tion to the performance and robustness of the system.

4.1 Maximize Code Sharing

The first principle, maximizing code sharing between processes, come directly from

the need for shared libraries in the first place. A shared library system that required

a significant portion of of common code to be linked statically into each application

would not solve our problem. While supporting generic user-defined shared libraries

is one of the end goals of the system, the initial need arose from the fact that each

application was being statically linked with ExOS, bloating even a typical HelloWorld

program to almost 500 KBytes in size. A solution which did not allow ExOS code to

be used as a shared library would not be sufficient.

In order for a piece of code the be able to be shared between processes, it must be

exactly the same in each process. This can be difficult because the virtual memory

layouts of different processes are quite unique. One possible technique for this would

be to require that a given shared library always be loaded at the same virtual address

in every process that loads it. If this were true, then all internal references could

be hard coded and would still work. This is possible and has been used in several



systems.

With the use of PIC code, however, the same piece of text segment can exist at

different virtual addresses and not require any text segment relocation. This is a big

win for shared libraries because this eliminates the need to determine, at compile

time, where a given shared library must be located, and no central record keeping or

address space allocation policy needs to exist.

4.2 Minimize Indirection Costs

Additionally, if it is possible to reduce the traditional indirection costs of shared li-

braries, this would be desirable. The standard mechanism for implementing shared

libraries is to include an indirection table in the data segment of the application.

Shared libraries themselves also contain a data area which is used for symbol ad-

dresses. All references to symbols defined in shared libraries are then converted to

indirections through these tables. These indirections are expensive compared to a

standard jump or load instruction. A shared library mechanism that did not require

such run-time indirections would have better performance than one which used the

standard strategy.

Additionally, a significant load time performance cost is undesirable. While spend-

ing significant time performing calculations and modifying the data or text segment

might provide for improvements in run time performance, one must weight these im-

provements with the additional time necessary to perform these optimizations. There

are cases where the time necessary to perform such operations dwarfs the possible

improvements in post-load run-time performance.

4.3 Robustness

The final principle is to achieve similar robustness, as a development tool as well

as a run-time tool, as that of traditional shared library mechanisms. The ability

to compile shared libraries and applications independently is an important benefit



of shared library systems. This reduces the compile time of an application greatly

because all of the shared library code need not be compiled. More importantly, when

a shared library changes, not having to recompile every application that uses that

library is a big win from the development perspective.

Additionally, a high level naming scheme for shared libraries is useful. This, as

opposed to sharing files based on inodes or disk blocks, allows for shared libraries to

be moved from location to location and from machine to machine easily. It is easier

for a developer to think about sharing particular files which encapsulate functionality

than to worry about which disk blocks contain particular basic blocks which might

be called from other code.

While most applications will be linked against a standard LibOS, the solution

should work all applications. A solution which only works for applications linked

against ExOS would not be as useful as a general case implementation. Additionally,

if LibOS's could be broken down into small modules, such as a separate file system,

virtual memory management system, network stack, etc., it would be desirable that

these could be shared in a fine grained manner. Requiring a specific set of these

sub-systems would limit the usability of such a system.

The ability to change symbol bindings at run-time is a powerful tool available for

traditional systems. New modules can be loaded in place of old one while the appli-

cation is running, providing different capabilities without bloating the application or

library.

Finally, the ability to use widely available and supported development tools is

important as well. Many tools, such as gcc and Id are widely available and well

supported. The ability to use these tools, as opposed to necessitating the development

and maintenance of separate ones, is highly desirable. In designing the shared library

mechanism, a strong effort was made to satisfy all of these goals.



Chapter 5

Solution: Shared Library Server

and Startup Library

Implementing a shared library mechanism with a statically linked LibOS is not dif-

ficult. The standard run-time linker (Id. so) works with minor modifications to the

startup code used for Xok. The difficult task is to implement a solution which enables

the use of ExOS as a shared library as well. Such an implementation is the focus of

this thesis.

The solution that was developed is centered around a Shared Library Server (SLS).

The SLS is a process that is initiated when an exokernel is booted. Applications are

statically linked with a small startup library which performs the necessary work of

loading the shared libraries. The startup code makes proxy LibOS calls through the

SLS to perform all of the needed I/O and virtual memory work necessary to load the

shared libraries. Then, once the shared libraries for the application have been loaded,

calls are rerouted to the LibOS of the actual application. The proxy LibOS calls are

performed via IPC calls to the SLS. The following section will describe the design and

implementation of the SLS, modifications to the startup code and conclude with an

analysis of the solution both numerically and as compared with the design principles

enumerated in Chapter 4.



5.1 Design Overview

The overall design of the Shared Library Server solution of enabling application use

of LibOS's as shared libraries was divided into two parts; work to be done by the

actual process and work to be done by the SLS. The decisions about this were made

primarily based on the amount of code necessary to perform these operations and

how integral to the standard operation of ExOS. Functions that do not require much

code to re-implement, or whose implementation for the purposes of loading shared

libraries could be quite minimal could be implemented by the actual process. Other

functions which were complex or relied heavily on much ExOS to operate would be

implemented remotely by the SLS.

After examining these issues, it seemed logical to put the file system, screen and

console I/O and virtual memory functionality in the SLS, and the smaller, more fine

grained routines, such as a number of the string operations and the malloc family

operations, in the startup code itself.

5.2 SLS Implementation

The Shared Library Server was implemented as a IPC server. On startup, it registers

itself with an IPC nameserver running at a well known location. The name server

allows other programs to discover where the SLS is located in order to be able to

connect to it. It also allows for the possibility of multiple SLS-type programs to be

running and for applications to have the ability to chose among them for a particular

interface or functionality. Additionally, with modifications to the nameserver, it could

allow for multiple SLS processes to be round-robin served to applications to reduce the

load on particular SLS processes, thus improving throughput, as the SLS currently

blocks on I/O requests.

Once running, the SLS listens for requests from applications that are starting up

and attempting to load shared libraries. It provides the ability to open, read, write

and mmap files from disk, as well as open and read directories and perform some



Table 5.1: Interfaces Implemented in the Shared Library Server

Function Name Description
open Opens a file for reading
read Reads a specified number of bytes from a file
iseek Sets the file position of a file
close Closes a file
mmap Maps a region of a file into memory
munmap Unmaps a regions of memory from a file
mprotect Sets the protection bits on a region of memory
dup Duplicates a file descriptor
dup2 Duplicates a file descriptor to a specific descriptor
opendir Opens a directory for reading
readdir Reads the next directory entry from a directory
closedir Closes a directory
status Displays to console the status of the SLS
printf Prints to the terminal or console a string
printd Prints to the terminal or console an integer

basic screen and console I/O such as printf and kprintf. Table 5.1 describes those

functions which are provided via IPC by the SLS.

File operations are based on 'proxy file descriptors' which the SLS uses to index

into an internal structure containing information about local file descriptors. Pe-

riodically, the SLS cleans up its internal data structures, removing entries for file

descriptors that were left open for processes that no longer exist.

Memory operations are performed through a LibOS interface which allows pro-

cesses to read and modify page tables of other processes. With the use of explicit

capabilities for these regions of the client applications memory, the SLS would have

access to only the area needed and only for the time needed, thus reducing the amount

of trust necessary between the client and server.

Screen I/O is provided to a minimal extent because it is useful to be able to print

out messages both to debug the code during development as well as tell the user what

happens if an error occurs before the shared libraries have been successfully loaded.

There are interfaces for printing out both strings and numbers (in both decimal and

hexadecimal) to both the console and to the tty.



The SLS is 630 lines of C code, which translates to 6 KBytes of object code prior to

linking with the startup code and LibOS. As a comparison, the resulting application

is slightly larger than cp. If this process is linked statically with ExOS, the total

size is approximately 500 KBytes. The nameserver which was implemented to allow

applications to find the SLS, as well as any other service-providing servers, is less

than 100 lines of C code.

5.3 Startup Library

Another large portion of the changes to the system involved modifying the startup

code used by applications to prepare the environment before calling the user defined

main procedure. For applications using ExOS, this includes code to set up the en-

vironment variables, process information, map in shared segments of memory and

initialize the file descriptor table. For applications that use shared libraries, this

also includes code to map the shared libraries into the process virtual memory ad-

dress space and perform the necessary run-time linking for the symbols defined in the

shared libraries.

Traditional applications are linked against a small amount of startup code which

contains process initialization routines. In this implementation, this has been aug-

mented to include such initialization routines, as well as the code to perform run-time

relocations and IPC stub routines to interface with the SLS. The initialization rou-

tines are necessary to allow IPC to function properly, and to prepare certain data

structures.

This code relied on a number of LibOS routines which in most systems were

available from the OS. These routines are not available until ExOS is loaded, so some

other mechanism must be provided. For the file, VM and other I/O routines that

the SLS provides, IPC wrapper stubs were implemented with the same syntax and

semantics as the real calls. For other calls, bare minimum implementations were

included statically in the startup code.

A crude memory allocation system was implemented to replace malloc, calloc,



Table 5.2: Interfaces Implemented in the Startup Code

Function Name Description
getuid stub user id functions
getgid stub group id functions
getenv returns the environment data structure
strerror Returns an error string
strsep Separates a string based on a delimiter
strdup Duplicates a string
strcmp Compares two strings
strncmp Compares n bytes of two strings
strcat Concatenates two strings
strchr Locates a character in a string
memcpy Copies a set of bytes from one location to another
ui2s Converts an unsigned integer to a string
strtol Converts a string to a base 10 integer
malloc Allocates an n byte chunk of memory
free Null, as opposed to the standard implementation
calloc Allocates an n byte chunk of memory and zero's it out
realloc Enlarges a previously allocated chunk of memory
bzero Fills a region of memory with zero's

realloc, free and bzero. This was done using an incremental pointer into a region of

well known VM. All new allocations are done at the next point in this location, with

the size of the allocation being stored first. When an attempt to realloc is made, if the

new size is larger than the original size, the contents are copied to fresh space at the

end of the incrementing pointer. This process does not allow for reuse of memory that

is deallocated via free or realloc, but during tests, less than a 4k page of memory was

used during the entire process so this is not much of an issue. Additionally, several

string manipulation and evaluation routines were also implemented statically in the

startup code. Fortunately, this only required about 150 lines of C code to implement,

thus not bloating the startup code too much. Much of this is used in Id.so to deal

with file names and path names of the search paths for loading in the shared libraries.

Table 5.2 describes the routines which were re-implemented in the startup code of

processes.

Incidentally, to reduce the complexity, the code to the run-time linker which is



typically a shared library itself, Id. so, was statically compiled in with the startup

code. There is no inherent reason why this has to be true, and to reduce the size of

the statically compiled portion of the startup code this could be removed and used

as a shared library. However, with the addition of a technique described later in this

thesis, the benefits of this would be negligible.

5.4 Modifications to ExOS

The final step, which was more difficult than first imagined, was to convert ExOS into

a shared library. First, the routines which are only used during startup were removed

as vestigial. In several places, interfaces were added to allow the startup code to set

values of shared library data structures so that the process state which the startup

code initialized could be passed on to ExOS once it was loaded.

Then, in numerous places in ExOS, asm statements which manually inserted se-

quences of assembly instructions had to be modified to be PIC compliant. When

procedures are compiled as PIC code with OpenBSD gcc and Id, the ebx register is

reserved to hold offset information for the Global Offset Table, used in the calculation

of addresses of symbols in PIC code. In some of the manual insertions of assembly

code, this register was used, destroying the state that the compiler depends on. This

was common in system calls which had 3 or more arguments because the system call

interface passed the third argument in this register. Instead of modifying the kernel

system call interface, a pushl ebx and popl ebx were placed surrounding instances

of assembly which used this register, thus preserving the visible consistency of this

register.

Finally, there were a number of symbols used in ExOS which referred to kernel

exposed data structures. Several data structures which the kernel used were placed

in specific locations in the process address space, and thus were not part of the ap-

plication data segment. The addresses of these symbols had traditionally been set by

using a DEF_SYM(symbol,address) macro that inserted assembly directives to create

symbol table entries at specific addresses as absolute references. The linker would not



relocate these references or allocate storage for these symbols as the storage was allo-

cated by the kernel and the address did not change as a function of the load address.

However, the compiler could not handle these references correctly when compiled as

PIC code since it did not know it was an absolute reference until it had already gen-

erated the assembly instructions to perform the indirection.' Additionally, the linker

was unable to handle these references in application code that used shared libraries

as well. It was unclear if this was a bug in ld or a deficiency in its specification.

This was solved by replacing all such references with constant addresses cast's to the

appropriate types in header files. This has the unfortunate consequence of requiring

all code using these symbols to be recompiled when one changes, as opposed to only

requiring a re-link, but no other solution to the problem was evident.

5.4.1 Implementation Difficulties

In addition to previously stated problems, there were a number of difficulties encoun-

tered while implementing this solution. First, and most frustrating, was the lack of

documentation on both specifications of standards and implementations of tools such

as Id. It was quite difficult to find sources which accurately described the mecha-

nism by which shared libraries were implemented and loaded, run time relocations

were performed, requirements of Id for correct operation and the like. Going into

this project, the concept of linking seemed rather straightforward. There were many

unexpected complexities which made it far from that, though.

Reliance on standard tools proved periodically problematic as well. Several bugs

in standard development tools were discovered during this project, most of which ex-

ercise non-standard code paths2 . Because of this, even knowledgeable people enlisted

for help had a hard time discovering the causes of certain behaviors.

Finally, implementing this process while the implementation of the static LibOS

and kernel were evolving was challenging as well. Changes were made in the sys-

1This could conceivably be solved by implementing a _attribute- absolute option for data
declarations in gcc.

2 For instance, ld writes the RRS DATA section incorrectly when linking a program with both
the -T textoff set and -Bdynaminc options.



tem and its interfaces which required reworking previously working portions of this

implementation.

5.5 Design Criterion Analysis

This solution satisfies the stated design criterion well. This is in large part due to

the fact that it maintains much of the interface and mechanism as traditional shared

library systems, which were designed with many of the same goals in mind.

5.5.1 SLS Maximizes Code Sharing

The SLS solution maximizes the code sharing between applications. A shared library

implementation that did not allow the library operating system to be implemented

as a shared library would not achieve similar benefits on code reduction, either on

disk or in memory, as one that did. Since the current solution allows even the LibOS

to be used as a shared library, it is reasonable to expect that any other library would

be implementable as a shared library using this mechanism.

The one possible shortcoming of this solution, however, is that the startup code

has expanded from about 3 KBytes to almost 27 KBytes (when stripped) of code

that is statically compiled with the application, and thus not shared. While this

is not very large in comparison with many applications being written, it is still an

issue. There is a solution to this problem, though. A hybrid of this and one of the

alternative solutions discussed in the next section would eliminate this code sharing

problem for the startup code without losing the other benefits of the SLS solution.

5.5.2 Minimize Indirection Costs

The SLS solution does not add any indirection costs to shared library references com-

pared to traditional solutions. While a single level of indirection is still present, this

cost has shown to be with reasonable bounds and any improvements to general case

shared library loading techniques should be applicable to the solution implemented



as well[4]. The startup costs, including runtime relocation, are the same as with

traditional shared library implementations as well.

5.5.3 Robustness

This solution is quite robust, as well. It allows for shared library file relocation

and recompilation, as long as the external symbol interface remains the same, just

as traditional implementations do. Additionally, the interface to modifying symbol

binding at runtime remains available because the indirection is made through a table

in the data segment. This allows for actual dynamic linking at run time.

5.6 Alternative Solutions

During the design of the Shared Library Server solution to loading shared libraries,

several other alternative solutions were proposed, and one was implemented by an-

other member of the group. Here several of these solutions are described and analyzed

them with respect to the design criterion.

5.6.1 Absolute Mapped LibOS image

One proposal to the problem of sharing LibOS code was for exec () to map an image of

a 'ghost process' which included the LibOS code into each applications address space,

so that each application did not have to include the LibOS code but could instead rely

on it being present when it was executed. Applications are linked against an assembly

stub file which sets the addresses of all the LibOS symbols to absolute addresses.

Then, the image of the process that actually contained all of the LibOS code is

mapped into each process when loaded so that the absolute symbol addresses are

correct.This method was implemented in the Xok environment for ExOS by Thomas

Pinckney.



Implementation

This method was implemented by first compiling a program with an empty main pro-

cedure with all of the ExOS code. Similar to traditional shared libraries, every object

file that could be needed by an application must be present. From this executable,

an assembly file is generated which has symbol definitions for all of the externally

defined symbols in ExOS with the locations defined as where they would be if the

ghost process were loaded at a particular address (in this case it was Ox10000000).

Using this assembly stub file, programs are compiled without ExOS code and all

references to ExOS symbols are relocated at link time to where they are defined in

the stub file. Then, when a program is executed, the exec'ing process actually loads

the application and the ghost process. The application is loaded at the traditional

address while the ghost process is mapped into the address space at the predefined

location in such a way that the absolute addresses as defined in the assembly stub

file are correct.

A few subtleties exist in the technique, most regarding back references from the

LibOS code into the application. The LibOS needs to reference the program's main

procedure, for which it does not know the address at the ghost process compile time,

and which may be different for each process using the ghost process LibOS code.

This is solved by having the entry point to the process place the address of the user

defined main procedure in a data segment location for the LibOS so that it can call

that procedure after the process startup code in the LibOS has completed.

Design Criterion Analysis

This solution achieves some of the goals as defined by our design criterion in Chapter 4.

First, it achieves a very high rate of code sharing for the LibOS, and conceivably

other libraries as well. There is no overhead for loading in shared libraries in terms of

code size, unlike traditional methods of using shared libraries and the Shared Library

Server method. The entire text segment of the shared libraries can be shared, which

seems to be the best of both worlds from a code sharing standpoint.



Additionally, there are no indirection costs. Since programs know the address of

all LibOS (and shared library, in general) addresses at link time, there is no need for

an indirection table. All references, including text segment and data segment symbols,

are direct jumps or loads. This avoids the table lookup and run time relocation costs

of traditional systems.

Unfortunately, this solution has some severe deficiencies in the robustness domain.

First, maintaining a ghost process image is a bit clumsy. Additionally, because the

virtual address region of each library must be known at link time, every possible set

shared libraries that could be used together must not have overlapping addresses.

This is not a scalable solution, as it limits the number of shared libraries that could

be run together and would require some sort of central authority to allocate virtual

address regions for shared libraries. Finally, whenever even a minor modification to

ExOS occurs, all applications must be recompiled because the symbol locations will

have changed. While an version of this method could be conceived which worked

for multiple LibOS's, it would be significantly more complicated and is not currently

implemented.

5.6.2 Disk Block Fingerprinting

Another solution proposed by Dawson Engler was to share libraries through the shar-

ing of identical disk blocks. This would be implemented by extending the inode

structure to include a 'fingerprint', for instance a 32 or 64 bit CRC of the disk block

contents. In the file system, when an attempt to read a file is made, the finger print

of the disk blocks are read from the inodes and if any disk blocks that currently reside

in the buffer cache have an identical disk block fingerprint, the block is not read, but

mapped from the buffer cache instead. Thus, if the LibOS is linked in its entirety

and placed at the beginning of every application, all symbol references in it would

be relocated to the same address, except for several references into the application

specific text or data segment, and thus most disk blocks would be identical between

applications in their LibOS code. When the application is read in by exec (), the

LibOS code would be shared automatically.



Design Criterion Analysis

This proposal performs well against the design criterion in several aspects but has

some severe shortcomings.

It will indeed allow for a significant amount of code sharing. If exec() were

implemented such that the few references to the application text and data segment

were patched after they were read, the entire LibOS would be sharable. Additionally,

this idea could potentially lead to faster reading of disk blocks that happen to be

identical but are not known to be by the system. For instance, and programs that

happen to have been statically with the same .o files which are offset in the resulting

application at the same point off a disk block would be shared by this method. The

odds of this happening could be increased by ensuring object files filled to the next

disk block size. This does not achieve the benefits of reduced disk storage needs since

the duplicate blocks still exist on disk. This is not as important as the memory costs

and startup time benefits, though, since disk storage is cheap and growing so quickly.

It would perform better than the SLS solution in terms of indirection costs. Since

applications are linked statically, there are no indirections into the shared library

code. All jumps are direct since the location of the symbols is known at link time.

All 'libraries' must exist at the same location in applications to achieve this benefit

though. It would be reasonable to expect this for LibOS code, but extra care would

have to be taken to achieve this for other libraries since the number of applications

that use specific combination of shared libraries is smaller than the number that use

a specific LibOS.

This method, however, has serious shortfalls in robustness. First, the entire ap-

plication must be compiled and linked and written to disk, unlike traditional systems

where the shared libraries are not relocated or written to disk. Additionally, any

changes to the shared library code necessitates a recompilation of all applications

that use that library for the changes to be effected. Additionally, this solution re-

quires low level modification of the file system which would have to be present on all

file systems mounted, including any network file systems. It also prevents the use of



any dynamic linking as there is no indirection table to be modified at run-time.

5.7 Summary

The Shared Library Sever implementation seems to provide the best combination

of attributes compared with the design goals stated in Chapter 4. It provides a

high degree of physical memory sharing and conservation in addition to being highly

flexible and robust. While the alternatives would provide the ability to implement

direct references to symbols which might improve performance slightly, the cost in

flexibility and robustness is very high.



Chapter 6

Performance Analysis

Another important measure of the success of this design is the effects it has on the per-

formance of applications in the Xok environment. To gain more insight into how well

this implementation performs, both microbenchmarks and application performance

tests were run.

6.1 Experimental Setup and Methodology

These tests were performed on a Intel Pentium 166 MHz computer with 64 megabytes

of RAM. It was running Xok and applications were linked against the current version

of ExOS. All executables, libraries and data files used in these tests are loaded from

a remote NFS file server over standard 10 MBit/sec Ethernet.

These measurements attempt to discern the performance comparisons between

statically linked programs, dynamically linked programs loaded via the SLS, and

programs linked against the ghost process image. Microbenchmarks such as the speed

of specific operations via the SLS compared with those operations as implemented

with the process are used to determine the overhead incurred by using IPC to make

these requests. Additionally, tests of specific applications were run to determine both

process execution time comparisons, and holistic run-time comparisons. Results are

averages of 10 trials, and the standard deviation is less than 3% of the average in all

cases.



Table 6.1: Time (in milliseconds) per read() call : SLS Vs. Native ExOS Operations

Size of read Native ExOS SLS Difference (% increase)
128 Bytes 0.289 0.335 .046 (15.9%)
256 Bytes 0.561 0.599 .038 (6.8%)
512 Bytes 1.090 1.140 .050 (4.6%)
1024 Bytes 2.160 2.210 .050 ( 2.3%)

6.2 Microbenchmarks

In order to determine the overhead of using the SLS to perform I/O and other func-

tions, tests were run using the SLS and native ExOS calls to read from files. These

tests consisted of reading 10,000 contiguous segments from a file ranging from 128 to

1024 bytes per segment using both the native ExOS open() and read() as well as

via the SLS. Both methods were identically linked and used identical code, with the

exception of the file operations. The results in Table 6.1 show that the additional

costs for making proxy calls through the SLS server amount to between 38 and 50

microseconds for per call. The overhead ranges between a 16% increase for small

(128 byte) reads to a 2% increase for larger (1024 bytes) reads. Loading the current

version of ExOS as a shared library results in 78 calls made through the SLS, so the

run time is increased by less than 4 milliseconds compared with a system which made

these calls through ExOS directly.

Then, using a combination of the cycle counter in the Pentium processor and

process run times, measurements were taken to determine the costs of exec'ing a

process. Cycle counts up until the main () procedure was called were taken for stat-

ically linked programs, dynamically linked programs and programs linked with the

absolute mapped ExOS when they were resident in the buffer cache. The overall

run time of the process was used when they were not in the buffer cache, since the

startup costs were large enough that the body of the program was negligible. Thus

the runtime was a reasonable approximation for the startup cost when the startup

cost was that high. This was necessary because startup cost was a combination of

the time necessary to load it from disk as well as the time between the process was



Table 6.2: Process exec() Times (in milliseconds)

App Static Dynamic App Absolute Mapped
State App via SLS Apps
On Disk 1196 152 23
In Cache 1.2 20 4.4

initiated and when it reached the main () procedure.

Table 6.2 shows the results of these tests. For applications in the buffer cache, the

static application outperforms the dynamic application by 18.7 milliseconds. This

is consistent with separate measurements of the individual cycle-counts for the call

to rtldO. This procedure, which performs the run-time relocations, accounted for

approximately 18 milliseconds for applications which were linked dynamically with

ExOS. The applications which were linked with the absolute mapped ExOS are slower

than the static applications due to a small amount of additional code in the startup

sequence which copies the ARGV array and manipulates a small amount of the page

table.

For applications that are not in the buffer cache, however, the dynamic application

provide a large performance improvement over static applications. With the shared

ExOS resident in memory, the exec () time for dynamic applications was only 13% of

that of static applications. As expected, applications linked with the absolute mapped

ExOS were faster still, as no run-time relocations are necessary, and the application

itself is smaller because it does not contain the startup library designed for dynamic

applications.

6.3 Process Run-Time Performance

To further measure the startup costs of applications, Table 6.3 shows these cost

per perl exec () call as measured during a test of a perl program which recursively

executes itself 1000 times. The tests include all three types of linked programs, as well

as under OpenBSD for comparison. The difference between the dynamic application



Table 6.3: Exec() 0 Call Cost (in milliseconds)

App Static Dynamic App Absolute Mapped OpenBSD
State App via SLS Apps
Time 39.7 69.7 22.9 35.5

and the version linked against the absolute mapped ExOS show a 46.8 millisecond

increase in the perl exec 0 times. This is larger than that accounted for in the raw

exec () costs shown in Table 6.2. This is expected, though, since there is overhead

beyond merely exec'ing the process when a perl process is initiated.

Figure 6-1 shows the results of run time tests of larger programs to measure overall

process performance. These involved cat'ing and diff'ing files that were not in the

buffer cache. Figure 6-1 shows the resulting execution times. These were averaged

over 10 executions, with the application resident in memory. These tests measure

the overall performance effects of run-time relocations and converting ExOS to PIC.

In all cases except for sed, the execution time of the dynamically linked program

was within 2% of that of the statically linked program, and within 3% of that of

the program linked with the absolute mapped ExOS. In the case of performing a

simple sed pattern-replace on a 1 MByte file, the dynamically linked version was

10% slower than the static application and 5% slower than the application with an

absolute mapped ExOS.

Disk space consumption was likewise improved. As is evident in Figure 6-2,

dynamically linked programs are on average between 450 KBytes and 550 KBytes

smaller than their statically linked counterparts. Applications linked with the abso-

lute mapped ExOS were 30-50 KBytes smaller still. This benefit is due to the fact

that these processes do not include the startup code necessary for loading shared

libraries.
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Chapter 7

Summary

7.1 Conclusions

The ability of processes to bootstrap their LibOS's via IPC has proved quite success-

ful. In addition to gaining all of the memory and disk space consumption benefits, as

well as significant development environment advantages, the process execution time

for applications not in the buffer cache drops by almost an order of magnitude. This

is an absolute necessity for an operating system that intends to have reasonable global

performance in an environment where numerous applications are run simultaneously.

While either implemented solution satisfies the necessary performance and resource

consumption requirements, the robustness of the SLS solution adds a large improve-

ment in the development environment, as well as enabling true dynamic linking, that

the other does not. In all, this project succeeded in meeting the design goals specified

at its initiation as well as providing significant performance improvements.

7.2 Future Work

There are several optimizations to the current solution which could be made. First

would be to merge the two implemented methods such that the startup code is linked

in the same way that the absolute mapped Exos image is used. This would eliminate

the extra disk consumption as well as shorted execution times by eliminating the



disk I/O necessary to read this in. Additionally, optimizations suggested by Ho and

Olsson suggest even better performance possibilities[4]. For processes that need to

be executed before the SLS can be started, separate versions should be compiled

which use shared libraries. Once the SLS is loaded, these new versions would be

spawned to replace the older ones which have their LibOS statically compiled with

them, thus allowing them to benefit from the memory requirement reductions using

shared libraries. This could also be done for the SLS itself. The shared library version

of the SLS could be brought up and replace the mapping in the nameserver for the

environment id in which the new SLS exists. The old version could then terminate

itself once it determined it was not needed anymore.

The power that exokernels give to processes comes bundled with a requirement

that the processes implement the abstractions that they want to rely on. This can

migrate bootstrapping problems up from the kernel to the user processes. Loading

shared libraries is a prime example of this problem. Processes would like to take

advantage of memory and disk abstractions to load shared libraries, but are also re-

quired to implement these abstractions. This problem is encountered regularly in the

boot process of operating systems, but traditional systems provide these abstractions

to, and enforce them on, the processes so that the processes have these abstractions

available at execution time.

The solution proposed to this problem could be a model for other similar situ-

ations. IPC could be used to provide access to abstractions or functionality that

the process did not want to implement. In this way, processes could chose among a

possible variety of servers implementing services with different semantics or qualities.

With explicit access control transfer via capabilities, the server could be given access

to whatever resources were necessary to provide such a service. This might allow

implementation of services where there is a high degree of complex shared state be-

tween processes that use a particular service or shared resource abstraction. Allowing

a server to maintain such shared state through an explicit interface could enable the

enforcement of stronger semantic checks on the integrity of such shared state than is

available through sharing of low level resources such as memory pages.
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