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ABSTRACT

In the context of seismic hazard quantification, the main objective
of statistically analyzing an earthquake catalog is to estimate the rate
of earthquake events as a function of magnitude and geographical location.
Four mayor problems that arise in such an analysis are addressed in this
thesis:

1. Earthquake size is often reported in different scales and needs
to be expressed in a uniform scale. Statistical techniques that account
for nonlinearity of the regression of one size measure against another,
the heteroscedasticity of the regression error, and the presence of
outliers are proposed. Corrections for the effect of measurement errors
in the data and incompleteness of the earthquake sample are derived on a
theoretical basis. An approximate formula to combine several reported
size measures to a single scale is also presented. Finally, a conversion
formula is proposed that differs from the regression curve and corrects
for bias in the estimation of the recurrence rates.

2. The earthquake sequence typically displays a high degree of
clustering. Clustering must be included in the statistical model, or the
original catalog must be thinned through removal of the dependent events
prior to further analysis based on the Poisson assumption. A method to
identify clusters in the catalog has been developed. The procedure
differs from earlier ones in that it allows the extent of the cluster in
space and time to vary for each main earthquake and accounts for temporal
and spatial variation of the observed recurrence rates (temporal variation
is caused mainly by incomplete reporting).

3. The reported data is invariably incomplete, especially for events
of small magnitude and in early time periods. Several methods of varying
complexity are presented to account for this incompleteness. The methods
differ in a fundamental way from those currently in use: they represent



incompleteness explicitly through a probability of detection that varies
with magnitude, time and spatial location and estimate this probability
simultaneously with the recurrence rate from the historical data. Models
in which the probability of detection accounts for the temporal and
spatial distribution of population and instruments are also presented.

4. Another major novelty is the extension of the usual notion of
seismogenic provinces with uniform recurrence rate to provinces with
smoothly varying recurrence rates. A maximum penalized likelihood method
is proposed for the estimation of the recurrence rates and allows to
control the degree of smoothness through a few input parameters. The
method of estimation is further developed to account for errors in the
epicentral location and magnitude of the reported events.

Thesis Supervisor: Daniele Veneziano

Title: Professor of Civil Engineering
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Chapter 1

STATEMENT OF THE PROBLEM

Evaluation of seismic hazard at a given site typically relies on

historical seismicity in a region around that site. The statistical

inference of future events on the basis of past activity poses however

several problems:

1. Earthquakes are typically reported in different magnitude

scales and a conversion of these scales to a single size

measure is necessary.

2. Seismic data invariably displays a considerable degree of

clustering, which is contrary to the common assumption of

Poisson events.

3. Historical reporting of events is incomplete, especially for

low magnitudes and early time periods.

4. The historical data often does not support the hypothesis of

homogeneous seismicity within extended geographical regions.

Although one could formulate a statistical model that incorporates

all of the above characteristics, the statistical estimation of the

parameters of such a model would be prohibitively complicated, unless

drastic simplifying assumptions are made. In this thesis, it is preferred

to address separately the problems of magnitude conversion, clustering,

incompleteness and estimation of the recurrence rates. Contrary to

current practice, the latter two problems are considered simultaneously in
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this thesis. The present chapter reviews the above four problems and

methods proposed in the literature. Several important features of the

data that have not been previously considered will be indicated.

Statistical techniques that address these issues are developed in Chapters

2, 3 and 4, for problems 1, 2, and simultaneously 3 and 4 respectively.

Chapter 5 summarizes the new methods of analysis and states conclusions.

The problem of magnitude conversion has received relatively little

attention in the literature. Various authors have published conversion

formulas of one size measure to another (e.g. Nuttli, 1974; Street and

Turcotte, 1977). However, the regression lines obtained by different

authors seldom agree due to regional variations of the regression

relationship and to differences in the inference method. There is a need

to establish a general procedure for deriving conversion formulas from the

historical data. One such procedure is developed here, which includes the

following characteristics of the data set:

- the relationship between two size measures may be nonlinear

- the regression error may be a function of the regressor

- outliers may be present

- the reported size measures may include measurement errors

- some events may have more than one size measure reported

The regression line and the distribution of the residual describe the

conditional distribution of the dependent variable, given the independent

variable. In application to magnitude conversion, complications arise,

because the learning sample (i.e. the data set that is used to estimate

the regression line) may have different characteristics from the

prediction sample (i.e. from the data set for which the regression is to

be used). For instance, measurement errors may differ from earthquake to



earthquake and the degree of incompleteness may create further

discrepancies between the two samples. The influence of measurement

errors on magnitude conversion is discussed by Ganse et al. (1983). These

authors assume however that the marginal distribution of the earthquake

sizes are Gaussian, contrary to the usual assumption of exponentiality.

The implications of assuming exponential rather than normal distributions

will be discussed in Chapter 2.

Finally, it is important that the estimates of the recurrence rates

be invariant with respect to the chosen magnitude scale. This is not the

case if one uses the regression equation as a conversion formula.

This problem is also studied in Chapter 2 and motivates a correction to

the regression relationship for use in magnitude conversion.

The phenomenon of earthquake clustering has generated much interest.

Several statistical models allowing for clustering of events have been

proposed (e.g. Vere-Jones, 1970; Kagan and Knopoff, 1976). Various

empirical relations for the occurrence of clusters and the distribution of

counts in a cluster have also been developed (e.g. Utsu, 1969). The

influence on seismic hazard of the dependent events within a cluster has

been studied by Wally (1976) and by Merz and Cornell (1973). This thesis

focuses on procedures that classify historical earthquakes as either

"independent" or "dependent" events: such procedures are generally less

restrictive with respect to the stochastic model that describes the

earthquake sequence. They also prvide information that facilitates

estimation of at least of one such model, the Neymann-Scott model,

according to which the earthquake sequence is a superposition of two

processes. The first process is composed of earthquakes with independent

locations, times of occurrence and magnitudes ("independent" events),



whereas the second process is triggered by the first and includes all

"dependent" events. The dependent events are further assumed to be of

magnitude not larger than that of the associated independent event.

A procedure to identify clusters in earthquake sequences has been

recently proposed by Prozorov and Dziewonski (1981). In their study, the

degree of closeness between two earthquakes that is considered significant

for clustering is obtained from a statistical comparison of the earthquake

count within a certain window (in geographical location, time and

magnitude space) relative to the count generated by a Poisson process.

The procedure fails however to account for the event-to-event variation of

the size of the cluster windows, which has been noted by various authors

(for instance, Simpson and Richards, 1981). A procedure that allows for

such variations is developed in Chapter 3. In applying the method to

actual earthquake data, the shape and size of the clusters are indeed

found to be highly variable.

Incompleteness of the the earthquake catalog is of mayor concern in

the estimation of recurrence rates. Incompleteness not only may introduce

bias but also confounds the spatial variation of seismicity, if

incompleteness itself varies in space. Current procedures therefore limit

the estimation of recurrence rates to data in the most recent periods of

the catalog which are judged to be complete. Such "periods of

completeness" depend on the magnitude of the events and are typically

based on knowledge of the detection capability of people and instruments

and on the the historical data. The estimation of spatial variation of

incompleteness is similarly based in part on judgement, in part on data.

Apart from the subjectivity, there are other serious limitations to

current procedures:



- earthquakes of small magnitude may be incomplete even today and

should therefore not be considered in the analysis, if only the

complete portions of the catalog are to be used.

- only part of the data is used, while even incomplete data are

informative, e.g. on the relative spatial distribution of recurrence

rates if incompleteness is spatially constant

- the estimation of the recurrence rates and incompleteness are

coupled problems. For instance, the assumption that the recurrence

rates vary exponentially with magnitude is informative on

incompleteness, given the historical data. Such information is not

considered in present analyses.

The approach developed in this thesis consists of using all the

historical data to simultaneously estimate recurrence rates and

incompleteness. To do so, incompleteness is represented through the

probability of detection, which varies as a function of time, magnitude

and geographical location. The notion of a probability of detection has

been used earlier by Brillinger (1979) and by Kelly and Lacoss (1969).

None of these authors models incompleteness to the degree of detail

proposed in this thesis.

In Chapter 4, four models of varying complexity are examined for

rates and incompleteness. In all models, the estimation of incompleteness

is primarily data based. In two of them, the temporal and spatial

variation of population and seismic instruments is explicitly accounted

for, leading to a refined spatial description of incompleteness. Several

new ideas are also presented for the estimation of the spatial variation

of the recurrence rates. In current practice, it is typically assumed

that the recurrence rates are constant within specified regions. Such



regions are not easily determined on the basis of seismicity or physical

information and may indeed not even exist. A more general nonparametric

description of the spatial variation of seismicity is proposed here, which

includes the case of homogeneous earthquake sources as a special case.

Different techniques, such as maximum penalized likelihood and kernel

methods, are considered in Chapter 4 for the estimation of the parameters

of this model. The estimation procedure is further extended to account

for measurement errors on the earthquake location and size and methods to

validate the model and calculate uncertainty on the estimates are

developed.



Chapter 2

MAGNITUDE CONVERSION

2.1 INTRODUCTION

A typical entry in an earthquake catalog reports the time of occur-

rence, t, the epicentral location x and one or several size measures m.

In principle, one could model such data as a marked point process in time

and space with a random size vector m associated with each point. Such a

multivariate representation of earthquake size is however impractical in

the analysis of clustering, incompleteness and recurrence rates. A more

convenient alternative is to convert the set of reported size measures to

a single scale prior to further analysis. Published conversion formulas

are usually in the form of involving just two size measures (e.g. for the

Eastern U.S., Chiburis, 1981; Nuttli, 1974; Street and Turcotte, 1977;

WGC, 1982). As illustrated in Figure 2.1, differences among published

regression lines can be considerable and it is not always evident which

relationship one should use for a given set of earthquake data. Differ-

ences may be attributed to several causes, e.g. regional dependence (Chung

and Bernreuter, 1980), the use of different estimation methods (in parti-

cular, the different degree of trimming to exclude incomplete data) and

differences in the data for different catalogs. In view of these varia-

tions, it is often desirable to estimate conversion rules directly from

the catalog under consideration. The problem of how to best estimate

magnitude conversion rules has received little attention in the literature

beyond the level of fitting simple linear regressions to the data. The

approach taken in this chapter is novel in the following respects:
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1. Two nonlinear regression techniques, robust locally weighted

regression and linear spline regression, are applied to the

estimation of the chosen size measure from a single other size

measure. These methods are of interest because they both accom-

modate nonlinearity of the regression in a flexible manner.

Furthermore, they can account for heteroscedasticity of the

regression error and for the presence of outliers. These tech-

niques are discussed and exemplified in Section 2.2.

2. The influence of measurement errors and incompleteness of the

data is investigated in Section 2.3. For this purpose, one needs

to specify a joint distribution model for the true and estimated

size measures. The model of Section 2.3 has exponential marginal

distributions and normal conditional distributions. These are

common assumptions in magnitude-conversion analysis.

3. A simple approximate formula is derived in Section 2.4 to esti-

mate the chosen size measure from several other size measures.

General methods such a multiple regression are typically not

applicable because too few data are available with the same set

of size measures reported and because the multiple regression may

be nonlinear.

4. The interaction between magnitude conversion and the estimation

of recurrence parameters is discussed in Section 2.5. The

problem here is that the recurrence rate should be the same if

one uses earthquakes for which the chosen measure of size has

been converted or directly estimated. This condition is not

satisfied if the regression (the conditional mean) is used to

convert other size measures to the chosen scale and uncertainty



around the regression is neglected. Distribution properties of

sizes obtained through various conversion rules are derived and

compared in Section 2.5. One of these rules produces unbiased

estimates of the recurrence rate. The need for a correction of

this type is not recognized in practice or in the literature,

although the correction is substantial if uncertainty around the

regression is large. A correction is needed also for direct

estimates in the chosen scale, if one wishes to express results

in terms of actual rather than reported earthquake size.

2.2 REGRESSION OF A SIZE MEASURE AGAINST A SINGLE OTHER SIZE MEASURE

Frequently, only two size measures are reported in an earthquake

catalog. For instance, the size of early events may be measured on an

empirical scale, whereas recent events are usually instrumentally

recorded. The problem addressed in this section is how to estimate

regression relationships between the two scales. For example, Figure 2.2

shows a scatterplot of data from the Chiburis catalog. It should be

emphasized that, although formal statistical techniques are proposed in

this section to estimate the regression, these techniques are not a

substitute for careful inspection of the data. In particular, the

following issues should be considered:

- the composition of the catalog. Is the catalog a mixture of two

or more catalogs with possibly different estimators of each size

measure?

- independence of the reported size measures. Are some of the

reported size measures obtained through conversion from other size

measures?



- dependence of the relationship of interest on covariates such as

geographical location, time and focal depth.

Some of these issues are illustrated by the Chiburis data: In Figure 2.3

each observed value of magnitude is represented by a number indicating the

decade since 1900 when the earthquake occurred. Only values of IO that

are accurately reported in the catalog are shown (some of the earthquakes

in the catalog have alternative values of 10 indicated). Italics are used

to indicate earthquakes observed in Canada. From this plot, it appears

that for the Canadian data the regression is steeper and higher than for

the U.S. data. This is consistent with Figure 2.2, where different

symbols are used for different geographical regions. The plot of Figure

2.3 presents more clearly the marginal distribution of M for given IO and

emphasizes the presence of outliers, heteroscedasticity and grouping of

the data. The latter phenomenon is possibly an indication of dependence

among groups of data. Variation of the regression with time is not very

clear from Figure 2.3, but this variation is more evident in Figures 2.4a

and 2.4b, where the data are separated according to time. The question

whether a given data set is dependent or whether a particular datapoint is

erroneous, is not formally addressed in this section, because it requires

detailed information about the operation of the seismic network and the

estimation of each earthquake size, and falls outside the scope of this

work. The techniques presented in this section do however account for

nonlinearity of the regression, outliers, and heteroscedasticity of the

regression error and are thus a considerable improvement over simple

linear least-squares regression. Estimates of uncertainty on the regres-

sion are also obtained from both methods. These estimates allow one to



judge whether the differences between the two regressions are significant

or not.

2.2.1 Robust Locally Weighted Least Squares

A robust locally-weighted least-squares method (RLWLS) of regression

has been proposed by Cleveland (Cleveland, 1979; Cleveland and McGill,

1984). This is an iterative non-parametric regression technique. During

the first iteration, the regression is estimated at each point by fitting

a straight line to the local data, as illustrated in Figure 2.5. In

subsequent iterations, each datapoint is weighted, depending on its

distance from the estimated regression line. Weighting reduces the

influence of outliers and hence robustifies the estimated regression line.

Because of possible heteroscedasticity of the error, a local estimate of

the variance is also needed. In Cleveland's paper, such an estimate was

not provided. The present method is therefore briefly reviewed in

Appendix A. Although the derivation and notation is slightly different

from that of Cleveland, the results are the same, except for the

estimation of the variance of a local regression error. In applying the

method, two additional modifications are made with respect to Cleveland's

study: First, a local window of fixed length is choosen as opposed to a

window with length varying according to the distance to the k-nearest

neighbor. In application to magnitude conversion, a fixed length is

preferred because of the grouping of the data and because it allows to

control more easily the influence of low size measures on the regression

at high size measures. For a window with variable length, this is

difficult because the number of earthquakes reported in this range can be

very small. Second, a normal density is used for the weighting function
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that defines the local data, as opposed to the trisquare function used by

Cleveland (see Equation A.25 in Appendix A.2). The difference should be

small and the interpretation of the controlling parameter h is in our case

simpler: h is the "standard deviation" of the weighting function and the

interval of non-zero weights is restricted to 4h on each side of the

estimation point (Figure 2.5).

2.2.2 Linear Splines

A linear spline is simply a piecewise linear function; in regression,

it is used to model linear dependence over disjoint intervals of the

predictor variable and to impose continuity of the regression at the

boundaries of the intervals, so-called knotpoints. A convenient

parametrization of the linear spline is in terms of the changes in slope,

$k , at each of the K knotpoints. In this case, the regression E[ylx] has

form

m(x)

E[ylx] = &k(x-tk) (2.1)

k=O

where m(x) is the maximum index m for which tm ( x. Note also that an

additional parameter B0 is introduced to estimate the intercept at the

first knotpoint tl. The corresponding knotpoint t0 can be chosen any

number smaller than tl. To allow for heteroscedasticity of the regression

error, al, is assumed constant in each segment (tk,tk+l) and denoted by

ak. Since the regression is linear in the parameters k, estimation of ak

is a straight-forward application of weighted least-squares (Montgomerey

and Peck, 1982). The selection of the number and position of the

knotpoints is not such an easy problem. A formal approach would be to



base the selection of the knotpoints on the improvement of a goodness-

of-fit statistic, such as the chi-square statistic, or to test the

significance of the change in slope at the knotpoints. As will be

illustrated in Section 2.2.3, a less formal formal approach is used here,

based on visual inspection of the fitted regressions and on these

statistics.

2.2.3 Examples

Both the RLWLS-method and the linear splines are applied to data from

the Chiburis catalog that have both magnitude M and Modified Mercalli

Intensity IO reported. Figures 2.6a-d show RLWLS regressions obtained

with increasing window sizes h. Uncertainty about the regression and on

the estimated regression is indicated through ± one-standard-deviation

bands. The estimate of the standard deviation of the regression error is

constrained to be larger than 0.3. This constraint is active for high

valules of IO0 if the window h is small (Figure 2.6a). As explained in

Section 2.2.1, the fitted regression is iteratively determined to

robustify the estimate with respect to outliers. In each of the figures,

the estimated regression is plotted for the first three iterations. Only

in the last case (h=5, Figure 2.6d) some difference is noted in the fitted

regression, indicating that there is negligible effect of outliers in the

present case. Notice that for small values of IO some nonlinearity is

present also for the largest window h=5. Nonlinearity of the regression

of IO versus M is demonstrated in Figure 2.7. Also in this case, there is

little effect of outliers. The nonlinearity seen in Figures 2.6 and 2.7

is likely attributed to incompleteness of the data, in M and IO, for

earthquakes of small size. The shape of the regression lines when only



data above certain cut-off values of M and IO are reported will be studied

in the next section.

Whereas RLWLS regression is more useful as an exploratory tool, the

linear spline model produces more practical conversion rules. Shown in

Figure 2.8a are a simple least-squares fit (a spline with only one

knotpoint) and two linear splines with knots at IO=4 and IO=5,

respectively. Using more knotpoints was found to non-significantly

improve the goodness-of-fit. As shown in Figure 2.8a, a knotpoint at IO=5

gives the best fit and a highly significant change in slope. Comparison

with Figure 2.4 shows that for values of IO larger than 5, the major part

of the data occurred prior to 1960, whereas for values of IO smaller than

5 the data occurred since 1960. The large change in slope is therefore

attributed to the fact that continuity at IO equal to 5 is enforced by the

linear spline, while the regression lines for the two subsamples are

shifted. In application of the RLWLS method (see Figure 2.6.a) the same

shift produces a sharp bend in the regression curve for values of IO

around 6. Based on this limited analysis, it would therefore appear most

appropriate to separate the data prior to and since 1960. Uncertainty on

and around the regression is illustrated in Figure 2.8.b for the case when

a knotpoint is used at IO=4. The influence of this uncertainty on the

conversion from IO to M will be discussed for this data sample in Section

2.5.

The ability of the linear spline to model nonlinearity of the

regression curve is illustrated more clearly in Figure 2.8.c, which shows

the regression curve of bodywave magnitude mb on the natural logarithm of

felt area, XnFA. Data for this regression are taken from a catalog

covering most of the northeastern U.S. (Epri, 1985). Knotpoints were



chosen at LnFA equal to 6,10,11 and 12. Uncertainty on the estimated

regression is also shown by lines of ± 1 standard deviation.

2.3 CORRECTIONS TO THE REGRESSION FOR MEASUREMENT ERRORS AND INCOMLETENESS

The statistical techniques discussed in the previous section account

for nonlinearity of the regression, heteroscedasticity of the error, and

the presence of outliers. In this section, two additional problems are

addressed:

- Both size measures are typically subject to estimation errors.

- The sample used in estimating the regression in incomplete.

Therefore, in the following discussion distinction is made between size

measures subject to estimation error and their true values. Size measures

reported in the chosen magnitude scale are denoted as Y and n. Y refers

to actual observations, 1 refers to the corresponding unknown true values.

Similarly, X and ý are used to denote observed and true size measures that

need to be converted. Distinction is also made between two samples: the

learning sample, which contains all reported pairs {X,Y} and the

prediction sample, which contains data with only X reported.

Following problems are to be considered:

1. One may wish to use either directly observed values Y or values n

in the remainder of the analysis. If uncertainty on the observed

values Y is homogeneous (e.g. measurement errors on n are iid

random variables for all earthquakes), estimation of the unknown

values n is not necessary. If, on the other hand, the

measurement error varies for different observations Yi,

estimation of n is necessary.



2. Because observations X are subject to error, the regression of Y

(or n) on X differs from that of Y(or n) on ý. As a consequence,

if the estimation error varies for different earthquakes Xi, this

poses a problem in estimating the regression from the learning

sample and applying it to the prediction sample. Furthermore,

the difference in the regressions E[YI ] and E[YIx] may depend on

the marginal distribution of X, as pointed out by Ganse et al.

(1983). This is illustrated in Figure 2.9: The figure at the

top shows the regression of Y on E for the entire population (the

prediction and learning sample together). The figure below

illustrates how the regression of Y on X differs for both

samples, when X is subject to a homogeneous measurement error.

It follows that a correction to the learning-sample regression

may be necessary, before applying it to the prediction sample.

The difference between the distribution of X in the learning and

prediction sample is illustrated in Figure 2.10 for the Chiburis

catalog. Here X corresponds to I0, Y corresponds to M. One may

note that the difference in the distribution of I0 for the two

samples is not very large, except at small values of I0 . In

addition, it will be shown later in this section that for an

exponential marginal distribution of X (here IO) in both samples,

no correction is necessary. In Figure 2.10, the assumption of

exponentiality appears to hold approximately for values of I0>4.

3. The learning sample is typically incomplete at low values of Y.

For instance, in Figure 2.10 it is evident that data are missing

at low values of M. As a consequence, the estimated regression

line is a nonlinear one. Nonlinearity of this type should be



corrected when applied to the prediction sample, if one assumes

that this sample is complete in Y.

To address these problems, the relations among the different

regressions between variables Y, X, n and ý are studied in this section.

First, the influence of measurement errors in the estimation of the

regression between two variables that have bivariate normal distributions

is briefly reviewed. This case has received considerable attention in the

statistical literature (Mandansky, 1959; Kendall and Stuart, 1973; Reilly

and Patino-Leal, 1981) and has also led to some controversy, especially in

the domain of calibration theory (Aitchinson and Dunsmore, 1975; Levin and

Maritz, 1982; Hunter and Lamboy, 1981). Some of the causes for

disagreement are briefly indicated in Section 2.3.1 and results are

reviewed for the simplest case when the measurement errors have Gaussian

distribution with a-priori known variance and the regression error is

non-zero. The assumption of bivariate normality of the observed values X

and Y, or of the corresponding exact values ý and n, contradicts the usual

assumption that the marginal distribution of a size measure is

exponentially distributed. A statistical model that is consistent with

this assumption is studied in Section 2.3.2. To assess the influence of

incompleteness on the regression, Section 2.3.2 also considers the case

when size measures X and Y below the respective cut-off values x0 or yo

are not reported. Under this assumption, it is possible to derive the

regression in the incomplete data set given that the true regression is

linear. These results are helpful in judging whether nonlinearity of the

regression may be attributed to incompleteness. The corrections suggested

by theoretical analysis to account for incompleteness and estimation

errors are summarized in Section 2.3.3. Application to results for the



Chiburis catalog is illustrated in Section 2.5.2, where an additional

correction will be made to account for the uncertainty around the

regression.

2.3.1 Effect of Measurement Error

A comprehensive review of the influence of measurement errors on

linear regression is in Kendall and Stuart (1973). The purpose of the

present section is to establish the notation to be used in later sections,

to indicate the fundamental problems in considering measurement errors and

to summarize results for the relatively simple case when the two size

measures are from a bivariate normal distribution and the distribution of

the measurement errors is normal with known variance.

Denote by xi , yi the measured values of x and y for the i'th

datapoint and by Ei, ni the corresponding unknown true values. Assume

that the measurement errors ui and vi are mutually independent Gaussian

variables. Independence between ui and ni and between vi and ýi is also

assumed. Therefore:

x. = .i + u. , where u. - N(O,a ) (2.2)
1 1 1 1 u

y. = n. + v., where v. ~ N(0,a ) (2.3)
1- 1 1 1 v

Suppose further that ýi and ni are random variables, independently drawn

from a population with distribution fýT. For a fixed value of Ei, the

random variable nil i is assumed to have a Gaussian distribution whose

mean value is a linear function of Ei and whose variance is constant,

i.e.,

n.iIi ~ N(8 + 8 , 02) (2.4)0 1 i e



Equivalently,

n. = 8 + 8 • + e., where e. ~ N(O, a2 ) (2.5)1 0 1i 1 e

In the literature, distinction is made between the case where a2 = 0,e

i.e. n and ý are functionally related as would be the case in a physical

2law, and the case where a is unknown, i.e. standard regression applies.e

In addition one needs to distinguish the case where the error variances

2 2
a and a are known or must be estimated from the data. In the presentu v

application, one ould certainly not expect two size measures to be

functionally related. In what follows, it is also assumed that a2 and 02
u v

are known. For instrumentally recorded values, such information could be

derived on basis of the accuracy of the recording instruments, the varia-

bility of the records at different sites and the number of reports. For

empirical size measures, the distribution of the measurement error should

be based on knowledge of the reporting procedures and of the amount of

available information.

The objective now is to derive the true regression coefficients 80

and 8 1 from the observed data {x,y}. In terms of the observed values xi

and yi, Equation 2.5 is written as:

Yi = 80 + 81xi + vi - 81ui + ei (2.6)

If fg, is assumed to be bivariate normal, then ML estimates of the

parameters of the distribution of X on Y can be obtained directly by

equating the sample and population second order moments (Kendall and

Stuart, Vol. 2, pp. 379). Omitting the derivation, following estimates of

80 and 61 are found:



o = - 8 x (2.7)

= 2xy (2.8)
(s - 0 )

x u

2
where x and y are the mean values, s is the sample variance of x andx

Sxy the covariance for the sample {x,y}.

Equation 2.8 indicates that, due to the measurement error u, the

2
estimate s /Sx of 8 in standard regression is biased. Geometrically,

xy x 1

the estimates of 80 and 8 1 correspond to a rotation of the regression

line around the sample average point.

Various complications may arise. For instance, the corresponding ML

estimate of the variance of the regression error may be less than zero:

2 2 2 2 2a= s - 2 - 8 (s - 02) (2.9)
e y v 1 x u

If this is so, one may show that the constrained ML estimate of a is
e

zero, which implies that the relation between n and ý is estimated to be a

functional one. The ML estimates of 80 and 81 differ in this case from

those in Equations 2.7 and 2.8 and must be found using explicitly the

likelihood function (see, Kendall and Stuart, 1973). In the present

application it is unlikely to find that two intrinsically different size

measures are functionally related, because they measure different

properties of the same earthquake. A more reasonable interpretation of

the functional relation is that one size measure has been functionally

derived from the other when assembling the catalog. In that case, the

functionally derived size measures should be eliminated from the

prediction sample. Another difficulty arises if one relaxes the



assumption that pairs (Ei,li) are iid random variables. For example, Ei

might be sampled from a distribution whose mean pi depends on i. In this

case, (n-1) additional unknowns are introduced and need to be estimated.

One can show that in this case the maximum likelihood solution breaks

down, in the sense that the solution is not consistent (i.e. the estimates

do not converge to the true values with probability 1 when the sample size

n + w). A discussion of this problem can be found in Kendall and Stuart

(1973). The same problem appears in a somewhat more general form in the

calibration of instruments. Here, it is necessary to very carefully

specify the experimental conditions under which the calibration data are

gathered to decide on the appropriate model for the learning sample: For

instance, are any of the variables 5, n, x or y controlled, or can one

assume an a-priori distribution the data are selected from? This complex-

ity and the multiplicity of cases has led to much confusion and contro-

versy in the literature (Hunter and Lamboy, 1981). For our present appli-

cation, there is little discussion that the size measures E and n can be

considered as random variables. The assumption that the underlying popu-

lation f•g does not dependent on i is of course an approximation and

neglects the fact that the recurrence rate may depend on epicentral loca-

tion and time of occurrence. Whereas this simplification seems justified,

the basic assumptions that fgn corresponds to a bivariate normal distribu-

tion and that all x and y are reported, are questionable. Both issues are

discussed in the next subsection. The influence of ui and vi having a

distribution that depends on i is considered in Section 2.3.3.



2.3.2 A Model for Exponential Earthquake Size Measures Observed with

Error and Not Reported Below a Cut-off Value

As in Section 2.3.1, the purpose here is to derive the relation

between the regression of y against x in the learning sample and the

regression parameters 80 and 81 for the true size measures. Equations

2
2.2, 2.3 and 2.4 are still assumed to hold and the error variances a and

a 2 are considered known. To complete the model, only the marginal
v

distribution of ý needs to be specified. In the previous section, this

distribution was assumed Gaussian. Such a model is however inconsistent

with the usual assumption that the recurrence rate density of earthquakes

varies exponentially with the size of the earthquakes. This condition is

incorporated here by assuming that

f = b exp[-b (E-0O)], for E ) ý0
S 5 (2.10)

=0, for E < E0

Equations 2.4 and 2.10 specify the joint distribution of E and n and,

together with Equations 2.2 and 2.3, the distribution of x and y. Various

implications of this model on the regressions of y against x and of x

against y are derived in this section. A graphical illustration of the

difference between a bivariate normal distribution and the present model

is shown in Figure 2.11. The fact that the two regression lines E[(5n]

and E[n I] are parallel will be shown later in this section. To arrive at

a more realistic model it will be assumed also that x and y are only

reported above cut-off values x0 and yo. The use of the theoretical

results derived in this section in the estimation of the true regression

of n against E will be discussed in Section 2.3.3.
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Consider first the derivation of the joint distribution of x and y in

terms of the parameters of the model. From Eqs. 2.2-2.4 and 2.10 the

joint distribution of y, x and E can be derived to be

b _ (x- )2  (y-8 0  • 2 1
Sx,y, 2 2 1/2 ex 20 2 2( 02+0 2

e v u u e v

for E > ý0
(2.11)

= 0 otherwise

To obtain the joint distribution of x and y, fx,y,& must be integrated

with respect to E. For this purpose, the exponential in Equation 2.11 can

be rewritten as:

-fl(x,y) ]2
2 + f (x,y) (2.12)
2c 2

fl(x,y) and c correspond to the mean value and variance of & for fixed

value of x and y. f2 (x,y) corresponds to the exponential of the joint

distribution of x and y. After some algebra, one finds

2

= - 2 2 ]1 (2.13)
a a +O
u e v

f b x (2.14)
f1(x'Y) = c[-b +- + (2 22.

a 0 +0
u e v

2 (Y-8 )2x (-)1 ]2

f (x,y) = b~ x - 0 + c [b 2 2 (2.15)2 0 22 (20 2 22 2 2 2 2 2
20 2(e +0 ) va +0u e v u e v



In terms of the above functions, integration of fx,y, E with respect to 5

therefore results in following joint distribution of x and y:

b c1  0 -f (x,y)
f d 2=2 (1-0[ I/2 ]) exp[f 2 (x,y)] (2.16)

0 [27(e v u c

where 0 (u) is the cumulative distribution function of the standardized

normal random variable u.

How to derive from Equation 2.27, an analytical expression for the

regression of y against x is not obvious. The joint distribution fx,y can

be however simplified if one considers that if fl(x,y) >> ý0

_ O-f (x,y)
1-0 /2 " 1 (2.17)

c

In practice, size measures x and y are only reported above certain values

x0 ,yO, the value of which depends on the sensitivity of the reporting

devices. Since the cut-off value ýO can be assumed arbitrarily low (ý can

be thought of as a non-observable variable), this simplification can be

always justified over the range of observed values x and y. Using then

Equation 2.17, it follows from Equation 2.16 that for values of x > x0 and

y > y0 , the joint distribution of x and y is exponential with parameter

f2(x,y).

Consider next the derivation of the regression of y on x using this

simplified joint density function. f2(x,y) is quadratic in terms of x and

y and can therefore be rewritten as

[y-6 -r(x)]2

2c + g(x) (2.18)2cr
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where r and g are linear functions of x. After some algebra, one finds:

(y- 0 -8 1x+8 1 2b )2

f exp[- 2 2 2 2 - bx] for x ; x0 , y ) yxy 2(8 2 +0 +0 )
1 u e v

= 0 otherwise (2.19)

Note that the distribution of Y is a Gaussian one for fixed values of x,

with expected value 80+r(x) and variance cr, and truncated from below at

YO* If Yo is sufficiently small, i.e. yo < < E[ylx], then

E[ylx ] = 80 +1x-810 b (2.20)

02 2 a 2+02 (2.21)
y x 1 u e v

In other cases, it is necessary to consider the influence of truncation at

yo. At sufficiently high values for x, Equation 2.20 will of course

always apply. Notice that in this case the regression of y against x is

parallel to that of y against ý, but that the expected value of y is lower

for x fixed to a given value than for E fixed to the same value. Indeed,

the expected value of EIx is smaller than x, because earthquakes of

smaller size are more likely to occur.

Another characteristic, which will be frequently used in the

following sections, is the regression of x against y. Also this

regression follows from the joint distribution fx,y in Equation 2.19. In

this case, the exponential term f2 (x,y) is rewritten as:

[x-t(y-80)2

+ h(y) (2.22)2c t



where t and h are linear functions. Omitting the details of the

derivation, one finds:

[x-(Y-B )/8 +b (a 2+2 )/ 2 2 b
f cc exp - 2 1 a Y] for x > x ,y > yO

2[a 2 +( 2 +0 2 +0 )/ ] 1Y
U e v 1

= 0 otherwise (2.23)

One should again distinguish between two cases: If the value of the

function t(y-B0 ) is sufficiently far above x0 , then the distribution of x

for fixed value of y is Gaussian; otherwise, truncation below x0 must be

considered. In the first case, the regression of x against y is parallel

to that of y against x. Notice also that the marginal distribution of y

is exponential. The various relations between x, y, ý and n are

summarized in Table 2.1 and illustrated in Figure 2.12 for the case when

both x and y are sufficiently far from the treshold values. The effect of

these treshold values on both regressions is illustrated in Figure 2.13

for three generic cases:

1. YO << 80 + 81x0

2. Yo > > 80 + 81x 0

3. yo " 8 0 + 81 x0

It is recognized that these cases are ideal approximations of the actual

effect of incompleteness on the regression: In reality, there is seldom a

sharp truncation point in the distribution of a size measure; rather, one

finds a progressive decline of reported values for lower values.

(Incompleteness as a function of the size measure will be modelled

explicitly in Chapter 4 for the purpose of estimating recurrence rates.)



Of course, such a treshold can be introduced artificially by trimming the

data in the prediction sample below a given value. Another simplifying

assumption in the above derivation is linearity of the regression of n

against 5.

2.3.3 Proposed Corrections and Examples of Application

Based on the theoretical model studied in Section 2.3.2, corrections

to the regression of Y on X from the learning sample can be derived to

account for the effect of measurement errors and incompleteness. In

summary, following assumptions are made. True size measures E and n have

marginal exponential distributions and are linearly related as

n = B+B 1+e, where e ~ N(O,a ) (2.24)

In the previous section, it was shown that such a linear relation can be

satisfied for values of n, sufficiently far from 80+B610. Size measures

in the learning sample are subject to independent measurement errors ui,v i

with variance independent of i and normal distribution:

x. = i.+u., where u. - N(O,a2) (2.25)

y. = n.+vi ,  where v. ~ N(0,a 2) (2.26)

Error terms on the observed size measure xi in the prediction sample are

allowed to have different variances, depending on the earthquake under

consideration:

x. = i.+ui, where u. - N(0,o 2 ) (2.27)

The problem considered here is to estimate Ylxi for values in the predic-

tion sample. Alternatively, one might want to estimate nlxi. Since, it



is assumed that the variance of the error term on ni is constant, a direct

conversion to y is simpler. If instead a conversion to n is necessary,

also values of y need to be converted as will be indicated later in this

section.

The influence of measurement errors on the prediction of a size

measure y when only x is given is twofold: First, one must consider how

to estimate the true regression coefficients 80 and 61 from learning

sample data in terms of x and y. Second, one needs to correct the true

regression coefficients to account for the measurement error ui=xi-ýi in

the prediction sample. It was found in Section 2.3.2 that the learning-

sample regression of yi against xi can be written in terms of the true

regression coefficients as

Yi = 8 +8 (xi-a2b ) + ey i ,  where eyi . N(0,8202+o2 2 ) (2.28)
1 0 1 i u Y yI NO 1 u e v

In the more general case when ou is different for different datapoints in

the learning sample, 80 and 81 can be estimated using a weighted least

squares method for the transformed dataset {y ,x!}, where

x = x. - 2b(2.29)

and using the following weights:

w= (b 2 2 2 2 -1/2w. (b ui+ v (2.30)

b I is used here to indicate the estimated value of 01. Because the weight

wi depends on the initially unknown values of 81 and also on ae, an

iterative scheme should be used. The estimation further requires a prior

estimate of the recurrence parameter bE. In many cases the information on

the measurement error is not sufficiently detailed to differentiate the



accuracy of different observations and the error on the variables in the

learning sample can be assumed to have the same distribution. In this

case, the true regression coefficients for ý and n, 80 and 81, are related

to the learning-sample coefficients bo and bl as

8 b +bl a 2b (2.31)S 0 1 u
(2.32)

81 = b1

In converting from xi in the prediction sample to yi (or ni) , one must

introduce one final correction to account for the error ui with which xi

estimates 9i. Notice that, because the prediction sample typically spans

a long timer period, the assumption of uniformity of the error variance

may not hold. In calculating the expected value of yi (this is the same

as the expected value of ni) for the i'th datapoint in the prediction

sample, the regression needs to be corrected as follows:

E[Yi xi] = 80+B 1 (xi - o u i b ) (2.33)

Substituting for the parameters 80 and 81 from Bqs. 2.31 and 2.32 leads to

a formula in terms of the learning-sample coefficients bo and b1:

2 2
E[YiIx ] = b +b x +b b • -aui) (2.34)

Equation 2.34 says that the estimated regression should be adjusted

downwards for those datapoints in the prediction sample that are observed

less accurately than those in the learning sample. Conversely, datapoints

that are observed more accurately would have a larger predicted mean value

of y. No correction is necessary for datapoints with accuracy equal to

that in the learning sample. It should be noted that this result is
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model-dependent. For instance, a different correction is found by Ganse

et al. (1983), for the case where & and n have normal, instead of

exponential marginal distributions.

Another characteristic of the regression that is influenced by

measurement errors and is needed in the conversion of magnitudes (see

Section 2.5) is the uncertainty about the regression. To simplify nota-

tion, homogeneity of a in the prediction sample is assumed. According to
u

Equation 2.28, the residual variance in the regression of n against ý is

2
related to the learning-sample residual variance c as

a2 = a2 2 - - a2 (2.35)
e y x 1 u v

2
If a = 0, then the size measures n and & are functionally rather thane

2
statistically related. In fact, the estimate of a may even be negative.e

An explanation of zero or negative estimates of a2 is that either some
e

or all of the values of y in the learning sample have been functionally

derived from x, or else that, contrary to what is assumed in Equation

2.33, the measurement errors u and v are positively correlated. Under

this last condition, Equation 2.35 needs to be corrected to account for

the covariance between the error terms u and v. From Equation 2.6,

a2 = a2  2 2a2 - a2 + 281cov(u,v) (2.36)e y x 1 u v 1

Because estimation of the term cov(u,v) is not easy, a more pragmatic

approach is suggested: it does not seem plausible that the indirect

estimation of n for & could be more accurate than a reasonably precise,

direct measurement of n. Under this assumption,
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02 >a 2  (2.37)
e v

In combination with Equation 2.35, this leads to following heuristic

estimate of a02
e

%2 = 2 2 2 2 2a2e = max{a Ix  a u a } (2.38)
e ylx 1 u v v

-2a is an estimate of the variance of the random variable n for fixed value
e

of ý. The variance of the predicted value of y.i should add a term to

^2
account for the variance on the estimate of the expected value, say a8

(as obtained from the regression analysis), and for the corrections due to

measurement error. The final expression is then:

-2 ^2 2 2 2a = 0a + a + aui +a V (2.39)

If instead the true value n is predicted, the variance should be decreased

2
by a . In this case, also the direct estimates of y in the catalog should

v

be corrected for measurement error. Under the assumptions of the

statistical model in Section 2.3.2, the expected value of (nly) can be

expressed in terms of the regression of y against n (in this case

2
E[ylnl]=n) and of the variance about this regression, a . The result is

v

E[nlYi] = Yi - b a2  (2.40)

Derivation of Equation 2.40 is analogous to that of the conditional mean

E[xly] from E[ylx] from Table 2.1. In Section 2.5, it will be shown that

for the magnitude conversion (as used in the clustering analysis and for

the estimation of recurrence rates), neither E[ylx] from E- 1 [xly] is a

good estimator of y. Similarly, neither the reported value y nor E[nly]



should be used in the case when y is reported directly. The details of

this additional correction will be explained in Section 2.5.

Equation 2.20 in the previous section gives the regression of y

against x when both size measures are sufficiently far above their

respective cut-off values yO and x0 . When the regression is close to the

cut-off value of y, the learning-sample regression E[ylx] is nonlinear in

x, as illustrated in Figure 2.13. This type of nonlinearity is of course

induced by the incompleteness in y of the learning sample. If the

prediction sample is considered complete in y (a reasonable assumption

since y is not reported), then the nonlinearity of the learning-sample

should be corrected. One approach to this problem is to apply the results

of the statistical model studied in Section 2.3.2 rigorously. For

instance, the analytical expression for the joint distribution of fx,y

could be used in a likelihood formulation to derive estimates of 80 and

81: For fixed value of x,y has a truncated normal distribution and, thus,

the mean value and standard deviation are nonlinear in S1 and 80 (Johnson

and Kotz, 1970). The expression for the mean value of the truncated

variable Yt is

E[Yt x]=E[y x]+x y xZ((Y oE[ylx])/yIx)/[ 1-4((yo-E[ylx])/oy x)] (2.41)

where Z and 0 are the standard normal density and cumulative distribution

function, respectively. E[ylx] and oylx refer to a non-truncated variable

y, for which Equation 2.34 and 2.39 might be used.

The problem is even more complicated if one considers the possibility

of true nonlinarity of the regression of n against E and progressive

incompleteness of the sample in terms of y. Because of these

difficulties, no attempt is made to incorporate incompleteness explicitly



in the estimation of the regression. Rather it is proposed to use the

methods of Section 2.2 to derive the apparent regression of y against x

and to compare its nonlinearity (if any) with the types of nonlinearity

shown in Figure 2.13. If, based on this comparison, the nonlinearity at

low values of x can be attributed to incompleteness, then nonlinearity can

be eliminated by extending backwards the next linear segment in the fitted

linear spline.

Strictly speaking the corrections discussed in this section only

apply to the case where the conditional variable n jl has a mean value that

is a linear function of ý. A theoretical treatment of the case where this

condition is violated is complicated. Notice, for instance, that for

exponential marginal distribution of ý and normal distribution of the

conditional random variable nlý, the resulting distribution of n is not

exponential; which variable n or E should then be assumed to have

exponential marginal distribution? On the other hand, it is reasonable to

expect that the preceding corrections remain valid if the regression of

yjx is locally linear within a few standard deviations of the regression

error, and if a local (with respect to g) estimate of the slope parameter

bg is used in the corrections.

A practical example of the previous corrections for measurement

errors is shown in Section 2.5.2 for the Chiburis data.

2.4 ESTIMATION OF THE REGRESSION WHEN SEVERAL SIZE MEASURES ARE AVAILABLE

If in the catalog more than two size measures are used, the problem

may occur of having to estimate the value of y given a vector x of other

size measures. Because the number of earthquakes for which both y and x



are reported is typically very small and because of possible nonlinearity

of the regression, direct estimation of a multiple regression is

practically impossible and approximate procedures must be considered. A

natural choice for such an approximation is to use a combination of

regressions of y against individual components of x. This approach is

further explored in the present section.

Consider first a single size measure xi . If the assumptions of the

statistical model in Section 2.3.2 hold, then

ylx i " N(8 0 , i + ,ixi, 02 .) (2.42)ylx1 1,1 1 e,i

2  02

x. Iy e,y e] (2.43)
81,i 8

1,i

Subscript i in the above equations refers to the size measure and not, as

in the previous section, to a particular datapoint. Next, assume that the

conditional random variables xi y are mutually independent for different

i. Consider then an estimator of y, say p, that is linear in the observed

variables xi :

k

p = wixi (2.44)

i=1

Because of the assumption of independence and normality of xi y, the

distribution of p for fixed value of y is

2 2
k y-8 0 -ba . k 2

ply = N( I W. i y ei, w. -- ) (2.45)
i=1 1,i i=1 811,i



Because the distribution of PlY is Gaussian with E[ply] a linear function

of y and var[ply] independent of y, the joint distribution of p and y must

satisfy the conditions of the statistical model in Section 2.3.2 and,

hence, the results derived in that section apply. In particular, the

regression of E[ply] is parallel to E[ylp], and E[ylp] is linear in p. To

obtain an unbiased estimator of y in terms of p, the slope and intercept

of E[ylpl must be evaluated. To facilitate further calculations, it is of

interest to restrict weights wi such that this slope is one

k w.
I 1 = 1 (2.46)

i=1 1,i

Under this condition, the variances of both conditional random variables

ply and ylp are the same, with value

k 02
Var(ply) = Var(ylp) w 2 e, (2.47)

i= 1 ,i1,i

It is easy to derive weights wi that minimize the variance of ylp under

the condition of Equation 2.46. Omitting the derivation, one finds

1,iw = T 2 (2.48)
1 2

e,i

T = ( 2 1 (2.49)
i=1 0

e,i

Using )quations 2.45 to 2.49, the Gaussian distribution of ply is

k
ply = N(y - T 1 -b nT, T) (2.50)

i=1 0Yei



Using the results of Table 2.1, one easily derives the distribution of

YIP

k 0 i

Y P a N(p + T 2 ,i+ b nT - b T, T) (2.51)
2 Y Y
e,i

Finally, replacing p with its expression in terms of x i and using the

weights in Equation 2.48

k
E[y2p] = T 01 2 (,i + 81 x i) + b T(n-1) (2.52)

e,i

The first term in the righthand side of Equation 2.52 has the intuitive

interpretation of weighted average of predictors of y based on the

individual size measures xi . Each of these predictors has weight

inversely proportional to the variance of y for fixed xi . The second term

corrects for the fact that individual regressions E[ylx i ] are not

independent.

Although Equation 2.52 is derived under the assumption that the

various regressions are linear, the same formula may be used when the

regression is estimated as a linear spline, or is locally approximated by

a linear function, as in RLWLS. In summary, the following procedure is

proposed for the estimation of y when several size measures xi are

available:

1. Estimate the individual regressions i (xi) and variances

2 (ylxi) using the methods discussed in Section 2.2 and applying

the corrections of Section 2.3, if necessary.



2. Combine the individual estimates using

k
a2(ylx) = [1 -1 (2.53)

i=1 0a (yx i )

k . (xi .)
y(x) = o y) y +(n-1)b a (yIx) (2.54)

i=1 2 (yx )  Y

where by is an estimate of the slope of the exponential

recurrence law for y. If y corresponds to bodywave magnitude,

typical values of by in the New England region are in the range

(1.5,2.0). If y corresponds to Modified Mercalli Intensity, the

corresponding range is (0.9,1.2).

3. Compare the individual estimates with the combined estimate and

flag significant differences, e.g.

y(x) - y. (x) 3a (ylx.) (2.55)

Step 3 is added as a safeguard against anomaluous cases when the reported

size measures xi produce inconsistent predictions.

2.5 MAGNITUDE CONVERSION FOR THE ESTIMATION OF RECURRENCE PARAMETERS AND
CLUSTER ANALYSIS

In current practice, the estimated regression between two size

measures is used directly to convert one size measure into the other.

After this conversion, no distinction is made between directly measured

and converted values. Such a procedure leads to biased estimates of the

recurrence rate, as will be shown in this section, and to an ordering of

the earthquakes with respect to size measure that depends on the chosen

size measure. Emphasis in this section is on the question of bias which
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is of importance in the estimation of recurrence parameters. Invariance

of the ordering of the earthquakes is of importance in a cluster analysis

of the earthquakes, when only the largest earthquake within each cluster

is retained as an independent event.

In the following analysis, it is assumed that all size measures are

converted to a single scale m (y or n in Section 2.3.3). If true size

measures (n) are used, direct observations of m (e.g. y) should be

considered equivalent to measurements in an alternative scale: for

instance, the regression of the true value as a function of the observed

one has been derived in Section 2.3.3 (Eq. 2.40). The recurrence rate as

a function of size measure m is assumed to be of the parametric form:

Xm = a exp(- bmm), for m > mo (2.56)

where a and b are parameters that may vary with location. In the

remainder of this section, recurrence parameter b will always refer to the

chosen size measure and, therefore, no subscript is used.

Intuitively, one may expect that, because uncertainty about the

estimate E[mlx] is neglected in the conversion, the distribution of E[mjx]

must be narrower than that in Equation 2.56. Since m=E[mlx]+e, a simple

remedy is to replace the regression estimator with a simulated value m*,

such that

* * * 2
m = E[mlx] + E , where e N(0,a ) (2.57)

m m mix

02 is the variance of m given x. However, this procedure works wellm x
only if the number of earthquakes with value equal to E[mlx] is large. A

more satisfactory solution to the problem of magnitude conversion for the



estimation of a and b in Equation 2.56 is given in this section. It is

found that in order for Ix to equal to X , one needs to use an

estimator of the type

mix = E[mx] + b (2.58)

1 2
The importance of the correction - a 2yb in Equation 2.58 is then

evaluated for the case of the Chiburis data. The influence of incomplete-

ness and grouping of this data is also discussed.

2.5.1 Likelihood Formulations for the Estimation of a and b Parameters

The final objective of the statistical analysis of earthquake data

for seismic hazard evaluation is to estimate the recurrence rate as a

function of earthquake size and location. The issue considered here is

how the estimation of the recurrence parameters a and b is influenced by

the fact that, for different earthquakes, different size measures are

reported. The following approach is taken to study this problem: A model

is formulated for the joint recurrence rate density of all observed size

measures. This model is consistent with the marginal recurrence rate of m

in Equation 2.56. Various estimators m of m from other size measures x

are then obtained by considering various likelihood approaches. An ideal

property of m is that XA = X irrespective of which of the variablesm m

(m or any of the xi's) are reported in the catalog. Only one of the

likelihood estimators considered here satisfies this condition. In the

case of only one alternative size measure x, this estimator is in the

form of Equation 2.58. Notice that m in Equation 2.58 depends on the

value of b itself. Although the actual value of this parameter is of

course not known at the beginning of the analysis, a reasonable initial



estimate is typically available. Alternatively, one could iterate the

entire statistical analysis to revise the magnitude conversion. Iteration

is not very practical and is also unwarranted considering uncertainty on

the modelling assumptions underlying Equation 2.58 and the improvement

such iteration could give. Other issues such as the influence of

incompleteness and uncertainty about the regression are discussed in

Section 2.5.2.

Consider first the case of only one alternative size measure x. In

order to obtain the likelihood of an earthquake with only x reported, it

is necessary to model first the joint distribution of m and x. The

following assumptions are made:

- Earthquakes of different magnitudes occur with exponential rate

density

Xm = a exp (- bm) (2.59)

- The conditional variable xlm has normal distribution with mean

value linear in m and constant variance:

xlm ~ N(y 0 +YI m, 021 ) (2.60)

Because the above assumptions are consistent with those made in Section

2.3.2, it follows that:

- Values of x occur according to the exponential rate density

Xx a exp(-b8 1x), for x >> x0  (2.61)

- The conditional variable mix has normal distribution

mix ~ N(8 + 1 x,a 2  ), for x >> x0  (2.62)0 1 m x 0



where

80  o2

Y b (2.63)0 81 1

1 (2.64)

2

02x = (2.65)xm 8 2
1

Equations 2.61 and 2.62 apply for x sufficiently larger than a value x0

given by

x0= YO + Y1 m0  (2.66)

where mo is a lower truncation value for m, e.g. only earthquakes with

magnitude m larger than mo are assumed to occur. Except for a possible

physical bound, mo can be assumed arbitrarily low and the observed values

of x fall within the range where the above assumptions hold.

A property of special interest is the rate density of earthquakes

that are reported in x only, which can be derived by integration of the

joint rate density:

a (x-Y 0 -Y m)
m 1/2 exp(- bm - ) (2.67)

(2w) axlm 20a

Assuming that m0 is sufficiently low

= x dm = a exp(0 b X + (2.68)
x mx Y 7 Y 2 x1ma I

0 1

In terms of the regression coefficients 80 and B1, this rate density is
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x = 8I a exp[- b(8 0 + B1x + 1 b 2 x)] (2.69)

Based on the previous model, various likelihood procedures can now be

applied to produce estimators of m given x. One possibility (e.g. Cox and

Box, 1964; Plante, 1970) is to use maximum likelihood for the estimation

of a and b, and of the unknown value mi for each earthquake i with only x

reported: the ML estimate of mi must be such that the function

L(b,mlx) = fxlm exp(-bm)

2
(x-y -Y m)

a exp(- bm - 2 1 ) (2.70)

2Ox m

is maximum. For a fixed value of b and x, the likelihood is also

proportional to the conditional distribution of (mix). In accordance with

Equation 2.62 this distribution is normal, so that the ML estimate m1

corresponds to the regression value,

mi = 8+81 x (2.71)

As pointed out earlier, the problem in using mI to convert from x to m, is

that the resulting estimator of a is biased. The amount of bias can be

calculated by deriving the recurrence rate of m . From Equations 2.69 and

2.71,

m -8m 1 00
ml 81 x B0

S exp(-bm i b2 02 ) (2.72)

This function is exponential, with the same decay parameter b as Am,, but
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with different a. The difference is in the term - 1 b mx which does

not depend on the sample size n and makes the ML estimation of a biased,

also asymptoticaly as n+÷. In the presence of nuisance parameters, there

are other well-known cases when ML estimation is asymptotically biased;

e.g. Kendall and Stuart (1967), Chapter 29.

As an alternative to maximizing the likelihood, Fraser (1976) and

Andrews (1983) among others have proposed maximization of the marginal

likelihood function of the parameters of interest (here a and b). This

marginal likelihood results from integrating out the nuisance parameters

from the total likelihood. Since the total likelihood is proportional to

the joint rate density, its integration with respect to the magnitude mi

produces the marginal rate density Xx in Equation 2.69. Therefore, the

marginal likelihood is given by

1 2
L(a,blx) a 8 a exp(-b(8 + 8 x + bm x ) ) (2.73)

The same likelihood function is found if the values of mi are assumed

known, with value

* 1 2
m2 = + 8 x + 1 b (2.74)

2 0 1 2 mIx

From Equation 2.69, it is easily verified that the recurrence rate of m2

is the same as that of m. It is also interesting to note that m2

corresponds to the average between the regression of m against x and the

regression of x against m. Because the conversion rule depends on the

value of b, which is initially unknown, conversion should be applied

iteratively. As an approximation, Equation 2.74 could be used with an

initial estimate of b.
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In summary, for the estimation of recurrence rates and for cluster

analysis it is recommended that m2 be used, based on the following

properties:

- Under the modelling assumptions of Equations 2.59 and 2.60 and if

values in x are complete, m2 is the only estimator with recurrence

rate density equal to X . The estimator m underpredicts the re-
m 1

currence rate density. An estimator m3, based on the inverse re-

gression E[xlm]- I, would overpredict the recurrence rate density.

- The use of m2 corresponds to the ML estimation of the recurrence

parameters using a marginal likelihood formulation.

- m2 is invariant with respect to the chosen magnitude scale. By

invariance it is meant here that the conversion rules from x to m

and from m to x are the inverse of the other

* *-1
x2(m) = m2  (m) (2.75)

A practical consequence of this property is that the ordering of

earthquakes according to converted size measure is independent of

the chosen size measure. For the estimators mi and m3 , this

property does not hold. In fact,

* *-1

x1 (m ) = m3  (m) (2.76)

* *-I
x3(m) = mi (m) (2.77)
31



2.5.2 Practical Application of the Conversion Rule

In Section 2.3.2, the following regression estimates were derived

using data from Chiburis (1981):

E(mjlI) = 0.87 + 0.601I

a(mlI o ) = 0.60

(mlI = [(0.29) + (0.060)2 10 2(0.976)(0.060)I101/2

These regression estimates apply for I0 > 4. Because nonlinearity of the

regression for lower values of IO appears to be attributable to

incompleteness, it is appropriate to use these estimates also for lower

values of I O . In the Chiburis catalog, no indication of the measurement

error on M is given; therefore, one may choose to convert to M, rather

than to the true value of M, and no correction is necessary for direct

estimates of M. On the other hand, the catalog provides interval

estimates of IO0 of the type [IOmin,I m a x ]. The width of the estimation

interval, AIO = I0max - I0min, varies from 0 to 2. All previous

regression estimates were obtained by taking I0 = 2(I0min+I0max ) in the

learning sample. Notice that IO is the observed value (corresponding to

x, in Section 2.3.3) rather than the expected true value (corresponding to

5). In this sample the number of points with large AI0 is small and a

sensitivity study showed little difference in the regression estimates.

The situation is somewhat different in the prediction sample: 1,184 data

have AIO=0, 164 data have AIO=1 and 17 datapoints have AIo=2. Most of the

imprecisely defined intensities have larger values of IO.

As explained in Section 2.3.3, the regression must be corrected for

data in the prediction sample whose estimation error is larger than that



in the learning sample. For this correction one should use Equation 2.34,

which required an initial estimate of the recurrence slope parameter biO'

For the New England region, a reasonable estimate of bi 0 is 1.1. In the

M-scale, this corresponds approximately to 1.1/0.6=1.83. In addition, one

needs to assign standard deviations to the measurement error on IO for the

various cases. One may note that, because IO is discrete, the assumption

of a continuous normal error is only an approximation. If one assumes

that:

for AIO = 0, ou = 0.25

for AIO = 1, ou = 0.50

for AIO = 2, 0u = 1.00

then Equation 2.34 leads to the following corrected regression lines:

E(mlI o ' AI) = 0.87 + 0.60 IO

E(m I 0 , A) = 0.75 + 0.60 IO

E(mlI O' A12 ) = 0.25 + 0.60 IO

To calculate the variance of the predicted value, Equation 2.38 needs to

be used. Since the uncertainty on the regression estimate cr iE(m IO0
varies with IO, also the uncertainty about the predicted value am should

vary with I 0 . Examination of Figure 2.8 shows on the other hand that for

high values of IO, the variance about the regression is possibly

overestimated by imposing homoscedasticity above IO=4. Considering also

the sparsity of the data, it appears reasonable to assume that, for AIO=0,



the standard deviation of the predicted value of M is 0.60. For different

values of AIO, this estimate must be corrected by a term 2 (a -0 ) .

1UAI u,0
Therefore

for AI0 = 0, I 0 = 0.60

for AIg = 1, 0 = 0.65

for AIg = 2, mAi0 = 0.84

Finally consider the correction to the regression to account for bias

on the estimates of recurrence rate density as a function of M, as

explained previously in this section. Applying Equation 2.74, the

estimates should be increased as follows:

* , 1 1.1 2for AIO = 0, m2 = E(mII0 AI 0 =0) + 2 0.6 (0.60) = 1.20+0.6010

* A 1 1.1 2
for AI0 = 1, m2 = E(mI, 1AI 0=1) 0.6 (0.65) = 1.14+0.6010

* A 1.1 2
for AI0 = 2, m2 = E(m I 2 ,AIo=2) + 0.- (0.84) = 0.90+0.6010

The final distribution of m2 is shown in Figure 2.14. The number of data-

points with M reported is indicated for each 0.1 magnitude interval. The

number of datapoints with only IO reported is indicated separately for

each catagory AI0 and on the same scale using the above conversion rules.

From Figure 2.14 it is clear that earthquakes are incompletely

reported for small valus of IO and, therefore, the observed recurrence

rate is non-exponential. How this incompleteness can be modelled as a

function of IO will be discussed in Chapter 4. Here, the influence of

incompleteness on the conclusions of the previous section are of concern.



If one assumes that earthquakes in the prediction sample are selected from

an underlying population that satisfies the modelling assumptions in that

section and, to account for incompleteness, values IO are reported with

probability p(IO), then the marginal likelihood in Equation 2.73 can be

written as

L(a,blII) a 81 a p(IO) exp(-m 2 ) (2.78)

It follows that estimator m2 still corresponds to using a marginal

likelihood approach. The above likelihood function only contains terms

for fixed sample size and, thereforei it appears that ML estimates of a

and b do not depend on p(IO). If one considers also the likelihood of N

events being reported in IO, dependence of a and b on p(IO) is clear (see

Chapter 4 for details).

Another feature of the present data, which has not been discussed so

far, is discreteness of the IO scale. After conversion of IO to m, the

grouping of the data indicates a natural choice for discretizing the

converted scale m*, see Figure 2.14. Notice that the net effect of the

correction term - b 2a2  proposed in this section for the regression of
2 m liO

M against IO is to shift these discretizing intervals with respect to the

data. How this grouping of the data affects the estimation of the

recurrence parameters is discussed by Bender (1983) and will be considered

further in Chapter 4.

Finally, it should be noted that, although a correction is made that

accounts for the effect of uncertainty around the regression in the

estimation of the recurrence rate, the conversion rule remains a

deterministic one. One consequence is that the variance of the parameters



67

estimated on basis of the converted sample is underrated. Another

consequence is that data with different uncertainty on their size measure

are treated equally in the remainder of the analysis. Treating instead

the uncertainty on the predicted values explicitly in the likelihood

formulation will be also considered further in Chapter 4.
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Chapter 3

CLUSTERING OF EARTHQUAKES

3.1 INTRODUCTION

Sequences of earthquake events are known to display non-Poissonian

patterns, mainly in the form of clusters of short duration and over small

regions in space. When the events within a cluster can be causally or at

least physically related to a parent earthquake, one refers to these

events as foreshocks or aftershocks, depending on their time of

occurrence. Other anomalies, for example swarms and longer-term

variations of seismic activity, are more difficult to explain through

direct causal relationships among the associated earthquakes.

Different stochastic models should be used to describe causal and

non-causal dependencies among earthquakes: for example, self-exciting,

clustering, and branching point processes are appropriate in the former

case, doubly-stochastic processes in the latter. In the case of

doubly-stochastic processes, clustering is attributed to random

variations of the intensity of the process, but no distinction is made

between main and dependent events.

Models of either type have been proposed and fitted to earthquake

sequences by Vere-Jones (1970) and Kagan and Knopoff (1976,1978) among

others, and used for seismic hazard calculation by Wally (1976) and Merz

and Cornell (1973). In particular, Wally represents the earthquake

sequence as a doubly-stochastic Poisson process, whereas Merz and Cornell

work with a clustering model of parent and offspring events of the

Neymann-Scott type.
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As Matern (1960, Chapter 3) points out, it is difficult and

sometimes impossible to infer the correct form of a cluster-producing

process on the basis of its realizations. Fortunately, seismic hazard is

insensitive to the choice of the model among those that are compatible

with the data. Therefore, if physical interpretation about the causative

mechanism is not of concern, one may choose a cluster-producing model

based on mathematical convenience.

The objective of the present chapter is to develop a procedure to

classify earthquakes as either main events or secondary events in the

context of a generalized Neymann-Scott representation. The adjective

"secondary" is preferred to "dependent" as a less specific qualifier; it

includes foreshocks and aftershocks, earthquakes in swarms, and possibly

events that have occurred at a time and place for which reporting is

unusually complete. Main events are defined as the largest earthquakes

of their clusters and are assumed to occur as Poisson points in

(longitude, latitude, time, magnitude)-space. The intensity 1i of this

Poisson process may vary on the geographical plane due to nonhomogeneity

of the earthquake sources, in time due to incompleteness of the catalog,

and in magnitude due to nonuniformity of the distribution of size. The

variation of p with magnitude and time may further depend on geographical

location. The only condition imposed is that U varies in time at a scale

larger than that of clustering, so that non-Poissonian groups of events

display enough contrast against a relatively slowly-varying background

activity. The procedure proposed in this chapter can then be regarded as

a filtering process that eliminates high frequency components of the

variation of M.



70

After their identification, clusters are analyzed to determine

several statistics of interest, such as the distribution of the number,

space, time, and magnitude of the dependent events for each given size of

the main earthquake. This statistical analysis of the clusters and the

estimation of the magnitude-recurrence relationship for main events (see

Chapter 4) complete the fitting of the Neymann-Scott model.

Existing methods for the analysis of earthquake clusters are

reviewed in Sec. 3.2. Their main limitation is that they do not work

well when the space, time, and size characteristics of the clusters vary

considerably for different main events. Most of the procedures also

assume spatial homogeneity or stationarity in time and therefore perform

poorly when applied to non-homogeneous or non-stationary catalogs. The

method proposed in Sec. 3.3 can he used under all these circumstances.

It is applied in Sec. 3.4 to three catalogs: two simulated Poisson

catalogs, one nonhomogeneous and stationary and the other nonhomogeneous

and nonstationary (in both cases, an ideal procedure would classify all

earthquakes as main events), and the Chiburis catalog. The latter

catalog contains a classification of earthquakes by seismologists as

either main or secondary events. Therefore, this catalog allows one to

compare the-performance of a judgemental procedure with the present

procedure. A sensitivity analysis when applied to this catalog further

indicates that the procedure is reasonably robust with respect to

variations in the input parameters.

3.2 REVIEW OF EXISTING METHODS

A striking feature of most earthquake sequences is the diversity of

clustering patterns: even for main events of the same size with



epicenters in the same general area, the number and space-time-magnitude

distribution of secondary events may be very different. Examples of this

variation are plentiful in the literature; see for example the many

contributions on seismicity patterns in Simpson and Richards (1981), and

various papers by Utsu (1961,1969,1970,1971) and Vere-Jones et al.

(1964,1965). This means that methods for the identification of secondary

events should be flexible with respect to the spatial and temporal

structure of individual clusters.

Available procedures can be classified into two groups, depending on

whether their primary objective is to fit a point process to data or to

classify earthquakes as main or secondary events. In the former case,

certain assumptions must be made a priori about the statistical

characteristics of the point process, for example about the form of the

probability distribution of the number of events in each cluster and

about their location in space and time relative to the main event. The

need for such assumptions and sometimes the difficulty of parameter

estimation are the main drawbacks of direct model-fitting procedures.

Methods of the second type achieve the same objective in two steps:

first, they partition the catalog into clusters by using some type of

classification criteria. Second, the sequence of main events and the

identified clusters are analyzed statistically. Precise assumptions

about the model type and cluster characteristics are in this case

postponed until the second step. Of course, if one is interested only in

the main events, then one needs not model the clusters. In the case when

the non-Poissonian characteristics of a catalog are initially unknown,

procedures of the latter type should be preferred to those of the former

type.



A wide class of models for direct or indirect fitting results from

considering a primary process of independent main events and, superposed,

a secondary process of offsprings grouped into clusters. The theoretical

properties of several such processes are reviewed in Vere-Jones (1970).

An example is the Neymann-Scott process, which in the original form

models the distribution of points in time: The sequence of main events

is stationary Poisson with parameter i and the offspring process is

defined through the probability distribution of their number in a

cluster, N, and by the assumption that, conditional on N, the times ATi

between the parent earthquake and the dependent events are iid variables

with some cumulative distribution function A(At). Assuming that N

follows itself a Poisson distribution and that A(At) is of the power-law

form

C 6
1- , if At > 0

A(At) = (3.1)
O, otherwise

Vere-Jones (1970) fitted the parameters p,E[N], C>0, and 6>0 to shallow

earthquakes in New Zealand by matching second-order characteristics of

the data. Different stochastic models (a modified Poisson process with

nonzero probability of simultaneous occurrences and a Poisson-Markov

process) have been studied by Shlien and Toksoz (1970,1975).

The previous models do not consider the spatial configuration of

earthquake clusters or the effect of magnitude on their structure. A

more general model which incorporates these features and is amenable to

maximum-likelihood estimation is described by Kagan and Knopoff (1976).

In their model, the process of main events is stationary Poisson, but not



necessarily homogeneous in space and with intensity p that depends on

magnitude according to the exponential Gutenberg-Richter relation.

Events of magnitude M are allowed to trigger offsprings of lower

magnitude, say m, at a branching rate A which may depend on M and (M-m).

The spatial location and time of the offsprings is defined by a

probability distribution which may itself be a weighted average of

different functional forms. The branching nature of the process follows

from the fact that offspring events may further trigger events of lower

magnitude. Kagan and Knopoff have applied this model to a world-wide

catalog (1976) and to several regional catalogs (1978).

Both Vere-Jones (1970) and Aki (1956) review empirically observed

properties of aftershocks and notice their implications on stochastic

modeling and on the underlying causal mechanism. Most of these "laws"

are found to be highly debatable, except for Omori's relationship for the

variation in time of the rate of aftershocks. Cases when this

relationship does not apply are usually referred to as earthquake swarms.

During swarms, the recurrence rate is approximately constant and higher

than normal. The recurrence law of aftershocks is typically found to be

an exponential function of magnitude, although possibly with decay

parameter different from that of the main events.

The previous stochastic models rest on the assumption that the

secondary events display some statistical regularity. The exploratory

analysis of these regularities through the computation of second-order

moments is discussed by Vere-Jones (1978) in time and space and by Kagan

and Knopoff (1976) in time, space, and magnitude.

As an alternative to directly fitting a stochastic point process,

one may attempt to first classify the historical earthquakes as main and



secondary events. As previously noticed, this may be the first of two

steps that eventually lead to the fitting of clustering models. The

literature in this area is relatively limited. A very simple method,

which is often used in engineering application, consists of classifying

as secondary events all the earthquakes that fall inside a given space

and time window around another event of larger magnitude. In the

application to a Southern California catalog, Gardner and Knopoff (1974)

used magnitude-dependent windows with the parameters of Table 3.1. The

method removed about 2/3 of the earthquakes, leaving a catalog of main

events with reasonably Poisson characteristics.

A different technique to separate main shocks from secondary events

is based on the likelihood of occurrence of groups of events under the

Poisson assumption. A simple method of this kind is mentioned but

considered unsatisfactory by Gardner and Knopoff (1974). That particular

method seems however to be based on the assumption that an excessive

number of events in a given time interval is indicative of clustering,

irrespective of the spatial distribution of the earthquakes.

A more elaborate procedure based on time and space windows has been

recently proposed by Prozorov and Dziewonski (1982). For each magnitude

range of the main event, the windows are iteratively determined as

follows: Initial window sizes are assumed for the first iteration. The

catalog is then ordered according to decreasing magnitude and increasing

time and is then processed sequentially for the identification of

secondary events: when earthquake i is considered, all earthquakes with

number j > i that fall into its associated window are tagged as secondary

events. Once tagged, earthquakes are no longer considered and hence



multiple branching is not allowed. The same procedure is then repeated

for a randomized catalog in which the time of occurrence of each event is

generated according to a Poisson process. New space-time windows are

then defined by comparing the density in space and time of secondary

events around main events in the catalogs. During subsequent iterations,

the same procedure is followed, except for using the last estimated

windows and for removal of secondary events from the randomized catalog.

Finally, a method that does not

disucssed above is recently proposed

explicitly modelling the statistical

also model only the variation of the

time and space and consider clusters

may iteratively compare the estimated

the recurrence rate obtained through

local method and assign robustifying

into regions where the two rates are

method to estimate the parameters of

belong to either of the two groups

by Ellis (1984): Instead of

properties of the clusters, one can

recurrence rate of main events in

to be outliers. For example, one

recurrence rate of main events with

a non-parametric, and, thus, more

weights to earthquakes that fall

very different. Ellis applied this

Omori's law for a long aftershock

sequence that occurred after the Haicheng earthquake and which itself

contains several imbedded aftershock sequences. For an entire earthquake

catalog, however, a simple parametric form of the variation of the

recurrence rate of main events in time or space is usually not available

and the estimation of the recurrence rates of main events itself is

complex (see Chapter 4).

3.3 A LOCAL CLUSTERING ALGORITHM

In the method of Prozorov and Dziewonski, secondary events

associated with main shocks of the same magnitude are assumed to have the



same space-time distribution. In this case, a single time-space window

for each magnitude is sufficient and one needs not adapt the shape of the

cluster to the observed pattern of earthquakes near each main event.

This assumption of homogeneity of the clusters is common to all the

methods reviewed in the last section.

By contrast, the method described here allows for variations in the

clustering pattern from earthquake to earthquake and is robust with

respect to nonstationarities induced by catalog incompleteness. These

features result from using a strictly local analysis in which each main

event is considered by itself and the significance of clustering is

tested in the neighborhood of that event. It is recognized that, if

indeed the secondary events were generated according to a single

space-time distribution, our local method would be suboptimal with

respect to a global procedure: in that case, clusters that are not very

pronounced might not be significant locally but would still be detected

through global analysis.

In actual catalogs, it is rare to find that clusters have the same

space-time distribution around earthquakes of the same magnitude. Even

then, a local method would be useful as an exploratory tool, to verify

that clusters are indeed homogeneous.

The basic algorithm for local analysis is as follows: The original

events in the catalog are sorted according to decreasing magnitude and

ordered chronologically for each magnitude. Next, each event is

considered sequentially to determine whether its neighborhood displays a

significant clustering of events of lower or equal magnitude. This is

done through a formal statistical test, which compares the number of



earthquakes near the main shock with the number of earthquakes inside an

extended neighborhood of the same event. If clustering is significant,

then the spatial and temporal extent of the cluster is estimated. All or

part of the earthquakes inside the cluster are classified as secondary

events and are not considered any further in the analysis. The removal

of secondary events modifies the significance of clustering (see later

for details) so that, after all the events in the catalog have been

examined, the entire procedure is repeated until no additional earthquake

is eliminated. The four steps of the method - ordering of the catalog,

test of clustering, estimation of cluster boundaries, and identification

of secondary events inside each cluster - are examined in more detail in

the remainder of this section. Variants of the basic procedure are also

discussed.

3.3.1 Ordering of the Catalog

The order in which earthquakes are considered affects the outcome of

the analysis. For instance, if events of smaller magnitude were

considered first, then large clusters would be broken up into several

smaller clusters and the significance of the larger clusters could be

destroyed, unless the already identified secondary events would be taken

into account. A better way to study the inner structure of large

clusters would be to first identify them and then apply the present

algorithm once more to each cluster of interest. The ordering in terms

of decreasing earthquake size is a logical choice, since increases of

seismic activity are often causally related to the occurrence of large

earthquakes.
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If the magnitude scale is discrete or discretized, then further

ordering is necessary within each magnitude category. The chronological

order, which is that used by the present algorithm, again favors the

causal interpretation of earthquake dependencies. Notice however that

secondary earthquakes of smaller magnitude are allowed to preceed a main

event. That is, the chronological ordering influences the interpretation

of dependencies only among earthquakes of the same size.

3.3.2 Testing the Significance of Local Clustering

Since clustering consists of concentrations of earthquake events in

spatial neighborhoods of main events and within relatively short time

intervals, the identification of clusters can be based on a comparison

between the recurrence rate inside a small space-time window around the

main shock and the recurrence rate in an extended neighborhood of the

same event. The extended neighborhood must still be sufficiently local

that spatial nonhomogeneities of the earthquake process and

nonstationarity due to incompleteness are small within that

neighborhood.

This procedure differs from that of Prozorov and Dziewonski in two

important respects: First, the earthquake counts used in the present

test are obtained separately for each event and not summed over all the

main earthquakes of a given magnitude class. Second, our procedure does

not assume that the presence of earthquakes in the immediate neighborhood

of a main shock necessarily implies clustering. Rather, the decision

whether or not the neighboring events define a significant cluster is the

result of statistical testing. For example, in earlier times when the

catalog is very incomplete, just two earthquakes occurring close to each
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other may constitute a significant cluster, whereas this may not be the

case in more recent times.

The test is performed as follows. Two windows are defined in the

neighborhood of the main shock that is being examined: a local

space-time window W1 and an extended window We. For example, W1 and We

might be cylinders whose radius (maximum geographical distance from the

main shock) is similar and is meant to include a significant fraction of

the cluster but whose height (duration) is very different; see Fig. 3.1a.

The duration of W1 is decided so that this local window includes the most

significant portion of the cluster, whereas the duration of We may extend

over several decades and is mainly determined by the nonstationarity

caused by incompleteness. In all cases, We should contain W1. Further

denote by V1 and Ve the volumes in space-time of W1 and We and by nj and

ne the counts of events of magnitude not exceeding that of the main shock

in the same windows. If the earthquake process in We were stationary and

Poisson with intensity parameter U, then the random counts N N1 and Ne

inside the local and extended windows would be Poisson variables with

E(N ] E[N ]

mean values V1 and Ve such that V .e We take this, with p

unknown, as our null hypothesis HO, i.e.

E[N ] E[N ]

H : - (3.2)0 V1  e

and test Ho against the alternative hypothesis H1 that p is higher in the

local window, i.e.
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E[N 1 ] E[N ]
H : > (3.3)
1 V V

A uniformly most-powerful test for this case is given in Lehmann (1959,

p. 140): Under HO and given that Ne = ne, the number of events in the

local window, Nl, has binomial distribution with number of trials ne and

probability of success p equal to

V1
P -V (3.4)

e

Therefore, the distribution of N1 given that Ne = ne is

n n n -n
P[NI=n IN e=n] = (n ) p 1 (l-p) e (3.5)

1

for nl=0,1,...,ne. At a given significance level a, the rejection

R
level nl for N1 depends on ne and is defined as

nR = min n:P[N >nlNe=n ] < (3.6)

From Eq. 6 it follows that, if H0 is rejected when Nl>n 1 , the

significance level of the test is less than or equal to a. In order to

obtain a test with significance level exactly a, one may use the

following randomized rule:
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R
if N1 > nl, then reject H0

(3.7)
if N1 = nl, then reject H0 with probability y, where

a - P[N >nR IN =n1 1 e e

In practice, either of these rules could be applied. Although in later

applications Eq. 3.7 is used, Eq. 3.6 has the advantage that results of

the testing are uniquely defined, i.e., non-random.

By choosing a small value of a, one is assured that only in a few

cases (in fact, in a fraction a of cases) HO is rejected when HO is true.

In order to increase the power of the test one should make We as large as

possible by extending the window in space as far as homogeneity can be

reasonably assumed. As to the extent of We in time, a characteristic of

nonstationarity due to incompleteness that allows one to extend We beyond

the range of reasonable stationarity is the fact that the rate of catalog

events is usually monotonic. Therefore, the increase of p after the

occurrence of the main event is compensated by the decrease of p in

earlier times. What is important for the test to be valid is that the

average value of p in We be (approximately) the same as the value of P at

the time of the main event. Because the argument of balancing ' in the

extended window does not apply to events that occurred at the beginning

or at the end of the period covered by the catalog, special provisions

may be needed near the "boundaries". This problem will be discussed

further in Section 3.4.
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For a fixed value of the count in the local and extended window, the

maximum value of p for which clustering is detected can be calculated

from Equation 3.6. For high values of ne and low values of n1 a Poisson

approximation can be used for the binomial distribution of nl. Under

those conditions, the maximum value of P, Pmax, for which clustering is

detected by the test is defined as:

1 n1 -Pmaxne
(P n )  e = 1 - a (3,8)n! max e

n=O

Notice that Pmax is inversely proportional to ne and, hence, the size of

the local window where clustering is found to be significant is inversely

proportional to ne for a fixed value of n1 and Ve. For instance, if n1 =

1, the test finds all local windows with size V1 ( £n(1-a) Ve/ne to be

significantly clustered. Figure 3.2 shows the value of Pmax, numerically

calculated from Equation 3.6, as a function of ne and for different

values of nI. Two significance levels, 0.02 and 0.05, are used. From

the linearity of these curves on a log Pmax versus log ne scale, it

follows that the Poisson approximation in DBuation 3.8 is accurate,

except at very high values of n1 and low values of ne. Those figures

illustrate how the size of significant local windows increases with 1.

increasing significance levels a, 2. increasing local count n1 and 3.

decreasing global count ne respectively.

It is emphasized that the present test is based on the rather mild

assumption of local stationarity and homogeneity of the Poisson process

of main events. Also notice that the local window W1 needs not exactly

contain the entire cluster and for this reason may be taken to be the

same for all earthquakes of the same magnitude.



A two-dimensional representation of the local and extended windows

is made in Fig. 3.1b, where R and At denote respectively distance from

the epicenter and time since the occurrence of the main event. The same

figure illustrates a generalization of the previous test, which is useful

in the case of clusters that extend rqoY-ctdes i~; bcoib indow W1. In

this case, the test as previously described looses power because many

cluster events are located in the portion of the extended window outside

Wl. To prevent this from happening, one may define a buffer window Wb

which, with high confidence, contains most of the cluster. If Vb and nb

denote respectively the volume of and the number of events in Wb, then

the previous test is made after replacing Ve with (Ve - Vb + Vl) and ne

with (ne - nb + nl).

Fig. 3.1c illustrates still another concept: For small clusters, it

may happen that the local window does not display significant clustering

because it is too large. In order to detect these clusters (which, as

will be shown in Sec. 3.4, are a considerable fraction of all the

clusters), a second test of significance is made in those cases when the

first test results in acceptance of H0 . The second test uses a

contracted local window Wc, which has the same spatial dimension as the

original local window W1 , but extends backwards and forward in time by

only a fraction q of the original extent. Values of q of the order of

0.1-0.2 have been found to be appropriate by variation of this parameter

and considering the additional amount of clustered events.

Estimation of the shape and extent of the cluster for each main

earthquake is a separate task which, for the cases when HO is rejected in

the first test, is performed as described next.
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3.3.3 Estimation of Cluster Shape and Size

The fact that the rate of earthquakes in a neighborhood of a main

event significantly exceeds the rate in a larger background does not mean

that the cluster is entirely contained in that neighborhood. The next

task is to find a connected region near the main earthquake that indeed

contains all the secondary events associated with that earthquake. This

"cluster region" should be as small as possible in both time and space,

in order to prevent the erroneous removal of secondary events far from

the main shock and, more important, to avoid confounding among clusters

that are close to one another in space and time. The actual

identification of secondary events is still another task, which will be

considered later in Section 3.3.4.

The cluster region is identified through a sequence of statistical

tests, each of the type in Section 3.3.2, performed on extensions of the

region already recognized as hosting the cluster. Of course, such a

region and the earthquakes it contains are ignored when testing for

significance of the extensions.

There are several ways in which the "extension regions" and a

stopping rule can be defined. A simple possibility is to consider

regions with fixed spatial configuration (a disc of given radius centered

at the epicenter of the main event), obtained by partitioning the time

axis before and after the initial significant window (Fig. 3.3). If

clusters consist mainly of foreshock-aftershock sequences, then

extensions backwards in time should probably be of a smaller size than

foreward extensions.



The significance level a for extending the cluster region needs not

be the same as in the initial test: if a cluster is known to exist, then

one may want to extend it further on the basis of less evidence of

increased seismic activity. In this case one should use larger values of

a during the extension process. Extension in either direction terminates

when the last region considered in that direction passes the homogeneity

test of Section 3.3.2.

In the case of extensions only along the time axis, the radius of

the disc in space must be relatively large, so that there is high

confidence that the cluster is all contained into the "cluster region".

A more satisfactory but also more complicated procedure is to consider

extensions according to a rectangular grid in the distance-time reference

of the main event (Fig. 3.4). Because space is compressed into a single

distance axis, each extension region has in this case an annular form

around the epicenter of the main event. There are several variants of

the 2D procedure, depending on the order in which the various extension

regions are tested, on the stopping rule, and on the "postprocessing" of

the cluster region. Two schemes are illustrated in Fig. 3.4:

In the first scheme (top figure), regions tested for significant

clustering are those with at least one side in common with the region

found already to be significant. The procedure terminates when all the

candidate extensions are non-significant. This applies forward as well

as backward in time. If the final cluster region is multiply connected,

as in the case of Fig. 3.4b, then the region is enlarged to include all

the non-significant inner cells. Another possibility is to take a

cylindrical envelope in space and time (Fig. 3.4c).



In the second scheme, one orders the cells according to increasing

geographical distance from the epicenter and to the time elapsed since

the main shock (Fig. 3.4d). One then proceeds "row by row". Each "row"

is analyzed as in the 1D case, stopping as soon as a non-significant cell

is encountered. The procedure terminates when the first cell of the next

row is nonsignificant, both forward and backwards in time. T1e cluster

regions obtained by this second method are simply-connected and are

contained in the regions identified by the first method. In spite of the

more regular shape of the cluster regions, one may still want to simplify

their geometry by using cylidrical envelopes. This second method, with

cylindrical envelopes, will be used in Sec. 3.4 to obtain numerical

results.

Further extension to a three-dimensional scheme in space and time is

clearly possible but is considered unnecessary: as will be said in the

next section, spatial symmetry of the cluster region does not imply

spatial symmetry of the cluster itself about the main event.

Irrespective of the extension scheme (iD, 2D, or 3D), the size of

the extension regions should be not too small, in order to prevent that

the procedure stops prematurely due to local decreases of the earthquake

rate. Another reason why these regions should not be very small is that,

when approaching the boundary of the cluster, the rate of earthquakes

decreases and so does the power of the test. As mentioned previously and

justified in the next section, extending the cluster region somewhat

beyond the true cluster boundaries has only a small effect on the events

identified as secondary.



3.3.4 Identification of Secondary Events Inside Cluster Regions

The final step of cluster analysis consists of separating main

events from secondary events inside an estimated cluster region. Two

procedures, one of which has several variants, can be used for this

purpose: The simpler method consists of tagging as secondary all the

events inside the cluster region. This method has been proposed by many

authors but is unsatisfactory in two respects: 1. the boundary of the

cluster region must be estimated with accuracy or else several main

earthquakes will be misclassified, and 2. the procedure creates regions

of no activity in the neighborhood of many events and is therefore

incompatible with the assumption of Poisson main earthquakes.

A better approach is to thin the point process in the cluster

region. Thinning should be such that the events not tagged as secondary

occur at a rate and with a space-time distribution consistent with a

homogeneous Poisson process with the intensity of the background. This

can be done by simulating a Poisson point process with the target

intensity inside the cluster region and by then finding the earthquakes

in the catalog that are closest to the simulated ones in a certain metric

(nearest-neighbor method). The nearest neighbors are considered to be

main earthquakes; all the others are secondary events (see Fig. 3.5).

This process is implemented separately for each magnitude range to allow

for differential thinning depending on earthquake size. It is clear

that, if the cluster region extends beyond the actual cluster, then most

of the thinning will occur where the density of points is higher. This

is the reason why the actual shape of the cluster does not depend much on

the shape and size of the host region, provided that the region includes

it.
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The distance measure used here to identify nearest neighbors is

based on the space and time dimension of the cluster region: if the

region has maximum linear dimension D in space and T in time, then the

distance dij between (Xi, t i ) and (X ,t ) is taken to be

IIX.-X. 12  it.-t. 1 1/2

dij = + 2 ) (3.9)
D T

A number of variants can be defined, depending on the way in which

the simulated process is obtained. Two possibilities that have been

experimented with are:

1 . The simulated catalog is obtained from the original catalog by

locally randomizing the time of occurrence of each earthquake.

Simulation is done only once. The original location of the

earthquakes is left unchanged so that spatial nonhomogeneity is

preserved. This procedure is simple but has the disadvantage that,

at least during the first iteration, the simulated catalog has an

intensity u larger than the intensity of the Poisson background of

main events. Therefore, clusters have too few earthquakes removed as

dependent events. The problem is automatically corrected in the

course of subsequent iterations if the clusters are

relatively small and frequent (see Sec. 3.3.5), but bias may remain

if seismicity in the spatial neighborhood of a main event is

dominated by one or very few large clusters.

2. Another possibility is to simulate a separate Poisson catalog inside

each cluster region, using the intensity of the local background,

n -n
e V-V Simulation is actually repeated for each magnitudeV -V

e b



range using a size-specific value of U. This procedure is

computationally more expensive than randomization of the historical

catalog but has the advantage of being insensitive to large clusters,

of being consistent with the test for clustering in Sec. 3.3.2, and

of allowing one to easily correct for boundary effects (see Sec.

3.3.3) by increasing the values of p estimated from time periods that

preceed the most recent main events.

If the first method is used, then earthquakes identified as

secondary are tagged both in the original and in the simulated catalog

and are not considered further in the analysis. In the second method,

tagging is done only in the original catalog.

Results from both methods will be presented in Sec. 3.4. Method 2

leads in general to removal of more secondary events than Method 1. In

fact, in regions of moderate or low seismicity, Method 2 produces

earthquake classifications that are similar to those from labeling as

secondary all the events within the cluster regions.

3.3.5 Subsequent Iterations

Irrespective of the method used to thin the point process inside

each cluster region, during the first application of the algorithm one is

bound to underestimate the number of secondary events. This is because

the background of each main event contains a mixture of main shocks and

secondary earth quakes, with the consequence that the weaker clusters may

not be significant. In addition, the simulated point processes used for

thinning have too high intensity and therefore leave a too large fraction

of main shocks inside the cluster regions. Iteration is a simple way to
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remove this bias because events that are tagged as secondary are

neglected in subsequent analysis. Somewhat different results are

obtained depending on the way iterated analysis is implemented. Three

alternatives are as follows:

2A4 e each iteration, the catalog that remains after removing the

previously tagged earthquakes is examined in exactly the same way as

in the first iteration;

2. Same as 1, except that when testing significance of clustering, the

counts in the local and candidate extension windows are based on the

complete catalog; excluding however, earthquakes that in previous

iteration are identified as secondary to a different main shock.

3. Same as 2, but secondary events are tagged starting from scratch,

without consideration of the tagging during previous iterations.

Among these methods, those favored are Methods 2 and 3. Method 2 has the

advantage over Method 3 that convergence is easier to check (no

additional earthquake recognized as secondary during one iteration).

Method 1 has the undesirable feature that, when testing for significance

of clustering after the first iteration, the power of the test is low for

main shocks that had been associated with clusters during previous

iterations.- In spite of the conceptual differences among the three

methods, the final results are similar. Method 2 is the one used in the

applications described in the next section.

3.4 NUMERICAL APPLICATIONS

Before the method proposed in Sec. 3.3 can be reliably used, it

should be tested with catalogs of known characteristics. Some testing of

this type is made here by applying the method to three catalogs: one is



the Weston Observatory Catalog (Chiburis, 1981) updated to 1980 (Barosh,

1981 personal communication). The catalog contains 3022 events which

occurred between 1534 and 1980 in a geographical region that extends in

approximation from 630W to 850W and from 340N to 500N. Earthquakes in

the catalog have already been classified as main and dependent events.

Although this classification is likely the result of a composite process,

it still provides a reference for the proposed automated method. It also

gives us an opportunity to verify the consistency of judgemental methods

of cluster analysis.

A second catalog has been obtained from the previous one by

randomizing the time of occurrence of each event over the entire time

interval from 1534 to 1980. Therefore, this catalog is Poissonian and

stationary in time, but has the same nonhomogeneity in space as the

original catalog.

A third catalog has been obtained by locally randomizing the time of

occurrence of the historical earthquakes. Specifically, the times have

been simulated as independent variables with uniform distribution inside

intervals centered at the associated historical times tj. The width of

the simulation interval has been taken to be a function of tj and I o ,

according to Table J 3.2. Truncation of the distributions has been

imposed so that all simulated values are between 1534 and 1980. Compared

with the historical catalog, this last catalog displays a smoother

variation of seismic activity in time, while preserving the long-term

nonstationarity due to incompleteness and, of course, spatial

nonhomogeneity.

In all three cases, the analysis has been made in terms of

epicentral Modified Mercalli Intensity I o instead of magnitude m. For



events with no reported epicentral intensity, I o is estimated using the

deterministic conversion (Chiburis, 1981)

I o = (m-1)/0.6 (3.10)

rounded off to the closest integer. Although this conversion rule is

slightly different from that proposed in Section 2.5.2 and does not

consider uncertainty on the conversion or on the reported values of Io

(for a detailed discussion, see Chapter 2), the results of the present

clustering method would differ litte under reasonable variations of Eq.

3.10. After elimination of earthquakes with calculated intensity less

than 1, each catalog contains a total of 2860 events. A plot of the

events according to the original catalog is shown in Fig. 3.5.

3.4.1 Simulated Catalogs

The stationary catalog has been analyzed using the input parameters

of Table 3.3. Notice in particular the sizes of the local and extended

windows for the test of clustering, the value 0.1 of the factor q that

defines the contracted window Wc, and the number of allowed extensions in

space (2) and backward and foreward in time (4). The extension method

chosen here and in all subsequent numerical calculations is that

illustrated in Figs. 3.4d and 3.4e, with a cylindrical envelope. The

buffer window Wb (Fig. 3.1b) is chosen as the largest cluster region

allowed by the analysis; for example, in the case of Io=4 , Wb extends

from (60x4) = 240 days before to (200x4) = 800 days after the main event

and has a radius of (0.22x2) = 0.44 degrees. Two iterations are allowed,

using Method 2 in Sec. 3.3.5.



A summary of results is given in Table 3.4, in terms of the number

of main and secondary earthquakes and of main events with associated

clusters. What is perhaps most interesting to consider in the case of a

Poisson catalog is the fraction of main events that the algorithm

associates with clusters. This fraction, denoted by ICLUS, is given by

No. of clusters
CLUS No. of main events

52
2860

= 0.018 (3.10)

The fact that n is very close to a=0.02 indicates that the present
CLUS

procedure does not confound clustering with spatial nonhomogeneity of

seismicity.

In only two cases did the procedure find the contracted window Wc to

be significantly clustered when W1 was not. W1 was itself extended in

one case in time and in three cases in space. The small number of

extensions is easily explained by the fact that "Poisson clusters" are

small and local, especially if the intensity of the process is low; this

is also demonstrated by the small average number of secondary events per

cluster, which is 67/52=1.3.

The same parameters have been used in the analysis of the

nonstationary catalog, except that AR has been doubled and nR set to 1

for all Io0 Results in Table 3.5 indicate that the fraction of main

111
events associated with clusters has increased to CLUS - 2630= 4.2%

230
and that the average cluster size has increased to- = 2.1. The main

111

reason for these increases is that local randomization of the occurrence



times does not entirely eliminate the high-frequency variations of the

earthquake rate, which the algorithm interprets as clusters. For the

nonstationary randomized catalog and for the Weston Observatory Catalog

(see next section), a correction is used for boundary effects in the

estimation of the background rate. The correction consists of taking the

maximum between the average background rate and the average of the rates

for the portions of background that preceed and follow the main event.

3.4.2 Weston Observatory Catalog

The previous runs indicate that, for Poisson catalogs, the procedure

of Sec. 3.3 classifies as secondary only a small fraction of the events.

This is true also in the presence of nonhomogeneity in space and

nonstationarity in time, of the type caused by incompleteness.

In actual catalogs, clusters are quite diverse in their time-space

configuration; whereas some have a duration of only a few weeks or

months, others may extend over several years. In order to properly

identify clusters of different shape and size, one must allow for a large

number of extensions of the initial test window W1 . On the other hand,

one should avoid unnecessarily large buffer windows Wb, not to

excessively reduce the volume of We and thus decrease the power of the

clustering test. Because the space-time configuration of the clusters is

initially not known, it is good practice to use the procedure twice: the

first time one should allow a large number of extensions and obtain a

rough estimate of the cluster regions, whereas the second time one should

use a number of extensions just sufficient to envelope the largest

cluster in each intensity class. In the case of the Weston Observatory

Catalog, input parameters for the latter analysis are shown in Table 3.6.



Notice the large number of extensions in time allowed for main events

with intensity between 4 and 8. This is the result of having detected,

during previous preliminary analyses, large clusters associated with main

events of these intensities.

Table 3.7 is analogous to Tables 3.4 and 3.5, except that it

includes a breakdown of secondary events according to their

classification by the seismologists. Specifically, the last three

columns give the number of earthquakes tagged as secondary by our

procedure only, by the seismologists only, and by both. The fraction of

events that we tag as secondary decreases with increasing Io , with an

average value of 28%. Although the automatic method identifies a larger

number of secondary events than the seismologists do, agreement between

the two classifications appears to be satisfactory. For example, 91% of

the events classified as secondary by the seismologists are also tagged

as secondary by our method. As to the earthquakes that only our method

detects as secondary, we believe that in many cases they should not be

considered as main events (see later in this section).

A breakdown of the secondary events according to their intensity and

to the intensity Io of the main event is given in Table 3.8. These

results appear to contradict the relationships proposed by Utsu (1961)

and Bath (see Richter, 1958), which give the maximum intensity of

aftershocks, IM , that follow a main event of intensity Io. According to

Utsu, the difference between Io and IM (more precisely, between the

associated magnitudes) increases with decreasing Io, whereas according to

Bath the difference in magnitudes is constant and equal to 1.2. By

contrast, Table 3.8 indicates that, especially for 1o(5 , there is a



significant probability that IM=Io* Data is too limited and incomplete

to allow one to confirm or disprove the frequent claim that aftershock

intensities have truncated exponential distribution, with decay parameter

that depends on Io. Of course, some of our findings may be influenced by

the present definition of secondary events.

Other statistics related to extensions in space and extensions and

contractions in time are given in Table 3.9. The latter operations are

performed each in about 15% of the cases, whereas spatial extension of

the cluster region beyond the values of AR in Table 6 is made for only 8%

of the clusters.

A more direct representation of the results is given through plots:

Fig. 3.7 shows the empirical earthquake rate (number of events of any

magnitude in one year), separately for the complete catalog, for only the

events classified by the present procedure or secondary, and for only the

main events. Note the large clusters associated with the 1727 Cape Ann

and with the 1976 St. Simeon earthquakes. Also notice how the removal of

secondary events smoothes the empirical rate of main earthquakes.

The spatial distributions of secondary and main events are shown in

Figs. 3.8a and 3.8b. These partial plots of seismicity should be

compared with the combined plot in Fig. 3.6.

A separation of clusters by intensity of the main event is made in

Fig. 3.9. For each Io, two plots are shown using the local reference of

the main event in each cluster: the horizontal axis gives the time in

days since the main event and the vertical axis gives the squared

epicentral distance in degrees. The second plot of each pair contains

only the secondary events of the clusters, represented with different



symbols depending on their classification by the seismologists. The

first plot displays the same events against the local "background" of

main earthquakes of intensity at most 1o . Background events are also

plotted with different symbols according to their classification by the

seismologists. Symbols are as follows:

A - earthquakes classified as secondary by both procedures (present

method and seismologists);

U - earthquakes classified as secondary only by the present method;

(- earthquakes classified as main events by both procedures;

o - earthquakes classified as main events only by the present method.

The reason why squared distance is used instead of simply distance is

that, for a spatially homogeneous Poisson process, the density of points

is constant in the former representation. This facilitates the visual

identification of clusters. Because clusters with main events of

Intensity 9 and 10 ari vecyl Ew, they are combined in a single plot.

One might find it strange that, in the case of intermediate

intensities, the algorithm classifies as secondary events earthquakes

that are far away from the main shock and are embedded in a dense

background. This apparent contradiction is explained by the fact that

the plots of Fig. 3.9 are the result of mixing many different clusters

and their neighborhoods. In reality, the intensity of the background

varies significantly from cluster to cluster. In order to show this, the

most prominent clusters for Io= 5 ,6 and 7 are plotted in isolation in Fig.

3.10 using again the format of Fig. 3.9. No cluster dominates for Io=4 ;

therefore, clusters with main intensity equal to 4 have been separated on

the basis of size (n<4 and n>4). It is clear from Fig. 3.10 that each



cluster (each cluster group in the case of Io=4 ) is quite distinct from

its own background. An extreme case is the cluster of the 1727 Cape Ann

earthquake, whose background is empty.

The Cape Ann earthquake can be used also to illustrate the reason

why, in the analysis, uncertainty on the geographical location of the

historical epicenters has been neglected. If the errors in the

determination of the epicenters were mutually independent random

variables, then earthquake clusters would appear "blurred" in the

catalog. As exemplified by the 1727 Cape Ann cluster, this is not the

case, especially for the earlier events. The reason is dependence among

the errors: although there is considerable uncertainty on the actual

location of the Cape Ann earthquake and its aftershocks, the fact that

these events are part of the same cluster has made the seismologists

assign the same epicentral coordinates to all. It would be difficult to

obtain parameters for a model with dependent errors, and the analysis

would become very complicated. In addition, we believe that the final

classification of earthquakes with errors modeled would be virtually

identical to that with errors neglected.

Oddly enough, the seismologists have not identified as secondary

three of the Cape Ann aftershocks and many events within the cluster of

Fig. 3.10b: although one could make a variety of assumptions about

cause-effect relationships among the earthquakes of Fig. 3.10b, the

sparsity of the background makes it difficult to believe that most of

these events occurred independently of one another.

With large clusters removed, the plots of Fig. 3.9 would show high

concentrations of secondary events very near the origin of the axes,

embedded in rather uniform backgrounds.



Table 3.9 and the previous figures give little statistical support

to the hypothesis that cluster dimensions in time and space increase

systematically with the intensity of the main event. The reason may very

well be that the statistical sample is too small. On the other hand,

Fig. 3.11 shows some evidence of dependence of cluster dimension on

cluster size n. In this case, secondary events are plotted separately

for n=1, n=2-6, and n>6. Also the latter dependence should however be

interpreted with caution, because it is due in part to the testing

procedure, which is unable to detect clusters that contain only very few

and widely separated earthquakes.

The plots of Fig. 3.12 show the distribution in space of the

secondary events relative to the main earthquakes. The one-tenth-degree

accuracy in the reported coordinates produces a grid pattern and obscures

somewhat the true space distribution, due to multiple occurrences at some

locations. Yet, a NE-SW trend is apparent in the clusters, except for

very small and very large values of 10. This trend is even more evident

if one groups clusters according to the number of secondary events, as

shown in Fig. 3.13.

3.4.3 Sensitivity Analysis

Eight variants of the input parameters in Table 3.6 have been

considered. The variants are described in Table 3.10 and summary results

are given in Tables 3.11 and 3.12, respectively for the number of

clusters and the number of secondary events. The percentages in the

bottom row of Table 3.11 are calculated by dividing the number of

clusters by the difference between the total number of earthquakes in the

catalog (2860) and the total number of secondary events from Table 3.12.



100

None of the changes in the input has a significant effect on the

final classification of earthquakes, except for halving the space

dimension of the local and extension windows, AR. The consequent

reduction in the number of clusters and secondary events is not

unexpected: in the limiting case as AR+O, the procedure breaks down and

no secondary event can be detected. Hence, AR should be chosen such

that, in the region of clustering, several events are expected to fall

inside the local and each of the extension windows. Interestingly, the

solution remains almost the same if one doubles the values of AR in Table

3.6. The small increase in the number of secondary events is due to the

fact that, beyond the cluster regions identified using the parameters of

Table 3.6, there is still a modest amount of clustering. This clustering

is not significant at the 0.02 level but is removed by increasing the

size of the window.

Changing the levels of significance (a for the local window, %ext

for the extensions) or the size of the extended windows in space (Case 5)

or time (Case 6) has only a minor effect on the classification of

earthquakes. Modifying the procedure of earthquake classification inside

the cluster region (last two cases) also produces small changes in the

results. This is especially true if the new rule is to classify all the

events in the cluster regions as secondary (Case 7) and thus to create

"holes" in the immediate neighborhood of the main events. The reason for

lack of sensitivity is weakness of the background. Tagging earthquakes

by Method 1 of Sec. 3.3.4 (last sensitivity case) leads to a reduction in

the number of secondary events, as a consequence of the bias described

previously in that section.
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Overall, sensitivity analysis shows that the proposed method is

robust with respect to the input parameters. The only exception is AR,

which should be chosen to be not much smaller than the expected radius of

the clusters. Use of the cluster-extension procedure in Figs. 3.4a-3.4c

would reduce sensitivity to this parameter.

3.5 EXPLORATORY ANALYSIS OF THE CLUSTERING RESULTS

Because of the size of the earthquake data set and the many

variables involved, such as location, time of occurrence and earthquake

size, it is not simple to conduct an exploratory analysis of the

clustering results. For this purpose, the displays in Figure

3.14 are found to be useful and will be discussed in this section.

About 93% of the catalog data falls within the region from 38 to 54

degrees North and from 60 to 80 degrees West. To maximize the spatial

resolution of the figures, only events inside this region are presented.

Furthermore, the time period of the catalog is divided into six

intervals, each containing almost the same number of events. For each

time period, four plots are produced, showing 1. all events in the

catalog, 2. the clusters detected by the algorithm, 3. earthquakes

classified as main events by the algorithm, and 4. earthquakes indicated

as aftershocks in the original catalog (judgemental aftershocks). Each

of the plots shows the spatial distribution of the earthquakes (latitude

versus longitude), and latitude and longitude versus time. The size of

the symbols is used to indicate the intensity of the events. For the

cluster plots, two symbols are used: squares indicate the main event

associated with each cluster, crosses indicate the aftershocks. For the
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judgemental aftershock plots, squares are used to indicate earthquakes

that the present method classified as main events.

The number of events in each of the plots is shown in Table 3.13.

Also shown in the table is a comparison of the percentage of secondary

events in the catalog according to the judgemental and automatic

classifications. Notice that the cluster analysis tends to classify more

earthquakes as secondary. The first time period, from 1500 to 1800,

contains a relatively large number of aftershocks according to both

classifications. Some of these clusters may actually be due to the

on-off pattern of reporting, as one can see from Figure 3.14a.1. The

large cluster of events following the Cape Ann earthquake of 1727 also

partly explains the increased number of aftershocks. During the last two

time periods, the present analysis finds a relatively low and a

relatively high number of aftershocks, respectively. In part, this may

be a consequence of overestimating and underestimating the background

recurrence rate in those respective time periods: In the analysis, a

time period of 15 years is used for the background window (see Table

3.3), which extends 10 years backwards and 5 years forwards. An

asymmetric window has been used to correct for the increased activity in

the last time period. However, the counts in Table 3.13 indicate that

the yearly recurrence rate over the period from 1974 to 1981 is about

three times that from 1960 to 1974. Therefore, results in the last two

time periods may be somewhat biased. The percentage of clusters, which

is also calculated in Table 3.13, is however remarkably stable over all

time periods, except the first one. It follows that the average cluster

size during the last time period is substantially larger, presumably due
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to increased reporting of events of small magnitude. In the remainder of

this section, Figures 3.14a-3.14f will be further discussed with respect

to the performance of the clustering algorithm, the pattern of aftershock

sequences and the pattern of main shocks.

3.5.1 Performance of the Cluster Analysis

For a visual verification of the clustering procedure, it is of

interest to compare the clusters identified by the analysis with the

pattern of judgementally identified aftershocks. First, one may note

that almost all aftershocks identified in the catalog are also identified

by the present method (see the small number of boxes in the plots of

aftershocks). Aftershocks not identified by the present analysis are

mainly associated with one of the following two effects: 1. the present

analysis does not always extend the window over the entire sequence of

events, if the sequence is very long or is distributed over a large

geographical region; rather, it breaks the sequence into two or more

parts (see for example the Cape Ann sequence), 2. in a cluster with

events of equal size, the present analysis defines the earlier event as

the main shock and the later event as an aftershock. In the catalog

classification, this relation is often inversed. Several examples of

this type can be seen in the period from 1850 to 1860.

Second, one may note that cluster analysis identifies more

aftershocks than the judgemental procedure. From the cluster plots, it

is indeed clear that several dependent events have been "missed" in the

judgemental classification. For instance, many events that practically

coincide in time and space with other events of equal or higher size are

not labeled as dependent (e.g., time period 1920-1925).
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Another way to judge the performance of the method is to attempt a

visual identification of the clusters using the plots of all events. For

early time periods, where events are sparse, this is reasonably easy. In

later time periods, more detailed plots are needed, but even then such a

task seems prohibitively time-consuming and imprecise. In any case, the

proposed method is not very different from the reasoning one would

likely use during such a process and results are expected to be similar.

3.5.2 Pattern of Aftershock Sequences

Examination of the cluster plots is of interest to formulate a

statistical model for the aftershock sequences. Such a model is however

only of secondary importance in seismic hazard analysis and its study

falls outside the scope of this thesis. A statistical model of the

clusters would be however of interest to seismologists and to risk

engineers in the context of earthquake prediction. One may notice some

secondary clustering of "primary clusters", for instance during the

period around 1880. The geographical distribution of cluster centers is

also reasonably consistent with that of the main shocks. The spatial

resolution of these plots is insufficient to examine in detail any

spatial pattern of the secondary events around the main events. On the

other hand, the figures illustrate clearly the large variations in the

time span of the clusters, also for main events of the same size. There

is no clear evidence of geographical dependence of these time spans.

Finally, one should note that a major problem in a formal statistical

analysis of the clusters is posed by incompleteness: from the figures of

main events only, it is evident that early periods are highly incomplete,

especially for events of small size. As a consequence, one may expect
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that also clusters identified in those periods are only partially

identified and, thus, less representative of the actual cluster shape and

size. In addition, uncertainty on the earthquake parameters (epicentral

location, size of the events, and time of occurrence) may differ

significantly for early and more recent events. Therefore, a statistical

analysis of the clusters should perhaps focus only on the data that are

reliable and clearly delineated from the background. Unfortunately, this

may lead to a data set which is too small to produce definitive

conclusions.

3.5.3 Pattern of Main Shocks

Estimation of the recurrence rate of main shocks as a function of

time, spatial location and size will be discussed in detail in Chapter 4.

Here, the two most striking features of the main-shock sequence,

incompleteness and "non-Poissonian" patterns, are discussed informally.

Figures 3.14a.3 and 3.14b.3 indicate clearly that, prior to 1870,

the catalog is extremely incomplete, except for events of large size

(I o ; 4). Chiburis (1981) suggested that the sudden increase in

seismicity around 1870 is associated with an increased probability of

reporting. One should note that, around this time, newspapers and

magazines become major sources of earthquake reports. On the other hand,

the decrease of seismic activity that follows does not seem to confirm

such an hypothesis; possibly, part of the earthquake sequence during the

more intense period should be classified as a swarm. In more recent time

periods, the relative proportion of reported events of small size

increases gradually (see the histograms of 10 in the figures). Better
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management of the seismic network can possibly explain the jump in

seismic activity after 1925. Note also that, if one accepts the

hypothesis of an exponential decay of the recurrence rate with earthquake

size, then one should conclude that also during the last time period

(1974-1981) events with Io < 3 are incompletely reported.

Close inspection of the data after 1870 also seems to indicate

several non-Poissonian characteristics or short-term and relatively local

variations of the recurrence rate, which are not explained by

incompleteness. In particular, it appears that crustal stress at a given

location is released in time-lapses, rather than continuously, and shifts

from one location to another. The latter pattern is most clearly

observed in the last time period. Definite conclusions are not easy to

reach based on these figures because of the confounding effect of

incompleteness. In Chpater 4, a model is proposed that attempts to

quantify incompleteness of earthquake reporting. Examination of the

difference between observed and predicted seismicty is a better way to

enhance nonstationary episodes and non-Poisson anomalies.

3.6 RESEARCH DIRECTIONS

Although the present method is considered satisfactory for the

identification of secondary events of the foreshock and aftershock type,

some potential improvements are worth mentioning.

1. The a-priori choice of the background window size is somewhat

arbitrary and can possibly introduce bias. Alternatives one might

consider are the internal estimation of the extent of the background

window (e.g. based on a K-nearest neighbor method) or a



107

non-parametric estimation of the "local" background recurrence rate

within a fixed window (e.g., fitting a locally linear, monotonically

increasing recurrence rate inside the background window).

2. Detection of the cluster shape is presently based on the scheme of

Figures 3.4d and 3.4e. As pointed out before, other extension

schemes are possible and worth investigating. A possibility which

has not been mentioned yet, is to determine the extent of the cluster

by moving from neighbor to neighbor, using either some heuristic rule

to simulate visual identification or statistical tests based on

nearest neighbor distance.

3. No measure of how well the clusters are separated from the other

events is presently calculated. In particular, it would be useful to

obtain an estimate of the misclassification errors, i.e., of the

probability that a window found to be significant actually contains

only main events and, vice versa, that a window found to be

non-significant, actually contains one or more aftershocks.

Estimation of such probabilities could possibly proceed along the

following lines:

a. Estimation of the distribution for the ratio R between the

recurrence rates in the local and extended windows, using catalog

data.

b. Calculation for each window in the analysis of the likelihood of

the "local count" for given "extended count" and window sizes, as

a function of R.

c. Calculation for each window of the a-posteriori probability that

R < 1 (no clustering) and R > 1 (clustering). Summing the
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probability that R ( 1 for all windows labeled as significant in

the analysis gives an estimate of the misclassification error for

clusters.

Note however that Step (a) requires further investigation, because it is

not clear whether the assumption of a single distribution of R for all

windows is reasonable. One may expect for instance that for backgrounds

with higher seismicity (during more recent periods or at more active

locations), high values of R are less probable, if one assumes that the

size of a cluster inside the initial window is less sensitive to

incompleteness or to seismic activity than the background rate.
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Chapter 4

ESTIMATION OF INCOMPLETENESS AND RECURRENCE RATES

4.1 INTRODUCTION

After conversion of the different size measures to a single scale m

(see Chapter 2) and the removal of dependent events (Chapter 3), the

earthquakes in the catalog can be thought of as points in a multi-

dimensional space (x,t,m): for earthquake i, _i is the geographical

location, ti is the time of occurrence and mi is a unique size measure.

The problem discussed in this chapter is how to estimate the rate density

function v(x,m) from the historical data. This function is defined such

that v(x,m) dxdm is the expected count of earthquakes in the (dx,dm)-

neighborhood of (x,m). Two basic assumptions will be used throughout this

chapter:

1. The earthquake sequence is a realization of a Poisson process, i.e.

points in (x,t,m) space are independently located.

2. Nonstationarity of the observed earthquake sequence is attributed to

incomplete reporting, whereas the seismicity generating process is

stationary. Therefore, the rate density of reported events can be

written as

X(x,t,m) = PD(x,t,m) V(x,m) (4.1)

where PD(x,t,m) is the probability that an earthquake of size m, and

at location x and time t is reported. It is further assumed that

detection/no-detection of different earthquakes are independent

events.
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Both the assumptions of independence and stationarity of the seismic

process are debatable, especially over short time periods as illustrated

by the exploratory analysis of the New England data in Section 3.4. These

assumptions are maintained here for three reasons: First, there is little

physical basis to establish a model explaining the micro-variations of

seismicity. Second, because of computational constraints and the lack of

sufficient data, a statistical model that is more complex with respect to

nonstationarity or non-Poissonian characteristics would have to introduce

other simplifying assumptions, for instance about the spatial variation of

seismicity or about the incompleteness of the catalog. Finally,

deviations of the historical data from the proposed model can be detected

a-posteriori, i.e. by comparison of the predicted and observed recurrence

rates. If such deviations are significant, local corrections to the model

could be made, for instance, using judgement or formal Bayesian updating.

Current procedures for the estimation of the recurrence rates usually

employ several additional assumptions, such as

1. v(x,m) is spatially constant within given regions Qk, usually

referred to as seismogenic provinces; hence

v(x,m) = vk(m) for x s 9k (4.2)

2. The rate density inside province k, vk, varies exponentially with m,

i.e.

an vk(m) = ak - bk m m0 4 m 4 mI  (4.3)

where ak and bk are unknown parameters, m0 is a lower bound of

interest and m i is a physical upper bound, which may vary from

province to province.
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3. Inside prespecified regions St, the catalog is complete for magnitude

m within the last TE(m) years (so-called periods of completeness), so

that

PD(x,t,m) - 1 for x E St (4.4)

and t > to - T£(m)

where to is the most recent time of observation included in the

catalog. Notice that the seismogenic provinces Sk are not necessarily

the same as the completeness regions S£, the latter being character-

ized by uniform detection capability rather than uniform seismicity.

Under the above assumptions, estimation of the parameters ak and bk in

each province is relatively straight-forward if only earthquake data

within the periods of completeness are used. A technique which is

currently used for doing so will be reviewed in detail in Section 4.2.

In the present chapter, four statistical models, A to D, are

presented, which extend one or more of the assumptions in Eqs. 4.2, 4.3

and 4.4. These models differ fundamentally from earlier ones in the sense

that the probability of detection PD and the seismicity rate v(x,m) are

simultaneously estimated from the data. Doing so allows one to utilize a

larger part (possibly all) of the historical data and provides means to

objectively quantify the completeness of the catalog. Depending on which

of the four models is used, information on PD will be derived only from

the nonstationarity and non-exponentiality of the observed recurrence

rates (model C-D) or also from the distribution of population and seismic

instruments in time and space (models A and B). Other extensions that are

considered in the various models are with respect to the spatial variation

of seismicity, the relation among the slope parameters bk for
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different provinces, the uncertainty on the location xi and size measure

mi of the historical earthquakes, and the assumed exponentiality of the

the recurrence law in Equation 4.3. Techniques to examine the goodness-

of-fit of the models and to obtain estimates of uncertainty on the para-

meters are also discussed.

Although models A to D were developed cronologically in an attempt to

improve their performance, each has its own merits and sheds light into

the problem of estimating recurrence rates and incompleteness. Before

going into technical details, it is useful to consider the work presented

here from a more global perspective. For this purpose and after reviewing

a traditional technique for the analysis of the catalog data in Section

4.2, Section 4.3 describes the conceptual basis of the models and moti-

vates different assumptions or techniques that are used. Section 4.4

analyzes qualitatively the different causes of incompleteness and des-

cribes available data. Because the different models have much in common

(all of them use some form of discretization in the multi-dimensional

space of x, t and m and a maximum-likelihood method to estimate the para-

meters), the numerical procedures are developed in parallel in Sections

4.5 to 4.9. The likelihood formulation will be introduced in its simplest

form in Section 4.2, while reviewing techniques currently used for the

estimation of recurrence rates. Section 4.5 considers various representa-

tions of the variation of PD with the time, geographical lodation and size

of the earthquakes. The extended maximum likelihood equations, accounting

for the probability of detection, are developed first in Section 4.6 for

the case when no prior information is available on the parameters, and

then in Section 4.7 for the case when a-priori information needs to be

considered. Numerical procedures used to solve these equations are also
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discussed. In Section 4.8, the maximum likelihood formulation is further

developed to allow for uncertainty on the data and a numerical solution

technique is presented. Section 4.9 discusses methods to check the

goodness-of-fit of the model and to quantify uncertainty on the estimated

parameters. Application of the models to actual data is presented in

Sections 4.10 to 4.13, one section for each of the models. The data used

are those of the Chiburis catalog, presented earlier, and of a catalog for

northern Italy (Friuli region, ENEA, 1984). Conclusions and

recommendations for further research are given in Section 4.14.

4.2 MAXIMUM LIKELIHOOD FORMULATION FOR A SEISMOGENIC-PROVINCE MODEL
WITH PERIODS OF COMPLETE REPORTING

The purpose of this section is twofold: The first objective is to

exemplify the estimation of recurrence rates on the basis of Equations

4.2, 4.3 and 4.4. For convenience, such a technique will be referred to

as Stepp-Weichert-Seismogenic-Province method (SWSP method). The second

objective is to introduce for this simple model the likelihood formulation

used extensively later in this chapter and to present typical

uncertainties on the parameters. No attempt is made to present an

exhaustive review of all methods which have been used for the estimation

of earthquake recurrence rates. Suffice it to say that, with minor

variants, the SWSP method is very widely used for the purpose of

calculating seismic hazard. A broad discussion of previous models of

earthquake occurrences can be found in Basu (1977) with emphasis on

seismic hazard and in Savage (1975) with emphasis on geophysical aspects.



4.2.1 The Stepp-Weichert-Seismogenic-Province Method

The first step in a SWSP method is to partition the geographical

plane into regions Ok that can be assumed homogeneous with respect to

seismic activity (see Equation 4.2). Unfortunately, in the Eastern United

States as well as in many other regions, there is no strong physical

association between seismicity and tectonic, geological or geomorpholo-

gical variables, on the basis of which one might identify such earthquake

sources. An extensive study by Barstow et al. (1981) has concluded that,

although certain physical anomalies often occur in regions of strong

seismicity, earthquake activity is not always present where such anomolies

are found. In addition, the historical data rarely indicate abrupt

changes of seismicity at certain boundaries. As a consequence, the

specification of seismogenic provinces is somewhat controversial. In most

seismic hazard studies (e.g. WGC, 1983) it is therefore common practice to

analyze several alternative seismic source configurations. Such configur-

ations can be judgementally determined on the basis of geophysical data or

be derived from the historical data. Several examples of source zones for

the New England area and the Eastern U.S. are found in WGC (1983) and EPRI

(1985) respectively. For instance, Figure 4.1 shows a proposed source

configuration within a region, which will be studied later in the appli-

cation of the models.

The second step of the SWSP method is to determine periods of

completeness for the region of interest (see Equation 4.4). The under-

lying notion is that nonstationarity of the events in the catalog is due

to incomplete reporting of the earthquakes. The problem of missing data

is especially severe for earlier time periods, for sparsely populated

areas and for events of smaller size. Apparent nonstationarity due to
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incompleteness is quite evident in Fig. 4.2a, where the empirical recur-

rence rate in the region of Fig. 4.1 is plotted for each intensity against

the period of observation. Stepp (1972) has proposed to estimate the

periods of completeness TX(m), for magnitude m and within region SX, based

on the stability of the empirical recurrence rate and to use only data

within these time intervals in the estimation of recurrence rates. The

method requires a certain degree of judgement, especially at very low and

very high intensities, due to statistical variability of the empirical

rates and to the fact that, for small size measures, the catalog may be

incomplete even today. The difficulty of estimating TL(m) is even greater

if one analyzes each province indicated in Fig. 4.2a separately, e.g. to

account for differences in population density and instrumentation; see for

example, Provinces 1,3,6 and 7 in Figs. 4.2b. The fact that the recur-

rence rates in each province should follow the parametric relationship in

Eq. 4.3 adds one more level of complexity, because the exponential para-

metrization couples the estimation of the periods of completeness with

that of the recurrence rates.

The final step in the SWSP method consist of estimating the recur-

rence parameters a and b in Eq. 4.3, from the given periods of complete-

ness Tt(m) and the associated historical recurrence rates. Weichert

(1980) has shown that such estimates can be obtained by a maximum likeli-

hood method, which accounts for the unequal periods of observations for

various magnitudes. Weichert has also derived an expression for the

asymptotic variance on the estimated slope parameter bt, which extends

earlier results by Aki (1965), Utsu (1966) and Page (1968). More

recently, Bender (1983) has derived numerically the distribution of the
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maximum-likelihood estimator of b£ for small sample sizes, for the case

of equal observation periods. Possibly large discrepancies of the maximum

likelihood estimates with alternative estimates, such as the least-squares

values based on the empirical density or cumulative distribution function,

have been reported by Utsu (1966), Weichert (1980) and Bender (1983).

As an introduction to the likelihood formulation used in this

chapter, maximum likelihood estimation of the recurrence parameters in

Equation 4.3 is presented in detail in the next subsection. The

derivation differs from that of Weichert or Bender, who fix the sample

size and estimate only the b-parameter. Under the condition of fixed

sample size, the earthquake counts in discrete magnitude intervals follow

a multinomial distribution, as opposed to a Poisson distribution. One can

show that the Poisson and multinomial sampling scheme lead to the same

maximum-likelihood estimate for the distribution of the counts (Bishop et

al., 1975). However, if one wants to study the distribution properties of

the estimators a and b, then the appropriate model is the Poisson not the

multinomial.

4.2.2 Maximum Likelihood Estimation of a and b Parameters in Equation 4.3

To derive the maximum likelihood estimates of the recurrence

parameters in Equation 4.3, it is convenient to omit the subscript L,

which refers to seismogenic province. On the other hand, to indicate the

dependence on magnitude of earthquake counts, recurrence rates and periods

of completeness a subscript m will be used. It is assumed earthquake

magnitude is discretized into intervals of equal width. Recurrence rates

of earthquakes with different discrete magnitude m follow the parametric

relation similar to that of Equation 4.3. We write such relation as
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\m = exp{a - b m} m0 ( m ( m1  (4.5)

It should be noted that the various bias corrections found in the

literature for magnitude discretization or upper-bound magnitude are

corrections to estimates obtained by maximizing a likelihood that does not

consider those characteristics of the distribution, i.e. that is not the

correct likelihood. If the likelihood is correctly formulated, the

maximum- likelihood estimates are asymptotically unbiased under very

general conditions (Cox and Hinkley, 1974). For instance, Weichert (1980)

showed how various bias corrections in the literature are implicit in the

maximum likelihood equation.

If the historical magnitudes are uncertain, the question arises of

how to assign each earthquake to a discrete magnitude interval. The

problem of uncertainty on earthquake size was addressed earlier in Chapter

2, where a deterministic bias correction was proposed. In model C and D,

uncertainty on the size measures will be explicitly incorporated into

the likelihood formulation (see Section 4.8).

Consider next the derivation of the likelihood. For a Poisson

process with recurrence rate vm, the probability of observing nm earth-

quakes over a period Tm has Poisson distribution:

n
(v T )m

f (n) = m m exp{-v T } (4.6)
N m n mm

m m

Therefore, the likelihood of the earthquake counts {nm} over the magnitude

range [m0,ml] depends on the unknown recurrence rates %, as
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£({vm}I {nmT}) = f (nm)
m=m 0 m

(4.7)

Using the relation in Equation 4.5, the likelihood may be expressed as a

function of the parameters a and b as follows:

ml

£(a,bl{nm,Tm}) HI exp{nm(a-bm)}

m=m 0

exp{- I Tm exp(a-bm) }
m=m

0

The log-likelihood is of the form:

an £(a,bI {nm,Tm} a

m=m
0

ml

nm - b I

m=m
0

(4.8)

m nm

Tm exp{a-bm} (4.9)

m=m
0

Notice that the likelihood depends on the

the total count N and the total magnitude

earthquake counts only through

m=m0

ml

M = m nm

m=m0

Therefore, N and M are sufficient statistics and the log-likelihood

function simplifies to:

(4.10)

(4.11)
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Zn t (a,bIN,M) c aN - bM - I Tm exp{a-bm} (4.12)
m

The corresponding maximum likelihood equations are found by setting to

zero the partial derivates of Equation 4.12 with respect to the unknown

parameters a and b. This gives

N - I Tm exp{a-bm} = 0 (4.13)

m

-M + I m Tm exp{a-bm} = 0 (4.14)

m

There is a simple interpretation for these equations: Equation 4.13

implies that the expected count should equal the observed count, whereas

Equation 4.14 requires equality of the expected and observed total

magnitude. Uniqueness of the maximum-likelihood estimates can be shown by

demonstrating that the Jacobian of Equations 4.13 and 4.14 is negative

definite, so that an a is a concave function with a single maximum. The

Jacobian has the form

- Tm exp{a-bm} + I m Tm exp{a-bm}

m m

J = (4.15)

+ I m Tm exp{a-bm} - 1 m 2 Tm exp{a-bm

m m

with negative diagonal terms for all a and b. The determinant IJI is

given by:

IJ = Pm qm - (L pmqm2 (4.16)
m m m

where pm = m[Tm exp(a-bm)]1/ 2

and q, = [Tm exp(a-bm)1 1 /2
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From the Cauchy-Schwarz inequality, IJl is always larger than zero. This

condition and the negativity of the diagonal terms in Bq. 4.15 indicate

that the Jacobian is a negative definite matrix.

Equations 4.13 and 4.14 can be efficiently solved using Newton's

method. At the k'th iteration, estimates of a and b are found from:

k k-1 Afk - 1

a a -1 (4.17)

b b k - 1  Af

k-1 k-1
where fa and Afb are imbalances at the (k-1)'th iteration, respecti-

vely in Eq. 4.13 and 4.14. Study of the higher derivatives further shows

that convergence is monotonic if Af 0 and Af O are respectively positive anda b

negative, i.e. if the initial estimates predict a total count and a total

magnitude which are too high. If this condition is not satisfied, the

values of a and b in the next iteration may significantly overshoot the

solution and produce numerical problems in the calculation of the

exponential terms. This problem is easily corrected for by limiting the

value of the increments to a and b in each iteration step. One should

also note that for N*O, M=0O (i.e. all counts fall in the lowest magnitude

interval, which is assigned by convention the value m=O), the

maximum-likelihood estimate of b is infinite, whereas for N=O and M=0, the

parameter a must equal -w and b is undefined. If only finite values of a

and b are allowed, this problem must be resolved by constraining the

solution.

An approximation to the asymptotic covariance matrix of the estimates

can be found from the matrix of second derivatives of the log-likelihood

with respect to the parameters, i.e. from -J-1 (Cox and Hinkley, 1974).
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For this purpose, it is useful to introduce following additional variables

0= I T exp{a-bm} (4.18a)
Omm

= m T exp{a-bm} (4.18b)
1m m

2 = 1 m 2 T exp{a-bm} (4.18c)
2 m m

which correspond to increasing moments of the exponential recurrence law

(scaled by the periods of complete reporting T ) and depend of course on

the parameters a and b. Using this notation, the negative inverse of the

Jacobian equals

- 1 r2 •i-J = 2 1] (4.19)
2 1 0
1 0 ~12

Equation 4.19 can be used to derive asymptotic expressions for the

variance on the maximum likelihood estimators a and b or any linear

combination of a and b. In particular, one may derive the variance of the

estimated rate of earthquakes with mangitude in interval m. This variance

is

2

a2 2 2 2 (4. 20)
T 2 = 0 2 = 2 (4.20)

m a-bm 00 2- 1

and is minimum for m = p1/P 0 , which is the expected magnitude of the

distribution. For such magnitude, the variance is simply

2 1
a = a (4.21)

v
P1/U0
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Equations 4.19, 4.20 or 4.21 can be used to approximate the variance

on the rate estimator for large sample sizes, by calculating the moments

P0,1ri,2 at the maximum-likelihood point. Bender (1983) calculated

numerically the estimated slope parameter b for small but fixed sample

sizes and equal periods of observation. One should note, that if the

sample size is fixed, only a finite number of b-estimates are possible,

whereas for a fixed period of observation and given recurrence rates the

estimator of b may have any value.

To supplement the results of Bender, the following simulation study

has been made: For given periods of observation Tm and given values of a

and b, maximum-likelihood estimates a and b are obtained in 500

artificially generated samples. Since it is generally expected that

values of b fall within a [0.5,2.0] range based on unit Modified Mercalli

Intensity intervals, estimates of b have been restricted to this range.

In addition, artificially generated samples with zero count have been

excluded from the simulation. The true value of b is assumed to be 1.0

and the expected number of events in the lowest magnitude interval m0 is

varied between 1 and 100 (per year). Eight magnitude intervals are used

and results are presented for two sets of completeness periods T,:

* Case A : Tm = [ 1, 5, 10, 50, 80, 120, 200, 250 ] years

* Case B : Tm = [ 0, 0, 0, 50, 80, 120, 200, 250 1 years

Fig. 4.3.a shows the distribution of the estimated values of a and b in

Eq. 4.5 for v0 = 1, 10 and 100. For v0 = 100, the distribution of both

parameters are nearly Gaussian. For lower values of v0, the distribution

of a is clearly skewed towards smaller values. This is not surprising,

since a is closely related to the logarithm of the total sample size: for
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small sample sizes, the logarithmic transformation occasionally produces

very low estimates of a. On the other hand, the distribution of b remains

nearly Gaussian for all v0 . For V0 = 1i, the effect of constraining b to

the interval [0.5,2.0] is clear and produces peaks at each boundary. Fig.

4.3b and Fig. 4.3.c summarize the results of both simulations. The

figures at the top present the sample average, the sample average plus and

minus two sample standard deviations, and the sample minimum and maximum

of a and b. For ease of interpretation, the exponential value of the

various a statistics are plotted rather than a itself. The figures at the

bottom show the sample median and the 10 and 90 % percentiles for the

cumulative rates.

Note that because b is constrained to the interval [0.5,2.0], the

uncertainty band defined by ± two standard deviations exceeds the sample

minimum and maximum for small values of v0. The most striking feature of

these plots is that uncertainty on the cumulative rates is substantially

smaller than one would expect by considering uncertainty on a and b to be

independent. This feature is a consequence of the correlation between a

and b, and is better understood if one calculates the expected counts in

Tm for each magnitude interval m. These expected counts are,

* Case A : nm = v0 [ 1., 1.84, 1.35, 2.49, 1.47, 0.81, 0.50, 0.23 1

* Case B : nm = [ 0., 0. , 0. , 2.49, 1.47, 0.81, 0.50, 0.23 1

It follows from these counts that the expected total sample size is

9.69 V0 and 5.50 v0 for case A and B, respectively. The corresponding

expected average magnitude value is 3.7 and 5.0 for each case. As shown

earlier (Eq. 4.20) the uncertainty on the estimated rates Y, is minimum

for this value. A similar variation of uncertainty on the estimated
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values of the cumulative rates as a function of m is noted in the figures:

In case A, the uncertainty is lowest for m between 3 and 4, and in Case B

for m between 4 and 5. This shift of the average value of m explains why,

for high values of m, the uncertainty on the cumulative rates in case B is

not much larger than in Case A.

4.3 OVERVIEW OF PROPOSED MODELS FOR INCOMPLETENESS AND RATES

In this chapter, four statistical models are presented which relax

one or more of the assumptions made in Equations 4.2, 4.3 and 4.4. The

purpose is to give a global overview of the models, with emphasis on their

relative merits and the motivations behind their respective assumptions.

Model A originated from considerations regarding the treatment of

incompleteness in current practice (Equation 4.4): 1. The identification

of regions S£ where reporting of the events can be assumed uniform is not

evident, 2. One would expect a smooth variation of the period of

completeness as a function of location, rather than sudden changes along

the boundaries of the regions SX, 3. As illustrated in Section 4.2,

estimation of TL(m) is often difficult, and 4. Only the complete part of

the catalog data is used for seismicity estimation.

As an alternative, Model A utilizes all the data in the historical

catalog, by replacing the notion of period of completeness in Equation 4.4

with that of a probability of detection in Eq. 4.1. A similar approach

was used by Lee and Brillinger (1979) in analyzing the incompleteness of a

Chinese earthquake catalog. Model A is however fundamentally different

from that of Lee and Brillinger in that the probability of detection is

estimated from the data, rather than assigned judgementally. Moreover, PD
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is allowed to vary with several main causes of incompleteness: population

density in the neighborhood of the epicenter, distance to the nearest

seismic instrument, size of the event, and time of occurrence. A further

constraint on the variation of PD with its parameters comes from the

assumed exponentiality of the recurrence rates, the stationarity of the

earthquake process, the prior information on PD for recent times and from

imposing smoothness conditions on the variation of PD with earthquake

size, time of occurrence, population density and distance to the nearest

instrument. On the basis of the type of size measure reported in the

catalog (for instance, Modified Mercalli Intensity or instrumental

magnitude) one may also infer how many earthquakes have been detected only

by people, only by instruments or by both instruments and people. If the

reporting of earthquakes by either source is independent, this information

alone can be used to estimate the probability of detection (Bishop et al.,

1975).

Another novelty of Model A is the treatment of the slope parameters

bk in Equation 4.3 for different provinces. Instead of treating these

parameters as completely unrelated, the options are provided to consider

the parameters as independent realizations of the same random variable

with unknown mean value and variance, or to be identical. Introducing

dependence among the parameters bk is of interest, because uncertainty on

the independent estimates can be rather large for small provinces and

because spatially smooth values of b are usually expected.

Finally, since the assumption of exponentiality is not always well

satisfied over the entire magnitude range, a weighted likelihood

formulation is used in Model A to produce better fitting of the earthquake
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counts for the large size measures.

In applying model A to the analysis of the Chiburis catalog (see

Section 4.9), various limitations were noted:

1. The method produces estimates of incompleteness and recurrence rates

for a given set of seismogenic provinces. However, the boundary of

provinces with homogeneous activity may not be initially known; in

fact, homogeneous provices may not even exist. Thus, it would be

desirable to estimate incompleteness and local actvity rates without

reference to seismogenic provinces.

2. Although PD is modelled as a function of the main exploratory

variables (time, size, population and instruments), differences in the

effect of time for earthquakes reported by people or by instruments

were not allowed. For instance, it is reasonable to assume that, for

a given population density, the percentage of reported earthquakes

does not change over the last 80 years. The same assumption is

however unlikely to hold for a fixed distance to the nearest seismic

instrument, since the quality of these instruments and the operation

of the seismic network has improved significantly in the recent past.

3. In Model A, the variation of PD with earthquake size m is

non-parametric. On the other hand, it would seem that the influence

of m on the probability of detection could be inferred on physical

ground, for instance, by accounting for the variation of population

exposed to ground motion and of site intensity at the location of the

nearest instrument.

Model B adresses the above concerns. First, the assumption of

seismogenic provinces in Equation 4.2 is replaced by that of smoothly
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varying recurrence rates on a discretized spatial grid. The degrees of

smoothness of a and b can be controlled separately, so that, depending on

the degrees choosen, a range of solutions is produced. Later on, this

idea was further developed to allow for piecewise smooth variation of the

estimates within specified regions, thus effectively extending the concept

of seismogenic provinces. Such an extension is useful because the

identification of seismogenic provinces is often a difficult and

controversial operation (see Section 4.2). By allowing for a partially

data-based, partially judgemental modelling of seismicity, fewer and

larger seismic sources could be specified reflecting geological

information independent of the historical earthquake data. Second, the

variation of PD with its arguments was changed in accordance with the

conclusions of Model A. In particular, model B incorporates a physical

representation of the dependence of PD on the earthquake size. Also, the

effect of time on the reporting probability is allowed to be different for

population and instruments.

Finally, more consideration is given under Model B to validation of

the statistical model. Because of the large number of parameters

involved, the sparseness of the earthquake count, and, most of all, the

prior information used in the solution, usual goodness-of-fit statistics

such as X2 are not very useful (e.g. the number of degrees of freedom is

not well defined). As an alternative, use is made of an exploratory

analysis of the residuals for different subsets of the data (e.g. by

comparing predicted and actual counts in different space-time cells).

Application of model B to the Chiburis data lead to the following

conclusions:
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1. The redefinition of population density to eliminate the magnitude as

an independent factor for PD is not always appropriate. For instance,

some of the earliest large earthquakes occur in very sparsely

populated regions (even after accounting for the larger felt area).

One might speculate that, for such damaging earthquakes, the presence

of even a small number of people is sufficient to obtain historical

records of the event.

2. The model assumes that reporting of earthquakes by people and

instruments are independent events, given the location, size, and time

of occurrence. It appears however that in recent years, attention has

focused on recording instrumental size measures. For instance, for

earthquakes that are detected by instruments, no report of an

empirical size measure is usually found, even for large events with

epicenter in densily populated areas.

3. Estimation of spatially smooth values of the recurrence parameters

was found in some cases to be computationally demanding.

Neither of the previous models addresses the fact that the reported

location and size measure of the earthquakes may be uncertain which may be

a problem, especially for the very early events. This issue was found to

be important in a preliminary analysis of Italian earthquake data (Friuli

catalog). A measure of uncertainty on location is given in this catalog,

whereas this is not the case for the Chiburis catalog. A different model

was therefore developed for the analysis of the Friuli catalog. Model C

has the following distinct features:

1. Because the region being analyzed is relatively small, it is

reasonable to assume that the probability of detection does not vary



129

in space and thus that the population density is non-informative.

Since most of the historical data have only an empirical size measure

reported, also the location of seismic instruments is not considered

in this model. Variation of PD with time and magnitude is inferred

from the nonstationarity and non-exponentiality of the empirical

recurrence rates. Because time periods where PD is very small add

little information on the seismicity parameters, Model C incorporates

the option of analyzing only the part of the data which falls inside a

time interval, which may vary with earthquake magnitude. In the

special case where PD is fixed to 1 inside these intervals, the method

is equivalent to using given periods of completeness.

2. Because incompleteness is not allowed to vary in space, smoothness of

the seismicity parameters a and b is directly related to spatial

smoothness of the observed counts. This characteristic allows one to

consider nonparametric estimation techniques other than the maximum

penalized likelihood criterion of Model B. In fact, Model C uses a

kernel-estimation technique, which is computationally more efficient.

3. The location and size of the earthquakes are treated as random

variables with known prior distribution. Two approaches are then

possible. One is to estimate the parameters of the model as well as

the unknown location and size by maximizing the total likelihood.

Alternatively, only parameters of the model are estimated by

maximizing the expected likelihood, where expectation is with respect

to the unknown size and location of each historical event.

Difficulties of the total likelihood approach have been discussed

earlier in Section 2.5.1 in the context of magnitude conversion.



130

Because of these difficulties, the second approach is used in Model

C.

4. More consideration is also given in Model C to determine uncertainty

on the parameter estimates. This problem is not an easy one because

of the large number of parameters, the smoothing and other prior

information used in the model and uncertainty on the location and size

of the historical earthquakes. Model C uses a simple bootstrapping

technique, which creates artifical samples from the estimated model

(without considering uncertainty on the generated earthquake magnitude

and location). This approach should provide a lower-bound to actual

uncertainty.

Application of Model C to the Friuli data proved successful and

suggested a similar approach to the New England data. However, the

spatial variation of incompleteness, especially for early periods of the

catalog is too obvious in New England to be neglected. Moreover, if such

spatial variation is allowed, a kernel-estimation of the recurrence

parameters does not seem feasible. As a result, the last model (Model D)

combines elements from all previous models. It also includes some new

elements:

1. PD is determined as in Model C, but regions with different

completeness characteristics can be specified. PD is then estimated

separately for each such region.

2. Spatial variation of the seismicity parameters is determined through

maximum penalized likelihood, as in Model B. However, a somewhat

different form is used for the penalty term to improve convergence of

the solution.
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3. The bootstrapping technique introduced in Model C is used more

extensively to determine uncertainty of the estimators of the

seismicity parameters.

The four statistical models cover a wide range of assumptions and

present various degree of computational complexity. Conclusions about the

validity of the assumptions and the possibility of simplifying the

analysis will be presented in Section 4.14.

4.4 INCOMPLETENESS: CAUSES AND DATA

Before developing a statistical model, it is useful to analyze the

main reasons why an earthquake of size m, epicentral location X, and time

of occurence t may not appear in the catalog. The process that leads to

enlisting an earthquake in the catalog comprises three steps:

observation, recording and transmittal.

The probability of observing an earthquake clearly depends on

population density and seismic instrumentation near the epicenter x at

time t. Knowing the sensitivity of each type of observer - an individual

or an instrument - and knowing the attenuation law which relates site

intensity to epicentral intensity, the probability of detection by each

observer can be calculated. Observer sensitivity may be a function of

time. This is especially true for instruments, as a consequence of

technological innovations, but also for humans, e.g. due to increased

awareness and to the growing number of tall buildings producing

amplification of the ground motion. Because of the spatial correlation of

earthquake attenuation, one may expect earthquake detections by observers

at nearby locations to be probabilistically dependent events.
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Recording of an earthquake is an even more complicated process. Most

of the early entries in the Chiburis catalog, say before 1780, are based

on earthquake accounts in missionary reports, personal diaries, and town

histories. After 1780, records are usually found in newspapers and

magazines. One may conclude that the probability of recording is mainly a

function of population density in the epicentral area and of time of

occurrence: time of occurrence determines the mode of recording, whereas

population density is clearly correlated with the number of earthquake

accounts (diaries, newspapers, etc). Site intensity is another important

variable, because more destructive earthquakes are usually more

extensively documented.

Imperfect transmittal includes the loss of documents and the

possibility that existing earthquake records may have remained

undiscovered. Therefore, the probability of transmittal is mainly a

function of time and of effort in the search for relevant documents.

In summary, the major factors that influence incompleteness are:

time of occurrence, population density especially in the epicentral area,

and seismic instrumentation. The effect of each factor further depends on

epicentral intensity.

In order to estimate the dependence of the detection probability PD

on population density and seismic instrumentation, maps have been compiled

which describe the evolution in time of demography and instrumentation in

the region of interest. Boundary effects have been eliminated by

extending the region one degree in each direction; see Fig. 4.1.

Population maps for the U.S. are given in Friis (1960) for years

prior to 1790 and in Lord and Lord (1953) for more recent years.
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Demographic data for Eastern Canada is found in the National Atlas of

Canada (1974). The format of the maps varies for different sources: The

maps of Lord and Lord use a discretization of population density according

to the six categories in Table 4.1. Those of Friis indicate the location

of each 200 rural inhabitants and the location of cities with a population

of 3000 or more. The National Atlas of Canada indicates in a similar way

groups of 1000 rural inhabitants and cities of size 10,000 or more. Prior

to 1850, the last reference gives only the date of arrival of early

settlers in cities whose population in 1961 exceeded 10,000.

For the present analysis, maps are needed on a common population-density

scale and over a common geographical grid. The scale of Table 4.1 is an

appropriate one: it has a high resolution at low population densities,

which is where the probability of detection is most variable. Other maps

have been converted to the same format, using judgement when a precise

conversion of scale could not be established. The discretization grid has

been defined by meridians and parallels within the region of Fig. 4.1,

with a quarter-degree spacing in each direction.

Twelve population maps have been compiled on this discrete grid for

the period from 1625 to 1950 (Fig. 4.4). The time interval between

consecutive maps is approximately 25 years before 1780 and approximately

40 years afterwards. After 1950, the population is assumed to have

remained stable. Although the latter is the period when more accurate

demographic information is available, any increase of population above the

1950 level would only produce insignificant changes in the estimated

probability of detection: Higher completeness of the catalog in recent

years is due almost exclusively to more reliable recording and transmittal
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and to the installation of a denser seismograph network. Fig. 4.5 shows

the fraction of total area associated with each population category as a

function of time. Notice that, because the population map of 1950 is

characterized by a sharp contrast between rural and urban population,

population Category 4 almost disappears in recent years. The persistence

of very low population density at this time is due mainly to the fact that

some provinces extend over the Atlantic Ocean.

Information on the evolution in time of seismic instrumentation is

found in several sources: A comprehensive list of seismic stations in the

United States, their location, operating dates, and instrument

characteristics has been assembled by Poppe (1979). Early stations, both

in the United States and in Canada, are also described in Stevens (1980).

Information for the more recent Canadian stations is given by Halliday et

al. (1977,1981). Based on this data, a list of operating seismic

instruments in the region has been compiled for each year. Fig. 4.6 shows

the total number of stations as a function of time and indicates a

noticeable improvement of the network during the early 1970's.

The probability of detection of an earthquake depends on the

configuration of the seismograph network near the epicenter. In order to

account for instrument location, the distance to the nearest operating

station has been calculated for each cell of the spatial grid and for each

year from 1910 to 1980. Distances have then been classified into the five

categories of Table 4.2. According to intensity attenuation models

developed for the Eastern United States, the distance intervals in Table

4.2 correspond to approximately unit changes of site intensity. A

representative sample of the resulting instrumentation maps is given in

Fig. 4.7 for a few selected years.



135

4.5 MODELS FOR THE PROBABILITY OF DETECTION

4.5.1 Introduction and Notation

A major novelty of the present analysis is that both the probability

of detection PD and the recurrence rate v in Eq. 4.1 are estimated from

the catalog data.

The only published work on methods of this type is that by Kelly and

Lacoss (1969) and Brillinger (1976). Kelly and Lacoss assume that, for

instrumentally reported events, PD has the form of an error function:

PD(m) = (2wo2 ) m exp{- (x- 2) } dx (4.22)
20

where i and a are unknown parameters and m refers to body wave magnitude.

Assuming that the true recurrence rate is exponential, they estimate by

maximum likelihood the parameters p and a as well as the recurrence

parameters a and b in Eq. 4.3, for the first 2000 events reported by USCGS

in 1968. The estimates obtained are p = 5.1 and a = 0.415, i.e. the

probability of detection at that time is found to be 0.5 for events with

body wave magnitude equal to 5.1. Brillinger (1976) discusses from a

theoretical point of view how a probability of detection that varies only

in time can be estimated from an incomplete realization of a point

process.

The models used in this chapter consider that PD either varies with

time and magnitude (model C) or with time, magnitude and location (models

A, B and D). In Model D, variation of PD in space is a-priori specified,

whereas in Models A and B spatial variation of PD is estimated from the

data and information on the population density and seismic instrumentation
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in the neighborhood of the epicenter. Models A and B also differentiate

between the probability of detection by people and by instruments. The

following notation is useful in that respect:

* z is a bivariate indicator variable, whose three possible values

define the mode of detection as follows:

z = {1,0} for events detected by people only

z = {0,1} for events detected by instruments only (4.23)

z = {l,l1} for events detected by both people and instruments

* p denotes a measure of population density at a given time and

location and will be defined more precisely when considering

each model.

* similarly, d denotes a measure of the distance to the nearest

seismic instrument.

As before, dependence on the the explanatory variables t,m,p and d will be

indicated by subscripts. z is used as a superscript for probabilities

that vary with the mode of detection. In both models A and B, it will be

assumed that reporting by instruments and reporting by people are

independent events, given t, m, p and d. The symbol PD with no

superscript refers to the probability of detecting an earthquake by either

people or instruments and can be written as:

P= P(01) + P1 0)P (1,l) (4.24)D D D D

(0,1) (1,1)Prior to the installation of seismic instruments, P and P are
D D

evidently equal to zero and PD equals P (
D D
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4.5.2 Common Features

Consider next the problem of modelling PD as a function of the

variables affecting incompleteness, which are (p,t,m) and (d,t,m)

respectively for people and instruments. Features that are fundamental to

the analysis and common to all models are discussed first, whereas

implementation details for the various models will be given later in the

section.

First, all variables are discretized: discretization is essential to

arrive at a practical solution of the maximum-likelihood problem because

this solution involves repeated calculation of an integral of the

recurrence rate over the domain of interest in (x,t,m,p,q)-space (see

Section 4.6). Examples of such discretizations will be shown in the

application of the models in Sections 4.10 to 4.13. To avoid laborious

notation, the names of the discretized variables are left unchanged.

Hence, for example, t refers to time intervals rather than continuous

time.

Second, a nonparametric representation of PD is preferred to an

analytical form such as that in Equation 4.22. Although parametric

models have the advantage that monotonicity or smoothness can be

implicitly imposed, estimation of the parameters is often more difficult

and validity of the parametric assumption may be dubious. If the ordering

of the explanatory variables is neglected, the problem of modelling PD is

clearly related to that of model selection in categorical data analysis

(Bishop et al., 1975; Fienberg and Holland, 1980).

Techniques for categorical data analysis on ordered variables are

presented by Agresti (1984). Notice however that the present problem is a
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very particular one, because the "time" over which the earthquake process

is observed in each category (p,t,m) and (d,t,m) may vary. For instance,

in recent time-periods categories with low population density occupy a

much smaller area than those with high population density (see Fig. 4.5).

The limiting case when the time of observation is zero for a given

category corresponds to the presence of a "structural zero" in a

categorical table. Such cases have been treated extensively in the

literature. No discussion of the present case of a Poisson sampling

scheme with period of observation that varies from category to category

has been found in the literature.

Another complication is that, if detection by instruments and

detection by people are separated, an additional category, the mode of

detection z, must be considered. By definition, the categorical table is

incomplete for the missing counts, i.e. categories with z=(0,0) are not

observed. Bishop et al. (1975) discuss this case as the

"capture-recapture" problem for the usual Poisson sampling scheme and show

that, given some assumption about the structure of the model with respect

to z (e.g. independence of reporting for z=(1,0) and z=(0,1)), the

probability of being in class (0,0) can be estimated. This is of

importance, since it implies that, under the assumption of independent

detection by people and instruments, missing counts can be estimated

without additional information. This property does not hold if the mode

of detection is not considered. In the latter case, only the relative

variation of PD with its explanatory variables can be inferred, while the

absolute value of PD is not identifiable.
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4.5.3 Model A

Model A assumes the following simple structure for the variation of

(1,0) (0,1) (1,1)P , P and P with t, m , p and d:
D D D

(1,0)P D tm apm(l- dm ) (4.25a)

P(0,1) (-a) (4.25b)

(1,1)PD =tm rdm epm (4.25a)

where apm, atm and Ydm are unknown probabilities.

Notice that cpm and ypm are treated as independent probabilities, while

8tm is used as a common factor. The associated probability of detection,

irrespective of detection mode, PD, is

PD= tm{l - [l-apm][l-Ydm]} (4.26)

The quantity 8tm can be thought of as the probability of transmitting

a reported earthquake, whereas apm and Ydm give the probability that an

earthquake is recorded by people and instruments respectively. For

earthquakes of given magnitude m, no interaction is assumed between p and

t or between d and t. This implies that the time effect for size measure

m is independent of population density and seismic instrumentation.

Moreover, it is assumed that the time-effect is identical for both modes

of reporting. As will be shown later in Section 4.10, this assumption may

not be reasonable.

Before progressing further in the analysis, a more precise definition

of the explanatory variables should be given: the discretization of time

should be such that the loss of records may be assumed constant inside
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each time interval. Such a discretization can be determined on the basis

of knowledge of the main sources of earthquake records in different

periods (see Section 4.4). The quantities p and d are in Model A

discretized versions of population density at the epicenter and distance

to the nearest instrument as shown in Figs. 4.4 and 4.7 for different time

intervals. A variant of Model A uses the maximum value of p within a

distance from the epicenter that depends in a given way on the size of the

event. Such a redefinition is useful if one wants to simplify the model

by excluding m as an independent explanatory variable.

4.5.4 Model B

Model B assumes that, for a proper definition of p and d, magnitude m

has no independent effect. In contrast to Model A, interaction effects of

time and population are included and the effect of time may depend on the

mode of detection. One reason for allowing interaction between t and p is

that one may expect different effects of time in rural zones with low p

and urban areas with high p; in the latter, time should be less

influential. This leads to the following model:

(1,0)
OD =tp (i-t* Yd) (4.27a)

(01) = (4.27b)
D t* Yd ( l - a t p )  (4.27b)

D tp t*Yd (4.27c)
and

PD = [l-(l-atp)(l-St* yd) (4.28)

where t* is a time discretization for the detection capability of seismic

instruments.
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A critical choice in Model B is of course the definition of d and p,

which should implicitly account for the effects of m. For d this is

relatively straight-forward: since reporting of earthquakes by

instruments should depend mainly on the local intensity of the earthquake,

a reasonable choice for d is the site intensity at the nearest instrument.

The appropriate definition of p is less evident. Model B uses the

following form:

p(x,m,t) (x) q(t) mxm) dx (4.29)
m*r _ q-t

where Q(x) is a large but fixed neighborhood around the epicenter x, q is

the actual population density, m is the estimated intensity at site x, m

is an arbitrary reference site intensity and r is a constant.

Note that, for r=O, p corresponds to the total population in Q(x) and does

^r *r
not depend on m. As r increases, the kernel function m (x,m)/m becomes

narrower and p depends more on earthquake intensity and population near

the epicenter. For intermediate values of r, p is a weighted average of

the population distribution, with weights that depend on site intensity.

The choice of the coefficient r and of the discretization of p will be

commented upon in the application of the model in Section 4.11.

4.5.5 Models C and D

Models C and D do not consider the mode of detection or the

distribution in space of population and instruments. As a result, the

model of probability of detection must be applied to a region that is
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sufficiently homogeneous with respect to incompleteness, within the period

of time of the analysis. Accordingly, only variation of PD with t and m

is considered.

Models C and D assume that

P = a (4.30)
D tm

and allow for interaction effects between magnitude and time.

In categorical data analysis, a model of this type is said to be fully

saturated, because without further constraints, atm can be choosen to

exactly match the observed count in each cell. It is immediately clear

that, if the recurrence rates are unknown, PD can be determined only up to

a proportionality factor. For instance, one can scale PD down and the

recurrence rates up without modifying the expected count in each category.

Various forms of constraints that allow to determine the actual values of

PD will be discussed in Section 4.7.

4.6 MAXIMUM LIKELIHOOD ESTIMATION OF PROBABILITY OF DETECTION AND

RECURRENCE RATE: NO ERRORS IN THE DATA

4.6.1 Introduction and Notation

This section derives the likelihood function and maximum likelihood

estimates (m.l.e.) of seismicity and incompleteness parameters. It is

assumed that the magnitude, location and time of occurrence of the

historical events are known without error. The case when errors on the

reported values of m, x and t need to be considered, will be discussed in

Section 4.8.
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The analysis is an extension of that presented in Section 4.2 for the

Stepp-Weichert-Seismogenic-Province method. In order to make the

presentation concise, a general form of the m.l. equations is derived

first, and then the equations are specialized for the various

incompleteness models. Modifications to the maximum likelihood to include

prior information on the parameters will be discussed separately in

Section 4.7.

For the general formulation, it is convenient to consider PD as a

generic function of p,q,t and m, with unknown parametervector 8. Also,

geographical location x may refer here to any partition of the region,

including seismogenic provinces or cells of a regular rid, such that the

recurrence parameters a and b are constant within the region Q(x)
x x

associated with x. Since the recurrence rates a refer to a unit area,
x

unit time interval and unit magnitude interval, it is necessary to

calculate the "volume" occupied by each category c = (x,t,m,p,q). In

accordance with earlier notation in Section 4.2, these volumes will be

referred to as periods of observation and denoted by Tc. One should note

that p and q vary with geographical location and time, and may even vary

within Q(x) or the time interval t. Because calculation of Tc is tedious,

the periods of observation are calculated only once and stored. Reduction

in computation time and amount of storage is also the reason why discrete

variables are used throughout the analysis rather than continuous

variables.

As before, the variables on which a parameter or recurrence rate depends

are indicated by subscripts, whereas the mode of detection z is indicated
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by a superscript. Remember that z has only three possible values, i.e.

missing counts are not considered. For easy reference, the relevant

parameters are summarized here:

Sa x,bx are recurrence relation parameters, as in Eq. 4.31 below

* V is the actual ("true") recurrence rate, i.e. the rate ifx,m

X zc* X
c

z p* PZ
D

Relations among

all earthquakes were detected

is the recurrence rate of earthquakes for mode of

detection z and category c

is the mode of detection and varies with detection

category D = (tmpq).

these parameters are as follows:

Vx= exp{a - b m}
xm x x

z z
c D xm

(4.31)

(4.32)

Observed, expected observed, and expected "true" counts will be denoted by

n, n and n* respectively. These quantities depend on category and n and n

depend also on the mode of detection. The counts n and n* are related to

the previous parameters as:

-z zn =T XT
c c c

n = T v
c c xm

(4.33)

(4.34)
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z
and n* and n are related asc c

S= p n* (435)
c D (4.35)

In the derivation that follows, counts and periods of observation

need to be summed frequently over a subset of the categories (c,z). The

convention is then introduced that, if a count or period of observation is

summed over a certain category to calculate a marginal value, the

corresponding subscript is omitted. For instance, the expected reported

count in category c, irrespective of mode of detection, is denoted by nc,

where:

- -(0,1) -(1,0) -(1,1)
n =n + n + n (4.36)c c c c

Similarly, the total observed count at location x is denoted by nx and is

given by

Sz
n= n (4.37)
- t,m,p,q,z

4.6.2 General Form of the Likelihood Function

Under the Poisson assumption, counts in different categories c and

detection modes z are independent and follow a Poisson distribution with

z
parameter nc, i.e.

z
n-Z c

(n )
f(nz) c exp{- nZ} (4.38)c z cn !

c
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This probability mass and all the following likelihood functions depend of

course on the parameters a ,b and 8. Because of the Poisson assumption,x x -

the total likelihood a of the counts {Nz} for categories c and z is found

by multiplication of the probabilities in Eq. 4.38. Omitting terms that

do not depend on the parameters, one finds

z
n

a [nz) c expI- nz)] (4.39)
(c,z)

The log-likelihood can then be written as

--zan a£ c nZ an n - nc (4.40)
c c z

c,Z Cz

From Equations 4.32 and 4.33, it follows that

-c z f a
n = Tc PD explax - b (4.41)

and

-c z
cn n =n T + £n PD + a - b m (4.42)z c D x x

Using the convention of eliminating subscripts for counts that are summed

over a given set of categories, the first term in Equation 4.40 becomes

n nZ an = nZn T + n £n Pn + n a
c c c c PD xx

c,z c,z D,z x --

- m n b (4.43)x x
xm - -

Further denoting by mx the total observed magnitude at location x,

m = I mn (4.44)
- m -
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and usings Equations 4.41 and 4.43 in the log-likelihood expression,

one obtains

tnt(ab x', {nZ}) a nzc £n Pz + n a - mxbx
- - C Z X - - X -

- I T P exp{a -b m} (4.45)
cD x x

C - -

Maximum likelihood equations can be found by computing the partial

derivatives of £n a with respect to each of the parameters a ,b and e.
x x -

It is instructive to do this in two steps: First, the partial derivatives

with respect to ax , and bx are found and then the maximum likelihood

equations for 0 are derived.

4.6.3 Maximum likelihood equations for a and b
x -- x

Comparison of the log-likelihood in Equation 4.45 with the expression

derived earlier in Equation 4.12 for the Stepp-Weichert-Seismogenic-

Province model shows that, for given PD, the two expressions are similar.

If fact, one may define T* as a time period
xm

T* = T P (4.46)
xm tmpq cD

and rewrite the log-likelihood

Xnt(a ,b ,I {nz}) [n a - mb - T* exp(a - b m}] (4.47)
x x c xx xx xm x x

- - x -- -- m - - -

Since log-likelihood contributions from different values of x are additive

and involve only the local parameters (ax,bx), the maximum-likelihood

estimates of a and b are independent for different x. Because of
x x
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similarity with Equation 4.12, T* can be thought of as an equivalentx,m

period of completeness. Contrary to the usual period of completeness, T*
xm

combines the entire time span of the catalog by weighting each time

interval by the associated probability of detection. Maximum likelihood

equations are easily derived from Equation 4.47 and correspond to those

found earlier in Eqs. 4.13 and 4.14, i.e.

n - IT* exp{a -b } = 0 r each x (4.48)
- m - - -

-m - I T* m exp{a -b } = 0 for each x (4.49)
x xm x xm

Considerations made in Section 4.2 on Eqs. 4.13 and 4.14 remain valid

and the same iteration scheme can be used to estimate the parameters a
x

and b at location x. The expression for the asymptotic covariance matrixx

(Equation 4.19) is still valid, conditionally on given 8.

4.6.4 Maximum likelihood equations for 6

Consider next the log-likelihood as a function of the parameter

values 8 used in modelling probability of detection. For given values of

a x and bx , this function can be written as

LnltOla ,b ,{nZ}) a I n n P n* P  (450)
x x c D D D D (4.50)
- - D z D

Remember that n* is defined as the expected total count (including missing
D

events) in detection category D and depends on a ,b . For the k'th
x x

parameter 8k , the maximum likelihood equation is found by partial
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differentiation of £n £ with respect to 8k. This gives

z
z k,D * = 0 (4.51)
D z D k,D

Dk Zk PD

where Dk and zk are the subsets of D and z for which PD depends on ek.

z z
QkrD is the partial derivative of PD with respect to Ok . Interpretation

z z
of Equation 4.51 is more evident if one notes that nD/P D is an estimator

of the total count in category (c,z). Thus, the first term in Equation

4.51 is a measure of the change in the estimated observed count for each

class z as Ok changes and the last term corresponds to the change in the

expected observed count for all z as Ok changes. Equation 4.51 implies

that, for the m.l.e. of Ok, the two values should be the same when summed

z
over Dk. Parametrization of P for the models used here is such that PD is

k D D

proportional to Ok or to 1-6k, depending on the mode of detection. (Model

B is an exception to this rule for parameters St* and Yd). Modes of

detection z for which PD is proportional to Ok or to 1-8k are denoted

respectively zk+ and zk-. It follows that

z 1 for z e Zk+
Qk,D = k k (4.52)
P - for z zk_
D 1-k k-

Therefore, the maximum likelihood equation for parameter Ok simplifies to

Zk+ zk-
n~ n

k k n* Q =0 (4.53)
6k 1- 8 k  D D k,D

Zk+ Zk-
where nk and n k denote the total observed count in categories (Dkzk+)Ok 6k kk



150

and (Dk,zk-), respectively, and are sufficient statistics. Since PD is at

most linear in Ok, the derivative Qk,D is constant. Eq. 4.53 is then of

second degree in 8k and can be easily solved. Because the partial

derivative of the left side of Eq. 4.53 with respect to Ok is always

negative, there cannot be multiple solutions. Specialized forms of Eq.

4.53 for the various models of PD will be given at the end of this

section.

4.6.5 Solution of the Maximum Likelihood Equations and Specialized Forms

Maximum likelihood equations 4.48, 4.49 and 4.53 can be solved

simultaneously for a ,b and e by iteration: First one solves for a and
x

b for given 6, and then one fixes a and b and solves Equation 4.53 forx - x x

each Ok . These operations are performed iteratively until convergence.

If the derivative Qk,D in these equations depends on components of 8,

other than 6k, then additional iterations are necessary. Since the

likelihood increases monotonically in each of the iteration steps,

convergence must be reached. It is less clear that the solution is

unique, i.e. that the unconditional likelihood function has only one

maximum. Haberman (1973) has shown that this is true for the case of

loglinear models in categorical data analysis. Also, in all numerical

applications, the solutions have been found to be independent of the

initial values. In the remainder of this section, the specialized forms

of Equation 4.53 are given for the models proposed in Section 4.5.
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Model A

In model A, the parameters 6 correspond to Btm , apm and Ydm (see Eqs.

4.25). The maximum likelihood equation for 8tm is derived as follows:

z
Note that, irrespective of the mode of detection z, PD is proportional to

8 tm. Therefore, the second term in Equation 4.53 is zero and the

summation in the first term extends over all z. The partial derivative of

PD with respect to 8 tm (variable Qk,D in Eq. 4.53) is found from Equation

4.26. The maximum likelihood equation associated with 8tm is then:

n

S- nDl-[-a 1i-Y ]I = 0 (4.54a)
tm pd for each (tm)

Maximum likelihood equations for apm and Ydm are derived similarly.

In this case, the second term in Equation 4.53 is however not zero. For

instance, the probability of detection is proportional to apm for z=(l,0)

and z=(l,l), and to 1-ap, for z=(0,1). The maximum likelihood equations

for apm and Ydm are

(0,1) (1,1) (0,1)n +n n
pm pm pm n - = 0 (4.54b)

a 1-a D tm[l-Ydm
pm pm td for each (pm)

(1,0) (111) (011)
Pm nmdm n tm [ I -  ] = 0 (4.54c)

Ydm l-dm tp t pm for each (dm)

Equation 4.54 together with equations 4.48 and 4.49 define the values

of ax, bx' tm,a p m and ydm for which the likelihood is maximum. It is

clear from these equations that the likelihood is invariant to scaling up

all recurrence rates while scaling down Btm by the same factor. This

indicates that, without any further assumption, only relative completeness

can be determined as a function of time.
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Model B

In the case of model B, the maximum likelihood equations for atp, 8t*

and Yd are:

n(1,0)+ n( , I )  n(0,1)
tp tp tp * n

tp 1-a tP t* D 1-t*yd = 0tp tp td

(0,1) (1,1) (1,0)nt + nt ntd * d *
S- 1- 8 y - nD Yd[l-atp = Ct d t d dpt

(0,1) (1,1) (1,0)
nd + nd n t*d t*

d t* l-t* d ptt

(4.55a)
for each (tp)

(4.55b)
*

for each (t)

t*[l- tp] = 0 (4.55c)
for each (d)

Note that the maximum likelihood equations for at* and yd are slightly

different, because interactions between t* and d are excluded in this

model. As a result, estimation of t * and yd is more complicated. When

all other parameters are fixed, the values of St* and Yd can be

calculated by noting that these values are inside the interval [0,1] and

the maximum likelihood equation is monotonic. A solution is then easily

found by iteratively refining this interval.

Model C

For the characterization of incompleteness, Model C uses

only the parameters atm and the corresponding maximum likelihood

equation are:

ntm *
-- - n
a t,m
tm

= 0 for each (tm)

Estimation of atm for given ntm is such that the observed count in each

(4.56)
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(tm) category is matched. Evidently such a model is not well defined,

since the recurrence rates can be scaled up and the detection probability

atm can be scaled down without affecting the likelihood. In addition, one

can vary the slope parameters b and the probabilities at such that thex tm

likelihood remains the same. Various forms of prior information on the

incompleteness parameters that may be used to stabilize the solution are

discussed in the following section.

4.7 CONSTRAINTS, PENALTIES, SMOOTHING, AND A-PRIORI CONDITIONS

4.7.1 Introduction

The maximum likelihood solution derived in Section 4.6 is entirely

data-based, i.e. it does not incorporate any prior beliefs about the

values of the parameters. Given the small amount of earthquake data

available and the number of parameters to be estimated, it is no surprise

that these estimates may have large statistical uncertainty. Such

uncertainty is in part due to an over-parametrization of the problem. One

possibility is of course to fit a model with fewer parameters, for

instance by using larger seismogenic provinces or by eliminating

categories. Selection of a model with the appropriate number of

parameters can also be done systematically, by comparing goodness-of-fit

statistics or by calculating likelihood ratios, while considering the

decrease or increase in the number of parameters. Another possibility is

to use a model with many parameters, whose values are however constrained.

Examples of the latter methods are kernel estimation (for a discussion,

see Devroye and Gyorfi, 1985) and penalized maximum likelihood estimation

(Tapia and Thompson, 1978). The constraints applied to the parameters may
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be determined automatically using goodness-of-fit statistics, e.g. by

balancing the bias against the variance of the estimators or specified

a priori.

For example, it is usually assumed that in recent periods all earthquakes

above a given magnitude have been reported. Similarly, using worldwide

observations or other independent data one might form a prior distribution

or establish bounds on the slope parameter b (a histogram of various

estimated b-values is for instance given in Utsu, 1971). One would expect

smooth variation of the seismicity parameters a and b, at least within

certain regions, and monotonic variation of the probability of detection

with time and magnitude. Such prior beliefs can be incorporated using

Bayesian analysis or by appropriately constraining and penalizing the

likelihood function in maximum-likelihood estimation.

Several of the above mentioned techniques have been used in the

application of the models: The values of PD are constrained for some of

the detection categories. Maximum penalized likelihood estimation (MPLE)

and, in one case, kernel estimation are used smooth the variation of a, b

and PD with their respective parameters (geographical location, time,

magnitude, etc.). Prior belief about the b parameters is incorporated

using Bayesian statistics. The Bayesian approach also provides an

alternative interpretation of the MPLE method. In this section, the

different forms of prior information and their effect on maximum

likelihood estimation are discussed, first for the estimation of the

probability of detection and then for the recurrence rates. Some of the

techniques simply aim at reducing the number of parameters involved and,

thus, to increase the accuracy of the estimated parameters at the possible

expense of introducing bias. No formal evaluation of the trade-off
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between uncertainty and bias is made here. As will be seen in Section

4.9, a quantitive assessment of uncertainty on the parameters or of

goodness-of-fit of the model is difficult and computationally demanding.

Instead, in application of the models to the data, values of input

parameters that describe prior information are based on an informal

examination of the goodness-of-fit and prior knowledge on the values of

the parameters.

4.7.2 Prior Information on the Probability of Detection

As previously shown in Section 4.6, for two of the three models

proposed for the estimation of PD, the absolute value of PD cannot be

determined without additional information or constraints: In model A, the

loss of reports due to imperfect transmittal remains undefined, although

the probability of reporting by people and instruments can be

theoretically determined from the data only. In model C-D, only the

relative variation of PD with time and magnitude m can be inferred from

the data. Because the distribution of the counts as a function of m is

also regulated by the parameters bx, it is clear that the values of PD

need to be constrained for at least two categories (t,m). Finally,

although estimates in model B are uniquely defined by the data (basically

through comparison for each time-magnitude category of the number of

events reported by instruments, by people or by both instruments and

people), uncertainty on the estimates can be large if the period of

observation or the recurrence rate is small. This is true for large size

measures, for early time periods (where no instruments are available for

comparison with detection by people) and for some unlikely combinations of

population and instrument levels (i.e. low population density and short
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distance to the nearest seismic instrument). Fortunately, there is often

a strong prior belief about the possibility of detection for some of the

categories. For instance:

1. PD is typically thought to be one above a given magnitude and for

recent time periods.

2. All very large earthquakes are typically assumed to have been

reported over most of the time span of the catalog.

3. PD is expected to vary smoothly and monotonically as a function

of time, magnitude, population density and the distance to the

nearest seismic instrument.

Monotonicity of PD has not been strictly imposed in some of the models.

In fact, it is found that in recent periods the recurrence rate of events

with an empirical size measure reported (here interpreted as reported by

people) decreases, when an instrumental size measure is available. This

is probably due to the fact that, for recent parts of the catalog,

instrumental size measures have been given priority over macroseismic

determinations, rather than being caused by an actual decline in the

detection capability of human observers. Therefore, only the influence of

fixing values of PD or imposing smoothness on the maximum likelihood

estimates is discussed next. In model D, which uses the total probability

of detection, irrespective of detection mode, monotonicity has been

imposed. This will be discussed separately when applying Model D in

Section 4.13.

4.7.2.1 A-Priori Known Values of the Completeness Parameters

Fixing one or more of the parameters that affect the probability of

detection corresponds to eliminating the corresponding maximum likelihood
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equations and is therefore easily incorporated. For instance, in model A,

the following is assumed: 1. There is no transmittal loss of reports of

any size since 1950, 2. All events with epicentral intensity IO=VIII on a

Modified Mercalli scale are assumed reported by both people and

instruments over the entire time span of the catalog, without loss of

reports. In terms of the parameters of the model, this means:

apr = Ydm = 8 tm = 1 for all p,d and t,
and for m = VIII

(4.57)
8 tm = 1 for all m and for

time categories t after 1950

Similar constraints are used in the other models and will be

mentioned in the application sections. In general, constraints are

imposed for the highest size measure throughout the entire time span of

the catalog, because for strong events the counts are very small and,

consequently, the estimates are unreliable, if one does not use additional

information. The earthquake magnitudes for which PD should be fixed to 1

in recent times depends on the quality of the seismic network. Whatever

assumptions one makes on PD, such assumption should be verified against

the data, for example by comparing actual with predicted counts in

categories with fiexd PD.

4.7.2.2 Smoothness Conditions on the Variation of PD

As the number of detection categories increases, the estimates of the

completeness parameters inevitably become more uncertain, because the

count in each detection category decreases. This is a commonly

encountered problem in the area of probability density estimation, for

which numerous techniques have been developed (for a general discussion in
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the context of nonparametric density estimation, see Devroye and Gyorfi,

1985).

One method is based on the idea, that in histogram estimation, the

bandwith of the intervals should be varied such that each interval

contains a sufficiently large count, without grouping together regions

with widely different probability density. Although such a method works

well in the one-dimensional case, problems are encountered in

multi-dimensional generalizations, for which one must decide on some

direction of grouping. Therefore, such an idea is used only on a

qualitatively in choosing a reasonably coarse discretization.

Another method which is often used is kernel-estimation with variable

width. In this case, local estimates of the density are obtained as

weighted averages of the surrounding counts. The weight assigned to the

neighboring cells may depend on how well the local estimate is defined by

its own count and on its difference with surrounding estimates. Such a

method could for instance be applied to model C-D, by replacing the local

m.l.e. of at,m in Equation 4.56 with a kernelestimate of the form

I Ka (It-t' , m-m' )nt'm'
t',m' Eh(t,m)a (4.58)

t,m Ka (It-t' , m-m' )nt m

t',m' h(t,m)

where h(t,m) defines a neighborhood of (t,m) and Ka assigns weights to the

counts in neighboring categories (t',m'), depending on the "distances"

It-t' and Im-mi' . This technique is however not easily extended to

cases when the underlying density is partially parametrized. For

instance, it is all but evident how to define kernel estimates of the

parameters in models A and B (see Equations 4.54 and 4.55). A method,
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which is suitable for all models, is maximum penalized likelihood

estimation, MPLE (Tapia and Thompson, 1978), and is discussed next.

In MPLE, a penalty term Q is added to the log-likelihood. Q is a

function of the unknown parameters and thus changes the maximum likelihood

solution. Depending on its form, such a term may penalize the roughness

of the solution or, more generally, may penalize deviations of the

parameters from estimates obtained through a simpler model. As the sample

size gets larger, the penalty term becomes less important and thus

asymptotic properties of the maximum likelihood solution can be preserved.

On the other hand, as the sample size becomes smaller, the influence of

the penalty term increases and forces the parameter estimates to coincide

with the estimates from the simpler model. Examples of MPLE can be found

in Good and Gaskins (1971, 1980) and Simonoff (1983).

The form of the penalty term Q is different from model to model. The

basic idea however remains the same and is to impose smoothness on the

variation of PD with parameters such as t, m, p, and d. Model A, for

instance, penalizes deviations from local linear interpolations; hence in

the case of the parameter 8, the following penalty term is added to the

log-likelihood:

t pm

Q[ = _ - t2 + a [2a tm - (4.59)
t,m

where At and Fm are interpolated values of 8tm using neighboring
tm tm tm

(t,m) cells:

At 1[ + ] (4.60a)
tm 2 t-1,m t+1,m
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^m" l[ + B ] (4.60b)
tm 2-[t,m-1 t,m+l

t m
The coefficients P and P8 regulate the influence of the penalty term on

8a

the estimates. For instance, if Pt is large, the estimates of 8 will vary

linearly as a function of time category t. Similar penalties are used for

apm and Ydm in model A. To avoid boundary effects, only penalty terms for

interior points are included. Because the penalty terms introduce

coupling of the parameters for different values of the subscript indices,

the iteration scheme to obtain the maximum-likelihood solution must be

modified. As before, in each iteration each set of parameters (a ,b ),
x x

8tm , apm and ydm is estimated for given values on the other parameters.

However, due to the penalty, additional iterations are necessary to obtain

estimates for each set. Consider for example the parameter t'm'*. If all

other parameters, including 8 tm for t * t' and m * m', are fixed, then the

penalty is given by Equation 4.59 with the summation limited to terms that

contain 8t'm'. This means that the maximum likelihood equation of 8t'm'

is modified by an additional linear term in 8 t'm'. In this case, solution

is easy. As before, unconditional estimates are obtained by iteration.

In model B, penalty terms have been included only for atp, because

the variation of St* and Yd was found to be monotonic and sufficiently

smooth without any penalty. An expression of the type in Equation 4.59 is

used to define penalty functions of atp, except that interpolated values

are calculated using the logits o' of a, i.e using

a' = n tp (4.60)
tp 1-atPtp
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The assumption that a'p rather than atp should be linear appears

reasonable since it enforces smoother variation for a close to zero or

one. (In model A, estimates are of course restricted to be between 0 and

1 and, if outside this region, they are set equal to the appropriate

boundary value). In this case, the partial derivative of the penalized

likelihood with respect to a given parameter ati'p is no longer simple,

because some of the interpolated values depend on the logistic

transformation of atip,. The iteration scheme is therefore revised as

follows: First, one considers not only penalties for interior points, but

also for boundary points using an appropriate extrapolation formula to

calculate "interpolated" values. Second, if one keeps the interpolated

values fixed, the partial derivative of the penalty term Qa with respect

to atip , is simply:

aQa

-= P aatp - atp, 1 (4.60)
Sat'p' p t'

Equation 4.60 states that the original maximum likelihood equations are

modified by a linear term in atip' and again solution is simple. Several

iterations are of course necessary to update the interpolated values

at'p'. Notice that it is essential to include penalty terms for

parameters on the boundary, since those estimates would otherwise remain

unchanged. The same scheme, with minor modifications, is used in

models C and D to smooth atm. In Model C, interpolated values are

calculated in the logit-scale, but using a weighted average that accounts

for the expected recurrence rate in each category. For atim,,

Antm tm (4.61)
t'm' 1 n*

tm
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where n* is the expected count in each category and the summation extends
tm

over neighboring cells. Therefore, the interpolated value accounts for

the relative uncertainty of the estimates. In particular, if one of the

neighboring cells has expected count equal to zero, e.g. because a certain

(time,magnitude) category is not considered in the analysis, then that

cell is not used in the interpolation. This is important in models C and

D, because for each magnitude, only data inside a given time interval is

analyzed. Because no correction is made for boundary effects, the

estimates of atm become constant as the penalty gets very high. Later in

the study, it was realized that Equation 4.61 is not a very reasonable one

because ntm increases with decreasing magnitude m and, hence, the weights

assigned to atm in Equation 4.61 increase with decreasing m. In order to

avoid this effect, Model D uses a simple local average where the summation

is limited to neighboring cells with n* different from zero. To correct
tm

for the fact that constant values of atm are obtained for very high

penalties, lower penalty coefficients are used in this model for boundary

values of etm.

4.7.3 Prior Information on the Recurrence Parameters a and b
x x

Estimation of the recurrence parameters a and b is subject to the
x x

same problems as estimation of the completeness parameters: As more

locations x are considered, the uncertainty on the estimates increases and

prior information on the value of the parameters or some smoothness

constraints become necessary (Typical values of the uncertainty on

individual a-and b-estimates are shown in Section 4.2.2.). Various forms

of prior information have been considered in the different models. Before
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describing each form in detail, a brief overview is given first. In

model A, the assumption of seismogenic provinces is used and, hence, there

is less concern about uncertainty on the estimated parameters, provided

that the provinces are sufficiently large. A frequent assumption in

practice is that, while ax varies from province to province, the slope

parameter bx is the same everywehere. This assumption, as well as a less

restrictive alternative is included as optional choices in model A. The

alternative assumption is that the parameters bx are independent

relatizations of a random variable with unknown mean and variance, and are

therefore informative one on the others. In model B, uncertainty on ax

and bx is a more serious concern, because a more refined spatial grid is

used. The method of estimation for Model B is MPLE, i.e. a method similar

to that used for the completeness parameters. In model C an alternative

technique, based on direct smoothing of the counts and similar to

kernel-estimation, is explored. This method is computationally much

simpler, but unfortunately does not appear to generalize easily to the

case where the probability of detection varies with location. A possible

solution to this problem will be indicated in Section 4.7.3.5. Finally,

model D uses again a MPLE method, but employs a different solution

technique and a different form of the penalty. The way in which these

forms of prior information are included in maximum penalized likelihood

estimation is discussed next.

4.7.3.1 Identical values of b
x

The assumption that the parameters b are constant inside seismogenic
x

provinces Si is easily accounted for. Because the original log-likelihood
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is additive for different x and because, for each x in Si, bx is now

replaced with a single parameter bi , the partial derivative of the

log-likelihood with respect to bi is simply the sum of all partial

derivatives with respect to b , for xES.. The maximum likelihood

equations for xESi are then replaced with the single equation:

- m - Tx m exp{a - b.m} = 0 (4.62)
x S. - xeS. m
- 1 - 1

Both Equation 4.62 and the maximum likelihood equations for ax are

coupled to b. and nonlinear in b. and a . Their solution could again be

obtained using Newton's method, but such a method involves the inversion

of the Jacobian, which has dimension equal to the number of spatial cells

x in Si plus one. As a better alternative, the solution technique used in

Model A is to solve each equation for one parameter in turn, while fixing

all other parameters. Convergence to the maximum likelihood solution is

of course somewhat slower in this case.

4.7.3.2 Parameters b that are Realizations of the Same Randomx
Variable

Suppose that instead of being identical, the parameters bx in Si are

independent realizations of a random variable with normal distribution

N(mB aBi ), in which the mean value mBi and variance 0 Bi are unknown. In

this case, the catalog data can be used to estimate not only the

parameters b but also the distribution parameters mB and 02 Such ax i Bi

technique is called empirical Bayes, because the prior distribution of

each bx is determined empirically. The log-likelihood in Equation 4.45 is

now modified by the following additive term:
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2 • (b x - mB) 2 - I n OBi (4.63)
2 aB xsS - x eSi

It follows that the maximum-likelihood equations for bx should include the

additional term

1 (b - mB ) (4.64)

Bi -

The maximum likelihood equations of mBi and 02 are obtained by setting to
Bi

zero the partial derivatives of the log-likelihood term in Equation 4.63

with respect to these parameters. Hence, the following additional

equations must be satisfied:

I b - nSi mBi = 0 (4.65)
xeSi x i

S (bx -mB )2 nS a02 = 0 (4.66)
xsi x  m - Bi

where ni is the number of discrete locations x in S.. If b were known,
Si - 1 x

then Eqs. 4.65 and 4.66 would correspond to the usual maximum-likelihood

conditions for the mean and variance of a Gaussian distribution. Once

again, the solution for a , b , m and a2 can be found by iteration.
x x Bi Bi

It is worth mentioning, however, that in the present case the

log-likelihood L has a rather peculiar behavior: Let L(oa ) denote the

maximum of L for given a02 Then L(a2 ) does not necessarily have a point
B i  B i

of stationarity, implying that the previous equations may have no

solution. In addition, one can easily show that the limit of L for

02 + 0 equals *. Two possible situations are exemplified in Fig. 4.8.
B i
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In Figure 4.8b, a point of local maximum of L(oB ) exists for 2 = 2
Bi Bi Bf•

This value of the variance is associated with unequal estimates of the

slopes bx, which are more clustered than the unconstrained estimates from

Eqs. 4.49. Clustering is towards the group average m and is more
Bi

2
pronounced for smaller a and for locations x with a smaller number ofBi

2
events. Figure 4.8a illustrates the case when L(B ) has no point of

stationarity. This happens when the unrestricted estimates of b from
x

Equations 4.49 are already close one to another, relative to their

estimation variances. In this case, the solution is identical to that for

bx b i . Finally, if the slopes bx are treated as nuisance parameters,

then the marginal likelihood (i.e. the function obtained by integrating

the log-likelihood with respect to b ) should be used to estimate mi and

a . Individual values of b can be obtained afterwards based on the
Bi x

posterior density of b for given m and a (for instance, by maximizing
x Bi Bi

the posterior density). In this case all likelihood functions would be

well behaved. Calculation of the marginal likelihood is however not

straightforward and the former technique of directly maximizing the

likelihood function is preferred here for numerical implementation.

4.7.3.3 Independent Prior Unformation on Values of b
x

In some cases, independent information exists on the value of b .x

For example, such information may reflect the distribution of b for world

wide or regional earthquake data. Lower-and upper-bounds for bx can be

incorporated in the analysis by solving each of the maximum likelihood

equations separately and, instead of using a Newton-Raphson method, by

iteratively decreasing the interval which contains the maximum likelihood
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estimate. This option has been included in models C and D. In the latter

model it was found more convenient to use Newton's method to calculate

increments of a and b inside the feasible region. If these increments

predict values of b outside the feasible region, the appropriate boundary

value is used and the increment of a is recalculated using Newton's method

for the maximum likelihood equation of a only.
2

Including a prior distribution of bx with given parameters (b, ag) is

also easy. Each maximum likelihood equation should in this case include

the additional term

1 (b - b) (4.67)

b

Again, the conditional likelihood equations are easily solved, by either

Newton's method or interval reduction.

Two problems that arise in the specification of independent priors of

2
b should be pointed out. First, O~ is the variance of the slope b

x b x

averaged within a given neighborhood of x. If the area of the

neighborhood varies (in the limit, x might be associated with an entire

seismogenic province) then also ab should change. If this were not the

case, the prior would become very strong compared to information from the

data as the area associated with each x decreases. One should also be

careful not to mix two arguments: 1. o~ is the variance of an average

value and changes as the area associated with x changes, 2. the influence

of a! depends on the earthquake count n used in the maximum likelihood
b x

equation for b . Because of the second argument the solution b E b for x
x x

associated with small areas is a correct one, if all b are estimated
x

independently and are associated with small counts. It will be shown
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later that as the spatial discretization becomes more refined, there is an

increasing need to smooth bx to obtain reliable estimates. Hence

neighboring estimates are increasingly dependent, which reduces the

influence of the prior. With respect to the first argument it is assumed

in the applications that a priori the parameters bx are mutually

independent. This assumption is consistent with decreasing J

proportionally to the area considered. A second characteristic of an

independent prior is that the global maximum likelihood equation for b

(i.e. summed over all x) is no longer satisfied. Thus one may find that

the total expected magnitude no longer equals the total observed count.

4.7.3.4 Penalized Maximum Likelihood Estimation

Similar to the estimation of completeness parameters, penalized

maximum likelihood estimation can be used to introduce smoothness in the

spatial variation of a and b in order to reduce the statistical
x x

uncertainty on individual estimates. Penalties can also be interpreted as

priors on the function a and b based on a single parameter of these
x x

distributions such as the roughness. Technically, the interpretation of

the penalties makes no difference. Because in application the influence

of the penalties is regulated in an interactive manner, i.e. by visual

examination of the results for different penalty coefficients, it is

perhaps most appropriate to interpret the technique as a pragmatic way to

reduce the number of degrees of freedom of the model. The basic form of

the penalty term used in the models is the same and penalizes deviations

of the local estimates a , bx from more global estimates ax, b obtained

by local averaging or interpolation. Because of problems to calculate the
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MPL solution for high values of the penalties, different solution

techniques have been used. These techniques will be explained next, first

for model B and then for model D.

The penalty term Qa,b which is added to the log-likelihood is of the

following form in model B:

e Pa _ 2 b 2Qab - (ax - 2 (bx b )2 (4.68)
a,b 2 xx x 2 x x

x - - x - -x x

where a and b are interpolated values of a and b respectively. The

summation extends over all x, including boundary cells where an

appropriately modified interpolation formula needs to be used. If

deviations from a locally constant level need to be penalized,

interpolation can be done using locally weighted averages. If a locally
AA

linear variation of a or b is allowed, a and b can be calculated by
x x x x

fitting a local linear regression to neighboring values. The first

approach is evidently simpler and, if the averages are sufficiently local,

can also capture linear trends over larger region. In practical

applications, it was also found that the second approach is not always

stable for complicated geometries at the boundaries. The modified

likelihood equations in model B are obtained by assuming that a and b in
x x

Equation 4.68 is fixed. Of course, iteration is then necessary to update

a and b for changes in a and b . Under those conditions, the maximum
x x x x

likelihood equations are of a simple form and can be easily solved.

For instance, the MPL equation for ax is

n - Z Tm exp{ax - bxm} - Pa(ax - a ) = 0 (4.69)
- m- - - - -
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A special condition on the interpolators ax should be noted. If one

applies MPL to estimate the spatial variation of the recurrence

realtionship inside a given region, it may be desirable that the total

expected and observed counts inside that region be the same. That is

I n - I I T* exp{a - b m} = 0 (4.70)
X xm x xx - xm - - -

where T* is the equivalent period of completeness as derived in Equation
xm

4.46. It follows that the interpolators should satisfy the condition

I a = a x (4.71)
x xx - x

The same requirement holds for the bx interpolator meaning that bxx x-

should equal 6. X -
x

x -

Eq. 4.71 can be easily satisfied by calculating first the

interpolated values a from a and next by adding a constant to correct
x x

for any imbalance in Equation 4.71. This technique has been used in model

B. The problem with such a technique is that for high values of Pa and Pb

in Equation 4.68, convergence of the maximum likelihood algorithm is

very slow if a large number of locations x are used. This is due to

the fact that coupling between a and a is not recognized in each
x x

iteration. For instance, for fixed ax and large Pa, changes to individual

estimates ax are extremely small, although it is possible that a

relatively large global change of all ax is necessary to converge to the

maximum likelihood solution. This problem can be partly corrected for by

using initial estimates which are constant and satisfy the global maximum

likelihood equation, i.e. Equation 4.70 for ax . However, if a linear
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trend, which receives little or no penalty, is present in the data,

convergence may be very slow.

Because of this convergence problem, the solution technique in model

D has been modified and made more explicit. The penalty on a and b is
x x

written in Model D as

P PQab -A [ax][I-H] [I-H][a] b [bx T[I-H [I-H[b (4.72)
a,b x x 2 xx

where [ax] , [b x ] are column vectors, superscript T indicates transposed

matrices or vectors, I is the identity matrix and H is an interpolator

matrix such that

[ax]- [H][ax] (4.73)

Notice that the same interpolator is used for bx and that the degree of

smoothness of ax, bx is regulated by the penalty coefficients Pa and P .

Evidently, Equation 4.72 is equivalent to Equation 4.68. The

likelihood equation one solves in each iteration is however quite

different, if one considers a as an explicit function of a . For
x x

instance, Equation 4.69 changes to

n - I T* exp{a - bxm} - P [W] x [a x ] = 0 (4.74)
- m- - - -

where [W]x is the x'th row of the matrix W = [I-H]T[I-H]. Again, EquationIVx -
4.70 needs be satisfied, which imposes the following condition on W:

[I]T[W] [a ] = 0 (4.75)

It is interesting to note that, for a proper choice of the interpolator

matrix [H], Equation 4.75 is satisfied independently of the value of [ax].
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For instance, a natural condition for [H] is that

[1] = [H][1] (4.76)

It follows then immediately that Equation 4.75 is always satisfied since

[1]T[W] = [1]T[I-H]T[I-H] = [0) (4.77)

This is not true in Equation 4.69 beacuse [1]T[a - a ] is not necessarily

zero when H is not symmetric for locations x on the boundary. The

interpolator choosen in model D has the simple form

a 1k a (4.78)
x k x

x xEN(x) --

where N(x) is the set of locations that are neighbors of x and kx equals

the number of neighbors. Equation 4.78 alllows one to express the various

terms in [W] as simple functions of k for all x. Omitting the details
x -

of the derivation, one finds that

w 1 + (1 )2 (4.79)xx k-yCN(x) y

1 1 1 2x_ k k 'k zw =----"+ x y zeN(x) N(y) z

xt k 1 2

x-- yeN(t) y

where y indicates locations that belong to N(x) and t indicates locations

that belong to N(y) but not to N(x).

Solution of Equations 4.74 for each x must again proceed by

iteration. One way to do so would be to calculate the inverse of the
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Jacobian and to use Newton's method. This is however not a very practical

method if the number of locations x is large and again an iterative scheme

is used, which works as follows:

1. Select initial values of a and bx x

2. Solve separately for each x and update immediately all coupled

equations to account for changes in the penalty term,

e.g. - P w Aa and - Pw dAa.
a yx x a tx x

3. After solving the equations in the entire region, calculate the

total imbalance for the maximum likelihood equations

and add constants Aa and Ab to all a and b to remove thisx x

imbalance.

4. Continue with 2.

Although no formal comparison is made of the solution techniques used in

models B and D, the last one appears to be much more efficient. However,

in some cases convergence is still found to be slow.

For small regions, it may be reasonable to penalize deviations of a
x

and b from constant levels independent of x, rather than allowing for
x

a linear trend. In this case, the penalty in Equation 4.68 simplifies to

P PQ =-- a  (a - )2  - i(b  - )2  (4.80)
a,b 2 x 2 x

x - x --

where a and b are necessarily global averages of a and b so that
x x

Eq. 4.71 is satisfied. If the penalty terms are large, the penalized

maximum likelihood solution converges to the solution found in a

traditonal zonation method, i.e. a a and b - b. For low values of the
x x

penalty coefficients, a local solution is found.
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4.7.3.5 Smoothing of the Counts

Because of the computational difficulties of MPL, it is of interest

to consider alternative techniques to obtain spatially smooth estimates of

a and b . An intuitive and simple way to do so is to smooth the data,x x

i.e. the earthquake counts, prior to the estimation. In general, this

leads to estimators of a kernel-type. In the present case, the

formulation of a kernelestimator is however not evident because smoothness

of the a-and b-parameters is required rather than smoothness of the

counts. To illustrate this problem, reconsider first the maximum

likelihood equations for ax and bx in Equations 4.48 and 4.49. After

eliminating ax, Equation 4.49 can be written as:

IT*xm m exp{-bxm}

- m  + n T* m ex b 0 (4.81)

x xT* m exp -bxm

It is clear that spatial smoothness of b is related to smoothness of m
x x

and n , but also depends on the spatial variation of T* . For instance,x xm

smooth estimates of b could be found by replacing m, n and T* with
x x x xm

smoothed values, calculated as

mb = Kb(lx - yl) m (4.82a)
x x

nb = Kb(lx - yl) n (4.82b)
x y x

T*b = I Kb(Ix - y) T* (4.82c)

-- y
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where Kb is a kernel function, the value of which depends on the distance

from x, e.g. Ix-yl.

The corresponding estimate of b is then found from
x

T*xm m exp{-b m}b b
-m + n = 0 (4.83)x x--T*b m expl-b xm}

A similar analysis for ax immediately shows that, because bx is initially

unknown, there is no simple way to impose smoothness on a . On the other
x

hand, one should recognize that if one wants to impose smoothness on the

spatial variation of the cumulative count I exp{a -bxm}, this poses no
m

problem. In this case, a different kernel function Ka must be used to

allow different smoothness of b and a . If one definesx x

na = I K (Ux - yl) n (4.84a)x a x
- y

T*a = Ka(x - yI) T* (4.84b)
xm a - - xm

- y

then the estimate of the a-parameter is found from

na = Ta exp{a -b m} = 0 (4.85)
- m - - -

Equations 4.83 and 4.84 can be solved using the techniques discussed

earlier in Section 4.2.2. The problem with such a solution is that the

total expected count and the total expected magnitude in the region do not

equal the corresponding observed values. Conditions on Ka and Kb to

satisfy this requirement 
can be derived 

by substituting 
estimates 

ax'
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as defined by Equations 4.83 and 4.84 into the global maximum likelihood

equations. For the general case, this leads to complicated expressions

and the approach is only illustrated here for the special case when T*
xm

does not depend on x. Then Equations 4.83 and 4.84 can be rewritten as:

T m exp{-bxm}
b bm -

-m + n b= 0 (4.86)x x IT* exp{-bxm
m x

m

na - IT* exp ax - b m} = 0 (4.87)
-- m - -

Conditions for the global maximum likelihood equations are in this case

- m + I T* m exp{a - b m} = 0 (4.88)
x - xm - -

- nx + T* exp{a - bxm} = 0 (4.89)
x - xm -- --

Equations 4.87 and 4.89 lead to the condition that

na = n (4.90)
x x

x - x -

and Equations 4.86, 4.87 and 4.88 impose in addition that

b
x

--- n = m (4.91)b x xx n -- x -
- X -

Eq. 4.90 simply requires that after smoothing the total count should be

b
preserved. Equation 4.91 implies that the weighted sum of m , with

x

weights na/nb, should equal the total observed magnitude, and is less
x x
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intuitive. Both requirements can be easily satisfied by adding a constant

a b b
term to each n and mb/n. This technique is used in model C.

x x x

Generalization of Equations 4.90 and 4.91 to the case when T* is not
xm

independent of x is not evident.

An alternative solution to satisfy Equations 4.88 and 4.89 is to consider

an additional variable a and b, such that

a = a + a (4.92)
x x

b = b + b (4.93)
x x

In that case, a and b can be determined such that Equations 4.88 and

4.89 are always satisfied, without changing the relative smoothness of the

solution.

4.8 MAXIMUM LIKELIHOOD ESTIMATION OF PROBABILITY OF DETECTION AND

RECURRENCE RATES INCLUDING ERRORS IN THE DATA

4.8.1 Introduction

So far, no attention has been paid to the fact that, in reality, the

values (xi,ti,mi) for each earthquake i are uncertain. Whereas the time

of occurrence ti is usually sufficiently accurate for the present purpose,

geographical location xi and size measure mi may be subject to large

errors, especially for early events. The importance of this problem is

well illustrated by earthquake data for the Friuli region in Northern

Italy (Figure 4.9): In this catalog, location uncertainty for each

earthquake has been indicated through a categorical variable, which is

associated with a certain maximum radius of uncertainty as shown in Table
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4.3. The size measure Io of practically all earthquakes in the catalog is

reported in the Modified Mercalli Intensity scale and, as in the Chiburis

catalog, two alternative values are given. The difference between the two

values can be used as a measure of uncertainty on Io .  To represent the

data in figures and tables, a single value of Io is choosen as:

I o = nearest integer [(Iol + Io2)/2] (4.94)

The data have also been analyzed for magnitude conversion and clustering.

It would lead us to far to comment on this particular application and

further information can be found in reports by Veneziano and Van Dyck

(1985a, 1985b). Here, only the distribution of main events will be

discussed. Figure 4.10 presents an exploratory analysis of the catalog

data and illustrates the significance of location uncertainty. Similar to

the plots used in the exploratory analysis of the Chiburis data (Section

3.5), Fig. 4.10a shows two-dimensional scatter diagrams of (xi,ti,mi) for

all earthquakes. Figures 4.10b to 4.10e present similar plots, each for a

different value of the uncertainty on location iL. Evidently, accurately

located earthquakes (Fig. 4.10b) are very few and are found only in recent

time periods. For recent earthquakes, the most common value of iL is 3

(Fig. 4.10c), which corresponds to a maximum radius of uncertainty less

than 20 km. Few such earthquakes are found prior to 1850. Figures 4.10d

and 4.10e indicate clearly that location uncertainty for earthquakes in

early periods of the catalog is substantial. Moreover, one may notice

that many of the earthquakes occur at particular locations. This is not

by accident! Comparison with Fig. 4.9 shows that several locations

correspond to major cities. Other popular locations correspond to

rounded-off values of latitude and longitude. Going back to Fig. 4.10a,
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one can distinguish roughly four periods: For the first two and a half

centuries, activity is reported exclusively in the southwest region of

Venice, Padova, and Vicenza, whereas between 1250 and 1700 activity is

reported also in the north, near the town of Gemona. The third period,

from 1700 to about 1870, is one of transition: seismicity spreads more

evenly in space, with a trend of the larger events to migrate to the

north. Finally, after about 1870, reported seismicity has been

essentially confined to latitudes north of 45.45 N. There are several

possible explanations for the redistribution of events in space: One is

that seismicity in Friuli is highly nonstationary, with strong migratory

episodes over periods of one or very few centuries. An alternative

explanation is that seismicity is (approximately) stationary and the

observed spatial and temporal patterns are due to catalog incompleteness.

The latter hypothesis would explain the increase of reported activity in

the northern mountain area, but not the recent reduction of activity in

the plains. A third and more plausible explanation is that the spatial

pattern of reported events reflects more the location of "observers" near

the epicenters than the location of the epicenters themselves. This would

explain why, in earlier times, earthquakes are reported to have occurred

at the site of large cities. Errors in the location of epicenters and the

reduction of such errors in recent times explain both the increase of

activity in the north and the simultaneous decrease of activity in the

southwest, hence the apparent migration of epicenters in Figs. 4.10b to

4.10e.

The importance of uncertainty on the size measures, as well as that

of location uncertainty can be also judged from Table 4.4. This table
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shows, for the different seismic sources indicated in Fig. 4.10f, the

total earthquake counts cross-classified according to time t, location

uncertainty (denoted by UL), the difference between the two estimates of

intensity dlo, and the average intensity 1o .  Source 1 has few earthquakes

and is not important. Source 2 corresponds to a region that has been

recently more active. Notice that the number of earthquakes with dlo * 0

is quite large, also in recent times. As one might have expected, large

values of dl o tend to be associated with large values of UL. Source 3

contains a major part of the early, inaccurately located earthquakes; this

is shown by the large number of events with high values of UL. Also, the

fraction of earthquakes with dlo * 0 is larger than in Source 2.

It follows from the previous discussion that, without consideration

of uncertainty on location and the size measure, predicted recurrence

rates may be substantially biased. Earlier in Section 2.5, a correction

to account for uncertainty on Io was derived, which basically replaces I o

with the expected value of its a-posteriori distribution when the slope

parameter of the exponential recurrence relation is known. Such a

correction is not easily extended to the uncertainty on earthquake

location. In this section, a more general and theoretically satisfactory

treatment of uncertainty on data is given, based on an extension of the

maximum likelihood formulation of Section 4.6. In Section 4.8.2 the

necessary modification is derived in a general form and a practical

solution technique is discussed. Section 4.8.3 discusses the modification

to the maximum likelihood solution when the prior distribution of x or m

falls outside the domain of interest in the analysis. Application of
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these techniques will be presented later in Sections 4.12 and 4.13 for

Model C and Model D, respectively.

4.8.2 Maximum Likelihood Formulation Considering Errors in the Data

From a statistical point of view, the present problem is similar to

that of estimating Poisson rates for the cells of a multi-way contingency

table when the data is erroneously classified. Problems of this general

type arise often in practice and have been studied in the statistical

literature under the name of "missing categorical data". However, only in

a few studies is the misclassification probability allowed to vary from

observation to observation; examples are Press (1968), Pregibon (1977),

Little (1982), and Nordheim (1984). This is clearly the case in our

problem, because uncertainty on the correct category c varies from

earthquake to earthquake. In some analyses (Pregibon, Nordheim) the

misclassification probabilities are assumed to depend on the true class c

to which the individual (here, the earthquake) belongs, while in others

(Press) the same probabilities may vary from individual to individual.

The formulation given in this section is fundamentally similar to that of

Press (1968), except that Press estimates cell probabilities rather than

Poisson rates and his model is a saturated one.

To derive a general formulation of the maximum likelihood accounting

for errors in the data, the notation of Section 4.6 will be used. In the

present case, one should consider however that the category (ci,zi) to

which the i'th earthquake belongs is initially unknown and needs to be

estimated. It is assumed that based on information other than regional

seismicity a prior distribution Pi,' is given for each earthquake i suchc

that
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P[(c. = c) (z.=z)] = PiZ (4.95)
1 1 C

where zi is the mode of detection of the i'th earthquake.

When summed over all categories, this probability should equal one, i.e.

SPiZ = 1 (4.96)
c

c,z

To incorporate this information into the likelihood, the log-likelihood

function in Eq. 4.45 should be written first in terms of the set of

unknown categories {ci,zi}. To do so, it is convenient to introduce an

indicator variable 6
i 'z for each earthquake such that
c

6 1,z = 1 for c = c., z = z.
c 1 1

(4.97)
= 0 otherwise

The various counts used in Equation 4.45 are easily related to {6i'zI as
c

follows:

nz = ,z (4.98a)
c c

n =  6 (4.98b)
x x

m = m 61 (4.98c)
x im x,m

where the usual convention is used that omission of subscripts or

superscripts indicates summation over the missing indices. For instance

6i = I 6i ' z  (4.99)
x c
-- z,D,m

Substituting Equation 4.98 into Equation 4.45 and using also Equation

4.97 leads to the following intuitive expression of the log-likelihood for

given true locations of the earthquakes
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z.
n(a xbbx ,I{c i zi} ) = [£n P D + a - m. b ]

x D. x. 1 x.
- - 1 -1i -1

- TcP D exp{a - bxm} (4.100)
C - -

The problem now is to modify this likelihood expression to account for the

fact that the classes {ci,zi} are unknown, with prior distribution given

by Equation 4.95. Since the contribution of the i'th earthquake in

Equation 4.100 is of the form

Z.

a."(a xb 6cz.) ( PiD exp{a - m.b } (4.101)
1 -1 -1

these terms should be modified as

1,z. z.
.i (a,b,,ciz. IP'Z) cP  1P expa - b } (4.102)Ia x x ci1 c c. D x. x. m

- - 1 i --1 -1

It is clear that the likelihood in the above form is useless for the

estimation of the unknown parameters, since the number of parameters is

larger than the number of data. Notice also that, for given values of ax,

b and 6, Equation 4.102 is proportional to the posterior density of

(ci,zi) in a Bayesian interpretation. Since the interest of the present

analysis is in the estimation of ax, bx and 0, a more useful form of the

likelihood can be derived by treating (ci,zi) as nuisance parameters and

therefore calculating the marginal likelihood a. as a function of
1

(ax,b x,) only. From equation 4.102, it follows immediately that

1 x x c cLm(axbxOpi' = ,z (4.103)- -- C,Z
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where qiz is proportional to the posterior density of (ci,zi) and is
c

defined by Equation 4.102 as:

qcZ a pciz Pz exp{a - bxm} (4.104)

The final expression for the marginal log-likelihood is obtained by

combining the marginal likelihoods £m for all earthquakes and is given by
1

£nm(ax'bx' e{P z}) = In( I qtlZ) - TPDexp{a -b m} (4.105)
i c,z c

The corresponding maximum likelihood equations can be found by calculating

the partial derivatives of the marginal log-likelihood with respect to

each of its parameters. This has been done previously in Section 4.6 for

the second term in Equation 4.105 and only the first term requires further

study. From Equation 4.104 it follows that

1az 9,z3£n I q I q1z
c,z z,D,m

a i,z
x 2. qc

z,c

3Xn I q,z -mqi,zc c
c,z z,D,m

3b i ,z
x 2 c

z,c

Z

iz C qkD i,z
atn q z qc

c z,c Pc,z D

aek qi,z
Zk q
z,c

for each x

for each x

for each xk

(4.106)

(4.107)

(4.108)
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where, as in Section 4.6, QkD is the partial derivative of PD with respect

to 6k . What is important to notice in Equations 4.106 to 4.108 is that

the ratio qt,z/ qi,z appears in all of them and can be interpreted as
c c

cz
the normalized posterior density of (ci,zi). This posterior density will

i,zbe denoted by n and can be thought of as a fractional a-posteriori
c

count assigned to each category (c,z) for the i'th earthquake. When this

notation is introduced into Equations 4.106 to 4.108 and summation is

performed over all earthquakes, one obtains the equations

a£n I qciz
c

a = n nx (4.109)
i x i z,D,m

a n I q1: z
c

-b 
=  m nD = mx  

(4.110)
1 x 1 z,D,m --

atn I qciz
c

c,z ,z z (4.111)
ae D D

S k ix

where n , m and nD are a-posteriori values for the total reported count
x x D

at location x, the total reported magnitude at location x, and the total

reported count in detection category (D,z), respectively. Final

expressions for the maximum likelihood equations are then:

=n k T* exp{ax-bxm} = 0 for each x (4.112)
aa x xm x x

x - x -

8£nt m  ~
b m - Txm m expax-b xm} = 0 for each x (4.113)

x x m x x
x m- -
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a£nzm ~z k,D *e [ nDz nD Q, exp{a -b mI = 0D z D k,D x x
x D z P
S k Zk PD

for each %k (4.114)

Apart from the fact that the counts n , mx, and nD are functions of the
x D

unknown parameters ax, bx and 6, the above expressions are identical to

the maximum likelihood equations derived for the case when no errors on

the data are considered. This feature suggests a simple iteration scheme

to obtain maximum likelihood estimates of the parameters: A reasonable

initial solution for the a-posteriori counts is found by using a-priori

iz ( 0 ) piz
information only, e.g. qc Pc in Equations 4.106 to 4.108. For

given counts n , m and n , the parameters a , b and 6 can be estimated
x x D x x k

using techniques given earlier and including a-priori information as

described in Section 4.7. A-posteriori counts can then be updated using

Equation 4.104 and iteration should proceed until convergence. It is

clear intuitively that the likelihood in each of these steps must

monotonically increase, since the counts are redistributed in accordance

with the seismicity which is estimated. Hence, a solution is always

guaranteed. However, it is not evident whether only a single maximum of

the likelihood exists and whether the likelihood is stationary at the

maximum point. For instance, if location x has a-priori large recurrence

rates relative to the other locations, then the a-posteriori recurrence

rate at x will be even larger and the spatial distribution of recurrence

rates more variable. Because the likelihood function may have more than

one local maximum, the solution may depend on the initial values used in

the algorithm. In application of the method to Model C, it is shown how

this effect can be counteracted by imposing smoothness on the spatial

variation of recurrence rates. In this case, the solution is expected to

be more stable.
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4.8.3 Modification to the Maximum Likelihood Estimation for Earthquakes

Falling Outside the Range of Analysis

So far, it has been assumed that the prior distribution of the

variables x and m, when subject to error, is entirely within the domain of

interest. However, in the analysis of the earthquake data, interest

typically focuses on a given magnitude range [mO, ml] and only earthquakes

with mo < m ( mi are analyzed. The problem then arises of dealing with

earthquakes for which the prior distribution falls in part outside this

range of analysis. The same problem evidently occurs for earthquakes with

uncertain location and near the boundary of the region of interest.

Whereas in the latter case, the easiest solution is to extend the domain

of interest, this is not very practical for the size measure m, since the

assumptions of the model (such as exponentiality of the recurrence law and

spatial homogeneity of incompleteness) may hold only over a limited range

of size measures. The following approximate solution is therefore used:

1. The recurrence rate at magnitudes lower than m0 is assumed to be

Az = Az1Z = exp [ b (m - m)] for m < mi (4.115)
Dxm Dxm x 0 0

-- 0O --

where Az is the rate of reported earthquakes for detection
Dxm

category (z,D), location x and size m

2. The recurrence at magnitude larger than mI is assumed equal to

zero

X = 0 for m > mI (4.116)Dxm1
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In the analysis, all the data that possibly fall inside the range

[mo,ml] are considered, but only the fraction of ni inside this range is

used. The approximation lies in the fact that zxm for m<m 0 or m>m1 is

not estimated from the data and therefore does not enter into the

zlikelihood formulation. Equivalently, one could say that Xxm does enter

into the likelihood formulation, but is associated with unknown periods of

observation and satisfies Eqs. 4.115 and Eqs. 4.116. In this last

interpretation, the modified solution is an exact one, in sofar as Eqs.

4.115 and 4.116 are satisfied.

A final remark is necessary on the treatment of earthquakes

originally reported in a magnitude scale other than m. Suppose for

instance that the analysis is in terms of Modified Mercalli (MM) intensity

IO.  In this case, earthquakes reported in the MM scale and with uncertain

I 0 should be redistributed according to the recurrence rate of reported

events in MM. Suppose on the other hand that an earthquake is reported in

an alternative scale, such as bodywave magnitude mb . Then one should

distinguish between two types of earthquake size uncertainty:

1. uncertainty on the reported value of mb and 2. uncertainty on the

estimated value of IO. To account for uncertainty on mb, the

redistribution should incorporate the probability of detection of

earthquakes with mb reported. However, uncertainty on the estimated value

of I 0 must be treated differently. In this case, it is known that 10 is

not reported and, in principle, the recurrence rate varies with 1-PD(IO)

A simple example is useful to clarify the procedure: Suppose we know

that, for events with IZOIV that have occurred after 1950, I 0 is reported

in the catalog with probability one. Then one must accept the consequence
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that, if only mb is reported, the corresponding value of I0 must be lower

than IV, irrespective of the value of mb . As will be seen in the

applications, there are in fact several such events in the Chiburis

catalog. However, it does not appear plausible that these events are not

detected by human observers. Rather, it appears that I 0 was not reported

in the catalog because instrumental magnitude is a more accurate size

measure. For this reason, it is assumed that if only an instrumental size

measure is reported, the distribution of the unknown I0 value is simply

exponential, and is not corrected for mode of detection.

4.9 GOODNESS-OF-FIT AND UNCERTAINTY OF THE ESTIMATORS

In the previous sections, attention has been focused on the

formulation of statistical models and on the estimation of their

parameters. The structure of those models is based in part on intuitive

reasoning, in part on exploratory analysis of the data. Estimation of the

parameters has been through maximum penalized likelihood. The present

section discusses two additional issues which are important to the

analysis: 1. evaluation of the goodness-of-fit of each model, 2.

calculation of uncertainty on the estimated parameters. Examination of

the goodness-of-fit of the models is of importance to validate the

assumptions underlying the models, to detect possible deficiencies and to

compare their relative performance.

Uncertainty on the estimated parameters is of concern in the

prediction of future recurrence rates, which is for example necessary for

seismic hazard analysis. Both problems are found to be extremely complex

and this section is suggesting possible approaches, rather than giving
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definite answers. Complexity is mainly the result of two characteristic

of the data and the models:

1. The data is sparse and prohibits the use of asymptotic

properties of usual goodness-of-fit statistics or asymptotic

expressions for maximum likelihood estimators.

2. The estimated parameters can be strongly dependent due to the use

of smoothing, constraints and other a-priori conditions (see

Section 4.7). Consequently, the number of degrees of freedom,

which are necessary to judge the usual goodness-of-fit

statistics, are not well defined and the likelihood function,

which is the key to calculating uncertainty of the estimators,

has a complicated form.

Approximate procedures that bypass these problems are discussed next.

4.9.1 Goodness-of-Fit of the Models

In their most general form, the statistical models proposed in this

thesis classify the earthquake data according to geographical location x,

size m, time of occurrence t, population density p, distance to

the nearest instrument d and mode of detection z, hence into categories

(x,m,t,p,d,z).

In principle, an evaluation of goodness-of-fit must consider the

expected and observed counts in each of these categories. Distinction

should be made here between a global test and a local test of the model.

In a global test, a summary statistic such as X2 is compared wth its

theoretical distribution and, if found significantly large, the model is

rejected. Apart from the fact that in the present case the distribution

of the X2 statistic is not known (its distribution and the distribution of
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any other summary statistic could of course be found by simulation),

global testing does not reveal the nature of lack-of-fit, should

lack-of-fit be found. A more fruitful approach is then to study the

pattern of local violations of the model. In that perspective, various

marginal classifications of the earthquake counts are of interest: The

most important assumption made in all the models is perhaps that

nonstationarity of the observed recurrence rates is due to incompleteness.

To check this assumption, it is logical to compare expected and observed

counts at each location x in different time periods. Another important

assumption is that of exponentiality of the recurrence rate as a function

of size m. The validity of this assumption can be assessed by comparing

expected and observed counts as a function of m for different regions

Q(x). Similarly the appropriateness of the assumed model for the

probability of detection can be checked using classifications of the data

in detection categories (t,p,z) and (t,d,z).

A simple Poisson test is useful for this purpose. Given that the

expected count in a certain category i equals ni, the probability of the

count being less or equal than the observed count ni is easily calculated.

For instance,

n. -n.

P [N. n.] = a. (4.117)

k=O 1

Very low and very high values of a i indicate that the expected count is

too high or too low respectively. It should be emphasized that no strict

interpretation must be given to a i , because the expected count used in the
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test is data dependent. However, the true ai is more "extreme" than the

calculated ai . These "significance levels" are used here only to compare

model predictions with observations in an intelligible way, by flagging

categories i associated with very low and very high values of of ai . The

fraction of cells that are flagged and the pattern of flagging is then of

interest. Examples will be shown in the application of the models (see

for instance Fig. 4.25a).

Typically many cells have very low or zero counts and the test of

Equation 4.117 may flag as significant the occurrence of just one or only

very few earthquakes. Various ways have been suggested to deal with

problems of this type in the context of contingency tables, e.g. by

Fienberg and Holland (1980). One that is found useful in the analysis of

the earthquake counts consists of adding a small quantity 6 to both ni and

ni prior to the test. Compare for instance Fig. 4.25a with Fig. 4.25b

where 6 has been set equal to 1.

Traditionally, examination of the validity of the exponential

recurrence relation or of the completeness model has been done directly on

the basis of empirical plots. Since total earthquake counts for each size

measure are large, one could also use the approximate assumption that ni

has Gaussian distribution N(ni,ni) and examine the standardized residuals

n. - n.

n.1

Again, one should be careful in the interpretation of the associated

significance level, since ni depends on ni .
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In application of the models, it is often found that deviations from

the exponential recurrence relation are significant and indicate a faster

than exponential decrease. Several possibilities could be considered.

One is that the earthquakes of low size are incomplete even today. Such

an assumption is however contrary to general belief based on the detection

ability of the seismic network. Another possibility is that magnitude has

non-exponential distribution for relatively low values; in this case, one

might exclude from the analysis earthquakes in the lower mangitude range.

As will be shown in the application sections, this may lead to unrealistic

results because of the sparseness of the remaining data. An alternative

and perhaps better technique is to allow for larger deviations from the

assumed recurrence relation for small values of m. This can be done by

using a weighted likelihood formulation, such that the contribution to the

likelihood of events with small size is less than that of large-size

events. Since the various terms in the log-likelihood without considering

errors in the data (Eq. 4.45) are proportional either to the observed

count or to the period of obervation, a simple way to do so is to replace

these values with weighted ones depending on the size m. For instance

T = T w (4.119)
c c m

z* z
n = n w (4.120)
c c m

Thus, if wm is zero, earthquakes of size m are not considered in the

analysis. The same technique is also used in the case when the size

measure is uncertain, by applying weights to the a-posteriori counts, i.e.
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~Z* ~Z
n = n w (4.121)

c c m

In this case, a direct interpretation in terms of the total likelihood is

less evident. Notice however that, if wm is set to zero, Eq. 4.121 is

compatible with the treatment of earthquakes for which the prior

distribution partially falls outside the analyzed magnitude interval

[mo,ml]: although the recurrence rate of earthquakes with size measure

below m0 is assumed to follow the exponential relation when calculating

a-posteriori counts, the a-posteriori counts below m0 are not used in the

analysis. The probability of detection for size m, which also enters into

the redistribution, is determined by the smoothness imposed on PD if wm is

zero.

4.9.2 Uncertainty on Recurrence Rates

It is convenient to separate uncertainty on the seismicity parameters

due to two different sources:

1. Model uncertainty, by which we mean uncertainty on the

appropriate treatment of a given data set. This includes

uncertainty on the input parameters and on the analysis options

used in the various models (i.e. the degree of smoothing imposed

on the estimates, the choice of the model, constraints, etc.). A

convenient way to characterize model uncertainty is to specify a

discrete set of alternative input conditions or models and to

assign a probability to each alternative. These probabilities

are then applied to the resulting parameter estimates and seismic

hazard curves.

2. Statistical uncertainty on the parameter vectors ax and bx , given
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the input conditions. In Bayesian analysis, this uncertainty is

quantified by the posterior distribution of a and b , given the
x x

input conditions. The posterior density of these parameters is

proportional to the likelihood function, penalized and weighted

in various ways and possibly modified by prior distributions,

e.g. on b

A major obstacle to the calculation of the joint distribution of ax and bx

is the high dimensionality of these vectors. Convenient procedures for

the numerical characterization of parameter uncertainty in complex

inferential problems are based on 1. simulating a large number n of data

sets to represent the variability of the statistical sample, 2. analyzing

each simulated set j to produce estimates (a , b ), j=l,...,n, and 3.
x x

estimating properties of the joint distribution of ax and bx by

considering (a b ),...(a bn) as a random sample from that
x x x x

distribution. For example, the variance of a = a a may be estimated as
xy xy

2 1 n _- ]
= n-l - -a ] (4.122)

where -e is the sample mean of a a . Similarly for other variances and
xy x y

covariances. For the purpose of seismic hazard analysis, calculation of

distribution characteristics of a and b is not necessary: one mayx x

simply calculate the hazard curve at the site that corresponds to the

parameters (a , b ) for each j and then treat the set of n hazard curves
x x

as a statistical sample.

Methods for the generation of artificial data sets are broadly

referred to as resampling techniques. The best known such methods are
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bootstrapping and jackknifing (Efron, 1979, 1982), each with several

variants. One possibility in our case is to generate artificial samples

assuming that the true earthquake process is Poisson with parameters

(a x,bx ,PD) obtained from the historical data. A limitation of this

procedure is that, if the method of estimating ax, bx and PD is biased,

then sampling is from a biased model and the results may not be

representative of actual uncertainty. For example, in the case of

earthquake rates one should be careful not to sample from very "erratic

solutions", in which the "spikes" may be caused by the tendency of ML to

concentrate seismicity in a few cells when uncertainty on location is

considered (model C). On the other hand, one should not sample from an

excessively smooth solution, or else smoothing again the counts in the

process of estimating (a , b ) will produce flat and nearly identical
x x

solutions.

More work is required to address the issue of estimating uncertainty

on the parameter estimates. Although the generation of artificial data

sets is relatively straightforward, this is a computationally demanding

task and one gains little insight into the influence of different

modelling options on the uncertainty. In addition, it is not clear how

uncertainty on the earthquake attributes (t,x,m) can be accounted for in

such a method. A method which avoids the latter problem is to generate

artificial samples directly from the data (selecting each of the

earthquakes with equal probability and with replacement until a sample of

the required size is obtained). Such a method (empirical bootstrapping)

has the disadvantage that empty categories always remain empty and would

probably favor less smoothed estimates. A comparison of the empirical and

parametric bootstrapping methods will be shown in Sect. 4.13 for Model D.
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4.10 APPLICATION OF MODEL A

4.10.1 Introduction

In this and the following three sections, various examples of

application of the models A to D to actual data will be shown. The

purpose of these applications is primarily to illustrate the methods, to

check their validity and to show the sensitivity of the results to the

input parameters. Therefore, the estimated recurrence rates should not be

used directly for seismic hazard analysis. Such an analysis would

certainly require additional expert opinion about reasonable spatial

configurations of seismicity, the composition of the catalog and the

quality of the seismic network. In addition, input parameters have been

selected to demonstrate the effect of certain assumptions, even if their

actual values are sometimes debatable.

Except for Model C the discussion of each application is separated

into six subsections: First, a brief review of the assumptions used in

each model is given, with reference to the earlier theoretical sections.

Next, the earthquake data and the discretization of the explanatory

variables is briefly discussed. The third subsection describes the prior

information used in the analysis and the fourth subsection summarizes the

sensitivity cases that are considered. In the fifth part, the results of

these analyses are discussed, followed by conclusions about the merits and

deficiencies of the model. Because Model C partially overlaps with Model

D, a more concise and qualitative discussion of the results is presented

for this model in Section 12.

4.10.2 Review of Assumptions and Methods

Model A developed from considerations of incompleteness of the
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catalog, while less attention was given to the spatial modelling of the

seismicity rates. Following assumptions are made in this model:

- Earthquake occurrences follow a Poisson process

- True seismicity is stationary in time, is spatially homogeneous

over specified regions Rk and follows an exponential relation as a

function of size m (Eq. 4.2).

- The probability of detection can be separated into three

independent effects (Sqi. 4.26):

* the transmittal loss of reports 8tm depends on the time of

occurrence of the earthquake t and its size m

* the detection of earthquakes by human observers apm depends on

the population density in a region around the epicenter and the

size of the earthquake

* the detection of earthquakes by seismic instruments Ydm depends

on the distance to the nearest instrument and the size of the

earthquake

- The slope parameters bk in Eq. 4.3 satisfy one of the following

three conditions:

* The slopes bk are independent

* The slopes bk are identical

* The slopes bk are i.i.d. random variables with normal distri-

2 2
bution N(mB, B) and unknown mean value mB and variance a2

The corresponding maximum likelihood equations and the methods used

to solve them have been discussed in Sections 4.6 and 4.7.
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4.10.3 Earthquake Data and Discretization of Explanatory Variables

Earthquake data are obtained from the Chiburis catalog within the

region of study indicated in Fig. 4.1b. Since most earthquake sizes are

reported as epicentral intensities I0 in a Modified Mercalli (MM) scale,

IO is used as the common size measure (in this and in the following

sections, the symbol m is however maintained when referring to I0 as an

explanatory variable). Uncertainty on the size of the historical events

is not considered in this model. When two different values of IO0 are

reported, the smaller one is used. This corresponds to an intuitive

correction for uncertainty, since smaller values of I0 are more likely to

occur. When I0 is not reported, the instrumental size measure is

converted to I0 using the relationship proposed by Chiburis (1981),

IO0 = (M - 1)/0.6 (4.123)

Only integer values of IO0 are considered and in Eq. 4.123, IO is rounded

off to the nearest integer. As a rough correction to the problem of

clustering, earthquakes indicated in the catalog as aftershocks are

removed, since at the time of application the identification of clusters

as discussed in Chapter 3 had not been developed yet.

To model the spatial variation of seismicity, the seismogenic

provinces shown in Fig. 4.1b are used. These sources are one of many

alternative configurations proposed for New England (WGC, 1983). The

temporal variation of seismicity rates within each province has been

illustrated in Figs. 4.2. Incompleteness for small I0 and early periods

of the catalog is evident.

To model the probability of detection PD, the population density near

the epicenter p, the distance to the nearest instrument d and the time of
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occurrence t need to be discretized. Two cases are considered to

summarize the spatial configuration of population density. In the first

case (Case 1), p corresponds to the population density at the epicenter,

as discretized in Figs. 4.4. In the second case (Case 2), p is taken to

be the maximum category found in a square region around the epicenter, the

size of which depends on IO0. It this case, p accounts, at least to some

degree, for the fact that more severe earthquakes can be detected by

people at larger distances from the epicenter. The extent of the

epicentral region, in units of quarter-degree cells, is given in Table 4.5

as a function of I0 . The epicentral region is also larger than in Case 1

for small I 0 , to account for possible inaccuracy of the population maps

or the reported epicentral coordinates. The net effect of using the

maximum population category over an extended epicentral region is a shift

towards higher values of p and a smoothing of the original population

maps. Note that, because the degree of smoothing depends on the size

measure m (IO), the periods of observation TC in Eq. 4.33 also depend on

m. For instance, Fig. 4.11 compares the fraction of the area occupied in

each province for different p for Case 1 and for the maximum smoothing

level used in Case 2. Those fractions vary in time and the results shown

are time averages. Fig. 4.11b indicates that category p=0 practically

disappears for all provinces. The effect of smoothing is largest for

Province 5, due to the fact that a substantial part of this province

extends over the Atlantic Ocean. Figs. 4.12 show the variation in time of

each population category for the different smoothing levels and should be

compared with Fig. 4.5. Here, the fractional area is an average over all

provinces. Notice that, for the maximum smoothing level (Fig. 4.12d), the
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entire area of study has been settled with population categories 4 and 5

since 1860 and that category 4 has disappeared since 1950.

The distance to the nearest seismic instrument is discretized as

shown in Table 4.2. A representative set of the spatial distribution of d

for different time periods is shown in Figs. 4.7. Discrete time intervals

t are defined as in Table 4.6. Basically, these time periods separate the

different modes of reporting as discussed in Section 4.4, and include also

some additional intervals to better model the temporal variation of PD"

4.10.4 Prior Information

Apart from the fact that different options are allowed to relate the

slope parameters bk in different provinces, prior information is needed to

constrain the estimates of btm, apm and Ydm. The following constraints

have been used:

* atm = 1 for all m and t = 5 (since 1950)
(4.124)

* at, = 0pm = Ydm = 1 for all t,p and d and

m = 7 (Io = VIII)

These constraints have been discussed earlier in Section 4.2.1 and appear

to be reasonable ones.

Smoothness of the estimates is imposed by including a term in the

log-likelihood, which penalizes deviations from a locally linear variation

of the parameters a, 8, and y with their subscript indices. After a

number of preliminary runs, the penalty coefficients were choosen as

follows:
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* Pp = pm = 20

t m* Pe = P = 200

d m
d P = P = 20
Y Y

4.10.5 Analysis Cases

Estimates using Model A were obtained using variations on the

following:

1. the definition of the population density around the epicei

2. whether or not. for small size measures~. the ennnenx il

For t

usefu

(4.125)

nter

recurrence relation is satisfied

3. the condition of similarity among the parameters bk for

different provinces

4. the prior information on 8tm, apm, Ydm

he purpose of discussing these results, the following labelling is

1:

- Case 1 refers to the use of epicentral population density and

considers all earthquakes (IO=I to VIII, or m=0 to 7)

- Case 2 refers to the use of IO-dependent population density and

also uses all earthquakes

- Case 3 is identical to Case 2, except that earthquakes with IO

equal to I are excluded from the analysis (i.e. 7 size categories

are considered, m=0,6)

For each of the above cases, the three alternative assumptions on the

similarity of bk values are used. Sensitivity to the prior information on

the completeness parameters has been considered only in Case 1.
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4.10.6 Discussion of Results

Probability of Detection

Estimates of the incompleteness of parameters 8tm , Ydm and apm are

plotted in Figs. 4.13a-c, for Case 1 and using independent values of bk.

Fig. 4.13a shows that time has a direct influence on incompleteness, which

is separate from that induced through variation of population and

instruments. This independent effect of time can be attributed to more

likely loss of records from earlier periods as well as to the evolution in

time of instrument sensitivity, people awareness, and mode of recording.

Fig. 4.13b contains similar plots for the probability of detection by

instruments. The values of Ydm in that figure might at first seem too

small, especially for IO0 in excess of IV or V. However, these estimates

are consistent with the number of historical earthquakes reported by

people, but not detected by instruments (i.e. without an assigned

magnitude); see Table 4.7. All the earthquakes of intensity VI and VII

that do not have an assigned magnitude (see Table 4.8) occurred prior to

1955, indicating that instrument characteristics and network management

may have improved significantly over the last 25 years. If this is the

case, then the current probability of detection by instruments would be

higher and the probability of detection in the first few decades of the

century would be lower than displayed in Fig 4.13b. The values in the

figures may in any case be interpreted as time-average probabilities. The

reason why time effects may be only partially removed from the probability

of instrument detection is that the effect of time may be different for

people and instruments, contrary to the assumption of this model. One

should also use caution in extrapolating the results of Fig. 4.13b beyond
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the geographical limits considered in this study, because of likely

regional variations of instrument types and network management.

Estimates of the probability of detection and recording by people are

plotted in Fig. 4.13c. These probabilities should be geographically more

stable than those for instruments. The sharp increase of people

sensitivity between intensities III and IV is in good correspondence with

the definition of these intensities in the Modified Mercalli scale. Fig.

4.13d shows the estimates of apm for case 2, where p is a function of I0.

An immediate consequence of the IO dependent smoothing of population is

that ap, is less dependent on IO for intermediate intensities. In this

case, the constraint that a equals one for all p for IO = VIII may have

been inappropriate: for IO = VIII, the epicentral region in Table 4.3 is

so large that small values of p are very unlikely (see Figure 4.13d), and

hence the constraint would have been unnecessary. Removing this

constraint would probably lead to estimates of a that are even less

variable as a function of size measure m.

The effect of the definition of p on the global probability of

detection is more easily judged on the basis of the equivalent period of

completeness T (Eq. 4.46), integrated over the area of each province k,
xm

i.e. of Tk. Remember that Txm refers to the total timespan of the

catalog (from 1625 to 1980) appropriately scaled at each location x by the

average of the probability of detection over time. The latter average

value may be thought of as an incompleteness factor and is shown in Fig.

4.14 for each province k and earthquake size m. Fig. 4.14 compares

estimates of Tkm for Cases 1 and 2, and for Case 1 when the dependence of

the recurrence rate on m is not assumed to be exponential (in this case,

estimates of the recurrence rate for size m correspond to the earthquake
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count reported for size m divided by the associated equivalent period of

completeness) The estimates for Cases 1 and 2 are quite similar. The

largest difference occurs for Province 5, due to the fact that this

province is composed of a densely populated region on land and a region of

the Atlantic Ocean with no population. Under the assumption of Case 1,

the probability of detecting earthquakes in the ocean is based on the

(zero) population at the epicenter, whereas in Case 2, the proximity of

settlements along the shore is taken into account, particularly for

earthquakes for high intensity.

A more detailed picture of the spatial variation of the probability

of detection is shown in Fig. 4.15 where maps of T are given for each I0xm

in Case 2 using independent bk. The figure actually gives values of

10 x T xm/Tmax,m where Tmax,m is the maximum period of completeness with

the following values (in years)

10 I II III IV V VI VII VIII

T 2.2 12.0 37.8 90.3 129.0 160.9 237.8 356.0 (4.126)
max,m

For instance, a value of 4 in the figure for I 0 = V means that

4 (12.9) < T < 5 (12.9) (4.127)
xm

Because PD is constrained to one for I0 = VIII, the corresponding map is

uniform in space and the equivalent period of completeness corresponds to

the timespan of the catalog.

The effect on the detection probabilities of the similarity

condition assumed for bk is small. Estimates of the completeness

parameters and equivalent periods of completeness also remain nearly the

same when, in Case 2, earthquakes with I 0 = I are neglected (Case 3). As
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shown in Fig. 4.14, the extreme case of non-parametric variation with m of

the recurrence rates produces more substantial differences. The main

effect is to increase PD and hence to decrease the recurrence rates for

small earthquake sizes. This indicates lower than exponential rates

for small m.

The preceding results are based on the constraints and prior

information described under Section 4.10.4. Increasing the value of the

penalty coefficients in Eq. 4.125 reduces the curvature of the functions

a,8 and y with respect to their subscripts. Differences in the estimated

recurrence rates are however modest. Lowering the value of the penalty

coefficients tends to produce rather erratic estimates. This is no

surprise since the number of parameters is large and the earthquake counts

in the various categories is often small.

Recurrence Parameters

Estimates of the recurrence parameters ak and bk are shown in Table

4.9 for Cases 1, 2 and 3 and for different assumptions on the similarity

of the bk parameters. In Case 1, the assumption that all bk are

identical appears not to be realistic, given the large differences in

individual estimates when bk are treated as independent quantities and the

fact that the same estimates are not found to be identical under the

assumption that the slopes bk are i.i.d. random variables. A better

assumption in this case is that the slopes bk are identical for two groups

of provinces, (1,2,3,4,5) and (6,7). For Case 1, the fitted exponential

relations are plotted in Figs. 4.16: crosses indicate the historical

earthquake counts in each province and boxes indicate non-parametric

corrections for incompleteness. In practically all cases, the earthquake
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counts for low m are systematically overpredicted by the exponential

fits.

Recurrence parameter estimates for Case 2 are very similar to those

for Case 1. It is interesting that, for Case 3 where IO = I is not

considered, the assumption that bk are i.i.d. random variables leads to

identical estimates. Since the assumption of exponentiality appears to be

a crucial one, the case when all bk are identical has been analyzed for

three size measure ranges: IO = I-VIII, IO0 = III-VIII and IO = V-VIII,

using the IO-dependent definition of p. The results are shown in Fig.

4.17 by pooling all provinces together. The progressively higher value of

b appears to indicate faster-than-exponential decay of the rate for

increasing I0 .

4.10.7 Conclusions

Contrary to more traditional techniques where only data within

periods of the catalog judged to be complete are used, the present model

uses all the data. To do so, a physical process leading to incompleteness

is proposed, which is explicitly related to the spatial and temporal

variation of population density and seismic instrument location. This

technique allows one to estimate a more refined spatial description of

incompleteness, is more objective and should lead to more reliable

recurrence parameter estimates.

Careful consideration should be given to the information used in the

present model to estimate the probability of detection. This information

includes:

- The constraints and smoothing of the completeness parametes, which

are necessary to stabilize the solution. Individual estimates of
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the parameters may change substantially if this prior information

is changed (although the estimated recurrence parameters are

rather stable). The variation of the completeness parameters with

earthquake size m (with intensity IO) is suspected to have large

statistical uncertainty, since it interacts with the estimate of

the slope parameters of the recurrence relation.

- The assumption that the variation in time of PD is the same for

detection by both people and seismic instruments is not a very

reasonable one and produces rather low estimates of the detection

probability by seismic instruments. These estimates should be

interpreted as time averages rather than time-specific values.

- The completeness parameters depend on the configuration of

seismogenic provinces.

- Exponentiality of the recurrence rate as a function of m is

debatable for low sizes and tends to produce too low estimates of

the probability of detection for these earthquake sizes.

4.11 APPLICATION OF MODEL B

4.11.1 Review of Assumptions and Methods

Model B developed from various limitations noticed on model A. The

main changes with respect to Model A are as follows,

1. In order to arrive at estimates of the probability of detection

that do not depend on the seismogenic provinces, model B uses a

spatial grid to represent the spatial variation of the recurrence

rates.

2. Because the variation with m of the completeness and recurrence

parameters are to some extent interchangeable, model B assumes
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that the completeness parameters are independent of m. To do so,

the population density and the distance to the nearest seismic

instrument are redefined to indirectly capture the influence of m

on the probability of detection.

3. The probability of detection by people and instruments is allowed

to vary independently in time. For seismic instruments, it is

further assumed that the effect of time does not depend on ground

motion intensity at the site of the nearest instrument.

Maximum likelihood equations for the estimation of the probability of

detection are discussed in Section 4.6.5 (Eqs. 4.55). Estimation of the

recurrence parameters a and b at location x is done using maximum

penalized likelihood, as explained in Section 4.7.3.4 *Tk. 4.68).

4.11.2 Earthquake Data and Discretization of Explanatory Variables

The Chiburis catalog is used for application to the region of Fig.

4.1a. Again, IO is used as a uniform size measure and magnitude is

converted to IO through Eq. 4.123). Contrary to Model A, a correction

for clustering is made by elimination of the dependent events identified

in the base case analysis discussed in Chapter 3. Consequently,

earthquake counts are somewhat lower than in Case A. Also, earthquakes

with IO less than II and events prior to 1625 are excluded. All events in

the region of study have IO less or equal than VIII.

To account for the influence of earthquake size on the probability

of detection, population category p is redefined by using a weighted

average of the population density around the epicenter, where the weights

depend on the site intensity at each location (Eq. 4.29). Nominal values

q of the population density in Eq. 4.19 are shown in Table 4.10. The
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attenuation function used for the calculation of p is the modified Gupta-

Nuttli regression for the Central United States,

I = 3.2 + IO0 - 1.17 In(R) - 0.0011R (4.128)

where R is epicentral distance in kilometers. Values of r equal to 3, 5

and w are used in the present analysis. For finite r, p corresponds to

reduction of the spatial distribution of population density and site

intensity to a single scalar. Fig. 4.18 illustrates contributions to p

from combination of different site intensities I and population densities

q. In the figure, p is arbitrarily scaled to one for the highest value of

I and q. Note that the variation of p with I is larger for r=5 than for

r=3. Eight discrete population categories p are defined on the basis of

the logarithm of the continuous variable as shown in Table 4.11. A

logarithmic transformation is used to increase the resolution at low

population density and for small values of m. In the limiting case when

r=a, p corresponds to I0 and seven size categories are used, which

correspond to unit intensities on the Modified Mercalli scale.

Time categories to model the variation of detection by people as a

function of time are the same as in Model A. (Table 4.6) The distance to

the nearest seismic instrument used in Model A is also redefined in the

present analysis to account for the size of the earthquake. This is done

on the basis of the distance to the nearest instrument and the epicentral

intensity as shown in Table 4.12. The new classification corresponds

approximately to site intensities -1,0,1,2 and IO ) 3 at the location of

the instruments (intensities -1 and 0 refer here to an extrapolation of

the Modified Mercalli scale, using the attenuation function in Eq. 4.128).

The time categories for the variation in time of the detection capability
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of seismic instruments has been refined with respect to model A and are

shown in Table 4.13. Spatial variation of the recurrence rates is

modelled by dividing the geographical region into 56 unit-degree cells.

Thus, there are 56 pairs of parameters a and b .x x

For the interpretation of the results in this section it is useful to

reconsider the earthquake data. Fig. 4.19 shows plots of the empirical

recurrence rate over the entire region of study as a function of time and

for different I0. The difference with Fig. 4.2a is that the entire region

is used and clustering of the earthquakes has been treated

differently. Fig. 4.20 shows the spatial distribution of earthquakes for

each time category. Variation with time of the spatial distribution of

earthquakes is evident, especially in the early periods. Later in this

section, it will be shown how well the model explains this variation

through incompleteness. Table 4.14 shows the earthquake counts for each

population-time and instrument-time category, depending on the mode of

detection for r=5. The interpretation of these counts is not easy,

because counts are associated with different observational areas and are

therefore not directly comparable. However, direct comparison of time-

totals and of counts in different detection modes is possible. For

example, the column-sums and the empirical rates in the last row of Table

4.14a show two important facts: 1. the rate of earthquake detection by

people has steadily increased until about 1950 but has since declined,

presumably due to a shift of attention towards instrumental determinations

of earthquakes size. Analoguous statistics for instruments in Tables

4.14c and 4.14d indicate that, except for events in the first time

category, the rate of reporting has increased and the rate of non-

reporting has decreased in recent times. The effect of increasing the
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number of seismic instruments during the last decade (see Fig. 4.6) is

especially evident.

Fig. 4.21 summarizes the spatial distribution of earthquake counts.

The cumulative count and average total magnitude in each cell are

sufficient statistics for the estimation of ax and bx if all I0 larger or

equal than 2 a re used. Because in several of the analyses that follow the

smaller size measures are excluded or down weighted in the maximum

likelihood, Fig. 4.21c presents a breakdown of those counts according to

each I0. A singular case that will be discussed later is that of the cell

with coordinates (70.50 W, 39.50 N), for which the only event reported in

the catalog has intensity 7. By contrast, the only 3 events that are

known to have occurred in the cell immediately to the west of this

location have all intensity 3.

4.11.3 Prior Information

To obtain reasonable estimates of the completeness parameters apt , Yd

and St, in Eq. 4.28, it is found necessary to constrain the probability

of detection by people apt. In this analysis it is assumed that, for the

largest value of p (p=8 when r=3 or 5, p=7 when r=*o), earthquakes are

reported at all times. Earthquakes associated with the next lower value

of p (7 and 6 respectively) are assumed complete since 1910. Thus, for

r=3 or 5,

atp = 1 for (p=8, all t) and for (p=7, t=4,5) (4.129)

Smoothness of the a estimates is again imposed by penalizing the

likelihood (Section 4.7.2.2). In this case, interpolated values are

calculated after transforming a to a logit-scale (Eq. 4.60). Reasonable

estimates of a have been found using
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Pa = 100 (4.130)

Smoothness of the spatial variation of the recurrence parameters is

only imposed on the slope parameters b . A global average of b over thex x

entire region is used as an interpolator, in Eq. 4.80, i.e.

1b =56 bx (4.131)
x -

where 56 is the number of one-degree cells used in the analysis. The

corresponding penalty coefficient is set to 10,

Pb = 10 (4.132)

Sensitivity of the results to these assumptions will be illustrated in the

following applications.

4.11.4 Analysis Cases

Based on several preliminary runs of the model, it was decided that

the assumption of exponential recurrence relation does not hold for the

lower size measures and may bias the incompleteness results and recurrence

rates. To correct for this problem, a weighted likelihood solution has

been used as a base case and variations of the parameters are relative to

this case. The value of r for the definition of population density in the

base case is choosen equal to 5. The input parameters for all cases

presented here are summarized in Table 4.15 and correspond to the

following sensitivity analysis:

- Case 1 uses a value of r equal to 3, thus reducing the influence

of epicentral intensity on the definition of p. For small IO

the space-time variation of p is reasonably close to that of the

original population maps shown in Figs. 4.4.
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- Case 2 replaces p with the epicentral intensity I0 (seven

categories are used in this case). Consequently, p does not vary

in time or space.

- Case 3 uses a smaller penalty coefficient b and thus allows forx

more local estimates.

- Case 4 uses a local interpolator of bx from neighboring cells

only, instead of the global average in Eq. 4.131.

- Cases 5 to 8 apply various weighting factors to the likelihood

contributions of different I0 .

4.11.5 Discussion of Results

Probability of Detection

Parameter estimates for the probability of detection obtained in the

base case are shown in Fig. 4.22. An interesting fact to be noticed is

the strong dependence of the detection probability by people on p and the

relatively small influence of t. One might conclude that, for r=5, p is a

fundamental explanatory variable and that, after such a variable has been

included in the analysis, time has only a marginal additional effect. On

the other hand, it should be pointed out that the observational periods

associated with low value of p in recent times and with high values of p

in early periods are small and hence that the statistical uncertainty on

these estimates can be large. Another interesting feature in Fig. 4.22a

is the general decay of the detection probability since 1950 (the increase

of a for categories 5 and higher are due mainly to the constraints and

smoothness condition and are not suggested by the data). Figs. 4.22b and

4.22c give the effect of time and site intensity on the probability of

detection by instruments. As one would expect, the parameters 8 and y are
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both monotonically varying with t and d. Of the two, y is the more

variable one. Notice that the produce 8t*Yd is smaller than one for all

categories. It would be possible to set 8 and y equal to 1 for the most

recent time period and for the highest value of d if one believes that all

earthquakes with site intensity I > 3 (at the nearest seismic instrument)

that occurred in the region since 1970 have been detected by instruments.

The influence on the recurrence rates or on the equivalent periods of

completeness is however small.

Figure 423 3slows estimates of a when r is set to infinity. One may

note that the variation with time of the estimates is much larger in this

case. The effect of this variation on the estimated recurrence rates is a

rather substantial one, as will be illustrated later.

The spatial variation of incompleteness is illustrated in Fig. 4.24

by showing the estimated equivalent periods of completeness T*.m for each

size measure and location. The values are shown here for one-degree

cells, to be consistent with the spatial discretization of the recurrence

rates. A qualitative comparison with earlier results obtained with Model

A indicates that the present results are comparable. The most distinct

difference between the two models is that in Model A the probability of

detection is constrained to one for Io=8 and hence the equivalent period

of completeness is spatially homogeneous and equals the time span of the

catalog (356 years). In Model B, where earthquake size enters only

implicitly in the probability of detection, this condition is not imposed.

Consequently, the incompleteness factor is less than one even for Io=8*

One way to check the goodness-of-fit of the model with respect to the

incompleteness model is to compare the expected and observed counts in

each unit-degree cell for the various time periods. As explained in
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Section 4.9, it is difficult to obtain exact significance tests for such a

comparison, since the expected counts are data dependent, but an

exploratory analysis of 'significant' deviation is of interest. Figs.

4.25a and 4.25b show the result of the significance test in Eq. 4.124 for

the base case. In the latter figure, a count of one has been added to

both expected and observed counts to eliminate flagging of cells with very

few or zero events. Interpretation of the symbols is as follows:

= indicates that the observed count is much less than expected (a<0.02)

- indicates that the observed count is 'significantly' less than

predicted (0.02 < a < 0.10) (4.133)

+ indicates that the observed count is 'significantly' larger than

predicted (0.90 < a < 0.98)

* indicates that the observed count is much larger than expected

(a<0.98)

The pattern emerging from these tests is that the recurrence rate is over-

predicted for the most recent time periods in Massachusetts, for parts of

New York State and in Southern New Hampshire. Correspondingly, the

recurrence rate for this region is underpredicted in the earlier time

periods. By contrast, high predicted rates in early periods and low

predicted values in recent periods are found for the remainder of the

region. Figure 4.25 refers to the base case, where small size measures

are only partially considered in the analysis. As shown in Fig. 4.26 a

better fit is obtained for Cases 5 and 6, where more weight is given to

small size measures (see Table 4.15). This is especially true for Case 6,

where all events with Io) 2 are weighted equally and many of the '-' and

'=' flags disappear, due to the fact that small intensity counts are

better fitted. The overall picture remains however the same. One might
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propose various alternative explanations for this lack of fit. One is

that factors other than population density, seismic instrumentation and

time are necessary to explain the variation in time and space of

incompleteness. Another is nonstationarity of the earthquake activity at

the time scale of a few decades. In any case, it is clear that if one

were to estimate recurrence rates based on seismic data obtained after

1900 only, the results would be substantially different.

Recurrence Rates

Estimates of the seismicity parameters a. and bx for the base case

are shown in Fig. 4.27. The average value of b over the entire region is

1.38. The estimation methods assigns this value to cells with zero

counts, since bx in these cells is undefined and the global average is

used as an interpolator. Although differences between neighboring values

of b are generally modest, in a few cases differences are relatively large

(e.g. b=1.05 near the south-west corner). These differences are due to

the fact that the interpolator based on a global average does not

effectively remove local spatial variations, unless a very high penalty is

used or the earthquake counts are small. Estimates in the cells located

at (70.5 W, 39.5 N) and (71.5 W, 39.5 N) are rather particular. As

pointed out before, these cells have low counts, but whereas the former

contains events with high Io, the latter contains events with low Io.

Because the value of b in these cells is practically forced to the global

average, the expected recurrence rates are very different.

Figure 4.28 shows the empirical earthquake count for the entire

region as a function of I o , the earthquake counts corrected for

incompleteness but without assuming an exponential relation for the

recurrence rates, and the expected count based on the exponential relation
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integrated over the region. Because b is allowed to vary with x, the

latter count is not exactly an exponential function of I o . The

goodness-of-fit is better illustrated by plotting the standardized

residuals as proposed in Eq. 4.118. Fig. 4.29 shows such residuals for

the base case as well as for Case 6 where all I o are given equal weight.

For the base case also the reduced residuals, when multiplied with the

weights used in the analysis, are shown (the sum of those residuals must

add to zero, see Eq. 4.70). Examination of the solid line indicates that

the exponential fit is good for Io<5 but that the model underpredicts the

rate of events with intensity Io=4 and substantially overpredicts the rate

for Io=2 and 3. This is what one would expect if the slope of the

exponential relation of the true recurrence rates increases with higher

intensities.

Estimated recurrence parameters for the various sensitivity cases are

summarized in Figs. 4.30 and 4.31. The expected rate at Io=2 , 4 and 6 is

also tabulated for each case in Table 4.16 to facilitate later comparison

with results obtained in Model D. Before discussing each of these

results, it is instructive to compare the expected recurrence rate of the

various models integrated over the entire region. This is shown in Fig.

4.32 for two sets of analyses: The first set uses weights for different

I o identical to the base case, and the integrated recurrence law is

similar. The change from r=5 to r=3 (Base case versus Case 1) and the use

of a local instead of global interpolator (Case 4 versus Case 1) for

smoothing of b leads to practical identical results. The recurrence law

for Case 2, where population density is not used in the model, has a

relatively steep slope. This is so, because for Io= 8 the probability of

detection is set to one and hence counts at large I o receive more weight
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in the likelihood. Case 3 allows more spatial variation of bX and the

associated integrated recurrence relation is more strongly non-

exponential.

In the second set of cases, the weights assigned to the various

intensities, I o are varied. This has an important effect on the

exponential relation, which is gradually flattened as the smaller

intensities are assigned more weight. When all intensities are equally

weighted (Case 6), the expected rate at high intensities is rather

inaccurate.

The fact that the integrated recurrence law is similar in any two

cases does not imply that the local estimates are also similar. Such

local variations are discussed next for each case. Case 1 produces values

of a and b that are close to those of the base case, except that a is more

variable in space. This is to be expected since for r=3, the probability

of detection is more dependent on actual population density and is

therefore more variable in space.

Case 2 is one for which population has no influence on p. As a

result, incompleteness does not change in space (except for the effect of

seismic instruments after 1910). This is reflected in the recurrence

rates by an increase in highly populated cells and a decrease in sparsely

populated areas. The overall increase of the recurrence rates is due to

setting PD=1 for Io=8 , which increases the slope parameter b and, as a

consequence increases the recurrence parameters a.

In Case 3, the parameters bL are allowed to vary more freely in

space. It then becomes more apparent that b. values tend to be lower in

the South-West corner than in the central part or North-East of the

region. Considering the statistical uncertainty on the slope parameter
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bx (see Section 4.2.2), the spatial variation in the present case or even

in the base case is rather extreme. Note also that in this case the

peculiar earthquake counts in the cells located at 39.50 N and 70.5-71.50

W is interpreted as a difference in hb more than in ax .

The fact that bx has a spatial trend makes it appropriate to use a

local averaging rule rather than a global rule. This is done in Case 4,

which emphasises the linear trend.

Increasing the weights for lower intensities (Cases 5 and 6)

generally decreases the value of bX, in some cases quite significantly.

The same effect has been noted before globally; however, the effect on the

local recurrence rates needs to be clarified. Consider again the cells

around 710 W, with latitude 39.50 N. Contrary to the base case, the value

of ax for the cell at 70.50 W is lower than that for the cell at 71.50 W.

This inversion is explained by the fact that low and high intensity events

are now given equal weight. Hence, with respect to the base case, the

parameter ax tends to decrease if strong earthquakes are known to have

occurred. The exponential recurrence relationships fitted in the two

cells under Base-Case and Case-6 conditions (Fig. 4.33) give a dramatic

illustration of this effect.

Neglecting events of intensity 2 when fitting exponential recurrence

relationships (Case 7) produces results similar to those of Case 5, but

typically with lower b values due mainly to the large influence of

earthquakes of intensity 3.

The last case is a rather extreme one: because only historical

events of intensity 5 or greater are used, the estimates of ax and bx are

based on low counts and subject to large statistical error. Clearly, a

trade-off needs to be made between using earthquakes of small intensity to



221

reduce uncertainty on the estimates and the resulting bias because of the

non-exponential recurrence relation. In addition, one should consider

reducing uncertainty on the estimates by allowing for a smoother variation

of the estimates.

4.11.6 Conclusions

The major novelty of model B with respect to model A is that of using

a non-parametric representation of the spatial variation of the recurrence

parameters. This assumption serves two purposes:

- To obtain estimates of the probability of detection that are less

dependent on seismic source geometry

- To obtain preliminary estimates of the recurrence parameters which

may serve as a basis for more strict assumptions on their spatial

variation

With respect to the physical process leading to incompleteness, two

important changes are made:

1. The temporal variation of detection by instruments and by people

is allowed to differ

2. The influence of the epicentral size measure is accounted for in

the model by using site intensity at the nearest seismic

instrument and an integrated value of the population density in a

region surrounding the epicenter as explanatory variables

The benefit of explicitly incorporating the probable causes of

incompleteness is that objective (within the assumptions of the model) and

spatially detailed estimates of incompleteness can be obtained. As a

consequence, the technique allows one to use with some confidence

earthquakes of small intensity. These earthquakes are of importance,
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since they often delineate spatial variation of seismicity (after proper

correction for incompleteness) better than earthquakes of higher

intensity, which are sparse. A disadvantage of the proposed technique is

that estimation of the parameters is computationally demanding. Also

the possibility of examining the goodness-of-fit or evaluating uncertainty

on the estimates is limited because of computational constraints. As a

result, the selection of an appropriate model and the choice of input

parameters is a difficult and partially judgemental process. Further

improvement of the model is certainly necessary in that respect.

Another point of concern is that the recurrence rates of earthquakes

with small intensity do not appear to follow the postulated exponential

variation of recurrence rates. Although this is corrected for by using a

weighted likelihood formulation to eliminate bias of the estimates at high

intensities, one evidently loses some of the benefits of the model.

The proposed model to correlate incompleteness explicitly to

population density and location of seismic instruments should also be

considered preliminary in a few respects:

- the redefinition of instrument and population categories to

incorporate the effect of earthquake size is rather simplistic:

Instrumental measures of earthquake sizes are usually reported in

the catalog only when several seismic instruments have been

triggered. Differences in the quality of the seismic instruments

at different locations are not accounted for. The representation

of population density by a single category is undoubtly a

simplification. With a better knowledge of the original sources of

earthquake reports used in the catalog, one could perhaps consider
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alternative or additional explanatory variables such as the

location of major cities, missionary stations, communication

capability, etcetera.

- Whether or not earthquakes are detected by people or by instruments

is an important piece of information, since it allows one to

establish the absolute values of the probability of detection,

rather than relative ones. In this analysis, the detection mode is

based on the presence of an empirical size measure and that of an

instrumental size measure. This information appears not very

reliable, especially in recent periods, where interest has focused

on reporting of instrumental size measures only.

- Regional differences in detection capabilities are unlikely to

occur in the small region studied here. In application of the

model to a larger region, evidence of such differences has been

however found. In particular, it appeared that the level of

reporting for Canadian and U.S. earthquakes differs.

In summary, it is thought that the merit of Models A and B depend on

the purpose of analysis. If interest is only in the evaluation of seismic

hazard and, therefore, recurrence rates at high intensity are most

important, a reasonable alternative is to simplify the model by

considering only earthquakes with I o sufficiently large such that 1) the

assumption of exponentiality holds, 2) incompleteness can be assumed

reasonably constant within prespecified regions without further

assumptions on the effect of population or instruments. On the other

hand, if interest is in detecting non-stationarity of seismicity over

longer periods, in the detailed spatial variation of seismicity to

identify seismogenic provinces, in the quality of the seismic network or
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in incompleteness of the catalog itself, the statistical technique

presented here is thought to be superior.

4.12 APPLICATION OF MODEL C

4.12.1 Introduction

Because of problems in evaluating the goodness-of-fit and the assess-

ment of uncertainty on the estimates, various simplifications to Models A

and B are considered in Models C and D. A major modification common to

both models is that the analysis is restricted to earthquakes with larger

size measure only (i.e., Io> 3 ). For these earthquakes the spatial

variation of incompleteness is less important and can be assumed constant

within prespecified portions of the region of study. In this case, the

population density and location of seismic instruments need not be

considered. In each region, incompleteness is a function of time of

occurrence and earthquake size.

This approach is not the same as that of Stepp, who proposes to

further restrict the analysis to periods over which the catalog is assumed

complete. The Stepp approach is the best one can do, if recurrence rates

are assumed spatially homogeneous within given seismic sources,

incompleteness is different in different sources and no prior information

(e.g. smoothness or monotonicity) is available on the probability of

detection. In all other cases, estimates of the recurrence rates can be

improved by considering also data outside the periods of completeness.

For instance, it is clear that, even if earthquakes in a certain time

period are incomplete, the relative observed earthquake count at two

locations is indicative of spatial variation, assuming that incompleteness
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at both locations is the same. The present approach is therefore most

relevant when seismogenic provinces smaller than the completeness region

or a non-parametric spatial representation of recurrence rates is used.

Basic assumptions used in Models C and D are summarized below:

- Earthquake occurrences follow a Poisson process

- True seismicity is stationary and constant within the cells of a

spatial grid or over prespecified seismogenic provinces Qk

- Incompleteness is spatially constant within prespecified

completeness regions S and varies only with time t and size m

Model C differs from Model D in two important aspects:

- Uncertainty on location is accounted for in the model

- Smoothing of the recurrence parameters is done directly on the

earthquake counts

Minor variations on the methods described in Section 4.7 are also used in

Model C to impose smoothness on PD and b.. However, these are particular

to the application and need not be discussed here. Since Models C and D

overlap to a large extent, only a few selected results illustrating the

effect of the uncertainty on epicentral location are shown here and

discussed on a qualitative basis. The smoothing of the earthquake counts

has been extensively commented upon in Section 4.7.3.5.

4.12.2 Qualitative Discussion of Selected Results

An exploratory analysis of the catalog used in the application of

Model C has been presented earlier in Section 4.8.1 emphasizing the

importance of uncertainty on epicentral location and, to a lesser extent,

on earthquake size. The results discussed here consider only events with

Io>4, for which it is reasonable to assume that incompleteness is
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spatially constant inside the entire region of study, which extends from

110 20'E to 130 50'E and 45ON to 46 0 35'N (see Fig. 4.9). Because seismicity

in some parts of this region is relatively strong and spatially variable,

unit cells of width 10' along latitude and 5' along latitude are used for

the estimation of ax and bx. Smoothing of the earthquake counts is

imposed separately inside each of the seismic sources in Fig. 4.10f.

These sources are also used to define upper-bound intensities as follows:

Io,max=1 1 for Source 2 and Io,max=9 for Sources 1 and 3. To obtain

reasonable estimates of the slope parameters, it was found necessary to

include an independent prior distribution of b, in addition to a moderate

spatial smoothing. The independent prior estimate is chosen equal to 1.1

in all cases.

Several variants of the incompleteness model were considered in the

analysis: After a preliminary analysis, it was decided that the catalog

is reasonably complete since 1874 for all intensities above 4. The

probability of detection is assumed equal to one also since 1000 for Io=10

and 11, and since 1700 for Io= 9 and 10. Results given next were obtained

analyzing all data within given time envelopes. It is worth mentioning

that estimation of incompleteness inside these envelopes creates some

problems when the periods differ with magnitude: This is so because, at

the boundaries, interpolated values are not well defined and estimates

tend to be systematically too large if they are based on a simple average

of estimates in neighboring categories inside the envelope. In the

present application, this bias has been eliminated by determining the

probability of detection using all the data and then keeping this

probability fixed when using a time envelope to estimate the recurrence

parameters.
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The results shown next illustrate:

- the influence of the prior distribution for uncertainty on

location

- the variation in time of the spatial pattern of earthquakes

- the influence of the smoothing of the recurrence rates on the

redistribution of the earthquake counts due to location

uncertainty

- the effect of uncertainty on the size measure I o

To do so without going into details of the various input parameters, only

a short qualitative description of the assumptions made in the various

cases is given. The results are also shown in a qualitative form (Fig.

4.34): For each case, contour plots of the recurrence rate at I1=4 and Io

=6 are shown. The actual values are of no importance, since equal

contouring intervals are used in each of the plots and interest is in

global variations.

Sensitivity of the results to the accuracy of the epicentral

locations is illustrated in Figs. 4.34a,b and c. In all three cases, only

earthquakes with Io larger than 4 and inside the completeness periods are

used. Uncertainty on I o is assumed uniform between the minimum and

maximum values reported in the catalog. Moderate smoothing is applied to

the earthquake counts to produce a non-erratic variation of the recurrence

rate parameters. The slope parameters bh are further constrained by an

independent prior value. Uncertainty on epicentral location differs as

follows: Case 1 (Fig. 4.34a) assumes that all earthquakes are accurately

located, Case 2 (Fig. 4.34b) uses a prior distribution of earthquake

location that varies linearly from 1 at the center to 0 at the radii in
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Table 4.3, Case 3 (Fig. 4.34c) uses radii that are 50% larger than in Case

2. The change in recurrence rate estimates at Io=4 going from Case 1 to

Case 2 is very large. This is not surprising, because also in recent

times the number of events with inaccurately determined location is large

(i.e., Fig. 4.10.c). Especially earthquakes in the Eastern part of the

region are relocated. Case 3 shows the effect of increasing the radius of

uncertainty. This effect is less pronounced, although still substantial.

It is interesting that the contour plots for Io=6 show much less contrast

between the various cases. This is so because the b. value is small in

the North-Eastern part of the region, which therefore dominates the

spatial picture at high values of I o . Apparently, the recurrence rate in

this North-Eastern region is also relatively stable with respect to

uncertainty on location.

The effect of extending the time periods to include incomplete parts

of the catalog is more influential. Case 4 (Fig. 4.34d) corresponds to

analyzing all earthquakes since 1700, 1500 and 1000 for I o less than,

equal to and larger than 8, respectively. Cases 5 and 6 (Figs. 4.34e and

f) correspond to an analysis of the entire catalog with and without

considering uncertainty on location, respectively. If one compares these

results with Case 2 (where only events inside the completeness periods are

used), it is clear that there is a gradual spread of seismicity towards

the Southern and Central Eastern parts of the region, while seismicity in

the Northern region decreases significantly. It would lead us too far to

comment on individual differences. The trend is consistent with earlier

observations during exploratory analysis of this catalog. The overall

decrease in seismicity at high intensities is due to the fact that
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relatively few earthquakes of large intensity are reported in early

periods of the catalog and hence the b parameter increases. Case 6 where

no uncertainty on location is considered, is shown here only to illustrate

the amount of spatial relocation of events, especially for early periods.

The variation of seismicity in time is dramatically illustrated in

Cases 7 to 9 (Figs. 4.34g,h and i) where the analysis is performed using

only a portion of the catalog, 1000 to 1699, 1700 to 1873, 1874 to the

present respectively, while fixing the incompleteness parameters. Case 9

differs from Case 2, because also for large Io only the last 110 years are

used as periods of observation. Because most of the large earthquakes in

this region have occurred in recent times, this further increases the

recurrence rate estimates.

Smoothing of the recurrence parameters ax (here achieved by smoothing

the counts) is also influential on the estimates. Cases 10 and 11 (Figs.

4.34j and 4.341) illustrate this effect. These cases are variants of Case

2, which is also shown for ease of comparison (Fig. 4.34k). Case 10 is

rather extreme and does not impose any smoothness on a. In this case, all

earthquakes at x may be completed relocated if all reported locations x

are subject to measurement error. Such a solution is not a very stable

one and uncertainty on the estimates is likely to be very large.

Smoothing of the estimates, as is done in Case 11, however stabilizes the

solution. The choice of an appropriate smoothing level is not evident and

some judgement is required. For instance, Case 11 which uses more

smoothing than Case 2 is thought to be excessively smooth and obscures

information in the actual data. On the other hand, it should be noted
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that the entire area of Source 2 has been proposed as being homogeneous

based on geophysical information.

The redistribution of the counts due to uncertainty on the size

measure versus that due to location uncertainty is illustrated in Fig.

4.35 for the case when all earthquake data are analyzed (Case 5) and on an

aggregated basis for Sources 2 and 3. Presented in this figure are 1) the

actual earthquake counts based on reported location and average Io, 2) the

redistributed count when only uncertainty on I o is considered, 3) the

redistributed count when uncertainty on I o and epicentral location is

analyzed. The effect of uncertainty of I o is most visible for large Io,

where the method redistributes the counts up to the upper bound value of

10 in each source. Globally, the redistribution tends to be such that the

exponential relation is better satisfied. The effect of uncertainty on

location is larger than it would appear from this figure, because summing

the counts over each source does not show the redistribution of counts

within each source. In total, the effect is one of relocating earthquakes

of Source 3 to 2.

In summary, seismicity in the geographical region used in this

analysis has a rather peculiar behavior. The fact that even after

considering uncertainty on epicentral location, temporal variations of the

spatial distribution remain, supports the hypothesis of earthquake

migration. Given the small size of the region, it appears unlikely that

the observed effect might be explained through spatial variation of

incompleteness only. With respect to the method, the present application

illustrates the importance of considering also incomplete periods for the

interpretation of the seismic data. On the other hand, for the purpose of
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seismic hazard, use of only the last time intervals appears most sensible.

In this particular case, early events in this catalog are likely to

introduce bias and not to improve the recurrence rate estimates for future

seismicity. Consideration of uncertainty on location, even in recent

periods, becomes more important if one attempts to model spatial

variations on a smaller scale or considers recurrence rates at low 10.

Uncertainty on the size measure is thought to be less important, but

should be considered at least for earthquakes with large 1o.

4.13 APPLICATION OF MODEL D

4.13.1 Review of Assumptions and Methods

The basic assumptions used in Model D are identical to those of Model

C: true seismicity is assumed to follow a stationary Poisson process, the

spatial variation of which is modelled on a spatial grid. Incompleteness

is assumed spatially homogeneous within prespecified regions S1 above a

given size measure, but varies with time t and size m. Contrary to Model

C, uncertainty on epicentral location is however not accounted for and a

penalized maximum likelihood formulation is used to smooth the spatial

variation of recurrence parameters ax and bx . Uncertainty on the size

measure m is allowed for.

Some details of the solution techniques are briefly discussed next.

The incompleteness parameters atm (Eq. 4.30) are smoothed by penalizing

deviations with respect to a local average based on neighboring values.

Because using a local average tends to increase the estimates of tm, at

the boundaries (i.e., for categories t=1 or m=0), the penalty coefficient

Pa is decreased with a factor 1/2 and 1/4 for oatm along a boundary or on a
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corner respectively. Smoothness of the recurrence parameters is imposed

in a similar fashion and uses penalty coefficients Pa and Pb for

recurrence parameters ax and b, respectively. In this case no correction

is made at the boundary. If the region is large, the boundary effects are

small, and if the region is small, smoothing towards an average value is

reasonable. The problem of slow convergence of the maximum likelihood

estimates for a region with many cells x and a linear trend of the

estimates, has been explained in Section 4.7.3.4. The second method,

which uses a penalty term explicit in the parameters, is used and no

problems of convergence were encountered in its application. Also

discussed in Section 4.7.3.4 and applied here is the correction at each

iteration to balance the total expected and observed counts and magnitudes

over the region.

Uncertainty on earthquake size has been treated by iteratively

calculating the posterior distribution of size for each earthquake and by

accordingly redistributing its unit count over the various categories

(Eqs. 4.109, 4.110 and 4.111). Events reported in the chosen size meas-

ure, here Io, are treated differently from those reported in an alterna-

tive scale. In the former case, when Io is reported, the posterior

distribution depends on the probability of detection. In the second case,

when only an instrumental size measure is reported, I o is unknown and no

correction for PD is applied (for a more detailed discussion, see Section

4.8.4).

In addition to spatial smoothing of the b,1 parameters, a penalty term

Pb is included in the log-likelihood that penalizes deviations of bx from

a prior value of b, which is independent of location x. Estimates of bX
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are also constrained to the interval [0.5,2.0]. Because of spatial

smoothing and the independent prior used in the following results, all

estimates of b. fall inside this interval without activating the

constraint. The rate parameter ax is assumed larger than -7.0, which

simply prevents estimates from going to - * when the count at x is zero

avo no spatial smoothing is used for a,.

In application of Model D to the data in the Chiburis catalog, it was

found that with appropriate smoothing of PD, monotonicity with time t and

size m is satisfied, except for some minor violations in a few categories.

To avoid smoothing PD too much to correct for this problem, a simple

heuristic change is made to the method that leads to monotonic estimates:

- Violations of monotonicity for neighboring cells tm, and m fixed

are checked first. If such a violation occurs, e.g., atm<at-l,m,

the estimate in these categories is replaced with one found from

pooling the counts and observational areas in those two cells

together and by penalizing deviations from an averaged interpolated

value. To impose monotonicity on the entire set {itm}, this

estimate is further restricted to be larger than or equal to at-2, m

when necessary

- Next, the same procedure is applied for fixed t, with the

additional constraint that the new estimate should be larger than

estimates for the same t, but lower m, i.e., ctm>at,m-1

- Finally, interpolated values atm are calculated as usual based on

the modified estimates and new penalized maximum likelihood

estimates atm are found.
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Obviously, such a method does not necessarily converge to final estimates

of atm that are monotonic. Therefore, convergence is only checked on atm

prior to imposing monotonicity, and, when convergence is reached, the

modified monotonic estimates are used. In this particular application,

where monotonicity is nearly satisfied to start with, the technique is

considered acceptable. In a more general case, alternative techniques

that are likelihood based should be considered

To quantify uncertainty on the estimates, a bootstrapping technique

is used in Model D. Both a parametric and an empirical version of

bootstrapping are applied. In the former, the estimated incompleteness

and recurrence parameters are assumed to be the true ones. In that case,

an artificial sample can be generated by simulating the earthquake count

for each category (x,t,m). These counts have Poisson distribution with

expected value determined by the recurrence rate, the probability of

detection and the period of observation in each category. Note that the

total size of each simulated sample is not constant but rather a random

variable with Poisson distribution. Uncertainty on earthquake size is

neglected in this method. In application of the empirical bootstrapping

method on the other hand, each sample is generated by random selection of

earthquakes from the actual catalog without replacement, until the

original sample size is reached. The uncertainty on the size m of

selected earthquakes is treated as usual in this case. Technically, the

second method is the simpler one, although possibly computationally more

demanding. The relative benefits and disadvantages of both methods will

be discussed later in this section.
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4.13.2 Earthquake Data and Distribution of Explanatory Variables

The earthquake catalog used is that of Chiburis (1981). As in Model

A, earthquakes tagged as aftershocks in this catalog have been removed

prior to the analysis. To do so, the original identification found in the

Chiburis catalog is used.

Only earthquakes with true 1o>4 are used in this analysis. Thus,

category m=0 corresponds to Lo=4, category 5 corresponds to the largest

intensity found in the catalog, Io=8. The accuracy level of the size

measure for different earthquakes is consistent with that assumed in

Section 1.5, where a deterministic correction is proposed. If Io is

reported but A = I -I is not zero, the prior distribution of IoI o,max o,min
o

is assumed to be normal with mean value (Io,min + Io,max ) / 2 and aI =0.5
0

and 1 for AI =1 and 2, respectively. The normal distribution is truncated
o

at +3 oI and discretized to a mass density function p'm for different
o

categories m (including m<0). The posterior mass density function p"m is

then assumed proportional to:

P"m a p'm PD exp {-bxm} (4.134)

All parameters in Equation 4.134 are earthquake dependent. For instance,

PD refers to the probability of detection at the time of occurrence of the

earthquake and x refers to its epicental location. For m<0, the

probability PD is assumed equal to PD for m=0. Finally, p"m is normalized

and then truncated for m<0.
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Treatment of earthquakes with I o not reported is similar, except that

the prior distribution is assumed to be normal with mean value

E'[Io] = (M - 1)/0.6 (4.135)

where M is the reported instrumental size measure and E' refers to the

prior expected value of 1o .  The standard deviation ao is assumed equal
o

to 0.6. One should note that Eq. 4.135 is an estimate of the prior value

of Io , i.e., independent of the marginal distribution of Io, and should be

interpreted as E[MIIo]-1. Another difference of the treatment of

uncertainty on m is that for Io not reported, the factor PD in Eq. 4.134

is not included.

Based on a preliminary analysis of the data, it is decided that two

completeness regions are sufficient to capture the spatial variation of

incompleteness. These regions are shown in Fig. 4.36. Basically, the

coastal region of the U.S., which has been settled evenly in the early

periods of the catalog, is separated from the remainder of the region.

The simplicity of this configuration follows from the sparseness of the

earthquake counts in much of the region. For instance, it may appear

strange that locations in the Atlantic Ocean are not treated as a separate

completeness region. The recurrence rate in this area for the intensity

interval considered here is however so low that 1) incompleteness cannot

be determined separately, and 2) adding the region to areas over land does

not introduce any change in the estimates atm. Without smoothing, at, is

determined as the ratio of observed to expected true counts and both are

almost zero for locations over the ocean. An alternative and perhaps

better solution is to assign for this region values for PD based on

earlier analyses accounting for population density and seismic
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instruments. Such a solution is for instance necessary if a seismogenic

province with spatially constant recurrence rate covers part of the ocean.

In this case, the true recurrence rate is no longer close to zero, and PD

could also be estimated and would be small. From a practical point of

view, the present choice of only two regions corresponds to assuming that

recurrence rates are small in this part of the region. Including a

separate region to account for early settlements around Quebec and

Montreal has been also considered. In this case, it was found that

estimates of PD are very similar to those in the surrounding region.

The temporal variation of seismicity in both regions is illustrated

in Figs. 4.37 and 4.38. In these figures, I o corresponds to the expected

value of the prior distribution. The most characteristic feature of the

usual plot of cumulative recurrence rate versus period of observation

(Figs. 4.37a and 4.38a) is that Io= 6 appears incomplete more recently than

Io=4 or 5. To aid in the interpretation of these figures, some

alternative representations of the temporal variation of seismicity are

also shown. Figs. 4.37b and 4.38b correspond to the recurrence rate

estimated over different time periods. The first period starts from the

present and is chosen such that the recurrence rate is maximum. The

periods that follow are determined similarly after shifting the origin of

time. This procedure evidently enforces a monotonic decrease of the

recurrence rate and corresponds to non-parametric maximum likelihood

estimation of a monotone density (Groeneboom et al., 1983). Although

these figures exemplify the overall temporal variation of seismicity,

clearly many of the small jumps in the rate density are non-significant.

The picture is greatly simplified if, for each o1, one merges subsequent

time periods for which differences are small. This is done in Figs. 4.37c
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and 4.38c using a statistical test: Starting from the most recent period,

the significance of the difference in recurrence rate with the next time

period is calculated under the assumption that the recurrence rate is the

same. Earthquake counts in both periods are assumed independent Poisson

and a test similar to Eq. 3.6 is used. Because the time periods

correspond to maximum values of the recurrence rate, this is evidently an

approximation. When the difference in rate is found non-significant, the

two time intervals are merged, and the next time interval is compared with

the merged one. If the difference is significant, the first time interval

is fixed and the procedure is repeated to merge subsequent time intervals.

The length of the first time interval can be thought of as an estimate of

the period of stationarity, or of completeness. Figs. 4.37c and 4.38c

show the result of this procedure for a rather moderate amount of merging

(the significance level used is 0.2 but should not be strictly interpreted

as such). Figs. 4.37d and 4.38d show the result of reapplying the same

method to the already simplified results using a smaller significance

level. The reason for doing so is that it is clearly better to merge

first the most obviously close time intervals. It is unlikely that the

first time periods in the last plots are periods of complete reporting,

because the abrupt and large changes in the recurrence rate and hence in

the probability of detection do not appear realistic. Estimates for

moderate merging are more consistent with the original Stepp plots, but

also exemplify the problem with such estimates: exponential variation of

the recurrence rate with Io is clearly violated for Source 1 and Io=4, and

the periods of 'completeness' do not increase monotonically with 10o . In

view of these problems, the time categories used in Models A and B have
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been maintained and only moderate assumptions on completeness have been

made, as explained in the next subsection.

4.13.3 Prior Information

Several states of prior information have been used in application of

the model. A reference case has been defined first, for which the input

is described here. Deviations from this input will be indicated in the

discussion of results and summarized in the following subsection.

For the probability of detection, it is assumed that all earthquakes

independent of I o , have been reported since 1950; hence

atm =1 for t = 5 (4.136)

It is further assumed that, for Io=7 and 8, the catalog is complete since

1860 and 1625 respectively, so that

tm = 1 for t=4,5 and m=4

for t=1,...,5 and m=5 (4.137)

The penalty coefficient Pa which regulates the smoothness of the variation

of atm with its subscripts is taken as

Pa = 20 (4.138)

This corresponds to a moderately smooth change of the estimates. As

explained before, monotonicity of the estimates is also imposed. In the

reference case, the location vector x is discretized according to

unit-degree cells. Because the size of these cells is reasonably large,

no smoothing is imposed on ax, i.e.,

(4.139)Pa = 0
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Smoothing of the estimates b. is however required to obtain reliable

estimates. The penalty coefficient used to pull the estimates of bx

towards a locally linear trend is chosen as

Pb = 50 (4.140)

Also, an independent prior on bx is used, with mean value

b = 1.3 (4.141)

and associated penalty coefficient

Pb = 10 (4.142)

Pb refers here to a cell with unit-degree equatorial width and is scaled

according to the area of the cell it is applied to. The present value in

Eq. 4.142 introduces only a moderate amount of prior information, which

can be seen by calculating the corresponding standard deviation used in

the prior distribution: for a unit cell in the present analysis,

ab = (0.71 P')-1/2 = 0.38 (4.143)

where 0.71 corresponds to the area of a cell at 45 degrees latitude.

4.13.4 Analysis Cases

Input parameters to the analysis have been varied primarily to

demonstrate sensitivity of the results to assumptions on PD and to the

smoothing of the recurrence parameters ax, and bX. Also considered is the

influence of uncertainty on earthquake size and the width of the spatial

discretization. Two versions (one empirical, the other parametric) of

bootstrapping are used to evaluate uncertainty on the estimates for the

reference case. Input parameters for other cases are summarized below:
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- Case 1 : no uncertainty on 1o .  In this case, a deterministic

correction -0.5ba2 1  is applied to the expected prior
0

value of Io and then the nearest integer is used.

- Case 2: Pc=5, allowing for more data-dependent estimates of atm

- Case 3: Only part of the earthquakes in completeness region 2 is

used in the analysis. Specifically, the following time

intervals are used:

* for Io=4 and 5, only earthquakes since 1860

* for Io=6, only earthquakes since 1780

* for Io= 7 and 8, all earthquakes since 1625

- Case 4: atm is not constrained to 1 for m=O(Io=4) and t=5 (since

1950).

- Cases 5 to 9: correspond to variations of the prior information on

ax and b.. Deviations with respect to the reference

case are as follows

* Pb = 12.5 for Case 5

* Pb = 200. for Case 6

* Pb = 2.5 for Case 7

* Pb = 40. for Case 8

* Pa = 10. for Case 9

- Case 10: uses a weighted likelihood formulation to improve the fit

of the exponential recurrence relation to data with large

I o . To do so, earthquakes with tL=4 are weighted as

w(Io=4) = 0.2
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- Cases 11 to 13: the earthquake data is analyzed using half-degree

cells. In these cases, the smoothness of ax is

controlled as follows

* Pa = 0.0 for Case 11

* Pa = 2.0 for Case 12

* Pa = 10.0 for Case 13

Results from the bootstrapping techniques are only for base case input.

Some comment on the presentation of the results is appropriate.

Numerical results for all cases are shown in Table 4.17. For each case,

the expected earthquake count over a 100-year time interval and for a

unit-degree equatorial cell is shown for Io=2, 4 and 6 at each location.

Results obtained with model B have been presented in the same format in

Table 4.16 for easy comparison. For cases with significant differences of

ax and b., contour plots of the recurrence rate at Io=4 (per 100 years and

unit-degree equatorial area) and of bx are shown over the region of study.

The contouring interval of bx in these plots is 0.1 (i.e., a label 13

corresponds to b=1.3). The contouring interval for the recurrence rate

equals 5. One may note that the algorithm used in producing these plots

is a very simple one and produces jagged contours. For the present

purpose of comparing results, these figures are however useful.

4.13.5 Discussion of Results

The effect of explicitly including uncertainty on the historical

earthquake magnitudes in the likelihood is not very large as far as

recurrence rates are concerned. (Compare the contour plots for Case 1 and

the Reference Case in Figs. 4.40a and 4.40b). The recurrence rate at Io=4

increases somewhat in the North-West corner and the parameter bx increases
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in the East, when uncertainty is not considered. Changes in the

probability of detection are also moderate (see Fig. 4.39), except for

some isolated categories. For completeness region 1, neglecting

uncertainty consistently produces lower estimates of PD. As will be shown

later, this effect is similar to that from reducing the smoothness of atm.

The reason why the two operations may be equivalent is that, when

uncertainty is considered, the earthquake counts can be redistributed;

hence smoothing is facilitated and has more effect. When uncertainty is

neglected, higher estimates of PD are obtained for small I o in

completeness region 2. To understand the estimated values in detail it is

necessary to consider the difference between the earthquake counts used in

each case: a-posteriori earthquake counts for the Reference Case and the

usual earthquake counts (after a deterministic correction) for Case 1.

Actual counts in each category, and expected earthquake counts predicted

by the model are shown in Table 4.8. In general, differences are small.

For large Io, the Reference Case typically produces larger counts, which

may be expected because the a-posteriori counts reflect the increase of

the probability of detection with increasing I o (if I o is reported),

whereas the deterministic correction does not. The fact that, in the

3a ference Case, the counts for I,= 4 are lower explains the relative

decrease of PD in region- 2. For completeness region 1, the decrease is

probably counteracted by the smoothing effect. The systematically lower

count at Io=4 must be due to the discretization. For example, if many

earthquakes have a value of I o between 3.5 and 4.5 after the deterministic

correction, they are classified as Io=4 in Case 1. On the other hand, in

the Reference Case, only a fraction of those low-intensity counts is used,
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since part of the posterior distribution is outside the range of analysis.

Although normally this would be balanced by fractional counts from

earthquakes with Io< 3 . 5 , these counts are fewer. This fact is not

considered in the Reference Case, where it is assumed that PD for I o below

the range of analysis equals PD for the lowest intensity interval Io=4.

Cases 2, 3 and 4 all consider variations of the incompleteness model.

Of these cases, only the last one, where the probability of detection for

Io= 4 is no longer fixed, produces substantial differences in the

recurrence rates (Fig. 4.40c). The increase of the recurrence rates at

Io=4 is however offset by a corresponding increase of the slope parameter

b, and the effect at Io= 6 is less important (Table 4.17). It should be

mentioned that considerably larger estimates of b. would have been

obtained without the constraining effect of the independent prior on b:

relative to the Reference Case the prior has more effects on the estimated

slope parameters. The probability of detection for Cases 2, 3 and 4 are

shown in Fig. 4.39. Case 4 evidently predicts very low values of a for

Io= 4 and illustrates the importance of constraining PD in recent time

periods. Allowing for a less smooth variation of atm (Case 2) typically

produces lower estimates of a. This is due to the fact that the local

averaging rule used in this model to calculate interpolated values tends

to increase the estimates. The effect of using a time envelope in Case 3

is not very large, except for the estimate of at, at t=2 and m=3(Io=6).

Again this is due to the averaging rule, which for this (t,m) category

calculates interpolated values close to 1., because the probability of

detection at lower intensities is unknown and cannot be used in the

interpolation. The significance of these deviations is better appreciated
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if one considers the minimum and maximum estimates obtained in 50

empirical bootstrapping samples. It is clear that the statistical

variability on the estimates is high and deviations due to the prior

information are relatively moderate. Assumptions on the constraints (as

in Case 4) appear however important. One should not draw the conclusion

that, given the large uncertainty on these estimates, one might as well

not use the data in the incomplete time periods. If one is correct in

assuming that incompleteness is spatially constant within the given

incompleteness regions, then earthquake counts are important to estimate

the spatial variation of seismicity. It is true, however, that the actual

level of seismicity is primarily determined by the counts in periods when

atm is constrained to 1.

Cases 5 to 9 show the influence of varying the smoothness of bX and

ax. Case 5, the Reference Case and Case 6 illustrate the effect of

increasing the value of Pb. For the lowest value of Pb (Case 5), the

spatial trend of increasing bx from the South-West to the North-East as

well as the local maximum of b. in eastern Massachusetts is very clear.

Increasing Pb gradually removes these features, first the local maximum,

then the overall linear trend, which appears to be quite strong. In Case

6, bx is practically constant and equals the prior mean value 1.3.

Although there is a slight change in the a. estimates which counteracts

the increase and decrease of bh, the global effect at high I o is to

increase the recurrence rates for areas in the central part of the region

and to decrease the rates in the North-East corner (see Table 4.17).
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Cases 7 and 8 vary the influence of the independent prior b. For low

values of Pb (Case 7) the linear trend of b is more pronounced and this

case is similar to Case 5. Higher values of Pb produce results similar to

Case 6. The effect of Pb and Pb thus appears interchangeable in the

present case. Both parameters are however necessary. For instance,

setting Pb= 0 and only applying penalties to deviations from b, would

produce a more erratic fluctuation of the b estimates (e.g., compare the

present results with those of Model B). On the other hand, if Pb is set

to zero, then the global linear trend is too extreme, unless very high

values of Pb are used, so that boundary effects become important and again

b becomes independent of x.

Smoothing of ax is of less interest for the cell size used in the

reference case but is illustrated more extensively when smaller cells will

be used in the analysis. Case 9 applies moderate smoothing of ax to the

Reference Case. The peak values in the Massachusetts area are especially

influenced. It is worth mentioning that, contrary to the other cases, the

incompleteness parameters changed substantially. In the second

completeness region, the probability of detection increases whereas in the

first region the same probability decreases. This is to be expected,

since spatial smoothing of the recurrence rates tends to decrease the

higher recurrence rates in the second region and correspondingly increases

the recurrence rates in the first region. In general, it is clear that

assumptions on the spatial continuity of the recurrence parameters across

the boundaries of the completeness regions can be influential on the

relative values of the probability of detection in both regions, when such

continuity is not suggested by the data.
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Comparison of observed and expected global counts for each value of

I o (Table 4.18) shows that, in the Reference Case, counts for Io=4 are

overpredicted, whereas counts for Io=5 are underpredicted. One would

expect this trend if the slope of the exponential relation increased with

higher values of I o . Although the trend is less pronounced than in

earlier analyses (Models A and B), one might correct for this problem by

using a weighted likelihood formulation. Case 10 shows results when

earthquakes with Io= 4 are down weighted by a factor 0.2. Relative to the

reference case, bx is spatially more constant. This is so, because the

data are less informative on the actual value of b and as a result the

influence of the prior value b is larger. Values of ax are higher in this

case, because the relative low counts at Io=4 are weighted less in the

analysis. The combination of these two effects produces higher expected

recurrence rates over the entire Io range (see Table 4.17).

Cases 11 to 13 use smaller cell sizes to model the variation of a.

and b•. Smoothing of ax is gradually increased in the three cases.

Because the spatial smoothing of b is left unchanged, the estimates of b

are found to be slightly more variable than in the reference case. It is

interesting to notice that the spatial smoothing of a eventually produces

results (Case 13) very similar to those in the reference case.

Considerable more detail is found in the spatial variation of ax for lower

values of Pa. Theoretically, one might test whether such spatial

variation is statistically significant by applying a bootstrapping

technique to evaluate uncertainty on the estimated parameters. Although

such an analysis is not performed here, it appears from the results shown

next for the Reference Case that the significance is low (See for instance
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the minimum and maximum values of a obtained in 50 samples). Of course,

such a result does not incorporate any prior knowledge, one might have,

based on geophysical or seismological considerations.

To assess the uncertainty on the estimated parameters an empirical

and parametric bootstrapping technique has been applied to the Reference

Case. In each case, 50 samples have been generated and analyzed using the

same parameters as in the Reference Case. In empirical bootstrapping, the

sample size has been fixed to be the same as the original sample size.

Alternatively, one could have used for each sample a size generated

according to a Poisson distribution with expected value equal to the

original sample size. The latter is a better approach if interest is not

only in the relative recurrence rates over space, time, and magnitude but

also in their absolute values. The additional uncertainty due to a

variable sample size is however small, at least when N is large. In

applying parametric bootstrapping, no independent prior has been used on b

(i.e. Pb= 0 ). The reason why this is necessary requires some explanation:

if the penalty terms on the spatial variation of the recurrence rates are

included also in the estimation procedure when applied to the artificially

generated samples, then the estimates obtained from these samples are

smoother (and biased) with respect to the true parameters used to

generate the samples. It is important to note that this does not imply

that the estimation procedure always produces biased estimates: in an

ideal application of MPL, the penalty coefficients are not fixed a-priori,

but are determined on basis of the obtained data sets. Such a procedure

is however not a very practical one in the case of bootstrapping, where

many such samples are generated. If however the penalty terms are

interpreted as a-priori distributions of the recurrence parameters, then
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it is not clear how the parametric bootstrapping method should be

modified. Although neglecting the prior information in the estimation

procedure when applied to the artificially generated sample seems

intuitively valid, more work is necessary to resolve this issue. Because

of this problem, the empirical bootstrapping technique is thought more

appropriate this time for evaluating uncertainty on the estimates.

Summarizing the results from bootstrapping is in general not a simple

task, because many are simultaneously estimated and there is correlation

among the estimates. Fig. 4.41 shows selected results for the first 20

samples in empirical bootstrapping. Fig. 4.41a shows estimates of atm as

a function of t and for different m, in both completeness regions. The

sample average and minimum and maximum values have been shown earlier in

Fig. 4.39. Variation of the parameters is obviously large and has been

commented upon earlier. As one would expect, the parameters are also

strongly dependent due to the imposed smoothness condition. Note for

instance how the different lines predominantly shift up or down, with

relative few crossings. Fig. 4.41b shows estimates of a, and bx as

functions of longitude, for different latitudes. One may note that,

whereas the a. are relatively independent (see the large number of

crossings), estimates of bx are more dependent and tend to produce

parallel lines. Another point of interest illustrated by this figure is

that, at locations with zero count, the empirical bootstrapping technique

produces always the same estimate ax=- 7 . because no smoothing is applied

to the estimates and the count at those locations is zero in all samples.

This not true for the parametric bootstrapping where the expected

recurrence rate is used to generate counts in these cells. In practice,
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however, the estimated recurrence rate is so low that an enormous sample

size is required to actually generate any of these counts.

To assess uncertainty on a single parameter or on any function of the

parameters, one may calculate statistics from the generated sample. Fig.

4.42 shows for instance the sample average, standard deviation and minimum

and maximum estimates for a. and bx . Table 4.19 shows the numerical value

of the average and standard deviation for both a and b. The contouring

intervals for the standard deviation of a and b in the figures are 0.5 and

0.025, respectively. Consider first the results of parametric

bootstrapping (Fig. 4.42a). The standard deviation of ax increases with

the estimated average, while the coefficient of variation decreases, as

one would expect. The standard deviation of bx is reasonably constant,

but increases at the boundaries. Again this is to be expected

intuitively, since for values at the boundary, spatial smoothing is less

effective. It is also interesting to compare results obtained from

empirical and parametric bootstrapping. Whereas results for ax are nearly

identical, the values of bx are quite different. This is of course due to

the fact that, in parametric bootstrapping, the independent value of b is

not used, whereas the same value is used in empirical bootstrapping.

Ultimately, the interest of statistically analyzing earthquake

catalogs is to evaluate the seismic hazard at a given site. Uncertainty

on seismic hazard estimates can be separated as follows:

1. Uncertainty due to model assumptions such as the value of the

smoothing parameters or other prior information based on

judgement rather than on data.

2. Uncertainty due to the limited size of the sample.



251

3. Uncertainty due to other parameters in a seismic hazard analysis

such as the attenuation law and the upper-bound magnitude, which

are not discussed in this thesis.

As a simple illustration of the magnitude of uncertainty on seismic

hazard, the recurrence rate of earthquakes with site intensity larger than

I is calculated for the Boston area (45020'N and 71010'W). The modified

Guppta-Nuttli attenuation function (Eq.4.128) is used without considering

attenuation uncertainty. Seismic hazard curves are calculated for all

cases considered in Models B and D. Fig. 4.43 shows six curves that

envelope all results.

'DR' and 'BR' refer to the reference cases of Models D and B respectively.

'PR', 'PR+' and 'PR-' correspond to the sample average and the sample

average ±2 standard deviations from parametric bootstrapping (the

uncertainty band obtained from empirical bootstrapping is narrower,

because of inclusion of independent information on b). Finally, 'B6'

corresponds to sensitivity case 6 in Model B, for which all earthquakes

with I o ) 2 are used equally in the likelihood formulation. Although not

shown in this figure, it is worth mentioning that all sensitivity cases

considered in Model D fall inside the uncertainty band from parametric

bootstrapping. This suggest that the sample size is at least as important

as the model assumptions. It is also interesting that results obtained

from 'BR' do not significantly differ from 'DR'. Presumably, the seismic

hazard results are reasonably stable, because they are dominated by the

historical events at large intensities which in both cases are fitted

reasonably well. Case 'B6' on the other hand deviates considerably from

the other results and indicates the importance of the assumption of



252

exponentiality of earthquakes if small intensity are included in the

analysis.

To combine the various results into a single seismic hazard prediction,

the credibility of the various curves should be established. It should

also be emphasized that uncertainty on the upper-bound magnitude and on

attenuation are not considered here. In addition, the results are based

on the estimation of recurrence rates inside one-degree and half-degree

cells. Whereas more local estimates are not thought to alter the

estimates very much, the assumption of spatial homogenity inside large

seismogenic provinces might do so.

4.13.6 Conclusions

Model D uses a statistical model for earthquake occurrences that

differs from Models A and B in two basic aspects: 1) The spatial

variation of incompleteness is judgementally defined, 2) Uncertainty on

historical earthquake sizes is accounted for. Major differences with a

more traditional analysis of the data are that: 1) Incompleteness is

corrected for by estimation of the probability of detection, 2) A

non-parametric representation is used to model spatial variation of the

recurrence rates.

The application of the model to the Chiburis catalog indicates that

explicitly considering uncertainty on the earthquake sizes does not

substantially alter the results. Of course, such a conclusion is data

dependent and should not be generalized to other catalogs or geographical

regions. On a theoretical basis, the deterministic correction proposed in

Section 2 is considered sufficiently accurate if interest is on obtaining

best estimates of the recurrence rates or of the seismic hazard. Note
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however that, in using this correction, the effect of the probability of

detection is not considered and that the increase of uncertainty on the

estimated values cannot be assessed. Thus, if an exploratory analysis

shows that uncertainty on the earthquake sizes is large for a substantial

portion of the historical catalog, then the likelihood based approach is

recommended.

Comparison with results obtained earlier with Model B shows that, for

large intensities, the results of the two models are comparable. This

indicates that, for the purpose of seismic hazard calculation, the

simplification in modelling the spatial variation of incompleteness is

justified. If also earthquakes of small intensity are considered, for

example to delineate regions of different seismic activity, Model B is

considered more appropriate.

Evaluation of total uncertainty on the results of interest (e.g., on

seismic hazard) is a complicated task, because uncertainty from many

sources needs to be combined. The use of empirical and parametric

bootstrapping to evaluate uncertainty due to limited sample size has been

illustrated. In parametric bootstrapping, the problem arises of including

uncertainty on earthquake sizes and of specifying judgementally

determined input parameters for the artificially generated samples. In

this regard, the empirical bootstrapping is easier to use and thought to

be more appropriate.
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CHAPTER 5

SUMMARY AND CONCLUSION

Several new methods are proposed in this thesis to address three

major problems in the statistical analysis of earthquake catalogs: the

conversion of different magnitude measures to a single scale, the

identification of earthquake clusters, and the estimation of

incompleteness and recurrence rates. Techniques that are currently used

to account for these problems and their limitations have been identified

earlier in Chapter 1. In the present chapter, the innovations introduced

in this study are summarized and main conclusions are stated. Topics

that should be subject to further research are also indicated.

5.1 MAGNITUDE CONVERSION

Earthquakes are typically reported in different magnitude scales,

however, many operations are greatly simplified if earthquake size is

expressed in a single scale. Chapter 2 considers this "magnitude

conversion" problem and proposes a method which has following

distinguishing features:

* the regression of m against other size measures may be nonlinear

and the residuals need not have constant variance. Outliers

present in the data set can be identified or removed.

* measurement errors in the reported size measures can be accounted

for by correcting the individual regression estimates.

* when more than one size measure is reported for an earthquake,

the different regression estimates are combined into a single,

more accurate estimate.



255

* the conversion formula is such that the ordering of the

earthquakes by size is invariant with respect to the choice of

magnitude scale and estimates of the parameters a and b of the

exponential recurrence law are not biased. The unbiasedness

property of m is valid if the historical catalog is complete;

some bias may result in the case of incomplete reporting.

The corrections for measurement error, the combination of different

size measures into a single scale and the correction for bias are

theoretically based. The marginal distribution of the size measures is

assumed exponential, whereas the distributions of the regression

residuals and of the measurement errors are assumed independent Gaussian.

These are common assumptions. In the derivation of the correction for

measurement error and bias, the regression line is further assumed to be

linear. Althought this may not be the case for the actual regression

line, the proposed correction remains accurate if the regression line is

well approximated locally by a straight line.

Further research on the sensitivity of the corrected lines to the

modelling assumptions would be useful. Another point of interest is to

study the effect of incompleteness on the regression lines more

rigorously, for instance by using results on the degree of incomplete

reporting as a function of the earthquake size obtained in the estimation

of incompleteness and recurrence rates.

5.2 IDENTIFICATION OF CLUSTERS

Plots of historical earthquake events as points in space and time

typically reveal various non-Poisson characteristics of the earthquake

process. The most common phenomenon is clustering of the events, as
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discussed in Chapter 2. A statistical method has been developed for the

identification of such clusters, which has following features:

* In classifying earthquakes as main or dependent events, the

spatial-temporal extent of the cluster region is not fixed

a-priori or assumed equal for main events of the same size.

Rather, the region of the clusters is estimated separately for

each main event by performing statistical tests;

* Contrary to many methods in the literature, the procedure works

well with spatially non-homogeneous catalogs and with catalogs

that display incompleteness-induced nonstationarity . Both

features are very pronounced in most earthquake catalogs.

To study the performance of the method, the procedure has been

applied to two simulated catalogs and to the Chiburis (1981) catalog.

For the latter catalog, the classification of events produced by the

proposed method has been compared with a judgemental classification by

seismologists.

The automatic procedure is found in all cases to perform quite well.

Sensitivity of the results to the input parameters has been extensively

studied in the case of the New England catalog. The conclusion is that

the identification of clusters is robust with respect to rather

substantial variations in such parameters.

The final result of the clustering procedure is the separation of

the historical earthquakes into a set of independent ("Poisson") counts

and a set of dependent events. These results are documented in Fig.

3.14. and are commented upon in Section 3.5. Displaying the

independent events in time and space sometimes reveals non-Poission

patterns other than clustering; for example, in the New England catalog,
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one may notice bursts of seismic activity. These bursts (e.g., around

1860) have been noticed also by Chiburis (1981), who attributes them to

increased reporting of earthquake events. In the most recent time

interval, an on-and-off phenomena seems however to provide a more

reasonable explanation.

The modelling of the clustered events themselves is not addressed in

this thesis but is a topic of interest for future study. A difficulty in

such modelling is posed by the distortion of the shape and size of the

historical clusters due to incompleteness of the catalog.

5.3 ESTIMATION OF INCOMPLETENESS AND RECURRENCE RATES

Chapter 4 discusses the estimation of incompleteness and recurrence

rates under the assumption that the main events follow a stationary

Poisson process. Thus, nonstationarity is attributed entirely to

incompleteness. Several new concepts are developed in this chapter and

illustrated through four different models:

For incompleteness

* Incompleteness of the catalog is allowed to vary not only with

earthquake magnitude and time but also with geographical

location. This can be done by relating the probability of

earthquake detection and recording to the spatial distributions

of population and instruments at the time of the event, or else

by specifying regions with different incompleteness

characteristics.

* The notion of period of incompleteness is replaced with that of

equivalent period of completeness, TE. The latter is the period

of time by which the total number of recorded events must be
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divided to obtain an unbiased estimate of the recurrence rate.

For a given magnitude and at a fixed geographical location, the

equivalent period of completeness is obtained as the integral

over time of the probability of detection for that magnitude and

location. The probability of detection itself is estimated from

the data, simultaneous with the recurrence rates.

* Because data and estimates of incompleteness for early periods of

the catalog may be subject to large uncertainty, the analysis can

be restricted to use only part of the data (within a different

time interval for each magnitude). This is similar to

traditional recurrence rate analysis, except that no assumption

of completeness is made within the time intervals used in the

analysis.

For recurrence rates

* Homogeneous earthquake sources must not be identified. Rather,

seismicity parameters a and b are allowed to vary continuously on

the geographical plane.

* In some cases, it is possible to identify regions with similar

seismotectonic characteristics. The methods proposed allow one

to use such information but does not require seismicity to be

homogeneous within each region. Rather, the user can control the

smoothness of the spatial variation of the recurrence

relationship, separately for the a and b parameters. The

standard model with homogeneous earthquake sources is obtained

as a limiting special case, when total smoothness is imposed.

* Recurrence rates and incompleteness of the catalog are estimated

jointly.
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* Uncertainty on epicentral location or magnitude of the

earthquake events can be accounted for.

For model validation

* Local significance tests that compare expected counts from the

model with actual counts can be used to detect nonstationarity or

non-exponentiality of the recurrence rate. Such tests can be

further extended to judge the appropriateness of an assumed

degree of smoothness of a and b within a given region.

For uncertainty on the estimates

* Bootstrapping techniques (empirical or parametric) are effective

tools to assess uncertainty on the estimates. These methods can

be used also to find uncertainty on desired quantities such as

seismic hazard of a given site.

Different combinations of these new concepts have been used in

Chapter 4 to formulate alternative models (A to D). From

application of these models to the analysis of actual catalogs and from

other considerations, the following conclusions are drawn.

* Explicitly accounting for the actual distribution of population

and instruments is of importance to estimate small scale spatial

variations of incompleteness. For large regions however, such a

model may need to be extended to account for regional differences

in the effect of population and instruments on incompleteness.

It also appears that the reporting of events by people and by

instruments are not independent events and the model, which now

assumes independence, should be modified accordingly.

* The assumption that incompleteness is homogeneous inside given

regions is a good alternative for the purpose of identifying
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seismic hazard, especially when incompleteness needs to be

estimated over large geographical regions. Models with

homogeneously incomplete regions are easier to understand and

verify. In addition, through the selection of the regions they

allow one to incorporate information other than changes in

population and instrument location, for example regional

differences in the compilation of the catalog.

* Maximum penalized likelihood estimation of the recurrence

parameters a or b is preferred to kernel estimation. The former

method is a more flexible one (although it is also

computationally more demanding) and allows one to combine a

nonparametric specification on the spatial variation of the

recurrence rates with parametric assumptions on the distribution

of magnitude. Spatial variations of incompleteness are also more

easily accounted for.

The methods proposed in Chapter 4 relax several questionable

assumptions of traditional methods of seismicity analysis. Some

assumptions, such as that of exponential recurrence rates, stationarity

of the earthquake process and Poisson distribution in space and time of

the main events are maintained. An interesting future development would

be to further relax these assumptions and allow deviations from the

stationary-Poisson-exponential model, whenever these deviations are

clearly indicated by the data. Another point of interest is the spatial

modelling of the recurrence rates. The degree of smoothness of the

parameters can be interactively determined by comparing observed with

predicted counts, for instance by using local significance tests. A

possibly better technique to determine the optimal degree of smoothing is
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cross-validation. The advantage of cross-validation is that the degree

of smoothing is determined automatically, without the need for external

intervention.
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Appendix

ROBUST LOCALLY WEIGHTED REGRESSION

Robust locally weighted regression is a non-parametric regression

method, originally proposed by Cleveland (1979). For application to

magnitude conversion, a local estimate of uncertainty about the

regression is necessary to account for heteroscedasticity. Because such

an estimate is not derived in Cleveland's paper, the method is reviewed

here in more detail. Robust locally weighted regression is a technique

designed to analyze data for which the regression of y on x is a smoothly

varying function:

Yi = g(xi) + Ei (A.1)

Subscript i indicates the i'th point in the sample ordered for increasing

x. The total number of points in the sample is n.

In locally weighted regression, estimates of yi are obtained by

fitting locally at xi a straight line:

A 0 1 (A.2)
y = 8. + 8. x (,2)

1 1

One might consider fitting a polynomial of any order, but in practice, a

straight line is often sufficient. Denote by wi,k the weight given to

the k'th datapoint when estimating the linear regression at xj. Total

parameters 8.0 and . are found by minimizing the weighted sum of squares
1 1

SS.i = w. i,8 + 1 - Yk (A.3)
k=1
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The following matrix notation is useful:

= [0 81 ] T
0 iT
1[ 1x1T

= (1 Xk]

(Y)k, =[Yk] '

Wik(W j.),k = ,k
0

j=k

j *k

with dimension 2 x 1

with dimension n x 2

with dimension n x 1

with dimension n x n

The sum-of-squares in Equation A.3 is the same as in weighted least

squares (Draper and Smith, 1981). The associated estimators of 01 and Yi

are:

. = (XT W. X.-1 XT W. Y
-' - -1 -1 - -1 -

A Ai= [1 x.] 8.
1 -1

From Equations A.8 and A.9 it follows that yi is a linear combination of

the observed y values and can be written as:

n

Yi k=1 rik Yk

In general,

y = Ry

(A.10)

(A.11)

where

(Y)i A

(R)i,k = ri,k

8.
-1 i

(X)k,
-k,

(A.4)

(A.5)

(A.6)

(A.7)

and

(A.8)

(A.9)
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If the regression is homoscedastic with residual variance a2, then an

unbiased estimate of a2 is:

02 = a trace (C) (A.12)
i=1

where Ci is the residual

Ei = Yi - Yir

and C is the covariance matrix of [E:,...,Cn], given by

C = (I - R)(I - R)T (A.13)

I is the n x n identity matrix.

If the regression is heteroscedastic, a local estimate of a2 is

needed. One such estimate is obtained by assuming that the local

residuals ei,k used in Equation A.3,

0 1Eik= Yk - - . xk , (A.14)

2are homoscedastic with local variance a and have mean value equal to
1

zero. If C. is the column-vector with elements 5 i,k, then

SY - X (A.15)_Mi - --

Using Equation A.8, this is expanded to:

C. = [I - M] Y (A.16)

where:

M = X(XTW.X)-1 XTW-(.= 11- - " (A.17)
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Notice that the matrix M is symmetric and idempotent, so that M M = M.

Therefore, the covariance matrix of Ci in Equation A.16

T = 2(I M)(I - M)T
1-

a= (I - M) (A.18)1- -

The local sum of squares in Equation A.3 can also be written as:

SS. = trace(W. E. ET), (A.19)1 -1--1 -- I

and the expected value of SSi is, using A.18,

E[SS.] = 02[trace(W.) - trace(W.M)] (A.20)1 1 -1 -1-

Using the property that trace (S T) = trace(T S), it follows from

Equation A.17, that

E[SS.] = a2[trace(W.) - trace(A-1A )] (A.21)

where:

A1 and A2 are defined as for s=1 and 2 respectively.

T s
A = X W. X-s - --1-

So far, no attention has been given to the presence of outliers and the

method as described above is referred to as locally weighted regression.

In a robustified version of the method, this procedure is applied first

to find initial estimates, say y() Subsequent iterations use

modified weights. In the j'th iteration, the weights are:

S( )  w. 6( j-1)) (A.22)irk ilk I
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where 6 is a function that decreases with increasing absolute value of

the of the residual. For example, Cleveland uses for 6 a bisquare

function with !j-1) scaled to the median value of all residuals at1

iteration j-1.

To account for heteroscedasticity, it is preferable to normalize

first Ei with respect to ai,

E = l/ai (A.23)

Then, a bisquare function is used with argument e :
1

E.

[1- I )2]2 for (< 6mbm .
6(a) = (A.24)

0 for c > 6m

where m-# is the median value of all normalized residuals . - for ai 1
given iteration. To complete the details of the procedure, the weights

wi,k used in Equation A.22 need to be specified. Cleveland uses a

trisquare function of the distance of point k to point i, normalized to

the r'th nearest-neighbor distance for point i. Such a choice has the

advantage of automatically modulating the width of the local window

according to the density of the points. A disadvantage of this technique

is that the window size is always very large for high values of the size

measure, because the earthquake count is small. As a simple alternative,

a fixed local window is proposed here, with weighting function:

S ( x k - x. )

exp - -2 2 Ixk-xi 4h
h

i,k = (A.25)

0 Ixk-xi > 4h



a) B

a
1 I-

Note : diagonal elements correspond to the slope parameter of the marginal exponential distribution

off-diagonal elements refer to the mean and variance of the conditional Gaussian distributions

Table 2.1 - Summary of parameters for the marginally-exponential, conditionally-

normal distribution

0 0

vj

U'
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Radius (km)
19.5
22.5
26.0
30.0
35.0
40.0
47.0
54.0
61.0
70.0
81.0
94.0

Duration (days),
6

11.5
22
42
83

155
290
510
790
915
960
985

Table 3.1 - Dimensions of the space-time windows used by
Gardner and Knopoff (1974) in the analysis of
Southern California earthquake data

Table 3.2 - Intervals of randomization in years around
the historical earthquake times used in the
generation of the nonhomogeneous, nonstationary,
quasi-Poisson catalog.

Magnitude
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0

TIME OF OCCURRENCE

Io  1534- 1700- 1800- 1850- 1900- 1950-
1699 1799 1849 1899 1949 1980

1 200 100 100 50 50 25
2 200 100 100 50 50 25
3 200 100 100 50 50 25
4 200 100 100 50 50 50
5 200 200 100 50 50 50
6 200 200 100 100 50 50
7 300 300 200 200 100 100
8 500 500 500 500 500 500
9 1000 1000 1000 1000 1000 1000

10 1000 1000 1000 1000 1000 1000
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•T'
1 1

AT- AT+
e e

- +
AR(degrees) AT1 (days) AT1(days)

0.20 5 10
0.20 30 40
0.20 50 100
0.22 60 200
0.28 70 300
0.30 80 400
0.32 90 500
0.35 100 500
0.38 110 500
0.40 120 500

RP (degrees)
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

-(1)

nT
4
4
4
4
4
4
4
4
4
4

+(2) (3)

nT nR
4 2
4 2
4 2
4 2
4 2
4 2

max number of backward extensions
max number of foreward extensions
max number of extensions in space

Time Interval

1534 - 1649

1650 - 1749

1750 - 1849
1850 - 1949

1950 - 1969
1970 - 1980

ATe(years)
+

ATe (years)

150
100
100
50
20
10

q = 0.1
a = 0.02
aext = 0.02
No. of iterations = 2
Method of earthquake classification: Method 2 of Sec. 3.3.5

Table 3.3 - Input parameters for the analysis of the stationary

Poisson catalog.

1
2
3
4
5
6
7
8
9
10

in time
in time

_ _I ___I _·_ __
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IQ EQKS. MAIN SECONDARY CLUSTERS

1 245 236 9 0
2 659 644 15 1
3 761 742 19 7
4 648 628 20 25
5 339 336 3 11
6 133 132 1 3
7 57 57 0 1
8 12 12 0 2
9 4 4 0 2

10 2 2 0 0
TOTAL 2860 2793 67 52

Table 3.4 - Summary results for the stationary Poisson catalog.

IQ EQKS. MAIN SECONDARY CLUSTERS

1 245 200 45 3
2 659 583 76 14
3 761 698 63 36
4 648 615 33 29
5 339 326 13 22
6 133 133 0 5
7 57 57 0 2
8 12 12 0 0
9 4 4 0 0

10 2 2 0 0
TOTAL 2860 2630 230 111

the simulated nonstationary catalog.Table 3.5 - Summary results for



279

AR(degrees)
0.20
0.20
0.20
0.22
0.28
0.30
0.32
0.35
0.38
0.40

Time Interval
1534 - 1649
1650 - 1749
1750 - 1849
1850 - 1949
1950 - 1969
1970 - 1980

- +
AT1 (days) AT1 (days) R,(days)

5 10 1.00
30 40 1.00
50 100 1.00
60 200 1.00
70 300 1.00
80 400 1.00
90 500 1.00

100 500 1.00
110 500 1.00
120 500 1.00

- +
ATe (years) ATe(years)

150 75
100 75
100 50
50 30
20 10
10 5

q = 0.1
a = 0.02
aext = 0.02
no. of iterations = 2
Method of earthquake classification: Method 2 of Sec. 3.3.5

Table 3.6 - Input parameters for the analysis of the Weston
Observatory Catalog (see Table 3.2 for explanation
of symbols).

In
1
2
3
4
5
6
7
8
9
10

3nfl
3
3
3
3
3
3
3
3
3
3

nR
2
2
3
3
3
3
3
2
2
2
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This Study

EQKS. MAIN
245 155
659 422
761 532
648 472
339 296
133 112
57 51
12 9
4 4
2 2

2860 2055

SECONDARY %
90(37)

237(36)
229(30)
176(27)
43(13)
21(16)
6(11)
3(25)
0(0)
0(0)

805(28)

CLUSTERS
8
26
53
86
39
21
12

4
2
2

253

Secondary Events
THIS STUDY SEISMOL.

ONLY ONLY BOTH
46 8 44

142
146
114
19
14
4
2

0 0
320 485

Table 3.7 - Summary results for the Weston Observatory catalog.

SECONDARY
EVENTS IN
CLUSTERS

8
46
98

168
172
91

149
40

BREAKDOWN BY INTENSITY
IO=1 2 3 4 5 6 7 8 9 10

62 59 40
59 38 30 19
26 19 33 9
29 44 55 5
12 13 6 5 2 0 0

2 1 0
2 2 3

1 5 9
0 0 3

Table 3.8 - Breakdown by intensity of secondary events in clusters.

I
1
2
3
4
5
6
7
8
9
10

TOTAL

NO.
CLUSTERS

8
25
52
86
40
22
12

4

Ig
1

2
3
4
5
6
7
8
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NO. NO. TIME NO. TIME NO. SPACE
Ia CLUSTERS COMPRESSIONS EXTENSIONS EXTENSIONS

(1) +(2)
nT nT

0
1
2
3
4
3
7

4
2
2

TOTAL 253

Maximum number
Maximum number
Maximum number

extensions backward in time in a single
extensions foreward in time in a single
extensions in space in a single cluster

Table 3.9 - Cluster size statistics.

Sensitivity
Case

1

2

3

4

5

6

7

8

Change in the parameters of Table 3.6

a = aEXT = 0.05

aEXT = 0.05

AR doubled and nR set to 1 for all Io

AR halved and nR doubled for all Io

Re = 1.50 for all Io
- +

ATe and ATe doubled for each time interval

Total removal of secondary events inside
cluster regions

Removal of secondary events by Method 1 in
Sec. 3.3.4

Table 3.10 - Variants of Table 3.6 for sensitivity analysis.

(3)

(1)
(2)
(3)

cluster
cluster



SENSITIVITY
1 2 3 4 5 6 7 8

- + removal by
BASE CASE a=0.05 a=0.02 ATe,ATe total eqk. catalog

In I XT=0.05 agxT=0.05 AR doubled AR halved R,=1.50 doubled removal simulation

1 8 8 8 8 4 8 8 8 8
2 25 25 23 35 26 26 25 25 31
3 52 50 49 59 48 50 52 52 53

4 86 87 83 81 79 85 81 83 85
5 40 45 43 41 37 40 38 41 39
6 22 23 22 24 14 20 19 22 22

7 12 14 12 11 12 13 12 14 12

8 4 5 5 4 3 5 4 4 5
9 2 2 2 2 2 2 2 2 2

10 2 2 2 2 2 2 2 2 2

TOT- 253 261 249 267 227 251 243 253 257

AL

% 12% 13% 12% 14% 10% 12% 12% 12% 12%

Table 3.11 - Number of clusters in base case and sensitivity cases.



0 0

Table 3.12 - Number of secondary events in base case and sensitivity cases.

SENSITIVITY
1 2 3 4 5 6 7 8

I I - +removal by
BASE CASE =0.05 a=0.02 ATe ATe etotal eqk. catalog

I a.EXT=0.05 aEXT=0.05 AR doubled AR halved Re=1.50 doubled removal simulation
1 90 99 101 119 76 103 101 93 83
2 237 257 247 274 206 254 239 241 213
3 229 252 239 253 202 241 232 232 217
4 176 189 184 186 155 177 175 175 163

5 43 45 45 44 29 43 43 42 39
6 21 21 21 23 18 21 21 21 21
7 6 7 7 6 5 6 6 7 6
8 3 3 3 3 2 3 3 3 3
9 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0

TOT- 805 873 847 908 693 848 820 814 745
AL

% 28% 31% 30% 32% 24% 30% 29% 28% 26%
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Note : % of clusters is calculated relative to the number of main events

Table 3.13 - Number of events plotted in Figures 3.14a-3.14f

Time period 1. 2. 3. Aftershocks % Aftershocks present analysis

All Events in Main 4. present present No. of % of
From - To events clusters events WGC analysis WGC analysis clusters clusters

a. 1500 - 1800 204 149 73 114 131 56 64 18 25

b. 1800 - 1900 477 146 381 65 96 14 20 50 13

c. 1900 - 1940 488 185 340 103 148 21 30 37 11

d. 1940 - 1960 430 166 306 96 124 22 29 42 14

e. 1960 - 1974 401 95 334 55 67 14 17 40 12

f. 1974 - 1981 648 281 430 97 218 15 34 63 15

TOTAL 2648 1022 1864 530 784 20 28 238 13
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Category

0
1
2
3

Population density
(inhabitants per square mile)

<2
2-5

6-17
18-44
45-81

>90

Table 4.1 - Population categories

Category Distance to closest station
(kilometers)

>305
195-304
110-194
55-109
0-54

Table 4.2 - Instrument categories

Maximum radius of
uncertainty (km)

> or >> 50
6 instrumental estimate ( iL=l)

Table 4.3 - Maximum radius of uncertainty on epicentral location
for various epicentral-accuracy classes



0 0 S 0 0 0 0 0 0 0 0

source
IO 1 2 3

1 0 0 0
2 0 21 10
3 2 92 80
4 0 86 42
5 2 71 40
6 0 36 16
7 0 24 11
8 0 6 3
9 0 7 0

10 0 1 0
11 0 0 0

Source 1

10

1
2
3
4
5
6
7
8
9
10
11

--I

Time
UL 1 2 3 4 6

1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 2
4 0 0 0 2 0
6 0 0 0 0 0
6 0 0 0 0 0

UL
10 1 2 3 4 6 6

1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 2 0 0
4 0 0 0 0 0 0
6 0 0 2 0 0 0
6 0 0 0 0 0 0
7 0 0 0 0 0 0
8 0 0 0 0 0 0
9 0 0 0 0 0 0
10 0 0 0 0 0 0
11 0 0 0 0 0 0

dlO
UL 0 1 2 3 4 6

1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 2 0 0 0 0 0
4 0 0 1 1 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0

dIO
10 0 1 2 3 4 6

1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 1 1 0 0
4 0 0 0 0 0 0
6 2 0 0 0 0 0
6 0 0 0 0 0 0
7 0 0 0 0 0 0
8 0 0 0 0 0 0
9 0 0 0 0 0 0

10 0 0 0 0 0 0
11 0 0 0 0 0 0

Time
dlO 1 2 3 4 5

0 0 0 0 0 2
1 0 0 0 0 0
2 0 0 0 1 0
3 0 0 0 1 0
4 0 0 0 0 0
6 0 0 0 0 0

Table 4.4 - Earthquake- counts in the Friuli region

10 average intensity

dl0  difference of reported values of I

source see Figure 4.10f

UL L, location uncertainty (Table 4.3)

time I : 1000 - 1249
2 : 1250 - 1499
3 : 1500 - 1699
4 : 1700 - 1873
5 : 1874 - 1984

-- - - - - - - -- - - - - - -



Source 2

Time
IO 1 2 3 4 6I----I---------------------

0 0 0 0
2 0 0 0 5 16
3 i 0 0 1 32 69
4 0 3 6 11 67
6 0 3 3 18 47
6 1 0 1 2-32
7 0 4 1 7 12
8 1 0 0 3 21 0 0 2 3 2

10 0 0 0 0 1
11 0 0 0 0 0

Time
UL i 2 3 4 5

1 0 0 0 3 7
2 0 0 0 8 6
3 0 2 6 23 210
4 2 3 2 9 4
6 0 6 6 38 12
6 0 0 0 0 0

I ------------
I Time

UL--- I ---- 2-- 3 4 6

1 0 0 0 0 621 0 0 0 1 1
3 1 3 2 6 42
4 7 10 19 67 9
5 3 2 4 13 5
68 0 0 0 0 1

UL
I0 1 2 3 4 5 6

1 0 0 0 0 0 0
2 0 1 15 0 6 0
3 0 1 66 6 29 0
4 1 2 66 4 13 0
6 6 2 51 4 9 0
8 0 0 33 2 1 0
7 1 4 13 2 4 0
8 2 1 1 2 0 0
9 0 2 6 0 0 0

10 1 0 0 0 0 0
11 0 0 0 0 0 0

dIO
UL 0 1 2 3 4 6

1 4 3 0 0 0 3
2 11 2 0 0 0 0
3 186 44 1 9 0 0
4 10 4 3 3 0 0
5 40 6 8 7 2 0
6 0 0 0 0 0 0

Source 3

UL
IO 1 2 3 4 5 8

1 0 0 0 0 0 0
2 0 0 7 3 0 0
3 0 1 17 68 4 0
4 4 0 14 16 8 0
6 0 0 11 21 7 1
6 2 1 2 7 4 0
7 0 0 3 6 2 0
8 0 0 0 1 2 0
9 0 0 0 0 0 0

10 0 0 0 0 0 0
11 0 0 0 0 0 0

dIO
UL 0 1 2 3 4 5

1 0 0 0 0 0 6
2 1 1 0 0 0 0
3 42 9 3 0 0 0
4 47 32 9 23 1 0
5 16 6 3 2 0 0
8 0 0 0 0 0 1

dIO
d0 0 1 2 3 4 5
1 0 0 0 0 0 0
2 13 8 0 0 0 0
3 63 11 0 18 0 0
4 64 it 7 1 2 1
6 55 13 1 0 0 2
6 28 8 0 0 0 0
7 20 2 2 0 0 0
8 5 1 0 0 0 0
9 3 4 0 0 0 0
10 0 1 0 0 0 0
11 0 0 0 0 0 0

Time
dIO 1 2 3 4 5

0 0 3 2 50 196
i 2 2 7 14 34
2 0 3 4 3 0
3 0 0 0 14 6
4 0 2 0 0 0
6 0 0 0 0 3

dlO
10 0 1 2 3 4 6

1 0 0 0 0 0 0
2 8 2 0 0 0 0
3 47 9 0 24 0 0
4 18 12 7 0 1 4
6 24 14 1 0 0 1
6 6 2 6 1 0 2
7 3 7 1 0 0 0
8 1 2 0 0 0 0
9 0 0 0 0 0 0

10 0 0 0 0 0 0
11 0 0 0 0 0 0

Time
dIO 1 2 3 4 5

0 3 4 6 43 60
1 4 6 15 16 7
2 4 4 3 4 0
3 0 0 1 24 0
4 0 1 0 0 0
6 0 0 0 0 7

Table 4.4 - (End)
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Case

Case A, all IO
Case B, IO < III

I0 = IV
IO = V

I0 > VI

No. of cells on each side
of the epicentral cell

Table 4.5 - Number of quarter-degree cells around the epicenter
used in the definition of population category

Category Time interval

1 1625-1779
2 1780-1859
3 1860-1909
4 1910-1949
5 1950-1980

Table 4.6 - Time categories

Intensity, 10 No. in catalog No. not detected
since 1910 by instruments

V
VI
VII
VIII

Table 4.7 - Number of earthquakes of high intensity
not detected by instruments

Total no.
of cells
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Date

1918 Aug 21
1925 Oct 09
1927 Jun 01
1928 Feb 08
1952 Jan 30
1954 Jan 07
1954 Feb 21

Time

0515
1355
1223
A.M.
0400
0725
2000

Coordinates I 0

44.2 70.5 VII
43.7 71.1 VI
40.3 74.0 VI
45.3 69.0 VI
44.5 73.2 VI
40.3 76.0 VI
41.2 75.9 VII

Location

ME Bridgeton-Norway
NE Ossipee
NJ Toms River-Sandy Hook
ME Milo
VT Burlington
PA Berks Co.
Wilkes-Barre

Table 4.8 - Earthquakes of intensity VI and VII
without assigned magnitude

Assumption on
slope parameters

Unrelated b-values

b-values from iid a
random variables b

Identical b-values a
b

Two groups with
same b-value

Unrelated b-values a
b

b-values from iid a
random variables b

Identical b-values a
b

Unrelated b-values a
b

b-values from iid a
random variables b

Identical b-values a
b

Province
1 2 3 4 5 6 7

124. 356. 389. 215. 277. 55. 44.
1.48 1.35 1.59 1.25 1.39 1.11 1.17

110. 357. 305. 223. 269. 63. 55.
1.43 1.35 1.50 1.25 1.38 1.14 1.23

71. 301. 160. 253. 208. 102. 67.
1.29

75. 313. 168. 262. 216., 51.
1.33 1

33.
.10 -

117. 343. 337. 200. 247. 54. 43.
1.45 1.36 1.57 1.25 1.43 1.12 1.16

107. 345. 264. 210. 233. 63. 56.
1.41 1.36 1.47 1.26 1.40 1.16 1.23

77. 290. 155. 239. 170. 98. 69.
1.30

153. 314. 192. 295. 321. 67. 40.
1.51 1.33 1.40 1.34 1.49 1.17 1.14

83. 299. 143. 276. 184. 114. 75.
1.32

83. 299. 143. 276. 184. 114. 75.
1.32

Table 4.9 - Parameters a and b in the relationship 2n X = a-bl 0
(X is the recurrence rate per 100 years and 771.5 km2 )

W
(A

4
w3
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Population Density

Class

0
1
2
3
4
5

Actual ( 1) Nominal(2)

<2
2-5
6-17

18-44
45-89

>90

100
1,000
3,500
10,000
20,000
50,000

(1) Inhabitants per square mile
(2) Inhabitants per quarter degree cell (771 km2)

Table 4.10 - Nominal values of population density

Equivalent population category

r (1) 1 2 3 4 5 6 7 8

3 from 1.43 3.48 5.52 7.57 9.61 11.66 13.70 15.75
to 3.48 5.52 7.57 9.61 11.66 13.70 15.75 17.79

5 from -2.16 0.35 2.58 5.36 7.86 10.36 12.87 15.37
0.35 2.58 5.36 7.86 10.36 12.87 15.37 17.87

(1) the intervals shown refer to the natural logarithm of the
integrated population density (see Eq. 4.29). The nominal
density q in this equation is taken from Table 4.10.

Table 4.11 - Definition of discrete population categories p
in Model B
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Table 4.12 - Definition
in Model B

of instrument category d

Category t* Time interval

1910-1929
1930-1949
1950-1969
1970-1980

Table 4.13 - Definition of time category t*
in Model B

Distance to the Epicentral intensity
nearest instrument 2 3 4 5 6 >6

>305 km 1 1 2 3 4 5
195-304 1 2 3 4 5 5
110-194 2 3 4 5 5 5
55-109 3 4 5 5 5 5
0-54 4 5 5 5 5 5
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population
category(1)

1
2
3
4
5
6
7
8

Total
Rate
per year

(a)
Events detected

people

time category t
1 2 3 4 5

3 0 0 3 1
6 1 4 7 3

10 14 68 50 16
21 47 41 56 16
5 27 66 72 55
5 17 23 21 35
0 1 6 4 6
0 0 0 0 0

50 107 208 213 132
0.3 1.3 4.2 5.3 4.3

(b)
Events detected by instru-
ments but not by people

time category t
1-3 4 5

0 0 4
0 2 4
0 6 92
0 17 80
0 11 26
0 10 4
0 1 0
0 0 0

0 47 210
0 1.2 6.8

(c) (d)
Events detected by Events detected by people

instruments but not by instruments

instrument time category t time category t*
category 1 2 3 4 1 2 3 4

1 0 0 0 0 2 3 1 0
2 0 1 3 1 6 15 4 0
3 0 12 22 18 17 30 6 0
4 0 20 25 84 26 35 8 1
5 3 27 44 89 35 28 35 1

Total 3 60 94 192 86 111 54 2
Rate 0.2 3.0 4.7 17.5 4.5 5.6 2.7 0.2
per year

(1) population category p for r=5

Table 4.14 - Earthquake counts for different mode
of detections (Model B)
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smoothness
a and b

Aa Ab a G

L G 0 10

1
L

Note : - only changes to the parameters are indicated for Cases 1-8

- Aa and Ab indicate how interpolated values are calculated
"L" : local interpolation, using only neighboring estimates
"G" : global interpolation, using all estimates

- parameters common to all cases are :

Pa = 100
no smoothing of 8 and y parameters
a = 1 for p=8 (p=7 for Case 2) and all t

for p=7 (p=6 for Case 2) and t=4,5

Table 4.15 - Input data for base and sensitivity cases (Model B)

5

3
10

Base Case

Case 1
2
3
4
5
6
7
8

weights on counts for each
I O for (a,b)-estimation

10
2 3 4 5 6 7-8

0.01 0.10 0.25 0.50 0.75 1.00

0.10 0.25 0.50 0.75 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00
0.00 1.00 1.00 1.00 1.00 1.00
0.00 0.00 0.00 1.00 1.00 1.00

Pt,
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224.
383.
203.
16.
34.

0.
0.

259.
14.
0.

38.
13.
61.

0.

Base Case
Io= 4

27.0
25.8
9.5
4.5
17.6
18.6

2.6

6.1
3.4
6.7
5.8

20.3
0.4
1.5

1o= 6
2.9
8.2

34.1
17.3
14.9
1.5
0.3

Case 1

641. 280.
483. 377.
81. 147.
69. 84.
64. 273.
120. 182.
89. 42.

51.
143.
584.
361.
293.
25.

6.

15.1
0.8
0.0
2.0
0.8
5.4
0.0

14.5
0.7
0.0
2.1
0.8
5.2
0.0

12.2
0.7
0.0
2.3
0.8
7.0
0.1

Case 2
15.1
15.3
4.3
0.0
5.1
9.2

10.3

36.9
27.8

4.9
6.6
4.6

16.6
6.1

34.2
24.9
11.2
6.9

23.5
21.3
1.7

Case 3
17.0

1.1
0.0
2.4
0.9
4.3
0.0

16.8
0.8
0.0
2.0
0.6
4.1
0.0

172.
175.
194.
27.
27.
0.
0.

11.4
0.9
0.0
2.1
0.7
3.4
0.1

36.3
30.6

5.2
4.7
4.3
10.3
8.0

Case 4
14.8 34.3
14.0 29.0 '
3.6 4.4
0.0 4.6
3.8 3.4
5.0 10.2
6.9 4.4

Case 5

12.3
10.8
3.3
0.0
2.9
4.1
4.7

28.4 21.4
24.2 20.5
4.2 7.8
3.8 4.2
3.3 14.7
8.6 14.0
3.9 1.8

Case 6

10.7
8.9
3.1
0.0
2.0
2.4
3.1

23.3
20.6
3.9
3.3
2.8
6.7
2.7

17.4
16.0
7.0
3.8

11.9
10.3
0.8

Case 7

200.
190.
143.
69.
17.
0.
0.

11.7
1.7
0.0
3.1
0.7
1.9
0.0

19.7
0.0
0.0
0.0
0.0

12.4
0.0

11.3
10.5
2.7
0.0
2.3
2.7
2.7

28.3
26.0
4.2
3.1
2.8
6.8
4.3

23.0
19.1
8.9
3.8

12.7
13.4
1.3

Case 8

12.4
20.2
3.4
0.0
2.7

11.1
20.9

44.4
20.2
4.1
6.8
3.5

22.0
13.9

23.2
32.4
6.8
3.4

24.7
24.6
5.8

77.
64.
141.
118.
331.

6.
26.

93.
81.
189.
243.
675.

7.
16.

4.0
3.2
5.7
5.4

16.4
0.4
2.2

2.8
2.8
4.8
5.0
13.8
0.6
3.3

3.7
3.5
6.0
6.8
17.0
0.9
4.8

9.2
0.0
8.8
0.0

22.6
0.0
0.0

2.4
7.9

42.0
27.1
19.1
0.9
0.1

3.7
9.4

36.6
18.3
16.7
2.2
0.4

0.0
13.4
34.7
12.4
16.3
0.0
0.0

53.
166.
657.
441.
185.
11.
76.

52.
218.
748.
662.
213.

7.
39.

2.6
9.0
19.6
29.7
9.2
0.9
4.3

15.4
7.4

15.7
21.4
7.5
1.2
1.5

2.3
6.6

20.5
28.8

7.6
2.2
2.6

8.0
13.6
18.7
65.8
19.4
0.0

11.2

12.3
15.6
15.6
1.4
3.2
0.0
0.0

11.8
16.8
14.2
1.3
3.0
0.0
0.0

9.7
16.6

9.7
0.8
1.8
0.0
0.0

10.3
12.5
12.5
1.7
2.2
0.0
0.0

0.8
10.0
9.2
2.4
0.9
0.0
0.0

11.2
13.3
11.3
3.3
1.6
0.0
0.0

21.2
15.2
12.2
0.0
7.7
0.0
0.0

0.88
0.05
0.00
0.11
0.05
0.48
0.00

0.82
0.04
0.00
0.11
0.05
0.47
0.00

0.60
0.03
0.00
0.10
0.04
0.49
0.00

0.85
0.03
0.00
0.06
0.04
0.62
0.00

0.89
0.05
0.00
0.12
0.06
0.60
0.00

0.92
0.06
0.00
0.13
0.05
0.46
0.01

1.09
0.09
0.00
0.18
0.04
0.38
0.02

0.94
0.11
0.00
0.16
0.06
0.38
0.00

1.02
0.00
0.00
0.00
0.00
0.74
0.00

0.90
0.89
0.24
0.00
0.36
0.61
0.94

0.89
0.93
0.25
0.00
0.34
0.60
0.88

0.78
0.81
0.23
0.00
0.34
0.60
0.97

0.92
0.93
0.26
0.00
0.46
0.64
1.10

2.60
1.77
0.61
0.24
1.14
1.90
0.16

2.65
1.59
0.60
0.24
1.14
1.85
0.13

2.64
1.40
0.659
0.26
1.24
1.78
0.09

1.67
1.62
0.16
0.34
0.16
1.24
0.30

1.81
1.69
0.23
0.32
0.24
1.20
0.42

0.85
0.89
0.24
0.00
0.30
0.65
0.80

0.88
0.91
0.22
0.00
0.33
0.58
0.78

0.03
0.88
0.23
0.00
0.30
0.63
0.71

0.75
1.13
0.21
0.00
0.21
0.66
1.33

2.59
1.78
0.67
0.23
1.13
2.03
0.17

0.50
0.18
0.35
0.27
1.10
0.02
0.09

0.63
0.10
0.27
0.13
0.99
0.02
0.07

0.51
0.18
0.32
0.23
1.02
0.02
0.09

2.42
1.79
0.56
0.27
1.23
1.83
0.14

2.93 0.43
1.85.0.25
0.69 0.47
0.31 0.42
1.31 1.87
1.91 0.05
0.10 0.22

2.40
1.74
0.66
0.30
1.38
1.85
0.12

2.32
2.01
0.47
0.17
1.28
2.02
0.29

0.60
0.00
0.41
0.00
1.06
0.00
0.00

0 28
0.73
0.97
3.15
0.67
0.05
0.73

0.25
0.72
0.96
3.22
0.68
0.04
0.47

0.18
0.66
0.94
2.99
0.65
0.02
0.22

0.32
0.81
0.77
3.35
0.668
0.04
0.74

0.15
0.44
1.84
0.75
0.71
0.08
0.02

0.62
0.84
0.82
0.08
0.20
0.00
0.00

0.51
0.74
0.71
0.05
0.19
0.00
0.00

0.59
0.73
1.11
0.07
0.20
0.00
0.00

0.24
0.74
1.06
3.29
0.67
0.07
0.45

0.21 2.16
0.55 0.62
2.52 1.51
1.31 3.78
1.08 0.58
0.13 0.11
0.20 0.26

0.21
0.65
2.30
1.08
1.10
0.12
0.00

0.00
0.01
1.87
0.62
0.71
0.00
0.00

0.21
0.79
1.15
3.63
0.67
0.16
0.33

0.38
0.81
0.79
3.63
0.95
0.00
0.77

0.94
0.77
0.65
0.00
0.38
0.00
0.00

Note: expected count for 100 years and per unit-degree equatorial area

Table 4.16 - Estimated earthquake counts in Model B

14.3
14.7
3.8
0.0
4.1
5.8
7.3

28.0
24.7
9.7
4.6
16.2
17.7
2.2

6.1 2.6
3.3 7.7
7.2 34.4
5.5 16.9

19.0 14.7
0.4 1.3
1.4 0.2

231.
232.

59.
0.

50.
66.
61.

297.
382.
156.
83.
232.
170.
36.

6.3
3.6
8.0
8.6

29.2
0.3
0.8

4.8
4.1
7.9
6.3
21.5
0.5
2.7

6.1
3.6
7.2
6.0

20.4
0.4
1.6

3.0
12.0
28.6
44.5
10.8
0.3
2.9

3.8
11.3
25.6
40.0
12.3
1.2
6.2

4.8
11.5

11.6
0.8
9.9

835.
6558.
111.
102.
97.

232.
124.

790.
578.
177.
64.

113.
86.

118.

342.
38.
0.

106.
22.
29.
1.

132.
213.
692.
487.
418.
70.
10.

68.
172.
659.
416.
337.
30.

5.

244.
221.
66.

0.
32.
39.
33.

80.
197.
651.
522.
211.

16.
128.

73.
70.
163.
159.
410.

6.
24.

38.
52.
87.
100.
221.

6.
35.

180.
132.
44.

0.
28.
30.
28.

130.
87.
44.

0.
12.
10.
13.

189.
235.
110.
67.
175.
108.
22.

103.
139.
71.
46.
107.
55.
6.

220.
211.
140.
47.
117.
97.
14.

231.
623.

99.
65.

476.
300.
116.

30.
43.

205.
141.
88.
19.
72.

41.
43.

303.
220.
105.

18.
0.

485.
436.
62.
32.
32.
44.
64.

892.
289.
81.

118.
68.

348.
315.

380.
0.
0.
0.
0.

208.
0.

139.
0.

188.
0.

480.
0.
0.

100.
229.
440.
882.
397.

0.
163.

lo=-2



295

I= 2
107. 123. 266. 251. S4. 22. 14. 74.
1. 97. 236. 180. 38. 102. 106. 139.
1. 18. 32. 108. 79. 342. 212. 100.
4. 1. 35. 90. 139. 253. 371. 2.
7. 22. 40. 130. 241. 177. 55. 13.
29. 41. 566. 90. 1. 8. 1. 1.
1. 39. 16. 9. 1. 1. It. 1.

111. 142. 310. 316. 38. 30. 16. 97.
1. 104. 266. 195. 45. 120. 131. 167.
1. 28. 44. 128. 93. 371. 251. 127.
13. 1. 41. 120. 173. 286. 444. 1.
11. 43. 47. 13. 284. 214. 62. 15.
34. 50. 54. 96. 1. 15. 1. 1.
1. 40. 15. 10. 1. 1. 12. 1.

116. 134. 289. 266. 37. 24. 15. 81.
2. 106. 256. 196. 41. I11. 115. 152.
1. 20. 35. 119. 85. 378. 234. 108.
5. 1. 38. 98. 152. 280. 410. 2.
8. 24. 43. 143. 266. 196. 61. 14.
32. 47. 61. 99. 1. 9. 1. 1.

1. 44. 18. 10. 1. 1. 12. 1.

115. 136. 292. 261. 23. 22. 14. 66.
2. 106. 251. 192. 25. 87. 106. 90.
1. 18. 34. 97. 47. 335. 205. 70.
4. 1. 27. 94. 122. 253. 363. 2.
7. 23. 41. 130. 241. 177. 65. 13.
30. 42. 55. 90. 1. 8. 1. 1.
1. 39. 17. 9. i. 1. It. i.

157. 186. 418. 394. 52. 32. 21. 114.
2. 143. 383. 283. 69. 162. 168. 218.
1. 25. 47. 168. 128. 850. 610. 168.
6. 1. 63. 143. 239. 649. 968. 3.
10. 31. 63. 303. 587. 418. 120. 20.
44. 88. 123. 203. 1. 12. 1. 1.
1. 87. 36. 14. 1. 1. 15. 1.

112. 132. 292. 210. 29. 22. 12. 69.
1. 95. 253. 172. 40. 109. 93. 149.
1. 17. 32. 106. 86. 360. 259. 100.
4. 1. 33. 97. 168. 297. 329. 2.
8. 21. 43. 123. 283. 199. 52. 12.
28. 44. 47. 74. 1. 8. 1. 1.
1. 35. 17. 9. 1. 1. 10. 1.

99. 114. 259. 289. 38. 22. 14. 78.
1. 94. 222. 188. 37. 96. 111. 132.
1. 18. 31. 103. 70. 297. 175. 99.
4. 1. 35. 82. 112. 205. 371. 2.
7. 23. 29. 126. 199. 151. 53. 14.
22. 44. 63. 99. 1. 8. 1. 1.
1. 45. 18. 9. 1. 1. 12. 1.

109. 126. 268. 244. 34. 23. 14. 79.
1. 99. 234. 182. 39. 109. 113. 149.
1. 17. 31. 111. 86. 367. 225. 109.
4. 1. 31. 92. 152. 275. 390. 2.
6. 16. 32. 117. 239. 180. 6. 13.
18. 28. 39. 71. 1. 8. 1. 1.
1. 26. 11. 7. 1. 1. 11. 1.

Base Case

I0=4
7.4 6.6 19.4 22.8 2.9 1.6 1.0 5.4
0.1 7.1 17.2 14.2 2.7 6.7 7.5 9.0
0.1 1.4 2.4 7.4 4.8 20.0 11.6 6.6
0.3 0.1 2.8 6.0 7.5 13.4 25.4 0.1
0.6 2.0 3.4 10.2 14.4 10.3 3.8 0.9
3.1 4.4 6.2 9.0 0.1 0.6 0.1 0.1
0.1 4.7 1.8 0.8 0.1 0.1 0.9 0.1

Case 1
7.6 9.7 22.5 27.5 3.1 2.1 1.1 6.5
0.1 7.4 19.0 16.4 3.2 7.6 8.6 9.9
0.1 2.0 3.1 8.5 5.4 20.4 12.5 7.6
1.0 0.1 3.0 7.4 8.8 13.7 27.0 0.1
1.0 3.8 3.9 10.4 14.5 11.3 3.8 1.0
3.5 6.0 6.0 9.1 0.1 1.0 0.1 0.1
0.1 4.7 1.8 0.9 0.1 0.1 1.0 0.1

Case 2
8.1 9.3 21.4 25.2 3.2 1.8 1.1 6.0
0.1 7.9 19.0 16.7 3.0 7.4 8.4 10.0
0.1 1.6 2.6 8.3 5.3 22.6 13.1 7.3
0.4 0.1 3.1 8.6 8.4 15.1 28.7 0.1
0.7 2.3 3.8 11.5 16.2 11.6 4.2 1.0
3.5 6.0 7.0 10.1 0.1 0.6 0.1 0.1
0.1 6.3 2.0 0.0 0.1 0.1 1.0 0.1

Case 3.
7.6 8.7 20.0 22.3 1.9 1.6 1.0 4.7
0.1 7.3 17.6 14.5 1.8 6.8 7.8 6 8.1
0.1 1.4 2.4 6.7 2.9 20.0 11.5 4.8
0.3 0.1 2.1 6.1 6.7 13.4 25.4 0.1
0.6 2.1 3.5 10.2 14.4 10.3 3.8 1.0
3.2 4.4 6.2 9.0 0.1 0.6 0.1 0.1
0.1 4.7 1.8 0.9 0.1 0.1 0.9 0.1

Case 4
9.9 11.5 26.4 31.0 4.0 2.2 1.4 7.4
0.1 9.6 23.6 19.4 3.8 9.3 10.4 12.5
0.1 1.9 3.2 10.2 6.7 39.1 22.5 9.3
0.4 0.1 3.8 8.2 10.5 26.4 50.2 0.1
0.8 2.7 4.7 19.6 27.5 20.0 7.1 1.3
4.2 8.0 11.4 16.7 0.1 0.7 0.1 0.1
0.1 5.7 3.3 1.2 0.1 0.1 1.2 0.1

Case 5
7.4 8.5 19.6 21.9 2.8 1.6 1.0 5.3
0.1 7.1 17.4 14.1 2.8 6.8 7.4 9.1
0.1 1.4 2.4 7.4 4.8 20.2 11.9 6.6
0.3 0.1 2.7 6.0 7.7 13.7 24.9 0.1
0.6 2.0 3.6 10.1 14.7 10.6 3.7 0.9
3.1 4.5 6.0 8.6 0.1 0.6 0.1 0.1
0.1 4.6 1.8 0.8 0.1 0.1 0.9 0.1

Case 6
7.2 8.3 19.2 23.2 2.9 1.6 1.0 6.4
0.1 7.0 17.0 14.2 2.7 6.6 7.6 8.9
0.1 1.4 2.3 7.4 4.6 19.2 11.1 6.5
0.3 0.1 2.7 6.8 7.2 12.7 24.9 0.1
0.6 2.0 3.4 9.9 13.7 9.9 3.7 0.9
3.2 4.4 6.3 9.0 0.1 0.6 0.1 0.1
0.1 4.8 1.8 0.9 0.1 0.1 0.9 0.1

Case 7
7.4 8.5 19.4 22.6 2.0 1.6 1.0 6.4
0.1 7.1 17.0 14.1 2.7 6.8 7.6 9.1
0.1 1.4 2.3 7.4 4.8 19.8 11.4 6.7
0.3 0.1 2.7 6.0 7.6 13.1 25.2 0.1
0.6 2.0 3.2 9.8 13.9 10.1 3.7 0.9
2.8 3.9 6.6 8.4 0.1 0.8 0.1 0.1
0.1 4.1 1.6 0.8 0.1 0.1 0.9 0.1

Case 8
101. 117. 264. 264. 36. 21. 13. 72. 7.2 8.4 19.2 23.0 2.9 1.6 1.0 6.31. 94. 234. 182. 37. 94. 100. 126. 0.1 7.0 17.0 14.1 2.7 6.8 7.4 8.81. 18. 31. 100. 69. 292. 175. 90. 0.1 1.4 2.3 7.3 4.6 19.2 11.1 6.44. 1. 36. 84. 115. 203. 329. 2. 0.3 0.1 2.8 6.8 7.3 12.6 24.4 0.18. 26. 45. 128. 208. 151. 10. i12. 0.6 2.1 3.6 9.9 13.7 9.9 3.6 0.939. 64. 70. 104. 1. 8. 1. 1. 3.3 4.8 6.4 9.1 0.1 0.6 0.1 0.1

1. 65. 22. 11. 1. 1. 12. 1. 0.1 6.0 1.9 0.9 0.1 0.1 0.9 0.1

Case 9
107. 165. 275.228. 95. 71. 70. 93. 7.2 10.4 20.8 21.7 7.2 4.6 4.7 6.58. 102. 218. 188. 113. 112. 111. 130. 3.6 7.3 16.5 14.8 7.4 6.9 7.7 8.430. 41. 77. 132. 151. 229. 173. 132. 2.0 2.8 6.3 8.9 8.6 14.2 9.7 8.721. 24. 51. 109. 184. 199. 199. 73. 1.6 1.8 3.8 7.2 10.1 11.0 15.7 4.719. 24. 45. 84. 142. 111. 48. 38. 1.8 2.2 4.0 7.2 9.3 6.9 3.2 2.620. 24. 34. 48. 37. 27. 16. 16. 2.2 2.6 4.1 6.3 2.7 1.8 1.1 1.017. 22. 24. 26. 22. 16. 11. 11. 1.8 2.8 2.7 2.5 1.8 1.1 0.8 0.8

127. 102. 346. 292. 68. 13. 33. 120.
1. 135. 227. 234. 22. 101. 146. 136.
1. 33. 40. 113. 70. 346. 155. 109.
2. 1. 63. 112. 63. 225. 453. 1.
6. 32. 46. 205. 220. 173. 78. 30.
71. 76. 138. 157. 1. 5. 1. 1.
1. 95. 46. 23. 1. 1. 27. 1.

Case 10
8.5 7.0 23.7 26.4 4.7 0.9 2.4 8.0
0.1 9.4 16.6 17.7 1.6 6.8 9.0 8.8
0.1 2.6 2.9 7.9 4.6 21.0 9.1 7.2
0.2 0.1 4.6 7.2 3.7 12.6 30.4 0.1
0.6 2.7 3.6 14.7 13.4 10.6 6.2 2.1
6.2 6.5 11.8 13.1 0.1 0.4 0.1 0.1
0.1 8.6 4.0 1.9 0.1 0.1 2.1 0.1

I: 6
0.50 0.58 1.41 2.07 0.24 0.12 0.08 0.39
0.01 0.61 1.26 1.12 0.19 0.44 0.54 0.58
0.01 0.11 0.17 0.61 0.29 1.17 0.84 0.43
0.03 0.01 0.22 0.39 0.40 0.71 1.74 0.01
0.08 0.19 0.29 0.81 0.88 0.60 0.26 0.07
0.34 0.47 0.70 0.90 0.01 0.04 0.01 0.01
0.01 0.567 0.20 0.08 0.01 0.01 0.07 0.01

0.62 0.67 1.64 2.40 0.26 0.16 0.08 0.44
0.01 0.53 1.36 1.22 0.22 0.48 0.67 0.69
0.01 0.15 0.22 0.56 0.32 1.12 0.62 0.46
0.08 0.01 0.22 0.46 0.45 0.65 1.64 0.01
0.08 0.34 0.32 0.79 0.80 0.60 0.24 0.07
0.37 0.60 0.66 0.86 0.01 0.07 0.01 0.01
0.01 0.55 0.17 0.09 0.01 0.01 0.07 0.01

0.67 0.66 1.59 2.38 0.28 0.14 0.09 0.46
0.01 0.59 1.41 1.27 0.22 0.560 0.61 0.66
0.01 0.12 0.19 0.68 0.33 1.34 0.74 0.49
0.03 0.01 0.25 0.44 0.46 0.81 2.00 0.01
0.06 0.22 0.33 0.93 0.99 0.69 0.30 0.08
0.38 0.63 0.81 1.04 0.01 0.04 0.01 0.01
0.01 0.66 0.23 0.09 0.01 0.01 0.08 0.01

0.60 0.568 1.37 1.98 0.16 0.12 0.08 0.33
0.01 0.50 1.23 1.10 0.14 0.39 0.64 0.41
0.01 0.10 0.17 0.46 0.18 1.19 0.66 0.33
0.03 0.01 0.16 0.39 0.37 0.71 1.78 0.01
0.06 0.19 0.29 0.81 0.86 0.60 0.26 0.07
0.34 0.46 0.70 0.90 0.01 0.04 0.01 0.01
0.01 0.67 0.20 0.08 0.01 0.01 0.07 0.01

0.63 0.72 1.67 2.45 0.30 0.16 0.09 0.47
0.01 0.65 1.61 1.33 0.24 0.63 0.66 0.72
0.01 0.14 0.21 0.62 0.34 1.80 1.00 0.51
0.03 0.01 0.27 0.47 0.47 1.08 2.60 0.01
0.07 0.24 0.36 1.27 1.29 0.96 0.43 0.09
0.41 0.72 1.08 1.37 0.01 0.05 0.01 0.01
0.01 0.87 0.31 0.10 0.01 0.01 0.09 0.01

0.48 0.56 1.32 2.28 0.27 0.12 0.08 0.41
0.01 0.52 1.19 1.16 0.19 0.42 0.58 0.65
0.01 0.11 0.17 0.52 0.27 1.13 0.65 0.43
0.03 0.01 0.22 0.37 0.36 0.63 1.89 0.01
0.05 0.20 0.28 0.83 0.76 0.56 0.27 0.07
0.34 0.46 0.76 0.99 0.01 0.04 0.01 0.01
0.01 0.60 0.20 0.08 0.01 0.01 0.08 0.01

0.62 0.60 1.43 1.87 0.23 0.12 0.07 0.38
0.01 0.52 1.27 1.08 0.20 0.45 0.52 0.60
0.01 0.11 0.17 0.52 0.31 1.24 0.70 0.43
0.03 0.01 0.22 0.42 0.47 0.79 1.67 0.01
0.06 0.19 0.29 0.78 0.94 0.65 0.25 0.07
0.32 0.44 0.63 0.81 0.01 0.04 0.01 0.01
0.01 0.51 0.18 0.08 0.01 0.01 0.07 0.01

0.49 0.67 1.41 2.09 0.24 0.11 0.07 0.37
0.01 0.50 1.24 1.02 0.19 0.42 0.51 0.65
0.01 0.11 0.17 0.50 0.27 1.07 0.58 0.40
0.03 0.01 0.23 0.38 0.38 0.63 1.62 0.01
0.07 0.24 0.32 0.82 0.81 0.57 0.24 0.07
0.41 0.55 0.80 0.99 0.01 0.04 0.01 0.01
0.01 0.67 0.23 0.09 0.01 0.01 0.07 0.01

0.51 0.60 1.40 2.00 0.23 0.12 0.08 0.40
0.01 0.52 1.24 1.09 0.20 0.46 0.65 0.62
0.01 0.11 0.17 0.63 0.31 1.27 0.70 0.46
0.02 0.01 0.21 0.41 0.46 0.78 1.81 0.01
0.06 0.17 0.27 0.77 0.90 0.65 0.26 0.07
0.29 0.38 0.58 0.79 0.01 0.04 0.01 0.01
0.01 0.46 0.16 0.07 0.01 0.01 0.07 0.01

0.48 0.70 1.68 2.04 0.55 0.30 0.32 0.46
0.23 0.52 1.25 1.17 0.49 0.43 0.54 0.54
0.13 0.20 0.36 0.60 0.49 0.88 0.65 0.567
0.11 0.13 0.29 0.47 0.66 0.60 1.24 0.30
0.14 0.21 0.36 0.62 0.62 0.43 0.22 0.17
0.24 0.29 0.50 0.59 0.20 0.12 0.08 0.07
0.18 0.36 0.30 0.24 0.14 0.08 0.06 0.06

0.57 0.48 1.62 2.21 0.38 0.07 0.17 0.64
0.01 0.66 1.20 1.34 0.12 0.46 0.68 0.67
0.01 0.18 0.20 0.65 0.28 1.28 0.63 0.47
0.01 0.01 0.33 0.47 0.22 0.71 2.04 0.01
0.04 0.23 0.27 1.05 0.81 0.64 0.35 0.16
0.54 0.55 1.01 1.10 0.01 0.03 0.01 0.01
0.01 0.78 0.34 0.16 0.01 0.01 0.16 0.01

Note: expected count for 100 years and per unit-degree equatorial area

Table 4.17 - Estimated earthquake counts in Model D
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Case 11

106

0 83 0.38 0.02 0.89 1.48 1.83 1.27 1.80 0.01 0.01 0.01 0.21 0.01 0.01 0.01 0.03
0 26 0.60 0.76 0.67 1.22 1.20 4.33 1.00 0.71 0.29 0.27 0.01 0.32 0.01 0.30 1.26
0 01 0.03 0.01 1.83 2.82 1.43 1.80 1.18 0.01 0.26 0.60 0.01 0.01 1.08 0.60 0.01
0.01 0.01 0.01 0.31 0.01 0.88 0.39 1.29 0.26 0.24 0.96 0.27 0.01 1.11 1.28 0.47
0.01 0.01 0.03 0.31 0.28 0.43 0.63 0.01 0.27 0.64 0.43 1.26 0.16 1.38 1.47 0.24
0.01 0.01 0.01 0.11 0.01 0.01 1.84 0.01 0.01 0.20 1.23 1.46 0.67 0.65 0.01 0.01
0.10 0.01 0.01 0.01 0.69 0.30 1.40 0.01 0.20 0.37 0.40 1.47 3.24 0.38 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01 0.26 0.01 0.67 0.36 0.00 0.71 2.17 0.69 0.04 0.01
0.01 0.01 0.01 0.01 0.01 0.01 0.83 0.24 0.92 0.39 0.13 0.78 0.46 0.19 0.29 0.01
0.21 0.01 0.66 0.17 0.32 1.00 0.74 1.38 0.67 1.20 0.26 1.10 0.16 0.19 0.01 0.01
0.01 0.27 0.01 1.14 0.66 0.76 2.93 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0 01 1.07 0.71 0.10 0.82 0.78 0.91 0.02 0.01 0.01 0.01 0.18 0.01 0.01 0.01 0.01
0.01 0.01 0.72 1.36 0.81 0.03 0.33 0.01 0.01 0.02 0.01 0.01 0.30 0.01 0.01 0.01
0.01 0.01 0.01 0.23 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Case 12

0.63 0.47 0.38 0.87 1.46 1.89 1.66 1.58 0.32 0.15 0.10 0.12 0.09 0.11 0.17 0.26
0.28 0.37 0.60 0.86 1.44 1.6655 4.08 1.10 0.66 0.21 0.16 0.10 0.17 0.16 0.29 0.70
0.09 0.11 0.22 1.43 2.50 1.60 1.78 1.11 0.32 0.31 0.32 0.17 0.19 0.72 0.63 0.38
0.03 0.04 0.11 0.34 0.43 0.88 0.62 0.98 0.36 0.33 0.70 0.33 0.32 1.04 1.18 0.68
0.02 0.02 0.06 0.15 0.27 0.46 0.655 0.28 0.29 0.51 0.62 1.06 0.39 1.12 1.18 0.37
0.01 0.02 0.03 0.08 0.16 0.32 1.11 0.24 0.18 0.29 1.07 1.34 0.72 0.61 0.21 0.16
0.02 0.02 0.02 0.05 0.21 0.34 0.89 0.24 0.22 0.32 0.45 1.37 2.96 0.47 0.12 0.08
0.02 0.02 0.03 0.05 0.10 0.22 0.32 0.29 0.43 0.34 0.22 0.74 1.91 0.69 0.11 0.06
0.04 0.06 0.06 0.09 0.13 0.22 0.67 0.40 0.81 0.41 0.30 0.69 0.652 0.24 0.12 0.06
0 10 0.09 0.28 0.22 0.35 0.85 0.77 1.18 0.61 0.86 0.31 0.73 0.20 0.12 0.05 0.04
0.16 0.24 0.25 0.84 0.63 0.88 2.42 0.27 0.18 0.11 0.13 0.11 0.09 0.04 0.02 0.020.13 0.48 0.61 0.43 0.78 0.78 0.682 0.13 0.06 0.04 0.04 0.06 0.04 0.02 0.01 0.01
0.08 0.11 0.47 0.96 0.65 0.19 0.16 0.06 0.02 0.02 0.02 0.03 0.04 0.02 0.01 0.01
0.06 0.08 0.17 0.32 0.20 0.12 0.07 0.04 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01

Case 13

0.47 0.48 0.55 0.94 1.59 2.07 1.88 1.46 0.51 0.26 0.17 0.16 0.17 0.21 0.28 0.34
0.31 0.37 0.69 1.03 1.69 1.91 3.61 1.28 0.63 0.27 0.19 0.17 0.22 0.28 0.37 0.62
0.18 0.19 0.34 1.06 1.91 1.84 1.78 1.11 0.49 0.34 0.29 0.25 0.31 0.67 0.61 0.630.08 0.10 0.19 0.42 0.66 0.95 0.83 0.89 0.47 0.38 0.60 0.42 0.48 0.88 0.956 0.67
0.06 0.08 0.10 0.20 0.34 0.64 0.61 0.46 0.40 0.47 0.56 0.89 0.68 0.87 0.87 0.623.04 0.04 0.06 0.12 0.22 0.39 0.72 0.38 0.31 0.38 0.83 1.13 0.86 0.867 0.38 0.320.04 0.04 0.06 0.09 0.21 0.35 0.69 0.37 0.32 0.38 0.66 1.20 2.24 0.82 0.28 0.190.04 0.06 0.06 0.10 0.17 0.31 0.40 0.41 0.42 0.39 0.38 0.78 1.43 0.68 0.20 0.140.06 0.07 0.10 0.14 0.23 0.37 0.83 0.49 0.62 0.43 0.39 0.60 0.60 0.28 0.15 0.10
0.11 0.12 0.22 0.27 0.41 0.77 0.79 0.88 0.48 0.654 0.32 0.42 0.22 0.14 0.08 0.07
0.18 0.21 0.28 0.68 0.64 0.88 1.68 0.42 0.27 0.19 0.18 0.14 0.11 0.07 0.05 0.040.18 0.30 0.43 0.47 0.67 0.69 0.62 0.23 0.12 0.09 0.08 0.08 0.06 0.04 0.03 0.03
0.13 0.16 0.34 0.60 0.48 0.28 0.21 0.11 0.07 0.06 0.05 0.06 0.06 0.03 0.02 0.02
0.11 0.14 0.23 0.33 0.29 0.20 0.14 0.09 0.06 0.05 0.04 0.04 0.04 0.03 0.02 0.02

Table 4.17 - (End)
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COMPLETENESS REGION 1

I0  1625-1780 1780-1860 1860-1910 1910-1950 1950-1980 TOTAL
C E C E C E C E C E C

4 W 0.0 0.0 13.0 11.7 34.0 32.9 44.0 45.8 43.0 47.7 134.0
U 0.0 0.0 12.3 10.3 30.2 31.7 38.2 40.0 38.1 41.2 118.8

5 W 0.0 0.0 2.0 3.1 7.0 8.8 18.0 15.6 20.0 12.8 47.0
U 0.0 0.0 0.9 2.8 7.9 11.2 16.7 14.4 18.5 11.2 44.0

6 W 0.0 0.0 3.0 2.7 3.0 4.1 1.0 4.2 7.0 3.4 14.0
U 0.0 0.0 3.6 3.4 2.8 4.4 2.4 3.9 6.5 3.1 15.3

7 W 1.0 2.8 1.0 2.2 3.0 1.5 1.0 1.2 1.0 0.9 7.0
U 1.1 2.9 1.3 2.0 3.2 1.4 1.2 1.1 1.2 0.8 8.0

8 W 1.0 1.3 0.0 0.7 0.0 0.4 1.0 0.3 0.0 0.3 2.0
U 0.9 1.2 0.0 0.6 0.0 0.4 0.9 0.3 0.0 0.2 1.8

COMPLETENESS REGION 2

I0  1625-1780 1780-1860 1860-1910 1910-1950 1950-1980 TOTAL
C E C E C E C E C E C

4 W 22.0 19.3 27.0 26.3 36.0 37.5 38.0 38.6 26.0 32.2 149.0
U 19.1 17.8 22.5 22.9 30.9 32.6 34.0 35.1 24.9 31.2 131.4

W 2.0 4.9 5.0 6.7 11.0 11.9 11.0 10.6 21.0 8.2 50.0
U 3.2 4.7 5.5 7.0 12.9 12.6 11.8 10.7 19.7 8.3 53.1

6 W 2.0 3.2 2.0 4.1 2.0 3.2 3.0 2.8 4.0 2.1 13.0
U 1.6 2.8 3.4 4.7 2.6 3.4 2.6 2.9 4.5 2.2 14.7

7 W 2.0 2.6 1.0 1.4 2.0 0.9 1.0 0.7 0.0 0.6 6.0
U 1.9 2.7 1.2 1.5 1.9 1.0 1.3 0.8 0.0 0.6 6.3

8 W 1.0 0.8 0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.2 1.0
U 1.4 0.9 0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.2 1.4

W :
U :

without considering uncertainty on earthquakes size
considering uncertainty on earthquake size

C : earthquake count (for U, a-posteriori)
E : expected earthquake count

Table 4.18 - Observed and expected count for the reference case and

the case without uncertainty on earthquake size
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a. Empirical bootstrapping results

average

exp(a)

average

b

standard
deviation

exp (a)

standard
deviation

b

7.006
0.134
0.091
0.398
0.640
3.187
0.091

1.341
1.319
1.288
1.253
1.205
1.119
1.117

2.584
0.064
0.000
0.295
0.665
1.460
0.000

0.061
0.048
0.031
0.034
0.040
0.061
0.059

8.536
7.439
1.505
0.091
2.221
4.451
4.853

1.343
1.308
1.273
1.260
1.178
1.131
1.062

2.737
2.962
1.095
0.000
1.168
1.694
1.571

0.073
0.057
0.040
0.032
0.064
0.059
0.077

20.214
16.719
2.236
3.080
3.139
5.878
2.082

1.311
1.303
1.303
1.266
1.229
1.100
1.107

3.947
4.433
1.424
1.320
1.780
1.675
0.953

0.059
0.073
0.039
0.042
0.042
0.061
0.052

23.783
15.208
7.368
6.116
9.885
8.771
1.260

1.202
1.268
1.330
1.359
1.272
1.151
1.170

4.498
4.056
2.572
2.694
2.752
2.435
0.808

0.109
0.0866
0.068
0.033
0.049
0.074
0.044

b. Parametric bootstrapping results

average

exp(a)

6.951
0.186
0.190
0.506
0.642
3.297
0.122

1.355
1.341

average! 1.305
1.251
1.184

b 1.128
1.112

2.716
standard 0.288

deviation 0.269
0.641

exp(a) 0.777
exp(a) 1.504

0.106

0.175
standard 0.155

deviation 0.129
0.132
0.152

b 0.180
0.185

Table 4.19 - Sample statistics of bootstrapping for Model D

2.563
2.950
4.910
7.865

14.547
0.091
0.107

1.238
1.314
1.398
1.456
1.414
1.288
1.241

1.369
1.571
2.409
2.831
2.860
0.000
0.028

0.069
0.051
0.032
0.034
0.042
0.029
0.032

1.565
6.788

19.619
13.372
10.346
0.570
0.091

1.302
1.355
1.413
1.463
1.410
1.322
1.277

0.987
2.348
3.869
3.107
2.710
0.451
0.000

0.041
0.036
0.057
0.041
0.033
0.025
0.026

0.839
7.761

11.157
25.727
3.951
0.091
1.084

1.305
1.320
1.438
1.310
1.327
1.295
1.254

0.821
2.451
2.261
3.800
1.575
0.000
0.947

0.052
0.059
0.040
0.081
0.034
0.029
0.054

5.725
9.584
7.053
0.156
1.031
0.091
0.091

1.314
1.368
1.356
1.335
1.288
1.275
1.269

2.308
2.459
2.299
0.096
0.872
0.000
0.000

0.062
0.053
0.052
0.042
0.036
0.031
0.037

8.410
6.945
1.263
0.140
2.225
3.869
3.877

1.337
1.340
1.309
1.259
1.197
1.130
1.112

2.810
2.344
1.021
0.196
1.247
1.480
1.476

0.166
0.145
0.120
0.123
0.143
0.168
0.187

17. 546
16.301
2.068
3.024
2.822
5.939
1.651

1.296
1.323
1.318
1.284
1.227
1.167
1.138

5.388
4.069
1.076
1.768
1.830
1.885
0.808

0.126
0.121
0.102
0.114
0.131
0.158
0.177

20.417
13.839
6.840
5.135
9.678
8.194
0.687

1.260
1.303
1.344
1.335
1.284
1.230
1.218

4.961
4.220
3.023
1.897
2.404
2.473
0.689

0.121
0.111
0.102
0.106
0.133
0.156
0.156

3.064
2.408
4.449
6.952

13.377
0.219
0.118

1.300
1.324
1.374
1.401
1.384
1.321
1.297

1.655
1.718
2.080
2.280
2.962
0.296
0.135

0.128
0.110
0.094
0.105
0.110
0.132
0.147

1.623
6.692

17.910
11.672
9.424
0.514
0.139

1.336
1.355
1.411
1.445
1.412
1.381
1.362

1.301
2.576
3.629
2.882
2.482
0.580
0.193

0.144
0.129
0.107
0.102
0.128
0.145
0.161

1.028
7.521
9.990

24.044
3.742
0.202
0.840

1.360
1.379
1.420
1.392
1.421
1.409
1.398

1.060
3.079
2.830
3.625
1.717
0.398
0.767

0.177
0.149
0.104
0.117
0.141
0.163
0.169

5.394
8.808
6.245
0.233
1.459
0.161
0.204

1.370
1.377
1.390
1.406
1.409
1.413
1.409

2.948
3.063
2.769
0.327
1.037
0.239
0.461

0.185
0.166
0.123
0.114
0.146
0.167
0.173
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0.44+0.67 IO (WGC, 1982)

---- 1.00+0.60 IO (Chiburis, 1981)

1.75+0.50 I0  (Nuttli, 1974)

1.66+0.49 IO (Street and Turcotte, 1977)

J data in Chiburis (1981) catalog

Figure 2.1 - Comparison of proposed relationships between

magnitude M and Modified Mercalli Intensity IO
and the data in the Chiburis catalog
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Figure 2.3 - Value of M, time of occurrence and geographical location
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a. Prior to 1960

b. Since 1960

Note : to differentiate coincident points, the values of IO0
are slightly randomized

Figure 2.4 - M versus IO prior to, and since 1960 in the

Chiburis catalog
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Figure 2.5 - Illustration of the robust locally-weighted

least-squares method (RLWLS)
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Figure 2.6 - Application of RLWLS to the estimation of the

regression of M against IO for the Chiburis data
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0
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M

4
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2

1\

0 2 4 6 8 10 12
Io10

a. Comparison of 3 fitted linear splines of M on I0
(Data from Chiburis, 1981)

FROM TO YSPL BETA RMSE UNCA UNCB CORAB NRES SRES SSRES ALPHA

[2.0-10.) 1.11 0.55 0.69 0.19 0.041 -0.956 151 0.00 71.81 -

(2.0-5.0) 1.64 0.42 0.67 0.26 0.064 -0.975 123 1.20 54.92 -
(5.0-10.] -0.02 0.75 0.70 0.45 0.081 -0.986 28 -1.20 13.23 0.005

[2.0-4.0) 1.55 0.43 0.61 0.33 0.093 -0.982 80 5.14 30.03 -
(4.0-10.] 0.87 0.60 0.76 0.29 0.060 -0.976 71 -7.68 40.70 0.182

Notation

YSPL : intercept

BETA : slope

RMSE : root-mean-square of residuals

UNCA : standard deviation of YSPL

UNCB : standard deviation of BETA

CORAB : correlation of BETA and YSPL

NRES : number of residuals

SRES : sum of residuals

SSRES : sum of squares of residuals

ALPHA : probability that an equal or larger change of
slope is due to random error

Figure 2.8 - Illustration of linear spline regression
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b. Linear spline with knot-point at IO=4

(Chiburis data, 1981)

Figure 2.8 - (Continued)
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2 4 8 10 12 14 16

In (FA)

c. Illustration of linear spline regression of bodywave

magnitude mb on the logarithm of felt area In(FA).

Data from Epri (1985)

Figure 2.8 - (End)
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Figure 2.9 - Illustration of the effect of the marginal

distribution of X on the regression estimate

when X is subject to estimation error

E[YI~]

Y= +e

e . N(0.,0.2)

I I

learning sample

rediction

[Y X] sample

O
O O0

x= C +u
0/

/ u -- N(0.,0.5)

H

E

E

H

] l l T

i ·

2 4 6 8 ]0I

]0

H



I I I I I I
400

350

300

250

200

150

100

50

I0 only reported
1365 events

0)r-I
04rd

cn~

4C)4-)
'Iw

44

O
00;

4 8 8 10I0 0 1 2 3 4 5 6 7 8

a. Prediction sample

0H44

U)
4J

'40ci
4-

0e

0 2 4 8

'4
4)
zcd

> r
ci

44i
Or-I
*0

60rO.S

8 10
b. Learning sampl

18

16

14

12

10

68-
6

-4

2

0
0

I I

1 2 3 4M

I I I I

T and M re~-~ort

184 events -
0

~fifl1- Ill fi~ fit!]
5 6 7 8

Figure 2.10 - Histogram of IO and M in the prediction and learning

sample of the updated Chiburis catalog

I
o

H

$4044
(I)-P

rci
4-4
0

0

-LiI
0 2
II.J

ninL.L 5

I
C

I

-

All



313
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a. Contourlines for a bivariate normal distribution

0 2 4 5 6 8 10
b. Contourlines for a marginally-exponential, conditionally

normal distribution -

Figure 2.11 - Illustration of a bivariate normal and a marginally-

exponential, conditionally-normal distribution
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Figure 2.12 - Various regressions for the marginally-

exponential, conditionally-normal bivariate

distribution
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Figure 2.13 - Effect of truncation of the marginally-exponential

conditionally-normal distribution on the regressions
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Fig. 3.1 - Windows used in Sec. 3.3.2 for the test of clustering:
(a) local and extended windows in 3D, (b) buffer window,
and (c) contracted window.
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Fig. 3.3 - Estimation of cluster region in the one-dimensional
scheme.
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Fig. 3.4 - Estimation of cluster region using two-dimensional schemes.
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Figure 3.5 - Identification of secondary events inside
the cluster region through Poisson thinning.
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All Events 1625-1980

Figure 3.6 - Events of MM Intensity 1 or greater included
in the Weston Observatory Catalog. Events not
originally reported in the MMI scale have been
converted using Eq. 3.10.
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Figure 3.1 - Count plots in time (a) of all the events in the catalog,
(b) of the secondary events identified by the procedure,
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Figure 3.8:- Geographical distribution of main and secondary events identified by
the present method.
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Note: Only secondary events are shown.
The same format as in Fig. 3.9 is used
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Figure 3.11 - Aggregation of clusters by cluster size.
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Figure 3.14a - 2. Clusters (1500-1800)

S11 A

45

50N

(D

40
.- I-
-IJ
4d

40N

-L



0 2 4 6 8 10 1500 1600 Time 1700

Figure 3.14a - 3. Main events (1500-1800)

5

50N

40

40N

1800



0 2 4 6 8 10 1500 1600 Time 17000

Figure 3.14a - 4. Judgemental aftershocks (1500-1800)

45

50N

40N

-P

40N

1800



25

50N

40N

19000 2 4 i6 8 10 1800 Time
0Figure 3.14b - 1. All events (1800-1900)

Figure 3.14b - I. All events (1800-1900)



0 2 4 6 8 10 1800 Time
0Figure 3.14b - 2. Clusters (1800-1900)

Figure 3.14b - 2. Clusters (1800-1900)

10

50N

40N

1900



16

50N

40N

Figure 3.14b - 3, Main events (1800-1900)

00--



0 2 4 6 8 10 1800 Time
I0

Figure 3.14b - 4. Judgemental aftershocks (1800-1900)

7

50N

40

.4J

4-0

4 ON

1900



0 2 4 T 6 8 10 1900 Time

Figure 3.14c - 1. All events (1900-1940)

20

50N

40Nrd

"-P

i-0

1940



0 2 4 6 8 10 1900 Time
I

Figure 3.14c - 2. Clusters (1900-1940)

14

50N

wU)aO

004J.40

40N

19406 8 i0 1900 Time
I



0 2 4 T 6 8 10 1900 Time

Figure 3.14c - 3. Main events (1900-1940)

1940



0 2 4 6 8 10 1900 Time
I
0

Figure 3.14c - 4. Judgemental aftershocks (1900-1940)

12

50N

.4Jr0

40N
40N

1940



0 2 4 6 8 10 1940 TimeI0

Figure 3.14d - 1. All events (1940-1960)

1960



0 2 4 6 8 10 1940 Time
0

Figure 3.14d - 2. Clusters (1940-1960)

14

50N

40N

1960



ON

ON

19600 2 4 6 8 10 1940 TimeFigure 3.14d 3. Main events (19401960)

Figure 3.14d - 3. Main events (1940-1960)



6 0 0 0 0 0 0 0

Lf

0 2 4 6 8 10 1940 Time 1960
I

0

Figure 3.14d - 4. Judgemental aftershocks (1940-1960)

14

50N

a)
4o

-I

40N



0 2 4 6 8 10 1960 Time

Figure 3.14e - 1. All events (1960-1974)

1974



LrilL
n

U

UI O
U
U

80W Longitude

I010

10

60W

a)

*-H

o

80W

count per

n nI

1.4 months

0 n A1 nI r

I In

B1 Bll1 Rrfrn[Ljrf

0

a 0

9

0
aO •

p.

R

oa C

0 2 4 6I
0

8 10 1960

Figure 3.14e - 2. Clusters (1960-1974)

I I I I I I_

I I- -"I

-I

I I'

- -

i I I I l l i

U

Time 1974

I I 1 i I I 16

50N

-,
-P

40N

i1 .. .. ; • . ,• . ....... ..... , . ...... . .J

·

4 6ý I,



0

0 2 4 6 8 10 1960 TimeI0
Figure 3.14e - 3. Main events (1960-1974)

10

50N

4J

40N-

40N

1974



S) S S 5 0 5 0 0) 0 0

(N

0 2 4 6 8 10 1960 Time 1974
I

0

Figure 3.14e - 4. Judgemental aftershocks (1960-1974)

14

50N

4, w

4'

40N

--



0 2 4 6 8 10 1974 TimeI
0

Figure 3.14f - 1. All events (1974-1981)

1981



60

I I I I I

b

ea

a

mFK_

a d;
'0

a -

iII¶JfflJ

O

u-f
iufI f

ILW

I II

count per 0.8 months

Jl rMOH[flI¶IJI~
13 ) a

00 o~o *' x x

600.*

b

a x

O,

n .l '•

0 ,

0
130

' x B .

Longitude 60W

0

80W
0 2 4 6 8 10

o

a0O . , 0"
om *0 0 '

xA
-9-0·

00' oQa

10
ci .o' * 0

II.')

I I I I

Time1974

Figure 3.14f - 2. Clusters (1974-1981)

I 0

80W

1

50N

40N

00

0

.000 X O

1981

,
J , -

I - ,
,

"r- I

I L| | LLL-JI

|||1|1|1' 1 ' -I ~I -' ' '

n%

0I

D o,



count Der 0.8 months

flrB1&~
LLL IJ

0

0 o*a. o*

n 0

* o
"u

° d
7

~1~~~

ilifi'
0 % 00 0
S0 O , q0

o o0
.

b 

0o

. D D0 - *e * 0 oo.O .Oo°

0. 0." o0 • 0
•b ,

o.'00- ° o o. .. " o
•0 . o -o oo • " o • S o,. " " O

* 0* **
o % 0

•0

I °

111111111

0

' 0o' o0o:

°:D D, O

0 •" o a • 0 °
o a

II I

Longitude

0 2 4 6I 0

:,

43

0

80W

S..

So BO
. 
o

0 or . 0. o •, "

0 *
S a 0

0.
S. 0O ao B o .* *

" o on a
0 

. o

o 0

S- a
_ , ..- .

o-•00
g  

"n'""o °
134

0 aie-

0 "

a o

o o; • do .o

Go..

0 0
0 .*: o

in -, ___

8 10 1974 Time 1981

Figure 3.14f - 3. Main events (1974-1981)

I I II I I I

I I I I I I

1-

9

50N

rc)w

4 J

4IJ-,

40N

40N

80W

10

10
10

140

60W

I 1

U -
- J

I I

C

t

a S, , a r- I ,

............... r 11 tuna11 Al .mlrI I " ' ' I--I- - - -- - - | -- la nn i n st i L i a Una n U j i L

I | I I II ! |

*



12

50N

40N

0 2 4 6 8 10 1974 Time 1981
I
0

Figure 3.14f - 4. Judgemental aftershocks (1974-1981)



o N

\. x \.

... ...... . .. . ,. : •.'

. ..... ...... .......\ ... ......- ;.-,,\~. \.·~ ....... •-•..."S
:. 78 77

;" · • •." .,.."

\ i " • ...... .."-

.. ....... . . . -....re

•- " .. "- o

398 -.

a) Models B and D b) Seismogenic Provinces (from YAEC, 1981)

used in Model A

Figure 4.1 - Region of Study

N

-3

,.,.

... ):

.............. . X;



10.

102

-- I I I llll[l I lIlll 1I1 I1I 111

2
Area = 362,958 km2

++ ++ + +
0 0 +

0- [ ++ 0 3

+
- l

0
0

- A

I I 111111 1 I I 111111 I I 111111

10

Observation Time (Years)

Figure 4.2a - Empirical recurrence rate versus observation time for all provinces

Observation Time (Years)

1.

0.1

0.01

0.001

100.

10o.

0.1

0.1

100

- I I I 11111 I 1 11111 I 1 I 1 111i

× X
O v ×

x x

I IX ^

- x^-

I 11111111 1 I 1111111 1 I111111

100

102 103



363

I 11111 III

Province 2
Area = 47,710 km

2

*+
**c *4494

++ + -+

.++

+n

0

O A A A

O0
<> <

I 11111111 I I I I!11

Province 1
Area = 74,706 km

[ ++,x9i 9+9

O +
[]

O

+

C

103 100

0.01

0.001

10o

- IIIII I 1 1 I1 1 11111 il

Province 3

Area = 33,434 km2

4 4 t44

++ + +
00S ] 0+++

A

A

I I l l l l I l l I I I l l I l l i I t l ! l i l l

I I 111111 I 1 111111 I II

Province 4

Area = 61,253 km

*<

44

+ ++

44
44

*

+ -
+ -

OO

O OC

I 1 I i1 111I I 1 I I ll l t I l i

Observation Time (YRs) Observation Time (YRS)

Figure 4.2b - Empirical recurrence rate versus observation

time for individual provinces

1 I 11111I10. -

L

0.1

0.01

0.001

Intensity (MM)

*C IV
+ V
o VI
& VII
0 VIII

I 1 111111I I I I !!II

Ill I

1 · · I·I··· · · ·_···_ __MI

1

' "~""

I 1 . . . . . .. . .

7• •L

O-

,+

0
i

L" I ) I

I



364

o10 10t

Observation Time (YRS)

1.

0.1

0.01

0.001

Observation Time (YRS)

Observation Time (YRS)

Figure 4.2b - (End)

10.

a

4.)

Ucz
a

14

C40
a

(a
U
s-H$4-4(

I I 11111 I 1111111 I I I illy +

I
0.1

0.01

- II 1111111 I 1 l1111i1 1 I 1 1 4-1

I

0.001

I I I I 11111 I I l II 11 I I T ETI T 4-

Province 7 2
Area = 37,740 km

E• 8 +++ + +E BO + +
0 +*

AO
A 0A +

SI -ill
!111111 111111 I 1 111111

___~ _ ~______

Province 5 -
Area = 39,769 km -

.+ +

*++ ++

O11 I

I I I I H iI I fl ill I I II1111 I

b

Province 6
Area =68,326 km

2

L- *
- *

- ++
+ + +

++

- 00
• 

0+

A A

S 1 I

' ' ' ' '



365

a=4.6

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.00
4.35.4.40 4.45 4.50 4.55 4.60 4.65 4.70 4.75 4,80

1; b=1.0

0.12

0.10

0.08

0.06

0.04

0.02

0.00
0. 94 0.9e 0.98 1.00 1.02 1.04 1e 16

0.25

0.20

0.15

0.10

0.05

M M
1.2 1.4 1.6 1.8

a=2.30; b=l.C
. .. .0 .14.

0.12

0.10

0.08

0.06

0.04

0.02

0.00
2.2 2.4 2.6 2 8 0 75 0.80 0.85 0.90 0.95 1.00 1.05 1 10 1.15 1.20

00; b=1.0

0.10

0.08

0.06

0.04

0.02

0.00
-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 0.4 0.6 0.8 1.0 1.2 1.4 1 . I. 2.0

Figure 4.3a - Histograms of parameter estimates in Eq. 4.3

for unequal periods of observation (Case A)

[' ISk

0. 18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

1~1?1I

0.18 1 1 1 1 1 1

I- -
I

a=0.



w vw Sw 0 S

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.A

E

1, 10• 102 1o0 10' 102

exp (a) exp (a)

0
m

10' 10' 102 10 e  10' 102

exp(a) exp(a)

Figure 4.3b - Distribution of recurrence parameters and rate estimates (Case A)

as a function of the true recurrence rate at m=O, exp(a)

exp (a)

m
m

It -

4



2.0

1.8

1.6

1.4

S1.2

1.0

0.8

0.6

0.4
102

102

10'

exp(a)

lea10o 10'

exp (a)

Figure 4.3c - Distribution of recurrence parameters and rate estimates (Case B)

as a function of the true recurrence rate at m=O, exp(a)

exp (a)

109

exp (a)

1

10O 10'
exp (a)

10Q

I



368

1625

7. 7.7...7....7 ... 7. .7...7... . 7 .... .6 . .6
.. .7..6...6 ... 4...3... 2...1 .. .0...9...8

longitude
degrees

West 0000000000000000000000000010000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000

46 0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000

45 0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000

44 0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000

43 0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000001100000000000
0000000000000000000000000001100000000000

42 0000000000000000000000000000000000000000
0000000000000000000000000000011000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000

41 0000000000000000000000000000000000000000
0000000000000000100000000000000000000000
0000000000000000000000000000000000000000
000000000000000000000000000000000000000

40 0000000000000000000000000000000000000000
0000000000000100000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000

39 0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000

38 0000000000100000000000000000000000000000

1675
longitude ...7.. 7...7...7....7...7...7...7...7...6.. .6

A . . . . . . ... 7 ... 6 ... 5 ... 4 ... 3 ... 2 ... 1 ... 0 ... 9 ... 8

West 0000000000000000c00000000132000000000000
000000000000000C000000022100000000000000
0000000000000000000002110000000000000000

46 0000000000000000000210000000000000000000
0000000000000000122100000000000000000000
0000000000000001230000000000000000000000
0000000000000011000000000000000000000000

45 0000000000001100000000000000000000000000
0000000000110000000000000000000000000000
0000000011000000000000000000000000000000
0000001100000000000000000000000000000000

44 0000000000000000000000000000001000000000
0000000000000000000000000000011000000000
0000000000000000000000000000120000000000
0000000000000000000000000001120000000000

43 0000000000000000011000000000300000000000
0000000000000000001000100012200000000000
0000000000000000010000110013200000000000
0000000000000000011001100002300000000000

42 0000000000000000011002200022200100000000
0000000000000000110001100121121100000000
0000000000000000010021111001110000000000
0000000000000000111202100000000000000000

41 0000000000000000011101110000000000000000
0000000000000000121011000000000000000000
0000000000000011110000000000000000000000
0000000000000011100000000000000000000000

40 0000000000001100000000000000000000000000
0000000010111000000000000000000000000000
0000000011110000000000000000000000000000
0000002211010000000000000000000000000000

39 0000002112000000000000000000000000000000
0000012121000000000000000000000000000000
0000222121100000000000000000000000000000
000121110010000000000000000000000000000

38 000012200111 000000 0000

1650

.7... ... .7.. .7.. .7. .. 7...7...7.. .6. ..6
••.7...6. .5.. .4.•.3. 3 .2... 1 .0.. .9. 9 ..

0000000000000000000000000121000000000000
0000000000000000000000011100000000000000
0000000000000000000001100000000000000000

46 0000000000000000000110000000000000000000
0000000000000000011 00000000000000000000
0000000000000001120000000000000000000000
0000000000000011000000000000000000000000

45 0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000

44 0000000000000000000000000000000000000000
0000000000000000000000000000000100000000
0000000000000000000000000000111000000000
00000000000000000000000000002100000000000

43 00000000000000000000000000011000000000CO
0000000000000000000000000011100000000000
0000000000000000200000000011100000000000
0000000000000000110000000011200000008000

42 0000000000000000110000000011110000000000
0000000000000001110000100011110000000000
00000000000000001000001011101010000000000
0000000000000000100111111000000000000000

41 000000000000000011100000000000000000000
0000000000000001000000000000000000000
000000000000000 1000000000000000000000000
0000000000000000000000000000000000000000

40 0000000000000000000000000000000000000000
0000000000010000000000000000000000000000
0000000000110000000000000000000000000000
0000000000000000000000000000000000000000

39 0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
0000000100000000000000000000000000000000
0000112110000000000000000000000000000000

38 0000012010000000000000000000000000000000

1700
...7...7...7...7... 7...7.. .7..7 ... ... .6

... 7...6...5...4...3... .2...1...0...9...8----------------------------------------
0000000000000000000000000132000000000000
0000C00000000000000000000022200000000000000
0000000000000000000002210000000000000000

46 0000000000000000000210000000000000000000
0000000000000000122100000000000000000000
0000000000000001331000000000000000000000
0000000000000011130000000000000000000000

45 0000000000001110000000000000000000000000
0000000000110000000000000000000000000000
0000000111000000000000000000000000000000
0000012100000000000000000000000010000000

44 0000000000000000000000000000000210000000
0000000000000000000000000000001000000000
0000000000000000000000000000020000000000
0000000000000000000000000000020000000000

43 0000000000000000001000000002220000000000
0000000000000000001000110112200000000000
0000000000000000010000110024100000000000
0000000000000000001001110114200000000000

42 0000000000000000110001122122110100000000
0000000000000000010011211122212100000000
0000000000000000010012112212010000000000
0000000000000000010211100000010100000000

41 0000000000000000122000110000000000000000
0000000000011000144111000000000000000000
0000000000001112200000000000000000000000
000000000000322000000000000000000000000Q

40 0000000000001020000000000000000000000000
0000000002120000000000000000000000000000
0000000122200000000000000000000000000000
0000002111210110000000000000000000000000

39 0000022112210000000000000000000000000000
0000022112210000000000000000000000000000
0001222211110000000000000000000000000000
0001233212210000000000000000000000000000

38 0012222211110000000000000000000000000000

Figure 4.4 - Discretized population maps

------------- ------------ ------" "- ""
egrees



369

1720
longitude ...7.......7....7...7 ....7...... ... ..
degrees ..7... .. ..4.'".'5""""."2"".."".. "'9"".

West 0000000000000000000000000232000000000000
0000000000000000000000022100000000000000
0000000000000000000003300000000000000000

46 0000000000000000000220000000000000000000
0000000000000000222200000000000000000000
0000000000000001343210000000000000000000
0000000000000011231000000000000000000000

45 0000000000001100000000000000000000000000
0000000000110000000000000000000000000000
000000011100000000000000000000000000000

400000121 i00000000000000000000000000000000
44 0000000000000000000000000000000111000000

0 0000000000000000000000000000000100000000
0000000000000000000000000000020000000000

i 0000000000000000000000000000220000000000
43 0000000000000000002000001000300000000000

000000000000000002110011011330000000000040000000000000000011000220013310000000000
. 0000000000000000011001221014400000000000

0 42 000000000000000011200221112022000000000
0000000000000001111112222222012100000000
0000000000000011120022212203010000000000
0000000000000010012222200000000000000000

4 41 0000000000001000111200010000000000000000

4J 0000000000011111242222000000000000000000
fa0000000000211111200000000000000000000000

4 0000000000123221200000000000000000000000

40 0000000122222201000000000000000000000000
0000000022222100000000000000000000000000
0000000222222210000000000000000000000000
0000012222222000000000000000000000000000

39 0000112122020000000000000000000000000000
0001122122220000000000000000000000000000
0112112211220000000000000000000000000000
0112322200200000000000000000000000000000

38 1111222200020000000000000000000000000000

1760
longitude...7...7...7...7..7...7...7...7...6....6

degrees 7 ... 6 ... ... 4...3...2...1...0...9...8

West 000000000000oooooooooooo0oooo00oo000000000440000000000000
0000000000000000000000023300000000000000
0000000000000000000022220000000000000000

46 0000000000000000001222100000000000000000
0000000000000000223110000000000000000000
0000000000000012341110000000000000000000
0000000000001112241110000000000000000000

45 0000000000011100010000000000000000000000
0000000001100000000000000000000000001111
0000000110000000000000000000000000001100

40000121000000000000000000000000011110000
44 0001000000000000000000000000002111000000

0000000000000000000000000000122100000000
0000000000000000000101000001120000000000

a 0000000010000000011111110001330000000000
P 43 0000000000000021012100210002310000000000
V) 0000000000000122122112221233310000000000
Um 0000000000000010111112222234400000000000

0000000000001000211222222333400000000000
42 0000000000000000111222322233320200000000

* 0000000000000001122222222233322200000000
0000000000000112122222222204020000000000
0000000000001222222222200000000000000000

J 41 0000001001001222222000110000000000000000
0000000000122222442221000000000000000000
0001222111222222000000000000000000000000
0012222222244221200000000000000000000000

40 1112222222222221100000000000000000000000
1111122222222201000000000000000000000000
1111211222222000000000000000000000000000
1111222212221100000000000000000000000000

39 1112222212221000000000000000000000000000
1112222122220000000000000000000000000000
112222222222222000020000000000000000000000000
2222222222210000000000000000000000000000

38 2222222221210000M

1740

.. 7...7...7... .7...7... 7...7... 6.•..6
S... .6....5.. . 4.. . 3...2.. .1.. .0.. .9...8

0000000000000000000000000242100000000000
00000000000000000000000222100000000000
00000000000000000000222100000000000000

46 00000000000000000012210000000000000000
000000000000000022221000000000000000000
0000000000000012342110000000000000000000
0000000000001111142000000000000000000000

45 000000000011100000000000000000000000000
00000000011000000000000000000000000000
00000001100000000000000000000000000000
0000121000000000000000000000000010010000

44 0001000000000000000000000000002112200000
0000000000000000000000000000002100000000
0000000000000000000000000000020000000000
0000000100000000000000000002220000000000

43 0000000000000010012000100002220000000000
00000000000000001122000100222200000000000
000000000000000110010212234400000000000
0000000000000000112222222222400000000000

42 000000000000000021122222222333201000000000
0000000000000011111122322333322200000000
0000000000000011111222222233010000000000
000000000000001122202100000000100000000

41 0000000000000012222000110000000000000000
0000000000122122442021000000000000000000
0000002000222222300000000000000000000000
0000122222224222100000000000000000000000

40 0011112222222221100000000000000000000000
1011112222222101000000000000000000000000
1111122222222100000000000000000000000000
1111122212222100000000000000000000000000

39 1112222002220000000000000000000000000000
1112222022220000000000000000000000000000
1122222222220000000000000000000000000000
1222222222210000000000000000000000000000000000000

38 1222222200020000000000000000000000000000

1780
... 7...7...7...7...7...7...7...7...6 ... 6

7...7...6...5...4...3...2...1...0...9... 8

0000000000000000000000000440000000000000
0000000000000000000000023210000000000000
0000000000000000000023321000000000000000
0000000000000000000332210000000000000000
0000000000000000223221100000000000000000
0000000000000122344110000000000000000000
0000000011002222343110000000000000000000
0000000001111112110000000000000010001000
0000000000111000000010000100000011111001
0000000011100000000100000100001111111111
0000121110000000000020000110012222120000
0111000000000000000021111110011222000000
0000000000000000000111111211011200000000
00000000000000000000111222112222000000000
0000000010011000002221122222222230000000000
000000000001111001122122223330000000000
0000000000100211122222222234200000000000
000000000000010012222222223440000000000
0000000000000000022222222222400000000000
0000000000000000222222222222220100000000
0000000000000000222222322232222110000000
0000000000001122222233332223020000000000
0000010000001222222222200000000100000000
0012122111111222222200220000000000000000
1110002111122223552220000000000000000000
1001222222222223003000000000000000000000
0122222222222222100000000000000000000000
0122222222225522100000000000000000000000
2222222222225520000000000000000000000000
1222222222222220000000000000000000000000
1222222322220220000000000000000000000000
2222222022220000000000000000000000000000
2222222022230000000000000000000000000000
2222333322220000000000000000000000000000
2222222223320000000000000000000000000000
1222222220223000000000000000000000000000

Figure 4.4 - (Continued)
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long
de

1820

itude ... 7...7...7...7.. .7...7...7...7.. .6...6
grees ... 7 . ... 5 ...s ... 3 .... 2... ... .1. .. .... ..
West 0000000000000000000000002455211000000000

0000000000000000000000323311000000000000
0000000000000000000033321111000000000000

46 0000000000000000003321111110000000000000
0000000000000000022111112100000000000000
0000000000000033553211111000000000111000
0000000233111133143111111000000011111111

45 0000001222122222211123122100011112211221
0000012233443200000223221111112222222222
0000112234332200000233223111222233320220
0002233433332000000233333111133333000200

44 1121000222222000000223333333333300000000
0000000222222222202233333333340000000000
0000000444443333202443333333340000000000
0000044444444333244443333333340000000000

43 2233333334444344322233333334440000000000
2222233333344443334433334444500000000000
2222222222333333344433444444500000000000
1111112222223111344443444444500000000000

42 1111111122222111334444444444400400000000
0000012222211111334444444444544400000000
0001112322221111344444444440040000000000
0122223322223133344444443000000400000000

41 1123333323333333344440430000000000000000
2333333334344333445544000000000000000000
2233333444444444000000000000000000000000
2233333444444444000000000000000000000000

40 2223333334444442000000000000000000000000
2224433333333422000000000000000000000000
2244443333333320000000000000000000000000
2244333333333200000000000000000000000000

39 2243333333333000000000000000000000000000
3333333333330000000000000000000000000000
3333333333330000000000000000000000000000
33333333333330000000000000000000000000000

38 3333333333300000000000000000000000000000

1910
longitude ... 7.. .7..7.. .7 .. .7...7...7...6.. .6

de. .. 7...6...5. ... 4...3...2...1...0...9... 8
degrees

West 0000000000200000000003333455432222122220
0000000220020000000333334444322221113220
0020000220002200003334443333322221113222

46 0220000220000200333444333333322221133220
0220002200000333345533333333222221133220
0233333334333333554333333333222221113332
0223333355544455553333333322332222133322

45 2222333355445533334444333223332222333332
2222222333333333334444333222333344434432
2222222333333333334443333222333344330400
3333333334333000333344444222233354330000

44 3333000444330000033334432222334444400000
0000000443330000033333333332544400000000
0000000443333000033343333444244000000000
0000044444455300434443334444440000000000

43 5444444455445334444433333444400000000000
5444444454443335444453555445500000000000
5444444444444443355553555555550000000000
5444443444433333354555555555500000000000

42 4334443444443333334445555555550400000000
3333433444453333444545555555555500000000
333333343333333354445555555040000000000
3433334433333333554555555000000400000000

41 443333445555333355500055000000000000000
4433345555553355555555000000000000000000
4333545555555533550000000000000000000000
5533333445555555000000000000000000000000

40 3334334455545555000000000000000000000000
3555445554444450000000000000000000000000
5334444554444500000000000000000000000000
3333344444444000000000000000000000000000

39 3333344444440000000000000000000000000000
3333344444340000000000000000000000000000
3333333333330000000000000000000000000000
3333333334400000000000000000000000000000

38 3433333443=

1860

.. 7.. 7..7.. .7...7...7.. .7....7...7. 6...
...7...6...5 ..4...3...2...1...0...9...8

0000000000000000000003334455422000000002
0000000000000000000333333422220000000020
0000000000000000003333442222200000000022

46 0000000000000000333344322222000000002222
0000000000022233334432222222000002222222
0000000222222233455333322200000222323333
0000000255444444453334223320000223333433

45 0222002255444443334434333322223233344433
0000222033343330033333443322333344444000
0023333334444000000333443332333044440000
3333333344433000000333333333344444400000

44 3333000444433000003333333333344400000000
0000000444443333333343333444440000000000
0000000444444443333443333344450000000000
0000044444444444444443333344450000000000

43 4444444444444444444443333344500000000000
4444444444444444444444444445500000000000
3333333444433333444444444455500000000000
3333333444444333444444444455500000000000

42 3223333334444334444444444444444400000000
2222333333444434444454444444444400000000
2222233222334443444555555444040000000000
2222334444334403555555554000000400000000

41 3323344444444455555000440000000000000000
3443344455555555555555400000000000000000
4433344455555553330000000000000000000000
3333344455555333000000000000000000000000

40 3333444433555333000000000000000000000000
3333333333333333000000000000000000000000
2233333333333333000000000000000000000000
2233333333333330000000000000000000000000

39 0333333333333000000000000000000000000000
2333333333300000000000000000000000000000
3333333333330000000000000000000000000000
3333333333330000000000000000000000000000

38 3433333443300000000000000000000000000000

1950
.. 7...7...7...7...7. .. 7...7...7.. .6 ..

... 7...6...5...4...3... 2 ... 1...0...9...8

0000000030033000003333333553333321112222
0000000300033333333333553333333211132222
0020000300000333333355543333333211113222

46 0022233330033333335554433333332211113322
0222223333333333355533333333332211133322
0222222333333334554333333333333222221133322
2222222355533355553333333133322222333322

45 2222233355555555322222233133333225333322
2222233335555533322002331113333555333444
2222233333443333332002223333335555550000
3333333322233333333332223322255555500000

44 3000002222222311133223333322255555500000
0000002222222331133222332222555500000000
0000002222225331532222232522555000000000
0000555555555355552223332555550000000000

43 5555555555555355555553325555500000000000
5222552252222223555522225555500000000000
5222222522232223333255555555500000000000
2232222522223333232255555555500000000000

42 2222222222223332225555555555500500000000
2222332222333335225555555555555500000000
3322232222552222552555555500550000000000
2223222255552222555555555500000500000000

41 2222222555552555550000550000000000000000
5523225555555555555555000000000000000000
5222225555555555000000000000000000000000
333555555555555500000000000000000000000o

40 3335555555555555000000000000000000000000
355555255555555000000000000000000000000
5555555555555555000000000000000000000000
223355555555550000000000000000000000000

39 2233355552222000000000000000000000000000
2233255552252000000000000000000000000000
2233322222250000000000000000000000000000
2233333332220000000000000000000000000000

38 2233333332220000000000000000000000000000

Figure 4.4 - (End)
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Figure 4.5 - Cumulative fraction of area associated with
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1910
longitude...7...7...7...7...7...7...7...7...6...6

degrees 7.. ... ... ... ... ... ... ... ... .8
WeSt1111222222222221111111100000000000000000

1122222222222222211111110000000000000000
12222222222222222221111110000000000000000

46 2222223333333222222111111000000000000000
2222233333333322222111111000000000000000
2222333444443332222111111000000000000000
2222333444443332222111111000000000000000

45 2222333444443332222111111000000000000000
2222233333333322222111111111111111000000
z1222223L 22JJJ i222•i11111111111111111100

1222222222222222221111111111111111111100
44 1112222222222222111111121111111111111110

1222222222222221111111222222222221111111
222222222222211111122222222222222111111
2222222222222211111122223222222222211111

43 2223333333222221111222223333333222221111
2233333333322222112222233333333322222111
2333444443332222112222333444443332222111
2333444443332222222222333444443332222111

42 2333444443332222222222333444443332222111
2233333333322222222222233333333322222111
2223333333222333333322223333333222221111
2222222222223333333332222222222222211111

41 2222222222233344444333222222222222111111
1122222222233344444333222222222211111111
111111122223334444433322221111111111110
1111111122223333333332222111111111111000

40 2222222222222333333322222111111111110000
2222222222222222222222221111111110000000
222222222222222222222211111100000000000
2333333322222222222221111111000000000000

39 3333333332222111111111111110000000000000
3344444332222111111111111100000000000000
3344444333222111111111111000000000000000
3344444332222111111111000000000000000000

38 3333333332222111110000000000000000000000

1940
longitude..7.......7....7.......7...7..... ... .6

degrees .7.. .6.. ... ...4...3...2...1... ...9.8

Westlll222222222222333444443332222211111100
112222222222222233344444333444443332222211111100
122222222222222233344444332222211111000

46 2222223333333222233333333322222111111000
2222233333333322223333333222222111111000
2222333444443332222222222222221111110000
222233344444333222222222222111111100000

45 2222333444443332333333322222111111100000
2222233333333323333333332222211111100000
1222223333333233344444333222211111110000

4 1222222222222233344444333222211111111000
w 44 1112222222222233344444333222222111111100

1111222222222223333333332222222211111110
1111111111122222333333322222222221111111

S111111111 11122222222222333333322222111111
43 111111111 11222222223333333332222211111

1111111111111122222233344444333222221111
0%11111111111111222222333344444433322221111

4 2222211111111222 2233344444433322221111
42 2222222111222222233333334444433322221111

S2222222212222222333333333333333222221111
pa 3333222222222333334444433333332222211111

3333322222223333334444433322222222111111
. 41 4443332222233344444444433322222221111111

4443332222233344444333333222222111111110
8 4443332233333344444333332222211111111100

33333223333333333333322222222111111110000
40 3333223334444433333322222221111111100000

2222223334444433322222222111111110000000
2222223334444433322222211111111100000000
2222222333333333222221111111110000000000

39 1112222233333332222211111111100000000000
1111222222222222222111111100000000000000
11111222222222222221111111000000000000000
1111111222222222111111100000000000000000

3U 0111111111111111111133 100000000000 000

1930

111122222222222233344444333222211111100
112222222222222333444443332222211111100
1222222222222222333444443332222211111000

46 2222223333333222233333333322222111111000
2222233333333322223333333222222111111000
2222333444443332222222222222221111110000
22223334444433322222222222221111111100000

45 2222333444443332222222222221111111100000
2222233333333322222111111111111111000000
1222223333333222221111111111111111110000
1222222222222222221111111111111111111100

44 1112222222222222111111111111111111111110
1222222222222221111112222222222221111111
22222222222221111111222222222222221111111
2222222222222211111222222222222222211111

43 2223333333222221112222233333333222221111
2233333333322222222222333333333322222111
2333444443332222222223334444443332222111
2333444443332222222223334444443332222111

42 2333444443332222233333334444443332222111
2233333333322222333333333333333322222111
2223333333222333334444433333333222221111
2222222222223333334444433322222222211111

41 2222222222233344444444433322222222111111
1122222222233344444333333222222211111111
1111111222233344444333332222211111111110
1111111122223333333332222222111111111000

40 1111111122222333333322222221111111110000
011111111222222222222222222111111110000000
0000111111222222222222211111111100000000
0000011111112222222221111111110000000000

39 000000111111111111111111111111100000000000
000000011111111111111111110000000000000
0000000011111111111111111000000000000000
0000000000011111111111000000000000000000

38 0000000000000000000000000000000000000000

1950

... 7...7...7...7...7...7...7...7...6...6

... 7 ...6...5...4.. .3...2...1...0...9...8

1111222222222222333444443332222211111100
1122222222222222333444443332222211111100
1222222222222222333444443332222211111000

46 2222223333333222233333333322222111111000
2222233333333322223333333222222111111000
22223334444433322222222222222222221111110000
222233344444333222222222222111111100000

45 2222333444443332333333322222211111100000
2222233333333323333333332222211111100000
1222223333333233344444333222211111110000
1222222222222233344444333222211111111000

44 1112222222222233344444333222222111111100
11112222222222233333333333332222222211111110
1111111111122222333333322222222221111111
111111111111222222222333333322222111111

43 1111111111111222222223222333333332222222211111
1111111111111222222233344444333222221111
1111111111111122222233344444433322221111
2222211111112222223333344444433322221111

42 2222222111222222233333334444433322221111
2222222212222222333444443333333222221111
33332222222223333344444433333322222211111
3333322222223333334444443332222222111111

41 4443332222233344444444433322222221111111
4443332222233344444333333222222111111110
4443332233333344444333332222211111111100
3333322333333333333332222222111111110000

40 3333223334444433333322222221111111100000
2222223334444433322222222111111110000000
2222223334444433322222211111111100000000
2222222333333333222221111111110000000000

39 1112222233333332222211111111100000000000
11112222222222 222111111100000000000000
111112222222222221111111000000000000000
11111111222222222111111100000000000000000

38 0111111111111111111111000000000000000000

Figure 4.7 - Discretized instrumentation maps
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1960

longitude ...7...7...7..7...7...7..7...7...6. ..6
degrees ...7...6 ...5 ...4 ... 3.2.. .1...0...9...8

West 1111222222222222333444443332222211111111
1122222222222222333444443332222211111111
1222222222222222333444443332222211111111

46 2222223333333233333333333322222222222221
2222233333333333333333333222222222222222
2222333444443334444433322222222222222222
2222333444443334444433322222223333333222

45 2222333444443334444433322222233333333322
2222233333333333333333222222333444443332
2222223333333233333332222222333444443332
222222222222222222222222222233344444333244 2222222222222222222222222222233333333322

O 33333222222222222222222222222233333333222
0 333332222222222222222222222222233333222
S33344443332222222333333323333333222222222222

43 44443332222223333333323333332222222211
S 43 4444333322222233333334444433344444333222221111
S4443333333333333334444433344444433322221111
S333333333334444433334444433344444433322221111

o 42 2223334444433333333333334444433322221111
2223334444433333333333333333333222221111

TO 3333333333333333334444433333332222211111
3333333333344444334444433322222222111111

41 4443332233344444444444433322222221111111
4443332233344444444333333222222111111110

S4443332233333344444333332222211111111100
3333322333333333333332222222111111110000

40 333322333444443333332222221111111100000
2222223334444433322222222111111110000000
2222223334444433322222211111111100000000
2222222333333333222221111111110000000000

39 111222223333333222221111111100000000000
1111222222222222222111111100000000000000
1111122222222222221111111000000000000000
1111111222222222111111100000000000000000

38 0111111111111111111111000000000000000000

1975

longitude ...7....7..7...7 ....7...7.. .7....6...6
degrees .. .7.. .6.. .5.. 4.. ... ... .1.. ... ... .8

1970

... 7.. ... ... 7...7 .. ... 7... ... 6...6

.. .7...6.. .5.. .4.. .3.. .2. .1.. .0.. .9... 8

3333332222222222222223334444433322333444
33333333222222222222223334444433322333444
4444433322222222222223333333333322333333

46 4444433333333233333332233333332222223333
4444433333333333333333222222222222222222
3333333444443334444433322222222222222222
3333333444443334444433333333333333333222

45 2222333444443334444433333333333333333322
2222233333333333333333334444433444443332
2222223333333233333333334444433444443332
2222222222222223333333344444433444443332

44 2222222222222233344444344444333333333322
3333322222222233344444344444333333333222
3333332222222233344444333333332222222222
4444333222222233333333333333322222222222

43 4444333222222333333333333333332222222211
4444333333333334444433344444333222221111
3333333333333334444433344444433322221111
3333334444433334444433344444433322221111

42 2223334444433333333333334444433322221111
2223334444433333333333331333333222221111
3333333333333333334444433333332222211111
3333333333344444334444433322222222111111

41 4443333333344444444444433322222221111111
4443334444444444444333333222222111111110
4443334444433344444333332222211111111100
3333334444433333333332222222111111110000

40 3333333334444433333322222221111111100000
33333334444444333222222221111111110000000
3333333444444433322222211111111100000000
3444444444443333222221111111110000000000

39 3444444333333332222211111111100000000000
3444444333333222222111111100000000000000
3444443332222222221111111000000000000000
3333333322222222111111100000000000000000

38 3333333222222211111111111111111000000000

1980

S.7. .7... 7... ... 7... ... ... ... ....6
.. .7..6..5.•.4...3. 3 .2..2..1.. 0 .... 9.....a

West 3333334444433322222223334444433322333444
3333334444433322222223334444433322333444
4444434444433322222223333333333322333333

46 4444434444433333333332233333332222223333
4444433333333333333333222222222233333332
3333333444443334444433322222222333333333
3333333444443334444433333333333334444433

45 2222333444443334444433333333333334444433
2223333333444444444433334444433444444433
2233344444444444444433334444433444443333
2233344444444444444433334444433444443332

44 2233344444344444444444333333333333333322
3333344444344444444444444333333333333222
3333344444344444444444444444333222222222
4444333333333333333344444444333332222222

43 4444444444443333333333344444333333222221
4444444444443334444433344444444433322221
3333444444443344444433344444444433322221
4443444444433344444433344444444433322221

42 4443444444433344444444444444433333222221
4443334444433333334444444444443332222211
3333333333333344444444444444443332222111
3333333334444444444444444444443332222111

41 4443333334444444444444444433333322221111
4443334444444444444444333333333222221111
4443334444433444444333333332222222211111
3333334444444433333333322222222222111111

40 3333444444444433333322222222222211111111
3333444444444433322222222222111111111110
3333444444443333222222221111111111111111000
3344443444443332222221111111111111110000

39 444444333333332222211111111111111111110000000
4444443333333222221111111111100000000000
4444433322222222211111111000000000000000
444443322222222222111111000000000000000000

38 4444433322222211111110111111111000000000
---------- - -----------

3333334444433322233333334444433322333444
3333334444433322233344444444433322333444
4444434444433322233344444333333322333333
4444434444433333333344444333332222223333
4444433344444333333333333333322233333332
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Note : dashed lines indicate periods with different seismicity characteristics
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Figure 4.10a - Space-time distribution and histograms of all main events in the Friuli region
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Figure 4.lnb - Space-time distribution of earthnuakes with iL=1,2 and 6 (Table 4.3)
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Figure 4 .10c - Space-time distribution of earthquakes with iL= 3 (Table 4.3)
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Figure 4.10d - Space-time distribution of earthquakes with iL= 4 (Table 4.3)
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Figure 4.10e - Space-time distribution of earthquakes with iL-= 5 (Table 4.3)
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Figure 4.27 - Recurrence parameter estimates from base case analysis
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Figure 4.28 - Earthquake counts and expected counts for

the entire region (base case analysis)
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Figure 4.29 - Standardized residuals of expected observed

counts for different analysis cases
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Figure 4.33 - Fitted exponential relation for two cells

in Base Case and Case 6
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Figure 4.35 - Influence of uncertainty on location and

size on the a-posteriori earthquake counts
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Figure 4.36 - Regions of uniform incompleteness
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Figure 4.37 - Temporal variation of recurrence rates in completeness

region 1.
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Figure 4.38 - Temporal variation of recurrence rates in completeness
region 2.
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b. recurrence rate estimates
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