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Abstract

This thesis explores the benefit of channel coding for high-speed backplane or chip-
to-chip interconnects, referred to as the high-speed links. Although both power-
constrained and bandwidth-limited, the high-speed links need to support data rates
in the Gbps range at low error probabilities. Modeling the high-speed link as a com-
munication system with noise and intersymbol interference (ISI), this work identifies
three operating regimes based on the underlying dominant error mechanisms. The
resulting framework is used to identify the conditions under which standard error
control codes perform optimally, incur an impractically large overhead, or provide
the optimal performance in the form of a single parity check code. For the regime
where the standard error control codes are impractical, this thesis introduces low-
complexity block codes, termed pattern-eliminating codes (PEC), which achieve a
potentially large performance improvement over channels with residual ISI. The codes
are systematic, require no decoding and allow for simple encoding. They can also be
additionally endowed with a (0, n - 1) run-length-limiting property. The simulation
results show that the simplest PEC can provide error-rate reductions of several orders
of magnitude, even with rate penalty taken into account. It is also shown that channel
conditioning, such as equalization, can have a large effect on the code performance
and potentially large gains can be derived from optimizing the equalizer jointly with
a pattern-eliminating code. Although the performance of a pattern-eliminating code
is given by a closed-form expression, the channel memory and the low error rates
of interest render accurate simulation of standard error-correcting codes impractical.
This work proposes performance estimation techniques for coded high-speed links,
based on the underlying regimes of operation. It also introduces an efficient algo-
rithm for computing accurate marginal probability distributions of signals in a coded
high-speed link.

Thesis Supervisor : Vladimir Stojanovic
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Introduction

This thesis explores the benefit of channel coding for high-speed backplane or chip-to-

chip interconnects, commonly referred to as the high-speed links. High-speed links are

ubiquitous in modern computing and routing. In a personal computer, for instance,

they link the central processing unit to the memory, while in backbone routers thou-

sands of such links interface to the crossbar switch. Arising from the critical tasks

they are designed to perform, high-speed links are subject to stringent throughput,

accuracy and power consumption requirements. A typical high-speed link operates

at a data rate on the order of 10 Gbps with error probability of approximately 10-15.

Given the bandwidth-limited nature of the backplane communication channel,

the ever-increasing demands in computing and routing speeds place a large burden on

high-speed links. Specifically, high data rates exacerbate the inter-symbol interference

(ISI), while the power constraints and the resulting complexity constraints limit the

ability to combat the ISI. As a result, the system is no longer able to provide the

required quality of communication. In fact, this residual ISI limits the achievable link

data rates to an order of magnitude below their projected capacity [5].

Although most modern communication systems employ some form of coding as

a technique to improve the quality of communication, the residual ISI severely im-

pairs the performance of many such techniques. This is demonstrated in a thesis

by M. Lee [4], which consists of a series of experimental results that evaluate the

potential of standard error-correction and error-detection schemes for high-speed link

applications. Moreover, coding schemes are also generally considered impractical for

high-speed links due to the required overhead and the resulting rate penalty. Thus,

most research efforts to bring more advanced communication techniques to high-speed



links have focused on improved signaling/modulation techniques and equalization

[5, 16]. However, due to the previous lack of adequate theoretical and simulation

frameworks, the previous conclusions regarding the benefit of coding for high-speed

links are based on incomplete results and therefore remain speculative. Specifically,

Monte-Carlo-based simulation techniques are not suitable for performance estimation

of a coded high-speed link due to the low error probabilities, while the closed-form ex-

pressions pertain to the limiting cases and may therefore not be sufficiently accurate.

As a result, the most significant body of work on coding for high-speed links, [4], is

purely experimental. The resulting practical constraints limit the depth of the analy-

sis in [4] and further constrain the scope of the study to standard coding techniques,

which may not be optimal in the high-speed link setting.

The present work addresses the issue of coding for high-speed links from a theoret-

ical perspective, by abstracting the high-speed link as a general system with noise and

ISI. This abstraction allows for a classification of possible error mechanisms, which

enables both a deeper characterization of the behavior of different codes in a high-

speed link and the development of new coding techniques adapted to these systems.

The benefits of the regime classification also extend to system simulation, by allowing

for more efficient simulation methods tailored for different regimes. In particular, this

thesis develops the following results:

* A more complete characterization of error mechanisms occurring in a high-speed

link. This enables the classification of system's operating conditions based on

the dominant error mechanism as one of three possible regimes, namely, the

large-noise, the worst-case-dominant and the large-set-dominant regimes.

* A deeper characterization of codes for high-speed links. For instance, a char-

acterization of error mechanisms allows to identify the conditions under which

standard error control codes incur little or no performance impairements due to

the residual ISI. Note that these include, but are not limited to, the cases where

the ISI is relatively weak compared to the noise.



* A new approach to coding under the worst-case-dominant regime where error

is principally due to the occurrences of certain symbol patterns. The resulting

codes, termed the pattern-eliminating codes provide the benefit of low complex-

ity, allowing for simple encoding and requiring virtually no decoding.

* A theoretical framework for interpreting previously-documented experimental

behaviors, such as [4] or [11, 12].

* New simulation methods for coded or uncoded high-speed links. The regime

classification provides a more accurate guideline for biasing the system param-

eters in simulation to capture error behaviors at low probabilities. Moreover,

computational approaches that enable performance estimation without param-

eter biasing are identified for each of the regimes.

* An efficient numerical algorithm for computing marginal probability distribu-

tions in a coded system. The algorithm is of particular use under operating

conditions that render the previous techniques impractical, either due to ex-

cessive computational complexity or insufficient accuracy. Note that, since the

performance of pattern-eliminating codes is given by a closed-form expression

for all regimes of interest, the algorithm focuses on systematic linear block codes

whose behavior is the focus of previous experimental work.

The three operating regimes are described qualitatively in Chapter 1 and quantita-

tively in Chapter 2. The main body of results on coding for systems with noise and

ISI, and the subsequent specialization to high-speed links, is contained in Chapter 2.

The issue of system simulation for high-speed links is addressed in Chapter 3.



Chapter 1

The High-speed Link: The Reality

and the Abstraction

High-speed links typically refer to backplane or chip-to-chip interconnects that operate

at very high data rates (- 10 Gbps), low bit-error rate (~ 10-15) and with high energy

efficiency. These stringent requirements arise from the critical tasks that high-speed

links are designed to perform, as well as the global die-level and system-level power

constraints. In a personal computer, for instance, they link the central processing

unit to the memory, where ensuring an adequate speed and accuracy of the data

transfer is essential. On a much larger scale, in backbone routers, thousands of

such links interface to the crossbar switch. There, adequate accuracy guarantees the

quality of the network traffic, the high speed reduces the number of links required to

achieve the desired throughput, and high power efficiencies prevent that scaling from

becoming prohibitive. In fact, the high-speed links form an integral part of many

systems and their limitations thus generally have wide-ranging repercussions. This

chapter begins by further describing the motivation behind the current high-speed-

link research. Following the motivation, the high-speed link is re-introduced in a

more abstracted form: that of a communication system with inter-symbol interference

(ISI) and additive white Gaussian noise (AWGN). The payoff of this abstraction is

realized in the last section, which introduces three interference-and-noise scenarios

that provide the foundation for the development of the subsequent chapters.



1.1 Motivation

The increasing demands in network and processing speeds have placed a large burden

on high-speed links, as it is becoming increasingly difficult to keep up with the in-

creasing data rates while maintaining the same reliability and adequately low power

consumption. Referring again to the part played by high-speed links in backbone

routers, [4] cites the following relevant example. Consider the result of using current

technology to create a 40 Tb/s crossbar router chip. Since cross-bar router switches

currently support 1 Tb/s, striving to reach the 40 Tb/s mark is a realistic goal. To

achieve that throughput, 4000 of the current 10 Gb/s transceivers would have to

be deployed. Since each transceiver uses a differential pair, the switch chip would

need 8000 I/O pins, thus requiring the total on-chip area of 4000 mm2 . The result-

ing switch card would be roughly 4 meters (160 inches) wide and 2.5 meters (100

inches) long. Furthermore, since each transceiver currently dissipates 40 mW/Gb/s,

the power consumption for the crossbar chip would total 1.6 kW, an unrealistically

large number.

The above example illustrates the need for improved data rates and energy effi-

ciencies of high-speed links. However, at higher data rates, the bandwidth-limited

nature of the backplane as a communication channel coupled with signal reflections

off of impedance discontinuities results in a large amount of inter-symbol interference

(ISI). In these conditions, clever circuit design is insufficient to maintain adequate

speed and reliability of the communication. Furthermore, the rate at which the

communication channel degrades with the increasing data rates, coupled with tight

power constraints, renders adequate' channel equalization impractical. The resulting

uncompensated ISI, as further discussed in the following sections, becomes one of the

dominant error mechanisms and limits the achievable link data rates to an order of

magnitude below their projected capacity [5]. It is thus necessary to probe deeper into

the communication theory and rediscover, or develop, more energy-efficient methods

of ensuring adequate communication in these conditions. This thesis explores the
1i.e. sufficient to achieve error rates on the order of 10-
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benefit of channel coding for high-speed links. In particular, it develops a new family

of low-complexity codes, termed the pattern-eliminating codes, suitable in high-ISI

regimes and provides a framework for simulation of standard error-control codes over

channels with non-negligible ISI.

1.2 High-speed Link as a Communication System

The three principal error mechanisms in high-speed links, as described in [6] are in-

terference, noise, and timing jitter. The interference in high-speed links is due to both

the inter-symbol interference (ISI) and the crosstalk. The ISI is principally the result

of the dispersion, due to the fundamental loss mechanisms in the wire, including skin

effect and dielectric loss, and the signal reflections off of impedance discontinuities.

Crosstalk, which can also be considered as co-channel interference (CCI), is due to

multiple signals traveling through the same backplane. The effects of both the ISI

and the CCI on the received signal can be described through the convolution of the

channel impulse response, sampled at symbol times, with the history of the transmit-

ted symbols. Noise in high-speed links is typically small with respect to the signal

magnitude. It is principally ascribed to thermal noise and transistor device noise,

and is therefore modeled as additive, white and Gaussian (AWGN) with standard de-

viation in the range of 3 mV down to 0.3 mV approximately, where the transmitted

signal swing is + IV. The timing jitter is tied to the transmitter phase-locked loops

(PLL) and the received clock data recovery (CDR) circuits. Various jitter models are

available and many are overviewed in [6]. Since the ISI has been identified as the

dominant error mechanism in a high-speed link [5], this thesis focuses on ISI-limited

channels with AWGN.

The resulting simplified model of a typical high-speed link as a communication

system is shown in Fig. 1-1. The system employs PAM2 modulation and the equivalent

communication channel is discrete. The latter also includes the effects of any signal

processing in the transmitter or the receiver, such as equalization or matched-filtering.

Due to the practical limits of equalization in high-speed links, the equalized channel



Figure 1-1: Model of a High-speed link as a Communication System

response typically contains some amount of residual inter-symbol interference. Due

to hardware complexity constraints, the detection scheme at the receiver is a blind

application of the symbol-by-symbol maximum a posteriori (MAP) detection [3] for

channels without ISI, rather than a more complex sequence detection scheme, such

as [26], developed for channels with ISI.

Concerning notation, it is convenient to denote the received signal at some time

index i as YI and represent it as the sum of a signal component Zi and the noise

component Ni. Note that, throughout this thesis, upper-case notation is used to

represent random variables, while the lower-case notation denotes the corresponding

realizations and other deterministic quantities. The exception to this rule is the length

of the channel response, denoted by L in order to be distinguished more easily from

the ubiquitous time index i. Thus, for a channel of length L, the signal component

Zi is given as the sum of the current symbol and the L - 1 previously2 transmitted

symbols, weighted by the channel coefficients. The value z such that when Z = z

the signal suffers no ISI is referred to as the signal mean, despite the fact that for

constrained (coded) symbols z may not equal the expectation of the random variable

Zi.
Given a sequence of transmitted symbols Xi, .. , Xi-L+ E {--1, 1}, where Xi is

transmitted last, and some equivalent channel response of length L specified by the

coefficients ho, ... hL-1 E , the corresponding Y4 is given by

L-1

Yi = Xi-khk + N (1.1)
k=O

2In case the channel also causes precursor ISI, that is, has a non-causal impulse response, the
L - 1 interfering symbols also contain "future" symbols.

Lts~rTrZZ~"N



Since, Yi is discrete, its marginal probability distribution is specified by the prob-

ability mass function (PMF), denoted by fyi, or alternatively, by the cumulative

mass function (CMF), Fy,. For a communication channel with ISI, the dependen-

cies between the received symbols resulting from the convolution equation (Eqn. 2.1)

imply that the set of marginal distributions fy,..., fy,,_, is typically not sufficient

to specify the joint distribution fy,...,Yi+L-1. However Chapter 2, among other re-

sults, describes some special circumstances under which the joint and the marginal

distributions are effectively interchangeable.

1.3 Classification of Error Mechanisms in High-

speed Links

Motivated by the model of a high-speed link introduced in the previous section, this

section provides a more thorough characterization of the error mechanisms in systems

limited by AWGN and ISI. Typically, the dominant error mechanism is loosely defined

as the most likely source of detection errors. For instance, [6] observes that the inter-

symbol interference, rather than noise alone or the timing jitter, is the dominant error

mechanism in a high-speed link. In the present context, however, the term takes on

a more precise meaning. Specifically, the dominant error mechanism refers to an

attribute of a set of interference events which are found to be responsible for some

large proportion of the detection errors.

The concept of a dominant error mechanism is formalized in Section 2.2 of Chap-

ter 2. In the meanwhile, to gain a qualitative understanding of the concept, different

error mechanisms are examined through the a posteriori probability distribution of

the random variable Z , defined in the present context as the probability distribu-

tion of Zi conditioned on the occurrence of an error event. More precisely, letting

P(Zi = z) denote the a priori probability of observing some signal component z of

the total received signal, the corresponding unilateral a posteriori probabilities are

given by P(Z, = z Yi < 0, X = 1) and P(Zi = z I Y > O,XX = -1). In a



loose sense, the a posteriori distribution specifies the proportion of the errors that are

due to each possible interference event. However, several factors jointly determine

the a posteriori probability distributions and different combinations of these factors

give rise to distinct scenarios or regimes. Specifically, it is clear that in a communi-

cation system with noise and ISI, the nature of the main error mechanism is some

factor of the magnitude of the ISI relative to the transmitted symbol power, the noise

variance relative to the transmitted symbol power, and the magnitude of the ISI rel-

ative to the noise variance. A more precise characterization yields the following three

noise-and-interference scenarios, which enable the classification of any communication

system that is principally limited by noise and ISI. They consist of the large-noise

scenario, the worst-case-dominant scenario, and the large-set-dominant scenario. In

the large-noise scenario, ISI is negligible with respect to noise and the latter dom-

inates the error expression, while the error in the worst-case-dominant scenario is

principally attributable to the occurrence of symbol patterns causing worst-case in-

terference. The large-set-dominant scenario encompasses the remaining conditions,

but also allows for a general result regarding joint error behaviors. The corresponding

classification framework is at the core of the results formulated in the later chapters,

which develop both codes and simulation methodologies to suit particular regimes in

a system with noise and ISI.

Prior to discussing individual scenarios, note that, from the theoretical perspec-

tive, the three different scenarios represent three different limiting behaviors. This

view is further discussed in Chapter 2. On the other hand, from a practical stand-

point, the three scenarios provide a classification framework where the boundaries

are context-dependent. For instance, regarding the performance of codes optimized

for a given limiting behavior3 , the boundary of the corresponding regime is set to

encompass the operating conditions under which such codes provide a benefit. Sim-

ilarly, from the point of view of performance estimation, it is convenient to consider

as large-set dominant all conditions under which the error events can be considered
3

1In Chapter 2, standard error correction codes are shown to perform optimally in the limit of
the large noise regime and a subcase of the large-set-dominant regime, while the pattern-eliminating
codes are developed for the limit of the worst-case-dominant regime.



as statistically independent, with some sufficient accuracy.

The following discussion pertains to an arbitrary real channel of length L whose

smallest-magnitude coefficient is denoted by 6. The worst-case interference incurred

by the signal, that is, the maximum deviation from the signal mean in either direction,

is represented by some A > 0. In other words, letting z denote the corresponding

signal mean 4, the random variable Zi takes values from the interval [z - A, z + A].

Also, note that the worst-case interference is lower-bounded by (L - 1)6 and that

possible values of Zi occur in increments of at least 26. The quantity cs I denotes

the variance of the ISI, that is, of the random variable Zi - hoXi. The noise (AWGN)

is assumed to be independent of the signal, with zero mean and some variance a .2

The two sets of plots of Figures 1-2 and 1-3, depicting the a posteriori probability

distributions for the random variable Zi as a function of c and 6, are used in the

sections that follow to exemplify and link the three scenarios. The probability dis-

tributions are computed based on the decision threshold of zero, for a channel with

z = 1 and interference coefficients that take values from the set {-6, 6}, for some

positive real 6. Different scenarios are obtained by controlling the value of 6 and

a. For the purpose of illustration, it is also assumed that the symbol patterns are

unconstrained. Thus, the a priori probabilities for the normalized interference, appro-

priately shifted and scaled, follow a binomial distribution with p = 0.5. The changes

in the behavior of the a posteriori probability distribution resulting from varying the

channel and noise parameters are indicative of the shift in the error mechanism as

the system transitions from one limiting case to another.

1.3.1 Large-noise Regime

The large-noise regime occurs when the noise variance a2 is sufficiently large relative

to the variance of the ISI, ofsI. Then, conditioning on the signal variable Zi, in the

Yj = Z2 + Ni expression, provides little information about the received signal Yi and

the a posteriori symbol interference probabilities are approximately equal to the a
4 i.e. the value of the signal in the event that no ISI occurs. If the transmissions are coded, z may

not equal the expectation of the random variable Zi.
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Figure 1-2: A priori and a posteriori probability distributions for a channel of length L =
1000 varying noise levels - a) a = 0.001, b) a = 0.01, c) a = 0.1, d) a = 1. The system in
a) operates in the worst-case-dominant regime, while d) operates in the large-noise regime.
The remaining cases are large-set-dominant.

priori probabilities. The large-noise regime is illustrated in Figures 1-2 d) and 1-3 e)

although, depending on the context, the setup of Figure 1-3d) could be considered

large-noise as well. Note that as,2 = 10- 3 for the system of Figure 1-2 and a:s, = 0.1

for that of Figure 1-3.

The relative magnitudes of noise variance and the ISI required for the system to

operate in the large-noise regime also depend on the signal mean z. For a system

operating "far" from the decision threshold, a tolerable amount of ISI for the large-

noise regime to apply is significantly lesser than that required for a system operating

closer to the decision threshold. As an illustration, consider a system with noise

of variance a 2 and let 6 be the channel coefficient of smallest magnitude. If the

system indeed operates in the large-noise regime, then the ratio of the a posteriori

probabilities for two different ISI values will be equal to the ratio of their a priori

probabilities. Now, let z be sufficiently large, so that any detection error is due to a

low-probability noise event. Since cumulative probabilities in the tails of the Gaussian

distribution can be approximated as

Sz
2

P(N > z) . (1.2)
~ZV~ 1.2

=QOO1 0=0.01 a=0.1 a=1
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Figure 1-3: A priori and a posteriori probability distributions for a channel of length L = 10
varying noise levels - a) a = 0.001, b) a = 0.01, c) a = 0.1, d) a = 1, e) a = 4. Systems a)
through c) are worst-case-dominant, while e) operates in the large-noise regime. System d)
is large-set-dominant, but could be considered large-noise depending on the context.

obtained by truncating5 the corresponding asymptotic series [19], then, placing the

decision threshold at zero, the ratio of the a posteriori probabilities between the signal

incurring no ISI and that suffering interference of 26 in the direction of the decision

threshold is given by

P(Zj = zY < 0,X, = 1) P(Zi = z)P(Ni > z)

P(Zj = z - 261Y < O, X = 1) P(Z, = z - 26)P(N, > z - 26)
z
2

P(Zi = z) (z - 26)e2T

P(Zi = z - 26) ze
P(Zi = z) z - 26 -2z/u2+262/ 2

-- ---

P(Zj = z- 26) z

As z gets larger, keeping 6 and a constant, the ratio (z - 26)/z tends to unity,

but the factor e- za/ " tends to zero and the ratio of the a priori probabilities is thus

not maintained. Thus, as z increases, the operating conditions move away from the

large-noise regime.

5The accuracy of both the asymptotic expansion and the subsequent truncation is discussed in
Section 2.2.2 of Chapter 2.
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1.3.2 Worst-case-dominant Regime

The worst-case ISI occurs when a transmitted symbol pattern causes the received

signal to deviate from its mean value z by the maximum possible amount A in the

direction of the decision threshold. For a channel of length L defined by coefficients

ho, hi,..., hL-1, where hi,... , hL-1 cause interference, there are two possible worst-

case patterns, depending on the value of the most-recently transmitted symbol Xi:

(Xi,..., Xi-L+1) = (sign (ho), -sign (hi), -sign (h2),.. . , -sign (hL-1))

and

(Xi,... , Xi-L+1)= (-sign (ho), sign (hi), sign (h2),..., sign (hL-1))

The system effectively operates in the worst-case-dominant regime when both of

the following two conditions are satisfied:

1. The signal value affected by the worst-case ISI is at some non-negative distance

away from the decision threshold, i.e. the minimum decision distance is positive.

2. The noise standard deviation, u, is small relative to the channel coefficient of

least magnitude, 6.

Then, the error events are principally due to the occurrence of the worst-case ISI

coupled with a noise event. The corresponding a posteriori probability distributions

for the observed interference therefore assign some large probability to the worst-

case event. This occurs in Figures 1-2 a) and 1-3 a- c). Note that the a posteriori

probability in Figure 1-2 b) is not concentrated on the worst-case interference, but

on some adjacent interference value. Thus, whether to categorize the corresponding

regime as worst-case-dominant is context-dependent.

The positive distance by which the signal mean z is separated from the decision

threshold affects the allowed range for the 6/a ratio. Applying the expression of

Equation 1.2 for the cumulative probability in the tails of the Gaussian distribution,

it follows that the allowed range for the values of 6/1 can be relaxed as the mean signal



value z moves away from the decision threshold. More precisely, the factor e-z l/" now

serves to suppress the a posteriori probability of symbol patterns which do not bring

the signal the closest to the error region. For large z where this expression is valid,

increasing z by a factor of ac > 1 allows to reduce the 6/1 ratio roughly by a factor

of 1/a.

However, for some given a, 6 and z, whether a system operates in the worst-case

dominant regime is also a function of the channel length L. Since several symbol

patterns can cause an identical amount of ISI, both the a priori, and therefore the a

posteriori, signal probability distributions take into account this multiplicity. Thus

for large L, the multiplicity can bias the a posteriori distributions away from the

worst-case. As an illustration, comparing the individual plots of Figures 1-2 and 1-3

yields four pairs of systems with equal a and z, but different L. Although the 6 of the

plots correponding to Figures 1-3 b-c) (L = 10) is greater than that of the systems

in Figure 1-2 b - c) (L = 1000), the former operate in the worst-case-dominant regime

while the latter do not.

Finally, it remains to justify the non-negativity requirement on the minimum

decision distance. Placing once again the decision threshold at zero, assume that

z' = z - A < 0 where z' represents the value of the noiseless received signal Zi

when affected by the worst-case ISI. Suppose in addition that there exists another

possible value of Zi, denoted by z", that is also at a negative distance from the

decision threshold. More precisely, there exists some possible outcome z" such that

z' < z" < 0. Then, for sufficiently large L, conditioning on an error event may assign

a larger a posteriori probability to z" than to z' simply on account of its multiplicity.

An example of this occuring is depicted in Figures 1-4a)-c) below. In particular,

for the system depicted in the part a) of the figure and operating in the worst-case-

dominant regime, the signal mean z is reduced by 2.56 and 46 so that the worst-case

interference crosses the decision threshold. The resulting a posteriori probability

distributions, displayed in parts b) and c), are no longer worst-case-dominant, as the

probability mass is centered on the interference values closer to the decision threshold.

Alternatively, a more precise argument justifying the non-negativity requirement



is available when the noise variance is sufficiently small so that the probabilities

P(N < z') and P(N < z") are both from the tails of the Gaussian distribution. In

those conditions, the ratio of the a posteriori probabilities becomes:

P(Zi = z'lY| < 0, Xi = 1) P(Z1 = z')P(Ni < -z')

P(Zj = z"1Y < O, Xi = 1) P(ZX = z")P(Ni < -z")

P(Z% = z')P(Ni > z')

P(Z, = z")P(Ni > z")

P(Zi = z') z" 1 - e2
x -XX

P (Zi = z") z' -e

Since Iz'l > Iz"j, the two ratios on the left-hand side are both less than unity. Thus,

if z" has an equal or greater a priori probability than z', the a posteriori probability

will be biased in its favor. The regime will therefore not be worst-case-dominant.

However, note that the non-negativity requirement on the minimum distance is in

principle too strict. More precisely, it is possible to envision a case where z' is the only

possible negative ISI value and the next-to-worst-case ISI is sufficiently removed for

the above ratio to be large and for the error expression to remain dominated by the

occurrence of the worst-case ISI. While this case may be of some practical importance,

a simpler definition which encompasses a large number of cases is preferable for the

purpose of the subsequent development.

Quasi-worst-case-dominant Scenarios

While the previous development concerns the regime where the worst-case interference

is responsible for most of the error events, such a behavior is seldom observed in

practice. Instead, a more common occurrence is that of a dichotomous channel. The

term refers to any channel of length L whose i coefficients are more significant than

the remaining ones. The notion of significance is context-dependent. For instance, it

may pertain to the confidence of the channel response measurements, or, in dispersive

channels, to the fact that the first 1 coefficients are typically of larger magnitude. In

general, the corresponding 1 coefficients are referred to as the principal part of the

channel, while the remaining coefficients belong to the secondary part of the channel.
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Figure 1-4: Illustrating the non-negative-minimum-distance requirement for the worst-case-
dominant regime. In all three plots, a = 0.01, 6 = 0.02, L = 50 which implies that A = 1.
The decision threshold is placed at zero as indicated by the dashed line, and the corre-
sponding minimum decision distance is given by z - A. The corresponding error probabil-
ities Perr are included for completeness. - a)z = 1,perr = 4.5 x 10-16. The a posteriori
probability of the worst-case pattern is 0.9968, thus the regime can be considered worst-
case-dominant for many practical contexts. b) z = 0. 95 ,perr = 4.0 x 10-14. The symbol
patterns that produce second-to-worst ISI have the largest a posteriori probability. c)
z = 0.9 0 ,Perr = 1.5 x 10- 12. The set of symbol patterns that causes the received symbol to
fall into the region [-36, 36] dominates the a posteriori probabilities. The worst-case ISI,
which causes the event Z = -56, is not part of this set.
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Figure 1-5: A Dichotomous Channel in the Quasi-worst-case-dominant Scenario

Note that, in general, the I coefficients need not occur consecutively, nor be restricted

to a specific portion of the channel.

By considering an equivalent channel of length 1, the previous characterization of

the worst-case behaviors extends to worst-case interference caused by the principal

part of the channel. The corresponding regime is referred to as the quasi-worst-case-

dominant regime and is illustrated in Figure 1-5 for a two-level channel. In this

example, the principal part of the channel has length 1 = 5, signal mean z = a and

interference coefficients of magnitude b, while the secondary part of the channel has

coefficients of some lesser, unspecified magnitude. The plot illustrates only the a

priori probability distribution of the random variable Zi and highlights the events

that aggregately dominate the a posteriori probability. The latter correspond to all

the events associated with the worst-case patterns ±(-1, 1, -1, -1) formed by the

principal part of the channel and producing signal values centered at a - 4b.

1.3.3 Large-set-dominant Regime

In the subsequent chapters, the large-set-dominant regime is principally considered

as a default regime for all the cases that, in a given context, do not fit the two

other regimes. For instance, it can be used to classify the behaviors illustrated in

Figures 1-2a-b) and, depending on the context, 1-2c-d). It also applies to the

MMMMMMMMMM...PPPP~P··



conditions of Figure 1-4, where the system does not operate in either the worst-case

or quasi-worst-case-dominant regime due to the negative decision distance. Since the

large-set-dominant scenario encompasses a range of possible a posteriori probability

distributions, more general results regarding the error affecting any given symbol

are difficult to formulate. Instead, Chapter 3 develops a numerical algorithm for

computing probability distributions when a system cannot be considered to operate

in one of the limiting cases.

However, an important general result regarding the large-set-dominant scenario

can be formulated with respect to the joint error behaviors. Specifically, in large-set-

dominant conditions that are sufficiently removed from the worst-case or quasi-worst-

case scenarios, the error events on the received signals can be considered effectively in-

dependent. Since the corresponding conditions pertain to joint error statistics, rather

than the a posteriori error probabilities, these cases are discussed in Section 2.3.2 of

Chapter 2.

1.4 Summary

The purpose of this chapter is two-fold. First, it seeks to convey the sense of ur-

gency which permeates many aspects of the high-speed link research, in a race to

keep up with the ever-increasing demands in speed and energy-efficiency. Second,

it introduces an abstracted framework suitable for a more theoretical approach to

high-speed links. Modeling a high-speed link as an ISI-limited system with additive

white Gaussian noise, possible error mechanisms are categorized according to three

scenarios, or regimes: the large-noise, the worst-case-dominant and the large-set-

dominant. This categorization plays an important part in the subsequent chapters

by providing means for a significantly more rigorous analysis than that achieved in

the previous work on coded high-speed links, as well as enabling the development of

new, alternative error-control methods tailored for the different scenarios.



Chapter 2

Coding for High-speed Links

Most modern communication systems employ some form of coding as a technique to

improve the quality of communication. These often include redundancy-based error

control codes that allow for error detection or correction, run-length-limiting codes

that improve the receiver's clock recovery, or DC-balancing codes that protect the

timing circuitry against capacitative coupling. While inter-symbol interference (ISI)

has a limited effect on the timing properties of a code, the performance of error-

control codes is significantly impaired, as demonstrated in [4]. A variety of higher-

complexity techniques discussed in Section 2.1.3 combat the ISI to some extent, but

few are suitable for power or complexity-constrained systems.

The developments in this chapter build on the regime classification framework de-

veloped in Chapter 1 in order to further characterize the marginal and the joint error

behaviors of systems with noise and inter-symbol interference. The corresponding re-

sults provide conditions under which standard error-control codes perform optimally'

and, otherwise, lead to a new approach to error-control coding for the worst-case-

dominant or quasi-worst-case-dominant regimes.

'That is, the conditions where the ISI has little effect on the joint error statistics and the error
control suffers little or no impairement.



2.1 Preliminaries

This section overviews the basics of error-control coding and extends the previously-

described high-speed link model to include coded transmissions. Previous work re-

garding coding for high-speed links is overviewed as well.

2.1.1 Error-control Coding

This section briefly overviews the basic principles of error-control coding of use in

Chapters 2 and 3. A more thorough treatement is available in [1] or [2].

Error-control codes codes introduce controlled redundancy in order to improve the

reliability of the transmission, either through forward error correction or error cor-

rection with retransmissions. Note that the corresponding stream of bits is therefore

necessarily constrained. In an (n, k) binary linear block code, each n-bit codeword is

obtained through some linear combination, over the binary field F2 = {0, 1}, of the

underlying k information bits. In a systematic linear block code, the k information

bits appear explicitly, along with the n - k parity bits computed using a binary map.

Linear block codes over finite fields of higher orders operate on the same principle.

The most celebrated example are the Reed-Solomon codes, which are extensively used

in data storage and telecommunications.

Linear block codes are intuitively simple and thus commonly provide a starting

point for new applications, as further discussed in Section 2.1.3. However, the concept

of error-control coding also extends to the more powerful convolutional, LDPC and

turbo codes.

Regarding decoding, a system can implement hard-decision decoding or soft-

decision decoding. Hard-decision decoding operates over a finite field and is thus

decoupled from the detection problem. In soft-decision decoding, the real-valued sig-

nals are used in order to make more informed decisions. Although hard-decision de-

coding allows for relatively simple hardware implementations-for binary linear block

codes, the setup is a simple threshold device folowed by delay and logic elements-

the soft-decision decoding provides a performance benefit.



A notion of importance in linear block codes is that of Hamming distance. For any

two codewords, the Hamming distance corresponds to the number of positions, out of

n, where the codewords differ. For some coodebook C, defined as the set of allowed n-

bit codewords, the minimum Hamming distance dH is defined as the minimum distance

between any two codewords in the codebook. Assuming hard-decision decoding and

correcting to the nearest2 codeword, a codeword will be decoded correctly if and only

if there are less than [dH/2J detection errors in a codeword. The quantity LdH/2J is

the error-correcting power of a code, denoted by the parameter t.

Note that in bandwidth-limited systems, an important factor of the code perfor-

mance is the coding overhead. The coding overhead refers to the fact that only k

bits out of the n codeword bits carry information. For a coded system operating at

some signalling rate R, the equivalent information rate is thus Rk/n. When a system

is severely bandwidth-limited, it can happen that an uncoded system operating at a

rate of Rk/n can outperform a coded system operating at rate R. In the context of

this thesis, this behavior is referred to as the rate penalty of a code.

2.1.2 System Model

The system model is that of the abstracted ISI-and-AWGN-limited system intro-

duced in Chapter 1, with the addition of an encoder/decoder, as shown in Figure 2-1.

Despite the fact that the depicted system implements hard-decision decoding, the de-

velopments of Chapters 2 and 3 are general, unless specified otherwise. The meaning

of quantities Xi, Zi, and Yj is unchanged and the convolution equation, reproduced

below for convenience, remains valid.

L

Zi = XkhL-k (2.1)
k=1

In the above equation, X 1 is transmitted first, XL last, and ho, ... , hL_ R

are the channel coefficients. Note that, for the ease of notation, the communication

channel is assumed to be causal, that is hi = 0 for indices i < 0. This is also referred
2 Again, with respect to the Hamming distance metric.



to as the channel causing no pre-cursor ISI. Through the remainder of the chapter,

the cases where pre-cursor ISI changes the nature of the result will be discussed

explicitly. Otherwise, it is to be assumed that the results hold unchanged or require

trivial adjustments, such as adjustments to indexing.

Linear Block Mod Demod

(After TX/RX equalization, MF, sampling, ...)

Figure 2-1: Equivalent Channel Model

Although this chapter deals with a coded high-speed link, the development focuses

on the abstracted physical layer, that is, on the behavior of the system between the

encoder/modulator and decoder/demodulator blocks. In this context, a symbol still

refers to the modulated version of an individual bit, rather than the full codeword.

In that sense, the effect of coding is to constrain the symbol stream, while the effect

of the ISI is to introduce dependencies between the corresponding received signals.

Assuming blind symbol-by-symbol MAP detection, discussed in Chapter 1, and plac-

ing the decision threshold at the origin, a detection error thus still refers to the union

of the events {Yj < OjXi = 1} and {Yi > 0OXi = -1}. The notion of decoding for

error-control codes, and the error rates resulting after error correction, is addressed

through joint symbol error statistics, by considering the probability of observing more

than t detection errors in a given block of n symbols.

2.1.3 Previous Work

Since coding schemes were previously considered impractical for high-speed links due

to their rate penalty, most research efforts to bring more advanced communication

techniques to high-speed links have focused on improved signaling/modulation tech-

niques and equalization [5, 16]. Prior to Lee's S.M. thesis [4], two results [11][12]

reported successful implementations of forward error correction or error detection

codes for high-speed links. However, [4] was the first systematic study of the benefits



of such coding schemes. The principal results of [4], achieved experimentally through

an FPGA3 implementation of encoders and decoders, are the following. First, for the

link channels tested, codewords with up two 10 errors occur with sufficiently high

probability. Since forward error correction schemes need to provide immunity against

such events, [4] concludes that the forward error correction performance gain is not

high enough to justify the hardware and rate overhead. Second, burst forward error

correction codes, optimized to deal with a potentially large number of errors occur-

ring within some separation, are impractical since the typical burst length is often

too large to allow for a low-overhead code. Third, assuming accurate retransmissions,

all the tested error detection schemes yielded an improvement in the bit error rate of

five orders of magnitude or more, including the rate penalty. Since, relative to the

corresponding error correction capability, error detection requires relatively low over-

head, [4] recommends the implementation of error detection codes with an automated

repeat request (ARQ) scheme. The feedback path required for ARQ is available in a

high-speed link through common-mode back-channel signaling [7].

The principal reason why [4],[11] and [121 rely solely on experimental results is

the previous lack of a suitable analytical framework as well as a lack of alternative

performance evaluation techniques for coded high-speed links. While it was previously

recognized that the inter-symbol interference is an important error mechanism in high-

speed links [6], no previous analytical characterization of different couplings between

the noise and the interference, and the resulting effect on the nature and frequency

of error occurrences, is available. The previous work in performance evaluation of

high-speed links is discussed in Section 3.2 of the subsequent chapter.

The general subject of communicating in ISI-dominated environments has been

addressed in several different contexts. The standard approach consists of decoupling

the equalization and coding. More precisely, drawing from variety of equalization

techniques [3], the problem becomes that of designing an optimal equalizer to min-

imize the ISI and designing optimal codes for ISI-free operation. Although this has

been known to combat the bandwidth limitations to a practical degree, the tech-
3Field Programmable Gate Array.



nique suffers from the rate penalty whose effects vary with the severity of the ISI. A

widely-acknowledged class of channels with severe ISI are encountered in magnetic

recording. Based on the differentiation step inherent in the read-back process, mag-

netic recording systems are modeled as partial response channels [20]. The partial

response channels of interest in magnetic recording are integer or binary-valued, first

studied in [47]. Since for real-valued channels with noise and ISI, operating in the

worst-case or quasi-worst-case-dominant regime reduces the communication channel

to a binary signature, the results pertaining to binary-valued partial response chan-

nels are of interest for the present development. An example of such a channel is the

Extended Partial Response 4 (E2PR4) channel.

A variety of communication techniques has been developed to improve the com-

munication over partial response channels and other ISI-limited environments. These

include decision-feedback-based techniques with coset codes [24, 25], Tomlinson-

Harashima precoding [27, 28], vector coding [29], partial response maximum like-

lihood [21-23], and numerous extensions of coding concepts to partial response chan-

nels, where the most recent ones include [30-36] among others. However, the most

relevant link to the pattern-eliminating codes introduced in this chapter is the work

on distance-enhancing constraint codes for partial response channels.

The work on distance-enhancing constraint 4 codes spurred from an observation [37]

that a rate 2/3 (d, k) = (1, 7) run-length-limiting (RLL) code provides a coding gain

of 2.2 dB on the E2PR4 channel, where the coding gain is measured with respect

to the squared Euclidean distance. Shortly after, maximum-transition-run (MTR)

codes were introduced in [38] and demonstrated to yield potentially large coding

gains. Similarly, the last twelve years have witnessed a wealth of development in

distance-enhacing constraint-codes for the partial response channels. Some of the

principal results are thoroughly reviewed in [39], while the more recent contributions

include [40-45] among others.

Much like the pattern-eliminating codes, the distance-enhancing constraint codes

4For convenience, the term constraint coding refers to any code whose sole purpose is not error

correction. Namely, such codes include RLL and MTR codes.



yield a coding gain by preventing the occurrence of harmful symbol patterns. How-

ever, several fundamental differences distinguish the two types of codes. Structure-

wise, the pattern-eliminating codes are systematic, while the distance-enhancing con-

straint codes are not. Thus, both the proof techniques and the results differ between

the two cases. More importantly, the pattern-eliminating codes are optimized to

provide an improvement to the minimum decision distance, while this criterion is sec-

ondary in the distance-enhancing constraint codes. Note that the distance-enhancing

benefit of constraint codes has only been reported for E2PR4 and E3PR4 channels,

as the partial response channels of higher-orders are not binary. However, the codes

may yield a benefit over a wider range of channel signatures5 , a topic which remains

unexplored since binary channels of arbitrary signatures are not encountered in mag-

netic recording. Since distance-enhancing constraint codes are primarily designed for

timing purposes, it is unlikely that their distance-enhancing potential rivals that of

pattern-eliminating codes. However, a more precise comparison remains to be per-

formed. Finally, due to their non-systematic nature and non-trivial decoding, the

distance-enhancing constraint codes may require more hardware than the pattern-

eliminating codes but a more precise characterization is needed.

Finally, note that in the worst-case-dominant or quasi-worst-case-dominant regime,

the problem reduces to that of dealing with a discrete noiseless channel (DNC), first

studied by Shannon [13]. The DNC is characterized by a set of allowed transmitted

symbol sequences, or alternatively by their complement, that is, the set of forbiden

sequences. Thus, in a sense, error-free operation is achieved on the DNC by prevent-

ing the occurrence of symbol patterns from some given set. Shannon showed that the

capacity C of the DNC is given by

C = lim log n(t)
t-0o0 t

where n(t) denotes the number of allowed sequences of length t. Although not as

ubiqutous as the noisy channel models, the DNC continues to generate interest al-
5 A channel signature of a real-valued channel response is the underlying binary channel. Channel

signatures are first defined in Section 2.3.



most sixty years after the publication of [13]. For instance, [14] revisits, clarifies

and further generalizes the most important theorems on the DNC, while [15] consid-

ers a combinatorial approach to computing the capacity of the DNC. However, the

most important body of work on the DNC relates to the development of constraint

codes. Specifically, Shannon's results apply directly to most forms of constraint coding

over ISI-limited channels and have therefore found extensive application in magnetic

recording channels, where constraint codes are commonly used.

2.2 Coding on ISI-and-AWGN-limited Systems

Symbol Error Probabilities

This section develops general results regarding the effect of constraining the transmit

alphabet on the error probabilities of individual symbols. It is important to note that

the error events considered are those occurring on the symbol value, that is prior to

decoding. Analyzing the effect of a code on the systems performance after decoding

requires information about the joint error behaviors. The latter are the subject of

Section 2.3. Note that the present development deals with arbitrary constraints on

the transmitted sequence Xi,Xi_ 1,..., and thus applies to any code, including the

linear block codes and the constraint codes.

It is convenient to first consider an uncoded system and then observe what happens

with the addition of a code. Following the notation of Chapter 1, consider the uncoded

system characterized by zero-mean additive white Gaussian noise of variance ar2 and a

channel of some finite length L. Observing the transmitted symbol Xi, suppose that a

symbol error occurs with probability Perr,,,. Since the transmitted symbols are assumed

to occur independently, with values drawn from the set {-1, 1} with equal probability,

since the noise affecting the signal is independent of the signal and since it has zero

mean, placing the decision threshold at the origin causes the symbol detection error



p,,,rr to be independent of the value of the transmitted symbol. That is,

Perr = P(Y < O|Xi = 1)P(Xi = 1) + P(Yj > OjXi = -1)P(X i = -1) (2.2a)

= P(Y < OIXi = 1) (2.2b)

for any i E Z. In addition, since the noise is white and the transmitted symbols

unconstrained, the errors occuring on distinct symbols are identically distributed 6.

Thus, to simplify the exposition, all the results of this section concern the transmitted

symbol at some time index i E Z and are conditioned on Xi = 1. Then, let X =

(Xi- 1,..., Xi-L+ ) be the string of L - 1 previously7 transmitted symbols.

Employing the inner product notation as a shorthand, let h = (hi,..., hL-1) and

rewrite Equation 2.1 as

Y = hoXi + (X, h) + Ni.

The following expressions for the error probability are of some use in the upcoming

development.

Perr = P(Y < OIX = x, Xi = 1)P(X = xjXj = 1) (2.3a)

= Z P (N 2 < - (ho + (x,h))) P(X = xIXj = 1) (2.3b)
xE{--1,1}

L - 1

where, as previously defined, Ni - N(0, a 2) represents the noise on the received signal.

In addition, note that for an uncoded system,

P(X = xjXi = 1) = P(X = xlXj = -1) = 2 -L+1 Vx E {-1, 1) L - 1

At this point, it is convenient to distinguish between the large-noise, worst-case-

dominant and large-set-dominant scenarios. The development of all three sections

is general, that is, does not rely on any a priori classification. To the contrary, it
6 But are in general not independent unless separated by more than L symbols.
7 Note that this notation differs from that of Section 2.3 where X = (Xi,Xi- 1 ,...,Xi-L+I),

that is, where vector X includes the most-recently transmitted symbol. The choice of excluding Xi
simplifies the notation when conditioning on the event Xi = 1.



develops practical results that can be used to classify a system according to the three

interference-and-noise scenarios in the context of its symbol error probability. The

worst-case-dominant scenario is addressed first, since it follows most immediately

from the previous development.

2.2.1 Symbol Error Probabilities in the Worst-case-dominant

Regime

Conditioned on Xi = 1, let xw E -1, 1 L- 1 denote the symbol pattern that mini-

mizes the distance to the decision threshold of the recieved signal in the absence of

noise, that is,

(xw,, h) = min (z, h)
zE{-1,1}

L - 1

Assuming for the time being that the channel has no coefficients of zero magnitude

and that, without loss of generality, ho = 1, it follows that

xW = (-sign hi, -sign h2, .. . , -sign hL-1). (2.4)

Expanding Equation 2.3a,

Perr = P(Yi < 0X = xw, Xi = 1)P(X = x|Xi = 1)

+ j P(Y < 0X = x, Xi = 1)P(X = xjX, = 1). (2.5)
xE{-1,1}

L - 1
, xxwc

Let f : 0 < f < 1 denote the a posteriori probability, conditioned on Xi = 1 and on

the event Yj < O0, of the L - 1 previously transmitted symbols forming the worst-case

pattern x,1 . More precisely,

P(X = xwcIY < 0,Xi = 1) = f (2.6)

The pure worst-case-dominant regime thus happens in the limit f --+ 1. However, the

following development makes no assumption on the value of f. Instead, the concluding



part of this section offers practical guidelines on when f is sufficiently large for the

error to be attributed, with sufficient confidence, uniquely to the occurrence of the

worst-case ISI.

Now, Equation 2.2b and a straightforward reformulation of the above conditional

probabilities yields

P({X = xwc n Yi < O}IXi = 1) (2.7a)
Per = (2.7a)f

P(Y2 < 0IX = xW, Xi = 1)P(X = xwjlXi = 1) (2.7b)
f

P(Y < X = xw, Xi = 1)2-L+  (2.7)
= (2.7c)f

Comparing the above equation to Equation 2.5, it follows that the portion of error

not due to the worst-case ISI is given by

E P(YI<OIX=x,Xi=1)2 - L+ = (1 - f)Perr (2.8)
xE{-1,1}L-1, x xWC

Finally, it is also convenient to express f as

P(Yj < OIX = xwe, Xi = 1)
P(Y < OIX = Xwc, Xi = 1) + Exe{-1,1}L-1•,xOxw P(Yi < OIX = x, Xi = 1)

(2.9)

Now consider the effect of adding a code to the previously-described system, where

the code need not be a block code nor be linear. For a given transmitted symbol Xi,

the code constraints imposed on symbol sequences reduce the set of allowed symbol

history vectors X = (Xi-1,.., Xi-L+ 1) according to the value of Xi and its position

in the codeword. Thus, in general

P(X = x|lX = 1) 5 P(X = x|lX = -1)

and P(X = xlXi = 1) P(X = xlX j = 1), when if j.

Note that to reduce unnecessary redundancy, the subsequent developments only con-

sider unilateral quantities, conditioned on Xi = 1. The analogous quantities for the



case where Xi = -1 are obtained in a similar manner.

Referring to the transmitted symbol Xi = 1 for some i E Z, adding a code to

the system has two possible outcomes: by constraining the set of allowed transmitted

patterns, the code either prohibits the event (Xi- 1,... , Xi-L+I) x= xC or it does not.

The following sections analyze each case individually.

Coded Performance with the Uncoded Worst Case Present

For a given code, conditioned on the transmitted symbol Xi = 1, let 'I denote the

set of allowed transmitted symbol sequences X = (Xi- 1,... ,Xi-L+1). The present

development concerns the case where x,, E Ti and x,, is the uncoded worst-case

symbol pattern defined previously. The analogue to the a posteriori probability f is

fl : 0 < fl < 1 given by

P(X = xwIY < 0, Xi = 1) = f1) . (2.10)

where all probabilities from now on refer the constrained sample space. Also consider

the unilateral error probability

perr = P(YE < O|Xi = 1).

Noting that

P(X = x|Xi = 1) = Ix4|i- 1  (2.11)

where the ''ij denotes the cardinality of the set Ti, and rewriting Equations 2.3b

and 2.7c accordingly yields

Perr = P(Ni > (ho + (x, h)) I i[- 1  (2.12)
xEQi

P(Y, < OIX = xe, Xi = 1) j9_1-1
= (2.13)f,



Similarly, Equation 2.9 can be expressed as

f, = P(Y < OIX = x, Xi = 1) (2.14)

P(Yj < OIX = x~, Xi = 1) + E P(1Y < 0IX = x, X= = 1)
XE•i,XOxwc

The above expression leads to the following useful result.

Theorem 1. For some uncoded system, let f : 0 < f < 1 denote the a posteriori

probability of the worse case symbol pattern x•,, conditioned on Xi = 1. After im-

posing some set of constraints on the transmitted symbols, assume that x', E ' I for

some i E Z. Letting fA : 0 < f' < 1 be the corresponding a posteriori probability of

the same worst-case symbol pattern xe,, it follows that

f 2f (2.15)

Proof. Compare the above Equation 2.14 with Equation 2.9. Direct comparison is

allowed because the probabilities in both expressions refer only to the sample space

of the random variable Ni. In other words, by conditioning the received signal on

some symbol pattern, the only remaining uncertainty is due to noise. Since the latter

is assumed to be independent of the signal, its sample space is not affected by any

code constraints. Now notice that the two equations have the same numerator but

that

S P(Y < 0IX = x, Xi = 1) P(YI < 0IX = x, Xi = 1)
xE--1,1}L - 1

, xOXwc XEqIi, X•Xwc

since restricting the set of allowed symbol patterns only removes elements from the

sum. The result follows. O

Since the above theorem holds for any 0 < f 5 1, specializing it to the case

where, given a context, f is sufficiently large for the regime to be considered worst-

case dominant, leads to the following result.



Corollary 1. Given an uncoded system operating in the worst-case-dominant regime,

observe the symbol Xi = x E {-1, 1} for some i = 1,...,n. If imposing code con-

straints on the system does not prohibit the occurrence of the worst-case pattern pre-

ceding symbol Xi, then the error on Xi is still dominated by the worst-case interference

event.

Reverting to the general case of 0 < f < 1 and seeking to express the new symbol

error probability with that of an uncoded system yields the following result.

Theorem 2. Under the conditions of Theorem 1, let Perr and pr,, denote unilateral

symbol error probabilities of the uncoded and coded systems respectively. Then,

p' 2 L-1 f-err (2.16)

Thus,

S err- (2.17)

Proof. The equality follows from Equations 2.7c and 2.13. The upper inequality is a

consequence of Theorem 1, while the lower follows letting ff = 1. O

It follows that, in the limit of f - 1, the coded symbol error probability p' equals

the uncoded probability p, adjusted by a scaling factor that reflects the increase in

the relative weight of each remaining symbol pattern.

Coded Performance with the Uncoded Worst Case Removed

Now consider the case where, for some index j E Z, the worst-case pattern x,, is

prohibited from preceding Xj = 1. In other words, x,,, ' Ij. The new unilateral

error probability p"r is given by

P•rr = P(Yj < OIX = x, X = 1) (2.18)

=Z P(Y < 0IX = x, Xj = 1)P(X = x|X j = 1) (2.19)
xE~lj



where

P(X = xlX j = 1) = I| W-1 (2.20)

and I jl denotes the cardinality of the set Tj.

The following is the counterpart to Theorem 2 of the previous section.

Theorem 3. For some uncoded system, let f : 0 < f < 1 denote the a posteri-

ori probability of the worse case symbol pattern xwc, conditioned on Xj = 1. After

imposing some set of constraints on the transmitted symbols, assume that xw, 0 Tj

for some j E Z. Then for the new unilateral symbol error probability, p''r, given by

Equation 2.18, it holds that
p" 2L-1Perr < ( 1- f)
Perr -

Proof. Since

SP(Y < OIX=x,X,=1) < E P(Y < OIX = x,X,= 1)
xE j xEf{-1,1}

L - 1
, x:xwc

the result follows by applying Equation 2.8 and Equation 2.19. O

Note that the above bound may not be of practical use for moderately small
2L-1

values of f as the ratio _< is potentially large for high-overhead codes. However,

as f --+ 1, the bound becomes tight. As further discussed in Section 2.2.1, the

corresponding result is of significant practical importance as it provides the foundation

for a new approach to coding for worst-case-dominant scenarios.

Extensions to Quasi-worst-case-dominant Scenarios

The previous results extend to the case of a dichotomous channel introduced in Chap-

ter 1. Note that, as previously discussed, the dichotomous nature of the channel is

purely a practical concept-it conveys how much of the channel response is significant

in some context.



By redefining the meaning of symbols f and L, many of the previously developed

results extend immediately to the case where the significant coefficients are consecu-

tive. Specifically, consider a channel of length L where the corresponding coefficients

can be separated into two parts: the principal part of length L' and the secondary

part of length L - L'. By redefining the worst-case pattern in terms of the principal

part alone and taking into account the fact that the worst-case pattern now has mul-

tiplicity 2L-L', the resulting expressions for the uncoded system hold unchanged. In

particular, note that , when f = 1, or in the limit when f -+ 1 if the noise has infinite

support, the dichotomous channel is said to operate in a quasi-worst-case-dominant

scenario.

For the coded performance, restricting the set of allowed symbol patterns Xi to

patterns formed by the principal part of the channel alone is not sufficient to generalize

all of the corresponding expressions. In particular, different patterns formed by the

principal part of the channel can have different multiplicities due to the effect of

the code constraints on the secondary part of the channel. However, this matters

little from the practical perspective since the coefficients in the secondary part of the

channel are typically considered negligible.

Practical Implications

This section revisits the previous expressions and derives practical results regarding

the performance of error-correcting codes for high-speed links. Proceding in the logical

order, consider the question of how large f needs to be for the error mechanism to

be considered worst-case dominant in the context of symbol error probabilities. Note

that the following discussion applies to any system, coded or uncoded. Moreover,

note that the worst-case pattern need not be that of Equation 2.4. That is, when the

former is prohibited from occuring, the new worst-case pattern becomes what was

previously the second-to-worst symbol pattern, and so on.

Suppose that f < 1 and denote by perr the true error probability. Furthermore,

denote by P.er the approximate error probability computed under the assumption



f = 1, that is

Perr = P(Yi < OIX = xwe, Xi = 1)P(X = xwclX = 1).

The error inherent to the approximation is then given by

perr 1

Perr f

where the above expression follows from Equation 2.7b. For instance, when f Ž 0.1,

the approximation differs by at most an order of magnitude. This type of accuracy is

adequate in high-speed links, since a system operating at error probabilities of 10-",

for instance, has roughly the same performance as that operating at 10-14. Also note

that, since 0 < f < 1,

Perr • Perr-

Thus, the f = 1 approximation underrepresents the true error probability by a factor

of 1/f.

The above result, in conjuction with those of the previous sections, is of particular

use in performance estimation of coded systems at low error rates. For an uncoded

system limited only by noise and inter-symbol interference, computing accurate error

probabilities is straightforward even in the tails of the error distributions, while the

same quickly becomes prohibitive for coded systems when potentially long codewords

and channel responses are to be taken into account. Thus, while it's difficult to accu-

rately compute p'rr, accurate results for f and perr are readily available. Furthermore,

note that the quantity, I TI for a coded system is entirely determined by the nature of

the code and the length of the channel response; for instance, for a binary linear block

code, 1'i[ = 21 where 1 is the number of non-parity symbols out of the L symbols

transmitted at time indices i, i - 1,..., i - L + 1.

First consider the case where the code does not prevent the worst-case symbol

pattern from preceding symbol Xi for some time index i, that is, xc E Ti. Then,

given an accurately computed value of f, it is convenient to use the inequalities of



Theorem 2, reproduced below for convenience, to bound p'rr"

2 L-1 < P 2 L-1
f < err-<

As f -- 1, the bound becomes tight. More practically, the bound can be used as an

approximation for sufficiently large f. For instance, when f = 0.1, the approxima-

,,, 2
L - 1

tion perr - 2- may overestimate the new error probability by at most an order of

magnitude. Also note that in the case when the code does not prevent the worst-case

symbol pattern from preceding symbol Xj, Theorem 1 states that, if f is large enough

for the error in the uncoded system to be considered worst-case-dominant with suf-

ficient accuracy, then the error occuring on symbol Xi in the coded system is also

worst-case-dominant.

Now consider the case where the code constraints do prevent the worst-case symbol

pattern from preceding symbol Xj, that is, xw, ' Ij. The corresponding bound,

formulated in Theorem 3 is reproduced below for convenience.

prr 2 L-1Perr < (1 - f)

Note that the above bound may become too pessimistic for codes with large overhead.

However, the bound becomes tight as f -+ 1, when, as expected, p"rr -- 0. This result

provides the foundation of the pattern-eliminating codes introduced in Section 2.4.

Since the behavior of interest concerns the conditions where f is sufficiently close

to unity, developing a tighter bound at lower f, although possible, is in a sense

superfluous. Furthermore, note that, regardless of the value of f, the quantity p err

can be accurately computed using the numerical algorithm introduced in Chapter 3.

Finally, note that, for an (n, k) block code for instance, it is possible to have

both xw, E G i and xw,, ý Ij for some 1 < i,j < n, i j. In fact, Section 2.4.2

introduces new (n, k) block codes whose sole purpose is ensuring that x,, ' •j for

all 1 < j < k. The question of how large f needs to be for such a code to provide

some significant benefit is also addressed in that section.



2.2.2 Symbol Error Probabilities in the Large-noise Regime

Since the large-noise scenario treats inter-symbol interference as negligible, the cor-

responding symbol error probability for both coded and uncoded systems is trivially

given by

Perr = P(Ni < -ho),

where the notation follows that of the preceding sections. The present development

thus focuses on practical guidelines regarding when a system can be considered to

operate in this scenario. For an uncoded system with ISI, the error inherent to

assuming a large-noise scenario, expressed as a ratio of resulting error probability to

the true error probability, is given by

P(N, < -ho)approximation error =
ZXE-• ,lIL-1 P(Nj < -ho - (x, h)) P(X = xlZX = 1)

where ho > 0 by an earlier assumption and Equation 2.3b is used to compute the true

error probability. A similar expression holds in the coded case, with the exception

that the resulting probability is unilateral and that the symbol patterns prohibited by

the code are not considered in the sum. However, the following simpler criterion may

be more convenient, at the expense of being more restrictive. For a system with weak

interference, an error event must be due to the tails of the noise distribution if the

system is to operate at a low error rates . Let A denote some likely' maximum signal

deviation due to the ISI in the absence of noise. Note that the magnitude of A depends

on the variance of the ISI. For instance, for a channel with interference coefficients on

the order of 1/L, where L is the length of the channel, the variance of the ISI equals

L•-. Thus, for a relatively long channel with relatively weak interference coefficients,

the quantity ho - A is typically much larger than the maximum signal deviation due

to ISI, given in this example by ho - -

Now let Perr be the interference-free error probability, that is, Perr = P(Ni < -ho),

and let er,, be an exaggeration of the true error probability, that is, perr = P(Ni <
8As a reminder, high-speed links operate at error probabilities on the order of 10- 15
9i.e. the probability that IZ[ > A is sufficiently small to be negligible in a given context.



-ho + A). Then, applying the approximation to the tail of the normal CDF, given

by Equation 1.2 of Chapter 1, it follows that

Perr eA(ho-A/2)/lo 2 h0 + A
Perr ho

Note that the above ratio tends to unity as A -* 0. For ho and ho - A adequately

large so that the approximations are sufficiently accurate and assuming, in addition,

that A < h0/2, it follows that

e-Aho/a 2  Perr <3 Aho/a2

Perr - 2

The above expression is useful in that it provides a symbolic range of adequate values

of A, given some desired accuracy, without relying on the precise value of ho. For

instance, for sufficiently large ho so that the above expression applies, letting A = 12

yields that 0.9 < Perr < 1.4.
-- Perr -

A final comment on the accuracy of the approximation to the normal CDF, used in

the above expression, is in order. Equation 1.2 is obtained by truncating an asymp-

totic series. There are thus two issues involved: the truncation of a power series

and, more difficult, the accuracy of an asymptotic expansion in the region of interest.

While relevant results are likely available in the literature, the following numerical

example is offered as an illustration. The accuracy of the truncated asymptotic ap-

proximation for the normal cumulative distribution function at 5o7 away from the

mean in the negative direction, corresponding to a cumulative probability of 10- 7, is

approximately 4%. Furthermore, numerical simulations10 suggest that the error de-

creases monotonically as the argument moves further into the tail of the distribution.

Thus the approximation is adequate for the error ranges of interest.

10The error is evaluated in the interval [u,8a] in increments of 10 - 3 .



2.2.3 Symbol Error Probabilities in the Large-set-dominant

Regime

After excluding the large-noise, worst-case-dominant and quasi-worst-case dominant

cases from the pool of possible interference-and-noise scenarios, the remainder is a

set of possible situations where the error expression is dominated by some large set

of events. Although a variety of asymptotic results can be derived in this case, the

accuracy of the resulting approximations is more difficult to control than in the pre-

vious scenarios. Instead, Chapter 3 offers a practical numerical method of accurately

evaluating the symbol error probabilities in these and other scenarios.

2.3 Coding on ISI-and-AWGN-limited Systems

Joint Error Behavior

In order to evaluate the benefits of coding for channels with inter-symbol interference

it is not sufficient to consider only the marginal symbol error probabilities. The

present section thus focuses on characterizing joint error behaviors. Shifting the

interest from the marginal behaviors of individual symbols to the joint behavior of

n consecutive symbols has the effect of also transferring the attention away from

the code constraints and towards the characteristics of the channel response. The

conclusions still differ depending on whether the system operates in the large-noise

scenario, the worst-case-dominant scenario or the large-set scenario.

In the large-noise scenario, errors on different symbols are considered to occur

independently regardless of the channel response or the code constraints, as long as

the interference is sufficiently small compared to the noise variance and the noise

spectrum has sufficiently large bandwidth. The following sections thus focus on the

remaining two scenarios.

The present development concerns an (n, k) block code, not necessarily systematic

nor linear, where the value of k is irrelevant. In order to reduce the notational burden

of dealing with two sets of indices, denoting the location of the symbol in time and



within a given codeword, it is convenient to tolerate a slight abuse of notation. The

difficulty arises from the fact that, for an (n, k) code, the first context allows for any

i E Z, while the second limits the range of the index to i E {1, 2,..., n}. The solution

is thus to align the time axis with the location of the first symbol in a codeword and

let the indices of the previously transmitted symbols denote time indices uniquely.

2.3.1 Joint Error Behavior in the Worst-case-dominant Regime

Consider the case when the symbol error expression is dominated by the occurrence

of the worst-case pattern. Following the notation of Section 2.2.1, let f denote the a

posteriori probability, conditioned on an error event, of a worst-case symbol pattern.

Then, in the limit of f -- 1, the channel's signature, that is the equivalent binary

channel obtained by taking the sign of the original channel's coefficients, entirely

determines the joint error statistics. However, showing this formally requires some

subtlety. From the definition of f (Equation 2.6) , it is obvious that

lim P(X = x,,cIY < 0, Xi = 1) = 1.
f-- 1

Yet, the above result does not imply that, in the limit, the probability of errors due

to non-worst-case interference events is zero. By considering the limit of small noise

rather than large f, it may be possible to demonstrate the stronger result. However,

the intricacies of demonstrating almost sure convergence conditioned on an event of

vanishing probability would distract from the mission of this thesis, written with the

practicioner in mind. In practice, the worst-case-dominant scenario simply implies

that the errors due to non-worst-case interference events are sufficiently unlikely to

be considered negligible.

For the sake of rigor, however, it is convenient to visualize the following scenario.

Suppose that the worst-case symbol pattern places the received signal at some positive

distance d away from the decision threshold and the next possible interference value

is at some positive distance d + 6 away from the decision threshold. Assuming that

the noise has some finite support which extends in the negative direction to some



value -d', letting -d - 5 < d' < -d yields a case where an error can occur only for

worst-case interference. It is convenient to employ the shorthand f = 1 to refer to

this setup. This visualization has the benefit of allowing the following development

to focus on properties of worst-case patterns without obscuring it with extraneous

probabilistic overtones.

For a precise definition of the signature of a channel, consider a channel of length

L with some main coefficient ho > 0 the interference coefficients hi, ... , hL-1. For the

ease of representation, the channel response is assumed causal. However, all the re-

sults of this section can be trivially reformulated to include the precursor interference

coefficients. Formally, the channel signature s can be formulated as

s= (So,...,SL-1) E I-1, 1 L , where si = sign(hi) for all i= O,...,L - 1.

Then, the worst-case interference occurs on symbol Xi if and only if

(Xi, X-l 1 , Xi- 2 , ... 7 Xi-L+l) = -(SO, -S 1 , -8 2 ,. . . , -SL-1)-

To further streamline the notation, let p = (so, -s1, -S, ... , -SL-1) so that p and -p

denote the two symbol patterns that cause the worst-case interference on the most-

recently transmitted symbol. In other words, when (Xi,... , Xi-L+I) = p, symbol Xi

incurs the worst-case ISI. The notation differs from that employed in the previous

section since it is now convenient to include the most recently transmitted symbol,

Xi, into the symbol patterns.

To illustrate the extent to which the channel response controls the joint error

statistics in the worst-case-dominant regime, the following lemma shows that if two

consecutive symbols can jointly be in error, the corresponding channel response must

have one of two possible signatures.

Lemma 1. If f = 1 and some two consecutive symbols are found to be in error, then

the channel signature is either given by

s= (1,-1,-1,-1,...,-1)



or by

Proof. Let the errors occur on symbols indexed i and i - 1. Due to the symme-

try, it is sufficient to assume Xi = 1. Let Xi- 1 = Xi. Since f = 1, it follows

that (Xi,... ,X X-L+I) = p and (Xi-1,... ,Xi-L) = p. Matching the terms in com-

mon, it follows that Po = P, P = P27 - - - ,PL-2 P= L-1. Thus, p = (1, 1,..., 1) or p =

(-1, -1,... , -1), which corresponds to the channel signature s = ±(1, -1, -1,... , -1).

Similarly, letting Xi-1 = -Xi requries that po = -Pl,Pl = -P2,... ,PL-2 = -PL-1.

Thus, p = (1, -1, 1, -1..., (-1)L-1), which corresponds to the channel signature

s = i(1, 1,-1,1, -1,..., (-_1)L-2). El

Since admitting the occurrence of multiple errors in a block of n symbols imposes

a certain structure on the communication channel when n < L, it is convenient to

develop some indicator of when, for a given channel, multiple errors in a block can

occur. For this purpose, consider an indicator function c given by

c (1, p) = L 1 (2.21)
j=l

where p E { -1, 1}L is a worst-case symbol pattern and 1 1,..., L - 1 is the "delay".

Due to its resemblance to the usual autocorrelation function, and for the lack of more

a sensible terminology, the function c is referred to as the pattern-correlation function

for a given channel. The following theorem provides the motivation for the above

definition.

Theorem 4. Consider an unconstrained stream of symbols transmitted over some

channel of length L with the corresponding worst-case patterns +p. Assume that

f = 1 and consider symbols Xi and Xj for some i,j E Z, i > j > i - L. Then,

errors can occur jointly on both symbols with some non-zero probability if and only if

c(i - j,p) = 1.



Proof. Let j = i - 1, 1 < 1 < L - 1 and write the stream of transmitted symbols

affecting Yj and Yj as

Xi Xi-1 ... Xi-1 Xi_(+l) ... Xi_(L_1)

Xj Xj_ 1  ... Xj-(Ll-11) ... Xj-(L-1)

Since f = 1, errors occur on YI and Yj if and only if (Xi,... ,Xi-L+l) = ±p and

(X,... ,Xj-L+1) = ±p. But, because Xi- 1 = Xj, Xi-(l+1) = Xj-1, ... , Xi-L+ =

Xj-(L-1-1), then either (p0, ... ,PL--1) = (P1, ... ,PL-1) or (po, ... ,PL-1-1) = (-Pl, .- -.

-PL-1). Either way, c (i - j, p) = 1. Conversely, if c (i - j, p) < 1, then either Xi or

Xj_1 is not in the worst case. O

One can now distinguish two cases: one where, for a given channel with worst-

case patterns ±p, c(1, p) < 1 for all 1 = 1,... , L - 2 and another where c (1, p) = 1

for some 1 = 1,... , L - 2. In the former case, the channel is referred to as being

uncorrelated, while, in the latter, the channel is considered to be correlated. Note

that, trivially, c (L - 1, p) = 1 for any worst-case pattern p.

Uncorrelated Channel

The principal result concerning uncorrelated channels is a direct corollary of the

previous theorem.

Theorem 5. If f = 1 and c (l, p) < 1 for all 1 = 1,..., L - 2, then for any n < L, the

event of observing two or more errors in a block of n symbols occurs with probability

zero.

Proof. For an uncoded system, since the set of possible transmitted symbol patterns

is unconstrained, the result follows immediately from Theorem 4. For a coded system,

the result follows by applying Theorem 1 prior to applying Theorem 4. O

The above result is of significant use for linear block codes since it implies that,

in the limit f -+ 1, the single parity check code reduces the error probability to zero.

However, in practice, it is sometimes difficult to measure all, or any, of the channel



coefficients with certainty, and thus the full channel signature may not be known.

The following theorem shows that for some fixed codeword length n and assuming

all possible channel signatures to be equally likely, the probability of observing an

uncorrelated channel tends to unity with increasing channel length.

Theorem 6. Let the vector random variable P take on a value from the set {-1, 1}L

according to a uniform distribution. Then, for some fixed integer n such that 1 < n <

L and any 1 = 1,...,n,

P(c (1, P) = 1) - 0 as L -+ oo00.

Proof. Observe that
21+1

P(c (, P) = 1) = < 2n+1-L

Thus, P(c(l, P) = 1) -+ 0 as L --+ c. EO

Correlated Channels

Now consider an unconstrained sequence of symbols transmitted over a correlated

channel. Observe the sequence of symbols Xi,... , X-L+I, for some i,j E Z, i > j >

i - L, and denote by Perr the probability of a detection error occurring on symbol Xi.

Let 1 = i - j. Then, assuming that c (1, p) = 1, the probability of observing an error

jointly on Xi and Xj becomes p2r, x 2 L-'-1. This result is obtained noticing that,

when (Xi,... ,Xi-L+l) = +p, there are only 1 free symbols preceding Xj.

To further consider the effect of the joint statistics on a coded system, define the

minimum correlation distance A E {1,..., L} as the distance to the first correlated

index, that is, c (A, p) = 1 and c (1, p) < 1 when 1 < A. The correlation distance

becomes a practical quantity when implementing error-correction codes in the worst-

case-dominant regime. For instance, assuming f = 1, a single parity check code will

sucesfully correct all the errors as long as n < A.

Instead of pursuing these and similar issues further, the analysis of the joint er-



ror behavior in correlated channels is postponed until Section 2.4, which develops

guidelines regarding error-control coding in high-speed links. Note that the need

to communicate adequately over correlated channels provides the motivation for the

pattern-eliminating codes, also introduced in that section.

Extensions to Quasi-worst-case Scenarios

For the case of a dichotomous channel operating in a quasi-worst-case scenario, the

previous results generalize trivially11 as long as the coefficients in the principal part

of the response are consecutive. The case where the latter are not consecutive is

anologous to a channel with some zero-magnitude coefficients operating in the worst-

case-dominant regime. Intuitively, allowing zero-magnitude coefficients translates to

"don't care" positions in the worst-case patterns. By nulling out channel coefficients,

it thus becomes easier to nest worst-case patterns and the errors effectively become

more correlated. However, instead of pursuing this issue further, it is more relevant

to consider it from the coding point of view, as done in Section 2.4.

2.3.2 Joint Error Behavior in the Large-set-dominant Regime

Experimental results, such as the simulation results of Chapter 3 or the measure-

ments reported in [4], suggest that even in systems with inter-symbol interference,

the symbol errors can often be considered statistically independent. This immediately

holds in the large-noise scenario. For instance, consider a channel of length L with

the interference coefficients on the order of 1/L. Then, the variance of the ISI, given

by , vanishes in the limit of large L. Thus, for some given noise variance and

sufficiently large L, the error events are effectively independent.

The validity of the independence assumption for the large-set-dominant scenario

is not immediately obvious. Since the noise is considered independent across the sam-

pling instants, potential dependencies are due to the interference component alone.

For uncorrelated channels with interference coefficients of relatively even magnitude,

11The approach is the same as that of Section 2.2.1.



the following discussion shows that the error events in the large-set-dominant scenario

can generally be considered independent. Note that, due to the practical focus of this

thesis, the following arguments are formulated informally. However, the following

lemma provides the rationale for the result.

Lemma 2. Let x = (xi,... ,XL) and y = (Yl,..., YL) represent two L-dimensional

vectors, where x, y {-1, 1}L and L is even. Given x, let S denote the set of all

vectors which match x in exactly L/2 positions, compared term-wise. Let y E S. It

follows that the number of elements of S that match y in exactly m positions is given

by CLm = m(L!- when m is even, and is zero for m odd.

Proof. First pick any x, x {-1, 1 }L and note that the number of vectors in {-1, 1}L

that match x in exactly 1 locations is given by CL,

Now pick some y, z E S and let y', z' E {0, 1}L be indicator vectors such that

yx = 1 - xi = yi and zI  1 xi = z. It follows that, yj = zi

y = z'. Notice that for z to mismatch y in an odd number of positions, either y or

z would need to mismatch x in an odd number of locations, which contradicts the

definition of S. Similarly, for z to match y in exactly m locations where m is even, z

must match x in exactly m locations too. The number of possible vectors z that do

so is CL. O

Consider a channel of length L whose interference coefficients hi,..., hL-1 are

some fixed values taken from the set {-6, 6} with 6 > 0. Note that the probability

of observing some interference value from the set {-(L - 1)6,.. . , ..... , (L - 1)6} is

governed by a binomial distribution. First consider the limit where the error is due

with probability 1 to the set of symbol patterns which mismatch the channel signature

in exactly half of the positions. Suppose that the channel signature is uncorrelated,

where the term is used in the usual sensel2. Ignoring the effect of the edges, this

implies that the shifted versions of the channel match in exactly half of the positions.

By the above lemma, it then follows that, conditioned on the occurrence of a detection

12That is, not in the sense of pattern-correlation



error at time index i, the new probability distribution governing the interference value

at time i + L > j > i is still binomial for even multiples of J. Although interference

values at odd multiples of 6 can no longer occur, the error probability remains roughly

the same"3 . The errors at times i and j thus occur independently.

The above result can be extended to practical large-set-dominant conditions, up

to a certain accuracy. Still considering the uncorrelated channels with interference

coefficients of approximately even weight, consider the case where the a posteriori

probability mass is concentrated on a signal value other than the signal mean. Then,

the above result still applies as long as the following two conditions hold

1. There are sufficiently many symbol patterns associated with that signal value.

2. The corresponding patterns have a roughly equal distribution of -is and is.

The second condition ensures that the conditional probability distribution for any

adjacent signal is sufficiently close to a binomial, while the first ensures that the

gaps between the allowed conditioned signal values are relatively small. Note that,

for a given signal value, the first condition improves with the increasing L, while a

decreasing J reduces the effect of unevenness in the distribution of -is and is in a

given pattern.

For uncorrelated channels with interference coefficients of approximately even

weight, and provided that the above two conditions are satisfied, the independence

assumption extends to many practical situations. For instance, these include the

case discussed in Section 1.3.3 of Chapter 1, where low noise and minimum decision

distance can lead to the a posteriori probability mass concentrating on the signal

values in the vicinity of the decision threshold. The same holds when the probability

mass is concentrated at multiple such points, and the result thus extends to arbitrary

large-set-dominant scenarios. It is also interesting to observe the cases where the inde-

pendence assumption fails. As expected, it does not hold in the worst-case-dominant

13The change in the error probability due to "deleting" half of the possible interference positions is
a factor of the magnitude of 6 and the noise standard deviation a. When 6 is on the order of a or less,
the discrepancy is negligible for practical purposes. This is the only case of interest since the error
probability is otherwise unrealistically high (since the channel is moderately long and interference
coefficients roughly uniform).



regime, regardless of the channel coefficients, since condition 1) fails. Although the

two conditions can be satisfied in the quasi-worst-case-dominant case, the fact that

the interference coefficients are not all of approximately equal weight renders the ar-

gument invalid. Specifically, conditioned on the occurrence of an error on a given

received signal, the symbols corresponding to the location of the principal channel

coefficients are tied to their worst-case values. Then, considering the received signal

at the next sampling instant, the likely symbol patterns are no longer binomially

distributed - they are tied to some pattern formed by the symbols in the principal

part. The above results are summarized in the following proposition.

Proposition 1. Consider a system operating in a large-set-dominant regime. For an

uncorrelated channel of some large length L and interference coefficients hi,... ,hn-1

of relatively even magnitude, the error events are approximately independent, regard-

less of the noise variance. The approximation improves with the increasing L and/or

decreasing coefficient magnitude, as long as the regime is preserved.

The above conditions apply, for instance, to high-speed link channel equalized for

dispersion where inter-symbol interference is due to multiple, significantly attenuated

signal reflections. Note that, for long channels in general, pattern-correlation roughly

equals the usual correlation. By Theorem 6, a very large proportion of channel

signatures of length L is in fact uncorrelated.

Although it is difficult to accurately quantify the length of the channel or the

distrbution of the interference coefficients necessary for the independence assumption

to hold with sufficient accuracy, the simulation results of Section 3.5 of Chapter 3

suggest that the independence assumption is relatively accurate for a range of con-

ditions. Note, however, that the above argument assumes the transmitted symbols

to be unconstrained and the channel coefficients to have fixed magnitude. The im-

pact of the code constraints is also quantified in Section 3.5 in the context of system

simulation for coded high-speed links.



2.4 Codes for ISI-and-AWGN-limited Systems

Based on the results of Sections 2.2 and 2.3, this section provides a set of guidelines

regarding the adequacy of different codes for given interference and noise scenarios.

It begins by discussing the benefit of classical error control codes, which are shown

to be optimal in some regimes. However, the main body of the results serves to

develop new codes, better suited for correlated channels in the worst-case-dominant

(or quasi-worst-case-dominant) regime.

2.4.1 Classical Error-Control Codes

From the performance point of view, since the classical coding theory provides an

exhaustive characterization of different error-control codes, the cases where the lat-

ter are a suitable choice require little additional analysis. Further work, however, is

necessary to identify optimal error-control codes from the standpoint of the complex-

ity/performance tradeoff, critical in high-speed links. Classical coding theory applies

in the large-noise scenario, as interference has sufficiently little effect on both the

symbol error probabilities and error dependencies. By the results of Section 2.3.2,

the same generally holds for uncorrelated channels in the large-set-dominant scenario.

Considering error-control codes in a worst-case-dominant regime yields some supris-

ing results. Referring to the results of Section 2.3.1 for an uncorrelated channel where,

in the limit as f -- 1, at most one detection error occurs per codeword of length n,

the optimal code is the single parity check code (SPC). Specifically, for an uncor-

related channel, the probability of observing multiple bit errors separated by L - 1

symbols or less vanishes in the limit. Since the SPC corrects all single-bit errors in a

codeword, the error rate after decoding therefore also vanishes, as long as n < L - 1.

In practice, the probability of multiple errors in a codeword over an uncorrelated

channel drops off rapidly as f approaches unity. Moreover, on some channels, the

probability of multiple errors in a codeword is additionaly reduced through possible

pattern-eliminating properties of the SPC. In other words, since the SPC reduces the

set of allowed previously-transmitted symbol patterns by roughly a factor of 2
[L/nJ,



it is likely to reduce the occurrence of harmful symbol patterns by the virtue of con-

straining the symbol stream. These observations also extend to dichotomous channels

in the quasi-worst-case scenario by considering only the principal portion of the chan-

nel. It follows that the SPC may provide an efficient tool for combatting the ISI for

uncorrelated channels at realistic values of f, in the worst-case or quasi-worst-case-

dominant regime.

For correlated channels in the worst-case or quasi-worst-case-dominant regime, an

occurrence of a detection error renders errors on the surrounding symbols more likely.

Regarding the performance of the SPC, the error probability still vanishes as long as

n < A, where A is the channel's minimum correlation distance defined in Section 2.3.1.

However, for small A, letting n < A can significantly reduce the code rate.

Since, for heavily correlated channels in these regimes, multiple-error occurrences

within one codeword become more likely, standard error-correction codes are generally

impractical due to the large necessary overhead. Furthermore, common techniques for

decoupling the error occurrences, such as interleaving, heavily tax the system's power

budget. Specifically, the potentially long digital registers incur too much power and

area overhead at typical high-speed link data rates14 . Instead, for correlated channels,

there is a more efficient method of error control as it becomes more advantageous,

from the point of view of coding overhead, to focus on eliminating the occurrence

of the worst-case symbol patterns. This gives rise to a new type of block codes,

descriptively termed the pattern-eliminating codes. The remainder of this section

focuses on these codes exclusively.

2.4.2 Pattern-eliminating Codes

Results of Section 2.2.1 show that if code constraints prohibit the worst-case patterns

from occuring on a given symbol, the error probability vanishes as 1 - f when f -- 1.

The natural question is thus whether one should employ codes to accomplish this

purpose specifically. This section develops properties of (n, n - c) systematic block

codes whose sole function is to prevent the worst-case patterns from occuring on
14 In fact, for these reasons, the high-speed links operate principally in the mixed-signal domain.



any information symbol. For obvious reasons, these codes are referred to as pattern-

eliminating codes.

Pattern-eliminating codes differ from linear block codes in several important ways.

The most immediate difference is that the pattern-eliminating codes do not operate

by correcting or detecting errors, but by preventing errors through the elimination

of harmful symbol patterns. Also, such codes are not necessarily linear. However, a

more practical distinction between the two types of codes is the fact that the pattern-

eliminating codes require no decoding. Specifically, since the codes are systematic

and the constraint symbols are typically of little use for any redundancy checking,

"decoding" simply consists of removing the constraint symbols from the information

stream upon detection of the codeword. This is facilitated by the fact that the

constraint symbols occur at pre-determined locations. The synchronization issues are

the same as those encountered with linear block codes.

The Principle

In the context of this thesis, pattern-eliminating codes are (n, n - c) systematic binary

block codes, where c is the number of constrained symbol locations per block of n. For

the ease of representation, it is assumed that the c constraint symbols are consecutive.

The assumption matters little in situations where the channel coefficients are all of

roughly equal magnitude. However, as further discussed in Section 2.4.3, there may

be a benefit to spacing the constrained locations for some practical channels. This

generalization can be part of the future work on pattern-eliminating codes for high-

speed links.

Assuming the constrained locations to be consecutive, the constraint symbols are

then necessarily transmitted first since it is otherwise difficult to have control over

the symbol patterns affecting the received signal. However, the c constraint symbols

depend not only on the n - c information symbols that follow them, but also on the

L - (c + 1) symbols that precede them. In other words, the c constraint symbols

are chosen based on the fully known history affecting each of the n - c information

symbols. This choice allows the most efficient use of the c constrained locations.



Specifically, considering the full transmit history reduces the set of goals that the c

constraint symbols need to achieve and thus either allows for the minimum value of

c to be used or, for a given c, provides means of eliminating additional error-causing

patterns. The latter option is particularly attractive for cases where f < 1, yet f is

large enough so that a limited number of symbol patterns causes the majority of the

errors. The following example illustrates the limitations of constraining the c symbol

locations based only on the current n - c information symbols.

Example 1 Consider a channel of length L > 3 with the worst-case patterns (po,... ,

PL-1). Assume n > 3 and let X,,..., X 1 represent the codeword symbols with X 1 denoting

the single constraint symbol, transmitted first. Suppose that, while setting the value of the

constraint symbol given some input pattern. one ignores all symbols transmitted prior to

X 1 . Then, to ensure that the information symbol X 2 is not preceded by a worst-case pat-

tern, it is necessary that (X 2 , X 1 ) 7 ±(po,pl). Similarly, to ensure that X 3 is not preceded

by a worst-case pattern either, it is also necessary that (X 3 ,X 2 ,X 1) ±+(po,pl,p2)- If

Po = P1 = -P2, this is impossible to achieve. Thus, the code is not able to eliminate all

occurrences of the worst-case pattern. In order to render the code effective, it is necessary

to increase the number of constraint symbols. It follows that the penalty of encoding based

on n symbols alone is the potentially large increase in overhead.

Figure 2-2: "Encoding" in Pattern-eliminating Codes

Concerning adequate codeword lengths, first note that choosing n > L reduces

the effectiveness of the code since at least one of the constraint symbols will have no

effect on at least one of the information symbols. On the other hand, letting n < L

may either increase the effectiveness of the code in eliminating additional harmful

patterns or simply decrease the stress on the constraint symbols. The latter may, in

turn, lead to simpler encoder implementations, allow for a reduced c, or extend the

set of channels for which an (n, n - c) code is effective. The results of the following



two sections, which develop properties of (n, n - 1) and (n, n - 2) pattern-eliminating

codes, are derived letting n = L in order to provide the most restrictive conditions

under which a pattern-eliminating code yields a benefit. The results concern the

limit f -+ 1, in which context optimality translates into the ability to prevent the

worst-case patterns from preceding any of the information symbols. The remaining

sections extend these results to a more practical context.

Pattern Elimination With a Single Constraint Symbol

The analysis of the pattern-eliminating codes starts by answering the question of

when a single constraint symbol, i.e. c = 1, is sufficient to prevent all occurrence of

the two worst-case patterns, ±p employing the notation of Section 2.3, with respect

to the n - c information symbols.

All the results concerning the pattern-eliminating codes are obtained through the

one-to-one correspondence between the channel signature and the two worst-case sym-

bol patterns, ±p, which also provided the foundation for the results of Section 2.3.1.

The proofs proceed mainly by nesting the worst-case patterns and observing the im-

plications on the structure of the channel. To nest two worst-case patterns is to

stagger them by 1 symbols, where 1 = 1,..., n - c - 1 and equate the terms which

overlap, as illustrated in the figure below. The range of 1 reflects the fact that the ISI

which affects the c constraint symbols is irrelevant, since these are discarded upon

detection.

PIpr I P, 121tnIPs 4  I p6 p7  P 9 y b PlP, Ps = Pn
P6 = P2
P7 = P3

Po I P P 3 P 42 P P P,1 Po P, 2  PB P4 
=  Po

P9 Fu Ps 2 PW
P1O = P6 = P2

Figure 2-3: Nesting Worst-case Symbol Patterns



Prior to formulating a general criterion, the following example illustrates how an

(n, n - 1) pattern-eliminating code can fail to be effective over a given channel.

Example 2 Consider some channel response given by coefficients ho, hl, ... , hL and

let the corresponding channel signature s be entirely positive, that is, s = (1, , 1, ... , 1). It

follows that the worst-case patterns ±p are given by p = (1, -1, -1..., -1). Let n = L and

consider the codeword symbols (Xn,..., X 2,X 1 ), where XC1 is the single constraint symbol

whose value is set in some arbitrary fashion. Let

(Xn,Xn-1,... ,X2,X l) = (1,-1,...,-1,-1) = p.

Then, it suffices to "toggle" the value of X 1 to prevent the corresponding worst-case pattern

from occurring. The transmitted codeword thus becomes,

(XnXn-1,...,X2,X1) = (1,-1,-1,...,-1, 1) # +p.

However, given the above choice, consider the sequence of symbols X 2,... , X2-(n-1), where

symbols Xo,..., X2-(n-1) correspond to the first n- 2 information symbols of the previously

transmitted codeword. Then, if X 0 , X- 1,... , X 2-(n- 1) = (1, 1, ... , 1), it follows that

(X2, X, X o, -. .,X2-(n-1))= (-1, 1 1 ,1,1) = -p.

Thus, when X 1 = -1, the symbol Xn is affected by the worst-case interference, while when

X1 = 1, the worst-case interference affects symbol X 2. It follows that an (n, n - 1) pattern-

eliminating code is ineffective on this channel.

The following result provides the general criterion for determining whether, on a

given channel, an (n, n - 1) pattern-eliminating code is effective.

Theorem 7. Assume n = L and let p = (pl,... ,Pn) be a worst-case symbol pattern.

Then, the following two statements are equivalent:

(A): An (n, n - 1) pattern-eliminating code is ineffective.

(B): The worst case patterns ±p are such that there exist some m and 1 where 1 <

m < 1 < n - 1 so that p, = -PmPl-m and py_ = pmpjy-m for all j' 1, m < j' < n- 1.



Proof Let x,y E {-p, p} be some two worst-case symbol patterns. Create a

pattern y' by "toggling" exactly one symbol in y. Then, if x and y' can be nested so

that they are separated by at most n - 1 symbols, the (n, n - 1) pattern-eliminating

code is ineffective (a worst-case pattern occurs regardless of the value of the constraint

symbol). Conversely, it is clear that this is the only way for the pattern-eliminating

code to fail. The condition (B) directly follows by translating the previous statements

into appropriate notation. O

The above result is in essence a search algorithm 15 of complexity 2n. For instance,

the channel of Example 1 fails with I = n - 1 and m = n - 2. Note, however, that the

results of this section are derived under the most restrictive condition where n = L.

As a general rule, since most of the proof techniques rely on nesting worst-case pat-

terns, relaxing this condition further limits the extent to which different patterns can

be nested and can thus improve the performance of a pattern-eliminating code. To

illustrate this fact, reconsider the code of the previous example while adding one pre-

cursor coefficient h-1 to the channel, while maintaining the codeword length constant.

Example 3 Now consider the channel of length L + 1 given by h-1, h, ,..., hL-1

where s = (1, 1, 1,..., 1) as previously. The worst-case patterns +p become:

p= (-1, 1,-1,-1...,-1).

Consider a pattern-eliminating code of codeword length n = L. Following the previous

notation, assume that

(Xn,. ..,X2,) l) = p.

In this case, note that it still suffices to "toggle" the value of X 1 to prevent the corresponding

worst-case pattern from occurring. However, due to this particular channel signature and

the fact that, while nesting symbol patterns, the pre-cursor symbol needs to be taken into
15Given some channel response, it suffices to compute the worst-case pattern p. Then, by trying

the n - 1 possible nestings of p with p or -p, one either finds some values for m and 1, in which
case the code is ineffective, or one does not, in which case the code is effective.



account as well, it is impossible to nest a second worst-case pattern that would lead to a

contradiction. The code is therefore effective.

The above example can be generalized to show that for an all-positive channel of

length L, an (n, n - 1) pattern-eliminating code is effective as long as n < L. This

result is of practical use, as it indicates how an (L - 1, L - 2) pattern-eliminating code

can be successfully applied to dispersive channels. As another illustration, for the two

channels of Lemma 1, an (n, n-1) pattern-eliminating code is effective for any n < L.

The result follows by noticing that the worst-case patterns always nest fully, which

implies that it is impossible to derive a contradiction similar to those derived in the

first example. These observations are formalized as the following corollaries.

Corollary 2. For a channel length L with signature s = ±(1, 1, ... , 1) an (n, n- 1)

pattern-eliminating code is effective as long as n < L - 1.

Corollary 3. For a channel of length L with signatures s = ±(1, -1, -1, -1,... , -1)

or s = (1, 1, -1, 1, -1,..., (-1)L-2), an (n, n - 1) pattern-eliminating code is effec-

tive as long as n < L.

Note that the effectiveness of an (n, n- 1) pattern-eliminating code is generally not

tied to the channel correlation. If a channel is uncorrelated, then an (n, n-1) pattern-

eliminating code is ineffective for n = L, since the condition B of the previous theorem

holds with m = n - 2 and I = n - 1. However, this may no longer be true for n < L.

Similarly, it cannot be inferred that, in general, an (n, n - 1) pattern-eliminating

code is effective on any correlated channel, although this happens to hold for the two

correlated channels given in the Corollary 3. As a counterexample, consider a channel

with the worst-case pattern p = ( 1,-1, 1, -1, , 1, -1, 1, -1, -1). It is a matter

of straightforward computation to establish that the channel is indeed correlated, but

that condition B of Theorem 7 is satisfied, thus rendering the code unable to prevent

all worst-case patterns.
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Figure 2-4: Possible Encoder Implementation for a (n, n - 1) Pattern-eliminating Code

Lastly, for channels where one constraint symbol is sufficient, the following result

provides a simple algorithm for setting its value. It provides the basis for possible

efficient implementations, one of which is shown in Figure 2-4.

Theorem 8. Consider a channel over which an (n, n - 1) pattern-eliminating code

is effective. Let xz,. . . , x 2 denote some realization of the n - 1 codeword information

symbols and zo,..., 2-(n-1) denote a realization of the n - 1 previously transmitted

symbols. Then, the optimal value of the constraint symbol xl can be determined as

follows.

Pick some x e {-1,1}. If setting xl = x yields (xi,...,xi-n+l) / +p for i =

1,..., n - 1, then x is the optimal choice. Otherwise, set xl = -x.

Proof. For any x E {-1, 1}, if (x~,... , xi-n+l) = p for i = 1,..., n - 1, then z is

the best possible value for xi. Otherwise, since x can take only two values and since

an (n, n - 1) code is effective for this channel, then the complement of x is necessarily

the desired choice. O

Pattern Elimination On Any Channel

The following theorem, whose proof is included in the appendix, shows that two

constraint symbols are sufficient for a pattern-eliminating code to be effective over any

channel. However, due to the rate penalty of codes for bandwidth-limited systems,



further discussed in the following section, the issue of encoding for (n, n - 2) pattern-

eliminating codes is not addressed further. Instead, the following sections focus on

improving the performance of (n, n - 1) pattern-eliminating codes on channels where

such codes are effective.

Theorem 9. For any channel of finite length L and any n < L, the (n, n - 2)

pattern-eliminating code is effective.

Performance of Pattern-eliminating Codes

The previous section identified the channel signatures for which a pattern-eliminating

code prohibits any occurrence of the worst-case symbol patterns. Given a system

operating in the worst-case-dominant regime with some high f, the error probability

of a pattern-eliminating code, perr, is thus upper-bounded by Theorem 3, that is,

Perr _ 2c(1 - f)perr,

where Perr is the error probability of the uncoded system operating at the same

signalling rate. Note that a higher value of f can be obtained by considering the

worst-case patterns formed only by the "significant" interference coefficients1 6, whose

magnitude is large compared to the standard deviation of the noise. This is equivalent

to considering a dichotomous channel operating in the quasi-worst-case-dominant

scenario. In fact, Sections 2.4.3 and 2.5 show that dispersive channels at typical high-

speed link noise levels operate in the quasi-worst-case-dominant regime with very high

f, on the order of 1 - 10-10, thus yielding error-rate reductions of over ten orders of

magnitude compared to the uncoded case. It now remains to determine when, given

a bandwidth-limited system, the benefit of the pattern-eliminating code exceeds its

rate penalty.

Consider an (n, n - c) pattern-eliminating code applied to the six communication

16For instance, for a dispersive channel whose ISI spans 200 symbols, there is typically a benefit
in focusing only on eliminating the worst-case patterns defined only by the first few interference
coefficients, i.e. the dispersion coefficients. The coefficients in the tail of the response are typically
very small and the effect of an individual coefficient is negligible.
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Figure 2-5: Channel Examples

channels illustrated in Fig. 2-5a)-f). The channels have the same signature, but differ

by the position of the significant interference coefficients and by their respective mag-

nitudes. Suppose that on channels with an all-positive signature, the code guarantees

some d symbols of separation between allowed symbol patterns and the worst-case

patterns when n = L. Denote the corresponding improvement in the minimum de-

cision distance, guaranteed for any information symbol, by Ac, For channels a)-c)

whose interference coefficients of equal magnitude a, the improvement is given by

AC = 2da (2.22)

On the other hand, for channels d)-f) where the interference coefficient are of varying

magnitude,

Ac = min(hjlI + ... + Ihjd ) where 1 jl < ... < ijd< c. (2.23)

The above expression shows that the optimal performance is derived when the inter-

ference coefficients of equal magnitude, keeping the total power constant. Otherwise,

for some channels, there may be a benefit to "spacing" out the constrained locations

within a block of n symbols so that the minimum is no longer taken over consecutive

coefficients. Note, however, that (n, n - 1) pattern-eliminating code yields Ac = 26,

where 6 denotes the magnitude of the least coefficient. When 6 is relatively small

compared to other coefficients, the error on the corresponding symbol dominates the
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error expression and, at high f, the (n, n - 1) pattern-eliminating code may not yield

a sufficient improvement.

For systems where the rate penalty is not critical, the above difficulty can be

circumvented by reducing the codeword length n until all interference coefficients are

of some suitable magnitude. Note that it suffices that the significant interference

coefficients are consecutive, and need not occur adjacently to the principal signal

component, as shown in Fig. 2-5 c) and f). However, for typical bandwidth-limited

systems, both the code rate and the performance improvement A, need to be taken

into account to evaluate the full effect of the code. For some uncoded system operating

at rate R, let R' = R -• denote the equivalent coded data rate, so that the effective

information rates of the coded and the uncoded system are equal. Let Ar denote the

improvement in the minimum decision distance when decreasing the signalling rate

from R to R'. Thus, for the pattern-eliminating code to yield a benefit compared to

an uncoded system operating at a lower rate, it is necessary that

A, _ A,.

From the point of view of a system designer, to determine whether to implement a

pattern-eliminating code given a channel measurements at different rates, it suffices

to identify potential values of n and c, based on the channel measurement at rate

R. Then, computing the quantities Ac and Ar from the channel measurements at

the corresponding rates R', the best (n, n - c) pattern-eliminating code is the one

with the greatest positive difference A, - Ar. Naturally, if the difference Ac - Ar

is negative, the pattern-eliminating code does not provide a decision distance benefit

over an uncoded system operating at the same information rate.

At this point, it is also relevant to compare the performance of the (n, n - 1)

pattern-eliminating code to that of the SPC. For a channel of length L over which

both codes are effective, the (n, n - 1) pattern-eliminating code incurs less overhead

than the SPC. Specifically, both codes require a single constraint/redundancy symbol

per codeword, but the maximum codeword length of the SPC is L - 1, while that of



the pattern-eliminating code is L. The SPC is preferable for a subset of uncorrelated

channels over which an (n, n - 1) pattern-eliminating code of comparable overhead

is not effective. Conversely, an (n, n - 1) pattern-eliminating code, when effective, is

preferable to the SPC over correlated channels, especially if the minimum correlation

length renders the overhead of the latter impractical. In fact, the two fully-correlated

channels of Corollary 3 provide an illustration for why classical error-control codes

often require too large of an overhead on channels with ISI. Finally, further work is

required to establish which code is preferable at modest values of f, over channels

where both codes are effective and incur the same overhead.

Timing Benefits of Pattern-eliminating Codes

The concept of pattern-eliminating codes can be further extended to include addi-

tional timing-related benefits, such as run-length-limiting (RLL). This has the advan-

tage of effectively reducing the rate penalty of the code. In particular, for systems

where timing-related properties are needed and are thus allocated a certain overhead,

the rate penalty of a pattern-eliminating code vanishes, provided the code can pro-

vide the necessary timing benefit. For instance, consider a dispersive channel with no

pre-cursor coefficients (although the following result extends to the pre-cursor case

as well). The worst case symbol patterns for such channel are of the form ±p where

p = (-1, 1, 1,..., 1) and has length L. Now consider an L-symbol run of ones given

by r = (1, 1,1,... , 1). Note that pattern r is sufficiently different from ±p in that

the encoder will not create r when trying to prohibit p, nor would it form the pattern

p by trying to prohibit r. Note, in addition, that an (n, n - 1) code is effective in

removing all patterns of type r of length n or longer 17 . The encoding algorithm of

Theorem 8 can therefore be augmented by a second simple rule to prohibit all occur-

rences of patterns ±r in addition to ±p. The result is a d = 1 pattern-eliminating

code with a run-length-limiting property, allowing for a maximum run of n - 1 ones

(or negative ones). This observation is generalized as follows.
17This can be shown using the similar argument to that in the proof of Theorem 7 and Examples

2 and 3.



Theorem 10. The following statements are equivalent:

A) The (n, n-1) pattern-eliminating code can be augmented by a rule to additionally

prohibit all runs of ls (or -ls) of length n.

B) The channel's worst-case patterns ±p are such that there exists no integer j,

where 2 < j • n, so that pj = -1 and pi = 1 for all i = j.

Moreover, the additional rule is given by Theorem 8, where the patterns to be prohib-

ited are given by ±r and r is a sequence of ls of length n.

Proof. First note that the (n, n - 1) pattern-eliminating code can systematically pro-

hibit all runs of is of length n or longer if and only if it prohibits the occurrence of

patterns +r, given above. Setting the value of the constraint symbol to prohibit the

occurrences of the pattern r creates patterns ±p where pi = 1 except at some index

j, where 2 < j < n. If p is also the worst-case pattern for the corresponding chan-

nel, the pattern-eliminating rule and the run-length-limiting rule are not compatible.

Conversely, if such p is the channel's worst-case pattern, then in seeking to prohibit

it, the encoder can create patterns ±r. O

From the above result, it follows that the channels on which the pattern-eliminating

rule and the run-length-limiting rule are not compatible are limited to those having

the worst-case patterns of the form ±(1, -1, 1, 1, 1,.. .), (1, 1, -1, 1, 1,.. ., 1),...,

±(1, 1,..., 1, 1, -1, 1). Thus, the pattern-eliminating code, augmented by the simple

rule analogous to that of Theorem 8, provides a run-length-limiting benefit over a ma-

jority of the channels. In particular, employing standard notation [3], the (n, n - 1)

pattern-eliminating code additionally provides the full capability of a (0, n - 1)-RLL

code"8 . Furthermore, note that although a pattern-eliminating code can be aug-

mented by an RLL property, a standard RLL code may not have an automatic

pattern-eliminating benefit. In fact, the only instance where prohibiting a run of

n ones provides a systematic pattern-eliminating benefit is over channels where the

corresponding worst-case pattern p contains a run of n ones (or negative ones). Thus,

18The first parameter indicates the minimum guaranteed runlength, while the second indicates
the maximum tolerated runlength. The RLL codes in magnetic recording provide some minimum
runlength as means of reducing the ISI. This is however not necessary in digital transmissions, which
include the high-speed links, and the value of the first parameter is usually set to zero (18].



the advantage of replacing a standard RLL code by an equivalent (n, n - 1) pattern-

eliminating code is the potentially-large additional performance improvement at no

additional overhead. In addition, its low complexity renders an (n, n - 1) pattern-

eliminating an all the more desirable alternative. A numerical comparison between

the 8b/10b RLL/DC-balancing code [18], commonly implemented in high-speed links,

and an (n, n- 1) pattern-eliminating code with the same overhead is included in Sec-

tion 2.5.

Further Work: Extending Pattern Elimination

Four possible extensions to the previously defined concept of pattern-eliminating

codes, bearing potentially-significant practical benefits, follow immediately from the

previous developments. They are described presently. A fifth major avenue for further

work, namely the channel conditioning for pattern-eliminating codes, is discussed in

Section 2.4.3.

First, allowing zero-magnitude coefficients in the channel response for systems

operating in the worst-case-dominant regime, or allowing the coefficients in the prin-

cipal part of the channel to be non-consecutive for the quasi-worst-case regime, is of

practical importance. To illustrate the underlying problem, first note that, observing

some symbol at time i, if a zero-magnitude coefficient aligns with the location of the

constraint symbol, the constraint has no effect on the ISI incurred by the symbol

at time i. In addition, it becomes easier to nest different patterns, and thus the

number of situations where the pattern-eliminating code can be "baffled" in principle

increases. As a partial solution, for any given channel, one can define the notion

of the distance to the first null and ensure that it is not exceeded by the codeword

length. However, the reduction in the codeword length increases the rate penalty of

the code. A more interesting approach consists of spreading out the location of the

constraint symbols within a codeword based on the location of the nulls in the chan-

nel response. For instance, while two consecutive nulls in the principal part of the

channel response render any (n, n - 2) pattern-eliminating code ineffective, allowing

the constraint symbols to be non-consecutive may reverse this effect. Further work is



required to evaluate the effect of constrained locations on the code performance, as a

function of both the location and number of channel nulls present.

Second, for practical cases where f may not be sufficiently large for a pattern-

eliminating code to yield a benefit in the worst-case-dominant or the quasi-worst-case-

dominant regime, there may be a benefit to extending the set of prohibited patterns.

To motivate future work in that direction, the following provides a preliminary result

concerning the ability of a pattern-eliminating code to remove all occurrences of all

patterns distant from the worst-case pattern by at least d symbols or less. The result

is derived under the most restrictive condition, that is, letting n = L. However, as

previously discussed, letting n < L may improve the effectiveness of the code.

Theorem 11. Consider channel of length L and an (n, n - c) pattern-eliminating

code whose c constraint symbols are consecutive and are transmitted first. Then, if

n = L,

d < [3c/4] for c even or [3c/41 for c odd.

Proof. Let Xn,... ,X+,1 denote the codeword information symbols and Xc,...,X1

denote the constraint symbols. Focus on symbols Xn and X,+1 and nest the corre-

sponding n-symbol history patterns as follows:

Xn Xn-1 ... Xc+1 Xc ... X1

Xe+1 Xc ... Xi Xo... Xc-n+2

Let (Xn,...,X 1) = p and assume without loss of generality that Pn-c-1 = po. Let

Xc+, = Po and let (X 1 , ... , Xc-n+2) = (Pc+i,... , Pn-1). In other words, denoting by

* the values at the constrained locations, the symbol streams are the following:

PO Pi ... Pn-c-1 * ... *

Po * ... * Pc+1.. Pn-i

Now set the value of constraint symbols optimally, ignoring any resulting interference

on symbols other than X, and Xc+ 1. Suppose (pl,p2,... ,Pc) and (Pn-c,... ,Pn-1)



are equal in j locations, set those symbols to be the opposite of their worst-case

values and distribute the remaining symbols evenly between benefiting X, and Xc+,.

It follows that, for this information pattern, the two symbols can both be jointly

distanced away from the worst case by at most j + [(c - j)/2] symbols.

Next, toggle the value of Xc+1 and those of Xo,... , Xc-n+2. Since po = Pn--i-,

(X,,... ,X1) is automatically distant from the worst case by one location. Since

(-pl, -p2, ... , -Pb) and (,- -,... , n-1) are equal in c - j locations, it follows that

the two symbols can both be jointly distanced away from the worst case by at most

c - j + [j/2] locations 19 .

It follows that the guaranteed improvement over the n - c information symbols is at

most the minimum of the above quantities. The maximum of the resulting expression

is reached when either j = [c/2] or j = [c/21. The result then follows by substitution.

As a consequence of the above theorem, letting n = L, it follows that for channels

where an (n, n- 1) pattern-eliminating code is effective, an (n, n-2) code provides the

same pattern-eliminating benefit at an increased overhead and encoding complexity.

In the case of a (n, n - 2) pattern-eliminating code, a previous result (Theorem 9)

shows that the code does achieve the minimum guaranteed improvement of d = 1.

However, the above theorem provides an easily-derived bound which may generally

not be tight. In other words, although it upper-bounds the resulting improvement, it

provides no information about the guaranteed improvement. It nevertheless is a useful

lower bound on the amount of overhead necessary to achieve a certain performance.

Specifically, to guarantee a certain distance of d symbols away from the worst-case

pattern, the corresponding number of constraint symbols is on the order of 4d/3.

This suggests that for relatively short codewords, a potentially large overhead may

be required when wishing to eliminate patterns from a larger set. It nevertheless

remains that Theorem 11 was derived under the strictest condition, letting n = L.

Although for a given c, reducing the codeword length to n < L also increases the

coding overhead, it is possible that the latter may be used more effectively.

"9Since min{c- j + [j/2J + 1, c- j + [j/21} = c- j + [j/21.



Thirdly, it remains to explore different timing properties and provide a more

general characterization of the conditions under which these are compatible with the

pattern-eliminating properties in an (n, n - c) code. Moreover, there may be a benefit

to further investigating the ties between the pattern-eliminating codes and the con-

straint codes for magnetic recording systems. Although, as discussed in Section 2.1.3,

the two types of codes have largely different structures, some of the resulting insights

pertaining to constraint coding over binary channels may be of use.

Finally, for (n, n - c) pattern-eliminating codes with c > 1, an efficient encoding

algorithm remains to be demonstrated. As the encoding is function of the constraint

symbol location, the pattern-eliminating properties of the code and any timing benefit

of the code, the previous avenues need to be explored prior to addressing this issue.

It nevertheless remains that the simplicity of the encoding algorithm is one of the

limiting factors for many applications. There is therefore a benefit to investigating

simple, possibly sub-optimal, encoding algorithms. In particular, since some run-

length-limiting codes allow for simple implementations, the previous body of work on

coding for magnetic channels may provide some insight into this topic.

2.4.3 Coding for High-speed Links

This section revisits the previously developed results on coding for ISI-and-AWGN-

limited systems in the context of high-speed links. As previously discussed, the ques-

tion of coding in regimes where the effect of the inter-symbol interference is negligible

has already been extensively addressed, although further work is required to charac-

terize the performances of different coding schemes with respect to their hardware

complexity. This applies to the large-noise regime and, as discussed in Section 2.3.2,

to a large subset of the large-set-dominant regime. Specifically, for long uncorre-

lated channels with interference coefficients of relatively even magnitude, the error

events on distinct symbols can be considered to be independent with some accuracy.

Furthermore, the approximation improves with the increasing channel length and/or

decreasing coefficient magnitude, as long as the regime is preserved. In high-speed

links, the inter-symbol interference typically spans hundreds of symbols due to signal



reflections. In addition, for well-equalized channels with the dominant dispersion taps

removed, individual coefficients are relatively small, although their cummulative ef-

fect can be large. Since the resulting pulse response is also uncorrelated, the previous

result suggests that the errors can be considered 20 to occur independently. Then, the

performance of classical error-control codes can be analyzed in the usual context of

coding theory, with added attention to the issues of overhead and encoder/decoder

complexity.

The pure worst-case-dominant scenario is impractical for high-speed links for many

reasons. First, the reflected copies of the signal suffer more and more attenuation

as they bounce accross the backplane and the line cards. Thus, the corresponding

channel coefficients get progressively smaller in the tail of the channel response. Thus

the noise levels required to achieve a sufficiently high value of f to observe a significant

coding benefit with a pattern-eliminating code are unrealistically low. The same

holds for the single-parity check code. Another important difficulty of coding for

the worst-case-dominant scenario in high-speed links is notion of a "meaningful"

impulse response. Since the system operates at low error rates, channel coefficients of

otherwise-negligible magnitude can no longer be discarded, as their cumulative effect

has a large impact on the tails of the error distribution. However, it is often difficult to

determine whether some portions of the channel response are due to delayed symbols,

like the commonly occuring reflections off of impedance discontinuities, or simply an

artifact of the measurement. Both an artificial increase in the channel length and an

artificial reduction of 6 are harmful in that they falsely reduce the occurrences of the

worst-case-dominant scenarios.

However, the greatest benefit of coding for high-speed links is in fact achieved

for dispersive channels in the quasi-worst-case-dominant scenario. For such chan-

nels, both of the previously described difficulties disappear. Specifically, as further

illustrated in the following section, the magnitude of the dispersion coefficients is
20More work is needed to quantify the accuracy of this assumption at very low error rates for

the non-idealized scenario and constrained symbol alphabets. In the meanwhile, Section 3.5 of
Chapter 3 illustrates this concept on a realistic high-speed link channel and error rates observable
by Monte-Carlo simulation.



typically so large compared to the noise that the system operates in a quasi-worst-

case regime with very large f. In addition, there is little ambiguity in measuring the

polarity of the large channel coefficients that form the principal part of the channel.

Furthermore, neither the exact values of the coefficients in the secondary part of the

channel nor the corresponding channel length matter, as long as their cummulative

effect is sufficiently small compared to the dispersion coefficients. It follows that, in

dispersive high-speed link channels, which become more prominent as the signalling

rates increase, the pattern-eliminating codes can provide a very large benefit. It

now remains to provide a more precise description of the conditions under which a

pattern-eliminating code on a dispersive channel yields a significant benefit.

Operating Conditions for Pattern-eliminating Codes

From the previous discussion it follows that relative to the noise variance, the larger

the smallest coefficient in the principal part of the channel is, the larger the cor-

responding value of f. In addition, as large dispersion coefficients are a byproduct

of high signalling rates over bandwidth-limited channels, it may appear that, armed

with a low-overhead pattern-eliminating code alone, high-speed links can tolerate

arbitrarily high data rates. However, as previously discussed in Chapter 1, the quasi-

worst-case-dominant regime will not apply if the worst-case interference caused by

the principal part of the channel, ignoring the secondary part, is sufficient to bring

the signal over the decision threshold. This case is illustrated in Figure 2-6.

Exploring different ways of coping with the previously-described difficulty through

some form of channel conditioning leads to the notion of optimal channel equalization

for pattern-eliminating codes. More precisely, the standard use of channel equalization

methods in high-speed links imposes a large demand on the corresponding equalizer,

since the latter is typically the sole method of achieving the low error rates. On

the other hand, when the equalizer is implemented jointly with a pattern-eliminating

code, the goal of the former now becomes sufficiently reducing the interference for the

minimum decision distance to become positive, although not necessarily very large.

Thus the equalization burden is reduced, and with it the power consumption of the



high-speed link, and a simple pattern-eliminating code can now provide the required

bit-error-rate improvements.

However, the problem of determining an efficient channel-conditioning method

enabling the pattern-eliminating codes to yield a benefit at high data rates remains

open. Revisiting the channel of Figure 2-6, the sufficient solution in this case con-

sists of nulling the last dispersion coefficient, thus ascribing the latter to the sec-

ondary part of the channel without rendering the coefficients in the principal part

non-consecutive. This is illustrated in Figure 2-7. Effectively nulling a channel co-

efficient can be achieved through a decision feedback equalizer (DFE) [3]. However,

note that this increases the coding overhead, as the length of the primary channel is

reduced by one symbol. A more significant problem inherent to the use of the DFE

for channel conditioning in high-speed links is the fact that introducing more than

three or four nulls in the channel pulse response is typically not energy-efficient, due to

both the hardware overhead and the severe timing requirements on the corresponding

structure.

Another common alternative to the DFE is a linear equalizer, commonly based

on the zero-forcing criterion (ZFE) [3]. Due to its feed-forward structure and reduced

timing demands, the linear equalizer appears to be a more efficient method of reducing

the overall interference, especially when the corresponding reductions need not be

large. However, by seeking to reduce each interference coefficient, the equalizer may

introduce undesirable nulls in the principal portion of the channel's pulse response.

Another serious problem associated with deploying linear equalization in a high-speed

link relates to the latter's peak power constraint. More precisely, the requirement

that the transmitted symbol power does not exceed some maximum given value has

a detrimental effect on the signal to noise ratio of the technique and thus reduces

the effectiveness of the linear equalizer. This is due to the fact that by normalizing

the total power in the equalizer coefficients, one effectively reduces the power in the

received signal, discounting the interference, compared to the equivalent unequalized

system.
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Figure 2-7: A high-speed link operating in the quasi-worst-case-dominant regime - By
nulling the last interference coefficient, the worst-case interference created by the principal
part of the channel no longer crosses the decision threshold.

Uncovering an efficient channel-conditioning method, as part of the further work

on coding for high-speed links, would likely yield an increase in the achievable high-

speed link data rates or the corresponding energy efficiencies, or both. In the mean-

while, Section 2.5 illustrates the potential of jointly optimizing a simple linear equal-

izer with an (n, n-1) pattern-eliminating code over a realistic high-speed link channel.

2.5 Practical Examples

This section considers a few practical examples to illustrate the previously-developed

ideas. However, note that the large-noise regime both forms the backbone of the

communication theory, while the worst-case-dominant scenario seldom occurs in a

high-speed link with sufficiently high f. Furthermore, the large-set-dominant regime

is illustrated in Chapter 3 in the context of numerical simulation for high-speed links.

The present section thus focuses on the quasi-worst-case-dominant regime.
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The following illustrates the benefits of an (n, n - 1) pattern-eliminating code

compared to that of the single-parity-check code. In particular, the results provide a

deeper insight into the behavior of a system as a function of the channel signatures.

Subsequent results also explore the effectiveness of standard channel conditioning

methods in offseting the rate penalty of codes in bandwidth-limited regimes. Finally,

the previous experimental work is also revisited and reinterpreted in the light of

both the theoretical and the simulation results. However, the discussion opens with

a few remarks regarding the methods of biasing the system parameters, commonly

used when estimating low-probability error events, and its effect on the system's

performance picture.

2.5.1 Biasing the System Parameters

Before discussing any simulation results, it is necessary to address the issue of biasing

the performance of a given system for the purpose of performance estimation. Since

it is impossible to observe the error rates of interest in high-speed links through

Monte Carlo simulation, it is common practice to modify the system's parameters to

observe the behavior of an "equivalent" system at a lower error rate and subsequently

extrapolate the results. Typically, a measurable error rate is achieved through some

combination of minimum distance, noise variance and channel length. Although such

adjustments offer a convenient way of studying the system's behavior over a range of

operating conditions, more than biasing the error probability alone, they also affect

the dominant noise mechanisms.

For instance, consider the case of a high-speed link operating in the quasi-worst-

case-dominant regime at an error rate of 10-10. Relying on Monte Carlo simulation

and subsequent extrapolation to determine whether some error-control code succeeds

in reducing the error down to the 10-15 target requires biasing the system parameters.

However, increasing the noise variance reduces the value of f and thus inhibits the

improvement of any code optimized for this regime. On the other hand, shifting

the decision threshold so that sufficiently many possible values cross over and thus

increase the likelihood of an error, as is often done in practice for high-speed links,



can yield the behavior previously illustrated in Figure 2-6, where the system no longer

operates in the quasi-worst-case-dominant regime due to a negative decision distance.

The lesson to be drawn from the above discussion is that, when biasing the per-

formance of a given communication system, the degree of the bias depends on the

target performance, but the choice of a biasing method depends on the underlying

error mechanism. In practice, the parameter f can be evaluated analytically for any

system-in fact, Chapter 3 suggests a practical numerical approach. Thus ensuring

that the value of f remains within some target range while biasing the system pa-

rameters, one ensures that the biasing preserves the nature of the underlying error

mechanisms. However, the noise variance and the distance to the decision threshold

alone may not provide sufficient control. Thus, contrary to the practical intuition, it

may be necessary to alter the channel response in order to make the simulated system

more realistic.

2.5.2 Code Performance in the Quasi-worst-case-dominant

Regime

The purpose of this section is two-fold. First, it illustrates the behavior of codes

in the quasi-worst-case dominant regime. These observations allow for the subse-

quent reinterpretation of the previous experimental results in the light of the results

developed in this thesis. Second, it explores possible channel-conditioning methods

and their potential in offsetting the rate penalty inherent to channel coding over

bandwidth-limited channels.

Channel Signatures and Code Performance

This section focuses on the effect of the channel signature on the performance of

both the SPC and the PEC. In the light of the previous results on biasing and

due to a relatively limited supply of link channel measurements endowed with given

properties, this section uses an emulated high-speed channel. Note, however, that



the subsequent sections on channel conditioning employ channel responses based on

actual measurements [17].

The sample high-speed link channel used, shown in Figure 2-8[top], corresponds

to a modified ATCA 32" backplane with bottom-level routing (ATCA B32 [17]),

operated at 9 Gbps and equalized through a 10-tap linear zero-forcing equalizer (LE-

ZFE), previously discussed in Section 2.4.3. At this particular data rate, however,

the equalized dispersion coefficients are still sufficiently strong to bring the signal

over the decision threshold in the absence of noise and regardless of the secondary

coefficients. The channel is thus further modified by reducing the magnitude of all

dispersion coefficients past the location of the eighth symbol. In addition, to make

the result more realistic, the last dispersion coefficient is reduced 21 by a factor of

two. The reduced-magnitude coefficients are now on the order of those due to the

channel reflections and are included in the secondary part of the channel response.

The latter is also truncated for the ease of calculations. The principal part of the

channel contains eight symbols, including the pre-cursors, while the full channel is 48

symbols long.

By examining the signature of the principal part of the channel, it is evident

that the latter is fully correlated, in the sense of the pattern-correlation defined in

Section 2.3.1. In order to illustrate the effect of the channel signature on the sys-

tem performance, two more channels are created by altering only the signs of the

coefficients in the principal part of the channel. The resulting channels are mod-

erately correlated (Figure 2-8[middle]) and uncorrelated (Figure 2-8[bottom]). The

corresponding worse-case patterns are shown in Figure 2-9. Note that, by applying

the criterion of Theorem 7 to the corresponding channel signatures, it follows that

an (8,7) pattern-eliminating code is effective for both the correlated and the fully

correlated channels.

Simulation results are obtained at two different noise levels, al = 2 x 10-3 and

2 = 5 x 10-4, which are, as discussed in Chapter 1, realistic in a high-speed link. The

corresponding symbol error rates for the uncoded system, computed analytically as
21Note that this reduces the benefit of a pattern-eliminating code.
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Figure 2-9: The Corresponding Worse-case Patterns - fully correlated channel[top], corre-
lated channel[middle] and uncorrelated channel[bottom].

discussed in Chapter 3, are p err = 6.9x 10-4 and Perr2 = 5.6 x 10-5, respectively. Note

that the channel signature has no effect on the symbol error rate for unconstrained

transmissions. Considering both systems to operate in a quasi-worst-case-dominant

scenario, the corresponding f values are, 1 - fi = 2.6 x 10-3 and 1 - f2 = 2.0 x 10-13.

Note that, since the system is assumed to operate in the quasi-worst-case-dominant

regime, the quantities of interest, such as the correlation or the worst-case interference,

are all referred to the principal part of the channel.

Tables 2.5.2 and 2.5.2 provide the Monte-Carlo simulation results for the (7,6)

single-parity check code (SPC) and the (8,7) pattern-eliminating code (PEC). The

quantity Perr meas. is the symbol error probability for the SPC prior to decoding,

which, compared to the corresponding value of p,,err for each table, indicates whether

the SPC has any pattern-eliminating properties. The quantities WER SPC BSC and



perr meas. WER SPC WER SPC PEC PEC % WC
BSC meas. pred. meas. removed

Full Corr. 6.94 x 10- 4  1.0 x 10- 5  3.4 x 10- 4  1.8 x 10-6 1.1 x 10-6 100%
Med. Corr. 6.99 x 10- 4  1.0 x 10- 5  3.0 x 10-6 1.8 x 10-6 2.2 x 10-6 100%

Uncorr. 6.86 x 10- 4  9.9 x 10-6 2.48 x 10- 7  2.8 x 10- 5  3.0 x 10- 5  93.7%

Table 2.1: Code performances over three high-speed link channels with al = 2 x 10- 3,

Perrl = 6.9 x 10- 4 and 1- fl = 2.6 x 10- 3 .

WER SPC meas. refer to the word error rates of the SPC as predicted assuming the

errors to be independent and as measured in simulation. Specifically, assuming the

ISI to be negligible, the standard expression is

WER BSC = 1 - (1 - perr)" - n(1 - perr)n-lPerr (2.24)

where n is the corresponding codeword length. The quantity PEC pred. is the

predicted symbol error rate of an (8,7) pattern-eliminating code computed by the

result of Theorem 3 as

PEC pred. = 2(1 - f)perr, (2.25)

assuming that the pattern-eliminating code removes all occurrences of the worst-case

interference. The quantity PEC pred. is the measured analogue. Finally, l% WC

removed denotes the percentage of removed worst-case interference events, where, as

before, the worst-case interference refers to the primary part of the channel. Note

that for the uncorrelated channel where the (8, 7) PEC cannot remove all instances

of the worst-case symbol pattern, PEC pred. is approximated by scaling down the

error rate by the proportion of eliminated worst-case patterns, that is, PEC pred. -0

Perr x (% WC removed)/100.

Sequentially examining each of the quantities simulated, the lack of substantial

change for the measured symbol error rate, perr meas., as a function of the chan-

nel signature indicates that the SPC has no significant pattern-eliminating benefit

over these channels. However, observing the discrepancies between the word error

rates (WER) measured for the SPC to those predicted assuming the errors to occur

independently further confirms the importance of channel signatures in quasi-worst-



perr meas. WER SPC WER SPC PEC PEC % WC
BSC meas. pred. meas. removed

Full Corr. 5.63 x 10-5  6.7 x 10-8 1.7 x 10- 4  1.1 x 10-1 0 * 100%
Med. Corr. 5.55 x 10-5  6.5 x 10-8 0 t 1.1 x 10-17 0 * 100%

Uncorr. 5.54 x 10-5  6.4 x 10-8 0 t 2.2 x 10-6 1.9 x 10-6 93.7%

Table 2.2: Code performances over three high-speed link channels with a2 = 5 x 10-4,

Perr2 = 5.6 x 10- 5 and 1 - f2 = 2.0 x 10-13. Note that the " * " indicates estimates
computed based on 109 symbols, while the " t " indicates those computed based on 1010
symbols.

case-dominant regime. As expected, for the fully correlated channel where multiple

codeword errors become more likely, the observed WER is inferior to the predicted

one. The discrepancy is roughly an order of magnitude at larger noise and two or-

ders of magnitude at smaller noise. This is consistent with the fact that decreasing

the noise variance increases the value of f and, with it, amplifies the importance of

the worst-case symbol patterns and their correlation properties. Similarly, for the

uncorrelated channel, where in the limit f --+ 1 multiple errors occur with zero prob-

ability, the SPC performs better than predicted. The discrepancy is roughly two

orders of magnitude at larger noise. At smaller noise, the confidence of the Monte

Carlo estimate is not sufficient to allow for a meaningful comparison.

The simulated behavior of the pattern-eliminating codes yields the most interest-

ing results. The most drastic of those is that, on channels where the (8, 7) pattern-

eliminating code is effective and noise is relatively small, the symbol error probability

decreases by roughly twelve orders of magnitude. Since such error rates cannot be

captured with 2 x 10' information symbols (discounting the constraint symbols), the

Monte Carlo estimate records no errors. As expected, the improvement is significantly

reduced at larger noise.

Finally, note that the observed proportion of worst-case patterns sucessfully elim-

inated by the PEC on the uncorrelated channel is the same regardless of the noise

variance. This is due to the fact that the effectiveness of a pattern-eliminating code is

independent of noise, but its benefit for a given system, in terms of the corresponding

error-rate reduction, is not.



Code Performance With Rate Penalty

The previous section shows that a simple (8, 7) pattern-eliminating code can yield

significant improvements in adequate channel conditions. However, as discussed in

Section 2.4.3, due to the bandwidth-limited nature of the high-speed link, it is not suf-

ficient to consider the resulting performance improvements compared to an uncoded

system operating at the same data rate. Instead, the baseline for the comparisons is

the uncoded system operating at the lower, equivalent information rate and equalized

in a usual manner.

Following the guidelines of Section 2.4 for achieving a large f, it is not difficult

to "fabricate" a communication channel for which an arbitrarily-large benefit can

be derived. For instance, the channel of Fig. 2-10 is created based on a standard

sinc function. Only half of the waveform is used, letting the peak value represent

the principal signal component. All other interference coefficients are tapered by
(L--1) 2 where t is the time index22, and the total response is normalized to unit L 1

norm. The error rates on this channel for a (7, 6) pattern-eliminating code are shown

in Table 2.3 for zero-mean additive white Gaussian noise with a = 10- 3 .

Constructed Channel Power Spectrum
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Figure 2-10: Sample Fabricated Channel - a) Pulse response, b) Power spectrum.

The results of Table 2.3 show that, for the above channel, a pattern-eliminating

code drastically reduces the error rate even with the rate penalty taken into account,
that is, comparing the coded performance to that of the uncoded system at the

22The interference coefficients need to be reduced in order to render the minimum decision distance
non-negative.
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Table 2.3: Error Rates for a Fabricated Channel

same information rate. In particular, the (7, 6) code yields an error-rate reduction of

eleven orders of magnitude, while the (6, 5) code prevents virtually all errors. Since

the channel's frequency response of the fabricated channel is suggestive of standard

bandwidth-limited systems, there is a potentially large benefit to exploring the appli-

cation of pattern-eliminating codes to some common systems with ISI. This leads to

the notion of channel conditioning, which mitigates certain channel characteristics,

such as frequent nulls in the dominant portion of the channel, that may otherwise

impair the performance of a pattern-eliminating code.

Channel Conditioning for Pattern-eliminating Codes

As demonstrated in Section 2.4, the performance of a pattern-eliminating code is di-

rectly tied to both the signature and the magnitude profile of the channel coefficients.

The coding and equalization problems are therefore no longer separable. To quantify

the effect of a particular equalizer on the code performance, consider the dispersive

high-speed backplane link channel whose pulse and frequency response are shown in

Figures 2-11 a) and b). Note that the channel is extracted from the M32 ATCA [17]

measurements. In this example, the channel is equalized with a 2-tap finite-order

impulse response filter. The filter coefficients are given by c1 and c2 where, to satisfy

the peak power constraint at the transmitter, Icii + Ic21 = 1. The coefficient values

are explored exhaustively and the corresponding error rates for the coded and un-

coded system are shown in Figure 2-12. The three distinct plots correspond to three

distinct codeword lengths displayed in the order of increasing overhead, that is, for

n = 7, 6, and 5, respectively. All three scenarios operate at a coded rate of 9 Gbps and

varying information rates. Note that, in practice, cl and c2 are set either according

to a zero-forcing criterion or an eye-maximization criterion [6, 9]. In each plot, the
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Figure 2-11: A High-speed Link Channel - Unequalized ATCA M32 Channel [17] operating
at 9 Gbps: a) Pulse Response, b) Frequency Response.

intersection of the vertical lines with the error-rate curve marks the performance of

the pattern-eliminating code for the two equalization criteria.

In all three figures, the pattern-eliminating code yields a significant benefit com-

pared to the coded system operating at the same data rate. For n = 7 the symbol-error

probability is reduced by four orders of magnitude, fifteen orders of magnitude with

n = 6 and is "eliminated" with n = 5. Furthermore, inspecting the performance of the

pattern-eliminating code in conjuction with an equalizer optimized according to either

zero-forcing or eye-maximization criteria confirms that the equalization and coding

problems are no longer separable. Specifically, neither criterion generally matches

with the filter coefficients which optimize the performance of the pattern-eliminating

code23 . For instance, for n = 6, applying the standard zero-forcing criterion reduces

the code benefit by over ten orders of magnitude.

The results of Figure 2-12 also indicate that the pattern-eliminating code provides

no performance gain over an ATCA link channel when the rate penalty is taken into

account. Precisely, the error-rate reduction achieved by decreasing the signalling rate

of an uncoded system down to the equivalent information rate exceeds the error-rate

reduction achieved with a pattern-eliminating code. Thus, contrary to the behavior

observed for the "fabricated" channel, a pattern-eliminating code has little benefit

over an ATCA link channel, when considered solely as an error-reduction technique.
23The fact that the eye-maximization is the optimal choice for the (6, 5) pattern-eliminating code

over this channel is accidental, as it is not optimal for the other two cases.
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Figure 2-12: High-speed Link Performance - Each plot displays the error behavior, as a
factor of the equalization type, for a coded system operating at 9 Gbps, an uncoded system
operating at 9 Gbps, and an uncoded system operating at an equivalent information rate.
The abscissa indicates different values of the filter coefficient Icl . The pattern pattern-
eliminating code. The three plots correspond to three different pattern-eliminating codes,
namely a) (7, 6), b) (6, 5), and c) (5,4). The vertical lines correspond to filter coefficients
for a zero-forcing equalizer and eye-maximization equalizer.
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The discrepancy between the two behaviors is due to drastically steeper roll-off at the

Nyquist frequency for the ATCA channel, compared to that of the fabricated channel.

The above example indicates that further work is required on channel conditioning

techniques to reduce the effect of the rate penalty. However, the pattern-eliminating

codes combined with the above simple jointly-optimized equalization technique yield

significant improvements in systems that already incur some rate penalty. Specifically,

in timing-sensitive systems run-lenght-limiting (RLL) codes are typically employed

in order to force signal transitions required for timing-recovery circuits. Consider a

system where it is necessary to eliminate all runlengths greater than some 1 > 1. By

the result of Theorem 10, the (n, n- 1) pattern-eliminating code, with n < I+1, can

replace a (0, )-RLL code at a comparable or reduced rate penalty. Furthermore, if

the (n, n - 1) code is effective in prohibiting all occurences of the worst-case patterns

over that channel, the pattern-eliminating code also provides significant error-rate re-

ductions at no additional overhead penalty. For instance, high-speed links commonly

employ DC-balancing/run-length-limiting 8b/10b codes [18]. The latter are non-

systematic block codes that bear no known pattern-eliminating properties in a high-

speed link. Note that the 8b/10b and the (6,5) RLL-agumented pattern-eliminating

code both allow for a maximum runlength of at most five symbols. However, the (6,5)

pattern-eliminating code incurs less overhead. Furthermore, for the high-speed link

channel of Figure 2-11, the (5,4) pattern-eliminating code reduces the error probabil-

ity from 10- 10 down to less than 10- 40. In addition, any (n, n - 1) pattern-eliminating

code allows for simple encoding and requires virtually no decoding. However, the per-

formance gain comes at the expense of the DC-balancing property also achieved by

the 8b/10b code. Thus, the pattern-eliminating code is preferable to the 8b/10b

code when the error, overhead and complexity reduction outweighs the benefits of

DC-balancing.

The results of this section show that a suitable equalization technique can signifi-

cantly improve the performance of a pattern-eliminating code. The resulting jointly-

optimized equalization is, in principle, more power-efficient since the equalizer is no

longer required to achieve very low error rates. Conversely, assuming a separability



between the equalization and coding problems leads to potentially large performance

penalties. It is thus preferable to employ simple, jointly-equalized equalization tech-

niques to their more complex but code-unaware counterparts.

2.5.3 Revisiting Previous Experimental Work

In light of the developments of this chapter, revisiting the results of the previous

work on coding for high-speed links provides both the context and a potential jus-

tification for the experimentally-observed behaviors. As discussed in Section 2.1.3,

the main body of work on this topic is a thesis by M. Lee [4]. Based on hardware

implementations of different codes on a variety of high-speed links, Lee observes the

following behaviors. For links operating at data rates between 5 Gbps and 6.75 Gbs

and at error rates in the range of approximately 10-12 up to 10- 3 , Lee notices that

the errors occur almost exclusively in "clusters" but that, due to the low error rates,

the clusters occur with low probability. Since the clusters are relatively large, that

is, on the order of 10 errors occuring jointly, Lee correctly concludes that most error-

correcting codes are impractical for high-speed links due to large overhead. She also

correctly observes that error-control codes used for error detection are more overhead-

efficient, and goes on to recommend implementing automatic-repeat-request (ARQ)

for high-speed links, given the availability of a suitable feedback channel [7]. Finally,

she observes that the burst-error-control codes perform poorly since the error spread

is too large to be handled with practical overhead. However, Lee is uncertain as to

the underlying reason for the large error correlation and thus assigns it, by default,

to some correlated circuit noise inherent to the hardware setup.

Based on the results of Sections 2.2 through 2.4, the systems studied by Lee

potentially operate in the quasi-worst-case-dominant regime. A first indication is the

error dependence, evidenced in Figure 2-13 reproduced from [4]. Based on a measured

average bit error rate, the plots compare the probabity of observing multiple-bit errors

computed based on an independence assumption against the measured probabilities.

In particular, the measured probability of multiple-bit errors is significantly larger

than predicted. Although Lee attributes the resulting discrepancy to possible sources
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Figure 2-13: Figure 19 [4]: The three graphs show the behavior of the link at three different
data rates: 5.5 Gb/s (left), 6 Gb/s (middle), and 6.75 Gb/s (right). As the data rate
increases, the link becomes more and more like a BSC.

of correlated noise, the behavior is consistent with that of a correlated channel in the

worst-case or quasi-worst-case-dominant scenarios.

Furthermore, since in the quasi-worst-case-dominant scenario, the probabilities

for certain codeword symbols increase drastically when conditioned on the occurrence

of the corresponding quasi-worst-case interference pattern24 , one expects the spatial

distribution of errors to be skewed towards joint occurrences. This is consistent with

Lee's observations, and the following is a direction quotation from [4]:

At 6 Gb/s, 99.94% of all bit errors occur in codewords with error

lengths of less than 10. Most of these, however, are single-bit errors, which

technically have error lengths of one. For words with multiple errors, 75%

of the bit errors are still within a length of nine. At 6.25 Gb/s, these

numbers are 99.90% and 87.21%, respectively.

Lee's statement requires some additional clarification. The error length is defined

as the number of bits spanned by the first and the last error in one codeword. The

majority of the errors observed are single bit errors since, even when conditioned on

the worst-case interference, the error occurs only for a sufficiently large noise event.

Thus, multiple-bit error events are still relatively rare. However, the majority of the

observed multiple-bit errors are contained within the length nine, which suggests the

length of the principal part of the channel is on the order of 10 symbols (bits).
24i.e. the worst-case pattern formed by only the primary part of the channel.
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Figure 2-14: (Figure 21 [4]) Distribution of Error Lengths at 6.25 Gb/s on a Rogers Link.
The error lengths of all 40-bit words with multiple errors is illustrated for a single test run,
normalized to 1014 bits. The graphs indicate the error length distribution of error patterns
of weight two (top), three (upper middle), four (lower middle), and five (bottom).

The conclusion that burst-error-correcting codes are inefficient for high-speed links

is based on more detailed statistics regarding the distribution of error lengths in a

codeword. These are reproduced in Figure 2-14. The plots deptict the error lengths

measured for codewords of different error weights, where the error weight of a code-

word is defined as the number of errors observed within that codeword. Note that the

results for codewords of weight three or more, corresponding to the two lower plots,

should be disregarded on account of the lack of statistical significance, brought about

by the low probability of the underlying events. Assuming that the result correspond-

ing to codewords of error weight two (the top plot) is statistically significant allows

for several observations regarding the channel correlation and the underlying value

of f. Specifically, in a codeword with exactly two symbol errors, an occurrence of

two consecutive errors is at least an order of magnitude more frequent that the occur-

rence of two errors separated by one or more symbols. Employing the notation for the

channel's pattern correlation, this suggests that c (1, p) = 1. Furthermore, note that

the distribution of errors corresponding to the subsequent error separations appears

relatively uniform throughout the entire length of the codeword. For instance, the



number of codewords with an error length of five equals the number of codewords with

an error length of twenty-one. This is suggests that the original hypothesis where the

principal part of the channel spans approximately ten symbols, corresponding to the

dispersion coefficients, may not be accurate. In particular, given the particularly low

error rate, it is likely that there are approximately two to three significant channel

coefficients. This type of channel response is due to three facts. First, Lee's system

employs linear transmit and receive equalizers to reduce the channel dispersion, which

can introduce nulls in the principal part of the channel. Moreover, due to the peak

power constraint at the transmitter, linear equalization can amplify the interference

coefficients in the secondary part of the channel, thus further reducing the value of

f. Third, strong signal reflections, common in a high-speed link, add more weight to

the tail of the channel compared to a typical bandwidth-limited channel. As a result,

the value of f may not be as high as that observed for the ATCA channels described

earlier. It follows that, to apply a pattern-eliminating code to the channels studied by

Lee, a more suitable form of channel conditioning is needed.

The remaining significant result reported by Lee, that is, the "clustering" behavior

of the error events, is an artifact of low error rates, and is thus vacuously consistent

with the quasi-worst-case-dominant hypothesis. Specifically, shifting the focus from

the error lengths to the number of errors in any given codeword, Lee considers blocks of

uncoded symbols, each between 40 and 1000 consecutive symbols long, and observes

the maximum number of errors, and the corresponding lengths, recorded in each

block25 . She observes that the maximum number of recorded errors remains the

same, regardless of the block length. Even more precisely, the number of m-bit

errors, where m = 1, 2,..., remains constant with the codeword length. Lee's original

results are reproduced in Figure 2-15. The reported behavior is principally due to the

low probability of the observed events. Specifically, for an average error probability

of 10- 7, registering a significant increase in the number of errors observed when

increasing the block size from 40 bits to 1000 bits is very unlikely. Based on these
25Note that in order to avoid any boundary artifacts such as observing an error cluster split

between two blocks, Lee adopts a sliding window approach. More precisely, for each block, Lee
chooses the starting point in order to observe the maximum number of errors.
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Figure 2-15: (Figure 20 [4]) Distribution of Errors Per Word at 6 Gb/s and 6.25 Gb/s: The
graphs show the number of x bit errors per word over multiple block sizes that occurred
for x between one and seven. The graph on the left is for 6 Gb/s, and the right is for
6.25 Gb/s. Each column of circles in the graph indicates a separate test run through the
link. Although there are a few instances of words with more than seven errors, not enough
occurrences were observed to accurately predict a trend. The y axis is normalized to 1015
bits. The results are actually based on 1014 to 1015 bits for 6 Gb/s and 1012 to 1013 bits
for 6.25 Gb/s.

results, Lee correctly infers that error-correction codes can provide a benefit over

the uncoded lower-rate system if sufficiently long codewords are used. This is due

to the fact that, for a fixed error-correction capability, increasing the number of

information bits in a codeword decreases the overhead. However, she also cautions

that sufficiently long codewords may not be practical in high-speed links. Instead,

she recommends error-detection codes, which require less overhead for the same error-

detection capability.

Finally, Lee's results also provide an instance of the large-set-dominant behavior.

More precisely, Lee observes that, as the data rate increases and the communication

channel consequently degrades, the errors occurring on distinct symbols become effec-

tively independent. She refers to this condition as having a binary symmetric channel

(BSC) and writes:

Figure 19 [corresponding to Figure 2-13 in this section] shows the prob-

ability of having x bit errors per word for reasonably small x based on

experimental data for a wide range of data rates. This is compared with

the projected probabilities for a BSC. For high data rates where the bit

error rates are very low, the channel is similar to the binary symmetric
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channel model. Although it is not possible to determine why the link

produces these results with 100% confidence, it is likely that reflections

are the dominant noise sources, and the equalizers are not able to combat

them. Reflections are the likely candidate, because the backplane is not

counterbored, and reflections are generally uncorrelated.

Lee's justification is consistent with the behavior discussed in Section 2.3.2. Specif-

ically, as the data rates increase, both the dispersion coefficients and the signal re-

flections increase. Due to the limited equalization and the use of linear equalizers,

the residual dispersion and reflections combine to yield a channel response that is

is relatively uniform over a potentially large number of symbols. When the residual

interference is sufficiently large render the minimum decision distance26 sufficiently

negative, the quasi-worst-case-dominant scenario no longer applies. The stronly neg-

ative minimum distance is consistent with the dramatic increase in the error rate

recorded in Lee's experiment. More precisely, the result of Figure 2-13 indicates that

the error rates at which the error events can be considered independent are on the

order of 10-1. Note that Figure 2-13 also provides an example of a system where

the operating regime changes from large-set-dominant to quasi-worst-case-dominant

as the error rates decrease. This serves to further illustrate that, when either biasing

the system's operating parameters or extrapolating the behaviors observed at higher

error rates to behaviors predicted at lower error rates, it is necessary to consider the

operating regime throughout the entire range of conditions. An analytical method of

achieving this is described in the following chapter.

In addition to Lee's thesis, two smaller-scale studies, [11] and [12], also explore

the possibility of error-control coding for high-speed links. In both, error-control

codes were found to yield several orders of magnitude of improvement under certain

conditions. Based on the magnitude of improvement alone, it is in principle difficult

to determine whether the benefit is due to

* a link operating in large-set conditions discussed in Section 2.3.2, which render

classical error control codes suitable;
26Relative to the principal part of the channel.



* a link operating in a quasi-worst-case-dominant regime, where the principal part

of the channel is weakly correlated;

* a link operating in a quasi-worst-case-dominant regime, where the principal

part of the channel is correlated and due to some incidental pattern-eliminating

property of the error-control code.

The last interpretation is particularly tempting in [12] where the authors implement a

hybrid MTR/ECC 27, suggestive of distance-enhancing MTR codes for partial response

channels. However, the detailed analysis, also provided in [12], of the corresponding

test results provides a deeper insight into the system's operating conditions. More

precisely, the authors consider two high-speed link channels, one corresponing to a

10" backplane and another to a 40" backplane. For the 10" backplane, the authors

observe that the error-control code may provide a significant benefit over the uncoded

case at the reduced data rate. The uncertainty is due to the low error rate and the fact

that the improvement cannot be measured by Monte Carlo trials. The improvement

is thus predicted analytically, assuming the errors to occur independently. However,

as the authors correctly observe, the principal limitation of this result is the fact that

the uncoded system, which is also unequalized, already reches the target error rates

of 10-12. Thus, there is no practical benefit to implementing an error-control code.

Still concerning the results of [12], a more interesting result is obtained consider-

ing the 40" backplane. The corresponding Monte Carlo trials are reported to yield

"inconsistent" results. Specifically, it is observed that some PRBS28 sequences yield

no errors while others yield relatively high error rates. In the light of the previous

discussions, the behavior is likely due to the system operating in the quasi-worst-case-

dominant regime. From the physical perspective, increasing the backplane length ex-

acerbates different types of material and dielectric losses and consequently increases

the signal dispersion. From the perspective of the reported test results, the number of

occurrences of the corresponding worst-case patterns in the PRBS sequence strongly

determines the outcome of the corresponding Monte Carlo trials. In this case, given
27MTR -Maximum-transition-run, ECC -Error-correcting code.
2 8Pseudo-random bit stream.



that the corresponding PRBS has length 211-1 symbols and that the channel disper-

sion 29 is likely on the order of 10 symbols, it is possible for different PRBS patterns

to yield significantly different statistics for the occurrence of the worst-case symbol

patterns.

The recurring lesson from these and previous results is that for ISI-and-AWGN-

limited channels, both the practical intuition and the research methodology often

need to be revised depending on the operating regime.

2.6 Summary

In the large-noise and large-set-dominant regimes, classical coding theory provides an

exhaustive characterization of different error-control codes. The remaining issue of

hardware complexity has already been partially addressed in [4]. Instead, this chapter

focuses on coding techniques for worst-case-dominant or quasi-worst-case-dominant

regime. It demonstrates that, in these regimes, channels with weak correlation 30

impose more lenient requirements on standard error correction codes. For instance, a

single parity check code corrects all codeword errors as long as the codeword length

is strictly lesser than the channel's minimum correlation length. However, standard

error correction codes implemented over correlated channels, such as the dispersive

channel, incur a potentially large overhead, due to the fact that the principal part of

the channel response in a high-speed link is on the order of ten symbols or less.

Instead, this chapter develops an alternative approach to coding in the worst-case-

dominant or quasi-worst-case-dominant regime. In particular, it develops the pattern-

eliminating codes, which provide a performance improvement by preventing worst-

case interference events. The (n, n - 1) pattern-eliminating codes allow for simple

encoding and require virtually no decoding. They are effective for many channels

of interest, including the dispersive channel. The simulation results show that an

(n, n - 1) pattern-eliminating code can provide error-rate reductions of over fifteen
29And, thus, the length of the principal part of the channel, which causing the worst-case-dominant

behavior.
30In the sense of pattern-correlation



orders of magnitude on realistic high-speed link channels. However, such benefits

often vanish when the rate penalty of a code is taken into account. A method of

overcoming the rate penalty of a pattern-eliminating code is to endow the code with

additional timing benefits. In particular, for most channel signatures, the (n, n - 1)

pattern-eliminating code can be augmented by a simple rule to systematically prohibit

all runlengths of more than n - 1 ones or negative ones31.

While the (n, n - 1) pattern-eliminating code is effective over many channels of

interest, the (n, n - 2) code is effective over any channel. However, when both codes

are effective, the (n, n - 1) code is preferable due to lower overhead and encoder

simplicity. In general, the benefit of an (n, n - c) pattern-eliminating code for c > 2 is

the potential of providing a larger separation from the worst-case patterns. However,

given that the principal part of the high-speed link channel is typically on the order

of ten symbols or less, the rate penalty incurred by letting c > 2 likely exceeds the

benefit.

Further work is required on extending the pattern-eliminating properties to deal

with a wider range of operating conditions. In particular, one of the remaining prob-

lems consists of identifying or developing suitable equalization or channel conditioning

techniques that optimize the performance of a pattern-eliminating code. Such equal-

ization is, in principle, significantly more power-efficient compared to that employed

in current high-speed links, as the equalizer is no longer is the sole method of achiev-

ing the required low error probability. The corresponding scheme could potentially

yield significant benefits for high-speed links by enabling the communication at higher

data rates than those achieved previously, or by providing the same signalling speeds

at a greater energy efficiency.

3 1That is, provide the capability of a (0, n - 1)-RLL code.



Chapter 3

Performance Estimation of Coded

High-speed Links

The task of simulating a coded high-speed link is plagued with difficulties. The low

error rates, typically on the order of 10-15, render Monte Carlo simulation strictly

infeasible, even at today's computing speeds. Yet, as discussed in Section 2.5.1 of the

previous chapter, biasing the system's operating parameters to inflate the frequency

of the error events may change the corresponding interference-and-noise regime and

therefore fundamentally change the system's behavior in response to a code. For

instance, an increase in the noise variance steers a system away from a (quasi-)worst-

case-dominant regime and therefore renders a pattern-eliminating code ineffective.

Furthermore, the theoretical expressions developed in the previous chapter principally

concern the limiting cases. Although a well-equalized high-speed link is likely to

operate in the limit of a large-set-dominant scenario, and similarly for a link with low

noise and large dispersion operating in the quasi-worst-case-dominant scenario, the

limiting error expressions computed in the previous chapter may not be sufficiently

accurate for the in-between cases, especially at the low error probabilities.

This chapter introduces convenient methods of estimating the performance of a

coded high-speed link under different regimes. It also introduces an efficient com-

putational algorithm for accurately quantifying the effect of a code on symbol error

probabilities regardless of the operating regime. The latter is also of use for practi-



cioners, as it can be readily incorporated into the existing high-speed link simulation

software. The discussion begins with an overview of the previous work, followed by

the development of different simulation methodologies and a description of the new

algorithm.

3.1 Preliminaries

This section revisits the abstracted model of a coded high-speed link from the perspec-

tive of performance estimation and reviews the relevant previous work. Note that,

although the main body of previous work on coding for high-speed links is predomi-

nantly experimental due to the former lack of theoretical and analytical framework,

the issue of uncoded performance estimation for high-speed links has been extensively

addressed.

3.1.1 System Model

The underlying communication system assumed in the upcoming development is the

equivalent discrete-time coded system of Section 2.1.2 of the previous chapter. As

a reminder, the received signal at some time instant i E Z, denoted by Yj E R, is

represented as Y = Zi + Ni, where Zi is the signal component due to the transmit-

ted symbol and the inter-symbol interference (ISI) and Ni is the zero-mean additive

white Gaussian noise component of variance a 2. Again, the noise is assumed to be

independent of the signal at all times. Based on some channel response of length L

given by coefficients ho,..., hL-1l, the noiseless signal component Zi is written as

L-1

Z = E Xi-khk (3.1)
k=O

where, for convenience of representation, it is assumed that the channel has no pre-

cursor coefficients. However, all the results presented in this chapter generalize readily

to the pre-cursor case.



Since the noise distribution is known, this chapter focuses on statistics regarding

Zi. Let fz1 lx,, denote the marginal probability mass function associated with the

random variable Zi, conditioned on the symbol transmitted at time i. Similarly,

let fNi and fy~,lx denote the marginal densities for the random variables Ni and Yi

respectively. Since the noise is assumed to be statistically independent from the signal

at any time, it follows that

fYilx, = fzilx, * fN, (3.2)

where the * operator denotes the convolution'.

The probability distribution fzilx, can be interpreted as a decision distance profile.

For a system employing soft decision decoding, the corresponding fylx, yields the

marginal distribution for the soft information. For a system employing hard-decision

decoding, integrating fyvlx, over the error region yields the probability of incorrectly

detecting the corresponding transmitted symbol Xi, prior to any error correction.

Specifically, assuming the blind MAP detection rule discussed in Section 1.2, the

unilateral error probability Perr is written as

Perr = P(Y2 < 01Xi = 1) = j fYilx, =1(y) (3.3)

Note that for an unconstrained stream of equiprobable symbols, fzilx, is symmetric

with respect to the realization of Xi.

Due to the channel memory, for any two time indices i,j E Z, i < j < i - L,

signals Yi and Yj are statistically dependent. Thus, generally,

fYhYj(Y, Y2) fYi(Yl)fYj(Y2)

when i < j < i - L, and similarly for the distributions conditioned on Xi. It follows

that for some (n, k) linear block code, the joint distribution of detection errors on

the n codeword symbols cannot typically be obtained from the marginal densities
1Note that in order to represent the corresponding expression as a standard convolution, the

discrete random variable Zi needs to be represented as an equivalent continuous random variable.
However, this abuse of notation is widely tolerated.



alone. Section 3.3 discusses the conditions where the independence holds and proposes

alternative approaches to performance evaluation when the marginal probabilities are

not sufficient.

3.2 Previous Work

As previously discussed, accurately simulating coded systems over channels with ISI

is a task of varying difficulty. For systems operating at low error rates, Monte Carlo

simulation is impractical due to the large sample size requirements. Sample-size

reduction methods, such as importance sampling, exist, but long channel memory

reduces their effectiveness due to the dimensionality effect [481. Estimating the per-

formance of such systems in practice principally relies on accurate analytical com-

putations of signal probability distributions. Given that the residual ISI is widely

acknowledged as an important error factor, especially at low error rates, several ana-

lytical tools for estimating the system's performance focus on computing probability

distributions for Zi alone. In [49] and [50], to calculate fyjlx,, the authors consider

individual distributions associated with each transmitted symbol. More precisely,

consider the transmitted symbol Xi and the corresponding received signal Yi. From

the Equation 3.1, it follows that the contribution to Yi due to some symbol Xj, where

j = i,..., i-L+1, is given by -hi-j when Xj = -1 and hi_j when Xj = 1. Assuming

the transmitted symbols to be independent, the distribution of the overall received

signal Yi becomes the convolution of the densities corresponding to individual sym-

bol contributions. Similarly, [51] operates on the same principle, except that the

individual probability distributions are computed for 4 symbols at a time. However,

expressing the probability density of the total received signal as the convolution of

probability densities due to each symbol holds only for independent symbols, and does

therefore not apply for coded transmissions in general. In addition, the symbol error

probabilities constitute only the marginal statistics - information on joint statistics

is needed to evaluate the performance of a coded system. In [12], it is assumed that

the errors occur independently in order to capture the behavior of the system at low



error rates. However, the results of Section 2.5 demonstrate that a high-speed link

can operate at a low error rate in the quasi-worst-case-dominant regime where errors

events are highly correlated. Finally, note that due in part to the lack of adequate

simulation framework. the main body of work on coding for high-speed links [4], as

well as [11] and to an extent [12], remains exclusively experimental.

3.3 Performance Estimation Methodology

Revisiting possible noise and interference scenarios defined Chapter 1, the large-noise

scenario offers no challenges: the error probability for any time index i is given by

Perr = P(Nj < -ho)

and the errors are statistically independent for any finite set of distinct time indices.

More precisely, since the noise is modeled as additive and white, the ISI is the only

link between the error events occuring at distinct symbols. Therefore, in the limit

where the ISI vanishes compared to the noise variance, so does the information that

one received signal provides on another, and the errors events on received symbols

also become independent. Section 2.2.2 of the previous chapter provides a convenient

expression for evaluating the effect of ISI on the practical accuracy of the large-noise

assumption.

Similarly, Section 2.3.2 of the previous chapter shows that, in the limit of the

large-set-dominant scenario, errors on distinct symbols become effectively indepen-

dent. Furthermore, from the perspective of high-speed links, the corresponding results

suggest that the independence assumption is relatively accurate for well-equalized

channels. This is illustrated in Section 3.5 at error rates that can be captured in

Monte Carlo simulations. Regarding the effect of code constraints on the individual

symbol error probabilities, Section 3.4 describes an efficient algorithm that accurately

computes the marginal probability distributions for the random variable Zi given any

systematic linear block code. Note that the corresponding algorithm makes no as-
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sumptions as to the nature of the noise and interference, and is therefore applicable

to any scenario.

However, in the worst-case-dominant scenario, the joint error statistics and their

effect on the behavior of error-control codes differs significantly from the intuition

developed on well-equalized AWGN channels on which such codes are predominantly

used. The following describes the performance estimation methods suitable in this

case. A subsequent section also discusses the use of marginal probability distributions

apart from the context of joint error statistics. However, since establishing the va-

lidity of either of the three scenarios requires comparing the a priori and a posteriori

probability distributions for the random variable Zi, the issue of computing these

distributions is addressed first.

3.3.1 Computing the A Posteriori Signal Distributions

In the context of Chapter 1, the a posteriori signal distribution refers to the probability

distribution of the random variable Zi conditioned on the value of the corresponding

transmitted symbol Xi and on the occurrence of the detection error. More precisely,

following the convention of the previous chapters, it is assumed that Xi = 1 and

conditioning on the error event is thus equivalent to conditioning on the event Yi < 0.

The corresponding conditional signal distribution is denoted by fz•Yil<O,X,=1-

The following expression, obtained by reformulating the conditional probability

in the now-familiar fashion, yields the most convenient method of computing the

conditional signal distribution:

fz~lx=l(z)P(Ni < -z)
fZivYi<OXi=1(z) = (3.4)Perr

where, as previously,

Perr = fzCix,=l (Z)P(Ni < -z) (3.5)
zEfQ

and Q denotes the sample space of the random variable Zi conditioned on Xi 1. In

that manner, the worst-case parameter f is computed as the a posteriori probability
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of the worst-case interference z,,• that is,

f = fzlx,=1 (zwc)P(Ni < -zr) (3.6)
Perr

Similarly, for the quasi-worst-case-dominant scenario, denote by Zi the signal formed

by only the principal channel coefficients and Zi that formed by the secondary chan-

nel coefficients. Then the quasi-worst-case analogue of the worst-case parameter f,

denoted by f for convenience, is given by

- fi1X,=1(wc) E••zc f, 1x,=1(z)P(Ni < -iw- (37)

Perr

where Q denotes the set of possible interference values caused by the secondary part

of the channel alone and the symbol error probability Perr is computed based on the

entire channel response. As a reminder for a channel of length L with the primary

channel of length L, the quantity f represents the a posteriori probability that the

most recently transmitted symbol and the L - 1 immediately preceding symbols form

a worst-case pattern given that a detection error has occured. Note that the notion of

the worst-case pattern in the quasi-worst-case-dominant scenario refers to the primary

part of the channel alone.

In Equations 3.4-3.7, the quantity P(Ni < -z) for any z E R is obtained by

evaluating the cumulative distribution function of a Gaussian random variable, for

which efficient numerical implementations exist [52]. The remaining challenge consists

of determining the probability mass function fzi lx,. For an uncoded system, fzilx, can

be computed efficiently as described in Section 3.2 even for relatively long channels.

The generalized version of the algorithm for coded systems is described in Section 3.4.

3.3.2 Performance Estimation in the Worst-case-dominant

Regime

In the context of performance estimation, the scope of the worst-case or quasi-worst-

case-dominant scenarios is of practical nature. For the pattern-eliminating codes
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(PEC), the suitable range of f, or f, corresponds to the region where the PEC

yields a significant benefit, while for the classical error control codes (ECC), the

corresponding range is set by computational constraints. The following two sections

discuss both cases more thoroughly.

Performance Estimation of Pattern-eliminating Codes

Estimating the performance of pattern-eliminating codes in the worst-case or the

quasi-worst-case-dominant scenarios is computationally straightforward. From Sec-

tion 2.4.2 of the previous chapter, it follows that the error probability p',rr of a system

implementing a pattern-eliminating code is bounded by

P'er 2k( 1 - f)Perr

for the worst-case-dominant scenario, or

p'err< 2k(- f)perr

for the quasi-worst-case-dominant scenario, where the parameters f or f are computed

as described in the previous section. Since, as f -4 1 or f -- 1 the respective

bounds become tight, the above expressions are sufficient to accurately estimate the

performance of a pattern-eliminating code at small f (or f), that is, in operating

conditions where such a code provides a significant benefit.

Performance Estimation of Error Control Codes

Estimating the performance of error-correction codes requires knowledge of the joint

error statistics. Since the experimental work on high-speed links focuses on linear

block codes and since, based on the results of the previous chapter, error control

codes in general2 yield a limited benefit in (quasi-)worst-case-dominant regimes, the

following discussion focuses on linear block codes alone.
2With the exception of the single parity check code, as also previously demonstrated.
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For a system implementing a linear block code and operating in the worst-case-

dominant regime, it suffices to identify the dominant error-causing symbol patterns

and evaluate the joint error probabilities conditioned on these patterns. The number

of patterns to consider depends on the value of f, computed beforehand as previously

described. Thus, the question of classifying a system as worst-case-dominant for the

purpose of performance estimation of linear block codes is a matter of computational

complexity.

When f is sufficiently high so that the contribution of non-worst-case patterns

to the error expression is negligible, the performance estimate becomes particularly

simple. Consider some (n, k) linear block code and the corresponding codeword sym-

bols X,,..., X 1. The corresponding received symbols Y,,.. ., Y1 are function of the

i.i.d.3 noise random variables N,...., N1 and the L + n- 1 transmitted symbols

Xn,..., X-L+2. Denote by S the set of all patterns X,,..., X-L+2, taking into ac-

count the code constraints. Furthermore, define the function gN : N - N so that,

given a positive integer m representing the number of errors in a codeword, the out-

put is the number of distinct (n + L - 1)-symbol patterns of the form x E S, within

which there are exactly m worst-case patterns nested. Note that, for each m, the

corresponding gN(m) is obtainable from the pattern-correlation function introduced

in the previous chapter. It suffices to observe the shifts at which the pattern correla-

tion function has unit value and account for the multiplicity of the remaining "free"

symbols. Then, the coded system's word error rate (WER) can be bounded by

PWER (P(N < -Zwc))
m  

(3.8)

m=t+1 I

where z,, > 0 is the minimum distance to the decision threshold due to worst-case

interference and t is the error-correcting power of the code. The bound becomes

tight in the limit f -+ 1. In the quasi-worst-case-dominant scenario, the channel-

related quantities are referred to the primary part of the channel alone. The bound

thus becomes an approximation due to the contribution of the coefficients in the

3Independent and identically distributed.
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secondary part of the channel. However, the approximation also becomes exact in

the limit.

3.3.3 Further Use of Marginal Probability Distributions

While the previous section focused on the joint error statistics, it should be noted

that the corresponding marginal probability distributions are useful in their own right.

Most immediately, they provide more accurate information about system's margins,

such as the signal swing4 . Also, they provide accurate cross-over probabilities' for any

symbol location in a codeword. This is particularly useful in the case where, for each

codeword, some part of the information payload is more sensitive to error, like control

or addressing information for instance. Finally, marginal probability distributions for

the received signal may also be useful in soft-decoding of Reed-Solomon codes.

3.4 Efficient Computation of Probability Distribu-

tions for Coded Systems

The present section describes an efficient numerical algorithm that enables accurate

computation of the probability distribution associated with the random variable Zi

given some systematic (n, k) linear block code. For the ease of representation, the

following algorithm description relies on the simplified scenario illustrated in Figure 3-

1, where both the length of the channel response and the time index i of the most-

recently transmitted symbol are fixed relative to a given codeword. The subsequent

development extends the corresponding results to arbitrary times indices, channel

lengths, sources of interference and even symbol alphabets. Also note that since the

signal is independent of the noise and the corresponding probability distributions are

therefore decoupled, the underlying system is assumed to be noiseless. Thus, Yi = Zi.
4i.e. minimum and maximum signal values.
5In a system implementing a hard decoding scheme, integrating the marginal probability distribu-

tion for the received signal, conditioned on Xi = x, over the error region yields the probability that
the symbol Xi is decoded incorrectly assuming an x was transmitted. That probability is referred
to as the cross-over probability for the ith symbol in the codeword and denoted by plx(i)
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Given the two assumptions, it follows that the probability distribution of the random

variable YIlxi=1 is entirely determined by the probability distribution of the random

variable Wi, denoting the contribution to Y2 from the preceding codeword. Since

Yilx,=l = ho + Wi

and the contents of two distinct codewords are statistically independent, the proba-

bility distribution of Yilx,=1 will follow from the probability distribution of Wi by a

simple transformation.

x'= 1

Not yet transmitted a L - 1

I TTTT

Figure 3-1: The simplified channel/code scenario - For a given (n, k) systematic linear
block code, it is assumed that the most-recently transmitted symbol corresponds to the
first symbol in the codeword. In addition, it is assumed that the previously-transmitted
codeword is the sole source of interference. Both assumptions are revisited in Section 3.4.2.

3.4.1 Algorithm Description

When the set of allowed symbol sequences is restricted, straightforward enumera-

tion provides a simple approach to calculating the probability mass function for the

probability mass function fw, of the random variable Wi defined previously. Possible

values of Wi are obtained by considering each element of the codebook individually.

An (n, k) code allows for 2k possible codewords, each n symbols long. Translating

the resulting n-long possible symbol patterns into signal values using Equation 2.1

and noting that the patterns are equally likely yields a probability distribution. The

size of the resulting probability mass function can be reduced by quantizing the pos-

sible signal values to some precision A and adequately grouping the corresponding

probabilities. This mechanism is illustrated in Figure 3-2 for a simple (3,2) single-

parity-check code with A = 0.1. While the above method is adequate for dealing with

106



(0) (1)
7? '\

I I
h 2 -h2

(0) (1)

hI -hh, -hl

a)

1T"

-1.05 -0.95

h1 - h2  -h + h2
-h 0 - h0

0.05

- h - h 2
+h o

1.95

hl+h 2
+h

o

c)
Figure 3-2: Example: Signal contribution due
The corresponding portion of the channel re
The resulting PMF. d) The quantized PMF.

codewords of relatively short to moderate lengths, it quickly becomes burdensome as

the number of independent bits in a codeword increases. For instance, computing the

probabilities associated with a codeword of k = 100 information bits and any number

m of dependent bits over a realistically long channel6 requires considering 2100 - 1030

distinct possibilities. In order to handle arbitrarily long codewords, it is therefore

necessary to reduce the enumerative burden of the method.

Building on the naive enumerative approach described previously, this section

describes an efficient algorithm for computing the marginal probability distribution

for the received signal contribution Wi given some code and effective channel response.

The method of alleviating the computational burden of dealing with symbol patterns

from a restricted set relies on two properties of a systematic linear block code. First,

the fact that the information appears explicitly in the codeword yields a string of

k unconstrained symbols which can be separated into independent, non-overlapping

blocks. Second, the fact that the code is linear implies that the effects on the parity

of each individual block added together entirely determine the parity associated with

a particular information pattern. These two properties combined enable a reduction
6The results of Section 3.5 were obtained on a backplane channel of comparable length
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in computational complexity.

A more computationally-oriented description of the above idea relies on the con-

cept of subcodeword. A subcodeword is obtained by segmenting k unconstrained in-

formation symbols into independent, non-overlapping blocks and appending m parity

symbols to each block. The code associated with a given subcodeword is the original

code shortened to include only the relevant symbols. This is illustrated in Figure 3-3

for a (7,4) Hamming code. For ease of representation and without loss of generality,

the subsequent development assumes that the information is subdivided into even,

consecutive blocks of d < k symbols.

II ~~zz
S0 11000

0 1 1 0 1 0 1 0 0

' ': 0 0
0 0

a) b) c)

Figure 3-3: Example: Partitioning a (7,4) Hamming codeword for d = 2 - a) The original
codeword. b) Two subcodewords. c) The portions of the generator matrix associated with
each subcodeword.

The algorithm now reduces to the following three steps.

1. Computing the partial information for each subcodeword efficiently.

2. Grouping partial information to reduce storage requirements.

3. Combining partial information from each subcodeword.

The principle which allows for a reduction in the computational complexity is the

computing and grouping of partial information at the level of a subcodeword. On the

other hand, the method to efficiently combine the partial information to form the

information due to a full codeword, identical to that obtained through a previously-

described naive approach, is due to a judicious choice of partial information. More

precisely, defining the relevant subcodeword information as
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* the contribution of the d information bits to the received signal;

* the contribution of the m parity bits to the full codeword parity.

allows for reductions at the level of the subcodeword without any loss of information

at the level of the final probability distribution. The following sections individually

describe each step of the algorithm.

Computing Partial Subcodeword Information

Since each subcodeword contains d unconstrained information bits, where d can be

chosen conveniently small, proceeding by enumeration is no longer impractical. For

each of the resulting 2d possible subcodewords, the signal/parity contributions are

represented by a scalar w E R and an m-dimensional vector b = (bl, b2 , ..., bm)T E

{-1, 1}m, where bi is the subcodeword's contribution to the ith parity bit and w its

contribution to the received signal.

The quantities b and w can be computed in a "batch", by enumerating the possible

2d bit patterns first. For this purpose, it is convenient to represent the corresponding

patterns as two matrices, one corresponding to the symbols from the set {-1, 1} and

the other corresponding to the underlying bits, taking values from the set {0, 1}.

The resulting value of w is obtained by multiplying the first matrix by a real vector h

representing the corresponding channel coefficients. Similarly the vector b is obtained

by multiplying the second matrix by generator vectors corresponding to each parity

bit. Alternatively the same quantities can also be computed "sequentially", focusing

on one information symbol at a time and considering the effect of its two possible

values on both w and b.

Grouping

Still operating at the level of a particular subcodeword, it can happen that two or

more information patterns yield the same contribution to the received signal. This

is particularly the case when signal contributions are quantized to some adequate
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accuracy. In that case, there is often a large benefit to grouping the resulting sig-

nal/parity vectors with identical signal contributions. As an illustration, when the

portion of the channel response which spans a particular codeword is approximately

uniform (coefficients of equal magnitude), there will be roughly twice as many pos-

sible signal values as there are independent symbols. However, the total number of

symbol patterns resulting from any subcodeword is exponenetial in the number of

independent symbols. There will therefore typically be many more symbol patterns,

and therefore the signal/parity vectors, than possible distinct signal values. As an

illustration, consider a channel with coefficients of magnitude J and a subcodeword

with d information symbols, where d is assumed to be even. Then, possible values of

w can be written as

w= mS where m= -d,-(d-2),...,0,...,d-2, d

when d is even and m = -d, -(d- 2),..., -1, 1,...,d- 2, d when d is odd. Further-

more, the number of signal/parity vectors sharing a given signal value mj is given by
d+m

Cd 2 using the familiar combinatorial notation. Figure 3-4 illustrates the need for

grouping signal/parity vectors on a subcodeword of size d = 2.

The following change of representation from the signal/parity format to the signal/

type-count format allows the convenience of recording a single vector per signal value

present regardless of the number of underlying information symbol patterns. The

new representation assigns a type to every possible parity pattern, where the type

of a pattern is simply defined as the decimal equivalent of the corresponding binary

string. Consequently, there are 2m possible parity types, ranging from 0 to 2m - 1.

When grouping several signal/parity vectors associated with the same signal value w,

it then becomes sufficient to record the number of different parity types present to

preserve all information prior to grouping. The vector t = (to, tl,... , t 2m_-1) E N2m- 1

associated with some possible signal value w is referred to as the parity type vector.

The corresponding vector elements tj, for j = 0,...,2 m - 1, indicate the number of

the information symbol patterns, out of the 2d possible patterns, yielding the signal
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Figure 3-4: Example: The motivation for grouping subcodeword information vectors with
identical signal values- a) The subcodeword and the corresponding portion of the channel
response. b) The combinatorial expansion and the signal/parity vectors. c) The quantized
signal/parity vectors where the quantization step is A = 0.1. As expected, there are C1 = 2
vectors associated with w = 0.

contribution w and the parity contribution of type j. Note that

2m-1

S S (w) = 2d

wEQ j=0

where Q represents the set of the possible values of w for a given subcodeword and

the elements of the parity type vector t are endowed with superscripts to distinguish

the vectors corresponding to distinct signal values. Finally, note that the parity type

vector together with w forms a coordinate. Figure 3-5 illustrates the mechanism of

switching to the new representation and grouping the two resulting coordinates.

Combining

Once the partial information is computed for each subcodeword, it is necessary to

combine the results to yield the probability mass function corresponding to the full

codeword, fw,. The combining is a two-step process. First, two subcodewords, each

associated with d information symbols, are combined to yield the equivalent partial

information for the resulting 2d symbols. Second, once all the subcodewords are
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Figure 3-5: Example: Grouping several signal/parity vectors with the same signal value -
a) Possible parity types for k = 2. b) Transforming two signal/parity vectors to reflect their
parity patterns. c) Grouping the vectors into one coordinate.

combined, it suffices to transform the resulting parities into signal values and con-

vert the information given in the coordinate form into the typical signal/probability

representation. The two steps are described subsequently.

Since the subcodewords are formed by non-overlapping blocks of information sym-

bols, two subcodewords are effectively independent. It follows that any combination

of two coordinates associated with two different subcodewords is allowed. In other

words, assuming the partial information for two subcodewords is composed of M and

N coordinates respectively, the equivalent contribution of 2d information symbols re-

sults in M x N coordinates. Note that these need not be distinct, so the combining

step is again followed by grouping coordinates with identical signal values.

To better describe the basic combining principle, it is convenient to briefly revert

to the original signal/parity vector representation, prior to any grouping. A given

pattern of d independent bits from subcodeword r produces a signal contribution

wr and a parity state (brl, br2, ... , brm)T. For two signal/parity vectors belonging to

two distinct subcodwords, the task at hand is to combine the vectors so that the

result is identical' to a signal/parity vector of the equivalent (2d)-symbol-long sub-

codeword. Represent the two coordinates as (br,l, br,2,..., br,m) T associated with wr

and (b., 1, b8,2 ,..., bs,m)T associated with w,, corresponding to subcodewords r and s

respectively. Then, the signal/parity vector resulting from the combination is simply

7Ignoring any quantization issues, to be discussed shortly.
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given as

(br,1 E b8,1, br,2 0 bs,2,... , br,m 0 bs,m)T associated with Wr + W, (3.9)

where 0 denotes a bit-wise xor operation. In other words, to obtain the equivalent

contribution of the 2d information symbols to both the received signal and the parity,

it sufices to add individual d-symbol contributions in both the parities and in the

signal values, making sure to define the notion addition with respect to the underlying

field. An example of the combining principle on the signal/parity vectors is shown in

Figure 3-6 for a simple single parity check code.

b, bi

0.2 5  .25  0.25
0.10

-0.50 0.15
b (0) b1 (0)

b,
1101

0.25 T T 0.10

-0.35
b1 (0)

Figure 3-6: Example: Combining two signal/parity vectors corresponding to two different
subcodewords to yield the equivalent signal/parity contribution - a) The original subcode-
words with d = 2 implementing a single parity check code (SPC). b) The equivalent sub-
codeword with 2d information symbols implementing the same single-parity check code. In
all three cases, the signal/parity vector has only two elements, associated with the signal
contribution and the contribution to the single parity bit, respectively. The corresponding
values are highlighted for clarity.

Extending the above result to the grouped coordinate representation relies on the

fact that there are 2" distinct combinations that can produce a given parity pattern.

For instance, a pattern (bl, b2 , b3 ) = (0, 0, 0), i.e. the parity of type 0, can be obtained

by combining (0,0, 0) with (0,0,0), as well as (1, 1, 1) with (1, 1, 1), or in general by

combining any two identical parity patterns. Similarly, the parity pattern of type 1 is
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produced when combining any two patterns (br,1, br,2, br,3) and (b8,1, b8,2, b,, 3) such that

(br,l e bs,l, br,2 E bs,2, ... ., br,m ® bs,m) = (0, 0, 1). The general result can be formalized

as follows. Define the distance d : {-1, 1}m x {-1, 1}m H N between two patterns as

d((br,l, br,2, br,3), (bs,l, bs,2, bs,3)) = dec(br,,i b,l1 , br,2 E b, 2 , ... ., br,m E bs,m)

where the dec operator converts an unsigned binary string into its equivalent decimal

integer representation. Then, a parity pattern of type j, where 0 < j < 2m - 1, is

produced by combining any two patterns at a distance j from each other.

Since following the grouping of the signal/parity vectors, each resulting coordi-

nate may be associated with more than one parity pattern, when combining two

coordinates from distinct subcodewords it is necessary to consider all the parity com-

binations which yield a given type. From Eqn 3.9, it is apparent that for any type j

and any pattern b, there is a unique counterpart b' such that b E b' = bin(j), where

bin operator translates an integer taking values in the range {0,...,2 m - 1} into

an unsigned binary string of length m. Given some parity type j, the ordered set

of such counterparts, or, more precisely, of their decimal equivalents, is termed the

permutation vector for type j, denoted Ij. For reasons to become apparent shortly,

the ith element of the permutation vector Ij is given by

Ij(i) = dec(bin(i) Dbin(j)) for i= 0, 1,...,2 m - 1,

where D is the bit-wise xor operator. Permutation vectors for m = 3 and the resulting

2m possible parity types are shown in Table 3.1. This choice of terminology is indica-

tive of each permutation vector's purpose. More precisely, consider the combination

of two signal/parity coordinates

tr = (tr,o , tr,l,... , tr,2m-1)T associated with Wr

with

ts = (ts,o, tas,,..., ts,2 m_ 1 )T associated with w,
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corresponding to codewords r and s respectively. Then, the number of resulting

patterns of type 0, denoted by ts,o0, is given as

t,r = tts.

In other words, the result is an inner product of two parity vectors. Extending this

principle to other parity types is achieved by preceding the inner product by a vector

permutation. Specifically, the number of resulting patterns of type j is given by:

ts,j = t T x Pj x t (3.10)

where the x operator indicates ordinary matrix multiplication. In the above equation,

Pj denotes a (2m - 1) x (2" - 1) permutation matrix with ones at positions

(i,Ij(i)) for i= 0,...,2 m - 1,

and zeros elsewhere. Note that, as previously, Ij(i) denotes the ith element of the

permutation vector Ij. It follows that the combining operation can be efficiently

implemented as a series of 2m permutations and dot products. This is illustrated in

Figure 3-7 where the detailed computation is shown for the parity pattern of type 2.

0Io I1 12 I3 4 15 I6 17
7 6 5 4 3 2 1 0
67452301
5 4 7 6 1 0 3 2
4 5 6 7 0 1 2 3
3 2 1 0 7 6 5 4
2 3 0 1 6 7 4 5
1 0 3 2 5 4 7 6
0 1 2 3 4 5 6 7

Table 3.1: Permutation vectors
counterpart to Io.

for m = 3. Each permutation vector Ij is the type j

Once all the subcodewords have been combined, it remains to transform the re-

sulting set of coordinates into the typical signal/probability representation. Since,

for any given coordinate, the signal value w represents the contribution to Wi from
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the codeword's information bits, it suffices to transform the remaining parity bits

into their equivalent signal contribution and add the latter to w. The pattern count

associated with each parity type, divided by the total number of possible symbol

patterns, 2 k, is then used to compute the corresponding probabilities. This is further

illustrated in Figure 3-8.
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Detail: par
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Combined 1 23
with 5 34
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0
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Figure 3-7: Example: Combining two coordinates from two different subcodewords with m
= 3. The principle of the record permutation is shown in more detail for the parity pattern
of type 2 where 12 is used to compute the resulting probability counts.

bi b2 b3bhbb,

0.7
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h2+ h3 + h2+ h3

+h2-h3 + h2+ h3

Figure 3-8: Example: Translating the signal/parity-type coordinates into a standard prob-
ability distribution. The conversion is illustrated for one coordinate. The parity patterns
present are converted to PAM2 (here, '0' -- +1) and mapped to the corresponding channel
coefficients as given in (2). The probability counts are extracted from the field associated
with each type and normalized by p-1 = 2k, corresponding to the the total number of
possible bit patterns associated with one codeword.
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3.4.2 Generalizations and Remarks

This section addresses the complexity and quantization issues in more detail. It also

extends the scope of the previously-described algorithm to dealing with different code-

word symbols, accounting for co-channel interference and estimating the performance

of codes over higher fields

Extension to Multiple Codewords and Different Symbol Locations

The previous section describes the method of dealing with a simplified scenario il-

lustrated in Figure 3-1 and further reproduced in Figure 3-9a). In the simplified

scenario, the channel response spans one full codeword, corresponding to symbols

Xi•1,..., Xi-L+1, while the most recently transmitted symbol, denoted by Xj, corre-

sponds to the first symbol of a new codeword. From Equation 3.1, the received signal

Yj is given by

Y = hoXi + hlX_ 1 + ... + hL-1Xi-L+1l

The described algorithm focuses on computing probability distribution for the quan-

tity Wi = hlX-_1 +... + hL-1Xi-L+1. Subsequently accounting for the value of Xi is

straightforward since the symbols belonging to two distinct codewords are statistically

independent.

A simple extension for dealing with multiple full codewords, illustrated in Figure 3-

9b) relies on the statistical independence between codewords. More precisely, consider

the received signal at time i and let W.(1) , Wi(2),.., Wi(K ) be the contribution to Yi

from the K most recently transmitted codewords 8 so that

Yi = hoXi + W ( ) + W(2) + + W(2)  K)

Since different codewords are statistically independent, so are their contributions to

the received signal. It therefore follows that the probability distribution fy, xl=l

is given as the convolution of the probability distributions corresponding to each
8Note that, for some (n, k) linear block code, if the channel length is not an integer multiple of

the codeword length n, the tail of the channel response can be zero-padded.
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Wj),j = 1,...,K, where the abscissa of the resulting distribution is shifted by

ho to account for the conditioning. In turn, the probability distributions for each

W.v),j = 1,..., K are obtained through the algorithm described in the previous

section.

Allowing W.(1) to be based on an incomplete codeword provides means of comput-

ing marginal probability distributions for any symbol location in a codeword. The

probability distribution governing W,(1) is also obtained using the proposed algorithm

by zero-padding the corresponding portion of the channel response to form a full

codeword. However, in order to condition on the value of the most-recently transmit-

ted symbol, that is, conditioning on Xi = x for some x E {-1, 1}, one modification

is necessary. Specifically, when computing the partial information corresponding to

the most recent subcodeword, both the sequential and the batch approach need to

consider only the symbol patterns where Xi = x. Finally, since the codeword inde-

pendence still holds, the final result is once again given as a convolution. The overall

process is illustrated in Figure 3-9c).

Computational Complexity

Note that, prior to discussion possible extensions to higher-order alphabets, it is useful

to consider the computational complexity of the algorithm. For some given codeword

length n, increasing the length of the channel response, L, increases the number of pre-

viously transmitted codewords spanned by the channel memory. This translates into

a linear increase in the number of convolutions of PMFs corresponding to individual

codeword to the total received signal. Similarly, for a codeword with a given number

of parity bits m, increasing the number of independent bits k linearly increases the

number of subcodewords of of size d that need to be considered. The increase in the

number of subcodewords has no effect on the grouping or combining algorithms, and

the overall complexity increase is therefore linear as well. However, the increase in

complexity due to increasing the number of parity bits, m, is exponential. This is due

to the parity tracking mechanism necessary in the grouping step of the algorithm,

or, more precisely, to the necessity of translating an m-symbol parity pattern to 2m
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Figure 3-9: Extension to multiple codewords and symbol locations - a) The simplified
scenario assumed in the previous sections. b) The extension to multiple codewords. c) The
extension to different symbol locations withing a codeword. Note that the channel response
is depicted as having no pre-cursor coefficients. However, the latter can be accounted for
in an analogous manner.
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parity pattern types. Nevertheless, for high-rate codes, the number of parity bits is

typically much less than the number of independent bits and the overall reduction

in complexity is still significant. Section 3.5 illustrates the runtime performances for

different codes based on a MATLAB implementation of the technique.

Extension to Higher-order Alphabets

Although the previous developments concerned codes over binary alphabets, the new

algorithm also extends to higher-order alphabets. Assuming an alphabet of size q the

resulting parity-type vectors are of size qm - 1. An analogous rule can be developed to

determine the corresponding permutation vectors. However, the principal difficulty

of accounting for higher-order alphabets is the corresponding complexity increase.

Assuming q = 2', the complexity now increases as q = 2m" where m is the number of

parity bits. Thus, while given sufficient memory resources, results can be obtained

with q = 4 and m = 10 and any codeword length, higher-order alphabets or additional

parity bits quickly become computationally prohibitive.

Quantization

In order to reduce the computational requirements, and therefore the execution time

of the algorithm, it is beneficial for the signal contributions to be quantized. This

does not reduce the size of the parity-type vector, but it reduces the number of

signal/parity coordinates that need to be recorded.

However, instead of quantizing the channel coefficients directly, quantizing the

signal contributions at the subcodeword level, prior to grouping, significantly reduces

the resulting quantization error. More precisely, given a subcodeword of d informa-

tion symbols spanned by some set of channel coefficients, quantizing each channel

coefficient to some precision A incurs a quantization error distributed over the inter-

val [-di, d~2 . For the same A, quantizing instead the signal contribution due to d,

the corresponding interval shrinks to [- , A].

The total quantization error for the full probability distribution depends on the

quantizing A and the ratio of the channel length L to the subcodeword size d. Quan-
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tizing only at the level of signal contributions for each subcodeword, as previously

discussed, then causes a total quantization error of at most [L/d] . It is therefore

advisable to assign a large, but practical, value to d. As an illustration, consider a

system with the channel length L = 200 and some (100,90) systematic linear block

code. It follows that the channel response spans at most two codewords. In addition,

let A = 10- 4 (0.1 mV) and d = 10. Each codeword is therefore subdivided into 9 sub-

codewords and the resulting maximum quantization error for the total received signal

becomes 9 x 10- 4. Assuming the distribution of the quantization error to be symmet-

ric around 0 and individual quantizing errors for each signal to be independent, the

maximum quantization error, based on the probability that quantization errors from

all 18 subcodewords interfere positively or negatively, occurs with probability 2- r .

More realistic bounds on the quantization error can be obtained by using any of the

well-known bounds for sums of independent identically distributed random variables

with finite variance.

3.5 Practical Examples

The previous section introduced an efficient algorithm that allows to accurately quan-

tify the effect of code constraints, in the form of a systematic linear block code, on the

decision distance, regardless of the operating regime. This chapter provides further

illustrations regarding possible algorithm implementations and the information the

corresponding tool provides in a typical high-speed link. Since the practical examples

of the previous chapter provide a thorough illustration of the behavior of codes in the

(quasi-)worst-case-dominant regime, this section focuses on the large-set-dominant

scenario.

All the results are obtained with the equalized channel responses, B3 and B32

[17], shown in Figure 3-10. Both channels display a long pulse response, on the order

of 300 coefficients. However, unlike its counterpart, Channel B32 contains dominant

interference coefficients, caused by insufficiently equalized dispersion.
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Figure 3-10: Two High-speed Link Channels - The equalized pulse responses shown are
based on the Peters ATCA measurement data for a 3" [top, B3] and 32 " [bottom, B32]
backplane with bottom-layer routing [17]. The zero-forcing equalizer has 5 coefficients. The
links operate at 5 Gb/s and 10 Gb/s respectively.

3.5.1 Runtime Statistics

All the distributions computed in this section are obtained with d = 10 bits and

A = 10- 4 Volts. The runtime statistics were obtained on a Pentium 1.60 GHz pro-

cessor with 504 MB of RAM. Table II a) presents the runtimes for Hamming codes

of different sizes. For codewords whose length exceeds the length of the channel,

the channel response is zero-padded. As

the runtime results present a pessimistic

particularly long codewords. To illustrate

increase in the number of parity bits alone,

for an arbitrary (290 + m, 290) code.

this increases the effective channel length

view of the efficiency of the simulator for

the increase in the runtime incurred by an

Table 3.2b) provides the runtime statistics

Table 3.2: Runtime statistics
codeword length.

- a) Hamming codes. b) Instances of random codes of fixed

122

0

0.08

-" 0.04

-0.04

Code (n,k) Runtime (s)
(31,26) 5.15
(63,57) 9.86

(127,120) 15.5
(255,247) 38.0
(511,502) 178

(1023,1013) 1.04 x 103

Code (n,k) Runtime (s)
(295,290) 11.0
(296,290) 12.8
(297,290) 18.4
(298,290) 36.0
(299,290) 104
(300,290) 453



Note that, for MATLAB implementations, the above runtimes can be further de-

creased by taking advantage of sparse matrices. The corresponding benefit has less to

do with the sparsity of the data, but provides instead a more efficient implementation

of the combining process through facilitated indexing.

3.5.2 Link Performance

The following considers the effect of code constraints on marginal symbol error prob-

abilities of the two high-speed link channels of interest. The corresponding joint error

statistics are also discussed.

Effect of Constraints on Symbol Error Probabilities

To illustrate the effect of restricting the transmit alphabet through some systematic

linear block code on the decision distance, the results of this section are based on

a hypothetical set of codes implemented in a high-speed link. Choosing the set

of all possible (10,8) systematic linear block codes is motivated by the runtime-

limiting/DC-balancing 8b/10b codes [18] traditionally implemented in some high-

speed links. While the 8b/10b codes are not systematic and therefore cannot be

simulated through the proposed framework, it is interesting to consider the effects of

possible code constraints, in the form of a systematic linear block codes of identical

overhead, on the probability distribution of the random variable Zi. The resulting

probability distributions are shown in Figure 3-11. The effects of adding a realistic

amount of system noise to these distributions are shown in Figure 3-12.

Prior to discussing the above figures, several remarks are in order. First, note that

different operating points are obtained by shifting the decision threshold to artificially

increase the decision distance. Although Section 2.5.1 of the previous chapter cautions

against this practice in performance estimation, its use in the present context is

justified. More precisely, while this practice can lead to misleading results when

biasing the operating conditions in order to improve the accuracy of the performance

estimate for a given system, its present use allows to quickly illustrate the performance
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Figure 3-11: Received signal distributions for the set of all (10,8) linear block codes. Shown
are the cumulative mass functions (CMF) for two different channels: a) B3 b) B32. The
plots also show the signal CMF computed under the assumption that the data is uncoded.
For consistency, both the coded and the uncoded CMF are quantized d = 4 independent bits
at a time. The quantization step is 0.5mV. The probability distributions shown correspond
to possible signals associated with the first information symbol in a codeword.

of different systems sharing the same channel signature. Also note that, for each

channel, the symbol error probabilities are computed for two codes: code 1 and code

2 for channel B3 as well as code 3 and code 4 for channel B32. The codes are

chosen arbitrarily from the set of all (10,8) codes in order to illustrate the situations

where a code can make a moderate to large difference in the marginal symbol error

probabilities.

The corresponding results show that different (10,8) systematic binary linear block

codes can drastically change the interference profile for a given symbol, and with it,

the symbol error probability. In addition, this behavior can differ greatly from the

behavior of an uncoded system. The corresponding symbol error probabilities can

differ by an order of 103 for the B3 channel operating at an uncoded BER of 10-10 and

>> 1021 for the B32 channel under the same conditions. The resulting discrepancy in

the probability distributions between the coded and the uncoded system represents

the error in computing the coded probability distributions assuming an unconstrained

stream of symbols. Alternatively, this discrepancy also quantifies a possible benefit
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Figure 3-12: Bit cross-over probabilities for the uncoded case and two different (10,8) linear
block codes on a B3 channel [top] and B32 channel [bottom]. Code 2 was chosen to yield the
maximum deviation from the uncoded CMF, while Code 1 was chosen roughly in between
the two extremes. The results are computed under the common assumption that the link
noise is additive, white and Gaussian with oa 3mV,

of prefering certain codes based on their pattern-eliminating properties.

The a priori and a posteriori distributions for both channels and different threshold

values are shown in Figures 3-13 and 3-14, respectively. Note that, while the B3

channel is neither worst-case nor quasi-worst-case dominant, the B32 channel is quasi-

worst-case dominant throughout the relevant threshold range. More precisely, placing

the decision threshold at -0.01 results in the value' 1 - f = 0. On the other hand,

placing the decision threshold at -0.04 yields 1- f = 2.7 x 10-6. In the latter case, the

corresponding uncoded error probability is pe = 4.3 x 10-3.The discrepancy between

Per, x 10-6 and the improvemement of 10-21 depicted in Figure 3-12 is due to the fact

that code 2 prohibits several harmful patterns, in addition to the worst-case pattern,

from occuring on the first symbol in the codeword. Since the dispersion coefficients

9 Since the noise has infinite support 1 - f > 0. The lack of significant digits is due to finite

numerical precision.
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Channel B3
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Threshold:0.56 Threshold:0.60

Figure 3-13: A priori and a posteriori probabilities for the random variable Zi over the
B3 channel. The probabilities correspond to an uncoded system with a = 3 mV. The
system does not operate in a worst-case-dominant regime as the noise variance is large
compared to the spacing between any two coefficients. On the other hand, since there are
no dominant interference coefficients, the channel contains no primary part and the system
cannot operate in the quasi-worst-case-dominant regime either.

are large compared to the noise standard deviation, also prohibiting the next-to-

worst-case events has a dramatic effect on the resulting symbol error probability.

However, note that despite the apparent error reductions, the performance of the

above codes is inferior to that of a pattern-eliminating code. Specifically, pattern-

eliminating codes provide an error reduction for all symbols in a codeword, while the

present results depict the maximum benefit of a (10,8) code focusing on the symbol

error probability of the first codeword symbol alone. In fact, repeating the experiment

focusing on the second symbol in the codeword yields very different results: code 2

and code 4 no longer provides a significant benefit over the uncoded case.

Joint Statistics

Given the accurately computed symbol error probabilities, it remains to determine

the joint error statistics for different symbols in a codeword. For systems operating

in the quasi-worst-case-dominant scenario, the errors occuring on distinct symbols

are in general not independent, as demonstrated in the previous chapter. Specifically,
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Threshold: -0.10 Threshold:-0.04

Figure 3-14: A priori and a posteriori probabilities for the random variable Zi over the B32
channel. The probabilities correspond to an uncoded system with a = 3 mV. The system
operates in the quasi-worst-case-dominant scenario, where the primary channel spans five
symbols, including the pre-cursor interferers. The corresponding worst-case parameters are
1 - f = 0 [left] and 1 - f = 2.7 x 10- 6 [right].

Section 2.5 of Chapter 2 considers the performance of the single parity check code

for a system operating in the quasi-worst-case-dominant scenario and illustrates the

discrepancy between the measured performance and that predicted based on the error

independence assumption. Due to the similarity of the B32 channel to the dispersive

channel considered in Chapter 2, the analogous results for the B32 channel are not

displayed.

The variance of the ISI for the B3 channel approximately equals 1.1 x 10- 3 , which

is significantly greater than the noise variance a2 = 9 x 10- 9 . Therefore, the system

does not operate in the large-noise scenario, as further evidenced by the corresponding

a posteriori probability plots of Figure 3-13. Nevertheless, since the system is neither

worst-case nor quasi-worst-case dominant, the results of Section 2.3.2 of Chapter 2

suggest that the error events can be still considered as independent up to a certain

accuracy. In fact, the corresponding results suggest that independence assumption is

relatively accurate for long, well-equalized channels. However, the underlying argu-

ment assumes the transmissions to be uncoded, while accurate joint error statistics

are particularly important in performance estimation of standard error control codes.
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Moreover, the argument provides little indication of the allowed range of system pa-

rameters so that the independence assumption holds with some given confidence.

In order to experimentally quantify the validity of the assumption for the B3

channel in the above operating conditions, Tables 3.3 and 3.4 show the predicted and

measured word error rates (WER) for the (31,26) Hamming code and an extended

Golay code, respectively. The previously described algorithm is used to analytically

compute the cross-over probabilities, Perr, recorded in the "predicted" field. The cross-

over probabilities are computed using A = 10-4V and d = 10, and are averaged over

all the symbol locations within the codeword. Since the Hamming code successfully

corrects all single-bit errors, the corresponding word error rate is predicted according

to the familiar expression

WERIHam = 1 - (1 - p) 31 - 3 1p(l - p)30 .

Similarly, the WER for the Golay code is given by

WERIGol = 1 - (1 - p) 24 - 24p(1 - p) 23 - 276p2(1 - p) 22 - 2024p3(1 - p) 21

where the decoding error occurs if more than 3 bit errors are present in the codeword.

The Monte Carlo simulator operates with 10' codewords.

Table 3.3: Predicted and measured cross-over probabilities (Perr) and word error rates
(WER) for a (31,26) Hamming code
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Decision Predicted Measured
Threshold (V) ,,rr WER Perr WER

0.56 1.45e-8 9.70e-14 1.32e-8 0
0.57 1.81e-5 1.53e-7 1.80e-5 1.30e-7
0.58 5.10e-4 1.20e-4 5.09e-4 2.68e-4
0.59 3.16e-3 4.38e-3 3.16e-3 7.56e-3
0.60 1.12e-2 4.67e-2 1.11e-2 5.36e-2



Decision Predicted Measured
Threshold (V) Perr WER Perr WER

0.56 1.02e-8 1.20e-15 4.17e-8 0
0.57 2.33e-5 2.65e-15 2.21e-5 0
0.58 4.77e-4 5.47-10 5.20e-4 0
0.59 3.22e-3 1.08-6 3.17e-3 4.00e-6
0.60 1.12e-2 1.40e-4 1.12e-2 6.31e-4
0.61 2.79e-2 4.11e-3 2.76e-2 1.00e-2

Table 3.4: Predicted and measured cross-over probabilities (Perr) and word error rates
(WER) for an extended Golay code, (24,12)

The above results suggest that, at word error rates that can be accurately captured

by Monte Carlo simulation, the error independence assumption yields adequate10

WER approximations for both codes. Note that this occurs despite the fact that, for

the extended Golay code, exactly half of the symbols in each 24-symbol codeword are

constrained. Furthermore, the independence assumption is relatively accurate despite

the fact that the a posteriori probability is concentrated at signal values relatively

far from the signal mean, as evidenced by the a posteriori probability distributions of

Figure 3-13. The accuracy is a consequence of the well-equalized link channel reponse,

where the length of the response is sufficiently large to provide a large multiplicity

for the corresponding signal values, while the magnitude of the interference coeffi-

cients is sufficiently small to reduce the effect of the discrepancy between the present

conditions and the idealized case. As part of the future work, developing general

expressions to specify, for a given level of accuracy, the magnitude of the interference

coefficients, the channel length, and the amount of interference and/or redundancy

the independence assumption can withold would provide the definitive answer to the

question of performance estimation for coded high-speed links.

1 0The discrepancies between the predicted and the observed WER values are attributable to both
the approximation error and the variance of the Monte Carlo estimate, where the latter is particularly
pronounced at low error rates. For the cross-over probabilities, such discrepancies can result from
the estimator variance and the quantization A.
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3.6 Summary

The previous lack of systematic framework for code-space explorations motivated the

development of performance estimation methods for coded systems with inter-symbol

interference, described in this chapter. Given a measurement of the channel's impulse

response, the noise distribution and some error-control code, the problem is that of

accurately estimating the error rate of the system. The method of estimating the

system's performance is tied to the underlying operating regime, and a simple com-

putational method allows the latter to be determined given some detection scheme,

equivalent channel pulse response and noise variance. For channels operating in the

(quasi-)worst-case-dominant scenario, large-noise scenario, or in the limit of the the

limit of large-set-dominant scenario, efficient methods of computing the joint error

statistics are identified. In particular, for the (quasi-)worst-case-dominant scenario,

it suffices to consider a small set of error-causing patterns, while in the large-set-

dominant scenario, the errors are approximately independent. Note, however, that

further work is required to quantify the accuracy of the independence assumption for

a wider range of practical situations.

For any ISI-and-AWGN-limited system, including those that cannot be identi-

fied with one of the previous three scenarios with sufficient accuracy, an efficient

algorithm is introduced to accurately compute marginal probability distributions for

the received signal. Note that the same framework provides an easy extension to

co-channel interference, which commonly occurs in high-speed links as near-end and

far-end cross-talk (NEXT/FEXT [6]). In the future work, the timing jitter can also

be addressed by first conditioning the signal distributions on either the likely symbol

patterns or the corresponding ISI values, and augmenting those by the correspond-

ing jitter distributions. In that sense, the timing and the interference problems are

separable.

130



Conclusion

Modeling a high-speed link as an ISI-limited system with additive white Gaussian

noise allows for an abstracted framework suitable for a more theoretical approach to

studying the benefit of coding for high-speed links. Possible error mechanisms are cat-

egorized according to three regimes - the large-noise, the large-set-dominant and the

worst-case-dominant - which are entirely specified by the system's noise level and the

channel's pulse response. In the large-noise and large-set-dominant regimes, classical

coding theory provides an exhaustive characterization of different error-control codes,

whose hardware complexity has already been partially addressed in [4]. While the

worst-case-dominant regime occurs rarely in a high-speed link, the quasi-worst-case-

dominant regime is shown to occur on ATCA channels at realistic equalization levels

and is also shown to be consistent with previous experimental observations. However,

implementing standard error-control codes in the quasi-worst-case-dominant regime

generally leads to a negative result, as in the case of [4], or an inconsistent result, as

reported in [12]. This thesis further examines the behavior of standard error-control

codes in this regime and shows that for uncorrelated channels, where the notion of

correlation is redefined through nesting of the worst-case symbol patterns, a single

parity check code is optimal, as long as the codeword length is inferior to the correla-

tion length. Conversely, for correlated channels, including channels with insufficiently

equalized dispersion, a standard error-control code requires a potentially large over-

head due to an increased probability of observing a relatively large number of errors

in a codeword, conditioned on the occurrence of a worst-case symbol pattern.

For systems operating in a worst-case-dominant or the quasi-worst-case-dominant

regime, this thesis develops a more efficient approach to coding, based on systemati-
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cally eliminating all occurrences of worst-case symbol patterns. The resulting codes,

referred to as the pattern-eliminating codes, are systematic block codes that require

virtually no decoding. In particular, the (n, n - 1) pattern-eliminating codes also

allow for simple encoding and are effective for many channels of interest, includ-

ing the dispersive channel, while the more complex (n, n - 2) codes are effective

over all communication channels. The simulation results show that an (n, n - 1)

pattern-eliminating code can virtually eliminate all errors11 on realistic high-speed

link channels. However, such benefits often vanish when the rate penalty of a code is

taken into account. A method of overcoming the rate penalty of a pattern-eliminating

code is to endow the code with additional timing benefits. Over most channels, an

(n, n - 1) pattern-eliminating code can be extended by a simple rule to also per-

form run-length-limiting, with the maximum allowed runlength of n - 1. In that

sense, a (6, 5) pattern-eliminating code provides the run-length-limiting capability

of the 8b/10b code [18], commonly implemented in high-speed links, but incurs less

overhead. Furthermore, the (6,5) pattern-eliminating code, coupled with a suitable

equalization method, is also shown to provide an error reduction of over fifteen orders

of magnitude over a realistic high-speed link channel. Thus, although the pattern-

eliminating code does not provide the DC balancing property of the 8b/10b code,

the significant reductions in the implementation complexity, overhead and error rate

inherent to pattern-eliminating codes are, in principle, often sufficient to render the

latter strongly preferable for run-length-limiting applications in high-speed links.

However, further work is required on extending the pattern-eliminating properties

to deal with a wider range of operating conditions. In particular, one of the remain-

ing problems consists of identifying or developing suitable equalization or channel

conditioning techniques that optimize the performance of a pattern-eliminating code.

Such equalization is, in principle, significantly more power-efficient compared to that

employed in current high-speed links, as the equalizer no longer needs to ensure a low

error probability. The corresponding scheme could potentially yield significant ben-

efits for high-speed links by enabling the communication at higher data rates than

"That is, provide error-rate reductions of over fourty orders of magnitude.
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those achieved previously, or by providing the same signalling speeds at a greater

energy efficiency. In addition, future developments should address the ability of a

pattern-eliminating code to prohibit patterns from a larger set, as well as provide im-

munity against channel nulls12 . Lastly, there may be a benefit to further investigating

the ties between the pattern-eliminating codes and the constraint codes for magnetic

recording systems. Although the two types of codes are shown to have largely different

structures, some of the resulting insights pertaining to constraint coding over binary

channels may be of use for extending the timing benefits and allowing for simplified

encoder implementations of (n, n - c) pattern-eliminating codes, when c > 1.

Finally, this thesis also addresses the previous lack of systematic framework for

performance estimation and code-space explorations. The regime classification pro-

vides a more accurate guideline for biasing the system parameters in simulation to

capture error behaviors at low probabilities. In addition, additional computational

approaches that do not rely on any parameter biasing are identified for each of the

regimes. Furthermore, for operating conditions that cannot be classified as one of

the three regimes with sufficient accuracy, an efficient numerical algorithm is also

introduced for the computation of marginal probability densities in systems with ISI

implementing a systematic linear block codel3 . The three simulation methods can

be used in conjuction to provide a reliable performance picture of a high-speed link,

or a general system with noise and interference, operating in any regime. These

performance estimation methods extend easily to near-end and far-end cross-talk

(NEXT/FEXT [6]), while extensions to timing jitter can likely be addressed through

a conditioning framework, and are relegated to future work.

12 In the sense of channel coefficients of zero or small magnitude in the principal part of the channel

response.
1 3 The performance of pattern-eliminating codes is given by a closed-form expression, accurate

over the range of conditions of interest.
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Appendix - Proof of Theorem 9

Theorem 9. The (n, n - 2) pattern-eliminating code is effective for any channel of

finite length L and any n < L.

The following lemma is an extension of Theorem 7 for the c = 2 case. To reduce

the notational burden, the result is stated somewhat informally, but the accompany-

ing illustration of Figure 3-15 renders the statement precise. The notation sl, s2, s3

introduced in the figure to denote the shifts between consecutive nestings is employed

in the subsequent theorem as well. Note that the four patterns are ordered by the

position of the first symbol, so that sl, S2, s3 > 0.

Lemma 3. The (n, n - 2) pattern-eliminating code with n = L is ineffective if and

only if at least four symbol patterns of length L can be nested so that

1. the starting symbols of each pattern are all within a distance of n - 2 of each

other, as depicted (Figure 3-15-a);

2. there exists a "strip" of two consecutive symbols so that the starting symbol of

each pattern occurs strictly to the left of the strip (Figure 3-15-b);

3. for each of the four patterns, the corresponding symbols form a worst-case pat-

tern everywhere outside that strip (Figure 3-15-c);

4. the signatures of the channel coefficients, where the channel response is referred

to the starting symbol of each pattern, that span the symbols within the strip

exhaust the elements of the set {( 1, 1), (-1, -1), (-1, 1), ( 1, -1) } (Figure 3-

15-d).

Proof. It is clear that if one cannot nest four or more symbol patterns in this manner,

it is always possible to pick the two constraint symbols so that each pattern is distant

from the worst case by at least one symbol. Conversely, if there exists such a nesting,

then aligning the location of the "strip" with the location of the constraint symbols

yields a case where any choice of the constraint symbols yields to an occurrence of

the worst-case pattern. O
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Theorem 12. There exists no nesting of four symbol patterns satisfying the condi-

tions of Lemma 3.

Proof. We show that any nesting satisfying the first three conditions cannot satisfy

the last.

Step 1 First assume si > 1 and consider the three symbol patterns labeled A, B

and D in Figure 3-16--a. For the pattern A, let m denote the distance between the

first information symbol and the strip. Equate the symbols of patterns A and B to the

left of the strip. Since the patterns are in the worst-case everywhere outside the strip,

the ability to nest A and B imposes a specific structure on the channel coefficients.

Specifically, it follows that the first m channel coefficients are either periodic with

period sl or periodic with period 2s 1 , but cj = -cj+,, for any 1 < i < m - s1. Note

that the latter case is illlustrated in Figure 3-16-a).

Since sl > 1, we have that the channel coefficients spanning the strip in pattern A,

namely Cm+l and c,+ 2 , span symbols to the right of the strip in pattern B (Figure 3-

16-b). Equating the symbols of patterns B and D to the right of the strip, it follows

that cm+l and c,+2 take values from the first m channel coefficients. Furthermore,

these coefficients are tied to cl+1 and C1+ 2 , where 1 = m - s1 - s2 - S3 and c1+l

and cl+2 are the channel coefficients spanning the strip in pattern D. Specifically,

the periodicity implies that c,+1 and cm+2 either equal cz+1 and Cl+ 2 or equal the

complement of cl+1 and c+2.

Similarly, considering the symbol patterns B, C and D and assuming s2 > 1,

it follows that the coefficients spanning the pattern B are equal or opposite to

those spanning the pattern D. By the previous result, it follows that the channel

coefficients spanning the constraint symbols of patterns A, B, and D can only ex-

haust two of the possibilities out of the set of four possible combinations, that is,

{( 1, 1), (-1, -1), (-1, 1), ( 1, -1)}. Thus, when si > 1 and s2 > 1, the last condi-

tion of Lemma 3 cannot hold.

Step 2 It remains to consider the case when either s, = 1 or S2 = 1 or both. Sup-

pose sl = 1. By an analogous argument to that of Lemma 1 (Chapter 2 Section 2.3),

it follows that the first m symbols of pattern A are either all of the same sign or
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alternating. Since it is always the case that sl + s2 _ 2, it follows that the channel

coefficients spanning the constraint symbols of pattern C and D take values from the

first m channel coefficients, and therefore also either of the same sign or alternating.

Furthermore, also since sl + s2 2 2, applying an analogous argument to that of Step

1 to patterns A, C and D shows that the channel coefficients spanning the constraint

symbols of patterns A are either equal or opposite to those of pattern D. Thus, the

coefficients spanning the constraint symbols of patterns A, C, and D are tied to only

two possibilities (i.e. same sign or alternating) and the result holds.

Finally, letting s2 = 1, it follows that the first m' symbols of pattern B are either

all of the same sign or alternating. Applying this result to pattern A and further

equating the overlapping symbols between the two patterns, it follows that the first

m symbols of pattern A are also either all of the same sign or alternating. The result

therefore follows by the previous argument. O

Combining the result of Lemma 3 with that of Theorem 12 yields that an (n, n- 2)

pattern-eliminating code with n = L is effective over any channel. The result follows

letting 2 < n < L and noticing that reducing n does not impair the effectiveness of

the code.
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