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ABSTRACT
Many enzymes and ion channels consist of multiple subunits and/or multiple

distinct functional components. Coordinated conformational changes through allosteric
interactions between subunits and/or between functional units can efficiently regulate
protein activity. This dissertation describes investigations of coordinated conformational
changes in two systems: the ATP-sensitive potassium (KATP) channel and the ATP-
dependent bacterial protease, ClpAP.

KATP channels consist of two protein subunits: a pore-forming subunit, Kir6.2 and
a regulatory subunit, SUR1. Kir6.2 is an inwardly rectifying potassium channel, and
SUR1 belongs to the ATP-binding cassette (ABC) superfamily. Using patch clamp
techniques, KATP channel activity was observed directly with single-channel resolution.
The results indicate that noise from stochastic channel gating is significantly reduced
compared to what would be observed for identical and independent channels, and provide
evidence that negatively cooperative interactions between neighboring KATP channels are
the source of the noise reduction. Simulations further suggest that negative coupling
among KATP channels in pancreatic beta cells could be important for reliable signal
transduction.

Energetic coupling between Kir6.2 and SUR1 subunits was also investigated.
Single-channel records were analyzed to detect the violations of microscopic reversibility
in channel gating that would occur if Kir6.2 conformational transitions were driven by
the energy from ATP hydrolysis by SUR1. Although no violations of detailed balance in
channel gating are detected on the time scale where ATP hydrolysis takes place,
unexpected non-equilibrium gating is observed on longer time scales. These results
imply that channel gating is coupled to non-equilibrium processes other than ATP
hydrolysis by SUR1.

The second system studied for coordinated conformational change was ClpAP.
ClpAP is composed of an ATPase, ClpA and a serine peptidase, ClpP. ClpA uses the
free energy of ATP hydrolysis to unfold protein substrates and translocate them to ClpP,
which proteolyzes them. To investigate how protein translocation by ClpA is coupled to
proteolysis by ClpP, size distributions of peptide products were measured. The
observation of non-exponential size distributions, in combination with simulations
predicting how different mechanisms would influence the size distribution, supports the
hypothesis that peptide product sizes are controlled by coordinated conformational
changes of ClpA and ClpP.

Thesis Supervisor: Stuart S. Licht
Title: Samuel A. Goldblith Career Development Assistant Professor of Chemistry
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Chapter 1

Coordinated Conformational Changes of Multiprotein
Complexes
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1.1. Introduction

Many proteins are composed of multiple functional components. In particular,

ATPases form diverse multiprotein complexes with a wide range of proteins such as

other enzymes or ion channel proteins. The conformational cycles of ATPases driven by

ATP hydrolysis can be coupled to conformational changes of other functional

components. Such allosteric interactions between ATPases and other components within

multiprotein complexes are important in protein activity regulation.

The AAA+ (ATPases associated with various cellular activities) family is a well-

studied class of ATPases that appear in multiprotein complexes. Several review papers

on AAA+ proteins provide a good overview of how ATPases work with other protein

components as functional units and how coordinated conformational changes within

multiprotein complexes regulate protein activity (1, 2). Complexes of ATPases and

peptidases have been extensively investigated in E. coli (3). Bacterial ATPases such as

ClpA and ClpX unfold their protein substrates and translocate them into the chamber of

serine peptidases, such as ClpP, where the target proteins are hydrolyzed. ClpA and

related ATPases undergo ATP hydrolysis-driven conformational changes, which are

critical for unfolding and translocating the protein substrates. Without association with

ClpA or ClpX, ClpP can only hydrolyze small peptide substrates.

The ATP-binding cassette (ABC) superfamily is another ATPase family where

ATP hydrolysis-driven conformational changes are directly involved in protein functions

(4, 5). Although most ABC proteins are active membrane transporters that carry small

molecules across the cell membrane using the free energy of ATP hydrolysis, the

sulfonylurea receptor (SUR), a unique ABC transporter in mammals, works with ion

channel proteins as a functional unit (6). A major role of SUR in multiprotein complexes

is in regulating ion channel activities, rather than transporting molecules.

Conformational changes of SUR are controlled by ATP hydrolysis, presumably

coordinated with conformational changes of ion channel proteins in the complex.

However, the mechanism is unclear.

-8-
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Conformational changes of multiprotein complexes could be also coordinated

with those of neighboring complexes in the clusters that integral membrane proteins often

form. Studies on allosteric regulation among membrane protein complexes in clusters,

however, have been rarely reviewed, even though evidence of protein-protein interactions

in these systems continues to grow, and the physiological significance of these

interactions has been recognized. Previous work on interactions between clustered ion

channel proteins is reviewed in this chapter: coordinated conformational changes

between ion channels are discussed, mainly focusing on electrophysiological studies.

-9-
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1.2. Coupled gating of ion channels

Regulation of transmembrane potential is a central part of cellular signaling

pathways in excitable cells (7). Ion channel proteins play an essential role in electrical

signaling since they control transmembrane potential by allowing permeation of ions

across the cell membrane. To achieve rapid changes in transmembrane potential, ion

channels utilize conformational changes, switching between a closed (non-conducting)

state and an open (conducting) state in a signal-dependent manner. Conformational

transitions of ion channels can be directly monitored in single-channel records using

patch-clamp techniques (8). Because the channel opening/closing transitions are too fast

to be resolved with the limited bandwidth of current techniques, only two discrete

conformations (open and closed states) are observed in single-channel recordings.

In most cases, individual ion channels gate independently. Consequently,

independent channel gating is often implicitly assumed in the statistical analysis of ion

channel data. However, channel-channel interactions, i.e. the gating of one channel

directly coupled to the gating of neighboring channels, have been observed at the single-

channel level for a number of systems (9-25). The physiological significance of

cooperative channel gating in signal transduction has been recognized in in vivo studies

of several systems (26-29) although the molecular mechanisms by which such coupling

between neighboring channels takes place still remain mostly unclear. Also, existing

single-channel analysis methods to detect coupled gating are limited, necessitating the

development of more explicit and easily-implemented methods.

-10-
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1.3. Physiological functions of cooperativity

1.3.1. Positive cooperativity

Positively coupled gating, in which one channel is more likely to be open when

the other channel is open than when it is closed, could serve as a strategy to enhance ion

channel-mediated signaling in response to the cellular signals. In particular, positive

cooperativity in the central nervous systems might be important for long-term

potentiation, a cellular mechanism of synaptic strengthening for learning and memory.

Cooperativity of a-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)

receptors and N-methyl-D-aspartate (NMDA) receptors has been investigated to elucidate

an underlying mechanism for long-term potentiation in the hippocampus (30, 31).

Cooperative gating of ryanodine receptors (RyRs), Ca2+ channels in rat cardiac

myocytes has been shown to alter dynamic patterns of intracellular Ca2+ concentrations,

such as Ca2+ spark duration, amplitude and frequency (27, 29), which is likely to

influence Ca2+ signaling. Positively coupled gating between RyRs in cardiac muscle was

also proposed as a mechanism for the termination of Ca2 + release (17). In this

mechanism, the simultaneous channel closing reduces stochastic channel reactivation that

would otherwise occur due to Ca2+ passing through neighboring channels.

Recently, cooperativity of voltage-gated Na+ channels was suggested as an

underlying mechanism for a rapid initiation of action potentials observed in cortical

neurons (28). This abrupt initial rising phase was not described by the Hodgkin-Huxley

model (7) that assumes independent channel gating. However, positive cooperativity

among Na+ channels accounts for the observed action potentials. Effects of positive

coupling between neighboring Na+ channels on action potentials were confirmed by

computational modeling as well as in vitro experiments where the action potential

initiation observed in vivo was reproduced by reducing the density of available Na+

channels by applying tetrodotoxin, a Na+ channel specific toxin. However, other

alternative mechanisms are not excluded; an abrupt initiation of the action potential was

also well-described by the modified Hodgkin-Huxley model that includes variability in
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subthreshold potentials over the cortical neuronal membrane but not cooperativity

between Na+ channels (32).

1.3.2. Control of physiological noise due to channel gating: a possible

physiological function for negative cooperativity

Negative coupling, i.e. an open state of one channel disfavors opening of the other

channel, may effectively reduce channel gating noise produced by stochastic transitions

between channel open and closed states. Random fluctuations in the number of open

channels have been shown to be a dominant electrical noise source in excitable cells,

affecting the membrane potential (33-35). The effects of gating noise from voltage-gated

Na + and K+ channels on action potentials in neurons have been extensively studied

theoretically and experimentally (33-39). Membrane potential fluctuations generated by

stochastic channel gating limit the reliability of neuronal responses to stimuli by altering

neuronal dynamics, such as firing frequency and timing (35-39).

In a recent study (26), it was shown the stochastic gating of hyperpolarization-

activated cation (Ih) channels in pyramidal neuron dendrites contributes to fluctuations in

membrane potential, thereby damaging action potential fidelity: a 100-fold decrease in

the ability to detect a signal and the temporal precision of firing. The small single-

channel conductance of Ih channels (-0.7 pS) was suggested to play a role in reducing

membrane noise from stochastic gating for reliable neuronal functions. However,

minimizing gating noise through negative cooperativity between neighboring channels

would be a more general and efficient way for reliable signal transduction in noisy

cellular environments.

Although cooperative gating would possibly play a physiologically important role

in other systems, it is challenging to study in vivo effects of channel coupling because the

large numbers of proteins are involved in regulating/modulating channel activity inside

the cells.

-12-
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1.4. Electrophysiological evidence for gating cooperativity

Channel cooperativity has been found in patch-clamp studies of diverse channel

types. Positively coupled gating has been reported in many types of ligand-gated

channels: AMPA receptors (21, 22), RyRs (15, 17, 18), nicotinic acetylcholine receptors

(nAChRs) (14, 23, 24), 1,4-dihydropyridine receptors (DHPRs) (12), P2X2 receptors (11),

and hyperpolarization-activated cyclic nucleotide-gated cation (HCN) pacemaker

channels (10). In addition, bacterial voltage-gated K+ channels (KcsA) (19) and gap

junction channels (9, 16, 25) are other examples of positively coupled gating.

In contrast to positive coupling, negative coupling has been rarely observed in

electrophysiological studies. Batrachotoxin-modified Na+ channels are one example of

negative coupling (13). Negative cooperativity was also observed in Na+ channels in the

nodal membrane of frog nerve fibers (20).

- 13 -
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1.5. Analysis methods for cooperative gating

1.5.1. Binomial analysis

Once synchronous open/closed transitions are observed, which is highly

suggestive of cooperativity, a binomial analysis on current amplitude histograms

(distribution of the current levels) is an appropriate first step in test for gating

cooperativity. The observed distributions of current amplitudes are compared with those

predicted for independent channels, i.e., the binomial distributions. Deviations from a

binomial distribution are indicative of cooperative gating; positive deviations (i.e., more

simultaneous openings than expected from independent channel gating) are consistent

with positive coupling, while negative deviations are consistent with negative

cooperativity.

Positive deviations from a binomial distribution have been observed in

reconstituted AMPA receptors from rat brain (21, 22), RyRs reconstituted into artificial

lipid bilayers (15), native RyRs from both skeletal muscle and cardiac muscle (17, 18),
nAChRs from embryonic chick myotubes (14), Torpedo nAChRs reconstituted in planar

membranes (24), purified skeletal muscle DHPRs in planar lipid bilayers (12),

mammalian P2X2 receptors expressed in Xenopus oocytes (11), purified KcsA in giant

liposomes (19), recombinant chick connexin45 gap junction channels (25), and native

gap junction channels both from embryonic chick heart and from the earthworm axon

septal membranes (9, 16). Negative deviations have been found in batrachotoxin-

modified Na+ channels in hybrid neuroblastoma NG108-15 cells (13).

Three assumptions must be made to interpret a binomial analysis in terms of

cooperative interactions: that the channel record is stationary (i.e., no global changes in

channel activity within a given record length), that the number of channels is correctly

estimated, and that the channels are identical (40). If the channels do not have identical

open probabilities, the observed variance will be less than the predicted variance for

identical channels (41). A similar problem arises if channels are non-stationary and are

varying on a timescale slower than the timescale of the recording since these channels

will also appear non-identical. Finally, since the variance is linearly proportional to the

-14-
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number of channels for the binomial distribution, an incorrect estimate of the number of

channels will lead to an incorrect prediction for the variance.

The necessity for these assumptions often leads to complications in interpretations

of the results from this method of analysis. First, reliable estimation of the number of

channels in a patch is not always straightforward. This is likely the case when one

estimates the number of active channels in the patch using the maximum number of

simultaneous openings observed in channels with a low open probability. In this case,

the number of channels in a patch is likely to be underestimated, resulting in an

overestimation of positive deviations from the binomial distribution. In addition, non-

identical but independent channels (independent channels with different open

probabilities) show apparent negative deviations from a binomial distribution and are not

distinguishable from negatively coupled channels are not distinguishable by a binomial

analysis alone. Thus, binomial tests are often suggestive but not conclusive in the cases

of both positive and negative cooperativity.

1.5.2. Variance analysis

Variance analysis is another way to detect cooperative gating (42). A mean-

variance plot can be obtained by calculating the variance of the macroscopic current as a

function of the mean current. The unitary current passed by one channel (single-channel

current) can be estimated from the initial slope of a mean-variance plot based on the

binomial theorem (42). If channels gate independently, the unitary current calculated

from the initial slope of a mean-variance plot will be the same as the single-channel

current. However, when channels are positively coupled, synchronous channel

open/closed events will generate higher fluctuations in the mean macroscopic currents

than those expected from independent channels. For negatively coupled channels,
simultaneous opening/closing transitions are suppressed, generating lower fluctuations.

Thus, the estimated unitary current from coupled channels will deviate from the single-

channel current; positive cooperativity will increase the estimated unitary current whereas

negative cooperativity will decrease it. More generally, when the experimentally

15-



obtained variance in a mean-variance plot is higher or lower than expected from

independent channel, these channels are not independent (43).

Mammalian HCN2 channels heterologously expressed in HEK-293 cells showed

a larger unitary current calculated from variance analysis than expected from the single-

channel current, suggesting positive cooperativity between neighboring channels (10).

Variance analysis has also shown Na + channels in the nodal membrane of frog nerve

fibers are negatively coupled (20).

However, a variance analysis has the same complications as a binomial analysis

does, because it is also a binomial theorem-based method. In addition, steady-state

(equilibrium) analyses like binomial and variance analyses do not include information

about the kinetics of channel gating. Collective behaviors of coupled channels can be

revealed in the kinetics of channel gating. Kinetic analysis can provide evidence for or

against cooperativity in channel conformational transitions. Therefore, a further kinetic

analysis of channel gating is often necessary to confirm coupled gating.

1.5.3. Conditional dwell-time density analysis

Although several ways to analyze gating kinetics to detect cooperativity between

neighboring channels have been proposed (11, 13-15, 44, 45), they share a common basis:

determining whether the dwell-time density of one channel is conditional on the other

channel being either open or closed. Independent channels will have identical

conditional dwell-time densities. In the case of coupled channels, however, the two

conditional dwell-time densities will not be the same. For example, when the two

interacting channels are present, the closed-time and/or open-time densities of one

channel will depend on whether the other channel is open or closed. If channels are

positively coupled, the opening rate will increase and/or the closing rate will decrease

when neighboring channels are open. For negatively coupled channels, the presence of

neighboring open channels will decrease the opening rate and/or increase the closing rate.

Similarly, the channel opening and/or closing rates can be influenced by the closed state
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of neighboring channels. That is, in the presence of neighboring closed channels, the

opening rate will decrease and/or the closing rate will increase for positively cooperative

channels, whereas the opening rate will increase and/or the closing rate will decease for

negatively cooperative channels.

Experimental records obtained from embryonic chick myotube nAChRs showed

that open-time densities are identical whether the neighboring channel is open or closed

(14). However, closed-time densities showed that the mean closed time of one channel is

longer when the other channel is closed than when it is open, suggesting positive

interactions between neighboring channels affect channel opening but not channel closing.

Similar results have been also found in RyRs reconstituted into artificial lipid bilayers

(15). The opening rates were faster in the presence of open channels than in the absence

of open channels, suggesting that channel opening depends on the presence of other open

channels, i.e., positive coupling. Non-independent gating of P2X 2 receptors expressed in

Xenopus oocytes was also studied using this kinetic analysis (11). The mean open time

from single-channel patches is shorter than that from multichannel patches, suggesting

the closing rate is influenced by positive interchannel interactions. The conditional

dwell-time density analysis was also used to detect negative interactions between the two

batrachotoxin-modified Na+ channels (13). The existence of multiple closed states made

the opening rate difficult to determine unambiguously; therefore, only the closing rate

was calculated when the other channel was open and closed. The closing rates were

identical in both cases, implying that negative interactions might influence the opening

rate.

One clear advantage of this analysis over the previous studies is that one can get

more mechanistic information about the coupling mechanism. The opening or closing

transitions affected by channel-channel interactions can be identified by detecting any

alteration of conditional open/closed time densities. However, conditional dwell-time

analysis is not easy to implement. In particular, when more than two channels are present,

more combinations of conditional dwell-time densities are generated, which makes this

analysis more complicated. Finite length of records also limits the power of this analysis,

because the number of dwells may be insufficient to generate statistically reliable dwell-

- 17-
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time densities. Clearly, this problem will be serious when multiple channels with a low

open probability are present, because there will be a small number of multiple events.

Finally, this analysis compares the mean open and closed times, i.e., mean closing and

opening rates. However, more than one type of open/closed transition are likely to be

present in a real gating mechanism. Thus, when the specific opening or closing

transitions influenced by channel coupling are buried in all-point dwell-time densities,

they might not be detectable and/or identifiable.

1.5.4. Maximum likelihood fitting analysis

Non-independent gating can be detected using a maximum likelihood fitting

analysis with independent and cooperative models (11). When channels are independent,

the channel opening and closing rates are not affected by whether the neighboring

channels are open or closed. In a two-independent-channel system, for example, the

opening rate from the two-channel closed state to the one-channel open state (kcol) is

simply twice as fast as that from the one-channel open state to the two-channel open state

(kol0 2), i.e, kcol = 2ko01 2. The closing rate from the two-channel open state to the one-

channel open state (ko2o1) is also twice as fast as that from the one-channel open state to

the two-channel closed state (kolc), i.e, ko2o, = 2kolc. Single-channel data can be fitted

with the rate constraints (kco~ = 2kolo2 and ko2o, = 2koic; independent model) and without

those constraints (cooperative model). Using a maximum likelihood ratio test, the kinetic

model that describes the experimental data better can be determined. This analysis was

applied to single-channel records obtained from P2X2 receptors expressed in Xenopus

oocytes (11). The cooperative model fits P2X 2 receptor recordings better than the

independent model, suggesting channel cooperativity. However, the maximum

likelihood fitting method is model-dependent, which often causes ambiguity in results

from data fitting due to the complex underlying kinetic mechanisms of channel gating.

-18-
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1.6. Channel clustering

Colocalization of channels is prerequisite for functional channel coupling. Indeed,

channel clustering has been observed in most ion channels where cooperative gating is

observed, although the physical mechanisms of channel assembly mostly remain unclear.

1.6.1. Channel assembly in vitro

To detect physically assembled channels, analytical ultracentrifugation

sedimentation velocity studies and native SDS-PAGE/Western blots can be used.

Species with higher retention on native SDS-PAGE gels and higher sedimentation

coefficients than the functional channel units are expected if the channels are clustered.

These biochemical assays were carried out with purified KcsA channels, revealing the

existence of KcsA supramolecular assemblies (19). Physically associated pairs of RyRs

from skeletal and cardiac muscle were also observed in sucrose gradient centrifugation

experiments and immunoblot analyses (17, 18). As another example, Torpedo nAChRs

were purified as a mixture of monomers and dimers, which was evident in sucrose

gradient experiments (24).

In vitro biochemical assays, however, are limited to channel proteins whose

purifications are possible in large quantity and whose physical interactions are strong

even under detergent-solublized conditions. Also, if other endogenous cellular molecules

are involved in channel clustering, channel assemblies will not be detected with purified

channel proteins alone.

1.6.2. Subcellular channel localization

Localization of HCN4 channels in caveolae, a membrane subdomain, was

detected in rabbit sinoatrial (SAN) cells (46). Western blot analysis with caveolae

isolated from SAN cells using discontinuous sucrose gradients provided the evidence of

HCN4 channel localization. Chemical disruption of caveolae impaired HCN4

-19-
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localization, affecting HCN4 channel kinetics. Freeze/fracture electron microscopy

studies have revealed that gap junction channels aggregate into clusters in liver cells and

earthworm septa (47, 48). RyR clusters in skeletal and cardiac muscle sarcoplasmic

reticulum have been also observed in situ by electron microscopy (49-52).

1.6.3. Stimulation-induced channel clustering

Dimerization of Torpedo nAChRs in the postsynaptic membrane was transiently

induced during synaptic stimulation (53). Changes in the populations of monomeric and

dimeric AChRs as a result of electrical stimulus were observed in situ using rapid-

freezing/cryofracture techniques. Intact electric organ tissues from Torpedo were rapidly

frozen in the absence and presence of an electrical stimulus, fractured, and then observed

using an electron microscope. Monomeric nAChRs (globular form, 9 nm in diameter)

were the primary form found in the freeze-fracture replicas of unstimulated membranes.

Following a single nerve impulse, however, nAChR dimers (elongated form, 18 nm in

diameter) were momentarily formed; the decrease in the number of monomers was twice

the increase in the number of dimers. The time course of an abrupt change in nAChR

ultrastructures was comparable with that of the fast transient postsynaptic current evoked

by the electric signal, implying that channel assemblies are associated with channel

activation.

The inositol 1,4,5-triphosphate receptor (IP3R), a ligand-gated Ca2+ channel is

another example of stimulation-induced channel clustering (54). IP3R in the endoplasmic

reticulum (ER) membrane releases Ca2+ from the ER to cytoplasm upon IP3 binding.

Green fluorescence protein-fused IP3Rs (GFP-IP 3Rs) expressed in COS-7 cells were

assembled into clusters following application of IP3-generating agents, which implies that

IP3-stimulation induces a channel conformational change to the open state, thereby

initiating channel clustering. This hypothesis was further tested using mutant IP3R

channels that impair either IP3 binding or channel activity without affecting ligand

binding ability. Both IP3R mutants failed to form clusters, supporting that ligand-

stimulated channel conformational transitions are required for channel clustering.

- 20-
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1.6.4. Direct channel cross-linking

The direct evidence between physical channel linkage and coupled gating has

been observed in RyRs (17, 18), AMPA receptors (21) and the cystic fibrosis

transmembrane conductance regulator (CFTR), a CI channel (55). Purified RyRs

reconstituted in lipid bilayers exhibited coupled gating, which required FK506 binding

protein, FKBP 12 and FKBP 12.6 for skeleton muscle and cardiac muscle type RyRs,

respectively (17, 18). In addition, AMPA receptors isolated from rat brain showed

positive cooperativity induced by dextran sulfate, a mimic of sulfated polysaccharides in

synapses (21). Heparin, a synaptic polysaccharide, has been shown to modulate channel

activities of AMPA receptors by linking them physically (56). Addition of dextran

sulfate promoted simultaneous openings and closings of AMPA receptors, whose positive

coupling was confirmed by a binomial analysis.

Lastly, interactions between CFTRs heterologously expressed in HEK-293 cells

were facilitated by a multivalent CFTR binding protein, CAP70 (55). CAP70 linked

CFTR channels by binding to the cytoplasmic C-terminus of CFTR through its four PDZ

domains, stimulating the CFTR channel activity. Correlated physical and functional

coupling between CFTRs was further tested using a bivalent monoclonal antibody that

specifically recognizes the C-terminal residues of CFTR. Two CFTRs linked by a

bivalent antibody also exhibited increased channel activity. CFTR current amplitude

histograms became positively deviated from a binomial distribution upon addition of

antibodies, indicating that positive coupling was induced by linking neighboring channels.

However, it is not clear whether CFTR channel activation induced by CAP70 resulted

from coupled gating, because no tests for cooperativity were carried out. The Na+/H +

exchanger regulatory factor (NHE-RF) was also shown to mediate CFTR channel

interactions by cross-linking the C-terminal tails of CFTRs endogenously expressed in

Calu-3 cells, increasing the CFTR channel activity (57). In this case, however, the gating

was uncorrelated both before and after stimulation based on a binomial analysis even

though multiple CFTR channels were simultaneously activated by NHE-RF.
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1.7. Molecular basis of channel coupling

Although functional coupling correlated with physical clustering has been

reported for several ion channels (17, 18, 21, 55), physical clustering of channels will not

necessarily affect channel gating. Additional steps are required to link channel clustering

to functional coupling that affects channel gating. Several molecular mechanisms have

been proposed to account for coupled gating of multiple channels.

1.7.1. Permeant ions as a channel coupling mediator

One possible mechanism is that channels sense fluctuating local concentrations of

permeant ions. Regulation of clustered Ca2+ channels by Ca2+, its permeant ion has been

studied in two types of Ca2+ channels (15, 58).

Ca2+-mediated cooperative gating was proposed as a coupling mechanism for

RyRs that release Ca2+ from the sarcoplasmic reticulum (SR) (15). The positive coupling

between skeletal RyRs in lipid bilayers was dependent on luminal Ca2+ concentrations.

Increased luminal Ca2+ concentrations resulted in increasing cytoplasmic Ca2+ via RyR

channel openings, thereby simultaneously activating RyR channels through Ca2+ binding

to the cytoplasmic activation sites of RyRs. The degree of positive coupling, defined as

the difference between the channel opening rates in the absence and the presence of

neighboring open channels, was decreased by reducing the luminal Ca2+ concentration.

The dependency of coupled gating on luminal Ca2+ concentration suggests that sufficient

luminal Ca2+ permeating one channel is necessary to diffuse from the pore so as to

activate neighboring channels. Cooperative channel gating through luminal Ca2+ was

abolished when the activation sites were saturated with cytoplasmic Ca2+ or when the

Ca2+ flow was reversed (from the cytoplasm to the SR lumen) by applying a potential of

opposite sign across the bilayer. Taken together, these results indicate that luminal Ca2+

induces coupled gating by increasing local cytoplasmic Ca2+ concentration that activates

neighboring channels simultaneously.
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A channel coupling process via Ca2+ influx through open channels was also

observed for 1,4-dihydropyridine receptors (DHPRs) (58). Inactivation of DHPRs by
prior Ca2+ influx has been shown to be an intrinsic negative feedback process that does

not require cooperative interactions. However, the DHPR inactivation rate observed in

two-channel patches from guinea pig ventricular myocytes was faster then that observed

in one-channel patches, indicating the existence of interchannel interactions. Two-

channel patches that contain one active and one inactive channel showed a reduced

inactivation rate, indicating that Ca2+ influx from both channels are required for the

inhibitory coupling rather than physical association of adjacent channels. When BAPTA

(1,2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid), a Ca2+ chelator, was

applied into the cytoplasm, the inactivation process in two-channel patches slowed down

more than that from one-channel patches, suggesting that Ca2+ mediates the interaction

among DHPRs. Based on these results, two cytoplasmic Ca2+ inhibition sites were

proposed: one located near to the pore and the other more distant from the pore. An

inhibition site near the pore mediates Ca2+-sensitive inactivation by Ca2+ flow through its

own pore, accounting for channel inactivation even when bulk cytoplasmic Ca2+ was

chelated. In contrast, the site distant from the pore is involved in coupled inhibition

through local Ca2+ influx within overlapping domains of neighboring channels, which

was diminished by Ca2+ chelators. Therefore, the inhibitory coupling between DHPRs

arises from a shared and localized Ca2+ diffusion space from adjacent channels.

1.7.2. Concerted channel activation through the membrane

Interactions mediated by the cell membrane in which the channels are embedded

provide another possible physical mechanism for coupled gating. In case of

mechanosensitive (MS) channels, channel activities are regulated by relative movements

of the channel and/or the membrane at the channel-membrane interface (59-61).
Conformational changes of MS channels can be induced by membrane deformation (the

bilayer model) or deformation of cytoskeletal or extracellular proteins that are directly

connected to the channel (the tethered model). In any case, channel displacement with
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respect to the membrane could produce hydrophobic mismatch between the lipid bilayer

and the channel and trigger the channel conformational change. To the extent that gating

conformational changes produce local changes in bilayer thickness, mechanosensitivity in

channel gating will also lead to coupled gating.

The bilayer model is the dominant mechanism for prokaryotic MS channel gating

(60). Purified bacterial MS channels reconstituted into artificial liposomes still exhibited

mechanosensitivity, which indicates that MS channels can directly sense membrane

deformation. Membrane movement (stretching or bending) can promote conformational

transitions of MS channels via changes in the membrane geometry. Activation of E. coli

MS channels was observed on insertion of lysophospholipids or amphipaths into the

membrane, which perturb the local membrane curvature (62, 63).

In the tether mechanism, MS channels are directly linked to cytoskeletal or

extracellular proteins that activate channels by pulling them from the membrane (61).

The tether model has been proposed to describe MS channels in eukaryotic cells that have

an extensive cytoskeletal network adjacent to the membrane. Direct evidence for the

tether model has recently been obtained for two channels from the transient receptor

potential (TRP) channel superfamily: zebrafish TRPN1 (also known as NompC) and

Drosophila TRPA1 (also known as NompC) channels in the vertebrate sensory hair cells

(64-66). Cadherin 23 proteins and the N-terminal ankyrin repeats of TRPA1 were

identified as tethers for TRPN1 channels and TRPA1 channels, respectively. Cadherin

23 proteins link TRPNI to the extracellular matrix, while the ankyrin domains of TRPA1

are attached to the cytoskeletons. Cytoskeleton/extracellular matrix deformation could

displace the channel with respect to the lipid bilayer.

Mechanosensitivity has been also observed in voltage-gated and ligand-gated

channels, including Shaker-IR voltage-gated K+ channels (67), large conductance Ca2+-

activated K+ (BK) channels (68), atrial ATP-sensitive K+ channels (69), cardiac

muscarinic K+ channels (70), L-type and N-type Ca2+ channels (71, 72) and NMDA

receptors in mouse neurons (73). The observation of mechanosensitivity in channels that

are not classically gated by mechanical stress suggests that these channels will be
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sensitive to perturbations that change the lipid bilayer thickness, including the

conformational changes of other membrane proteins. Further studies will be required to

determine whether this mechanosensitivity actually causes coupled gating in these

systems.

1.7.3. Allosteric mechanisms

Neighboring channels might act as an allosteric modulator; i.e. the conformational

state of one channel in clusters can influence conformational changes in neighboring

channels, possibly by changing binding affinity ofligand in case ofligand-gated channels.

Although direct visualization of allosteric conformational changes is limited by spatial

and temporal resolution of current techniques, indirect evidence, such as Hill coefficients,

can be obtained. Bacterial chemoreceptors are the best-studied model system for

allostery in transmembrane receptors (74-76). Allosteric interactions between

neighboring receptors have been proposed to account for the experimentally observed

remarkable sensitivity of bacterial cells to their chemoeffectors. The signal amplification

in E. coli cells was quantified using a fluorescence resonance energy transfer (FRET)-

based in vivo assay, which provided evidence for allosteric interactions among receptors

(77, 78). The receptors amplified the chemotactic signals (changes in chemoeffector

concentrations) approximately 35-fold in a highly cooperative fashion (a Hill coefficient

of -~10) that was well-described by the classical Monod-Wyman-Changeux (MWC)

allosteric model. Allosteric protein interactions in clusters could also be an underlying

mechanism for coupled gating of clustered ion channels.
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1.8. Concluding remarks

Coupled gating has been observed in diverse channel types at the single-channel

level. In spite of its potential physiological functions, however, the molecular basis of

cooperative channel gating still remains to be investigated. Also, more unambiguous

methods of biophysical analysis need to be developed to study coupled gating with

single-channel recordings.
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Chapter 2

Control of Channel Gating Noise in ATP-Sensitive
Potassium Channels by Negative Coupling
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2.1. Abstract

The ATP-sensitive potassium channel (KATP) helps control insulin secretion in

pancreatic beta cells by sensing how the cell's metabolic state changes in response to

glucose stimulation. Metabolic sensing by KATP is constrained by noise considerations.

The noise due to stochastic KATP channel gating might disrupt the organization of bursts

of electrical activity and the precision with which changes in ATP/ADP ratio are

transduced to changes in membrane potential. Negatively cooperative interactions

between KATP channels could reduce their noise output compared to identical and

independent channels; however, it is unknown whether such interactions occur. Here we

show that heterologously expressed KATP channels generate noise below the level

possible for identical and independent channels. KATP activity exhibits correlated

fluctuations, consistent with the existence of negatively cooperative dynamic interactions

between KATP channels (i.e., an open KATP channel decreases the probability of its

neighbors being open). Presence of the SUR1 subunit is necessary for robust collective

fluctuations. If this mechanism of noise control is used in vivo, it might improve the

precision of metabolic sensing, and help account for reliable signal transduction despite

the relatively low expression level of KATP in pancreatic beta cells.
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2.2. Introduction

ATP-sensitive potassium (KATP) channels control the membrane potential of

pancreatic beta cells. These cells exhibit periodic bursts of electrical activity in response

to glucose stimulation (1). KATP channels serve as a glucose sensor in beta cells:

metabolism of glucose increases the ATP/ADP ratio, leading to closure of KATP channels,

depolarization above the threshold of excitability, and secretion of insulin (Figure 2.1)

(2). Although it has been well established and widely accepted that KATP channels couple

metabolism to cell excitability by sensing the ATP/ADP ratio, KATP channel activity is

also regulated by various proteins and small molecules. For instance, phosphorylation of

KATP channels mediated by protein kinase A or by protein kinase C modulates channel

activities (3-6). Small molecules like phosphatidylinositol-4,5-bisphosphate (PIP2) are

also important modulators of KATP channel activity (7, 8). In the context of a metabolic

sensor, several metabolites other than nucleotides have been shown to regulate KATP

channel activity: a fat metabolite, long-chain acyl-coenzyme A esters (9-11) and

ketogenic metabolites (aromatic aldehydes and aromatic ketones) (12, 13) stimulate KATP

channel activity.

Noise due to channel gating may also influence KATP channel functions in

pancreatic beta cells. Noise is a fundamental property of cellular signaling pathways.

Because cellular signaling pathways depend on molecular processes such as protein

conformational changes and protein-protein interactions, they are subject to noise arising

from thermally-induced stochastic fluctuations in the concentration or conformational

state of signaling proteins. Noise has been shown to have a significant impact on

biochemical pathways such as transcription and translation (14). Noise is also a relevant

issue for electrical signaling in excitable cells such as neurons (15-18). Stochastic

fluctuations in the number of open ion channels can have a significant effect on the

membrane potential of excitable cells (19), particularly when a small number of channels

(-10-1000) controls the membrane potential. Thus, channel gating noise may be

important in the physiology of pancreatic beta cells because a relatively small number of

KATP channels (_103-104) control the membrane potential (20). Isolated beta cells exhibit

- 34-



(hur~r cwQ-

regular bursts of electrical activity (21), indicating that their excitability is robust to the

noise associated with KATP gating.

One possible contributor to the control of noise in pancreatic beta cells is control

of the noise output of KATP channel gating. Noise from channel gating is usually

assumed to arise through gating of identical and independent channels for which the

variance in the number of channels open is described by the binomial distribution (18).

However, if channels are non-identical in their open probabilities (e.g., due to differential

phosphorylation (3-6)) or gate non-independently (e.g., the open probability of one

depends on the open probability of its neighbors), the noise output will deviate from the

prediction of the binomial distribution. In this study, we measure the noise output of

heterologously expressed KATP channels and investigate the role of coupled gating in

noise control using power spectrum analysis.
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2.3. Methods

Molecular biology. Mouse pCMV-Kir6.2 and hamster pECE-SUR1 cDNA were

provided by S. Seino (Chiba University, Chiba, Japan) and J. Bryan (Baylor College of

Medicine, Houston, TX), respectively. A stop codon was introduced into the mouse

Kir6.2 cDNA to delete the last 26 amino acids of the C-terminus (Kir6.2 AC1-26) using

the QuikChange® Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA). All cDNA

constructs were verified by DNA sequencing (MIT Biopolymers Lab, Cambridge, MA).

Plasmids were prepared for transient transfection using the QIAfilterTM Plasmid Maxi Kit

(QIAGEN Inc., Valencia, CA).

Cell culture. Human embryonic kidney (HEK) 293 cells (American Type Culture

Collection, Manassas, VA) were cultured in Dulbecco's modified Eagle's medium

containing 10% (v/v) fetal bovine serum in humidified 5% CO2 at 370 C. Cells were

passaged every three days by treatment with trypsin.

DNA transfection. HEK 293 cells were transiently transfected with either mouse

Kir6.2 plus hamster SUR1 or with Kir6.2 AC1-26 cDNA. pEGFP-N1 vector (BD

Biosciences, San Jose, CA) was co-transfected as a marker with the cDNA of interest

using the FuGENE 6 Transfection Reagent (Roche Applied Science, Indianapolis, IN).

Transfection was performed according to the manufacturer's instructions with total 1 /.g

of cDNA per 35-mm culture dish (2:3:5 ratio of Kir6.2, SUR1, and pEGFP-N1 or 1:4

ratio of Kir6.2 AC1-26 and pEGFP-N1). Some recordings were carried out on cells

transfected with -twofold greater amounts of cDNA; the amount of cDNA used did not

affect apparent open probability, Nx, or the current variance. Transfected cells were

incubated in humidified 5% CO2 at 370 C. Approximately 36 to 72 hr after transfection,

the cells were used for single-channel recordings.

Electrophysiology. Micropipettes were pulled from borosilicate glass capillaries

(MTW 1B150F-4; World Precision Instruments Inc., Sarasota, FL) on a puller (PP-830;

Narishige Group, Tokyo, Japan) with resistance typically -5-12 MG. Pulled pipettes

were coated with Sylgard (Dow Coming Corporation, Midland, MI) and fire-polished

using a microforge (MF-830; Narishige Group, Tokyo, Japan) to reduce the noise level.
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Single-channel recordings were performed at room temperature with an Axopatch 200B

patch clamp amplifier (Axon Instruments Inc., Union City, CA) and were low-pass

filtered (10 kHz) with a 4-pole Bessel filter. Single-channel data were acquired and

digitized at 20 kHz using QuB software (www.qub.buffalo.edu) (22, 23). Single-channel

currents were recorded using the inside-out patch clamp configuration (24, 25) at a

membrane potential of -80 mV, with the pipette (extracellular) solution containing (in

mM): 140 KC1, 10 NaCl, 1.1 MgCl 2, and 10 K-HEPES, pH to 7.3 and with the bath

(intracellular) solution containing (in mM): 140 KC1, 10 NaC1, 1.1 MgC12, 0.5 CaC12, 5

K-EGTA, and 10 K-HEPES, pH to 7.3 (5). 1 mM MgATP (ATP magnesium salt; Sigma,

St. Louis, MO) and 5 /tM PIP2 (Calbiochem, San Diego, CA) were directly added to the

bath solution (26).

Single-channel data analysis and simulations. Digitized single-channel records

were filtered at 5 kHz and analyzed using QuB software. Stationary segments of 100-sec

duration were idealized using the half-amplitude method.

When no consecutive single openings have been observed, the probability of

observing more single openings before the first multiple opening occurs is P(r -no) =
,no - ,) where r is a total number of consecutive single openings and xr is the probability

that one open channel is closed before a second channel is open (27). The probability r

can be estimated as (1 - Popen) / (1 - opn / N), where N is the actual number of

independent channels in the patch. An observed KATP channel record contains -3 x 104

consecutive single openings with Popen of >0.50. The probability of a run this long, P(r 2

3 x 104), therefore, would be < 0.0001 if there were two channels present, so it is very

likely that exactly one channel is present.

The rate constants of the best-fit model (Scheme 1) were obtained by fitting the

duration histograms using the maximum interval likelihood (MIL) function of QuB.

kf k,
C =f or 0 ) Csk-r k- (Scheme 1)
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where 0 is the open state, Cf is the short closed state within a burst in which the channel

rapidly opens and closes, and Cs represents the long closed state determining the

interburst duration.

Markov models with the rate constants obtained from the experimental records

were used to simulate records of the same length as the experimental records, but with the

constraint that the channels were identical and independent. The simulated records were

analyzed to estimate the uncertainty in the prediction of current variance due to the finite

length of records. Analysis of 11 simulated records indicates that the mean deviation of

the variance from the predicted binomial variance is 0.6 + 0.3%.

Variance analysis. The mean and variance in the number of open channels were

calculated as previously described (18). For a patch containing N channels, the mean

number of open channels is:

N

NPopen = On n (1)
n=O

where Popen is the open channel probability and On is the mean occupancy of an n state

(open channel).

The variance (o2) is defined as:

N

02= ~ .(n - NPopen)2  (2)
n=O

In the case of identical and independent channels, the relationship between the

variance and the mean can be derived from the binomial theorem:

02 = NPopen(1 - Popen) = NPopen - (NPopen)2 /N (3)
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Although the variance (0.2) cannot be predicted unless the number of channels in

the patch (N) is known, we can set a lower bound on the predicted variance using the

maximum number of simultaneous channel openings (Nmax):

o = NPopen - (NPopen)2 /Nmax (4)

Power spectrum analysis. The spectrum histograms were generated using QuB

software. In detail, a short-time fast Fourier transformation (FFT) was performed on

idealized single-channel records with a window size of 262144 sampling points. The

sliding window overlapped with the previous and next window by half, and each window

was multiplied by a Hanning window function to limit edge effects. The resulting FFT

bins are grouped into 100 histogram bins. The power spectrum was fitted with the sum

of three Lorentzian functions:

S(f) = S / (1 + (f/f)2)+ S2 /(1 0 (f f2 )2) + S3 / (1 + (f/lf 3)2) (5)

where S(f) is the power spectral density at the frequency f. S1, S2 and S3 are the zero-

frequency asymptotes, and fi, f2 and f3 are the corner frequencies (fc) of the Lorentzian

components 1, 2 and 3, respectively. The power spectrum was also fitted with power law,

a / fl , where a is the amplitude and f is the exponent.

Randomization of dwells was carried out while preserving the constraint

(observed experimentally) that more than one channel does not open or close

simultaneously. To synthesize randomized records that obeyed this constraint, the record

was randomized dwell by dwell, with each subsequent dwell chosen at random from the

group of dwells separated by one conductance level from the dwell under consideration

(e.g., a dwell with one channel open would always be followed by a zero-channel or two-

channel dwell).

Modeling of variability in membrane potential. The Goldman-Hodgkin-Katz

equation (28) (Eq. 6) was used to calculate the average membrane potential (V) of a cell
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containing two conductances: an ATP-sensitive hyperpolarizing conductance, GH

(reversal potential of-90 mV, VH), and an ATP-insensitive depolarizing conductance, GD

(reversal potential of 0 mV, VD):

V = (GHVH + GDVD) / (GH + GD) (6)

GH, which corresponds to KATP channel conductance in pancreatic beta cells, can

be expressed as a function of intracellular ATP concentration, [ATP]i :

GH = Go/[1 + ([ATP]i /K K] (7)

where Go is the total ATP-sensitive potassium conductance (set at 10,000 pS (29, 30))

and Ki is the half-maximal inhibitory ATP concentration (set at 15 1M (20, 29)). The

Hill coefficient, q, is set at 1 for independent channels and 0.8 for negatively coupled

channels.

The number of open KATP channels (Nopen) was obtained from the ATP-sensitive

conductance (GH) divided by the single KATP channel conductance of 15 pS. Fluctuations

in the number of open KATP channels (a2) can be calculated from the first derivative of

the dependence of Nopen on the chemical potential of ATP (31):

2 = <(Nopen)2> Nopen> 2 
= kT 6<Nopen> / 1  (8)

where k is Boltzmann's constant, T is absolute temperature, and t is the chemical

potential of ATP, defining intracellular ATP concentration at -75 mV (resting potential)

as the standard concentration.

Fluctuations in the membrane potential (u2) were calculated using variability in

the number of open channels (O2) (32):

2 = (IH / (GH + G)) 2 a 2 /Nopen2) (9)

where IH is the ATP-sensitive hyperpolarizing current, (GHGD / (GH + GD)) (VH - VD).

Signal-to-noise ratios (SNRs) are calculated using the membrane potential and

fluctuation as the signal and noise, respectively, (V / u)2
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The probability density function (PDF) of a Gaussian distribution was used to

calculate the probability that a cell at rest (resting potential, Vr of -75 mV) becomes

electrically active due to fluctuations in membrane potential (u):

1 (X - V,) 2
PDF(v) - 1 exp(- (X (10)

v2ff 2v 2

where X is the threshold potential leading to electrical activity in pancreatic beta cells (set

at -60 mV).

Statistical analysis. Values are listed as mean ± S.E.M. The Kolmogorov-

Smirnov test was used for comparison of non-normal distributions while the t-test was

used for normal distributions (as evaluated using the Shapiro-Wilk test). Differences

were considered significant at a level ofP < 0.05.
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2.4. Results

Noise properties of patches with two channels open simultaneously. In order to

determine whether KATP channels gate as identical and independent units, we examined

membrane patches where a maximum of two simultaneous openings were observed, and

determined the distribution of occupancies in the possible states (Figure 2.2). Deviations

from the binomial distribution were quantified using the parameter r, which is negative if

channels are non-identical or negatively coupled (33). The average r is -0.03 + 0.007 (n

= 5) (Figure 2.2.B), corresponding to what would be observed for two independent

channels with open probabilities differing by -twofold (33).

Noise properties of multichannel patches. To generalize the analysis of noise

output to records containing multiple channels open simultaneously, we measured the

current variance as a function of the mean current. Using the maximum number of

channels open simultaneously (Nmax), a lower bound on the variance expected for

identical and independent channels can be calculated (see Methods). In most membrane

patches (7/11 records), the observed variance was less (14 + 2%, n = 7, P = 0.0006, two-

tailed paired t-test) than expected from identical and independent channels (Figure 2.3.B).

Analysis of all the patches indicates that the noise output is significantly less (9 ± 3%, n =

11, P = 0.01, two-tailed paired t-test) than predicted for identical and independent

channels.

Patch-to-patch variability in noise output is correlated with variability (34, 35) in

Nmax and in apparent open probability (NPopen/Nmax, where NPopen is the average number

of channels open) (Table 2.1). Patches with apparent Pope < 0.1 generate noise consistent

with identical and independent channels and typically exhibit Nmax > 2. These

observations are consistent with the presence of two forms of KATP: a high-Ppe, form in

which gating heterogeneity decreases noise output and a low-Poen form that exhibits

more homogeneous gating and higher noise output. Suppression of multiple openings by

negative coupling between the high-Popen channels might account for the observation of

smaller Nmax for high-Popen channels than for low-Popen channels.

- 42 -



As a complementary method of testing for identical and independent gating, we

compared mean/variance plots for observed records with simulated records where gating

was constrained to be identical and independent. Compared to the simulated data,

probability density in the observed records is more highly concentrated in the regions

associated with non-identical/non-independent channels (Figure 2.3.C).

Dynamic conformational coupling in control of KATP noise output. Decreased

noise output might arise from two mechanisms: static heterogeneity (non-identicality) in

channel Popn (e.g., due to differences in post-translational modifications such as

phosphorylation (3-6)) or dynamic conformational coupling between channels that causes

non-independent gating. To distinguish between these alternatives, we first determined

whether fluctuations in gating vary dynamically over time. An absence of dynamic

variations would be consistent with static heterogeneity in gating. Current records from

multichannel patch exhibit dynamic heterogeneity in the form of transitions between

discrete states of characteristic open probability (Figure 2.4.A). Dynamic heterogeneity

of this kind might arise from modal gating of channels without any coupling between

channels, i.e., each channel undergoes transitions among states with different open

probabilities. In that case, however, the variance in the number of channels open would

still be expected to follow the binomial distribution (36). Thus, the observation of both

decreased noise and dynamic heterogeneity is not consistent with purely static

heterogeneity in channel open probability but is consistent with the hypothesis that the

channels are coupled.

To distinguish between coupled gating and non-identicality of channels, power

spectrum analysis was carried out on KATP channel currents. Gating of single channels is

widely accepted as a stochastic process that can be described with Markov models (25).

In that case, the power spectrum of the current record can be described as the sum of

Lorentzian components, with each distinct component representing a Markovian step in a

given gating process (37). Power spectra are expected to be similar for one-channel

records and multichannel records as long as the channels gate independently.
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Power spectra can be used to investigate whether there are correlations within the

record. To accomplish this, power spectra can be compared for experimental records and

the same records after the order of the dwells had been randomized. If the dwells are

uncorrelated, randomization of the dwells will not affect the power spectrum. However,

if dwells are correlated, randomization will remove the correlation, changing the

appearance of the power spectrum.

To determine kinetic components of individual KATP channel gating, a power

spectrum of records from one-channel patches (as defined in Methods) was obtained first.

The power spectrum of single KATP channel currents exhibits at least three components:

one distinct fast component and two components in the lower frequency range (Figure

2.4.B). This observation is consistent with previous single-channel kinetic studies and

the results of the current work, which have shown that KATP exhibits bursts with opening

and closing rate constants -103 sec'~ and burst/interburst transitions with a broad range of

rate constants (-1-100 sec-'). The fast component (corner frequency,f = -~800 Hz) in the

power spectrum can be assigned to intraburst transitions. The intermediate component (f

= -15 Hz) can be attributed to interburst transitions, and may include several poorly

resolved Lorentzian components. The slowest component (fc < 1 Hz) is difficult to

measure accurately due to the finite length of records. The power spectrum of one-

channel records is unaffected by randomization of dwells (Figure 2.4.B), as expected if

one-channel gating does not exhibit correlations.

The power spectra of records from multichannel patches with noise below the

binomial limit did not exhibit the same features as power spectra from one-channel

records (Figure 2.4.C). The presence of a fast component at -800 Hz corresponding to

intraburst events was distinct as in one-channel records. In the low frequency region of

the spectra, however, power increased monotonically without the appearance of distinct

components; the power decays approximately as 1/f (3 = 0.96 ± 0.05, fitting the linear

region at f < 10 Hz). These data indicate that when the noise output is low, multiple

channels are not behaving simply as the superposition of multiple single-channel events;

rather, their kinetics displays a unique low-frequency component, which might arise from

correlated activity of multiple channels.
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For multichannel patches with noise at or above the binomial limit, the 1/f

component is not always observed. Some records appear to be well-described by a sum

of multiple Lorentzian components; their power spectra are essentially flat below 10 Hz

(Figure 2.4.D). Because of the contribution of these records, the average P is less for the

high-noise records than for the low-noise records (P = 0.60 + 0.03).

Analysis of randomized dwells is consistent with the hypothesis that multiple

channel patches can exhibit correlations not observed in one-channel patches.

Randomization of the dwells from records of one-channel patches has little effect on the

appearance of the spectra (Figure 2.4.B). However, for randomized records from

multichannel patches, the 1/ff component is no longer observed. Power spectra from the

randomized records appear to be the sum of Lorentzian components, dominated by

features at -10 and -500 Hz (Figure 2.4.C), which is qualitatively similar to spectra from

one-channel patches. If the difference between one-channel patches and multichannel

patches were due to static heterogeneity in the multichannel patches, randomizing the

dwells would not be expected to have an effect on the appearance of the multichannel

patch power spectra. The observation that randomizing the dwells removes the 1/fP

features of the multichannel records thus suggests that the multichannel records exhibit

correlations that are absent in one-channel records.

Role of the SUR] subunit in negative coupling. Cooperative interactions between

SUR1 subunits of neighboring channels might mediate coupled gating of KATP. TO

determine whether SURI is required for negative coupling between channels, we

examined current records of Kir6.2 AC1-26, a truncation mutant that can be expressed at

the plasma membrane in the absence of SUR1 (38). Previous studies indicate that the C-

terminal truncation affects channel trafficking without affecting channel gating (38).

Fluctuations in Kir6.2 AC1-26 channel activity were measured to distinguish between

static heterogeneity and coupled gating. SUR1-free mutant channels exhibit reduced

collective fluctuations in gating compared to the wild-type channels. For the mutant,

shifts between discrete modes were less pronounced than for the wild-type (Figure

2.5.B), suggesting a decreased role for dynamic conformational coupling.
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Analysis of the power spectra from records of mutant channels suggests that the

correlations observed with wild-type channels are not present for the mutant. The power

spectra of mutant records from low-noise patches are qualitatively similar to those of the

wild-type (3 = 0.76 + 0.03, Figure 2.5.C). However, for Kir6.2 AC1-26 in the absence of

SUR1, randomized records exhibit power spectra that are almost identical to the original

experimental records (Figure 2.5.C). These observations suggest that for the mutant

channels, multichannel records do not exhibit any correlated activity. The similarity

between low-noise mutant and wild-type records in the low frequency region of the

power spectrum may be due to static heterogeneity in the mutant patches.

If the mutant channels exhibit static heterogeneity, they might exhibit noise

reduction even in the absence of negatively cooperative interactions. In half of the

multichannel patches examined (6 of 12), noise is at the binomial limit (deviation from

the binomial limit = 2 ± 1%) (Table 2.1). In the remaining patches, noise is significantly

below the binomial limit (ratios ranging from 5 to 107%) (Table 2.1). Overall, any

increase in noise output for the SURI-free mutant compared to the wild-type (a median

noise output of 3% less than the binomial limit for the mutant, compared to 10% less than

the binomial limit for the wild-type) was not statistically significant (n = 12, m = 11, P =

0.14, one-tailed Kolmogorov-Smirnov test) (Figure 2.6.A).

An analysis of the noise output as a function of open probability supports the

hypothesis that static heterogeneity is the major contributor to the decreased noise output

observed for the SURi-free mutant. The largest deviations in noise output occur for

records with Popn in the middle of the observed range, which will be observed when both

high-Popen and low-Popen channels are present in one patch (Figure 2.6.B). Since this

static heterogeneity is not observed for the wild-type channels, its specific physiological

relevance is unclear. However, phosphorylation of Kir6.2 has been shown to affect Popen

(3-6), indicating that heterogeneous phosphorylation could affect noise control in vivo.

- 46 -



2.5. Discussion

Noise in multichannel patches is below the lower limit predicted for identical and

independent channels. The observation that the noise is less than the binomial prediction

indicates that heterologously expressed KATP channels are either non-identical or non-

independent.

A kinetic analysis favors the non-independent mechanism. If channels are

independent, the power spectra of records from patches containing multiple channels

would be similar to those from patches containing only one channel. The comer

frequency of the slow component would be expected to increase with an increasing

number of channels in the patch, since more channels would produce a faster burst-to-

interburst transition. However, the number of kinetic components is expected to be

independent of the number of channels in the patch for independent channels. In fact, the

multichannel power spectra contain a feature at low frequencies that is not observed in

the one-channel spectra. This feature is well-fitted with a 1/f dependence. Although the

1/fP component is only apparent over a range of one decade in frequency, the observation

that multiple channels in the patch affect the kinetic features in the power spectrum

supports the hypothesis that the channels are interacting.

The 1/f feature is present in all of the patches exhibiting noise reduction, but also

in some of the patches where no noise reduction is observed. It is possible that the

observation of the 1/f feature in high noise patches is due to the conservative criterion

used here to define noise reduction. The binomial limit is calculated from the maximum

number of channels observed to be open simultaneously in the patch. If more channels

are present in the patch than the maximum number observed, the calculated noise

reduction underestimates the true value. Thus, an underestimate of the number of

channels would lead to a record being classified as "high noise" even though channels

were non-identical and/or non-independent.

Analysis of randomized records also supports the non-independent mechanism.

Static heterogeneity might also give rise to a 1/f component in multichannel patches if
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the channels in the patch are sufficiently heterogeneous. The presence or absence of

correlations in the data can be used to distinguish between static heterogeneity and non-

independent gating. If the channels are non-independent, there will be correlations in the

records of multichannel patches that are not present in one-channel patches. For one-

channel patches, randomization of the dwells has no discernible effect on power spectra,

suggesting that correlations associated with the gating mechanism of individual channels

are minimal. Although a simple bursting mechanism has some degree of correlation

(long interburst closed times are likely to be followed by short intraburst closed times),

the vast majority of events occur within bursts, and are expected to be uncorrelated, as

observed. In contrast, randomization of multichannel records leads to a marked change

in the appearance of the power spectrum, eliminating the 1/f~ feature in the low-

frequency region of the spectrum. The results are thus consistent with the interpretation

that the 1/f0 feature is the result of correlated fluctuations associated with non-

independent channel activity: it is only present when multiple channels are present in the

patch, and randomization eliminates it.

Results obtained with a Kir6.2 mutant in the absence of SUR1 suggest that the

SUR1 subunit participates in negative coupling between KATP channels. For the Kir6.2

mutant alone, deviations from the binomial variance prediction are observed, but appear

to be largely due to non-identicality of channels. The correlations observed in wild-type

multichannel records are not present in the mutant data. One possibility is that

heterogeneous phosphorylation or other post-translational modifications of the mutant

channels introduces static heterogeneity; the absence of the SUR1 subunit might, for

example, expose normally inaccessible phosphorylation sites. Biochemical studies will

be required to answer this question.

Taken together, these observations suggest a novel role for SURI as a mediator

of interchannel interactions. This subunit may thus have a third important role in KATP

physiology in addition to its well-established functions as a trafficking chaperone (38-40)

and a mediator of nucleotide sensitivity (38, 39). Clustering of KATP channels has

previously been proposed based on electron microscopic (41) and pharmacological (42)

studies. Further work is needed to determine the molecular basis for interchannel
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interactions. One speculative mechanism for interchannel coupling is heterodimerization

of nucleotide binding folds (43, 44) on adjacent channels. Such an interaction could, in

principle, link multiple channels both spatially and functionally into a single unit.

Protein-lipid-protein interactions might also contribute to coupled channel gating. Any

change in the cross-sectional area of the channel due to gating of one channel (as

previously observed for potassium (45) and sodium (46) channels) will also affect lipid

bilayer tension (47), possibly affecting the ability of neighboring channels to open/close.

Effects of negative cooperativity on transduction of a metabolic signal to an

electrical signal. It remains to be seen whether the noise suppression observed in

heterologously expressed channels also occurs in vivo. As a first step in ascertaining

whether the effects observed in vitro may have physiological consequences, the effects of

KATP noise on metabolic signaling can be estimated. Noise due to KATP gating may have

deleterious effects on the ability of pancreatic beta cells to act as metabolic sensors. KATP

transduces a metabolic signal into an electrical signal through its effect on the

transmembrane electrical potential. Because potassium channels hyperpolarize the cell

under physiological conditions, ATP-induced closure of KATP causes depolarization.

Depolarization from resting ~ -75 mV to - -60 mV leads to action potential-like spikes

of activity and/or more complex patterns of electrical activity (20).

When a cell contains a small number of KATP channels, noise due to stochastic

gating can significantly affect the fraction of channels open. Variability in the number of

open channels affects how precisely the metabolic state of the cell determines the

membrane potential. However, energy considerations limit the number of channels that

can be expressed; increasing the total ionic current also increases the energy cost of

maintaining ion homeostasis via ATP-dependent pumps. Previous measurements of ionic

currents and ATP metabolism in pancreatic beta cells indicate that the energy costs of

ionic signaling are substantial: -10% of the ATP produced by glucose metabolism is

consumed to maintain ionic homeostasis (see below). Increasing the precision of

metabolic signaling by a large increase in channel expression is not feasible since the

increased ATP hydrolysis required to support the extra channels would act as a shunt for
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the ATP produced by glucose metabolism, diminishing the metabolic signal that the

channels measure.

Estimated energy production by glucose metabolism in pancreatic beta cells

compared to energy cost of ionic signaling. The maximum change in intracellular ATP

due to glucose metabolism in pancreatic beta cells can be estimated from the rate of

glucose consumption. The rate of glucose consumption is -100 pmol islet-' hr-' at sub-

stimulating glucose concentrations and -10' pmol islet-l hr-' at glucose concentrations

high enough to stimulate insulin secretion (48). Using a value of 38 ATP molecules

synthesized/glucose molecule consumed (49), rates of -100 and 10' pmol ATP islet-' min

'can be calculated for resting and stimulated beta cells. The increase in ATP production

due to glucose metabolism can thus be estimated to be -10' pmol ATP islet-' min'.

The energetic cost of maintaining ionic homeostasis can be estimated from

steady-state ionic currents. At rest, pancreatic beta cells exhibit -100 pA leak current

mainly due to KATP channels (34, 35). At the plateau potential of bursts of activity,

inward current due to voltage-gated calcium channels is -10' pA (34, 35). Maintaining

ionic homeostasis would thus require hydrolysis of -10-' pmol ATP islet"' min-' for a

potassium leak current at rest and ~100 pmol ATP islet-' min-' during the plateau phase of

the burst (using values of -103 cells/islet (34, 35, 48) and 0.5 ATP hydrolyzed per

potassium or calcium ion pumped (49)). Thus, while increasing concentrations of

glucose stimulate rates of ATP production, the rate of ATP depletion due to ionic

currents remains constant at -~10% of the rate of ATP production.

An alternative method of estimating the relative energy cost of maintaining ionic

homeostasis comes from measurements of heat production by beta cells. The increase in

heat production associated with high glucose concentrations is ~100 pW/cell (34, 35).

Using the estimates derived above for currents at rest (-70 mV) and at the plateau

potential (-30 mV), the glucose-induced change in heat dissipation associated with ionic

currents is -10-' pW/cell. These estimates suggest that ionic currents dissipate -10% of

the extra energy generated by beta cells at high glucose concentrations.
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Estimates of the energy cost associated with electrical signaling in beta cells thus

support the idea that significant increases in the ATP hydrolysis required for ionic

homeostasis would interfere with the ability of the cell to increase the ATP/ADP ratio in

response to glucose metabolism. The energy cost of electrical signaling depends on the

density of ion channels in the membrane. If the number of channels in the cell were

much greater than it is, the rate of ATP hydrolysis associated with ionic homeostasis

would be comparable to the rate of ATP production via glucose metabolism. ATP

hydrolysis would then act as an effective shunt, preventing accumulation of ATP in

response to glucose metabolism. Shunting of ATP in this way would interfere with the

ability of the cell to detect glucose, since metabolism of glucose would be less tightly

linked to the ATP/ADP ratio.

Measurements of the decrease in KATP noise output due to coupled gating allow

estimation of its possible effects on energy consumption in metabolic signaling. The

observed noise due to stochastic gating is -~10% less than expected for identical and

independent channels. A comparable effect operating in vivo would thus enable the cell

to operate with -20% fewer KATP channels without increasing the noise output relative to

identical and independent channels (18). Because the membrane potential depends on

relative ionic conductances (28), decreasing the number of KATP channels would allow

the expression of other channels to be scaled down proportionately, thereby decreasing

the total energy cost of ionic signaling. Because the metabolic cost of KATp-initiated

electrical signaling in vivo is significant compared to the metabolic fluctuations that this

system must measure, decreasing the energy cost of ionic signaling by -20% is likely to

be physiologically relevant.

Modeling of fluctuations in membrane potential. A simple quantitative model

suggests that channel gating noise can have a substantial effect on the precision of

metabolic signaling. In this model, the cell is approximated as a compartment containing

KATP and a non-selective cation channel (a depolarizing conductance) (Figure 2.7.A).

The number of open KATP channels is modeled as a simple binding isotherm with a Hill

coefficient of 1 for identical and independent channels and < 1 for negatively coupled
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channels. Fluctuations in the number of open KATP channels are calculated (31) and used

to determine the magnitude of fluctuations in the membrane potential.

This quantitative model shows that negative coupling between KATP channels

increases the precision of metabolic signaling. Negative coupling of moderate strength (a

Hill coefficient of 0.8) decreases the variability in membrane potential by -10-15%

(Figure 2.7.B). Defining the signal as the change in membrane potential from the resting

potential (i.e., at a sub-stimulating glucose concentration), the signal-to-noise ratio is thus

increased -25-40% by negative coupling (Figure 2.7.C). This increase in signal-to-noise

ratio comes at the expense of signal gain: negative coupling decreases the change in

membrane potential induced by a small perturbation in chemical potential (i.e., it

decreases dNopen / d/t).

A decrease in noise due to negative coupling can also decrease the probability that

a cell at rest will become electrically active due to random fluctuations in membrane

potential. The model indicates that while this probability is low for identical and

independent channels (-0.2%, assuming a threshold potential of -60 mV and normally

distributed membrane potential fluctuations), it is high enough to be non-negligible in a

pancreatic islet containing -103 beta cells. Negative coupling decreases this probability

by a factor of two (Figure 2.7.D).
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2.6. Conclusions

The kinetic behavior of KATP suggests that KATP channel activity could be

negatively coupled. The SUR1 subunit in particular appears to have a role in

coordinating interactions between intact channels in the membrane, which is a novel

mechanistic role for SURI (Figure 2.8). It is not yet clear whether this phenomenon

occurs in vivo. However, the ability to reconstitute this activity in vitro without

exogenous factors and the observation that KATP channels are present in puncta at the

plasma membrane (41) suggest that the channels may self-assemble into functionally

coupled units in vivo. In addition, effects of the magnitude observed in vitro are not

negligible compared to the magnitude of channel noise expected to affect insulin

signaling. Simplified models of metabolic signaling support the idea that negative

coupling of the magnitude observed in vitro could have a significant effect on beta cell

physiology. Negative coupling between KATP channels might affect signaling in other

cells expressing this channel in its various isoforms, such as the brain and the heart.

Decreased stochastic gating fluctuations might also enhance energy efficiency in other

ion channel-based signaling systems that are under both noise and energy constraints. In

general, considerations of noise, energy consumption, and signal gain may help

determine when ion channels gate as identical and independent units and when their

gating is positively (50, 51) or negatively (52) coupled.
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2.7. Figures and Table

Figure 2.1. KATP channel has an important role in insulin secretion in pancreatic

f-cells. The increased ATP/ADP ratio induced by high glucose levels causes the KATP

channel to close. This depolarizes the cell membrane, thereby increasing entry of

calcium through voltage-gated calcium channels. The increased calcium level, in turn,

triggers insulin secretion.

e-Gated
hannels
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Figure 2.2. KATP channels exhibit less noise than expected for identical and

independent channels. (A) A representative patch clamp recordings of individual KATP

channels from a patch containing no more than two simultaneously open channels. (B)

Deviation of observed occupancies in states with zero, one, or two simultaneously open

channels from the occupancies predicted by the binomial distribution, which assumes

identical and independent channels (error bars, S.E.M., n = 5).
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Figure 2.3. Patches containing multiple KATP channels exhibit decreased noise.

(A) A representative patch clamp recording of individual KATP channels from a

multichannel patch. (B) Cumulative probability histograms for deviations from identical

and independent behavior (red circles, experimental records; black squares, simulated

records for identical and independent channels; see Methods). (C) The normalized

difference of mean/variance plots between observed records and simulated

identical/independent records ((m/v)obs. - (m/v)sim, n = 5) (black solid line, expected

curve for one channel open; red dashed line, expected curve for two negatively

coupled/non-identical channels; blue dashed line, expected curve for two identical and

independent channels).
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Figure 2.4. Dynamic heterogeneity in KATP gating. (A) KATP currents shift

between high- and low-activity modes. The number of open channels was averaged for

every 5 ms. (B) Power spectral density from the records of one-channel patches (red

open circles, observed records; black open circles, randomized records; red solid line, a

fit with three-Lorentzian functions for observed records; black solid line, a fit with three-

Lorentzian functions for randomized records). (C) Power spectral density from the

records of multichannel patches with low noise (red open circles, observed records; black

open circles, randomized records; red solid line, a 1/f fit for observed records; black

solid line, a fit with three-Lorentzian functions for randomized records). (D) Power

spectral density from the records of multichannel patches with high noise (red open

circles, observed records; black open circles, randomized records; red solid line, a fit with

three-Lorentzian functions for observed records; black solid line, a fit with three-

Lorentzian functions for randomized records).

B f,-1 Hz

N

CL

a)0

(.

C.
U)C,)

0 5 10 15 20
Time (sec) Frequency (Hz)

C, n

I
0)

4)CL

Oa)0-5C.
a)

- 105N
"r"

d. 101

cI

lCP

101

Frequency (Hz)

-57-

10 100 1000
Frequency (Hz)



ChalpterI

Figure 2.5. SUR1 is required for robust negative coupling in KATP gating. (A)

Representative patch clamp recordings of individual Kir6.2 AC1-26 channels from a

multichannel patch. (B) Dynamic heterogeneity in currents is weak in the absence of

SUR1. The number of open channels was averaged for every 5 ms. (C) Power spectral

density from the records of multi-channel patches of Kir6.2 AC1-26 channels with low

noise (red open circles, observed records; black open circles, randomized records; red

solid line, a 1/f fit for observed records).
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Figure 2.6. Decreased noise output observed for the SURI-free mutant is

attributed to static heterogeneity. (A) Cumulative probability histograms for deviations

from identical and independent behavior (red circles, SUR1 + Kir6.2; black squares,

Kir6.2 AC1-26). (B) Static mixtures of high-Po,, and low-Pope channels account for

decreased noise in the absence of SUR1 (red circles, SURi + Kir6.2; black squares,

Kir6.2 AC1-26).
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Figure 2.7. Modeling of fluctuations in membrane potential. (A) Schematic of

model cell containing an ATP-sensitive hyperpolarizing conductance (red) and a

depolarizing conductance (green). (B) Fluctuations (standard deviation, u) in the

membrane potential are reduced -~10-15% by negative interactions (red solid line,

negatively coupled channels; black dotted line, identical and independent channels). (C)

The signal-to-noise ratio (SNR) is increased -25-40% by negative coupling (red solid

line, negatively coupled channels; black dotted line, identical and independent channels).

(D) Negative coupling decreases the probability that a cell at rest will become excited due

to noise in the membrane potential by -50% (red solid line, negatively coupled channels;

black dotted line, identical and independent channels).
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Figure 2.8. Proposed mechanism for noise control in KATP gating. KATP channels

(sectors, SURI; circles, Kir6.2) are linked (transiently or stably) via interactions between

SUR1 subunits. Occupancy of one channel in the open state (yellow/orange) disfavors

open state occupancy of its neighbors (blue/purple), mitigating large fluctuations in

channel activity and decreasing the total noise output.
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Table 2.1. Patch properties of KATP and Kir6.2 AC1-26 channels

Decrease in Apparent
Patch Exponent, /

noise output Popen

Low-noise (n = 7) 14 ± 2% 0.40 ± 0.06 0.96 ± 0.05

KATP

High-noise (n = 4) 1 ± 2% 0.09 ± 0.03 0.60 ± 0.03

Low-noise (n = 6) 37 ± 19% 0.52 + 0.07 0.76 ± 0.03
Kir6.2

AC1-26
High-noise (n = 6) 2 ± 1% 0.06 ± 0.01 0.35 ± 0.04

* Results are means ± S.E.M.
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Chapter 3

Testing for Violations of Microscopic Reversibility in
ATP-Sensitive Potassium Channel Gating
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3.1. Abstract

In pancreatic beta cells, insulin secretion is tightly controlled by the cells'

metabolic state via the ATP-sensitive potassium (KATP) channels. ATP is a key mediator

in this signaling process, where its role as an inhibitor of KATP channels has been

extensively studied. Since the channel contains an ATPase as an accessory subunit, the

possibility that ATP hydrolysis mediates KATP channel opening has also been proposed.

However, a rigorous test of coupling between ATP hydrolysis and channel gating has not

previously been performed. In the present work, we examine whether KATP channel gating

obeys detailed balance in order to determine whether ATP hydrolysis is strongly coupled

to the gating of the KATP channel. Single-channel records were obtained from inside-out

patches of transiently transfected HEK-293 cells. Channel activity in membrane patches

with exactly one channel shows no violations of microscopic reversibility. Although KATP

channel gating shows long closed times on the timescale where ATP hydrolysis takes

place, the time symmetry of channel gating indicates that it is not tightly coupled to ATP

hydrolysis. This lack of coupling suggests that channel gating operates close to

equilibrium; although detailed balance is not expected to hold for ATP hydrolysis, it still

does so in channel gating. Based on these results, the function of the ATPase active site in

channel gating may be to sense nucleotides by differential binding of ATP and ADP, rather

than to drive a thermodynamically unfavorable conformational change.
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3.2. Introduction

KATP channels mediate coupling between the transmembrane electrical potential of

cells and their metabolic state (1). ADP, present in larger quantities than ATP when the

cell has depleted its energy stores, stimulates channel opening, while ATP inhibits it.

These channels are the first component in the signal transduction pathway leading to

insulin secretion from pancreatic beta cells, and they are the target of the clinically

important sulfonylurea class of diabetes medications (2).

Native KATP channels consist of two functionally distinct gene products (3, 4).

One, called Kir6.2, is a potassium channel. It provides the pore for conduction of ions,

switching between a "closed" non-conducting state and an "open" conducting state in a

nucleotide-dependent manner and thereby mediating rapid changes in transmembrane

potential. It has an ATP-binding site and a phosphatidylinositol-4,5-bisphosphate (PIP2)-

binding site. The other, called the sulfonylurea receptor (SUR1), is homologous to the

ATP-binding cassette (ABC) family of transporters, which use the free energy of

hydrolysis of ATP to transport small molecules and peptides across the cell membrane (5).

SUR1 contains the binding site for sulfonylureas (6), as well as two nucleotide binding

domains (NBDs), which can bind ATP or ADP (7, 8). In this work, we investigate the

possible role of ATP hydrolysis in KATP gating (i.e., the protein conformational changes

that open and close the channel). Measurements of channel gating kinetics at the single-

molecule level are used to determine whether channel gating exhibits the violations of

microscopic reversibility expected if it is tightly coupled to ATP hydrolysis.

Several lines of evidence point to a role for ATP hydrolysis in control of KATP

gating. First, MgADP binding to NBD2 of SUR1 has a stimulatory effect on channel

gating (7-9). Second, NBD2 of SUR1 hydrolyzes ATP in the presence of Mg2+ with a

turnover number of -1.5 sec-' per SUR1 tetramer (10). Finally, use of inorganic ions

(orthovanadate and beryllium fluoride) to stabilize the putative pre-hydrolytic and post-

hydrolytic conformations of the cardiac channel (Kir6.2/SUR2A) shows that the pre-

hydrolytic state favors channel closing, while the post-hydrolytic state favors channel

opening (11). In suggesting that SURI's catalytic cycle drives Kir6.2's gating
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conformational change, these studies raise the question of whether ATP hydrolysis is

strongly coupled to the gating of the KATP channel.

However, other lines of evidence suggest that ATP hydrolysis is not tightly

coupled to channel gating. The turnover number for ATP hydrolysis by NBD2 of SUR1 is

much smaller than the rate constants associated with KATP channel gating (10, 12, 13).

This observation suggests that most Kir6.2 gating events occur independently of

conformational transitions in SUR1. In addition, active site mutations in NBD2 of SUR1

expected to impair ATPase activity have modest effects on KATP gating (13). One

complicating factor in interpreting these results is the possibility that ATPase rates in the

native SUR1-Kir6.2 complex are greater than those observed in the purified, detergent-

solublized preparation.

In this work, we examine coupling of ATP hydrolysis to channel opening using

single-channel kinetic experiments carried out on intact SURi-Kir6.2 complexes in cell

membranes. If the gating conformational change is an equilibrium process, microscopic

reversibility will be obeyed, meaning that the statistical properties of the single-channel

record will not depend on time direction used to measure them; that is, they are the same

whether the record is "played forwards" or "played in reverse." However, if channel

gating is coupled to an irreversible reaction, the characteristics of the single-channel

record will not be time direction-invariant: its statistical properties will be different when

it is "played in reverse." Thus, if channel gating is tightly coupled to an irreversible

process such as ATP hydrolysis, the gating reaction will not exhibit microscopic

reversibility (14).

Several methods were previously used to test microscopic reversibility in single-

channel experiments. One method is to obtain maximum likelihood estimates of rate

constants from single-channel data either with or without the constraint of detailed

balance, and compare the maximum likelihoods from each estimate (15). If channel gating

does not obey microscopic reversibility, the maximum likelihood will be greater without

the detailed balance constraint than with it. A number of ion channels, including the

muscle-type nicotinic acetylcholine receptor (nAChR) (16) and N-methyl-D-aspartate

- 70-



( 'I.

(NMDA) receptors (NR1-NR2A, NR2B, or NR2C) (17, 18) have been analyzed using

this method. The resulting likelihood ratios suggested that gating transitions between

fully-open states and closed states of these channels is time-reversible. A second method

is to compare two-dimensional distributions of pairs of adjacent open and closed dwell-

times in forward and reverse time directions; these distributions will differ if gating

violates microscopic reversibility (19). This method was used for analysis of the gating of

a large conductance Ca2+-activated potassium (BK) channel (19). The difference between

the two distributions was not statistically significant, consistent with the hypothesis that

BK channel gating obeys microscopic reversibility. Cross-correlation functions of open

and closed dwell-times were also used to test time reversibility in channel gating (20, 21).

This approach was applied to single-channel records from the locust muscle glutamate

receptor (GluR) (20). Cross-correlation functions in the forward/reverse time directions

appeared to be identical, suggesting that GluR gating is an equilibrium process.

Only a few ion channels to date have been shown to be driven by external energy

sources. The cystic fibrosis transmembrane conductance regulator (CFTR), a chloride

channel, exhibits non-equilibrium gating (22). This channel is an ATPase and a member of

the ATP-binding cassette superfamily (23). A one-dimensional dwell-time distribution

analysis was used to test violations of microscopic reversibility of CFTR gating. When

gating takes place at thermodynamic equilibrium, dwell-time distributions will be a sum of

decaying exponential components with their maxima at t = 0 (24). For CFTR, however,

closed time distributions for CFTR have maxima at times greater than zero; the paucity of

short closed events constitutes strong evidence that an irreversible step must precede

channel opening. The ATP concentration dependence of CFTR gating rate constants

suggests that ATP hydrolysis is this irreversible step (22).

For several channels, non-equilibrium transitions are observed among

subconductance states (states with conductances intermediate between fully closed and

fully open). This type of non-equilibrium gating is observed in the Torpedo CIC-O

chloride channels (25, 26), nAChRs (27), both recombinant and native NMDA receptors

(NR1-NR2D) (28-30), and mutant NMDA receptors (NR1 N598Q-NR2A) (31). Non-

equilibrium transitions between subconductance states were also observed in curare-
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activated nAChR gating (32) and the Ba2+-induced BK channel gating (33). The external

energy sources for gating asymmetry are unclear in some cases. However, irreversible

gating of the CIC-0 chloride channels and the NMDA receptors appeared to be driven by

flow of the permeant ions down the transmembrane electrochemical gradient (25, 26, 31).
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3.3. Methods

Molecular biology. Mouse pCMV-Kir6.2 and hamster pECE-SURI cDNA were

provided by S. Seino (Chiba University, Chiba, Japan) and J. Bryan (Baylor College of

Medicine, Houston, TX), respectively. A stop codon was introduced into the mouse

Kir6.2 cDNA to delete the last 26 amino acids of the C-terminus (Kir6.2 AC1-26) using

the QuikChange® Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA). All cDNA

constructs were verified by DNA sequencing (MIT Biopolymers Lab, Cambridge, MA).

Plasmids were prepared for transient transfection using the QIAfilterTM Plasmid Maxi Kit

(QIAGEN Inc., Valencia, CA).

Cell culture. Human embryonic kidney (HEK) 293 cells (American Type Culture

Collection, Manassas, VA) were cultured in Dulbecco's modified Eagle's medium

containing 10% (v/v) fetal bovine serum in humidified 5% CO 2 at 370C. Cells were

passaged every three days by treatment with trypsin.

DNA transfection. HEK 293 cells were transiently transfected with either mouse

Kir6.2 plus hamster SURI or with Kir6.2 AC1-26 cDNA. pEGFP-N1 vector (BD

Biosciences, San Jose, CA) was co-transfected as a marker with the cDNA of interest

using the FuGENE 6 Transfection Reagent (Roche Applied Science, Indianapolis, IN).

Transfection was performed according to the manufacturer's instructions with total 1 /.g

of cDNA per 35-mm culture dish (2:3:5 ratio of Kir6.2, SUR1, and pEGFP-N1 or 1:4

ratio of Kir6.2 AC1-26 and pEGFP-N1). Transfected cells were incubated in humidified

5% CO2 at 370 C. Approximately 36 to 72 hr after transfection, the cells were used for

single-channel recordings.

Electrophysiology. Micropipettes were pulled from borosilicate glass capillaries

(MTW 1B150F-4; World Precision Instruments Inc., Sarasota, FL) on a puller (PP-830;

Narishige Group, Tokyo, Japan) with resistance typically -5-12 M.Q. Pulled pipettes were

coated with Sylgard (Dow Coming Corporation, Midland, MI) and fire-polished using a

microforge (MF-830; Narishige Group, Tokyo, Japan) to reduce the noise level. Single-

channel currents were recorded using the inside-out patch clamp configuration at a

- 73-



(i be fetcr ,

membrane potential of -80 mV, with the pipette (extracellular) solution containing (in

mM): 140 KC1, 10 NaC1, 1.1 MgCl2, and 10 K-HEPES, pH to 7.3 and with the bath

(intracellular) solution containing (in mM): 140 KC1, 10 NaCl, 1.1 MgCl2, 0.5 CaCl2, 5

K-EGTA, and 10 K-HEPES, pH to 7.3 (34). 1 mM MgATP (ATP magnesium salt;

Sigma, St. Louis, MO) and 5 AM PIP2 (Calbiochem, San Diego, CA) were directly added

to the bath solution (35). Single-channel recordings were performed at room temperature

with an Axopatch 200B patch clamp amplifier (Axon Instruments Inc., Union City, CA)

and were low-pass filtered (10 kHz) with a 4-pole Bessel filter. Single-channel data were

acquired and digitized at 20 kHz using QuB software (www.qub.buffalo.edu) (36, 37).

Single-channel data analysis. KATP channel recordings where only single openings

but no double openings (i.e., two channels open simultaneously) were observed for 10 min

were analyzed. Digitized single-channel records were filtered at 5 kHz and idealized using

the half-amplitude method with the QuB software. The observed open probability (Po) is

0.46 ± 0.09 (N = 5, S.D.) with a lowest Po observed of 0.39. Dwell-time distributions

were fitted using the maximum interval likelihood (MIL) function in the QuB software

suite, which provides maximum likelihood estimates for rate constants in a specified

model. A dead time of 0.1 ms was used for missed event correction (24).

When no consecutive single openings have been observed, the probability of

observing more single openings before the first multiple opening occurs is P(r >no) = Wno-

'~, where r is a total number of consecutive single openings and 7r is the probability that

one open channel is closed before a second channel is open (24). The probability 7r can be

estimated as (1 - Po) / (1 - Po/N), where N is the actual number of independent channels in

the patch. An observed KATP channel record contains -2 x 105 consecutive single

openings with Po of >0.39. The probability of a run this long, P(r Ž2 x 105), therefore,
would be < 0.0001 if there were two channels present, so it is very likely that exactly one

channel is present.
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3.4. Results

To test for violations of microscopic reversibility due to ATP hydrolysis, single-

channel currents were recorded from inside-out membrane patches of transiently

transfected HEK-293 cells in the presence of 1 mM MgATP and 5 iM PIP2 in the bath

solution (Figure 3.1). These conditions are expected to allow both channel opening and

ATP hydrolysis (10, 38). PIP2 has been identified as a modulator that binds to Kir6.2

subunits and adjusts the apparent inhibition constant (Ki) for ATP to within the range of

cytosolic [ATP]; KIs of ATP for KATP inhibition in the absence or presence of 5 /M PIP 2

are 10.5 /tM and 3.6 mM, respectively (38, 39). ATP concentration in the millimolar

range is expected to support SUR1-catalyzed ATP hydrolysis since KM for ATP hydrolysis

by the purified KATP channel is 0.4 mM (10). Membrane patches containing exactly one

channel were analyzed (see Methods), and an open probability (Po) of 0.46 ± 0.09 (N = 5,

S.D.) was observed.

Kinetically distinct states of KATP have been observed in previous single-channel

electrophysiological studies (40-43). Binding of MgATP drives the KATP complex into a

long-lived closed state. Binding of MgADP, on the other hand, drives the channel into a

bursting state in which the channel rapidly opens and closes. If channel gating is tightly

coupled to ATP hydrolysis, these kinetically defined states of KATP - a bursting state and

an interburst closed state - might correspond to intermediates in the ATP hydrolysis cycle.

Single-channel records were analyzed to determine whether transitions between the

bursting and interburst states exhibit detailed balance violations.

Dwell-time distribution analysis. If an irreversible step is present in KATP channel

gating, the characteristic dwell time on the interburst closed state or the bursting state will

be determined by the ATP hydrolysis rate at SUR1. A paucity of short events in the

probability density function of the dwell-time distribution is predicted if an irreversible

enzymatic step precedes channel gating since the "hidden" enzymatic step acts to

introduce a lag time into observed transitions (24). The probability density functions of

burst lengths and interburst closed dwell-times pooled from the five membrane patches

(distributions were calculated for -6.0 x 104 events using a bin size of 1 ms; a critical time
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of 1 ms was used for assigning burst lengths (24)) were determined. These distributions

were exponential, having maxima at time zero as judged by dwell-time histograms (Figure

3.2). The one-dimensional dwell-time distributions are therefore consistent with channel

gating occurring independently of ATP hydrolysis.

Maximum likelihood analysis. As another test for non-equilibrium gating,

correlations in time between observations of kinetically defined states were measured.

Violations of microscopic reversibility would correspond to excursions through a cyclic

mechanism in one direction (e.g., clockwise) occurring more frequently than excursions in

the other direction (e.g. counterclockwise); in other words, detailed balance would not be

obeyed. Thus, violations of microscopic reversibility in channel gating can be detected by

determining whether imposing the detailed balance constraint decreases the maximum

likelihood (44). The significance of the increase in the maximum likelihood by removing

the detailed balance constraint can be statistically evaluated using the likelihood ratio test.

The difference between the log likelihoods (LLs) multiplied by a factor of 2 is

asymptotically distributed as the )z statistic. Thus, one can assess for statistical

significance using Z significance levels. Since detailed balance imposes one constraint, the

)2 has 1 degree of freedom. When the twofold likelihood ratio (2ALL) is greater than

3.84, the observed increase in the maximum log likelihood is significant at the 5% level.

For maximum likelihood fitting, a kinetic scheme containing the two open states

(O and 04), the intraburst closed state (Cf) and the two interburst closed states (C2 and

C3) was used (Figure 3.3.A). Although more complex models have also been proposed

for KATP channel gating (41, 42, 45), the two-open-three-closed-states model is widely

accepted and used for wild-type KATP channel in the presence of ATP and PIP2 (34, 45).

Since bursting kinetics is an intrinsic property of Kir6.2 channel (42, 46), intraburst open

and closing events are presumably not affected by ATP hydrolysis by SUR1. In this

model, thus, the intraburst closed state (Cf) is placed out of the cycle so that only the

burst/interburst transitions are subject to the detailed balance constraint. The open and

closed dwell-time distributions were fitted to the kinetic model in Figure 3.3.A either

without or with the constraint of detailed balance (01--+C2--+C3--+04) (Figure 3.3.B and

3.3.C). LL/event calculated from the maximum likelihood fitting of each file (-2.1 x 105
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events) is 6.5 ± 0.1 (N = 5, S.D.) with absolute LLs of-1.3 x 106. The difference in

maximum log likelihoods obtained for the constrained and unconstrained fitting is not

statistically significant for any of the five recordings (2ALL of 0.1 ± 0.1 < 3.84), consistent

with an absence of microscopic reversibility violations.

Two-dimensional dwell-time distribution analysis. As a further test for

microscopic reversibility violations, two-dimensional (2D) dwell-time distributions were

obtained from single-channel recordings in the forward and in the reverse directions in

time. The 2D distributions of pairs of adjacent burst and interburst dwell-times represent

the frequency of occurrence and correlation between adjacent dwell times (47). If detailed

balance is obeyed, there will be no difference between the 2D distributions in the

forward/reverse time directions (14). A X test can be performed to determine whether

differences between the two distributions are significant. If the Z-score, defined as (2•2)12

- (2D - 1)/2, from a )? test is higher than 1.96 with more than 100 degrees of freedom

(D), violations of microscopic reversibility are significant at the 5% level, i.e., microscopic

reversibility is violated (48). The 2D dwell-time distributions calculated in forward and

reverse time directions from KATP single-channel recordings (> 10,000 events with 1 ms

critical time) are identical within experimental uncertainty (Figure 3.4); Z-score of 1.7 +

0.1 (N = 5, S.E.M.) with > 200 degrees of freedom.

Cross-correlation function analysis. Cross-correlation functions have also been

used to test for violations of microscopic reversibility (20). Cross-correlation functions

for kinetically distinguishable states will be non-symmetric with respect to the

sign/direction of time if microscopic reversibility is violated (49). The dwell-time cross-

correlation function is defined by G0o(k) = Cov [O(i), C(i+k)] / (Var [O(i)] Var [C(i)])o.5,
where Cov is covariance, O(i) is the ith open time, C(i) is the ith closed time, k is the lag

(0, 1, ...) and Var is variance. The same holds for cross-correlation function in the

opposite time direction, defined by Gco(k) = Cov [C(i), O(i+k)] / (Var [C(i)] Var

[O(i)])0. 5. Non-null cross-correlation functions can be observed when the minimum (Np)
of the number of open gateway states and closed gateway states (i.e., states directly linked

to a state of the opposite class, such as an open state linked to a closed state (50)) is larger

than 1 (51, 52), as is the case for the cyclic models considered here. At thermodynamic
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equilibrium, the open-closed and closed-open cross-correlations (Go,(k) and Go(k)) are

identical. Inequality of G,(k) and Go(k), on the other hand, would be consistent with

irreversibility in channel gating.

Open and closed dwell-times from five KATP single-channel records (-1.3 x 106

events) were pooled to generate cross-correlation functions. Obtained cross-correlation

functions revealed a weak, negative correlation between closed times and preceding and

following open times up to a lag -k = 10 (Figure 3.5). Non-zero cross-correlations

indicate multiple gateway states (Np > 1) in the underlying mechanism of the KATP channel

gating. The negative correlation indicates that the long closed state is linked to the

relatively short open state (16). These are consistent with the previously proposed kinetic

mechanism of KATP channel gating (34, 45). There was no significant difference between

G,(k) and Geo(k) obtained from KATP single-channel data (Figure 3.5). The cross-

correlation analysis is therefore consistent with gating of KATP occurring as an equilibrium

process.

Detection limit of each method. Because no significant violations of microscopic

reversibility were detected using any of the tests employed, it is important to establish

lower limits for the magnitude of detailed balance violations detectable by these methods.

To examine what extent of irreversibility is detectable by each method, single-channel data

were first simulated with the best fit model for the observed KATP channel recordings

(Figure 3.3.A) with the same record length as the experimental records (10 min) using the

following rate constants (sec'): k21 = 100, k23 = 100, k32 = 100, k43 = 100, k41 = 100, k14 =

100, k15 = 5000, ks5 = 5000. Single-channel data with detailed balance violations of

varying magnitude were generated by varying k12 and k34. The magnitude of detailed

balance violations can be quantified by calculating the asymmetry in the transition

frequencies, which can be expressed by (fAB - fBA) / (AB + fBA) when the transition

frequencyfAB from state A to state B is given by the product of the equilibrium occupancy

pA times the rate constant for the transition kAB (53). The equilibrium state occupancies

were calculated using the Q-matrix method (54).
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A 2.7% violation of detailed balance (kl2 and k34 = 90 sec-') was not detectable

using any of the methods; 2ALL of 3.1 (< 3.84) and Z-score of 0.7 (< 1.96). When the

detailed balance violation was increased to 4.2% (kl2 and k34 = 85 secl'), it was detectable

by the maximum likelihood analysis but not by the 2D dwell-time distribution analysis;

2ALL of 16.7 and Z-score of 0.7. Finally, a detailed balance violation of 5.9% (k12 and k34
= 80 sec~') was detected both by the 2D dwell-time distribution analysis and the maximum

likelihood analysis; 2ALL of 15.0 and Z-score of 2.9.

ATP-independent violations of microscopic reversibility on timescales longer than

burst/interburst transitions. KATP also appears to undergo changes in activity on

timescales longer than those associated with the predominant transition between bursting

and non-bursting states. As previously observed (41, 46, 55), the closed time distribution

for KATP exhibits a number of closed components longer than the predominant interburst

interval of-l0 ms. Qualitatively, large shifts in average channel activity are observable on

the timescale of seconds and above (Figure 3.6.A).

To determine whether the slow changes in average channel activity obey

microscopic reversibility, third-order correlation functions, defined as G2(r-, 72) = <

A(0)A(r,)A(r + r72) > (49), were calculated for records in which activity A(t) was averaged

over 100 ms (Figure 3.6.B). For thermodynamically reversible processes, the third-order

correlation function is symmetric with respect to the sign/direction of time, and equal to its

transpose when expressed as a matrix. The difference between the third-order correlation

function and its transpose (G2 - G2T) therefore provides a way to measure violations of

microscopic reversibility.

Third-order correlation functions for average KATP activity are not symmetric,
consistent with violations of microscopic reversibility (Figure 3.7.A). The experimentally

observed maximum relative asymmetry (G2 - G2T = 0.015 ± 0.002; N = 7, S.E.M.) is

comparable to that observed in simulated records of comparable length in which detailed

balance is violated (G2 - G2 = 0.01 ± 0.001; N = 5, S.E.M.) (Figure 3.8.B). In the

simulated data, asymmetry in the third-order correlation functions is apparent at timescales

> 1 sec, as expected from the mechanism used, in which transitions through the cycle
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occur on the timescale of seconds. Asymmetry in the experimental data is pronounced

only on timescales > 1 sec as well, indicating that if it is associated with bursting/non-

bursting transitions, it can only be associated with the slowest of these transitions. For

both simulated and experimental data, decay in the third-order correlation function is

evident on timescales > 1 sec (Figure 3.9), indicating that the observed asymmetry is not

simply due to random fluctuations in uncorrelated channel activity.

The SUR1 subunit is necessary for violations of microscopic reversibility to occur.

Channel activity for a mutant Kir6.2 channel that can be expressed in the absence of SURI

(56) exhibits a symmetric third-order correlation function (Figure 3.7.B) (G2 - G2T =

0.003 + 0.001; N = 5, S.E.M., comparable to simulated records for a gating reaction at

equilibrium where G2 - G2T = 0.006 ± 0.001; N = 5, S.E.M.; Figure 3.8.C). However,

ATP is not required for violations of microscopic reversibility to be observed (Figure

3.7.C). Recordings obtained in the absence of bath-applied ATP exhibit asymmetric third-

order correlation functions (G2 - G2T = 0.012 + 0.002; N = 6, S.E.M.), indistinguishable

from those observed in the presence of ATP. These observations indicate that slow

conformational changes of KATP are coupled to an irreversible process other than ATP

hydrolysis.

Kinetic identifiability in detection of microscopic reversibility violations. For ion

channel systems that lack subconductance states (conformations with conductance

intermediate between open and closed), distinguishing between equilibrium and non-

equilibrium mechanisms can be difficult. Irreversible transitions may not be detected if

they connect states that cannot be distinguished. However, kinetic criteria are also valid

for identifying states.

A cyclic mechanism with three different bursting states (Figure 3.10.A) provides an

example of a mechanism that contains kinetically identifiable states. For this mechanism,

the bursting states differ in their opening rate constants, and are linked by irreversible

transitions. Rate constants are as follows (sec-'): k12, k23 , k3s = 1, kl3, k32, k21 = 0.001, k41,

k52, k63 = 1000, k;4 = 100, k25 = 400 and k36 = 1600. Simulations indicate that the open

probability varies in a regular, cyclic fashion; open probabilities shift from low to medium
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to high, and then back to low (Figure 3.10.B). The third-order correlation function

calculated from this record (averaged over 50 ms windows) is asymmetric (Figure

3.10.C). Thus, even though this mechanism contains only two classes of conductance

states (open and closed), the kinetic identifiability of states allows violations of

microscopic reversibility to be observed. A similar result is observed when only two of

the bursting states exhibit different open probabilities, i.e., kl4 = k25 = 400 sec-1 and k36 =
1600 sec-1 (Figure 3.11).

In contrast, violations of microscopic reversibility are not detectable for a non-

equilibrium cyclic mechanism in which the bursting states have identical kinetic properties,

i.e., k14 = k25 = k36 = 400 sec-'. Simulations of this mechanism indicate that the open

probability does not vary with time (Figure 3.12.A), and the third-order correlation

function is symmetric (Figure 3.12.B). In this case, there are not enough kinetically

identifiable states for microscopic reversibility violations to be detected.

These simulations illustrate that a channel with only two conductance states may still

have a sufficient number of kinetically identifiable states to detect violations of

microscopic reversibility. However, a non-equilibrium process may not exhibit observable

violations of microscopic reversibility due to a lack of kinetically identifiable states as

shown in present simulations. As for other tests of microscopic reversibility, the absence

of detectable microscopic reversibility violations thus does not rule out a non-equilibrium

mechanism. Nonetheless, the detection of microscopic reversibility violations indicates

that a sufficient number of kinetically identifiable states are present, and channel gating is

not an equilibrium process.
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3.5. Discussion

Lack of evidence for violations of detailed balance in the dominant mode of KATP

channel gating. The four dwell-time-based analyses used to test for deviations from

microscopic reversibility provide no evidence for such deviations. Each method, however,

has a limit on the magnitude of microscopic reversibility violations that it can detect. For

records of the length used in this study, 2D dwell-time distribution analysis has the

detection limit of-6% irreversible opening and closing transitions. One could detect up to

-4% irreversible gating using the maximum likelihood analysis. Thus, even if there is a

small excess of flux through one direction of a gating cycle, it is less than -4-6% of the

total gating transitions.

In addition to the detection limit on the magnitude of detailed balance violations,

there are unique issues of interpretation associated with each of the analyses. The

maximum likelihood analysis is most sensitive in detecting violations and statistically

straightforward because the log likelihood ratio distribution follows a ) distribution (44).

However, unlike the other analyses, the maximum likelihood analysis is model-dependent,

since it assumes a specific gating mechanism. Unambiguous assignment of detailed gating

mechanisms is generally difficult since multiple mechanisms often provide comparably

good fits to the data when the underlying kinetics is complex. In addition, the maximum

likelihood analysis is performed based on the aggregated Markov models where the

estimation of the transition rates is burdened by the issue of the non-identifiability in

certain models (44). If transition rates from two formally distinct states are equal, dwell

times arising from those states may not be experimentally identifiable as arising from

separate states, lowering the power to detect violations of microscopic reversibility.

Dwell-time distribution analysis is limited by uncertainties associated with finite record

length. These uncertainties are greatest in the tails of histograms, i.e., the longer

timescales, where bins have the lowest counts. Long recordings are thus required to

minimize these uncertainties. Finally, cross-correlation function analysis is more general

and easy to carry out. However, cross-correlation functions may also be of insufficient

magnitude to be interpreted for time reversibility. Omission of short dwell-times (bursting

events) due to the finite bandwidth of records may decrease the apparent magnitude of
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correlations (20), as would be the case if there is a correlation between the occurrence of

long closed dwells and short open dwells. Also, when the rates of the open-open and

closed-closed transitions are fast compared to the rates of open-closing transitions, the

degree of cross-correlation could be reduced (20).

Time-asymmetric slow activity changes do not require ATP hydrolysis. Although

analyses of the relatively fast (1-100 ms) gating conformational changes of KATP provide

no evidence for violations of microscopic reversibility, slower changes in activity do

violate microscopic reversibility as determined by the observation of time-asymmetric

third-order correlation functions. The observed time-asymmetry in third-order correlation

functions might arise from a slow increase or decrease in open probability, i.e., non-

stationary records could manifest itself as apparent violations of microscopic reversibility.

To investigate this possibility, a test for stationarity of channel activity was performed by

calculating the linear trend in channel activity (averaged over 10 ms). Channel activity of

wild-type and mutant channels changes globally at a rate of 5 x 10-4 and 7 x 10-4 channel

openings/sec (0.2-0.3% of the mean activity per second), respectively. The global trends

are comparable for the mutant, which exhibits negligible asymmetry in its third-order

correlation function, as for the wild-type, which exhibits measurable asymmetry; global

trends in channel activity therefore appear not to account for the observed asymmetry in

the third-order correlation function.

As for the dwell-time-based methods described above, third-order correlation

functions will fail to detect microscopic reversibility violations if the mechanism does not

have a sufficient number of identifiable states. In previous work (21, 49), it has been

noted that ion channel systems often fail to meet this criterion because the open and closed

states are the only states of distinguishable conductance. However, states that are

identifiable kinetically rather than through conductance also produce time asymmetric

third-order correlation functions. For KATP, the multiple non-bursting states (observed as

multiple kinetic components in the closed time distribution) are likely to be the kinetically

identifiable states that allow time-asymmetric third-order correlation functions to be

observed.
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Coupling to some irreversible processes appears to require the presence of the

SURI subunit since the recordings of the Kir6.2 subunit alone exhibit time-symmetric

third-order correlation functions. However, the deviations from microscopic reversibility

are independent of the presence of ATP. The lack of ATP dependence supports the

conclusion that ATP hydrolysis by SUR1 is not directly coupled to conformational

changes of Kir6.2. However, the observation of SURI-dependent time-asymmetric

behavior suggests that KATP gating is coupled to some other irreversible processes. One

potential candidate is PIP2 hydrolysis. PIP 2 is present in HEK-293 membranes, and

phospholipase C (the enzyme that hydrolyzes PIP2) may be retained in membrane patches

since it is membrane-associated (57). Modulation of KATP activity coupled to ongoing

PIP 2 hydrolysis might account for the violations of microscopic reversibility observed on

the timescale of seconds. If PIP2 is depleted slowly over the course of the experimental

record, but individual hydrolysis events take place on the timescale of seconds,

microscopic reversibility violations might be observed due to local depletion of PIP 2

without being accompanied by substantial macroscopic rundown. Slow PIP2-dependent

rundown (on the timescale of hours at submicromolar Ca2÷) has been reported previously

for KATP (58); at the higher calcium concentrations used in the current experiments, this

process might still be sufficiently slow to account for the observed microscopic

reversibility violations without causing large decreases in open probability. Previous

studies indicate that the C-terminal truncation affects channel trafficking without affecting

channel gating (56); differences between mutant and wild-type channels are thus not likely

to be due to the lack of the C-terminus in the mutant. Allosteric interactions between

SURI and phospholipase C might facilitate PIP 2 hydrolysis by phospholipase C, which

may account for SURl-depedent non-equilibrium processes. Further studies will be

required to resolve these issues.

Implications for the physiological role of the SUR1 ATPase active site. The lack

of observed microscopic reversibility violations associated with ATP hydrolysis suggests

that the physiological role of SUR1 is not to couple ATP hydrolysis to gating of Kir6.2.

However, previous work has clearly shown that binding of nucleotides to the SUR1 NBDs

affects channel activity (7-9). One possibility that accommodates all of the kinetic data is

that ATP hydrolysis is much slower than channel gating in the intact, native channel. In
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that case, MgATP and MgADP would act much like classical allosteric

inhibitors/activators of channel activity. Binding of MgATP or MgADP to the SUR1

NBDs would shift the conformational equilibrium to the non-bursting and bursting

conformations, respectively. However, direct transitions between MgATP-bound and

MgADP-bound states via ATP hydrolysis would be rare compared to indirect transitions

via dissociation of one nucleotide and binding of the other nucleotide (Figure 3.13). In

this mechanism, the NBDs can be thought of as sensing relative nucleotide concentration

through equilibrium binding rather than as motors driving a cycle of gating conformational

changes.
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3.6. Conclusion

Coupling of the KATP channel gating reaction to the thermodynamically irreversible

ATP hydrolysis reaction has been proposed. Using single-channel kinetics, the

microscopic reversibility of gating reactions was quantitatively characterized to address

the question of whether KATP carries out non-equilibrium gating. Based on consistent

results from several independent analyses, the dominant mode of channel gating does not

violate microscopic reversibility, implying that ATP hydrolysis is not directly coupled to

channel gating. Signatures of irreversibility are observed at longer timescales, but these

are not associated with ATP hydrolysis. Thus, SUR1 might act as a sensor of ATP/ADP

ratio in the presence of saturating ATP physiologically, rather than act as a motor to drive

the gating conformational change.
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3.7. Figures

Figure 3.1. A representative recording of a single KATP channel in an excised

inside-out patch. (A) Open probability (Po) of KATp channel in the presence of 1 mM ATP

and 5 pM PIP2 is 0.46 ± 0.09 (N = 5, S.D.). (B) The expanded single-channel trace of

KATP channel shows closed and open states.
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Figure 3.2. Dwell-time distribution analysis. Probability density function of the

interburst closed time (A) and the burst length (B) distributions of KATP channels (-6.0 x

104 events with 1 ms critical time to define a burst; a bin size of 1 ms). A smaller bin size

up to 0.1 ms (dead time) failed to detect any paucity of short events in the observed

exponential distributions of the dwell times.
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Figure 3.3. Maximum likelihood analysis. (A) A kinetic scheme contains the two

open states (01 and 04), the intraburst closed state (Cf) and the two interburst closed

states (C2 and C3). (B) The open dwell-time histogram with the fit for a kinetic model (A)

is composed of the sum (solid line) of two exponential components (dotted lines). (C)

The distribution of closed times consists of the sum (solid line) of three exponential

components (dotted lines). The difference in maximum log likelihoods obtained for the

constrained (O1-- C2-- C3-- 0 4) and unconstrained fitting is insignificant for all five

recordings (2ALL of 0.1 + 0.1 < 3.84). Each file has -2.1 x 105 events and LL/event is

6.5 ± 0.1 (N = 5, S.D.) with absolute LLs of-1.3 x 106.
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Figure 3.4. Two-dimensional dwell-time distribution analysis. The forward (A)

and reverse (B) 2D dwell-time distributions from KATP single-channel recordings (>

10,000 events with 1 ms critical time to define a burst) has no statistical differences; Z-

score of 1.7 ± 0.1 (N = 5, S.E.M.) with > 200 degrees of freedom. (C) The difference

between the forward and reverse dwell-time distributions is not statistically significant; less

than five events in each bin.
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Figure 3.5. Cross-correlation function analysis. Cross-correlation functions (solid

line for Goc(k) and dotted line for Gco(k)) derived from KATP single-channel recordings

(~1.3 x 106 events from five different membrane patches) show a weak, negative cross-

correlation.
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Figure 3.6. KATP undergoes changes in activity on longer timescales. (A) Channel

activity changes substantially on the timescale of seconds and above; channel activity is

shown as a record of idealized channel openings. (B) Channel activity (open probability,

Po) averaged over 100 ms.

200 ms

II IIII
1.0

I IIIIII
II II I 111.II...ll II

0.8

0.6

0.4

0.2

0.0
60

Time (sec)

- 92 -

0



Chapter 3

Figure 3.7. Third-order correlation functions. (A) The observed maximum

relative asymmetry for average KATp activity was 0.015 ± 0.002 of G2 - G2T. (B) Channel

activity for a mutant Kir6.2 channel in the absence of SUR1 exhibits a symmetric third-

order correlation function (G2 - G2T = 0.003 ± 0.001). (C) Recordings obtained from

KATP channels in the absence of ATP exhibit asymmetric third-order correlation functions

(G2 - G2T = 0.012 ± 0.002).
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Figure 3.8. Third-order correlation functions from simulated records. (A) Cyclic

mechanism for channels with bursting/non-bursting states. Detailed balance violations

were introduced by changing the relative values of rate constants. Rate constants are as

follows (sec'l): kbl, klb, kb3, k3b = 1000, k12, k23 = 10, k34, k41 = 1 and k14, k43, k32, k2l =

0.001 for an irreversible mechanism, and k14, k43 = 1 and k32, k21 = 10 for a reversible

mechanism. (B) Simulated records with the violations of detailed balance show G2 - G2T

of 0.01 ± 0.001 (N = 5, S.E.M.). (C) Simulated records for a gating reaction at

equilibrium have G2 - G2T of 0.006 ± 0.001 (N = 5, S.E.M.).
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Figure 3.9. Third-order correlation function of experimental records from KATP

channels. Numbers in the bar indicate the amplitude of third-order correlation functions.
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Figure 3.10. Kinetic identifiability in detection of microscopic reversibility

violations. (A) A cyclic mechanism with three different bursting states. (B) The open

probabilities shift from low to medium to high, and then back to low. (C) The third-order

correlation function is asymmetric.
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Figure 3.11. Only two kinetically identifiable bursting states. The asymmetric

third-order correlation function is observed when only two of the bursting states exhibit

different open probabilities.
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Figure 3.12. A kinetically non-identifiable and non-equilibrium cyclic mechanism.

(A) The open probability does not vary with time. (B) The third-order correlation

function is symmetric.
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Figure 3.13. Proposed allosteric mechanism. Direct transitions between MgATP-

bound and MgADP-bound states via ATP hydrolysis would be rare compared to indirect

transitions via dissociation of one nucleotide and binding of the other nucleotide.

Nucleotides would therefore act like allosteric inhibitors/activators of channel activity.

(Different color in figure represents different microscopic rate constants.)
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Chapter 4

Control of Peptide Product Sizes by the Energy-Dependent
Protease ClpAP
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4.1. Abstract

Processive proteases can unfold proteins and cleave them into fragments of a

characteristic size. The detailed mechanism by which product sizes are controlled is still in

question. One possible mechanism for the control of product sizes would be translocation

of unfolded polypeptides to the protease active sites in units of defined length. We have

investigated the mechanism by which ClpAP, an energy-dependent protease from E. coli,

controls the sizes of its peptide products. We show that ClpAP generates peptide

products with a distribution of sizes that has a pronounced peak at a peptide length of 6-8

amino acid residues. This product size distribution, which is similar to that observed

previously for the proteasome, is robust to perturbations that interfere with translocation

or proteolysis. To explain these results, we propose a mechanism in which translocation

alternates with proteolysis, allowing peptides of more or less uniform length to be cleaved

processively from a translocating substrate. In order to estimate the rate and energy

efficiency of ClpAP-catalyzed measurements of product sizes, we apply information

theory to quantify how precisely the product sizes are controlled. This analysis may also

prove to be useful in characterizing the mechanisms of other proteases and nucleases, such

as the proteasome and Dicer, which control the sizes of their products.
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4.2. Introduction

In order to generate uniform product sizes, enzymes that hydrolyze polymeric

substrates must be able to measure the length of a segment of substrate. Several

enzymatic systems appear to carry out reasonably precise measurements. Mammalian and

thermophilic proteasomes cleave protein substrates to small peptides of a characteristic

size (1). In the case of the mammalian proteasome, controlling the size distribution of

peptide products is likely to be important physiologically, since peptide products that are

8-10 amino residues long or longer can be processed further and presented as epitopes to

MHC class I molecules (2). In fact, characterization of peptide product sizes (3-5) shows

that proteasomes do control product sizes: the product peptides are log-normally

distributed in size (5, 6), with peaks centered at 2-3, 9-10, and 20-30 residues (3). In their

initial study, Goldberg and co-workers also commented on the implications of the peptide

size distribution for the mechanism of peptide production (5), noting that the breadth of

the observed distribution rules out a simple "molecular ruler" mechanism in which the

spacing between protease active sites uniquely determines the peptide product size. They

proposed that openings in the proteasome serve as a filter, trapping large products and

allowing them to be cleaved to smaller ones. Subsequent studies showed that a mutant

proteasome in which the central pore of the complex is constitutively open produces

products that have a median length 40% greater than the wild-type due to both increased

production of larger peptides (9-10 and 20-30 residues) and decreased production of

smaller peptides (2-3 residues) (3). Interestingly, however, while the mutation changes

the relative preference for generating peptides of different defined mean sizes, it does not

change the mean sizes themselves. The mechanism by which the proteasome generates

peptides of a defined mean size remains an open question.

The energy-dependent processive proteases of E. coli may also exert active control

over product sizes. Structural (7-9) and biochemical studies indicate that in energy-

dependent proteases such as ClpXP and ClpAP, the ATPase component (ClpX or ClpA)
can unfold protein substrates and translocate them through an interior channel not much

larger than a single polypeptide chain (10, 11). The translocation of protein substrates

brings them to ClpP, which has a central proteolytic chamber 50 A in diameter (9).
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Openings in the chamber have been proposed to allow small peptide products to exit (9).

However, when the protease active sites of CIpP are completely inactivated (through

mutagenesis or chemical modification), the undigested protein substrate becomes trapped

in ClpP (12, 13). While it is known that ClpAP makes -20-30 cuts on average in casein (a

natively unfolded substrate), suggesting that the average size of peptide products is 7-8

amino acid residues (14), the full distribution of peptide products has not previously been

reported. Thus, the degree to which ClpAP can control its product sizes is unknown: the

distribution of product sizes centered at 7-8 residues might be narrow or broad.

Unlike proteasomal products, the peptide products of ClpAP are believed not to

have a biological function other than as a source of amino acids. It may nonetheless be

important for ClpAP to control the sizes of its products. PepN, one of the major

peptidases in E. coli (15), processes its substrates much faster than ClpAP (16), so that

the overall breakdown of protein substrates to free amino acids might be fastest when

ClpAP generates medium-sized products that can be rapidly hydrolyzed by PepN. Control

of peptide product sizes might also be useful in smooth processing of large protein

substrates, as accumulation of large peptide products in the central cavity of ClpP might

hinder further proteolytic processing of the unfolded substrate. Coordination of the ClpX

and ClpP activities has been proposed to prevent the translocating peptide from clogging

the exit pores of the ClpP tetradecamer (17).

ClpAP might control product sizes by several mechanisms. As previously

proposed for the proteasome (5), the exit of large peptides from ClpP might be hindered

(9), thereby increasing the probability that these peptides will be cleaved again into smaller

fragments. Binding requirements of the protease might also contribute to product size

control. If binding of an extended region of polypeptide sequence around the cleavage site

is required for efficient proteolysis, proteolysis will be disfavored when shorter segments

of polypeptide substrate are bound, leading to preferential generation of longer products.

The interplay between translocation and proteolysis is another source of possible

mechanisms for product size control. The relative rates of translocation and proteolysis

might control product sizes. Proteolysis that was rapid compared to translocation would
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allow many cleavage events while the polypeptide chain was translocating through ClpP,

generating small products. Alternatively, allosteric coupling between the translocation and

proteolytic activities might serve as the basis of a mechanism for control of product sizes.

For both ClpA (18) and ClpX (17), there is allosteric coupling between the protease and

the ATPase: binding of ClpP decreases the ATPase activity. If ClpP signals ClpA to stop

translocation once a sufficiently large segment of polypeptide has entered the proteolytic

chamber, ClpAP will be able to exert control over the range of product sizes.

In this study, we first investigate what product size distributions are predicted by

four mechanistic alternatives for control of proteolysis. Each alternative mechanism

makes a different prediction about the product size distribution and its sensitivity to

biochemical perturbations of the protease. In the first mechanism (referred to hereafter as

Mechanism 1), polypeptide translocation is independent of proteolysis (Figure 4.1 .A), and

both occur with constant probability per unit time. In Mechanisms 2 and 3, the rate of exit

from the protease is dependent on the size of the peptide product, and peptides that do not

exit the protease may be re-cleaved to smaller products (Figure 4.1.B). These mechanisms

thus postulate that the protease acts as a filter, retaining large products but allowing

smaller ones to escape. Mechanism 3 includes the additional feature that the rate of

proteolytic cleavage is dependent on the size of the product. In Mechanism 4,

translocation and proteolysis regulate each other reciprocally: activation of ClpA turns off

ClpP, and vice versa (Figure 4.1.C). This mechanism also includes the feature that entry

of the translocating polypeptide into ClpP triggers the conformational switch that controls

reciprocal regulation.

While the form of the size distribution provides information about the mechanism

of peptide product formation, the breadth of the size distribution of the products shows

how precisely ClpAP can measure the sizes of its peptide products. To quantify the

precision of product generation, we use Shannon information theory (19). This method of

quantifying the precision of product size specification allows an estimation of the speed of

measurement by the proteolytic machine, and addresses the question of how much energy

the proteolytic machine requires to carry out its measurement.
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The results of our study provide evidence that ClpAP does exert active control

over the sizes of its peptide products. The size distribution is consistent with a mechanism

in which a controlled cycle of allosteric activation and inactivation of ClpP by ClpA

controls the sizes of peptide products and inconsistent with the other mechanisms we

examine. We also find that ClpAP exerts this control efficiently, with a rate and energy

cost comparable to a rationally designed enzyme-based information processing system

(20).

-109-



C(iaite~i 4

4.3. Methods

ClpP-His6 Purification. A plasmid for expression of E. coli ClpP with a C-

terminal His6 tag was kindly provided by Profs. Robert Sauer and Tania Baker (MIT).

ClpP-His6 was expressed in E. coli strain DH5a0QE704/KI175 and purified as described

(13), except that cells were grown at 370C and Tris buffers were replaced with HEPES

buffers to avoid interference with the fluorescamine assay (see below).

ClpA Purification. The clpA gene in the overexpression vector pET9a was a

generous gift from Profs. Robert Sauer and Tania Baker (MIT). The M169T mutation,

which provides enhanced solubility and levels of full-length protein expression (21), was

introduced into wild-type ClpA using the QuikChangeTM Site-Directed Mutagenesis Kit

protocol (Stratagene) and the sequence was confirmed.

ClpA M169T protein was expressed in E. coli strain BL21/DE3/pLysS. Cells

were grown at 370C in LB with kanamycin to an OD600 of 0.6. IPTG was then added to a

final concentration of 1 mM, and cells were transferred to 250C. After incubation for

additional 3 hr at 250C, cells were harvested by centrifugation for 15 min at 6,000xg and

purified as described (22) with the following modifications. All Tris buffers were replaced

with HEPES buffers. Cells were lysed by sonication. After ammonium sulfate

precipitation, the pellets containing ClpA were resuspended and loaded onto a Macroprep

High S support (Bio-Rad) cation exchange column. An 80 mL linear gradient from 0.1 M

to 1 M KCI was applied. ClpA was eluted at approximately 0.6 M KCI.

GFP-ssrA Purification. A plasmid expressing GFP containing the S65G and

S72A mutations that enhance the intensity of green fluorescence (23) and a C-terminal

ssrA tag was kindly provided by Prof. Soren Molin (BioCentrum DTU, Denmark). Cells

(E. coli JB401) expressing this protein were grown at 370C in 2YT with ampicilin to an

OD600 of 0.5. IPTG was added to a final concentration of 1 mg/L and cells were

transferred to 250C. After incubation for an additional 3 hr at 250C, cells were harvested

by centrifugation for 15 min at 6,000xg and purified using a published procedure (24),
except that all Tris buffers were replaced with HEPES buffers.
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Protease Assay. The rate of GFP-ssrA proteolysis by ClpAP was measured by

monitoring the loss of GFP fluorescence (excitation at 467 nm and emission at 511 nm)

using a microplate spectrofluorimeter (Molecular Devices Spectramax Gemini XS).

Reactions were carried out at 370 C using 0.2 #M hexameric ClpA (ClpA 6) and 0.1 AM

tetradecameric ClpP (ClpP 14). The reaction buffer contained 50 mM HEPES, pH 7.5, 300

mM NaC1, 30 mM MgC12 , 0.5 mM DTT, 10% glycerol, 0.32 mg/mL creatine

phosphokinase (from rabbit muscle, Sigma), 30 mM phosphocreatine, and 10 mM ATP.

ClpA and ClpP were incubated with ATP and all other components for 1 min on ice to

enable ClpA and ClpAP complexes to assemble before addition of GFP-ssrA.

ATPase Assay. The rate of ATP hydrolysis by ClpA during GFP-ssrA degradation

was measured using the rate of NADH oxidation (monitored by absorbance at 340 nm)

coupled via pyruvate kinase and lactate dehydrogenase (25). Reactions were performed at

37"C with 0.2 AM of ClpA 6, 0.1 JIM of ClpP14 and 10 AM GFP-ssrA in a buffer containing

50 mM HEPES, pH 7.5, 300 mM NaCl, 30 mM MgC12, 0.5 mM DTT, 10% glycerol, 0.23

mM NADH, 7.5 mM phosphoenolpyruvate, 19 U/mL pyruvate kinase (from rabbit

muscle, Sigma) and 21 U/mL lactate dehydrogenase (from rabbit muscle, Sigma).

Partial Inactivation of ClpP. Partial inactivation of ClpP was performed by

modification of the active site serine with DFP (14). ClpP (1.6 mg/mL) was incubated in

50 mM HEPES, pH 7.5, 200 mM KC1, 25 mM MgC12, 1 mM DTT, 0.1 mM EDTA, and

10% glycerol containing 4 mM DFP at room temperature for 90 min. Residual DFP was

removed using size-exclusion chromatography (PD-10 column, Amersham Biosciences)

equilibrated with the reaction buffer. The extent of labeling was determined by measuring

peptidase activity with N-succinyl-Leu-Tyr-7-amido-4-methylcoumarin, a fluorogenic

substrate. ClpP that was 72 + 2% inactivated was used for further experiments.

Reductive Methylation of GFP-ssrA. Reductive methylation of GFP-ssrA was

carried out as previously described (26) to prevent fluorescamine reaction with lysine

residues (see "Fluorescamine Assay" section). GFP-ssrA that is completely alkylated (as

determined by assay with 2,4,6-trinitrobenzenesulfonic acid (27)) has the same

fluorescence properties and maximal degradation rate by ClpAP as unmodified GFP-ssrA.
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Digestion of Methylated GFP-ssrA by ClpAP. Digestion of methylated GFP-ssrA

by CipAP was carried out under the same conditions used for the protease assays, except

that the reaction mixture contained 0.1 tM ClpA6, 0.05 IM ClpP 14 and 15 1M methylated

GFP-ssrA. Similar experiments were carried out using a-casein (Sigma) (15 JM) as the

substrate. Digestions of GFP-ssrA were also performed using sub-saturating (0.1 mM)

ATP or using partially inactivated ClpP. All digestions were allowed to proceed for 2-3

hours. GFP-ssrA or casein degradation and ClpA auto-degradation were monitored by

SDS-PAGE.

Size-Exclusion Chromatography of Peptide Products. Peptide products were

desalted using a reverse-phase cartridge (Sep-Pak C18, Waters), and concentrated by

centrifugal evaporation. Desalted products were submitted for MALDI mass

spectrometric analysis (MIT Biopolymers Facility). Size-exclusion HPLC was performed

using a polyhydroxyethyl aspartamide column (200 x 4.6 mm, PolyLC) (28). The mobile

phase was 200 mM sodium sulfate, pH 3.0 (adjusted with phosphoric acid), 5 mM

potassium phosphate and 25% acetonitrile. Peptide products were redissolved in the

mobile phase and loaded onto the column. Fractions (0.5 min) were collected at a flow

rate of 0.125 mL/min. To determine the apparent molecular weight of the peptides eluted,

the column was calibrated with standard peptides in the 600-3500 Da range (5).

Fluorescamine Assay for Peptide Concentration. The relative amount of peptide

in each fraction was measured using fluorescamine, which forms a fluorescent product on

reaction with primary amines (29). 30 1L of each fraction from the polyhydroxyethyl

aspartamide column was incubated with 15 /iL of 100 mM sodium borate (pH 8.0), 15 AL

of water, and 90 yL of 0.1% (w/v, in acetonitrile) fluorescamine for 5 min at room

temperature. The fluorescamine solution was freshly prepared before use. The

fluorescence emission was monitored at 510 nm at room temperature with an excitation

wavelength of 380 nm.

-112-



(. ;•bupir 4

4.4. Results

Simulations of Product Size Distributions for Four Mechanisms of Proteolysis.

To simulate the generation of product peptides by Mechanism 1, both translocation and

proteolysis were modeled as stochastic processes with constant probability of occurrence

per unit time (the structurally identical (9) protease active sites are assumed to be

catalytically identical as well). At each time step in the simulation, the system might

translocate one monomer unit and/or cleave the translocating chain to generate a product.

The histogram of product sizes derived from this simulation (Figure 4.2.A) shows an

exponential distribution (more precisely, a geometric distribution with a large number of

steps). Other variants of the independent mechanism also produce exponential product

size distributions. Exponential product size distributions also result when translocation is

deterministic (i.e., when a constant number of residues is translocated per unit time) but

proteolysis is stochastic and when translocation and proteolysis are each partially rate-

limiting.

Mechanism 2 assumes that the larger peptides exit the protease more slowly than

smaller ones, and that peptide products that are retained in the protease can be re-cleaved

to smaller products. The probability of retention in the protease is modeled as

proportional to exp(aL), where L is the length of the peptide product and a is a parameter

representing the strength of the interaction between the peptide and the protease.

Numerical simulations of the second model (Figure 4.2.B) generate product size

histograms that, like those generated by the first model, have their maximum at the lowest

molecular weights.

Mechanism 3 incorporates both a size-dependent rate of escape for products and a

size-dependent rate of proteolytic cleavage. The product escape and proteolytic rates are

modeled as proportional to exp(aL) and exp(PL), respectively: L is the length of the

peptide segment that has entered the protease, and a and 1 are parameters representing

how product escape and proteolysis depend on the interaction of the peptide

products/substrates with ClpAP. Numerical simulations of this model generate product
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size histograms that, depending on the parameters a and f3, can have a non-zero peak and

are skew toward longer products (Figure 4.2.C).

To simulate the generation of product peptides by Mechanism 4, a switch between

two states (ClpA active/ClpP inactive and ClpA inactive/ClpP active) is modeled as a

stochastic process. The probability that the system will switch from the ClpA active/ClpP

inactive state to the ClpA inactive/ClpP active state is modeled as proportional to exp(yL),

where L is the number of monomer units already translocated into ClpP and y is a

parameter representing the strength of the coupling. Numerical simulations of this model

generate a product size distribution that has a non-zero peak and is skew toward longer

products (Figure 4.2.D).

Size Distribution of Peptides Derived from ClpAP-Catalyzed Proteolysis. Peptide

products derived from GFP-ssrA were separated using size-exclusion HPLC, and the

amount of peptide in fractions corresponding to each size range was measured (5, 6).

Carrying out the digestion with a large excess of GFP-ssrA over ClpAP ensured that the

peptide products were derived predominantly (> 80%) from GFP-ssrA rather than auto-

degradation (30, 31) of ClpA. The observed distribution (Figure 4.3) is non-exponential.

It has a peak at 760-900 Da (6-8 amino acid residues, assuming an average molecular

weight of 119 Da/residue), and is skew toward higher molecular weights.

Because the purification of the product peptides requires several chromatographic

steps, it is possible that small peptides will be under-represented in the observed

distribution. However, two lines of evidence indicate that this would be unlikely to cause

an exponential distribution to appear to be non-exponential. First, studies on a variety of

small peptides (three to four residues) have shown that solid phase extraction using a C18

sorbent affords average recoveries of 85-90% (32). In the GFP-ssrA product mixture,

peptides of molecular weight 300-400 Da are present in amounts 30-45% of the amount

of peptides at the peak molecular weight, suggesting that the observed peak is not due to

differential recovery of smaller peptides. Second, MALDI mass spectrometric

measurements (Figure 4.4) qualitatively suggest that peptides -1000 Da dominate the

product mixture, consistent with the quantitative measurement.
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Sequence selectivity of proteolysis might contribute to the distribution of sizes. If

sequence motifs that ClpP prefers are distributed non-uniformly throughout the sequence

of the substrate, a non-uniform size distribution of products would result. To test the

effect of sequence on size distribution, we measured the size distribution of peptide

products derived from a-casein, a substrate unrelated to GFP-ssrA in primary sequence.

The size distributions of both substrates were very similar (Figure 4.5), indicating that

effects of primary sequence do not account for the size distributions.

Effects of Kinetic Perturbations on Product Size Distribution. The four

mechanisms also make different predictions about the effects of artificially perturbing steps

such as proteolytic cleavage or translocation. For Mechanisms 1-3, the size distribution of

products depends on relative rates of steps in the mechanism. In the case of Mechanism 1,

decreasing the rate of proteolysis relative to translocation would be expected to lead to

larger products (Figure 4.6.A), while decreasing the rate of translocation relative to

proteolysis would lead to smaller products. Similarly, for Mechanisms 2 and 3, the size

distribution depends on the partitioning between proteolytic cleavage and escape of

peptide products, so decreasing the rate of proteolysis relative to escape would be

expected to generate larger products (Figure 4.6.B and 4.6.C). In contrast, Mechanism 4

predicts that the size distribution of products is solely determined by the strength of the

interaction that activates ClpP and inactivates ClpA, so this mechanism predicts that

decreasing the rate of proteolysis will not affect the size distribution of products.

Experimentally, it is possible to decrease the rate of proteolysis by partially

inactivating ClpP with the active site-directed reagent DFP (14). Decreasing the rate of

translocation is not as straightforward, but by decreasing the concentration of ATP below

its KI, it is possible to decrease the translocation rate by decreasing the ATPase rate.

Because natively unfolded substrates such as casein require ATP-dependent translocation

(12) but not unfolding, the observation that the rate of proteolysis of casein is dependent

on the ATP concentration (18, 22) (apparent Km of 0.18 mM (22)) indicates that

translocation will occur at a sub-maximal rate at sub-saturating concentrations of ATP.
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Neither of these experimental perturbations affects the product size distribution.

Proteolysis in the presence of 0.1 mM ATP (the apparent Km for ATP in GFP-ssrA

degradation is 0.58 mM, as described in the next section) generates the same product size

distribution as proteolysis in 10 mM ATP (Figure 4.7.A). The peak at 23.5 min (Figure

4.7.A) represents a small amount of contaminating adenine nucleotides, which control

reactions showed to react with fluorescamine. The material in this peak was identified as

nucleotide by its UV spectrum, which exhibits a peak at 260 nm. In addition, a

chromatogram of authentic nucleotides (ATP and ADP) alone shows a peak at 23.5 min

of retention time. Under conditions of sub-saturating ATP, the absolute amount of

peptide products (-~150 relative fluorescence units (RFU)) is about 1/8 of that under

conditions of saturating ATP (-1200 RFU), making the contribution of contaminating

adenine nucleotides apparent. In the complementary experiment using partially inactivated

ClpP, ClpP in which 70% of the active sites have been modified with DFP generates the

same product size distribution as that observed using fully active ClpP (Figure 4.7.B).

Kinetic Parameters for GFP-ssrA Proteolysis and ATP Hydrolysis. To help

understand the rate and energy requirements for the measurement of product sizes, we

measured steady-state kinetic parameters for two of the reactions that underlie this

measurement: overall substrate proteolysis and ATP hydrolysis. Fitting the dependence

of GFP-ssrA proteolysis rate on [GFP-ssrA] (Figure 4.8.A) to the Michaelis-Menten

equation provided a KI of 4.9 ± 0.6 gM and a kcat (using [CIpA12P14] as the enzyme

concentration, corresponding to a complex of 2 ClpA6 and 1 ClpP 14 (7)) of 15 ± 1 min"1.

These results are similar to recently published values (Km of 5 ± 1 gtM, kcat of 10 + 1 min-')

(33). Fitting the dependence of the ATPase rate during proteolysis of GFP-ssrA on [ATP]

(Figure 4.8.B) to the Hill equation (34) gave an apparent K. of 0.58 ± 0.02 mM, a kcat

(using [ClpA12P1 4] as the enzyme concentration) of 44 ± 1 sec-1, and a Hill coefficient of

2.5 ± 0.2.
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4.5. Discussion

We considered four mechanistic possibilities for processive proteolysis by ClpAP.

In Mechanism 1, the translocation of unfolded polypeptide by ClpA is independent of

proteolytic cleavage at the ClpP active sites, and size control comes from the relative rates

of these processes. In Mechanism 2, size control comes from size-dependent escape of

products. Physically, the parameter a corresponding to the probability of retention of the

product might correspond to some non-specific hydrophobic interaction between the

peptide product and the surface of the proteolytic chamber, where each residue of the

peptide contributes a certain amount of free energy to the interaction. The relationship

between aL and the retention probability is simulated as exponential because of the

exponential relationship between activation energy and rate in activated rate theories such

as Eyring or Kramers theories (35). In Mechanism 3, size control comes from both size-

dependent escape of products and a size-dependent cleavage reaction. Size-dependent

cleavage would be possible if for example, catalysis of amide bond hydrolysis depended

on the presence of binding of substrate residues extending well outside the site of

cleavage. Finally, in Mechanism 4, allosteric communication between ClpA and ClpP

allows translocation to alternate with proteolysis. This model thus assumes that each

monomer unit reduces the barrier for the conformational switch by a certain amount of

free energy. Physically, this might correspond to energy of binding of the unfolded

polypeptide or strain energy that builds up as the unfolded polypeptide presses against the

interior surface of the ClpP ring.

These mechanisms make distinct predictions about the nature of the size

distribution of peptide products. The first mechanism predicts that the products will be

exponentially distributed in size. If there is a single rate-limiting step in ClpAP-catalyzed

proteolysis, the product size distribution would be expected to be a single exponential,

because the waiting times between events are exponentially distributed for a process

described by a single chemical step (36). Numerical simulations of this mechanism

produce exponential product size distributions (Figure 4.2.A), as expected. This

mechanism is thus inconsistent with the experimental size distribution.
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Mechanism 2 predicts a distribution that, like the exponential distribution, has its

maximum at the lowest size products (Figure 4.2.B). In this mechanism, size-dependent

escape of products acts as a filter, preventing very large products from being formed.

However, this filter does not prevent small products from escaping, so that nothing

prevents the initial formation of small products due to random cleavages. This mechanism

is thus, like the first mechanism, inconsistent with the observed product size distribution.

The nature of any putative peptide filter is also somewhat problematic. Diffusion of even

large polymers through narrow pores can occur on the timescale of milliseconds or less

(37, 38), orders of magnitude faster than the overall rate of turnover for ClpAP (-10 min-

'). While a structural filter may contribute to size control in ClpAP, it is not likely to

consist of a static pore. Non-specific binding of peptides to the inner surface of the

protease might serve as an efficient filter, assuming that the residence time was dependent

on hydrophobic interactions that would be larger for larger peptides. Access to the bulk

solution that was gated by conformational changes (e.g., opening and closing of small

apertures in the ClpP structure) might also serve as an effective filter.

In order to obtain a distribution of product sizes with a peak at a defined number

of amino acid residues, ClpAP must have some way of cutting the polypeptide chain

preferentially after translocation of a certain number of residues. One way to accomplish

this would be to make the rate of proteolytic cleavage dependent on the size of the peptide

segment bound to the protease active site, as postulated in Mechanism 3. This mechanism

includes the feature that the substrate binding site can accommodate a large number of

amino acid residues extending from the site of cleavage. Mechanism 3 further postulates

that when more of this extended binding site is occupied, the efficiency of cleavage is

higher. Thus, this mechanism predicts preferential generation of larger products.

Simulations of Mechanism 3 show that preferential generation of larger products, in

combination with a structural "filter," can lead to a product size distribution that, like the

observed distribution, has a non-zero peak and is skew toward higher molecular weight

products (Figure 4.2.C).

Mechanism 4 represents another way for ClpAP to control product sizes. This

mechanism postulates that the active form of ClpA negatively regulates ClpP and vice
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versa, so that translocation alternates with proteolysis. Mechanism 4 also postulates that

it is the translocation of unfolded polypeptide by the active form of ClpA into the inactive

form of ClpP that triggers activation of ClpP, causing ClpA to stop translocating the

substrate. When the peptide product leaves the ClpP active site, ClpP becomes inactive

and ClpA becomes active, starting the cycle again. In effect, this mechanism involves

ClpAP first measuring the size of the product, then cutting it.

Numerical simulations of this mechanism showed that it generates a product size

distribution that qualitatively reproduces the features of the observed distribution. It has a

non-zero peak and is skew toward higher molecular weight products (Figure 4.2.D). In

this mechanism, ClpP's ability to trigger the allosteric activation of ClpP/deactivation of

ClpA determines the peak size of products. Increasing the parameter y in the simulation,

which represents ClpP's ability to trigger this allosteric activation/deactivation, leads to

the formation of smaller products.

The form of the product size distribution thus allows Mechanisms 1 and 2 to be

distinguished from Mechanisms 3 and 4. To distinguish Mechanism 4 from the other three

mechanisms, we used sub-saturating concentrations of ATP to hinder translocation and

partial inactivation of ClpP to hinder proteolytic cleavage. In the first three mechanisms,

size control comes about through control of the relative rates of translocation and

proteolysis (Mechanism 1) or the relative rates of proteolysis and product escape

(Mechanisms 2 and 3). Hindering either translocation (Mechanism 1) or proteolysis

(Mechanisms 1, 2, and 3) is thus expected to alter the size distributions for these

mechanisms (Figure 4.6). In contrast, hindering translocation or proteolysis individually is

not expected to alter the product size distribution in Mechanism 4, since the product sizes

are not determined by the relative rates of translocation and proteolysis, but by the ability

of bound peptide to trigger the conformational switch that activates proteolysis.

Mechanism 4 predicts that once substrate binding to ClpP initiates the conformational

switch, translocation stops and no additional substrate enters ClpP. In this case, the

peptide product formed will be of the same size whether the proteolytic cleavage itself is

slow or rapid.
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Mechanism 4, unlike the simpler mechanisms considered, is consistent with all the

available data. It is also consistent with previously reported results, such as the ability of

ClpP to modulate the ATPase activity of ClpA (18) and ClpX (17) and the ability of active

ClpA to translocate substrate into ClpP that has been inactivated by chemical modification

or site-directed mutagenesis (7, 12). In the latter case, trapping of large unfolded

substrates in inactivated ClpP would be interpreted as resulting from the inability of the

modified ClpP to assume the active conformation. Of course, the ability of Mechanism 4

to account for the current experimental results does not preclude the ability of other

mechanisms not considered here to do so. While Mechanism 4 provides a useful starting

point for mechanistic studies, further experimental work will be required to test its

predictions. For example, experiments to determine whether ClpA and ClpP actually

alternate activation states in the course of a single enzymatic turnover and whether

translocation exhibits controlled step sizes will be required. Transient-state or single-

molecule kinetic approaches may prove to be necessary to address this question, as they

are sensitive to microscopic steps that are averaged out using steady-state techniques. In

particular, single-molecule experiments are likely to be useful, as Mechanism 4 predicts

that the waiting time between proteolytic events will be non-exponentially distributed.

Quantitative Characterization of Product Size Control by ClpAP. ClpAP's ability

to exercise control over the sizes of peptide products is analogous to carrying out a

measurement. Any measurement carried out by a biomolecule will be subject to

interference from thermal noise that reduces its precision (39). The effect of thermal noise

might be reduced at the expense of slowing down the measurement by averaging it over a

longer time. Expenditure of free energy is another way of reducing the effect of thermal

noise (39). A molecular process with a sufficient number of irreversible steps can proceed

in a regular, "clockwork"-like fashion (40). Mechanical precision of this kind could serve

as the basis for the control of product sizes.

It would be thus informative to determine how ClpAP manages the compromise

among precision, rate, and energy cost in controlling its product sizes. To address this

question, we will need a way of quantifying the statistical uncertainty associated with a

given size distribution. The amount of information required to specify the product size
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distribution is a measure of the precision with which the enzyme controls the size of its

products.

Information theory (19), which was introduced by Claude Shannon and others and

has since been applied to problems in biology and bioinformatics (41, 42), provides a way

to quantify information. The information content of a distribution expresses how much

knowing the distribution reduces the uncertainty in knowing the measured quantity for an

individual member of the ensemble. For example, if measurements of an experimental

quantity are normally distributed with a mean of 50 and a standard deviation of 40, the

distribution does not specify the value of an individual measurement precisely, while if the

standard deviation is 2, the distribution contains sufficient information to specify the value

of an individual measurement to a low level of uncertainty.

A decrease in uncertainty can be defined quantitatively as a decrease in statistical

entropy (19). The uncertainty of a distribution can be defined as E-pi ln(pi), where pi is
i

the probability that an individual member of the ensemble belongs to bin i in a histogram

(19). The statistical entropy of a distribution can be thus calculated as the difference

between its uncertainty and that of a reference distribution. Here, we are interested in the

statistical entropy of the observed size distribution compared to that of the size

distribution that a completely random protease would be able to produce. We will

therefore use as the reference distribution the exponential distribution, which random

proteolysis would generate. The relative amount of peptide product in each bin of product

sizes represents the probability of generating a product of that size, and the total

uncertainty for a proteolytic cleavage is calculated by summing over all the bins in the

experimental histogram. The specific reference distribution is an exponential distribution

with the same mean as the experimental distribution, binned the same way as the

experimental data. To quantify the uncertainty of the experimental size distribution, this

distribution was fitted to a log-normal function, and the function numerically integrated

(using the quadrature function in MATLAB) over a range of 1-5000 Da. The uncertainty

of an exponential distribution with the same mean size as the experimental distribution was

calculated in the same way.
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Calculating the statistical entropy of the experimentally observed product size

distribution compared to an exponential distribution with the same mean provides a value

of -0.1 bits for the decrease in statistical entropy associated with specifying the observed

distribution. The estimate of the statistical entropy of the product size distribution allows

calculation of an order-of-magnitude estimate for the rate of information processing in

product formation. Since the distribution of products is centered at 6-8 amino acid

residues, and GFP-ssrA is 251 amino acid residues long, a typical turnover will comprise

about 30 proteolytic cleavages (in accord with previous estimates (14)). Assuming that

the distribution of product sizes does not vary within a single turnover, the value of -0.1

bits represents the information required to specify each proteolytic cleavage. Therefore,

about 3 bits are required to specify the outcome of all the proteolytic cleavages in one

turnover. The turnover number for GFP-ssrA is 15 min ,-1 meaning that ClpAP can

perform its size specification at a rate of-~ bit/sec. This estimate represents a lower limit:

while a greater decrease in statistical entropy may be required to define the process that

leads to product formation, a decrease of at least that magnitude is required in order to

account for the observed product size distribution.

We can also ask how much free energy is dissipated in the course of specifying the

product size distribution. The total free energy dissipated is an upper limit on the

energetic cost of controlling product sizes. The maximal rate of ATP hydrolysis under

turnover conditions is about 2 x 10' min-' (Figure 4.8.B). Since hydrolysis of ATP under

physiological conditions is exergonic by about 20 kT (43), ClpAP dissipates about 5 x 104

kT/min (hydrolysis of protein amides, which is much slower and is less exergonic,

contributes a relatively small amount to the total energy dissipation). The value of -0.5

bits/sec estimated above provides an estimate of 103 kT/bit as a lower limit for the energy

efficiency of product size specification. It is likely that the value of approximately 103

kT/bit does not represent the minimum energy required for specifying the product size

distribution, as mechanical steps such as unfolding will certainly consume an appreciable

fraction of this energy without contributing directly to information processing.

Biological Implications of Control of Sizes of Proteolytic Fragments. While

eukaryotic proteasomes need to control peptide product sizes because peptides below a
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certain length cannot be presented as antigens (2), there is not an obvious disadvantage to

the production of very short peptides in E. coli. The question thus arises of whether there

actually exists a selective pressure for control of peptide product sizes in E. coli. One

possible explanation for the function of the observed size distribution of ClpAP products is

that it optimizes the overall rate of degradation of misfolded proteins to free amino acids.

The aminopeptidase PepN hydrolyzes short peptides to free amino acids and is responsible

for most of the aminopeptidase activity in E. coli (15, 16). Its steady-state rate of

proteolysis is much greater than ClpP's for roughly comparable substrates (k~t of 370 sec

' for hydrolysis of a para-nitroanilide substrate (16), compared to 2.5 min-' for ClpP's

hydrolysis of a somewhat less activated aminomethylcoumarin substrate (44)). However,

PepN degrades unfolded proteins very slowly (a half-time on the order of hours (16)).

Thus, use of the slower peptidase ClpAP to digest misfolded proteins into peptides small

enough for the faster peptidase PepN to accept would optimize the overall rate of

processing.

It is also possible that control of product sizes is required to keep the translocating

substrate from clogging the central pore of ClpAP. ClpXP (45) and the proteasome (46)

can process substrates that are larger than their central pores. This ability suggests that

smooth processing of large substrates will require energy-dependent proteases to have a

way of preventing translocation of more unfolded polypeptide than can be productively

accommodated into the central chamber of the protease. Translocation of only small

segments of substrate before proteolysis and clearance of the ClpP active sites might help

ClpAP avoid non-productive binding of large segments of substrate to the interior surface

of ClpP.

General Mechanistic Features of Enzymes that Measure Product Sizes. Other

enzymes in a variety of organisms can also be thought of as "measuring" their substrates.

In addition to the proteasome, which produces products with a size distribution similar to

that observed for ClpAP, the nuclease Dicer also produces products with a very narrow

size distribution (20-22 nucleotide residues) (47), and tripeptidylpeptidases cleave the first

three amino acid residues from peptides (48). The mechanism for generation of a narrow

size distribution of products may at first seem to follow trivially from the existence of
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multiple active sites in the enzyme structure. Dicer, for example, has two distinct nuclease

active sites (49), suggesting that the physical spacing between them might determine the

product size. Such a mechanism would be an oversimplification. Even when there is a

defined spacing between active sites, the microscopic steps in the enzymatic mechanism

must also be ordered in a way that allows control of product sizes. For example, a

mechanism where an enzyme binds the substrate at two active sites, cleaves it at each of

the sites sequentially, and releases the product will allow generation of uniformly-sized

products from a polymeric substrate. However, if the enzyme can deviate from the

correct order of steps (e.g., if partially cleaved product can diffuse from the enzyme and

re-bind at random), random cleavages will occur, decreasing the uniformity of product

sizes.

One way to ensure a defined order of conformational changes is to drive them

using dissipation of free energy; that is, to make each conformational change effectively

irreversible. In the limit where every step is very far from equilibrium (i.e., irreversible),

the enzyme always traverses the cycle in order (40). This would allow a complex

algorithmic task to be carried out: first the enzyme does A, then B, then C, etc. The price

paid for carrying out a complex task with high fidelity is thus the irreversible consumption

of chemical energy. For proteases and nucleases, the irreversibility of the hydrolytic step

may suffice to provide the free energy needed to determine the size distribution.

The phenotype of peptide product formation in ClpAP is remarkably similar to that

observed for mammalian and thermophilic proteasomes (4, 5). The product sizes for those

enzymatic systems have a similar skew distribution, and are similarly unaffected by partial

inactivation of protease active sites (4). The proteasome may therefore have a similar

mechanism of peptide product formation, in which translocation of polypeptide substrate

alternates with proteolysis. There is evidence for allosteric coupling between

chymotryptic sites and caspase sites in the 20S proteasome (6). The "measure and cut"

and "bite-chew" (6) mechanisms are not mutually exclusive, and both may contribute to

production of epitopes of the proper size and sequence.
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It may be that, for proteasomes, the ability to measure product sizes serves as an

integral part of the generation of epitope-like peptides from protein substrates. A protease

that initiated proteolysis at one end of the substrate polypeptide and processively cleaved

off peptides of a constant size from that end would generate a unique set of products even

without being able to cleave specific sequences preferentially. For such an enzyme, the

mechanical precision of product size measurement, combined with the ability to cleave

processively without slipping, would allow preferential generation of a small subset of

possible peptide products.
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4.6. Figures

Figure 4.1. Possible mechanisms for control of product sizes by ClpAP. (A) Size

control through modulation of relative rates of translocation and proteolysis (Mechanism

1). ClpA and ClpP are active (gray) simultaneously, so translocation and proteolysis

occur simultaneously. (B) Size control through use of a structural "filter." Small

products escape from ClpP more readily than larger ones, which may be re-cleaved.

Proteolysis may be random (Mechanism 2) or biased toward longer products (Mechanism

3). (C) Size control through allosteric coupling between translocation and proteolysis

(Mechanism 4). ClpA and ClpP reciprocally regulate each other's activity, so that when

ClpA is active, ClpP is inactive (white). Translocation and proteolysis alternate.
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Figure 4.2. Simulations of the four mechanisms in Figure 4.1. In each case,

-1000 product-forming events were simulated. (A) Simulated product size distribution

using Mechanism 1 (translocation 10-fold faster than proteolysis). (B) Simulated product

size distribution using Mechanism 2 (interaction parameter a = 0.08). (C) Simulated

product size distribution using Mechanism 3 (interaction parameter a = 0.08, interaction

parameter 03 = 0.008). (D) Simulated product size distribution using Mechanism 4

(coupling parameter y = 80).
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Figure 4.3. Size distribution of peptides derived from ClpAP-catalyzed

proteolysis of GFP-ssrA.
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Figure 4.4. MALDI mass spectrum of peptide products.

12024447

1256467 25 93X9

1 17 142167&6
616 .•,o! 6/ 2709 3I.1. .A ,,

1400 2300 3200

Mass (m/z)

7700.0244 'rJ700E 0010 MOl

4100

-129-

100

90

80

70

60

50

40

30

20

10

0500

W7,230

wn5

M9 1 2

5000



C(hatler 4

Figure 4.5. Effects of primary sequence of substrates on product size distribution.

Comparison of product size distributions obtaining using GFP-ssrA as substrate (filled

squares) and using a-casein as substrate (open circles).
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Figure 4.6. Simulated effects of decreasing proteolytic rate on the product size

distribution. The rate of proteolysis is set at a reference value (0.05 per time step,

histograms in black) or one-third of the reference value (histograms in gray). (A)

Simulation using Mechanism 1. (B) Simulation using Mechanism 2. (C) Simulation using

Mechanism 3. Arrows point to the maxima of the distributions.
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Figure 4.7. Effects of kinetic perturbations on product size distribution. (A)

Comparison of product size distributions with saturating (10 mM) ATP (filled squares)

and sub-saturating (0.1 mM) ATP (open circles). The peak at 23.5 min retention time

(arrow) is mostly contributed by nucleotides (ATP and ADP), not by the peptide products.

(B) Comparison of product size distributions with fully active ClpP (filled squares) and

partially inactivated ClpP (open circles).
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Figure 4.8. Kinetic parameters for GFP-ssrA proteolysis and ATP hydrolysis.

(A) The dependence of the GFP-ssrA proteolysis rate on [GFP-ssrA]. The rate of GFP-

ssrA proteolysis by ClpAP was measured by monitoring the loss of GFP fluorescence. (B)

The [ATP]-dependence of the ATPase rate during proteolysis of GFP-ssrA. The rate of

ATP hydrolysis by ClpA during GFP-ssrA degradation was measured via the loss of

NADH in a coupled reaction.
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4.7. Numerical Simulations

The following script for MATLAB (version 6.5.1, The Mathworks) was used for
simulation of Mechanism 1, as described in the text.

% Model for peptide sizes
A=[1 0.99]
P=[1 0.1]
L=O
C=1
X=1
O=zeros(1000,1);
while L<=1000

while X<237
rl=rand;
adv=A(1,1)*A(1,2);
if rl<=adv

X=X+1;
C=C+1;

end
r2=rand;
cut=P(1,1)*P(1,2);
if C>0 & r2<=cut

L=L+1;
O(L, 1)=C;
C=0;

end
end

X=1;
C=1;
end
dlmwrite('proteolysisloutput.txt',0,' ')

The following script was used for simulation of Mechanism 2:

% Model for peptide sizes: random proteolysis + a
% "filter" to exclude large products
%probability of cleavage
cut=0.015
%counter for product peptides
L=1
%counter for seq. position
X=1
%counter for # of rounds of proteolysis before all peptides diffuse out
q=0
%S=matrix representing sequence positions; (bound/unbound, +/- a
%cut at this position, length of the peptide that includes this residue,
%position of last N-terminal cut)
S=zeros(237,4);
%set all positions as "bound" (to ClpAP)
S(:,1)=1;
%O = output peptide lengths
O=zeros(1000,1);
%Nterm=position of last N-terminal cleavage
Nterm=0;
Nterm2=0;
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%G=constant representing binding affinity of a residue to ClpP active
site
G=0.08;
while L<1000

while nnz(S(:,l))>0
for X=1:237

S (X, 4) =Nterm;
rl=rand;
if S(X,1)>0 & rl<=cut

%incorporate a cleavage at the residue
S(X,2)=1;
%calculate length of peptide that includes this residue
S(X,3)=X-Nterm;
%set next position of last N-terminal cleavage
Nterm=X;

end
end
Nterm=0;
%calculate whether peptide diffuses out of active site
for X2=1:237

r2=rand;
length=S(X2,3);
Nterm2=S(X2,4);
if S(X2,2)==l & r2<=exp((-l)*G*length)

0(L) =length;
L=L+1;
S((Nterm2+1):X,1)=0;

end
end

Nterm2=0;
end

%reset sequence variables
S=zeros(237,4);
S(:,1)=1;
Nterm=0;
end
dlmwrite('proteolysisl0output.txt',0,' ')

The following script was used for simulation of Mechanism 3:

% Model for peptide sizes: random proteolysis + a
% "filter" to exclude large products + coupling of binding
% to proteolysis
%probability of cleavage
cut=0.05
%counter for product peptides
L=1
%counter for seq. position
X=1
%S=matrix representing sequence positions; (bound/unbound, +/- a
%cut at this position, length of the peptide that includes this residue,
%position of last N-terminal cut)
S=zeros(237,4);
%set all positions as "bound" (to ClpAP)
S (:,1)=1;
%0 = output peptide lengths
O=zeros(1000,1);
%Nterm=position of last N-terminal cleavage
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Nterm=O;
Nterm2=0;
%G=constant representing binding affinity of a residue to ClpP active
site
G=0.08;
%F=constant representing coupling of binding affinity to proteolytic
rate
F=0.1;
while L<1000

while nnz(S(:,1))>0
%C = counter for number of residues translocated
C=O;
for X=1:237

S (X, 4) =Nterm;
rl=rand;
C=C+1;
if S(X,I)>O & rl<=cut*(l-exp((-l)*G*F*C))

%incorporate a cleavage at the residue
S(X,2)=1;
%calculate length of peptide that includes this residue
S (X, 3) =X-Nterm;
%set next position of last N-terminal cleavage
Nterm=X;
C=0;

end
end
Nterm=O;
%calculate whether peptide diffuses out of active site
for X2=1:237

r2=rand;
length=S(X2,3);
Nterm2=S (X2,4);
if S(X2,2)==1 & r2<=exp((-l)*G*length)

O(L)=length;
L=L+l
S((Nterm2+1) :X,1)=0;

end
end

Nterm2=0;
end

%reset sequence variables
S=zeros(237,4);
S ( :, 1)=1;
Nterm=O;
end
dlmwrite('proteolysislloutput.txt',0,' ')

The following script was used for simulation of Mechanism 4:

% Model for peptide sizes: both translocation and proteolysis
% probabilities controlled by amt. of peptide translocated
%A[conformational state, prob. of translocation]
A=[l 1]
%P[conformational state, prob. of trapping]
P=[O 1]
%L = length of peptide product
L=O
%C = counter for length of peptide product
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C=0
%X = counter for position in protein
X=l
%O = array of peptide product sizes
O=zeros(1000,1);
fillfactor=100
time=0;
transcount=0;
protcount=0;
turnover=0;
while L<=1000

while X<237
rl=rand;
r2=rand;

time=time+1;
fillP=exp(-C/fillfactor);

%trapping the translocating chain
trap=(l-fillP);
if rl<=trap

A(1,1)=0;
P (1, 1)=1;

else
A (, 1)=1;
P (1,1)=0;

end

%translocation
transloc=A(1, 1) *A(1, 2);
if r2<=transloc

X=X+1;
C=C+1

transcount=transcount+1;
end

%cutting the translocating chain
if P(1,1)==l & C>0

L=L+1
O (L, 1)=C;

C=0;
A(1, 1)=1;
P(1,1)=0;
protcount=protcount+1;
end

end
X=1;
C=0;
turnover=turnover+1;
end
transrate=transcount/time
protrate=protcount/time
steady=turnover/time
mean (0)
dlmwrite('proteolysis8output.txt',O, '
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