
Global Optimization Algorithms for Semi-Infinite
and Generalized Semi-Infinite Programs

by

Panayiotis Lemonidis

Submitted to the Department of Chemical Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Chemical Engineering Practice

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2008

@ Massachusetts Institute of Technology 2008. All rights resE

Author
"- ..

Department of Chemical Engineering
October 2008

Certified by.....
Paul I. Barton

Professor
Thesis Supervisor

Certified by..........
I I

(_J & William H. Green Jr.
Associate Professor

Thesis Supervisor

A ccepted by ............................................
William M. Deen

Chairman, Department Committee on Graduate Students

MASSACHUSETTS mSTM
r OF TEHNOLOGY

JUN 1) 6 2008

LIBRARIES

41kýý~T





Global Optimization Algorithms for Semi-Infinite and

Generalized Semi-Infinite Programs

by

Panayiotis Lemonidis

Submitted to the Department of Chemical Engineering
on October 2008, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Chemical Engineering Practice

Abstract

The goals of this thesis are the development of global optimization algorithms for semi-
infinite and generalized semi-infinite programs and the application of these algorithms
to kinetic model reduction.

The outstanding issue with semi-infinite programming (SIP) was a methodology
that could provide a certificate of global optimality on finite termination for SIP
with nonconvex functions participating. We have developed the first methodology
that can generate guaranteed feasible points for SIP and provide e-global optimality
on finite termination. The algorithm has been implemented in a branch-and-bound
(B&B) framework and uses discretization coupled with convexification for the lower
bounding problem and the interval constrained reformulation for the upper bounding
problem. Within the framework of SIP we have also proposed a number of feasible-
point methods that all rely on the same basic principle; the relaxation of the lower-
level problem causes a restriction of the outer problem and vice versa. All these
methodologies were tested using the Watson test set. It was concluded that the
concave overestimation of the SIP constraint using McCormcick relaxations and a
KKT treatment of the resulting expression is the most computationally expensive
method but provides tighter bounds than the interval constrained reformulation or a
concave overestimator of the SIP constraint followed by linearization. All methods
can work very efficiently for small problems (1-3 parameters) but suffer from the
drawback that in order to converge to the global solution value the parameter set needs
to subdivided. Therefore, for problems with more than 4 parameters, intractable
subproblems arise very high in the B&B tree and render global solution of the whole
problem infeasible.

The second contribution of the thesis was the development of the first finite proce-
dure that generates guaranteed feasible points and a certificate of e-global optimality
for generalized semi-infinite programs (GSIP) with nonconvex functions participat-
ing. The algorithm employs interval extensions on the lower-level inequality con-
straints and then uses discretization and the interval constrained reformulation for
the lower and upper bounding subproblems, respectively. We have demonstrated that



our method can handle the irregular behavior of GSIP, such as the non-closedness
of the feasible set, the existence of re-entrant corner points, the infimum not being
attained and above all, problems with nonconvex functions participating. Finally, we
have proposed an extensive test set consisting of both literature an original examples.
Similar to the case of SIP, to guarantee e-convergence the parameter set needs to be
subdivided and therefore, only small examples (1-3 parameters) can be handled in
this framework in reasonable computational times (at present).

The final contribution of the thesis was the development of techniques to provide
optimal ranges of valid reduction between full and reduced kinetic models. First
of all, we demonstrated that kinetic model reduction is a design centering problem
and explored alternative optimization formulations such as SIP, GSIP and bilevel
programming. Secondly, we showed that our SIP and GSIP techniques are probably
not capable of handling large-scale systems, even if kinetic model reduction has a very
special structure, because of the need for subdivision which leads to an explosion in
the number of constraints. Finally, we propose alternative ways of estimating feasible
regions of valid reduction using interval theory, critical points and line minimization.

Thesis Supervisor: Paul I. Barton
Title: Professor

Thesis Supervisor: William H. Green Jr.
Title: Associate Professor
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Chapter 1

Introduction to

Semi-Infinite Programs

Semi-infinite programs (SIP) are optimization problems that involve a finite number of

decision variables subject to an (potentially) infinite number of constraints. They are

encountered in various engineering and economic applications and arise, for example,

when a constraint needs to be introduced for every point in a geometric region.

The general formulation of SIP that we will be concerned with is:

f* = min f(x)

s.t. g(x,p) < 0, Vp E PC (1.1)

xEXC Rnx.

Similar to finite optimization problems, SIP involve a finite number of decision

variables x, an objective function f that depends on these decision variables and a

constraint g that determines the feasible set of the problem. In contrast to finite

optimization problems, however, SIP involve an infinite number of constraints that

are generated from the infinite set P. We begin our analysis with a brief overview

of the origin of SIP and the engineering applications that give rise to SIP. We will

then describe some well-known methodologies for the numerical treatment of SIP and

comment on their limitations.



1.1 Origin and Engineering Applications

The term "Semi-Infinite Programs" first appeared in [31] where Charnes, Cooper and

Kortanek introduce the dual of the Haar program [53]. The original Haar program

involves the maximization of a linear function of infinitely many variables subject

to a finite number of linear inequalities. The corresponding dual program involves

the minimization of a linear function of finitely many variables over a convex set

defined by an infinite number of linear inequalities. This program is a special case of

a semi-infinite program.

One of the most classical engineering applications that gives rise to SIP is the

Chebyshev approximation problem (CAP). Let f : P -+ R be a twice continuously

differentiable function on P C R4 . Let g : R2 X xR 6  R be an approximating function

of f that is parameterized in x, e.g., g(x, p) = zx1p + x2p1P2 + Xp 2 + x4p 2 + x5P 1 +

x6. The ultimate goal is to minimize the error e such that the Chebyshev norm

(max-norm) of the difference between the original function f and the approximating

function g(., p) on P C JR2 is less than e. This formulation gives rise to the following

SIP:

min e
XE

s.t. If(p) - g(x, p)• < e,Vp EPC R2  (1.2)

x E X C R6,e E JR.

We refer the reader to [99] for a review of CAP problems. Some engineering applica-

tions that give rise to CAP problems can be found in [37, 40, 86, 89, 123].

A broad class of applications that gives rise to SIP problems originates from

reformulating optimization problems with uncertain parameters as worst-case scenario



design problems. Consider the problem:

min f(x)
xEX

s.t. g(x, p) < 0 (1.3)

xEX,

where, for example, f is the total production cost of a pharmaceutical, x are the

decision variables and p are parameters the values of which are determined upstream

in the production. If the parameters p are certain, then problem (1.3) is an ordinary

finite nonlinear program. However, if the parameters are uncertain and allowed to

vary within a range, e.g. a n, - dimensional interval P = [pL, pU] and, furthermore,

we want to ensure that the operational constraint g is satisfied for all p E P (worst-

case scenario design) then (1.3) is reformulated as SIP (1.1).

Within the context of worst-case scenario design, a very interesting application in

the area of building construction is given in [93]. Braced frame buildings are expected

to withstand small earthquakes with no damage and large ones with repairable dam-

age such that the survival of occupants is guaranteed at all times. A simple design

problem is to minimize the weight of a building subject to the operational constraint

that the relative horizontal displacements of the floors does not exceed a threshold

for consecutive earthquakes.

SIP are also encountered in optimal control problems, such as robot trajectory

planning [54], sterilization of food [69], in the flutter of aircraft wings [107] and in

the design of multi-input multi-output (MIMO) control systems [93], in air pollution

control [71], in game theory [70] and in kinetic model reduction [84, 90]. The latter

application, a very important tool for reacting flow simulations of large-scale com-

bustion mechanisms, will be analyzed in detail in Chapter 5 where the applicability

of the algorithms developed in this thesis will be examined.



1.2 Definitions

Definition 1.1. (Decision Variables, Parameters)

The decision variables of the SIP are denoted x E X while the auxiliary parameters

are denoted p E P.

Definition 1.2. (Host Sets)

X C IRn and P C RI~p are the host sets of the decision variables and the parameters,

respectively. Typically, X and P are assumed to be compact.

Definition 1.3. (Defining Functions)

f : X --+ R is the objective function of the SIP and g : X x P -- R defines the

semi-infinite constraint.

Definition 1.4. (Lower-Level Problem)

For a given R E X the lower-level problem is defined as:

O(R, P) = max g(R, p).
pEP

To ensure the existence of O(x, P) for each x E X we will assume that g(x, .) is

continuous on P for each x E X and P is compact.

Definition 1.5. (Feasible Set of the SIP)

The feasible set of the SIP is defined as:

M = {x E X I G(x) < O}.

Definition 1.6. (Active Index Set)

For a given R E M, the index set of the active constraints is defined as:

Po() = {pEP I g(, p) = 0}.

Definition 1.7. (SIP Slater point)

A point x E M is a SIP Slater point if Po(x) = 0. Finally the set of Slater points of

the SIP is denoted by X, C M.



Definition 1.8. (Interior Point of the Feasible Set)

A point R E M is an interior point of M if for some e > 0, the ball B(R, e) is a subset

of M. The set of interior points of M is denoted int(M).

Definition 1.9. (Global Solution Value, Points with Minimum Objective Function

Value). The global solution value of the SIP is denoted by fSIP. The set of points

x E M for which f(x) = fSIP are denoted by the set X,min.

Definition 1.10. (Interval Extensions)

G : IRUI  x IRRnp - IR, is an interval-valued function and refers to the interval

extension of the SIP constraint with respect to both the decision variables x and the

parameters p. Specifically, if X and P are intervals, O(X, P) = [GL(X, P), Ou(X, P)],

where 0 L and Ou are real-valued functions and are called the lower-bounding and

upper- bounding extensions, respectively, of the SIP constraint

G : X x IIR"P -+ I[R is an interval-valued function that refers to an interval extension

of G(x, -) with respect to p. If P is an interval, then G(x, P) = [gL(x, P), gU(x, P)],

where gL and gU are real-valued functions.

1.3 Clarifications on SIP

There are two important aspects in the SIP literature that we attempt to clarify:

1. Determining feasibility - Need for global optimization.

2. Slater vs. interior point of the SIP.

1.3.1 Determining Feasibility

The first misconception in the algorithmic treatment of SIP problems arises from the

definition of feasibility of a given point R E X. Note that, unlike finite optimiza-

tion problems where feasibility of :R is determined by evaluating a finite number of

constraints, in SIP, an infinite number of evaluations need to be carried out corre-

sponding to the infinite number of constraints that arise in the problem. Equivalently,



using Definitions 1.4 & 1.5, feasibility of i is determined by the global solution of

the lower-level problem, O(R, P). Price and Coope [32] state that "...It is also worth

noting that the global optimization of g is to some extent an inevitable part of any

algorithm for SIP if only to establish feasibility."

To illustrate the requirement for global optimization of the lower-level problem in

order to guarantee feasibility we provide the following example.

Example 1.11. Consider the following SIP problem:

min x
zE(0,1]

s.t. g(x,p) = xexp(0.2p) sinp - 3x 2 < 0, Vp E [0, 10]. (1.4)

Consider the point t = 1. Figure 1-1 shows the graph of the SIP constraint on the

parameter set [0, 10] at 5.

Figure 1-1: Need for Global Optimization

Figure 1-1 shows that if the lower-level problem at t is solved to local optimality,

- - I - i

2



p* , 1.7 (local maximum) might be found. Since g(±,p*) < 0, t would be rendered

feasible. This is clearly incorrect, because the global maximum of the lower-level

problem is p** ; 8.1 with g(t2,p**) > 0 which renders 5t infeasible.

Oftentimes in the SIP literature, the lower-level problem is either solved to local

optimality or the global solution of the lower-level problem is estimated without,

however, a certificate of global optimality.

In the former case, the source of error arises from the confusion of local vs. global

optimality of the overall problem and the local vs. global optimality of the lower-level

problem. There is no flexibility for the lower-level problem, i.e., this problem needs

to be solved globally in order to guarantee feasibility of any point R E X.

On the other hand, the overall problem, i.e., optimizing the objective function sub-

ject to the feasible set has more flexibility in that global-, local-, KKT- or stationary-

based algorithms can be devised.

In the latter case, the source of error arises from the basic principle of reduction-

based methods, namely that all local maxima have to be computed for some or all of

the intermediate estimates of the algorithm. A multi-local approach, as it is commonly

referred to in the SIP literature [32, 97], suffers from the following drawbacks:

1. Even if the cardinality of the set of local maxima has an upper bound (which, in

general, cannot be explicitly known), locating a finite number of local maxima

does not guarantee that a global maximum has been located. Traditionally,

Newton- and stochastic- based methods have been implemented in this context,

both of which do not guarantee, on finite termination, that a global maximum

has been located.

2. To guarantee feasibility of a candidate R it suffices to find a valid upper bound

to the corresponding lower-level problem O(i, P) and it is not required to find

all possible local maxima of O(R, P).



1.3.2 Slater vs. Interior Point of the SIP

In order to clarify this matter we start with a quote from [101]: "A feasible point x ...

with g(x, y) < 0 for all y E Y is a Slater point or an interior point". This statement

is incorrect because the topological definition of a Slater point is not equivalent to

the definition of an interior point (see Definitions 1.7 and 1.8).

Specifically, assuming that g is continuous on X x P and that X and P are

compact, it can be easily shown (using continuity arguments) that a SIP Slater point

is an interior point of the feasible set. However, an interior point does not have to be

a SIP Slater point. This implies that the set of SIP Slater points is a subset of the

interior points of the SIP. The following example illustrates the difference between a

SIP Slater point and an interior point:

Example 1.12. Consider the following SIP problem:

min x1z 2
xER

2

s.t. - (xl -. 1)2 - (X2 _ 12 _ 2 0, Vp E [0, 1]. (1.5)

In this example, the feasible set of the problem is M = R2. However for R = (1, 1),

which is clearly an interior point of the feasible set, the global solution of the lower-

level problem is O(R, P) = 0 which implies that R is not a Slater point.

1.4 Numerical Methods for SIP

There are two main classes of numerical methods for SIP: discretization- and local

reduction-based methods. We provide a brief overview of both methodologies and a

comparison in the following sections.

1.4.1 Discretization Approaches

The basic principle of discretization methods is to minimize the objective function of

the SIP subject to only a finite subset of the infinite number of constraints and to



enlarge this finite subset in order to obtain a higher precision on the SIP solution.

Therefore, the main idea of discretization methods is to solve the following relaxed

nonlinear program:

min f (x)
xEX

s.t. g(x,p) < 0, Vp E Pi, (1.6)

where P1 is a finite subset of P and i the iteration number, and increase the solu-

tion accuracy by increasing, at successive iterations, the cardinality of Pi such that

lim dist(Pi, P) = lim sup inf Iq - p = 0. The main characteristics of discretiza-
i-00oo 2

-oo qEPi pEP

tion methods are:

1. They are outer approximation methods. This implies that on finite termination,

the incumbent solutions xi are, in general, infeasible for the original SIP or

equivalently that the feasible set of (1.1) is a subset of the feasible set of (1.6):

{x E X : g(x,p) 5 0,Vp E P} C {x E X : g(x,p) < 0,Vp E Pi}. (1.7)

Recall that in order to check feasibility of any of the incumbents xi the global

solution value, or a valid overestimate on the global solution value, of the lower-

level problem at these incumbents must be generated.

2. They provide a valid lower-bounding approach for SIP. Taking into considera-

tion relation (1.7) and assuming that x' are global minima of the discretized

problems indexed by the set Pi and fSIP is the global solution value of the

original SIP, the following relationship holds:

f(x i) S fSIP, Vi E N. (1.8)

Of course, it must be possible to guarantee that xi is a global solution of (1.6)

in order for this inequality to hold.



3. If, on successive iterations, the gridding of the parameter set is exhaustive then

the sequence of the optimal solution values of the discretized problems converges

to the minimum of the SIP (assuming continuity of the defining functions and

compactness of the host sets for the decision variables and parameters):

lim dist(P2 , P) = lim sup inf jq - pl = 0 =. lim f(x i) = fszP. (1.9)
ioo i--oo qEPi PEP -- o00

4. Relation (1.9) implies that in order to converge to the minimum of the SIP,

discretization approaches need to introduce an increasing and, potentially, un-

bounded number of constraints. For SIP that include many parameters this ap-

proach could render, very quickly, intractable finite nonlinear programs. Reemt-

sen and Gorner state in [101] that standard nonlinear solvers can handle dis-

cretization grids with up to 100,000 points for problems with less than 100

variables.

5. It can be shown [94] that under proper assumptions, local minima and stationary

points of the discretized problems converge to local minima and stationary

points of the original SIP.

There are two main elements in the numerical implementation of a discretization

approach for SIP:

1. The construction of the grid on the parameter set. We have already mentioned

that discretization involves the generation of a finite subset of the parameter

host set P. There are two main ways of generating this set: a-priori and adap-

tively. In the former case, or brute-force discretization, an explicit arithmetic

rule is used to define the grid, e.g. :

P = 1 : n = 1,... ,i},i > 1. (1.10)

when P = [0, 1]. To generate the grid adaptively an implicit rule is used. Many

such rules have been suggested in the SIP literature [29, 48, 58, 92, 95, 100, 139].



For the sake of completeness, we will describe the discretization algorithm and

the grid-defining rule stated in [29]; the rules in the other references are similar

in nature.

Blankenship and Falk [29] propose an algorithm consisting of four steps:

(a) Initialize: set i = 0 and choose Pi C P.

(b) Upper-Level Problem: solve the i-th outer problem: compute xi E X which

solves the problem min f(x) s.t. g(x, p) 5 0, V p E Pi.
xEX

(c) Lower-Level Problem: solve the i-th lower-level problem: compute pi E P

which solves the lower-level problem of xi: max g(xz, p).
pEP

(d) Termination Criteria - Grid-Defining Rule: If g(xi, pi) 5 0 then stop

(global solution found). Else update the grid on the parameter set by the

rule: Pi+l = Pi U pi and go to step 2.

This implicit rule takes advantage of the maximum violation of the semi-infinite

constraint at the intermediate incumbents of the procedure. It has been ob-

served that discretization algorithms that do take advantage of the global max-

ima of the lower-level problems at the intermediate incumbents converge faster

than brute-force approaches.

2. The choice of the NLP solver that is used in solving the subproblems generated

at each iteration of a SIP algorithm. For any SIP algorithm, the vast majority of

computational effort is spent on solving the approximating NLP subproblems.

Many local SQP and interior-point algorithms have been used for this purpose

[52, 132]. Furthermore, there has been a specific attempt to develop both a user

interface with AMPL [133] and a SQP solver [73] that can handle, more effec-

tively, the large number of similar constraints that arise from the discretization

of the semi-infinite constraint.



1.4.2 Local Reduction

In finite nonlinear optimization, around a feasible point x E R-n there exists a neigh-

borhood B(x, e) for which the feasible set can be precisely described by the active

constraints at x. However, it is well known [61, 101] that this result does not hold

for SIP in general.

Nevertheless, under proper regularity assumptions [61, 101] it can be shown that

around a point R C X there exists a neighborhood B(R, e) and also a finite number

of implicitly-defined inequality constraints such that the feasible set defined by these

constraints on B(R, e) n X coincides with the intersection of the feasible set of the

SIP with B(R, e). Therefore, on B(5, e), problem (1.1) is equivalent to the following

finite problem:

min f(x)
xeB(R,e)nX

s.t. g(x, vJ(x)) < 0, Vj E J, (1.11)

where vJ : X --~ R"P, j E J, are implicitly defined vector-valued functions and J is a

finite index set.

Essentially, local-reduction methods assume that for a point R there exists a neigh-

borhood B(R, e) such that for each point x E B(R, e) the number of local maxima for

the lower-level problem is finite and constant. The vector-valued mappings vj, j E J,

map the point x to exactly one of these isolated maxima of the lower-level problem

O(x, P).
The main characteristics of local reduction methods are:

1. They are also outer approximation methods. Similar to discretization methods,

local reduction approaches only consider a finite subset of the parameter set P

and thus, on finite termination, feasibility of the incumbents is not guaranteed.

2. Since the number of constraints that are necessary to describe, locally, the

feasible set of the SIP is finite, local reduction methods usually do not explode

in the number of constraints required in order to achieve convergence.



3. The number and the explicit functional form of these constraints are not known

in general.

4. They are local in nature. This means that they offer an attractive reduction

of the SIP to a finite program locally in the decision-variable space. In [101]

it was shown that under regularity assumptions, a strict local minimum of the

reduced problem (1.11) is also a strict local minimum of the original SIP (1.1).

There are two types of algorithms within the framework of reduction based meth-

ods. On the one hand, locally convergent methods require that the starting point

xo is located in the reduction neighborhood B(k, e) of a SIP KKT point R. On the

other hand, globally convergent reduction-based methods [33, 124, 125, 135] can be

carried out when the intermediate estimates do not belong to a neighborhood of a

SIP KKT point. Similar to the analysis of discretization-based methods, we are going

to describe a prototypical reduction-based method. As described in [101], typically,

a globalized reduction-based method consists of four steps:

1. Initialization: Pick xo and set k = 0.

2. Global Solution of the Lower-Level Problem: Compute all the local maxima of

O(xk, p).

3. Inner Iterations - Adapt Local Maxima: Apply a finite nonlinear approach to

the reduced problem (1.11). Recalculate the local maxima of the intermediate

iterates using local adaptation at the local maxima of O(xk, P). Let x* be the

final estimate of the inner iterations.

4. Termination: If IIXk - x* < e, terminate. Else set k = k + 1, xk+l = x* and

go to step 2.

With respect to the numerical implementation of any reduction based algorithm

there are a lot of open questions:

1. What is the number, or at least an upper bound on the number, of local maxima

of the lower-level problem? This is essential for Step 2 of the aforementioned



algorithm which involves the calculation, at least approximately, of all local

maxima of the lower-level problem. This is bypassed in the literature by em-

ploying a fixed number of iterations to locate the local maxima.

2. How are the implicitly defined inequality constraints evaluated? This is essential

in Step 3 where a nonlinear approach is used to provide an update of the local

solution of the SIP. This difficulty is bypassed by evaluating the functions, first

and second derivatives only at the major iteration points xk [32].

3. How is the neighborhood of valid reduction B(R, E) computed? In [101] the

following statement is made for globalized reduction based methods: "It has to

be respected, however, that the inner iterates (i.e. the iterates in step 3) may

move away from xk and hence may leave U(xk) (the valid region of reduction)

when xk is not a KKT point of the SIP problem". This neighborhood is crucial

in solving the reduced problem in step 3. This problem is bypassed in the

literature by ignoring the condition x E B(R, E) in problem (1.11).

It should be noted that if there is a unique global maximum for the lower-level problem

throughout the neighborhood in question and it can be computed reliably, it is really

only necessary to include this point in (1.11).

1.4.3 Discretization vs. Local Reduction

The major similarities between these two classes of methods are:

1. They are both outer approximation methods. Therefore, on finite termination,

feasibility of the incumbent solutions is not guaranteed. To check for feasibility

of an incumbent, the lower-level problem at the incumbent must be solved to

global optimality.

2. They consider a finite subset of the constraints.

3. The state-of-the-art algorithms in both methodologies. calculate and use the

global maxima of the lower-level problem.



The major differences between discretization- and local reduction- based methods

are:

1. The necessary assumptions for convergence are much milder for discretization

methods than for local reduction approaches.

2. The number of constraints that needs to be generated to ensure convergence

is bounded for local reduction methods while it is unbounded, in general, for

discretization methods. In other words, discretization methods explode in the

number of constraints while local reduction methods remain finite.

3. At the expense of exploding, discretization methods can be used to provide

valid lower bounds on the SIP global solution value and furthermore converge

to the solution value when the discretization grid gets finer. Therefore they can

be used for local, global, stationary and KKT approaches for SIP. On the other

hand, local reduction methods provide convergence to a local solution of the SIP

and are, therefore, more limited in their scope in comparison to discretization

methods.

Within the context of numerical algorithms for nonconvex SIP, the classification

proposed in [57] includes the so-called exchange methods as a generic class of methods

that add some new constraints (cuts) at the intermediate steps of the algorithm and,

with heuristics, remove some old constraints from the problem. To our understand-

ing, exchange methods are discretization methods in nature in that they explode, in

general, in the number of constraints while offering the advantage of a global, local,

stationary or KKT approach to SIP.

1.5 Limitations of SIP algorithms

To conclude this introductory material, there are currently two main classes of numer-

ical procedures for SIP: discretization and local-reduction methods. Both method-

ologies use a finite subset of the infinite number of constraints and provide, on finite



termination, an approximation to a global or local solution of the SIP. However, these

two methodologies do not provide:

1. Guaranteed feasibility of the incumbent solutions.

2. A certificate of global optimality upon termination.

In light of these limitations, in the following sections, we are going to describe a

general methodology to provide guaranteed-feasible points for SIP (and thus rigorous

upper bounds to the global solution value of the SIP). This will be the basis to propose

global optimization algorithms in Chapters 2 and 3.

1.6 A Bilevel Reformulation

An exact reformulation of (1.1) is the following nonsmooth program:

min f(x)
xEX

s.t. O(x, P) = maxg(x, p) < 0,
pEP

(1.12)

where O : X -+ R is well defined for all x E X provided that g(x, -) is continuous on

P and P is a compact set. The following example illustrates that O(., P) can be a

nonsmooth function.

Example 1.13. Consider the following SIP:

min x
xE[-1,1]

s.t. g(x,p) = xp < 0, Vp E [-1, 1].

Then O(., P) is defined as:

O(x, P)= -x,
-x)

0< x<

-1 <x <0.



Clearly, O(., P) is nonsmooth at x = 0. For the numerical difficulties that standard

NLP solvers face with nonsmooth functions, we refer to [74].

Although (1.12) is a trivial reformulation of (1.1) it provides the basis for con-

structing an upper-bounding (feasible-point) approach for SIP. Specifically, if a real-

valued function h : X --> R can be constructed such that O(x, P) < h(x), Vx E X,

then the following program:

min f (x)
xEX

s.t. h(x) < 0, (1.13)

is a valid restriction of (1.1). Therefore any feasible point of (1.13) is a feasible

point for the original SIP (1.1). Furthermore, if h is continuously differentiable on X,

then (1.13) can be tackled by a local NLP solver, a feature that would facilitate the

convergence of global optimization algorithms. In the following section we are going

to describe how such a function can be constructed with the help of interval analysis.

1.7 Interval Methods for SIP

In order to aid the understanding of the interval approach for SIP we provide a brief

introduction to interval analysis and then discuss the interval-constrained reformula-

tion [26]. For a more detailed analysis of interval theory and for the original source

of sections 1.7.1 and 1.7.2, we refer the reader to [27].

1.7.1 Interval Analysis

An np-dimensional interval, P, bounded by the np-dimensional vectors pL and pU,

is defined by:

P = P1 x ... x P, = [pL, pU]

Pi = [pL, pU], j = ,. .. ,np.



The width of each dimension Pj and the overall width of P are defined to be:

w(Pj) = jpLp j=l,...,n,

w(P) = maxw(PF).

The range of values assumed by a real-valued, continuous function g : P -+ R on

the domain P is denoted by the scalar interval gR(P):

gR(P) = [gL(P), gU(P)] = {g(p) : p e P}.

An interval-valued function G : P - I EA which satisfies the following relation is

referred to as an inclusion function for g on P:

9R(Q) C G(Q) = [gL(Q) gU(Q)], VQ E IRnup,Q c P. (1.14)

The natural interval extension, Gint, is an example of such an inclusion function.

For a given function g, Git is derived by replacing each real variable pj with the

corresponding interval variable, Py, and evaluating the resulting expression using the

rules of interval arithmetic [85]. Gint can be expressed using only the bounds pL, pU

and selected constants (e.g., 1, -1, in the case of sine and cosine). For functions with

special structure, e.g., rational functions in which each variable pj appears only once,

the natural interval extension yields an exact inclusion such that equality holds in

(1.14). In general, the natural interval extension is inexact and overestimates the

true range of a real-valued function. The tightness of any inclusion function may be

quantified using the Hausdorff metric q(gR(P), G(P)), which is defined as follows for

the scalar intervals gR(P) and G(P):

q(gR(P), G(P)) = max(g(P) - g(P) (P) - U(pu )

The width of the natural interval extension calculated for a given function g depends

on the underlying expression used. In certain cases, tighter inclusions can be cal-



culated by representing the function using a different underlying expression, i.e., by

rearranging the expression before evaluating its natural interval extension. One such

rearrangement is the small Horner scheme [98].

For general nonlinear functions, an exact inclusion over a nondegenerate domain

(pL 4 pu) cannot be computed with finite computational effort. However, convergent

inclusions of continuous functions can provide a bound on the degree of overestimation

incorporated by the inclusion:

q(gR(P), G(P)) < 7w(P)3 (1.15)

w(G(P)) < Jw(P)3,  (1.16)

where 3 > 1 is the convergence order of the inclusion function, e.g., 3 = 1 for natural

interval extensions, and 5- > 0 and 5 > 0 are constants that depend on the form of

the function g, and the interval P. This property suggests that progressively tighter

inclusions may be calculated at the cost of more expensive function evaluations. Each

dimension of the np-dimensional interval P = [pb, pU] may be subdivided into nk

subintervals of equal width such that:

S(,- 1)w(Pj) ' W (Pj)P = + , + ], = 1, ... •nk.nk 
nk

Denoting Ik = {1, 2,..., nk }p, it follows that

P= U JP,
7EInk

where P, = PK" x ... x Pn' for 7 = (K1, K2, . , nKp) E Ik. The range of the func-

tion over the interval P is then the union of the range of values assumed over each

subinterval, i.e.:

gR(P) = U gR(P).
Similarly, from inclusion monotonicity [98], the union of t interval extensions

Similarly, from inclusion monotonicity {98], the union of the 'n" interval extensions



G(P,) yields a valid inclusion function for g(p) on P, i.e.,

U gR(Pr,)C U G(P,) C G(P).
TEIk 7EIk

The inclusion Gk1 (P) = U G(P,) is referred to as the nh (uniform) refinement of
E nIk

G. Applying (1.15), we arrive at the following relations between Gnk and gR:

q(gR(P),Gfl(P))• : (w(pr)), = 7 ( n

w(Gnk(P)) 5((P,)) = ((P)"

Thus the subdivision approach generates inclusion functions of arbitrary accuracy,

at the cost of performing nkp interval function evaluations. Considerable effort has

been directed towards developing higher-order inclusions which converge more rapidly

as the number of subdivisions increases. In general, up to second-order convergence

can be achieved for inclusions of real-valued functions [7] by using the centered form.

Using the following underlying expression for a given function g:

g(p) = g(c) + g,(p- c), cE P, (1.17)

the centered form is calculated as the natural interval extension of the right-hand side

of (1.17), and provides a quadratically-convergent inclusion for g on P. In particular,

the nr4 - order Taylor model of a function of nT + 1thorder differentiability can be

shown to satisfy the definition in (1.17) [7].

For a thorough review on the theory and applications of interval analysis we refer

the reader to [7, 15, 55, 56, 85].

1.7.2 The Interval Constrained Reformulation

From now on we will assume that P C IlR" p is an interval. A rigorous upper-bounding

methodology for SIP, i.e., a methodology to generate guaranteed feasible points for

SIP, can be constructed by replacing the nondifferentiable constraint in (1.12) with



one that has a smaller feasible set. Any valid inclusion function for g(x, -) on P for

each x E X, may be used for this purpose.

The interval-valued function G : X x P --, IIl which refers to an interval extension

of g(x, .) with respect to p, is an example of such an inclusion function. Denoting

G(x, P) = [gL(x, P), gu(x, P)] we obtain that:

9U(x, P) _> max g(x, p), Vx E X. (1.18)
pEP

Relation (1.18) implies that:

{x E X : gU(x, P) < 0} C {x E X : maxg(x, p) • 0}. (1.19)
pEP

Therefore, the following finitely-constrained nonlinear program:

min f(x)
xEX

s.t. gU(x, P) < 0, (1.20)

provides a guaranteed feasible point for (1.1). This is the interval-constrained refor-

mulation. It should be noted that the global solution of (1.20) is not required to

furnish a feasible point for (1.1): a local, global, stationary or KKT approach would

suffice for this purpose.

In order to construct the inclusion function G, the p- and x-dependent terms are

first isolated from the remaining mixed terms in g such that:

g(x, p) = gx(x) + gp(p) + g.p(x, p)

gV(x, P) = g.(x) + G (P) + gx,(x, P). (1.21)

The term g, involves degenerate intervals x and does not require any further treat-

ment. The inclusion term gU is calculated based on interval arithmetic [7, 26]. The

inclusion term gpv is calculated similarly with the exception that the degenerate in-

tervals x add an extra degree of complexity. In both inclusion bounds go and g9,



the resulting expression may contain min and max terms and as a consequence, the

interval extension gu(x, P) might be a nonsmooth function. The following example

illustrates the construction of the interval extension and the nonsmoothness that this

construction might introduce.

Example 1.14. Consider the following SIP problem:

mmin x
xE[XL,xu]

s.t. g(x,p) = x + exp(p) + xp 5 O, Vp E [pL,pu]. (1.22)

Clearly, gx(x) = x, gp(p) = exp(p) and gxp(x,p)= xp. Using the rules of interval

arithmetic we obtain gU(P) = exp(pu) and gu (x, P) = max{pLx ,pUx}. Therefore, a

finitely-constrained upper bounding program for this SIP would be:

mmin x
xE[xL,XU]

s.t. gU(x, P) = x + exp(pU) + max{pLx, pux} < 0. (1.23)

Despite the fact that (1.23) furnishes feasible points for the original SIP it also in-

volves a nonsmooth constraint and standard NLP solvers are not expected to solve

this problem robustly. Bhattacharjee et al. [26] propose two ways to alleviate this

nonsmoothness. The first involves the introduction of auxiliary binary variables and

the resulting problem is a MINLP:

min x
xin[xL,xU]

s.t. x + exp(pu) + y(pLx - pUx) + (1 - y)(pUX - pLx) < 0 (1.24)

y(PLx -- pU) + (y - 1)(pLx - PU) < 0,

while the second involves explicit enumeration of all the constraints that arise from

the min/max terms in the inclusion bounds and the resulting upper bounding problem



is a NLP:

min x
xE[xL,xU]

s.t. x + exp(pU) + pLx < 0 (1.25)

x + exp(pu) + p x < 0.

The numerical application of both these methodologies for the SIP problems of the

Watson test set can be found in [26].

Tighter inclusions can be generated by applying the subdivision principle that was

discussed in Section 1.7.1. Therefore, if Ik denotes the set of indices of the subdivision

at iteration k, the following relationship holds:

max g(x, p) < gk(x,P) = max gu(x, P,) g(X, P), Vx E X. (1.26)
pEP TEIk

Thus, a tighter upper-bounding problem than (1.20) is the following program:

mmin f(x)
xEX

s.t. gU(x, P,) < 0, V E Ik. (1.27)

The following Theorem [27] shows that when the subdivision of the parameter host set

P is exhaustive, the global solution values of the interval-constrained reformulations

(1.27) fICR converge to the global solution value of the SIP f SIP

Theorem 1.15. Assume that f and g are continuous functions on X and X x P,

respectively. When the parameter host set P is subdivided uniformly at each iteration

such that w(P,) = (P), problem (1.27) yields an exact reformulation of the SIP in

the limit k -+ oo, such that lim fk'CR fsIP, provided nk+1 > nk for all k > 1,
k-ooc

and that there exists a minimizer x* of the SIP for which a Slater point can be found

arbitrarily close to x*.

Proof. g is a continuous mapping from a compact metric space X x P into the metric



space R. Thus g is uniformly continuous. Define: gU(x, P) = max g(x, p), x E X. It
pEP

is well known that g"(- P) is a continuous function on X.

Since there exists a minimizer x* of the SIP for which a Slater point can be found

arbitrarily close to x*, this implies that there exists a feasible SIP point x** for which

gl(x**, P) < 0. Pointwise convergence of g'U(., P) to gU(., P) implies that 3 k* such

that gkv(x**, P) < 0, Vk > k*, i.e., {x EX : gU (x,P) _< 0} is a non-empty, compact

set for all k > k*. It follows that the sequence of values obtained by solving interval-

constrained reformulations is a bounded, monotonic (non-increasing) sequence such

that fkICR > f~lR > fSIP for all k > k*. This establishes the existence of the

limit lim fkCR The sequence of minimizers {xICR}, k > k* identified by solving the
k-+oc

interval-constrained reformulations, is a sequence in the compact set X. Thus {x CR}

has a convergent subsequence. The accumulation point of this subsequence belongs

to the set {x E X : gU(x, P) < 0}, i.e., lim x CR = X•  (X EX : gU(x, P) < 0} for

some subset of indices {k'} C {k}.

To prove the last statement, assume the contrary. Thus assume that x k {x E

X : gU(x, P) < 0}. This implies that gU(x, P) > 0. Since x is an accumulation point

of the subsequence, and gU(-, P) is continuous, 3 kI E {k'}, such that V k' > k:,

g"(x'k,, P) > 0. This is in clear contradiction with the fact that each member of the

subsequence xk, is a feasible point for the original SIP.

Assume that x is not a minimizer of the SIP. Thus, assume that there exists a

x* such that x* E {x c X : gU(x, P) < 0} and f(x*) < f(k). By hypothesis, there

exists at least one minimizer to which Slater points are arbitrarily close. Without

loss of generality, assume that x* is such a minimizer. Thus, from continuity of

f there exists a point x** such that gU(x**, P) < 0 and f(x*) < f(x**) < f(x).
From pointwise convergence of gU(., P) to gU(., P), I k* such that gkU(x**, P) < 0.

Thus, the feasibility of x** will be detected with at most k* applications of the ICR

procedure. Hence, for all k > k* the current optimal value can't be larger than f(x**)

and thus, from continuity of f, x cannot be an accumulation point. This is a clear

contradiction and thus x is a minimizer of the SIP.

Since x is a minimizer for f(x) on the SIP-feasible set, we have f(k) = fSIP. By



the continuity of f, we also have lim f (xRIC lim flCR = f SIP. Since we have
k' --O-+ kl'-,oo

already shown that the sequence of minimum values is convergent, it follows that

lim fICR = f SIP.

Remark 1. There are three main results from this theorem:

1. If a Slater point exists for the SIP, a SIP feasible point will be located in finite

iterations by the ICR procedure.

2. If there exists a minimizer of the SIP for which a Slater point can be found ar-

bitrarily close, then the ICR procedure guarantees convergence to the minimum

of the SIP.

3. If none of the minimizers of the SIP have Slater points arbitrarily close, then

the ICR procedure doesn't guarantee convergence. For special problems for

which the interval extensions are exact then the ICR procedure is guaranteed

to converge in one iteration.

Remark 2. There is a special class of problems for which the hypothesis of Theorem 2

will always be satisfied, and thus convergence to the global minimum will be achieved.

If one of the minimizers of f, x,, is a Slater point then, by continuity of u(., P) on

X, there exists a neighborhood around this minimizer, B(xo, 6), for which every x E

B(xo, 6) is also a Slater point. This implies that xo is a minimizer for which Slater

points can be found arbitrarily close.

1.8 Robust Optimization

There is a very interesting category of semi-definite problems that is handled in the

framework of robust optimization. Within the framework of robust optimization, un-

certainty sets which are described by a system of linear inequality constraints or by a

system of conic quadratic inequalities or by a system of linear matrix inequalities can

be efficiently handled. The numerical algorithms that have been proposed in the lit-

erature have focused on optimization problems constrained by linear, quadratic, conic



quadratic, second-order cone or semi-definite constraints the robust counterparts of

which are formulated as either linear, conic quadratic or semi-definite problems. We

refer the reader to the work of Ben-Tal and Nemirovski [16, 17, 18, 19], Bertsimas

& co-workers [21, 22, 23, 24], Vandenberghe & co-workers [103, 130, 131], Correa &

Ramirez [34] and Jung & Lee [66].

Unfortunately, the application of kinetic model reduction that we are trying to

address within this thesis, involves highly nonconvex constraints. It is clear that the

robust counterpart of this problem is NP-hard. The paper by Kostina et al. [38]

targets robust nonlinear optimization by linearizing the constraints around a nomi-

nal point followed by a convex approximation of the resulting problem. This method,

however, would not generate guaranteed feasible points for the nonconvex KMR prob-

lem. It appears that while kinetic model reduction has a simple box uncertainty that

can be targeted very efficiently by robust optimization (robust optimization can han-

dle uncertainty sets that are much more complex), it also involves highly nonconvex

constraints, and thus it is not yet clear how robust optimization can be used to tackle

this problem and generate guaranteed feasible points. Specifically, and in contrast to

[17], it does not seem possible to restrict this problem to a semi-definite one and thus

guarantee the feasibility of the incumbent solutions.



Chapter 2

Global Optimization of SIP using

Interval Methods

The goal of this chapter is to describe a global optimization algorithm for SIP based

on interval methods and implemented in a branch-and-bound (B&B framework). We

refer to [27, 75] for the original contribution and to [62] for background material on

B&B algorithms for continuous global optimization. First of all, we provide defi-

nitions and necessary assumptions for the global optimization algorithm in Section

2.1. In Sections 2.2 and 2.3 we describe the upper and lower bounding methodolo-

gies respectively. Then, in Section 2.4 we propose the global optimization algorithm

and prove its convergence to an e-optimal solution value in Section 2.5. Finally, we

provide a heuristic way to alleviate part of the computational cost in Section 2.6 and

also provide some numerical results and comment on the efficiency of the algorithm

in Section 2.7.

2.1 Assumptions and Definitions

To the definitions mentioned in Section 1.2 we add the following:

Definition 2.1 (Diameter of a Set). Let Z C R'S . The diameter of Z, denoted w(Z),



is the maximal distance between two points in Z

w(Z)= sup Izl-z211-
zI,z 2 EZ

Definition 2.2 (Subdivision). A subdivision of the set P is a finite collection of

subsets P, C P, with index set I such that

P= U P

TEI

and int (P, , ) nint (PT2) = 0, VT1, 72 E I: 71 7 2.

A subdivision of P with index set 12 is a refinement of the subdivision with index set

I1, if for all 72 E 12 there exists 7-1 I1 such that P,2 C P,1 and for some -2 E 12 there

exists T7 E I, such that P,2 C P,~ and P2 # P-,. A sequence of refined partitions

with index sets I1,12, I ... , Ik is called exhaustive if for k --+ o for all Tk G Ik the

diameter of the corresponding set vanishes w(PYk) -- 0.

Assumption 2.3 (Host Sets).

products of (compact) intervals,

are known (X = [XL, xU] and P

The host sets X C IRn , P C IR"• are Cartesian

i.e., for all variables and parameters explicit bounds

= [pL, pU]).

The set of vertices of P is denoted Pe. Based on Assumption 2.3,

Pe = P E P: P {pL,pU}, Vj = 1,...,nP}

and the cardinality of Pe is given by I Pe= 2"

Assumption 2.4 (Basic Properties of Functions). The functions f : X - + R and

g :X x P --+ R are twice continuously differentiable on some open set containing X

and X x P, respectively. Moreover, the constraint g is a factorable composite function

[81] of functions with known convex underestimating and concave overestimating

functions.



2.2 Upper-Bounding Problem

As discussed in Section 1.7.2, a finitely-constrained upper-bounding problem for a

SIP may be constructed using an inclusion for the constraint function g on P. A

convergent sequence of upper bounds may be generated using increasingly tighter

inclusion functions derived using the subdivision notion. A partition of the interval

P is used to formulate the upper-bounding problem solved at each node of the B&B

tree. This partition, P = U P,, is determined solely by the depth, q, at which the
TETq

node occurs in the B&B tree, and is independent of the iteration number, k, and

the node in question. For an infinite sequence of nested nodes { Mkq}, the partition

elements P, are required to be monotonically decreasing in width such that degeneracy

is approached in the limit q -- 00, i.e.,

max w (P) > max w(P,)
TETq rETq+1 (2.1)

lim max w(PT) = 0.
q-+oo TETq

The collection of sets {P,},TT is used to define the feasible region for the following

upper-bounding problem:

min f(x)
XEMkq

s.t. gU(x, P,) < 0,VT E Tq. (2.2)

The objective function value at any feasible point of (2.2) provides an upper bound

on the minimum solution value of the SIP on Mkq.

f I CR E {f(x) : x E Mk,, gU(x, P,) < 0, VT E Tq}

If no feasible point can be found for (2.2), fIqCR = +oo is assigned. Once (2.2) has

been determined for each node Mi E Ik, the overall best available solution and upper



bound are updated by setting

Cek = min fICR
MiEIk

Xk E {x: f(X) = ck, x E Mi, gU(x, P,) < 0, Vr E Tq}.

2.3 Lower-Bounding Problem

As discussed in Section 1.4.1, discretization methods can be used to generate conver-

gent outer approximations for a semi-infinite program. In the context of the SIP B&B

algorithm, a discretized approximation may be used to generate a valid relaxation for

the SIP on a given node. The grid, or index set, Sq C P, is determined only by the

depth, q, at which the corresponding node occurs in the B&B tree. To preserve the

convergence of the SIP B&B procedure, the grid sequence {Sq} associated with an

infinite sequence of nested nodes {Mkq } is required to satisfy the following properties:

Sq C Sq+1 C P
(2.3)

lim dist(Sq, P) = 0,
q--oo

where the grid density dist(S,, P) is defined in (1.9). If fkSIP is defined to be the

solution value of the SIP on a (feasible) node Mkq C X such that

fSIP = min f(x)
q "xEMkq

s.t. g(x, p) < 0, Vp E P, (2.4)

then solving the following finite relaxation yields a lower bound fk _ fS'P:

f = min f(x)
q XEMkq

s.t. g(x, p) < 0, Vp E Sq. (2.5)

The feasible sets defined by the constraints in (2.4) and (2.5) are referred to hereafter

as {x : gS(x) < 0} and {x : gD(x) < 0} respectively. When both the inclusion-



constrained reformulation and the discretized approximation are convex in the op-

timization variables, x, the upper and lower-bounding problems formulated at each

node can be solved globally without excessive computational effort. In such cases, it

is not necessary to branch on the set X; a single upper and lower-bounding problem

is solved at each iteration using Ik = {X} such that the depth, q, used to define Sq

and Tq, is set by q = k. To solve the convex SIP to c-optimality, the upper and

lower-bounding problems so defined are solved over a finite number of iterations k*

such that fCR _- fD E, k > k*. When the SIP is convex in the optimization

variables but the ICR introduces nonconvexities in (2.2), the discretized problem in

(2.5) is solved (globally) for a lower-bounding solution, and the inclusion-constrained

reformulation is solved (locally) for an upper-bounding solution defined by (2.2), and

in general it will be necessary to branch on X in order to converge the upper bound.

In the general case, the functions f(x) and/or g(x, p) are nonconvex in x and,

therefore, (2.5) must be solved globally in order to provide a valid lower bound on

fkS"IP. Such an approach requires multiple nonconvex NLPs to be solved to global

optimality at each iteration, and quickly becomes computationally prohibitive with

increasing q. Instead, a convex relaxation of (2.5) may be solved for a lower bound

on fIsP. This approach entails significantly lower computational cost per node, but

yields a potentially looser lower bound than (2.5). Consequently, a larger number

of iterations may be required for the lower-bounding sequence {ý3k) to converge. In

order to derive a valid convex relaxation, the McCormick factorization scheme [81] is

applied to (2.5) to generate an equivalent reformulation in the following form:

f"D = min yN(X)

s.t. X 5 < yn(x) X nk V = 1 ... , (2.6)

yn(x) < , Vn = (N - Sq),...,(N - 1) ,

where N is total number of McCormick factors needed to reformulate (2.5) exactly.

The factors yn(x), n = 1,..., nr correspond to the elements of the decision vector x.

The remaining factors yn, n = (nx + 1),..., N are defined recursively as univariate



compositions, sums or bi-products of previously-defined factors. Wherever necessary,

the bounds for the intermediate factors y,(x), n = (nx + 1),..., (N - ISq - 1) are

estimated using interval analysis methods. The (unconstrained) terminal factor YN is

defined to evaluate to the objective function value of (2.5). The constrained factors

yn, n = (N- ISqI),..., (N - 1) are defined to evaluate to the constraint values

g(x, pm), m= 1,..., ISq.

The convex underestimating program derived from (2.6) is:

fkDC = min y' (x)

I.t. xX,k • y XV = 1, ... ,nx (2.7)s.t. Xnkq < Yn,

y,(x) O0, Vn = (N - ISql),... , (N - 1),

where the factors y, (x), n = n + 1,... , N are defined recursively using convex

and concave inequality and equality constraints. It can be easily shown that since

all the convex and concave envelopes of the elementary functions of the problems

under investigation are continuous, then the McCormick underestimators are also

continuous. For notational convenience, the feasible set of (2.7) is denoted as {x E

Mkq I gDC(x) < 0}. A lower-bounding solution for each node Mi E Ik is assigned by

solving (2.7) on each of the active sets in the current partition. Each node for which

f DC exceeds the best available upper bound ak is fathomed. The overall lower bound

is then updated by setting:

k = min fiDC

The bound-improving property is established by selecting the node (or one of the

nodes) at which a lower bound of fk is attained, for further refinement. Two new

nodes are subsequently generated by bisecting the selected node along the dimension

n n*l This refinement procedure(or one of the dimensions) which maximizes -x Threi -nen p,i . rocedure

results in an exhaustive subdivision scheme such that any infinite sequence of nested

nodes generated by the B&B procedure approaches degeneracy in the limit q -+ co,

i.e., lim w(Mkq) = 0 [63].
q--*oo



2.4 Global Optimization Algorithm

The B&B procedure for solving general nonconvex SIPs to E-optimality is outlined

below:

1. Define the grid sequence {Sq} and the partition sequence {Tq}.

2. Set k := 0, Ik = {X}.

3. Set ao := +oo.

4. Locate a feasible point for the inclusion-constrained reformulation on X if pos-

sible. Solve the convexified discretized approximation (2.7) on X. Set ao and

,30 to the respective solution values.

5. If co - Po0 5 then stop and assign fSIP = a0 and xSIP = Xk E {X : f(x) =

a 0, x E X, gU(x, Pr) 5 0, -r E T1}.

6. Delete (fathom) from Ik all nodes Mi E Ik for which fpC > ak.

7. Select a Mi E Ik such that fk = fiDC

8. Generate two new nodes by bisecting Mi along the dimension (or one of the

dimensions) which maximizes jx,i - x, i. Delete M from I.

9. Set k:= k + 1.

10. Add the two newly-created nodes to the set Ik. Copy all surviving nodes from

Ik-1 to Ik.

11. Solve (2.7) for fpC on each of the newly-created nodes i E Ik. Assign fDC = +oo

for each node at which (2.7) is infeasible. For each node attempt to identify a

feasible point xi in the ICR-feasible set. If a feasible point is found, assign the

corresponding objective function value to fiCR. Otherwise assign f!CR = +CO.

12. Set ak = min filCR

13. Set /k = min foDC



14. If ok - )k < E then stop and assign f sP = ak and x S I P E I {: f(x) = ak, X E

Mi, gu(x, P,) < 0,7- E Tq}. Else repeat steps 6 - 13.

2.5 Finite e-convergence of the SIP B&B algorithm

In this section the finite e-convergence of the SIP B&B algorithm is proved. Specifi-

cally, the generated sequences of lower and upper bounds are guaranteed to converge

to the true SIP solution value in the limit k - oo whenever for every minimizer x*

there exists a sequence of Slater points xn for which lim xn = x* and qx < qx, V
n--oo

n. First of all, we provide a basic result on the McCormick underestimators. Then,

we show that the lower bounding operation is strongly consistent. Furthermore, we

prove that the B&B scheme cannot generate an infinite sequence of nested nodes,

{Mkq}, which converges to an infeasible point in X, i.e., fathoming nodes for which

the convex underestimating program is infeasible is a deletion-by-infeasibility rule

[62] which is certain in the limit. Finally, the convergence of the lower and upper

bounding procedures is shown which leads to the conclusion of finite e-convergence

of the B&B algorithm.

Lemma 2.5. Assume an infinite sequence of successively refined partitions converging

to a point R, and a function f that is factorable in the sense of McCormick. Denote

C(Mkq) the value of the McCormick lower bound of f at node Mk,. Then, lim C(Mk,)
q--.oo

= f (X)

Proof. The rectangular partitioning of the X-space guarantees that every undeleted

partition element can be further refined. Assume an infinite decreasing sequence

{Mk, } of refined partition elements.

The construction of the McCormick relaxation for f ensures that

C(Mkq) 5 f(R).

C(Mk,) is a non-decreasing (from the McCormick construction) sequence of rigorous

lower bounds that is bounded above by f(R) and therefore it converges.

52



From continuity of f, V E > 0, 3 61 > 0: I x - :ll < 61 implies that If(x) - f(I)l

< E. From the properties of the McCormick relaxation: V e > 0, 3 q' > 0 :

q > q' implies Ifkq() - f(X)I < e, where fkq is the McCormick underestimator for

the partition Mk,. The McCormick underestimators employed are continuous by

construction (see Section 2.3): V e > 0, 3 62 > 0 for which: lix - k I < 62 implies

fkq,,(x) - fkq,(x) < E. Thus, V e > 0, 3 6* < min{61,62}, for which:

1. If(x) - f (x)l < E, V x E X., X. = {x E X : |ix - •i I5 6*}.

2. fkq, (x)- fkq,( ) < E, V x e Xj..

3. fkq(X)- f(x)I < e, V q > q'.

For any two points x1 , x 2 E Mkq, n X•.:

fkq, (Xi) - f(x) < fk,(Xl) - fkq()+ fkq 0) - f X) + f() - f(X2). (2.8)

From the analysis above each term on the right hand side of inequality (2.8) is less

than E and thus:

fkq, (X) - f(X 2) < 3e. (2.9)

For all q > q' that satisfy Mkq C Mkq, n X6 ,, and for any two points xl, x2 E Mkq:

fkq (XI) - f(X2) fkq(Xl) - fkq, (X1) I•, x fq, (X) f(X2) . (2.10)

Considering (2.9), (2.10) becomes:

Ifk(Xl) - f(x2)1 • fk(Xl) - fkq,(Xl) + 36. (2.11)

Analyzing the 1st term on the right hand side of (2.11) we obtain:

Ifkq X) - fkq, (XI) 5 fkq (X) - f(x)I + f(xI) - fkq(X1) . (2.12)



From the properties of the McCormick underestimation we know that:

fkq, (x) fk(X1) < f(x1), Vq > q'.

From (2.9), for xl - x 2 we obtain:

fkq, X1) - f(xl) < 3E.

From (2.13) and (2.14) we obtain:

Ifk(xi) - f(xi1) < 3e.

From (2.14) and (2.15), (2.12) becomes:

Ifk, (x) - fkq, (x1) 6E.

Taking into consideration (2.16), (2.11) becomes:

fkq (Xl) - f(x2)I < 9E.

Since Mk, is compact and fkq is continuous, min fkq is attained.
xEMkq

Thus 3 xl such

mmin fkq. Furthermore, taking x 2 -a , (2.17) becomes:
xEMkq

V6 > 0, 3 q* > q/ : Vq > q*, min fk, -
xEMkq

f() < 9g. (2.18)

Since C(Mk,) = min fk,, relationship (2.18) becomes:
XEMkq

We > 0, 3 q* > q' : Vq > q*, IC(Mkq) - f(k) < 9E.

(2.19) implies that:

lim C(Mk,)= f(=).
q--oo

(2.13)

(2.14)

(2.15)

(2.16)

that: fkq(x) =

(2.17)

(2.19)

(2.20)



Lemma 2.6. The fathoming of nodes which are infeasible for the convex lower-

bounding problem (2.7) is a deletion-by-infeasibility rule which is certain in the limit.

Proof. As noted in the previous section, the exhaustiveness of the partitioning pro-

cedure guarantees that any infinite sequence of nested nodes converges to a point R.

Assume that x is infeasible, thus there exists p for which g(R, p) > 0. By continuity

of g(c, -) it follows that there exists an open ball around p of some radius 6, namely

P6, for which V p E Pj, g(7, p) > 0.

The exhaustiveness of the gridding of the P-space ensures that there exists a

level of the branch-and-bound tree, for which a point p' E P6 will be found. From

(2.3) one constraint for the function g at p' will be present at every subsequent

level. Let the function g'(x) correspond to the constraint at p'. From Lemma 2.5,

lim min gDC(x) = g'(c), where g DC is the McCormick relaxation for the constraint
qn-oo XEMkq4

function g' at node kq.

The statement above along with the fact that g'(k) > 0 imply that there exists

some finite q* for which q > q* implies that min g'C(x) > 0. This finally implies
xEMk g

that the lower bounding problem is clearly infeasible for q > q* and a node containing

x will be fathomed no later than at node q* + 1.

Thus, the branch-and-bound tree can't generate an infinite decreasing sequence

of nested nodes converging to an infeasible point. O

Lemma 2.7. The lower bounding operation is strongly consistent.

Proof. Assume an infinite sequence {Mk, } of successively refined partitions. From

Lemma 2.6 we already know that this sequence will converge to a feasible point x.

This implies that the lower bounding problem will always be feasible for this sequence

of nodes and specifically:

C(Mkq) • 1(Mkq) : f(x). (2.21)

where ,(M4k) is the minimum of the convex (McCormick) lower-bounding problem



on the partition Mkq for the constrained problem. From (2.20) and (2.21) and the

sandwich theorem we finally obtain:

lim /3(Mkq) f(X).
q--oo

Lemma 2.8. The lower bounding operation converges to the global solution of the

SIP, i.e., lim /k = fSIP
k--oc

Proof. From the analysis that has preceded we already know that:

1. The rectangular partitioning guarantees that the partitioning is exhaustive.

2. The selection of the partition sets to be refined is bound improving. This was

shown in the description of the algorithm.

3. The lower bounding operation is strongly consistent (Lemma 2.7).

4. The deletion by infeasibility rule is certain in the limit (Lemma 2.6).

From [62] we obtain that: lim /k = fSIP
k--oc

Let X, be the set of the Slater points within the feasible set of the SIP. From the

assumption that for every global minimizer x* there exists a sequence of Slater points

converging to x*, the set X, is non-empty.

For every x E X, assign two numbers. Call ql the earliest level of the branch-and-

bound tree for which x is found feasible to the upper bound operation. From (2.1)

and (2.3), the fact that the subdivision of the parameter space is uniform and finally

from Theorem 1, the existence of such a level is guaranteed for every x.

Call qx the earliest level of the branch-and-bound tree for which x and the global

minimizer x* do not belong to the same node. The root node ensures that these two

points are together initially, and the exhaustiveness of the partitioning of the X-space

ensures that these two points will finally belong to different nodes (if x* # x).



Lemma 2.9. Assume that for every minimizer x*, there exists a sequence of Slater

points x, satisfying:

1. lim xn = x*
n---Oo

2. qn < q2 , V n.

Then, the upper bounding operation converges to the global solution of the SIP, i.e.,

lim ak = fSIP
k-.oo

Proof. Consider, initially, only the lower bounding operation of the branch-and-bound

tree. From Lemma 2.8, lim 3k = fSIP. The fact that k -+ oo implies that there
k--oo

exists an infinite sequence of nested nodes {Mkq }. This infinite sequence of nested

nodes converges to a point, R. From Lemma 2.7, lim min 3(MkJ) = f(R). This
q--oo xEMkq

implies that x must be a global minimizer, else f(k) > fSIP and there would exist q'

for which P(Mkq) > fSIP. This suggests that the best bound heuristic would never

have selected that node again for branching (that node could never provide the best

lower bound). Therefore, we have shown that if the lower bounding procedure creates

a infinite sequence of nested nodes, this sequence converges to a global minimizer.

Assume E > 0. Since f is continuous, 3 6 > 0, such that, I x - ~Rl < 6, namely

Xj, implies f (x) - f ()I < e.

Consider the sequence of nested nodes {Mkq } containing :R. There exists q' for

which q > q' implies Mkq C X6 . Now consider q* > q' for which there exists a member

of the sequence xn, namely x,. for which x,. E Mkq. but xn. ý Mkq,*+. Every member

of the sequence x, will finally not belong to the same node as R, thus the existence

of q* is justified.

Thus, at some finite iteration either a solution to the SIP will be found or Mkq*

will be branched on. It is evident that r, = q* + 1 and, from the 2nd assumption,

that 7- < q*.

Thus, when the node Mkq * is examined at some finite iteration kq*, x,* is feasible

to the upper bounding problem. Therefore, an incumbent at that node will be found,

and any such incumbent, say a(Mkq.) would satisfy [a(Mkq.) - f(R)j < e. Since



a(Mkq.) > f(R), this implies that a(Mkq.) < f(R) + e. Thus for all k > kq., ak <

ol( Mkq.) < f (x) + E.

Finally, V E > 0, 3 kq. for which k > kq. implies f(R) < ak < f(R) + e. This

implies that lim ak = f(X) = fSIP.
k--*oo

Remark 3. In this remark, the assumption on the convergence of the upper bounding

operation will be commented on.

1. In general, the hypothesis of the Lemma is hard to verify a priori. However,

the difficulty eliminated by this hypothesis was not encountered for any of the

test problems (see Appendix A) as evidenced by finite convergence for all these

problems. It is conceivable that the basic algorithm can be modified to incor-

porate an adaptive subdivision strategy that would enable this assumption to

be relaxed to one in which Slater points exist arbitrarily close to all minimizers.

Such adaptive subdivision strategies will be the topic of future research.

2. It can be easily shown that the breadth first search converges with much milder

assumptions than the best bound heuristic that was actually employed. Specif-

ically, the breadth first search requires only the existence of a minimizer x* for

which a Slater point can be found arbitrarily close to x*.

Theorem 2.10. The SIP B&B procedure is finitely-convergent to e-optimality, such

that ak - fk 5 e at termination and xk approximately solves the SIP.

Proof. Follows immediately from Lemmas (2.8) and (2.9). O

2.6 The Exclusion Heuristic

One major drawback of the SIP B&B implementation described thus far is that the

number of constraints used to formulate the upper-bounding problem grows expo-

nentially with the depth of a node, q. Clearly, the maximum width maxw(P,), must
rETq

be decreased at each successive level of the B&B tree in order to preserve the finite



c-convergence of the procedure. However, repeated (uniform) subdivision of the in-

terval P may generate certain upper-bounding constraints in (2.2) which are inactive

at all feasible points of a given node. Furthermore, if the constraint associated with

a particular subinterval P, is inactive at all feasible points of a given node Mk,, any

constraints arising from further division of this subinterval will clearly be inactive at

all of the descendant nodes, i.e.,

3r1 E Tq : gU(x, P,,) < 0, Vx E Mk, = 3T2 E Tq+1 : gU(x, P 2 ) < 0, Vx E Mkq+l

Such constraints can safely be eliminated without altering the feasible set of the

upper-bounding problem. We refer to this elimination procedure as the exclusion

heuristic. This modification to the original SIP B&B algorithm may generate con-

siderable computational savings by enabling smaller NLPs to be solved at each node.

Interval analysis may be used to identify the redundant constraints by evaluating an

inclusion for g(x, p) over each of the domains Mk, x P, 7r E Tq. An inclusion bound

GU(Mkq, P,) < 0 indicates that the upper-bounding constraint corresponding to P,

is inactive for all x E Mk,. Consequently, this constraint may be dropped from the

upper-bounding problem solved at the current node, and all constraints arising from

the subdivision of P, may be dropped from the upper-bounding problems solved at

its descendant nodes. Similar to the formulation of the upper-bounding problem, the

exclusion heuristic benefits from the use of tighter inclusions for g(x, p). As before,

some trade-off must be made between the quality of the inclusion bound, and the

computational cost associated with calculating it.

Analogous to the inclusion-constrained reformulation, the lower-bounding prob-

lem also suffers from an explosion in the number of constraints if the discretization

mesh is subjected to uniform refinement at each level of the B&B tree. Once again,
the exclusion heuristic may be helpful in identifying redundant constraints, thereby

reducing the size of the convex relaxation which must be solved at each node. It



follows from the properties of inclusion functions that

Ou(Mkq, PT) <0 = g(x,p) < 0, V(x,p) E Mk P, (2.22)(2.22)
: gCxp) < V(p)< , (x,p) EMkq X P

i.e., the endpoints of the 'inactive' subintervals will yield inactive constraints in the

corresponding lower-bounding problem. Moreover, these points will remain 'inactive'

at all descendant nodes.

2.7 Numerical Implementation and Results

The SIP B&B algorithm was implemented using an in-house B&B code. The upper

and lower bounding problems were solved using the SQP solver SNOPT 6.1-1 [46].

Natural interval extensions were used to calculate the inclusion bounds gnU (x, P).

The set of partition elements used to define the upper-bounding problem at a node

occurring at level q was defined to be {P, }, T E Tq, where Tq = {1, 2,...,29q}fnp. The

index set Sq associated with each node occurring at level q was defined to be the set

of upper right endpoints of the subintervals P,, i.e., Sq = {Pu,}, E Tq. These sets

can be shown to satisfy (2.1) and (2.3) respectively.

The SIP B&B procedure was applied to examples 1,2,3 and H (see Appendix

A) from the Watson test set. The relative and absolute tolerances for retaining a

node within the B&B tree were set to 0.01, apart from Problem 3 where the relative

tolerance was relaxed to 0.02. The optimality tolerances of the NLP solver were set

to 10- s . When solving certain convex lower bounding problems SNOPT provided

the message that the current point cannot be improved. Examining those nodes it

was found that in each case the incumbent was infeasible and thus infeasibility was

assumed for these nodes. All numerical experiments were carried out in a 3,4 GHz

PIV running Linux.

Tables 1-4 summarize the numerical results from the implementation of the exclu-

sion heuristic and/or the upper bounding methodology using different methodologies.

Table 1 refers to the implementation of the basic B&B procedure, while Table 2 refers



to the implementation of the exclusion heuristic using natural interval extensions. Ta-

ble 3 refers to the implementation of the exclusion heuristic using optimally-centered

Taylor forms while Table 4 refers to the implementation of both the upper-bounding

methodology and the exclusion heuristic using optimally-centered Taylor forms.

For Tables 1-4, column 1 refers to the index of the problem, column 2 refers to

the total number of nodes that are required for convergence and column 3 refers

to the maximum depth within the B&B tree that the procedure visited in order

to converge. For Table 1, columns 4,5,6,7 and 8 refer to the total CPU time, the

incumbent solution value of the proposed algorithm, the incumbent solution value

of the reduction algorithm applied in [33], the incumbent upper bound on the root

node and the incumbent solution of the proposed algorithm, respectively. For Tables

2-4, columns 4,5,6 and 7 refer to the depth that a constraint was first dropped using

the exclusion heuristic, the total number of constraints dropped, the total number of

constraints visited by the lower-bounding procedure in all the nodes and the CPU

time, respectively.

For examples 1 and 4, the interval-constrained reformulation produced the optimal

solution value of the SIP on the root node. For all examples, even for 2 and 3 where the

interval-constrained reformulation was inexact at the root node, the upper bounding

methodology had essentially terminated quite early and the bulk of the CPU time

was spent on converging the lower bounds by making the discretization grids finer

and solving the corresponding lower-bounding problems.

For all of the examples, the exclusion heuristic did not alter the number of nodes

that were visited by the algorithm. This was expected because the heuristic was

only employed to remove redundant constraints. However, both implementations of

the heuristic, i.e. the natural interval extensions and the optimally-centered Taylor

models did accelerate the convergence of the algorithm by making each subproblem

cheaper to solve. Especially for example 3, the most computationally demanding

problem, the reduction of CPU time was almost 45%.

The implementation of the upper bounding methodology using optimally-centered

Taylor forms accelerated the convergence with respect to the basic implementation



Table 2.1: Convergence Results for Basic SIP B&B

Problem Total Max. CPU f fRED f ICR Solution
Nodes Depth

1 27 13 16.05 -0.250 -0.250 -0.250 (0.000,0.500)
2 19 6 0.08 0.195 0.195 0.381 (-0.751,0.618)
3 75 15 415 5.334 5.334 27.41 (-0.214,-1.362,1.854)
H 43 13 24.36 0 0 0 (0.0,0.0)

Table 2.2: Results for Exclusion Heuristic using Natural Interval Extensions

Problem Total Max. Depth of Total Total CPU
Nodes Depth First Drop Dropped Constraints

1 27 13 9 58610 65530 7.2
2 19 6 6 126 421 0.07
3 75 15 4 277134 991210 306
H 43 13 1 20622 112637 20.80

but did not offer any computational gain over the other implementations; on the

contrary it decelerated the convergence and that can be accounted to an increasing

cost of evaluating the upper bounding functions.

In conclusion, the overall solution time represents some trade-off between the cost

of evaluating more complicated upper-bounding constraints and the benefits derived

from using higher-order inclusion functions to formulate the upper-bounding problem

and/or the exclusion heuristic.

Table 2.3: Results for Exclusion
Taylor Models

Heuristic Implemented using Optimally-Centered

Problem Total Max. Depth of Total Total CPU
Nodes Depth First Drop Dropped Constraints

1 27 13 4 59082 65530 7.04
2 19 6 6 128 421 0.07
3 75 15 3 597420 991210 230
H 43 13 11 20620 112637 20.84



Table 2.4: Results for Exclusion Heuristic and Upper-Bounding Problem Formulated
using Optimally-Centered Taylor Models

Problem Total Max. Depth of Total Total CPU
Nodes Depth First Drop Dropped Constraints

1 27 13 4 59082 65530 19.45
2 19 6 6 128 421 0.08
3 75 15 3 597420 991210 307
H 43 13 11 20620 112637 28.56





Chapter 3

Relaxation-Based Bounds for SIP

The goal of this chapter is to introduce and analyze a new methodology to pro-

vide guaranteed feasible points for SIP. We refer the reader to [84] for the original

contribution. First of all, we introduce the notion of relaxing and restricting the

lower-level problem for SIP in Section 3.1. In Section 3.2, we provide some definitions

and assumptions. Then, we provide a brief overview of the construction of convex

relaxations for finite programs in Section 3.3. Furthermore, we describe various al-

ternatives ways of generating guaranteed feasible points for SIP in Sections 3.4, 3.5

and 3.6 and we provide a brief convergence proof in Section 3.7. Finally, we provide

numerical results from the Watson test set [135] in Section 3.8.

3.1 Bounding the Lower-Level Problem

In Section 1.6 we mentioned that any feasible point of the following program:

min f(x)
xEX

s.t. h(x) 0, (3.1)

where h(x) > O(x,P) - maxg(x, p), is a feasible point of the original SIP (1.1).
pEP

For each x E X, h(x) is an upper bound to the global solution value of the lower-

level problem at x. Since the lower-level problem involves maximization, h can be



considered as a relaxation of g(., P) on X. Therefore, any upper bounding approach

for SIP, whether the ICR or a method employing convex relaxations, constructs a

relaxation of the lower-level problem for each x E X which results in a restriction of

the overall problem.

Similarly, lower-bounding methodologies for SIP, such as discretization approaches,

construct a restriction of the lower-level program for each x E X. To illustrate this,

recall that in discretization methods the following generic subproblems are generated:

min f(x)
xEX

s.t. g(x,p)< 0, Vp E Pi, (3.2)

where Pi is a finite subset of P indexed by the iteration number i. Denote ki(x) =

max g(x, p). Then, problem (3.2) is equivalent to
p Pi

mmin f(x)
xEX

s.t. ki(x)< 0. (3.3)

Clearly, k2(x) < O(x, P), for all x E X and for all i E N. Therefore, the lower-

level problem is restricted for all x E X (recall that the lower-level problem involves

maximization) and this leads to a relaxation of the overall problem (3.3).

3.2 Definitions and Assumptions

To the assumptions and definitions that were stated in Sections 1.2 and 2.1 we add

the following definitions:

Definition 3.1 (Relaxation of Functions). Given a convex set C C Rnz and a function

h : C --+ R, a convex function hU : C --+ R is a convex relaxation of h on C if

h(z) < h(z), Vz C



and a concave function h' : C -4 R is a concave relaxation of h on C if

h°(z) Ž h(z), Vz E C.

The convex envelope hU : C --+ R of h on C is a convex relaxation of h on C such

that for any convex relaxation hu of h on C

h"(z) h"(z), Vz e C.

Similarly, the concave envelope ho : C - R of h on C is a concave relaxation of h on

C such that for any concave relaxation ho of h on C

ho(z) • ho(z), Vz E C.

Definition 3.2 (Relaxation of Programs). Let ZD, ZE C Rgn and consider the opti-

mization problems

inf fD(z) and inf fE(z)
zEZD ZEZE

If ZD C Z E and fE(z) < fD(z), VX E ZD, the optimization problem inf fE(z)
-EZE

is said to be a relaxation of inf••zD fD(z). Similarly the optimization problem

inf fD(z) is said to be a restriction of inf fE(z).
zEZD zEZE

A direct consequence of relaxations/restrictions is that inf fE(z) < inf fD(x).
zEZE ZEZD

For maximization problems the above inequalities have to be reversed.

Definition 3.3 (Convex Program). The minimization problem inf f(z) is called con-
zEZ

vex, if Z c Rn. is convex and f is convex on Z. Similarly the maximization problem

sup f(z) is called convex, if Z C R-fz is convex and f is concave on Z.
zEZ

Definition 3.4 (Convex Relaxation of Programs). Let ZD, ZE C R n. The optimiza-

tion problem inf fD(z) is a convex relaxation of inf fE(z) if it is a convex program
zEZD zEZE

and a relaxation of inf fE(z).
zEZE



3.3 Convex Relaxation

Most global optimization algorithms, such as spatial branch-and-bound and outer ap-

proximation, rely on the construction of convex relaxations. Given a box-constrained

nonlinear program (NLP)

max h(z)
z

s.t. z E [zL, zU = Z C Rnl (3.4)

with a nonconvex objective function h(z), the goal is to construct a convex maxi-

mization problem, i.e., a program with convex constraints and a concave objective

function, whose optimal objective value overestimates the optimal solution value of

(3.4). Convex and concave envelopes or tight relaxations are known for a variety

of simple nonlinear terms [4, 110, 127] and this allows the construction of convex

and concave relaxations for a quite general class of functions through several meth-

ods [5, 44, 81, 110]. All the methods proposed in the literature essentially rely on

a few key ideas and components. McCormick's results [81] allow the construction

of convex and concave relaxations of functions defined by recursive compositions of

elementary operations and intrinsic functions. Floudas and coworkers [4, 5, 6] have

proposed convex relaxations for arbitrary, twice continuously differentiable functions

by the addition of a simple, sufficiently negative function that is known to be convex;

concave relaxations are handled similarly. Both approaches can also use auxiliary

variables and constraints. Smith and Pantelides [110] formalized the use of auxiliary

variables, while Gatzke et al.[44] demonstrated how these methods can be combined

and automated. Tawarmalani and Sahinidis [126, 127] proposed to further relax the

convex relaxations via linearization to take advantage of the scalability of linear pro-

gramming (LP) solvers. While many combinations of the above ideas are conceivable,

we consider three extreme cases of convex relaxation that are of particular interest

for the relaxation of the lower-level program. We also discuss how to construct lin-

earizations of these convex relaxations.



3.3.1 Nonsmooth Concave Overestimation

The first alternative we consider is to construct a concave relaxation of the objective

function in (3.4) by successively applying McCormick's composition theorem, with-

out the addition of variables and constraints. McCormick [81] presents convex and

concave relaxations of a function

ht (z) = T(t(z)) + U(u(z))V(v(z)),

where T, U, V : R -- R are continuous and t, u, v : Z --+ R are continuous on Z.

Assuming that convex and concave relaxations are known for all functions (t, u, v

and T, U, V), and bounds are known for the ranges of the inner functions (t, u, v),

McCormick's composition result provides convex and concave relaxations for ht on

Z. Recursive application of this result allows the derivation of convex and concave

relaxations for complicated expressions termed factorable expressions. Assuming that

the objective function h in (3.4) is factorable, we denote ho,mc : Z --+ R the concave

relaxation constructed by the recursive application of the composition theorem. Since

homc(z) Ž> h(z) for all z E Z, the optimal objective value of

max homc(z) (3.5)
ZEZ

overestimates the optimal objective value of (3.4). While convex, (3.5) is not necessar-

ily smooth, and therefore standard optimization techniques relying on the satisfaction

of KKT conditions are not applicable in general. Since it is box-constrained, the lin-

earization (using subgradients) at an arbitrary point z E Z results in a linear program

which is a further relaxation.

Example 3.5. Consider the program

max zl + ez1z (3.6)
zE[-1,1]

2

with an optimal objective value of 1 + e 3.73 and two optimal solutions zl =



z2 = -1 and z= = = 1. A convex relaxation based on McCormick's composition

theorem is constructed as follows. First the objective function is split to the terms

z and ez l z2. The first term is univariate convex and therefore its concave envelope

is given by the secant which for z1 E [-1, 1] evaluates to 1. The second term is a

composition of the bilinear function t : R2 -+ R, t(z) = zlz 2 and the exponential

function T : C C -+ R, T(w) = ew. The convex envelope of the bilinear function

is given by tu(z) = max{-1 - zl - z2, -1 + z1 + z2} and the concave envelope of

the bilinear function is given by to(z) = min{1 - zl + z2, 1 + z1 - z2}. The range of

the bilinear function on [-1, 1]2 is given by C = [-1, 1]. The exponential function

is monotone increasing and therefore its maximum on [-1, 1] is attained at w = 1.

Since it is also univariate convex, its concave overestimator is given by the secant

e- 1 + (el - e- 1) w+  McCormick's composition theorem contains the mid function

which in this special case always evaluates to tO(z). McCormick's composition theorem

therefore gives a concave relaxation as

max e- (e1  e- min{1 - z1 + z2,1 + Z1 - z 2} + 1max 1 + e + (e - e )zE[-1,1]2  2

with the same optimal objective value as (3.6) and infinite optimal solutions zl = z2.

Note that in this case h,"m e is the concave envelope of h on Z.

3.3.2 Smooth Concave Overestimation

The second alternative we consider is based on the ideas of aBB relaxation by Adjiman

et al. [2, 4, 5] and yBB relaxation by Arkotirianakis and Floudas [6]. To avoid the

introduction of auxiliary variables and constraints, we deviate from the algorithmic

framework presented in these references. Instead of splitting the nonlinear objective

h into the sum of concave terms, special nonconcave terms and general nonconcave

terms we apply the relaxation on the original function. Note also that we consider

the simplest variant of uniform diagonal shift of the Hessian matrix.



Since univariate quadratic terms are convex

nz

ho, (z) = h(z) + a (zi - z')(zz - z)
i=1

is concave for sufficiently large values of a. Moreover for z E Z,

ho,"(z) > h(z), Va > 0.

The smallest possible value for a is obtained by finding the largest eigenvalue of the

Hessian matrix on Z, i.e., by the global solution of a nonconvex optimization problem.

Instead, Adjiman et al.[4] have proposed efficient methods for overestimating a. One

such method is the application of Gerschgorin's theorem and estimating

I max max max{0, Hii(z) + Hij(z) }
2 zEZ i

using interval arithmetic on the Hessian matrix. Note that Hij = 2

Since hoa(z) Ž h(z) for all z E Z and all a > 0, the optimal objective value of

max ho,'(z) (3.7)
zEZ

overestimates the optimal objective value of (3.4). The formulated relaxation (3.7) is

a box-constrained maximization problem with a smooth concave objective function.

The linear constraint qualification along with the concavity of the objective function

make the first-order KKT conditions necessary and sufficient for a global maximum.

Standard, gradient-based optimization algorithms can reliably solve (3.7). Finally,

since (3.7) is box-constrained, the linearization at an arbitrary point z E Z results in

a linear program which is a further relaxation.

The application of yBB relaxation [6] is analogous. In this method, relaxation is



achieved by the addition of exponential terms

nz

ho,7(z) = h(z)+ (1 eyi(zi- z )) (1- ~ (zU-z )
i= 1

Example 3.6. Recall the program (3.6). A convex relaxation based on the aBB

method is given by

max z + exp(zz 2 ) + a/2 ((zi + 1)(1 - z) + (z2 + 1)(1 -2))
zE[-1,1]

2

where a can be calculated through application of Gerschgorin's theorem and interval

extensions

2 max {0, 2 + z2 ez1z2 + ez1z2 + Z2Z eZ i} 1 + 1.5e 5.08
SzE[-1,1]2

1max {O, z2 e12 + Jez2 + z2 z 1 ezz2} = 1.5e - 4.08,
zE[-1,1]2

obtaining a = 5.08. The optimal solution of the relaxation is zl = z2 = 0 with an

optimal objective value of 11.16.

3.3.3 Smooth Overestimation with Auxiliary Variables

The third alternative we consider is the introduction of auxiliary variables w and

constraints as described in [44]. First, a factorable representation of the nonconcave

function h is developed, introducing a new variable wi for each distinct factor. Subse-

quently, the bounds for the auxiliary variables w are propagated via natural interval

extensions by the bounds of z and the auxiliary variables already introduced. At

the next step an equivalent equality constrained program is generated by introducing

the definition of each factor as an equality constraint, and replacing each occurrence

of a nonconvex function with the relevant factor. Finally, each nonlinear equality

constraint is relaxed to pairs of inequalities. If the (smooth) convex and concave

envelopes (or tight relaxations) of the nonlinear expression are known, these are in-

troduced, otherwise convex and concave relaxations are computed by the aBB or



7BB method. Nonsmoothness in an envelope can be represented by multiple smooth

convex inequalities (e.g., the bilinear case).

In the special case that the objective function contains additive univariate convex

terms, these terms can be directly overestimated by the secant without auxiliary

variables. Similarly additive concave terms in the objective are left unchanged. Thus

a concave overestimating objective function ho,ex is obtained. The resulting program

is

max ho~,e(z, 1, w)
z,1,w

s.t. ti(z, 1, w) - wi < 0, i = 1,...,n

w - t(z, 1, w) 0, i = 1, ... ,n

t(z, w, 1) =0 (3.8)

zEZ

1 E [lL , IU] C R n'

we [wL , wU] C R W,

where t' denote affine, t" convex and to concave functions respectively. By construc-

tion, the optimal solution value of (3.8) overestimates the optimal solution value of

(3.4). It is a convex program with linear equality constraints and differentiable con-

vex inequality constraints. Due to convexity, the KKT conditions are sufficient for a

global minimum, and we employ this for the upper bounding procedure. The number

of auxiliary variables and constraints introduced depends on the problem size and

on the problem structure. Since it is bounded by a small number of factors in the

McCormick factorization, it typically is a small multiple of the number of variables.

The existence of a Slater point provides a constraint qualification [20, p. 325] and

in this case the first-order KKT conditions are also necessary for a local and global

minimum. While typically the existence of a Slater point is expected, to our best

knowledge it has not been proved in general for this type of convex relaxations.

Note that since the procedure described here is analogous to the procedure used



in natural interval extensions, which in turn are used to calculate bounds for the

auxiliary variables, the relaxation provided by (3.8) is expected to be at least as tight

as the interval extensions of h over Z. Moreover, by the introduction of auxiliary

variables the relaxations can furnish tighter relaxations than the ones furnished by

McCormick's composition theorem without auxiliary variables [126, p. 128].

A further relaxation of (3.8) can be performed via linearization of the objective

function and the constraints [126]. A weaker linear relaxation can be obtained by

dropping all nonlinear constraints. Finally, an even weaker linear relaxation is gener-

ated by dropping all constraints but the variable bounds and obtain a box-constrained

program.

Example 3.7. Recall the program (3.6). A convex relaxation with auxiliary variables

is constructed as follows. First the objective function is split to the terms z2 and ezIz2.

The first term is univariate convex and therefore its concave envelope is given by the

secant which for zi E [-1, 1] evaluates to 1. For the second term, first an auxiliary

variable w is introduced to replace the bilinear term z1z 2. Its bounds are calculated

via natural interval extension to [-1, 1] and are exact. Subsequently the term ew is

recognized as univariate convex and its concave overestimator is constructed by the

secant e-1 + (el - e-l)w+ . This leads to the nonlinear program

max 1 + e-1 + (el - e-)
zE[-1,1]

2 ,wE[-1,1] 2

s.t. w = ZIZ2,

which is smooth but nonconvex due to the nonlinear equality constraint. It is further



relaxed to obtain

max 1+ e- + (e1 - e 1)
zE[-1,1]2 ,wE[-1,1] 2

s.t. w < 1 - zl + z 2

w < 1 + Z1 - Z2

w > -1 - zl - z2

w > -1 + z1 + z2,

which is smooth and convex. It has the same optimal objective value as (3.6).

3.4 KKT-Based Upper Bound

In the following we describe how to obtain an upper bound by the solution of a MPEC

program. The first step in obtaining the upper bound is to construct a relaxation

of the lower-level program on X, i.e., a maximization program with constraints that

are partially convex on p E P for each x E X and an objective function that is

partially concave on p E P for each x E X and overestimates g(x, -) for all p E P. As

mentioned in Section 3.1, this relaxation results in a restriction of the semi-infinite

program.

The next step is to replace the resulting SIP with a MPEC. A basic requirement for

this transformation is differentiability of the relaxed lower-level program and therefore

only the smooth relaxations described in Section 3.3 are applicable. Moreover, for the

MPEC to be a valid restriction, the KKT conditions need to be sufficient for a global

maximum. This is ensured by the (partial) convexity of the programs. Note that

necessity of the KKT conditions is not required. If the constraint qualifications are

violated and the relaxed lower-level program attains its maximum at a point which

is not a KKT point, the formulated MPEC will be infeasible. Obtaining rigorous

bounds on the KKT multipliers is not necessary but it is still helpful. If the bounds

on the KKT multipliers are underestimated, the upper bounding problem is further

restricted and therefore remains valid, but may be rendered infeasible.



At this point a comparison with the interval inclusion approach described in chap-

ter 2 is warranted. The MPEC problems have additional variables and constraints.

Therefore, they are significantly harder to solve than the ICR [26, 27]. Moreover the

stationarity and complementary slackness constraints are equality constraints and

state-of-the-art finitely terminating algorithms only guarantee the solution of nonlin-

ear equality constrained problems within a tolerance. In some cases it can be shown

that despite this approximation the generated points are guaranteed feasible. On

the other hand, typically, convex relaxations are tighter than interval extensions. As

a consequence the proposed upper bounds will typically be tighter than the ones

furnished by the ICR.

3.4.1 Concave Overestimation without Auxiliary Variables

The first alternative we consider is smooth overestimation of the lower-level program

via the addition of known concave terms. Without loss of generality we consider the

aBB relaxations. Use of the yBB relaxations is analogous. The aBB overestimation

of go9a(x, -) on P is given by

np

9 p'(x, p) = g(x, p) + a (p - pf)(< p-).
i=1

For sufficiently large values of a, the overestimating function go¶,(x, -) is partially

concave on P for each x E X. A sufficiently large value of a is obtained via interval

extensions of the eigenvalue estimates of the Hessian matrix on X x P. Note that for

convergence of go~, to g it is sufficient to subdivide P, without partitioning X.

As described in Section 3.3, the smooth relaxation of the lower-level program via

aBB results in a box-constrained maximization program with a smooth concave objec-

tive function. Therefore, the first-order KKT conditions are necessary and sufficient



for a global maximum and

fUBD,a = min f(x)
x,p,,

s.t. - gO, (x, p) + pj - •n,+j = O, j = 1,..., np

py(py - )= o, j= 1,...,np

p,n+j(-pj +pL) = 0, j= 1,...,np (3.9)

go'•(x, p) < 0

j < a, j= 1 ... ,2n

xEX, pEP

is equivalent to the restricted SIP for sufficiently large ftmax. Note that the number

of variables in (3.9) is equal to the original number of variables nx plus up to three

times the number of parameters 3nr. In addition to the box constraints there are up

to 3n, (potentially nonconvex) equality constraints and one (potentially nonconvex)

inequality constraint. A reformulation to a MINLP is possible by introducing binary

variables and eliminating the KKT multipliers.

As stated above, typical finitely-terminating NLP solvers only approximate equal-

ity constraints. We will show that the feasibility of the points furnished can be easily

verified, or the extent of constraint violation bounded. Suppose that an approxi-

mately feasible point (k, p) of (3.9) is obtained. Since go,' overestimates g and is

partially concave on P we obtain

O(x, P) O' 0 (k, P) < gloa(x, p)+ Emax 9g0 0, p)(p v -9j) gI 90x,p L -1k I)}
j=1

where O denotes the optimal solution value of the lower-level program and 00,a the

optimal solution value of the relaxed lower-level program. Evaluating the above sum

gives the maximum constraint violation for x. If (3.9) is solved with sufficiently tight

tolerances and g'o,(x, p) < -E is used, guaranteed feasible points can be generated.



In order to calculate bounds for the KKT multipliers we first note that

9o,• (x, p) = gp (x, p) + a(p - pj) - a(pj - pL).

Therefore,

max go' (x, p) = -a(p - p) + max g, (x, p)
xEX,pEP:pj==pU xEX,pEP:pj =pU

max -go (x, p) = max (gpj (x, p) - (pU  - p
xEX,pEP:pj =pL xEX,pEP:pj =p

= _-ac(p - p L) - min gpj (x, p) .
xEX,pEP:pj P=p

Whenever a bound is nonpositive (function monotone) the corresponding variable

and complementary slackness conditions are eliminated. For the -yBB relaxation

[6] the second derivatives of the underestimating terms are variable-dependent, but,

evaluated at the variable bounds, they are given by -2(1 + e--(P-P)). Therefore, the

calculation of bounds on the KKT multipliers is analogous.

3.4.2 Concave Overestimation with Auxiliary Variables

We now consider the alternative of introducing auxiliary variables and constraints.

Since this method can take advantage of known convex and concave envelopes, it often

provides tighter relaxations than simply adding a convex term to the functions. On

the other hand, the introduction of extra variables and constraints increases the size

of the lower-level problem. Constraint qualification for this type of programs has not

been shown in general. Moreover, obtaining upper bounds on the KKT multipliers is

not always possible, so replacing the restricted SIP with a MPEC may be a further

restriction and render the upper bounding program infeasible. To ensure convergence

of the upper bounding problem this issue has to be addressed.

To obtain a compact presentation we augment the parameters p with the auxiliary

variables and denote these 1p. Also, we lump the box and auxiliary constraints to the



inequality constraints u(x, p). The resulting restriction of (1.1)

UBD,e = min f(x)
s t. gxEX

s.t. g°,eX(x,p) _ 0, V\p: u(x, p) • o (3.10)

is a GSIP. Note that by construction, for all x E X there exists P, such that u(x, P) <

0 and the GSIP can be reformulated to a bilevel program [119]. By convexity, the

KKT conditions are sufficient for a global maximum in the lower-level program and

f UBD,ex =min f(x)

s.t. - V~go'Xe(x, p) + tLTVpu(x, p)

O' u(x, P)

g (x, p)

u(x, p)

0 eX,

xE X,

=0

=0

<0

<0

(3.11)

p E ]Rn

provides a valid upper bound of (1.1). Recall that the number of variables in the

lower-level problem np and the number of KKT multipliers nr depend on the number

of linear and nonlinear expressions replaced. Here a reformulation as a MINLP is pos-

sible by the introduction of binary variables, but elimination of the KKT multipliers

does not seem possible in general.

3.5 Linearization-Based Upper Bound

Similar to the MPEC-based upper bounds, the first step in the linearization-based

upper bounds is to construct a convex relaxation of the lower-level program and thus



a restriction of (1.1)

min f(x)
xEX

s.t. gO(x,p) _ 0, Vp e P, (3.12)

where go : X x P -- R is partially concave on P for each x E X and gO(x, p)

overestimates g(x, p). Note that for the approach involving auxiliary variables a

somewhat different treatment is needed and described in Section 3.5.3.

The second step further restricts the generated SIP by linearizing at an arbitrary

point p E P, pointwise in X, and creating the following SIP

min f(x)
xEX

s.t. go,•in(x, p) • 0, Vp E P, (3.13)

where goin(x, p) - go(x, p) + E gp (x, p)(pj - pj). An equivalent nonsmooth

reformulation of (3.13) is the following problem

min f (x)
xEX

s.t. max go'lin(x, p) < 0. (3.14)
pEP

Since go,~in is affine in p, the maximum of go,li"(x, -) on P, will be attained at one of

the vertices Pe of P for each x in X. Therefore an equivalent finite representation of

(3.14) is

min f(x)
xEX

s.t. go'lin(x, p) • 0, Vp E Pe. (3.15)

While for any p E P, the formulated finite NLP (3.15) is a valid restriction of

(1.1), the choice of p greatly affects the strength of the generated upper bounds.

Compared to the MPEC-based upper bound, this linearization approach presents the



inherent advantage that it avoids the use of equality constraints (complementarity and

stationarity conditions) and any feasible point of (3.15) is guaranteed feasible for (1.1).

On the other hand, the MPEC approach introduces a polynomial (in the number of

inner variables or in the number of inner variables and nonconvex terms) number of

constraints, whereas the linearization approach introduces a potentially exponential

number of constraints. Moreover, the linearization approach produces bounds that

are at best as tight as the MPEC-based ones, assuming that both problems are solved

to global optimality.

If either of the two following relationships holds for variable pj

max gp (x, p) < 0 (3.16)

min gpo(x, p) > 0 (3.17)

the number of constraints can be reduced. The following procedure describes how

to obtain the (sufficient) subset of extreme points Pe* that needs to be considered in

problem (3.15)

* Initialize Pe, = P,.

* FOR j = 1,..., n, DO

- IF max g (x, p) < 0 THEN Pe* = {p E P,-: pj =p

ELSE IF min g (x, P) > 0 THEN Pe= {p E Pe, pj = }.
xEX

* END

Evaluating the above optimization programs is expensive and we propose to estimate

them with interval analysis.

Finally, it should be noted that for certain nonconvex terms, the concave overes-

timator (or envelope) go is given by more than one smooth function. Any of these

functions that overestimates g(x, .), for each x E X, can be used alone to provide the

smooth overestimator go. Note that using both functions would result in a weaker

upper bound. For instance, for the bilinear term h(pi, p2) = P1P2 any of the two linear



overestimators h° '1 and ho,2 where

ho,1( L U LU(h P) P1P2 +P21 1 P2

S =P) PUlP2 + P2 P1 - P P2

can be used as a valid overestimator for h on [pf, pU1] [p 2U.

3.5.1 Smooth Concave Overestimation

without Auxiliary Variables

Recall that the concave relaxation of g on P using aBB techniques has the form

np

g9"'(x, p) = g(x, p) + a E(p - p )(p - pi)
j= 1

and the linearized approximation of the aBB concave relaxation around a point p E P

is

np

,goci"(x, p) = g'"(x,p p) + Egp (x, p)(p-
j=1

np

- p) + a (-2pj=j=1
+ p + pj)(pj -p)

Therefore, the aBB-based linearized upper bounding problem is of the form

mmin f(x)
xEX

s.t. goalin(x, p) < 0, Vp E Pe*,

where Pe* is calculated by the following procedure

* Initialize Pe* = P,.

* FOR j= I,...,n, DO

- IF max gp (x, p) < a(2pj - pi - pU) THEN P. = { E Pe* : pj = pL}
xEX

ELSE IF min gpj (X, p) > a(2pj - pL _ pU) THEN
xEX

pJ }.

Pe- = {p E Pe- : P =



* END

3.5.2 Nonsmooth Concave Overestimation

without Auxiliary Variables

Similar to the aforementioned technique, the goal of this method is to introduce

a concave overestimator of the constraint g with respect to the inner variables p

using McCormick techniques, and then to linearize the resulting expression around an

arbitrary point p E P. In order to explain the method we first analyze its application

to a (trivial) SIP for which the constraint g does not depend on the variables x

mmin f(x)
xEX

s.t. g(p) < 0, Vp E P. (3.18)

The first step to create a finite and linearized form for this SIP is to create the concave

overestimator go of g on P. In order to use McCormick's composition theorem, we

first write g in the following form

g(p) = H[h(p)],

where h : P -> [gL, gU] C R is a continuous multivariate intrinsic function on P and

H : [a, b] -+ R, where [a, b] D [gL, gU], is a continuous univariate function on [a, b].

The second step is to construct a convex function hu and a concave function h'

that satisfy

hu(p) < h(p) < h°(p), Vp E P,

and also a concave function H' that satisfies

Ho(z) > H(z), Vz E [a,b].

Furthermore, let zmax E arg max Ho(z). By McCormick's composition theorem the
zE[a,b]



function gO,me defined as

go, mc(p) = Ho[mid(hu(p), ho(p), Zmax)]

is a concave relaxation of H on [a, b], and consequently of g on P. Thus a valid

restriction of (3.18) is the following SIP

min f(x)
xEX

s.t. gO',m(p) 5 0, Vp E P. (3.19)

Provided that the mid function gives a unique result, i.e., hu, h' or Zmax for all

parameter values, an equivalent smooth reformulation of (3.19) is

min f(x E X)
x

s.t. Ho(hmid(p)) <0, Vp E P, (3.20)

where hmid is exactly one of hu, ho or zmx,.

However, in the general case, Ho is a nonsmooth function due to the existence of

the mid function (see Appendix B.2.1). A simple way to alleviate this nonsmoothness

is to enumerate all possible outcomes from the mid functions, and therefore, create

the following SIP

min f(x)
xEX

s.t. HO(hu(p)) < 0, Vp E P

Ho(ho(p)) • 0, Vp E P (3.21)

HO(zmax) • 0, Vp E P,

which is a further restriction of (3.20). It is obvious though that

Hg(zmax) = max Ho(z) Ž max H(z) > max H(h(p)) = max g(p).
zE[a,b] zE[a,b] pEP pEP



Therefore, Ho(zma,) is an overestimator of g and also a constant and thus it is a

concave overestimator of g. Therefore, (3.21) can be reduced to

min f(x)
xEX

s.t. HO(zmax)< 0, Vp E P, (3.22)

with a dummy dependence on p. In conclusion, if the mid function provides a unique

result for all parameter values, then we use (3.20). If, on the other hand, the result

of the mid function changes or is not immediately obvious then we use form (3.22).

In the general SIP (1.1), where the constraint depends on the variables, we have

to make certain modifications to our analysis to incorporate the x-dependence of

the constraints. The example in Appendix B.2.2 shows that the value of x can

influence the functional form of the convex and concave overestimators of h on P,

the functional form of the concave overestimator of H on Z and finally the value of

zmax. Furthermore, McCormick's composition furnishes a (finite) number of concave

overestimators of g(x, -) on P that are valid over different regions Xm of X. Therefore,

for a nonlinear term g(x, p) there exists a finite number of functions g",mc,m, 1 < m <

n, that are partially concave on P and satisfy

go"nc'm(x, p) _ g(x, p), Vp E P, and for each x E X m

g"9Ocm(x, p) = Hom[mid (h",m(x, p), ho,m(x, p), zma(x))]

intXmnintXm' = 0, Vmlm', 1 <m<n 1 <m'<n

U xm = x.
m=l

For the case that the resulting expressions of go,mc,m are, for each m, defined uniquely

by one of hu, h and zma, denoted hmid, then a smooth restricted SIP can be formu-



lated as

min f (x)
xEX

s.t. Ho'm [hmd(x,p) ] < 0, Vp E P, 1 < m < n. (3.23)

Then, by linearizing the constraints of (3.23) around an arbitrary point p, the fol-

lowing NLP provides an upper bound to (1.1)

min f(x)
xEX

np

s.t. H' m [hmid(x,p )] + Ho[hmid(x,p) ](p -p y)  0, Vp E P, 1 < m < n.
j=1

(3.24)

For every m for which g9 ,mc,m cannot be defined uniquely (either because of the

McCormick composition or because it is not easily furnished by the comparison of

the terms in the mid function) the term hid(x, p) = Zmax(x) is used.

3.5.3 Smooth Concave Overestimation

using Auxiliary Variables

A method to create a valid upper bound for (1.1) based on smooth concave overesti-

mation of g(x, .) using auxiliary variables was presented in Section 3.4.2. Recall that

the solution of the following GSIP is a restriction of (1.1)

min f(x)
xEX

s.t. goex(x,p) _ 0, Vp : u(x,p) ý 0, (3.25)

where the parameters ~ E P contain the original parameters p and auxiliary pa-

rameters representing expressions of the variables and parameters. Bounds on the

auxiliary parameters are propagated through interval extensions. The linearization

approaches require that the set of parameter vertices is easily calculated which is not



the case here. Therefore, a further restriction of (3.25) is obtained by dropping the

inner level constraints (with the exception of the bound constraints)

min f (x)
xEX

s.t. go"ex(x, P) 5 0, Vj E (3.26)

and therefore further relaxing the lower-level program and thus further restricting

(3.25). Taking into consideration that go'e"(x, -.) is partially concave on P for each

x E X and similar to the linearization approaches already presented, the following

linearization of (3.26) around an arbitrary point p E P furnishes an upper bound for

(1.1)

min f(x)
xEX

s.t. goex(x, p) + LgOex (x, p)(jl  - Pj) 5 0, VfI E Pe, (3.27)
j=1

where Pe denotes the set of vertices of P. Recall that the set of vertices considered

can be reduced if the functions are monotone with respect to some parameters.

3.6 Relaxation over x and p

The upper bounding methodologies that have been presented so far rely on creating

a function go that is partially concave with respect to the parameters p pointwise for

each x E X. Another way of creating a valid overestimator of g is to construct a

jointly concave function gO, on X x P, i.e., with respect to both the variables x and

the parameters p, using either McCormick or aBB concave relaxation methods, that

satisfies

g0 (x, p) > g(x, p), V(x, p) E X x P.



Then, the following SIP is a restriction of (1.1)

min f(x)
xEX

s.t. g0'3(x,p) 5 0, Vp E P. (3.28)

Note that for convergence both host sets (X and P) need to be refined.

3.6.1 Linearization

Similar to the linearization approaches that have been presented so far, and since g',j

is concave on X x P we can linearize (3.28) around an arbitrary point (k, p) E X x P

to obtain the following restriction of (1.1)

min f(x)
xEX

s.t. gI'N(,p)+ g'(•,P)(xj - ¾) + go - (•I,N)(pi -Pj) 0, Vp E Pe
j=1 j=1

(3.29)

Taking into consideration that the constraint function in (3.29) is separable in x and

p, a single inequality constraint is needed (i.e., Pe is a singleton). The corresponding

parameter point p* is calculated by the following procedure

* FOR j = 1,..., np DO

- IF g'3(k, p) < 0 THEN p* = pL ELSE p' = pV.

" END

The following NLP with a single linear inequality constraint

min f(x)
xEX

nx np

s.t. go, (R, p) + •g, (, p)(xj ••(-x )+ g) (L , p) (p -pj) < 0
j=1 j=1

(3.30)



provides a valid upper bound for (1.1).

This approach will obviously furnish looser upper bounds than the ones produced

by the MPEC and linearization approaches that rely on the concave overestimation

of g only with respect to the parameters p. However, a single linear inequality is

required, compared to the polynomial or exponential number of nonlinear constraints.

Again, the choice of p greatly affects the tightness of the proposed upper bound.

3.6.2 MPEC formulation

Similar to the MPEC approach that was described in Section 3.4, a possible bound-

ing problem is to replace the lower-level problem of (3.28) with its equivalent KKT

conditions and solve the resulting problem to obtain an upper bound. Although this

method would produce valid upper bounds, there are two distinct drawbacks com-

pared to the MPEC approach that relies on concave relaxation of g only with respect

to p. First of all, the process of creating a concave overestimator of g on X x P will

replace convex and nonconvex, with respect to x, terms by concave ones which does

not seem to simplify the solution of the resulting problem. Secondly the generated

relaxation will be weaker. Note that even using aBB techniques, the value of a would

be greater or equal to the value of a that corresponds to the concave relaxation only

on P because the Hessian increases in size. In conclusion, this method does not seem

to produce either tighter bounds or simpler constraint expressions and will, therefore,

not be analyzed further.

3.7 Convergence of Upper Bounding Problems

The various alternatives described restrict the SIP (1.1) by overestimating the con-

straint g(x, p) pointwise in x. The parametric optimal solution value of the lower-level



program O(x) is overestimated obtaining

min f(x)
xEX

s.t. (x) < 0,

with g(x) > O(x, P). As described in Section 3.1 this relaxation of the lower-level

program leads to a restriction of the SIP. In general, this restriction excludes some

feasible points and may render the upper bounding problem infeasible. To ensure

that the upper bound converges to the optimal solution value a subdivision of the

parameter host set P, as in [27], is deemed necessary. For the subdivision additional

variables and/or constraints will be introduced. Methods for efficient convergence are

outside the scope of this paper and here we only briefly discuss basic convergence

properties.

Similarly to the ICR by Bhattacharjee et al. [26, 27] and the proposal by Floudas

and Stein [42], an exhaustive subdivision of the parameter set P leads to a pointwise

convergence of g to O. Therefore, points x satisfying maxg(x,p) < 0, i.e., SIP
pEP

Slater points, become feasible in the upper bounding problems for sufficiently fine

subdivision. As a consequence, if the upper bounding problems are solved to global

optimality and SIP Slater points exist arbitrarily close to a global minimum of (1.1)

the upper bound converges to the optimal solution value.

3.8 Implementation and Numerical Results

3.8.1 Implementation

The proposed upper bounding problems potentially contain nonconvex objective func-

tion and/or constraints. Aiming to obtain the best possible bounds, we solve all the

problems globally with BARON version 7.5 [108] available through GAMS version

22.1 [30] on a 64-bit Xeon processor 3.2GHz running Linux 2.6.13.

As is typical in NLP and MINLP solvers, BARON allows the violation of inequal-



ity and equality tolerances by a positive tolerance. This is a limitation for the upper

bounding problems involving equality constraints. Note that the inequality constraint

g(x, p) < 0 can be further restricted to g(x, p) < -E, for an e equal to the constraint

violation of the NLP solver, and therefore does not pose a significant problem. To

obtain good estimates we set the smallest possible value (10- 9) for the relevant toler-

ances (conttol, boxtol, inttol). The absolute and relative termination criteria,

i.e., the difference between the lower and upper bounds in the subproblems, are set

to 10- 4 . Our previous numerical experiments with similar programs have shown slow

convergence for problems involving third order monomials, e.g., x3 and for consis-

tency purposes, we systematically encode third order monomials as a product of a

square and a linear term, e.g. x 2 x, and fourth order monomials as the product of

two squares, e.g., 2 x2

The complementary slackness conditions that appear in the upper bounding prob-

lems are left as nonlinear equations. For the linearizations the midpoint of P is used.

For the implementation of the McCormick relaxations without introducing extra

variables, there are a number of heuristics that need to be specified. For bilinear terms

PIP2 we use pUp2 + PL P - L PiU as the concave overestimator. Similarly for negative

bilinear terms -PIP2 we use (-pl)Up2 pLpP1 - (pl)UpL. For nonconvex terms of the

form w(x,p 1,p 2) = t(x)pip 2 where t(x) can hold both positive and negative values,

we use both of the aforementioned forms to ensure a valid overestimation of g(x, , .)

over X.

For the construction of the concave overestimator of g on X x P, bilinear terms are

handled in the same manner. For trilinear terms of the form g(x,p l ,p2 ) = xpl p 2 , the

term is rewritten as gl(, p l p2)g2 (,pl 1 ,p 2 ) where gl(x,pl,p 2 ) = x and g2 (x,p 1,p 2 ) =

pip2. Convex and concave envelopes of these terms exist and using the constraints

in Appendix B.2.3, the concave overestimator of w1w 2 that is used is -yl(x,pl,p 2) +

72(X,P1,p2)- GUG L . Furthermore, for compositions with respect to w, e.g., (1-

g(x, pi, P2)) 2 then the convex and concave relaxations of w used are

Ct (x, p1 , p2 ) + c 2 (x,p 1 , 2 ) - GuGL



and

71(x, p1, p2) +7 2(X, P 1, p2) - Gf G

respectively. Nonconvex terms of the form w(x,p) = xp 2 and w(x,p) = x2p2 are

written as wl(x,p) = x, w2(x,p) = p2 and wi(x,p) = x2, w2(X,p) = p2 respectively,

and analyzed in a similar fashion.

Since the problems considered are relatively small, for the aBB relaxations we

obtain the smallest possible a through the solution of a global optimization problem.

This is done in the spirit of obtaining the tightest possible bounds. On the other

hand, the bounds on the KKT multipliers and the second derivatives are estimated

using the natural interval extensions capabilities of DAEPACK [128, 129]. For the

MPEC-based upper bound using relaxation with extra variables, the upper bound

of the KKT multipliers is set to 103 . Note that overestimating the bounds of the

multipliers typically increases the computational requirements to solve the problems.

3.8.2 Numerical Results

As a test set we use the well-established problems by Watson [135], summarized in

Appendix B.1. Since BARON and DAEPACK currently do not support trigonometric

functions, we only use those examples that do not involve trigonometric functions.

For all problems we used x E [-10, 10]n .

Tables 3.1 and 3.2 respectively contain the computational requirement as reported

by BARON (through the GAMS attribute resusd) and the bounding values obtained.

No distinction is made for times below 0.01s. In three cases (all KKT-based upper

bounding problems) we distinguish between the time to find the optimal solution

value and to confirm it (number in brackets) because the two computational require-

ments differ dramatically. The first column (Label) has the label of the problem,

while the column labeled f* contains the best known solution for the problem. The

next six columns contain the upper bounds obtained by our upper bounding propos-

als, labeled by the corresponding sections. The final column (ICR) is the interval

constrained reformulation by Bhattacharjee et al.[26] that was reproduced for the



sake of completeness.

Table 3.1: Numerical Results: Relaxation-Based Bounds
Problem Upper Bounds

Label f* 3.4.1 3.4.2 3.5.1 3.5.2 3.5.3 3.6 ICR
2 0.194 +oo 0.194 +oo 0.28 0.194 50.58 0.38
5 4.30 20.2 4.32 27.7 4.64 4.32 7890 4.72
6 97.2 +oo 97.2 +oo 306 97.2 +00oo 97.2
7 1.00 86.1 1.00 +oo 1.60 1.00 +oo 1.00
8 2.44 +oo 3.13 +oo 4.20 3.13 +oo 7.39
9 -12 +oo -12.0 +oo -12.0 -12.0 +oo -12.0
N 0.00 +00 0.00 +00 0.00 0.00 +oo 0.00

Table 3.2: Computational Requirements: Relaxation-Based Bounds
Problem Upper Bounds
Label 3.4.1 3.4.2 3.5.1 3.5.2 3.5.3 3.6 ICR
2 0.01 0.48 0.01 0.02 0.02 0.01 0.01
5 0.13 0.54 0.02 0.02 0.02 0.01 0.01
6 0.05 0.67 0.01 0.03 0.04 0.01 0.04
7 0.28 0.18 (121) 0.01 0.02 0.02 0.01 0.02
8 0.07 0.01 (273) 0.01 0.02 0.02 0.01 0.01
9 3.30 0.41 (1000) 0.01 0.01 0.01 0.01 0.01
N 0.01 0.04 0.01 0.01 0.02 0.01 0.01

3.8.3 Conclusions from Numerical Experiments

The upper bounds furnished are often exact. The computational requirement to

obtain upper bounds is quite low for the small-scale problems considered; note that

for the case of a KKT-based upper bound with extra variables, the computational

requirement to confirm the global solution is quite high for three problems involving

two parameters.

As expected, the KKT-based upper bounds using extra variables (Section 3.4.2)

can be significantly tighter than the ICR-based at the expense of a higher computa-

tional cost. To our surprise the linearization-based bounds using auxiliary variables

(Section 3.5.3) produced bounds as tight as the ones based on the KKT conditions

and we believe that this is due to the problem structure. The bounds based on smooth

relaxation without extra variables (Sections 3.4.1 and 3.5.1) are relatively weak. We



want to point out, once more, that we deviated from the aBB relaxation described

by Adjiman et al. [3] and consider the constraint as a whole. Note finally, that the

number of parameters in the problems considered is small (n, E {1, 2}) and therefore

the effect of the exponential number of constraints in the linearization (Section 3.5.1,

3.5.2 and 3.5.3) is not apparent.



Chapter 4

Introduction to GSIP

Generalized semi-infinite programs (GSIP) are optimization problems that involve a

finite number of decision variables subject to an infinite number of constraints the

index set of which is dependent on the decision variables. The formulation of GSIP

that we will be concerned with is:

inf f(x)
xEX

s.t. g(x,p) 0, Vp E P(x)

P(x) = {p E D: uj(x,p) 5 O,j E J} (4.1)

X c R"", D c RW"p, I J < 00.

First of all, we provide some examples of engineering applications that give rise to

GSIP in section 4.1. We provide a list of helpful definitions in Section 4.2 and a

comparison of GSIP and SIP in Sections 4.3 and 4.4. In Section 4.5 we outline the

irregularities of the feasible set in GSIP and in Section 4.6 we provide a literature

review on the global optimization methods for GSIP. Finally, in Section 4.7 we com-

ment on the limitations of the numerical procedures that have been proposed in the

literature and analyze the contribution of our work.



4.1 Origin and Engineering Applications

The term "Generalized Semi-Infinite Programs" first appeared in [59] but to our best

knowledge this work has not been published yet. The term officially appears in [51]

where the computation of the acceleration radius of robots is formulated as a GSIP.

A generic engineering application that gives rise to GSIP is the reverse Chebyshev

approximation problem (RCAP) [681. Let f : D --+ R be a twice continuously differ-

entiable function on D C R2 . Let y = f(p) describe the dependence of a physical

quantity y on the input parameters p. Let g : R2 x --+ R be an approximating

function for f that is parameterized in x, e.g. a second-order polynomial of the form

g(x, p) = lp + x2p1 + x 3p
2  

4p 2 +X 5P 1p2 + 6. Consider a fixed approximation error

e. The goal is to maximize the volume of the parameter set P(y) C D denoted by

Vol(y) for which the Chebyshev norm of the difference between the original function

f and the approximating function g(x, .) on P(y) is less than e. This formulation

gives rise to the following GSIP:

max Vol(y)
x,y

s.t. If(p) - g(x,p) _ e, Vp E P(y) C D

xEXC R6,

where the set P(y) is described in terms of a finite number of inequalities, i.e.,

P(y) = {p E P: uj(y,p) • 0, j E J}.

Another engineering application that gives rise to GSIP is design centering [117].

For the source of the original contribution and the notation we refer the reader to

[117]. We are including this analysis here for completeness.

Assume that C C ]Rm is a compact set with a nonempty interior, known as the

container or host set, defined as:

C = {p E Rm : uj(p) 0,j E J} (4.2)

Consider a parameterized body B(x) C Rm with x E RW and a measure of the body



f(x). The goal in design centering is to maximize the measure of the parameterized

body subject to the body being fully inscribed in the host set C. This gives rise to

the following optimization problem:

min f(x)

s.t. B(x) C C. (4.3)

As suggested by [117], relation (4.3) gives rise to the following GSIP:

min f(x)
xER n

s.t. u3(p) • 0,Vp e B(x),j e J. (4.4)

Within the context of design centering, a very interesting application of GSIP is

gemstone cutting [138] in which a prototype diamond is cut from a rough gemstone.

Therefore, the container (host) set is the rough diamond, the parameterized body is

the prototype diamond and the objective is the maximization of the volume of the cut

diamond. Another major application of design centering is kinetic model reduction

(KMR) [25, 84, 90]. In KMR, the full kinetic model of a combustion mechanism is

replaced by a reduced kinetic model in which some of the reactions and/or species have

been eliminated from the model. The container set is the subset of the concentration

and temperature space for which the difference between the full and the kinetic model

are less than some given tolerance. The parameterized body is a hyper-rectangle and

the objective is to maximize its volume. In other words, in KMR, the goal is to

maximize some measure of a hyper-rectangle in the concentration and temperature

space such that for every point in this hyper-rectangle the reduced kinetic model

reproduces the full kinetic model within some given tolerance. This application will

be discussed in more detail in Chapter 7.

Another class of applications that gives rise to GSIP problems originates from

reformulating optimization problems with uncertain parameters as worst-case scenario

design problems. We will revisit the example mentioned in section 1.1 to illustrate



this point. Consider the problem

min f(x)
xEX

s.t. g(x, p) < 0 (4.5)

xE X,

where, for example, f is the total production cost of a pharmaceutical, x are the

decision variables and p are parameters the values of which are determined upstream

in the production. If the parameters p are certain, then problem (4.5) is an ordinary

finite nonlinear program. However, if the parameters are uncertain and can vary

within a range, e.g., a n, - dimensional interval P = [pL, pU] and, furthermore,

we want to ensure that the safety constraint g is satisfied for all p E P (worst-

case scenario design) then (4.5) is reformulated as SIP (1.1). If, furthermore, the

uncertainty in the parameters is dependent on the optimization variables x, e.g.,

the parameters are allowed to vary in the interval P(x) = [pL(x),pu(x)] then the

problem becomes generalized semi-infinite (4.1). Within the context of worst-case

scenario design or robust optimization, a very interesting application is found in

portfolio optimization [17, 120]. Assume that an investor has an initial capital of

$C to invest in n shares. Furthermore, assume that the unit return of investment

for share i, 1 < i < n is pi. If the returns pi were certain then the solution of the

following optimization problem would guarantee maximum revenue:

n

max pixi
xER

n

i=1

s.t. i xi=C
i=1

However, if the returns pi are uncertain and vary within an uncertainty set P then the



following problem provides a worst-case scenario estimate of the optimal portfolio:

n

max min pixi
xERn pEP

i=1
n

s.t. xi = C.
i=1

Problem (4.6) can be reformulated as the following SIP:

max z
xEIERn, zER

n

s.t. z - piXi < 0, Vp E P
i=1

i=1

(4.6)

If the uncertainty, also known as the volatility, of the returns pi, also depends on the

initial investments xi then the worst-case scenario optimal portfolio is given by the

following generalized semi-infinite program:

max z
xERn, zER

n

s.t. z - pixi < 0, Vp E P(x)
i=1

n

xi = C.

i=1

We refer the reader to [17, 120] for the original source, a more detailed description

and the consideration of various uncertainty sets P(x).

4.2 Definitions

Below are some necessary definitions for the analysis of the test set:

Definition 4.1. (General Form of GSIP).



Recall, that the general formulation of GSIP that we are attempting to solve is:

inf f(x)
xEX

s.t. g(x, p) 5 0, Vp E P(x) (4.7)

P(x) = {p E D: uj(x, p) < 0, Vj E J}.

Therefore, a GSIP will be completely defined by specifying f, g, u, X and D.

Definition 4.2. (Lower-Level Problem)

For a given R E X the lower-level problem is defined as:

O(R, D) = max g(R, p)
pED

s.t. uj (R, p) 5 0, VjE J.

For i E X for which the lower-level problem is infeasible, then by definition O(R, D) =

-oo. The feasible set of the GSIP, F, is defined as:

F = {x E X IO(x, D) 0}.

Definition 4.3. (Upper-level Problem).

For a given p E D the upper-level problem is:

max f(x)
xEX

s.t. g(x, p) 0.

Therefore, when an upper-level problem is referred to as being convex at p E D it is

implied that f is convex in x E X and g(., p, ) is convex on x E X.

Definition 4.4. (Lower-Level Feasible Set)

For a given R E X the lower-level feasible set is given by

P(R) = {p E D I uj(R, p) _ O, Vj E J}.
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Definition 4.5. (Joint Lower-Level Feasible Set)

The joint lower-level feasible set is defined as:

LL(X, D) = {(x, p) :x E X, p E P(x)}.

Definition 4.6. (Host Sets)

X C Rn- and D C R' p are the host sets for the optimization variables and the

parameters, respectively. J is the index set for the finite set of lower-level inequality

constraints.

Definition 4.7. (Defining Functions)

f: X --+ R is the objective function of the GSIP, g: X x D -+ R is the upper-level

constraint while uj : X x D - R, j E J, are the lower-level inequality constraints.

Definition 4.8. (Lower- and Upper-Level Feasibility)

A set Q c X x D is lower-level feasible if Q C LL(X, D).

A set Q c X x D is upper-level feasible if g(x, p) 5 0, V(x, p) E Q.

Definition 4.9. (Active Index Set - GSIP Slater Point)

For a given R E F, the index set of the active constraints is defined as

Po(R) = {p E D I g(R, p) = 0, uj(R, p) 5 0, Vj E J}.

A point x E F is a GSIP Slater point if Po(x) = 0. Finally the set of Slater points of

the GSIP is denoted by X,.

Definition 4.10. (Global Solution - Points with Infimum Objective Function Value)

The global solution value of the GSIP is denoted by fGSIP. The set of points x for

which f(x) = fGSIP are denoted by the set Xin,.

Definition 4.11. (Infeasible - Superoptimal Points)

The set of infeasible x E X for which the objective function value is less than the

infimum value of the GSIP is denoted by the set H:

H = {x E X I f(x) < fGSIP}.
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4.3 Similarities Between SIP and GSIP

The major similarities between SIP and GSIP are:

1. Both problems involve the optimization of a finite number of decision variables

subject to a, potentially, infinite number of constraints. In degenerate cases,

SIP and GSIP can be transformed to finite nonlinear programs.

2. To determine feasibility of any point R, an optimization problem (lower-level

problem) needs to be solved to global optimality. This is the key point in both

SIP and GSIP, namely that to guarantee feasibility the global solution of an

auxiliary problem is needed.

3. Both problems involve the optimization of one problem (lower-level problem)

inside another optimization problem (outer problem). SIP and GSIP are, there-

fore, optimization problems with optimization problems embedded.

4. In contrast with finite programming, even if all the defining functions are affine

and the problem is feasible, the feasible set of SIP and GSIP is, in general, not

a polytope.

4.4 Differences Between SIP and GSIP

On the other hand, GSIP exhibit many differences compared to SIP. Specifically:

1. Four elements are required to fully define a SIP, including the objective function

f, the semi-infinite constraint g, the host set of the decision variables X and the

host set of the parameters D. To fully define a GSIP, five elements are required.

The first four are the same as in SIP. The additional fifth is the vector of the

lower-level inequality constraints uj or, equivalently, the lower-level set-valued

mapping P : X -- D.

2. In semi-infinite optimization the index set of the constraints is independent of

the decision variables. In GSIP this set is dependent on the decision variables.
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The explicit dependence of this index set is given by the lower-level constraints

(or equivalently the lower-level set-mapping P). A way to illustrate this major

difference is by asking the question: "If we were to sketch the set of points (x, p)

for which the upper-stage constraint g should be introduced, how would this set

look like?" In Figure 4-1 we provide an answer to this question. Assume that

p x

Xl x2 x

SIP

x

X

-------------- i

P

xl X2 x

GSIP

Figure 4-1: Uncertainty Set with respect to the Decision Variables

the dimensionality of the host sets X, P and D is 1. Then, for the semi-infinite

case, for all x E X, the index set of the constraints is the same, i.e. P(x) =

P = [pl,p2]. However, for the generalized semi-infinite case, the index set of

the constraints is not the same for each x E X. To illustrate this, consider two

arbitrary points xl and x2. The index set of the constraints at xl and x2 are

given by P(xi) = [p1,p2] and P(x 2) = [P5,p6] U [P3,P4], respectively.

3. In semi-infinite programming, similar to finite programming, under mild as-

sumptions there are two possible outcomes: either a problem is infeasible or

it is feasible and a minimum exists. However, in generalized semi-infinite pro-

gramming there is a third possible scenario; the problem may be feasible but

the infimum is not attained [121]. Indeed, it does not seem possible to establish

mild assumptions under which the infimum is attained for GSIP. We refer to

Section 4.5 for more details.

4. If all the defining functions are affine, then the feasible set in semi-infinite
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programming is convex. However, this result does not hold, in general, for

generalized-semi infinite programming [106].

4.5 The Feasible Set in GSIP

The feasible set of GSIP problems can exhibit very unusual properties not usually

encountered in finite or even ordinary semi-infinite optimization problems. We will

outline the major aspects of this irregular behavior; we refer the reader to [106, 115,

121] for a more thorough analysis.

1. Even if all defining functions of a GSIP, i.e. f, g and uj, j C J, are continuous

on X, X x D and X x D respectively and the host sets of the decision variables

and parameters, X and D respectively, are compact, the feasible set of the GSIP

is, in general, not closed. To illustrate this, consider the following example [65]:

min x2xE[-1,1]2

s.t. - p3 + X2 O0, Vp E P(x)

P(x) = {p E [-1, 0] : 2x 2 -p 3 - x < 0}.

The feasible set is given by M = {x E [-1, 1]2 : < 2x 2 } U {0, 0} and is

illustrated in Figure 4-2.

2. Similarly, even if the defining functions of the GSIP are continuous on their

domains and the host sets X and D are compact, the infimum value of the

GSIP is not necessarily attained. To illustrate this point consider the following

example [121]:

min x2

xE [-1,1]

s.t. x - p < 0, Vp E P(x)

P(x) = {p E [-1, 1] : (p + 1)2 + X2 < 0}.
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Figure 4-2: Non-closedness of the Feasible Set in GSIP

The feasible set is given by F = {x E [-1, 1] : x / 0}. Clearly, the infimum

objective function value is 0 and attained for t = 0. However, since t is not

feasible the infimum the minimum of the GSIP does not exist while the problem

is infeasible.

3. The feasible set of GSIP may contain re-entrant corner points which are spu-

rious points for stationarity-based optimality conditions [64]. To illustrate this

behavior we analyze the following GSIP from [106].

min xz + x 2xE[-1,1]2

s.t. -p < O, Vp E P(x)

P(x) = {p E [-1,0] : uj(x, p) < O, j = 1, 2}.

u1(x,p)= x1 -p

u2(x, p) = x2 - p.

The feasible set is F = {x E [-1, 1]2 : max{xl, 2} > 0}. In [106] it is shown

that although ic = {0, 0} is not a local minimum of the GSIP it satisfies the first

order optimality condition presented in [64]. Figure 4-3 illustrates the feasible
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set of this problem and the re-entrant corner point at the origin.

Figure 4-3: Re-entrant Corner Points in GSIP

4. Even if all the defining functions are affine, the feasible set of GSIP is not

convex, in general. To illustrate this consider the example that was analyzed

above. The feasible region shown in Figure 4-3 is nonconvex.

In general, GSIP exhibit irregular behavior, such as nonclosed feasible sets, infimum

values not being attained, re-entrant corners and nonconvex feasible sets even when

all the defining functions are affine and the host sets compact. For a detailed analysis

on first and second order optimality conditions and on the topological structure of

the feasible set in GSIP we refer the reader to [60, 65, 104, 105, 113, 114, 115, 116,

118, 134, 136, 137].

4.6 Global Optimization Methods

Similar to semi-infinite programming, in generalized semi-infinite programming there

are two optimization problems to be solved:

1. The feasibility or lower-level problem (see Definition 4.3). The global solution

value, or a valid upper bound on the global solution value, of this problem is
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required in order to determine feasibility of any point x. A local, KKT, or

stationary approach for the lower-level problem cannot guarantee feasibility for

a GSIP with an arbitrary structure (i.e., the lower-level problem is nonconvex).

2. The outer problem. This problem involves the minimization of the objective

function subject to the feasible set. In contrast to the lower-level problem, a

local-, global-, stationary- or KKT-based approach could be devised.

Based on this principle, conceptual and implementable global optimization algorithms

for GSIP have been suggested in [45, 78, 120, 122, 137].

In [45] a conceptual method based on exact discontinuous penalization is pro-

posed. The authors show that under mild assumptions on the defining functions and

sets, the GSIP and a finite unconstrained problem (FP) possess the same minimizing

sequences. While this result is quite strong theoretically it appears to suffer from

certain practical drawbacks. First of all, the objective function of the finite problem

(FP) is discontinuous and standard solvers cannot be expected to solve this prob-

lem globally. Therefore, upon finite termination, a certificate of e-global optimality

cannot be provided. Secondly, the objective function of the equivalent finite problem

contains a term that is defined as the global solution value of an auxiliary optimization

problem. The host set of the decision variables for this auxiliary problem is given by

the solution of a second auxiliary problem. Clearly, this set can be nonconvex since

the second auxiliary problem need not be convex. Therefore, for a single evaluation

of the objective function of the finite program two optimization problems need to be

solved globally and a nonconvex set needs to be calculated exactly. In conclusion,

while this approach offers a strong theoretical result it seems incapable of providing a

practical numerical procedure and to guarantee global optimality, even conceptually,

upon finite termination.

In [78] a branch-and-bound approach for a specialized class of GSIP is developed.

The authors assume that the upper-level constraint is concave in the parameters and

the lower-level constrains are linear in the parameters, quadratic in the decision vari-

ables and separable in the decision variables and parameters. Under these assump-
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tions, strong duality on the lower-level problem reduces the GSIP to an equivalent

single-stage nonconvex optimization problem. Levitin and Tichatschke [78] propose

the use of branch-and-bound to solve this problem globally. On the one hand, [78]

proposes the first implementable global optimization algorithm for GSIP. On the

other hand, the assumptions on the structure of the defining functions (convexity,

linearity and separability) are very strong and are satisfied only in a limited number

of engineering applications.

Stein and Still [119] have demonstrated that GSIP can be exactly transformed to

bilevel programs under the assumption that the lower-level problem is feasible for all

x E X. Using this transformation, Stein and Still [120] provide a method to further

transform GSIP with convex lower-level problems to equivalent single-level nonlinear

programs. In order to make this transformation the lower-level problem is replaced by

its necessary and sufficient first-order optimality conditions. To our best knowledge

[120] contains the first numerical results for GSIP while the algorithm has also been

implemented for the diamond cutting problem by Winterfeld [138]. On the other

hand, the authors assume that the lower-level problem is feasible and convex for all

x E X. While feasibility of the lower-level is a reasonable assumption for engineering

applications, convexity of the lower-level problem is restrictive for the problem of

kinetic model reduction, the main application that we are targeting with this thesis.

In [122] a conceptual method based on discretization is proposed. Still [122]

emphasizes the difficulty in generalizing discretization from SIP to GSIP. Specifically,

as illustrated in Figure 4-1, because the index set of the constraints is different for

each value of the decision variables it follows that a uniform grid on the host of

the parameters does not provide a relaxation nor a restriction of the original GSIP.

To alleviate the problem of non-closedness of the feasible set, the author assumes

that the lower-level set-valued mapping is continuous and the host set of decision

variables is compact. Therefore, the feasible set of the GSIP is compact and the

minimum of the GSIP exists (infimum value is attained) [137]. To prove convergence

of the discretization procedure, the author assumes that the discretization grids are

given by continuous functions and therefore reduces the GSIP to a finite problem
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the constraints of which are implicitly defined with respect to the decision variables.

Still [122] proposes a conceptual method for constructing these continuous functions,

however the method relies on sampling the parameter set and the construction of

local linearizations around points in the decision variable space. Overall, we believe

that the first attempt to generalize discretization from SIP to GSIP is developed in

[122]. However, the method proposed in [122] cannot guarantee the generation of

feasible points nor provide a certificate of global optimality on finite termination.

Furthermore, it appears that the method attempts to create a relaxation of the GSIP

based on discretization but the computation of the continuous functions defining the

discretization based on local linearization may violate this property.

Weber [137] proposes a conceptual global optimization method for GSIP. With

the standard assumption that the lower-level set-valued mapping is well-behaved,

the author shows that GSIP can be transformed to SIP, globally in the decision-

variable space, using diffeomorphisms. Therefore, any global optimization algorithm

devised for SIP with continuously differentiable functions could be applied to solve the

transformed problem. The main drawback with this approach is that the semi-infinite

constraints that correspond to the equivalent SIP are implicitly defined. Therefore,

this method does not seem to provide a practical numerical approach for GSIP.

4.7 Limitations in the GSIP Literature

In summary, the analysis of Section 4.6 leads to the following conclusions:

1. For GSIP with nonconvex defining functions and/or with lower-level set-valued

mappings that are not lower-semi continuous (well-behaved) there is currently

no method to provide guaranteed feasible points nor a e-certificate of global

optimality on finite termination.

2. Either methods will assume a special structure of the defining functions (con-

vexity and/or linearity) and lower-semi continuity of the lower-level set-valued

mapping or they will avoid these assumptions and be conceptual.
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In the following chapter we will attempt to develop a global optimization algorithm

that will avoid any special assumption on the structure of the defining functions, such

as convexity, and will also avoid the assumption of lower semi-continuity of the set-

valued mapping.
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Chapter 5

Global Solution of GSIP using

Interval Methods

5.1 Introduction

The goal of this chapter is to present a global optimization method for GSIP that

avoids the requirement of convexity for any of the participating functions and fur-

thermore does not require the inner problem to be feasible for all values of x. In

avoiding such requirements, we will attempt to solve nonconvex GSIP for which the

infimum is not attained. We refer the reader to [76] for the original contribution.

In Section 5.2 we outline the definitions and assumptions that are necessary for

convergence of our algorithm, while in Section 5.3 we present the general properties

and the specific steps of the global optimization procedure. In Section 5.4 we comment

on the nature of the approach and in Section 5.5 we establish the convergence of the

algorithm. Finally, in Section 5.6 we present the major criteria for creating the test

set, the implementation details of our algorithm and the numerical results on the test

set.
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5.2 Definitions and Assumptions

The following definitions and assumptions are necessary to present the global op-

timization procedure, its theoretical convergence and also to analyze the numerical

results from the application of the algorithm to the test set.

5.2.1 Definitions

Definition 5.1. (Categorization of Xif)

The set Xif can be categorized in the following way:

Xinf = Xinf,1 U Xinf,2

Xinf, = { E Xinf : 3E > 0 such that Vx E Ne(t),x is infeasible}

Xinf,2 = Xinf \ Xinf,i-

Definition 5.2. (B&B levels for GSIP Slater Points)

For fixed Rc E Xinf and for every x E X,, assign q1 to be the earliest level of the branch-

and-bound tree for which x is found feasible in the upper bounding operation. Call

qx,5 the earliest level of the branch-and-bound tree for which x and x do not belong

to the same node.

We will prove that q1 and q2 are well defined.

Definition 5.3. (Interval Extensions)

Uj : IRn, x IIR" -+ IIR, Vj E J, are interval-valued functions and refer to interval

extensions of the lower-level constraints with respect to both the optimization vari-

ables x and the parameters p. Specifically, if X and D are intervals, U(X, D) =

[u (X, D), u V(X, D)], where un and uv are real-valued functions.

G :X x I[R"I --+ IR is an interval-valued function that refers to an interval extension

of g(x, p) with respect p. If D is an interval, then G(x, D) = [gL(x, D) , gU(x, D)],

where gL and gU are real-valued functions.

Throughout the algorithm, natural interval extensions are employed. In [85] it is

shown that natural interval extensions are continuous.
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We refer to [26, 55, 85, 98] for notation and a detailed theoretical analysis of interval

methods and their applications to global optimization.

5.2.2 Assumptions

Assumption 5.4. (Nature of Host Sets)

The decision-variable and parameter host sets, X = IxL, XU ] and D = [pL,pU], re-

spectively, are nz-- and n,- dimensional intervals respectively.

Assumption 5.5. (Continuity & Differentiability of Defining Functions)

f is continuously differentiable on an open set X' D X, g is continuously differentiable

on X' for each p E D and continuous on D for each x E X. Finally uj is continuous

on X for each p E D and continuous on D for each x E X, for each j E J.

Assumption 5.6. (Convergence of Lower Bound)

For every x E H, there must exist p E D for which g(x,p) > 0 and uj(X,p) < 0, Vj

E J.

Assumption 5.7. (Convergence of Upper Bound - Breadth First Search)

There exists x' E Xi,f for which there exists a sequence of GSIP Slater points {Xn)

satisfying: lim xI = x'.
n--oo

Assumption 5.8. (Convergence of Upper Bound - Best Bound Search)

1. For every x E Xif,1, there exists p E D, for which g(x,p) > 0 and uj(x,p) <

0, Vj E J.

2. For every x' E Xinf,2 there exists a sequence of GSIP Slater points {xn} for

which:

lim xn = x' and ql < q~,,, Vn.
fl o -4 00
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5.3 Description of Branch-and-Bound Algorithm

The present work concerns generalized semi-infinite programs of the form:

inf f(x)
xEXCRnx

s.t. g(x,p) < 0, Vp E P(x) (5.1)
P(x) = {p E D C R n : uj(X,p) < 0, Vj E J}.

The branch-and-bound procedure by which convergence to the GSIP infimum is

achieved will now be described. Two different node selection heuristics are presented:

breadth-first and best-bound search. In the convergence proof and in the numerical

results it is shown that while the breadth-first search requires weaker theoretical

assumptions, it is typically more computationally expensive than the best-bound

approach.

5.3.1 General Properties

The general properties of the algorithm are the following:

1. (a) For the case of breadth-first search, all the nodes at a specific level (except

the ones that are fathomed due to infeasibility or value dominance) are

examined before moving on to the next level of the B&B tree.

(b) In the case of the best bound approach, the node selected for branching

and bounding will be amongst those with the lowest lower bound (best

bound).

2. Associated with each level of the B&B tree q is the index set Sq of uniform

subdivisions of the parameter set D defined as Sq = {1, 2,..., 2 q}np and also

the set of grid points Tq which are chosen to be the top right-hand corner points

of the subintervals indexed by S,. Each dimension j of D is subdivided into 2q

subintervals of equal width:

L (k - 1) w(Pj) L w(Pj)
D =- [p + 2 q , p 24 ], Vk = 1,...,29.
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Now, there exists T = (kl, .. . , kn,) E Sq such that:

L (ki - 1) w(Pi) pL w(Pi)
PP = ].I+ 2 Pi+ x ... (5.2)29q 2 q

(kn -1) w(Pn,) ksw(P,)x [p + 2 ' ]2

In compact notation, relation (5.2) can be written as:

P. = Dk1 x ... x Dn

3. Associated with node M C X, located at level q of the B&B tree, are the

following, level-dependent, sets:

(a) SM,P,o, C Sq, defined as the subset of Sq for which it has been established

that VT E SM,pos., uj(x,p) < O, V(j, x, p) E J x M x P,-,

(b) SM,P,,T, C Sq, defined as the subset of Sq for which it has been established

that Vr E SM,P,,,n 3j(r) E J for which uj(x,p) > 0, V(x,p) E M x P,,

(c) SM,P,,, C Sq, defined as the subset of Sq for which neither of the above

conclusions has been reached yet.

4. The iteration k is used to indicate the set of active nodes Ik. The level q is used

to indicate the index set Sq and the set of grid points Tq.

(a) For the breadth-first search, the iteration number k and the level of the

branch-and-bound tree q increase monotonically. This is because each level

of the B&B tree is examined before the next level is considered.

(b) For the best bound approach, while the iteration number, by construc-

tion, will increase monotonically, this is not the case with the level of the

B&B tree which may oscillate (increase/decrease) in the search for the best

bound.

5. Each node M in the B&B tree has a unique nonnegative integer A(M) that is

assigned to it when the node is created. Whenever the notion of a sequence of
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nested nodes is encountered the notation of {M x,} is used. Thus, while {MA}

denotes the sequence of all nodes that are created in the B&B tree, {M(q},

q = 1, 2,... refers to a subsequence, in the form of a sequence of nested nodes

and obviously M 1, is located at the level above MA2 and MA2 C Mr,, etc.

Whenever a single node is isolated (e.g., in the convergence proof for the upper

bound) a superscript notation on the node M is used. Thus, it will be stated,

for instance, there exists a node M1 that satisfies a given property.

6. Two more nonnegative integers will be associated with each node. q(M) de-

notes the level of the tree at which M is located (the same q which is used for

the subscript of the sequence of nested nodes) and k(M) denotes the iteration

number of the algorithm at which node M was created. Obviously, these two

integers are not unique to a particular node because at level q of the B&B tree

there are 2q nodes and at iteration k either no node will be created (fathoming)

or two child nodes will be created sharing the same iteration number.

5.3.2 Detailed Algorithm

1. Initialization. Set k = 0, A = 1, SX,Po., = SX,pneg = 0, Sx,P., = So, S-1 =

So, Io = I =- {X}, ao = aX, = +00, /o = 01 = -oo, q(X) = 0, A(X) = 1, k(X)

- 1, f =LBD fUBD = +00.

2. Termination Test. Delete from Ik all nodes M for which fLBD > ak. If k -

3 k < E or Ik = 0 then terminate. If ak = +oo then the instance is infeasible.

Otherwise, cak is an E-optimal estimate of the solution value, and XGSIP is a

feasible point for the GSIP (1) at which ak is attained.

3. Node Selection. Set k = k + 1. Depending on the node selection heuristic

consider the following options:

(a) Best Bound: select the node M E Ik for which:

M arg min A(M), V := arg min fLBD.
MEV1 MEIk
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(b) Breadth-First Search: select the node M E Ik for which:

M E arg min A(M),
MEV 2

V2 := arg min q(M).
MEIk

Remove M from Ik.

4. Lower Level Calculations. Let q = q(M). Set SM,Pos -= SM,Pneg = SM,Pu•,

= 0. Vr E Sq there exist M* E Ik-1 and P,,, 7' E Sq-, for which M C M* and

P, C P,,, respectively. Then:

(a) if 7' E SM-,Ppos then SM,poS = SM,ppo, U -,

(b) if T' E SM*,Pneg then SM,Peg = SM,Pn,g U 7,

(c) if 7' E SM*,Pun, then SM,Pns = SM,p,,,l U T.

Evaluate an interval extension of uj, Vj E J, on M x P, for each P, for which

7 E SMPn,.

(a) If u' (M, P,) < 0, Vj E J, then SM,P,,, = SM,Pp,, Ur and SM,u,,, -

SM,Pu,, - T.

(b) Else if u (M, P) > 0 for some j E J, then SM,p,,, = SM,Pne, U r and

SM,P,,, = SM,PU,,S, - 7.

5. Lower bounding problem. The solution value of the following semi-infinite

program (SIP):

min f(x)
XEM (5.3)

s.t. g(z, p) < 0, Vp E P,, VT E SM,pSo,

provides a lower bound for (5.1) restricted to M (See Lemma 5.11). Instead of

solving (5.3) to global optimality, a convex relaxation of (5.3) using discretiza-
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tion (i.e., with a finite number of constraints) is solved instead:

min fm,(X)EM (5.4)
s.t. gmc(x, p) 5 O, Vp E P, n Tq, VT E SM,pp,,.

where fmc, gmc(., p) are convex relaxations, in the sense of McCormick, of f and

g(.,p), respectively, on M. (5.4) can be solved to guaranteed global optimality

with convex NLP solvers. Assign to fLfjBD the solution value of problem (5.4) if

it is feasible. Otherwise set fjBD" = +oo. Set k = min fLBD
MEIk

6. Fathoming. If fJLBD = +00 (fathoming by infeasibility) or fLBD >_ k-1

(fathoming by value dominance) then set ck = ak-1 and go to step 2.

7. Upper Bounding Problem. Any feasible point of the following SIP:

min f(x)zEM (5.5)
s.t. g(x,p) A O, Vp E P,, VT E SM,Po,, U SM,P ,u

provides an upper bound for (1) (see Theorem 5.22). Instead of solving (5.5) to

feasibility, an upper bound is generated using the interval constrained reformu-

lation introduced in [26]:

min f(x)
xEM (5.6)

s.t. gU(x, P,) 5 0, Vr E SM,P,,, U SM,P, . .

If a feasible point Z is found, assign fMBD = f(±), otherwise set ffMBD = -0.

Assign ak = min{fMBD, ak-1. If ak - fMBD then set xGSIP = ±. For instance,

a local minimum found by a local NLP solver can supply this feasible point.

8. Branching. Recall that n is the dimension of X and xu - x , j 1,...,n,

is the width of coordinate j. Bisect M along the coordinate that maximizes
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xz - xj. Specifically, let node M E Ik be the following nx-dimensional interval:

M=[x L
, ] x... x [xLI, xU1] X [x

L 
, X

U ] 
X [XL, U U] x... x [ZX , Xn'

Based on the bisection process described above and assuming that xU - xý =
max x U - xL then the coordinate j is bisected and the nodes created at level

q + 1 of the B&B tree as a result will be:
q + 1 of the B&B tree as a result will be:

ML= x I ",'x] .. 2. x [x4 x]...

Mu=[x,x U ]x...x[ 2 ,x] x ...

Set q(ML) = q(Mu) = q(M)+1, A(ML) = A+1, A(Mu)

= k. fMD = f/LD = fMBD. Set A = A + 2. Finally,

Go to step 2.

x [, XL U [

x [xe, xv].

= A+2, k(ML) = k(Mu)

Ik+1 = (I U ML U M).

5.4 Nature of the Algorithm

5.4.1 Set Description

Consider the sets Q and R that satisfy:

Q C P(x), Vx E X

P(x) C R, Vx e X.

1. Q is a restriction of the lower-level feasible set for all x E X. The following SIP

min f(x)
XEX

s.t. g(x,p) < O, Vp E Q,

provides a relaxation of the original GSIP. Therefore, a restriction of the lower-

level feasible set, and therefore of the lower-level problem, pointwise in X, leads

to a relaxation of the outer problem. Q is obtained using interval extensions

on the lower-level inequality constraints. The resulting SIP is further relaxed
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using discretization and convexification.

2. R is a relaxation of the lower-level feasible set for all x E X. The following SIP

min f(x)fEX (5.8)
s.t. g(x,p) < O, Vp E R,

provides a restriction of the original GSIP. Therefore, a relaxation of the lower-

level feasible set, and therefore of the lower-level problem, pointwise in X, leads

to a restriction of the outer problem. R is obtained using interval extensions

on the lower-level constraints. The resulting SIP is further restricted using the

interval-constrained reformulation.

Mitsos et al. [83] have used the notion of relaxing and restricting the lower-level

problem in order to restrict and relax the outer program, respectively, for the global

solution of bilevel programs.

If Q and R are compact then either the minimum of (5.7) and (5.8) will exist

or (5.7) and (5.8) will be infeasible, even if the infimum of the original GSIP is not

attained.

5.4.2 Comparison with methods using Optimality Conditions

It should be noted that the proposed approach does not make use of any optimality

conditions for GSIP. In avoiding these optimality conditions, problems that involve

a constraint qualification violation in the lower-level problem, problems with a non-

closed feasible set and also problems which exhibit re-entrant corner points can be

tackled. Specifically, in any optimality condition, a local or global minimum is a

feasible point of the GSIP. Therefore, the optimality conditions are not applicable

to GSIP for which the infimum is not attained. To bypass this difficulty, methods

that rely on optimality conditions make the assumption that the lower-level problem

is feasible for all x E X. This assumption ensures that the infimum of the GSIP is

attained. Furthermore, re-entrant corner points are known to be spurious points for

most optimality conditions and therefore, algorithms depending on these conditions
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could terminate upon finding such points. Our approach bypasses all these difficulties

by using interval extensions on the lower-level functions so that our method can get

arbitrarily close to spurious points such as infeasible points with the infimum objective

function value or re-entrant corner points. In the latter case, since re-entrant corner

points can only be strictly suboptimal for the GSIP, they will be fathomed using the

principle of fathoming by value dominance within the B&B procedure.

5.5 Convergence of the B&B scheme

Prior to introducing the convergence proof, a brief outline is provided. First of all, the

property that for each node examined in the branch-and-bound tree, the lower- and

upper-bounding methodologies that were described in the algorithm (See Section 5.3)

provide a valid lower and upper bound, respectively, on the optimal solution value of

the GSIP at each node, will be proved. Then, the notions of deletion-by-infeasibility

being semi-certain in the limit and of the bounding operation being semi-consistent

will be demonstrated. Furthermore, the convergence of the lower-bounding operation

to the infimum of the GSIP will be shown. Next, auxiliary lemmas for the convergence

of the upper-bounding operation will be provided. These lemmas refer to the existence

of a well-behaved neighborhood around a GSIP Slater point and to the uniform nature

of the subdivisions of the parameter host set D. Last, the finite e-convergence of the

upper-bounding methodology to the infimum of the GSIP for both the breadth-first

and the best-bound node selection heuristics is demonstrated.

Lemma 5.9. The upper and lower bounding problems that were described in Section

5.3.2 provide a valid upper and lower bound, respectively, to the global solution value

of the GSIP, fGSIP.

Proof. Consider any node M in the branch-and-bound tree and the GSIP restricted
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to M, i.e., the problem:

fGsIP = inf f(x)XEM

s.t. g(x,p) 0,V p E P(x) (5.9)

P(x) = {p E D : u3(x,p) 5 0, Vj E J}.

Let fSIP be the solution value of (5.5). For the upper-bounding problem, for every x

E M, P(x) C U P,, S' = SM,P o,, U SM,p,.. This implies that (5.5) is a restriction
rES'

of (5.9) and therefore:

faSIP < fs'. (5.10)

Let fUBD be the solution value of (5.6). From [26] and [27] is it known that (5.6) is

a restriction of (5.5). Thus:

fAiU < fUBD (5.11)

Furthermore, (5.9) is exactly the same formulation as (5.1) on a subset of X. Clearly,

fGSIP < fMGSIP. (5.12)

Finally, from (5.10), (5.11) and (5.12):

fGSIP < f UBD

Furthermore, if the infimum of (5.1) is not attained, then exactly one of (5.10) or

(5.12) would hold as a strict inequality (if M contains one of the points with infimum

objective function value then (5.10) is satisfied as a strict inequality, because SIP

always attain a minimum if they are feasible, while if not then (5.12) would be satisfied

as a strict inequality) and thus:

fGSIP < fUBD

Thus, the upper bounding methodology described in section 2.2 provides an upper
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bound to the global solution value of the original GSIP.

Let fs' be the solution value of (5.3). For the lower-bounding problem, for every

x E M, P(x) D U P,, S' = SM,Po,,. This implies that (5.3) is a relaxation of (5.9)
rES'

and therefore:

f ,L f-'Z (5.13)

Let fLBD be the solution value of (5.4). By construction, (5.4) is a relaxation of (5.3).

Furthermore by convexity, (5.4) can be solved reliably using local solvers to obtain

ffBD. This implies that:

fLBD < fSIP (5.14)

Combining (5.13) and (5.14), at node M a solution value ffLBD is obtained which

satisfies:

fLBD < f MSIP. (5.15)

At any given iteration k, the incumbent lower bound is the minimum over all lower

bounding values for the active nodes Ik. Consider the set of nodes Ik for which for

every M E Ik, M was deleted either by infeasibility or by value dominance at one of

the iterations 0,..., k - 1. Clearly,

U M=X,VkEN. (5.16)
MEIkUII

Therefore, combining (5.15) and (5.16):

min fLBD < fGSIP. (5.17)
MEIkUIk

Since it has already been shown that the upper-bounding methodology is valid:

fjLBD > fGSIP, VM E Ik.
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Hence (5.17) is equivalent to:

min f BD < fGSIP
MEIk

Therefore, the incumbent lower bound value is a lower bound to the infimum of

the GSIP:

3k = min f LBD < min fMGSP = fGSIP
MEIk MEIk

5.5.1 Convergence of Lower-Bound

Definition 5.10. Let H be the set of infeasible-superoptimal points as given in

Definition 4.11. The deletion-by-infeasibility rule will be called semi-certain in the

limit if for every infinite sequence of nested nodes {Mx, } with accumulation point

{z}, ± ý H.

Lemma 5.11. Under Assumption 5.6 the deletion- by-infeasibility rule is semi-certain

in the limit.

Proof. Consider an infinite sequence of nested nodes {Mx, } with accumulation point

t and further assume that ± E H. From the assumptions of the Lemma, there exists

P E D: uj (, p) < 0, V j e J and g(t, I) > 0. Consider a sequence of intervals X, and

P, for which t E Xn, Vn E N, Xn+1 C X,, lim Xn = {±}, P E Pn, Vn E N, P+l1 C Pn
n-+oo

and lim Pn = {p}. From continuity of the natural interval extension Uj(X, P) [85]

and treating ± and p as degenerate intervals: lim uV (X,, P,) = uY(t,p) = uj(±,P).
n-*oo

Thus, for each j E J, there exists finite n* such that uU(X,n, Pn) < 0. Thus, there

exists finite n* = max n for which u (X,., Pn.) < 0, Vj E J.
jEJ

Since the branching procedure is exhaustive, there exists a level q' of the B&B

tree for which node MXql containing ±t will satisfy M1ql C Xn.. The subdivision

procedure is such that there exists a level q2 of the B&B tree and 7 E Sq2 for which p

C P, C Pn.. For level q3 = max{q', q2 }, there exists a node MX , C Xn. containing

± and T' e Sq3 for which p C P,, C PC.. From inclusion monotonicity of the interval
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extensions, uV(MA• , P,) < uV2(Xn., Pn,) < 0, V j E J. This implies that for q 2 q3

the lower bounding problems for the descendant nodes of M\q3 will consider P,, and

its subdivisions as lower-level feasible.

By continuity of g(±, .), there exists an open ball around P of radius 6, namely

Ns(p), for which Vp E Ns(p), g(t, p) > 0. Since the discretization of the parameter

host set D is exhaustive, i.e. lim sup inf Il p - p211 = 0, the discretization of P,,
q-oo p ETq p2 ET9

is also exhaustive. This ensures that there exists a level q4 > q3 of the B&B tree for

which a point p' E N6 (p) will be incorporated in the set of grid points Tq4. From the

subdivision heuristic (Step 2 of detailed algorithm) it can be easily shown that one

constraint for the function g at p' will be present in the lower-bounding problem at

every subsequent level. Let g'(x) correspond to the constraint function at p'. From

Lemma 1 in [27], lim min gmc,q(x) = g'(±) where gmc,q is the McCormick relaxation
q--oo xEMA,

for the constraint function g' on Mq,. The statement above along with the fact that

g'(.) > 0 imply that there exists some finite q5 > q4 for which q > q5 implies that

min g,,,q(x) > 0. This finally implies that the lower bounding problem is infeasible
xEMq

for {(M, } with q > q5 and node MAq5 +1 containing t will be fathomed from the B&B

tree. Thus, for an infinite sequence of nested nodes Mq converging to t, ± ý H. O

Definition 5.12. A lower bounding operation is called strongly semi-consistent if at

every step any undeleted partition element can be further refined, and if any infinite

sequence of nested nodes {M,q } satisfies

. V H and lim O(MA,) = f(A)
q-oo

where ± = f= M, and O(MA,) is the solution value of the lower-bounding problem at
q

node Mq,.

Lemma 5.13. The lower-bounding operation described in the B&B algorithm is

strongly semi-consistent.

Proof. From the rectangular partitioning of the variable space, any undeleted par-

tition element can be further refined. Assume an infinite sequence of nested nodes
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{MAq} with an accumulation point {±}. From Lemma 5.11 it is known that t 0 H.

Furthermore, if an infinite sequence of nested nodes exists this implies that P(M)

exists for all M E {Mq }. Therefore, from Lemmas 1 and 3 in [27], lim ,(M\) =
q--o•

Definition 5.14. A node selection heuristic is said to be bound improving if, at least

each time after a finite number of iterations, the partition element where the actual

lower bound is attained is selected for further partitioning within the B&B tree.

Lemma 5.15. The breadth-first and best-bound node selection heuristics are bound

improving.

Proof. Clearly, the best-bound node selection heuristic is bound improving because

by construction, at each iteration a node with the lowest lower bound is chosen

for further partitioning. The breadth-first node selection heuristic is also bound

improving because the number of partition elements is always finite which assures

that any partition element will be chosen for further partitioning after a finite number

of steps. O

Theorem 5.16. The lower bounding operation that was described in section 2.2 con-

verges to the GSIP infimum value, i.e., / = lim /k = fGSIP.
k--oc

Proof. The B&B procedure that has been described in Section 5.3.2 satisfies the

following properties:

1. The subdivision of the partition sets is exhaustive,

2. The selection of the partition sets to be refined is bound improving (Lemma

5.15),

3. The lower bounding operation is strongly semi-consistent (Lemma 5.13),

4. The deletion-by-infeasibility rule is semi-certain in the limit (Lemma 5.11).

Assume that the B&B procedure does not terminate in a finite number of steps and

consider the sequence of lower bounds /k. Based on the proof of Theorem 2.1 in [62]
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with simple arguments to extend for the strong semi-consistency of the lower bounding

operation (instead of strong consistency) and for the deletion-by-infeasibility rule

being semi-certain in the limit (instead of certain) we conclude that:

3 = lim 3k = f(2)= fGSIP. (5.18)
k---c

5.5.2 Convergence of Upper Bound

Let CC(p, e*) denote a closed cube with center p and edge E*.

Lemma 5.17. Assume a Slater point 2 E X, for which P(2) # 0. Then there exists

e* > 0 for which for all p E P(2), the set Q(p) = {(t,p) : p E CC(p,e*) n D} is

upper-level feasible.

Proof. g(2, -) is continuous on D and thus it is uniformly continuous on D. Under

continuity of u, it is well known that for all x E X, P(x) is a closed set. Since P(2)

C D and D is compact, P(2) is also compact. Therefore, g(2, -) is a continuous

function on the non-empty compact set P(2) and thus it attains its supremum on

P(2). Choose 6 = max g(2,p) . Note that 6 > 0 by the definition of a GSIP Slater

point. From uniform continuity, there exists e* > 0, such that for all p E D and p' E

D for which p' E CC(p, e*) implies that g(2, p) - g(2, p')I < J. This implies that for

all p E P(2) and for p' E CC(p, E*)n D, g(2, p') < 0. Therefore, for all p E P(x), the

set Q(p) is upper-level feasible. Oi

Lemma 5.18. Assume a Slater point x2 X, for which P(2) $ 0. Then, there exists

E > 0 such that for every x E CC(2, E) n X, g(x,p) < 0, Vp E P(2).

Proof. From Lemma 5.17, the function gma(x) = max g(x,p) is well defined for

all x E X. It is also well known that this function is continuous on X since g is

continuous on X x D. Since ± is a Slater point, this implies that gm~(2) < 0. Since
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g9" is continuous on X this implies that there exists e > 0 for which for every x C

CC(t, ) n X, gax(X) < 0.

The next Lemma proves that with the subdivision heuristic described in Section

5.3, the subdivision of the parameter host set D is uniform as defined in [91].

Lemma 5.19. Assume rT Sq. Then, according to the subdivision approach of the

algorithm above, there exists a set S defined as: S = {T' E Sq+l : P,, C P} for which

U PI, = P, . Furthermore, S defines a uniform subdivision of P,.
Proof. Each dimension j of D is divided into 2q subintervals of equal width:S

Proof. Each dimension j of D is divided into 29 subintervals of equal width:

Djkq j (k - 1) w(P ')
Djq = [pjj + 2q

L kw (P•
p3 + - Vk = 1,.

Now, there exist 7 = (ki,. . ., kn,) E Sq such that:

Pr = [L + (ki-1)w(Pi) p
L - kP)]x

X [p + (kn,-l 2) W(P ),) L keLw(PP)]
(5.19)

In compact notation, relation (5.19) can be written as:

P, = D1, x ... Dnp,q.

By construction, at level (q + 1) each dimension of D will be subdivided into 2 q+1

subintervals of equal width:

k (k - 1) w(Pj)Dj=,q+l [P3. +  
'

jlql j2q+l

L kw(P-)
p+ 2q±1

[pL (2k-2(P) L (2k21)w(P) U (2k j(-1)w(Pj) pL + 2kjw(Pj)]
2q+1 , pj + 2q+1 2q+1 , 2q+1

(5.20)

[pL + (kj-1)w(Pj) L + ] = +D. Vj : 1 < j -5 n.
3 2q 3P 2q j ,q, I 1 <j<n .
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Let Pj and P,' be the intervals on the left hand-side of relation (5.20). Rewrite (5.20)

as:

PjU P = D + , Vj: 1 < j < n,. (5.21)

Create the sets A 1 = {P', P }, ... , A, = {P",, P }. Choosing one element from

each set Aj, the np - dimensional interval, Pr,, formulated as the Cartesian product

of the np one-dimensional intervals will satisfy:

PT, C P,. (5.22)

Obviously, there are 2np such combinations of choices from the sets A1,..., Anp all of

which satisfy relation (5.22). Denote this set of choices as S, i.e., S = {T' E Sq+l

PF, C P,}. Since relation (5.22) holds for every element of S this implies that:

U P,' C P,. (5.23)
7'ES

Suppose that there is an element of PT, say p*, that does not belong to U Pr,. This
T'ES

implies that if p* = (p*, ... ., p,) there exists k, 1 < k < np, such that p* Pj U P'.

This directly contradicts relation (5.21). This coupled with relation (5.23) results in:

U P'I = PT.
r'ES

Thus, the set S defines a subdivision of PT. Furthermore, since each dimension of P,

is divided into equal subintervals, this implies that S defines a uniform subdivision

of PT.

Lemma 5.20. Consider the branching rule mentioned in the algorithm above along

with one complementary rule, i.e.:

1. Assume that the node selection heuristic has supplied node M located at level

q(M) of the B&B tree. In the branching procedure at node M bisect a coordinate
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j for which:

xi- x = max Xu - x. (5.24)
S-- 1<i<nnx

2. If more than one coordinates satisfies relation (5.24) then the coordinate with

the smallest index will be selected for bisection.

Then the following results hold:

1. For each level q of the B&B tree, the coordinate branched upon is uniquely

defined, i.e., for each node M with q(M) = q, the same coordinate will be

bisected. Furthermore, for each level of the B&B tree q, each coordinate will

have the same width for all M with q(M) = q.

2. There exists a level q* of the B&B tree such that for every M for which q(M)

= q*, the sequence of levels defined by

qk=q*+k.n·, k = 0, 1,...

where nx is the dimension of X, provides a uniform subdivision of M.

Proof.

1. This result is proved through induction. Assume q = 0. At this level (root

node), the choice of coordinate is well defined by the two branching rules and

since there is only one node in the level, only one coordinate will be selected

for branching throughout the level. Furthermore, since there is only one node

at this level, each coordinate has the same width throughout the level. Assume

these two properties hold for q = k. It will be demonstrated that they hold for

q = k + 1. If coordinate m is selected throughout level q for bisection at level

q = k + 1 each node M with q(M) = k + If will have:

bj,M = bj, j Z m

bj,M = 2, j = m
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where bj,M is the width of coordinate j at level q = k + 1 for node M and

bj is the uniform width of coordinate j at level q = k of the B&B tree. This

clearly implies that all nodes at level q = k + 1 will have the same width for all

the coordinates. By a similar argument, since all the nodes at q = k + 1 have

the same coordinate widths, the choice of coordinate for bisection is uniquely

defined throughout this level.

2. Let bm,q be the width of coordinate m at level q of the B&B tree. It is well

known that the branching rules stated above are exhaustive [63], i.e.:

lim bm,q= 0, 1 < m < n,.
q---oc

Consider the index set for the coordinates A = {1, ..., n,}. Pick i* E A such

that bi.,o = min bm,o. If there are more than one coordinates satisfying this then
mEA

choose the one with the highest index (in order for this coordinate to be last

to be branched on based on the branching rules). Let the sets A1 and A 2 be

defined as follows:
A1 = {m E A: bm,o > bi.,0},

A2 = {m E A bm,o = biA,o}.

For each m E A1, let qm be the level of the B&B tree for which:

bi*,o <bm,qm,+1 < bi*,o,
2 (5.25)

bmrn,qm > bi.,o.

For each m E A 2 \ i*, let qm be the level of the B&B tree for which:

bm,qm = bi,o,bn,qm b*,o 
(5.26)

bm,qp,+l ctn

Assume q' = max qm. This implies that coordinate i* will certainly be
mE(A1UA2)\i*
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bisected at level q' + 1, and thus:

q. = q' + 1

bi=.,q. = bi*,o (5.27)

bi*,qi,+l 1 =

Since each time a coordinate of X is chosen it is bisected, qm is well defined,

i.e., for all m for which 1 < m < n., there is exactly one level qm that satisfies

either relation (5.25) or (5.26) or (5.27). It is also clear that:

mi m =: qm, qm, (5.28)
qmi > qmj = bmi,qmq • bmj,qm,.

Without loss of generality, suppose that q,, > qn.-1 > ... > ql so that i* = n,.

Relation (5.28) implies that:

bi*,q*,. bn,-l1,qn <... < bi,ql. (5.29)

It is obvious from relations (5.25), (5.26), (5.27), (5.29), and from the bisection

rules that at level q* = q' + 2, coordinate 1 will be chosen for bisection. At

level q* + 1, coordinate 2 will be bisected and with the same argument at levels

q* + (n. - 2) and q* + (n, - 1), coordinates n2 - 1 and n. will be bisected,

respectively.

Consider a node X1 located at level q*. Let S,, be the index set for the 2n.

descendant nodes of X1 at node q* + n,. From the bisection process described

above it is clear that:

U Xi=X1
XiESn.

bmq =-l V1 V1<m<n,
,*+nThis provides a uniform

This clearly implies that the set of nodes indexed by Sn, provides a uniform
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subdivision of X 1. It is obvious that from level q* + n, up to q* + (2nx - 1) the

same sequence of coordinates will be chosen for bisection as was chosen from

levels q* up to q* + (n, - 1). Thus, the index set S2,z of descendant nodes of X 1

at level q* + 2n, also provides a uniform subdivision for X1. Thus, the sequence

of levels defined by qk = q* + k -n, provides a uniform subdivision for X 1. Since

the choice of X 1 was arbitrary, obviously the same result holds for every node

at level q*.

O

Corollary 5.21. For every node M for which q(M) > q* (for the definition of q* see

Lemma 5.20) the sequence of levels defined by

qk = q(M) + knZ, k = 0, 1,... (5.30)

where nx is the dimension of X, provides a uniform subdivision of M.

Proof. Follows immediately from Lemma 5.20. O

Theorem 5.22. Assume the GSIP formulation (5.1) and let fGSIP be its solution

value. Then, the upper bounding operation described in Section 5.3 converges to the

solution value of the GSIP provided that for the breadth-first search Assumption 5.7

holds, while for the best-bound search Assumption 5.8 holds.

Proof. Suppose that t is a Slater point with P(±) # 0. From Lemma 5.17 there

exists E* > 0 for which for all p E P(t), the set t x CC(p,e*) n D is upper-stage

feasible. Define wq(D) = max - . Since lim wq(D) = 0 (the subdivision of D is
lj<_np q--oo

exhaustive), there exists a level q for which wq(D) < e* for all q > q. Fix q1 > q:

Wql (D) < (-). The index set for the subdivision of the parameter set D at level q1

can be written as:

Sql = Sf U Sif, (5.31)
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where the index sets Sf and Sif are defined as:

Sf = {1 E Sqi :3p E P,: uj(±,p) < 0,Vj E J} (5.32)

Sinf = {7 E SEq : Vp E P, :" uj(2,p) > 0, for some j E J}. (5.33)

Relation (5.31) holds directly through relations (5.32) and (5.33). Furthermore,

sf n Sif = 0.

Let 7' e Sinf. This implies that 3 j E J for which uj(2,p) > 0, V p E P,,. From

Lemma 5.18 there exists a neighborhood of 2, namely CC(2, e) n X, such that V (x, p)

E CC(±,e)nX x P',, uj(x,p) > 0 (the correspondence with Lemma 5.18 is -uj(x,p)

for g(x, p), P,, for P(2) and ± for 2).

Certain results from interval analysis are going to be used at this point. Assume

an arbitrary continuous function t : X x D -+ R, where X and D are nx- and n,-

dimensional intervals respectively. Consider any continuous interval extension of t

on X x D, namely T : X x D -- I~ , T(X, D) = [tL(X, D),tu(X, D)]. Assume

a set of uniform subdivisions of both X and D, defined by the index sets Ei and

Si, respectively, and also assume that as i -+ oo the cardinality of Ei and Si tends

to infinity. Then, it is well known that lim tL(X, D) -- lim min tL(X,, P,) =
i--oo i--*co aE i,rESi

min t(x,p).
(x,p)EXxD

Therefore, since min uj(x,p) > 0, j E J, there exists ij such that i
(z,p) e CC(e,e)nX xP,,

> ij implies that uLi (CC(t, E)n X, P,,) > 0. Choose i' = maxi• (recall that J is the

index set of the lower-level constraints). Consider a node M for which q(M) - q* (q*

was defined in Corollary 5.21) and M C CC(t, e) n X. Natural interval extensions

are inclusion monotonic and, therefore:

3i' such that uj (M, P,) > 0,Vj E J and i > i'. (5.34)

Corollary 5.21 shows that for every node M of the tree for which q(M) 2 q* there

exists a set of nodes at each of the levels q(M) + knx, k = 1, 2, ..., the union of which
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constitutes a uniform subdivision of M. Therefore, taking relationship (5.34) into

consideration:

3k' such that u k(M PT') > 0, Vj E J and k > k', (5.35)

where k denotes the uniform subdivision of M at level q(M) + knx of the B&B tree.

Assume that at the subdivision of M defined by k' the element of the partition of M

that contains 2 is X (i.e., X C M, X contains 2 and from the uniform subdivision

of M, X is an interval) and the index set for the subdivision of P,' is defined by Si,.

Taking relationship (5.35) into consideration it can finally be shown that uf (X, PT )

> 0, for all 71" E Si,.

Since the branching procedure is exhaustive, there exists a level q2 of the branch-

and-bound tree for which a node M', q(M 1) = q2, contains ± and satisfies M 1 C X.

From Lemma 5.19, the exists a level of the tree q3 > q', for which the subdivision of

P,I given by Spr,, Sp., C Sqa, is denser than the one defined by Si,.

Combining all the previous results, it is clear that at level q' = max{q 2, q3}, there

exists a node M 2, q(M 2) = q', that contains ± and satisfies M 2 C M 1 and furthermore

uj (M 2 , PT ) > 0, V 7" E SP,. Clearly, for q > q', P,, will be lower-level infeasible for

all nodes X satisfying X C M2, and therefore no descendant partition of P,' will be

considered by the upper bounding problems.

Let Sif = {T,,..., -r}, for some finite p. Since the choice of 7' was arbitrary,

for every Ti E Smi, 1 < m < p, there must exist a finite level q, for which P,-
will no longer be considered for the upper bounding problems for nodes containing

2. Let qinf = max q,. For q > qi,f, the only part of the parameter set D that will
<m<_p

be considered for the upper-bounding problems, for the nodes containing 2, will be

a subset of D defined by Sf. In other words, for q _ qif the following relationship

holds:

VT E Sq for which P, C Pe,, for some 7' E Si,f, P, will not be

considered for the upper bounding problem in the nodes containing x.
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Fix 7' E Sr. Since Wql (P) < (-), this implies that P,, is upper-level feasible for ±,

i.e., g(t, p) < 0 for every p E P,, (Lemma 5.17). From Theorem 2 in [27], there exists

a uniform subdivision of P,, for which gqi(, P7k,) < 0, where g' denotes the upper

bound of the interval extension of g on P,, under a uniform subdivision defined by

qi. From Lemma 5.19, there exists a level q4 of the B&B tree for which the uniform

subdivision of Pr,, Sp,, C Sq4, is denser than the one defined by qi. This implies that:

For all 7"e Sp,,, gU(9 , P,,,) < 0. (5.36)

Relation (5.36) implies that for every subsequent level, all of the partitions of P,, will

be upper-level feasible for x.

Let Sf = -{I,...,7 I}, for some finite r. Since the choice of 7' was arbitrary, for

every r-- E Sf, 1 < m < r, there must exist a level qm for which the partition of P,-

at this level will satisfy relation (5.36). Let qf,,ea, = max qm. For q > qfeas, for which
l<m<r

the partition of D is given by the index set Sq, the following relation will hold:

VT E Sq for which P, C P',, for some 7' E SS, : gU(2, P,) < 0. (5.37)

Relations (5.36) and (5.37) show that at level qslater = max{qij,, qfeas}, ± will be

feasible to the upper bounding formulation at node M containing 2.

Similarly, suppose that t is Slater point with P(t) = 0. This implies that:

Vp ED:" 3j E J: uj(±,p) > 0. (5.38)

Define r* = min max uj (2, p). Taking relation (5.38) into consideration, r* > 0 should
pED jEJ

hold. Consider an infinite sequence of nested nodes {MA, } such that the accumula-

tion point of {MA } is J{}. Define Uq(M,, D) = min maxEuj (Mx ,P,). By similar
TESq jEJ

arguments, it is clear that the following relation holds:

lim Uq(MA,, D) = r* > 0.
q--oo
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Therefore, there has to exist q*, and for each T E Sq a lower-level inequality index

j(r) such that the node MA * and the subdivision of D defined by Sq. satisfy:

u3 () (Mq*., P) > 0, VT E Sq.

Note the dependence of the lower-level inequality constraint j on the partition element

7 of the index set of subdivisions S,. Therefore, for M, q and for all of its descendant

partitions, t will be considered feasible to the upper-bounding problem.

Note that since t E X, has been proved to be found feasible finitely for the upper

bounding problem in both cases (P(.) = 0 and P(t) - 0) the distinction between

GSIP Slater points with an empty or an non-empty lower-level feasible set is no longer

made.

Recall that {x(} is a sequence of GSIP Slater points converging to a point x' with

f(x') = fGSIP. Depending on the node selection heuristic the proof continues in the

following way:

1. Breadth First Search. Fix E > 0. From continuity of f on X and from the

convergence of {x(} to x', there obviously exists n* for which, n > n* implies

that |f(x')- f(xz)l < e.

Since the branching process is exhaustive, there exists an infinite sequence of

nested nodes {Mq,} such that lim w(M,q) = 0, Mq+, C Mq and xn, E M,qq--oo

for every q.

Finally, for qsat,,e, xn will be found feasible to the upper bounding problem

and it will provide an objective value function better than or equal to f(xn).

Furthermore, since our node selection heuristic is based on breadth-first search,

each node is guaranteed to be be branched on at some finite iteration. Thus,

MA sater will be visited at some finite iteration k*. Therefore:

Vk > k* , ck < fGSIP + E.

Thus, for e > 0, 3 k* for which for all k > k*, fGSIP < ak < fGSIP + e. This
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implies that:

lim ak = fGSIP. (5.39)
k-+oo

2. Best Bound Approach. It has already been shown that for every point x

E Xs, ql is well defined, i.e., x will be found feasible to the upper bounding

operation at some level of the branch-and-bound tree (qsiater(x)). q2,x, is well

defined because the root node ensures that x' e Xif and x are together initially,

and the exhaustive partitioning of X ensures that these two points will finally

belong to different nodes (if x :- x').

Consider, the lower bounding operation. From Theorem 5.16, lim /k = fGSIP
k--oc

Since k -+ oc there exists an infinite sequence of nested nodes {M, } con-

verging to a point {x'}. From Theorem 5.16, f(x') = fGSIP. Using the same

approach as in Lemma 5.11 it can easily shown that x' ' Xinf,i (x G H and

x E Xinf,l satisfy the same assumptions). In other words if x' e Xinf,1 the lower

bounding operation would eventually fathom the node containing x' because of

infeasibility. Therefore, x' E Xinf,2

From Assumption 5.8.2 at least one of the two following relationships must hold:

(a) 3 a subsequence of {z,}, {Xk } that satisfies:

lim Xk= x' and q < q 2 , Vn. (5.40)
k nk`0 k nk

(b) 3 a subsequence of {xn}, {Xnk} that satisfies:

lim Xnk = x' and q1 k = q 2k,x" Vn. (5.41)
nk '00k

If relationship (5.40) holds, then by Lemma 5 in [27] it can now be easily shown

that:

lim ak = fGSIP. (5.42)
k-coo

If relationship (5.41) holds, then for an arbitrary member i of {Xk }, iý is not

found feasible when it belongs in the same node as x' but it is found feasible
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in the first level of the B&B tree for which X and x' do not belong to the same

node. Then, obviously . and x' belong to sister nodes. To understand the later

assume a node M that contains i and x' defined by:

M = [xL , xI ] x ... x [xL1, xUI] X [X
L , XU ] X [xL I, xU z] X ... X [xL , xU].

Then, according to the bisection process, in level q(M) + 1 = q, ,, two nodes,

called sister nodes, will be created as follows:

M, = [xL xu] ×  x X [xL  ( •+

M2 ~, r· +•x
)  

U)
L  U

M2=[ L XU]' 2 , ...  n, nX]"

Without loss of generality, assume x' E M1 and ^ E M2 and also that A(M1) = y,

for some y E N. According to the bisection process this implies that A(M2) =

y + 1. At the time of bisection, the lower bounds assigned by the algorithm

to these two nodes, fLBD and fLBD respectively, are equal. Since an infinite

sequence of nodes {M,q } that converges to x' is created, at some finite iteration

of the algorithm, M1 is going to be bisected and examined. Suppose that the

children nodes of this bisection are M3 and M4 and that A(M3 ) = y' and x' E M3 .

Obviously, the following relationships hold:

(a) fLBD = fLBD < fLBD (non-decreasing lower bounds),

(b) y+l < y',

(c) At some finite iteration k*, M3 is chosen and examined.

Recall that with the best-bound node selection heuristic, a node M is chosen

such that M = arg min A(M), V1 := arg min fBD.
MEVi MEIk

At iteration k* of the algorithm where M3 is chosen, assume M2 E Ik*. Then

because of (a) and (c), M2, M 3 E V1. However, (b) implies that A(M2) < A(M3).

Therefore, M3 $ arg min A(M) and M3 would not have been chosen. Therefore,
MeV•

M2 k Ik*. There are two possibilities for this, either M2 was fathomed by

value dominance or it was chosen and examined prior to iteration k*. However
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fLBD < f(x') = fGSIP and, therefore, the node could not have been fathomed

due to value dominance. Thus, M 2 was chosen and examined prior to iteration

k*. Therefore, for any M' E {Mqx } that is chosen and examined, its sister node

M" is also chosen and examined. Thus, there exists an infinite sequence of

nodes {M,}, each member of which is a sister node to a member of {MXq} and

is examined at some finite iteration.

Based on the existence of {M,}, relationship (5.41) and the continuity argument

of Lemma 5 in [26], relationship(5.42) holds in this case too.

O

Corollary 5.23. The B&B algorithm guarantees e-optimality in a finite number of

iterations.

Proof. Fix e > 0. From relations (5.18), (5.39) and (5.42):

lim ck = lim 3k = fGSIP
k-*oo k---oo

This implies that there exists a finite iteration k* for which

ak - k < E, Vk > k*.
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5.6 Numerical Implementation

5.6.1 Test Set

The main goal of the test set it to represent all possible scenarios for the structure

and optimality of GSIP. Certain problems are drawn from the GSIP literature while

others are original. The test set is created based on the following criteria:

1. Closed Feasible Set. The test set includes problems where the feasible set is

closed (3,5,8,10,12,14,15) and not closed (1,2,4,6,7,9,11,13,16).

2. Convex Lower-Level Problem. The test set includes problems where the

lower-level problem is convex on D for each x E X (1,4,6,10,11) and also

problems where the lower-level problem is nonconvex on D for some x E X

(2,3,5,7,8,9,12,13,14,15,16).

3. Empty Lower-Level Feasible Set. The test set includes problems where for

every x E X the lower-level feasible set is not empty (3,5,8,10,12, 14,15) and

also problems where there exists x E X for which the lower-level feasible set is

empty (1,2,4,6,7,9,11,13,16).

4. Re-entrant corner points. Problem 8 involves a re-entrant corner point.

Statements of the test problems can be found in Appendix A.

5.6.2 Numerical Implementation & Results

The GSIP B&B algorithm was implemented in C++ using an in-house B&B code,

while the upper and lower bounding problems were solved to local optimality us-

ing SNOPT 6.1-1 [46]. To calculate the inclusion bounds on g(x, D) (upper-stage

constraints) and also on uj (lower-level constraints) natural interval extensions were

employed. In terms of numerical implementation the relative and absolute tolerances

for retaining a node within the tree were set to 0.01. A node was fathomed from the

tree if either of the two tolerances was met. The tolerance for SNOPT for both upper

and lower bounding problems was set to 10- 7
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Table 5.1: Convergence results for GSIP with Best-Bound Search
Problem Nodes Depth CPU f x Minimum Feasible Set

1 23 8 0.22 0.0674 (0.00781, 0.09375) Attained Non-Closed
2 7 2 0.02 0 (0, 0) Attained Non-Closed
3 59 7 42.05 -0.5 (1, 1) Attained Closed
4 16 5 0.04 0.0039 (-0.0625) Not Attained Non-Closed
5 30 8 0.23 -5 (5, -4.6875) Attained Closed
6 4 2 0.02 -6 (0, -3) Attained Non-Closed
7 116 13 15.69 -0.4922 (0.4922, 0.0078) Attained Non-Closed
8 1 1 0.003 -1 (1, 0) Attained Closed
9 17 7 0.05 0.04785 (-0.21875) Not Attained Non-Closed
10 67 15 1.59 -1 (-1, 0) Attained Closed
11 45 10 0.39 5.039 (-0.5019, -0.5019, 0) Not-Attained Non-Closed
12 19 5 0.04 0.5 (-0.707) Attained Closed
13 323 16 16.75 2.937 (-1, 0.2506, 0.2506) Not Attained Non-Closed
14 77 13 3.72 0.386 (-0.6214, 0, 0) Attained Closed
15 119 11 1.42 -3.70 (2, 1.4527) Attained Closed
16 10 4 0.03 -10.67 (2, 0.25, 1, 2, 1, 2) Attained Non-Closed

Tables 1 and 2 summarize the main results from the numerical procedure presented

in this paper. Table 1 shows results for the best-bound node selection heuristic while

Table 2 shows the corresponding results with the breadth-first node selection heuristic.

In both tables, Column 1 lists the index of the problem, Column 2 the number of

required nodes to achieve e-optimality, Column 3 the maximum depth explored in

the B&B tree, Column 4 the required CPU time, Column 5 the e-optimal objective

function value that was obtained, Column 6 the feasible point at which this objective

function value was obtained, Column 7 indicates whether the infimum of the GSIP is

attained and finally Column 8 comments on the closedness of the feasible set of the

GSIP.

An immediate conclusion from the numerical results presented here is that, as

expected, the best-bound node selection heuristic outperforms the breadth-first node

selection heuristic. However, because the test set comprises small problems this dif-

ference is not crucial to the efficiency of the algorithm. For both node selection

heuristics the CPU time ranges from 0.02 to 42s. There seems to be no correlation

between the CPU time and the whether the feasible set of the GSIP is closed or not.

Furthermore, there seems to be no correlation between the CPU time and whether

the minimum of the GSIP is attained or not.
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Table 5.2: Convergence results for GSIP with Breadth-First Search
Problem Nodes Depth CPU f x Minimum Feasible Set

1 35 8 0.22 0.0664
2 7 2 0.02 0
3 59 7 42.05 -0.5
4 16 5 0.04 0.0039
5 184 8 2.38 -5
6 5 2 0.02 -6
7 116 13 15.69 -0.4922
8 1 1 0.003 -1
9 25 7 0.06 0.04785
10 67 15 1.59 -1
11 55 10 0.43 5.039
12 19 5 0.04 0.5
13 325 16 16.77 2.937
14 119 13 6.27 0.386
15 143 11 2.99 -3.69
16 19 4 0.05 -10.67

(0, 0.0625)
(0, 0)
(1, 1)
(-0.0625)
(5, -4.6875)
(0, -3)
(0.4922, 0.0078)
(1, 0)
(-0.21875)
(-1, 0)
(-0.5019, -0.5019, 0)
(-0.707)
(-1, 0.2506, 0.2506)
(-0.6214, -0.03125, 0)
(1.9375, 1.4392)
(2 , 0.25, 1, 2, 1, 2)
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Chapter 6

Test Set for Generalized

Semi-Infinite Programs

6.1 Introduction

The goal of this chapter is to present a novel test set for generalized semi-infinite

programs. In Section 6.2 we discuss the notion of replacing the lower-level problem

with its KKT conditions and in Section 6.3 we discuss the main criteria for the

development of the test set. Furthermore, we provide the test problems along with a

detailed analysis in Section 6.4.

6.2 Replacing Lower-Level Problem

with its KKT Conditions

For convex lower-level problems that are feasible for each x E X, an equivalent single-

level representation of the GSIP has been suggested in [120]

min f(x)
xEX

s.t. g(x,p) < 0 (6.1)

j is a KKT point of (1.4) for x.
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However, if the lower-level problem is convex for each x E X but infeasible for some

x E X 1 C X, then it is clear that X1 is an infeasible subset of (6.1) but a feasible subset

of (4.7). Since the set X\ X 1 will have the same behavior in the two formulations, it

is clear that the KKT representation of the lower-level problem provides a restriction

of the GSIP. Furthermore, if the lower-level problem is nonconvex for some x E X but

feasible for all x E X, then the KKT conditions are only a necessary condition for the

optimality of the lower-level problem (assuming the Slater condition is satisfied for

each x E X). Thus, a KKT representation of (4.7) would only provide a relaxation

of the GSIP. Finally, if the lower-level problem is nonconvex for some x E X and also

infeasible for some x E X then (6.1), in general, provides neither a relaxation nor a

restriction of (4.7).

6.3 Criteria for the Test Set

The main goal of the test set it to represent all possible scenarios for the structure

and optimality of GSIP. Certain problems are drawn from the GSIP literature while

others are original. The test set is created based on the following criteria:

1. Closedness of Feasible Set. The test set includes problems where the feasible

set is closed (3,5,8,10,12,14,15) and not closed (1,2,4,6,7,9,11,13,16).

2. Existence of the Minimum of the GSIP. The test set includes examples

where the infimum of the GSIP is attained (1,,2,3,5,6,7,8,10,12,14,15,16) and

also examples where the infimum is not attained (4,9,11,13).

3. Convexity of Lower-Level Problem. The test set includes problems where

the lower-level problem is convex on D for each x E X (1,4,6,10,11) and also

problems where the lower-level problem is nonconvex on D for some x E X

(2,3,5,7,8,9,12,13,14,15,16).

4. Emptiness of Lower-Level Feasible Set. The test set includes problems

where for every x E X the lower-level feasible set is not empty (3,5,8,10,12,
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14,15) and also problems where there exists x E X for which the lower-level

feasible set is empty (1,2,4,6,7,9,11,13,16).

5. Existence of Re-entrant corner points. Problem 8 involves a re-entrant

corner point.

It should be mentioned that while the literature examples include the original objec-

tive and the lower- and upper-level constraints, the host sets of the decision variables

and parameters, X and D respectively, are typically altered.

6.4 Test Problems

1. ([65] pg. 157 , Ex. 4-2)

f(x) = (x )2 + 2X4

g(x, p) = p + x 2

u(x, p) = p 2 _ x 1

X = [-1, 1]2 , D = [-1, 1].

The upper-level problem is convex in x for each p E D. The lower-level problem

is convex in p for each x E X. The lower-level feasible set is given by:

P(x) = [- /, XT ] if x1 > 0

0 if x1 < 0.

The feasible set is given by:

M = {x E [-1, 1]2 1 < 0} U {x E [-1, 1]2 1 2 0, x}

The feasible set is not closed but the minimum is unique and attained

at R = (0, 0). At the optimal solution, the Slater constraint qualification is
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violated for the lower-level problem:

min p
pE[-1,1]

s.t. - p2 < 0.

The Slater constraint qualification is violated because the lower-level feasible

set is empty for certain values of the optimization variables. This implies that

the lower-level problem is infeasible for some x E X.

2. ([65] pg. 156 , Ex. 4-1)

f(x) = 2

g(x, p) = _p3 + x2

u(x, p) = 2x2 - p 3 _ x 2

X = [-1, 1]2 , D = [-1, 0].

The upper-level problem is convex in x for each p E D. The lower-level problem

is nonconvex in p for each x E X. The lower-level feasible set is given by:

S [(2X2 - 2X)1/3, 0] if 2x 2 - X_ < 0
P(x)

0 if 2x2 - x2 > 0.

The feasible set is given by:

= {x E [-1, 1]2 1 x2< 2 2} U {0}.

The feasible set is not closed but the minimum is unique and attained at

R = (0, 0). At the optimal solution, the Slater constraint qualification is vi-
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olated for the lower-level problem:

min p
pE[-1,1]

s.t. - p2 < 0.

The Slater constraint qualification is violated because the lower-level feasible

set is empty for certain values of the optimization variables. This implies that

the lower-level problem is infeasible for some x E X.

3. ([105] Pg. 184, Ex. 5.2)

f(x) = - x + 2xx 2 - 2x-

g(x, p) = p + p -2 + X, -X2

u(x, p) = p2 + p2 + p - x

X = [0, 1]2 , D= [0, 1]3.

The upper-level problem is nonconvex in x for each p E D. The lower-level

problem is nonconvex in p for each x E X. The lower-level feasible set is given

by:

{p [0, 1]3 p2 + : p + p + p x} if xl > 0
P(x) 

E

0 if xl < 0.

The feasible set is given by:

M = x E [0, 1]2  X < 2 .

The feasible set is closed and the minimum is unique and attained at R = (1, 1).

For the global minimizer R the active lower-level set is given by:

Po() = {p [0, 1]3 I = 0, p +p= 1}.

This implies that infinitely many constraints, described by the smooth subman-
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ifold P0o(i) are needed to describe the feasible set locally around R. This implies

that the reduction approach suggested in [60] is not applicable.

4. ([121] Pg. 303)

f(x) = x2

g(x, p) = x - p

u(x, p) = (p + 1)2 + 2

X = [-1, 1], D = [-2,2].

The upper-level problem is convex in x for each p E D. The lower-level problem

is convex in p for each x E X. The lower-level feasible set is non-empty for all

x E [-1, 0) U (0, 1] and empty for x = 0. Specifically the lower-level feasible set

is given by:

1 if x = 0
P(x = 0 if x $ 0.

The feasible set is given by:

M = {x [-1, 1] x 0}.

Although the problem is feasible, the minimum is not attained. This is because

the point for which the infimum value of the GSIP is attained, i.e. R = 0, is

not feasible. However, there exists a sequence of feasible points converging to

R that have an empty lower-level feasible set. From a constraint qualification

perspective, the source of this irregular behavior comes from the violation of

MFCQ at p = 1 E Y(R). Specifically, at (x,p) = (0, -1) we have u(x,p) = 0

and Dpu(x,p) = 2 (p + 1) = 0.
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5. ([104] Pg. 683 , Ex. 3.1)

f(x)= - 1

g(x, p) = P2
U1 (x, p) = P2 - Xl - x2p1

U2(X, p) = P2 - p2 - 2

X = [-5, 5] 2 , D = [-2,2] x [-4, 4].

The upper-level problem is convex in x for each p E D. The lower-level problem

is nonconvex in p for each x E X. With a short calculation it is easy to verify

that:

S= (0, -4) E P(x), x, > -4, X2 > -4

y = (-2,-4) E P(x), -5 < x1 < -4, -5 < X2 5 -4.

This implies that P(x) is non-empty for all x E [-5,5]2. Thus, the feasible

set of the GSIP is a closed subset of the compact set X. This combined with

the fact that the problem is feasible implies that the minimum of the GSIP is

attained.

The feasible set of the problem is:

M = {x E [-5,5]2  2 5 -4} U {x E [-5,5]2 - 4 < x2< 0, x2 >X12
1

U {x E [-5,5]2 1 2 0, x2 < -x).

The set of global minimizers is:

Mo = {x E [-5,5]2 I X2 5 -4, x1 = 5).



6. ([105] Pg. 182 , Ex. 5.1)

f (x) = 4x - - 2

g(x, p) = x2 - P2

uI(X, p) = Pi - X1

u2(x, p) = P2 - X1

u3(x, p) = (P1 + p2)2 - P3

X = [-3, 2]2 , D = [-4, 4]2 x [0, 16].1

The upper-level problem is nonconvex in x for each p E D. The lower-level

problem is convex in p for each x E X. With a short calculation it is easy to

verify that the lower-level feasible set is:

P() [-4, zx] x [-4, xi] x [0, 16] n p E D I (p + p2) 2 - 3 < 0} if x1 < -2

10 if xl > -2.

The feasible set of the problem is:

M = {x E [-3,212  >2 0, x2 5 0} U {x E [-3,2]2 1 - 2 < x, I 0, x2 5 4x~}

U {x e [-3, 2]2 1 x < -2}.

As stated in [105] "the feasible set is not closed and not open but it is the union

of sets where each is defined by finitely many differentiable functions. Both

topological properties cannot appear simultaneously in semi-infinite or finite

optimization problems."

Although the feasible set is not closed, the minimum is attained at Rc = (0, -3).

Furthermore, this global minimum is the minimum of the unconstrained prob-

lem.
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7. ([134] pg. 931 , Ex. 3.3)

f(x)= -XZ

g(x, p) = 3x - p5

u(x, p) = -P5 - 4x - x + 1

X = [0, 1]2 , D = [-2, 0].

The upper-level problem is convex in x for each p E D. The lower-level problem

is nonconvex in p for each x E X. With a short calculation it is easy to verify

that the lower-level feasible set is:

P(x) = [( - 4  -  + 1), 0] if - 4x - + 1 < 0

0 if - 4x( - x + 1 > 0.

The feasible set of the problem is the union of the following open and closed

sets:

M= {x E [0, 1]2 I 4x2 + x2 < 1} U (½, 0).

Although the feasible set is not closed, the minimum is unique and attained at

x = (½, 0). A way to resolve the apparent nonconvexity from the lower-level

problem is to replace p5 in the both the upper-level and the lower-level con-

straints with a new variable and make the inner problem linear in p. Finally, it

is easy to verify that the extended MFCQ is violated at the global minimizer.

However, and as is pointed out in [134], violation of the EMFCQ does not force

the violation of the extended Kuhn-Tucker Constraint Qualification (EKTCQ)

which actually holds at the global minimizer.
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8. ([134] pg. 929 , Ex. 3.2)

f(x)= -= i

g(x, p)= -Px2

u(x, p) = x_ - p2

X =[-1, 1]2 , D = [-1, 1].

The upper-level problem is convex in x for each p E D. The lower-level problem

is nonconvex in p for each x E X. With a short calculation it is easy to verify

that the lower-level feasible set is:

P(x) = [(-V , V ] if x > 0

10 if x1 < 0.

The feasible set of the problem is the union of the following two closed sets:

M = {x E [-1, 1]2 1 x 50} U {x E [-1, 1]2 I 1 Ž 0, x 2 = 0}.

The feasible set is closed and the minimum is unique and attained at R = (1, 0).

It is clear that for each x E X = {x E [-1,1]2 x1 X 0, x2 = 0} C M the

index set of active constraints Po(x) = {p E P(x) I g(x, y) = 0} is non-empty.

This implies that essentially the assumption of the existence of a sequence of

GSIP slater points arbitrarily close to the global minimizer is violated. However,

because the interval extensions are exact for each x E X the upper bounding

methodology finds the global solution and it does so in one iteration (root node).
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9. (Own example)

f(x) = x2

g(x, p) = exp(x)p 2 - x2p

u(x, p) = p2x3 - x - 0.2

X= [-1, 1], D = [0, 1].

The upper-level problem is nonconvex in x for each p E D. The lower-level

problem is nonconvex in p for each x E X. With a short calculation it is easy

to verify that the lower-level feasible set is:

01

P(x) = [x+.2 1]73---,

[0, 1]

For x > 0.208, p = 1 is lower-level

constraint we have:

if x < -0.208

if - 0.208 < x < 0

if x > 0.

feasible. Substituting in the upper-level

g(x, 1) = exp(x) - X2 > 0,V - 0.208 < x < 1.

Therefore, feasible set of the problem is the following open set:

M = {x E [-1, 1] 1x < -0.208}.

The feasible set is not closed, it is open, and the minimum is not attained at

k = -0.208. The fact that the k is not attained is due to the violation of the

Slater constraint qualification, and thus of the MFCQ, at R for the lower-level
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problem:

min 0.812p 2 - 0.043p
pE[0,1]

s.t. - 0.008p 2 + 0.008 < 0.

10. ([106] Pg. 203 , Ex. 4-5)

f (x) = X1 + x2

g(x, p) = -p

uI(x,p) =x 1 -p
u2(x, p) = z - p

X =[-1, 1] , D = [-1,1].

The upper-level problem is convex in x for each p E D. The lower-level problem

is convex in p for each x E X. With a short calculation it is easy to verify that

the lower-level feasible set is:

P(x) = [min{xl,x 2 }, 1].

The feasible set of the problem is the following open set:

M = {x E [-1, 111 max{xl, x2 } > 0}.

The feasible set is closed since for every x E [-1, 1], P(x) is not empty. The

minimum is attained at two points xl = (-1,0) and x 2 = (0, -1), while the

algorithm finds the first as the answer for both heuristics. This is an example

of a re-entrant corner point at the origin x = (0, 0).
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11. (Own example, extension of test problem #3 in [135])

f(x) = ~ + X + X 2

g(x, p) = x1 + x2 exp(x3p) + exp(2p) - 2 sin(4p)

u(x, p) = 2p -x 2 - 1

X = [-5, 5]3 , D = [0, 1].

To analyze this example we are going to consider x3 = 0 henceforth. The

upper-level problem in convex in x for each p E D. The lower-level problem

is nonconvex in p for each x E X. With a simple calculation the lower-level

feasible set is given by:

P(x)= [0, 2+11 if 2 -1

0 if x2 < -1.

It can be seen that for x2 = -1, where P(x) = {0} we obtain:

g((xl, -1, 0), 0) = x, - exp(0) + exp(0) - 2sin(0) = xl.

Therefore, the feasible set at x3 = 0, x2 = -1 is

MX=o,32=-i = {xl E [-5, 5] 1 x, < 0}.

Assume a point R = (£Z, t2, ±3) for which ±t > 0, ±2 = -1 and t3 = 0. This point

is clearly infeasible. However, allowing x2 to be arbitrarily smaller than -1, say

X2 = t2 - E, E > 0, the point x = (1tj, -1 - E, 0) is feasible, and thus there exists

a sequence of feasible points (with an empty lower-level set) converging to R

(which is infeasible for the GSIP). This clearly implies that the feasible set of

the GSIP is not closed.

Now we will show that although the feasible set in not-closed, the minimum of
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the GSIP is indeed attained. Specifically consider the point i = (-0.5, -0.5, 0.0).

The lower-level feasible set is given by P(I) = [0, 0.25]. The lower-level problem

for R is formulated as:

G = max -1 + exp(2p) - 2sin(4p).
pE [0,0.25]

It can be easily calculated that G = 0 and thus R is feasible for the GSIP. The

objective function value for the current point is f(i) = 0.5. The only possibility

for the minimum to not be attained is if the set of global minimizers consists of

points each of which is infeasible but arbitrarily close to points with an empty

lower-level feasible set which are, of course, feasible. The only candidates to

satisfy this condition are points of the form x = (xt, -1, x3 ). However, the

objective function value of such points is greater or equal to 1 and since we

already have obtained a feasible point with objective function value of 0.5,

these points cannot have a objective function value equal to the GSIP infimum.

Thus, the minimum is attained and we will show that the point R is the unique

global minimizer.

The search for the minimum of the GSIP will be performed only for points x

for which the lower-level feasible set in non-empty. This is because all points x

for which the lower-level feasible set is empty have an objective function value

greater than f(R) = 0.5. For all points with a non-empty lower-level feasible

set, p = 0 is lower-level feasible and as such the points x = (x1, x 2, x3) that are

feasible must satisfy:

g(x, 0) = x 1 + 2 + 1 <0 =:+ + x2 <-1. (6.2)

With the use of (6.2) we now form the following optimization problem

min f(x) = x + x2 + x2
xE[-1,0]3  (6.3)

s.t. x 1 + X2 < -1.
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The argument of (6.3) is obviously R = (-0.5, -0.5, 0.0). Since this point is

indeed feasible, it is the unique global minimizer of the GSIP.

Furthermore, for x3 = 0, the lower-level problem involves the maximization of

g which is convex E p for all x E X. This implies that for x2 2 -1, the infinite

number of constraints at each x can be substituted with the constraints at the

bounds of the lower-level feasible interval. Therefore, feasibility can be checked

by the constraints at pi = 0 and at P2 = x2". Thus, the feasible set of the

GSIP at x3 = 0 is:

M = {x E [-5,5]3  2 < -1} U

{x E [-5, 5] 3 1 xI + x2 -1, x + 2 + exp(x 2 + 1) - 2sin(2x2 + 2) < 0}.

12. (Own example)

f(x) = x 2

13 )

g(x,p)= -p3p 22
u(x, p) = z2 - p2

X = [-1,1], D= [0, 1].

The upper-level problem is nonconvex in x for each p E D. The lower-level

problem is nonconvex in p for each x E X. With a short calculation it is easy

to verify that the lower-level feasible set is:

P(x) = [V , 1].

The feasible set of the problem is the following closed set:

M={xE[-1,1] x - }.

The feasible set is closed since for every x E [-1, 1], the lower-level feasible set

P(x) is not empty. Specifically, p = 1 is lower-level feasible for each x EX.
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The minimum is attained at two points xl -= - and x 2 = - while the2 2'

algorithm finds the latter as the answer.

13. (Own example, extension of test problem #5 in [135])

f(x) = exp(xl) + exp(x 2) + exp(x 3)
1

g(x, p) = 1 -x 1 - x 2  x 3p
2

1 + p2
1

u(x, p) = 2 + x3 -

X = [-1,1]3 , D = [0, 1].

The upper-level problem in convex in x for each p E D. The lower-level problem

is convex in p for each x E X 1 = {x = (x 1,x 2, 3) I x3 > 0.25} and nonconvex

in p for each x E X \ X 1.

With a simple calculation the lower-level feasible set is given by:

1

P(x) = [2(X2 + X3), 1] ifX2 + X3 < •

0 if 2 + x 3 > 12

Next, we will show that the feasible set is not closed. To prove this, consider

the point R = (-1, 0.25, 0.25). The lower-level feasible set for this point is given

by the singleton set P(R) = {1}. Evaluating the upper-level constraint we see

that g(R, 1) = 1. This implies that R is infeasible for the GSIP. However, for x

for which x2 ± x3 > 0.5, x has an empty lower-level feasible set, which implies

that x is feasible for the GSIP. This suggests that there exists a sequence of

points that are feasible for the GSIP converging to an infeasible point. From

this, we conclude that the feasible set of the GSIP is not closed.

We are going to examine the feasible set at the projection on xl and specifically

at xl = -1. Furthermore, we are going to focus on x for which the lower-level

feasible set is non-empty. Thus we will consider x for which x2 + x3 < 0.5. This

implies that p = 1 is lower-level feasible and as such the upper-level constraint
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can be written as:

3 3
g(x, 1)=-= (x 2 +3) 5 0 = x 2 + x3  -. (6.4)

2 2

(6.4) suggests that for x for which x 2 + x3 < 1, x is infeasible for the GSIP.

Finally, for x, = -1 the feasible set of the GSIP is given by the following open

set:

M,=-I = {(x2, x3 ) E [-1, 1]2 I X2 + X3 > 0.5}.

Furthermore, we are going to show that R is indeed a point of infimum objec-

tive function value. We have already showed that there exists a sequence of

feasible points converging to i. To complete the proof we need to show that all

feasible points of the GSIP have an objective function value greater than f(R)

= exp(-1) + 2exp(0.25) ; 2.93.

For x for which x2 + x3 > 0.5 it is obvious that f(R) is the infimum. Assume

x for which x2 + x3 = a , a < 0.5. p = 1 is lower-level feasible for x and the

corresponding upper-level constraint is:

1 1
g(x, 1)= --x - (X2 ++X3 ) < 0 * 2 - - a. (6.5)

2

(6.5) is a necessary condition for feasibility of x. The optimum objective func-

tion value would be attained at x = (2, 2, 1 - a). Furthermore, calculating the

optimum solution with respect to a we obtain the following problem:

1 a
F= min exp(- - a) + 2exp( ). (6.6)

aE[-2,0.5] 2 2

where the lower bound of a is determined by the lower bounds on x 2 and X3.

Solving (6.6) we obtain that F = 3.55 > 2.93. This implies that the necessary

conditions for feasibility enforce that the minimum possible objective function

value for feasible points to be greater than the objective function value of R.

This concludes the proof that f(R) is the infimum objective function value for
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the GSIP.

14. (Own example, extension of test problem #7 in [135])

f(x) = x +X +x

g(x, p) = l(pl + p + 1) + x2(plp2- p) + x3(p2 + 2)+ 1

u(x, p) = x2 - p2

X = [-1, 0]3 , D = [0, 1]2.

The upper-level problem is convex in x for each p E D. The lower-level problem

is nonconvex in p for each x E X.

With a short calculation it is easy to see that the lower-level feasible set is:

P(x) = {p E [0, 1]2 I [V 2, 1] X [0, 1]}. (6.7)

Therefore, for all x E [-1, 1] the lower-level feasible set is not empty and specif-

ically for each x E [-1, 1] there exists pl E [0, 1] such that (pl, 0) is lower-level

feasible. Using this point and evaluating g we obtain that

g = Xlpi + Xl + 1. (6.8)

From (6.7) it is obvious that p = (-x 1 , 0) is lower-level feasible for each

x E X. From (6.8), substituting with pi = -xl and satisfying (6.8) as an

inequality constraint (taking into consideration the bound constraints for xl)

we obtain that:

-1 < zx < -0.6180.
2

Thus an outer approximation, i.e. a relaxation of the feasible set M is the

following set M:

M C M = {x E [-1, 1]3 I x _< -0.6180}. (6.9)
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We will show that indeed M = M. Taking into consideration the functional

form of g we see that g can be written as:

9 = XlPi(p) + x 2P2(P) + x3P3(p) + 1. (6.10)

In (6.10) we observe that Pi(p), P3 (p) _ 0, V p E [0, 1]2. Furthermore, since for

every x E X, there exists pi E [0, 1] such that p = (pl, 1) is lower-level feasible,

min P2(p) < 0 V x E [-1,0]. Thus, if R = (-0,6180, -1.0, 0.0) is feasible
pEP(x)

then every point x for which xl < -0.6180, -1 < z 2 < 0, -1 < x3 < 0

will also be feasible. In other words we are fixing xl and x3 to their upper

bounds and x2 to its lower bound (based on the observation on the signs of

P1 (p), P2(p) and P3(P)).

Performing a global minimization procedure on g(R, p) on P(R) we find that

indeed x is feasible. This implies that every point in 1M is feasible and thus:

M c = {x E [-1, 1]3 x1 < -0.6180}. (6.11)

From relations (6.9) and (6.11) we obtain that

M = M.

This implies that the feasible set is closed and since it is non-empty, the mini-

mum of this problem is attained. Furthermore, it is easy to see that the mini-

mum is unique and attained at x = (-0.6180, 0.0, 0.0).
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15. (Own example, extension of test problem K in [135])

f(x) = x -4x2
g(x, p) = x1 cos(p) + x2 sin(p) - 1

2 7 23u(x, p) = -p2 - 3 + 24 4
X = [0, 2]2 , D = [0, 7].

The upper-level problem is convex in x for each p E D. The lower-level problem

is nonconvex in p for each x E X.

With a short calculation it is easy to see that the lower-level feasible set is:

P(x) = {p E [0, r] [ - X2,n]}.

Therefore, for all x E [0, 2]2 the lower-level feasible set is not empty. Taking

into consideration that the GSIP is indeed feasible (as we will show later on),

this implies that the minimum of the GSIP is attained.

Next, we will show that the unconstrained minima are not attained for this

problem. Specifically, the set of unconstrained minima is

Mnc = {x E [0, 2]2  x2 = 2}.

The lower-level feasible set for each x E Mn is given by:

P(x)u, = {p [0, r] I <p< r}.

It is clear that p = 2 is lower-level feasible for the set of unconstrained minima.

This implies that the upper-level constraint

g= zi 0+2.1-1 = 1 >0.

Therefore, the set of unconstrained minima is infeasible for the constrained
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GSIP.

Next, we will attempt to describe the feasible set of the problem. For this

purpose we will define two complementary sets, X 1 and X2 that satisfy:

XUX 2 = [0,2]2 , XinX2 =0

X= {x [0,2]2 P(x)}= {x [0,2]2  < 1.8757}

X2 = x E [0,2]2  E P(x)} = {x E [0,2]2  2 2 1.8757}.

For x E X2 the upper-level constraint g at I = evaluates at:

g(x,p) = x2 - 1 > 0.

This implies that for each x E X 2 , x is infeasible. Next we will consider x E X1.

For all these points it is clear that P(x) C [E, 7r]. This implies that for any given

x E X 1, cos(p) and sin(p) are monotonically decreasing functions on the interval

described by P(x). This implies that g(x, .) is also monotonically decreasing on

the interval described by P(x). Therefore, a necessary and sufficient condition

for feasibility of x E X 1 is that the constraint function g evaluates to a non-

positive number for the lower bound on the lower-level feasible interval described
723

by P(x). The lower bound of this interval is given by p = T - 2. Thus

the feasible set of the GSIP can be described as follows:

M = {x E [0, 2]2 }{x2 < 1.8757}

23 7 23 7
nfxlzcos( X2)+2sin( z 2) - 1 < 0}.4 4 4 4

Furthermore, we will calculate, algebraically, the global minimum of the prob-

lem. Keeping in mind that f is monotonically decreasing with respect to x2

on [0,2] we conclude that we are seeking for the maximum feasible value of

X2 E [0, 2]. Furthermore, since M C X 1, cos(p) is non-positive for all p E P(x),

x E M. Finally, since xl does not appear in f we will fix xl = 2 and locate the

largest value of x2, namely t2 for which (x 1, 22) E M. We claim that, provided
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such a value of x2 exists, the point (xl, -2) will be the unique global minimizer

of the problem. In conclusion, the global minimizer will be the solution of the

following optimization problem:

min x2 - 4X2
XE[0,2]x [0,1.8757]

23 7 23 7s.t. lcos( 2) +  2sin( X2) 0
4 V44

zl = 2.

The solution to this problem is c = {2, 1.4619} and that is the unique global

minimizer of the original GSIP. Since the lower-level problem is not convex for

some x E X and feasible for all x E X, replacing this problem by its KKT

conditions provides only a relaxation of the original GSIP.

16. (Own example, extension of test problem #9 in [135])

2
f(x) = -4x1  (54 + X6)3

g(x, p) = X + X2P1 + 3P2 +4 2 + X5P1P2 + x6p2 - 1.0

u(x, p) = xl cos(p1) - x2 sin(pl)

X = [O,2]6 , D= [-1, 1]2

The upper-level problem is convex in x for each p E D. The lower-level problem

is convex in p for each x E Xo = {x = (x1,x2, 3, 4, 5, 6) I1 = 2

0, 4x24 6 - x2 > 0} and not convex in p for each x E X \ Xo.

With a short calculation it is easy to see that the lower-level feasible set is:

{pe [-1,1]2 [max{tan-l(Z), 0}, 1] x [-1, 1]} if tan-l'() 1, x 2 # 0

)0 if tan-l(E) > 1, x2 # 0
P(x) =

0 if x2 = 0, xi 0

[-1, 1]2 if 2 = 0, X1 = 0
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We are going to examine the feasible subset of the points x that belong in the

first and fourth categories, namely X1 and X4 respectively, in the lower-level

feasible set that was described above. Obviously, the second and third categories

are subsets of the feasible set (points with an empty lower-level feasible set).

Clearly, p = (1, 1) is lower-level feasible for each x E X 1. Furthermore, for each

x E X 1 the maximum of the upper-level constraint g is attained at p = (1, 1):

g(x, (1, 1)) = x1 + x2 + x3 + x4 + x5 + x 6 - 1.0.

It is clear that a necessary and sufficient condition for x E X 1 to be feasible is

that x1 + x2 + x3 + X4 + X5 + x6 < 1. It is trivial to show that the same condition

along with the extra requirement that xl = x2 = 0 has to hold for x E X 4.

Thus the feasible set of the GSIP is:

M = {x E [0,2]6 tan-l(E) _< 1, x2 = 0, x1 +x 2 + x3 +x4 +5 +x6 1

U{x E [0, 2]6 1 tan-'(E) > 1, x2 4 0} U {x E [0, 2]6 1 x, _ 0, x2 = 0}

U{x e [0, 216 1x = 2 = 0, X3 ++ X4+ + 5 1}.

The set of the unconstrained minima of f is the following:

Mnc = {x E [0, 2]2  1 =x = 6 = 2}.

Both the heuristics locate the point x = (2, 0.25, 1, 2, 1, 2) as the candidate for

global optimality. It is easy to see that this point belongs in the 2nd category of

feasible points and since it is indeed a minimum for the unconstrained problem

it is a minimum of the GSIP.

However, using the set ,,c we will show that the feasible set of the GSIP is

not closed. Specifically we will show that the set of global minima is not closed

which implies that the feasible set is also not closed. Specifically, consider

point R = (2, 1.2841, 1, 2, 1, 2). The coordinates xl and x2 were chosen in order

to satisfy that tan-'(l) = 1 and that x E Mn,. By a quick examination,X2
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p = (1, 1) is lower-level feasible for this point but provides a positive value for

the upper-level constraint. This implies that R is infeasible for the GSIP. For

each x = (2, 1.2841 -, 1, 2, 1, 2), E > 0 it follows that x E X2 C M. This implies

that there exists a sequence of feasible points for the GSIP that converge to an

infeasible point. This concludes our observation that the feasible set of the

GSIP is not closed.

The set of global minima for the GSIP is set:

Mcon = {x E [0, 216 1 x = X4 = X6 = 2, X2 < 1.2841}.
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Chapter 7

Kinetic Model Reduction

The goal of this chapter is to analyze the problem of kinetic model reduction (KMR).

The analysis will focus on equivalent reformulations of KMR within the context of

global optimization and also on a new methodology to provide valid reduction ranges

for KMR. In Section 7.1 we provide a brief introduction on KMR and in Section

7.2 we demonstrate that KMR is a design centering problem. In Section 7.3 we will

analyze and comment on literature methods that provide estimates on regions of

valid reduction. Then, we will formulate KMR as a global optimization problem and

demonstrate that this problem is a special case of a generalized semi-infinite program

(GSIP) in Section 7.4. In Section 7.5 we provide equivalent reformulations of KMR

and in Section 7.6 we comment on the limitations of global optimization methods in

semi-infinite, generalized semi-infinite and bilevel programming to provide a tractable

approximation for KMR. In Section 7.7 we provide a new method to calculate ranges

of guaranteed valid reduction for KMR and in Section 7.8 we analyze the application

of the aforementioned method to the combustion of hydrogen.

7.1 Introduction

Reacting flow simulations are known to be computationally expensive and sometimes

intractable especially when they incorporate both the chemistry (thousands of chem-

ical reactions and species) and the transport phenomena often occurring at different
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time scales [11, 25, 90, 96, 111]. Kinetic model reduction (KMR) is a methodology

by which full kinetic models that describe the reacting flow are replaced by reduced

kinetic models in regions of the concentration-temperature space where it is believed

that they accurately represent the full model.

Consider a full kinetic model, denoted by F, that describes the combustion kinetics

of a chemical species. Assume that F involves ns participating species and n, partic-

ipating reactions. Now consider a reduced model, denoted by F that also describes

the combustion of this chemical species but which involves a reduced number of par-

ticipating species ii, ýi < ns and/or a reduced number of participating reactions ir,

hr < n•. Within the context of KMR, there are two important questions:

1. (Optimally reduced model): Given a specific point in temperature and concen-

tration space, a full kinetic model F describing the combustion mechanism and

a description tolerance e, what is the smallest possible reduced mechanism F

that reproduces (to some metric) the full model within E?

2. (Optimal ranges of valid reduction): Given a full kinetic model F, a reduced

kinetic model F and a description tolerance e, what is the maximum range of

validity of F? Therefore, this question can be posed as: what is the maximum

range in temperature and concentration space such that the difference between

the full model F and the reduced model r for every point in that range is less

than e?

The question of finding optimally reduced kinetic models is out of the scope of this

thesis. The reader is referred to [9, 10, 12, 28, 39, 41, 88] for a number of different

algorithms that have been developed to address this matter.

In the following sections we are going to emphasize on finding optimal ranges of

valid reduction for KMR.

170



7.2 KMR as a Design Centering Problem

The problem of finding a (optimal) valid range of reduction is actually a design

centering problem. To illustrate this point we provide the following example.

Example 7.1. Assume a hypothetical combustion mechanism that involves two

species, A and B, and four reactions. We also make the following assumptions:

1. F is the full kinetic model of the mechanism, r is the reduced one and e is the

description accuracy.

2. There exist lower and upper bounds for the concentrations of the participating

species, CA,low, CB,Iow and CA,up, CB,up respectively.

3. There exists a known point C = (CA, CB) such that the reduced model F

reproduces the full model F within the prescribe accuracy e. We will refer to

this point as the nominal point of reduction.

4. There exists a non-degenerate region (i.e. a geometric region with a non-empty

interior, e.g. not a line) around C for which the full model can be reproduced

with the reduced model within the prescribed accuracy e.

The first goal is to inscribe a box (in this 2-D case a rectangle) within the total valid

reduction range (feasibility problem). The second and numerically more challenging

goal is to maximize the area of the inscribed box to capture as much of the total valid

reduction range as possible (flexibility problem).

Figure 7-1 illustrates the feasibility problem. Note that C does not actually have

to lie in the interior of the valid reduction range. However, this reduction range

should be non-degenerate. To ensure that, the point C has to be chosen such that

the maximum difference between the full model F and the reduced kinetic model F is

strictly less than e. Then, by simple continuity of the participating functions, there

exists some set around C that belongs to the interior of the valid reduction range.

Figure 7-2 illustrates the flexibility problem. In the general case, the valid region

of reduction is nonconvex. Therefore, inscribing a box and maximizing its volume
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CBpM

CO.,

Figure 7-1: Feasibility Problem in KMR

(area in the 2-D case) amounts to solving, at the very best, a nonconvex optimization

problem globally.

cDA

Ce•

- 4 ------ -----------------------------4

CA,bW CAM

. Total valid reduction

Boxto be inscribed in the valid region
* Nominal point of reduction A B

Figure 7-2: Flexibility Problem in KMR

It is immediately clear that KMR is a design centering problem. Following the

notation of Section 4.1:

1. The container (host) set is the total valid range of reduction.

2. The parameterized body is the cube (rectangle in the 2-case).
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3. The optimization variables are obviously the concentrations of the two species

CA and CB, the lower and upper bounds of which are used to parameterize the

inscribed box.

7.3 Literature Review

Numerical algorithms that address the feasibility and flexibility subproblems of KMR

have been developed in [12, 49, 50, 90, 109, 112].

The common element in [49, 50, 109] is the approximation of the valid range of

reduction using the convex hull of a finite number of sample points. More specifically,

the authors generate a finite number of sample points either uniformly or by an

active-set strategy and evaluate them for feasibility. Then, they take the convex hull

of the feasible points and claim that this set (along with certain heuristic rules) is

an approximation to the valid range of reduction. Figure 7-3 illustrates the method:

It can be seen that although the convex hull may give a rough approximation of the

- Total valid reduction range

* Sample points
A

CeU.

CBs1

o - -

-4...~..~...~..~.....~.~_._............

o Sample points that are infeasible
O Sample points that are feasible but inactive
* Sample points for the convex hull B
. Incorrect estimate ofvalid range of reduction

Figure 7-3: Convex Hull for the Flexibility Problem

valid range of reduction it can also overestimate this region. For the case of KMR

which is inherently nonconvex and for which the valid region of reduction comprises,

very often, disconnected sets, this wrong estimation leads to considerable numerical
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errors.

Banerjee and lerapetritou [12] recognize the limitation of this method and propose

to use the a-hulls instead of the convex hulls. The a-hulls, having their origin in

pattern recognition and shape reconstruction, approximate the feasible set in a more

precise way than the convex hulls by introducing curvature (with negative convexity)

between the sample points. However this method suffers from two drawbacks:

1. It relies on reconstructing the feasible set from a finite set of points. Even with

the addition of curvature, this method can still overestimate, or miscalculate,

the valid range of reduction.

2. The form of the feasible set of the approximated range of reduction is not

particularly useful to numerical software. This is because the range is no longer

given in a box-form but as a nonconvex set.

Song et al. [112] propose the use of local linearizations of the constraint functions

(rate expressions) around some nominal values of the model parameters to extrapolate

the rates in a parameter range. In order to control the error of the adaptation of the

rates for a larger parameter set, the authors test the vertices of the identified hyper-

rectangle. Despite the fact that this method tends to account for the numerical error

introduced by the linearization, examining the vertices of the hyper-rectangle can

guarantee feasibility of the extrapolation only when the feasible set is convex. As

mentioned before, KMR is inherently nonconvex so the maximal error can occur in

the boundary of the hyper-rectangle that is not an edge or even in the interior of the

hyper-rectangle.

Oluwole et al. [90] address the issue of feasibility in KMR and introduce the

first, to our best knowledge, numerical procedure that guarantees the generation of a

valid range of reduction. The authors use the interval-constrained reformulation by

Bhattacharjee et al. [26] and adaptively (using sensitivities at the edge of the hyper-

rectangle) shrink the estimated box of validity until it is rendered feasible. The

authors choose to implement Taylor models for the interval extensions which, espe-

cially for the polynomial character of the kinetic expressions, provide a much tighter
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inclusion than the natural interval extensions. We emphasize that the approach in

[90] targets feasibility and not flexibility for two reasons:

1. The procedure ends when the first feasible box has been found. Therefore, there

is no procedure to extend the box when it is ensured that a feasible one has

already been found.

2. The interval-constrained reformulation was only used to evaluate the constraint

functions (difference between the full and kinetic models) and not to formulate

the feasible-box search as an optimization problem.

7.4 KMR Formulated as a GSIP

Recall that the flexibility problem in KMR formulated as an optimization problem

can be stated in the following way: "Given a full kinetic model F, a reduced kinetic

model Fred and a description tolerance e, what is the maximum volume of a hyper-

rectangle for which the reduced model reproduces the full kinetic model within e

for every point in that hyper-rectangle?". This leads to the following optimization

problem:

max V(x', x")

s.t. Ijred,j(p) - rj(p)I < Etol,j = 1,... ,n, +1, Vp E P(xl,x")

P(x, xu) = {p E [xio•, xp] : x < p x }.1 (7.1)

X1, XU [XIow, XUp].
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Recall that the general form of a GSIP is:

inf f(x)
xEX

s.t. g(x,p) • 0, Vp E P(x)

P(x) = p E D: uj(x, p) 0O,j E J} (7.2)

X c R"n, D c Rnp, IJI < 00.

Comparing relations (7.1) and (7.2) we observe the following:

1. The objective function f in problem (7.2) is the volume of the hyper-rectangle

defined by the lower and upper bounds of the optimization variables mx in (7.1).

Specifically V(x~, x)= n,+l(z - x).

2. The optimization variables x refer to the concentrations of the n, species and

to the temperature of the system. Since for each of the participating species

and temperature we define a lower-bounding and an upper-bounding variable,

the total number of decision variables is 2(n, + 1) (X C R2(ns+1)).

3. The number of parameters of the problem, p, is n, + 1 (P c R"'+'). For each

pair of variables (xi, x.), j = 1,..., n, + 1 corresponds a parameter pj .

4. The upper-level constraint g in (7.2) is actually a vector of n, + 1 constraints

in KMR. This does not add any complexity to the problem because all the

n, + 1 generalized semi-infinite constraints are defined with respect to the same

lower-level feasible set.

5. The lower-level feasible set P is defined as simple bound inequalities on the

parameters. Essentially these relations define a box the extreme points of which

are the 2'a+1 points generated by the values of xu and x), j = 1, ... , ns + 1.

6. Notice that the generalized-semi infinite constraints do not depend directly on

the optimization variables. The dependence stems from the x-dependence of the

lower-level feasible set. This is consistent with the fact that KMR is a design

centering problem.
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7. The host set of the decision variables x is X = {x E R 2(ns+1) : xj,low < xu.l I

Xjup , j = 1,..., ns + 1}.

8. The cardinality of the lower-level inequality constraints is n, + 1. Therefore, J|

= n, + 1.

9. Denote p = (y, T). Then the full kinetic model describing the evolution of the

concentration of species j, yj for a constant-volume adiabatic process is given

by [25]:

C(y, T)

where vj,i is the stoichiometric coefficient of species j in reaction i, ri is rate

expression for reaction i and C(y, T) is the total concentration of the mixture.

The underlying equation for the evolution of temperature is [25]:

zj7+ L h (T) >, ji,jri(y, T)
= C(y, T)

where hj is the molar enthalpy of species j at temperature T and C,(y, T) is

the heat capacity of the mixture.

A reduced model Fred is expressed in terms of the full model with the addition of

binary variables zi, i = 1,...,n, indicating whether reaction i is included in the

model (zi = 1) or has been deleted (z = 0). Therefore, the reduced kinetic model can

be expressed in terms of the following equations [25]:

rj = I
1ij= 1 zi.ri(y nT)

C(y, T) I =

n.= Z j  hi(T) EZ 1 l1j,iziri(y, T)
Cp+ (y, T)

7.5 KMR as a SIP and as a Bi-level program

We mentioned that kinetic model reduction is a design centering problem. As such, it

can be formulated as a special case of a generalized-semi infinite program. However,
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there do exist other equivalent formulations of KMR.

First of all, if we take advantage of the simple linear and separable, in the decision

variables and parameters, structure of the lower-level feasible set and introduce the

following variable transformation [137]:

s(x', xU, a) = x1 + a(xu - x1), (7.3)

then, the flexibility problem in kinetic model reduction can be expressed as an ordi-

nary semi-infinite program:

max V(x', x")

S. Fred,j(s(x ', a)) - F3(s(x, x, a))l < eto, j = 1,... ,n + 1, Va E [0, 1]n"+l

xl xU E [XIow, Xup]

The SIP formulation presents certain advantages and drawbacks with respect to the

original GSIP formulation:

1. SIP are considered to be numerical more tractable than GSIP. Therefore, it

seems that an easier formulation has been postulated.

2. In the SIP reformulation, the decision variables x appear on the upper-level

constraint. Recall that since KMR is a design centering problem, the decision

variables appeared only in the description of the lower-level feasible set. Fur-

thermore, the SIP reformulation introduces bilinearities between the decision

variables x and the transformed parameters a. It is well-known that bilineari-

ties are not desirable in any optimization problem, whether that is solved local

or global.

Overall, it is possible to transform the original GSIP into a SIP at the cost of intro-

ducing bilinearities in the upper-level constraints.

Another possible way to formulate the flexibility problem in KMR is to use bi-level

programming. There are two ways to generate the bi-level program; directly from the
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original GSIP and indirectly after first reformulating the GSIP as an equivalent SIP.

We are going to analyze the latter case. For this purpose, assume an ordinary semi-

infinite program consisting of n (multiple) semi-infinite constraints:

min f(x)
xEX

s.t. gi(x, p) < 0, Vp E P

g2(x,p) < 0, Vp E P (7.4)

gn(x,p) < 0, Vp E P,

where P C R is the compact host set of the parameters. In order to transform this

SIP into an equivalent bi-level program we introduce the following notation:

1. gl, ... , gn are multiple lower-level non-interacting constraints (also known as

non-interacting players in bi-level programming).

2. We introduce as many inner variables as the number of constraints present times

the dimensionality of the host set, which in this case is 1.

The equivalent bi-level reformulation of (7.4) is:

min f(x)
xEX

s.t. gl(x,pD) < 0,

n (x, pn) < 0, (7.5)
p*,...,p*Earg max G(x,pl,...,p,)

Pl,P2 ,...,Pn

s.t. G(x, pj,... ,pn) = gl(x, p) + ... + g,(x,pn)

p1,...,pn E P.
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In a similar way, the bi-level equivalent reformulation of KMR is:

max V(x', x")xl,xu
s.t. rFred,l(S(X", x, b*)) - rl(s(xu, xl, bt)) • Etoi,

F (s(xU, xI, b;)) - Fred,l(s(XU, xI, b*)) < etol,

Fred,2n+1 (S(XU, X1, b;~+ 1)) - [r2n.+ (S(xu, X1, b2,+l)) •< tol,

r 2n.+2(S (x, X1 , bjm+ 2)) - red,2ns+2( (XU, X1, b2n,+2 )) Etol ,

bK,b, ... , bn,+1, b2n,+ 2 E arg max G(x', x", bl,b2,.., b2bn+1, b2n,+2)
bl,b 2 ,..,b2ns+l b2n +2

G(xl, xu, b, b2,..., b2n,,+l, b2n+ 2 ) = gl(l, XZ , bl) + .. . g2n%+2 (X1x u , b2n. +2)

g9(x', x", bl) = Fred,1 ((X , X1, b*)) - Fi(s(xu, X1, b)) - Etol

g2n,+2 (x, xU , b2n,8+2) = r2n.+2(S(Xu, XI, b*s+2)) - rred,2n,l+2 (S(X, X1, b~,+2)) - Etol

xI ,XuE [XloW, Xup]

bl,..., b2n.+2 E [0, 1] "+l

7.6 Is KMR Tractable with SIP, GSIP or Bilevel

Programming?

In this section we will comment on the applicability of the global, or feasible-point,

methods that have been proposed for semi-infinite [27, 84], generalized semi-infinite

[77] and bi-level programming [83]. The main motivation to analyze only these al-

gorithms is that, to our best knowledge, they are the first numerical procedures to

provide a guaranteed feasible point for semi-infinite, generalized semi-infinite and

bi-level programming, respectively.
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7.6.1 Applicability of SIP Algorithms

Both algorithms that have been proposed for semi-infinite programs [27, 84] require

the subdivision of the parameter host set in order to guarantee global optimality.

Bhattacharjee et al. use the subdivision in order to converge the interval extensions

while Mitsos et al. use the subdivision in order to converge the relaxation-based

bounds. Therefore, there is a continuous increase of the number of constraints in the

approximating problems and in order to guarantee optimality this number can be

unbounded. Within the context of branch-and-bound suppose that the subdivision of

the parameter set is defined by the empirical rule: Sq = {1, 2,..., 2 q}ns+1, where Sq is

the index set of the partitions of the parameter set at level q of the branch-and-bound

tree and n, + 1 are the total number of parameters in the problem. This implies that

at level q the number of generated constraints is (2ns + 2 )(2q(ns+1)). The first term

corresponds to the number of semi-infinite constraints in problem while the second

refers to the number of partitions that each of the constraints needs to be evaluated

on.

To illustrate the explosion in the number of generated constraints, consider the

hydrogen combustion mechanism in [9]. The proposed model consists of 8 participat-

ing species and 20 chemical reactions. At the second level in the tree, i.e.q = 2, the

total number of generated constraints amounts to (2(8 + 1))(22*9) = 4718592! It is

clear that standard numerical solvers would not be able to handle such large systems

robustly. Notice, also, that the explosion in the number of constraints occurs very

early in the tree. This is mainly due to the large number of parameters (n, + 1) in

the system.

7.6.2 Applicability of GSIP Algorithm

The algorithm that was developed and analyzed in Chapter 5 also relies on the sub-

division principle in order to guarantee global optimality. Therefore, if the flexibility

problem in KMR is formulated as a GSIP one should expect the aforementioned

limitations, i.e. an explosion in the number of the generated constraints.

181



A question that may arise in the applicability of the GSIP algorithm comes from a

close examination of the functional form of the lower-level inequality constraints. One

could argue that as we shrink the space of decision variables, because these variables

bound the parameters, then the space of parameter values would shrink too. In other

words, by shrinking the space of the decision variables, e.g. by going deeper in the

branch-and-bound tree we could avoid subdividing the parameter set since this set

shrinks as well.

In order to answer this question, suppose that we are given a full kinetic model

F, a reduced kinetic model 1 as well as a nominal point for reduction Xnom. For

simplicity also suppose there is only one species participating and that the lower and

upper bound of the species concentration in the flexibility program are xo,o and xp,

respectively. We define two auxiliary variables xz and xz for which xlo, x' < xno,,

and xnom < x" < zxp. There are two possibilities:

1. In a feasibility approach assume that we are shrinking the interval of validity

around the point xom. Figure 7-4 illustrates this case. The approach by Olu-

x Parameter x

Parameter range Parameter range

Figure 7-4: Decision and Parameter Ranges Shrinking

wole et al. [90] is based upon this principle. Therefore, as the approximated

region of valid reduction shrinks around a nominal point of valid reduction, then

no subdivision of the parameter set is needed. From simple continuity state-

ments, there exists a non-degenerate range (in the 1-D case, a non-degenerate

range is a line, a degenerate one is a point) for which the reduction is valid.

Recall that shrinking an approximated region of reduction until it is feasible

and stopping upon finding such solution addresses the feasibility issue in KMR.
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2. In a flexibility approach this claim is not correct. Specifically, as the decision-

variable space shrinks, the host set of the parameters does not need to shrink.

To illustrate this point consider a fixed node in the branch-and-bound tree

that has lower and upper bounds xf,xz and x , xU respectively, for the decision

variables xi and x". Figure 7-5 shows that as the decision-variable set shrinks the

parameter set remains finite. Therefore, in order to guarantee global optimality,

Figure 7-5: Parameter Set in the Flexibility Problem

even for this a special of GSIP, subdivision of the parameter set is necessary.

7.6.3 Applicability of Bi-level Algorithm

In Section 7.5 we mentioned that one possible reformulation of the flexibility problem

in KMR is given by a bi-level program. Recently, Mitsos et al. [83] proposed the first

global optimization procedure for bilevel optimization problems with a nonconvex

inner problem. The drawback in using bi-level programming for KMR is that the

bilevel equivalent introduces 2(n, + 1)2 inner variables. This is in addition to the

equality constraints and the Lagrange multipliers that the method employs through

the KKT conditions. Therefore, for the hydrogen combustion mechanism consisting

of 8 participating species, a bi-level reformulation would introduce 162 inner variables,

which already exceeds the practical limits of the algorithm proposed in [83].

Overall, the algorithms that have been proposed for semi-infinite [27, 84], gen-

eralized semi-infinite [77] and bi-level programming [83] do not seem to be directly

applicable to the flexibility problem in KMR.
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7.7 KMR using Global Optimization

In this section, we will analyze a new method to provide valid regions of reduction

that has the following characteristics:

1. It addresses the flexibility problem in KMR. Therefore, the method will find

feasible regions of valid reduction and will attempt to maximize, in some sense,

the volume of this region.

2. It will sacrifice global optimality with tractability. The analysis provided in Sec-

tion 7.6 demonstrated that guaranteed global optimality along with guaranteed

feasible regions within the context of semi-infinite, generalized semi-infinite and

bi-level programming renders the feasibility problem in KMR intractable.

Suppose we are given the following information:

1. The full and a reduced kinetic model of the combustion mechanism F and Fred,

respectively.

2. The description tolerance between the full and the kinetic model e.

3. A nominal point of reduction, i.e. a point xnom for which the full model F is

reproduced by the reduced kinetic model Fred within the description accuracy

E.

Then, the method consists of three phases:

1. Interval Guess using Symbolic Interval Extensions.

Using symbolic interval extensions, we will formulate a problem to find an ini-

tial feasible box. This will give us both an initial estimate of a feasible region

and will furthermore, take advantage of the ICR to its fullest extent. Recall

that the approach in [90] also uses interval extensions but it does not formulate

an optimization problem because it targets the feasibility and not the flexibility

problem. In order to construct the restricted problem, we employ interval exten-

sions on the upper-level constraints which involve only the parameters of KMR
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(recall that KMR is a design centering problem and as such the decision vari-

ables do not appear in the upper-level constraints). Fortunately enough, we can

create a symbolic interval extension of the upper-level constraints because there

are explicit lower and upper bounds on the parameters given by the lower-level

inequality constraints. Therefore, we create the following optimization problem:

max V(xl, xU)X1,Xx

s.t. ru {,(xU, x) - 17 (xu, x) - Etol 5 0, j = 1, .. , , + 1,

S(xU ) - Fred,j(Xu,XI) -_ tol O0 , j = 1, . . . , + 1, (7.6)

X1, X U [Xlow, Xp].

where Fredj and Fy are the lower bounds on the interval extensions of Fred,j and

j1 with respect to p E [xl , x] and redj and Fy are the upper bounds of these

interval extensions. Notice that is a finite optimization problem with decision

variables x* and x". Let [R', RU] define the hyper-rectangle that is created from

the interval approach.

2. Finding Critical Points

In a combustion mechanism consisting of n, species plus the system temperature

we have 2n, + 2 total decision variables (a lower and an upper bounding decision

variable on each of the species and the system temperature). To avoid confusion

we will, henceforth, lump species and temperature to species.

In order to fully define the notion of a critical point assume that we have a

feasible range of reduction given by a hyper-rectangle. The fact that we have

2n, + 2 options for extending the hyper-rectangle stems from the n, +1 potential

species and whether to decrease their lower bounding value or increase their

upper bounding value. Assume J = {1,... , + 1} and I = {1, 2}, where J is

the index set of the species and I is the index set of the choice to decrease the

lower-bounding value, which we will correspond to 1 or to increase the upper-

bounding value, which we will correspond to 2. Let H = J x I describe all the
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2n, + 2 options for extending the hyper-rectangle. Define as H the subset of

non-active directions of H. An active direction is one that touches a subset of

the constraints of the problem and who's extensions is likely to cause violations

of these to one or more of these constraints.

For a fixed (j', i') E H, consider, for each j E J, the optimization problems

of minimizing and maximizing the difference between the full and the reduced

kinetic model on the hyper-rectangle subject to the direction defined by (j', i')

held constant at the corresponding extreme value of the hyper-rectangle (lower

bound when i' = 1, upper bound when i' = 2):

max rredj(p) - rj(p)
pE[xL,jjU]

s.t.p=± if i' = 1 or p, =±u if i' =2. (7.7)

min red,j(P) - rj(P)
pe[f/,Ru]

s.t.p, = if i=1' or p,=, if i' = 2. (7.8)

The solution points of (7.7) and (7.8) are n, + 1-dimensional arrays, namely

optvalmax,j and optvalmin,j respectively. The solution values of these problems

are denoted valmazx and valminj, respectively. To fully define a critical point

we need to define/specify the following:

(a) A direction in extending the hyper-rectangle (region of validity). To fully

specify this direction we need to define a tuple (j', i') E H.

(b) An index set K = {1, 2}. For k E K with k = 1 we refer to problem (7.7)

and with k = 2 we refer to problem (7.8).

(c) An index set J = {1,..., n, + 1}. For j E J we refer to the consideration

of the optimization problems (7.7) and (7.8) for species j.

(d) An index set J = {1,..., n, + 1}. For E J we refer to the 3-entry in the

array of optvalma,j and optvalmin,j.
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(e) The space of n, + 1-dimensional intervals IR.ns+l We assume that the

hyper-rectangle is described by Xcur: Xcur C IR""ns+l and Xcur = [x', x"].

We define the following mapping: C : H x K x J x j x RIRn"+l - R.

C((j', i'), k,j, , Xcur) refers to the j-entry of the array optvalmax, of the op-

timization problem to maximize (if k = 1) or of the array optvalmin, of the

optimization problem to minimize the difference between the full and the re-

duced kinetic models for species j in an effort to increase (if i' = 2) or de-

crease (if i' = 1) the value of the concentration (or temperature) of species j'

and thus to extend the feasible region defined by Xcu. C is a mapping from

H x K x J x J x IR '"+ to the critical points of the problem (subset of the real

numbers).

To find the total number of critical points for a given (j', i') we need to solve

2(n, + 1) unconstrained (box-constrained) optimization problems of the form

(7.7) globally. For a user-specified direction (j', i'), the critical points are the

points in the existing hyper-rectangle for which the difference (without an ab-

solute norm) between the full and the reduced kinetic model is either maxi-

mized or minimized for any one of the participating species. If the system is

well-behaved, then the critical points can give us a good suggestion on how to

expand the hyper-rectangle without violating the constraints.

3. Performing Line Optimization

In order to expand the hyper-rectangle we take advantage of the critical points

that were calculated in the previous steps. Line optimization implies that the

bounds of only one direction will be expanded while the rest of the directions

will maintain the bounds from the existing hyper-rectangle.

Before we describe the underlying equations, it should be noted that upon a

user-specified direction (j', i') there is a uniquely defined optimization variable

x(j,,i,) that corresponds to the specified direction.

For each j E J we define j = (Z{,..., ,_,x(,i,), , ,..., Xn'+,) and

187



Without loss of generality we will assume that i' = 1, i.e. we are attempting to

decrease the value of the lower bound of one of the participating species.

With the help of the critical points that were calculated in the previous step,

we formulate the following optimization problem:

min x(j,,i')

s.t. rj(ki) - rj,red() < + valmaj = 1...

-E + valmaxj
) - red 2 j = 1,...,n, + 1 (7.9)

x. = optval(max,j)(j*), Vj* E J, j* j'

i. = optval(min,j)(j*), Vj* E J, j* 7 j'

Note that the line optimization problem in (7.9) involves a single variable sub-

ject to 2(n, + 1) nonlinear constraints.

After this analysis we present an algorithm that addresses the flexibility problem

in KMR. The algorithm consists of two phases; the interval guess and the expansion

of the valid range of reduction using critical points and line optimization.

Recall, J is the index set of the participating species, H is the index of all di-

rections, Hf is the subset of H containing non-active directions, Xeur,k stores the

temporary estimate of the valid range of reduction at iteration k of the algorithm.

Specifically, the detailed steps of the algorithm are:

1. (Initialization). Set k = v = Cat = 0, H = H. Choose a description tolerance e

and a constraint activation tolerance Econ. Also create two, n, + 1-dimensional

arrays maxu and minu to store the global solution values of the unconstrained

problems in equations (7.7) and (7.8), respectively. Also create n, + 1, n, + 1-

dimensional arrays optvalmax,j and n, + 1, n, + 1-dimensional arrays optvalmin,j

to store the solution points of (7.7) and (7.8), respectively. Last, create 2,

n, + 1-dimensional arrays to store the global solution values of (7.7) and (7.8).
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2. (Interval Guess). Employ a symbolic interval extension on the upper-level con-

straints (with respect to the parameters) and solve problem (7.6) to obtain the

initial feasible box Xcur,o0.

3. (Choice of direction & phase) Set k = k + 1 and Xcur,k = Xcur,k-1. Specify

a tuple (j', i') E fH. Reset the arrays optvalmax,j, optvalmin,j, j E J, valmax,

valmin, maxu, minu, v. Go to step 4 or 6.

4. (Critical Points). For each j E J, solve problems (7.7) and (7.8) to populate the

arrays optvalmn,j and optvalmin,j with the critical points and the arrays valmax

and valmin with the global solution values of these problems.

5. (Line minimization). Solve problem (7.9) to obtain an update on the decision

variable x(j,,i,). Update the feasible box Xur,k based on this new value. Go to

step 7 to check for feasibility of the incumbent.

6. (Brute-force extension). Choose (j', i') E H. Extend the corresponding direc-

tion x(j,i,) from its current bound to its original lower bound (if i' =1) or to

its original upper bound (if i'=2). Update the feasible box Xr,k based on this

new value. Go to step 7 to check for feasibility of the incumbent.

7. (Guarantee feasibility). For each j E J solve the unconstrained version of

equations (7.7) and (7.8), i.e. the problems

max rred,j(P) - Fj(p)
pExcurk (7.10)

mmin red,(P)- rj(p)
PEXcur,k

Populate the arrays maxu and minu with the global solution values of these

problems.

(a) If v = max{max maxu, min minu} e, then the new estimate Xur,k isjEJ jEJ

feasible. Go to step 8.

(b) On the other hand, if there exists j E J such that either maxu(j) > e or

minu(j) • -e then the new box is not feasible and it needs to be shrunk in
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order to become feasible again. Use a rule, e.g. the Armijo rule, to shrink

the extended direction back to the value of the last updated feasible box.

Go to step 7.

8. (Checking for active constraints & directions at their bounds). Check the two

following conditions:

(a) If v < je - o,,I then (j', i') is an active direction.

(b) If the variable x(y,i) attains its original lower bound (i' = 1) or upper

bound (i' = 2) then this direction cannot be extended further.

If any of these statements is true then delete (j', i') from H. Set cact = Cact + 1.

9. (Checking for feasible directions). If Cact < 2(n, + 1) go to step 3.

10. (Termination). There are no more feasible directions to extend the box (all

directions are active). Therefore, with a user-specified accuracy of E, a user-

specified constraint activation tolerance econ, a full kinetic model I, a reduced

kinetic model Fred and a user-specified set of directions (j', i')k the final estimate

of the region of valid reduction is Xcur,k.

7.8 Application: Hydrogen Combustion

In order to test the performance of this algorithm we chose to implement it for the

combustion of hydrogen. For this purpose we are using the full and reduced kinetic

models suggested in [9] and included here. We note the following:

1. The full kinetic model has 46 reactions and 8 participating species, namely H2,

02, H2 0, H20 2, HO2, OH, H and 0. The reduced kinetic model has 21 reactions

and all 8 of the participating species.

2. Species M represents the third-body enhancement in certain association or dis-

sociation reactions.
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Table 7.1: Full Kinetic Model for the Combustion of H2
Reaction A 0 E I Reaction A 0 E

1i. H2 + O -- OH + H 5.12E4 2.67 26
3. H2 + OH -- H20 + H 1.02E8 1.60 14
5. 0 2 + H + M - H0 2 + M 2.1E18 -0.80 0
7. 02 + H + H 2 0 -- HO 2 + H 2 0 6.89E15 0.00 -9
9. 02 + H --* OH + O 9.76E13 0.00 62
11. H 2 0 2 + H - HO 2 + H2  1.69E12 0.00 16
13. H 2 0 2 + H -- OH + H2 0 1.02E13 0.00 15
15. H 2 0 2 + O -* OH + HO 2  6.62E11 0.00 17
17. H 2 0 2 + OH -- H20O + HO 2  7.83E12 0.00 6
19. H2 0 2 (+M) -- 20H(+M) 3.00E14 0.00 203
21. OH + O -- O + H 1.45E13 0.00 3
23. 2H + H2 - 2H 2  9.79E16 -0.60 0
25. H + O + M -- OH + M 1.18E19 -1.00 0
27. H + OH + M -- H2 0 + M 5.53E22 -2.00 0
29. H + HO 2 - H 2 + 02 4.28E13 0.00 6
31. H + HO 2 -- 20H 1.69E14 0.00 4
33. H + HO 2 -- H2 0 + 02 3.01E12 0.00 7
35. 20 + M -- ,02 + M 5.40E13 0.00 -7
37. O + HO 2 - 02 + OH 3.19E13 0.00 0
39. 20H -4 O + H2 0 1.51E9 1.14 0
41. OH + HO 2 - H 2 0 + 02 2.89E13 0.00 -2
43. 2HO 2 -- H2 0 2 + 02 4.22E14 0.00 50
45. 2HO 2 -- H 2 0 2 + 02 1.32E11 0.00 -7

2. OH + H - H2 + O 3.53E4 2.62 19
4. H2 0 + H -- H2 + OH 4.52E8 1.60 77
6. HO 2 + M -- H + 02 + M 1.16E20 -1.26 211
8. HO 2 + H2 0 -- 02 + H + H2 0 3.80E17 -0.46 203
10. OH + O -- 02 + H 1.45E13 0.00 3
12. HO 2 + H2 -* H 2 0 2 + H 1.51E9 0.78 84
14. OH + H2 0 -- H 2 0 2 + H 6.72E7 1.28 296
16. OH + OH 2 -* H 202 + O 4.07E8 0.72 78
18. H2 0 + HO 2 - H2 0 2 + OH 4.74E11 0.45 141
20. 20H(+M) -- H 2 0 2 (+M) 7.23E13 -0.37 0
22. H2 + M - 2H + M 6.27E18 -0.98 437
24. 2H 2 -- 2H + H2  3.28E17 -0.58 437
26. OH + M -* H + O + M 2.73E19 -1.03 429
28. H2 O + M - H + OH + M 1.26E25 -2.3 503
30. H2 + 02 -* H + HO 2  2.60E12 0.48 231
32. 20H -- H + HO 2  1.84E10 0.83 150
34. H 2 0 + O - H + HO 2  3.23E11 0.56 227
36. 02 + M -- 20 + M 4.82E16 -0.43 494
38. 02 + OH - O + HO 2  1.34E12 0.43 218
40. O + H2 0 - 20H 1.49E11 0.87 75
42. H2 0 + 02 --* OH + HO 2  1.19E14 0.16 290
44. H2 0 2 + 02 -- 20H2  2.88E16 -0.29 207
46. H2 0 2 + 02 - 20H 2 9.00E12 -0.29 150

3. We are assuming that the combustion of hydrogen is isothermal. This is the

reason why temperature does not appear in the participating species.

4. The pre-exponential factor A, the pressure dependence factor ' and the activa-

tion energy E refer to a kinetic rate constant expression of the following form:

k = ATV exp(- E ).

Tables 7.1 and 7.2 provide the full kinetic model for hydrogen combustion and the

corresponding enhancement factors for certain multi-body interactions that are en-

countered in the mechanism, respectively [9]. The reduced kinetic model contains

reactions 1-10, 17, 19, 23, 24, 27, 29, 30, 31, 39, 40 and 41. Furthermore, the third

body in multi-body interactions is denoted M.

7.8.1 Implementation Details

There are several implementation details that require a brief analysis.

1. First of all, we computed a nominal point of valid reduction from the full to the

reduced kinetic mechanism. In order to achieve this we performed an isother-

mal, isochoric simulation of the full kinetic mechanism using Jacobian [1]. After

examination of the profiles of the species concentrations we selected the can-

didate nominal point to be the one corresponding to a simultaneous peak in
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Table 7.2: Enhancement Factors
Reaction H20 02 Reaction H20 02

- 0.4
6.5 0.4

6.5 0.4
2.54 0.4

0.4

- 0.4
6.5 0.4

6.5 0.4
2.54 0.4

6.5 0.4

the concentration of radicals (H, O, HO 2, OH). In order to verify feasibility

of this point we calculated the difference between the conservation equations

of the full and the reduced kinetic mechanisms for each participating species

and made sure that this difference is less than the threshold for the maximum

absolute difference between the full and the reduced kinetic mechanism that we

set based on the time-scale of the simulation.

2. The threshold for the maximum absolute difference between the full and the

reduced kinetic mechanisms was chosen to be, approximately, the inverse of the

time scale of the entire simulation. Note that since the difference of the full and

the reduced kinetic mechanisms is given as the difference in the conservation

equations of the two mechanisms divided by the total concentration of the

mixture, the units of this difference are s-1 .

3. Furthermore, we set the boundaries for the decision variables. For simplicity,

if xnom was the nominal point of reduction, then the lower and upper bound
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for each decision variable xi, i = 1,..., 8 were set to 0.l1nom,i and 10xnom,i,

respectively.

4. Moreover, for the initial box Xinitiai = [0.1Xnnon, 10Xom] we verified that it is

not a valid range of reduction. If that was the case then there would essentially

be no optimization problem to solve. Furthermore, to test the efficiency of the

algorithm we would like to create active directions or in other words boxes for

which at least one of the constraints is active on the edges of the box. Indeed,

the initial hyper-rectangle is not entirely feasible.

5. In the aforementioned algorithm, each time the user specifies a search direction,

a choice between the approach using critical points and line minimization and

the approach using brute-force extension of the feasible box has to be made.

We chose a fixed number of active directions c,, t for which for cat < c*, we

chose the former approach while for cact > ca* we chose the latter approach.

7.8.2 Implementation and Numerical Results

We begin this section by providing a quantitative description of all the implementation

aspects previously described.

1. The temperature of the isothermal combustion mechanism is T = 1014K.

2. The initial conditions for the isothermal, isochoric simulation of the hydrogen

combustion mechanism were set to:

P = latm, initial mixture : H2 - 02 (50%, 50%). (7.11)

3. The nominal point of reduction was chosen as the point corresponding to a

simultaneous peak in the concentration of the radical species. We denote

xnom = (H2,nom, O2,nom, H2Onom, H202,nom ,nom, OHom, Hnom, Onom) =

(3.01E-3, 4.55E-3, 2.97E-3, 3.12E-8, 3.11E-6, 4.08E-6, 1.64E-4, 4.35E-5),
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where the concentrations are given in units of mol/1.

4. The time scale for the simulation was 10-4s. Therefore, the threshold for the

difference between the full and the reduced kinetic mechanisms, e, was set to

3. 104.

5. The threshold for constraint activation, eo, was set to e•6 = 0.01e = 3 - 10-6.

6. The number of activations c*, for which the switch from the critical-point/line

minimization approach to the brute-force extension of the feasible directions is

made, was chosen to be 1. In other words, after one direction has been activated,

the extension of the other feasible directions is done via brute-force.

7. Natural interval extensions were used to identify an initial feasible box in Step

2(interval guess) of the aforementioned algorithm.

To keep the report of the numerical results compact and insightful we report 6

different runs of the algorithm with different user-specified directions. Furthermore,

we provide a comparison of the volume of the box at the end of the algorithm with the

volume of the feasible box after the interval guess. We will quantify this comparison

by a ratio of the two guesses called the expansion ratio. The reason for providing this

comparison is to show that the interval guess in [90] can be substantially improved

by using global optimization techniques.

Table 7.3 provides these numerical results. Column 1 provides the index of the

simulation. Column 2 provides the sequence of user-supplied directions and Column

3 provides the expansion ratio.

Table 7.3: Numerical Procedure Applied to H2 Combustion

# User-specified Expansion
Directions Ratio

1 02,to, H2,1o, H20Oo, H2 , O,,, OupHO2,up, H2 01 o, Hup, H2,lo, 02,o0, Oup 46
2 02,1o, Hup, Oup, Hup,0,pH2 , Olo, Oup, Hup, H2,1o, H20up, H02,up, O2,up, 02,10 62
3 Oup, O OupO, Oup, Oup, HO2,,p, H20Oup, 0 2,up, O2,10o Hup, H2,1o, H20to 77

The expansion ratio can reach the value of 80, a large improvement of the es-

timation of a valid region of reduction with respect to the estimate using interval
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extensions.
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Chapter 8

Conclusions & Future Work

The goal of this chapter is to provide the main conclusions and suggestions for future

work in the areas of semi-infinite programming, generalized semi-infinite programming

and kinetic model reduction.

8.1 Semi-Infinite Programming (SIP)

8.1.1 Conclusions & Contribution

In summary, semi-infinite programming involves the optimization of a a finite number

of decision variables subject to an infinite number of constraints. Prior to this thesis,

there were two outstanding issues for the numerical treatment of SIP with nonconvex

functions participating. The first issue is the generation of guaranteed feasible points

for which the only existing method was proposed by Bhattacharjee et al. [26]. The

second issue is the development of an optimization algorithm that guarantees finite

global optimality under assumptions that do not make use of convexity of any of the

defining functions.

The first contribution of this thesis was the establishment of the first optimization

procedure that locates guaranteed feasible points and provides a certificate of e-global

optimality for SIP with nonconvex functions participating. More specifically:

1. We demonstrated that the traditional means of proving finite convergence of
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global optimization algorithms within a branch-and-bound framework (using

consistency of the bounding operation) was not applicable to our approach. On

the contrary, the lower- and upper- bounding operations were treated separately

and were shown to converge finitely under mild assumptions on the problem

structure.

2. An implementation of this global optimization procedure was developed and

interfaced with several nonlinear solvers, some of which make use of sequential-

quadratic programming techniques such as SNOPT and SLSQP and others that

use interior-point methods such as IPOPT. For an arbitrary problem there is no

definite conclusion on which nonlinear solver will perform better and therefore,

incorporating more options provides an opportunity for better results.

3. Several problems for the well-known Watson test set were solved and the algo-

rithm was shown to converge even when local reduction approaches would not

even be applicable.

The second contribution of this thesis was the development of alternative methods

to provide guaranteed feasible points for SIP with nonconvex functions participating.

More specifically:

1. We demonstrated that the feasible-point method by Bhattacharjee et al. [26]

is based on a restriction of the lower-level problem in SIP which leads to a

relaxation of the overall (outer) problem.

2. It was shown that alternative means of restricting the lower-level problem could

also provide guaranteed feasible points for SIP. Specifically, McCormick and a-

BB relaxation techniques were used to construct concave overestimators (with

respect to the parameters for each given value of the decision variables) of the

semi-infinite constraints. Then, we proposed feasible-point methods that rely on

either a KKT- or a linearization- based approach on the convexified constraints.

3. A numerical implementation of these algorithms was completed and the perfor-

mance of these methods was compared to the interval constrained reformulation
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that was suggested by Bhattacharjee et al. It was shown that the KKT- based

approach using McCormick techniques could generate tighter upper bounds the

global solution value of the SIP at the cost of solving more computationally

expensive upper-bounding subproblems.

8.1.2 Future Work

With regards to the global optimization approach using interval methods [27] the

following extensions/improvements are conceivable:

1. Strengthening the effectiveness of the exclusion heuristic. In the numerical

implementation of this heuristic, the evaluation of an upper bound of the semi-

infinite constraint on the examined domains relied on the use of interval meth-

ods. An alternative approach would be to use standard global optimization

techniques to calculate the exact image of the semi-infinite constraint. While

more computationally expensive, this approach could reveal redundant con-

straints much earlier in the tree when the effect of dropping constraints would

aid significantly in making the subproblems in the subsequent levels more com-

putationally tractable.

2. Relaxing the necessary assumptions for finite convergence. In order to prove

the finite e-convergence of the numerical procedure, an assumption was made

regarding the relation between two quantities q1 and qx2. The main drawback

of this assumption is that it is hard to verify a priori. It is conceivable that the

algorithm can be modified to incorporate an adaptive subdivision strategy that

would enable this assumption to be dropped.

With regards to the feasible-point methods using McCormick and ac-BB techniques

the following extensions are conceivable:

1. Implement the proposed algorithms in a branch-and-bound framework and

demonstrate their performance on the Watson test set.
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2. Combine the tighter and more expensive upper bounding methods, such as

the KKT-based upper bound, with looser and computationally more tractable

methods, such as the linearization-based or interval-extension based upper bounds.

A simple combination is to periodically employ the tighter and more expensive

bounding problems. A more elaborate combination is to use a KKT-based up-

per bounding problem but only solve the resulting MPEC approximately to

obtain a point x and an estimate for the corresponding optimal solution of the

relaxed lower-level problem p. Then the feasibility of x can be probed by lin-

earizing the concave lower-level problem around p. This approach is difficult to

implement with black-box NLP solvers, but could be easily implemented in a

framework such as the NCP approach by Floudas and Stein [42]. The promise

of the combination, is that an approximate solution of the MPEC will provide

a point p which is suitable for linearization.

8.2 Generalized Semi-Infinite Programming (GSIP)

8.2.1 Conclusions & Contribution

In summary, generalized semi-infinite programming involves the optimization of a a

finite number of decision variables subject to an infinite number of constraints the

index set of which is dependent on the optimization variables. Prior to this thesis,

there were two outstanding issues for the numerical treatment of GSIP with nonconvex

functions participating. The first issue is the generation of guaranteed feasible points

and the second issue is the development of an optimization algorithm that guarantees

finite global optimality under assumptions that do not make use of convexity of any

of the defining functions and which do not require the feasible set to be closed or the

infimum to be attained.

The main contribution of this thesis was the establishment of the first optimization

procedure that locates guaranteed feasible points and provides a certificate of e-global

optimality for GSIP with nonconvex functions participating and for which the feasible
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set need not be closed and the infimum need not be attained. More specifically:

1. We demonstrated that discretization methods and the interval-constrained re-

formulation that were proved capable of providing lower and upper bounds for

SIP, respectively, could be used for the same purpose for GSIP. However, we also

showed that the limitation of any numerical procedure for GSIP is the tractable

description of the lower-level feasible set. In order to overcome the difficulty

of the dependence of the lower-level feasible set on the decision variables we

proposed to use interval extensions on the lower-level inequalities.

2. We provided a convergence proof in which the aforementioned numerical pro-

cedure guarantees e-global optimality to the GSIP infimum. The underlying

assumptions do not require convexity in any of the functions participating, nor

do they require that the feasible set of the GSIP is closed or that the minimum

is attained.

3. We have proposed the first, to our best knowledge, test set for the general case

of GSIP. This test set includes both literature and original examples. Further-

more, and more importantly, it involves examples that capture all the irregular

behavior of GSIP. Therefore, the test set contains problems with a non-closed

feasible set, problems where the infimum is not attained even though the GSIP is

feasible, problems with re-entrant corner points, problems in which a constraint

qualification is violated in the lower-level problem, and above all, problems that

involve nonconvex functions participating.

4. Similar to the numerical procedures that were developed for SIP, it was shown

that the upper-bounding approach for GSIP relies on the relaxation of the lower-

level feasible set and the overestimation of the upper-level constraint, i.e. on

the restriction of the lower-level problem, pointwise in x. This creates a valid

restriction of the outer (overall) problem. Similarly, discretization methods

construct a restriction of the lower-level problem (restriction of the lower-level

feasible set and underestimation of the upper-level constraint). This creates a

valid relaxation of the outer (overall) problem.
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8.2.2 Future Work

Future work in the area of generalized semi-infinite programming could focus on the

following:

1. Examine the applicability of the global optimization algorithm for bilevel pro-

grams with a nonconvex lower-level problem that was suggested by Mitsos et al.

[83]. It is already known [119] that GSIP with a non-empty lower-level feasible

set for all x can be equivalently transformed to bi-level programs. Therefore,

under these assumptions the algorithm suggested by [83] could be used to solve

nonconvex GSIP. An interesting extension of this work would be to examine ap-

plicability of the algorithm when the lower-level feasible set is indeed empty for

some values of x. A hybrid method between the one recommended by Lemonidis

and Barton [76] and Mitsos et al [83] is plausible.

2. Examine the reverse applicability. Specifically, it seems that interval methods

could be used to provide an alternative lower-bounding methodology for bi-level

programs without any convexity assumptions. This lower-bound combined with

the upper bound suggested by Mitsos et al. [83] or with a simple feasibility check

solving the inner problem globally (assuming that the minimum of the lower-

level problem is unique, pointwise in x) could lead to a global optimization

procedure for nonconvex bilevel programs.

8.3 Kinetic Model Reduction (KMR)

8.3.1 Conclusions & Contribution

Kinetic model reduction is a general framework in which a full kinetic model describing

the evolution of a certain process, e.g. the combustion of a chemical, is replaced with

a reduced kinetic model with the ultimate goal of making the numerical simulation

and therefore, analysis of the chemical process, more tractable to computers and

engineers. Within the framework of combustion chemistry (especially for combustion
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incorporated in reacting flow systems) there are two discrete subproblems:

1. Given a full kinetic model F describing a combustion mechanism, a region P

of temperature and composition and a description accuracy e, find the reduced

model Fred with the minimum number of reactions and chemical species that

can reproduce the full kinetic model for every point in P within the description

accuracy E.

2. Given a full kinetic model F, a reduced kinetic model Fred and a description

accuracy e, find the maximum volume of a hyper-rectangle in temperature and

concentration space for which the reduced kinetic model reproduces the full

kinetic model within e for every point in the hyper-rectangle.

While there have been many algorithms to target the first issue, the second is still out-

standing. Within the second issue our contribution focused on the flexibility aspect,

i.e. on providing as large of a region of valid reduction as possible. More specifically:

1. We posed the flexibility problem in KMR as a GSIP and demonstrated that is

essentially a classical example of a design centering problem.

2. We proposed alternative formulations of the KMR. Specifically, we demon-

strated that KMR can be equivalently written as both an ordinary SIP and

as a bi-level program with multiple non-interacting lower-level players.

3. Both the SIP and the GSIP formulations can provide the global solution, at

least theoretically, of KMR using the algorithms that were developed in this

thesis. However, global optimality in these algorithms is achievable when the

parameter set is subdivided. Taking into consideration that even the small-scale

mechanisms involve 101 - 102 species, this subdivision will quickly render the

problem intractable without a certificate of global optimality. Furthermore, it

was shown that the bilevel algorithm suggested by Mitsos et al. [83] would also

explode in the number of extra variables it needs to introduce mainly because

of the underlying inner variables.
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4. We proposed an alternative method that address the feasibility problem in

KMR. This method sacrifices global optimality but provides good (at least not

as conservative as the interval methods do) estimates of valid regions of reduc-

tion. The method is based on finding an initial feasible box using an interval

approach and then extending the edges of the box either using critical points

and line minimization or using brute-force methods. We demonstrated that us-

ing this algorithm, the estimates on the valid ranges of reduction could improve

by two orders of magnitude over the estimates given by interval methods.

8.3.2 Future Work

Future work in the area of kinetic model reduction could focus on the following:

1. Using the SIP equivalent reformulation of KMR, the algorithm suggested by

Blankenship and Falk [29] along with their exchange method heuristics could

be implemented. This would provide an outer approximation method to the

feasibility problem. Therefore, on finite termination, the box is not guaranteed

to be feasible. However, the method suggested in [29] minimizes, with increasing

iteration, the violation of the constraints. Once the constraints are slightly

infeasible, in which case the box is almost optimal but quite not feasible, any

"small shrink" of the feasible box could render an estimate that is not only

feasible but also with a volume close to the optimal one. To my opinion, this is

the most promising solution to the flexibility problem in KMR.

2. The other major focus area is the improvement of the procedure that was de-

scribed in Section 7.7. First of all, many of the global optimization subproblems

do not have to be considered. Specifically the global optimization problems that

refer to the maximization and minimization of the difference between the full

and the kinetic model with respect to a species, only have to be considered

when previous iterations are showing that the species are active (either one of

the directions that stem from the species are active). Furthermore, one could

certainly employ Taylor models to formulate the interval guess. This is guar-
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anteed to provide a better initial estimate than the one obtained by the use of

natural interval extensions.
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Chapter 9

Bilevel Programming in

Game Theory: Capstone Paper

The goal of this chapter is to examine market duopolies and show that they can

be modeled and solved as bilevel programs with nonconvex functions participating.

Section 9.1 provides an introduction to the game theory problem. Section 9.2 gives

a general description of the mathematical formulation of bilevel games. Section 9.3

provides a background and motivation for this work. Section 9.4 proposes a bilevel

formulation of the new entrant game. Section 9.5 provides a detailed explanation of

the model assumptions. Section 9.6 describes a list of scenarios that were studied.

Section 9.7 provides a comprehensive list of numerical results and corresponding con-

clusions. Finally, Section 9.8 provides final remarks and comments on the contribution

of this paper in modeling the strategic interactions in duopoly markets.

The author would like to express his warmest gratitude to Dr. Alexander Mitsos

for providing the numerical implementation for all the studied scenarios and for all his

insight throughout this work including the proposed mathematical formulation of the

new entrant game. The author would also like to thank Professor David McAdams

from the Sloan School of Management for his guidance in the early stages of this work

and especially in providing conceptual ideas on bilevel games in industry.
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9.1 Monopoly Markets with New Entrants

Market monopolies are frequently encountered in many industrial sectors including

the pharmaceutical industry. In order to introduce the industrial setting, let's assume

that Discovercorp has a pharmaceutical drug, Sinadim, designed to cure lung cancer.

Let's also assume that Discovercorp has obtained an orphan drug exclusivity. The

orphan drug status is provided to drugs that are targeting a small population in

the United States (below 200,000 patients) and as such would not be financially

advantageous for the firms to pursue. They provide tax deductions and a guaranteed

monopoly status to the first incumbent for seven years [47]. However, after this period

of time new entrants can enter the market offering similar products. Let's assume

that it is currently the end of the 7-year protection period and Genecorp, a provider

of generic drugs, is considering launching Keradim, to cure the same disease and is

considering the best way to compete with Discovercorp and its monopoly. Obviously,

Genecorp has three strategic decisions to make:

1. whether to enter the market and if so,

2. how much to spend on marketing Keradim and

3. how much to charge for Keradim.

Discovercorp also has three strategic choices:

1. how much to spend on marketing Sinadim,

2. how to charge for Sinadim and

3. whether to continue competing in this market or exit.

For both players in the market, namely Discovercorp and Genecorp, their choices

on these strategic decisions depend on the other firm's strategy. As we will demon-

strate in the subsequent sections, assuming that one firm will act first on choosing

its pricing and marketing strategy, and the other second (i.e., there will be a leader

and a follower), the interdependence of Discovercorp's and Genecorp's choices will

generate a bilevel game between the two firms.
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9.2 Bilevel Games

The general formulation of bilevel programs (henceforth called bilevel games) is the

following:

max f(x, y)
x,y

s.t. g(x, y) _ 0

y E arg max h(x, y) (9.1)
y

s.t. p(x,y) < 0

xE [xL,xU] C Rn , yE [yL, yU] C Rn".

In game theory terminology, bilevel programs consist of the following rules:

1. The leader (the player that moves first) is trying to maximize his objective

function f under his resource constraints g. This sub-problem is called the

leader's problem (outer or upper-level problem).

2. The follower (the player that moves second) is trying to maximize his own

objective function h under his resource constraints p. This sub-problem is

called the follower's problem (inner or lower-level problem).

3. The leader's decision variables are x while the follower's are y.

4. The game between the leader and the follower consists of the following steps

(assuming, for simplicity, a single choice for each players x and y):

(a) The leader chooses a value of x.

(b) The follower formulates a best response based on x and generates the set

Y(x) ( each y E Y(x) is an optimal response for the follower given x from

the leader).

(c) The leader evaluates his objective function and constraints given x and the

set Y(x) and chooses a pair (x, y), y E Y(x), that results in an optimal

strategy for him.
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(d) The leader repeats steps (a)-(c) until his objective function is maximized

across all values of x in his design space.

The game between the leader and follower ends when the leader has created a

strategy (value of x) that maximizes his best response across different values of x

(his decision variable). For a thorough review of practical applications of bilevel

programs we refer the reader to [14, 36]. In [82] the first global optimization algorithm

for the general class of bilevel games involving nonconvex functions (objective and

constraints) in both the leader's and more importantly in the follower's problem has

been proposed. All the numerical results provided in this work have been furnished

by the algorithm suggested in [82].

9.3 Background & Motivation

In the academic literature, the strategic interactions in market oligopolies are explored

in two different contexts:

1. Cournot & Bertrand Competition (Cournot and Bertrand equilibria). In both

cases, the market participants move simultaneously and there is no 1st or 2n"

mover advantage, they do not cooperate, they have the same marginal cost and

the demand is linear. In Cournot competition, firms compete on quantities

and choose them simultaneously, while in Bertrand they compete on price.

Cournot's ground-breaking work (1838) is considered as the start of modern

game theory [8].

2. Stackelberg Games. In this case, the market participants move sequentially

and, typically, these games are recognized by a leader-follower relationship [43].

Due to their inherent hierarchical structure, Stackelberg games are very closely

connected and often modeled as bilevel programming problems [13].

The problem we are attempting to solve has a leader-follower relationship and, there-

fore, we will continue the literature review only on Stackelberg games.
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In [67] the government-private sector relationship is modeled as a Stackelberg

game in which the private sector (follower) is represented by several small agents,

and optimizes its cost function give the decisions from the government (leader). The

authors assume a finite-time linear quadratic differential game which ultimately leads

decoupling of the leader's (upper-level) and follower's (lower-level) optimization prob-

lems.

In [102] an extended Bertrand competition in which the market participants choose

the time of entrance and their pricing strategy is studied. The limiting assumption in

this work is the characterization of market participants as either Stackelberg followers

or leaders without knowing their cost or profit functions. The goal of the work is to

locate Nash equilibria along the discrete possible times for entry.

In [35] equilibrium configurations between quantity Stackelberg games and price

Stackelberg games in which the demand is concave (with respect to price) and the

costs are convex are compared. These assumptions effectively create concave profit

functions for which first-order closed form solutions are available. The two limiting

assumptions in this work are:

1. Only one out of price/quantity is allowed to vary in the Stackelberg game. In

other words, the dimensionality of the Stackelberg game is 1.

2. The convexity assumption on the functional form of the demand vs. price and

the firm costs is too restrictive.

In [72] the strategic preference of firms to have a first- or second-mover advantage

in Stackelberg price games is examined. Once again, the limiting assumption is the

dimensionality of the firm's choices and the convexity of the functions involved in order

for the 1st order conditions to furnish the competitor's true best response strategy.

In [87] the strategic choice of firms to play a Cournot (simultaneous) or Stackel-

berg (sequential) game is explored and a discussion of whether there is a strategic

advantage to being the first mover is presented.

In general, the literature on Stackelberg games has attempted to provide answers

to 3 questions (under the assumption of linearity or, at most, convexity of the func-
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tions involved):

1. What are the optimal strategies in pure pricing or pure quantity Stackelberg

games (firms are only allowed to have one degree of freedom)?

2. Is there a benefit to being a first- or second-mover in sequential games?

3. Is there a reason that market participants should prefer sequential over simul-

taneous games or vice versa?

These three goals are fundamentally different from the one we are trying to achieve.

Our goal is to demonstrate that market duopoly problems can actually include highly

nonconvex functions and that they can still be solved using the latest advancements

in bilevel programming [82].

9.4 Formulating Monopoly Markets with

New Entrants as Bilevel Games

The strategic decisions that Genecorp and Discovercorp can make and their inter-

actions can be formulated as a bilevel game. The following sections explain the

formulation of this game.

9.4.1 General Formulation

Without discussing the nature of the functions involved, the general characteristics

of the game are:

1. Genecorp is the leader (player that moves first) because it is the one who decides

whether to enter the market of selling its lung cancer drug. Genecorp has three

strategic choices:

(a) Whether to enter the market (binary variable xl).

(b) How much to sell the drug for (continuous variable x2).
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(c) How much to spend on marketing (continuous variable a3).

2. Discovercorp is the follower (player that moves second) and based on Genecorp's

strategic choices of x1, x2 and 23 makes its own strategic choices:

(a) How much to sell the drug for (continuous variable y2).

(b) How much to spend on marketing (continuous variable y3).

(c) Whether to exit the market (this option is not modeled here).

3. The objective function for both Discovercorp and Genecorp is the maximization

of profits from selling their drug (revenues minus manufacturing and marketing

costs).

4. The resource constraints for the problem are:

(a) The upper and lower bounds on prices that are set for the drugs (the price

must be higher than the cost of producing the drug and lower than the

acceptable country standards).

(b) The upper and lower bounds on marketing (marketing expenses cannot

be greater than the available cash for the firms at the time of Genecorp's

entrance in the market and cannot be lower than some minimum threshold

to place the drug on the pharmacy shelves).

9.4.2 Formulation of Objectives and Constraints

In order to complete the mathematical formulation of the new entrant game we have to

define the objective functions and the resource constraints formally. More specifically:

1. Genecorp's objective function (f) is assumed to be of the form:

f(x 1 ,x 2, 3, Y2, Y3) = X1 - (MSG . Q. (X2 - CM,G) - CA,G - Ao,G),

where:
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(a) MSG represents the total fraction of the market that Genecorp will capture

with its strategy:

1
MSG(X2, x3, Y2, y3) 1.

X223

The choice of MSG is based on three desired properties:

i. If Genecorp spends more on marketing (x3) then its share in the market

should go up, i.e., MSG should increase with x3.

ii. If Genecorp charges less, i.e., x2 decreases, then its share of the total

market goes up.

iii. If Genecorp and Discovercorp charge the same and spend the same on

marketing then they will share the market equally.

(b) Q represents the total market demand of the product. The functional form

of the market demand is assumed to be a logistic one:

1 + me-(x1x3+y3)/7

Q(x3 , Y3) = bo + bl /
1 + ne-(XlXz+Y3)//7

The functional form of the demand satisfies a number of desired properties:

i. The total demand is a function of the aggregate marketing x3 +y 3. The

product of xlX3 is introduced because x3 is meaningful (and therefore

added to y3) only when xl = 1.

ii. With no marketing the market demand will be positive (bo > 0).

iii. With little marketing the second term is relatively small (beginning of

logistic curve).

iv. With more marketing the influence on market demand is higher (sharp

rise on logistic curve).

v. With excess marketing the second term approaches bl and the logistic

curve flattens out.

vi. Unlike the case of market share in which there are direct means of
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competition, the marketing of Discovercorp and Genecorp are com-

plementary to each other in this case because the total demand is a

function of the aggregate marketing of the two firms.

The functional form of (2) is designed to provide a market demand that

varies with total marketing as shown in Figure 9-1:

Total advertising (x3+y3)

Figure 9-1: Total Market Demand vs. Aggregate Marketing

(c) CA,G(x3) represents the total cost of marketing for Genecorp. We will as-

sume that the total cost to the firm is some multiple of the pure marketing

costs. Therefore,

CA,G = aGX3 ,

where ac is a constant that depends on Genecorp's operations.

(d) AO,G represents the total fixed capital cost for Genecorp in order to enter

the market.

(e) CM,G represents the variable cost of manufacturing a single unit of product

for Genecorp. We will assume no economies of scale, so therefore CM,G is

independent of the quantity produced.
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2. Genecorp's resource constraints (bound constraints in this case) are of the form:

1 E O (0,1}, 2 E [2~ J, •3 E [, I].

3. Discovercorp's objective function looks very similar to Genecorp's with the ex-

ception that we don't model the choice of exiting the market. Therefore, no

fixed costs need to be included. Everything else is symmetric:

h(x, x 2 , 3, , Y2 Y3) = MSD Q" (Y2 - CM,D) - CA,D,

1
MSD(X2, X3, Y2, Y3) = (1 - x1 ) + X 1 +

X2 Y3

CA,D = aDy3.

4. Similarly, Discovercorp's resources constraints (bound constraints in this case)

are:

Y2 E [2L, yU2 ], 3 E [ 93 L

Therefore, the bilevel formulation of the "new entrant in the market" game is the

following:

max xl . (MS(xl, x 2, 3, y2,y 3 ) Q(x 3, ya) 3 (x 2 - CM,G) - aGX3 - Ao,G)
X1 ,2 ,X3 ,Y2,Y3

{Y2,Y3} E argmaxMSD(Xl, 2, •XY2, Y3) Q(x 3,Y 3 ) (y2 - CM,D) - aDY3 (9.2)
Y12 ,Y3

xrlte {, 1 }, £2 2 3 3 2 3 , 92 6 9 92 3 Y 3 I
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9.4.3 Specification of Game Parameters

In order to complete the formulation of the bilevel game between Genecorp and

Discovercorp, we need to specify the numerical values on all the parameters in the

aforementioned relations. Table 9.1 contains these numerical values.

Table 9.1: Parameters of the Bilevel Game
Parameter Value Unit Description

CM,D 15 $/drug Manufacturing Cost for Sinadim (Discovercorp)
CM,G 12 $/drug Manufacturing Cost for Keradim (Genecorp)
ac 2 - Marketing Costs Constant for Genecorp
aD 2 - Marketing Costs Constant for Discovercorp
AO,G 1000 $ Fixed Cost for Entering Market (Genecorp)
xL  15 $/drug Minimum Price for Keradim (Genecorp)
x2 100 $/drug Maximum Price for Keradim (Genecorp)

L  100 $ Minimum Marketing Costs for Keradim (Genecorp)
xU 10000 $ Maximum Marketing Costs for Keradim (Genecorp)
yL 12 $/drug Minimum Price for Sinadim (Discovercorp)
y2J 100 $/drug Maximum Price for Sinadim (Discovercorp)

y3 100 $ Minimum Marketing Costs for Sinadim (Discovercorp)
y3U 10000 $ Maximum Marketing Costs for Sinadim (Discovercorp)
bo 200 # of drugs Market Demand with no Marketing
bl 200 # of drugs Total Extra Market Demand due to Marketing
m 1 Logistic Demand - Numerator Constant
n 100 Logistic Demand - Denominator Constant
T 500 Logistic Demand - Regularization constant

9.5 Model Assumptions

The formulation of the strategic interaction between Genecorp and Discovercorp as

a bilevel game has many assumptions built-in. More specifically:

1. Complete Information. We are assuming that Genecorp and Discovercorp

know perfectly each other's resource constraints and objective. Therefore, this

game is a complete information one in which no incentives or constraints are

hidden.
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2. Non-repeated Game. We are implicitly assuming that the leader and follower

will play this game once. In reality, as the numbers change (e.g., market size,

marginal costs, etc.) the game will be played continuously between the leader

and the follower.

3. Co-operative Formulation. The mathematical formulation in (9.2) implies

that the leader will choose the y E Y(x) that maximizes his objective. In

reality, this is a best-case scenario approach, since the leader will probably not

be able to choose amongst the follower's equally best options. The follower will

make that choice instead. Nevertheless, if the set Y(x) is a singleton for each x

then we do not have to revert to the pessimistic formulation. In practice, for all

the scenarios that will be described, we actually checked that at the equilibrium

solution (x, y) the set Y(x) is indeed a singleton.

4. Strategic Decisions. The two basic strategic decisions for Genecorp and

Novartis have been assumed to be the pricing and marketing strategy. In reality,

product differentiation and price discrimination (based on local income) are also

possible strategies.

5. Functional Forms and Parameters. We have assumed a very specific struc-

ture for the market share split between Discovercorp and Genecorp depending

on relative marketing and pricing strategies. We have also assumed that the to-

tal demand is a logistic function of aggregate marketing of both firms and more

importantly, that the demand does not depend on price (but it does depend on

total advertising). Finally, the parameter values have been chosen arbitrarily.

The mathematical model proposed can easily be adapted to incorporate objective

functions with more strategic decisions (point 4) and with different functional forms

(point 5). The numerical algorithm in [82] can be used with no alterations at all.
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9.6 Overview of Scenarios

In order to study the bilevel game between Discovercorp and Genecorp, we have

generated a number of scenarios:

1. Asymmetric Base Case. This is the base case scenario as described in Sec-

tions 9.4.2 and 9.4.3 in which Genecorp is the leader (entrant in the market)

and Discovercorp is the follower (reacts to Genecorp's entrance). The asymme-

try comes from the different manufacturing costs to produce the drug and the

one-time fixed cost that Genecorp has to pay in order to enter the market.

2. Asymmetric Base Case - Reversed. This is the base case scenario (1) after

reversing the sequence of moves. Specifically, Discovercorp is the leader and

Genecorp is the follower.

3. Symmetric Case. In this case, the marginal costs of production are actually

the same (15$/drug) and there is no fixed cost for Genecorp to enter the market.

Therefore, the objective function and bound constraints for the leader and the

follower are exactly the same.

4. Symmetric Case - Reversed. This is the symmetric case in which Discover-

corp is the leader and Genecorp is the follower.

5. Asymmetric Hostile Case. This case is very similar to the asymmetric

base case with the only difference that the objective function of Discovercorp

(follower in this case) has a severe one-time penalty if Genecorp enters the

market. This is actually modeled adding a -6000xl term in Discovercorp's

objective function. This term is only activated if Genecorp enters the market,

i.e., when x1 = 1. The scenario includes the term hostile because it appears that

Discovercorp does not want to accommodate Genecorp's entry in the market.

6. Asymmetric Hostile Case - Reversed. The same as before, only Discover-

corp is now the leader and Genecorp is the follower.
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9.7 Numerical Results & Comments

The numerical results on the aforementioned scenarios are summarized in Table 9.2.

Column 1 provides the current scenario (as described in Section 9.6), while columns 2

and 3 identify the leader and the follower in that scenario. Columns 4-8 report the op-

timal values of the strategic choices for Discovercorp and Genecorp (i.e., X1, X2, 13, Y2

and y3) and columns 9 and 10 include the overall profits for Genecorp and Discover-

corp based on the optimal strategies.

Table 9.2: Numerical Results: Bilevel Scenarios
Scenario Leader Follower x1l 2 X3 y2 y3 Genecorp Discovercorp

($) ($) ($) ($) Profits ($) Profits ($)
1 G D 1 100 4557 100 4244 8110 7907
2 D G 1 100 4395 100 4108 8404 8210
3 G D 1 100 4253 100 4250 8499 8495
4 D G 1 100 4250 100 4253 8495 8499
5 G D 1 100 4557 100 4244 8110 1907
6 D G 0 0 0 82 10000 0 6799

Based on Table 9.2 we reach the following conclusions:

1. The only scenarios in which Discovercorp and Genecorp actually do have equal

market shares are 3 and 4. In these scenarios, the objective function and con-

straints are exactly the same between the two firms. They collude (without

consulting each other) on the higher pricing strategy (100 $/drug) and they

have equal marketing (4250 $ 4253 but the difference is within the optimiza-

tion tolerance level) the aggregate of which is sufficient to capture essentially

the entire market (bo + bl = 400 drugs). The fact that Genecorp and Discover-

corp have the same objective function values in scenarios 3 and 4, however, is

completely predictable by the properties of min-min problems (see point 3(a)

for more details).

2. In scenarios 1 and 2 the two firms actually do not have equal market

share. In these two scenarios Genecorp chooses to advertise at a quantity that

Discovercorp' best response strategy is to advertise less. Since they collude on
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the highest possible price (100$/drug) Genecorp wins approximately 52% of the

market while Discovercorp receives 48%.

3. A closer examination between scenarios 1 and 2 yields an extremely interest-

ing result. While Genecorp and Discovercorp receive the same market share

between the two scenarios (52% and 48% respectively), the overall profits are

not the same. In scenario 2, when Discovercorp is the leader and moves first,

the equilibrium optimal strategies are to advertise less for both firms. Since

the aggregate marketing is close to saturating market demand, less marketing

actually generates more profits for both firms ($8404 vs. $8110 for Genecorp

and $8210 vs. $7907 for Discovercorp). Therefore, there is a strategic ad-

vantage to both firms if Discovercorp moves first in the asymmetric

base case. In order to explain this, we will analyze from a mathematical and

practical standpoint:

(a) From a mathematical standpoint, the bilevel problem need not have the

same values for the leader and the follower when their order is switched.

This would only happen if both the leader and the follower had the same

objective and no constraints. In this case max max f(x, y) = max max f(x, y)
x y y x

(max-max problem). This relationship completely predicts the results of

scenarios 3 and 4 in which Genecorp and Discovercorp have the same objec-

tive and no constraints (assuming Discovercorp accommodates Genecorp's

entry in the market).

(b) From a practical standpoint, the apparent discrepancy in scenarios 3 and 4

comes from the fact that this is not a simultaneous game between the two

firms but a sequential one instead. Therefore, the follower reacts to the

leader's actions and the leader anticipating the follower's reaction selects

his optimal strategy. However, when the order is reversed, then the former

leader (now follower) responds to a given strategy in his optimal way. In

order to reinforce this point, assume that we are looking at scenario 1

and Genecorp (leader) chooses its optimal reaction strategy from scenario
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2 (where Genecorp is the follower), i.e. xl = 1,x 2 = 100, x 3 = 4395.

Discovercorp's (follower) optimal reaction strategy is y2 = 100, y3 = 4213

in which case the profits for Genecorp are $7969 which is clearly suboptimal

with regards to its optimal strategy x, = 1, x2 = 100, x 3 = 4557 with

profits of $8110 (line 1 of Table 9.2).

4. In the asymmetric hostile cases (scenarios 5 and 6) there are two very important

results:

(a) In the case of Genecorp being the leader, the introduction of a one-time

penalty for Discovercorp if Genecorp enters the market actually does not

change the equilibrium strategies of both firms. They advertise and price

exactly the same way as the asymmetric base case and they get the same

market shares (52% for Genecorp and 48% for Discovercorp). The only

difference are the overall profits for Discovercorp that are reduced by the

exact amount of the one-time penalty for the firm. Therefore, in the

case of a one-time penalty, when Genecorp moves first, Discov-

ercorp will not change its optimal response strategy. The reason

for that is because if Genecorp enters then all the outcomes will

be equally less profitable by the fixed penalty amount. Therefore,

the optimal response strategy of Discovercorp does not actually change.

(b) In the case of Discovercorp being the leader, this is the only outcome

where Discovercorp actually does not allow Genecorp to enter the market.

To do so, it actually prices at a lower price than the highest possible one

(82 $/drug) and advertises at the maximum rate (10000 $). Genecorp's

optimal strategy is not to enter the market under these conditions and

Discovercorp gets 100% of the market. It is worth mentioning that if

Discovercorp was forced to allow entry for Genecorp (i.e., xl = 1) then

Discovercorp's optimal strategy is the exact same as the reverse asymmet-

ric case with no penalty in which Discovercorp receives 48% of the market

while Genecorp receives 52%. Therefore, if Discovercorp's objective
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has a one-time penalty from Genecorp's entrance then Discov-

ercorp has an incentive to move first strategically and not allow

entry.

5. Overall, apart from the symmetric scenarios (3,4) there is a an incentive for

the two firms to move either first or second. In the asymmetric non-hostile

case (1,2) both firms have a strategic advantage if Discovercorp moves first.

However, in the asymmetric hostile case (5,6) Discovercorp has a incentive to

move first and Genecorp also has an incentive to move first.

6. Our results verify the fact that in duopoly competition it is not always advan-

tageous to move first in the market [80].

9.8 Final Remarks & Contribution

We have attempted to model the strategic interactions in duopoly markets using

Stackelberg games with nonconvex objectives for both the leader and the follower

and to solve the resulting nonconvex bilevel optimization problem using the latest

numerical method in the field [82]. The main contributions of this chapter are:

1. The market participants are allowed to have more than one strategic choice. Un-

like the current literature in which either price or quantity selection is allowed,

we allow for higher dimensional strategic spaces.

2. The profit functions of both the leader and more importantly, the follower, are

highly nonconvex. The recent advances in bilevel optimization [82] allow for

the introduction of nonconvex functions whereas the current literature, in an

attempt to provide closed-form solutions, assumes linearity or at best, convexity,

of both the leader's and the follower's sub-problem.

We believe that the strategic interaction of duopolists is inherently nonconvex (espe-

cially in higher dimensional strategic spaces including pricing, marketing and quantity

selection strategies) and therefore the current work can serve as a tool for exploring

these interactions.
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Appendix A

SIP Test Set using Interval

Methods (Chapter 2)

The problems 1, 2, 3 and H

1.

1 1
f(x) = x + x3 2

g(x,p) = X 2 + 2x1 x 2p - sin(p)

X = [-10, 10]2

P = [0, 2].

1 1
f(x) = x + x+ 1

3 2

g(x, p) = (1 - -p2)2 _ 1
2 _ x 2

X= [-1,1]

P= [0, 1].
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f(x) x= + x + xz

g(x, p) = 1I + X2 exp(x - 3p) + exp(2p) - 2 sin(4p)

X = [-10, 10]3

P= [0, 1].

H.

f(x) = Z2

g(x, p) = -(xl -p)2 - 2

X = [0, 1] x [-100, 100]

P= [0, 1].
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Appendix B

B.1 SIP Test Set using Relaxation-Based Bounds

(Chapter 3)

For consistency purposes we use the problem labels of Watson [135]

2.

P = [0, 1]

f(x) = -I3 1
1

+ ai + X12
g(x, p) = (1 - p2)2 _ p 2 _ x 2 + x2.

P= [0, 1]

f(x) = e"' + e12 + e13
1

g(x,p) 1 + p2

1 + p

- X1 - X2 p - X3 p2
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P [0, 1]

f(x) (x1 - 2 -- - x+513)2 13214 + +x - 29) 2

g(x, p) = x + 22 2 2 exl+X2 _ ep.

Note that in [26] the exponent is missing in the first term of the objective

function.

7.

P = [0, 1]2

f(x) = +x +

g(x, p) = (pi + P2 +1) + x 2 (p 2 -p 3 ( P2 p 2 )-1.

8.

P = [0, 1]2
1 1 1 1 1

f (x) = X + x2 + 3 + X4 5 + X6.
2 2 3 4 3

g(x, p) = eP +P2 l 2 P - x3 P2 -4 p - X5 1 P2 - x6 P2

Note that presumably in Watson's collection [135] the coefficient of X4 in the

objective function is mistyped. This is suggested by the optimal solution value

reported in [135] and by the symmetry of the problem with respect to the

variables X4 and X6.

9.

P = [-1, 1]2

2
f(x) = -4 x - -(4 + 6)3

g(x, p) = x 21 + 2 X1 3 p2 + X4 p +5 p p2 +6 p - 3 - (p1 -p2) 2 1P2) 2
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N.

P= [-1,1]

f(x) = x2

g(x, p) = 2 x~p2 - 4 + 2 -X2.

B.2 McCormick Relaxations

B.2.1 Nonsmooth Example

We will state McCormick's composition theorem and then provide an example that

demonstrates that McCormick relaxation can be nonsmooth.

Theorem B.1 (McCormick's Composition Theorem). Let X C RI be a nonempty

convex set. Consider the function H[h(.)], where h : X -- R is a multivariate con-

tinuous function on X, and let H : Z = [a, b] D h(X) - R be a univariate function.

Suppose that there exists a convex function cu : X -, R and a concave function

co : X -+ R that satisfy

h"(x) < h(x) < h°(x), Vx E X.

Furthermore, assume that there exists a convex function HU : [a, b] -- R and a concave

function HO : [a, b] --+ R that satisfy

H"(z) < H(z) < H°(z), Vz E [a,b].

Let Zmin be a point at which C" attains its minimum and zmax be a point at which Co

attains its maximum.

zmin = arg min Cu(z)
zE[a,b]

Zmax = arg max CO(z)
zE[a,b]
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Then, the following results hold

H"(z(x)) = Hu[mid{hu(x), ho(x), Zmin}]

is a convex relaxation of H(h(x)) on X and,

CO(z(x)) = Ho[mid{hu(x), ho(x), Zmax}]

where the mid function selects the middle value between the three scalar arguments.

The following example demonstrates that a McCormick relaxation can be nons-

mooth.

Example B.2. Let X C R2 be a nonempty convex set defined as X = {x E RR2

-1 < xl 1, -1 < x 2 < 1}. Consider the function g(x) = j(xI + xz). This function

can be written in composition form in the following way

h(x) = 1(x + )

H(z) = z, zEZ=[0,1],

which obviously is not the optimal choice, but will demonstrate the possibility of

nonsmoothness. A valid underestimator, hu , and overestimator, ho of h on X are

hu(x) = x+ 2 - 1

ho(x) = 1.

Furthermore, a convex underestimator, HU, of H on Z is obviously

H"(z) = z.

Finally, it is clear that zmin = 0. This implies that the McCormick convex underesti-
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mator of g is given by

H"(z(x)) = mid(x + 2 - 1, 1,0).

Evaluating the mid function

H0, if x1 + 2 - 1 < 0(B.1)

xl + x2 - 1, otherwise.

This clearly shows that H" is a nonsmooth function.

B.2.2 Influence of x-dependence

This example shows how the x-dependence of the constraints in semi-infinite pro-

gramming, i.e., the functional form g(x, p), influences the McCormick composition in

creating a concave overestimator go on P, for each x E X.

Example B.3. Consider the function g : X xP -+ R defined as g(x, p) = x3e(xl IP+x2P2)

where X = [-1, 1]3 and P = [0, 1]2. Depending on the sign of the three x variables,

we proceed as follows (we will only list the options for xl and x3, since there is a

symmetry between xl and x2)

1. x1 > 0, x2 >0, x3 > 0:

For a fixed x satisfying these conditions we define the following functions

h(p) = xp± + x 2p, pEP =[0,1]2,

H(z) = x3ez, z E Z = [0, x + x 2].

Based on this observation, we can define the following convex and concave

relaxations, hU and h' respectively, for h on P

h"(p) = xlp + 2p p E P

hO(p) = x1P 1 + 2P2, pE P.
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The concave overestimator H' of H on Z is given by the secant

H(z) = X3 ((ex +2 - 1)z +
X1 + X2

zE Z.

Finally, zmax is defined as one of the points for which H' attains its maximum

zmax E arg max HO(z) = {xI + x2}.
zEZ

Therefore, the concave overestimator of g with respect to p is defined as

H"(z(p)) = Ho[h°(p)] = X3 (exl+zx2

For the other cases we similarly obtain

2. x 1L 0, x 2 > 0, X3 < 0

h"(p) = x1p + X 2P,

ho(p) = xlpl + x 2p2,

- 1)(zXip

x 1 + X2

+ x 2P2) +1)

pEP

pEP

Ho(z) = x3ez, zEZ=[0,i + X2],

zmax E argmax H(z) = {O}
zEZ

H"(z(p))

3. x1 > 0, 2 < 0, x3 > 0

hu(p) = x1p + 2P2,

ho(p)

Ho(z)

SXPl + x 2p,

Ho[hu(p)] = x3exlPi •+2p2

pEP

pEP
= x ((ex - eX2)(z - X2)

+ ex2) I

zmax E argmax Ho(z) = {X}
zEZ

z(p)) = Ho[ho(p)] = x3 ((exi - eX2)(pxlp
X1 -

z eZ = [x2, X]

+ x 2p2 - x2)
X2
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4. x1 Ž 0, x2 < 0, a3 < 0

hV(p) = x1pi + x 2p 2, pEP

hO(p) = x 1P 1 + X2P2, pEP

H0 (z) = x 3ez, zEZ=[x2, lX],

zmax E argmax H(z)= {x 2}
zEZ

H°(z(p)) = Ho[h'(p)] = xaexp1+X2P2.

B.2.3 Relaxations of the Product of Two Functions

In this section we will show the convex and concave relaxations for a product of two

functions gl(x)g2(x) on X, compare also the treatment of trilinear terms in [79].

Assume that there exist convex functions gu and gu and concave functions g' and

g9 that satisfy

gu(x) 5 gi(x) go (x), Vx E X

gQ(x) g92(x) • g0(x), Vx e X.

Furthermore, let G1, GU, G , GU satisfy

Gf _ gl(x) 5 GU, Vx E X

G < g92(x) < GU, Vx E X.

Then using the following definitions

{L= Ggu(x), if GL > 0
a (x) = 1

GL g(x), otherwise.

2(x) g(x), if GL > 0

IGIg9(x), otherwise.
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SGugu(x), if GU > 0

G21 (x), otherwise.

02 X) G1g(x), if G" > 0

GUg 0(x), otherwise.

LGgu(x), if GL < 0

G(gx(x), otherwise.
2X( = Ggx), if GG < 0

G2g (x), otherwise.

S(x) (x), if G_ < 0

G'g (x), otherwise.

GX = Gg(x), if Gu < 0

G2g1(x), otherwise.

A valid convex 9 u and concave g' relaxation of g on X are given by

gu(x) > max{aci(x) + O2(X) - GLGL, 1 (x) +02 X) - GU GU

g0(x) -mrin{fy(x) + yx2(x) - GUGLi, 1 (X) + 2 (X) - GlG }.
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