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Chapter 1

Introduction

In this chapter the motivation, background, contributions, and outline of this work

will be presented.

1.1 Motivation

In recent years, the concept of using controlled structures technology to improve the

nominal performance and or allow for vastly improved performance in spacecraft has

been widely researched [1,2]. Among the many diverse technologies being explored to

achieve these goals are passive damping, disturbance isolation, low authority control,

and high authority control. The M.I.T. Space Engineering Research Center's Inter-

ferometer testbed, shown in Figure 1.1, is a laboratory experiment that allows these

various approaches to controlled structures technology to be validated in a realistic

setting. As discussed in detail in [3], the testbed is a scaled version of a proposed,

spaced based, imaging interferometer. The primary performance requirement for the

testbed is to maintain the internal pathlength errors between multiple points on the

tetrahedron to within stringent tolerances in the presence of an internal disturbance

source that causes the structure to vibrate. While such an objective lends itself to

all the areas of controlled structures technology research, the work in this thesis falls

strictly under the category of high authority control techniques.

Given the desired performance specification of the Interferometer testbed, one can
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Figure 1.1: The Interferometer testbed.

envision the desire to minimize certain pathlength errors between various points on

the structure as the desire to control the shape of the tetrahedron. With the re-

cent advances in piezoelectric materials and their use in active strut actuators [4], it

is entirely possible to pursue a multivariable control strategy that seeks to regulate

the shape of the Interferometer structure to achieve the desired performance. While

numerous multivariable design methods can be used to synthesize such controllers

for the interferometer, they all require accurate mathematical models of the actual

system. Unfortunately, the Interferometer testbed is a complex and lightly damped

structure that is not at all easy to model. This inherent characteristic of the Interfer-

ometer introduces added complexity to the desire to use a multivariable shape control

strategy to achieve the desired performance specifications.

In essence, the Interferometer system is open loop stable, and any feedback con-

troller for it would be designed with the intention of meeting the pathlength error

specifications. However, any model of the Interferometer will contain errors, and the

control system designer must ensure that a controller which is designed based on a

14
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mathematical model of it will not cause a closed loop instability when applied to

the Interferometer. This issue of stability robustness is of primary concern for mul-

tivariable controllers because there is no way to measure phase and gain margins to

quantify a control system's robustness to modeling errors as there is for scalar sys-

tems. Add to this the lightly damped and complex nature of the Interferometer and

the motivation for this thesis becomes clear.

Basically, the motivation for this thesis comes from the desire to understand how

to deal with the realistic types of modeling uncertainty that will be present in a model

of the Interferometer system so that it is possible to design high authority, multivari-

able, robustly stable control systems for the Interferometer to meet the stringent

pathlength error specifications. Even though the motivation comes specifically from

the Interferometer testbed, it is important to realize that the same issues that drive

the research on the testbed are inherent to almost any structural control problem.

Hence, results based on research for the Interferometer are applicable to any lightly

damped and complex structural system. Analogously, the research to date in the

field of controlled structures technology is also applicable to the problems of the

Interferometer.

1.2 Background

As we noted, a number of crucial issues in multivariable control system design are

brought to the surface by the motivation to understand how to implement robustly

stable, high authority shape controllers on the Interferometer testbed. The primary

issues include how to accurately model lightly damped structural systems, how to

classify the uncertainty in these models, how to deal with the types of uncertainty

that arise, and how to synthesize robustly stable controllers based on an uncertain

models that meet the desired performance specifications. Each one of these topics

has been researched extensively individually and less so as an entire entity.

Traditionally, dynamical models of complex structural systems like the Interfer-

ometer are derived from standard finite element techniques [5, 6]. However, recent



experimental investigations in the controlled structures community have brought to

light the limitations of finite element techniques to produce accurate, high band-

width models of realistic, complex structures [7,8]. As a result, a variety of system

identification approaches are currently being investigated to provide more accurate

structural models [9-12]. Unfortunately no matter which modeling approach is used,

the resulting model will inevitably contain errors.

For structural systems, the types of modeling errors one can expect typically fall

into two categories: Low frequency structured or parametric errors and high frequency

unstructured errors [13,14]. A typical approach to classifying these errors has been to

blend the a priori knowledge of the fidelity of an analytical modeling approach, such

as finite elements, with an experimental verification procedure, such as frequency

response analysis [13]. Once the modeling errors are identified, the designer must

decide how to deal with the inevitable uncertainties.

Since any modeling method can not produce an exact model of a structural system

and high authority multivariable controllers depend on accurate models, the primary

focus in high authority structural control research centers on finding simple and use-

ful tests that guarantee robustness to the inevitable modeling errors. Fortunately,

simple and useful stability robustness tests exist for the class of unstructured errors.

Specifically, the relative error stability robustness results, like the multiplicative er-

ror stability robustness criterion [15, 16], can be used to verify the robustness of a

given controller to an unstructured uncertainty at a specific point in the feedback

loop of a system. Unfortunately, the unstructured error stability robustness results

are too conservative when applied to the class of structured uncertainties that arise

in the modeling process. In an effort to reduce this conservatism, Doyle introduced

the structured singular value framework within which stability and performance ro-

bustness can be guaranteed for both structured and unstructured uncertainty [17,18].

While the framework provides the answer, in theory, to the stability robustness prob-

lem, it is still not a useful means of guaranteeing stability robustness since it requires

the minimization of a highly non-linear and non-convex function to test the robust-

ness of a control system [18]. To date work continues on making the structured



singular value framework viable for guaranteeing robustness [19].

The structured singular value framework is not the only methodology available

for dealing with structured modeling errors. There is also a large body of research

that considers other approaches to dealing with structured modeling errors that can

be applied to guarantee stability robustness for a structural system. Hagood provides

a thorough overview of these in [20]. As is the case with the structured singular

value framework, almost all of the other results in the field that consider how to

deal with structured modeling errors have limited applicability for realistic systems

due to the restrictive nature of the assumptions used to arrive at the various results

and due to the computational complexities involved in the resulting methods. As

a consequence, to date there is still no simple, useful, unconservative, and widely

accepted way of guaranteeing stability robustness for structured modeling errors, as

there is for guaranteeing robustness for unstructured modeling errors. Clearly, the

situation becomes worse when we consider the real situation in which we have both

types of modeling errors.

It is important to realize that most of the stability robustness results come in the

form of a test that a control system, that is a nominal model, an uncertainty descrip-

tion, and a compensator, must satisfy. Such tests fall into the category of analysis

methods that merely provide a way of judging the robustness of a given design. Once

the modeling errors are analyzed and the appropriate stability robustness constraints

are formalized, it is the job of the controller synthesis to provide a compensator that

meets the performance specifications and the stability constraints provided by the

robustness analysis. The 7R2 (LQG) and 7o, controller synthesis methodologies both

allow the use of frequency dependent weights that can be used to design compen-

sators that meet the performance and robustness specifications for realistic structural

control problems [21,22].

While each of the above disciplines are typically researched as individual entities,

the ability to design high authority, stably robust control systems relies on all these

disciplines as a holistic entity. The bridge between these distinct research fields and

the development of high authority control systems for structural testbeds has been



carried out by a few research groups [23-25]. At the Jet Propulsion Laboratory, re-

searchers working on a cantilevered truss structure tried to implement robustly stable

high authority shape controllers and were forced to resolve all of the complex issues

outlined above [24]. Even though they were able to implement some H*,i controllers

on the actual structure, none of them satisfied the necessary robustness specifications

for the unstructured uncertainties they defined, nor was there any consideration of

the more structured modeling errors in their model that were classified in [13]. This

situation is typical of the difficulties involved in bringing together the diverse fields of

research needed to design robust, high authority controllers. Further, this difficulty

coupled with a lack of a fundamental understanding of how the different pieces of

research should be fit together to meet the desired design specifications was another

strong motivational factor for this work.

1.3 Contributions of Thesis

The primary contribution of this thesis is an exposition of the critical issues involved

in designing robustly stable, multivariable, high authority controllers for complex

structural systems like the Interferometer testbed. Recall that the critical issues en-

compass structural modeling, assessing the uncertainty in the resulting model, under-

standing how to design robust controllers based on the uncertain model, and actually

synthesizing high authority robust controllers based on the uncertain models.

In an effort to avoid the complexity involved in working with the actual Interfer-

ometer, a simple two dimensional truss and beam sample problem that captures the

primary attributes of the Interferometer in a realistic way and provides a complete

mathematical framework in which to carry out the investigation is utilized to discuss

and exemplify the critical issues. Since many different disciplines are involved in the

design of a robust, high authority controller and since the behavior of the actual

system can only be approximated, it is difficult to figure out what contributes to the

unpredictable results, poor performance, or lack of robustness of a control system

designed based on an uncertain model when it is applied to a real system. The use



of the sample problem directly avoids this issue by providing a realistic problem that

both captures the complex issues involved in designing robust controllers and fur-

nishes an exact model of the actual system which can be used to verify exactly what

is contributing to the poor performance or lack of robustness of a control system. In

this way, the development and use of the sample problem to study the interrelation

amongst the various pieces of technology needed to design robust, multivariable, high

authority controllers is in itself a contribution of the work.

While no new theoretical results will be presented, the actual process of going

from system description to high authority controllers will be explored in a somewhat

tutorial manner to provide a fundamental understanding of how the diverse disciplines

interrelate and can be used to design high authority, robust, multivariable controllers

for complex structural systems. In going through the complete controller synthesis

cycle, a clear visualization and overview of many issues involved in the stability

robustness aspects of the problem will be presented.

In the process of assessing the uncertainty in a model of the sample problem, a

new method for analyzing the fidelity of a multivariable model using phase informa-

tion extracted from the singular value decomposition of the model will be examined.

While the role this phase information plays in analyzing stability robustness is not

clear, it will be shown that it provides a viable way of assessing the phase fidelity of a

multivariable model. Since there are a limited number of phase results for multivari-

able systems, this method of analyzing the fidelity of a multivariable model is clearly

one of the contributions of this thesis.

As far as the critical issue of how to deal with the inevitable errors in a model of a

complex structural system are concerned, this work contributes a clear visualization of

how to deal with unstructured uncertainties, why unstructured error descriptions are

too conservative for dealing with structured modeling errors, and why no useful and

nonconservative techniques for guaranteeing robustness for structured modeling errors

exists to date. The visualization is carried out using a Nyquist domain interpretation

of stability robustness in the scalar setting to make the interpretations of the existing

theory clear and then in the multivariable case using the sample problem to extend



the visualizations to a realistic problem.

On the issue of synthesizing controllers based on inaccurate models, a frequency

weighted H 2 controller synthesis for the sample problem will be presented. Using

this design methodology to synthesize controllers, it will be shown that it is possible

to design high authority, multivariable controllers for structural systems that deliver

useful performance and satisfy an unstructured error robustness test. Further even

though there was no way in the synthesis to account for the structured modeling

errors, a Nyquist domain visualization of the structured uncertainties in the model will

be presented to verify that the 7H2 controllers are robust to the structured modeling

errors as well as the unstructured modeling errors.

1.4 Outline

Given the motivation to understand the fundamental aspects of the complete con-

troller synthesis process for structural systems, this work was organized in the logical

progression from system description all the way through useful controller results. In

Chapter 2 the actual sample problem and the philosophy behind it that will be used

to describe and exemplify various stability robustness issues will be presented. Once

the setup of the sample problem is at hand, the finite element modeling process, the

means as well as the necessity of scaling the vector valued signals, and the model order

reduction procedure that were used for the sample problem model will be described.

Having described the system and modeling process of the sample problem in Chap-

ter 2, the assessment of the uncertainty in the model will be presented in Chapter 3.

The chapter will present both a realistic way of assessing the uncertainty in a typical

structural model and a verification of these approaches using the exact mathematical

framework of the sample problem. The verification will be carried out by studying

the ways in which the realistic modeling errors manifest themselves in the common

tools of multivariable control design. By the completion of Chapter 3, a thorough

understanding of the fidelity of typical structural models as well as some insights into

how to obtain quantifiable descriptions of the modeling errors will be at hand.



Since the modeling errors throughout Chapter 3 will be classified as either un-

modeled or mismodeled dynamics, that is unstructured or structured uncertainties,

Chapter 4 will provide an in depth discussion of how to deal with such errors in a

model of a complex structural system to ensure robustly stable compensators. The

chapter will rely heavily on a Nyquist domain interpretation of stability robustness to

compare, contrast, and describe the various approaches to dealing with the modeling

uncertainty. Specifically, visualizations of structured and unstructured uncertainty re-

gions for scalar systems in the Nyquist domain will be used to explain the applicability

of relative error robustness tests for unstructured uncertainties, the conservatism of

relative error robustness tests for structured uncertainties, and the difficulty of deriv-

ing non-conservative robustness conditions for structured uncertainties. Using the in

depth understanding of the various robustness techniques based on the scalar visu-

alizations, useful and appropriate models of the uncertainty in the sample problem

model that could be used to synthesize stably robust, multivariable controllers will

be presented in Chapter 4 and used in Chapter 5.

The final step in the holistic approach to the design of robust, high authority

controllers given a model, knowledge of the modeling errors, and understanding of

how to handle the modeling errors is the actual synthesis of the control system. In

Chapter 5, frequency weighted 7R2 designs for the sample problem will be presented

to verify that it is indeed possible to design robustly stable, high authority, multi-

variable controllers for complex structural systems that do achieve a decent level of

performance. In doing so, the process of including frequency weights in the synthesis

along with a discussion on how to choose the weights to meet the stringent design

specifications will be presented.

Finally, in Chapter 6 the conclusions of the process of going from a model descrip-

tion to the desired high authority controllers will be presented with some suggestions

for further research directions.



Chapter 2

Robustness Sample Problem

Sample problems are useful tools for providing worthwhile insight into the nuances

of the complex systems they mimic [26-28]. In this chapter, a sample problem that

captures the critical issues involved in implementing multivariable shape control on

the Interferometer testbed is described. The sample problem consists of a truss and

beam which are intended to be the actual system and the design model of that system.

Since the majority of the work in this thesis is based on mathematical experiments of

the sample problem, the philosophy behind the choice of the sample problem as well

as the modeling process of the sample problem are described in detail.

2.1 System Description and Philosophy

In order to understand the predominant issues in applying multivariable shape control

to the Interferometer in a simple and concise manner, a two dimensional cantilevered

truss, shown in Figure 2.1, along with a beam approximation of the truss, shown

in Figure 2.2, were chosen as the sample problem to study. A long, slender, beam

like truss was selected so that the system would have low frequency global vibration

dynamics, where the whole truss moves in unison, and high frequency local vibration

characteristics, where individual elements of the truss vibrate. Such dynamics are

typical for the class of structural systems that have been targeted for active feedback

control. The type of the disturbance sources, which unavoidably excite the afore-
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Figure 2.1: Actual truss system with sensors R, actuators ui, and disturbances, di. Pos-
itive convention showing.

mentioned dynamics, included in the truss system are indicative of typical spacecraft

disturbance sources, as outlined in [29]. Specifically, the point load disturbance, dl,

mimics undesirable forces transmitted to the structure from vibrating machinery while

the torque disturbance, d2, accounts for disruptive moments applied to the structure

from torque wheel imbalances. Both disturbances produce vibrations in the truss that

in turn cause vertical and axial displacements of the lower right node of the truss that

are measured by the two sensors, yi and y2, located there. The location of the sensors

off the neutral axis, which is the Y axis when the truss is undeformed, was intended

to add dynamic coupling to the control problem; since axial and bending modes of a

cantilevered truss are uncoupled when observed from the neutral axis. While the the

disturbances unavoidably corrupt the desired behavior of the truss, the active struts

are used to regulate the undesirable dynamics of the truss. Active struts are high

bandwidth, high precision, structural load carrying elements that effectively apply

an axial force, ux and u2 in the truss system, at the nodes of the structure to which

they are connected [4,30]. To get a feel for the influence the active struts have in

the truss, realize that simultaneously commanding a compressive force to active strut

1, -u l , and a tensile force to active strut 2, +u 2 , will cause the tip of the truss to

bend downward. This type of control authority is well suited to regulate the position

of the truss' tip. The location of the active strut actuators, tip sensors, and system
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Figure 2.2: Equivalent beam approximation of the truss with sensors yi, actuators ui and
disturbances, di. Positive convention showing.

disturbances, as well as the clamped-free boundary conditions, were chosen so that

the control loops of the sample problem were analogous to those of the Interferometer

testbed. It should be intuitively obvious that it is much simpler to model and work

with the truss sample problem than the true Interferometer system.

Less obvious is the fact that the sample problem, while simpler than the Inter-

ferometer, captures many of the difficulties that would be encountered in designing

multivariable controllers for the Interferometer. Consider the objective of minimiz-

ing the motion, caused by the disturbances, of the truss' tip using the active struts.

This objective is completely analogous to the multiple point alignment specification

for the Interferometer. The control loop topology of both systems is non-collocated,

which introduces the possibility of low frequency non-minimum phase zeros that limit

achievable performance [31]. Furthermore, the performance of a control system is in-

timately tied -to the accuracy of the models upon which it is based [14]. As is the

case with both the Interferometer testbed and the two dimensional truss systems, an

accurate model of these structural systems requires a large order state space represen-

tation. Practical issues of compensator implementation thus necessitate model and or

compensator order reduction. Unfortunately no matter what the order of the models

are, they will contain uncertainties. To mimic the fact that an exact model of the



Figure 2.3: Block diagram depicting the framework of the sample problem.

Interferometer can not be formulated in reality, a beam-column approximation of the

truss, shown in Figure 2.2, is used as the system upon which controllers intended for

the truss are based. In these ways, the sample problem captures some of the inherent

difficulties of designing multivariable control systems for complex structural systems

like the Interferometer testbed.

The aforementioned issue of modeling uncertainty is of primary concern in lightly

damped multivariable systems like the Interferometer. Since models of such systems

are plagued by uncertainty, the designer must ensure that controllers based upon

mathematical models do not destabilize the actual system. That is the control designs

must exhibit stability robustness. Adopting a philosophy where the truss is the actual

system to control and the beam a model of that system allows for a mathematical

framework in which to study these issues.

A block diagram that clearly depicts the philosophy of the sample problem that

will be exploited in this work is shown in Figure 2.3. Essentially, the beam system will

provide a realistic model of the actual truss system that can be used to synthesize com-



pensators. In the robust control literature, such models are referred to as the nominal

or design model. Notice that the nominal, or beam, model includes transformations

so that any compensator based on the beam, referred to as the "Beam Compensator"

in Figure 2.3, produces truss inputs based on truss measurements. In this way, beam

compensators can be directly applied to a model of the truss system, which is known

as an evaluation or actual model in the robust control literature, to evaluate their

performance and stability characteristics. It is this mathematically complete setup

that provides a simple yet realistic framework within which to understand how to

deal with the complex issue of multivariable stability robustness.

Since the philosophy of using a model of the beam to control the actual truss

system will be the cornerstone of many of the illustrations and results in this work, it

is vital to understand that the beam model is a justifiable approximation of the actual

truss system. Without a doubt, the beam will capture the low frequency dynamics

of the truss, since the truss acts like a cantilevered beam at low frequencies. At the

same time, the inability of the beam to capture the higher frequency, local strut,

vibration modes of the truss mimics the difficulty of modeling the high frequency

dynamics in structural systems. Notice also from Figures 2.1 and 2.2 that the beam

does contain a similar input, output, and disturbance topology to the truss; though it

is important to understand that there is not a one to one correspondence between the

ui, y•, and di variables of the beam and truss shown in these Figures 1. In fact since

the behavior of the beam is completely characterized in terms of its neutral axis, the

disturbances, control forces, and output measurements in the beam system have been

defined so that they are the static equivalent of the corresponding quantities in the

truss system reflected to its neutral axis. Physically speaking, the beam disturbances

excite the dynamics of the beam in the same way that the truss disturbances excite

the dynamics of the truss by applying moments and point loads to the beam near its

base. The three outputs located on the neutral axis at the beam tip that measure

the motion caused by the disturbances are needed to mimic the measurements in

1The subscript indexing of these quantities simply references their location in the vectors of

inputs, outputs, and disturbances that arise in the modeling process.



the truss that lie off the neutral axis; as will be seen when the modeling process is

described. In the case of the beam inputs, both the bending and axial inputs, ul

and u2 respectively, shown in Figure 2.2 are necessary to approximate the control

authority that is provided by the active struts in the truss. Specifically, both axial

and bending controls are needed to compensate for the axial and bending motions of

the tip produced by the disturbances. In simple terms, it is sufficient at this point

to recognize that the geometry and nature of the beam model in themselves provide

a good approximation of the truss. In the following section, the specific modeling

process of the truss, that is the process of creating the beam model, will be described

in detail.

The most important aspect in acknowledging that the beam is a justifiable rep-

resentation of the truss is the ability of the beam to capture the nature of realistic

modeling errors for structural systems like the Interferometer. Even though the dy-

namics, the control topology, and the nature of the inputs, outputs, and disturbances

of the beam are similar to those of the truss, there are fundamental limitations in

trying to use a model based on the beam to control the truss just as there would

be in trying to control the Interferometer with any model of it. For such systems,

the expected modeling errors can be classified as either mismodeled or unmodeled

dynamics no matter what modeling technique is used [32, 13]. Dynamics that are

well known and modeled but whose exact parameters are unknown will be referred

to as mismodeled dynamics. For example, the the first bending mode of the truss

may be well modeled by the beam, yet the exact value of the frequency of the mode

may only be known within a small percentage of the true value. On the other hand,

dynamics that are not well known, poorly modeled, or neglected will be referred to

as unmodeled dynamics. The local vibration modes of the struts in the truss may be

at a sufficiently high enough frequency to neglect in the modeling process. In this

respect, the beam contains unmodeled dynamics since it does not capture the local

truss modes. In summary, the beam model of the truss is a typical nominal model of

a structural system in that it contains both mismodeled and unmodeled dynamics.

The advantages of pursuing this philosophy for the sample problem are apparent.



First of all, explicit state space models of both the truss and beam are available due

to the relative simplicity of the sample problem. Hence there is an exact knowledge

of the modeling errors between the actual and nominal systems, and there is an

actual system to apply controllers based on the nominal model to. This combination

of factors allows for a somewhat controlled environment in which to study stability

robustness. Whereas in a realistic scenario, the lack of an exact description of the

uncertainty along with the difficulties of implementing compensator complicates the

theoretical analysis of stability robustness.

The intent of this section has been to show that the sample problem allows for a

simple yet realistic investigation of many critical issues in structural control. Parallels

between the sample problem and the Interferometer testbed were given to solidify

the usefulness and simplicity of using the sample problem. Further, the convention

of using the beam as a nominal model of the truss was introduced as a means of

investigating how to deal with the reality of uncertainty in structural models.

2.2 Modeling

The details of the models used throughout this work are presented in this section.

From this point on, the beam will be considered a model of the actual truss system

that is to be controlled. Hence, presenting the specifics of the beam modeling process

is akin to describing the design plant model of a control system. Finite Element

Modeling, scaling (signal normalization), and model order reduction are the major

stages of the beam modeling process which are presented here. Furthermore, in

keeping with the outlined philosophy, a model of the truss is also developed as a

reference system to compare the beam models to and an evaluation model to apply

beam based compensators to.

2.2.1 State Space Models Using Finite Element Data

Since analytical models of realistic systems like the Interferometer are generally de-

rived from Finite Element methods, Finite Element methods will be used to model



the truss and beam systems. In this section, the general procedure for creating state

space models of structural systems from Finite Element models will be presented.

The following section will describe the actual modeling process of the truss that uses

the method presented here.

Letting M, K, and C denote the mass, stiffness, and damping matrices, the

standard, dynamic finite element equations of motion for a structure with n degrees

of described by the vector q(t) are

Mq(t) + Cq(t) + Kq(t) = lu(t) + Dd(t) (2.1)

y(t) = yq(t)

qERn dERP

u ER m  yE R'

The U, D, and y matrices simply contain constant values that place the location

of the controls, u(t), disturbances, d(t), and sensors y(t), at the appropriate degrees

of freedom in q(t). In using these placement matrices, the u, d, and y vectors only

contain the forces and measurements in the beam (truss) system shown in Figure 2.2

(2.1). Since the damping matrix is in general a difficult quantity to evaluate, a modal

modeling approach will be used to create a state space model of the system described

by (2.1).

By assuming that the damping in the system described by (2.1) is modal in nature,

that is assuming the damping matrix is a linear combination of the mass and stiffness

matrices

C = aM + 3K, (2.2)

the solution to the following set of homogeneous differential equations

Mq(t) + Kq(t) = 0. (2.3)

provides the undamped natural frequencies of vibration, wi, and corresponding mode

shapes, 0j, of (2.1). Realize that evaluating the free vibration modes from (2.3) is

only an intermediate step in arriving at a state space representation of (2.1). Assem-

bling the modes, 0j, into a matrix 44 and assuming that these eigenvectors are mass



normalized so that
DTM@ = I (2.4)

yields the following useful results that are a consequence of the inherent orthogonality

of the modes

@TC@ = P diag {2(1w1} and TK4 = A Ai diag {w'}. (2.5)

In F, (. is the modal damping in the ith structural mode of the system with frequency

w- and mode shape 0j. Using (2.4) and (2.5), the full equations of motion, (2.1), can

be decoupled by premultiplying (2.1) by 4T and substituting a transformed

q(t) = ¢47(t) (2.6)

into (2.1)

lii(t) + Pr) + A77 = -TUu(t) + JTDd(t) (2.7)

y(t) = Y(D7(t)

The advantage of using a modal representation of the equations of motion should now

be clear. Only the modal damping ratio in each mode, ý;, is needed to specify the

damping model of the system, which is a tremendous simplification over having to

derive a damping matrix for structural systems.

Now getting a state space model is a simple manner of breaking (2.7) down into

a set of first order differential equations. Letting

X(t)(= (t) (2.8)

be the states 6f the system, the decoupled set of equations (2.7) can be rearranged to

obtain a state space model representation of (2.1) with modal damping

=(t) = Ax(t) + B 2u(t) + B d(t) (2.9)

y(t) = Cz(t)



where

A On inxln 0 i  Jm C [yi axnl
-A -r BT B21)T1

(2.10)

Notice that this approach only requires knowledge of the placement of the inputs,

outputs, and disturbances at the assumed degrees of freedom in the model and the

frequency, damping, and shape of the structural modes in the system. Since the

number of states in (2.9) is two times the number of degrees of freedom in the original

model, (2.9) will be referred to as the full order model.

2.2.2 Full Order Finite Element Models for the Beam and

Truss

With a procedure for creating state space models of structural systems at hand, this

section will describe the process of deriving a model of the beam which, in keeping

with the philosophy of the sample problem, will be considered the nominal model of

the truss system. The details of a state space model for the truss, that will serve as

the evaluation model for the beam, will also be described. In both the truss and the

beam, a one percent damping ratio will be assumed for all the modes, ýi = .01 Vi,

to account for the inherently low levels of damping in structural systems like the

Interferometer [33].

Realize from the previous section that the major part of the modeling process is

the computation of the natural modes of the system. For both the beam and truss,

the modes were evaluated by using the ADINA finite element program to assemble the

mass and stiffness matrices and solve the homogeneous set of equations (2.3) [34]. The

essence of the modeling process then boils down to spatially discretizing the system,

carefully deciding upon what kind of elements and mass model to use, and evaluating

the necessary properties of the elements in order to provide the finite element code

with the proper data to assemble the mass and stiffness matrices. Realize that once
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Figure 2.4: Truss Substructure. Static test used to evaluate equivalent cross-sectional
area.

the discretization of the system is decided upon, the U, 9D, and y placement matrices

can be trivially evaluated.

In terms of the philosophy of the sample problem, the values provided to the finite

element program to evaluate the vibration modes of the beam should be chosen to

mimic the dynamics of the truss system. In this way, the beam will serve as a model

of the truss in that its dynamics will approximate those of the actual system. To this

end, ten equally sized Bernoulli-Euler beam-column elements, one corresponding to

each bay of the truss, were used in modeling the beam. In order to capture the

dynamics of the truss in the beam model, the specific values of the beam element

properties were derived by evaluating the equivalent beam properties of the truss

system [35].

To exemplify how the equivalent structural beam properties were derived, consider

Figure 2.4 that shows how the equivalent cross-sectional, Ac, of a beam-column

approximation of the truss was calculated. In general, the substructure shown in

Figure 2.4 is all that is needed to evaluate the equivalent beam properties of the truss,

since the truss is composed of these symmetric, repeatable bays. Now to evaluate Ac,

recall the simple proportional relation between an applied tensile load, F, and the

axial deformation, 6, for a rod
EAF = -L 6 (2.11)

L



where E is the Young's Modulus of Elasticity of the material and L is the length of

the specimen. By evaluating the elongation of the substructure under a unit load,

the cross-sectional area can be trivially backed out of (2.11)

L
F = 1 =ý A- = L (2.12)

Similar simple static tests lead to the equivalent beam values of the bending moment

of inertia, I,,, and shear area, A, of the truss [36]. However, the shear term was

specifically excluded from the beam model to intentionally constrain it to be a lower

fidelity model of the actual truss system. This is in keeping with the philosophy of the

sample problem where it is desirable for the beam to contain unmodeled dynamics

in order to mimic reality. Realize that the equivalent beam model would be a much

better approximation of the truss had the shear properties been included [36].

As far as the mass properties of the beam model are concerned, a consistent mass

model with lumped masses was used. The equivalent mass per unit length, pAC , of

the beam was calculated by summing the mass of the struts in a repeatable section

of the truss and dividing this sum by the substructure's length. To account for the

mass of the joints in the truss, the mass of two truss joints was lumped at each

node of the beam model. Finally by assuming the Young's Modulus, E, to be that

of Aluminum, all the necessary values of the element properties were resolved and

provided to ADINA to assemble the mass and stiffness matrices. A summary of these

values is included in Figure 2.2.

In the case of the truss, the mass and stiffness matrices were assembled in a

straight forward manner using the strut and joint characteristics shown in Figure 2.1.

The nodes were located at the joints and mass loaded to accommodate for the mass

associated with the joints. For the sake of simplicity, all the struts, including the

active struts, were modeled as a Bernoulli-Euler beam elements. As with the beam,

a consistent mass model was also used for the truss.

This brief explanation outlines how the mass and stiffness matrices of the beam

and truss were created. Given the necessary data, ADINA provided the natural

frequencies and mode shapes that were used along with the placement matrices to



form state space models from (2.9) and (2.10) for the beam and truss . As a first

check on the fidelity of using the beam model to predict the dynamics of the truss,

Figure 2.5 shows a comparison of the first few modes of vibration for the beam and

truss that were evaluated from (2.3). Notice that in fact the beam does capture the

shape and nominally predict the frequency of the first three bending modes and the

first axial mode of the truss. Also notice that the fourth truss mode, which is a

shearing mode, is not at all captured by the beam. This is to be expected since the

necessary information the beam model needed to predict this mode was left out of

the finite element model to be consistent with the philosophy of the sample problem.

In order to use the beam as a design plant model of the truss, the truss' actuators,

sensors and disturbances must be included in the beam model so that it generates

truss outputs, uses truss controls, and reacts to truss disturbances. Recall that the

necessity of the beam model to produce truss inputs and measure truss outputs was

seen in Figure 2.3 that depicts the philosophy of the sample problem. In essence, the

beam model will be used to derive compensators for the truss for various reasons, and

it is thus desirable to have a model that produces compensator that can be directly

applied to the actual system they are designed for.

The process of modeling the truss inputs and disturbances in the beam involves

deriving transformations from the truss inputs and disturbances to the beam inputs

and disturbances so that

Ub(t) = T.ut(t) (2.13)

db(t) = Tddt(t). (2.14)

In these expressions, T, and Td are the input and disturbance transformations respec-

tively while the b and t subscripts respectively denote the inputs and outputs for the

beam and truss. The notation for Ub implies that

Ub = 1 (2.15)
U2 [ beam

where ul and u2 are defined in Figure 2.2. As mentioned, the inputs and disturbances

that are specified for the beam in Figure 2.2 are the static equivalent of the truss
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Figure 2.5: Comparsion of the undamped structural modes of the sample problem. Sim-
ilar mode shape scale factors were used to depict all the modes.
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Figure 2.6: Statically equivalent loading situation for the truss and beam inputs.

inputs and disturbances reflected to the neutral axis of the truss. As result of this,

T, and Td can be derived based on equivalent loading situations. To see how this

was done for the sample problem, consider the equivalent loading situation used to

derive T, shown in Figure 2.6. Based on the static equivalence of the loads shown in

Figure 2.6, T, was evaluated to be

T= . (2.16)
1 1

Similar arguments lead to the disturbance transformation matrix, Td.

On the other hand, the output transformations were derived based on geometric

compatibility arguments. In order for the beam to capture the truss measurement off

the neutral axis, it was necessary to measure the tip rotation of the beam as well as

the axial and vertical displacements. Figure 2.7 shows the geometric compatibility

used to derive the output transformation matrix, T,,

yt(t) = Tyb(t) (2.17)

T [ = 1  (2.18)

where the b and t subscripts are used to differentiate the outputs of the beam and

truss systems.

u2t u2t

:><h
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Figure 2.7: Geometric compatibility of the truss and beam outputs. The top figures
show an exaggerated deformation from the undeformed configurations shown
in the bottom figures. Here "N.A." denotes the neutral axis of the respective
structures.

To finally arrive at a state space model of the beam that captures the input

and output behavior of the truss, the transformations (2.13), (2.17), and (2.14) were

applied to the inputs, outputs and disturbances of the full order state space system 2.9.

In doing so, the transformation matrices T,, Td, and T, were absorbed into the the

B 2, B1 , and C matrices of the state space system. In terms of the block diagram

of Figure 2.3 that clarifies the philosophy of the sample problem, the T, matrix sits

in the "Input Xfer" box and converts the truss controls generated by the "Beam

Compensator" back to the beam inputs shown in Figure 2.2, and the T, matrix sits

inside the "Output Xfer" box and converts the beam outputs shown in Figure 2.2

into the truss outputs off of the neutral axis shown in Figure 2.1.

At this point in the modeling process, finite element models have been used to

provide full order state space representations of the truss and beam. Whereas the

truss system is driven by the "physical" inputs, outputs and disturbances, the beam

model is driven by a model of those physical quantities. In the next section, the

vector valued inputs, outputs and disturbances will be treated as signals that need



to be properly conditioned if they are to be used in multivariable control schemes.

2.2.3 Scaling the Signals

Unlike scalar systems, signals in a multivariable system are vector valued quantities.

As a result of this, norms must be used to quantify the notion of a signal's size. The

size of a vector, denoted by [. I[, depends upon the space in which it lies. Realizing

that the signals of the sample problem are physical inputs, outputs, and disturbances,

it makes sense to consider the class of bounded energy, or £2, signals. For an £2 signal

u(t), the size of u(t), is dictated by its 2-norm

u(t) G CM

Iu(t)112 = ( u(t)H(t)dt) (2.19)

At a specific frequency, w , this norm is simply the standard Euclidean norm

Ilu(w)112 = u(w)Hu(w). (2.20)

The 2-norm allows for a simple measure of how a vector valued signal propagates

through a multivariable system. Consider a frequency domain representation of a

general multivariable system

y(s) = G(s)u(s).

If a complex sinusoidal input at frequency w

u(t) = ue" t  u E Cm  (2.21)

is applied to the system, the output and size of the output will be

y(t) = yewt Y E C' (2.22)

Ily(w).l2 = IlG(w)u(w)ll12
Using the definition for the induced norm of a system and some singular value prop-

erties leads to the following bounds on the size of the output of the system

IyImax(W) 112 = max IIG(jw)u(w)11 2 = &G(yw) (2.23)
Ilu(w)112=1

Ilmnin(W) 112 = min IJG(j)u(w)11 2 = aG(Jw) (2.24)
Ilu(w)112=1



Hence, bounds on the output of a system over the space of all possible inputs such

that lu|ll 2 = 1 are easily evaluated by computing the maximum and minimum singular

values, denoted 7 and a respectively, of a system matrix

oG(jw) I5 ly(w)112 -5 G(jw). (2.25)

Evaluating the singular values of the system over a set of frequencies of interest

constitutes the well known singular value plots that are analogous to Bode magnitude

plots. Furthermore, inducing the norm of a system's sensitivity and complementary

sensitivity transfer functions over appropriate signals leads to a loop shaping design

paradigm for multivariable systems similar to that of scalar systems [37-39].

Realize, that this notion of size for a system's output is dependent on the input

being in a ball in 122 at each frequency , that is |Iu(w)112 = 1 Vw. Various singular

value plots between the inputs, outputs, and disturbances will be required to analyze

and synthesize multivariable controllers for the sample problem. As a result of this,

the input, output, and disturbance signals must all live in balls in £2 to properly

interpret the singular value plots used to design controllers. Unfortunately, realistic

signals do not live in balls in 1£2 , and this is why it is necessary to scale the signals.

To exemplify what is meant by a ball in £2, why physical signals typically do not

live in balls, and how to scale signals to be in balls consider y(t) E R2 , the output of

the truss system. This example has the advantage of providing good physical insight

into the task at hand. The real valued vector y(t) at any instant, denoted simply by

y= ( (2.26)
Y2

has the-following 2-norm

S2 = Yy = (y2 + y2 (2.27)
If a standard Euclidean basis for y is assumed and Ily112 is set to unity, as is done

when inducing the norm of a matrix, the resulting expression can be interpreted as

the equation of a circle.

IIYI12 = 1 = y2 + y2 (2.28)



If the signal had three components, IYI(12 = 1 would similarly give the equation of a

sphere in R3 . Even though it is difficult to visualize this interpretation of a vector

norm for complex valued vectors of higher dimension, the concept still holds and is

the basis for saying y is in a ball in £2 if IIy 12 = 1.

To get a grasp for why physical signals are usually not in balls, consider the

outputs of the truss produced by the following static input load to the system.

u(0) = -1. N (2.29)1.0 N
Using a finite element routine, the outputs produced by this input were evaluated to

be

S= () = 3.51 m (2.30)
.195 pm

Notice that there is an order of magnitude difference in the size of the outputs. The

large difference in the size of the outputs is a result of the physical nature of the truss

system in which the vertical deformations, measured by yl, are more predominant

than the axial deformations, measured by y2. Thus at any instant, the vector valued

output will nominally lie in an ellipse in R2 as shown in Figure 2.8. As a result, any

design based on the singular values of a the system with such an output would be

misleading.

It is easy enough to alleviate this phenomena by simply normalizing each element

of the output by its maximum allowable value, denoted by yi. The scaled output, !,

can then be defined as

9 = QvY (2.31)

where Qy is a diagonal, output scaling matrix

1- 0
Q = V, (2.32)

0 -

that contains the normalization factors used to scale the output. Realize that by

normalizing each element of the signal, yl = yl/VY and 92 = Y2/y2 will nominally be

on the order of one but no greater than one at any instant. Hence the scaled input

will lie in a disk in R2 as shown in Figure 2.9.
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Figure 2.8: Unscaled Truss Outputs. Figure 2.9: Scaled Truss Outputs.

Realize that this method of appropriately scaling the outputs can also be applied

to the inputs and modeled disturbances. However, in the case of interest where the

signals are complex sinusoids, it becomes necessary to ensure that the signals are in

balls at all frequencies. Since frequency dependent scalings are undesirable though,

the above scaling method is generally applied by choosing a particular frequency to

scale the signals at to arrive at constant scaling transformations.

Given this brief exposition on the nuances of multivariable signals, the modeling

process for the sample problem can continue. As described, the inputs, outputs, and

disturbances of the beam model must all be in a ball in £2 for a proper interpretation

of the singular values used in design. To begin the scaling process for the beam,

notice that both inputs of the actual system are identical active struts. As a result of

this, the actual input signals will generally lie in a ball in £2. Since the actual inputs

were modeled in the beam system in Section 2.2.2, there is subsequently no need to

scale the inptts of the beam model. For simplicity it was assumed that the actual

disturbances also naturally occupy a ball in £2 , and no scaling was performed for

the beam disturbances. This is not at all the case with the beam outputs as already

seen.

In essence, the method for scaling the beam outputs has already been outlined.

.. .. .. ..



Only the frequency and maximum allowable outputs at that frequency need to be

evaluated to arrive at a scaling matrix for the beam. In structural systems, DC

(w = 0) is the logical frequency to evaluate the output normalizing factors at; since

good approximations of the static behavior of the actual system are available in

general. As a result of this, it is really only necessary to evaluate the output scaling

matrix of the truss system, (2.32). Then the beam scaling can then be evaluated

from the already defined transformation between the beam and truss outputs, (2.17).

This procedure is more realistic, in terms of the sample problem philosophy, than

evaluating a scaling matrix solely from the beam model, since it is based on estimating

the behavior of the actual system. To arrive at the normalization values used in

(2.32), the static deformation of the actual truss under an input load that produced

the largest relative output was computed. Assuming a maximum allowable input of

one Newton for the active struts, the largest tip deflection of the actual system in

both directions is achieved when the active struts are actuated out of phase from each

other. This is the load in (2.29) that was used in the previous analysis that produced

the deformations in (2.30). Using the values of y(O) in (2.30) for YV and y2 in (2.32)

yields the output scaling matrix for the truss model. It is important to realize that

these values represent an ad hoc approach to properly conditioning the signals as an

exact approach is intractable.

It is now a simple manner to incorporate the output scaling into the state space

model of the beam. Using t and b subscripts to denote the truss and beam respectively,

the output scaling matrix, Q, can be lumped together with the output transformation

matrix, T, and reflected to the state measurement matrix, C, of the beam model in

(2.9). From (2.31), (2.17), and (2.9)

9t(t) = QyYt(t) = QyTyYb(t) = QyTyCX(t) (2.33)

where the expression QyTyC is used as the output measurement matrix of the beam

model that produces scaled truss outputs, which, as seen in Figure 2.3, is the desired

output. Similarly, the output scaling was also included in the model of the actual

system by reflecting Q9 to the C matrix of the truss model. While this modeling step
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Figure 2.10: Comparison of the scaled and unscaled beam input to output loop singular
values.

would not be applied in a realistic scenario, it is done here for the sake of comparing

results between the beam and truss systems. For notational brevity throughout this

work, it is assumed that the transformation and scaling matrices that were derived

for the systems are included the B and C matrices of the standard state space models

(2.9). A comparison of the input to output singular values for the scaled and unscaled

beam system are shown in Figure 2.10. Notice that scaling does effect the singular

values of the system and hence the analysis and synthesis of controllers.

At this point in the modeling process of the sample problem, full order finite el-

ement models of the truss and beam systems have been described. The exogenous

signals of the truss system were modeled, scaled, and incorporated into the beam

model so that it can be used to develop controllers for the actual truss system. Re-

alize that the state space model as it now stands contains 2n states, where n is the

dimension of q from (2.1). Large values of n, as is the case here, are undesirable for

high authority multivariable control. In the next section model order reduction is

I



applied to the sample problem to arrive at a model suitable for control.

2.2.4 Model Order Reduction

The modeling approach used here is typical for structural systems and leads to models

whose order increases with the complexity of the system. Unfortunately, high author-

ity, multivariable control techniques nominally lead to compensators with orders at

least as large as the order of the plant used in the design. Since controllers are in-

tended to be implemented on actual systems and not the models used to derive them,

model order reduction must be included in the design process to arrive at controllers

that are realistically useful. Reducing the order of the design model is a common

and simple technique used to arrive at low order controllers. The actual mechanics

of the reduction process are quite simple. What is not simple is the selection of the

dynamics to truncate to arrive at a reduced order model.

Before describing the criterion for truncating dynamics, it is useful to understand

the specific mechanics that will be used in the model order reduction. To begin with,

a frequency domain representation of the state space model (2.9) is used to facilitate

a MIMO residue expansion of the model. Taking (2.9) into the frequency domain

leads to

y(s) = G (s)d(s) + G2(s)u(s) (2.34)

Ga(s) = C(sI- A)-'Bl (2.35)

G2 (s) = C(sI- A)-1B2 (2.36)

where Gi(s) and G2(s) respectively denote the performance and control loops transfer

function matrices of the system. Using the knowledge that a state space model of a

structural system derived from (2.1) contains n distinct pairs of complex conjugate

modes leads to an equivalent expressions for the transfer function matrices in terms

of their MIMO residue expansions.

n F1ls + H1;
Gi(s) F=s + (2.37)

i= s + 2(wis + wi

n F2iS + H2i (2.38)
G2(s)2ws w? (2.38)



In this representation, wi is the natural frequency of the ith structural mode evaluated

from (2.3), (i is the assumed modal damping of the i'h structural mode, and F and

H are the appropriate residues based on the partial fraction expansion. The values

of F and H can be easily computed from an eigenanalysis of A

Avi = Aivi (2.39)

wTA = AiwT (2.40)

and the B and C matrices of the state space representation.

F, = C (viwT + v fw) B 1  (2.41)

F2  = C (viwT + v:w H ) B 2  (2.42)

Hi, = -C (vIwTA + v i w A) B 1  (2.43)

H 2, = -C ( IwtA1 + v. \A) B 2  (2.44)

Here x* denotes the complex conjugate of x, and xH the complex conjugate transpose

of x.

Realize that the response of the system is now represented as the weighted sum

of the structural modes. Such a form has significant advantages when used to reduce

the order of structural systems. If certain modes do not significantly contribute to the

response of the system, they can simply be truncated from the model by neglecting the

appropriate terms in the residue expansion. Since the number of states in these models

is twice the number of structural modes, the order of the reduced model depends on

how many modes are truncated. Once the undesirable modes are truncated, a reduced

order model of the system can be obtained by reconstructing the state space from the

modes that remain in the expansion. The specific process of reconstructing a state

space will not- be discussed here. A detailed account of this model order reduction

technique, including the specifics on reconstructing the state space, can be found

in [40].

At this point, it is simply a matter of deciding which structural modes to keep

in the design model to arrive at a reduced order representation of the beam system.

Extensive literature exists on selecting the appropriate However, in an effort to con-



centrate on the stability robustness traits of the sample problem, none of the schemes

in the literature were used. Rather, simple bandwidth arguments were employed to

decide upon which dynamics to retain in the design model. With the intention of

controlling the first few modes of the truss system, it was decided to retain all the

structural modes one decade beyond the targeted bandwidth of the controller. From

the input to output singular value plot of the beam system, Figure 2.10, one can see

that this objective corresponds to a bandwidth of roughly 500 rad/sec. Hence, all the

structural modes above 5000 rad/sec were truncated from the beam model. Specif-

ically for the beam model, this meant retaining the first nine structural modes and

truncating the remaining 21 modes. Realize that this is not at all an optimal method

of selecting which modes to truncate. However, the intent here is only to capture the

effect of model order reduction in the sample problem, and for this objective the ad

hoc selection of modes to truncate does suffice.

Up to now, the term "truncate" was judiciously used to describe what happened

to the modes left out of the reduced order model. In fact, by truncating modes specific

dynamics of the model are neglected. This can be seen by considering the structural

modes to be arranged in increasing order of frequency and rewriting (2.37) and (2.38)

in terms of the r retained modes and n - r modes to be truncated.

r Fis + H+ i " Fjs + H1,G,(s) E+ E (2.45)
i=1 + i=r+l2 + 2ws +
r F2is + H2 "n F2is + H 2,

G2() = + 2+ 2 + (2.46)E=, 92 + 2(iwis + wf i=,+1 sa + 2Jiwis + wS
Simply neglecting the second term of these expressions, which corresponds to the

modes to be truncated, introduces errors in the reduced order model. The predomi-

nant effects of simply neglecting the truncated dynamics are an improperly modeled

system response, inaccurate DC behavior, and mismodeled multivariable transmis-

sion zeros [41]. The magnitude of these errors can be seen in Table 2.1 that shows a

comparison of the DC gain and the first few control loop zeros for the full order and

reduced order models of the beam. The errors are not that drastic for this system,

but this may not always be the case. In any event, the transmission zero and DC

errors can be reduced by including the static contribution of the truncated modes in



Model Full No Static Static

Description Order Correction Correction

No. of States 60 18 18

IIG2(0)11 2  1.05 1.11 1.05

Zero # 1 freq. 86.3 85.9 86.3

value -.626 ± 86.3j -.621 ± 85.93 -.626 ± 86.33

Zero # 2 freq. 677.6 673.2 677.6

value -6.59 ± 677.63 -6.49 ± 673.23 -6.59 ± 677.63

Zero # 3 freq. 1376.8 1770.0 1363.7

value -1376.8 -15.3 + 1770.0j -1363.7

Zero # 4 freq. 1396.5 1770.0 1379.0

value 1396.5 -15.3 - 1770.03 1379.0

Table 2.1: Comparison of the DC gain and multivariable transmission zeros for various
models of the beam. Frequencies are in rad/sec.

the reduced order models.

Introducing the static contribution of the truncated modes into the reduced order

model does not increase their order. Rather, it simply adds feed-forward terms to the

modeled response of the system. The feed-forward, or D terms, are simply evaluated

by setting the frequency to zero in the summation of the truncated modes in (2.45)

and (2.46).

r Fs + Hi
G1 (s) = F + D+

3= s2 + 2ýiwis + w 1

S F2,s + H2,
G2(S) i= s 2 + 2ýiwis + w + 2

(2.47)

(2.48)

" H H
D, = H D 2 = H2- (2.49)

i=r+l i i=r+l i

In returning to a state space representation of the above truncated system there will

be 2r states for the r retained structural modes and D terms in both the control and

disturbance loops to account for the truncated dynamics.

i~(t) = Az(t) + B 2u(t) +Bd(t) (2.50)
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Figure 2.11: Comparison of the beam open loop input to output singular values for the
full order model and the reduced order model without the static correction
term.

y(t) = Cx(t) + D 2u(t) + Did(t) (2.51)

For the sake of notational brevity, no new notation is used to distinguish the state

matrices of this reduced order representation of the beam from the full order rep-

resentation (2.9). Further in reconstructing the state space representation from the

truncated partial fraction expansion, it is possible to preserve the structure of the

original A matrix. This means that the A matrix of (2.50) will have the same form

as the A matrix of (2.10) but will only contain the frequencies and damping ratios of

the r retained modes.

As a means of comparing the reduced and full order models, consider Figures 2.11

and 2.12 that that compare the open loop singular values of G2(jw) for the reduced

and full order models of the beam. Notice that the poles of the reduced order models

corresponding to the retained modes are identical to those of the full order model.

This is to be expected since the truncation of modes does not affect the denominators
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Figure 2.12: Comparison of the beam open loop input to output singular values for the
full order model and the reduced order model with the static correction
term.

of the retained terms in the residue expansion (2.48). Furthermore, the DC error in

the reduced model with no static correction is visible in Figure 2.11, while there is

no visible DC error in Figure 2.12. These same attributes apply to the third and

fourth transmission zeros of the control loop, as seen in Table 2.1, Figure 2.11, and

Figure 2.12. In general, the reduced order model with the static correction provides

an almost exact representation of the full order system up to its truncation frequency.

The added fidelity the D terms contribute to the reduced order model should now

be apparent. However, the inclusion of the D terms in the state space representation

has implications that must be discussed. Consider first the D1 term in the disturbance

loop of the model. The presence of this term in (2.51) requires the disturbances to be

directly fed forward to the outputs of the system. Such a procedure is pure nonsense

since the disturbance signals are not available in real life. This situation is simply a

case where the mathematics of creating lower order models conflicts with the physics



of the real world. For this reason, the D1 term will be neglected in the model of the

beam throughout the remainder of the work. The implications of this on the fidelity

of the model are inconsequential. Basically, there will be some DC and transmission

zero errors in the disturbance loop similar to those of the control loop discussed above.

However, the main focus of this thesis is on stability robustness, and the ramifications

of neglecting the D1 term on the overall performance will not be discussed.

Unlike the D1 term, there is nothing physically wrong with including the D 2 term

in the output of the model. By their nature, the control signals are available and

can be directly fed to the outputs. Unfortunately though, the presence of the D2

terms in the model will complicate the controller synthesis process, as most control

synthesis results are based on a state space models of the form (2.9) [22]. However,

these complications are not limitations, and it is simply a manner of generalizing the

existing theory to account for the D2 term in the designs. Aside from the mechanics

of synthesizing controllers, the D2 term introduces an all pass characteristic to the

control loop of the design model. That is the open loop models will not roll off,

as seen in Figure 2.12. From a stability robustness point of view, this is a very

undesirable trait. Without getting into the details of this issue which will be discussed

in the sequel, systems that don't roll off in the region of unmodeled dynamics are

extremely susceptible to instabilities. Most physical systems have a natural roll off

built into them that helps maintain stability in the presence of unmodeled dynamics.

By including the D2 term in the control loop of the model, the beam system will not

possess this quality, and controllers based on it will be more prone to drive the truss

unstable. On the other hand from a modeling point of view, the all pass attribute

introduced by the D2 term is beneficial. Specifically, notice from Figure 2.12 that

there are still dynamics past the truncation frequency of the reduced order model. The

reduced order model with the static correction does not predict these dynamics, but

rather by its all pass nature it contains the knowledge that there are still significant

dynamics beyond the truncation frequency. Conversely, the reduced order model

without the static correction rolls off as if there were no more dynamics beyond the

truncation frequency. This is not at all the case, and it would be inappropriate



to design compensators based on the reduced order model without the D2 term.

Realizing this, the D 2 term in the control loop will remain in the design model of

the beam throughout this work. If it is not possible to design sufficient compensators

given the model with the D 2 term, then it is unreasonable to expect that the design

objectives could be met with high authority control schemes.

In summary, the beam design plant model will be denoted as

i(t) = Ax(t) + B2U(t)+ Bd(t) (2.52)

y(t) = Cz(t) + D 2u(t)

throughout the remainder of the work. Recall that the model captures the input,

output, and disturbance attributes of the truss, has scaled outputs for a proper inter-

pretation of the singular values used in design, and contains 18 states with a static

correction in the control loop to account for the truncated dynamics. The specific

values of the state space matrices in (2.52) are included in Appendix A for reference.

In keeping with the philosophy of the sample problem, a mathematical model of the

truss was analogously created to have a reference actual model for the beam. The

form of the truss model is identical to that of beam model. Using the same method

and criterion to reduce the order of the truss lead to an evaluation model with 60

states and a static correction, D 2, term. The nominal reason for reducing the order

of the evaluation system was to have an evaluation model with dynamics over the

same range as the design model. This step is not consistent with the philosophy of

considering the truss to be the actual system. Rather, it is a simplifying measure

that reduces the complexity of interpreting comparisons between the truss and beam

models. The values of the state space matrices for the truss evaluation model used

throughout the sequel are also included in Appendix A for reference.

As of now, the modeling of the actual truss system is nearly complete. The

only step of the modeling process that has not been discussed in this chapter is the

modeling of the uncertainty in the beam model. This is the topic of Chapter 3.



Chapter 3

Assessing the Uncertainty

Given a mathematical model of a physical system, the designer must evaluate its

fidelity and limitations before synthesizing controllers. This is especially true for

structural systems whose lightly damped and modally rich nature makes them quite

susceptible to closed loop instabilities [28]. To see this, consider a comparison of the

Nyquist plots for a single mode

2

(s2 (3.1)g(s) = 2 + 26wns + w(

with typical structural damping, 6 = 1%, and typical servo damping', ( = 20%. For

wn = 1 rad/sec, a blow up of the Nyquist plots near the critical point is shown in

Figure 3.1. Notice how close the Nyquist plot for the lightly damped system comes to

the critical point, assumed to be at (-1,0) here, as compared to the Nyquist plot of the

heavily damped system. Since stability robustness is a measure of the distance to the

critical point, it is obvious that the lightly damped system is much more susceptible

to instabilities than the heavily damped one. Also, since there is less distance to the

critical point from the Nyquist plot of the lightly damped system, there is less room

for error in the model of the lightly damped system. Thus, the accuracy of models for

structural systems does play a key role in assuring closed loop stability. Further, the

modally rich nature of structural systems means that there are many occasions where

the Nyquist plot zooms near the critical point, and hence there are more chances

'This value is typical of the damping in a Phugoid mode of an aircraft.



Nyquist Plot of g(s) Near the Critical Point

Real

Comparison of Nyquist plots with typical structural damping and typical
servo damping near the critical point. Only the map of g(3w) for w E (0, oo)
is shown to maintain clarity.

for the system to become unstable. Acknowledging these characteristics, it becomes

necessary to employ stability constraints in the synthesis of controllers for structural

systems. Various robustness techniques for guaranteeing closed loop stability will

be analyzed in Chapter 4. Before embarking on such a study, the nature of the

uncertainties in a model of a system must be well understood. The focus of this

chapter is thus an in depth study of the modeling errors that will occur in models of

systems like the Interferometer testbed.

The logical way to begin an investigation of a model's fidelity is to make use of the

available a priori information. The nature of the system and the choice of modeling

process both provide insight into how accurate a model has to be and how accurate
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a model is. As outlined above, the nature of structural systems necessitates models

that are as accurate as possible. However, as was alluded to in the philosophy of the

sample problem, accurate models of structural systems are hard to come by. In fact,

the accuracy of a structural model varies depending on the modeling process used.

For example, models derived from experimental measurements are typically more

accurate than models derived from finite elements in the frequency range where good

data is available, while experimental models do not offer the physical significance that

finite element models provide. Hence a good qualitative measure of the accuracy of a

structural model is often provided by the assumptions and limitations of the actual

modeling process.

As an example of how a structural model's fidelity can be analyzed, consider the

approximate modeling process of the truss system. In assuming a beam model for the

truss there are specific truss dynamics that are not accounted for in the design model,

such as the dynamics of the individual struts in- the truss, in addition to the shear

modes that are purposely neglected in accordance with the philosophy of the sample

problem. The design model will thus contain unmodeled dynamics at intermediate

frequencies. Furthermore, Finite Element modeling itself imposes limitations on the

accuracy of the beam model. Once the wavelength of the vibrations are on the order

of the element size, the finite element model is quite inaccurate. As a result, the

fidelity of the beam model is inherently quite poor at high frequencies. Combining

this information with knowledge of the unmodeled shear modes, it is obvious that the

beam based model of the truss is only reasonably accurate at low frequencies. That is

not to say that the model is exact at low frequencies. The process of approximating

the truss properties along with the inability of finite element models to exactly predict

low frequency behavior leads to slight errors between the first few modes of the beam

and actual truss; as seen in Figure 2.5. In this respect, the low frequency dynamics

of the actual system are well known but are mismodeled. This simple evaluation of

the modeling process provides good qualitative information about the accuracy of the

beam model, but qualitative information alone is not sufficient for dealing with the

uncertainty.



Multivariable stability robustness techniques require explicit uncertainty descrip-

tions. Once a qualitative feel for a model is available, a further measure of its accuracy

can be obtained by quantifying the qualitative errors. The ability to predict the size

of the expected errors helps determine how close the Nyquist plot of the actual system

gets to the critical point, which in turn provides a means to quantify how much mod-

eling error a feedback design can safely tolerate. Without a quantitative description

of the uncertainty, control system designs would have to be overly conservative to

ensure that the Nyquist plot stayed away from the critical point. While it is neces-

sary to quantify the modeling errors, it is not at all a straight forward process to do

so. Exact descriptions of the uncertainty are unrealistic. If some error was exactly

known, it would not be uncertain and could certainly be used in the design model.

As a result of this reality, uncertainty models are usually derived from insight and

engineering judgment gained in the modeling process and from a qualitative descrip-

tion of the uncertainty. Even though uncertainty models are often ad hoc estimates

of a model's accuracy, they are necessary components of robust control design.

The sample problem presented in Chapter 2 provides a simple framework in which

to understand the ad hoc nature of uncertainty descriptions. For the time being,

consider the realistic situation where there is no model of the actual truss system

available. As discussed above, the beam design model is only accurate at low fre-

quencies with unmodeled dynamics at higher frequencies. To quantify the model's

fidelity it is necessary to specify how accurate the beam model is at low frequencies

and what the frequency range of accurate dynamics is. Since the beam model can

not predict the shear modes of the truss, an upper bound on the frequency range of

accurately modeled dynamics could be set by estimating the frequency of the first

truss shear mode. Beyond that frequency, the beam model will definitely contain

unmodeled dynamics. Below that frequency, there will be errors in the values of the

frequency, residue, and damping of the beam's axial and bending modes. Having

used an equivalent modeling procedure to capture the input/output topology and the

axial and bending characteristics of the truss, it is safe to assume that the values

of frequency, residue, and damping for the first few beam modes are well modeled



and accurate to within five percent of the actual truss values. However, it is possible

that the beam will approximate modes in the truss with large errors (greater than

ten percent) in frequency, damping and residue. Such errors would be classified as

unmodeled dynamics since the behavior is poorly modeled. If there were such un-

certainties below the frequency of the first shear mode of the truss, a more accurate

upper bound on the frequency range of accurately modeled dynamics would be set

in the vicinity of the poorly modeled modes. In a realistic modeling situation, this

uncertainty description is typical of the level to which the accuracy of a model could

be characterized without experimental validation.

Up to now a simple and realistic exposition of uncertainty modeling has been

described. Given a model of a system, the designer must understand the limitations

and assumptions in the modeling process in order to quantify the uncertainties in at

best an ad hoc manner. In an effort to become more comfortable with this heuristic

modeling procedure, the sample problem setup was used to validate the realistic un-

certainty modeling process for the beam already described. In the following sections,

the beam model is compared to the actual truss system model to verify the realistic

uncertainty model and to understand how the uncertainties manifest themselves in

many of the common tools of control system design. Understanding specifically how

the expected modeling errors effect the common analysis tools of robust control de-

sign will provide an extra dimension of engineering judgment when it comes time to

evaluate the fidelity of models for actual systems like the Interferometer testbed.

3.1 Individual SISO Transfer Functions

Even though individual scalar transfer functions are not useful in multivariable con-

troller synthesis, they do provide useful information about the model used in design.

With the widespread availability of spectral analyzers, it is a simple matter to mea-

sure scalar transfer functions between the inputs and outputs of the actual, physical

system being modeled. Given this ability, experimental scalar transfer functions can

either be used to derive multivariable state space models [9, 10] or validate math-



ematically created models. Pursuing the later avenue by comparing measured and

modeled transfer function serves as a more precise means of quantifying the accuracy

of a design model. A wise control system designer would surely compare the scalar

transfer functions of their model to the readily available, experimentally measured

ones.

In order to understand what added information this technique provides, the in-

dividual scalar transfer functions of the truss open loop dynamics, which mimic ex-

perimentally measured data in the sample problem framework, were compared to the

corresponding scalar transfer functions of the nominal beam based model of the truss.

Neglecting the disturbance term in (2.52) and taking it into the frequency domain

leads to the input/output relation

y(s) = G2 (s)u(s) (3.2)

in which G2(s) can be written in a form conducive to evaluating the scalar transfer

functions necessary for the desired comparison

G2(s) = C(sI- A)-1B 2 + D2 = g~i(s) 912(s) (3.3)

Comparing the Bode plots for each gii(s) where

yi(s) = gij(s)uj(s) i,j = 1,2 (3.4)

between the truss and beam systems, shown in Figures 3.2 and 3.3, provides a rep-

resentative comparison of the "measured" and modeled transfer functions. Since the

truss Bode plots could be experimentally measured in the real world, the plots of Fig-

ures 3.2- and 3.3 do represent a realistic way to asses the fidelity of the beam design

model.

As far as the assessment of the uncertainty goes, notice that the low frequency

mismodeled and high frequency unmodeled dynamics are plainly seen in these plots.

The plots demonstrate that there are slight errors in the frequency of the first two

poles and the first zero, but that the beam model in general does a good job of predict-

ing the dynamics below 700rad/sec or so. Given the experimental measurements, the



specific discrepancies between the frequency and damping of the well modeled beam

and truss poles could be evaluated using standard modal testing techniques [42]. On

the other hand, beyond 700 rad/sec there are significant errors in each transfer func-

tion at various frequencies. Specifically notice that while the third bending mode,

near 700 rad/sec, is captured in the beam model, it is poorly modeled. Further since

the scalar poles shown in these plots are no different than the poles of the multi-

variable system, a more accurate lower bound on the range of unmodeled dynamics

than the first shear mode of the truss would be the frequency of the third bending

mode of the truss, approximately 700 rad/sec. Realize that while there is an equally

large error in the frequency of the second zero in each of the scalar transfer functions,

the frequency of these scalar zeros can not be used as a measure of the multivariable

system's fidelity.

In summary, these scalar bode plots have graphically led to a more accurate

division of the region of mismodeled and unmodeled dynamics. From here on in,

the dynamics below 700 rad/sec will be considered mismodeled while those above

700 rad/sec will be classified as unmodeled. Even though this method of comparing

scalar frequency response functions is readily applicable in the real world and useful

in assessing the uncertainty in a model, it should be understood that scalar transfer

functions have little use in multivariable controller synthesis.

|
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3.2 Multivariable Magnitude Information

As mentioned in section 2.2.3, the appropriate measure of magnitude for a multi-

variable transfer function matrix that can be used in frequency response analysis is

provided by singular values of the transfer function matrix. In fact, multivariable

control system design relies heavily on singular value information. For this reason it

is important to understand how modeling uncertainties manifest themselves in the

singular value plots used in design. Unfortunately, singular values can not be easily

measured in the laboratory like their analogous scalar frequency responses. Hence

there is no transparent way in which to asses how modeling uncertainties affect the

singular values of a model. Herein lies the usefulness of the sample problem. By com-

paring the singular values for the truss and beam models, it should become apparent

how the expected uncertainties manifest themselves in the singular values. To this

end, a comparison of the open loop singular values of G2(s) for the beam and truss

is shown in Figure 3.4.

While Figure 3.4 is an unrealistic measure of the of the beam model's fidelity,

it does verify the heuristically derived uncertainty model. First of all, notice that

this plot looks very similar to the realistic, scalar, magnitude Bode plot comparisons

of Figures 3.2 and 3.3. The high frequency unmodeled dynamics begin at around

700 rad/sec, and the low frequency dynamics are well modeled but contain slight

errors in the frequency and residue of the modes. In essence, the singular value

comparison confirms the ad hoc description of the uncertainties and shows that the

errors manifest themselves in ways similar to the scalar magnitude Bode plots. It is

reassuring to know that the errors which appear in the commonly used singular value

plots as a result of the modeling process can be predicted from the measurable, scalar

transfer functions.
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3.3 Multivariable Phase Information

Having presented a means to analyze magnitude errors in a multivariable model,

it would seem reasonable to also assess the phase fidelity of multivariable models.

In scalar systems, phase information is a common and useful tool in the analysis

and synthesis of controllers. Yet there is no widely accepted notion of phase for

multivariable systems. If phase data were available for multivariable models, designers

would have access to additional information about their systems. Such data could

provide directional information about the system as well as an additional means of

quantifying the modeling errors. More importantly, utilization of phase information

in multivariable designs might lead to less conservative stability robustness measures,

as it does in the scalar case.



While it is obviously worthwhile to quantify phase information for multivariable

systems, no clear cut or universally accepted method for doing so exists to date.

None the less, a few individuals have attempted to elicit phase information out of

multivariable models in the past. MacFarlane and his colleagues proposed the use of

principal phases to help analyze the stability properties of multivariable systems [43].

For a given matrix the principal phases are the arguments of the eigenvalues of the

unitary part its polar decomposition. Computing the maximum and minimum prin-

cipal phases and singular values of the return difference matrix, I + G(s)K(s), for

values of s around the Nyquist D, contour leads to a principal region in the S-Plane

within which the locus of eigenvalues of the return difference matrix must lie. Since

the multivariable Nyquist criterion [15] is based on the determinant of the return

difference matrix, an equivalent stability criterion based on the principal region can

be derived from the fact that the determinant of a matrix is equivalent to the product

of its eigenvalues. In this respect, the principal phases simply allow for a different

way to check the closed loop stability of a system. Unlike scalar phase information,

principal phases do not provide a measure of how signals pass through a system and

will thus not be pursued in the task of assessing the uncertainty.

Freudenberg and Looze also investigated the notion of phase in multivariable

systems [39]. Since their work mainly focused on extrapolating the Bode Gain-

Phase Theorem to multivariable systems, they needed to characterize a relationship

between gain and phase in multivariable systems. In so doing, they determined

expressions that relate the phase difference between vector valued signals. In the

scalar case, the phase difference between the input and output signals of a system is

uniquely determined from the phase of the system's transfer function. Along with the

magnitude of the transfer function, this phase difference is the quantity that provides

useful information about scalar systems. Freudenberg and Looze showed that the

phase difference between the input and output signals of a multivariable system is

not only determined by the transfer function matrix but also by the direction in

which the vector valued input lies. It is well known that the singular values of

a transfer function matrix provide useful information about the magnitude of the



outputs of a multivariable system. In special cases, the relative phases between the

inputs and outputs of a multivariable system can also be determined solely by the

transfer function matrix of a system. To make use of this fact it is necessary to

consider the direction in which the inputs lie. In the following section, the singular

value decomposition is employed to find input directions that provided simple and

physically meaningful measures of the phase difference between the outputs and inputs

of multivariable systems. Once compiled, this information will be used to help asses

the uncertainties in multivariable models

3.3.1 The Singular Value Decomposition and Multivariable

Phase Information

A brief review of the singular value decomposition and some of its associated proper-

ties is in order to facilitate the discussion on multivariable phase. Given a multivari-

able system

y(s) = G(s)u(s) (3.5)

with a complex sinusoidal input

u(t) = ue)"' u E Cm , (3.6)

the output will also be a complex sinusoid

y(t) = ye 3w" y E C' (3.7)

with

y(w) = G(jw)u(w). (3.8)

The singular value decomposition of G(3w) at each frequency, w, is represented as

G(3w) = U(yw)E(w)VH(3w) (3.9)

where the ordered, non-zero singular values of G

1 > 20" > * . > ak > 0 (3.10)



sit on the diagonal of the 1 x m matrix E that is otherwise populated by zeros, and

the columns of the unitary matrices U and V contain the orthonormal eigenvectors

of GGH and GHG respectively. Using the following notation for the left and right

singular vectors

U = [IL1 ... Ai "" II] (3.11)

V = [V1 V2 ... vj ... Vm] (3.12)

it should be clear that t4Hfj = 6ij and vHv, = 6~i where

6; = 1 (3.13)
0 i#j

At this point all the mathematics needed to find input directions that provide useful

multivariable phase information are at hand.

The singular value decomposition of G provides the special input directions that

allow the relative phases between the inputs and outputs to be computed solely from

the transfer function matrix. By forcing the input of the system (3.5) to lie along the

direction of the jth right singular vector of G, the direction, magnitude, and phase of

the output can be trivially computed from the jth singular value and jth left singular

vector of G. To see this let u = vY in (3.6), which specifies the input direction. Then

the value of y is simply obtained from the singular value decomposition of G and

some matrix multiplication

y = Gu = UEVHv1 = ajCAi. (3.14)

Writing the elements of the left and right singular vectors in polar notation

=ij = A I e• •  'ij ZI, (3.15)

vj = Vjile " • / (3.16)

allows for a more detailed picture of how these special input signals pass through the

system (3.5). For a sinusoidal input along the jth right singular vector

ui(t) = Iviyjsin(wt +-yi) i= 1,2,...,m (3.17)



the corresponding steady state output, as a result of (3.14), is given by

yi(t) = aojl jl sin (wt + 4 j) i 1,2,...,1. (3.18)

Hence by constructing specific inputs from the right singular vectors of G, the phase

of the steady state outputs, Oij, is solely determined by the left singular vectors of G.

Further, realize that the specific output phases, bij, are not absolute but dependent

on the specific input directions, vj, which are determined by the input phases, 7ij. In

this respect, the output phases, bij, are an appropriate measure of the relative phase

between the input and the output of a multivariable system. Therefore, the values of

the 4ij(w) provide the sought after measure of phase for multivariable systems.

While this measure of phase for a multivariable systems is easy to evaluate, it is

also physically meaningful. Consider the singular vectors associated with the max-

imum and minimum singular values of G, o = o1 and a = ak respectively. Con-

structing the i input sinusoids, (3.17), for j = 1 and j = k provides the inputs that

produce the maximum and minimum amplification of the outputs of the system,

which are given by (3.18) for j = 1 and j = k. This in turn allows for a time domain

interpretation of the behavior of the system that corresponds to the frequency do-

main representation of the singular value plots. Even though the phase information

provided by the singular value decomposition is readily available and meaningful, it

should not be considered a straightforward extrapolation of the scalar Bode phase.

Rather the output phases, kij(w), should be considered a special, yet useful, means

of investigating phase in multivariable systems for very particular inputs.

As of now, the phase discussion has focused on a specific frequency w. Plotting

the relative output phases, Ojb(w) for i = 1,2,... ,t, as a function of frequency, as

is done in the scalar case, provides a useful way of representing information about

a multivariable system. However, a proper representation of the phase requires that

the output phase be relative to the same input at each frequency. In scalar systems,

the input is inherently assumed to be one, eP0 *, at each frequency so that the output

phase is simply that of.the transfer function. On the other hand, the notion of a fixed

input in multivariable systems is not as simple due to the vector valued nature of the



inputs. Hence before presenting multivariable phase plots, it is necessary to reconcile

how to fix the input so that the output phases are relative to the same input at each

frequency.

By exploring some vector space concepts, a method of constraining the vector

valued inputs to provided consistent output phases can be derived. In the following

discussion only unit length (11 112 = 1), complex vectors, like the left and right singular

vectors, are considered. To begin with, realize that the direction of a complex, unit

vector is determined by the relative, rather than absolute, phase of its elements. In

fact, multiplying a complex vector by a scalar complex number, say e4, does not

change its direction; since the relative phases amongst the elements will be the same.

Hence, this notion of direction introduces some ambiguities when comparing two

vectors. Since the direction of a vector is unchanged by the multiplication of a scalar,

the comparison of two vectors can not be carried out on an element by element basis.

If the relative phase amongst the elements in the vectors is the same and the absolute

phase of corresponding elements is different, the vectors will still lie along the same

direction. For example, the vectors

= ( .664 + .242 ( .707e_200
.354 + .6123 .707e 0  (3.19)

and (/2 .696 -. 1223 .707e--10 0

.613 + .353j .707e30  (3.20)

both lie along the same direction since the relative phase of the elements in P 2 = eo40*V2

is the same as that in vl. To eliminate this arbitrariness of phase before comparing

the vectors, it suffices to fix the phase of one element in each vector to be the same.

In the example, setting Zulj = 00 requires that ZuLv and Zl12 = 00 to compare vl

and v2 without an arbitrariness of phase. Multiplying vi by e - 720 0 and v2 by e3lo°

gives

.707 .707e (2
.542 + .454) .707e40  (3.21)

67



and S .707 .707e (3.22)
2  .542 + .454j .707e 00 )

which makes it clear that vl and v2 lie in the same direction. This method of allevi-

ating the the arbitrariness of phase when comparing two unit complex vectors is the

fix that allows the output phase to be compared to the same input at each frequency

for both scalar and multivariable systems.

To see how the above method can be used to provide a proper interpretation of

the output phase as a function of frequency, consider first how to apply it to the scalar

case. For u E C' and y E C', equations (3.5) to (3.8) provide a general description

of the frequency response of a scalar system. As is usually the case, the phase of u

is fixed to be 00 for all frequencies. If at some frequency, wf, the Zu(wf) = 8 rather

than the specified value of 00, the output phase would not be Zg(3w,), as it is when

Zu(w) = 00. Multiplying u(wf) by e-38, so that Zu(wf) = 00, and g(3wj) by eA,

to maintain equivalence in (3.8), corrects for the phase anomaly at wf yet does not

change the value of the output phase. Furthermore, the output phase at w•

Zy(wf) = Ze-7g(Jwf)u(wf)e-7' = Le-g(jwf). (3.23)

is now relative to the same input phase as the outputs at all the other frequencies.

Realize that this method is a simple scalar version of the vector case described above.

Just as there should not be any differences between the input phases at each

frequency in the scalar case, there should not be any ambiguities between the input

vectors at each frequency in the multivariable case. Fortunately, the issue of consistent

inputs in the multivariable case only requires some additional notation given the scalar

example. Recall from (3.18) that there are I output phases for each of the k inputs

specified by (-3.17), and for the time being consider only the output phases relative

to an input defined by the jth right singular vector. To properly plot the ,ij(w) for

i = 1,2,..., I as function of frequency, it is necessary to fix the phase of one element

in v3(w) to be the same at each frequency; since the input is defined by the right

singular vector, vj . In practice, this can be done by carefully monitoring the phase

of the vjj element in the computation of the singular value decomposition of G and



assuring that it maintains some predetermined value, 7lj(wo), at each frequency. If

at some frequency, wf ,the phase of a particular vlj(w) strays from its predetermined

value

1ij(w;) # -y1j(w0), (3.24)

and there will be an ambiguity between the inputs defined by vj(wo) and vY(wf); as

seen in (3.19) and (3.20). Letting 0 = yij(wo) - yl1 (wy) and multiplying vj(wf) by e'9

will remove the phase arbitrariness between v,(wf) and vy(Wo). However in so doing,

it is necessary to maintain the equality of (3.14) by multiplying G by e - 3'

y(wy) = e--eG(Iwf)vi(wf)ee = o(w 1f)P•i(wf)e - '. (3.25)

Carrying out this method at each frequency removes the ambiguity associated with the

complex input vectors, v3 (w), and provides output phases, bii(w) for i = 1,2,...,£,

that are relative to similar inputs at each frequency, w. Of course this procedure

must also be applied to each of the k possible input directions to yield a complete

set of consistent output phases that provide additional information for multivariable

systems.

At this point, a summary of the concepts that tie the results of this section together

is in order before continuing with the task of assessing the uncertainty. The primary

result of this section has been the development of a method to extract some phase

information out of multivariable systems. Seeking a measure of phase analogous to

the scalar Bode phase lead to the concept of computing the relative phase between

the input and output vectors of a system. Since the output phase of a multivariable

system depends on the direction of the input as well as the transfer function matrix,

a singular value decomposition of the transfer function matrix was used to provide

input directions that allowed for an easy and physically meaningful way to compute

the output phases of a system. In order to create proper plots of these relative output

phases, it was necessary to ensure that the outputs were relative to the same input

at each frequency. Monitoring and adjusting the phase of one element in each of

the complex valued inputs provided a method to ensure unambiguous output phase

plots. In a nut shell, the singular vector output phases, .ij(w), are the phases of the



i = 1, 2,... , i outputs of a multivariable system relative to a set of specific inputs

whose directions are specified by the j = 1, 2,..., k right singular vectors. A Matlab

function that evaluates V41 1(w) is included in Appendix B and is used in the following

section to help assess the uncertainty in the sample problem.

3.3.2 Multivariable Phase for the Sample Problem

While the output phase provided by the singular value decomposition does not have

a clear cut role in multivariable controller synthesis, it still provides an additional

means to quantify the fidelity of models. Given the proper equipment in a realistic

scenario, the specific inputs defined by the right singular vectors of a model, (3.17),

could be applied to an actual system. Measuring the corresponding output phases

and comparing them to the ones derived from the left singular vectors, ikO(w), would

then serve as a measure of how good the model predicts the actual behavior under

specific vector inputs. In the range of mismodeled dynamics it seems reasonable to

expect good agreement between the experimental and analytically predicted phases

with minor discrepancies occurring in the vicinity of the structural modes. If this were

the case, regions for the unmodeled and mismodeled dynamics could be established

by finding the frequencies at which there are vast differences and good agreement

between the expected and measured output phases. In actuality, this experiment

requires the ability to simultaneously measure £ outputs and produce m sinusoidal

inputs with an accurate amount of relative phase between each input. While this is no

small task, the sample problem allows for an easy way to investigate what information

could be inferred from such an experiment.

Mimicking the proposed experiment with the sample problem not only helps assess

the uncertainties in the beam model but also helps clarify the proposed concept of

multivariable phase. To begin with, the necessary inputs, vj(w), were assembled from

a singular value decomposition of the open loop beam model (3.3)

G2(jw) = U(3w)E(w)VH(3w) (3.26)

U(jw) = [AI(W) IL2(W)] V(3w) = [Vl(w) V2(w)]. (3.27)



Applying an input to the beam system along the maximum right singular vector

direction, given by (3.17) for j = 1, yields the suggested measure of multivariable

phase, Oil for i = 1, 2. The corresponding phase for the truss system was computed

by applying the same input to the truss model via (3.5) to (3.8) with u(w) = vl(w)

Lyl,(w) = ZG 2,(3w)vi(w), (3.28)

where the t subscript is used to distinguish the beam and truss values. Using the

notation

ai1(w) Zyig,(w) (3.29)

to denote the relative output phases of the truss system clarifies which phases to

compare. For the input along the maximum singular value direction, the beam model

predicts a set of outputs with phases bil (w) for i = 1,2. Applying the same input to

the truss model yields a set of outputs with phases ai1 (w) for i = 1, 2. A comparison

of bil(w) and ail(w) for the vertical, i = 1 and axial, i = 2, outputs is shown in

Figure 3.5, and a similar comparison for the outputs relative to an input along the

minimum right singular vector direction, v2, is shown in Figure 3.6. Realize that

these plots are intended to mimic "realistic" data that will help assess the fidelity of

the beam model.

Without a doubt, the phase information presented in Figures 3.5 and 3.6 con-

firms the ad hoc uncertainty description of the sample problem discussed earlier in

this chapter. There is excellent agreement between the phases of the beam and truss

in the low frequency region of mismodeled dynamics. As expected though, there

are small phase discrepancies, the blips in Figure 3.6, between ib2(w) and ai 2(w)

at the frequency of the first and second bending modes of the systems, 46 rad/sec

and 282 rad/sec respectively. The occurrence of these phase blip anomalies can be

attributed to the beam's inability to precisely capture the true amount of axial de-

formation in the truss during bending vibrations. As far as the unmodeled dynamics

are concerned, the phase plots clearly show a sizable differences in the outputs of the

beam and truss at various frequencies beginning at around 700 rad/sec, the approxi-

mate frequency of the third truss bending mode. Further, since the phase plots only
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Figure 3.5: Comparison of the output phases for the beam, kil(w), and truss, ai,(w),
given an input along the direction of the maximum right singular vector of
the beam.

provide information for two very specific inputs, it is not at all conservative to specify

a lower bound on the unmodeled dynamics to be at 700 rad/sec; as was estimated

from the scalar transfer functions. It should be clear that the multivariable phase

plots do provide additional information that helps asses the beam model's fidelity.

Even though the multivariable phase plots of Figures 3.5 and 3.6 look similar to

the Bode phase plots in Figures 3.2 and 3.3, they are not a strict extrapolation of

their scalar counterparts. Conceptually, both sets of phase plots allow for a mea-

sure of how signals pass through the actual systems. Indeed the expected modeling

uncertainties manifest themselves in similar ways in both the scalar and multivari-

able phase plots. However, at a mathematical level, the theoretical usefulness of the

scalar phase information is, given the current state of control theory, more useful
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Figure 3.6: Comparison of the output phases for the beam, i02 (w), and truss, ac2 (w),
given an input along the direction of the minimum right singular vector of
the beam.

than the multivariable version of phase information. In a nut shell, the scalar Bode

phase comes from the frequency response function of a model, which is extensively

used in analyzing and synthesizing controllers. On the other hand, the multivariable

phase information is based on having specific inputs defined by the singular value

decompbsition of a model's transfer function matrix. Unlike the scalar case, such a

method provides very limited information about a system and has no clear cut role

in synthesizing controllers. However, the information is truly multivariable, unlike

the scalar data presented in section 3.1, since the output phases are those resulting

from a vector valued input to the system. In conclusion while the multivariable phase

information provides an added way to assess the fidelity of a multivariable model, its

role in robust controller synthesis is unclear.



3.4 Parametric Uncertainties

In lieu of the popular loop shaping paradigm for control system design, primarily

graphical methods have been used to assess the fidelity of structural models up to

now. That is not to say that all design schemes rely on graphical techniques. In fact, a

vast branch of control theory exists that deals with parameters in models rather than

graphs of models to develop controllers. Parameter methods are useful when dealing

with systems with quantifiable uncertainty, as bounds on the uncertain parameters

can be accounted for directly in the analysis and synthesis of controllers [20,44,45].

Further, parameter methods provide a natural way in which to quantify mismod-

eled dynamics. For these reasons it is necessary to assess the nature of mismodeled

dynamics in structural systems.

Unlike the uncertainties in the region of unmodeled dynamics, the uncertainties in

the region of mismodeled dynamics are quit measurable. To get a feel for this, consider

the modeling process of the sample problem. The structural properties of the beam

used to assemble the mass and stiffness matrices of the sample problem contain errors

as a result of the equivalent modeling process. At the simplest level, the elements in

the mass and stiffness matrices are thus uncertain but nominally correct. A possible

uncertainty description for the beam's mismodeled dynamics could then be quantified

by defining upper and lower bounds for the structural properties used to derive the

mass and stiffness matrices. While an uncertainty description based on the structural

properties is easy to define, it becomes too complex to be of any use by the time a state

space model is formed; since the uncertain parameters appear in non-trivial ways in

the elements of the state space matrices. Alternatively, a more compact description

of the mismodeled dynamics can be defined by placing bounds on the frequency,

damping and residues of the mismodeled modes in a model. Bounds on the frequency

and damping of the mismodeled modes can be readily obtained by estimating the

accuracy of the poles of a system. In a realistic scenario, measurements of the scalar

input to output transfer functions provide good estimates of the values of the poles

that can be compared to the values of the poles predicted by a mathematical model

|



Truss Beam Error

Frequency of pole #1 47.1 46.1 2.1%

Frequency of zero #1 88.5 86.3 2.5%

Frequency of pole #2 282.7 287.6 1.7%

Frequency of zero #2 628.9 678.0 7.8%

Table 3.1: Comparison of frequencies for the mismodeled poles and zeros, in rad/sec, for
the sample problem.

and used to define the desired bounds. As far as the sample problem is concerned, a

comparison of the frequency of the mismodeled poles for the truss and beam, shown

in Table 3.1, provides a quantifiable measure of the uncertainty in the modes. Recall

that there is no damping uncertainty in the sample problem, as the damping was fixed

to be the same in all the modes of both systems. Unfortunately, obtaining bounds

on the multivariable residues of the mismodeled modes is not as straightforward and

is currently an open topic of research. However, the uncertainties in the residues

can be realized as errors in the frequency of the multivariable transmission zeros.

The magnitude of these errors for the sample problem is also show in Table 3.1 for

reference. Realize that these pole and zero errors have already been identified as

the low frequency discrepancies in the graphical assessment of the uncertainty in the

previous sections. The main point here is that there is usually a lot of information

about the uncertainty in the region of mismodeled dynamics. Information that could

be quantified and used to define an uncertainty model that is well suited for parametric

design methods.

By this point, a wide variety of methods have been explored and used to asses the

uncertainty of lightly damped structural systems. The sample problem provided both

a means to verify realistic ways of quantifying uncertainties and a means to exemplify

how the uncertainties manifest themselves in the common tools of controller design. In

essence, this chapter has provided useful insight into the accuracy of typical structural

models. The next logical topic to discuss then is how to take this knowledge of the

uncertainties and use it to design compensators that will not destabilize the actual



systems they are applied to. Chapter 4 will cover how to deal with the unmodeled

and mismodeled dynamics that are inevitable in any model of a system.



Chapter 4

Dealing With the Uncertainty

Given a mathematical model of a physical system and a quantifiable description of

the uncertainty in the model, designers must ensure that their feedback control sys-

tems will not destabilize the actual system. In more common terms, the designs must

exhibit stability robustness. To date, there exists a broad spectrum of methodolo-

gies for ensuring stability robustness in the presence of unmodeled and mismodeled

dynamics. This Chapter will analyze the applicability, usefulness, and limitations of

various stability robustness techniques when applied to lightly damped, structural

systems.

The analysis will be executed with a strong emphasis on the Nyquist domain inter-

pretation of stability. For this reason, it is fruitful to briefly review the Multivariable

Nyquist Theorem for a nominal model G(s) with a compensator K(s).

Theorem 4.1 (Multivariable Nyquist Theorem) [15, page 59] The closed loop

system depicted in Figure 4.1 is stable if and only if the number of counterclockwise

encirclements of the critical point, (-1, 0), by

n(s) A -1 + det [I + G(s)K(s)] s E D,

is equal to the number of unstable poles of G(s)K(s), where D, is the Nyquist contour'

shown in Figure 4.2.

Notice that the Multivariable Nyquist Theorem requires knowledge of a specific

'The indentations on the imaginary axis are made to avoid the open-loop 3w-axis poles.
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compensator, which can not be unraveled from the determinant operation in general.

As a result of this, the scalar Nyquist criterion will be used from time to time to

illustrate a point. Using lower case notation to differentiate a multivariable system

from a scalar system, the Scalar Nyquist Theorem can be stated as follows.

Theorem 4.2 (Scalar Nyquist Theorem) [46] The closed loop system depicted

in Figure 4.1, where G(s) and K(s) are now represented by g(s) and k(s) to explic-

itly denote a scalar system, is stable if and only if the number of counterclockwise

encirclements of the critical point, (-1, 0), by

t(s) ' g(s)k(s) sE D,

is equal to the number of unstable poles of t(s), where D, is the Nyquist contour shown

in Figure 4.2.

Just as the Nyquist plot of (3.1) clearly showed how susceptible lightly damped

structural systems are to closed loop instabilities, Nyquist plots of NA(s) can be used

to visualize and interpret various methods of guaranteeing closed loop stability. In the

process of analyzing stability robustness, the notation G(s) will be used to represent

the dynamics of the actual or perturbed model. As a preliminary step to describing

how to visualize stability robustness in the Nyquist framework, it is necessary to

assume that the actual loop transfer function, G(s)K(s), has the same number of

open loop unstable poles as the loop transfer function of the nominal model of the



system, G(s)K(s). If this is the case and the nominal closed loop system is stable, an

instability in the actual closed loop system dictates that the number of encirclements

of the critical point by the Nyquist plot of the nominal system has changed. In this

respect, stability robustness can be viewed as a means of assuring that the number

of encirclements of the critical point by /(s) and

.(s) A -1 + det[I + O((s)K(s)] (4.1)

are the same. Since there is no way to create a Nyquist plot for the actual system,

various error models can be used to estimate where the locus of R(s) for s evaluated

along D, lies. Graphically, this leads to the visualization of a region around each point

on the Nyquist plot of the nominal system within which are the possible locations of

the actual system at each frequency. If this region contains the critical point at any

frequency, there may be a change in the number of encirclements and hence a closed

loop instability. In this respect, stability robustness can be ensured if the uncertainty

region never contains the critical point. Having a mathematical description of the

region, or where the Nyquist plot of the actual system lies, provides information

that can be used to design compensators that will not allow the Nyquist plot of

the actual system to have a different number of encirclements of the critical point

than the nominal system. Thus in this Nyquist interpretation of stability there are

two key aspects to consider in analyzing stability robustness theory: How to cast

the uncertainty description into a useful form that provides a measure of where the

Nyquist plot of the actual system lies, and how to use this information to design

compensators that will not destabilize the actual closed loop system.

This graphical interpretation of stability robustness will be heavily exploited

throughout this Chapter. Concrete examples of what the uncertainty region looks

like for various error models will be presented along with the associated conditions

on the compensator needed to maintain stability. Focusing the study on how to deal

with the unmodeled and mismodeled uncertainties in the sample problem will ex-

plicitly exemplify the applicability, usefulness, and limitations of various robustness

techniques. Furthermore since the sample problem captures the inherent character-



istics of realistic systems like the Interferometer testbed, this Chapter will provide

valuable insight into how to ensure robustly stable control systems for lightly damped

structures.

4.1 Robustness for Unmodeled Dynamics

Strong and useful stability robustness techniques exist for unmodeled dynamics. Com-

mon to all of these techniques is the use of an unstructured uncertainty model to rep-

resent the modeling errors and an associated sufficient condition that must be met to

ensure stability robustness. Illustrating this first in the scalar case and then extrapo-

lating to the multivariable case will provide a clear visualization of the applicability,

usefulness, and limitations of stability robustness tests for unmodeled dynamics. Once

these are understood, the assessment of the uncertainty in the sample problem from

Chapter 3 will be used to exemplify how to form specific uncertainty models needed

to apply the stability robustness results presented.

4.1.1 Additive Error in Scalar Systems

In the scalar case, the additive error model allows for a clear visualization of how to

deal with unmodeled dynamics that also applies to the multivariable case in which

the visualization is not as clear. Using A,(s) to denote an additive perturbation in

the nominal model, the actual model with an additive error is defined as

i(s) = g(s) + Aa(s). (4.2)

To see how stability robustness can be maintained in the presence of these errors,

consider Figure 4.3 that shows a portion of the Nyquist plots of t(jw) and

=(3w ) = 7(3w)k(3w), (4.3)

a candidate actual system, near the critical point. At a specific frequency wo, t(3 wo)
and i(3w,) are scalar complex numbers, and it is useful to visualize them as vectors



(-1,0)

Figure 4.3: Portion of the Nyquist plot for a scalar nominal system, t(s) and a typical ac-
tual system, i(s), with a representation of the additive error and unstructured
uncertainty disk at wo.

with a basis consisting of the real and imaginary axes of the complex plane. In doing

so, both the error vector,

1(wo) = A0 (Jwo)k(3wo) = i(Jwo) - t(3wo), (4.4)

and the distance from the critical point to the nominal model at w,, d(wo), can also

be visualized as vectors; as shown in Figure 4.3. Now as long as the magnitude of the

error vector is smaller than the distance to the critical point at each frequency, that

is as long as

I1(w)I = la(w)l Ik(Ow)l < Id(w)l = I1 + t(3w)l Vw, (4.5)

the actual closed loop system will be stable since there can not be a change in the

number of encirclements of the critical point by the actual system. In this respect,

(4.5) provides a sufficient condition for guaranteeing stability robustness in the pres-

ence of additive perturbations.

In the additive error stability robustness condition of (4.5), only the magnitude

of the additive error is needed to test the robustness of a control system. Since the

the additive error robustness condition only requires knowledge of the magnitude of

T-



the error and does not use the specific structure of the error model, it is classified

as an unstructured error robustness test. An inherent characteristic of unstructured

robustness tests is that the the phase of the error model is irrelevant. In the additive

error case represented in Figure 4.3 this means the error vector, 1(wo), centered at

t(w,) with length Il(wo) can point in any direction in the complex plane, and as long

as the condition of (4.5) is met the actual closed loop system will be stable. This

interpretation of the allowable error leads to the visualization of an uncertainty disk

centered at each point of the Nyquist plot of the nominal system, as shown for w,

in Figure 4.3. Alternatively then, the stability robustness condition of (4.5) can be

visualized as a means of ensuring that the uncertainty disk with magnitude Il(w)I at

each frequency does not contain the critical point. If this is the case for all frequencies,

the distance to the critical point will always be greater than the size of the additive

error no matter what direction the error lies in.

The concept of an uncertainty disk and an associated condition to make sure

that the critical point does not lie in the disk at any frequency is at the heart of

all the unstructured error stability robustness tests. In fact, it is the visualization

of an error disk at each frequency of the nominal model that exemplifies the ap-

plicability of unstructured uncertainty models to unmodeled dynamics. Recall that

unmodeled dynamics refer to the poorly modeled or unknown dynamics in a system.

Hence, specifying phase, or directional, information about these errors is completely

inappropriate. Rather since the only relevant information about the modeling un-

certainty the stability robustness test needs is the magnitude of a.(w), it is by no

means conservative to use an unstructured uncertainty model to handle the unmod-

eled dynamics. Physically speaking, by admiring an unstructured modeling error the

designer assumes that the actual plant can lie anywhere within the disk of radius

I1(w)l around the nominal system at each frequency, which is not a bad assumption

in the frequency range where the nature of the dynamics are unknown or poorly

modeled. For these simple reasons, unstructured uncertainty models are completely

appropriate for unmodeled dynamics.

By now, the the means of assuring stability robustness for unstructured uncer-



r -i

Y

Figure 4.4: Nominal system with a multiplicative perturbation, Am,(s) at the plant out-
put.

tainty models, the interpretation of unstructured uncertainty as a disk in the Nyquist

domain, and the applicability of unstructured uncertainty models to unmodeled dy-

namics should be clear. The same insight applies in the multivariable case even though

the mathematics do not allow for a strict graphical representation, as presented in

the scalar case here.

4.1.2 Relative Error in Multivariable Systems

While the previous section on additive errors in scalar systems illustrated the inherent

characteristics of unstructured error stability robustness tests, this section deals with

popular multivariable stability robustness conditions that are often used in controller

synthesis. To begin with, it is more useful to consider the class of relative errors

so that the compensator can be separated from the expression of the uncertainty

required by the additive error stability robustness criterion of (4.5). A typical and

frequently used relative error model is the multiplicative error reflected to the plant

output. Using A,(s) to denote a multiplicative perturbation in the nominal model,
the actual system that arises from modeling the uncertainties as a multiplicative

perturbation at the output of the nominal system is

G(s) = [I + Am(S)]G(S). (4.6)

A block diagram of a nominal system with an output multiplicative error perturbation

is shown in Figure 4.4. For this model of the uncertainties the well known multiplica-



tive error stability robustness criterion provides sufficient conditions for maintaining

closed loop stability in the actual system.

Theorem 4.3 (Multiplicative Error Stability Robustness Criterion) The closed

loop system with a multiplicative error perturbation at the plant output

C(s) = [I + T(s)] -T(s) (4.7)

shown in Figure 4.4 is robustly stable if and only if the following conditions are sat-

isfied.

1. (a) iý(s) = G(s)K(s) and T(s) = G(s)K(s), the nominal and actual loop

transfer function matrices, have the same number of unstable poles.

(b) The purely imaginary poles of f (s) and T(s) are identical.

(c) The nominal closed loop system,

C(s) = [I + T(s)]-f T(s), (4.8)

is stable.

2.
1

S[C(3w)] < W (4.9)

Proof (loosely): A formal proof of this theorem can be found in [16, Theorem 3].

However, it is necessary to present a sketch of the proof since certain aspects of it

will be used to illustrate the theorem's applicability, usefulness, and limitations.

To begin, condition 1 provides the technical assumptions needed to ensure that

a closed loop instability in the actual system dictates a change in the number of

encirclements of the critical point by Sf(s). Given that the technical assumptions

of condition 1 are met, there can not be a change in the number of encirclements

of the critical point by MK(s) as long as the Nyquist plot of IR(s) does not contain

the critical point for all possible perturbations Am(s). Hence under condition 1, the

actual closed loop system will remain stable if

/(jw) $ -1 Vw or det[I + i(jw)] # 0 Vw. (4.10)



Now substituting (4.6) into this sufficient condition gives

det[I + [I + A, (w)] T(Jw)] 0 Vw (4.11)

which can be reduced to

det [I + T(3w) - ' + A(3w)] det T(jw) 0 Vw. (4.12)

Employing the singular value property

o(A) > 7(B) =- det(A + B) # 0 (4.13)

reduces (4.12) to a sufficient condition that ensures that the Nyquist plot of R(s)

will not contain the critical point

S[I + T(w) - ] > [A,(w)] Vw. (4.14)

Finally using the facts that

1
jc(A) = (A-') if A - 1 exists (4.15)

and

[I + T(3w)-l] -] = C(jw) (4.16)

to rewrite (4.14) leads to condition 2 of the theorem. This completes the sketch of

the sufficiency part of the proof.

The necessity part of the proof requires a clear understanding of the language used

in the theorem. First of all, realize that the theorem only guarantees robust stability

for the specific class of multiplicative perturbations at the output of the nominal

system and that the theorem does not state that the actual closed loop system will

be unstable if its conditions are not met. Rather the theorem only states that the

actual closed loop system will not be robust to a multiplicative uncertainty at the

plant output if its conditions are not satisfied. To prove the necessity of the theorem,
it is thus adequate to show that there does exist a multiplicative perturbation that

will lead to a closed loop instability if the conditions of the theorem are not met.



Using Ao(s) to represent such a perturbation and fTo(s) to denote the corresponding

actual loop transfer function, realize that if

det[I + 0i'o(wo)] = cL(1W0 ) = 0 (4.17)
OOL(3W.)

the actual closed loop system will be unstable since there will be a closed loop pole

of the actual system with frequency w, on the imaginary axis in the S-plane. In

this expression, qcL(s) and ýOL(s) respectively denote the closed loop and open loop

characteristic equations of the actual system. Further, a Ao( 3w 0) that satisfies (4.17)

can be found by solving the following optimization problem.

Ao = arg min (A) (4.18)

s.t det[I + T - 1 + A] = 0

The solution to this problem, [15, Problem A, page S2], can be constructed form a

singular value decomposition of I + T-'(3wo) = UE VH

Ao(3Wo) = U VH (4.19)

where 0o is the smallest singular value of I + T-1(3w0 ) and E is an arbitrary matrix

satisfying v(E) < at. This choice of Ao shows that there does exists an admissible

multiplicative perturbation, which by definition is the smallest perturbation that

could destabilize the actual system, that violates the assumptions of the theorem and

leads to a closed loop instability. In this respect, it is necessary to satisfy condition 2

to be robust to multiplicative perturbations at the output of the nominal system. O

In essence, the details of this theorem provide the fundamental concepts needed

to understand the applicability, usefulness, and limitations of using relative error

models to guarantee stability robustness in the presence of unmodeled dynamics. As

in the scalar additive error case, the multivariable, multiplicative error, stability ro-

bustness condition only requires knowledge of the magnitude of the perturbation,
7A(3w), at each frequency. As a result, the interpretation of an uncertainty disk at

each frequency still holds. In the multivariable version though, the radius of the disk,



yA(3w), must be smaller than the magnitude of the worst possible error, "Ao(3w),

at each frequency to remain robustly stable. In this way, the robustness criterion of

Theorem 4.3 protects the nominal system from the worst possible perturbation no

matter what direction it lies in. This lack of structure makes such stability robust-

ness tests appropriate for unmodeled dynamics for the same reasons as in the scalar

additive error case already discussed.

As far as the usefulness of the of this stability robustness test is concerned, realize

that even though Theorem 4.3 is quite applicable to unmodeled dynamics the dynam-

ics of O(s) and thus A,(s) are not precisely known. If they were, such knowledge

could be used to obtain a more accurate nominal model. To actually make use of the

stability robustness theorem, it is sufficient to define a weight, wm,(s), that bounds

the size of the perturbations

IWm(JU)I > wAm(jW ) Vw (4.20)

so that the stability robustness criterion (4.9) becomes

C(3w) < 1 Vw. (4.21)
IWM(OW) I

The weight, wmn(s), can be readily defined using engineering judgment and intuition,

as will be seen in the next section. Also realize that the technical assumptions of

Theorem 4.3 are not very restrictive. This is especially true for structural systems

that typically do not have any unstable or purely imaginary open loop poles. Finally

unlike the additive error robustness condition (4.5), the multiplicative error model is

more useful for multivariable systems since the nominal design sits on one side of the

robustness criterion, (4.9), with the error model on the other.

While the multiplicative error stability robustness theorem is applicable and useful

for unmodeled dynamics, it does have limitations. The primary limitation is that the

theorem only provides a measure of robustness for unstructured uncertainties. As

was seen in Chapter 3, there is a lot of information, which translates into structure

in the error model, available for the mismodeled dynamics. As a result, applying the

multiplicative error robustness criterion to the mismodeled dynamics would introduce



unnecessary conservatism into the design process. This will be seen and explored in

more detail in the following sections. Further since the nature of Theorem 4.3 is

not well suited for mismodeled dynamics, it should really only be applied or trusted

over the range of unmodeled dynamics. Hence, the Vw qualifier in (4.9) should be

practically interpreted as for all frequencies where the modeling errors should be

represented as unstructured perturbations. Another limitation of Theorem 4.3 is

that it only applies to a multiplicative error description at the output of the nominal

plant, which might not be the most realistic way to represent the unmodeled dynamics

depending on the system at hand. Fortunately, the same methods used to derive

Theorem 4.3 can be used to arrive at similar stability robustness criterion for division

and multiplicative, relative errors at any point in the loop of the system. A list of

several such robustness tests is available in References [17] and [15]. Since the same

methods are used to arrive at the various relative error, unstructured uncertainty,

robustness criterions, they will all be applicable to unmodeled dynamics, useful to

implement, and over conservative for mismodeled dynamics; as is the multiplicative

error discussed here. Hence, only the stability robustness criterion of Theorem 4.3

will be discussed when dealing with the unmodeled dynamics of the sample problem.

At this point, the relevant theory that can be used to guarantee stability robust-

ness in the presence of unmodeled dynamics has been presented along with a Nyquist

domain interpretation of the theory. In the following section, the framework of the

sample problem will be used to tie together the mathematics of the theory with the

practical implementation aspects of the theory.

4.1.3 Unstructured Uncertainty Models for the Sample Prob-

lem

Having illustrated the applicability of unstructured robustness tests to unmodeled

dynamics, all that remains to show is how to practically use the theory to deal with

the uncertainty. As discussed, the unstructured, relative error stability robustness

criterions are suited for the task, and, as they are all similar, only the criterion given



in Theorem 4.3 for multiplicative errors at the nominal plant output will be consid-

ered. Recall that it is intractable to have an exact description of Am(s) required by

Theorem 4.3, and that it was thus suggested that a weight that bounds the maxi-

mum singular value of the error model, (4.20), could be used in its place. The task at

hand then becomes defining the weight wi,(s) so that the multiplicative error stability

robustness criterion can be applied via (4.21) to guarantee stability robustness for un-

modeled dynamics. Depending on the flavor of the design methodology one intends to

use, the possible ways of defining the weight varies. In a 7 /H,/-synthesis framework,

the weight is incorporated directly into the design model to guarantee stability robust-

ness, and it thus must be a proper transfer function. Alternatively, in a more hands

on approach any weight can be defined that appropriately bounds the error, and then

any design process can be used to develop a compensator which can be tested for

its robustness by directly applying Theorem 4.3. In the following neither approach

will be emphasized. Rather some occasional comments pointing out the role that the

desired synthesis method has on the weight selection will be provided. Also using the

framework of the sample problem, both a realistic definition of wi(s) and an exact

representation of Am(s) will be pursued to bring into focus the contrast between the

exactness of the theory and the harsh realities of modeling the uncertainty. Herein

lies the usefulness of the assessment of the uncertainty provided in Chapter 3.

First of all, a realistic approach to defining a suitable w,,(s) for a multiplicative

perturbation at the output of the beam model will be pursued. In this situation,

Figure 4.4 with G(s) replaced by G2(s), the beam open loop dynamics, serves as a

block diagram representation of the sample problem in which the disturbances are

neglected, d = 0, and C(s) represents the truss open loop dynamics. To begin the

weight definition process, recall from Chapter 3 that the unmodeled dynamics of the

beam were targeted to be all the dynamics above approximately 700 rad/sec, which

corresponds to the region of the third bending mode of vibration. However, no notion

of the size of the errors was presented as there was no concept of how to classify the

errors other than a frequency range at the time. Considering that the fidelity of a

finite element model decreases with frequency and that the high frequency, local strut



modes of the truss are not captured in the beam, it makes sense to choose a weight, or

error model, whose magnitude increases with frequency. Having made this decision,

a hands on weight could be defined as

wm,(s) = ks" for s = jw, w E (700, oo) rad/sec. (4.22)

where the positive integer, n, dictates how rapidly the size of the errors increase with

frequency and the gain, k, provides a way to specify the size of the uncertainty at

some critical frequency. Once a desirable rate of increase for the error is determined

and an approximation of how large w, (31Wo)I has to be at a specific frequency, Wo,

the gain in (4.22) can be determined via

k = (4.23)
Wn

Such an error model is wholly consistent with the discussion of Theorem 4.3. For

w < 700 rad/sec the dynamics are well modeled, and as discussed it would be inap-

propriate to consider an unstructured error model there. Hence, the frequency range

specification in (4.22) serves as a means to restrict the error bound to the region of

unmodeled dynamics where the stability robustness result of Theorem 4.3 is applica-

ble. Further, the simple form of (4.22) compliments the frequency range specification

since the amount of information about the unmodeled dynamics is limited.

Given the form and frequency range of the weight, a value for the gain, k, must be

evaluated in a realistic manner to complete the error bound model. Since the magni-

tude of (4.22) will be the smallest at w = 700rad/sec, it would be wise to choose a gain

that ensures that Iwm(w)| is large enough to bound FAm(3w) at w = 700 rad/sec.

The value of n can then be chosen to make sure that the magnitude of (4.22) bounds

the size of the multiplicative perturbation at the remaining frequencies of interest.

Unavoidably the choice of k necessitates some sort of estimate of "At,(7003), the

actual multiplicative error at 700 rad/sec, to get a sufficient yet non conservative

value for the gain. Fortunately, the size of ,Am,(7003) can be estimated by creating

a pseudo actual model that nominally estimates the dynamics of the truss around

700 rad/sec, denoted as G'(s), and evaluating

-A,(jw) = D{ [i(,w) - G2(,w)]G1(jw)} (4.24)



at w = 700 rad/sec. Note that (4.24) was obtained by solving for m,(s) in (4.6) and

using the correct sample problem representations for the nominal and actual systems

for G(s) and O(s). Now the task of choosing a suitable value for k boils down to

creating a model of the pseudo actual system that is accurate around 700rad/sec, that

is (G(s), in a realistic way. To do so, recall from the scalar Bode plots of Section 3.1

that the error in the beam model around 700 rad/sec is a result of the inability of

the beam based model of the truss to correctly predict the frequency of the third

bending mode of the truss. Thus an approximate actual model can be created by

directly incorporating a more accurate estimate of the frequency of the third bending

mode into the beam based model of the truss. The nature of the modeling process

used to create a state space model of the beam is well suited for this task since the

frequencies of the modes of vibration appear directly in the A matrix of the state

space representation via the A and F matrices of (2.5). Hence, replacing the beam's

poor approximation of the frequency of vibration of the third bending mode with a

more accurate estimate of the true frequency in the A and F matrices of (2.5) and

carrying out the same modeling procedure that lead to G2(s) will produce a model

that almost captures the true truss dynamics in the vicinity of 700 rad/sec or, in

other words, the pseudo actual system GI(s). Realize that such a representation of

the actual system will only be valid near the third bending mode of vibration because

the dynamics of this lightly damped mode dominates the response of the system in

its vicinity. In a truly realistic scenario, the frequency of the third bending mode of

the truss needed to compute G'(s) could be estimated from experimentally measured,

scalar Bode plots as alluded to in Section 3.1. However, given a model of the truss

there is no reason not to use its exact value of 733.8 rad/sec given in Figure 2.5.

Using this value to create GI(s) as described, the value of (4.24) was evaluated to be

32 db at 700 rad/sec. With this approximation of the size of the multiplicative error

at 700 rad/sec, a viable value for k can be evaluated by letting Iwm(700j)l = 32 db

in (4.23) and allowing n = 1 for a first estimate of how fast the error increases with

frequency. In doing so, the definition of the hands on error bound will be complete

Wm(s) = 0.0569s for s = jw, w E (700, oo) rad/sec, (4.25)



and the size of the error bound will be approximately correct at its smallest value. It

is important to realize that the process used to define the above error bound did not

rely on any unrealistic information.

Now given this specific error bound model, the robustness of beam based com-

pensators to unmodeled dynamics could be tested by verifying if (4.21) for w,(s) in

(4.25) is satisfied for w > 700 rad/sec. Using this hands on error bound typically

leads to an iterative design process where various compensators are simply tested for

their robustness once they are designed. Alternatively, the H-//P-synthesis design

methodology is a more efficient, yet more complex, method of designing compen-

sators that directly incorporates the unstructured stability robustness criterion as

a constraint that the compensator must satisfy in the optimization scheme used to

synthesize controllers. Since the bound on the multiplicative error is directly incor-

porated into the plant dynamics in the 7-~,/pt-synthesis framework, w,,(s) must be a

proper transfer function. Thus the hands on error bound, (4.22), can not be used in

the '-Ho/jp-synthesis framework to implement Theorem 4.3.

With the more formal HF,/,L-synthesis design framework in mind, a weight that

is a proper transfer function and bounds the size of the multiplicative error at the

output of the beam model could be defined as

(sla + 1)" (4.26)
(s./b + 1)

Realize that there is a great deal of freedom involved in choosing a proper weight and

(4.26) will simply serve as a candidate weight to illustrate the implications of using a

proper transfer function to bound the magnitude of the multiplicative error. Unlike

the hands on bound, this weight is defined for all frequencies. Hence, the shape of

the magnitude of w,,(s) should be large enough in the range of unmodeled dynamics

to bound Am,(jw) and small enough in the range of mismodeled dynamics, where

the errors are not unstructured, to minimize the constraints on the compensator.

Choosing the value of the DC gain in in (4.26), k, to be very small takes care of

the later specification while the previous analysis that lead to the approximate size

of VAm(700j) can be used to choose the values of a, b and n to take care of the



former. Also, as before, it would make sense to have an error bound that increases

with frequency in the range of unmodeled dynamics. Obviously then b and a should

be chosen such that a < b. As a consequence of all these specifications, the magnitude

of the proper weight will surely be one at some frequency. Since this is the case for

most proper, realistic weights, the stability robustness condition (4.21) imposes a

bandwidth 2 constraint on the closed loop system because

iC(jwo) < 1 (4.27)

for some frequency w, to maintain stability robustness. Given these insights, it is

obvious that the values of the parameters in (4.26) will have a profound effect on

both the stability robustness and performance of a control system designed with the

stability robustness condition serving as a constraint in the controller synthesis.

Evaluating the parameters of (4.26) for the sample problem using only realistic

data, like that provided by the scalar transfer functions of the actual truss system,
will complete the definition of a weight which is heuristically different than (4.25)

yet similarly useful for bounding the multiplicative error at the output of the beam

model. Knowing that the beam model predicts the low frequency behavior of the truss

rather well, the DC gain of (4.26) was set at -30 db, k = .0316. Further, the corner

frequency of the poles were set at a sufficiently high enough frequency, b = 2000,
so that the magnitude of (4.26) would be large enough over the range of unmodeled

dynamics to bound the actual multiplicative error while still increasing in magnitude

over the first portion of the range of unmodeled dynamics. In choosing a value for n

in (4.26), realize that it controls the bandwidth of the closed loop and the frequency

range of where the magnitude of the error bound is small, large, and in transition

from small to large. A large value for n would specify a high bandwidth and produce

a sharp weight in which there was a quick transition from small magnitudes in the

range of mismodeled dynamics, where Theorem 4.3 is over conservative, and the range

of unmodeled dynamics where a good bound is needed. Even though large values of
2 Recall that the bandwidth of a system is represented as the frequency at which the magnitude

of the closed loop transfer function is one, IIC(.w)112 = 1, and beyond which the system rolls off.



n are beneficial in specifying accurate bounds on the multiplicative error, they are

undesirable since the order of compensators in the 7"/oo/t-synthesis design framework

increases with the order of the weights used in the design. Thus a value of n = 2 was

chosen for the sample problem to provide a reasonably sharp transition without an

unreasonably high order weight. With these specifications and the previous estimation

of the size of the actual multiplicative error at 700 rad/sec, the value of the poles,

a, in (4.26) were chosen so that w,m(700j)I = 32 db. Putting all this together, the

candidate, proper weight of (4.26) becomes

(9/19.7 + 1)2Wm(s) = .0316 (s/19.7+ 1)(4.28)
(s/2000 + 1)2

As with the hands on weight of (4.25), this model represents a realistic bound on the

multiplicative error at the output of the beam model.

At this point, the task of defining realistic weights to practically use Theorem 4.3

has been accomplished. Either (4.25) or (4.28) could be used in conjunction with

(4.21) to check the stability robustness of compensators designed using the beam

based model of the truss to high frequency unmodeled dynamics. Since these weights

will be used to design stably robust control systems in Chapter 5, it is quite instructive

to compare their size to the size of the actual multiplicative error between the beam

and truss models. Using t and b subscripts to denote the truss and beam models

respectively, acknowledging that the truss is the actual model, and solving (4.6) for

Am(s) leads to an expression for the exact output multiplicative error between the

truss and beam models

Am(s) = [G2,(s) - G2,(s)]G; (s). (4.29)

Given the mathematical model of the truss, -Am(jw) in (4.29) can be evaluated on

a frequency by frequency basis, an unrealistic computation for physical systems, to

evaluate the realistically defined weights. To this end, Figure 4.5 shows a comparison

of the size of the exact multiplicative error, TAm(jw), from (4.29) and the magnitude

of the bounds for the multiplicative error, wm(jw)l, motivated by a hands on design

approach, (4.25), and an Hoo/jt-synthesis motivated approach, (4.28). A copy of
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Figure 3.4 that compares the open loop singular values of the beam and truss models

is also included in Figure 4.5 to directly show how the errors between the beam and

truss systems manifest themselves in a multiplicative error model.

Figure 4.5 clearly brings into focus the contrast between the exact error model

specified in Theorem 4.3 and the realistic weights that can actually be used to imple-

ment the theory. Notice that in general the realistically defined weights do a good job

of bounding the exact multiplicative error between the beam model and actual truss

system in the range of unmodeled dynamics. Granted the actual multiplicative error

is slightly larger than both bounds in the vicinity of 700 rad/sec, but this is to be

expected given the limited information and approximate method used to estimate the

size of the error at 700 rad/sec. Similarly the specification of 700 rad/sec as the lower

bound on the frequency range of unmodeled dynamics is not precisely correct as seen

in both plots of Figure 4.5. This is a result of the poorly modeled, lightly damped

transmission zeros that directly precede the poles corresponding to the third bending

mode of the truss. However, given that there is no simple way to estimate the actual

multivariable transmission zeros as there is for estimating the actual poles, it would

not have been realistic to specify a different value for the lower bound on the fre-

quency range of unmodeled dynamics. Since the range of mismodeled dynamics and

the size of the multiplicative error are not really know precisely, there inevitably will

be some uncertainty involved in defining suitable bounds on the size of the multiplica-

tive error as seen in Figure 4.5. These factors show that even though unstructured

error robustness tests guarantee stability robustness for unmodeled dynamics they

must be exercised with care because it is difficult to accurately bound the size of the

perturbations needed to implement them.

Another attribute of Figure 4.5 is that the bandwidth constraint imposed by

the proper weight, (4.28) can clearly be seen. If the stability robustness condition,

(4.21), along with the proper transfer function weight, (4.28), were included as a

constraint in the controller synthesis, the controller would be forced to roll off just

after the first structural mode. Hence the performance of the controller would be

sacrificed to provide stability robustness for the unstructured uncertainties at the



output of the design model characterized by (4.28). In an actual design procedure,

this attribute of the proper weight could be used as a design knob to tune the inherent

performance/robustness trade off in a control system design.

Further insight into the accuracy of the weights and dealing with the uncertainty

in a model is provided by the plot of the actual multiplicative error between the truss

and beam models in Figure 4.5. As expected, the size of the actual multiplicative error

does grow as the frequency increases. The constant level of error past 6000 rad/sec in

Figure 4.5 is simply an artifact of the model reduction applied to both the beam and

truss models. Further, notice that the size of the error in the vicinity of the lightly

damped poles and zeros of the system is quite large. In essence these large spikes

in the multiplicative error for the lightly damped poles and zeros is a way of saying

that perturbations in the poles and zeros near the imaginary axis are dangerous due

to their proximity to the right half S-plane. In the case of the first bending mode at

46 rad/sec there is only a 2% error in the frequency of vibration between the truss

and beam models with no error in the damping ratio, yet the multiplicative error is

nearly 10 db large at that frequency. If the true multiplicative error were used in the

stability robustness criterion of Theorem 4.3, the closed loop system would have to

roll off before the first mode of vibration to guarantee stability robustness even though

it is well modeled. This is a direct example of why the unstructured error stability

robustness tests are conservative for mismodeled dynamics. The following section on

dealing with the mismodeled dynamics will explore this issue in more detail. For the

time being it is sufficient to acknowledge that Figure 4.5 provides a compact picture

of the various error models required to implement the stability robustness criterion

of Theorem 4.3.

As of now, an in depth study of the means to deal with unmodeled dynamics

has been presented along with a detailed description of the applicability, usefulness,
and limitations of the methods for doing so. Before continuing onto how to deal

with the mismodeled dynamics, a brief review of the main concepts presented so far

in this chapter is in order. The theory of stability robustness was presented with a

Nyquist interpretation in which stability robustness can be guaranteed by defining



a region in which the actual system is assumed to lie and ensuring that the region

does not contain the critical point at each frequency. Then it was shown in the scalar

case that an appropriate region for unmodeled dynamics is a disk since the designer

only has to specify the size of the errors at each frequency to guarantee stability

robustness. Extrapolating these concepts to the multivariable case led to Theorem 4.3

that provided necessary and sufficient conditions to ensure stability robustness for

multiplicative perturbations at the output of a nominal model. Implementation of

Theorem 4.3, which is typical of all unstructured error stability robustness results,

requires the definition of a weight that bounds the size of the multiplicative error

at the output of the nominal model. Using the framework of the sample problem,

two realistic weights were defined and compared to the actual multiplicative error to

bridge the gap between the stability robustness theory and its implementation. In the

process of outlining the methods to deal with the unmodeled dynamics, it was pointed

out that the results are very conservative when applied to mismodeled dynamics. The

following section will complete the stability robustness picture by discussing how to

deal with the mismodeled dynamics in lightly damped structural systems.

4.2 Robustness for Mismodeled Dynamics

Unlike the case with unmodeled dynamics, there is still no widely accepted method

that can be implemented to design control systems that are robust to the mismod-

eled dynamics in a model. However, many results addressing the issue of parameter

uncertainty in multivariable systems exist and can be applied to the problem of guar-

anteeing stability robustness for mismodeled dynamics. In [20, Chapter 1], Hagood

provides a thorough overview and classification of the various methods that have

been proposed and are currently being researched to deal with parameter uncertain-

ties. Rather than reiterating this summary, the inherent difficulties of developing

techniques to handle mismodeled dynamics will be illustrated here using the Nyquist

domain interpretation of stability robustness. Once the difficulties are understood,

the applicability, usefulness, and limitations of using structured singular values [18]



to deal with mismodeled dynamics will be presented. Investigating the structured

singular value technique is valuable because it lends itself nicely to the frequency

domain overtones of this chapter and contains similar intrinsic characteristics to the

other parameter uncertainty robustness techniques reviewed in [20]. As was done

with the unmodeled dynamics, the assessment of the uncertainty in Chapter 3 will

be used to create specific, structured singular value uncertainty models for the sam-

ple problem to put this method into perspective with the unstructured robustness

methods already presented.

4.2.1 Visualizing Mismodeled Dynamics in the Nyquist Do-

main

Graphically representing some typical mismodeled dynamics in the Nyquist domain

will help clarify the difficulty of guaranteeing stability robustness in their presence

and further exemplify why the unstructured stability robustness conditions are too

conservative for dealing with them. Recall that the two key elements involved in the

Nyquist interpretation of stability robustness are an uncertainty region within which

the actual plant may lie and associated conditions to ensure that the region never

contains the critical point. Hence the first step toward visualizing the difficulty of

dealing with mismodeled dynamics will be the construction of a typical, yet realistic,

region within which an actual system might lie at a given frequency in the range of

mismodeled dynamics. By constructing a region, the difficulties involved in deriv-

ing non-conservative conditions to maintain stability robustness in the presence of

mismodeled dynamics will become apparent.

The-region within which the actual plant may lie in the Nyquist domain for a

nominal system with mismodeled dynamics can be directly constructed from the

additional information available about the modeling error in the range of mismodeled

dynamics. As was described in the assessment of the uncertainty in Section 3.4,

this additional information can be conveniently cast into a parametric uncertainty

model in which individual variables in the nominal model that contribute to the



mismodeled dynamics are bounded from above and below. Letting a E Rq denote

a vector of uncertain variables, a nominal plant with parametric uncertainty will

explicitly be denoted as G(a, s) where each element in a, ai, has an upper and lower

bound denoted respectively as a and ai. The uncertain parameters and their upper

and lower bounds represent the additional information about the uncertainties in

the range of mismodeled dynamics that must be specified by the designer. Using

such a description of the uncertainty naturally leads to the concept of a set of actual

systems that is parameterized by all the possible values of the uncertain variables in

the nominal model. Expressing this in mathematical terms, the actual system, C(s),

that arises from describing the uncertainties as parametric errors in the nominal

system can be represented as

G(s) = {G(a, s) : < a, <- Va,}. (4.30)

Realize that the nominal design model,

G(&, s) A G(s) (4.31)

in which a denotes the nominal values of the uncertain variables, is contained in the

set of actual plants O(s). With such a description of the uncertainty, a region within

which the Nyquist plot of the actual system will lie at a specific frequency can be

trivially constructed by evaluating A(jw) in (4.1) for C(§w) in (4.30). Conceptually,

this is how the mismodeled dynamics uncertainty regions can be visualized in the

Nyquist domain.

To actually construct such a region in the multivariable case, realize that evaluat-

ing •f(jw) for O(3w) in (4.30) requires knowledge of a specific compensator, K(s), that

can not -be untangled from the determinant operator. As a result, the visualization of

the inherent difficulty of dealing with the mismodeled dynamics in the multivariable

case will be warped by whatever design procedure produces the compensator. Further

since the aim here is to understand how to design compensators that are robust to

mismodeled dynamics, the visualization of the region of mismodeled dynamics will

be constructed for a scalar system to minimize these complications 3. The benefit
3Specific visualizations of the mismodeled dynamic region for multivariable systems will be pre-
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of working with a scalar system is that there is no loss of generality in studying the

Nyquist plot of the system without the compensator, that is the locus of g(s) in-

stead of t(s) = g(s)k(s) for s E D,, since the effect of any compensator influences

the Nyquist plot of t(s) in a straight forward manner. Furthermore by creating the

region for the following scalar system

g() = (4.32)g(S= + 2(wns+ W2

without any unmodeled dynamics, there will not be a vast loss in generality to the

multivariable case; as the open loop dynamics in both scalar and multivariable systems

are dominated by lightly damped poles in their neighborhood.

Creating a mismodeled dynamics region for the example, nominal model, (4.32),

requires an uncertainty description and values for the parameters in the model. As

was discussed in Section 3.4, it is convenient to express the uncertainty as bounds

on the frequency, damping, and residue of the modes in the range of mismodeled

dynamics. To this end, the uncertain variables of the nominal model, (4.32), were

chosen to be

a = ( . (4.33)

The nominal values of these parameters and the amount of uncertainty in them were

arrived at by the desire to remain consistent with the sample problem, the need

to have a clear visualization of the uncertainties in the Nyquist domain, and the

constraint to maintain realistic levels of uncertainty in the variables. Choosing the

the nominal value of the natural frequency of the mode, ,in, to be the same as the

frequency of vibration of the first bending mode of the beam, which is mismodeled,

maintains consistency with the sample problem. Similarly from the assessment of

the uncertainty in the sample problem, a ±5% error in the nominal value of the

natural frequency was chosen to provide a realistic amount of uncertainty in the modal

frequency. A realistic value of structural damping, i = 1%, with a realistic level of

sented in Chapter 5 using the sample problem.
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a & Error a a

Natural freq. w, 46. +5 % 43.7 48.3

Damping ratio ý .01 +50 % .005 .015

Residue p 2116. +5 % 2012. 2218.

Table 4.1: Mismodeled uncertainty description of the nominal system (4.32). Frequencies
are in rad/sec.

uncertainty in the damping ratio, a ±.5% variation in the percentage of damping ratio,

was also used. This level of error in predicting the damping ratio for well modeled

modes comes from an extensive experimental study of the structural dynamics of a

lightly damped truss structure [47]. To further allow for a clean visualization, the

nominal value of the residue, p, was defined to give (4.32) a unity DC gain. As far as

the uncertainty in the residue is concerned, a +5% error in the nominal value of the

residue was chosen by realizing that the amount of error in the mismodeled poles and

zeros of the sample problem were nearly the same. These nominal values as well as

their upper and lower limits are summarized in Table 4.1. Given such an uncertainty

description for the nominal model, (4.32), the actual plant that arises from classifying

the uncertainties as (4.33) is

(s) = {g(a,s) : a. _ a Va,}. (4.34)

Evaluating (4.34) at a specific frequency, w,, over the range of its possible values

defined by a will produce a region in the Nyquist plane within which the actual plant

should lie at wo.

An actual Nyquist plot that will help clarify the difficulties of dealing with mis-

modeled dynamics and allow for another visualization of the conservatism of applying

unstructured error models to mismodeled dynamics is shown in Figure 4.6. This figure

contains the Nyquist plot of the nominal model, g(&,3w), near the critical point, the

mismodeled uncertainty region describing the possible locations of the actual plant,

g(3Wo), at w, = 50 rad/sec, and the error disk associated with a multiplicative error

model between the nominal model and a typical actual model from the set (4.34) at wo.

In order to draw the uncertainty disk in the Nyquist plane centered at g(&, 3yw) with
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a radius of Il(wo)l, it was necessary to use an additive error model, as in Section 4.1.1,

that was equivalent to the desired multiplicative error model. Equating the actual

models assumed in using an additive, (4.2), and multiplicative, (4.6), perturbation to

describe the uncertainty in the nominal model,

g(s) + La(s) = [1 + Am(s)]g(s), (4.35)

leads to an expression that relates the additive and multiplicative errors

Aa(s) = Am(s)g(s). (4.36)

Based on this result, a multiplicative error can be visualized by an additive error disk

in the Nyquist domain centered at g(jw) with a radius of

l(w)I = Am(jw)g(jw)l. (4.37)

Now by assuming that the lower limit of all the uncertain parameters, a_, defined the

typical actual plant for our example, the multiplicative error used to create the error

disk shown in Figure 4.6 was defined to be

Am(s) = [g(a, S) - g(&, S)] g(&, )-1 ,  (4.38)

and the radius of the resulting error disk, from (4.37), was evaluated to be

II(wo)l = m(jo)g(&,jWo)I. (4.39)

Notice that the conservatism of using unstructured error models to describe mis-

modeled dynamics is directly captured in Figure 4.6. Not only does the error disk

associated with the multiplicative error encompass a much larger region than the true

region of mismodeled dynamics it also contains the critical point. In other words, with

this unstructured error model there may be a different number of encirclements of the

critical point by the actual system and thus a closed loop instability. However, the

realistic region of errors in the system, depicted by #(ywo) in Figure 4.6, is no where

near the critical point. Hence, any compensator that would be designed to meet

the stability robustness criterion for this multiplicative error would be unnecessarily

104



conservative in that it would provide robustness for unrealistic errors. As an aside,

realize that the large multiplicative error disk in Figure 4.6 is akin to the large spikes

in the exact multiplicative error plot between the beam and truss seen in Figure 4.5

at the low frequency, mismodeled poles and zeros. In essence, the large multiplicative

error disk, in contrast to the much smaller region of mismodeled dynamics, illustrates

the conservatism of using unstructured error models for mismodeled dynamics.

To begin to understand why it is difficult to ensure robustness for the mismodeled

dynamics, notice that the mismodeled dynamics region does not contain the critical

point nor is it near the critical point. As a result, the closed loop system is not

in danger of an instability resulting from the mismodeled dynamics in the nominal

model at w,. None the less, it would still be beneficial to have some theory that

can be employed to design compensators that provide guaranteed robustness to such

uncertainties. This is especially true for lightly damped systems due to the proximity

of the Nyquist plot to the critical point as seen in Figure 4.6. Unfortunately, the

measure of whether or not the mismodeled dynamics region contains the critical point

is not as simple as comparing the size of the errors to the distance to the critical

point as is done for unstructured uncertainties. Further realize that the region of

mismodeled uncertainties can not be defined by one quantity like the unstructured

uncertainties that are specified solely by the radius of the error disk. This is clearly

seen in Figure 4.6 in which the shape of the mismodeled dynamics region, arrived

at by evaluating the nominal model over the entire range of possible values for the

uncertain variables, has a complicated form even for the small number of uncertain

variables in (4.32). Furthermore since the form of the mismodeled dynamics region

is a function of all the uncertain variables in the model, the shape of the region will

become more complicated as the number of uncertain variables increases. This is

not to mention the fact that in the multivariable case of interest, the shape of the

mismodeled dynamics region is further complicated by the nature of the determinant

operation needed to evaluate A(3jw) for G(jw) in (4.30). Given that there is no simple

way to describe the shape of a realistic region within which the actual plant may lie in

the domain of mismodeled dynamics, it is obviously not simple to test if the region of
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unmodeled dynamics contains the critical point. In essence, the difficulty in ensuring

robustness for mismodeled dynamics is a result of an inability to simply and concisely

describe the possible locations of the actual plant in the Nyquist domain, and the

resulting difficulty in testing whether or not the hard to describe region of actual

plants contains the critical point.

Another useful feature of Figure 4.6 is that it provides a microcosm of the dif-

ferent approaches to dealing with the uncertainty in a system. On one hand are

the approaches that led to the unstructured error robustness tests used to guarantee

stability robustness for unmodeled dynamics. Recall that these tests were arrived at

by postulating an error model that lead to simple and useful conditions for assur-

ing stability robustness. Once the nature of these tests were understood it became

obvious that they are well suited for dealing with unmodeled dynamics. In essence,

they classify the uncertainty as a disk around each point in the nominal system that

can not contain the critical point if stability robustness is to be guaranteed. As seen

in Figure 4.6, the disk is an overly conservative description of the uncertainty in the

region where there is additional information about the errors in a model of a sys-

tem. On the other hand, another approach to dealing with modeling errors begins by

defining a realistic and less conservative error model using the additional information

about the modeling errors. Given a realistic uncertainty model, the objective then

becomes to find conditions to guarantee stability robustness for the realistic and less

conservative error description. As pointed out above, this is not necessarily an easy

task as seen by the complex shape of the mismodeled dynamics region in Figure 4.6.

These arguments bring out a bottom line trade off that is inherent in deriving ways

to deal with the mismodeled dynamics. At one extreme, realistic uncertainty models

do not lend themselves to easily implementable stability robustness tests even though

they accurately describe the uncertainty. At the other extreme, implementable stabil-

ity robustness conditions can easily be derived by choosing a convenient error model

that typically provides robustness for an over conservative and unrealistic description

of the uncertainty. As. is usually the case in engineering design, some compromise

between the extremes of the trade off will be needed to achieve the desired result of
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a useful and non-conservative way to guarantee robustness to mismodeled dynamics.

All these aspects will be apparent in the following section that discusses how the

structured singular value can be used to deal with the mismodeled dynamics in a

model.

4.2.2 The Structured Singular Value and Mismodeled Dy-

namics

In this section, the key aspects of the structured singular value theory that are per-

tinent to understanding its use in dealing with the mismodeled dynamics will be

presented. More in depth descriptions of the theory can be found in [17,48,18]. The

structured singular value, also known as p, framework is a logical extension of the

concepts used in deriving the unstructured error stability robustness criterion to al-

low structured uncertainty models. Rather than working with a standard feedback

description of the system and considering a single complex perturbation, like the mul-

tiplicative error at the plant output shown in Figure 4.4, the p framework considers

the more general system description depicted in Figure 4.7 and described in [49] that

allows for multiple perturbations in the model of a system. Since the model descrip-

tion of Figure 4.7 will be referred to often throughout the sequel, it will be referred to

as the P-A system. Any linear interconnection of control inputs (u), measured out-

puts (y), external inputs (w), performance variables (e), transfer functions, scalings,

weights, parameter variations, and perturbations can be rearranged into the P-A

system description by considering z and v to respectively be the inputs and outputs

of the various perturbations in the model. For a realistically defined uncertainty de-
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scription, the A matrix in general will be block diagonal and contain real blocks to

account for parametric uncertainties as well as complex blocks to handle unmodeled

dynamics and performance specifications. In other words, A will be a member of a

set like

XC = {A = diag(Si,86,.. .,Sm, A1, A 2 ,...,An) : S E R, Aj E Ckjxhk}. (4.40)

Further in the structured singular value framework, it is convention to force A to

be a norm bounded matrix, that is -(A) < 1, by including appropriate scalings and

weights in the general system P. In doing so, the allowable set of perturbations is a

bounded subset of (4.40)

BXx = {A E Xx : K (A) < 1} (4.41)

Realize that this uncertainty description is really nothing more than a way to capture

both unstructured uncertainty models, such as (4.6), and parametric uncertainty

models, such as (4.30), in one unifying framework.

Before presenting the specific structured singular value stability robustness results,

it is necessary to define some more notation. The nominal closed loop system, denoted

by M and shown in Figure 4.8, will be assumed to be stable for a given compensator

K. In order to facilitate the stability robustness results, M will be partitioned into a

2 x 2 block-structured matrix

z(s) M, (s) M 2(s) v(s)

e(s) M21 &) M22S) W (S)

in which

Mj(s) = Pj(s) + P3a(s) [I - K(s)P33(s)]-1 K(s)P3j (s) i,j = 1,2 (4.43)

and the Pii notation similarly originates from the 3 x 3 block structure of the P-A

system.

The stability robustness results in the ys framework take on the same flavor as

the multiplicative error stability robustness theorem already presented. That is, they

provide necessary and sufficient conditions for the nominal closed loop system to be
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stably robust to the uncertainty description given by the P-A system for A belonging

to (4.41). Using concepts similar to those used to derive Theorem 4.3, a sufficient

condition based solely on the size of the perturbation, W(A), could be derived to ensure

stability robustness in the presence of A E BXKc [18, Theorem RSU]. However, this

test, like the multiplicative error stability robustness criterion, assumes that A is a

full matrix and ignores any structure in A arrived at by realistically modeling the

uncertainties. As a result, such a test would provide robustness for an unrealistic

class of perturbations. In an effort to reduce this conservatism, a better measure of

the size of the smallest perturbation needed to cause a closed loop instability in the

nominal model with a structured uncertainty description was defined as the reciprocal

of the structured singular value.

Definition 4.1 (Structured Singular Value, Ip) [48] The structured singular value

for a complex matrix M, denoted by ,u(M), is 0 if there exists no A E Xxc such that

det(I - AM) = 0, and

p(M) mrin ( {(A) :det(I - AM) = }) (4.44)

when there does exist a A E Xc such that det(I - AM) = 0.

With this measure of the size of the perturbation needed to cause an instability, the

following theorem provides necessary and sufficient conditions for stability robustness

in the presence of a structured uncertainty description.

Theorem 4.4 (Structured Stability Robustness Theorem) [18] The nominally

stable closed loop system, M, partitioned as in (4.-2) and shown in Figure 4.8 will be

robustly stable to all uncertainties A E BXKc if and only if

p [M 1 (yw)] < 1 V (4.45)

As in the case of Theorem 4.3 the language of this result is very deliberate. If (4.45)

is violated at any frequency, the actual closed loop system will not necessarily be

unstable. Rather the closed loop control system will not be robust to the errors in
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the nominal model defined by A. However if (4.45) is satisfied for all frequencies and

the actual system is included in the set of possible plants defined by the nominal

model and its uncertainty description A, the actual closed loop system will be stable.

As of now, a means to classify multiple uncertainties in a nominal model and

a means to test for stability robustness in their presence has been presented. The

remainder of this section will address the applicability, limitations and usefulness of

applying the tp analysis framework presented here to the problem of dealing with

mismodeled dynamics in a model. Before doing so it is worthwhile to interpret the

structured singular value results presented thus far in terms of the Nyquist domain

interpretation of stability robustness used throughout the rest of this chapter. Ba-

sically, the interconnection structure of the P-A system description that leads to

A E BXK is analogous to the region within which the actual plant may lie, and

condition (4.45) is the test that ensures the uncertainty region will never contain the

critical point. Further since the notion of an uncertainty region and an associated test

is applicable to any stability robustness results and since the U analysis framework

allows the inclusion of parametric error models, the applicability, limitations, and

usefulness of j will be typical of the applicability, limitations, and usefulness of many

of the other methods that are being researched to deal with mismodeled dynamics.

To begin assessing how the it results can be used to deal with the mismodeled

dynamics, realize that by its very nature the ju framework is applicable to mismod-

eled dynamics. As already discussed, parametric error models are quite appropriate

descriptions for mismodeled dynamics. Further, parametric errors in the values of

various elements in the A, B, and C matrices of a nominal state space model can be

directly incorporated into the general feedback structure of figure 4.7 [20], which in

turn leads to the real valued perturbations in XK. In this way the added knowledge

about the mismodeled dynamics can be directly incorporated into an error model

that is both realistic and theoretically useful for assuring stability robustness. Unfor-

tunately, only linear combinations of the errors are allowed in forming an uncertainty

description for A. This imposes a limitation for high order structural systems in

which the uncertain variables of interest typically do not represent themselves in a
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linearly related fashion; as will be seen in the following section. Thus the structured

singular value framework is applicable to mismodeled dynamics, but it is still not

general enough to specify any mismodeled dynamic uncertainty model.

Unfortunately, the inability to specify any uncertainty model is not the main

limiting factor of the u framework. Rather the inability to compute i[Mu(jw)] for

A E BXK is the primary limitation to using Theorem 4.4. Only for very specific

forms of A can the structured singular value be computed. As a result, an intense

amount of research has gone into computing tight upper and lower bounds on JL to

make the framework useful in general. A current summary of the cases in which A and

the bounds on it can be computed can be found in [19]. Needless to say for the case

of interest in which A contains real perturbations from representing the mismodeled

dynamics as parametric bounds on values in the state space representation, I can not

be computed and the current bounds on / for such a A can be arbitrarily conservative.

Given the insight gained in looking at a typical region of mismodeled dynamics in the

Nyquist domain, this inability to compute jt for the uncertainty description of interest

is to be expected. Simply put the inability to compute 1~ for A E BXIc is analogous

to not being able to easily determine whether or not the critical point lies within a

realistic region of mismodeled dynamics in the Nyquist domain. Even though the

inability to evaluate / or bounds on I at this time is the primary limitation of the

method, the framework should not be dismissed because if it were computable the

problem of assuring stability robustness for realistic uncertainties would be nearer to

resolution.

As far as the usefulness of the A framework is concerned, it is obvious that it is not

very useful at this point in time since IL can not be computed for the uncertainties of

interest. Further since Theorem 4.4 is an analysis result that only applies for a given,

specific compensator, the usefulness of using the ti framework to derive stably robust

compensators is limited to a hands on iterative approach in which compensators

are tested for their stability properties once they are designed. A procedure for

synthesizing compensators that satisfy the conditions of Theorem 4.4 does not exist

to date for the case where A contains real values. Although in the case where the real
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uncertainties are "covered" by complex perturbations, compensators that are robust

to such a fictitious and conservative description of the uncertainty can be synthesized

using the so called D-K iteration scheme [18].

It should now be apparent that the structured singular value framework captures

the inherent trade off involved in deriving ways to deal with mismodeled dynamics.

While it is possible to realistically define the uncertainties in the ,i framework, it is

intractable to to carry out the computations needed to test the stability robustness

properties of a compensator. At the other extreme, it becomes possible to compute

IL and apply Theorem 4.4 to verify the robustness of a compensator by relaxing the

realism of the uncertainty description. As seen, the penalty for using a mathemat-

ically tractable but physically unrealistic description of the uncertainty is an overly

conservative stability robustness criterion. A fitting example of this arises when the

system of Figure 4.4 is cast into the general system description of Figure 4.7 with

AL(s) = w,(s)A(s) and aA(3w) < 1 Vw. (4.46)

In this case, the stability robustness condition (4.45) can be reduced to (4.21), which

was shown to be a very conservative test for stability in the presence of mismodeled

dynamics. As is the case with many of the other methods that are being developed

to deal with the mismodeled dynamics, the L framework has potential to handle the

mismodeled dynamics in a non conservative way but can not currently be implemented

do to the inherent complexities of testing if the realistically defined uncertainties will

lead to a closed loop instability.

4.2.3 Structured Uncertainty Models for the Sample Prob-

lem

This section will serve to solidify the applicability and limitations of using a structured

uncertainty description to deal with the mismodeled dynamics in a structural model

by casting the mismodeled dynamics of the beam into the P-A system description.

Even though such a course of action is specifically tailored to the it framework, it is

important to keep in mind that when parametric errors are used in the structured
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singular value framework the applicability and limitations of tz are similar to those

of many of the other parameter uncertainty methods. Hence the insights gained in

constructing a P-A description for the beam are generic to any parametric uncer-

tainty model for structural systems. Furthermore, the task of casting the mismodeled

dynamics of the beam model into the P-A system description serves as a parallel de-

velopment to the work on defining an appropriate bound for the multiplicative error

at the beam output that will highlight the differences in using a structured or un-

structured uncertainty description of the errors in a model. The resulting error model

will also be used in Chapter 5 to study the robustness of specific controllers based on

the uncertain beam model and implemented on the actual truss system.

To begin the process, it is necessary to decide which parameters in the beam

model will be considered uncertain and to define a realistic amount of uncertainty

in them. Recall that in structural systems, describing the mismodeled dynamics

as parametric bounds on the frequency, damping, and residue of the modes in the

region of mismodeled dynamics is an appropriate description of the uncertainty in a

model. In the beam model, the first two structural modes, that is the predominant

dynamics below 700 rad/sec, can be classified as mismodeled dynamics. Drawing

on the knowledge gained in the assessment of the uncertainty in the beam model, a

realistic level of uncertainty in the frequency of the first two modes is a ±5% error

in the value of the nominal frequency that is derived from the finite element model.

Table 3.1, that shows the exact amount of uncertainty between the frequency of the

mismodeled modes in the beam and truss, confirms that the ±5% level of error in the

frequency is a sufficient level of uncertainty to consider. Recall that such information

is realistically available from experimental transfer function measurements. Even

though there is no damping uncertainty between the beam and truss models, it is

still fruitful to consider uncertainty in the damping of the mismodeled beam modes

to be consistent with reality. As in the academic example of Section 4.2.1, a -. 5%

variation in the nominal value of the percentage of damping ratio will be used to

describe the damping uncertainty for the mismodeled beam modes in a realistic way.

Since it is not clear how to measure and directly represent the residue uncertainty
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a & Error a a

Modal frequency w1  46.13 ±5 % 43.8 48.4

Modal frequency w2  287.64 ±5 % 273.3 302.0

Damping ratio 61,2 .01 ±50 % .005 .015

Table 4.2: Realistic mismodeled uncertainty description of the beam model. Frequencies
are in rad/sec.

in a multivariable model, the residues of the mismodeled beam modes will not be

considered uncertain here. A table summarizing the above parametric uncertainty in

the frequency and damping of the first two structural modes is shown in Table 4.2.

Notice from (2.10) and (2.5) that these parameters only appear in the A matrix

of the state space representation of the beam model. In line with the notation used

for parameter errors in Section 4.2.1, this uncertain matrix will be denoted as A(a)

where a is the vector of uncertain parameters that can be defined as follows for the

beam model

W2

a = (4.47)

In order to arrive at a P-A system description of a model with a A E BXKc, it

becomes necessary to introduce some new notation. Rather than letting ai be the

uncertain variable that is bounded from above and below, S6 E R will now denote an

uncertain variable in the nominal model that can take on any value between +1 and

-1, that is

Is,1 < 1. (4.48)

There is no lobs in generality in switching the uncertain variables in the model, as it is

simply a matter of notation to consider the 6; as the uncertain variables rather than

the actual physical variables. Specifically, each uncertain variable will be represented

as

ai = a, + 6iq, with S16i < 1 (4.49)
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where &i is the nominal value of the uncertain parameter and qj is a scalar variable

that quantifies the amount of error in ai. By letting 5i take on its maximum or

minimum possible value, it is simple to evaluate qi from (4.49) and the upper and

lower bounds of the uncertain parameter ao

qi = o - ~i or qi = Ci - a. (4.50)

In this way, the level of error in an uncertain variable is now directly reflected to qi.

In using this kind of description of the uncertainty, the goal of obtaining a P-A

system description boils down to defining fictitious inputs, vi, and outputs, zi, for the

state space model of the beam

x(t) = A(a)z(t) + Bzu(t) + Bjd(t) (4.51)

y(t) = Cx(t) + D 2 U(t)

for the m uncertain variables so that

vi = 6izi i= l,...,m. (4.52)

Realize that doing so will produce a block diagonal A matrix that will belong to the

bounded set

BXIc = {A = diag (8, 2 ,..., m) : 6i E R, -(A) < 1}. (4.53)

where U(A) < 1 because each element of A is similarly bounded by definition (4.49).

Since this form of the uncertainty is directly applicable to the structured singular value

framework presented in the previous section, the motivation for letting 65 denote the

uncertain variables rather than the true uncertain parameters, a1 , through (4.49)

should now be apparent.

To see how the fictitious inputs and outputs can actually be defined, consider for

the moment the canonical form of the A(a) matrix associated with the uncertain,

scalar system, (4.32), used to generate the region of mismodeled dynamics in the

Nyquist domain

0 1
A(a) = w -2(w,, (4.54)

n
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While the form of this example is very similar to the actual, uncertain A(a) matrix

of the beam model, it is much simpler to work with in understanding how to define

the vi and zi. By neglecting the residue uncertainty in this example the uncertain

variables for (4.32) become

W = (4.55)

which is akin to the uncertainty description of the beam model. Before defining

the fictitious inputs and outputs, it is necessary to switch to the 6i notation for the

uncertain variables. This can be done by substituting the 6i uncertainty description

of (4.49) for aj into (4.54). Doing so decomposes A(a) into the nominal A matrix,

denoted as A, and a perturbation matrix, AA, that depends on the uncertain 6i

0 1
A(a) = [ + + +A + AA (4.56)

-( + 1 -2( + 82q2 1

where

0 1
A= 1 (4.57)

and

AA = . (4.58)
-2, q161 - q12612 -2q1,61 - 2 &q262 - 2qlq2816 2

Notice from this description that the uncertain 8i parameters do not appear in a

linear fashion in AA. Hence there is no way to define fictitious inputs and outputs

to arrive at the linear relation of (4.52), which is a necessary step in reflecting the

uncertainty into a form that can be handled in the /z framework. This inability to

directly -represent the uncertainty as bounds on any variable in a model of a system is

a limitation of using parametric error descriptions in the linear P-A interconnection

structure. As seen in this simple canonical example, this problem is especially relevant

for structural systems in which it is simple to evaluate realistic levels of uncertainty

in the frequency and damping of the structural modes, but for which it is not feasible

to directly use this information in a technique that guarantees stability robustness

for the mismodeled dynamics.
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There are a few techniques that can be used to arrive at a linear combination

of the uncertain parameters in a system. For example, one might try to linearize

the non-linear relation amongst the uncertainties as proposed in [45]. However, the

approach that will be applied here, which is used in many other parameter uncertainty

methods [44, 20], is more conventional. Basically, the non-linear structure of the

actual uncertain variables that may appear in AA is avoided by considering the

individual elements in the state space matrices to be the parametrically uncertain

variables. As long as the bounds on the uncertain elements in the state space matrices

over bound the original uncertainty description in the model, this method, while

slightly more conservative than the realistically defined error model, is safe to use.

By further assuming that there is no dependence among these uncertain variables,

a quite simple procedure for casting such parametric errors into the P-A system

description is available [50]. In terms of the canonical example, this means that

(4.55) will no longer be considered the uncertain parameters. Instead

S= (4.59)

will be defined as the uncertain variables in that model to get a linear relation amongst

the uncertainty. To show that this is the case, notice that when the 6i uncertainty

description of (4.49) is substituted into (4.54) as above A(a) now decomposes as

0 1
A(a) A [ 6( A ] + AA (4.60)

wn + "9 -(2(Wn + q262)

where A is the same as in (4.57) and

AA = 0 + 62 (4.61)

-q1S6 -q262 -q1 0 0 -q2

In essence to get a linear relation amongst the uncertain parameters of a structural sys-

tem in order to form a linear feedback interconnection structure, the actual elements

of the state space matrices of the model rather than the true uncertain parameters

need to be considered the mismodeled variables.
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Before returning to the uncertainty description of the beam and the process of

defining the fictitious inputs and outputs of (4.52), there is some more notation and

concepts which need to be discussed that are easily visualized from the canonical

example. Notice that the independent and linear relation amongst the 6i in AA

from (4.61), that was arrived at by considering the elements of the A matrix be the

uncertain parameters, leads to a further decomposition of AA into the sum of rank

one perturbations matrices, to be denoted as Ak in general, weighted by the 6k
m

AA= E kAk. (4.62)
k=1

As will be shown, writing the rank one Ak as the outer product of two vectors,

Ak = akbk, (4.63)

is instrumental in forming the P-A system when there are real parameter errors in

a model. Also notice from (4.61) that for A(a) E RnXn with an uncertain element in

the (i,jth) location of A(a), a possible choice for ak and bk are n length vectors of

zeros except for a qk in the ith row of ak and a -1 in the jth row of bk. Finally realize

that all these concepts and notation are directly applicable to the sample problem

since the uncertain variables appear in (4.54) and ( 2.10, 2.5) in exactly the same way

except for their location in the matrix.

Even though a realistic, parametric uncertainty model for the sample problem was

laid out at the beginning of this section, the subsequent investigation has shown that a

less realistic, yet useful, uncertainty model must be defined to arrive at a P-A system

description. As in the case with the canonical example, the uncertainty description

needs to be expressed as parametric bounds on the individual elements of the state

space matrices to arrive at a linear representation of the errors. Hence the vector

of uncertain variables that will be used to cast the knowledge of the mismodeled

dynamics in the beam model into the P-A system description is

2

2

a = (4.64)
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Realize that admitting such an uncertainty model is somewhat unrealistic because

it considers wl and 261wl to be two independent, uncertain variables when they are

not since the true independent, uncertain variables are wl and ý1. The implication of

doing this is, of course, a more conservative error model, but an error model that is

still far less conservative than any unstructured error model. Further realize that at

this point there has been a sufficient enough level of ad hoc engineering in defining

the mismodeled dynamics model that a slight bit more should not make a drastic dif-

ference. In any case, the realistic uncertainty description that was previously defined

will not be ignored. Rather it will be used to define the uncertainty model based on

the uncertainty vector (4.64).

Acknowledging that (4.64) is the vector of uncertain parameters in the beam model

that will be used in deriving the P-A system, it is necessary to evaluate the qi to arrive

at a model of the uncertainty in terms of the 6i. To this end, the realistically evaluated

upper and lower bounds on the wi and ý, for the first two bending modes of the beam,

that are summarized in Table 4.2, were used to approximate the upper and lower

bounds on the aj of (4.64). Using over-bars and under-bars to respectively denote

the upper and lower limits of the parametrically uncertain variables, an estimate for

the set of bounds on (4.64) is

2 2

S= and = 2 (4.65)

212w. 2Z20 2

Table 4.3 shows the values of these bounds and the percentage of error between the

nominal values of the ac in (4.64) and the upper and lower bounds defined in (4.65).

Notice from this table that the amount of error between the upper and lower bounds

and the nominal value of the variables is different. Since the level of error between

the nominal value and its bounds for all the uncertain variables is greatest for the

upper bound, the values of the qi, which are shown in Table 4.3, were evaluated from

(4.50) using -i in order to cover all the possible values of the parameters defined by

the bounds in (4.65). Realize that there is really no loss of fidelity in the uncertainty
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a a Error (a) Error (a) q

W1  2127.98 1920.2 2345.5 9.8 % 10.2 % 234.1

w2  82,736.77 74,665.6 91,216.1 9.8 % 10.2 % 9101.1

261wl .922 .438 1.45 52.5 % 57.5 % .536

262w2  5.74 2.74 9.06 52.5 % 57.5 % 3.32

Table 4.3: Parametric uncertainty description for a linear representation of the errors in
the beam model. Frequencies are in rad/sec.

model by choosing the qi in this fashion, as the uncertainty model is already ad hoc

at this point from choosing to use a description that bounds the elements in the state

space matrices rather than the truly uncertain variables.

Given this uncertainty description and the previously defined notation, it is now

possible to construct the P-A system for the beam model with parametric uncertainty

in the values of its A matrix. Without a loss of generality, the external inputs, w,

and the performance variables, e, will be ignored for simplicity in forming the P-A

system description so thatH Ap Bp1 Bp2  X
z Cp1 Dp1  D P12  v (4.66)

Y Cp2 Dp21 DP22  U

is the model that needs to be created. As was the case with the canonical model,

using the 6, uncertainty description of (4.49) for A(a) in (4.51) decomposes A(a) into

a nominal matrix and a perturbed matrix that is linear in the uncertain 6i parameters.

Since the uncertain variables in (4.54) are exactly the same as those in (2.10, 2.5)

except for their location in the matrix, the further decomposition of AA into (4.62)

with (4.63) also applies to the beam model so that A(a) in (4.51) can be also be

written as

A(a) A + ~ Skakb T  (4.67)
k=1

As described in the case of the canonical example, the ak and bk vectors can be defined

simply from the qk and knowledge of the specific location of the kth uncertain variable
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in the uncertain A matrix. Now defining the fictitious output of the system to be

Zk(t) = b X(t) k = 1,... (4.68)

recalling that the desired fictitious inputs needed to arrive at A E BXxc in (4.53) are

vk(t) = 6kZk(t) k = 1,...,m, (4.69)

and using this information in (4.67) produces the state dynamics in terms of the

inputs and outputs of (4.66)

) = (t) = AX(t)+ E a +viB(t) B2 .(t) (4.70)
k=1

Further stacking the ak and bk vectors for the m = 4 uncertain elements in the beam

model into matrices

v(t) = W and z(t) = ( (4.71)

produces the fictitious inputs and outputs of (4.66). Augmenting (4.71) to the inputs

and outputs of (4.70) then provides the values of the matrices for the P-A system

description of the beam model with parametric uncertainty in its A matrix, (4.66),

Ap = A Bp, = [a1 a2 a3 a 4] Bp 2 = B2 (4.72)

S[bT b[ b T b TpI = C (4.73)

Dp, = Dp, = Dp, = 0 DP,2 = D 2  (4.74)

This is the desired model that could be used in the i, as well as many other parametric

uncertainty frameworks, to deal with the mismodeled dynamics in the beam model.

Having completed the mismodeled dynamics uncertainty model for the beam, a

few comments are now in order. First of all realize that even though no residue

uncertainty was considered in the beam model, mismodeled dynamics resulting from

residue uncertainties could have been accounted for by letting elements in the B 2 and

C matrices of (4.51) be parametrically uncertain and applying the same decomposition
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tricks to them that were used on the A(a) matrix. The process of forming a P-A

system for this more general case is described in [50].

Another item to consider here is that the added information available about the

mismodeled dynamics was extensively utilized to create a very structured description

of the uncertainty. While the description was limited to a linear form, it still directly

represented parametric errors in the real values of the state space matrices. Unfortu-

nately as a result of the very structured nature of the uncertainty model, there are no

feasible design methodologies that can be employed to design compensators that are

robust to such errors; as there are for unstructured error descriptions. Even though

this is the case, the uncertainty description outlined above is still useful in evaluat-

ing the robustness of a given compensator to the mismodeled dynamics in the beam

model. A possible, yet numerically intensive, method for checking the robustness of a

compensator to a parametrically structured uncertainty model was already outline in

Section 4.2.1. Recall that this involves evaluating .(Iw) in (4.1) over all the possible

values of the uncertain variables, which are the 6i in this case, and checking whether

or not the critical point lies in the resulting region. Given a mathematical model of

the truss system, the fidelity of the mismodeled dynamics model for the beam out-

lined in this section could also be evaluated by constructing the R(jw) region and

checking whether or not the Nyquist contour for the truss lies within it. Realize that

these numerically extensive tests do not lead to any simple procedures that can be

used to design compensators which are robust to parametric uncertainties, and they

are thus of limited interest in general.

At this point the assessment of the uncertainty in model of a system along with a

thorough overview of how to deal with the uncertainties in a model has been presented.

In the following section, compensators will be derived based on the beam model and

applied to the actual truss model to see to what extent a realistic assessment of the

uncertainty and the robustness techniques discussed can be used to ensure stably

robust compensators. Also given a specific compensator, some of the mismodeled

dynamics visualizations for multivariable systems that require compensators will be

presented using the parametric uncertainty model of the beam derived in this section.
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Chapter 5

R2 Control Designs

Given a quantifiable description of the uncertainty in a model, one can incorporate

stability constraints in their controller designs to ensure robustness. However as

seen in the previous chapter, not all classes of modeling errors can be accounted for

in simple and useful ways. In this chapter, the framework of the sample problem

will be used to investigate to what extent stability robustness can be guaranteed for

unmodeled dynamics and what the ramifications of not having any simple and useful

ways to handle mismodeled dynamics in a model are on the stability properties of

the actual closed loop system. Developing compensators based on the beam design

model, derived in Chapter 2 and analyzed in Chapter 3, and applying them to the

actual truss system not only allows for such an investigation but also provides an

indication of the level of performance that can be achieved given a typical structural

model with mismodeled and unmodeled dynamics. In essence, the methods, or lack

there of, for dealing with the uncertainty in a model that were discussed in Chapter 4

will be _tested in the framework of the sample problem by deriving compensators

based on the beam model and applying them to the actual truss system. If it is

possible to synthesize multivariable controllers based on the uncertain beam model

that achieve a decent level of performance and are stably robust given the modeling

errors, it should be possible to achieve similar results for realistic systems like the

Interferometer testbed .that the sample problem mimics.

Before facilitating a discussion on the effects of modeling uncertainty in the closed



loop, the process that was used to design compensators for the sample problem must

be described. To this end, the specific design requirements and evaluation criterion

which were used in designing compensators for the sample problem are outlined in

the following section. Once the design specifications are laid out, the details of the

frequency weighted 7- 2 synthesis method used to design the compensators will be

presented along with a discussion of the heuristics of how to choose the frequency

weights to meet the design specifications. Since the intent intent here is not to evaluate

which synthesis procedure provides the best compensators, only a few designs will be

discussed in the final section to illustrate the insights and results of the previous work

on assessing and dealing with the uncertainty in a model of a structural system.

5.1 Design Specifications

The majority of structural control problems in one way or another are intended to

quiet the motion at particular locations on a structure resulting from some sort of

external or internal disturbance. Hence, a disturbance rejection control problem to

quiet the motion of the truss' outputs, yi, in the presence of the internal disturbances,

di, will be considered for the sample problem. In doing so, it is vital to realize that

the primary motivation in designing such a control system is to achieve a high level

of performance, that is disturbance rejection, since the open loop dynamics are sta-

ble. However since the truss is a lightly damped structure that is difficult to model

precisely, which is accounted for by basing the control designs on the beam model,

it becomes important to ensure that control systems developed for performance are

robust to the uncertainties in the model used to design them so that they do not cause

a closed loop instability. These remarks allude to a simple and concise set of specifi-

cations for the sample problem that will provide the basis for designing compensators

for the truss system based on the beam model. Specifically any compensator, K(s),

should

1. Provide the greatest amount of disturbance rejection at the outputs possible

and
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2. be robust to the uncertainties in the nominal model used to design K(s) so

that it will not cause a closed loop instability when applied to the actual truss

system.

As is usually the case, both criterion can not be met simultaneously and there will be

an inherent trade off between the achievable performance and amount of robustness

in any one design.

Before proceeding onto a description of the synthesis method that will be used to

achieve the outlined design goals, it is useful to outline how the design specifications

will be evaluated for a given compensator design. As far as evaluating the performance

is concerned, it is necessary to classify a model for the expected disturbances to

evaluate how well a given controller minimizes their affect on the outputs of the

truss. In defining the disturbances, it is useful to recall that the nominal design

model of the beam derived in Chapter 2

+(t) = Az(t) + B 2u(t) + Bid(t) (5.1)

y(t) = Cz(t) + D 2u(t) + 9(t) (5.2)

is driven by truss disturbances, di, and inputs, ui, and produces truss outputs, yi.

To account for the fact that perfect sensors do not exist in reality, the sensor noise,

9(t), is now included in the model of the truss outputs. Letting the sensor noise

and disturbances be independent, zero mean, Gaussian, white noise processes with

covariances

d(t) rww (t,7) AE d(t) T(, )= 6(t - 7) (5.3)
S9(t) 0 ]

allows for a realistic and simple stochastic framework in which to work in. Realize

that there is no loss in generality in allowing the disturbances to be white, as any

non-white disturbance could be modeled as the output of a shaping filter driven by

white noise. The intensity of the disturbances, E,

1x10-6N2s 0

0 1 x 10-6 N 20 2 (5.4)
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was chosen to produce reasonable levels of open loop motion at the outputs of the

truss. On the other hand, the sensor noise intensity, ), was chosen to reflect the

accuracy in the measurement system. For the sample problem, a nanometer level of

RMS, root mean square, accuracy was assumed for the true sensors so that the actual

sensor noise intensity, ®true, was set at

[1 x 10-l 8m2s 0
true 0 1 x 10-18m2s (5.5)

However, the outputs in (5.2) are scaled by (2.32), and thus the true sensor noise

intensity needed to be scaled appropriately by (2.32) as well.

8.1 x 10-8 s 0
Y 0 2.6 x 10- s

With this model of the truss, the steady state frequency domain representation of

(5.1,5.2) becomes

y(s) = G2(s)u(s) + Gi(s)d(s) (5.7)

G2(s) = C(sI - A)-IB 2 + D2  Gi(s) = C(sI - A)-IB 1  (5.8)

where G2 (s) and Gl(s) will be respectively referred to as the control and disturbance,

open loop, transfer function matrices.

Given the disturbance model defined above, the statistics of the outputs can be

used to evaluate the extent to which a specific compensator meets the performance

metric for the sample problem. Specifically, the amount of corruption at the outputs

of the truss can be evaluated from the RMS values of the beam outputs in (5.2) as

well as the magnitude of the disturbance to output transfer function, "Gi(jw), of

the beam model. Both these measures of the output degradation for the open loop

system are shown in Figure 5.1. Using this portrayal of the open loop performance,

the performance of specific compensators will be evaluated by comparing the open and

closed loop RMS values of the beam outputs as well as the magnitude of the open loop

and closed loop, disturbance to output transfer function matrix of the beam system.

Using this visualization of the performance of a compensator, the desire to provide as

126



Open loop performance metric for the sample probelm
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Figure 5.1:
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Open loop performance metric for the sample problem: Gx(cjw) and the open
loop RMS values of y(t).

much disturbance rejection as possible at the outputs of the truss will be measured

by the ability to reduce the RMS values of the outputs as much as possible; which

is also analogous to reducing the magnitude of the disturbance to output transfer

function as much as possible.

The robustness specification for the controller will be analyzed in two ways. First,

for a given K(s) the analysis methods for dealing with the uncertainty from Chapter 4

will be used to check that the compensator is robust to the unmodeled dynamics in

the beam model. Specifically, Theorem 4.3 will be used via (4.21) with the w,,(s)

defined in Section 4.1.3 to verify if a given compensator is robust to the unmodeled

dynamics in the beam model. While no analogous test exists to easily check the

robustness of a compensator to the mismodeled dynamics in the beam model, the

robustness of some of the compensators derived for the truss to the mismodeled

dynamics will be discussed in terms of the mismodeled dynamics region in the Nyquist

domain; as was done for the scalar example (4.32) in Section 4.2.1. The second way in
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which compensators will be analyzed for their robustness to the modeling errors is by

evaluating the poles of the actual closed loop system that can be calculated by directly

applying the beam based compensator to the analytical model of the truss. This step

is akin to applying a compensator designed based on a model of a system directly

to the actual system. If doing so drives the actual closed loop system unstable, the

compensator will obviously not satisfy the robustness specification.

Realize that both the performance and robustness specifications for the control

system have frequency domain interpretations. The performance metric can be vi-

sualized as minimizing the magnitude of the disturbance to output transfer function

matrix, and the robustness specification for unmodeled dynamics can be evaluated by

comparing the size of the multiplicative error at the output of the beam model to the

size of the closed loop transfer function matrix. As a result of these frequency domain

specifications, a loop shaping approach to designing the compensators to achieve the

desired performance and robustness was pursued.

5.2 Frequency Weighted 7F2 Synthesis

The performance specifications in the previous section can be readily met by con-

sidering a 7 2 controller synthesis. For the standard feedback system interconnection

the objective of a 'H2 controller is to find a stable compensator, K(s), that minimizes

e

Figure 5.2: The general feedback system description.

IITew12, the W2 norm of the closed loop transfer function matrix from the exogenous

signals, w, to the performance variables, e. A 712 cost criterion is preferable given the

RMS output performance metric since it seeks to minimize the average energy over

all frequencies captured by the disturbance to output transfer function. Furthermore,
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I I

Figure 5.3: Block diagram of the beam model with frequency weights.

the robustness specification for the unmodeled dynamics can be easily satisfied in the

H 2 framework by including frequency weights in the design, which simply amounts

to augmenting the desired weights to the general system, P(s). Both these features

of 'H2 optimal control, as well as the ease of synthesizing compensators, make it an

appropriate method to use in developing compensators for the sample problem given

the design specifications laid out in the previous section.

In using a ?-2 synthesis procedure to develop controllers for the sample problem, it

is useful to cast the beam model into the general feedback form of Figure 5.2. To this

end, the block diagram representation of the beam dynamics (5.1,5.2) in the general

system description form along with some weighting functions is shown in Figure 5.3.

Since the design specification call for a reduction of the motion of the outputs while

maintaining stability in the presence of the modeling uncertainties, the performance

variables for the sample problem

e = (5.9)
e2
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and their respective weights, Wi(s) and W2(s) in Figure 5.3, were defined to penalize
the noiseless outputs and the control inputs of the system. The third weight shown

in Figure 5.3, W3(s), can be used as an additional degree of freedom in the controller

design, or it can alternatively be viewed as as a means to model the actuator dynamics.

For now it is sufficient to realize that the weights will be used to shape specific loops

to meet the design specifications. The actual heuristics of how to choose the weights

to do so will be discussed in the sequel.

In synthesizing l(2 compensators, it is also useful to work with a state space model

that captures the inputs and outputs of the general system shown in Figure 5.2.

Namely the state space representation

4 [ Ap Bp1  Bp X
e Cp, Dp,, D 12, w (5.10)

kY ) Cp, Dp,, D 2 2,

will be now used to classify the dynamics of the design model for the sample prob-

lem used to synthesize 7H2 optimal controllers. In this representation for the sample

problem, the exogenous signals

W = d (5.11)

are the independent, zero mean, Gaussian, white noise disturbances with the covari-

ance defined by (5.3), (5.4), and (5.6). The specific values of the matrices in (5.10) are
simply arrived at by augmenting the appropriate weight dynamics to the design plant

model dynamics, (5.1, 5.2), and playing with the signal interconnection structure to

arrive at the inputs and outputs needed to form (5.10). In fact, the real advantage of

using this general system description is that the frequency domain weights, shown in

Figure 5.3 that are used to shape certain loops to meet the design specifications, are

simply included in the controller synthesis by forming the state space representation

of (5.10). Specific values of the state matrices in (5.10) along with a more detailed

description of how they were obtained for various combinations of the weights that

were used in the sample problem designs are included in Appendix C for reference.

Given the general description of the sample problem in (5.10), it is now possible
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to derive the form of the R2 optimal compensators, K(s) that will be used to control

the truss. In the stochastic framework at hand, the well known solution to the LQG,

Linear Quadratic Gaussian, controller synthesis problem can be used to find the form

of the optimal 7-2 compensator since the 7t 2 cost is equivalent to a quadratic cost

criterion

J = E lim (- eT(t)e(t)dt) (5.12)

in this situation. If DP,, = 0 and both Dp,, and D 21 have full column rank, the

separation principal applies and allows the optimal 7 2 compensator to be constructed

by designing a Kalman Filter to estimate the states in (5.10) and designing a full

state feedback control law that minimizes the cost in (5.12) to regulate the estimated

states [21]. Since the solution to the 'H~ problem is well known and appears in [22],

only the key aspects of the procedure involved in forming the optimal compensator

will now be presented.

The first part of the solution involves the construction of a Kalman Filter to

estimate the state of the model. With the model now in the general system description

of (5.10), the estimated state, x,(t), must be determined form the statistical model

for w(t), the dynamical model for z,(t) from (5.10), and the measurement model for

y(t) from (5.10)

4p(t) = Apxp(t) + Bp2u(t) + Bplw(t) (5.13)

y(t) = Cp2x,(t) + Dp,,22u(t) + Dp,w(t). (5.14)

This estimation problem can be simplified to a more standard one by realizing that

the statistical model for w(t) will not change from design to design since it has

already been specified, and that the measurement model for y(t) will not change from

design to design since the performance variables and the design degrees of freedom

are represented in terms of e(t) rather than y(t) in this framework. As a result, the

Bp1 and Dp2, matrices will always be of the form

Bp = B and DP2 = 0 I (5.15)
0 0
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for the beam design model (5.1, 5.2) '. Using this information and the definition

of w in (5.11), the estimation problem for (5.13, 5.14) reduces to a more standard

estimation problem for

4p(t) = Apzp(t) + Bp2u(t) + Bid(t) (5.16)

y(t) = Cpz,(t) + DP2,u(t) + 0(t) (5.17)

where

BX = B, (5.18)0
For these dynamics and the noise models for d(t) and 0(t) defined by (5.3), (5.4), and

(5.6), the dynamics of the Kalman filter for the estimated states, ip(t), are

p(t>) = Apx-,(t) + Bp2u(t) + K, [y(t) - -(t)] (5.19)

3(t) = Cp2 p(t) + Dpu(t) (5.20)

In the state equation for Xp(t)

K, = E,,C T -1 (5.21)

is the filter gain, and E,,, the estimation error covariance, is the unique positive

definite solution of the estimator Riccati equation

0 = nExAT + ApEx + B1 aBT - ECcO- 1ICp,E,,. (5.22)

The second part of the optimal compensator solution involves finding a regulator

gain, K,, that produces a linear control based on the estimated dynamics

u(t) = -K,r,(t) (5.23)

The value of the gain K, is determined by minimizing the quadratic cost in (5.12)

subject to the constraint that

4p(t) = Apxp(t) + Bpu(t) + Bid(t), (5.24)

1This can be seen in Appendix C where specific values for the matrices in the state space de-

scriptions of (5.10) for the sample problem are presented.
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where d(t) is a white noise process. Notice from (5.10), in which Dp,, = 0 by as-

sumption, that

e(t) = Cpzp(t) + Dp,2u(t), (5.25)

e(t)Te(t) = zX'(t)RX,,z,(t) + 2u(t)TR.,z,(t) + u(t)TR.uu(t) (5.26)

R, A Ct R, AD 2 C 1  R, A DT D,,, (5.27)

and the cost in (5.12) is nothing more than the standard stochastic version of the cost

for a LQR, Linear Quadratic Regulator, problem. Thus, the optimal choice for the

desired gain K, is given by the solution of the well known LQR problem for which

K, = Ro- [B S + R. (5.28)

In the expression for K,, S is the unique positive definite solution of the regulator

Riccati equation

-sA + ATsD- SBT R.-BT2S T -I0= SA+ATS -SBp 2 R BpS - R RRu. + R,, (5.29)

where

A Ap - Bp,2R1 RuR. (5.30)

Once the estimator and regulator gains are evaluated, the optimal 2-1 controller

can be realized through a model based compensator that uses the inputs and measured

outputs to drive the Kalman Filter (5.19, 5.20) which in turn provides the estimated

states used to compute the actual control in (5.23). Assuming a negative feedback

interconnection structure for the compensator and letting x,(t) denote the states of

the compensator, the dynamics of the optimal ]'2 compensator that minimizes the

cost in (5.12) are

i'(t) = Axc(t) + Ky(t) (5.31)

u(t) = -K,,(t) (5.32)

where

A, A Ap - BpK, - KCp2 + KDp,, K,. (5.33)
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Given this notation, the frequency domain representation of the compensator is

K(s) = -K,(sI - A,) -1 K , . (5.34)

This completes the description of the form of the optimal 7H2 compensator that will

be used to control the truss.

Notice that the order of the optimal H2 compensator has the same number of

states as the general system in (5.10). That is

dim(A,) = dim(Ap) = n + ni + n 2 + n3 (5.35)

where n is the number of states in the original design model of (5.1) and ni is the

number of states needed to represent weight Wi(s). Obviously then the use of fre-

quency dependent weights directly increases the order of the optimal compensator.

Hence, the order of the frequency weights is an issue to consider when designing a

control system, as the compensator must ultimately be implemented.

At this point the method for synthesizing compensators for the sample problem

has been outlined, and it is worthwhile to notice how the feed-forward Dp,, term in

the measurements, that arises from including the static correction of the truncated

dynamics in the reduced order model, enters into the synthesis process; as it is not

standard practice to include such a term in a model. First of all, realize that the

inclusion of the Dp,,u(t) term in the measurements simply gets carried along for

the ride in the Kalman Filter portion of the solution just like the contribution of

the controls, Bp2u(t), since it is a deterministic quantity. Then in the regulator

calculation, the Dp,, term simply leads to a cost with a cross weighting which is

nothingout of the ordinary. Finally, there is an extra term in the Ac matrix of the

model based compensator that arises from the portion of the Kalman Filter that

mimics the noise free dynamics of the design model. All in all, the inclusion of the

feed-forward Dp,, term does not have any drastic effect on the controller synthesis.

It is also useful at this point to present the form of the closed loop dynamics

that will be used to evaluate the performance and stability characteristics of a given

compensator K(s). Recall that the performance will be evaluated by calculating the
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RMS values of the outputs of the closed loop system and computing the magnitude of

the output to disturbance closed loop transfer function. Both computations require

the formation of the closed loop system dynamics. Augmenting the compensator

dynamics, (5.31, 5.32), to the open loop dynamics, (5.10), and letting the augmented

state be

x(t) = (ZP(t) (5.36)

the closed loop dynamics of the sample problem for a given compensator are

i(t) = Adx(t) + Baw(t) (5.37)

y(t) = Cax(t) + 0(t) (5.38)

where

A C-BK K BA=[ B 0AB K [ B (5.39)K, Cp, Ac - KDp2•,K- 0 Ke

CA [ Cp, -DP,2 2, K. (5.40)

With this representation, the RMS values of the outputs in the closed loop can be

readily evaluated since w(t) is a white noise process driving a linear system. Taking

(5.37, 5.38) into the frequency domain,

y(s) = Ga(s)w(s) with Gd(s) = Cd(sI - Ad)-1 Bd, (5.41)

yields the expression for the closed loop disturbance to output transfer function,

Gd(s), whose magnitude, -Gd(jw), will compared to "G1 (3w) to provide a picture of

the performance achieved by a given compensator.

As far as .the stability analysis of a compensator is concerned, realize that the

process of applying the beam based compensator, K(s), to the truss model and

checking if the actual closed loop will be stable can be carried out by replacing the A,

B 1, B2, C, and D2 terms of the beam model in Ad with the corresponding terms of

the truss model and checking whether or not the real parts of the eigenvalues of the

resulting Ad are all negative. While this provides an absolute measure of the stability
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of the actual closed loop system, recall that the robustness of a given compensator

to the unmodeled dynamics in the model will be carried out by checking that (4.21)

is satisfied for the error bounds defined in Section 4.1.3. To do so, realize that

the C(s) term in (4.21) was derived specifically from the feedback interconnection

structure shown in Figure 4.4, and as a result the stability robustness condition in

(4.21) only applies to systems in the feedback interconnection structure of Figure 4.4.

Obviously, the feedback interconnection of Figure 5.3 used to derive the 72 optimal

compensator is not in the form needed to test for stability robustness through (4.21).

To get the proper expression for C(s) to check a given compensator's robustness

to unmodeled dynamics, the system description of Figure 5.3 used to derive K(s)

in (5.34) can be reduced to the simple structure of Figure 4.4. This is done by

neglecting the disturbances in the system, that is setting w(t) = 0; adding a fictitious

reference signal, r, to the loop after y and before K(s) in Figure 5.3; augmenting the

the actuator dynamics, W3(s) to the control loop dynamics, G2(s), so that G(s) in

Figure 4.4 is now given by G(s) = G2(s)W3(s); and realizing that the bounds on the

multiplicative error developed in Section 4.1.3 are for a multiplicative error at the

output of the control loop which, with w(t) = 0, is before y in Figure 5.3. Doing so,

the proper test to check the stability robustness of a given 7-2 compensator to the

unmodeled dynamics in the beam model of (5.1, 5.2) is

1iC, (3w) < ) Vw (5.42)

where

C,.(s) - [I - G2(s)W 3(s)K(s)]-1 G2(s)W 3(s)K(s). (5.43)

Since the 7 2 framework is hands on in the sense that a given compensator design

is arrived at .by iterating on choices of the weights to achieve the desired design

requirements, the hands on weight for wm,(s) defined by (4.25) will be used as the

bound on the multiplicative error at the output in the beam model to check the

robustness properties of compensators derived based on the beam model.

In essence, this section has been very notational so that the actual compensators

and the performance and robustness measures that will be used to evaluate them are
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clearly understood. In the next section, the heuristics of how to actually choose the

design weights will be described.

5.3 Frequency Weight Selection

Weights in any optimal control design framework act as knobs that the control system

designer can tune to arrive at a design that meets the desired specifications. Typically,

constant weighting values provide a sufficient enough level of freedom to meet the

design requirements. However, there are cases in which constant weights do not

provide enough freedom in designing compensators to meet the specifications. The

sample problem is one such case as will be seen in the next section when a standard

LQG design for the sample problem in which

1
Wl(s) = W 3(s) = I and W2(s) = pI (5.44)

is presented. In cases where the performance and robustness criterion are stringent,

frequency dependent weights can be used to provide the extra degrees of freedom

needed in the design process to meet the outlined specifications. In the case of

the sample problem, a sufficient enough level of design freedom was arrived at by

using frequency dependent weights that influenced each component of the signal past

through them equally. That is

Wi(s) = wi(s).I, W2 (s) = w2(s).I, and W3(s) = w3(s)-I (5.45)

where the wi(s) for i = 1, 2, 3 are the scalar transfer function weights that were

specified in each design to attempt to satisfy the desired specifications.

To see how the choice of the weights influence the controller characteristics, con-

sider first Wi(s) and W2(s) that directly weight the performance variables in (5.10).

These weights will obviously have a strong effect on the compensator since they di-

rectly influence the 7-2 cost, IIT,, 12, that is minimized by K(s) in (5.34). To explicitly

see how the weights influence the control system design, a frequency domain extension

of the the equivalent quadratic cost of (5.12) will be used [51]. Letting

y,(t) = C•,zp(t) + Dpz2u(t) (5.46)
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denote the noiseless output and using Parseval's theorem to express the cost (5.12)

in the frequency domain roughly yields

1 r
J~ -% f IW1(JUw)IY(H( ( +) I + 1(w) 2uH(3w)u(w)) dw, (5.47)27r J-oo n

which provides an explicit representation of how Wi(s) and W2(s) influence the cost

used in synthesizing controllers for the sample problem. From this approximate fre-

quency domain expression for the cost and the design specifications, it becomes clear

how to choose w1(s) and w2(s). To understand why this is so, recall that it is the

objective of the control to minimize the cost in (5.47). Further, quantities with a

large weighting in the cost are considered more detrimental to the minimization and

are thus penalized heavier. Hence, a large weight should be applied to the variables

in the cost that the controller needs to make small. With the frequency domain in-

terpretation of the cost, these concepts can be applied on a frequency by frequency

basis.

In the case of the sample problem, recall that the robustness specification calls for a

small closed loop gain at high frequencies to satisfy (5.42). To meet this specification,

w2(s) should be chosen so that its magnitude is large at high frequencies and small

at low frequencies. In this way, W2(s) tells the cost that it wants each control to be

small at high frequencies where the fidelity of the model is poor and large at the low

frequencies to get a good level of performance where the fidelity of the model is good.

As far as the output weight is concerned, realize that since the model of the truss is

not accurate at high frequencies it would be foolish to try and achieve a high level

of disturbance rejection at high frequencies. Hence wi(s) should be chosen to have

a large magnitude at low frequencies to tell the cost that it should concentrate its

efforts on making the outputs small where the model is well known. Indeed, these

were the kinds of weights that were used to meet the design specifications of the

sample problem as will be seen in the next section.

As far as the control signal filter, W3(s), is concerned, realize that even though

its influence is not directly included in the cost used to derive the compensator it

still directly influences the closed loop behavior since it directly filters the signals
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produced by the compensator. The logic in placing W3(s) in the synthesis model of

(5.10) is simple. In order to meet the unmodeled dynamics bound and still achieve a

good amount of disturbance rejection over the first few structural modes, it will be

necessary to force the compensator roll off hard. If it is not possible to do this by

an appropriate choice of Wi(s) and W2(s), the presence of W3 (s) could provide an

extra degree freedom to filter out the high frequency components of the control that

could cause an instability in the range of the unmodeled dynamics. Typically, w3 (s)

was thus chosen to be a low pass filter to let the low frequency components of the

control pass to the plant while diminishing the effect any undesirable high frequency

contributions of the control may have on the closed loop system. Alternatively since

W3 (s) directly influences C,,(s) in (5.42), it could be chosen to shape C,(s) to meet

the stability robustness requirement for the unmodeled dynamics. In either case, it

is important to realize that the dynamics of W3(s) become part of the compensator

unlike the dynamics of W, (s) and W2(s) that only influence the the choice of the filter

and regulator gains.

Notice at this point that the details of how to design controllers based on the beam

model to achieve an improvement in the open loop performance while maintaining

stability in the presence of unmodeled dynamics has been spelled out. It is by no

means coincidental that there has been no mention of how to incorporate features

into the synthesis that will produce controllers that are also robust to the mismodeled

dynamics in the design model. Basically, the 7-"2 methodology presented here ignores

the fact that there are mismodeled dynamics in the design model since there are no

simple and useful methods for dealing with them. The ramifications of ignoring these

modeling errors on the stability properties of the actual closed loop system will be

studied for a specific frequency weighted design in the sequel.

While these brief comments based on a frequency domain interpretation of the

cost provide the heuristics of how to choose the design weights, it is worth noting

that the selection of the appropriate weights to meet the design specifications is very

iterative. For any given set of design specifications, it is unreasonable to expect to

choose a sufficient set of weights a priori. In fact, the designs that will be presented for
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the sample problem in the next section reflect the culmination of numerous iterations

through various sets of weights.

5.4 Sample Problem Designs

Before presenting the designs, it is important to realize that the emphasis in doing

so is not to elaborate on which combinations of weights produced the control system

that best met some design specifications. Rather, the main focus of this section, and

the chapter, is to investigate to what extent a detailed assessment of the uncertainty

in a model along with the associated methods for dealing with the uncertainty can

be applied in a practical design situation. In essence , the details presented thus far

in the chapter have simply provided the necessary machinery to carry out such a

study. To concisely discuss the implications a detailed robustness analysis has on the

controller synthesis, only two designs will be discussed here. The first, a typical LQG

design, is included to motivate why it was necessary to use the frequency weights

in the synthesis procedure. The second design, which will be discussed in great

detail, is a typical frequency weighted H~2 design that sufficiently satisfied the design

specifications. It is entirely possible that better designs than those presented exist.

However, the goals of this chapter can be readily satisfied with those presented.

5.4.1 Design # 1: Standard LQG

In a standard LQG design, constant weights are used to penalize the performance

variables in the cost. In terms of the sample problem, this means that

Wx(s) = W3(s)= I and W2(s) = p .I, (5.48)

and the only degree of freedom in designing a controller becomes the choice of the

control weight p. In keeping with the design specifications, a value of p = 1.5 was

found to be the smallest possible value of p that did not cause an instability in the

closed loop truss system. Recall that the controllers are developed based on the beam

model and that their performance is evaluated in terms of the RMS values of the beam
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Comparison of closed loop and open loop performance metrics.
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Figure 5.4: Nominal performance of the standard LQG design shown by a comparison of
the magnitude of the open loop and closed loop output to disturbance transfer
function matrices of the beam system: FGi(j) .vs. UGcd(N).

outputs and the magnitude of the output to disturbance transfer function matrix of

the beam. Then the beam based controllers are applied to the truss to make sure that

they do not destabilize the actual system that they are designed for. Hence, this value

of p maximizes the achievable performance of the standard LQG design since it tells

the cost to use as much control as it wants to minimize the degradation in the outputs

caused by the disturbances as long as it does not cause a closed loop instability in

the actual system. The optimal 712 compensator for these values of the weights was

evaluated, and its performance and robustness characteristics are respectively shown

in Figures 5.4 and 5.5.

From Figure 5.4 it is clear that this design achieves a decent level of performance.

As expected of a 11 2 cost, the controller minimizes the average energy in the dis-

turbance to output transfer function by adding damping to all the structural modes

that appear in that transfer function. In terms of the RMS metric, realize that RMS
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Evaluation of the robustness condition for the unmodeled dynamics.

102 103 104

rad/s

Figure 5.5: The robustness of the standard LQG design to the unmodeled dynamics eval-
uated by (5.42) for the closed loop gain, 2FC,,(3w), and hands on error bound,
IWm(3W)I, from (4.25).

values can be viewed as the area under the square of the disturbance to output trans-

fer function, and on a linear scale such a plot would still have large spikes at the

frequencies of the structural modes for the level of damping achieved by the LQG

design. As a result, there is only a slight amount of improvement in the RMS values

of the outputs in the closed loop. In general though, the damping behavior exhibited

by the LQG design is the type of performance that the design specifications call for.

Inevitably, the ability of the compensator to damp all the modes in the perfor-

mance metric is accomplished at the expense of a large bandwidth for the compen-

sator. This is obviously seen in Figure 5.5 which shows the closed loop gain, FC,,.(w),

of the system. The consequence of such a high bandwidth is that the LQG compen-

sator does not even come close to satisfying the stability robustness condition of

(5.42). In other words, the LQG compensator is not at all robust to the unmodeled

dynamics in the beam model used to derive the compensator. On the other hand
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since the actual truss system for this compensator is stable, this design simply con-

firms a limitation of Theorem 4.3 which does not guarantee anything about the actual

stability of the true closed loop system if (5.42) is violated. Even though the actual

truss closed loop system is stable, the LQG compensator can not be considered robust

since it fails the multiplicative error stability robustness criterion. In fact, for any

smaller value of the control weight p, the closed truss system is unstable. Further,

the closed loop poles of the truss for the design with p slightly less than 1.5 that sit in

the right half plane are those corresponding to the third bending mode of the beam,

which were classified as unmodeled due to the large error in their modeled frequency

of vibration. Hence, this result provides a case which shows that there could be a

closed loop instability if the robustness condition of (5.42) is not met. In summary,

the assessment of the uncertainty along with the unmodeled dynamics stability ro-

bustness condition were able to predict the instability for p < 1.5, and thus they are

useful in dealing with the uncertainty.

At this point, it is not even worth it to talk about the robustness of this design to

the mismodeled dynamics; since the LQG compensator is already not robust to the

unmodeled dynamics and thus does not meet the design specification.

To achieve a similar level of performance while meeting the unmodeled dynamics

stability robustness condition, it was obviously necessary to have more degrees of

freedom available in designing a control system. Here in lies the primary reason for

using frequency dependent weights in the controller synthesis.

5.4.2 Design # 2: Typical frequency Weighted 'H2

Acknowledging that it would be necessary to use frequency dependent weights in the

controller synthesis to meet the design specifications led to the W72 design framework

already described. In trying to meet the design specifications, many iterations through

various choices for the three weights shown in Figure 5.3 were performed. In the

iterations, the ability of the compensator to meet the outlined design goals as well

as the order of the resulting compensator were considered in evaluating each set of

weights. After numerous simulations, the following set of weights were chosen to
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synthesize a (2 optimal compensator to use in discussing the the desired robustness

aspects of the design.

17.78
Wi(s) = wi(s).I, w,(s) = 1 (5.49)

(s/900 + 1)

W 2 (s) = w2(s).I, w2(s)= .178 (/100 2 (5.50)
(s/1000 + 1)2

1
W 3 (s) = w3(s).I, w3(s) = )2 (5.51)

(s/45 + 1)
Figures 5.6, 5.8, and 5.7 respectively show the performance achieved by this selection

of weights, the unmodeled dynamics robustness test for the design, and the magnitude

of the weights used in the design.

It is immediately apparent from Figures 5.6 and 5.8 that the frequency weighted

H2 design achieves a decent level of performance, however unlike the LQG design it

does satisfy the stability robustness condition. Furthermore, the closed loop truss

system under the control of the beam based compensator is stable. As a result,

the 7-t2 design derived using the weights in (5.49-5.51) meets the outlined design

specifications for the sample problem. Realize that the performance attained by the

frequency weighted - 2 design is about as good as one can expect given the fidelity

of the model. That is, a reasonable improvement in the open loop performance was

obtained where the model is well known, and stability robustness to unstructured

errors is guaranteed over the frequency range where the dynamics are not well known.

To get a feeling for the process of selecting an appropriate set of weights, consider

the logic that went into choosing (5.49-5.51). Since the control signal filter, W3(s),

directly influences the closed loop gain, C,,(s), as seen in (5.43), it was used as the

primary design knob to shape C,,(s) to satisfy the robustness condition of (5.42) and

thus provide a controller that was robust to the unmodeled dynamics in the beam

model. On the other hand, the values of Wi(s) and W2(s) were used to squeeze out

as much performance as possible from the controller while not violating (5.42). In

line with the discussion in Section 5.3 on how to select the weights, the magnitude

of the output weight, Iwi(3w)I, was chosen to be large in the low frequency region

where the model is well known so that the controller would exert most of its effort
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Evaluation of the robustness condition for the unmodeled dynamics.
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Figure 5.8: The robustness of the frequency weighted 712 design to the unmodeled dy-
namics evaluated by (5.42) for the closed loop gain, FC,,(.A), and hands on
error bound, Iwm(w)l, from (4.25).

there. In a symbiotic manner, the magnitude of the control weight, (w2(,w) , was

chosen to be small at low frequencies to let the control exert most of its effort where

the dynamics were well known and to be large at high frequencies to tell the cost to

keep the size of the controls small in the range of unmodeled dynamics. Realize that

even though the weights of (5.49-5.51) were able to shape the appropriate loops to

get a decent level of performance and robustness, they directly added 12 states to the

dynamic compensator. As a result, the optimal h 2 controller being discussed here

had 30 states where as the standard LQG controller of the previous section only had

18 states.

A notable feature of the frequency weighted 7"2 design, as seen by the achieved

closed loop performance shown in Figure 5.6, is that it captures the performance/robustness

trade off inherent to robust controller synthesis. Recall from the assessment of the

uncertainty presented in Chapter 3 that the beam model used to derive the controller
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for the truss is known to be accurate up to about 700 rad/sec. Beyond 700 rad/sec

are the unmodeled dynamics that are represented by a multiplicative error at the

output of the beam control loop. In order guarantee stability robustness for these

uncertainties, it becomes necessary to constrain the bandwidth of the controller to

satisfy the robustness criterion of (5.42). In turn, the bandwidth constraint limits

the range over which it is possible to achieve a good level of performance. As a re-

sult, the desire to guarantee stability robustness to the unmodeled dynamics in the

beam model limits the achievable performance of the controller, which is the crux of

the performance/robustness trade off. In terms of the 7W2 design, this is evident in

Figure 5.6 that shows how the design only achieves a reasonable level of performance

up to 300 rad/sec. It would be unrealistic to expect a better level of performance

over a larger bandwidth given the knowledge that the model is poor at high frequen-

cies. To achieve a better level of performance, it would be necessary to obtain an

accurate model over a larger bandwidth to push up the frequency range where the

unmodeled dynamics begin. In essence then, the unstructured error robustness con-

dition provides a logical way of telling the controller synthesis that it should produce

a controller that improves the open loop performance only where the model is well

known.

The frequency weighted H 2 design also exemplifies that it is possible to design

controllers that are robust to the high frequency unmodeled dynamics. This is evident

since the H 2 controller satisfies the stability robustness condition of (5.42), and since

the (2 controller does not destabilize the actual truss system when applied to it.

Furthermore, realize that the process of getting a design to meet the robustness

specification was as simple as choosing the appropriate weights to shape the closed

loop gain, DC,(1w). If a K(s) was found that didn't satisfy the robustness condition

of (5.42), it was relatively easy to infer how to choose a new set of weights, given the

insight of their influence on the design from Section 5.3, to find a K(s) that did satisfy

(5.42). Also it should be noted that out of all the designs that were evaluated, none

of the controllers that satisfied the stability robustness condition of (5.42) caused a

closed loop instability when they were applied to the truss. This further emphasizes
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the fact that it is possible to design controllers which are robust to the unmodeled

dynamics in the design model.

Even though it is possible to guarantee robustness to the unmodeled dynamics

while achieving an improvement in performance, the ability to do so is done at the

expense of the compensator order. In the design presented here, the weights added

nearly as many states, 12, to the compensator as the number of states in the original

design model of (5.1, 5.2) that had 18 states. In the context of this mathematical

sample problem, this may not seem like an issue. However in the real world where

such compensators must ultimately be implemented, the order of the compensator is

an issue. Hence, the extent to which robustness can be guaranteed for unmodeled

dynamics in the class of systems that the sample problem mimics is the extent to

which a large order dynamic compensator can be implemented.

Given the decent level of performance achieved by the frequency weighted 7 2 design

and its guaranteed robustness to the unmodeled dynamics, the 1" 2 design would truly

be complete if there was a simple way to show that it is also guaranteed to be robust

to the low frequency mismodeled dynamics in the design model. Unfortunately as

seen in Section 4.2, the process of doing so is not at all as simple as comparing the

size of the closed loop gain with the size of a bound on the error, as was the case

with the unmodeled dynamics. None the less, it is still possible to investigate if the

frequency weighted 7-H2 controller is stably robust to the mismodeled dynamics by

using the Nyquist domain analysis concepts that were exploited to visualize why it is

difficult to guarantee robustness for mismodeled dynamics.

Robustness of the Frequency Weighted 7"(2 Design to the Mismodeled Dy-

namics

In analyzing the robustness of the frequency weighted 7"2 compensator to the mis-

modeled dynamics, realize that at the simplest level the mismodeled dynamics do

not interfere with the stability of the actual closed loop system; as the truss closed

loop is stable when the beam based compensator is applied to it. While this shows

the absolute stability of the design, it unfortunately says nothing about the stability
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robustness of the control system to the mismodeled dynamics. However given the

parametric error uncertainty description of the mismodeled dynamics in the beam

model presented in Section 4.2.3, the computationally intensive, brute force analysis

technique used to visualize the mismodeled dynamics in the Nyquist domain, from

Section 4.2.1, could be used to analyze the robustness of the frequency weighted

7 2 compensator to the mismodeled dynamics in the beam model.

Recall that the stability robustness of a system with a parametric uncertainty

description can be evaluated by constructing the region in the Nyquist domain in

which the nominal model with its mismodeled dynamics may lie. That is computing

K.(s) = -1 + det [I + G(s)K(s)] (5.52)

for s E D, and all the possible values of the uncertain variables, a, in

O(s)= G(a, s) : a 5 a< • a, Va,}. (5.53)

Then if the critical point does not lie in the resulting region there will not be a change

in the number of encirclements of the critical point, and the closed loop system will

be robustly stable to the mismodeled dynamics represented by a. Realize that such

a test is computationally intensive since it involves the evaluation of R(3w) over all

the possible values of the ai at each frequency. None the less, given a compenisator,

K(s), this test does provide a way to investigate the stability robustness of a control

system to mismodeled dynamics.

To make use of these concepts, it is first necessary to come up with the appropriate

j.t(s) and O(s) for the frequency weighted H2 design based on the beam model.

Realize that M(s) defined in Theorem 4.1 is specific to the feedback interconnection

structure of Figure 4.1. Realize also that the interconnection structure of Figure 4.1

is very similar'to that of Figure 4.4 which was used to derive Theorem 4.3. Hence the

same arguments that led to C,,(s) in (5.43) were used to arrive at the proper forms

of N(s) and A,,(s),

NA(s) = -1 + det[I + G2(s)W 3 (s)K(s)] (5.54)

,°,(s) = -1 + det(I + 0 2(s)W 3(s)K(s)], (5.55)
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that can be used to analyze the robustness of the H2 compensator to the mismodeled

dynamics in the beam model. In these expressions, K(s) is the frequency domain

representation of the optimal 712 compensator from (5.34), and G2(s) is the control

loop transfer function matrix of (5.8) that contains mismodeled dynamics which are

approximated by G2 (s).

As far as the description of the mismodeled dynamics are concerned, the para-

metric error model of the mismodeled dynamics for the sample problem developed

in Section 4.2.3 can be used to define G2(s). Recall that only the frequency and

damping values of the first two structural modes were considered to be in error in

defining the mismodeled dynamics uncertainty model. Hence the the only mismod-

eled uncertainty in G2(s) is in its A matrix. Further recall that A(a) was defined

by (4.67) so that the possible values that A(a), given the definition of the uncertain

parameters in (4.64) with their nominal values and bounds shown in Table 4.3, could

be evaluated by ranging the 6i over -1 to +1 in (4.67). Thus G 2(s) for the beam

model was defined to be

G 2(s) = G2 (a, s) = C [sI - A(a)]-1 B2 + D2 : -1 < 5 +1 V6} (5.56)

with A(a) given by (4.67).
Evaluating (5.55) over all the possible values of the 6i at each frequency produces

the region of mismodeled dynamics in the Nyquist domain for the frequency weighted

H 2 design. If the critical point, (-1,0), does not lie in this region, the IH2 design will

be robust to the defined mismodeled dynamics. Unfortunately, the creation of the

mismodeled dynamics region is a very computationally intense process. Therefore,

only carefully chosen pieces of the region along with some engineering insight will

be used to investigate the robustness of the frequency weighted '712 design to the

mismodeled dynamics in the beam model.

As mentioned, the computational burden of evaluating the entire mismodeled

dynamics region is overwhelming. However by computing the mismodeled dynamics

region at a few wisely chosen frequencies, it should be possible to get a clear picture

of whether or not the mismodeled dynamics pose a stability problem. Obviously, it
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Figure 5.9: Bode type plots of IKA,(,w)I and the LZAg,(w) for A(.,(.•) from (5.54). Note
the linear frequency scale.

would be beneficial to know what the region of mismodeled dynamics looks like near

the critical point since the robustness to the mismodeled dynamics is contingent on

the critical point not being in that region. The frequencies at which the Nyquist

plot is near the critical point can be readily determined from a Bode type plot of the

In,,((w)| and the ZL',(jw) as a function of w. Such a plot is shown in Figure 5.9 for

A/,,(3w) from (5.54). From this plot, the values of w where the

MN',,(3w)l I 1 and ZAn,(.w) , -180"(2n + 1), n = 0, 1,...

are the values of w where the nominal Nyquist plot of the frequency weighted W/2 design

is near the critical point. Using this insight, the following values of w

w = {67, 76, 95, 130, 213} rad/sec (5.57)

were chosen as a candidate set of frequencies to evaluate ,,(3w) at to create regions

of mismodeled dynamics, which allows for an investigation of the robustness of the

H 2 frequency weighted design to the mismodeled dynamics in the beam model.

There is another set of frequencies for which it is useful and insightful to construct
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Evaluation of stability robustness Condition 2 of Theorem 4.3
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Figure 5.10: A graphical comparison of stability robustness Condition 2 from Theo-
rem 4.3 for the frequency weighted 7W2 design: UC, , (w) .vs. 1/v[Am(sw )].
Here Am(s) is the exact multiplicative error between the beam and truss
from (4.29).

regions of mismodeled dynamics. To see this consider Figure 5.10 that graphically

represents the stability robustness test of Theorem 4.3 using the exact multiplicative

error between the beam and truss models from (4.29) and the closed loop gain of the

frequency weighted -H2 design, -VC,(3w). According to Theorem 4.3, the frequency

weighted 7-t2 design is not robust to the actual multiplicative error at the plant output

since
1

- [C,,(3UW)1 > 1 (5.58)

at

w = {47.5, 87.0, 284.0} rad/sec. (5.59)

In other words, the size of the unstructured multiplicative error perturbation at these

frequencies is large enough to cause an instability or, in terms of the Nyquist domain

picture, a change in the number of encirclements of the critical point. However as
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already mentioned, the modeling errors below 700rad/sec are not at all unstructured

and considering them as such introduces conservatism into the robustness analysis.

This conservatism is apparent due to the fact that the actual truss system is stable

when the beam based, frequency weighted H/2 controller is applied to it. For these

reasons, it is very instructive to see what the regions of uncertainty look like at

the frequencies in (5.59) for the more structured and accurate description of the

uncertainty in the beam model. Hence, ./,o(jw) was also evaluated at the frequencies

in (5.59) to see if the actual system is in danger of an instability, as predicted by

Theorem 4.3, and to further example of the conservatism of using unstructured error

models to describe structured modeling errors.

Since the regions of mismodeled dynamics will be drawn around the Nyquist

plot of the nominal system near the critical point, the multivariable Nyquist plot

of the nominal system, nSVr(jw) from (5.54), and a blow up of this plot near the

critical point are respectively shown in Figures 5.11 and 5.12 to help visualize what

the overall Nyquist plot of the frequency weighted ?/2 design looks like. With this

understanding of the nominal Nyquist plot, the regions of mismodeled dynamics near

the critical point evaluated from (5.54, 5.56) over the possible values of the 6S at

the frequencies in (5.57) and (5.59) are shown in Figures 5.13-5.16. Unlike the

situation in Section 4.2.1 where the mismodeled dynamics region at one frequency

was simply used to illustrate the complex shape of the mismodeled dynamics region,

the multiple regions of Figures 5.13-5.16 are shown to help visualize what the entire

region of mismodeled dynamics looks like for the frequency weighted 1 2 controller.

Given these figures, it is now appropriate to discuss the robustness of the frequency

weighted 'H2 design to the mismodeled dynamics in the model used to formulate the

controller.

It is immediately obvious from Figures 5.13-5.16 that the frequency weighted

7- 2 design seems to be robust to the defined mismodeled dynamics in the beam model.

This is the case since the critical point does not lie in any of the mismodeled dynam-

ics regions, nor does it seem that it would if the region of mismodeled dynamics was

evaluated at all the frequencies. Even though there were no conditions built into the
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Nyquist plot of the frequency weighted design
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Figure 5.11: Nyquist plot of the frequency weighted WL2 control system, AN,,(jw) from
(5.54). Only the map of A/,, (3w) for w E (0, oo) is shown to maintain clarity.

Nyquist plot of the frequency weighted design
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Figure 5.12: Blow up of the Nyquist plot of the frequency weighted W2 control system,
/.,(3w) from (5.54), near the critical point. Only the map of nA,,(w ) for

w E (0, oo) is shown to maintain clarity.
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Nyquist plot of the frequency weighted design
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Figure 5.13: Blow up of the Nyquist plot of the frequency weighted 7W2 design, AN',(j),
near the critical point. The shaded regions indicate the possible locations
of the actual plant, ',,(yu), based on the mismodeled dynamics description
of (5.56) at the frequencies in (5.57).

155



Nyquist p

10 U 4U 50

Real

Figure 5.14: Nyquist plot of
region indicates
on the mismode

20

10

0

-10

-20

-30

156

A



ncy weighted design

0 0.5 1

tuency weighted W72 design, AJ,,(3w),
gion indicates the possible locations
he mismodeled dynamics description

157

0.5

-0.5



Nyquist plot of the frequency weighted design
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controller synthesis to ensure that the controller would be robust to the mismodeled

dynamics in the design model, Figures 5.13-5.16 clearly shows that the frequency

weighted 7-2 controller should not destabilize the truss system for the level of uncer-

tainty in the beam model. However, based on this analysis, it would be incorrect

to say that the W"2 controller was truly robust to the mismodeled dynamics in the

beam model. This is the case since the region of mismodeled dynamics was only

evaluated at a small set of frequencies and the uncertainties in the residues were not

at all considered in the mismodeled dynamics model used to evaluate the regions of

uncertainty. None the less, the results of creating the mismodeled dynamics regions

for the frequency and damping errors are promising. They show that it is possible

to design a multivariable controller that provides a decent level of performance over

the range of mismodeled dynamics and at the same time is robust to typical levels of

mismodeled dynamics.

For the frequency weighted W2 design and the mismodeled dynamics uncertainty

model of the beam, there are really no ramifications of not having a useful and simple

way to synthesize controllers that are robust to the the mismodeled dynamics in a

model. The evidence of Figures 5.13-5.16, which shows that the critical point will

most likely not lie in the region of mismodeled dynamics, supports this claim, but

only to the extent that it applies to the specific compensator and model at hand. In

general, this after the fact analysis method could be applied to any structural control

design. However if the critical point were in the region of mismodeled dynamics for

a given compensator and level of uncertainty, there is really no simple way to to

know how to adjust the synthesis to arrive at a robust controller that still delivers a

useful level of performance. Realize that this was not at all the case for the method

of dealing with the unstructured errors in the model. If a controller did not satisfy

(5.42), it was a simple manner to choose a different set of weights, which directly

influenced both the performance and robustness of the controller, to arrive at a design

that met the robustness conditions while providing a decent level of performance.

Thus in general while it is possible to analyze a compensator for its robustness to

mismodeled dynamics, it is not at all obvious how to influence the synthesis to arrive
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at a compensator that is robust to the mismodeled dynamics.

Figures 5.13-5.16 also solidifies the conclusions drawn from the visualization of the

mismodeled dynamics region of the scalar system, (4.32), presented in Section 4.2.1

regarding why it is difficult to deal with the mismodeled dynamics. Specifically,

Figures 5.13-5.16 shows that in the multivariable case the region of mismodeled dy-

namics is also a quite complex shape at each frequency that is not easily described by

a simple region like the unstructured error disk. Further, it is even more complicated

to test whether or not the mismodeled dynamics region contains the critical point in

the multivariable case due the presence of the determinant in the Nyquist function.

Basically, Figures 5.13-5.16 reinforce the conclusion that it is difficult to guarantee

robustness for mismodeled dynamics due to the highly structured nature of the errors

that lead to complicated regions of uncertainty in the Nyquist domain whose distance

from the critical point is quite difficult to calculate.

The conservatism of using an unstructured error description for the mismodeled

dynamics is also seen in Figures 5.14-5.16. Each one of these figures is analogous to

Figure 4.6 that compared a region of mismodeled dynamics to a disk of uncertainty

associated with a multiplicative error for the scalar system of (4.32). In Figure 4.6 the

error disk contained the critical point and provided evidence that unstructured error

descriptions are conservative for describing mismodeled dynamics in scalar systems.

Analogously, the violation of the stability robustness condition at the frequencies

of (5.59), shown in Figure 5.10, and the fact that the actual regions of uncertainty

shown in Figures 5.14-5.16 do not contain the critical point is proof in the multivari-

able case that representing mismodeled dynamics as unstructured errors introduces

conservatism into the stability robustness analysis of a control system. This is not

to say that the mismodeled dynamics in the beam model are trivial. As seen in

Figures 5.13-5.16, the size of the mismodeled dynamics regions are quite large. How-

ever since the errors do not point in the unfavorable direction of the critical point,

the mismodeled perturbations are not as drastic as the exact multiplicative error be-

tween the beam and truss predicts. In essence, these figures exemplify the need for

less conservative and useful techniques to handle the more structured uncertainties
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in models of lightly damped systems.

In conclusion, the frequency weighted R 2 design for the sample problem has il-

lustrated a major theme of this work. That is, given a detailed assessment of the

uncertainty in a model it is possible to use this information to arrive at uncertainty

models that are useful in guaranteeing the stability robustness of a controller designed

from an uncertain model. This is seen for the unmodeled dynamics by the closed loop

gain of the frequency weighted ? 2 controller, C,, (3w), that satisfies the condition

of (5.42) needed to guarantee stability robustness to the unmodeled dynamics in the

beam model. Further, the mismodeled dynamics regions, shown in Figures 5.13-5.16,

indicate that the 7H2 controller will most likely not destabilize the truss since the crit-

ical point is not near any of the regions. In terms of the actual synthesis procedure, it

is clear that the 312 methodology can be used to arrive at compensators that deliver

useful performance and are guaranteed to be robust to the unmodeled dynamics in

the design model. However, there was no simple way in the 7"2 framework to specify

conditions that lead to controllers which are robust to the mismodeled dynamics.

Since the sample problem framework strongly mimics a broad class of structural con-

trol problems, the results of the frequency weighted 1H2 controller show that it should

be possible to design controllers that are capable of achieving a useful improvement

in the open loop performance, are robust to the high frequency unmodeled dynamics,

and are most likely, but not guaranteed, robust to the mismodeled dynamics in the

design model.
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Chapter 6

Conclusions and Suggestions for

Future Work

6.1 Conclusions

The primary focus of this thesis has been to understand how to deal with the realistic

types of modeling errors that will be present in models of complex structural systems

like the Interferometer testbed in order to design robust, high authority, multivariable

controllers. By pursuing a holistic approach in a simple sample problem framework,

many of the crucial issues involved in designing such controllers were flushed out and

investigated.

In the process of modeling the sample problem, a model reduction scheme was

used that lead to a feed-forward D term in the outputs of the model to account for

the truncated dynamics and mimic the fact that the actual system did not roll off

beyond-the frequency of the last mode kept in the reduced model. Even though the

presence of such a term is not standard and often neglected in optimal controller

synthesis, the development of the frequency weighted 7I 2 controllers showed that the

D term simply adds a few extra terms to the standard equations needed to find the

optimal controller and poses no problem in meeting the roll off specification employed

by the unmodeled dynamics robustness criterion.

As far as the assessment of the uncertainty is concerned, the exact framework of
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the sample problem provided a simple way to check the realistic ways of assessing

the fidelity of a structural model. In doing so, a fundamental understanding of how

typical structural modeling errors manifest themselves in the common analysis tools

of controller synthesis was obtained. Basically, all of the modeling uncertainty was

broken up into two categories, mismodeled and unmodeled dynamics, that could

be dealt with by respectively considering structured and unstructured robustness

methods.

Acknowledging that there were nominally two classes of modeling errors that

needed to be dealt with to design robustly stable controllers, a Nyquist domain visu-

alization of stability robustness was used to investigate to what extent it was possible

to guarantee robustness in the presence of unmodeled and mismodeled dynamics. It

was concluded that the well known relative error stability robustness conditions are

appropriate for dealing with the high frequency unmodeled dynamics since they con-

sider the uncertainty to be a represented by a disk. Further, the simplicity of using

a disk to describe the uncertainty allows for a simple and useful way of checking a

given control system's robustness to the unmodeled dynamics. On the other hand,

it was shown why there is no similarly appropriate and useful method for analyzing

a control system's robustness to the highly structured mismodeled dynamics. This

was done by creating the analogous uncertainty region to the disk for the mismodeled

dynamics and showing that it is a complex shape whose distance to the critical point

can not be easily computed.

To confirm the extent to which it is possible to design robustly stable controllers

based on an uncertain model, frequency weighted 'H2 compensators were developed

based on the uncertain beam model and applied to the actual truss model. These

designs showed that it is necessary and possible to use frequency dependent weights

to achieve a decent level of performance while satisfying the unmodeled dynamics

stability robustness constraint. Further, by creating specific regions of mismodeled

dynamics about the nominal Nyquist contour for an (R2 design that met the unmod-

eled dynamics robustness constraint and achieved a decent level of performance, it

was shown that slight errors in the model of a lightly damped multivariable system
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may not be that drastic in terms of stability. This conclusion was based on the fact

that for the sample problem the mismodeled dynamics uncertain regions point in

favorable directions and do not encompass the critical point.

The bottom line here is that our approach within the mathematically exact sam-

ple problem framework was very useful in understanding the crucial issues involved

in designing robust, high authority, multivariable controllers for complex structural

systems like the Interferometer testbed. However, in the course of the investigation

not all of the issues that surfaced could be sufficiently addressed. In the following

section, some of the more important issues that still need to be investigated will be

briefly mentioned.

6.2 Future Work

As was discussed in Chapter 5 no matter how well the uncertainty in a model is

understood, it is only feasible to expect a useful performance improvement where

the system is well modeled. Throughout the work, the accuracy of the initial beam

finite element model was assumed to be the best possible model of the truss available.

Even after all of the uncertainty was analyzed and dealt with, the 7i 2 controllers could

only improve the performance over the low frequency range of well modeled dynamics.

Hence, the ability to obtain models of structural systems that are accurate over a large

frequency range needs to be further researched. With a model of a system that is

accurate over a larger frequency range and the stability robustness insights arrived at

here, a greater improvement in performance can be achieved without sacrificing the

robustness of the control system.

Unfortunately, as the bandwidth of accurately modeled dynamics in a structural

system increases, the order of the model increases. Further since it is necessary to use

frequency weights to achieve a decent level of performance while meeting the unstruc-

tured error robustness bound, the order of controllers based on a more accurate and

thus higher order model will become quite large. For these reasons, model reduction

and compensator implementation are two topics that will need further research if
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high authority, robustly stable controllers are to be implemented on actual structural

systems.

It goes without saying that the search for simple and useful stability robustness

results for the highly structured mismodeled dynamics should continue. Even though

the 7R2 frequency weighted design showed that the closed loop system was not that

sensitive to slight mismodeled dynamics, the results did not provide any guarantees.

In order to make multivariable, high authority control a viable method of improving

or enabling performance in flexible spacecraft, stability guarantees for all classes of

modeling errors must be available.

In the course of assessing the uncertainty, an interesting question arose that was

not resolved. Does classifying the modeling errors as either structured or unstructured

introduce conservatism into the design process? In actuality, their is most likely

a transition region for the modeling errors from the highly structured mismodeled

dynamics to the completely unstructured unmodeled dynamics. Whether or not it is

worth it to consider how to model and deal with this transition region needs to be

explored.

Finally, the results of this work are based on a mathematically contrived, two

dimensional sample problem. As a result, it is necessary to verify if the methodology

that lead to the robust, high authority, multivariable controllers for the sample prob-

lem can be successfully applied to a realistic system like the Interferometer. That

is, the methodology and results presented in this thesis need to be experimentally

verified if they are to hold water.
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Appendix A

Sample Problem Data

This appendix contains the values of the state space matrices for the beam and truss

models developed in Chapter 2. Using b subscripts to denote a model of the beam,

recall from (2.52) that

1c(t) = Abx(t) + B 2 bU(t) + Blbd(t) (A.1)

y(t) = CbX(t) + D2bU(t)

is the state space representation of the beam that captures the input, output, and

disturbance attributes of the truss, has scaled outputs, and contains 18 states with a

static correction in the control loop. The specific values of the state space matrices,

in which the missing elements represent zeros, are as follows.

S099 JI99 1
Ab = (A.2)

Ab rb

Ab =

-2.128 x 103

-8.274 x 104

-6.398 x 106

-1.178 x 106

-2.412 x 106

-6.453 x 106

-1.068 x 107

-1.405 x 10'

-2.664 x 10'

(A.3)
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-0.923

-5.753

-15.997

-21.702

-31.064

-50.806

-65.358

-74.971

-103.233

09x1
0.173

-0.429

-0.0316

0.0

-1.273

1.987

0.0

0.997

-1.337

B2b

cb = f
Cob

09X1

-2.644 x 10 - 3

-0.0403

-0.0377

0.0764

-0.184

-0.173

-0.292

-0.352

0.423

]ixg
O1x9

-2.962 X 10'

-2.808 x 10'

-2.653 x 105

3.741 x 10 - 4

2.476 x 105

2.286 x 10'

3.096 x 10-4

-2.083 x 106

1.865 x 10s

091l

2.644 x 10- S

0.0403

0.0377

0.0764

0.184

0.173

-0.292

0.352

-0.423

1.844 x 10"

-6.391 x 10'

-1.046 x 106

3.845 x 10 e

1.456 x 106

1.850 x 106

-3.884 x 10'

-2.216 x 106

2.535 x 106

-2.169 x 10- 3

-9.391 x 10- 2

2.169 x 10- 3

-2.211 x 10- 2

A similar state space model for the truss was also developed and represented by

-(t) = Atx(t) + B 2,u(t) + Bld(t) (A.9)
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b =

Blb =

09xl

0.0373

-0.163

0.291

-0.215

0.290

-0.135

-0.572

0.115

0.345

(A.4)

(A.5)

(A.6)

(A.7)CTCab

D 2 b, [ (A.8)
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y(t) = Cx(t) + D2,u(t)

in which the t subscript is used to differentiate the truss model from the beam model

in (A.1). The outputs of the truss are scaled, the model contains 60 states, and the

following are the values of the state space matrices in (A.9).

03N30 I30N30

At = (A.10)
A, r,

Here At = diag {Aj} and rt = diag {-,} in which At and 7t are vectors whose i 'h

element is the (i, i)th element of At and rt respectively.

Cat 01xxao
C C = 0 (A.11)

-5.930 x 10- 4  5.323 x 10- 4

D2, = (A.12)
-6.836 x 10 - a -5.202 x 10 - 2
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- 2.218 x 103
--7.994 x 104

-5.386 x 105

-8.232 x 105

-9.037 x 105

-9.448 x 106

-1.054 x 106

-1.176 x 106

-1.201 x 106

-1.230 x 106

-1.262 x 106

-1.265 x 106

-1.298 x 106

-1.334 x 106

-1.366 x 106

-1.389 x 106

-1.430 x 106

-1.545 x 106

-1.625 x 106

-1.682 x 108

-2.923 x 106

-3.348 x 106

-5.088 x 106

-5.956 X 106

-6.630 x 106

-7.793 x 106

-1.004 x 107

-1.172 x 107

-1.563 x 10'

-2.199 X 107

TYt =

-0.942

-5.655

-14.678

-18.146

-19.013

-19.440

-20.533

-21.690

-21.916

-22.180

-22.469

-22.494

-22.783

-23.097

-23.373

-23.575

-23.914

-24.856

-25.497

-25.937

-34.193

-36.593

-45.113

-48.808

-51.497

-55.832

-63.372

-68.474

-79.068

-93.783

(A.13)
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3.030 x 105

2.756 X 10'

2.275 x 105

-2.426 x 104

3.610 x 104

2.933 x 102

4.311 x 104

1.866 X 102

-2.327 x 102

-2.856 x 102

-3.285 X 102

-7.381 x 103

3.580 x 102

-3.688 x 102

3.448 x 102

2.423 X 102

1.284 X 103

-8.042 x 104

5.807 x 102

1.095 x 105

3.623 x 105

-1.622 x 105

-1.424 x 104

-1.757 x 10'

-4.280 x 104

-1.070 x 10'

1.849 x 10'

-8.276 x 102

1.452 x 10'

1.075 x 10'

CTt

1.873 x 105

6.223 x 10'

8.959 x 10'

-4.679 x 104

4.289 x 104

2.438 x 106

2.776 x 10'

1.657 x 10'

-1.304 x 10'

-1.314 x 105

-1.363 x 105

1.755 x 105

1.443 x 105

-1.497 x 105

1.464 x 10'

1.077 x 105

6.457 x 105

-5.445 x 105

-3.237 x 106

4.239 x 105

1.524 X 106

-6.174 x 105

-7.358 x 105

-1.219 x 106

2.130 x 105

-3.280 x 105

1.670 x 106

-4.131 x 106

1.658 X 106

1.484 x 106
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Appendix B

A Matlab Function to Evaluate

Singular Value Phase Information

This is the Matlab function that was used to evaluate the multivariable phase infor-

mation described in Section 3.3.1 and used in Section 3.3.2 to assess the fidelity of

the beam model. The following table describes the connection between the notation

used in Chapter 3 to develop the singular value phase information and the variables

used in the function.

Table B.1: Legend between the notation of the singular value phase information developed
in Chapter 3 and the variables used in the function to evaluate the phase
infnrm•tfnn

Notation from Chapter 3 Equation # Variable name in function

•vj 1 (3.17) mag u
ij (3.17) phaseu

tajI ii j (3.18) magy

(3.18) phase.y

function [magu,phaseu,magy,phase_y] =mimophase(A, B,C,D,w, j)

% function

% Purpose:

[magu,phaseu,magy,phasey]=mimophase(A,B,C,D,w,j)

For a multivariable system y(s)=G(s)u(s) with
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X transfer function matrix G(s)=C*inv(sI-A)*B+D,
X mimophase evaluates the specific, sinusoidal inputs
X and associated sinusoidal outputs that provide a
, measure of phase for multivariable systems. The
, specific values of the magnitude and phase of the
X inputs and outputs are provided by a singular value
, decomposition of G(jw) for the frequencies specified
% in w.

% Notation: A,B,C,D - State space description of the system.

Sw - Frequency vector used to evaluate the
quantities.

j - Integer denoting the number of the right
singular vector of G to use in defining
the inputs that provide the multivariable
phase.

, mag_u - Matrix containing the magnitudes of the
X, j'th right singular vector of G. Each
X row of mag_u corresponds to the magnitude
, of a particular input at the frequencies
, specified in w.

, phase_u - Matrix containing the phases of the
, j'th right singular vector of G. Each
X, row of phase_u corresponds to the phase
, of a particular input at the frequencies
/, specified in w.

' mag_y - Matrix containing the magnitudes of the

, outputs associated with an input along
X the direction of the j'th right singular
, vector of G. Each row of magy
I% corresponds to the magnitude of a
I particular output at the frequencies
, specified in w.

I phase_y - Matrix containing the phases of the
% outputs associated with an input along
I the direction of the j'th right singular
I vector of G. Each row of phase-y
I corresponds to the phase of a particular
X output at the frequencies specified in w.
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% Author: Leonard Lublin

% Date: January 8, 1992
% ------------------------------------------------------

% Find sizes of Variables, initialize variables

npts = length(w);
[l,n] = size(C);

[m,n] = size(B);
k = min([1 m]);

if j > k
disp('

disp('
disp('
disp('

error('
end

ji =
In =

mag_u =
phase-u =

mag_y =

phase_y =

');

Sorry, the singular value associated with the right');
singular vector chosen is zero.');

');
Try another input direction');

sqrt(-1);
eye(A);
[];
[];
[];
[];

% Evaluate Singular value decomposition

for i=l:npts,

G = C*inv(ji*w(i)*In-A)*B+D;
[U,S,V] = svd(G);

% Extracting data associated with the j'th right singular vector

sj = S(j,j); % j'th singular value
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vj = V(:,j); % j'th right singular vector
uj = U(:,j); % j'th left singular vector

% Fixing the phase of vj(1,1) to be the phase of vj(1,1) at the
% first frequency in w.

if i == 1
v_fix = angle(vj(1,1));

end

if angle(vj(1,1)) ~= vfix
theta = v_fix-angle(vj(1,1));

vj = vj*exp(ji*theta);
uj = uj*exp(-ji*theta);

end

% Storing data at the current frequency in the appropriate
% matrices

magu(:,i) = abs(vj);
phase_u(:,i) = angle(vj);

magy(:,i) = sj*abs(uj);
phase_y(:,i) = angle(uj);

end

% Unwrapping the phases and converting to degrees
% ----- - - - - - - - - - - - - - - - - - - - -

for i = 1:1

phase-u(i,:) = unwrap(phase-u(i,:),3.14)*180/pi;
phase.y(i,:) = unwrap(phase-y(i,:),3.14)*180/pi;

end
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Appendix C

Specific 7H2 Design Models for the

Sample Problem

In this section, the specific values of the state space matrices for the general feedback

description shown in Figure C.1 with the state space representation

XP Ap Bpy Bp, X p
e Cp~ DpI1  D, 2  w (C.1)

Cp2 D p2  DP 2

in which

w = and e = (C.2)

that were used to synthesize the H(2 controllers for the sample problem will be pre-

sented. In doing so, Figure C.2, which is copy of Figure 5.3 with some additional

e

Figure C.1: The general feedback system description.

names given to a few of the signals, will be exploited to figure out the proper signal

interconnection structure needed to form the state space description of (C.1). Realize
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rF- - - - ------- -,-------- --------

Figure C.2: Block diagram of the beam model with frequency weights.

that with the definition of the signals in Figure C.1, the dynamics of the beam model

derived in Chapter 2, from (5.1,5.2), are now represented by

:(t) = Ax(t) + B 2uf(t) + Bid(t) (C.3)

y(t) = Cx(t) + D2uf(t) + 0(t). (C.4)

Given these dynamics, once the dynamics of the weights are expressed in terms of the

inputs and outputs in (C.1), it is simply a matter of state augmentation to evaluate

the values of the matrices in (C.1).

C.1 Standard LQG Design

Recall from Section 5.4.1 that the standard LQG design uses

Wx(s) = W 3(s) = I and W2(s) = p.-I, (C.5)
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as the values of the weights to synthesize the controllers. With these values of the

weights

Ufz(t) = u(t), (C.6)

ei(t) = y,(t) = Cz(t) + D2u(t), (C.7)

e2(t) = pi.zlu(t), (C.8)

and all the signals are now in terms of the inputs and outputs of (C.1). No state

augmentation is needed here since no extra dynamics are added to the system, and

thus x,(t) = z(t). From (C.3,C.4,C.6,C.7,C.8) the state space description of (C.1) in

terms of the known quantities can be directly written down.

Ap = A Bp = [B 0 Bp =B 2  Cp 2 = C (C.9)

Cp = DP12 = D2  D (C.10)
L0 jp L .I Dp,, = 0 Dp,, = D2

C.2 Frequency Weighted 71 2 Design

In the frequency weighted 'H2 design, all three weights were used to synthesize the

controller. While a transfer function representation of the weights was used in Sec-

tion 5.4.2, state space representations of the weights are needed to form the general

state space system of (C.1). From Figure C.2 it is obvious what the inputs and out-

puts of the state space representations of each weight, Wi(s), should be. Exploiting

this knowledge, the state space representation of W1(s), the transfer function matrix

between el(s) and yb(s), will be written as

.,w(t) = Aw 1x•(t) + Bwy,(t) (C.11)

el(t) = Cw z,x(t). (C.12)

Similarly, the state space representation of W2(s), the transfer function matrix be-

tween e2(s) and u(s), will be written as

* , w(t) = Aw,z2 ,(t) + Bwu(t) (C.13)

e2(t) = Cw,2X,(t)+ Dwu(t), (C.14)
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and the state space representation of W3(s), the transfer function matrix between

uf(s) and u(s), will be written as

Z,,(t) = Aw,,,(t) + Bw,u(t) (C.15)

uf(t) = Cwz,,(t). (C.16)

The presence of the Dw, term in the dynamics of W 2(s) is necessary given that a

proper weight, (5.50), was used in the controller synthesis of the frequency weighted

7.2 design.

To arrive at the correct signal interconnection structure, the noiseless output,

which is now given by

yn(t) = Cz(t) + D 2uf(t), (C.17)

was substituted into (C.11), and the filtered control signal, uf(t) from (C.16) was sub-

stituted into (C.3), (C.4), and (C.17). In doing this, the derivative of the augmented

state,

X (t)

xp(t) = , (C.18)

will be expressed solely in terms of the the state, xp(t), and the inputs of the general

system (C.1). Further realize that with the above substitutions, the outputs of (C.1)

from (C.4), (C.12), and (C.14) are also expressed solely in terms of the state, xp(t), and

the inputs of the general system (C.1). As a result, after performing the mentioned

substitutions, it is a simple manner to simply collect all of the above dynamics and

outputs-to arrive at the values of the state space matrices in (C.1).

A 0 0 B 2Cw3

Bw, C Aw, 0 Bw, D2 Cw

0 0 Aw2  0

0 0 0 Aw,

(C.19)
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Dp 2 =[O I]

Cp 0 Cw 0 0
0 0 Cw2 0 C = [C 0 0 D2 Cw,

180

Bp1 =
O 0

0 0

0

0

Bw2

Bw3,
DP22 = 0

(C.20)

(C.21)

Dpl = DP,2
0 0 Dw,
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