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Abstract

This thesis consists of two independent parts. The first part concerns Stanley's symmetric
function generalization of the chromatic polynomial, the series of immanant conjectures
made by Stembridge, and Zaslavsky's theory of signed graphs. The conjectures made by
Stembridge that the so-called "monomial" immanants are nonnegative on totally positive
matrices and monomial positive on Jacobi-Trudi matrices are shown to hold for several
infinite families of these monomial immanants. We make use of results of Stembridge and
Goulden-Jackson which reduce both of these conjectures to a statement about some ele-
ments in the group algebra of the symmetric group. We also show that a more general
conjecture by Stembridge concerning acyclic digraphs with certain path-intersection prop-
erties can be reduced to the conjectures considered above. A particular consequence is that
the result of Greene that (ordinary) immanants of Jacobi-Trudi matrices are monomial pos-
itive can be extended to a wider class of combinatorially-defined matrices satisfying some
simple conditions. Some new relationships between these conjectures and graph coloring
are developed. Analogues of Stanley's chromatic symmetric function are given for signed
graphs, and their basic properties are studied. There are some interesting connections with
hyperplane arrangements. These also imply some new results about ordinary graphs.

The second part concerns the so-called "Hodge-type" decompositions of Hochschild

(co)homology. Let A be a commutative algebra over a field of characteristic zero, and M
be a symmetric A-bimodule. Gerstenhaber and Schack have shown that there are decom-
positions H,(A, M) = ekHk,n-k(A, M), Hn(A, M) = (DkHk,n-k(A, M) of the Hochschild

(co)homology. The first summands, H 1, 1(A, M) and H 1"n -1 (A, M), are known to be the
Harrison (co)homology defined in terms of shuffles. We discuss interpretations of the decom-
positions in terms of k-shuffles and how these relate to versions of the Poincard-Birkoff-Witt
theorem. We then turn to a detailed study of how the decomposition behaves with respect
to the Gerstenhaber operations (cup and Lie products) in cohomology. We show by example
that neither product is generally graded, but that .Fq = E,>q H*,'(A, A) are ideals for both
products with Tp U .T C .Fp+q and [7p, .Fq] C Fp+q. The statements for the cup product
were conjectured in this form by Gerstenhaber and Schack.

The results in the second part were obtained in collaboration with Nantel Bergeron.

Thesis Supervisor: Richard P. Stanley
Title: Professor of Applied Mathematics
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Introduction

This thesis consists of two independent parts. The first part concerns Stanley's symmetric
function generalization of the chromatic polynomial, the series of conjectures made by
Stembridge about immanants, and Zaslavsky's theory of signed graphs. The second part
concerns the so-called "Hodge-type" decomposition of the Hochschild (co)homology of a
commutative algebra. The results in the second part were obtained in collaboration with
Nantel Bergeron.

In this introduction, we discuss some of the background material related to these topics
and give an overview of the results which will be presented in the chapters to follow.

Part I

Stanley's Chromatic Symmetric Function

Let F = (V, E) be a graph with d vertices. A proper coloring of F is a map K :V -

P such that adjacent vertices are colored differently. The chromatic polynomial Xr(n)
counts the number of proper colorings with images in [n] = {1, 2,..., n}. The chromatic
polynomial appears in Birkhoff [3] in terms of colorings of "maps" on surfaces and is one of
the fundamental tools of graph theory. It is easily seen that Xr(n) is a polynomial in n.

In [41], Stanley defines a symmetric function generalization of the chromatic polynomial
which contains information not only about the number of proper colorings, but also about
how many times each color is used:

Xr= Z "
K proper

where x" = IEvv xn(v). The property of having adjacent vertices colored differently is not
affected by permutations of P (the names of the colors), so Xr is a symmetric function
in the variables {X1, 2,...}. Specializing the variables to xl = X2 = ... = Xn 1,
2,+ 1 = =X+2 0 yields Xr(u). Clearly Xr is homogeneous of degree d (the number
of vertices).

Let Sym denote the ring of symmetric functions with rational coefficients in the vari-
ables {x 1 , x 2, .·. }. The elementary properties of symmetric functions referred to in this
introduction can be found in [32]. The homogeneous component of Sym of degree d has
several natural bases, indexed by partitions, A = (A1, A2 , ... , k), of d. So, a reasonable
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question to ask is: What properties of F are reflected in the coefficients obtained when Xr
is expanded in these various bases?

A partition 7r of the vertices of F is called stable if the induced subgraph on each block of
r is totally disconnected, i.e. if there are no edges connecting two vertices in the same block.
Similarly, 7r is said to be connected if the induced subgraph on each block is connected.

The coefficients in the expansion of Xr in the augmented monomial basis,

(1 X,i2 ,.. ,ik)

il,i2,... ,ik distinct

are given by the following result, which follows easily from the definition of Xr.

Proposition 1 (Stanley [41, Prop. 2.4]) If aA denotes the number of stable partitions
of F of type A, then

Xr = Za,\in,.
A-d

Stanley proves several results regarding the expansion of Xr in the power sum basis,
PA = p•, *. PAk, where pj = CE xi. These expansions can be viewed as generalizations of
properties of the chromatic polynomial. The most important of these from our point of view
will be the expansion in terms of the lattice of contractions of F, Lr (also known as the bond
lattice of F). Lr is the set of connected partitions of F, partially ordered by refinement.

Theorem 1.2.11 ([41, Thm. 2.6])

Xr = (1, 7r)Ptype(,r) ,
7rELr

where p is the M6bius function of Lr.

Theorem 1.2.1 generalizes Whitney's computation of the coefficients of the chromatic
polynomial (which can be seen to be equivalent to a determinant formula given by Birkhoff).

Theorem 2 (Whitney [49], see also Birkhoff [3])

Xr(n) = E it(6,r)nkl,
irELr

where Ir| denotes the number of blocks of 7r.

Theorem 2 is important for a number of reasons. It expresses a connection between
the chromatic theory of graphs and lattice theory. Generalizations of this idea lead to the
theory of matroids (see [48], for example), and in particular, to the theory of hyperplane
arrangements and Zaslavsky's signed graphs which are discussed below.

'Results which are discussed in detail in the body of the text are numbered according to their appearance
there.
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We should note that while the chromatic polynomial is completely determined by the
poset structure of Lr, Xr is not - the expansion in Theorem 1.2.1 also contains information
about the sizes of the blocks. In particular, while all trees on d vertices have isomorphic
bond lattices (i.e. boolean algebras on the set of d - 1 edges), there are no known examples
of nonisomorphic trees having the same Xr (see [41]).

It can be shown that Lr is a geometric lattice, and it follows, via a result of Rota [36],
that the M6bius function of Lr strictly alternates in sign:

(-1)d-|p((), 7r) > 0.

The usual involution, w, on Sym can be defined by wpA = (-1)d-t(A)p\ when A is a
partition of d with f(A) parts. The results considered above imply that wXr has nonnegative
coefficients when expanded in the power sum basis. In general, if {bA} is a basis of Sym,
we will say that F E Sym is b-positive when the expansion of F in {b\} has nonnegative
coefficients. We will also say that F is b-positive when Xr is b-positive.

A number of interesting results and conjectures are related to the expansion of Xr in
the elementary and Schur bases of Sym. The elementary basis is defined by

en = 1 XilXi2 ""XinX
il<i2<"'.<in

and e\ = e, ... ek. The Schur basis can be defined by letting s, denote the sum of
monomials corresponding to semi-standard tableaux of shape A. The Littlewood-Richardson
rule can be used to show that each eA is s-positive. So the e-positivity is a stronger condition
than s-positivity.

In general, Xr need not be s-positive. For example, the "claw" K 13 fails to be s-
positive, and hence also fails to be e-positive. However, certain families of graphs are known
or conjectured to be e-positive or s-positive. Of particular interest are the incomparability
graphs of posets: if P is a poset, let inc(P) denote the graph whose vertices are the elements
of P and whose edges connect pairs of incomparable elements.

We will call a poset (a+ b)-free when it contains no induced subposet isomorphic to the
disjoint union of chains of cardinalities a and b. Gasharov has shown the following theorem.

Theorem 1.2.7 ([10]) If P is a (3 + 1)-free poset, then Xinc(P) is s-positive.

There are two natural ways to strengthen the statement in Theorem 1.2.7. Since a poset
is (3 + 1)-free if and only if its incomparability graph has no induced subgraph isomorphic
to K 13 = inc(3 + 1), it is natural to conjecture that s-positivity might hold for all clawfree
graphs. It is also possible that the graphs in Theorem 1.2.7 might actually be e-positive.

Conjecture 1.2.8 (Gasharov, see [42, Conj. 1.4]) If r is clawfree (i.e. has no induced
subgraph isomorphic to K 13), then F is s-positive.

Conjecture 1.2.9 ([43, Conj. 5.5], [41, Conj. 5.1]) If P is a (3 + 1)-free poset, then
Xinc(P) is e-positive.
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We should note that examples of Stanley [41] show that clawfree graphs need not be e-
positive and that e-positive graphs need not be clawfree. Stanley and Stembridge [43]
report that Conjecture 1.2.9 has been verified for all posets with fewer than eight elements,
and Stembridge has verified (see [41]) that, among the 16999 posets with eight elements,
the 2469 which are (3 + 1)-free all satisfy Conjecture 1.2.9. So there is significant empirical
evidence, at least, to support Conjecture 1.2.9.

Posets which are both (3 + 1)-free and (2 + 2)-free are known as semi-orders, and their
incomparability graphs are called indifference graphs or unit interval orders. It can be
shown that a poset P is (3 + 1)-free and (2 + 2)-free if and only if it possesses a linear
extension a : P -+ [n] such that

(x <p y and a(y) <p a(z))
or (a(x) <p a(y) and y <p z)

or equivalently, there is a labeling of the vertices of F = inc(P) by elements of [n] and a
set of intervals [i,j] C [n] such that F is the edge-union of cliques on these intervals (the
same a can be used for the labeling). General information about indifference graphs can
be found in [7].

Stanley and Stembridge [43] have shown that the (conjectured) e-positivity of indiffer-
ence graphs can be viewed as a special case of the monomial immanant conjectures discussed
in the next section. In particular, the results we will present in Chapter 2 imply that for
certain A's, the coefficient of e\ in the expansion of Xr is nonnegative for every indifference
graph F.

One of the new results we will present in Chapter 1 is the following proposition, which
gives a necessary condition for a graph to be e-positive.

Proposition 1.3.3 If Xr is e-positive, and F has a connected partition of type A, then r
has a connected partition of type Ip for every p which is a refinement of A. In particular, a
connected, e-positive graph must have a connected partition of every type.

We show by example that the converse is false. However, Proposition 1.3.3 still raises a lot
of interesting questions. For example, we know of no non-e-positive graph for which every
induced subgraph satisfies the conclusions of the proposition.

We will also show that if F is the incomparability graph of a (3 + 1)-free poset, then
every connected subgraph of P has a Hamiltonian path. This shows that Conjecture 1.2.9
is consistent with Proposition 1.3.3, and is a somewhat interesting result in its own right.
(For an indifference graph, the existence of these Hamiltonian paths follows trivially from
the characterization discussed above.) This helps to explain the difference between incom-
parability graphs of (3 + 1)-free posets and arbitrary clawfree graphs, since we will show by
example that a connected clawfree graph need not have a connected partition of each type.

Although Xr need not be e-positive, the following result shows that certain sums of
coefficients in the elementary expansion are nonnegative.
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Theorem 1.2.3 (Stanley [41, Thm. 3.3]) Let Xr = ZM-d c\eA and let sink(F, j) be the
number of acyclic orientations of r with j sinks. Then

sink(r,j)= c,.
b-d

Another relationship between Xr and the acyclic orientations of r is given by the following
reciprocity result.

Theorem 1.2.4 (Stanley [41, Thm. 4.2])

wXr = Z X'
(o,K)

where the sum runs over pairs (o, r) of acyclic orientations and colorings satisfying n(u) <
K(v) if (v, u) is an edge of o.

In the last section of Chapter 1, we will consider the images of Xr under some algebra
maps related to the Hopf algebra structure of Sym. These considerations will lead to the
proof of Proposition 1.3.3 discussed above. We will also see that Theorems 1.2.3 and 1.2.4
have a common generalization.

Monomial Immanants

If A is an n x n matrix with coefficients in any monoid, we will employ the notation:

[A]= E ala(1)a 2a(2 ) ...'ana(n ) 0 - 1. (0.1)

The familiar formula for the determinant of A can be obtained by applying the sign character
to [A], i.e. replacing each permutation a-1 with its sign (-1)'. If one, instead, replaces
each a- 1 by 1 (i.e. applies the trivial character), the result is called the permanent of A
(per(A)). More generally, if one applies any irreducible character, X , of the symmetric
group, (, the corresponding matrix function,

x"[A] = Z XA(°-l)ala(l)a2a( 2)'"ana(n7),

is called an immanant. It is common to see x~(a) in the definition above, but any class
function on 6, satisfies X(a-1) = x(a).

Historically, part of the interest in these matrix functions stems from results and conjec-
tures about their values on positive semi-definite Hermitian matrices. For example, there
is Schur's Dominance Theorem and the Permanental Dominance Conjecture of Lieb.

Theorem 3 ([37]) If A is a positive semi-definite Hermitian matrix, then

1
1X [A] > det(A) > 0.x (1)
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Conjecture 4 ([29]) If A is a positive semi-definite Hermitian matrix, then

1
per(A) > x[A].

X (1)

In the present thesis, we will be concerned mostly with the monomial immanants in-
troduced by Stembridge [46]. These are the matrix functions corresponding to monomial
characters, OA, which can be defined as follows.

A fundamental result in the representation theory of the symmetric group (one form of
the Frobenius character formula) says that the character table of 6, is given by

S(o ) = (SA, Ptype(a))

where the inner product on Sym used on the right hand side is defined by (mA, hl) = 68\,
or equivalently, by saying that the Schur functions s, form an orthonormal basis. The
partition type(a) has parts equal to the lengths of the cycles of a. Here, h, is an element
of the complete basis of Sym, defined by h, = h, ... h,, and

hr =X il Xi 2 . Xi r

With these definitions in mind, the monomial characters can be defined by

\(a) = (mA, ptype(o))

or equivalently, via the expansion Ptype(a) = EA 0\(a)hA. Following Stembridge, we will call
the corresponding matrix function A 4 0 [A] a monomial immanant. We will usually refer
to the immanants defined above (for the irreducible characters XA) as ordinary immanants,
in order to avoid any confusion.

Note that the monomial characters are actually virtual characters (differences between
characters). Since every Schur function s\ is a sum of monomial symmetric functions, it
follows that each irreducible character is a sum of monomial characters. In particular, the
sign character is ((1f) and the trivial character is the sum of all the monomial characters

(CZ,- qX).

In [46], Stembridge presents a series of conjectures involving ordinary and monomial
immanants. His primary motivation for considering monomial characters stems from the
fact (which he shows) that any class function on 6 satisfying these conjectures must be a
nonnegative linear combination of 0,'s.

There are several results and conjectures related to Jacobi-Trudi matrices. Jacobi-Trudi
matrices are defined for any skew shape p/v, by

(where, by convention, ho = 1 and h-k = 0 if k > 0). The Jacobi-Trudi identity says that

s,/, = det HI, ,
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where s.,, is a skew Schur function enumerating semi-standard tableaux of shape P/v. For
any class function X on E,, X[HI,] is a homogeneous symmetric function of degree I/l - Ivl.

It was Goulden and Jackson [18] who first conjectured and Greene who first proved that
ordinary immanants of Jacobi-Trudi matrices are monomial-positive:

Theorem 2.0.2 ([20]) xA[HI,,] is m-positive.

Haiman has shown, using Kazhdan-Lusztig theory, that ordinary immanants of Jacobi-
Trudi matrices are actually Schur-positive:

Theorem 5 ([22]) x~[H,/,] is s-positive.

The analogous conjectures for monomial immanants remain open:

Conjecture 2.0.3 ([46, Conj. 4.2(b)]) OA[H,/,] is m-positive.

Conjecture 6 ([46, Conj. 4.1]) •A[H/,,] is s-positive.

Let s[i,j] E Z n denote the sum of all permutations of {i, i + 1, ... ,j} [n], and let
I denote the set of all finite products of the s[ij ] . The first step of Greene's proof of
Theorem 2.0.2 (which is actually due to Goulden and Jackson [18]) shows that

[H/l,] = f f7ir, (0.2)

where f, is monomial-positive, and the [ .] notation is as defined in (0.1). The second step
shows that x (r) > 0 for every 7r E H.

Greene's proof that X (7r) Ž 0 involves an explicit computation of the matrices p (s[i,j]),
where p\ is the Young seminormal representation with character X\. In particular, Greene
shows that all of the entries of these matrices are nonnegative. (So taking a product of
these matrices and then taking the trace yields a nonnegative value for X (wr)).

Unfortunately, this representation-theoretical approach can't be applied to the virtual
characters O (at least not directly). However, it does follow from these considerations that
Conjecture 2.0.3 is implied by the following:

Conjecture 2.0.1 (Stembridge [46, Conj. 5.2]) 0,\(7r) 2 0 for all 7r E H.

Another family of matrices considered by Stembridge are the n x n matrices with real
entries for which every minor is nonnegative. Such matrices are called totally positive. Let
TP denote the set of totally positive matrices.

Theorem 7 (Stembridge [45]) If A E TP, then x\[A] > 0.

Conjecture 8 ([46, Conj. 2.1]) If A E TP, then 0-\[A] > 0.
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U4

U13

V4

V3

V2

V1

Figure 0.1: The skeleton corresponding to s[3 ,4]S[1, 3]S[2 ,4].

Stembridge's proof of Theorem 7 also relies on Greene's result that XA (r) 2 0 for any
7r E H. He shows that for any A E TP, [A] is a nonnegative linear combination of elements
of H. It follows that Conjecture 2.0.1 implies Conjecture 8.

Most of Chapter 2 will be devoted to investigating Conjecture 2.0.1. In particular, we will
show that the conjecture holds for certain families of partitions A, including the partitions
with two parts, the "hooks" (r, 1, 1,..., 1), and the partitions with no part larger than two.
We will also show that if the conjecture holds for A, then it holds for (mA 1, mA2, ... , mAk).

It follows from results in [46] that the conjecture holds when A = (rj), (n - 1, 1), or (2, 1n-2).

Stembridge has recently indicated (personal communication) that he has found a proof for
the case when A has no part larger than three.

Rather than working directly with the s[i,] E ZEn, we will take a "geometrical" ap-
proach. Goulden and Jackson's derivation of (0.2) is based on a lattice path interpretation
of [H,,I] which was used by Gessel and Viennot [17] to give a combinatorial proof of the
Jacobi-Trudi identity. We will discuss this interpretation in detail in Section 2.1.1, but for
the present it will suffice to note that products of the s[i,j]'s can be associated with certain
planar digraphs (directed graphs), as is demonstrated in Figure 0.1.

We will use the term "skeleton" to denote the digraphs obtained in this way (together
with the labelings of the sources and sinks), and we will always assume that we have a fixed
planar embedding with the sources and sinks lying on vertical lines and the edges moving
left to right, as in the example in Figure 0.1. Our choice of language is motivated by (but
slightly different from) Greene [20], where a "skeleton" is a multiset of edges appearing in
a family of lattice paths. He attributes the terminology to John Stembridge.

If S is a skeleton, we will write (S) for the corresponding product of s[i,j]'s and Z[S] E
Sym for the image of (S) under the map a ý- Ptype(a). Then Conjecture 2.0.1 says that

0,(S) > 0 for every S and A, or equivalently, that Z[S] is always h-positive.

We mentioned earlier that Stanley and Stembridge [43] have shown that the conjectured
e-positivity of indifference graphs is equivalent to a special case of the monomial immanant
conjectures. What they show, more specifically, is that if A is the matrix obtained by
replacing the nonzero entries of H/• by l's, then the conjectured e-positivity of indifference

graphs is equivalent to the nonnegativity of 0-[A]. For example, if p = (5, 5, 5,3,2) and
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v = (2,2, 2, 1, 0), then A would be

11111
11111
11111

00111

The (0, 1)-matrices obtained in this way are characterized by the fact that the positions of
the zeroes form a Young diagram (or shape), justified in the lower left corner, and lying
entirely below the main diagonal. The permutations whose coefficient in [A] is nonzero
correspond to "rook placements" in the l's of A.

It can be shown that the cycle indicators of these (0, 1)-matrices (i.e. the image of [A]
under ca ý+ Ptype(a)) are, up to multiplication by a positive constant, the same as the Z[S]'s
for skeletons corresponding to products s[il,j] s [i2,j1] ... s [ikjkl with ji 5 j2 <_ "• " < jk.

One of the new results we will present in Chapter 2 is that for any skeleton, wZ[S] can
be expressed in a natural way as a sum of chromatic symmetric functions of incomparability
graphs. And so, Conjecture 2.0.1 is equivalent to conjecturing that certain sums of chro-
matic symmetric functions are e-positive. Unfortunately, the individual incomparability
graphs obtained by this construction have no special properties and need not be e-positive.
However, any and all "general" results concerning the elementary expansions of the Xr's
can be applied to Z[S]. For example, Theorem 1.2.3 can be applied to show that

E 0(S)> 0.
AI-n

L(A)=k

In [46], Stembridge also considers more general matrices defined in terms of paths in
acyclic digraphs. If u = (ul, ... , un) and v = (vi,..., v,n) are ordered n-tuples of vertices,
he says that u and v are D-compatible if

every path in D from ui to vk intersects every path
i < j, k > 1 - fm

from uj to vl.

If the edges of D are weighted by independent (commuting) indeterminates, Stembridge
considers the matrix A(u, v), whose (i, j) entry is the generating function for paths from ui
to vj (in terms of these weights), and he makes the following conjecture:

Conjecture 2.6.1 ([46, Conj. 6.3]) If u and v are D-compatible, then qA[A(u,v)] is
monomial positive.

He also shows that this conjecture holds in the cases when A = (re) (including (n) and

(1n)), when A = (21n-2), and when A = (n - 1, 1).
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We will show that, as in the case of totally positive matrices and Jacobi-Trudi matrices
(which can be viewed as a special case of this construction), this conjecture can be reduced
to Conjecture 2.0.1 - at least in the case when D is finite or when A(u, v) can be viewed as
a limit of finite cases. In particular, it will follow from our results that ordinary immanants
of these matrices are monomial positive.

Signed and Voltage Graphs

Signed graphs were introduced by Harary [24], but most of the theory we will use was
developed in a series of papers by Zaslavsky [52-57].

A signed graph E = (r, w) is an ordinary2 graph, F, together with an assignment of
"signs" to the edges, s : E(r) -4 {+1, -1}.

Let V denote the set of vertices of F. We will consider colorings K : V -+ Z. A coloring
is called proper when for each edge e from v to w, K(w) rK(v)Wo(e). In our considerations
here, we will assume that E has no positive loops (otherwise, there are no proper colorings).
Zaslavsky's chromatic polynomials for signed graphs come in "unbalanced" and "balanced"

(zero-free) versions:

X~ (2n + 1) = number of proper colorings using [-n, n]

x (2n) = number of proper colorings using ([-n, n] \ {0})

In [52], Zaslavsky interprets signed graph colorings in terms of certain hyperplane ar-
rangements. Let E be a signed graph on d vertices, labelled by [d]. E can be associated
with an arrangement in Rd by including the hyperplane xi = Exj if there is an edge (i, j)
with sign E. Denote the set of these hyperplanes by H[E]. It is immediate from the defini-
tion that proper colorings of E exactly correspond to those points in Rd which have integer
coordinates and lie in the complement of H[E].

Let B* denote the set of hyperplanes dual to the elements of the root system, Bd, of the
hyperoctahedral group, Bd. Then H[E] is a subarrangement of B), and every subarrange-
ment can obtained in this way.

Likewise, let A*_1 denote the set of hyperplanes of the form xi = xj, (i : j). These
correspond to positive edges which are not loops, and the duals of these in Bd can be
identified with the root system of Ed. Ordinary (unsigned) graphs, F, on [d] correspond to
subarrangements, H[r], of A_-1 (i.e. the edges can be considered to have a positive sign).

For an ordinary graph F, there is a direct correspondence (see Greene [19] and Za-
slavsky [51]) between acyclic orientations of F and regions of the arrangement H[F] (the
regions into which Rd is divided by the hyperplanes). Choosing a direction for each edge
corresponds to choosing one of the half-spaces defined by the corresponding hyperplane,
and the acyclic orientations correspond to the non-empty intersections of half-spaces.

2Zaslavsky also considers a more general situation, where E is allowed to have "free loops" and "half-
arcs." However, these ideas are introduced to allow for deletion-contraction methods. These methods will
not be applicable to our chromatic functions, so we won't need to consider these other E's.
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In [57], Zaslavsky develops an orientation theory for signed graphs such that acyclic
orientations correspond to regions of H[E]. This theory involves oriented matroids and the
details are significantly more complicated than in the case of ordinary graphs. However, from
our point of view, it will suffice to just work directly with the regions of the arrangement.

The direct analogues of Stanley's chromatic symmetric function for signed graphs would
be:

X = Z", Xb = x (0.3)
where the sums run over all proper colorings and zero-free proper colorings, respectively.
These are formal series in variables xj, with j E Z.

It will also be useful to consider the images of these obtained by "forgetting" the signs of
the colors. We will write |xji = xljl, and similarly for formal power series in these variables.
It is fairly obvious from the definitions that |XuI e Q[xo] 0 Sym and IXbI E Sym. These
functions have some nice properties which are not shared by Xu, X , and are generally
speaking less cumbersome to work with.

Any of these functions can be considered analogues of Stanley's Xr. From the point
of view of acyclic orientations and hyperplane arrangements, Xu is the natural thing to
consider, but "algebraic" results about Xr generalize more directly to |Xb 1.

One of the interesting results we will present is an expansion of Xju in terms of an
analogue of the fundamental basis of the ring of quasi-symmetric functions, which is directly
related to the regions of the corresponding hyperplane arrangement. We will also show a
"reciprocity" result which relates Xu and the enumerator of pairs of acyclic orientations
and compatible colorings in a way which is analogous to Theorem 1.2.4, or "geometrically
speaking," it takes (the lattice points in) each region to (the lattice points in) the closure
of the region.

We will also derive some interesting new results for ordinary graphs which relate Xr to
some other hyperplane arrangements (apart from the usual one).

For example, if R is a region of H[+Fo] (the usual arrangement plus the coordinate
hyperplanes), let neg(R) be the number of coordinates of an interior point of R which are
negative and let sink(R) denote the number of faces of R which lie in coordinate hyperplanes.
Then we have the following result:

Proposition 3.4.6 The algebra map Sym -+ Q[s, t] induced by

ek ý- (1+ sk)t + (8+ s 2 +... + Sk-l)t 2

sends Xr to _ sneg(R)tsink(R), where the sum runs over the regions for H[+Fo].

This proposition implies that certain nonnegative combinations of the c, are positive (where
Xr = E ce,). If we set s = 0, we obtain Theorem 1.2.3.

We will also consider generalizations of these chromatic functions for voltage graphs (a
generalization of signed graphs in which the edges are labeled by elements of an arbitrary
group). At this level of generality, there are analogues of the monomial and power sum
expansions of Xr, but no corresponding theory of acyclic orientations.
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Part II

The results described in Chapters 4 and 5 were obtained in collaboration with Nantel
Bergeron and have been published in [2].

Hochschild Homology, Shuffles, and Free Lie Algebras

Let A be an associative, unital algebra over a field K and M be an A-bimodule (a two-sided
A-module). In [27], Hochschild introduces a cohomology theory for the pairs (A, M) as an
analogue of the cohomology theory for groups developed by Eilenberg and MacLane.

The cochains for this theory are Cn(A, M) = HomK(A®n, M) and the Hochschild
coboundary map 6 = n C: 1C(A, M) -_ Cn+ (A, M) is given by

6f(ai,...,an+l) = al f(a2,.. ,an) +

Z(-l1)f(al,... ,aiai+,... ,an+l)+
i=1

(-1)n+l f (a, .. an) -an+1,

where we have written f(al,... , an) for f(al 0 a2 0.. 0 an). The maps 5n make C*(A, M)
a complex, and the homology Hn(A, M) = (ker ,n)/(Im 6._1) is called the Hochschild co-
homology of A with coefficients in M.

It can be shown that Hochschild cohomology is a generalization of simplicial cohomol-
ogy, although the proof of this fact is quite complicated. In particular, Gerstenhaber and
Schack [12] have shown that if E is a locally finite simplicial complex, then the simplicial
cohomology H*(E, K) is isomorphic to the Hochschild cohomology H*(A, A), where A is
the incidence algebra of the poset consisting of the simplices in E, ordered by inclusion.

Hochschild homology is defined analogously. The chains are given by Cn(A, M) =
M 0 A®". The boundary map 8 = 9n : Cn(A, M) -+ Cn_ 1(A, M) is given by

On(m[al,... ,a]) = mal[a2,... ,an]+
n-i

(-1)'m[a,,..., aai+,...7 an] +
i=1

(-1)nanm[al, ... , an-_l],

where we use the "shorthand" m[al,..., an] for m 0 al 0 ... an.
Hochschild homology and cohomology can also be defined in terms of the derived func-

tors Tor and Ext. This approach allows for a uniform development of the homology theo-
ries for groups, Lie algebras, and associative algebras (see, for example, Cartan and Eilen-
berg [5]). However, since we will be concerned with the action of E~ on A®T, the "classical"
definitions given above are better suited to our purposes.

Now we consider the case when A is a commutative, unital algebra over a field K of
characteristic zero and M is a symmetric A-bimodule (i.e. just an ordinary A-module).



INTRODUCTION

Harrison [26] introduced a different cohomology theory for commutative algebras which is
defined in terms of shuffles.

There is a (signed) shuffle product on the tensor algebra of A, TA = $(n>0 A®n, which
can be defined as follows. Let 6, act on the left of A®n via

o[al, a2,... an]= [a -I,a -1,... a 1,

where we write [al, ... , a,] for al 0 ... 0 aa. Then the shuffle product can be defined as

[a , a2, ... , ai] [bi, b2, ... bj] = (-1) a[a ,... ,a, b,...,b].
aEEJi+j

0(1)<... < (i)
a(i-l)<...<a( i+j)

For shuffle products involving elements of A®O = K, we can just take the usual scalar
product. Let us write Sh (TA) for the subspace of A® spanned by non-trivial (i, J _ 1 in
the above definition) shuffle products of two elements of TA, and let Sh2(TA) denote the
sum over all n of these. Similarly, define Shk (TA) to be the span of non-trivial (shuffle)
products of k elements of TA. We will call these k-shuffles.

It cawnbe shown that the set of cochains f A® -+ M which vanish on Sh (TA) form
a subcomplex under 6. The homology of this complex is called Harrison cohomology.

We should note that this definition of Harrison cohomology is actually due to MacLane,
who was the referee of Harrison's paper [26]. Harrison's original definition was quite different
and is omitted from the published version of his paper. Although we will not need to consider
this original definition, we mention in the way of background that Harrison's unpublished
manuscript [25] is fairly widely circulated and occasionally referenced in the literature. Both
definitions and a proof of their equivalence are discussed in [13].

The situation for homology is similar. M 0 Sh 2(TA) is a subcomplex of C.(A, M) and
the Harrison homology of A with coefficients in M is defined to be the homology of the
quotient of C. (A, M) by M 0 Sh (TA).

We note that all of these definitions make sense without the assumption that K has
characteristic zero. Barr [1] showed that, with the characteristic zero assumption, Harrison

(co)homology is actually a summand of Hochschild (co)homology (i.e. that the appropriate
subcomplexes are complemented). He also showed that this fails to be the case if the
characteristic zero assumption is dropped.

Gerstenhaber and Schack [13] and (independently) Loday [30] have shown that there
are decompositions of the Hochschild (co)homology in the commutative case:

Hn(A, M) = H,n-1(A, M) E H2,n-2(A, M) ED . ..E H,,o(A, M)

H"(A, M) = HI•n-1(A, M) E H2,n-2(A, M) ED ... (D Hn'0 (A, M)

These decompositions are obtained by a family of orthogonal idempotents ek) in the group
algebra Q[E,] of the symmetric group, which acts on the (classical) Hochschild complexes
by trivially extending the action on Ae® described above. The arguments in [13] and [30]
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are generalizations of Barr's construction such that the first summands H,,_1 (A, M) and
HI'"-1(A, M) are the Harrison (co)homology.

The summands Ha,o(A, M) and Hn,O(A, M) can be described in terms of differential
forms and skew multiderivations, respectively. The intermediate components have not been
well understood.

The idempotents p(k) = O(ek)), where 0 is induced by a '-+ (-1)"a, have been used by
Garsia and Reutenauer [8, 9, 33, 34] to study the combinatorics of free Lie algebras. In par-

ticular, they show that the p() give projections into the direct summands of the symmetric
algebra of the free Lie algebra, making explicit the Poincar&-Birkhoff-Witt theorem.

We will use free Lie algebras to study the decompositions of Hochschild (co)homology.
Harrison (co)homology is defined in terms of shuffles. In Section 4.3, we will see that

all of the components of the decomposition can be described by generalizing to k-shuffles:

Hk,n-k(A, M) H,(M 0 Shk(TA)/M Shk+1(TA)) (0.4)

Hk,n-k(A, M) H (HmK(Shk (TA), M)/HomK (Shk+ (TA), M)).

In particular, we have a nice characterization of E= Hin-i (A, M) as the cohomology of
the Hochschild n-cochains which vanish on (k + 1)-shuffles. Section 4.3 is (essentially) taken
from Wolfgang [50]. (0.4) has been shown independently by Ronco [35] and by Sletsjoe [38].

In Section 4.4, we show that the complex C(k) defining Hk,*-k(A, A) is the k-th shuffle

power of C(1). The same methods are used to show that the en(k) are the projection maps for
a dual, graded version of the Poincar&-Birkhoff-Witt theorem due to Hain [23]. This gener-

alizes what Hain has shown for e ) and gives an intuitive explanation for the relationship

between the en) and the p()

Gerstenhaber Operations

The Hochschild cohomology H*(A, A) is endowed with two Gerstenhaber operations: a
graded commutative cup product and a graded Lie bracket. For the sake of clarity, we should
mention that the word "super" is also commonly used to describe the graded analogues of
various structures (as in "super Lie algebra"). In the present thesis we will use the more
descriptive word, "graded."

Although the cup product is used in Hochschild [28], most of the interesting properties
are due to Gerstenhaber [11] - this is our reason for calling these Gerstenhaber operations.
In [13], Gerstenhaber and Schack ask if these operations are graded with respect to the
decomposition, i.e. does one have H ( ) U H(k) C H( j +k) and [H (j ), H(k)] C H(j+k- 1), where
H(k) = EnHk,n-k(A, A)?

In general, the answer to this question is "no". In Section 5.3 we will give counterex-
amples. The products are, however, filtered with respect to H(< k) = Ej<kH (j), as we will
show in Section 5.1. That is, H( ) U H (k) C H( -j +k) and [H(j), H(k)] C H( <j +k- 1). The
intuition here is that the projections of f U g and [f, g] into the smaller components of
the decomposition should be viewed as "error terms". We will relate these operations on
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cohomology to certain operations on words and show that the error terms above are related
to the "error terms" obtained from writing an arbitrary product of Lie elements in terms
of symmetrized products of Lie elements.

Equivalently, one can say that Fq = (r,>qH*'r(A, A) are ideals for the cup product and
the Lie bracket in H*(A, A), with

-Fp U Tq J Yp+q

[Fp, Fq] C Fp+q .

The results for the cup product were conjectured in this form in [14, 15]. These results
generalize results in [13] for the Harrison component and YF1.

Somewhat stronger statements can be made for the Harrison component. For example,
we show that the H(k) are H(1)-modules under the bracket action.

In Section 5.2, we examine the behavior of the Gerstenhaber operations for a (not
necessarily commutative) algebra with an involution. We obtain a decomposition into two
parts for which the cup and Lie products are Z/2Z-graded.

A paper by Sletsjoe [38] incorrectly asserts that the Gerstenhaber operations are graded
with respect to the decomposition. This is discussed at the end of Section 5.1.
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Chapter 1

Stanley's Chromatic Symmetric
Function

1.1 Symmetric Functions

In the first part of this section, we will review some of the properties of symmetric functions
and representations of the symmetric group which we will need in the sequel. Proofs of
these facts and a more complete development can be found in Macdonald [32].

Let Sym = Sym(xl, 2,...) denote the ring of symmetric functions in the variables

{ x 1 , x 2 , ... } with rational coefficients. More generally, we will write Sym R for the symmetric
functions with coefficients in (some ring) R. The homogeneous component of Sym consisting
of functions of degree n has several natural bases indexed by partitions of n. A partition
of n with k parts is a k-tuple of positive integers A = (A1,... , Ak) with A1 > ... > Ak and

Al + ' + Ak = n. In this case, we will write A I- n, JAI = n, and £(A) = k. We will let
{e }, {h }, {pj}, {mA}, {IFi}, and {s,} denote, respectively, the elementary, complete,
power sum, monomial, augmented monomial, and Schur function bases of Sym, which can
be defined as follows.

The most "obvious" basis of Sym is the monomial basis, defined by letting mA be the
sum of all monomials whose exponents are given by A. It is sometimes more convenient to
work with the augmented monomial basis, given by

A l X1  . XAk Qiir'! mA\,

A11 t2 tk

(ili2,...,ik) i

il,i2,...,ik distinct

where ri denote the multiplicity of i as a part in A.
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If we let (for any n E P)

en = • il i2 •... Xin ,

il<i2<"..<in
hn = x 1 xil Xi2  Xi ,

i <_i2 <_ ...<_i

Pn = X, + Xn + X, + .. ,

then it can be shown that Sym is a polynomial algebra, and any of the sets, {ei}, {hi}, {pi},
can be taken to be a set of generators. The elementary, complete, and power sum bases are
defined to be the corresponding sets of monomials in these: e, = e\1 ... eA k, etc. We will
employ the usual convention and let eo = ho = 1.

The reason for calling {h\} the complete basis is that

hn = m\.
)d-n

The generating functions for the en's and hn's are given by

E(t) = E et" = "-(1 + xit) (1.1)
n=0 i=1

and H(t) = h, nt" = I(1 - zit)-1. (1.2)
n=0 i=1

These are related to the power sum symmetric functions via

logE(t) = _pi(- 1)i - ti  t'
log E(t) = pi , log H(t) = pi--. (1.3)

i>1 i>1

There are many ways to define the Schur functions. For our purposes, the most conve-
nient definition will be the "combinatorial" one in terms of semi-standard tableaux. A semi-
standard tableau for the partition A is an arrangement of positive integers in left-justified
rows of lengths given by the parts of A, such that the integers are weakly increasing in
each row and strictly increasing in each column. A is called the shape of the tableau. For
example, a semi-standard tableau of shape (4, 4, 2) is given by:

strictly increasing
t

2 3 4 4 -+weakly increasing

(Another common convention is to draw these so that the columns read downwards.) The
Schur function s, is the sum over all semi-standard tableaux of shape A of the corresponding
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monomials (the product of the variables corresponding to the entries in the tableau). The
set of squares of shape A into which these entries go is called a Young diagram or Ferrers
board.

If p F- n and v P- m are partitions of n > m satisfying pi _ vi, then we can consider the
skew shape, up/v, obtained by removing the Young diagram for v from the Young diagram
for p. Fillings of these shapes which increase weakly in rows and strictly in columns are also
called semi-standard tableaux, and the sum over all these of the corresponding monomials
is called a skew Schur function, and is denoted s,,/,. An example of a semi-standard tableau
of shape (4, 4, 2)/(2, 1) would be:

[T4.

1 2141.

It will be convenient to use the notation Ec = (_1)IAl-e() and zx = Ji iriri!, where ri

(as above) is the number of times i appears as a part of A.
There is an involution w on Sym, which can be defined by any of the following conditions:

w(eX) = h\, w(sA) = s=l, w(p) = EcpA.

Here, A' denotes the conjugate shape to A, which can be defined by reflecting the Young
diagram across the principal diagonal (i.e. exchanging the rows and columns).

Sym is related to the representation theory of the symmetric groups via the characteristic
map, which gives an isomorphism between the space of class functions on 5n and the
homogeneous elements of Sym of degree n:

ch(x) = n! X(a)Ptype(a),

where type(a) is the cycle type of a (the partition whose parts are the lengths of the cycles
of a). There is a one-to-one correspondence between the conjugacy classes of Sn and the
cycle types of the permutations in each class.

We will also need to make use of some identities involving the so-called Cauchy product:

1I(1 - xiyj)-I = E z'pA(x)px(y)
ij

= m, m(x))hx(y) = h h(x))mx,(y) (1.4)

= sA(X)sA(Y)
A

Appropriate applications of the involution w can be used to derive the following:

JJ(1 + xiyj) = E m,(x)e,(y) = E eA(x)mA(y) (1.5)
i,j A A
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A consequence of (1.4) is that Sym possesses an inner product satisfying

(sA, s,) = (m\, hL) = (h,, m,) = b (1.6)

(px, p) = z- \15. (1.7)
In terms of this inner product, the character table of 8, can be given by the Frobenius

formula:

X' (a) = (s,A ptype(a)) (1.8)

The Quasi-symmetric Functions

The quasi-symmetric functions introduced by Gessel [16] are defined to be formal series
F(xz, x2,...) such that the coefficients of the monomials a•} X2 ... x: and xkX j -... xk

are equal when il < ... < ik and jl < " jk. We will denote the ring of quasi-symmetric
functions (with rational coefficients) by QSym and the subspace consisting of the homoge-
neous elements of degree d by QSymd. The fundamental basis {Qs,d I S C_ [d - 1]} of QSymd
is given by

QS,d = , *, X "zad.
al<a2<...<ad
ai<ai+l if iES

We will just write Qs when d is understood by context. Note that QO,d = hd and Q[d-1],d =
ed.

QSym is a ring, and the product can be described in terms of the fundamental basis as
follows:

Qs,dQS',d' = IQT,d+d',

where the sum runs over all rearrangements of the word al ... adbl ... bd' which preserve the
order of the ai's and the order of the bi's (i.e. shuffles), and the corresponding subset T is
the set of i's such that the letters in the ith and (i + 1)st positions are

akak+1 with k E S,

bkbk+l with k E SI,
or biaj (any i, j).

There is an involution on QSymd, defined by w(QS,d) = Q-,d (where S = [d - 1] - S).
This involution extends the involution on Sym.

QSym has another basis,

MS,d = XalXa 2 ..." " Xa
ai<ai+l if iES
ai=ai+l if i0S

Note that
Qs = Z MT, and hence Ms = Z (-1)ITI-ISIQs.

TDS TDS
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An elementary calculation shows that

w(MS,d) = (-l)d-1(--_1)Is MT,d (1.9)
TCS

The Hopf Algebra Structure of Sym

In Section 1.3, we will make use of the Hopf algebra structure of Sym. This structure and its
relationship to the representation theory of En are studied in great detail in Zelevinsky [58].
Our brief presentation here is based on some lectures given by Sergey Fomin in Gian-Carlo
Rota's class on Hopf algebras at MIT during the spring of 1994.

Consider the ring Sym(x, y) = Sym(x , x2, x3 , ... Y1, Y2, ... ), i.e. replace the variables
by the union of two countable sets of variables. Any element of this ring must be invariant
under permutations of the xi's or the yj's (separately), so in particular, Sym(x, y) can
be viewed as a subspace of Sym 0 Sym. On the other hand, any countable set of variables
defines the same ring of symmetric functions, i.e. Sym(x, y) is isomorphic to Sym. So, given
an element of F E Sym, we can consider F(xi, x 2, ... , Y2, ") and this can be written
as a sum

Fl,i(xl, X2,...)F2,i (Y1, 2, * * ),

where each Fl,i and F2,i are symmetric functions.
The map F '-+ Fl,i 0 F 2,i defines a coassociative coproduct

A : Sym -+ Sym 9 Sym.

It is easy to see that A is an algebra map from this definition, and with this coproduct and
the usual product, Sym becomes a commutative, cocommutative Hopf algebra.

The following properties are fairly straightforward to verify from the definition of the
coproduct given above.

Proposition 1.1.1

Api = pi & 1 + 1 & pi (1.10)
n

Aen = ei 0 e (1.11)
i=O

n

Ah, = E hi 0 hn-i (1.12)
i=O

AmS= E mI mp, (1.13)

t= (1.14)

In the usual terminology associated with Hopf algebras, (1.10) says the the pi's are
primitive, and (1.11) and (1.12) say that the ei's and hi's are divided powers.
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1.2 Stanley's Chromatic Symmetric Function

In this section, we will examine some of the details of Stanley's results concerning chromatic
symmetric functions which we will need in later sections.

Recall that for any graph F = (V, E), Stanley's chromatic symmetric function is defined
to be

Xr= z" (1.15)
n proper

where the sum runs over all colorings r : V -+ P such that adjacent vertices are colored
differently (proper colorings) and x" = LEV X,~(v).

Stanley's power sum expansion of Xr in terms of the bond lattice of r will play an
important role in the next section, and in Chapter 2, where it will allow us to express
questions involving monomial immanants in terms of chromatic symmetric functions. In
Chapter 3 we will generalize this result to voltage graphs.

Theorem 1.2.1 (Stanley [41, Thm. 2.6])

Xr = P (,7r)Ptype(,r).
irELr

Proof: If 7r E Lr, let

X, = .z,  (1.16)

where the sum runs over all colorings K : V -4 P which are monochromatic on the blocks of
7r but color adjacent vertices in different blocks differently.

For any map K : V -+ P, there is a unique a E Lr such that K is one of the colorings
enumerated by X, (i.e. the blocks of a are the connected components of the subgraphs
on which n is monochromatic). So, for any 7r E Lr, the sum of all colorings which are
monochromatic on the blocks of 7r is

Ptype(r) =Z X0.

MSbius inversion implies that

X•,r Ptype(a)P ( 7r=, C).

For 6 E Lr (the partition with one vertex per block), X6 = XF, and the theorem follows.

Stanley gives another power sum expansion of Xr in terms of subsets of the edges.
The proof uses a similar M6bius inversion argument (in this case, just ordinary inclusion-
exclusion).
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Theorem 1.2.2 ([41, Thm. 2.5]) If S C E, let A(S) denote the partition whose parts
are the vertex sizes of the spanning subgraph of r with edge set S, then

Xr = E (-1)1SIp\(s) •

SCE

Some of the most interesting results and open questions about Xr concern the expansion
in the elementary basis. Let

Xr = cxe .
AF-d

Theorem 1.2.3 (Stanley [41, Thm. 3.3]) Let sink(r,j) be the number of acyclic ori-
entations of r with j sinks. Then

sink(r,j)= c .

t(\)=j

Another connection between Xr and the acyclic orientations of r is given by the following
"reciprocity" result.

Theorem 1.2.4 (Stanley [41, Thm. 4.2])

wX = E x"~

(0,K)

where the sum runs over pairs (o, K) of acyclic orientations and colorings satisfying K(u) <
,.(v) if (v, u) is an edge of o.

We will see later that these results have a common generalization (Theorem 1.3.9 below).

We will briefly outline Stanley's proof of Theorem 1.2.3, since we will make extensive
use of some of the intermediate steps.

If P is any poset, let Xp denote xC " where the sum runs over all strictly order pre-
serving maps a : P -+ P and xk = IvEP x,(v). A proper coloring K of r defines a unique
acyclic orientation a by directing a edge e with ends v and w towards the vertex with a
smaller color. Then K is one of the maps appearing in the definition of X-, where - denotes
the transitive closure of o. Note that 5 is a poset. So it follows that

Xr = E X-, (1.17)
0

where the sum runs over all acyclic orientations of r. It follows that Xr has the following
expansion in the fundamental quasi-symmetric basis:

Xr =E E (1.18)0 uEL~Cj)
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where £(-) denotes the Jordan-HSlder set of -, and D(a) denotes the descent set of a per-
mutation. (Stanley shows that for any poset P, Xp has such a quasi-symmetric expansion
in terms of £(P).)

Stanley defines the following map on QSymd:

ft(t-1)', ifS={i+1,i+2,...,d-1}
W(Qs,d) = {t(0, otherwise. (1.19)0, otherwise.

A crucial step in Stanley's proof of Theorem 1.2.3 is the following result.

Lemma 1.2.5 (Stanley [41]) For any (finite) poset P, 5o(Xp) = tm , where m is the
number of minimal elements of P.

In particular, p(XT) = tsink(o), where sink(o) is the number of sinks of a. So Theorem 1.2.3
follows from applying W to (1.17), and calculating that p(ex) = t t (

-
) .

Although Stanley doesn't mention this, the following lemma can be seen by considering
the characterization of the product on QSym discussed in Section 1.1.

Lemma 1.2.6 W is an algebra map on QSym.

We close this section with a list of some of the results and conjectures involving the e-
positivity and s-positivity of specific families of graphs, and a related condition considered
by Stanley.

Theorem 1.2.7 (Gasharov [10]) If P is a (3 + 1)-free poset, then Xinc(P) is s-positive.

Conjecture 1.2.8 ([42, Conj. 1.4]) If F is clawfree (i.e. has no induced subgraph iso-
morphic to K 1 3 ), then Xr is s-positive.

Conjecture 1.2.9 ([43, Conj. 5.5], [41, Conj. 5.1]) If P is a (3 + 1)-free poset, then

Xinc(P) is e-positive.

In [42], Stanley considers graphs F which have the property that if F has a stable
partition of type A and y < A in the dominance order, then F has a stable partition of type
p. He calls such graphs nice, and presents the following two results as evidence in favor of
Conjecture 1.2.8.

Proposition 1.2.10 ([42]) ifF is s-positive, then F is nice.

Proposition 1.2.11 ([42]) A graph F and all of its induced subgraphs are nice if and only
if F is clawfree.

In the next section, we will present some analogous evidence in favor of Conjecture 1.2.9.
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1.3 Various Images of Xr

In this section, we will consider the images of Xr under certain naturally defined algebra
maps and discuss some related results.

Let 1 k denote the k-th convolution power of the identity map, i.e. the composition

SmA~k-1 Okproduct
Sym Sym®k Sym,

where A is the coproduct discussed in Section 1.1. In particular, it follows from (1.10)
that Tk( p) = kpi. If F E Sym, then F can be viewed as a symmetric function in

{ x1 , x 2, ... Y1, Y2, . . ... , z1, Z2, ... } (the union of k countable sets of variables). Then
qk (F) is the image of F(x1, x 2, ... , Yl Y2, .... ... i Z1, Z2, ... ) under the (algebra) map in-
duced by mapping all of the variables xi, yi,... , zi to xi (for each i). It follows that Xpk

is an algebra map. More generally, the convolution product of any two algebra maps on a
commutative Hopf algebra is again an algebra map (see, for example, [31, App. A]).

Tk also has a fairly elegant description in terms of the generating function for the ei's
(which can be easily seen from (1.3)):

I@k(E(q)) = (E(q))k. (1.20)

We can define an algebra map W(t) : Sym -+ SymQ[t] which specializes to IF k when t = k

by letting I(t)px = tt(\)pA. We will be particularly interested in the coefficients of eA in Tk,
so it will be useful to consider the polynomials cA(t), defined via the expansion

W ) Xr = Cc (t) e.

An interesting fact about these polynomials is given in the following proposition.

Proposition 1.3.1
cA(t) = (-1)dXr(-t)

Proof: If k is a positive integer, then it follows from (1.20) that the sum of the e, coefficients
in Tk(ei) is (k+i-1). Viewed as polynomials in k, (k+i-1) = (1)i(-k). It follows that for

any yt I- d, the sum of the ex coefficients in 1k(e,) is given by (-1)dli (-k). Also, the

specialization of e. at 1 k (i.e. X 1 = X2  Xk = 1, Xk+1 = Xk+2 = - 0) is Hi (k).
So we have, in fact, that for any homogeneous symmetric function F of degree d, the

sum of the e, coefficients in k (F) can be found by specializing F at 1 k, replacing k by
-k, and multiplying by (-1)d. The equality of the polynomials in the statement of the
proposition follows from the fact that they are equal whenever t is replaced by a positive
integer. [

If we expand wp, in the elementary basis:

wpm = Ed•,,eA,
A
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then d,Ax : 0 if and only if A is a refinement of yu (i.e. the multiset of parts of A can be
obtained by taking partitions of each part of p), and if d,,A : 0, its sign is (-1)1(A)-(Ahe)
This can be seen from (1.3), or more explicitly from a geometric interpretation due to
Stembridge (apply w to the expansion in Proposition 2.1.8).

So the following lemma can be obtained from the power sum expansion of Xr in The-
orem 1.2.1 (in particular from the fact that the coefficient of wpA in Xr is positive when F
has a connected partition of type A and is zero otherwise).

Lemma 1.3.2 The polynomial cA(t) has alternating coefficients. The coefficient of t' has
sign (-1)e(A)-i. cA(t) has degree less than or equal to e(A), with equality if and only if F
has a connected partition of type A.

The preceding considerations lead naturally to the following result, which gives a con-
dition which must be satisfied in order for a graph to be e-positive.

Proposition 1.3.3 If Xr is e-positive, and F has a connected partition of type A, then F
has a connected partition of type Cp for every tp which is a refinement of A. In particular, a
connected, e-positive graph must have a connected partition of every type.

Proof: Since Xr is e-positive, @IIkXr must be e-positive for every positive integer k. This
can be seen from (1.11) or (1.20). If, for some A, cA(t) had a negative leading coefficient,
then for large k, cA(k) would be negative. So, for each A F d, cA(t) must either have a
positive leading coefficient or be identically zero.

Suppose F has a connected partition of type A, but for some refinement i of A, F has no
connected partition of type j. Among the partitions which are refinements of A but are not
the types of connected partitions of F, choose a maximal one (with respect to refinement),
Iu. Let A be a partition which lies between IL and A in the refinement order, and covers yu (i.e.
p can be obtained from A by splitting one of the parts of A into two pieces). In particular,
f(y) = e(A) + 1. The maximality of p implies that F has a connected partition of type A.

We claim that the leading coefficient of c,,(t) is negative. This follows from Lemma 1.3.2
and the remarks preceding it. The coefficient of te( L) in c,,(t) is zero since F has no connected
partition of type p. But the coefficient of t0(0)-1 - te(A) is nonzero (and hence negative)
since the coefficient of wpA in Xr is positive. This is a contradiction, so the proposition
follows. O

Proposition 1.3.3 can be used to show that many graphs are not e-positive. For example,
the "claw", K 13 , has no connected partition of type (2, 2). Figure 1.1 depicts an example
of a non-e-positive, clawfree graph given by Stanley [41]. This graph is connected, but has
no connected partition of type (3, 3).

However, the converse of Proposition 1.3.3 is false. For the graph in Figure 1.2, for
example, F has a connected partition of each type, but

Xr = 7e 7 + lle61 + 3e 52 + 17e43 + 4e 511 + 10e 421 + 10e 33 1 - 3e 32 2 + 4e 3211 + e2221.
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Figure 1.1: Stanley's example of a non-e-positive clawfree graph.

Figure 1.2: A non-e-positive graph with a connected partition of each type.

Proposition 1.3.3 shows that the property:

If F has a connected partition of type A and IL is a refinement of A, (1.21)
then F has a connected partition of type y.

is (at least roughly speaking) an analogue of "nice" (as discussed at the end of Section 1.2)
for e-positivity. Since clawfree graphs are exactly those for which every induced subgraph
is nice (see Proposition 1.2.11) and are conjectured to be s-positive, it's natural to at least
ask whether a graph for which every induced subgraph satisfies (1.21) might have to be
e-positive. When applied to all induced subgraphs, the property (1.21) can be simplified,
and we can ask the following question instead.

Question 1.3.4 Is there a non-e-positive graph with the property that any connected sub-
graph can be split into two blocks of arbitrary sizes?

The following result shows that Conjecture 1.2.9 is at least consistent with Proposi-
tion 1.3.3, since any graph which has a Hamiltonian path trivially has a connected partition
of each type. The fact that every indifference graph (an incomparability graph of a poset
which is (3 + 1)-free and (2 + 2)-free) possesses a Hamiltonian path follows trivially from
the characterization of these posets discussed in the introduction.

Proposition 1.3.5 If P is a (3 + 1)-free poset, then every connected subgraph of inc(P)
has a Hamiltonian path.

Proof: Note that a subgraph of inc(P) is the incomparability graph of an induced subposet
of P, which is clearly (3 + 1)-free if P is. Let P be a (3 + 1)-free poset with n elements,
and assume inc(P) is connected. By induction, we may assume that the proposition is true
for smaller posets.

Let P be a path of maximal length in inc(P), and suppose that P does not contain
every vertex. Then there is another vertex u which is adjacent to at least one vertex of P.
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By the inductive hypothesis, P must contain n - 1 vertices, denote them by v1v2 ... vn-1.
The ends, vi and vn-1, cannot be adjacent to u, otherwise we could attach u at one of the
ends to get a longer path. They also cannot be adjacent to each other, otherwise we could
get a path uv ... vn-lvl ... vj-1 for any vj adjacent to u.

If vj is any vertex which is adjacent to u, consider vj- 1 and vj+l. If vj+l were adjacent
to u, then vl ... vjuvj+l ... v, 1- would be a longer path. Similarly, vj-1 cannot be adjacent
to u. So vji and vj+l are both comparable to u in P. If vj-1 and vj+l were comparable
to each other, then {u, vj-1, vj+l} would be a chain of 3 elements, all incomparable to vj,
which would contradict the assumption that P is (3 + 1)-free. So vj-1 and vj+l must be
adjacent.

Let vjl, vj2,..., vj, be all the vertices of P which are adjacent to u. By the argument
above, the sequence obtained by omitting them, vl ... v. ... v~ v i .. v,-, is a path in
inc(P). The elements of this sequence must be either all less than u or all greater than
u, otherwise two consecutive elements would have to be comparable (not adjacent). In
particular, since every element of P which is comparable to u is in this sequence, u cannot
lie in the middle of any three element chain. In other words, u is either minimal or maximal.

Now, since vi and v-_ 1 are comparable, one of them must lie in the middle of a three
element chain with the other and u. Without loss of generality, assume this is vn- 1. The
vertices v1, v2, ... , Vn-2, u form a connected subgraph which must have a Hamiltonian path
VP by the inductive hypothesis. Repeating the argument above with P' and v,-1 yields a
contradiction. [

In light of this result, a natural question to ask is the following.

Question 1.3.6 Is there a non-e-positive graph with the property that every connected sub-
graph has a Hamiltonian path?

It is possible to have a non-e-positive graph P such that F itself has a Hamiltonian path.
For example, the two non-s-positive graphs discussed in [42, Section 1] have connected
components which are not e-positive but have Hamiltonian paths. In both of those examples,
the graph contains a claw. We do not know of an example of a clawfree, non-e-positive graph
which satisfies (1.21).

We will now consider the image of Xr under a more general algebra map. Let

O: Sym -+ Sym(xl,X 2, 3,... ,yly 2,...)

be the algebra map induced by first replacing the set of variables {xi} by variables indexed
by P x P, {(i,j)}, and then sending x(ij) to xiyj. This sends the generating function
E(t) = 1i(1 + xit) to Ii,j(1 + xiyjt), so it follows from (1.5) that O is the algebra map
induced by

ek 4 Z-keA(x)m (y = mA(x))eA(y).
A~lk X~lk
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Theorem 1.3.7 The algebra map induced by ek '-+ Y-k m (x)e,(y) sends Xr to

SX,(yr()Xrlr(x) Z irtype(,r)(y)Xri(x)
irELr rEH(V)

where X, is defined as in (1.16).

Proof: Using the definition of O we began with, it follows that O(Xr) can be computed
by considering the colorings of the vertices of P by ordered pairs (i, j) such that adjacent
vertices are colored with different ordered pairs, and then associating the coloring with the
monomial ,v x "I(v)y2 (V,) where a1 and N2 denote the projections of the coloring map into
the first and second elements of the ordered pairs.

Consider all the proper colorings by ordered pairs where the second element of each pair
is specified. If 7r is the partition of the vertices whose blocks are the sets with the same
second element, then the choices of the first elements correspond exactly to the colorings
enumerated by Xrl (x). I.e. in order for the coloring to be proper, the first elements for
adjacent vertices need to be different when the second elements are the same.

If we first choose an arbitrary partition of the vertices, 7r, and assign distinct second
elements to each block, we obtain the equality of E(Xr) and the expression on the right.

If we first choose an arbitrary assignment of second elements, then (as in the proof of
Theorem 1.2.1) there is a unique r E Lr such that this assignment corresponds to a coloring
enumerated by X,. As was noted in the proof of Theorem 1.2.1, the blocks of r are the
connected components of the subgraphs on which the assignment is constant. In particular,
if o is the partition of the vertices whose blocks are the sets where the assignment of second
elements is constant, then FI, and FI, are actually equal. It follows that O(Xr) is equal to
the expression on the left. O

It follows easily from the definitions that composing E with the specialization the y
variables at 1k yields the map Xpk. So specializing the y variables at (an arbitrary) 1k in
Theorem 1.3.7 yields the following formula for @(t)Xr.

Proposition 1.3.8
Ft)X = K Xrl,(t)Xrlr.

irELr

If we apply the map cp defined by (1.19) to the y variables in E(Xr), then Theorems
1.3.7 and 1.2.3 imply the following result.

Theorem 1.3.9 The algebra map induced by ek '-+ Z'-k te(A)mA sends Xr to

E rehtype(r) t j sink(r ,,j),
r En(v) i

where the first sum runs over arbitrary partitions of the vertices, and FII, denotes the re-
striction to edges whose ends lie in the same block.
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Theorem 1.3.9 can be viewed as a common generalization of Theorems 1.2.3 and 1.2.4.
If we set t = 1, the map above is just the standard involution w, and it is not difficult to see
that this interpretation of wXr is equivalent to Stanley's reciprocity result (Theorem 1.2.4).
And if we evaluate the variables (X1,X2, x3,...) in the image at (1,0,0,...), we recover
Theorem 1.2.3. In Section 3.4, we will see that other specializations of Theorem 1.3.9 have
interpretations in terms of certain hyperplane arrangements.

Since a product of monomial symmetric functions is monomial positive, Theorem 1.3.9
implies that certain nonnegative linear combinations of the cs's must be nonnegative (where

Xr = = cAe). We know of no such inequalities (satisfied for all graphs) other than what
is implied by Theorem 1.3.9.
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Monomial Immanants

The bulk of this chapter will be devoted to discussing the following conjecture, and in
particular, proving that it holds for some particular families of partitions, A.

Conjecture 2.0.1 ([46, Conj. 5.2]) Let s[i,j] E ZM, denote the sum of all permutations
of {i, i + 1,... ,j} and II denote the set of all finite products of the s[ij] 's. Then VA F- n,
0\(7r) > 0 for all E HII.

It follows from results in Stembridge [46] that Conjecture 2.0.1 holds when A = (r3 ), (n-
1, 1), or (2, 1n-2). In Sections 2.2, 2.4, and 2.5, we will show that this conjecture also holds
in the cases when A = (i, j), (r, ln-r), or (2k, l).

In Section 2.1, we will develop the tools that will be used in later sections. In particular
we will discuss the lattice path interpretation of Jacobi-Trudi matrices which motivates our
techniques. This interpretation was used by Gessel and Viennot to give a combinatorial
proof of the Jacobi-Trudi identity, and by Greene to prove the following theorem.

Theorem 2.0.2 (Greene [20]) XA[H,/,,] is m-positive.

These considerations show that Conjecture 2.0.1 implies the following corresponding
statement for monomial immanants. This was Stembridge's motivation for making Conjec-
ture 2.0.1.

Conjecture 2.0.3 ([46, Conj. 4.2(b)]) OA[Hg,,] is m-positive.

In particular, our results show that Conjecture 2.0.3 holds when A is in one of the families
mentioned above. Section 2.1 also contains a proof that if Conjecture 2.0.1 holds for A, then
it holds for (mA 1 , mA2, ... , MAk).

In Section 2.6, we will discuss a more general conjecture made by Stembridge concerning
digraphs with certain path-intersection properties. In particular, we will show that this more
general conjecture is also implied by Conjecture 2.0.1.
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2.1 Skeletons

Rather than defining skeletons directly in terms of the s[i,j]'s, we will use the following
"geometric" definition.

2.1.1 Definition: A skeleton (of order n), S, is a planar, finite, acyclic digraph (where
multiple edges are allowed and distinguishable), together with linear orderings of its sources
and sinks, which satisfies several conditions. The vertices of S consist of n sources of
valence 1 (labelled ul, u2,..., u, according to the ordering), n sinks of valence 1 (la-
belled v1, v2,... ,V, according to the ordering), and any number of "internal" vertices with
in-valence = out-valence. There is an embedding L = Lx xy : S -+ R 2 with the following
properties:

* The embedding is planar (edges intersect only at vertices).

* There are real numbers x, < x 2 such that the sources are embedded on the line x = x,
and the sinks are embedded on the line x = x2. The y-coordinates of the sources,
ty (ul), ty (u 2), ... , ty(un), form a strictly increasing sequence, as do the y-coordinates
of the sinks.

* Every edge from w1 to w2 is embedded as a curve which moves strictly left-to-right
from L(Wi) to L(w2), i.e. the edge is embedded as the graph of a function on the interval

[Itx(Wl), tx(w2)].

We will usually want to assume that the internal vertices are embedded with distinct
x-coordinates, so that they are linearly ordered. We will also usually want to assume that
the y-coordinates of ui and vi are equal. However, any embedding can be deformed to
achieve either of these conditions, and the extra generality will be convenient.

For any skeleton S of order n, we can consider families, Y, of n paths whose union
contains each edge of S exactly once. These conditions imply that each path begins at a
source of S and ends at a sink. So, any such family defines a permutation •y E En via
ay : i -- j if some path in F goes from ui to vj . Let

(S) = e Z , (2.1)

where the sum runs over all such families of paths, and let Z[S] denote the image of (S)
under the map a ý- Ptype(a). We will call Z[S] the cycle indicator of S.

In Section 2.1.2, we will show that for any skeleton, (S) factors as a product of s[ij]'s.
Since Ptype(a) = E-\ 0\A(a)h\, it follows that the (conjectured) nonnegativity of 0, on prod-
ucts of s[i,j]'s is equivalent to the following statement:

Conjecture 2.1.2 (Reformulation of Conjecture 2.0.1) For any skeleton S, the cycle
indicator Z[S] is h-positive. Equivalently, wZ[S] is e-positive.
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Figure 2.1: A family of lattice paths enumerated by [H(4,4,4)/(2)]

2.1.1 Jacobi-Trudi Matrices and Lattice Paths

In this section, we will discuss an interpretation of the terms in

[H,,]= •,_4), _,-- (2.2)
ae6n i=1

as generating functions for certain families of lattice paths and the role these lattice paths
play in the work of Gessel and Viennot [17], Goulden and Jackson [18], and Greene [20].
The exposition here is essentially equivalent to the treatment in [20].

Consider Z x Z as a digraph with edges from (i,j) to (i, j+ 1) ("north") and from (i,j)
to (i + 1,j) ("east"). Assign a weight of xj to the "east" edges from (i, j) to (i + 1, j) when
j > 0, and a weight of one to all of the other edges. Let the weight of a path be the product
of the weights of its edges.

Let us consider paths from (i, 1) to (i + k, oo) (where this means infinite paths which go
to infinity along the line x = i + k). The enumerator of the weights of such paths is

S Xilxi2 ... Xik = hk.
il<_i2<_...<ik

Let Pi = (vi - i, 1) and Qi = (pi - i, oo). It follows that the product
n

i=-1

enumerates families of n paths, where the i-th path goes from P, to Qi. An example is
shown in Figure 2.1. We will say that this family is associated with e-1. Since this product
is the coefficient of a - 1, we have

[H •,] = (Enumerator of sets of paths from Pi to Q,,) . a (2.3)
oE6n
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If F is a family of paths appearing in (2.3), let a = ay denote the multiset of edges
appearing in the union of the paths. Following Goulden and Jackson [18], we will call a7
the diagram of F. The crucial first step in Greene's proof of Theorem 2.0.2 is the analysis
(due to Goulden and Jackson [18]) of the families of paths which have the same diagram,
a. The terms in equation (2.3) can be regrouped according to their diagram to obtain

[Hl,] = fa (a) (2.4)

where fa is the weight of a (the product of the weights of the edges, including multiplicities)
and (a) denotes the sum of the permutations associated with all families of paths whose
diagram is a.

Each diagram a is associated with a subdigraph of Z x Z in the obvious way. Let & denote
the digraph obtained from this as follows. Replace edges with multiple (distinguishable)
edges according to how many times they appear in the multiset a and remove vertices with
in-valence = out-valence = 1, joining the edges. Also add the vertices Qi (they are now
vertices, rather than limits of infinite paths). It is clear that the natural embedding of a in
the plane can be deformed to match the conditions of Definition 2.1.1. So & is a skeleton.

Let m(e) denote the multiplicity in a of the edge e and let M(a) = -I7 m(e)! (the
product running over all the edges). The families enumerated by (a) each correspond to
families enumerated by (a), but the process of making the multiple edges distinguishable
introduces a factor of M(a) so that (6) = M(a)(a).

Now it can be argued that (a) factors as a product of s[ij]'s. We will postpone this
argument until the next section (Proposition 2.1.6) in order to introduce more terminology.

Combining everything together, we obtain the expansion of Goulden and Jackson [18]

[Hyl] =E fa () (2.5)
a M(a)

where each (a) is a product s[i•, 1 ]s[i2,j 2] . .S[ikjkl
This shows that Theorem 2.0.2 can be reduced to the following statement, conjectured

by Goulden and Jackson and proved by Greene.

Theorem 2.1.3 ([20]) For any intervals [ie, je] C [In] and any irreducible character XA,

X~ (s[i ,j ] * s* 8ik, jk) > 0.

As was mentioned in the introduction, Greene derives Theorem 2.1.3 by proving the follow-
ing stronger result.

Theorem 2.1.4 ([20, Thm. 1.3]) If [i, j] 9 [n], let p.(s[i,j]) denote the matrix represent-
ing s[ij ] in Young's seminormal representation of 6B, indexed by A. Then every entry of
the matrix p. (s[i,j]) is nonnegative.
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Gessel and Viennot's [17] combinatorial proof of the Jacobi-Trudi identity is equivalent
to the following observations. The sign character vanishes on any product S[li,jl] .. '[ik,jk]
in which one on the intervals has more than one element. Hence, the surviving contributions
to det Hq, come from non-intersecting families of paths. Finally, non-intersecting families
of paths correspond directly to semi-standard tableaux of shape P1/v (by filling the ith row
with the weights along the ith path).

2.1.5 Remarks: Our language differs somewhat from that used in [18,20]. Greene uses the
term "skeleton" for a, rather than &. (He attributes the terminology to John Stembridge.)

The reader will note that Definition 2.1.1 includes digraphs which cannot be obtained as
&'s via the construction above. However, the &'s contain a certain amount of "redundancy"
- for example, in the skeleton associated with the set of paths in Figure 2.1, the vertices
at (1, 2) and (1, 3) could be combined without changing any essential properties.

Goulden and Jackson [18] define some reduction operations to simplify a, and it can
be shown that the digraphs they obtain as reduced diagrams are exactly the skeletons of
Definition 2.1.1 which have no vertices with in-valence = out-valence = 1.

2.1.2 Elementary Operations on Skeletons

The reason for our lengthy definition of "skeleton" is that it makes certain properties trans-
parent.

Gluing and factoring

Two skeletons S 1 and S2 of order n can be "glued together" to form a new skeleton S1 o S2
by identifying each sink v2 of S2 with the source u! of S1, i.e. S, goes on the right of S2-
Let SiS2 denote the result of removing the vertices of S1 o S2 where the gluing took place
and replacing the pairs of edges which entered and left these vertices by single edges. Then

S1S2 is also a skeleton of order n. Note that adding or removing vertices with in-valence =
out-valence = 1 does not affect the associated permutations.

Likewise, given an embedding of a skeleton, S, as in Definition 2.1.1, we may assume
that the internal vertices are linearly ordered according to their x-coordinates (i.e. we may
assume that these x-coordinates are distinct). For any consecutive pair of them, wl and

w2, we can factor S as a product S 1S 2 by introducing nodes at the places where some
vertical line lying between wl and w2 intersects edges, and then "ungluing" the left and
right portions at these nodes. This process can be continued to factor S as a product of
skeletons which have only one internal vertex.

Now, if S = S1S2, a family of paths F enumerated by (S) determines families F1 and
Y 2 for S1 and S2 , respectively. The permutation aj is just the composition ar, oa 2 . (This
is the reason we chose to put S1 to the right of S2.) It is also clear that any pair F•-, -F2
can be glued together to get a family for the whole. In other words, choosing a family of
paths which uses each edge exactly once is the same as (independently) choosing, at each
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internal vertex, the pairs of edges which follow each other. So we have that

(S1 o S2) = (S1S2) = (S1)(S2), (2.6)

the product taken in ZEn.
Now, if S has only one internal vertex, then the indices of the sources incident to it

form an interval of integers [i, j] = {i, i + 1,... ,j}, and the same is true for the sinks. This
follows from the planarity of the embedding in Definition 2.1.1. It also follows that the
intervals for the sources and sinks are the same (the sources and sinks below these intervals
are paired by the edges not incident to the internal vertex, and similarly for those above the
intervals). It is clear that (S) is just the sum in ZEn of all permutations of the elements of
[i, j], i.e. s[ij].

We can put all of these ideas together to get the following proposition.

Proposition 2.1.6 For any skeleton S of order n, there are intervals [il,jl], . . . , [ik,jA] k
[n] such that (S) = s[ilj,] " s[ik jk]

Figure 0.1 in the introduction depicts a skeleton for which (S) factors s[3,4]S[1,3]S[2,4].
The argument given above uses essentially the same ideas as Goulden and Jackson's

derivation of (2.5).

Subskeletons

It will be useful to consider two different notions of a "subskeleton" embedded within a
skeleton. If So is a subdigraph of S, we will call So a generalized subskeleton of S if it
satisfies the conditions:

1. The sources of So are sources of S, and the sinks of So are sinks of S.

2. For each of the remaining vertices of So, in-valence = out-valence.

So inherits an ordering on its sinks and sources from S, as well as an embedding, and
condition 2 is equivalent to requiring So to be a skeleton. We will use the term subskeleton
for those generalized subskeletons whose sources and sinks have the same set of indices.

If So is a generalized subskeleton, let the complement S\So denote the subdigraph whose
edges complement those of So. It is clear that S \ So is a generalized subskeleton and is a
subskeleton when So is. If P is a set of paths in S which begin in the sources and end in
the sinks whose union contains no edge more than once, then clearly the subdigraph, Sip,
obtained by taking the edges used by paths in P, is a generalized subskeleton of S.

We will call a subskeleton connected if the underlying graph (i.e. forgetting the directions
of the edges) is connected.

Given two skeletons S1 and S2 of orders k and £, we can form a new skeleton by taking
the digraph which is the disjoint union of Si and S2 , and labeling the sinks and sources
of S1 and S2 (in order) by {1,..., k} and {k + 1,... , I + }, respectively. This disjoint
union, S1 U S2, can be embedded in the plane by embedding S2 above S1. Some simple
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observations are that each skeleton is the disjoint union of its connected components (the
maximal connected subskeletons) and that

Z[S1 U S2] = Z[S1 ]Z[S2].

In particular, the conjecture that Z[S] is h-positive can be reduced to the case of connected
skeletons.

In Sections 2.1.5 and 2.3, we will consider certain partitions of S into generalized sub-
skeletons and subskeletons. In particular, our choice of language in this matter is motivated
by the analogy between connected subgraphs and connected subskeletons which will be
explored in Section 2.3.

Symmetries

There are also a few symmetries of skeletons which should be mentioned in this section of
"elementary observations."

Proposition 2.1.7 For any skeletons S and S':

1. If SOP is the digraph obtained by reversing the edges of S, then SOp is a skeleton and
Z[SoP] = Z[S].

2. If Sup-down is the same digraph, but with the orders of the sinks and sources reversed,
then Sup-down is a skeleton and Z[Sup -down] = Z[S].

3. Z[SS' = Z[S'S].

Proof: Embeddings for Sop and S up-down are given by reflecting an embedding for S in the
y-axis and x-axis, respectively. The statements about the cycle indicators follow from the
fact that cycle types are not changed by taking inverses or conjugating by the permutation
(i - n + 1 - i). The last statement is similar (ra = r(ar)r-1 ). O

2.1.3 Interpreting q'(Skeleton)

Stembridge gives the following characterization of OA. For the sake of completeness, we will
repeat his proof here.

Proposition 2.1.8 ([46, Prop. 1.1]) For any a E Sn, regard the cycles of a as a directed
graph, and let r (a) be the number of subgraphs which are isomorphic to a disjoint union
of directed paths of vertex cardinalities A1, A2, ... , Ak. Then

A (a) = EA(-l)'rA(a).
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Proof: We have

Ptype(a) = Z (hA,

so it suffices to compute the expansion of p, in the complete basis. The generating functions
for power sums and complete symmetric functions are related by the following (see (1.3)).

n>1 n r r>1 r 1(

If A has k parts, then the coefficient of tllhx in the right hand side is (-1)k-1/k times the
number of permutations of A (i.e. the number of distinct ordered k-tuples of integers which
are rearrangements of the parts of A). So the coefficient of h\ in the expansion of p, is
(-1)k-ln/k times the number of permutations of A.

If a consists of a single cycle of length n, then krA (a) is n times the number of permu-
tations of A. To see this, note that krA(a) counts the number of ways to divide the n-cycle
into directed paths of vertex sizes given by A and to choose one of the paths. Likewise,
n times the number of permutations of A counts the number of ways to choose a starting
point and divide the n-cycle into directed paths with one of them beginning at the chosen
starting point. So to see that the proposition holds for a single n-cycle, we note that in this
case, ,\(-_1)o = (-1)n-k(-_ 1)n - 1 = (l)k-1

For an arbitrary permutation with type(a) = p, let a(i) denote the corresponding cycle
of a of length pi. Then applying the proposition to each cycle, we obtain:

pp = P == ri E (W1((i))j (ori('))hA(i)

The inner sum in the last expression counts the number of ways to divide the parts of A into
partitions of the appropriate sizes, and then choose directed paths for each cycle with vertex
sizes given by these partitions. Clearly the total of all these is r&(a). So the proposition
follows (noting that E 1(-1)G = (-1)1(A)-1(A)). O

Let cyl(S) denote the digraph obtained from S by identifying each source ui with the
sink vi. As the name suggests, cyl(S) can be embedded on a cylinder. Namely, take an
embedding of S as in Definition 2.1.1 where the y-coordinates of ui and vi are equal, and
glue the vertical lines containing the sources and sinks together to form the cylinder.

As before, let F be a set of n paths which begin in the sources of S and end in the
sinks, and whose union contains each edge exactly once. Consider the subset of paths, P,
corresponding to a cycle of length j in ao, i.e. P consists of paths from ui, to vi2 , from ui2
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to vi3, and so on until we get to a path from ui to vi,. 7 corresponds to a closed trail (a
closed walk with no edge used more than once) in the digraph cyl(S).

Conversely, consider any closed trail in cyl(S). Clearly, the trail determines a set of
paths, 7, in S such that the labels of the sources and sinks used in P are the same. The
remarks made in the previous section imply that Sip and its complement S \ (SIp) are
subskeletons of S. In particular, we can choose a family of paths on the complement to get
a family for all of S.

By abuse of notation, we will refer to a closed trail of cyl(S), or the associated family,
P, as a cycle (of length j) of S. Since the digraph underlying S is acyclic, this should not
create any confusion. Also note that if P is a cycle of length j for S, then the corresponding
trail in cyl(S) is embedded on the cylinder as a closed curve with winding number j.

The gluing operation described above can be used to construct a digraph consisting of
infinitely many copies of S glued together:

Soo = ... oSoSoS.

Recall that the gluing operator, o, places the first factor on the right, so SO" extends
infinitely to the right. We will assume that we have some fixed embedding of S, and S" is
embedded using copies of the embedding of S.

We will say that edges in the ith copy of S (counting from the left) lie in the ith column
of S' . We will use the term "end-nodes" to denote the vertices of S' ° which come from
sinks and sources of S. Label every copy of these with the numbers {1, 2,..., n} according
to their order in S (i.e. increasing y-coordinates in the embedding). Also, number the
"columns" of these from left to right, starting with zero, so that the edges in the ith column
lie between the (i - 1)st and ith columns of end-nodes.

Consider a cycle of S as defined above, viewed as a set of paths: P1 (from ui, to vi2), P2
(from ui, to vis), and so on up to Pj (from ui, to vi,). For each path, Pk, we can uniquely
lift this cycle to an infinite path in S" which begins at (a copy of) uik in the Oth column of
end-nodes whose restriction to any column is one of these paths. Namely, this infinite path
contains a copy of Pk in column 1, a copy of Pk+1 in column 2, and so on (P1 following Pk).

Now consider a family of paths, F, which contributes to (S) and a subgraph of a• which
is isomorphic to a disjoint union of directed paths of vertex cardinalities A1, A2, ... , Ak (i.e.
one of those counted by rX(au)). For each of those directed paths, lift the cycle it is
contained in to one starting with ui, where i is the source of this directed path in ay. In
this way, we can construct a family of k paths in S' ° . The families of paths obtained in
this way are completely characterized by the following conditions:

1. Each path begins at a source of Soo and extends infinitely to the right.

2. For each edge, e, of S, at least one of the copies of e in S' is used in one of the paths.

3. If el and e2 are edges of S, and a copy of el is followed by a copy of e2 in one of the
paths, then every copy of el appearing in any of the paths is followed by a copy of e2.
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Clearly, the family P of paths in S' determines F and the subgraph ay. Let T3(S)
denote the set of these families of paths, and let 3A (S) denote the set of families coming
from a particular A.

Given a family of paths, P E 93(S), we can recover A = A(P) by looking at the distance
(i.e. the number of columns) along each path before it passes through an end-node with
the same label as one which begins one of the paths. Equivalently, if we delete every edge
from our set of paths which is not the leftmost copy of the corresponding edge of S, we will
be left with a set of k paths with lengths (measured in columns) given by A. It will prove
useful to consider this set of "truncated" paths later on, denote it by T(P).

We can also recover the number of cycles in the corresponding permutation (paths
corresponding to the same cycle are "shifted" copies of each other in the obvious sense).
Denote the number of cycles by C(P). Note that the sign of the contribution made by this
family to the coefficient of h\ in Z[S] (i.e. E\(-1)") is just (-1)#P-c(1).

So, in this language, Proposition 2.1.8 says that

Z[S] = E (-1)#P-C(P)h( 7,), (2.7)
PETp(S)

or equivalently, 0\ (S) = 1 (-1)#P - c (P) (2.8)

Given a set of paths P E 93(S), we could "shift" all of these paths to the left by j
columns to obtain a new set of paths P', i.e. we could look at the restriction of these paths
to the columns j + 1, j + 2,..., which is just a copy of Soo again. Obviously, P and P' have
the same underlying set of cycles. In terms of the the directed paths which form a subgraph
of oy as discussed above, this operation corresponds to shifting all of the directed paths
along the cycles of y-. So A(P) = A(P').

In particular an element P E q3(S) is determined by the set of underlying cycles and
the set of labels of the end-nodes which appear in the jth column of end-nodes, for any j.
Also note that the set of underlying cycles is determined by a bijection from the edge set of
S, E(S), to itself, i.e. map el to e2 if copies of el are followed by copies of e2 in the paths
of P.

2.1.4 Surgery at an Intersection

Suppose that we have a set of paths P E 93(S) such that two of these paths, P1 and P2,
intersect at some (internal) vertex v in the jth column. Let &e and fi be the edges of P1

which enter and leave (respectively) the vertex v, and let el and fi be the corresponding
edges of S. Define e2 and f2 similarly for the path P2.

Let P' be the unique set of paths in S" defined by

* Each copy of el is followed by a copy of f2 and each copy of e2 is followed by a copy
of fi.
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* For any edge e of S other than el, e2, each copy of e is followed by a copy of whatever
edge it is followed by in P.

* P' has the same set of end-nodes appearing in the jth column of end-nodes as P does.

Let us refer to this process as "doing surgery on P at e1, e2." It's easy to see that P' E 93(S).
Clearly P' also has an intersection of two paths at v in column j, with the same edges,

e1 , e2 , entering v. If we do surgery on •' at el, z, we get 7 again.
Consider the sets of cycles underlying P and P'. If el and e2 (as above) lie in different

cycles for P, then they lie in the same cycle for P' (and vice-versa). I.e., for P', el is
followed by f2, then the cycle continues as it did in P until it reaches e2, which is followed
by fl, and then the cycle continues as it did in P until it reaches el again. The other cycles
are unaffected by the surgery. In particular, the number of cycles changes by exactly one
in going from P to P', but the number of paths remains the same, so the associated sign
changes.

This surgery idea is useful because it preserves A. In order to see this, we need to look
more closely at which edges are used in which column of S " . Consider the paths of P,
beginning at the (j - 1)st column of end-nodes (i.e. the column of end-nodes which are
sources for the copy of S containing the intersection where the surgery occurs). In other
words, delete all the edges to the left of this. Now, for each edge of S, delete all copies of it
which are not leftmost among what remains. The comments made in the previous section
imply that the result is a set of paths with lengths (measured in columns) given by A(P).
Do the same thing for P'. Let Q be one of these truncated paths for 7, and let Q' be the
truncated path for P' which contains the same end-node in the jth column of end-nodes
(by definition, P and P' use the same end-nodes in this column). The portions of Q and

Q', if any, which lie in columns j + 1,j + 2,... cannot contain copies of el or e2 (all such
copies in these columns have been deleted), and hence must be identical. In particular, Q
and Q' have the same length. So we have A(P) = A(P').

For future reference, we summarize this discussion:

Lemma 2.1.9 If P, P' E ¶(S) are obtained from each other by doing surgery at some
intersection, then A(P) = A(P'), and (-1)#p - c(P) = (-1)#p'-c(P')

Obviously, the lemma suggests that the most natural way to try to prove that Z[S] is
h-positive (see (2.7)) would be to try to carefully choose intersections so that these surgeries
could be used to pair each negative contribution to a positive one. It is possible to do this
on 3\(S) for certain choices of A. In fact, we will see that when A is a rectangle, a hook, or
a partition with exactly two parts, such a pairing can be constructed by using the leftmost
intersection (resolving ambiguities at intersections of three or more paths in some canonical
way). This includes all of the cases which are shown in [46].

However, doing surgery at a leftmost intersection can cause new intersections to appear
to the left, as in Figure 2.2, for example. In this case, the set of paths in the upper picture
has a positive sign, and will not be paired with anything.
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0 0 0

0 0 0

Figure 2.2: In general, surgery need not preserve leftmost intersections.

Of course, in order to make any use of these surgery ideas, we need the set of paths to
contain intersections. The following lemma will be fundamental to the remainder of our
discussion.

Lemma 2.1.10 If two distinct paths P1, P2 E P E 3(S) have the same underlying cycle of
length j, then P1 and P2 must intersect, and their leftmost intersection must occur within
the first j - 1 columns of SOO. Note that j must be at least 2. In particular, any P with a
negative sign must have an intersection.

Proof: Let io denote the smallest label of the end-nodes appearing in the underlying cycle of
P1 and P2, and let jl, j2 denote the column numbers of the first occurrence of this end-node
in the paths P1 , P2, respectively. We can assume jl < j2 (if they were equal, P1 and P2
would be the same path). Since both paths begin repeating after j columns, we also have

0 < jl < j2 < j. If we look at the column of end-nodes labelled jl in the planar embedding
of SOO, we see that at this point, the path P2 is above the path P1 , since the path Pi is
at the lowest end-node to occur in either path. Similarly, in the column numbered j2, P1

must be above P2. It follows that for some consecutive pair (i - 1, i), the path P2 is above
P1 in the (i - 1)st column of end-nodes and below P1 in the ith column of end-nodes. In
particular, the paths must intersect in the ith column of S" (i.e. in between these columns
of end-nodes).

A similar argument (using the largest label of the end-nodes) implies that there is a
column of S' (within the first j columns) where P2 begins below P1 and ends above it.
This column also contains an intersection, and clearly this column is different from the one



2.1. SKELETONS

obtained above.
Since there are (at least) two columns among the first j which contain intersections, the

leftmost intersection must occur within the first j - 1 columns. The last assertion follows,
since any P with no intersections must have the same number of paths and cycles, and
so (-1)#P-c(P) = +1. O

Recall from Section 2.1.3 that T(P) is the set of paths resulting from removing from P
all edges which are not the leftmost copies of the corresponding edges of S. Intersections
among these are considerably more well-behaved than the general case. If we do surgery on
P at some intersection in T(P) in the jth column, then the set of edges used by P in each
of the columns 1, 2,..., j remains unchanged. The argument is basically the same as the
proof that A is not affected by surgery. The edges used in column j remain the same, since
the surgery is defined to fix the end-nodes at the right side of this column (the jth column
of end-nodes) and the only changes in the underlying set of paths on S are that some edges
are rearranged between the two paths whose intersection is being considered. The paths in
columns 1, 2, ... , j - 1 actually remain exactly the same, since the set of end-nodes used

in the the (j - 1)st column of end nodes remains unchanged (these are determined by the
set of edges used in column j) and the only edges affected by the surgery are assumed to
appear for the first time in column j.

In particular, if we have a set of paths P which contains an intersection in the truncated
part, T(P), then look at the leftmost vertex which contains an intersection in T(P), and
let F1 and F2 denote the highest pair of edges of T(P) entering this vertex (the embedding
gives an ordering of the edges into this vertex). If P' is the result of doing surgery on P at
e1 , e 2 , then P' also has an intersection in the truncated part T(P'), and this same pair of
edges is the leftmost and highest such pair (the only changes among which edges are used
where have occurred to the right of the column where the surgery happened). So doing this
surgery defines a sign-reversing (and A preserving) involution on the sets of paths, P, which
have an intersection in the truncated part, T(P), and so we have

Proposition 2.1.11 The total contribution to Z[S] coming from sets of paths, P E T(S),
which have an intersection in the truncated part, T(P), is zero.

An easy corollary is Stembridge's [46] result that nonnegativity holds when A is a rect-
angle. His proof is based on a matrix identity discussed below (Theorem 2.1.15).

Corollary 2.1.12 If A = (rj) (a rectangle), then 0$(S) is the number of sets of paths

P E ¶3 (S) which have no intersections.

Proof: If P E q3,(S), then all of the truncated paths in T(P) have a length of r columns.
So every end-node in the rth column of end-nodes which is used by the paths in P is also
an end-node used to begin one of the paths. It follows that shifting all of the paths to the
left by r columns doesn't change anything. In particular, P has intersections if and only if
T(P) has intersections. Lemma 2.1.10 tells us that the sets of paths without intersections
each make a positive contribution, so the result follows from the previous proposition. O



CHAPTER 2. MONOMIAL IMMANANTS

Another corollary of Proposition 2.1.11 is that the non-vanishing of O (S) places restric-
tions on the valences of vertices of S.

Corollary 2.1.13 If S has an internal vertex whose in-valence (= out-valence) is larger
than A• , then ,(S) = O.

Proof: Consider any P E T3 (S). The truncated paths, T(P) are completely contained in
the first A1 columns (since A1 is the largest part of A), and they contain exactly one copy
of each edge of S. In particular, there must be a column in which T(P) contains at least
two edges which enter the given internal vertex (there are more such edges than available
columns). So T(P) always contains an intersection, and the result follows. O

2.1.14 Remark: It can be seen from Greene's explicit computation of the matrices p (s[ij])
in his proof of Theorem 2.1.4 that xA(S) = 0 when S has an internal vertex whose in-
valence (= out-valence) is larger than AX. Corollary 2.1.13 can be derived from this using
the triangularity between the monomial and Schur function bases of Sym.

2.1.5 Divisibility Considerations

Stembridge's analysis of 0' when A is a rectangle is based on the following matrix identity.

Theorem 2.1.15 ([46, Thm. 2.8]) If A = (r'), then

0\[A] = E det A(II112) det A(1 2113) ... det A(IrII),

where the sum runs over ordered partitions (Ii, I2,..., Ir) of [n] into disjoint j-sets, and
A(IIJ) denotes the submatrix of A obtained by selecting the rows indexed by I and the
columns indexed by J.

Note that summand in the above expression could be expressed as

det(A(I1 2) A (I2 113) ... A(Ir II)).

Our main result in this section will be to show that there is an analogue of this result for
skeletons in which the sign character (i.e. the determinant) can be replaced by an arbitrary
monomial character. Let A = (A1, A2,... , Ak) and mA = (mA1, mA2, .. , mAk). We will

show that om (S) can be expressed as a sum of 0, applied to skeletons, in a manner which
is analogous to Theorem 2.1.15.

Consider a set of paths P E 9m\ (S). If a particular end-node is used in the ith and jth
columns of end-nodes, and not in between, then, by the usual argument, j - i is a part of
mA. It follows that if i and j are any columns of end-nodes where this particular end-node
is used, then j - i is a multiple of m. So, if we let Ii denote the set of labels of end-nodes
which are used by P in columns j - i mod m, then I0o, I, ... , Im-1 are disjoint. Clearly
their union is [n].
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Let .T denote the family of paths in S which corresponds to 7, as in the definition of
3 in Section 2.1.3. Clearly each path of F begins at a source with a label in Ii and ends
at a sink with label in Ii+1 (with the convention that Im = Io). Let .i denote the paths
beginning in Ii, and let Si denote the subdigraph of S defined by taking all the edges used
in the paths of Fi. Clearly each Si is a skeleton - in the language of Section 2.1.2, it's what
we called a generalized subskeleton of S.

Gluing these together into S = Sm-1 0 Sm-_2 o ... o So gives a subskeleton of SoSo S ... oS

(m copies of S). In terms of the embeddings, each Si is embedded in the (i + 1)st copy of
S counting from the left, and the sources and sinks of S have the same set of labels (Io).
Each edge of S is used in only one path in F, and hence in only one Si. (Let us use the
phrase "partition of S" to indicate a collection of subdigraphs where each edge appears in
a unique subdigraph.) It follows that the families F (which yield these Si's) can be chosen
by independently choosing families for each Si, and these correspond to choosing families,
F for S.

Now, (§)0) can be embedded in the plane so that each copy of S is embedded in (the
images of) m consecutive copies of S in the embedding of S". Moreover, the set of infinite
paths, p7, which corresponds to F is just P, i.e. exactly the same sequences of edges are
used in the paths.

The reason for setting all of this up is that A(P) = mA(p), (i.e. A(p) = A). To see this,
note that the truncated sets of paths, T(p') and T(P), are also equal. The lengths of these
paths in terms of columns give A(P) and A(P), but each column of (S)O corresponds to m
columns of S', and so the result follows. We also need to remark that the signs associated
with P and P are the same, since the numbers of paths and underlying cycles are the same.
Grouping the terms of (2.8) together according to the Si's, we obtain the following:

Proposition 2.1.16

=mA (S) = (Sm- 1 0 Sm-2 o .. O So),

where the sums runs over all ordered partitions (So, S2, ... , Sm-1) of S into generalized
subskeletons for which the labels of the sinks of Si are the same as the labels of the sources
of Si+1 (with the convention Sm = So).

An obvious corollary is that nonnegativity of 0, on skeletons implies that 4 mA is also
nonnegative on skeletons. Moreover, since there is actually a direct correspondence between
the sets of paths, if there is a pairing between the negative contributions and a subset of
the positive contributions for A which is defined in terms of surgeries at intersections, then
this pairing gives such a pairing for mA (directly).

2.1.17 Remark: It it natural to ask if there is a matrix identity analogue of Proposi-
tion 2.1.16 for a general A. Unfortunately, there doesn't seem to be. An analogous method
(with weighted paths) can be used to show that as a polynomial in the entries of A, the sum

qE O[(A(IiJI 2)A(I 2J13).. "A(IrII)] (over the same partitions as in Theorem 2.1.15) is equal
to OrA[A] plus some terms involving products of the entries of A which don't correspond to
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0.

Figure 2.3: A pair for A = (3, 2)

rook placements. This is significantly less interesting. The essential difference
determinant will kill these extra terms, but OA need not (in general).

is that the

2.2 The Case of Two Paths

Since any surgery at an intersection of paths in some P E T(S) involves a pair of paths,
the case in which there are only two paths is the most basic one, from the perspective of
these methods.

Lemma 2.2.1 (The "Widening" Lemma) Let P e T(i,n-i)(S) be a family (a pair) of
paths which have the same underlying cycle. Let P' denote the result of doing surgery at
the leftmost intersection of P (such an intersection must exist by Lemma 2.1.10). Then
the leftmost intersection of P' occurs at the vertex where the surgery took place. Moreover,
among the portions of these paths to the left of this vertex, the uppermost one for P' lies

(weakly) above the uppermost one for P (in the embedding), and the lowermost one for P'
lies (weakly) below the lowermost one for P.

Proof: Let P1 denote the path with the uppermost source in the embedding, and P2 denote
the other one. Let iF and i'2 be the edges of P1 and P2 (respectively) which enter the
leftmost vertex where there is an intersection. Denote this vertex by v. Note that the
portion of P1 to the left of v lies strictly above the corresponding portion of P2 , since the
paths would otherwise intersect to the left of v.

* S

* S
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Let P', P2 denote the paths of P' which contain el, e2, respectively. Let Q denote the
portion of Pi up to v, and let Q' denote the corresponding portion of P'. We want to claim
that Q' lies weakly above Q in the embedding.

Let fi and f2 be the edges which follow el and E2 (respectively) in P. Let el, e2, fie2, f2

denote the corresponding edges of S, as in the definition of surgery (Section 2.1.4).
If Q and Q' are not equal, then Q must contain one of the edges fl, f2 (as we move

to the left from the intersection, the surgery only changes things which contain copies of
these edges). If Q contained fl, it would have to also contain a copy of el other than the
one at the end (fi leaves an internal vertex, so it can't be at the left end of Q). But if Q
contained two copies of el, then the leftmost intersection would occur after the underlying
cycle started repeating, which would contradict Lemma 2.1.10. So we may assume that Q
contains a copy of f2 and contains no copies of fi.

We can construct Q' as the limit of a sequence Q = Q1, Q2, Q, ... as follows. If Qi
contains a copy of e2 followed by a copy of f2, replace the portion of Qi up to and including
the rightmost such copy of e2 by the "tail" of Q of the appropriate length, and call the
result Qi+1. In other words, the difference between the underlying cycles in P and P' is
that for P', the copies of f2 must be preceded by el instead of e2 , and similarly for copies
of fl. The other "rules" of what precedes something are the same. In forming Qi+1 from
Qi, we look at the rightmost place where f2 is not preceded by el and fix it by preceding
it with el and a path which follows the "rules" for P (i.e. the tail of Q). In this way we
eventually get back to the left edge of S", and we have "fixed" all the "rules" by then. So
we eventually get Q'.

At each step, the portion of Qi up to and including the rightmost copy of e2 which is
followed by f2 is a path which follows the "rules" of P and ends in e2 , i.e. it's a tail of the
portion of P2 up to v (since the length of Qi is exactly the same as this portion of P2, it's
actually a proper tail). And it gets replaced by the tail of Q (which is the corresponding
portion of the upper path in 7') of the appropriate length. So part of Qi is replaced by
something lying above this part in the embedding. So, in particular, Q' lies (weakly) above
Q.

The analogous argument shows that the portion of P' to the left of v lies (weakly) below
the corresponding portion of P2. In particular, the portions of P', P2 considered here can't
intersect each other, except at v, so v is also the leftmost intersection in 7P. O

Figure 2.3 shows an example of the surgery in the "Widening" Lemma. In this case,
both of the paths leading into the leftmost intersection are altered by the surgery. One of the
paths is drawn as a dotted line to make it clear how the paths go through the intersection.

An immediate conseqence of Lemma 2.2.1 is that the negative contributions to (in-i)(S)
can be paired with a subset of the positive contributions. And so we have the following
proposition.

Proposition 2.2.2 If S is any skeleton, 0(i'n-i)(S) 2 0.

Stembridge [46, Thm. 6.4] gives a proof that ¢(n-1,1)(S) > 0. His proof is actually
carried out in a more general framework which we will discuss in detail in Section 2.6.
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Although stated in somewhat different language, the pairing between negative and positive
contributions to 0(n-1,1)(S) obtained above is identical to the pairing used in Stembridge's
proof, which also relies on a "surgery" argument. So our methods can be viewed as a
generalization of those used by Stembridge. The shape (n - 1, 1) is also a hook, and
the proof of the hook case in Section 2.4 will also specialize to give the same pairing for
A = (n - 1,1).

It will be useful in Sections 2.3.1 and 2.4 to have a more detailed description of what
happens when we do the surgery in the "Widening" Lemma for the A = (n - 1, 1) case.

Corollary 2.2.3 Let P = {P1, P2} E ý3(n-1,1)(S) be a pair of paths with the same underly-
ing cycle, and assume that P2 can be obtained by "shifting" P1 to the left by one column (see
p. 52), or equivalently that the truncated part of Pi in T(P) has a length of n - 1 columns.
Let P' = {P', P2} be the result of doing surgery at the leftmost intersection of P (numbered
so that P' and P1 enter the vertex containing the intersection via the same edge). Then
the underlying cycles of P' and P2 have lengths n - 1 and 1, respectively. Moreover, the
portions of P1 and P' up to the leftmost intersection are identical.

Proof: Lemma 2.1.10 implies that the leftmost intersection of P occurs within the first
n - 1 columns. If n = 2, all of the statements are trivial. So assume that n > 2. Then
P' contains two paths whose underlying cycles have lengths of 1 and n - 1 : 1. Since the
leftmost intersection occurs within the first n - 1 columns, the portion of the path of P'
whose underlying cycle has length n - 1 contains no edge of S more than once. It follows
that this portion of the path remains fixed while doing surgery at the intersection to recover
P (i.e. in the notation of the proof of Lemma 2.2.1, copies of fl, f2 do not appear in this
portion of the path in question). This implies that the path whose underlying cycle has
length n - 1 is P' and that the portions of P1 and P' up to the leftmost intersection are
identical. O

Corollary 2.2.4 If S contains at most two internal vertices, wZ[S] is e-positive.

Proof: If S has j connected components of order one (i.e. edges from a source to a sink),
then wZ[S] = el wZ[S'], where S' is obtained by removing these. So we may assume that
every path in S passes through an internal vertex. So any set of paths P E ~3(S) with three
or more paths must contain an intersection in the first column. By Proposition 2.1.11,
the total contribution coming from such sets of paths is zero. Hence the only A's which
could have a non-zero coefficient are those with 1 or 2 parts. Hence the result follows from
Proposition 2.2.2 and the case when A = (n), which is trivial. IO

Corollary 2.2.4 can also be obtained as a special case of Stanley's result [41, Cor. 3.6]
that if F is a graph whose vertices can be partitioned into two disjoint cliques, then Xr is
e-positive.
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2.3 wZ[Skeleton] and Chromatic Symmetric Functions

In this section, we will explore the relationship between the cycle indicators of skeletons and
chromatic symmetric functions of graphs. A result of Stanley and Stembridge [43] asserts
that the e-positivity of the incomparability graphs of posets which are (3 + 1)-free and
(2 + 2)-free is equivalent to the h-positivity of Z[S] for certain skeletons. We will show
that if S is any skeleton, wZ[S] can be written as a sum of chromatic symmetric functions
of incomparability graphs, and we will explore some of the properties of these graphs.
Unfortunately, this doesn't reduce the problem, since the individual graphs obtained here
can definitely fail to be e-positive.

We will say that a skeleton is connected when the graph obtained by ignoring the di-
rections on the edges is connected. It is not difficult to see that a skeleton of order n is
connected if and only if it has a cycle (as in Section 2.1.3) of length n. Surgery ideas clearly
imply that a cycle of maximal length in a connected skeleton must pass through each edge.
Conversely, if S is not connected, then planarity implies that some component of S has
labels [1, i] (i < n) for its sources and sinks, and then clearly S cannot have a cycle of
length n.

Let S be a skeleton of order n. If the edge set of S is the disjoint union of the edge
sets of a collection {S1, S2,..., Sk} of connected subskeletons, we will call this collection a
partition of S into connected subskeletons. Note that the sources and sinks of each Si must
have the same sets of indices. Given such a partition r, let p(r) - n denote the partition of
n whose parts are the orders of the Si's.

Let P(S) denote the set of partitions of S into connected subskeletons, partially ordered
by refinement. P(S) has a unique maximal element whose blocks are the connected com-
ponents of S, but will usually have many minimal elements. Denote the unique maximal
element by 1.

Let I(S) denote the set of minimal elements of P(S), and consider any 7r E I(S). By
using a shifted copy and surgery at the intersection guaranteed by Lemma 2.1.10, we can
"split" any cycle of S into two smaller cycles. So the comments above imply that each block
of 7r consists of a single path, Pi, from one of the beginning nodes ui to the corresponding
ending node vi. In particular, the number of elements in I(S) is the coefficient of the
identity permutation in (S) E ZE%.

We can define a graph F(r) on [n] by putting an edge between i and j if the ith and
jth paths of r intersect. Equivalently, F(rr) is the incomparability graph of the poset P on
[n] defined by i <p j when i <p j and the ith and jth paths of r do not intersect (i.e. the
jth path lies strictly above the ith path in the embedding). Also note that (obviously) the
ordering of the sources and sinks in S gives a linear extension of P.

In order to understand the relationship between S and these graphs, we will need to
consider intervals of the form [7r,1] C P(S), where 7r is minimal. For each fixed 7r E I(S),
the partitions of S into connected subskeletons which lie in this interval are completely
determined by the induced partitions of [n] coming from the labels of the sources and sinks
of each subskeleton. To see this, consider some r E [7, 1] (i.e. r > 7r in P(S)). The block of
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7 which contains the source and sink labelled i must contain the path Pi described above,
since 7r is a refinement of 7. But every edge of S lies in one of these paths, so the edges used
in each block of r are determined by the sources and sinks of that block (and 7r, of course).

Moreover, for this fixed 7r, the partitions r E [7r, 1] correspond exactly to the partitions
of [n] which are connected partitions of the graph F(wr). This follows from the fact that the
internal vertices of a block of r can be viewed as intersections of the paths, {Pi}, used to
define 1F(r). In other words, for any minimal Ir, the interval [r,1] is isomorphic to Lr(,),
the lattice of contractions (or bond lattice) of F(7r).

In particular, the M6bius function of P(S) strictly alternates in sign, i.e. for any pair,

(-1)1el-IllPP(s)(U,7) > 0. (2.9)

This follows since the same is true for bond lattices (as was noted in the introduction), and

PP(s) (a, r) = Pr, (a, r) for any minimal r which is comparable to a (the M~ibius function
on (a, r) only depends on the poset structure of the interval [a, r]).

The following lemma is an analogue for skeletons of Stanley's expansion of Xr in terms
of the M6bius function of Lr (Theorem 1.2.1).

Lemma 2.3.1 For any connected skeleton So, let C(So) denote the number of cycles of So
of maximal length (= the order of So). Then for any connected skeleton So and any skeleton

S, we have

C(So) = I|(7r, i)l (2.10)
rEI(So)

wZ[S]= E A(r, r)pp(T). (2.11)
7rEI(S),EP(S)

Proof: Both statements are trivial if the skeletons have order 1. We will show that if S is

any skeleton and (2.10) holds for the proper (i.e. not the whole of S) connected subskeletons

of S, then (2.11) holds for S. We will also show that for a connected skeleton S, (2.11)

implies (2.10). It follows by induction on the order of the skeletons that both statements
hold in general. We will need some preliminary observations.

Z[S] is defined to be ErPtype(ua), where the sum runs over the families of paths ap-
pearing in (2.1). The cycles of ay correspond to cycles of S as discussed in Section 2.1.3.

The comments at the beginning of this section imply that a set of cycles (using each edge
exactly once) defines a partition of S into connected subskeletons. If we combine the terms

corresponding to the same partition of S and apply the involution w, we obtain

wZ[S] = EP() C(Si)) EP(,)PP(,). (2.12)

Now consider the contribution of a given r to the right hand side of (2.11). Suppose
that r has k blocks, S1, S2, ... , Sk. Choosing a partition of S into connected subskeletons
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which is a refinement of r is obviously equivalent to choosing partitions for each Si. The
poset structure on the order ideal generated by r (i.e. the elements of P(S) which are less
than or equal to r) is just the direct product of the posets P(S 1), P(S 2),... , P(Sk). It
then follows from the product theorem for MSbius functions (see [40, Prop. 3.8.2]) that

i ts(7rT=)f=(_ EI P(S,)(rJ1Si) (2.13)
wEI(s) i=1 (7 •S)

Now we are ready to prove the inductive steps. First, let S be any skeleton of order n,
and assume that (2.10) holds for the proper connected subskeletons of S. Note that the
computation of the sign of the M6bius function in (2.9) implies that if r is minimal, then the
sign of /(7r, r) is Ep(,). If r has more than one part, then our inductive hypothesis (applied
to each part) implies that the expression in (2.13) is equal to the contribution of r in (2.12).
This implies that the coefficients of p\ on each side of (2.11) are equal when A has 2 or more
parts. If S is not connected, then this includes all of the non-zero coefficients. So assume S
is connected. We need to show that the coefficients of P(n) on each side of (2.11) are equal.
It suffices to show that the sum of all of the p, coefficients on each side are equal. The sum
of the p, coefficients in Z[S] is just the sum of the signs of the permutations associated
with S, i.e. 1 if S has order one, and zero otherwise (S is connected). Likewise, for each
minimal 7r,

E[1 ,17r
-rE [, 110 otherwise.

This can be taken as the definition of the M5bius function. For a connected S, I is minimal
if and only if S has order one.

The second inductive step is fairly trivial. If S is a connected skeleton of order n which
satisfies (2.11), then taking the absolute values of the coefficients of P(n) on the left and
right sides of (2.11) yields (2.10). O

Theorem 2.3.2 wZ[S] = EREI(S) Xr(7).

Proof: Given that the interval [7r,1] in P(S) is isomorphic to Lr(,), this follows immediately
by comparing the expansions in (2.11) and Theorem 1.2.1. O

So immediately we have that the (conjectured) h-positivity of Z[S] is equivalent to the
e-positivity of a sum of chromatic symmetric functions of graphs. In particular, everything
which can be said about the coeeficients in the elementary expansion of an arbitrary Xr
can be applied here. For example, Theorem 1.2.3 yields the following corollary.
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Corollary 2.3.3 For any skeleton S of order n and any k E P,

E €-(S) = E sink(r(r),k).
Ma-n IrEI(S)

I(A)=k

We know of no other way to prove the nonnegativity of the expression appearing on the left
hand side.

There is a "canonical" element iro E P(S) which corresponds to choosing the identity in
each factor. F(ro) is an indifference graph, but in general, F(r) has no special properties.
In fact, it is fairly easy to see that every incomparability graph appears as a F(7r) for some
skeleton.

Theorem 2.3.2 can be viewed as a generalization of the result of Stanley and Stem-
bridge [43] that the e-positivity of indifference graphs is equivalent to a special case of the
monomial immanant conjectures. For the skeletons which correspond to indifference graphs,
it can be shown that all of the F(r)'s are equal to the corresponding indifference graph.

2.3.1 Cycles and Acyclic Orientations

The main result of this section will be a bijective proof of the k = 1 case of Corollary 2.3.3.
Let S be a skeleton of order n. The elements of 13(n)(S) are liftings to S' of cycles of S
whose length is n. (Technically speaking, we ought to say that the elements of 3(n) (S) are
families consisting of these single paths.) The sign associated with each element of 1(n)(S)

is positive, so 0)(S) just counts the number of them. We may assume that S is a connected
skeleton of order n (if S is not connected, there are no such cycles).

We will actually construct a bijection between the lifted cycles which begin at the source
ui and pairs (7r, o), where 7r E I(S) and a is an acyclic orientation of F(7r) whose unique sink
is i. The enumerative consequences of this stronger bijection are implied by Corollary 2.3.3
and a result of Greene and Zaslavsky. We will discuss this in Remark 2.3.4 below.

Let Ji(S) denote the set of paths in S which begin at the source labelled i and end at

the sink labelled i, and let 3(S) = U Ji(S).
Given an element of 3(n) (S), we will construct a corresponding acyclic orientation of one

of the graphs by first giving a sequence of elements of 3(S) such that these paths correspond
to a minimal 7r E P(S) (and hence a graph ]F(r)) and the order in which they appear in the

sequence is a linear extension of the acyclic orientation with a unique sink which we desire.

We will then show that exactly one linear extension of each of these acyclic orientations can

be obtained via our algorithm.

First, we describe an "extraction" map which takes a path P E T(¶,)(S) and yields an
element Q E 3(S) and a path P' E ¶(n-1)(S\Q), when n > 1. Let P1 = P and let P2 denote
the result of "shifting" P to the left by one column, as in Section 2.1.3. By Corollary 2.2.3,
if we do surgery at the leftmost intersection of P1 and P2 (say at the vertex v), we obtain
paths Pi and P2 such that the cycles underlying these have length n - 1 and 1, respectively.
Let P' = P1 and Q = P2. Corollary 2.2.3 tells us moreover that the portions of P' and P

up to v are identical.
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The sequence of elements of 3(S) will be constructed backwards, using this extraction
process. Namely "extract" Q, from P, then proceed with the path P', extracting Qn-1,
and so on. In this way we get a sequence Q1, Q2, ... , Q,. These define a minimal partition,
7r, of S into connected subskeletons. The order they appear in induces an acyclic orientation
of the corresponding graph, F(wr), such that the order they appear in is a linear extension
of the closure of the acyclic orientation. (This is true for any linear ordering of the vertices
of a graph.)

Q1 is clearly a sink in this acyclic orientation. We claim that it is the only sink. To see
this, note that the union of the paths Q, ... , Qi is connected (since at one point in the
construction there was a cycle of length i on this union), and this implies that Qi is not a
sink. I.e., it must intersect one of the preceding paths, and hence there is an edge (in r((r))

connecting it to the path it intersects, and this edge is directed out of Qi in the acyclic
orientation.

Note that if P begins at ui, then so does P', and so on. In particular, Q1 begins at ui.
So we have a map from paths in P(,,)(S) which begin at ui to pairs (r, o), where 7r E I(S)
and o is an acyclic orientation of F(7r) whose unique sink is i. We want to show that this
map is a bijection.

First, we consider what conditions are necessary to allow a path Q E f(S) to be "in-
serted" into a path P' in S' which is a lifting of a cycle of S \ Q (of arbitrary length) to
form a path P, in such a way that the extraction map described above yields Q and P'
when applied to P. Let Q& denote the lifting of Q to S' (i.e. a copy of Q in each column).
What is required is that performing surgery at the leftmost intersection of P' and QO (say
at the vertex v of S") yields a pair of paths whose leftmost intersection occurs at v. If this
is the case, it follows from Corollary 2.2.3 that one of these paths is identical to P' up to
the vertex v - this path is the P that we want.

Let P. denote the portion of P' up to v. If v is in the first column of So , then trivially
this intersection remains leftmost while doing the surgery. Otherwise, let v' denote the
corresponding vertex one column to the left of v. When we do the surgery on Q" and P'
at v, P. remains fixed and the portion of Q"O to the left of v' is replaced by a copy of the
portion of P. starting in the second column and continuing up to v. (We are not concerned
with what happens to the right of v.) So v remains the leftmost intersection if and only if
this new copy of part of P. does not intersect PT.

Let P" denote the path obtained by shifting P' one column to the left. Suppose the
leftmost intersection of P" and P' occurs at the vertex w of S". Let w' denote the corre-
sponding vertex located one column to the right. Since P" passes through w, P' must pass
through w'. Let B(P') denote the portion of P' up to w'. The statement that the copy
of P. shifted one column to the left does not intersect the original PT, (considered above)
is equivalent to saying that PT, is contained in B(P'), i.e. that Q' intersects B(P'). (If
Q' intersects B(P') at w', then it intersects it at w, since Q' passes through the same
underlying vertices of S in each column.) So Q can be "inserted" into P' if (and only if)
Q0 intersects B(P'). (If the cycle underlying P' has a length of one, then let B(P1 ) consist
of the portion of P' contained in the first column.)
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If Q can be and is inserted into P' to obtain P, then B(P) consists of PT. plus a path
one column long consisting of the portion of Q& from v up to the corresponding vertex one
column to the right. In particular, B(P) contains a copy of each edge of Q.

Now suppose we have chosen a 7r E I(S) and an acyclic orientation of rF(r), o, with a
unique sink (corresponding to a path Q1 E J(S)). We will show that the paths corresponding
to the vertices of rF(r) can be given an ordering Q1, Q2, ... , Q such that the "extraction"
process described above can be reversed. In other words, so that we can construct a sequence

Q1 = P1, P2,..., Pn = P by "inserting" Qi into P•_ 1 to obtain P,, and the map (r, o) '-+ P
is the inverse of the map constructed above.

After the ith stage of the construction, we will have chosen the elements Q1,... ,Qi in
such a way that these form an order ideal of - (the poset on the vertices of F(wr) which is
the transitive closure of o). We also will have constructed a path Pi E S' which uses the
union of the edges appearing in Q1,..., Qi. After this stage of the construction, we will
examine a set of potential candidates (call it Vi+ 1) for the next vertex of 1F(r), such that
each Q, E Vi+1 could be inserted into Pi. Furthermore, we will choose one of these to insert
in such a way that it will still be possible to insert the remaining candidates (if any) into
Pi+1, and we will carry these remaining candidates over into Vi+2.

The list of candidates, Vi+1, that we will consider is the set of vertices of F(wr) which
are minimal in - among the vertices not included so far (Q1, ... , Qi). After the first stage,
the minimal elements in V2 are all paths which intersect Q1 = Pi = B(P1 ), and so any of
these could be inserted into P1.

Now consider an arbitrary stage of the construction in which each of the minimal (in
-) elements which have yet to be inserted (i.e. the elements of Vi+ 1) could be inserted
into Pi. So each of these represents a path Q0 such that Q' intersects B(Pi). Since
Q0 passes through the same set of underlying vertices of S in each column, it intersects
B(Pi) if and only if B(Pi) contains a copy of one of these underlying vertices. Since these
minimal elements must be incomparable in U, the paths Qa corresponding to these do not
intersect each other, and hence have no vertices in common. So there is a well-defined linear
ordering of the elements of Vi+1 according to the leftmost intersections of the Qa's with
B(Pi): Qal",... ,Q . We will insert Qa into Pi to form Pi+1. The remarks made above
imply that B(1P+1) consists of the portion of B(Pi) up its leftmost intersection with Q'
(which is assumed to occur to the right of the corresponding intersections for the other
elements of Vi+ 1) followed by a path one column long whose edges are the edges appearing
in Qa~ (in an appropriate order, of course). In particular, the remaining elements of Vi+ 1

intersect B(Pi+1) (and they are still minimal among what has yet to be inserted). Any new
minimal elements must correspond to paths which are comparable to Qc, (i.e. intersect it),
otherwise they would have been minimal before. So these share some vertex with Q~,, and
hence the liftings to S' must intersect B(Pi+1).

So each of the elements of Vi+ 2 can be inserted into Pi+1. By induction, we can proceed
and insert all of the elements, obtaining an inverse for our "extraction" procedure defined
above.
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2.3.4 Remark: Our construction gives a bijective proof that the number of paths P E
(,,)(S) which begin at the source ui is equal to the number of pairs (r, o), where w E I(S)

and o is an acyclic orientation of F(7r) whose unique sink is i. There is a "cyclic action" on
T(3) (S), since there are n possible liftings (corresponding to the n possible starting points)
for each cycle of S of length n. This shows that the number of paths P E q3(,)(S) which
begin at the source ui is independent of i.

A result of Greene and Zaslavsky [21, Thm. 7.3] says that for any graph r and vertex v,
the number of acyclic orientations of r with a unique sink at v is independent of the choice
of v.

So it actually follows from Corollary 2.3.3, that there is an equality for each i. How-
ever, we note that the cyclic action on T(n,)(S) does not (generally speaking) preserve the
corresponding graph under the bijection constructed above.

2.4 The Hook Case

Proposition 2.4.1 If A = (r, ln-r), then 0c(S) is nonnegative for any skeleton S. More-
over, there is a pairing between the negative contributions and a subset of the positive contri-
butions, given by doing surgery at the leftmost intersection in the cases when this intersection
remains leftmost after the surgery.

Proof: For any P E q>3 (S), T(P) consists of one path of length r and n - r paths of
length one (lengths measured in columns). In particular, the only possible intersections
among these are in the first column. So it follows from Proposition 2.1.11 that the sum
of the contributions coming from sets of paths with intersections in the first column is
zero. This is actually always true, and a trivial consequence of the arguments leading to
Proposition 2.1.11. We can assume r > 1, otherwise OA is just the sign character.

We will need to make quite a few preliminary observations before we can show how to
"cancel" the remaining negative contributions. Consider a set of paths P E T,\(S) which
has no intersections in the first column. Recall from Section 2.1.3 that P comes from a
family of paths, YT, in S and a subgraph of the associated permutation a = cy. When A
is (r, 1n-r), this subgraph consists of a directed path with r vertices, and n - r isolated
vertices.

If one of the cycles of a contained only isolated vertices and more than one of them, then
there would be an intersection in the first column. This follows, for example, by applying
Corollary 2.1.12 (really just the special case corresponding to the determinant) to the paths
in P whose underlying cycle corresponds to this cycle of o. Since we have assumed there are
no intersections in the first column, it follows that a has exactly one cycle of length greater
than one. This cycle contains the directed path of (vertex) length r along with (possibly)
some isolated vertices.

Let il denote the first vertex of this path of length r in (the graph of) a, and let
i2, i3,... , ik denote the (possibly empty) list of isolated vertices in the same cycle, ordered
so that, under a, ik " ik-1 '-+ "... i 2 •- i1 . Let P E P be the path with begins at the
source labelled ii, and let Q2, ... ,Qk be the paths in F which begin at the sources labelled
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i2, ... , ik. Then the paths in P whose underlying cycle corresponds to the nontrivial cycle of
a are the concatenations: P1 = P, P2 = Q 2 P, P3 = Q 3Q 2 P, ... , and Pk = QkQk-1 ... Q2 P-
In particular, since there are no intersections in the first column, Q2, Q3, ... , Qk do not

intersect each other.
It follows from Lemma 2.1.10 that any pair of the paths P 1,..., Pk must intersect (if

k > 1, of course). We claim that the leftmost vertex which contains an intersection among
these contains an intersection of P1 with P2. The sequence i, i2, ... , ik is monotonic (if we
had ij+l > ij < ij-1 or ij+l < ij > ij- 1, then Qj+I would intersect Qj). Without loss of
generality, assume that the sequence is increasing. Then the portion of P1 in the first column
is below the corresponding portion of P2 in the embedding, and so on. Clearly, the paths
must maintain this ordering as they move to the right, until they reach an intersection. In
particular, the leftmost vertex to contain an intersection must contain one between Pi and

Pi+1 for some i. If we had i 0 1, then P_-1 and Pi would intersect one column to the left
of the intersection between Pi and P2+1 (i.e. "shifting" Pi to the left by one column yields

Pi- 1, etc.). Also note that P1 and P2 are the only paths among the Pi's which intersect at
this vertex, otherwise "shifting" P2 and the third path, say Pi, to the left by one column
would show that there was an intersection between P1 and P1-1 in the previous column.

Now let R 1, R 2,..., Rk, denote the paths in F which correspond to the isolated vertices

of a in cycles of length one. Note that the path in P which begins with Ri is just Ri
repeated in each column. Let us denote this path by R9. Since there are no intersections

in the first column, the Ri's do not intersect each other and do not intersect the Qi's. So
the leftmost intersection of RF with any other path (if such an intersection exists) must be

with P1 = P, and this intersection is strictly to the left of any other intersections involving

R90, otherwise a "shifting" argument would give an intersection to the left. In particular, a
leftmost intersection of this form cannot occur at the same vertex as the leftmost intersection

between P1 and P2 described above.

Now we are (finally) in a position to define a sign-reversing involution on a subset of the

sets of paths P E 93,\(S) with no intersection in the first column. This subset will include

all the terms with a negative sign, and hence the proposition will follow.

Let v be the leftmost vertex of Soo which contains an intersection among the paths of

P. The arguments above tell us that at v, P = P1 intersects either P2 or one of the Rr's

(in particular, there are exactly two paths through v). Let P' denote the result of doing

surgery at this intersection. If v is the leftmost intersection of P', let the involution map P

to P', otherwise P is not in the domain of the involution. (The comments we made while

defining surgery in Section 2.1.4 imply that this is an involution.)

So it suffices to show that if v is not the leftmost intersection of P', then P has a positive
sign. Let j denote the number of the column containing v. Let -i denote the internal vertex

of S which corresponds to v.

First consider the case where v contained an intersection between P1 and P2. We claim

that in this case, v contains the leftmost intersection of P' (the result of the surgery).
Corollary 2.2.3 (the more detailed "widening" lemma for (n - 1, 1)) implies that the portion
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of P2 up to v remains fixed by the surgery. It follows that the portions of P3, ... , Pk (if
we have these) in the first j columns also remain after doing the surgery, since the edges
of S involved in the surgery do not appear in Q3, ... , Qk. We can assume as above that
the sequence il, i2, ... , ik of labels of the sources of P1, P2,... , Pk is increasing. Then, in
columns 1 through j - 1 and the portion of the jth column up to v, P1 lies below P2 which
lies below P3 , and so on. The "Widening" Lemma tells us that the surgery replaces the
portion of Pi up to v with a (weakly) lower path. The relevant portions of the other paths
do not change, so the leftmost intersection among the paths which have changed is at v.
The lower path which replaces P1 has an underlying cycle of length 1, and the edges of S
used in this cycle are just the edges appearing in P1 between the copy of i in column j - 1
and the copy in column j (i.e. v). If this path were to intersect one of the RM's to the left
of v, then (a copy of) this intersection would occur in each column (since both paths have
underlying cycles of length 1), and hence there would have been an intersection between
this Rý and the portion of P1 lying between the copies of 9i in columns j - 1 and j. So
if the leftmost intersection occurs between P1 and P2 , then it "remains leftmost" after the
surgery.

Now consider the case where v contained an intersection of P1 with one of the RO's,
say RM. In this case, it might actually happen that the result of doing the surgery yields
a set of paths with an intersection to the left of v. But we will show that if k > 1, then v
is the leftmost intersection of the result after the surgery. Here k is the number of paths
whose underlying cycle is the same as P1 , i.e. the same k as above. Note that if k = 1, the
set of paths has one underlying cycle per path, so it has a positive sign. So assume k > 1.
In particular, there is a P2.

Let PT denote the portion of P1 in T(P), i.e. the path in T(P) of length r. Note that
P1 is just the infinite concatenation PTQkk-1 ... Q1PT - - .. Since Ro does not intersect
the Qi's, the portion of P1 up to v must be contained within PT. Write this portion of P1
as a concatenation QoPo where Qo is the portion lying in the first column.

The changes in the first j columns (i.e. changes in which edges are used in which column)
made by doing the surgery are simply that a copy of Po replaces the portion of Ro' up to
the copy of - in column j - 1. Consider the leftmost intersection in P', and suppose this
intersection occurs to the left of v. Then it must occur at an intersection of this (new) copy
of Po with something. If this copy of P0 were to intersect one of the R 's which remains
in P', then copy of P0 in P1 E P would have a corresponding intersection one column to
the right (but still to the left of v). Likewise, if this new copy of Po were to intersect one of
P1,... , Pk, then the leftmost of such intersections would have to occur between the copy of
Po and P1 (this follows from the same argument which showed that the leftmost intersection
among P1,... , Pk was an intersection of P1 with P2 ). But in that case, the copy of Po in
P1 would have a corresponding intersection, one column to the right, but still to the left of
V.

So we have shown that the sets of paths P E 93,(S) for which the leftmost intersection
is not preserved by doing surgery at it is a subset of those with k = 1 (the sets of paths
with no intersections at all also have k = 1). As we remarked above, these sets all have
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positive signs. So, doing surgery at the leftmost intersection (in the cases where it remains
leftmost) gives a pairing between the negative contributions to O (S) and a subset of the
positive ones, showing that 0,(S) > 0 (when A is a hook). O

An application of Proposition 2.1.16 gives us the following generalization.

Corollary 2.4.2 For any skeleton S, 0i(S) ;> 0 when A is of the form (kr, kj).

2.5 The (2 k, 1t) Case

If P E 93 (2k,lt)(S) for some k and £, then the truncated part T(P) contains paths of lengths
1 and 2 (columns). Let F be the corresponding family of paths in S. F contains k + e
paths which appear (in the paths P) in the first column of S " , call these P1, P2,..., Pk+e
(the order doesn't matter). F also contains k paths which appear for the first time in the

second column (i.e. the portions of the paths of T(P) which lie in the second column). Call
these Qi,... ,Qk.

The sum of all the contributions coming from sets of paths with intersections in T(P)
is zero (by Proposition 2.1.11), so we may restrict our considerations to sets with no such
intersections. In other words, the Pi's do not intersect each other, and the Qi's do not
intersect each other.

Consider any internal vertex, v, of S. If v has an in-valence of more than two, then two

Pi's or two Qi's would pass through v. In that case we would have 0(2k,' l )(S) = 0. This is

a special case of Corollary 2.1.13. And since internal vertices of in-valence=out-valence=1
can be removed without changing (S), we may assume for the remainder of the discussion

that every internal vertex of S has in-valence=out-valence=2.
For any skeleton S with in-valence=out-valence=2 at each internal vertex, let ZigZag(S)

denote the digraph obtained from S as follows. Replace each internal vertex v by two vertices

vleft, Vright. Replace each edge by a corresponding edge which is directed into vleft if the

original was directed into an internal vertex v and is directed out of Wright if the original

was directed out of an internal vertex w. The ends of edges incident to sources and sinks

are not affected.
Clearly an embedding of ZigZag(S) in the plane can be derived from one for S by making

changes within a small neighborhood of each internal vertex, while maintaining planarity.

I.e. vieft and vright are very close together with Vleft on the left. Geometrically, we can think

about this operation as "cutting" each internal vertex in half with the left half getting

the in-edges and the right half getting the out-edges. In particular, the planarity implies
that if we ignore the directions on the edges, the embedded image of ZigZag(S) is a set of
non-intersecting curves whose ends (if any) lie in the sources and sinks of S.

Now, we can also do the completely analogous operation on cyl(S) (the digraph in
which the source and sink with the same label have been identified, as in Section 2.1.2), by
"cutting" the vertices of cyl(S) corresponding to the internal vertices of S, or equivalently,
by identifying the appropriate vertices of ZigZag(S). Call the result cyl(ZigZag(S)). Clearly,



2.5. THE (2 k, 1') CASE

Figure 2.4: On the left, an example of ZigZag(S) (all corners are vertices). On the right,
the corresponding cyl(ZigZag(S)), "flattened" onto a punctured plane.

cyl(ZigZag(S)) has an embedding on the cylinder. The interesting thing to notice is that if
we ignore the vertices and the directions on the edges, then the embedding of cyl(ZigZag(S))
in the cylinder is a family of simple closed curves which don't intersect each other.

In particular, each of these simple closed curves has a winding number of zero or one
around the cylinder. In other words, we can "flatten" the cylinder into a punctured plane
while preserving the fact that these are simple closed curves. As simple closed curves in
the plane, these have a well-defined "inside" and "outside" (the Jordan Curve Theorem),
and for each of them, the puncture point is either inside (winding number one) or outside
(winding number zero).

Figure 2.4 depicts an example of ZigZag(S) and the corresponding cyl(ZigZag(S)) (with
the cylinder "flattened" into a punctured plane). In this example, there is one curve with
winding number one and one with winding number zero (draw slightly bolder).

Of course, these topological ideas are really just a convenience, but our main result in
this section would be (at best) awkward to state without them.

Theorem 2.5.1 If S has an internal vertex of in-valence greater than two, then q(2k,lt)( S )
vanishes. Otherwise, define cyl(ZigZag(S)) as above, and let wo be the number of curves
in the embedding with winding number zero, and let wl be the number of curves in the
embedding with winding number one. Then

0
( 2 k'l ) (S) =- be,w, 2.

Let us refer to the connected components of ZigZag(S) as "zigzags." By abuse of
notation, we will also use the word "zigzags" for the subdigraphs of S with the corresponding
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edges. It turns out that the problem of enumerating the contributions of sets of paths
P E ~(2k,lt) (S) which have no intersections in T(P) can be completely restated in terms of
these zigzags.

Lemma 2.5.2 For any set of paths P E 3(2 kl1) (S) (any k and f) with no intersections
in T(P), color the edges of S which appear in the first column of T(P) blue and the edges
appearing in the second column red. Then we have the following:

1. A zigzag which has "ends" at a source and sink of S contains an odd number of edges.
The remaining zigzags (which may have ends which are both sources or both sinks of
S, or which might have no ends at all) have an even number of edges.

2. For every choice of P as above, as we move along a zigzag, the colors of the edges
encountered alternate between blue and red. If a red edge is incident to a source or
sink of S then the edge incident to the sink or source (respectively) with the same label
must be blue.

3. Conversely, any such coloring of the edges of S comes from a set of paths P E
3(2k,1) (S) (for some k and t) with no intersection in T(P).

4. Color the sources and sinks of S according to the color of the (unique) edge which is
incident to them. Then the sign associated with P is given by (-1)k+a+b, where a is
the number of pairs i < j such that the ith source is red and the jth source is blue,
and b is the number of pairs i < j such that the ith sink is red and the jth sink is blue.

Proof: The first statement follows from the fact that as we move along the curve underlying
a zigzag, we alternate between moving with the direction of the edges and against the
direction of the edges (at each vertex, the edges are both directed in or both directed out).

The second statement is also trivial: Two edges in a row of the same color would
correspond to an intersection in T(P). A red edge which is incident to a source is the first
edge in the second column of a path in T(P), and the edge preceding it in this path is in
the first column and hence blue. A red edge incident to a sink is the last edge in a path of
T(P) and must be followed (in P) by the first edge of a path (this is just the definition of
T(P)).

Conversely, if we are given such a coloring, then the edges colored blue form a set of
nonintersecting paths in S (for each internal vertex, exactly one of the in-edges and one of
the out-edges is blue since the coloring alternates along all of the zigzags). And the red
edges also form a set of nonintersecting paths in S. The collection of all these paths defines
a family F of paths from the sources to the sinks which use each edge exactly once. If
we take the liftings of the underlying cycles to S0 which place the blue paths in the first
column, we get a set of paths P for some A. The condition on the red edges incident to
sources implies that all of the red paths appear in the second column, and the condition
on the sinks implies that these are followed by blue paths in the third column. Deleting
edges to get T(P) is just removing every blue edge in the second column or later, and the
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remainder of the path to the right. T(P) is contained within the first two columns, hence
A = (2k, 1e).

The sign associated with P is E(-1)", where (-1)' is the sign of the corresponding
permutation (such that the paths of Y go from the ith source to the aith sink). Clearly,
E(2k,1e) = (-1)', so the last statement amounts to showing that (-1)a+b is the sign of a.

The sign of a is (-1)inv (0), where inv(a) is the number of inversions of a, i.e. the number
of pairs i < j such that ai > aj. Since the paths of the same color don't intersect each
other, any inversion corresponds to a pair of paths of different colors. Consider the number
of inversions involving a fixed red path from ui (the ith source) to v,i (the aith sink).
Consider the blue sources with labels larger than i, and the blue sinks with labels larger
than ai. Let ai and bi denote the numbers of these, respectively. Since the blue paths don't
intersect, the jth largest blue source is connected by a blue path to the jth largest blue
sink. So if ai > bi, there are bi blue paths which begin and end above the red path in
question, and there are an additional ai - bi blue paths which begin above the red path and
end below it. Similarly, if bi > ai, then there are bi - ai inversions involving the red path.
Taking the product over all the red paths, we obtain (-1)a = (-1)'ai+bi - (-l)a+b. r

The idea behind our proof of Theorem 2.5.1 will be to show that 0(2k
' l ) (S) is actually a

topological invariant of the set of underlying curves in cyl(ZigZag(S)). In particular, we will
show that there are "simplification" operations which can be applied to ZigZag(S) without
changing the problem, and that these operations can be used to reduce the problem to a
trivial case. In order to define these operations, we will actually need to work with a slightly
more general situation.

Consider an ordinary (undirected) graph F which is a disjoint union of paths and cycles,
and a planar embedding t = tx x ty : F -+ R 2 with the following properties:

1. The image is contained between two vertical lines x = xl and x = x2 (x1 < x 2), with
n vertices ul,..., un lying on x = xl and n vertices vl,..., v, lying on x = x2, and
everything else lying strictly between the lines.

2. ty (ui) = Ly y(vi) and by (ul) < ty(U2) < ... < (by(Un)

3. {u 1 , ... U, V1, v,... , vn is the set of vertices of F of valence one.

4. If a component of F is a path with an even number of edges, then both "ends" are
embedded on the same vertical line. If a component is a path with an odd number of
edges, then the ends are embedded on different vertical lines.

Given such a graph and embedding, consider the set of edge-colorings of F using the
colors red and blue which color edges adjacent to a common vertex differently, and for
which ui and vi are not both adjacent to red edges. If £ has the same parity as n, let

'e(F, L) = (-1)(n"-)/2 (-1)a+b where the sum runs over all such colorings which have £
of the pairs ui, vi both adjacent to blue edges, and a is the number of pairs i < j such that
ui is adjacent to a red edge and uj is adjacent to a blue edge, and b is the number of pairs
i < j such that vi is adjacent to a red edge and vj is adjacent to a blue edge.
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f e2, r2

-l ... -l

Figure 2.5: Simplification of Zigzags

If r is the graph underlying ZigZag(S) and b is the embedding discussed above, then
Lemma 2.5.2 says that •((Fr, b) = 0(2k,l) (S).

Now we can describe the "simplification" operations which were alluded to previously.
Let F and t satisfy the properties discussed above. If there is a path in F joining two
of the ui's, then there must be a path joining a consecutive pair, ui0 and uio+l. This
follows from the planarity of the embedding - if a path joins ui and ui+j, then any vertices
ui+l,... , ui+j-1 must also come in pairs joined by paths.

We can move the path joining uio and uio+1 over to the other side to get a new graph
and embedding (F', L'), as is depicted in Figure 2.5. This new graph has n - 2 vertices
embedded on each of the vertical lines containing its "ends," and it is elementary to check
that it satisfies the properties listed above.

Lemma 2.5.3 o(Fr, t) = ot(=', b').

Proof: Let el, e2, fi, and f2 denote the edges of r adjacent to ui0, uio+l, vio, and vio+ 1,
respectively. Let e', e', ff, and f2 denote the corresponding edges of F'.

All of the colorings considered in the definition of ok(F', t') correspond to colorings
considered for F. These have the "same f," since the edges e', fl are not both colored blue,
and the same is true for e' and f2. Fix one of these colorings. Since the path joining uio
and uio+1 has an even number of edges, el and e2 have different colors, and the same is
true for fi and f2. Consider the pairs i < j used to compute the sign associated with this
coloring, i.e. the pairs such that ui is adjacent to a red edge and uj is adjacent to a blue
edge or vi is adjacent to a red edge and vj is adjacent to a blue edge. In addition to the
pairs corresponding to pairs for F', there are new pairs involving uio, uio+l, vio, and vio+ 1.
We get a new pair for each uj and vj with j > io + 1 which are adjacent to blue edges,
a new pair for each ui and ui with i < io which are adjacent to red edges, and one more
pair involving only uio, uio+l, 1io, and vi0+l, i.e. (io, io + 1). We claim that there are an
odd number of new pairs. For each j > io + 1 we either get two new pairs if ui and vj are
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both adjacent to blue edges, or one new pair otherwise (they cannot both be adjacent to
red edges). So the parity of the number of new pairs is the same as the parity of the total
number of ui's and vj's adjacent to red edges in F' plus one (for the pair (io, io + 1)). But it
follows from the definitions of the colorings that we're considering that there are always an
equal number of ui's adjacent to red edges and vj's adjacent to red edges. So the number
of new pairs is odd. Also, (-1)(n-e)/2 = _(_1)(n- 2- t)/2, so the colorings contributing to

tC(F', t') contribute the same sign to ot(F, t).
In addition to the colorings considered above, there are colorings contributing to i(Fr, t)

with el and fi both colored blue or e2 and f2 both colored blue. As we noted above, el and
e2 have different colors, since the path joining them has an even number of edges. We can
pair the colorings with el, fi both blue (and hence e2 red and f2 blue) with the colorings
where e2, f2, and fi are blue and el is red, by reversing the color of every edge in the path
containing el and e2 while keeping everything else the same. The signs associated with
these colorings are the opposite - in the latter case, (io, io + 1) is a pair contributing to
the sign, and in the former case it is not, and the number of pairs involving io and io + 1
and something else are not affected (just replace io with io + 1 in those pairs and vice
versa). So these other colorings make a net contribution of zero to '4(F, t), and we have
obe(r,) = ot (r,,t'). 0

The following lemma computes the values of the trivial cases.

Lemma 2.5.4 If (F, t) are as described above, and there is no path of F joining two of the
ui 's, then

te(F, t) = Sn,e2W,

where w denotes the number of components of F which are cycles.

Proof: If no path of r joins two ui's, then each ui is joined to some vj . It follows from the
planarity conditions on F that ui must be joined to vi. The path joining ui and vi must
have an odd number of edges, so in any coloring contributing to any of the '0e(F, t)'s, the
edges adjacent to ui and vi must be colored the same, and hence blue. It follows from the
definition that for each such coloring, £ = n and the contribution of the coloring is positive.
These conditions determine the color of each edge in the paths of F, and the cycles of F
can be colored in any way which alternates along each cycle. So there are 2" colorings to
consider, each making a positive contribution to $e(F, t). O

We can now give a proof of the main result.
Proof of Theorem 2.5.1: As we noted at the beginning of this section, 0(2k,"l)(S) vanishes
if S has any internal vertices of in-valence=out-valence more than two. Otherwise, we can
construct ZigZag(S) and cyl(ZigZag(S)) as described above. The simplification operations
described above can be applied until we get to the trivial case covered by Lemma 2.5.4.
To prove Theorem 2.5.1 we only need to note that for each of the simplification operations
which we apply to (the graph underlying) ZigZag(S), there is a corresponding operation on
the graph underlying cyl(ZigZag(S)) and these operations don't affect the winding numbers
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of any of the curves. In the trivial case, each of the paths connecting ui to vi corresponds to
a curve with winding number one and the cycles correspond to curves of winding number
zero. 0

The following corollary follows immediately from Proposition 2.1.16 and Theorem 2.5.1.

Corollary 2.5.5 For any skeleton S, 0,\(S) > 0 when A is of the form ((2k)', kj).

2.6 More General Digraphs

In [46, Section 6], Stembridge considers generalizations of Jacobi-Trudi matrices coming
from acyclic digraphs whose paths are required to have certain intersection properties. In
this section we will discuss these digraphs and show that the corresponding matrices, like
the Jacobi-Trudi matrices, can be expressed in terms of skeletons.

Let D = (V, E) be an acyclic digraph. If u, v E V, let T3(u, v) denote the set of paths
from u to v in D.

Let u = (u1, ... , un) and v = (vl, ... , vn) be ordered n-tuples of vertices. Stembridge
says that u and v are D-compatible if

i < j, k > 1 ==- every path in T(ui, vk) intersects every path in T(uj, vi).
(2.14)

The language used here comes from an earlier paper of Stembridge, [44], where the emphasis
is on fixing the digraph and allowing u and v to vary. We will want to vary the digraph,
and it will be more convenient to say that (D, u, v) is a compatible triple when (2.14) holds.

Assume the edges of D are given weights in a set of indeterminates {ze I e E E}, and
define the weight, wt, of a multiset of edges to be the product of the weights of the edges.
Also, if u, v E V, let

a(u, v) = wt(P).
PE!3(u,v)

If (D, u, v) is a compatible triple, let

A(D, u, v) = [a(uj, vi)] 1<i,<jn. (2.15)

The matrix which Stembridge associates with (D, u, v) is the transpose of this. This defini-
tion works better with our convention of using a - 1 in the definition of [A] (see p. 15). The
two differences in conventions "cancel" so that [A(D, u, v)] is identical to what Stembridge
denotes as [A(u, v)].

Note that if (D, u, v) is a compatible triple, then so is (Dop, v, u), where Dop is the
result of reversing the directions of the edges of D. And A(Dop, v, u) is the transpose of
A(D, u, v).

As Stembridge points out, Jacobi-Trudi matrices can be viewed as a special case of this
construction. In Section 2.1.1, we discussed a digraph on Z x Z, together with n-tuples,
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(P1,... , P,) and (Q1,... , Q,), which were used in the work of Gessel and Viennot [17],
Goulden and Jackson [18], and Greene [20]. These form a compatible triple, and the matrix
in (2.15) becomes the Jacobi-Trudi matrix if the weights are specialized as we discussed in
Section 2.1.1.

Stembridge makes the following conjecture, which generalizes Conjecture 2.0.3.

Conjecture 2.6.1 ([46, Conj. 6.3]) If(D, u, v) is a compatible triple, OA[A(D, u, v)] is
monomial positive.

He also shows that this conjecture holds in the cases when A = (r') (including (n) and

(1")), when A = (21n-2), and when A = (n - 1, 1).

We actually need some assumptions in order for monomial immanants of A(D, u, v) to
be well-defined. For simplicity, we will assume D is finite (see Remark 2.6.6 below).

Using the "[A]" notation defined in (0.1), we can write

[A(D, u, v)] = a(ui, vý,r) 0 . (2.16)
aE;n i=1

The coefficient of a in the above enumerates sets of paths such that the ith path begins
at ui and ends at va,. As in the case of Jacobi-Trudi matrices, we can combine the terms
for sets of paths whose union uses the same multiset of edges and write

[A(D, u, v)] = 1 wt(a)(a), (2.17)

where the sum runs over all multisets, a, of edges, and (a) denotes the sum of the permu-
tations associated with the sets of paths with weight wt(a) (with the use of indeterminates,
specifying wt(a) is equivalent to specifying a).

There are some small complications here which don't come up in the Jacobi-Trudi case.
Namely, we have not assumed that the vertices in the n-tuples u and v are distinct, so the
set of paths does not necessarily determine the "associated" permutation. (As an extreme
case, we might have ul = U2 = " = Un and vi = v2 = ... = vn.) Also, we might have
ui = vj for some i, j and trivial paths with no edges connecting them. There is, however,
a simple way to avoid these complications. Let D' be the digraph obtained from D by
adding 2n new vertices, U ,..i , uu/... U, vl, vI,... , v/ and edges directed from u to ui and
from vi to vi . If we specialize the weights of the new edges to 1, then A(D', u', v') becomes
A(D, u, v). This is immediate since the paths in T(ui, vj) exactly correspond to those in
3(uý, vj). So we can (and will) assume that u consists of n distinct sources of valence 1 and

that v consists of n distinct sinks of valence 1.
Given a multiset of edges a which appears in (2.17), we can construct a digraph 5 as

follows. Start with the subdigraph of D induced by the edges in a. Replace each edge with
multiple (distinguishable) edges according to their multiplicity in a. Given the assumption
at the end of the previous paragraph and the fact that the edges of 5 can be partitioned
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into paths which start at some ui and end at some vj, it follows that each vertex of 5 either
has in-valence = out-valence or is one of the ui's or vj's. Of course, a contains all of the ui's
and vj's. Note that (i, u, v) is also a compatible triple, since removing or doubling edges
doesn't affect (2.14).

Arguments analogous to those in the Jacobi-Trudi case allow us to write

[A(D, u, v)] = E wt(a) () (), (2.18)

where M(a) is defined as in Section 2.1.1, and (5) is the sum of the permutations, ay,
induced by families Y of n paths in 5 which use each edge exactly once. Note that since
we have assumed D is finite, 5 is also finite.

Let us use the term special (for lack of a better word) to describe the finite compatible
triples (D, u, v) for which the vertices in u are distinct sources of valence 1, the vertices of
v are distinct sinks of valence 1, and the remaining vertices have in-valence = out-valence.
Note that all of these are actually obtained as 5's above.

Let us call a special compatible triple (D, u, v) reducible when (D) E Zn, can be
written as a sum, Z(Di), of two or more such things. Otherwise, we will say that (D, u, v)
is irreducible. Since the coefficient of each a in (D) is a nonnegative integer (and it's not
hard to see that at least one of them must be positive), it follows that for any special
compatible triple, (D) can be written as a sum E(Di), where each Di is irreducible.

Our main result in this section will be the following theorem.

Theorem 2.6.2 If (D, u, v) is an irreducible special compatible triple, then it is also a
skeleton.

We will prove Theorem 2.6.2 by showing that an embedding of D in the plane with
the properties given in Definition 2.1.1 can be constructed "one vertex at a time." In the
following two lemmas, we will show that the irreducibility of a special compatible triple
implies the existence of pairs of paths with a specified set of intersections.

Lemma 2.6.3 If (D, u, v) is an irreducible special compatible triple and w is an internal
vertex of D with out-valence > 1, then there are paths P1 and P2 in D which begin at the
sources and end at the sinks and intersect at w and only at w.

Proof: Let e be any edge which is directed into w, and let fl, f2,..., fk denote the complete
list of edges directed out of w. Each set of paths in D from the sources to the sinks which
use each edge exactly once (i.e. the sets of paths which contribute to (D)) contains exactly
one path which includes e and one of the fi's. If we combine the sets of paths in which the
same fi follows e, then these exactly correspond to the sets of paths for the digraph Di,
formed by adding a new vertex of in-valence=out-valence=l and letting e be directed into
and fi be directed out of this vertex instead of w. Di has the same sets and sources as D,
and the permutations associated with the corresponding sets of paths are exactly the same.
So we have

(D) = (Dl) + (D2 ) + + (Dk).
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Since (D, u, v) is irreducible and k > 1, it must be that at least one of the triples (Di, u, v)
is not a compatible triple. That implies that there are integers i < j, k > 1 and paths Q1
(from ui to vk) and Q2 (from uj to vj) which do not intersect in Di (so that they violate
(2.14)). The corresponding paths, P1 and P2 , in D must intersect, and the only changes
have occurred at w, so they intersect only at w. O

Lemma 2.6.4 If (D, u, v) is an irreducible special compatible triple and wl, w2 are distinct
internal vertices of D with in-valence = out-valence > 1, then there are sinks vi, vj and paths
P1 from wl to vi and P2 from w2 to vj which do not intersect. There are also nonintersecting
paths from the sources to w 1, w2.

Proof: Suppose (D, u, v), and wl, w2 are as in the statement, but every path from wl to
a sink intersects every path from w2 to a sink. First note that a trivial consequence of
Lemma 2.6.3 is that there is a path, P from wl to a sink which does not contain w2 (i.e.
w2 cannot lie in both of the paths).

Let Q1 and Q2 be paths from w2 to the sinks which intersect only at w2, which exist by
applying Lemma 2.6.3 to w2 (and taking the portions of the paths from w2 to the sinks).
By our supposition, P must intersect both of these. Let w0o be the first vertex on P which
appears in either of the Qi's, say it appears in Q1. Since w2 is not contained in P, w2 : WO.*
It follows that the portion of P between wl and wo does not intersect Q2. Also, the portion
of Qi from wo to a sink does not intersect Q2. Concatenating these portions, we obtain a
path from w1 to a sink which does not intersect Q2. This contradicts our assumption. The
statement about the sources can be proven with an analogous argument or by noting that
(Dop, v, u) is also an irreducible special compatible triple. O

Proof of Theorem 2.6.2: Let (D, u = (ul, ... , u.), v = (vi, ... , v,)) be an irreducible
special compatible triple. We wish to prove that it is also a skeleton. We can assume
without loss of generality that D has no vertices with in-valence = out-valence = 1.

Let xl < X2 be real numbers. We will construct an embedding of D into the region of
the plane between the vertical lines x = xl and x = x2 in a sequence of steps.

Suppose that at some stage of the construction we have a sequence of distinct edges
el, e2, ... , en of D, and another digraph D' formed by adding an n-tuple of (distinct) vertices
v' = (v',... , v') with in-valence = out-valence =1 and replacing ej with two edges forming
a path eev i ýe'. Furthermore, assume that the subgraph, S, of D' obtained by taking the
edges lying in paths from u to v' is a skeleton (whose ordered sets of sources and sinks are
u and v'), and that we have an embedding of S between the lines x = xl and x = x2 as in
Definition 2.1.1.

We can visualize this situation as a drawing of D in the plane with ul,..., u, on the
line x = xl with increasing y-coordinates, the portion of D drawn in between the lines is
planar with all edges moving strictly left to right, the edges el,..., e, cross the line x = X2
(at points with increasing y-coordinates), and the rest of D is drawn to the right of x = x2
with no assumptions there. Clearly, we can start such a construction by taking the edges
incident to the sources.
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The internal vertices of D which do not appear is S are partially ordered by wl < w2 if
there is a path from wl to w2. If wo is a minimal element in this ordering, then all of the
edges directed into wo are in the list el,..., e,. If the indices of the edges directed into wo
are an interval, [i, j], then clearly we can "pull" wo across the line x = x2 , and get another
stage in which the edges directed out of wo replace the edges directed into wo in our list,
and S is replaced by a skeleton isomorphic to the product s[;,j]S (i.e. s[i,j] to the right of
S).

Now we claim that given wo as above, we can modify the current stage of our construction
so that the edges into wo do form an interval. Note that if two edges ei and ej in our list
above share a tail (i.e. are both directed out of the same vertex), then we can exchange
their positions in the list while preserving S and its embedding, i.e. if eý' is directed into wi
and e' is directed into wj, then replace these by edges directed from vi to wj and from v'
to wi, while preserving the "left halves" e' and e'.

The only obstacle that can get in the way of using these exchanges to make the edges
into wo an interval is if there are edges ei, ei 2,, ei3 such that i1 < i2 < i3 , el, and ei, are
directed into wo, ei2 is directed into some other vertex wl, and the tail of ei2 is different
from the tails of ei, and ei2 . We claim that this is a contradiction. By Lemma 2.6.4, there
are non-intersecting paths Po, from wo to some vk, and P1 , from w1 to some vy. If k > 1,
use Lemma 2.6.4 again to get non-intersecting paths Qo, from some vi to the tail of ei,
and Q1, from some vj to the tail of ei2. Since S is a skeleton, it follows that i < j. The
concatenations Qoei2 Po and Qlei2 P1 are a non-intersecting pair of paths whose existence
contradicts (2.14). If k < 1, a similar contradiction can be found using ej2 and es.

In this manner, we can get a sequence of stages in which the "skeleton part," S, gains
an internal vertex between consecutive stages. Since D is finite, eventually we get a stage
in which there are no more internal vertices to add to S. Now we claim that at this stage,
the sequence of edges el,...,e, can be reordered via the method described above so that
the ith edge is directed into the sink vi (if this is the case, then clearly we can deform the
embedding so that the vi's lie on x = x2 with increasing y-coordinates). The argument for
this is the same as the one in the previous paragraph, replacing wo and wl by sinks and
forgetting about Po and Pi. O

We can combine Theorem 2.6.2 with Greene's result that irreducible characters are
nonnegative on skeletons (Theorem 2.1.3) to obtain the following.

Corollary 2.6.5 If (D, u, v) is a (finite) compatible triple and XA is an irreducible char-
acter of ~,, then xA[A(D, u, v)] is monomial positive.

2.6.6 Remark: The assumption that D is finite can be relaxed somewhat. All that we
actually need is that the W's constructed above are finite.

Technically speaking, Jacobi-Trudi matrices are not actually a special case of Stem-
bridge's definition, but rather a limit of such things, since the "vertices" (Q1, ... , OQ) are
limits of infinite paths rather than vertices of the digraph. Clearly, the results here can be
applied to any situation which can be viewed as a similar limit of finite cases.



Chapter 3

Signed and Voltage Graphs

3.1 Signed and Voltage Graphs

In this section, we will briefly cover the definition of a voltage graph and the generalizations
of Zaslavsky's chromatic polynomials to this situation, as outlined by Zaslavsky in [54].

If F is a graph, we will assume that directions are assigned to the edges in some arbitrary
fashion, and that e- 1 denotes e with the direction reversed. Let G be a finite group.

A voltage graph (with group G) is a pair 4 = (F, o) where F is a graph and W (the
voltage) is a map E(F) - G. By convention ýp(e - 1 ) = c(e)- .

If G = Z/2Z, then 4 is called a signed graph, and following Zaslavsky's notation, we will
usually denote these by E.

We will consider colorings , : V -+ (P x G) U {0}. A coloring is called proper when for
each edge e from v to w, n(w) : K(v)W(e). (The zero color is fixed by G; Og = 0.) Colorings
whose image lie in P x G are called zero-free.

Zaslavsky's chromatic polynomials for voltage graphs also come in unbalanced and bal-
anced (zero-free) versions:

xA(n|GI + 1) = number of proper colorings using ([n] x G) U {0} (3.1)

x (nIGI) = number of proper colorings using [n] x G. (3.2)

In [54], Zaslavsky notes that most of the algebraic properties of the chromatic polyno-
mials of signed graphs extend to the case of voltage graphs, but that there is no orientation
theory for voltage graphs in general.

Likewise, many of our constructions here can be carried out for voltage graphs, and we
will begin by considering this level of generality. In Section 3.4 we will restrict ourselves to
signed graphs and concentrate on results which are related to the corresponding hyperplane
arrangements.
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3.2 Chromatic Functions for Signed and Voltage Graphs

Given a coloring r, : V -+ (F x G) U {0}, let us write xn = ,I x,(,). Then the direct
analogues of Stanley's definition (1.15) for voltage graphs would be:

X =-• x, X b = Zx (3.3)

where the sums run over all proper colorings and zero-free proper colorings, respectively.
These are formal series in variables x(j,g), with j E P,g E G, together with x0o in the
unbalanced case. When G = Z/2Z, we will write xmj for x(jli). In general, let us write

I(j,g)- = j and zx(j,g9) = zj. Also, if F is any formal series in the variables x(j,g) and x0 ,
write IF! for the image obtained by replacing each x(j,,) with xj.

It is obvious from the definitions that IX~I e Q[xo] 0 Sym and JX|b  e Sym, i.e. per-
mutations of P do not affect which colorings are proper. These functions have some nice
properties which are not shared by X,, X b. For example, they are unaffected by switching

(see (3.7)).

3.2.1 The spaces where Xt, X4 live.

Let G be a finite group and consider the set of formal series with rational coefficients in
the variables {x(j,g) j E P,g E G} for which setting z(j,) = 0, j > N yields a polynomial.
These are acted on by permutations of P and, for each i E P, there is an action of G by left
multiplication on {xz(,g) I g E G}. Let us denote by G-Sym the set of those series which are
invariant under all of these actions, or equivalently, under the appropriate actions of the
wreath products G 1 6,.

Since K(w) : K(v)cp(e) if and only if grc(w) : grc(v)o(e) for all g E G (and these
equations are also not affected by the "P part" of the coloring), Xu e Q[xo] 0 G-Sym and
X4 E G-Sym.

If G = {1}, then G-Sym can be identified with Sym in the obvious way. When G = Z/2Z,
let us denote G-Sym by HSym. We will spend the rest of this section describing some bases
of G-Sym.

Let P(G) denote the set of polynomials with rational coefficients in the variables {xg 9 g
G} which are invariant under the action of G by left multiplication (on the indices). In
particular, P({1}) = Q[xl] and P(Z/2Z) = Sym(x+l, x_ 1).

Let us fix an ordering of the elements of G, say G = {gl, 9 2, ... ,glGI}. There is a
spanning set for P(G) indexed by ordered IGI-tuples of nonnegative integers,

= E a) -X a2 ...X ajGj (3.4)
f(a,...aGI) 91) (9 92 ) (991GI)

gEG

G acts on the JGI-tuples in the obvious way, and the polynomials given by (3.4) only depend
on the G-orbit of the IGI-tuple. So, a basis for P(G) can be obtained by taking one of the
expressions above from each orbit.
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In particular, f(1,o,... ,) = EgEG Xg spans the degree 1 elements of P(G). Let us call this
el(G).

If {f }laEI is any homogeneous basis of P(G), then G-Sym has bases indexed by multisets
of elements of I. One such basis, an analogue of the augmented monomial basis of Sym, is
given by

fitf12,fk} = l (jl) f2(2) " " fk (jk),
(ji 2,... Jk) distinct

where f(j) denotes the image of f under the map induced by zg ý x(j,g), and the sum is
over k-tuples of distinct positive integers.

Let us write { fi',..., fkCk } to denote the multiset with fi appearing cl times, etc. When
we use this notation, it is implied that fi,..., fk are distinct. Since P(G) is an algebra,
this notation is ambiguous. We will write (fm ) when we want the m-th power of f to be
an element of the multiset.

An analogue of the monomial basis is given by

1
mffr1.•k C1C2!" "Ck f,...,fk.
r{I.fck}= k .l {...

To see that the "m-basis" and "iii-basis" are actually bases of G-Sym, first note that
the span of these is independent of which homogeneous basis of P(G) we use. So assume
that we are using the expressions given in (3.4). In this case, if we fix a monomial in the
variables x(j,g) with a nonzero coefficient in mCfl-.Ck }, then mr{l...,fk and {fi 1fC1... rk

are constant multiples of the sum of all the monomials that can be obtained by acting on
the fixed monomial by G and permutations of P. It follows that these span G-Sym, and
that their expansions in monomials have disjoint support. So they give a basis of G-Sym.

Let Pf = m{1) = ffi {}. Then an analogue of the power sum basis is given by

P1{•,1•,...,k) = Pfl~2 ·P• k . (3.5)

Since

mffm(if2}".. m{ik} = n{i1 ,1 2,...,fk} + (monomials with fewer than k distinct P indices),

it follows that the expressions in (3.5) also give a basis of G-Sym.

If P(G) happens to be a polynomial algebra with a set of generators {bl, b2,...} (with
each bi a homogeneous polynomial in the x,'s), then G-Sym is a polynomial algebra on the
set of m's with multisets of elements from {bl, b2, ... }

To see this, first note that G-Sym is a polynomial algebra on the set

{pf = m(f) I f is a monomial in the bi's}, (3.6)

since the monomials in the bi's give a homogeneous basis of P(G). If ql, q2 E P(G), it's
easy to check that

mn{(qlq 2 ), = m(i{q 1),{q 2} - r1{q,,q 2}.



CHAPTER 3. SIGNED AND VOLTAGE GRAPHS

It follows that each pf in (3.6) is a polynomial in the fii's whose multisets consist of bi's.
And so every element of G-Sym is a polynomial in the set of m's with multisets of elements
from {bl, b2,... }. The algebraic independence of these follows from the fact that there are
the same number of these in each degree as the pf's considered above.

The bases of G-Sym obtained in this way can be thought of as analogues of the elemen-
tary basis, since when G = {1}, P(G) is a polynomial algebra in el(G) = xl, and

m{ei(G)k} = m{e1(G),...,el(G)} = ek.

More generally, we can embed Sym into G-Sym via ek + m{el(G)k} (even if P(G) is not
a polynomial algebra). This is just the map induced by Xj '-4 EgEG X(j,g). It is not hard to
see that, under this map,

|IX I 8 XO,, (3.7)
v:V-4G

where "V denotes the voltage graph with voltage p"(e) = v(v)-lp(e)v(w) if e is an edge
directed from v to w. In Zaslavsky's terminology, o is said to be switched by v (see [53]).

More about the HSym case

The constructions above depend on choosing bases of P(G). Since

P(Z/2Z) = Sym(xz+, x-1),

there are several obvious choices of basis.
It seems that for our purposes, the best analogues of the monomial and power sum bases

are obtained by taking {fa}aeI to be the augmented monomial basis of Sym(x+l, _l1),
indexed by partitions with one or two parts, which can be viewed as unordered pairs {a, b}

of nonnegative integers, with a + b > 0:

ab ba
m{a,b} = z+1 -1 • 2+1 2-1

Let us simplify notation by writing P{a,b} for P {a,b}, and similarly for the monomial

analogues. Note that

Ifl{{ai,bi},... ,{ak,bk}}I = 2k ii((al+bl),...,(ak+bk)) (3.8)

and IP{a,b}I = 2 p(a+b). (3.9)

If we view Sym(x+l, x- 1) as a polynomial algebra in el, e2, then HSym is a polynomial

algebra in

C(a,b) = m{ea,eb•}

1 (Xa!b( + ) ... (xi + x-i.)(x, x_ ) .. (Xb Xjb), (3.10)
(il,---,ia,jl . ,, b) distinct
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where (a, b) is an ordered pair of nonnegative integers with a+b > 0. The basis consisting of
products of these has the nice property that if F is an ordinary graph, then Xb is positive
in this basis if and only if Xr is e-positive. In fact, X r is the image of Xr under the map
induced by ek -+ Ea+2b=k e(a,b)*

Unfortunately, unlike in the unsigned case, the sum of the coefficients in this basis can
be negative.

Analogues of the Quasi-symmetric Functions

In order to state the reciprocity results for X', we will need an appropriate analog of QSym.
Most of the results in this section can be generalized to an arbitrary group, but we will only
need to consider the Z/2Z case.

Let HQSym denote the span of

9 ((a1 ,bi),(a 2 ,b2),...,(ak,bk)) Z= 1 bs l k bk (3
O<il <i <...<ik

Here aj, bj are nonnegative integers with aj + bj > 0, and ij E P. These expressions are
obviously linearly independent. Now, t~{{al,bl},... ,{ak,bk}} is the sum of the OJ1's over the 2kk!
ways to order the set of pairs and the elements of each pair, so HSym C HQSym.

Let HQSymd denote the subspace of HQSym consisting of homogeneous functions of
degree d. There is a spanning set for HQSymd, given by

3S,(f, ... 96) = E -.. al " Xdad, (3.12)
O<al •a2:'.. ad

ai<ai+1 if iES

where S C [d - 1] and E E {f±1}. These are not independent, but they will, nevertheless,
serve as analogues of the fundamental quasi-symmetric basis.

Let Q(Z/2Z)d denote the group algebra of (Z/2Z)d. (We actually only need to consider
the linear structure of Q(Z/2Z)d.) We will denote the basis elements of Q(Z/2Z)d by c =
(E1,..., Ed). There is an obvious surjection

0 : QSymd OQ(/2Z)d -+ HQSymd,
given by : Qs 0 (El, ... , Ed) 4 LS,(,...,ed)

If S = {il < i2 < ... < ik-1 } C [d - 1], then

0 : M S,d 0 (l, -.. , Ed) F-+ 
9M ((al,bl),(a2 ,b2 ),...,(ak,bk)),

where a, + bi = ii, a2 + b2 = i2 - il, and so on, and

aj = the number of +1's in Ei_+,+1 , ... i
bj = the number of -l's in Eij_,+1, ... , Ei

(with the conventions io = 0, ik = d). It follows that the kernel of 0 is spanned by the
differences Ms 0 c - Ms 0 ~', where c' is obtained from c by permutations within the
subsequences Eij_,•1,... , Eij.
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Lemma 3.2.1 The involution given by 7(Os,(e1,... ,ed)) = J[d-1]-S,(l,... ,7d) is well-defined
on HQSym.

Proof: The lemma amounts to showing that the involution w 0 1 on QSymd ®Q(Z/2Z)d
preserves the kernel of 0. By (1.9), we have

w 1 : Ms 0 e = (-1)d-l( -1)ISI MT 0E.
TCS

Consider the subsequences of E to which permutations can be applied to generate the kernel.
If T C S, then the subsequences for T contain the subsequences for S. So the permutations
which can be applied for S can also be applied for each T appearing on the right hand side,
and the result follows. O

Note that the £s,(+1,...,+1) form the basis of a subspace which we can identify with
QSym, and y = w there.

We will also need to work with Q[zo] 0 HQSym. Its homogeneous component of degree
d is spanned by either of the sets

s,(e,....d) = dad (3.13)
O<_al <a2z<_'<ad

ai<ai+i if iES, 0O<ai if OES

S2 ....... 11 da d (3.14)
ai<ai+l if iES, O<al if OES
ai=ai+l if i0S, O=al if OOS

where S C [0, d- 1] = {0, 1,... ,d - 1}. Clearly, £s,, = ZTDS XT,.-
If S = {il, i2,... , ik-1} C [0, d - 1], then S defines a deconcatenation of El,... ,Ed into

subsequences in a similar manner to what was considered above:

El,... ,Ei,il+1,... ,Ei2,... ,Eik-1+ ... ,Ed, if il > 0, (3.15)

El,... ,Ei2 ,... , Eik-1 +l,''' ,Ed, if il = 0. (3.16)

The relations satisfied by the a9ts,,'s are generated by permutations of the elements of
each of the subsequences above and arbitrary changes of the elements in the first sequence
in (3.15). The reason for the arbitrary changes there are that this sequence gives the factor

of zX' 0 • .XZilo = X0 .
Replacing S by a subset (equivalently, joining consecutive subsequences) is well-defined

modulo these relations, so the argument in Lemma 3.2.1 generalizes to give the following
result.

Lemma 3.2.2 The involution given by /()s,(,..,ed)) = 7,(e,...,Ed) is well-defined on

Q[zo] 0 HQSym. (Where S = {0, 1,..., d - 11 - S.)
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3.3 Expansions
In this section, we will consider various "expansions" of X' and X b , and the versions,

xb , obtained by "forgetting" the "G" part of the indices of the variables.
The following straightforward result shows that the unbalanced chromatic functions can

be expressed in terms of the balanced ones. This directly generalizes the balanced expansion
formula of Zaslavsky [55, Thm 1.1].

Proposition 3.3.1

WCV
WC stable

where a stable subset of the vertices is a subset in which none of the vertices are connected
by edges.

Proof: This follows (trivially) from observing that the vertices colored zero cannot be con-
nected by any edges (of any voltage). O

For an ordinary graph F, and any group G, F can be viewed as a voltage graph, +F, by
assigning a voltage of 1 to each edge. In this case, the proper colorings just need to assign
different colors to adjacent vertices, so Xb r is just the image of Xr under the isomorphism
between Sym and Sym({x(j,,) I i E P,g E G}). The following proposition follows from the
interpretation of Tk discussed at the beginning of Section 1.3.

Proposition 3.3.2

There are expansions of Xu and X b in terms of the analogues of the power sum and
monomial bases which are fairly straightforward generalizations of the corresponding results
for ordinary graphs, although there are some complications.

Let fA = xC " where the sum runs over all maps : V -+ G such that G(w) # n(v)<p(e)
if e is an edge from v to w. Equivalently, take the image of Xu under xj,9, -+ J l,1X9. Then
clearly fo is an element of P(G).

The following proposition can be viewed as an analogue of the monomial expansion of
Xr mentioned as Proposition 1 in the Introduction.

Proposition 3.3.3

7rEn(V)

where the sum runs over all partitions rr = {rl,... , rk} of the vertices, and f, is f'l ,ri, as
defined above.
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Proof: Given a proper, zero-free coloring K : V -+ P x G, let 7r be the partition of the
vertices whose blocks are the sets on which I"] is constant (where I(j,g) = j). It's clear
that the "G" part of the restriction of a to each block ri is a coloring enumerated by f,, and
conversely, any such colorings on each block, along with an assignment of distinct elements
of P to each block, will define a proper coloring K. But it follows directly from the definition
that these are enumerated by iifi{, ... k. O

Although the expansion in Proposition 3.3.3 is not given in terms of a basis, the expres-
sions mi1,,...,1k} are linear in each entry fi, so it's fairly easy to get an expansion in a basis
if there is some natural basis of P(G) in which the f• 's can be expanded. For example, the
following expansion for signed graphs is just an unraveling of the definitions.

Corollary 3.3.4

XE = Z ff{IA|I,IBl},...,{IAkIIBkI
{{AI,B)},...,{Ak,Bsk)

where the sum runs over collections which satisfy the following conditions: (i) the sets (of
vertices) A1 ,... , Ak, B 1, .. , Bk are pairwise disjoint and their union is V, (ii) each union
Ai U Bi is nonempty, (iii) any edges between two vertices in the same Ai (or Bi) must have
a negative sign, and (iv) any edges between elements of Ai and Bi must have a positive sign.

In order to state analogues of the power sum expansions of Xr, we will first need to
consider a few definitions.

Voltages can be assigned to walks in F by taking products. Similarly, a circuit has a
well-defined voltage up to conjugation. A set of edges S C E is called balanced if every
circuit in S has voltage 1.

We will denote the poset of balanced flats of 4 by pb. This can be viewed as the set of
the balanced subsets S of the edges such that for any edge e which is not in S, e does not
lie in a balanced circuit of S U {e}. Note that for an ordinary graph F (i.e. G = {1}), Pr
can be identified with the bond lattice of F.

If K : V -+ (P x G) is any (zero-free) coloring, then let I(n) denote the set of edges
for which K(w) = r(v)ýp(e), and call this the set of impropriety of K. One of Zaslavsky's
fundamental results is the following.

Lemma 3.3.5 ([54]) If . : V -+ (P x G) is any (zero-free) coloring, then the set of impro-
priety, I(K), is a balanced flat of F.

Zaslavsky uses this result to give the following "algebraic" definitions of the balanced
chromatic polynomial.

Theorem 3.3.6 ([54]) IfS C E, let c(S) denote the number of connected components of
the spanning subgraph of F (the graph underlying 4) with edge set S. Then

Xb(t)= (- 1)lSltc(S) = (,S)t c( S),

SCE SCPb
balanced
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where IL is the M6bius function of P1.

If S is any balanced set of edges, we can obtain all of the zero-free colorings of 4 whose
set of impropriety contains S as follows. For each component of the spanning subgraph of
F (the graph underlying D), choose a vertex v and color this with some arbitrary (j, g). If
an edge e of S goes from v to w, then color w with n(v)q(e) (this is necessary for e to be
an improper edge). Continuing in this manner, all the vertices can be assigned colors. The
importance behind S being balanced is that the color we assign to a vertex is independent of
the path we take to reach it (all paths from v to w using edges in S have the same voltage).

For each component, the other colorings are obtained by choosing a different j and g.
Choosing a different g amounts to multiplying the color of each vertex in this component by
some h E G (on the left). So for each component, the sum of the monomials corresponding
to these colorings is of the form pf = m{fI where f is one of the basis elements of P(G)
defined in (3.4). If we let F(S) denote the multiset consisting of the basis elements for
each component, then the standard M6bius inversion argument implies that we have the
following expansions in terms of our analogue of the power sum basis.

Theorem 3.3.7

X = (-1)slPF(s) = 4(0,S)pF(S)
SCE(O) SEPb

S is balanced

We can obtain slightly more elegant and explicit results by "forgetting" about the "G"
part of the colorings. These results can be viewed as analogues of Theorems 1.2.2 and 1.2.1.

Corollary 3.3.8

IXI = (-1)sllGl(S)px(s) = z ,I(O,S)jGl`(S)p.(s),
SCE(0) SEPb

S is balanced

where A(S) denotes the partition whose parts are the vertex sizes of the components of the
spanning subgraph with edge set S, and c(S) is the number of components.

3.4 X,, X in terms of Hyperplane Arrangements

In this section, we will describe the expansions of the chromatic functions for signed graphs
in terms of the analogues of the elementary symmetric functions and fundamental quasi-
symmetric functions. These expansions reflect properties of the hyperplane arrangement
associated with E. For an ordinary graph, F, we will show that information about various
hyperplane arrangements associated with r can be obtained from Xr.

As we mentioned in the introduction, Zaslavsky [52] interprets signed graph colorings in
terms of certain hyperplane arrangements. Assume that E is a signed graph on d vertices,
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Figure 3.1: The hyperplanes BL.

labelled by [d]. Then E is associated with an arrangement in Rd by including the hyperplane
xi = Exj if there is an edge (i, j) with sign E. The set of these hyperplanes will be denoted
by H[E]. It follows immediately from the definitions that proper colorings of E exactly
correspond to those points in Rd which have integer coordinates and lie in the complement
of H[[E].

With this definition, positive loops correspond to the whole space (xi = xi), which is
considered to be a "degenerate hyperplane" in Zaslavsky's treatment. In our considerations
here, we can just assume that E has no positive loops (otherwise, there are no proper
colorings).

Negative loops correspond to the coordinate hyperplanes. It is sometimes useful to
consider the result of adding these to some arrangement, so following Zaslavsky, we will
denote by Eo the signed graph obtained from E by adding a negative loop at each vertex.

Let B* denote the set of hyperplanes dual to the elements of the root system, Bd, of the
hyperoctahedral group, 93d. Then H[E] is a subarrangement of B*, and every subarrange-
ment can obtained in this way. The hyperplane arrangement B* is shown in Figure 3.1.

Let A*_ 1 denote the set of hyperplanes of the form xi = xj, (i : j). These correspond
to positive edges which are not loops, and the duals of these in Bd can be identified with
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the root system of 5d. Ordinary graphs can be viewed as signed graphs (with a sign of +1
for each edge). These then correspond to subarrangements of A__1 . Note that in this case,
the regions into which Rd is divided by the hyperplanes exactly correspond to the regions
into which the first orthant is divided.

If r = (K1, K2, . , Kd) E Zd C Rd, let X = XnzK 2 .. d. Denote the lattice points in
the complement of the hyperplane arrangement H[E] by H[E]c. Then it is immediate from
Zaslavsky's definition of H[E] that

XU= - u.

-EH[E]C

We could take this as the definition of X'. This definition has also been suggested by
Bruce Sagan (personal communication) as a hyperoctahedral analogue of Stanley's chro-
matic symmetric function. Blass and Sagan [4] use the lattice points in H[E]c to prove some
results concerning the chromatic polynomials Xu and some generalizations to subspace ar-
rangements and other Weyl hyperplane arrangements.

We can identify the elements of the hyperoctahedral group, ýBd, with "signed permu-
tations," a = (EO'l, C20 2 , ... ,7 Edd), (o E ed, ci E {+1}). We can then identify these
signed permutations with points in Zd C Rd. Note that there is exactly one such point in
the interior of each Weyl chamber. We will employ the convention of multiplying elements
of 9d as follows:

((1(7I1 . O'd) (El 0l 1 , - (E E,/ ) (dEaElo (0d
( ,...,... ,Ed d) I I ),...

The usual definition of the descent set of an element of 93d is

D(a) = {i E {0,1,...,d- 1} Eiai > q+iali+i, or (i= 0 and 0 > caii)}.

We now have the terminology to state the following generalization of equation (1.18):

Theorem 3.4.1 If R is a region of H[E] and a is a signed permutation contained in -R,
then

ZX K d)
KER P3E•dnR

where ei = sign(Pl ), and ap- 1 denotes the usual group operations in 9d.

Proof: Fix a signed permutation a = (8• a1 ,..., Sdad) E Edfn(-R), and let a = (i, -.. , Kd)

be a lattice point in the interior of R. Define ri by

7(fsign(Ki) if ri 0 0
i if = (3.17)

bi if sq = 0
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There is a unique permutation r E Ed satisfying the following:

S1 (3.18)Iril = Irjl and rlqiai < rljjaj ==* ri- - < 7-31

Let i = P() = (r 1',..., rdd -1). With the conventions described above,

-1 = (T ri, .... , hrd•d) and a#-1 = (i 1 S 1 oI . . . , -rTda ld).

Let e = rTi, and consider the d-tuples (irnal,..., Th-dad) satisfying

ai < ai+l,

ai < ai+l, if 7,ri.ria,Oi > •rhi+1Ti+l,,1,+l (3.19)

0 < a1, if 0 > r7,l 6, a,,.

Note that the sum of the monomials corresponding to these is £D(ap-1),(l 1,... ,~a)*

Choose such a d-tuple and let n• = 77ia,-l. Note that this just permutes the coordinates

of the d-tuple. Now we want to claim that, for each K' obtained in this way, P(nK) = P and
that each E' is an point in the interior of R. The theorem follows from these claims. ( 3 is
the K' obtained when ai = i.)

First consider the construction of f(n'). If rn : 0, then clearly sign(,ý) = 7ri. If rK = 0,
then a-1 = 0, so 0 = al = "." = a,-. It follows from the conditions on the ai's that

0 < 77?116rT 1o < ... < 77•,ai,. (3.20)

In particular, ri = 6i. If I|W < I 1, then 7-1 < rj-1, since the sequence a, ... , ad is weakly
increasing. Finally, if |I1 = Ijr1 then the equality a,-i = a,-1 implies that there must be a

sequence of ascents between the r7i-th and 7 -1th positions of ap-', so that if 7-- < -1,

a 3 >71r 1 (+1)8T(r1+1) (r 71+1)

It follows that 7r is the unique permutation satisfying (3.18) for K'. The 77i and r corre-
sponding to r' are the same as those for K, and so P(~') = P(r).

Now we will verify that each r' obtained above lies in the interior of R. We know that

-O = (-6 1al1,...,-- dad) and n = (i771r11, .-- ,l7dlrdi

are in the interior of R. We will also need the fact that R is an intersection of half-spaces
coming from hyperplanes in B).

Consider the following three sequences.

0 < 1<11 < I1 • ... • I•KI
0 I I • 2 <_2  . _< IK'I

0 77Tni1 8T1 2
6 42 aT2 .. . 77 Td Urd
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For every equality which occurs in one of the upper two sequences there is an ascent at the
corresponding position in the lower sequence. For K, this follows from the definitions of qi
and r, and for K', it follows from the definition (3.19) (since K' = ai).

Any half-space coming from a hyperplane in B* can be defined using an inequality in
one of the forms:

s ix, < 82 xrj (3.21)

or 0 < s2xj, (3.22)

where i < j and sl ,s 2 E {+l}.
Consider an inequality of the form (3.21) which is satisfied by K and -a. Then we have

51?h, IK1,I < 52771 I I.j. (3.23)

It follows that s277, = +1 (using the fact that KrI is an increasing sequence).
Case 1: s1y., = +1. Then (3.23) says that IKr, < IK|1, and K' satisfies (3.21) if and

only if the same is true for K'. If IK|,I = rK' I, then it follows that T ,6,a, < q•mT-j.,.o. But
then -silS1 ao, > -s2sj o'j (since s1q• = +1 and s277T, = +1), so that -a does not satisfy
(3.21).

Case 2: s77T = -1. Then (3.23) simply says that IK I > 0, and n' satisfies (3.21) if and
only if the same is the same rue for . If = 0, then

0 < r1•T~,a 1( < 77 2£, 2oa 2 < ... < .j 6S . (3.24)

In particular, qr, = 6 , and , = JeS. So, -si~ aU = arr, and -s2 6 a, = -ao,. This
contradicts the assumption that -a satisfies (3.21), i.e. -sl 6ra < -s26&r 7r.

Finally, we need to consider half-spaces defined by inequalities of the form (3.22). r,
can satisfy this only if s2r'q = +1. And so it follows that n' satisfies (3.22) if and only if

I4 I > 0. If 4' = 0, then we have (3.24) (as above). Again, we have that qrj = 6~, and it
follows that -s26JTo, < 0 which contradicts the assumption that -a satisfies (3.22). O

As mentioned in section 3.2.1, these b's are not linearly independent, and the terms
appearing in Theorem 3.4.1 do depend on the choice of a.

The pairs (R, K) where K is a lattice point in the closure of R correspond exactly to
what Zaslavsky [54] calls compatible pairs of acyclic orientations and colorings. Stanley's
reciprocity result (Theorem 1.2.4) generalizes to the present context in a particularly nice
way:

Theorem 3.4.2 If R is a region of H[E] and a is a signed permutation contained in -R,
then

nEclosure(R) OE93dnR
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where Ei = sign (P -1), and S = [0, d - 1] - S, or equivalently,

(R,n)

where the sum runs over pairs of regions R in H[E] and lattice points r. in the closure of
R, and ý denotes the involution defined in Lemma 3.2.2.

Proof: Clearly the second part follows from the first and Theorem 3.4.1.
The proof of the first statement is very similar to the proof of Theorem 3.4.1. Fix a

signed permutation a = (S6al, ... , dUd) E 93d n (-R), and let K = (rl, " , , d) be a lattice
point in the closure of R.

P = P(K) = (r1lr-l, ... , 47dTd 1) is defined as follows. Let rj be given by

fsign (ri) if 0 (3.25)

-Si if K1i = 0,

and let r E 6d be the unique permutation satisfying:

IKiI < IKj I=• ~-l < -,1-
(3.26)

jK;I = IKj and qicjiai > 7jjaj ==* "-1' < (",.

And, of course, in this case, we will consider the d-tuples (qriai,..., 7rdad) satisfying

ai _ ai+l,,

ai < ai+l, if rlririai < ?,+jia6i+IrOTiO+

0 < al, if 0 < rri64 1 a71r

The sum of the monomials corresponding to these is D(•_I),•1,.) , where ei = rq =

sign(P-1), as before. As in Theorem 3.4.1, we will consider the points rn = r7ia -1.

The proof that #(s') = Pf(s) is entirely analogous to the argument in the previous
theorem. We will omit the details.

In this case, when we consider the sequences

o < IK ri, • IKrIl _• ... _ I<i0 < IK',l • I%1 <_ ... <_ I'Td

0 r1 ST71 -1  •- •-2 a•T2  ... rd-,d-d I•-,

we see that each equality in one of the upper two sequences corresponds to a descent at
the corresponding position in the lower sequence.

Suppose we have an inequality
slx, <_ S2XqT
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defining a closed half-space containing R, with i < j and sl, s2 E {+1}, which is satisfied
by r and -a, but not by n'. Then we have, more explicitly,

S1hn K77rI 8s2ljr3 1K I (3.27)
-s-81•TiTi • -- 82 rOr•-, (3.28)

si8,' I Kr > S2qTjIKrI. (3.29)

It follows from (3.29) (and the fact that ai _ ai+l) that (sir7,, S2r77,) must be (+1, -1)
or (-1,-1).

Case 1: (s8i,s 82rj) = (-1,-1). Then, together, (3.27) and I|n,I IKj•j) imply that

I n[ = I rjI. It follows that yrlS ,a > r~ 6 a, ,,, and hence that -s81iT,a, > --82rjUTj
which directly contradicts (3.28).

Case 2: (slTy,,s2T9T) = (+1, -1). Then (3.27) implies that IKj, = 0. It follows that

0 > ,rl.,rl 4 1 1 > r72 8T2 0T2 > ... > 'qrj "rjarj.

In particular, 0 > si8,a,, > -s22'aw2, which says that the left side of (3.28) is positive
while the right side is negative.

The half-spaces 0 < sx.r can be handled similarly. O

It seems that the best way to give a hyperplane interpretation and generalization of
Stanley's result about sink(F, j) (Theorem 1.2.3 above) involves adding the coordinate hy-
perplanes, i.e. looking at H[EO]. This is because, for an ordinary graph, we can determine
the number of sinks of an acyclic orientation by looking at the intersection of the correspond-
ing region with the first orthant and counting the number of faces which lie in coordinate
hyperplanes.

We can also include some information about which orthant a given region lies in. Namely,
if R is a region of H[E*], let neg(R) be the number of negative coordinates in an interior point
of R and let sink(R) denote the number of faces of R which lie in coordinate hyperplanes.

Let V; be given by

if S= {i+1,i+2,...,d-1}
': s,(e,..., a) l ' and j of the Ei's are -1, (3.30)

0, otherwise.

Lemma 3.4.3 0 is a well-defined algebra map on HQSym.

Proof: A trivial consequence of our computation of the quotient of the kernel of 0 (see p.85)
is that any map defined on QSym d ®Q(Z/2Z)d which is invariant under all permutations of
the (E1,... ,Ed) part passes to a well-defined map on the quotient, HQSym.

The fact that 0 is an algebra map follows from the fact that Stanley's p (defined in
(1.19)) is an algebra map, and the fact that x+j i-+ 1, x_j '-+ s (for j E P) defines an algebra
map on HQSym. O



CHAPTER 3. SIGNED AND VOLTAGE GRAPHS

Since we are considering H[E°], the interior of a given region, R, is contained within a
single orthant. By reflecting the region in various coordinate planes, we can "move" it into
the first quadrant, to get a region R' there. An expansion in Ols,,'s for the enumerator of
the points in the interior of R can be obtained from the expansion of the enumerator of
R' in QSym by attaching an appropriate E to each term. In particular, the following result
actually follows from the proof of Theorem 1.2.3.

Proposition 3.4.4
((XI) = ¢(Xo) = Sneg(R)tsink(R)

where the sum runs over the regions for H[EO].

It follows from the remarks made in Section 3.2.1 and a straightforward calculation that

1 : ((al,bl),(a2,b2),...,(ak,bk)) 
•' (_l)d-k( _ (1 - t)al+bl )bl+b2+...+bk

And it follows from directly comparing the appropriate definitions that e(a,b) is the sum of
all 9X((a,,b 1),...,(ak,bk))'S for which b of the ordered pairs are (1, 1) and the remaining a of the
ordered pairs are either (0, 1) or (1, 0). Summing the values of '0 on all these, and doing a
bit of simplifying, we can obtain the following (not particularly elegant) result:

Proposition 3.4.5 The algebra map induced by

es - (s)b(1 + s)a( a+b) -i) (a + b - ) ] (3.31)

where e(a,b) is as defined in section 3.2.1, maps

X, = X• -+ s neg(R) sink(R)

where the sum runs over the regions for H[EO].

Consequences for Ordinary Graphs

For an ordinary graph, F, considered as a signed graph, +r, we can compose ek '-,

Ea+2b=k e(a,b) (which sends Xr to Xbr) with the map (3.31) to obtain a much simpler
result:

Proposition 3.4.6 The algebra map induced by

ek + (1 + )t + (s + s2 + ...+ k-1)t2

sends Xr to E sneg(R)tsink(R), where the sum runs over the regions for H[+FO].
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This proposition implies that certain nonnegative combinations of the c\ are positive (where
Xr = E coe\). If we set s = 0, we obtain Theorem 1.2.3.

If we set t = 1, we obtain that ek ý-+ (1 + s + ... + sk ) sends Xr to E s neg(R) . It can be
seen (using (1.3)) that this map is the same as the algebra map induced by wpk '- (1 + sk).
So it follows from the wp-positivity of Xr that the image has nonnegative coefficients.

However, a curious consequence is that for an e-positive F, the coefficients of this gen-
erating function, E sneg(R), are unimodal. This is not true in general: for example, the
"claw" K 13 gives

8 + 13s + 12s 2 + 13s3 + 8s 4

There are several possible variations of these ideas. The strongest result of this kind for
ordinary graphs seems to be Theorem 1.3.9. Proposition 3.4.6 can be obtained by evaluating
the variables in Theorem 1.3.9 at (1, s, 0, 0,...).

We can also get a nice result for the "sign-symmetric" signed graph fro, obtained by
replacing each edge of F with two edges, one positive and one negative and adding a negative
loop at each vertex.

Proposition 3.4.7 The algebra map induced by

ek t (1 + s)k (3.32)

sends Xr to E sneg(R)tsink(R) , where the sum runs over the regions for H[f-o].

Proof: The proper colorings of fro are just the zero-free colorings for which taking the
absolute values of the colors gives a proper coloring of F. It follows that Xro can be
obtained from Xr via the algebra map induced by xi '-+ (xi+x-i), or equivalently, ek - e(k,0)

(see (3.10)). Composing this with (3.31) yields the map (3.32). Ol
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Part II

The Decomposition of Hochschild
Cohomology and Gerstenhaber

Operations





Chapter 4

Shuffles and Free Lie Algebras

The results in this chapter and the next were obtained in collaboration with Nantel Berg-
eron, and are taken from the article:

N. Bergeron and H. L. Wolfgang, The decomposition of Hochschild cohomology
and Gerstenhaber operations, Journal of Pure and Applied Algebra 104 (1995),
pp. 243-265.

@1995 Elsevier Science B. V.

The author thanks Elsevier Science for their permission to include this material here.

4.1 Eulerian Idempotents and
the Decomposition of (Co)Homology

In this section, we recall the main results about the idempotents ek) and the decomposition
of the Hochschild (co)homology.

As in the introduction, let A be a commutative, unital algebra over a field K of charac-
teristic zero, and M a symmetric A-bimodule. Define ZnA = A 0 A ", where all tensors
are taken over K. We will denote ao 0 al 90 ... 0 an by the shorthand, ao[al, ... , an]. We
have that ,.A is a complex with boundary map 8 = O, : 9A - 93-1 A, given by

Od(a[al,... ,a]) = aal[a2,... ,a] +
n-1

i=l

(-1)nana[al, ... ., an-11-.

Note that BA is a symmetric A-bimodule via multiplication on the left A factor, and
O is an A-bimodule map. Since A is commutative and M is a symmetric A-bimodule,
it follows that the Hochschild homology H.(A, M) is the homology of 9.A OA M, and
H*(A, M) is the homology of HomA (3.A, M) " HomK(A®*, M) (See [1, 13,15,31]). We
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can identify 8,nA0A M with C,(A, M) = M0 A®n , and HomA(!.A, M) with C*(A, M) =
HomK(AO*, M). Note that Co(A, M) and Co(A, M) can be identified with M in a natural
way, and 01 = 0 implies that Ho(A, M) - Ho(A, M) 2 M. We will be concerned mostly
with the case M = A.

Let 6, denote the symmetric group on n elements, and let Q[6n] denote the group
algebra. We define a (left) action of Q[n,] on A®n by letting a E B, act on (a,, a2, ... an)
by (a0-1, a-I1,..., a, 1). This can be extended to an action on I3nA = A A®n by letting

Q[,n] act on the right factor, i.e. a(a[al,..., an]) = a[a,,-, a2-i,... a- 1].

The Eulerian idempotents k) E Q[8n] can be defined in a number of ways. The simplest
definition is a generating function due to Garsia [8]:

k 1e- ()k =n (x - d(a))(x - d(a) + 1) ... (z - d(a) + n - 1) sgn(a)a,
k=l aE6n

where d(a) = Card{i : ai > ai+ } is the number of descents of a.
In [13,30] we find that

id= e + e(2)++ .+ e(n) (4.1)
e(i )e ) = 6• e(i), (4.2)

where Sij = 0 if i : j and 1 if i = j. That is, the e( ) are orthogonal idempotents. And
moreover,

_,e() = e k)18n-

Combining these properties, we have that

S.A = Skf (k)S.A
ý*A = Gke* 93A

is a decomposition into subcomplexes. This shows

Theorem 4.1.1 ([13,30])

H,(A, M) = @ Hk,n-k(A, M),
k

H"(A, M) = ( Hk n - k (A, M),
k

where
Hk,n-k(A,M) = ek)Hn(A,M) c-  n(M e (k)Ae*),

Hkn-k(A, M) = H(A, M)e(k) - H,(HomK(e.k)A®*, M)),

Ho,o(A,M) = Ho(A,M), and Ho',(A,M) = Ho(A,M).
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We follow the notation of Gerstenhaber and Schack [13-15] in indexing the components
of the decomposition. This notation differs from that found elsewhere, but it will allow us
to state some of our results a little more easily.

For future reference, let us set

Ck,n-k(A, M) = e(k)Cn(A, M) M e (k)A®n

Ck,n-k(A,M) = Cn(A,M)e(k) HomK(e(k)A® , M)

Note that the action of Q[6,] on C"(A, M) is on the right, given by

(fa)(al,...,an) = f(a(al,...,an)).

4.2 Free Lie Algebras

Let A = {al, a2, ... , a be a finite alphabet, and let Q(A) denote the free associative
algebra generated by A, i.e. the vector space spanned by words with letters in A. Then
Q(A) is a Lie algebra under the bracket product defined on words by [u, v] = uv - vu.
We say that w is a bracketing of letters if w is a letter or if w = [u, v] where u and v are
bracketings of letters. Let Lie(A) be the span of these, i.e. the sub-Lie algebra generated
by A. Then Lie(A) can be identified with the free Lie algebra generated by A and Q(A)
with the enveloping algebra. One version of the Poincar6-Birkhoff-Witt theorem implies
that Q(A) is isomorphic to the symmetric algebra of Lie(A).

Reutenauer [33] introduces the idempotents p k) and shows that they give the projection
maps for the natural decomposition of the symmetric algebra of Lie(A). The version of
these results that we will use first appears in Garsia [8] (see also [9]). We begin with some
definitions. Let Q[An] denote the span of words of length n. There is a right action of
Q[6,] on Q[An] defined on words by (wlw 2 ...*w,)a- =W W 2 = ... W,.

Consider the symmetrized product

(Pl,P2,...,Pk)S Z= P aP, P,,.Pk
aESk

where Pi E Q(A). Let

HSk = Span {(Pi, P2,... ,Pk)s: P E Lie(A)}

and let HSE = HSk nQ[A]. One of the main results of [8] is

Theorem 4.2.1 The idempotents pnk) E Q[6n], defined by

n 1

) - (x - d(a))(x- d() 1) .. (x - d(a) n - 1),
k=1 oE6n
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give projections into HS':

Q[AAn]= HS
k>O

Q[An]p(k) = HSn

As mentioned in the introduction, it is known (see [9]) that the idempotents pn) and en )

are mapped to each other by the automorphism 0 : Q[n] - Q[6n] induced by a - (- 1)a.
For convenience, let us set HS<j = EDk<j HSk. We will need the following well known

result.

Lemma 4.2.2 For Pi E Lie(A),

PI P2 . .Pk = (P1, P2, ... , Pk)S + E

with E E HS<k-1.

Of particular importance to us is the case where A = {1, 2,..., m}. Then, for n < m,
a permutation a = ala2...an can be considered as a word in Q(A). So we can consider

Q[8,] as a subspace of Q(A). Then define

SHSn = Q[6n] n HSn.

Note that this is independent of m. The right action is such that (ala2 ... an) = a o r, i.e.
the right action is just right multiplication. We then have immediately,

Corollary 4.2.3

Q[n]p k) = SHSn
Q[]e(k) = O(SHSn)

Now, Q[6n] acts on the right of the complex for Hochschild cohomology, so we have an
alternative expression for the decomposition:

Ck,n-k(A, M) = Cn(A, M)e(k ) = Cn(A, M)Q[6n]e(k) = Cn(A, M)O(SHSn).
(4.3)

4.3 Generalized Harrison Homology

In this section we study more closely the components of the decomposition in Theorem 4.1.1.
It is known [13] that the components H 1'"- 1(A, M) and HI,n- 1(A, M) are the Harrison

(co)homology groups of A with coefficients in M. We will generalize this construction to
describe all the components of the decomposition. This section is taken from Wolfgang [50].
Theorem 4.3.6 has been independently obtained by Ronco [35] and by Sletsjoe [38].
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We define a composition of n as a k-tuple of positive integers, p = (Pl,P2 ... , Pk),
such that P1 + P2 + " -+ Pk = n. We refer to k as the number of parts of p, and we
denote this number by e(p). We will use the shorthand p [ n for "p is a composition
of n." For a E ~n, we define the descent set of a as D(a) = {i : ai > ji+l}, and for

p k n, we define S(p) = {pi, pi + P2,... ,p +P2 + '''+Pk-1}. Note that if D(a) C S(p),
then o(1) < a(2) < ... < a(pi) and a(pi + 1) < ... < a(pl + P2) and so on. Let

X, = ED(a)CS(p) o" and X-, = ED(a)CS(p) sgn(a)a.

When Q[n,] acts on the left of A®n as in Section 4.1, Xp corresponds to the usual
signed shuffle operation, i.e.

XP(al, a2, ... , an) = (al,..., ap,)-a(ap,+1, ..., ap,+P 2) ... "(apl+...+Pk,_+l, ... , an)

Example 4.3.1

X( 2,2)(a, b, c, d) = (a, b, c, d) - (a, c, b, d) + (a, c, d, b)

+(c, a, b, d) - (c, a, d, b) + (c, d, a, b).

Let us write
TA = K A D A 2 O .-. e A n "...

and set TA, = A®n , TA$( k) = e(U) A®n , and TA(k) = Sn TA ( ). Then Z defines a graded
commutative product on TA, i.e. for w AEm , v AAn , w7iv = (-1)mOnv -w. We can
extend this to an operation on A 0 TA = 9.A by

a[al,..., an]J b[bl ,..., bn] = ab[(al,..., an) - (b l , ... , bm)]. (4.4)

We denote by Shk the span over Q of the elements X~,a such that e(p) = k and a E ~n.
That is

Shn = Q[Xpa - (p) = k, a E 6n] _ Q[6n].

We will refer to the elements of Shk as k-shuffles. Note that Sh' = Q[~,]. If we write IA
for the augmentation ideal,

IA = A E A®2 ED .- .E A®n ... ,

then Shk(TA) = (IA) - k, i.e. Shk A® = (IA) 1 k n AO". And similarly,

ShI~(.A) = A Shk(TA) = (A ® IA) wk

We note that
Sh'+ C Sh'

since an (1+ 1)-shuffle can be expanded as a linear combination of i-shuffles. (Here we are
using the fact that we defined the Shk to be right ideals in Q[&n].) Moreover, we have the
interesting fact that the map 8 is a derivation for the signed shuffles.
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Proposition 4.3.2 (see [31])

O(a[al,... , an ]' b[bi,... , bm]) = 0(a[al,... , an])' (b[b,... ,b b ]) +

(-1)n(a[al,... , an])'O(b[bi,... ,bm]).

Together with the fact that O(a[al]) = 0, this implies that

0Sh k(A) C Sh~_I(A),

where Shl(A) = Sh 9ZA. Hence, the Sh!k(A) give a filtration of 9.A by subcomplexes,

9,A = Shl (A) Sh2(A) D Sh(A) D ...

It follows that

M 0 Shk A®* A Shk(A) OAM

and HomK(Sh k A®*, M) HomA(Sh(A), M)

give filtrations of C,(A, M) and C*(A, M) by subcomplexes.

Harrison homology is defined to be the homology of the complex SA/ Sh,(A), and
Harrison cohomology is the homology of the complex of cochains vanishing on ShO A 0 *.
Barr [1] shows that these are summands of Hochschild (co)homology by showing that (in

the notation used here) e(2) + + e(n ) is an idempotent projecting BA onto Sh2(A). It
follows that

hA = e(1)~,A A Sh (A) (4.5)

and hence there is a natural isomorphism between Harrison (co)homology and the first
components of the decomposition of Hochschild (co)homology.

Proposition 4.3.3 As right ideals of Q[6B],

Shk+1 = ker (z e(r) (4.6)

Proof: The following lemma is a special case of a result in [9].

Lemma 4.3.4 ([9]) If p 1 n, and e(p) > r then nr)Xp = 0.

Applying 0, this gives us that en Xp = 0 if £(p) = k + 1 and r < k. Hence

Shk+l C ker e(r)
(n 

n
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Now we note that

ker en( )
n

- Im es)n
(s=k+1

since the e(r ) are orthogonal idempotents and e( 1) + - + e(n) = 1. So to get equality in
(4.6), it suffices to show that en) E Shn+ 1 for s > k + 1. We recall

p() found in Garsia [8]:

an expression for the

Proposition 4.3.5 [8]

(k) n m-ks(m 7 k) X
n -E(-1) ! XP

m=I PFn
t(p)=k

where s(m, k) denotes the Stirling numbers of the first kind.

Applying 0, we obtain ek)
tion 4.3.3.

as a linear combination of k-shuffles. This proves Proposi-

Theorem 4.3.6

k

( He,n-r ,(A, M)
r=1

k

SH ,n-r (A, M)
r=1

Hk,n-k(A, M)

Hk,n-k(A, M)

SH(C.(A,M)/Shk+1 (A) 8A M)

- H(C*(A, M)/HomK(Sh*+l A.*, M))

- H,(Sh k(A) A M/Shk +l(A) OA M)

- Hn(HomK(Sh* A®*, M)/HomK(Shk+1 A®*, M))

Proof: From Proposition 4.3.3, we have

e ( ) C.(A,M)

and C*(A, M) ( e
=1e r)

SC*(A, M)/Shk+1 (A) 0A M,

= C*(A, M)/HomK(Sh k+1 A*, M).

Taking the homology, we obtain (4.7) and (4.8). The expressions for the individual compo-
nents, (4.9) and (4.10), follow from the orthogonality of the ek).

(4.7)

(4.8)

(4.9)

(4.10)
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4.3.7 Remark: Loday [30] shows that the decomposition of Theorem 4.1.1 is valid for
any functor Aop -+ K-Module which factors through the category Fin' of the sets [n] =
{0, 1, 2, ... , n} with morphisms f: [n] -+ [m] such that f(0) = 0. Theorem 4.3.6 relies only
on the identity (4.6). If we let Q[Fin'] be the algebra of morphisms of Fin', the identity
(4.6) was shown inside Q[~,] C Q[Fin']. Hence Theorem 4.3.6 is also valid for any functor
AOP -+ K-Module which factors through the category Fin'.

4.4 The Dual Poincar6-Birkhoff-Witt Theorem

In this section, we study the shuffle powers of TA 1 ) = e 1) TA and e(1)%,A. In particular,
we will relate the idempotents e( k) to a dual, graded version of the Poincar&-Birkhoff-Witt
theorem due to Hain [23].

To shorten the notation, let us write C, for C,(A, A) = 9B3A and C(k) for ene(k)Cn.
Note that H, = H,(A, A) is the homology of C,.

Gerstenhaber and Schack [15] show that the shuffle product on C, is bigraded in the
sense that

Cj,m-ijCk,n-k Cj+k,m+n-j-k. (4.11)

They obtain this from the fact that s( 2) = 2'e( ) is an algebra map on TA. The same

proof shows that TA() Z TA C TA +j) In particular,

(TA(1)) k C TA(k). (4.12)

We will show that these spaces are actually equal.
We have the following generalization of (4.5):

Proposition 4.4.1

Shk TA = (TA(1)) • k e Sh +l TA (4.13)

Sh*(A) = (C(1)) W k E Shk+'(A) (4.14)

Proof: For k = 1, both equations follow from Proposition 4.3.3. Note that in this case,
(4.14) is just (4.5). For the general case, Shk TA is spanned by elements of the form w =

v1 Z ...- L Vk, with vi E IA. From the k = 1 case, we can write vi = + vi', with vI E TA(1)
and v0' E Sh2 TA. Expanding w in terms of these yields vai ... viiv + ((k + 1)-shuffles).

To see that the sum is direct, note that, by (4.12), en(k) fixes the elements of (TA(')) k, and

by Proposition 4.3.3, e( k) vanishes on Sh k+l TA. The second equation follows by tensoring
the first with A. Ol

The comments in the above proof about ek), together with Proposition 4.3.3, give us
the following theorem.
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Theorem 4.4.2

TA(k) = (TA(1)) k (4.15)

C(k) = (C(1))wk. (4.16)

It is also possible to obtain TA(k) C (TA(M))k by considering the construction of the
en ) in Loday [31]. With a coproduct induced by "deconcatenation", TA becomes a graded
commutative bialgebra, and so there is a convolution product on the endomorphisms of TA.
Loday defines e( k) as the k-th convolution power of e*1) (up to a constant). Writing out the
definitions explicitly, one obtains that e k ) (al , ... , a,) is given by

1 e(1) , .. (1 )  (
P- 1(al,... 1a1) (ail+l,...,ai,) ... e (ak ... ,an

1<i <iz < '<ik-1 <n

For any graded vector space V = Vi e V2 e - - -, the graded symmetric algebra of V is
defined to be

AV = S(Veven) 0 E(Vodd),

where S and E give the usual (ungraded) symmetric and exterior algebras, and Veven and
Vodd have the obvious meanings. Then AV is the free graded-commutative algebra generated
by V. Note that AV possesses two natural gradings, one coming from the number of factors
and one coming from the sum of the V-degrees of the factors.

It is clear that the shuffle product induces a well defined map A(TA(')) -+ TA. In [23],
Hain constructs the idempotent e(1) , and shows the following remarkable result.

Proposition 4.4.3 ([23]) The shuffle product induces an isomorphism

A(TA(0) ) TA .

He presents this as a dual, graded version of the Poincard-Birkhoff-Witt theorem. If A is
finite dimensional, this follows by dualizing the usual PBW theorem.

Note that it follows from (4.15) that this map is onto.
A(TA(')) has a direct sum decomposition whose k-th term is spanned by products of k

elements of TA( 1). It follows from (4.15) that the shuffle product maps this k-th term to
TA() = ek) TA. So the idempotents en ) bear the same relationship to this dual, graded
PBW theorem as the p() bear to the PBW theorem discussed in Section 4.2.

The shuffle product on C. induces a shuffle product on the homology H. = H.(A, A).
It follows from (4.11) that this product is bigraded. Let us write H(,) for the homology
of C(1), i.e. H(i) is the sum of the Harrison homology groups. Then the shuffle product
induces a map

A(H(1)) -+ H.. (4.17)

This map, however, might be neither injective nor surjective. In fact, we will see in Section
5.3 that for the dual numbers, the shuffle product of any two elements of the Harrison
homology is zero.
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4.4.4 Remark: The statements above about the decomposition of TA rely only on the
vector space structure of A. In particular, these comments are valid in the context of
Hain [23], i.e. bar constructions on CDG (commutative differential graded) algebras. Hain
shows that the map in Proposition 4.4.3 is an isomorphism of DG algebras. So the comments
above yield a Hodge-type decomposition of the homology of such a bar construction, which
generalizes the results of [23]. Note that, in contrast to what happens for Hochschild
homology, Hain shows that the analog of (4.17) is an isomorphism.



Chapter 5

Gerstenhaber Operations

5.1 Gerstenhaber operations on H*(A, A) and ideals

We now focus our attention on H*(A, A) for A a commutative algebra. In this section
we construct ideals for the cup product and Lie bracket on H*(A, A). Recall that H* =
H*(A, A) is the homology of C* = C*(A, A) = HomK(A®*, A). Let us write f , g when f
and g differ by a coboundary. For fn E Cn and gm E Cm , define f" U gm E Cn+m by

fn U gm(ai,... , an+m) = fn(al,... , an)gm(a.+l,..., an+,).

The important properties of this product are that it induces a product on the cohomology,
and that the induced product is graded commutative:

f" U gt ~ (-1)m gm U fn, (5.1)

as was shown by Gerstenhaber [11].
Gerstenhaber [11] defines, for fn E Cn and gm E C m a composition product fn-dgm E

C " + m- 1 as follows: For i = 1,..., n, let

(fn oi gm)(al,... , an+m-) = fn(al,... , ai-l,gm(ai,... , ai+m-1), ai+m, ... , an+m-).

If m = 0, the above definition holds, with gm() interpreted as a fixed element of A, and
if n = 0, f' oi gm is defined to be 0. Then let fn"gm = E (-1)(i-)(m-1)fn oi gi. As
Gerstenhaber points out, if f and g are cocycles, then fig need not be a cocycle. However,
defining [fn, gm] = fngm - (_l)(n-1)(m-1)gmaf yields a well-defined graded Lie product
on the cohomology. Note that the grading is by degree, which is the dimension -1, i.e.

[fn, gin] , _(_l)(n-l)(m--1)[gm, fn].

Let us write C(k) for EnCkn-k(A, A) and similarly for H(k). In [13], Gerstenhaber and
Schack the behavior of the decomposition under the cup and bracket products. For the
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Harrison components, they obtain

[C(M), C(1)] C(1) and hence [H(1), H( 1)] C H() (5.2)

(H(1)) U k C H(k), (5.3)

leading them to ask if these operations are graded with respect to the decomposition,
i.e. does one have H( j ) U H(k) C H( j +k) and [H(j), H(k)] C H(j+k-1)? They also show
that Gr,>H*,r is an ideal of H* for the cup product by exhibiting it as the kernel of a
natural map H*(A, A) -+ HýE(A, A), the codomain being the Lie algebra cohomology of A
considered as a trivial Lie algebra.

In [14,15], they conjecture that the cup product is not generally graded with respect to
the decomposition, but that YFq = Er>qH*,' form a decreasing filtration of H* by ideals,
possibly with Tp U .Tq C YFp+q.

We will show H() U H(k) C H(<j+k) and [H(), H(k)] C H(-j+k-1), where H(k)

ij<kH(J). This implies the conjecture above and that furthermore, the .Fq are ideals for
the Lie bracket and [TF,, Fq] _ Fp+q. In Section 5.3 we will give an example where neither
product is graded.

Assume for the moment that n, m > 1. We will deal with the behavior of CO separately
in Proposition 5.1.16. As in Section 4.2, we can regard Q[E,] and Q[Cim] as subspaces of
Q(A) for the alphabet A = {1, 2, ... , n + m}. Recall from (4.3) that

Ck,n-k = Cn (SHS),

where SHS' is spanned by those symmetrized products of k elements of Lie(A) which lie
in Q[~,] C Q(A). Using this characterization of the decomposition, we can study the cup
and bracket products in terms of some operations on words.

We begin with the cup product. If v E •, and k < n, we define Vftk to be the word
obtained from v by adding k to each letter of v, e.g. 312t4= 756. Extend this definition
linearly to all of Q[6m,]. A straightforward application of the definitions shows

Proposition 5.1.1 For f E C n , g E C m , w E Q[8n], v E Q[Sm],

(fO(w)) U (gO(v)) = (f U g)0(w.(vTn)),

where w.(vt") is the concatenation of the two words.

Modulo the coboundaries, we can obtain a somewhat stronger result.

Lemma 5.1.2
f U g (f U g)(n + 1...n + m 1...n).

Proof: This follows from (5.1) and the commutativity of A.
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Corollary 5.1.3 For f E C", g E C m , w E Q[En], v E Q[Em],

(fO(w)) U (gO(v)) ~ (f u g)0((w, (vtn))s)
and more generally,

(fiO(wl)) U ... U (fkO(wk)) - (fi U ... U fk)((wl , W2t', , Wktlwl' wk- I)S).

Proposition 5.1.4 Iff E C (j ), g E C(k), then fUg E C (< j+k )

Proof: Since C(j) = ECO0(SHS%), it suffices to take f = f'O(w), g = g'O(v) where w E
SHS', v E SHSm. Note that vTzE HSk, and thus w.(vt " ) E HS<j+k by Lemma 4.2.2. O

Similarly, Corollary 5.1.3 can be used to give a new proof of (5.3).

We now turn to the composition and bracket products. For w E ~, and v E Em, we
define Qg (w, v) E En+m- 1 to be the word obtained from w by substituting the following for
the letters of w:

1 ... j-1 j j+1 ... n

1 ... j-1 vt(j - 1) j + m ... n+m-1 (5.4)

Extend this definition bilinearly to allow w E Q[•n] and v E Q[em].

Example 5.1.5
42(3124, 21) = 41325

An elementary computation gives

Lemma 5.1.6 For w E C5n and v E em, the sign of lj(w, v) E Sn+m-1 is given by

(-1)W(-1)V(-1)(Wj-1)(m-1)(-1)(J-1)(m-1"

Proposition 5.1.7 For f E C, g E C m , w , W E Q[Ev], E Q[Sm],

(fO(w))5(gO(v)) = Z(-1)(J-1)(m-1)(f Oj g)O(tj((w, v)).

Proof: By linearity, it suffices to consider w E 6n, v E Cm. First consider

(fw k gv)(al, ... , an+m-1) = fw(al, ... ,ak-, gv(ak,... , ak+m-1), ak+m, ... ,an+m-).

If j = wk, then the result of the actions of w and v will yield

f (bl,... , bj-1, g(bj, . . . , bi+m-e) , bj+m, . .. , bn+m-1),
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where (bl,... , bn+m-1) is some permutation of (al,... , an+m-l). If we group the variables
together into blocks according to the arguments of f,

b, ..., bj- 1, bj, ... , bj+m-1, bj+m, ... , bn+m-1,

1 j-1 3 j+1 n

then the numbers wl, ... j,... , n (where j = wk is omitted) give the blocks where
al, ... , ak-1, ak+m 7 ... , an+m-1 appear, respectively. The variables ak,... ak+m-1 appear
in the block j, with positions governed by v. The substitution (5.4) comes from relating the
block numbers to the indices of bi. This shows that fw ok gv = (f oj g) 4j(w, v). Applying
the signs of the permutations from Lemma 5.1.6, we obtain

(fO(w)) (g6(v)) Z(--1)(wj-1)(m-1)(-1)w(-1)v(fw) o 1 (gv)
3O

-- Z U(-)1 )-(m - 1)(f oj g)0O(j(w, v)).

Lemma 5.1.8
[HSk, Lie(A)] C HSk

Proof: It is not difficult to show that

k

[(P1,P 2 ,..., Pk)S , Q] = Z(PI ... 9,[Pi, Q],...P k)S.
i=1

The result follows immediately. O

Lemma 5.1.9 If w E SHS' and v E SHS', then #j(w, v) E SHSn+m- 1.

Proof: w E Lie(A), so we can assume WLOG that w is a bracketing of letters. The letter j
appears only once in this bracket expression, so w can be obtained by starting with j and
successively bracketing with elements of Lie(A) not containing j. The substitution (5.4)
replaces j with an element of HSk and these Lie elements with other Lie elements. So the
result follows from Lemma 5.1.8 by induction. O

Lemma 5.1.10 If w E SHS' and v E SHSm, then j(w,i v) E SHS m--l

Proof: It suffices to consider the case w = (P 1, P2, ... Pk)s and v = (Q1,Q 2, ... Q)S,
where Pi, Qi E Lie(A). Note that the letters appearing in the different Pi are disjoint. In
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particular, the letter j appears in only one of the Pi. WLOG, say j appears in P1 . We can
write

b (w, v) = ( 2 7 * * P k)S
where PI is the result of applying the substitution (5.4) to Pi. Now, P2 , ... , Pk E Lie(A)
since, in these, each letter has been replaced by another letter. By the argument in
Lemma 5.1.9, P1 E HSI. So (bj(w, v) is a linear combination of products of (k + £ - 1)
elements of Lie(A). Then Lemma 4.2.2 implies that it is in HS<k+e-1. O

Lemma 5.1.11 If w E SHS' and v E SHS', then 4j(w, v) E SHS'+ m - 1.

Proof: When we take £ = 1 in the above proof, we get P1 E HS1 = Lie(A). Then 'j(w, v) E
HSk. O

Taking Proposition 5.1.7 and Lemma 5.1.10 yields

Theorem 5.1.12

C(j)~iC(k), [c(j), c(k)] C C ( <j +k - 1)

and hence [H(j ), H(k)] C H ( - j + k - 1)

Similarly, using Lemmas 5.1.9 and 5.1.11 yields stronger results for the Harrison compo-
nents:

Theorem 5.1.13

C(1)5C(k), C(k)-C(l), [C(1), C(k)] C ( k)

and hence [H(), H(k)] C H(k)

5.1.14 Remark: A K-linear map IL : A 0 A -4 A defines an associative product on A if
and only if [I, p] = 210jL = 0. And Ip is commutative if and only if IL is a Harrison cochain.
Gerstenhaber [11] shows that the coboundary map can be expressed as Sf = [f, -y], where
p is the algebra product of A. So Theorem 5.1.13 can be viewed as a generalization of the
fact that the subspaces C(k) are actually subcomplexes.

5.1.15 Remark: The fact (5.2) that C(1 ) and H(1 ) are closed under the graded Lie bracket
shows that C* and H* are graded Lie modules over C (1) and H(1 ), respectively. Theo-
rem 5.1.13 shows that the decompositions C* = EC(k) and H* = DH(k) are direct sums of
C(1)-modules and H(1 )-modules.

For the sake of completeness, we consider also the products involving Ho = CO:

Proposition 5.1.16 For f E C(k),g E C0 , fUg E C(k), and [f, g] E C(k-1).
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Proof: Recall that C o L A. Taking the cup product with g is just multiplication by an
element of A, and it is clear that the decomposition of C* is a decomposition into A-modules.

The bracket product is a little more interesting. Take, by convention, bj (w, 0) to be the
word obtained from w by substituting for the letters of w:

1 ... j-1 j j+l1 ... n
1 ... j-1 (omit) j ... n -

Then the proof Proposition 5.1.7 is still valid. Here 0 is the "empty word", i.e. the identity
of the concatenation algebra Q(A). For w E Lie(A), "omitting" a letter from w yields 0 if
IwI = 1, and 0 otherwise. E.g. ab-ba '-+ a-a = 0. So if w E SHS', then (Dj(w, 0) E SHSI_1.
Since [f, g] = f~g for g E Co, this yields the result. O

Corollary 5.1.17 Fp = fr>_pH*,r are ideals for the cup and bracket products, with F• U

.q F p+q and [Fp, 7] C F~p+q.

Proof: If f E Hi'r,g E Hi,t with r > p,t > q, then fU g E EDki+JHkfi+r+j+t-k, by
Proposition 5.1.4. Now for each k in this sum, k < i + j implies that i + r + j + t - k >

r + t > p+ q. So fU g E F-p+q. Similarly, Theorem 5.1.12 implies that [f, g] E 'p+q. Taking

q = 0 shows that F1p is an ideal for either product. O

5.1.18 Remark: It is possible to obtain many of the results of this section, including
Corollary 5.1.17, by considering shuffles instead of symmetrized products of Lie elements,
i.e. using the fact that H(5k) is the homology of the cochains vanishing on (k + 1)-shuffles.

There are two problems with this approach. The first is that one loses all information about
the individual components of f U g and [f, g]. The second is that it would be difficult to see

why the Harrison cochains have stronger properties, e.g. Theorem 5.1.13.

5.1.19 Remark: A recent paper by Sletsjoe [38] incorrectly asserts that the Gerstenhaber

operations are graded with respect to the decomposition. Using methods similar to those

discussed in the previous remark, he correctly proves the equivalent of Proposition 5.1.4

and Theorem 5.1.12, i.e. if f E C (j ) , g E C (k), then fUg E C(<j +k) and [f, g] E C (< j + k - 1)

He then assumes (incorrectly) that f U g and [f, g] are cohomologous to their projections

into C (j+k) and C (j +k- 1), respectively.
From our point of view, the "error terms" projecting into the smaller components should

seem fairly arbitrary. This is because writing a product of k elements of Lie(A) is terms

of the HSj generally gives nonzero projections into each of HS 1,..., HSk. It turns out that

the error terms are not completely arbitrary. In the next section, we will see that the error

terms for f U g and [f, g] which survive at the level of cohomology are in the components
of the same parity as (j + k) and (j + k - 1), respectively. It seems that there are no other

restrictions on the error terms, but it is difficult to make this statement precise.
In Section 5.3, we will give specific examples where the error terms do not vanish at the

level of cohomology. This shows that the two main theorems of [38] are false.
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5.2 Z/2Z-gradings for Gerstenhaber Operations

In [13], Gerstenhaber and Schack show that if we define H(even)(A, A) = H( 0)(A, A) e
H(2)(A, A) e " ", and similarly for H(odd), then this yields a Z/2Z-grading for the cup
product, i.e. H(even) U H(even) C H(even), and so on. In this section, we will generalize
this result to give Z/2Z-gradings for any algebra with an involution. There are analogous
shifted gradings for the bracket product.

Suppose A is a (not necessarily commutative) algebra with involution, i.e. there is a
linear map (a -+ ) with ab = b& and =a = a. In particular, a commutative algebra A
possesses the trivial involution (i = a).

Loday [31] defines a decomposition of the Hochschild homology H.(A, A) into two parts.
We will construct an analogous decomposition of the cohomology.

As in the commutative case, the Hochschild cohomology H" = H"(A, A) is the homol-
ogy of the complex Cn = Ca(A, A) = HomK(A®n , A) with boundary given by 6f = [f, -Y]
where y is the algebra product of A (See Remark 5.1.14). The definitions and basic proper-
ties of the cup and bracket products stated at the beginning of Section 5.1 also hold in the
non-commutative case, in particular we still have graded commutativity of the cup product.

We define an operation wn on C n by

(f0n)(a,,..., an) = f (Un,..., h-').

For f E C n ,g E Cm,

(fwn)U (gwm)(a,... ,an+m) = f(a-n,... ,al) g(~n+m,... , ~+1
= g (an+m, ... , an+) f(~n, ... , aiT)

= ((g U f)wn+m) (a,... , an+m).

Similarly, a straightforward computation shows

(fwn) oj (gwm) = (f on-j+1 g)wn+m- 1 .

In order to get an operation which behaves well with respect to the bracket product, we
need to introduce some signs. Let y, = (-1)n(n+l)/ 2wn. Then simple computations give

Lemma 5.2.1

(fYn) U (gym) = (-1)m n(gU f)Yn+m (5.5)

[(fyn),(gym)] = -[f,g]Yn+m- 1. (5.6)

Since (yn) 2 = id, the mutually orthogonal maps (1 ± yn)/2 are projections onto the +1
eigenspaces of Yn. Hence we have a decomposition C n = CE D Cn, where C_ are the
eigenspaces of eigenvalue +1. From (5.6), we obtain

[C, c;] _ cl, [C;, C] c c;, [Cl, c* ] c cl.
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For the product map y E C2, we have

(~w 2 )(a, b) = b = ab = ii(a, b).

So Ly2 = -1L. In particular, -/i E C*. Since Sf = [f, -I], (5.7) implies that C: are
subcomplexes. So we obtain a decomposition of cohomology:

Theorem 5.2.2

Hn = H7 e Hn,

where HI are the homologies of C1.

The cup and bracket products are Z/2Z-graded and "shifted" Z/2Z-graded for the
decomposition in the sense that

Theorem 5.2.3

H! U H, H*U H*C H, HU HU * C H*. (5.8)
[H7H * H*_ [H** H* * [H 7H* (5.9)[H+, H_], [H_, H*_] H [H+, H] _ H+5

Proof: (5.8) follows immediately from (5.5) and the graded commutativity of the cup prod-
uct at the level of homology. (5.9) follows from (5.7) by taking the homology. OE

We now consider the case when A is a commutative algebra with trivial involution
(- = a). Then y, is given by an element of Q[Q]. Gerstenhaber and Schack [13] show that

1+ y=(2) + (4)+
2

Corollary 5.2.4

H(even) U H(even), H(odd) U H(odd) C H(even),

H(even) U H(odd) C H(odd).

[H(even), H(even)], [H(odd), H(odd)] C H(odd),

[H(even), H(odd)] C H(even)

The results for the cup product are in [13]. While they do not state these results for the
bracket product, they do show (5.6) in this case.
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5.3 Counterexamples

In this section, we provide counterexamples to show that the natural map (4.17) A(H(1)) -

H. need be neither injective nor surjective and that neither of the Gerstenhaber operations
need be graded with respect to the decomposition of cohomology.

The Hochschild homology of the dual numbers V = K[x]/(x2 ) is well known:

Proposition 5.3.1

Hn (D, D) is spanned by 1[x,... , x] n odd

Corollary 5.3.2

Hn (D 7,) = Hk,n-k (D, D) where k = n .

Proof: This follows from the fact that ,n acts trivially on the basis above (see [15, 30]). A
more direct proof can be obtained from observing that [x,..., x] is a nonzero multiple of
either [(x, z) - - - a (x, x)] or [(x, x) W- ·. Z(x, x) x], depending on the parity. Then the
result follows from (4.15) since x and (x, x) are fixed by e ') = id and e21) = (id +(12))/2,
respectively. O

Proposition 5.3.3
H(1)(D, D) Z H(i)(D, D) = 0.

Proof: The Harrison homology is spanned by 1[x] and x[x, x]. One has immediately that

1[x]tl[x] = 1[xXx] = 0

x[x,x]]x[xx] = x2 [(x, )i(X, X)] = 0

and 1[x]-x[x, x] = z[z, , z]= a( [z, , z, z]).

So all of these products vanish in H.. O

So the dual numbers provide the example promised in Section 4.4 of an algebra for which
the map (4.17) A(H(1)) - H,. is neither injective nor surjective.

In order to show that the cup and bracket products need not be graded with respect
to the decomposition, we will construct an algebra for which H 2,0 U H 2,0 Z H 4,0 and
[H2,0, H2,0] H3 ',0 .

For any commutative algebra A and symmetric bimodule M, e (n¶) = 0 implies that H' ,0

coincides with the cocycles in Cn,0 . Gerstenhaber and Schack [15] show that Hn,o(A, M)
consists of the skew multiderivations, i.e. those skew cochains which are a derivation in
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each argument. We will construct an algebra with a skew multiderivation f E H 2,o(A, A),
for which f U f and [f, f] have nontrivial projections into H 2,2 and H 1,2 respectively.

For convenience, we will denote f(a, b) as a pairing {a, b} and consider commutative
algebras with a pairing which is a skew multiderivation. It is elementary to check that for
such an algebra the projection of f U f onto C 2,2 is given by

2 1 1
(f U f)e2)(a, b, c, d) - {a, b}{c, d} + -{a, c}{b, d} - {a, d}f{b, c).

4 3 3 3

The projection of [f, f] onto C1 ,2 is given by

[f, f]e)(a, b, c)= a,b, c} + b, {c, a}} - {c, {a, b}}.
3 3 3 3

We begin by taking the free object, F, generated by taking products and pairings of the
symbols x, y, z, w, subject (only) to the relations that F is commutative and that {-, -} is
a skew multiderivation.

Since {-, -} is a derivation in each variable, F is generated as an algebra by product-
free pairings of x, y, z, w, e.g. {x, {y, z}}. In fact, if we take a set of representatives of these
pairings modulo skew-symmetry, then F is freely generated as a commutative algebra by
these. This gives a grading on F as a polynomial algebra. There is also a grading coming
from the number of pairings, i.e. such that {x, y} {z, w} and {x, {y, z}} have degree 2. And
F is multigraded by the x, y, z, w-degrees.

Now let A = F/J, where J is the smallest algebra ideal containing xy, yz, zw which is
also an ideal for the pairing (so that {-, -} is well-defined on the quotient). Note that J
splits into homogeneous components with respect to any of the notions of degree on F.

Proposition 5.3.4 For A and f(a, b) = {a, b as above, (f U f)e(2) is not a coboundary.

Proof: For any g E C 3 ,

(Sg)(x, y, z, w) = g(y, z, w) + wg(x, y, z),

since xy = yz = zw = 0 in A. So it suffices to show that

2 1 1
(f U f)e2)(x,y,z,w)= {,y}{z,w}+ -{x,z}{y,w}- -{x,w}{y,z}

(5.10)

is not in the algebra ideal generated by x and w. Lifting the problem to F, we need

to show that no element of J is of the form (f U f)e(2)(x, y, z, w)+ xu +wv. By the
remarks above about homogeneity, it suffices to consider the elements of J lying in the

component of F involving one product, two pairings, and exactly one each of x, y, z, w, i.e.
the component spanned by {x, y}{z, w}, {x, z}{y, w}, w}, {x, w}{y, z}, and the twelve terms

x{y, {z, w}}, etc. The elements of J lying in this component are spanned by {z, {w, xy}},

{w, {z, xy}}, {{z, w}, xy}, and the analogous expressions generated by the products yz and
zw. This reduces the problem to a simple linear algebra question which can be verified
directly. O
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Proposition 5.3.5 For A, f as above, [f, f]e( is not a coboundary.

Proof: For any g E C2 ,
(Sg)(x, y, z) = xg(y, z) - zg(x, y).

Here it suffices to show that

2 4 2, {y, z}} + -{y, z, x}} - -{z, {x, y}}3 3 3

is not contained in the algebra ideal generated by x and z.
As in the previous proposition, we can lift the problem to F and take a homogeneous

component. But the component involved here is the one involving two pairings and exactly
one each of x, y, z. This component is spanned by {x, {y, z}}, {y, {z, x}}, {z, {x, y}}, and
clearly intersects neither J nor the algebra ideal generated by x and z. O

5.3.6 Remark: There are simpler counterexamples for the bracket product. For example
A = K[x, y, z]/ < , y, z >2 with f(x, y) = f(x, z) = f(y, z) = z. Part of the difficulty with
finding simple counterexamples for the cup product comes from the fact that the map

(a, b, c, d) a-+ {a, b}{c, d} - {a, d}{b, c}

is always the coboundary of g(a, b, c) = {a, {b, c}}.
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Notation

P

Q
R
Z
[n]

[i, j]
ESn
p n
A -n
e(p), £(A)
Ip, JAl
C,
Sym
e , , p ,• mA ,

QSym

QS,d

F

Lr
Xr

[A]
X

s[i,j]
S
(S)
Z[S]

the set of positive integers
the set of rational numbers
the set of real numbers
the set of integers
the set of integers {1, 2,... ,n} C P
the set of integers {i, i + 1,... , j} Z (usually C P)
the symmetric group on n elements
p = (pl, P2, ... ,Pk) is a composition of n: Pi E P, p1 + P2 +" " Pk = n
A is a partition of n: a composition satisfying A1 > ... > Akj
the number of parts in p, A
Pl + P2 + + P Ak, +1 - A2 + ' - Ak

the ring of symmetric functions in {x 1, x2,... } with coefficients in Q...29
iTh, s\ elements of the elementary, complete, power sum, monomial,

augmented monomial, and Schur function bases of Sym................ 29
the ring of quasi-symmetric functions in {x1, X2,... } with coefficients in
Q .................................... ................. 32
an element of the fundamental basis of QSym d ...................... 32

a graph
the lattice of contractions of P ......... .................... ............ 12
Stanley's chromatic symmetric function ............................ 11, 34

-ZEe ala(l)a 2a( 2)" " ana(n) 0 - 1 ...................................... 15

an irreducible character of ,n ......................................... 15
a "monomial" character of ~, ........................................ 16
a Jacobi-Trudi matrix ............................................ 16, 45
the sum (in Zen) of all permutations of [i, j] .......................... 17
a skeleton ................. ...........................................44
the sum of the permutations associated with S ........................ 44
the cycle indicator of S .............................................. 44

a signed graph .............................. ........................ 20
a voltage graph .................................... .................. 81
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0

Shk
(k)

pn
(k)en

Hk,n-k(A, M)
Hk,n-k(A, M)
u,[,]

A

Q(A)
Lie(A)

the automorphism Q[Sn] -+ Q[n] induced by a - (-1)0a.......... 104
the signed shuffle product ........................................... 105
k-shuffles (in Q[,]) ........................................ .......... 105
one of the Reutenauer idempotents .................................. 103
one of the Eulerian idempotents ...................................... 102
the kth component of the decomposition of Hochschild homology.....102
the kth component of the decomposition of Hochschild cohomology... 102
the cup product and Lie bracket defined on H*(A, A)................ 111

an alphabet ................. ........................................ 103
the free associative algebra generated by A4 .......................... 103
the free Lie algebra generated by A .................................. 103
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