
KNOWLEDGE INTEGRATION FOR PROBLEM SOLVING
IN THE DEVELOPMENT OF COMPLEX AEROSPACE SYSTEMS

by

MARC GEORGE HADDAD

B. Aerospace Engineering, Georgia Institute of Technology, 1992
M.S. Aerospace Engineering, Georgia Institute of Technology, 1993

M.S. Transportation Engineering, Georgia Institute of Technology, 1998

SUBMITTED TO THE ENGINEERING SYSTEMS DIVISION
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 2008

T. ,IVLO 2X-7Q1

MASSACHUSETTS INSM
OF TEOHNOLOGY

JUN 2 5 2008

LIBRARIES
© 2008 Massachusetts Institute of Technology. All rights reserved.

Signature of Author:
Engineering Systems Division

May 28, 2008

Certified by:
Deborq i Nightingal&(Thesis C(mittee Chair)

Professor of the Practice of Aeronauti/s ikid Astronautics and Engineering Systems
I L

Certified by:
Kirkor Bokdogan (jhesis Supervisor)

Principal Research Associate, Center for Technology, Policy, and Indutrial Development

Certified by:
Daniel E. Hastings (Thesis Con&gittee Member)

Professor of Aeronautics and Astronautics and Engineering Systems
Dean of Undergraduate Education

Accepted by:
Richard Larson (Education Committee Chair)

Mitsui Professor of Engineering Systems and Civil and Environmental Engineering
Chairman, ESD Education Committee

This page intentionally left blank.

C Marc G. Haddad

KNOWLEDGE INTEGRATION FOR PROBLEM SOLVING IN THE DEVELOPMENT
OF COMPLEX AEROSPACE SYSTEMS

by

Marc George Haddad

Submitted to the Engineering Systems Division
on May 2, 2008

in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy in Engineering Systems
Technology, Management and Policy Track

ABSTRACT

The development of complex products requires widespread knowledge interactions among a
significant number of individuals and teams designing numerous interrelated components.
Increasing product complexity typically leads to a corresponding increase in the types and
sources of knowledge that need to be tapped during development, and a common strategy for
managing product complexity is to outsource parts and components to external suppliers. As a
result, the knowledge required for development is increasingly specialized and distributed across
multiple boundaries spanning large-scale organizational networks, thus requiring the subsequent
integration of this knowledge in order to accomplish the development task. A framework for
knowledge integration in the development of complex systems in a large-scale organizational
context is proposed in this thesis using an extensive review of the pertinent literature. The
framework consists of the main channels, strategies, practices and mechanisms most commonly
used to transfer, share and apply knowledge in the course of complex technical problem solving.
The framework is progressively refined using empirical data collected through several rounds of
interviews and a questionnaire instrument administered across three major aircraft programs in
the defense aerospace industry. We find that knowledge integration in routine problem solving
situations is most efficiently and effectively accomplished through extensive transfer and sharing
of codified information using formal mechanisms such as information systems, while knowledge
integration for major non-routine troubleshooting events requires extensive integration of
individual expertise and know-how through both formal and informal advice sharing as well as
direct assistance across internal and external organizational boundaries. A principal contribution
of this research is in demonstrating how different characteristics of the engineering artifact
defined in terms of product complexity, architecture and technology newness, and different
aspects of problem solving including problem type and novelty, drive the knowledge integration
process and the organizational system. We conclude that permeability of cross-program
boundaries, direct relationships with functional groups and rich tacit knowledge flow from
suppliers are critical for countering rampant firefighting in complex product development.

Thesis Supervisor: Kirkor Bozdogan
Title: Principal Research Associate, Center for Technology, Policy, and Industrial Development

© Marc G. Haddad

"True glory consists in doing what deserves to be written;

in writing what deserves to be read."

- Gaius Plinius Secundus (Pliny the Elder)

I hope this work will be useful to academics and practitioners alike.

C Marc G. Haddad

EXECUTIVE SUMMARY

Knowledge integration is an emerging discipline in organizational science and the related

knowledge-based body of literature where the principal idea is that the increasing scale of

organizational arrangements and the increasing complexity of products under development

combine to disperse knowledge resources across multiple boundaries spanning large-scale

networks, and as a result there is a need for organizations to continuously gather their knowledge

resources in order to maintain their ability to innovate and to sustain their competitive position in

the market. This process also enables the organization's problem solving capabilities since

knowledge is synonymous with problem solving, especially in complex product development

where the required knowledge is increasingly specialized, varied (multi-disciplinary) and

distributed across external boundaries with partners and suppliers. Knowledge integration in this

context is done through a process of transferring knowledge from multiple sources in the

organizational network to the locus of problem solving (which are typically the product teams

tasked with development), combining that knowledge at the recipient site and using it in the

course of problem solving. It follows that large-scale organizations engaged in complex product

development are best served to have the appropriate conduits, policies and devices for

transferring, sharing and applying knowledge to solve problems.

The primary purpose of this research is therefore to identify the main characteristics for

knowledge integration in large-scale complex product development. For research lens, the

choice of military avionics is adopted due to their high level of complexity and the richness of

the defense context in terms of major barriers facing the knowledge integration process. To that

end, four main research questions are posited, specifically: (1) What are the types and sources of

engineering knowledge in the development of complex avionics systems?, (2) What are the

strategies, practices, channels and mechanisms for integrating knowledge to solve technical

problems in this context? (3) How is knowledge integration informed by the organizational

environment and the characteristics of the problem at hand?, and (4) What are the technology,

management and policy issues in this context? A framework for knowledge integration is

proposed in this thesis using an extensive review of the pertinent literature on knowledge

integration, problem solving, organization design and complex product development. The

C Marc G. Haddad

framework is then progressively refined using empirical data collected through 70 interviews

with 50 individuals and 49 problem solving cases collected through a questionnaire instrument

administered across three major military aircraft programs in the defense aerospace industry.

The grounded theory method is used to analyze the interview data in order to develop the main

concepts for knowledge integration, and a comparative analysis of the questionnaire data is used

to determine the relationships between knowledge integration and different product-specific and

problem-specific characteristics, namely product complexity, system architecture and technology

newness, as well as problem type and problem novelty, respectively. Several heuristics are

proposed to that end.

A main conclusion from this research is that knowledge integration is markedly different for

routine versus non-routine complex problem solving situations. We find that knowledge

integration for routine problem solving is most efficiently and effectively accomplished through

extensive transfer and sharing of codified information through formal structures and

mechanisms, while knowledge integration for major non-routine troubleshooting events requires

extensive integration of individual expertise and know-how through formal and informal advice

sharing and direct assistance across internal and external organizational boundaries. Of

particular importance is the sharing of lessons learned from past problem solving events, which

was found to be critical for dealing with complexity but ineffective when relying on information

technology-based mechanisms for the integration process. The research also leads to the finding

that modular product development typically leads to problem solving in isolation, while

integrated product architectures compromise rapid troubleshooting capability. An original

contribution from this research is therefore in demonstrating how the engineering artifact drives

the organizational system through the knowledge integration process. We also find that the

integration of knowledge across program boundaries is severely hampered by the disconnected

relationships between programs in large-scale project-based organizations which are typical in

complex product development environments. Similarly, indirect relationships with functional

groups and arm's length relationships with suppliers were found to hamper the effectiveness of

knowledge integration. We conclude that permeability of cross-program boundaries,

supplemented organizational forms and team structures, and rich tacit knowledge flow with

suppliers are critical for countering rampant firefighting in complex product development.

C Marc G. Haddad

This page intentionally left blank.

C Marc G. Haddad

ACKNOWLEDGEMENTS

To my dear Samar, for the infinite love you give,

To my parents, Grace and George, for all you have sacrificed for my sake,

To my brothers, Tony and Elie, for putting up with me,

And to my best-friends and extended family, for the inspirations, and for the dream...

I wish to extend my thanks first and foremost to all three members of my doctoral committee: to

Professor Deborah Nightingale, the committee chair, for your encouragement and always helpful

interventions, in true Lean spirit you always managed to support me with "the right thing at the

right time", but most of all for your uplifting kindness; to my advisor and research supervisor

and mentor Dr. Kirk Bozdogan, for the long hours you gave in hands-on support of this work, the

brainstorming and the insights, the motivation and the tremendous patience throughout, it is an

understatement to say that this thesis would not have been possible without your intellectual

guidance and help; and to Dean Daniel Hastings whose classes I greatly enjoyed, whose advice

was always greatly valuable, and whose academic support got me through my first steps at MIT.

I wish to acknowledge the Lean Aerospace Initiative (LAI), the organization that supported this

research both financially and with the best and most ample of resources, and the lab community

that made life on campus not only easier but enjoyable, even in sub-zero weather. Thank you to

Dr. Eric Rebentisch, Dr. Ricardo Valerdi and Mr. Tom Shields for all your assistance, and to all

my LAI colleagues and friends, some of you officers and all of you gentlemen and women, thank

you for the stimulating conversations, with special thanks to Alexis for all your generous help.

Last but certainly not least, I wish to thank all the companies and individuals who participated in

this research for the valuable time and invaluable insights you gave, I cannot cite you by name as

I'm bound to protect company confidentiality, but I wish to especially recognize Lee W., Jim W.

and Scott S. for scheduling and coordinating my numerous site visits and teleconference calls,

thank you for making this research happen and for making it enjoyable as well.

C Marc G. Haddad

This page intentionally left blank.

© Marc G. Haddad

TABLE OF CONTENTS

ABSTRACT .. 3

EX ECU TIV E SU M M A RY .. 5

A CK N O W LED G EM EN TS 8

TA B LE O F C O N TEN TS 10

LIST O F TA BLES 14

LIST OF FIGURES .. 17

N O M EN C L A TU R E ... 20

1. IN T R O D U C T IO N .. 22

1.1 PROBLEM STATEM ENT ... 23

1.2 MOTIVATION.. 23

1.3 RESEARCH O BJECTIVES... 26

1.4 RESEARCH Q UESTIONS... 27

1.5 THESIS OUTLINE .. 28

2. LITERA TU RE REV IEW 30

2.1 INSIGHTS FROM THE LITERATURE ON KNOWLEDGE INTEGRATION 32

2.1.1 Defining "Knowledge" in Knowledge Integration ... 33
2.1.2 An Operational Definition of Knowledge Integration............................ 38
2.1.3 The Gap in the Literature on Knowledge Integration........................... 45
2.1.4 The Tacit / Explicit Dimension... 48
2.1.5 The Formal / Informal Dimension .. 50
2.1.6 The Component / Architectural Dimension .. 52
2.1.7 The Vertical / Horizontal Dimension... 54
2.1.8 The Firm / Network Dimension 58
2.1.9 The Direct / Indirect Dimension ... 60
2.1.10 The Syntactic / Semantic / Pragmatic Dimension.............................. 62
2.1.11 The "Sticky" / "Leaky" Dimension .. 63
2.1.12 Summary of Insights on Knowledge Integration 66

2.2 INSIGHTS FROM THE LITERATURE ON PROBLEM SOLVING IN COMPLEX PRODUCT
D EV ELOPM EN T... 68

C Marc G. Haddad 10

2.2.1 Knowledge Integration for Different Problem Types .. 70
2.2.2 Knowledge Integration for Complex Problem Solving 79
2.2.3 Knowledge Integration in Problem-Solving Teams ... 83
2.2.4 Knowledge Integration in Problem-Solving Networks... 88
2.2.5 Summary of Insights on Problem Solving .. 90

2.3 INSIGHTS FROM THE LITERATURE ON ORGANIZATION DESIGN AND COMPLEX PD
LITERA TURE .. 92

2.3.1 The Link of Knowledge Integration to Product Complexity........................... . 94
2.3.2 The Link of Knowledge Integration to Product Architecture 97
2.3.3 The Link of Knowledge Integration to Product Platforms 101
2.3.4 The Link of Knowledge Integration to Organizational Structure 103
2.3.5 The Link of Knowledge Integration to Network Structure............................. 107
2.3.6 The Link of Knowledge Integration to Team Structure............................ 110
2.3.7 The Link of Knowledge Integration to Technology Maturity 115
2.3.8 Summary of Insights on Organization Design and Complex PD 117

2.4 SUMMARY OF LITERATURE REVIEW................................... 118

3. CONCEPTUAL FRAMEWORK 119

3.1 BASIC DIMENSIONS OF KNOWLEDGE INTEGRATION 119

3.1.1 Typology of Knowledge in Complex Product Development 120
3.1.2 Typology of Integration Mechanisms in Large-Scale Product Development 123

3.2 TOWARDS A FRAMEWORK FOR KNOWLEDGE INTEGRATION............................ 124

4. RESEA RCH LEN S... 127

4.1 W HY M ILITARY AVIONICS.. 128

4.2 A VIONICS OVERVIEW ... 130

4.2.1 Evolution of Avionics Architectures 131
4.2.2 Overview of the Multi-Function Radar System.............................. 136
4.2.3 Overview of the Electronic Warfare (EW) System 137
4.2.4 Overview of the Communication, Navigation and Identification (CNI) System 139
4.2.5 Overview of the Mission Computer (MC) System............................... 140

5.1 OVERVIEW OF THE RESEARCH CASES .. 142

5.2 RESEARCH M ETHODS 146

5.3 METHODS FOR FIELD DATA COLLECTION .. 149

5.3.1 Data Collection through Interviews 150
5.3.2 Data Collection through the Questionnaire Instrument 151

6. D A TA AN ALY SIS.......................... ... 155

C Marc G. Haddad

6.1 QUALITATIVE ANALYSIS OF THE INTERVIEW DATA 155

6.1.1 Main Characteristics of Knowledge Integration.......................... 156
6.1.2 Concept Development and Theory Building 165
6.1.3 Refined Conceptual Framework for Knowledge Integration......................... 187

6.2 QUANTITATIVE ANALYSIS OF THE QUESTIONNAIRE DATA.................................. 189

6.2.1 The Influence of Product Architecture on Knowledge Integration 190
6.2.2 The Influence of Problem Type on Knowledge Integration 200
6.2.3 The Influence of Problem Novelty on Knowledge Integration 207
6.2.4 The Influence of Technology Maturity on Knowledge Integration........................ 208
6.2.5 Dynamic Conceptual Framework for Knowledge Integration.......................... 210

7. C O N C L U SIO N S ... 214

7.1 M A JOR FIN D IN G S ... 2 14

7.1.1 Impermeable Cross-Program Boundaries 218
7.1.2 Indirect Relationships between Programs and Functions 220
7.1.3 Arm's Length Relationships between Prime and Supplier............................. 221

7.2 RESEARCH IMPLICATIONS .. 223

7.2.1 Implications for Complex Problem Solving 223
7.2.2 Implications for Organizational Integration 226

7.3 GENERAL RECOMMENDATIONS 230

7.4 FUTURE WORK ... 235

REFERENCES ... 238

APPENDIX A: FIELD INSTRUMENTS 249

A.1 SAMPLE EXPLORATORY INTERVIEW QUESTIONS: 249

A.2 SAMPLE FOCUSED INTERVIEW QUESTIONS: 250

A3: STRUCTURED QUESTIONNAIRE............................ 252

APPENDIX B: SUMMARY TABLES FROM INTERVIEW DATA REDUCTION 253

APPENDIX C: SUMMARY TABLES FROM QUESTIONNAIRE DATA REDUCTION 263

APPENDIX D: STATISTICAL CALCULATIONS... 272

APPENDIX E: RESEARCH PROTOCOL 274

C Marc G. Haddad

This page intentionally left blank.

C Marc G. Haddad

LIST OF TABLES

TABLE 1: OVERVIEW OF THE LITERATURE ON KNOWLEDGE INTEGRATION 47

TABLE 2: FORMAL VERSUS INFORMAL KNOWLEDGE INTEGRATION .. 51

TABLE 3: KNOWLEDGE INTEGRATION OVER INSULATED AND POROUS BOUNDARIES 65

TABLE 4: KNOWLEDGE INTEGRATION BY KNOWLEDGE AND ORGANIZATIONAL CHARACTERISTICS

... 6 6

TABLE 5: KNOWLEDGE INTEGRATION BY ORGANIZATIONAL CHARACTERISTICS........................... 67

TABLE 6: OVERVIEW OF THE LITERATURE ON PROBLEM SOLVING IN COMPLEX PRODUCT

D EV ELOPM EN T... 69

TABLE 7: PROBLEM CHARACTERIZATION IN THE LITERATURE ON PROBLEM-SOLVING 71

TABLE 8: KNOWLEDGE INTEGRATION BY PROBLEM TYPE ... 73

TABLE 9: PROBLEM SOLVING TEAMS IN COMPLEX PRODUCT DEVELOPMENT 86

TABLE 10: KNOWLEDGE INTEGRATION BY PROBLEM AND PROBLEM SOLVING CHARACTERISTICS 91

TABLE 11: OVERVIEW OF THE LITERATURE ON ORGANIZATION DESIGN AND COMPLEX PD

L ITERA TU R E .. 93

TABLE 12: PRODUCT ARCHITECTURES IN COMPLEX PRODUCT DEVELOPMENT 100

TABLE 13: PLATFORM DEPENDENCIES IN COMPLEX PRODUCT DEVELOPMENT 102

TABLE 14: ORGANIZATIONAL FORMS FOR COMPLEX PRODUCT DEVELOPMENT 104

TABLE 15: NETWORK TYPES FOR COMPLEX PRODUCT DEVELOPMENT 109

TABLE 16: NETWORK TYPES FOR COMPLEX PRODUCT DEVELOPMENT 110

TABLE 17: KEY DETERMINANTS OF TEAM STRUCTURE IN COMPLEX PRODUCT DEVELOPMENT.. 114

TABLE 18: EFFECTS OF TECHNOLOGY MATURITY ON COMPLEX PRODUCT DEVELOPMENT......... 115

TABLE 19: EFFECTS OF TECHNOLOGY MATURITY ON COMPLEX PRODUCT DEVELOPMENT 116

C Marc G. Haddad

TABLE 20: KNOWLEDGE INTEGRATION BY PRODUCT AND ORGANIZATIONAL CHARACTERISTICS 117

TABLE 21: COMMON THEMES FOR KNOWLEDGE INTEGRATION 118

TABLE 22: TYPOLOGY OF KNOWLEDGE INTEGRATION TYPES AND SOURCES 122

TABLE 23: TYPOLOGY OF KNOWLEDGE INTEGRATION MECHANISMS 124

TABLE 24: TYPOLOGY OF KNOWLEDGE INTEGRATION TYPES AND SOURCES 131

TABLE 25: AVIONICS DEVELOPMENT RESPONSIBILITIES OF THE PARTICIPATING ORGANIZATIONS

... 14 4

TABLE 26: AVIONICS DEVELOPMENT RESPONSIBILITIES OF THE PARTICIPATING ORGANIZATIONS

... 14 4

TABLE 27: ROUTINE KNOWLEDGE INTEGRATION IN LARGE-SCALE COMPLEX PRODUCT

D EVELOPM ENT... 158

TABLE 28: NON-ROUTINE KNOWLEDGE INTEGRATION IN LARGE COMPLEX PRODUCT

D EVELOPM ENT...................... ... 161

TABLE 29: INTRA-PROGRAM KNOWLEDGE INTEGRATION (ALONG CHANNELS #1 AND #2 IN

CONCEPTUAL FRAMEWORK) 166

TABLE 30: PROGRAM-TO-PROGRAM KNOWLEDGE INTEGRATION (ALONG CHANNEL #3 IN

CONCEPTUAL FRAMEWORK) ... 168

TABLE 31: FUNCTION-TO-PROGRAM KNOWLEDGE INTEGRATION (ALONG CHANNEL #4 IN

CONCEPTUAL FRAMEWORK) ... 170

TABLE 32: PRIME-TO-SUPPLIER KNOWLEDGE INTEGRATION (ALONG CHANNEL #5 IN CONCEPTUAL

FRAM EW ORK) .. 172

TABLE 33: KNOWLEDGE INTEGRATION ALONG OTHER CHANNELS (NOT INCLUDED IN CONCEPTUAL

FRAM EW ORK) .. 175

C Marc G. Haddad

TABLE 34: CONCEPTUAL CATEGORIES AND SUBCATEGORIES FOR KNOWLEDGE INTEGRATION... 177

TABLE 35: KNOWLEDGE INTEGRATION CONCEPTS FOR ROUTINE PROBLEM SOLVING............ 187

TABLE 36: KNOWLEDGE INTEGRATION CONCEPTS FOR NON-ROUTINE PROBLEM SOLVING........ 188

TABLE 37: OBSERVED KNOWLEDGE INTEGRATION STRATEGIES, PRACTICES AND MECHANISMS 211

TABLE 38: HEURISTICS FOR KNOWLEDGE INTEGRATION BY PRODUCT ARCHITECTURE AND

TECHNOLOGY N EW NESS .. 215

TABLE 39: HEURISTICS FOR PROBLEM SOLVING BY PROBLEM TYPE AND NOVELTY 216

TABLE 40: HEURISTICS FOR KNOWLEDGE INTEGRATION AND PROBLEM SOLVING BY SYSTEM

ARCHITECTURE AND PROBLEM COMPLEXITY 217

TABLE 41: INTRA-PROGRAM KNOWLEDGE INTEGRATION... 253

TABLE 42: PROGRAM-TO-PROGRAM KNOWLEDGE INTEGRATION .. 254

TABLE 43: FUNCTION-TO-PROGRAM KNOWLEDGE INTEGRATION .. 255

TABLE 44: PRIME-TO-SUPPLIER KNOWLEDGE INTEGRATION ... 256

TABLE 45: KNOWLEDGE INTEGRATION ALONG OTHER CHANNELS.. 257

TABLE 46: ENABLING CONDITIONS FOR KNOWLEDGE INTEGRATION............................ 258

TABLE 47: BARRIERS TO KNOWLEDGE INTEGRATION ... 259

TABLE 48: MOST FREQUENTLY CITED CONCEPTS AND PROPERTIES IN THE INTERVIEW DATA.... 262

TABLE 49: PROBLEM AND SYSTEM DATA .. 263

TABLE 50: PROBLEM SOLVING AND KNOWLEDGE INTEGRATION DATA.................................... 265

TABLE 51: KNOWLEDGE INTEGRATION DATA..................................... 267

C Marc G. Haddad

LIST OF FIGURES

FIGURE 1: SITUATING THE RESEARCH... 25

FIGURE 2: THESIS CONTRIBUTION AREA.. 31

FIGURE 3: THE KNOWLEDGE PYRAMID..36

FIGURE 4: THE BUILD-UP OF KNOWLEDGE ... 37

FIGURE 5: KNOWLEDGE INTEGRATION IN THE LITERATURE............................... 44

FIGURE 6: PRODUCT ARCHITECTURE, ORGANIZATIONAL STRUCTURE AND KNOWLEDGE

INTEGRATION 106

FIGURE 7: MAIN DIMENSIONS FOR THE KNOWLEDGE INTEGRATION FRAMEWORK 119

FIGURE 8: RESEARCH FOCUS ON DESIGN PHASE OF PRODUCT DEVELOPMENT PROCESS 121

FIGURE 9: PROPOSED FRAMEWORK FOR KNOWLEDGE INTEGRATION 125

FIGURE 10: TYPICAL MISSION SYSTEMS, APERTURES AND THEIR FUNCTIONS 127

FIGURE 11: KNOWLEDGE INTEGRATION IN MILITARY AVIONICS DEVELOPMENT 128

FIGURE 12: TYPICAL SYSTEM ARCHITECTURE FOR ADVANCED MILITARY AVIONICS 132

FIGURE 13: AVIONICS SYSTEMS ARCHITECTURE EVOLUTION... 135

FIGURE 14: MAIN CHARACTERISTICS OF AVIONICS SYSTEMS ARCHITECTURES 136

FIGURE 15: MULTI-FUNCTION AESA RADAR SYSTEM 137

FIGURE 16: SIMPLIFIED OVERVIEW OF EW SUBSYSTEMS ON FIGHTER AIRCRAFT 138

FIGURE 17: ADVANCED CNI SYSTEM FOR MODERN FIGHTER AIRCRAFT 139

FIGURE 18: MISSION COMPUTER ARCHITECTURES FOR MODERN FIGHTER AIRCRAFT 140

FIGURE 19: RESEARCH ROADMAP.................................... .. 142

FIGURE 20: OVERVIEW OF RESEARCH CASES AND INTERRELATIONSHIPS 143

FIGURE 21: INTERVIEW SUBJECTS BY ORGANIZATION (TOTAL INTERVIEWEES = 50)................... 145

C Marc G. Haddad

FIGURE 22: OVERVIEW OF PROBLEM CASES COLLECTED BY PROGRAM AND ORGANIZATION..... 154

FIGURE 23: ROUTINE KNOWLEDGE INTEGRATION IN LARGE-SCALE COMPLEX PRODUCT

DEVELOPMENT (RELATIONSHIPS SHOWN RELATIVE TO PROGRAM A).............................. 159

FIGURE 24: NON-ROUTINE KNOWLEDGE INTEGRATION IN LARGE-SCALE COMPLEX PRODUCT

DEVELOPMENT (RELATIONSHIPS SHOWN RELATIVE TO PROGRAM A).............................. 162

FIGURE 25: PRELIMINARY EMPIRICAL FRAMEWORK FOR KNOWLEDGE INTEGRATION IN LARGE-

SCALE COMPLEX DEVELOPMENT (RELATIONSHIPS SHOWN RELATIVE TO PROGRAM A) 164

FIGURE 26: KNOWLEDGE INTEGRATION IN ROUTINE PROBLEM SOLVING CONTEXTS 179

FIGURE 27: KNOWLEDGE INTEGRATION IN NON-ROUTINE PROBLEM SOLVING CONTEXTS 180

FIGURE 28: FREQUENCY OF CODES FOR KNOWLEDGE INTEGRATION PROPERTIES IN ROUTINE

PROBLEM SOLVING .. 183

FIGURE 29: FREQUENCY OF CODES FOR KNOWLEDGE INTEGRATION PROPERTIES IN NON-ROUTINE

PROBLEM SOLVIN G .. 184

FIGURE 30: REFINED KNOWLEDGE INTEGRATION FRAMEWORK .. 188

FIGURE 31: KNOWLEDGE INTEGRATION FOR PROBLEM SOLVING IN INTEGRATED ARCHITECTURES

............. 19 1

FIGURE 32: KNOWLEDGE INTEGRATION FOR PROBLEM SOLVING IN INTEGRATED ARCHITECTURES

.. 19 3

FIGURE 33: KNOWLEDGE INTEGRATION IN DIFFERENT ARCHITECTURE REGIMES 196

FIGURE 34: KNOWLEDGE INTEGRATION IN INTEGRATED ARCHITECTURES (CHANNEL 2 MOST

FREQUENTLY U SED) .. 197

FIGURE 35: KNOWLEDGE INTEGRATION IN MODULAR ARCHITECTURES.......................... 198

FIGURE 36: KNOWLEDGE INTEGRATION FOR DIFFERENT PROBLEM TYPES............................... 201

C Marc G. Haddad

FIGURE 37: KNOWLEDGE INTEGRATION FOR DESIGN PROBLEMS............................ 205

FIGURE 38: KNOWLEDGE INTEGRATION FOR SYSTEM INTEGRATION PROBLEM SOLVING.......... 206

FIGURE 39: KNOWLEDGE INTEGRATION BY PROBLEM NOVELTY.. 207

FIGURE 40: KNOWLEDGE INTEGRATION BY TECHNOLOGY NEWNESS 209

FIGURE 41: DYNAMIC FRAMEWORK FOR KNOWLEDGE INTEGRATION IN COMPLEX PROBLEM

SOLV IN G .. 2 12

FIGURE 42: FINAL FRAMEWORK FOR KNOWLEDGE INTEGRATION IN LARGE SCALE COMPLEX

PROBLEM SOLVING ENVIRONMENTS............................. 213

FIGURE 43: STRONG TIES IN KNOWLEDGE SHARING NETWORKS.. 228

FIGURE 44: WEAK TIES (DOTTED LINES) IN KNOWLEDGE SHARING NETWORKS...................... 229

FIGURE 45: THE KNOWLEDGE INTEGRATION DICHOTOMY 235

C Marc G. Haddad

NOMENCLATURE

AESA Active Electronically Steered Array

AI Artificial Intelligence

AMC Advanced Mission Computer

BFE Buyer Furnished Equipment

CDR Critical Design Review

CIP Common Integrated Processor

CNI Communications, Navigation and Identification

COMINT Communications Intelligence

COTS Commercial-Off-The-Shelf

CPR Common Problem Report

DOD Department of Defense

ECCM Electronic Counter-Counter Measures

ECM Electronic Counter Measures

ELINT Electronic Intelligence

ESM Electronic Support Measures

EW Electronic Warfare

EO Electro Optics

GHz Gigahertz

GPS Global Positioning System

ICP Integrated Core Processor

IFF Identification Friend-Or-Foe

IMA Integrated Modular Avionics

ILS Instrument Landing System

IPT Integrated Product Team

IT Information Technology

IR Infrared

IRAD Independent Research and Development

ITAR International Traffic in Arms Regulations

JSF Joint Strike Fighter

C Marc G. Haddad

MASA Modular Avionics System Architecture

MC Mission Computer

MF Radar Multi-Function Radio Aid to Detection and Ranging

MHz Megahertz

MMC Modular Mission Computer

MWS Missile Warning System

NASA National Aeronautics and Space Administration

TACAN Tactical Air Navigation

TWS Track-While-Scan

OSA Open System Architecture

PDR Preliminary Design Review

RF Radio Frequency

RWR Radar Warning Receiver

SA Synthetic Aperture

SATCOM Satellite Communications

SDD System Design and Development

SIGINT Signals Intelligence

SME Subject Matter Expert

SRR Systems Readiness Review

T/R Transmit/Receive

UHF Ultrahigh Frequency

USAF United States Air Force

VHF Very High Frequency

WBS Work Breakdown Structure

Greek Characters

S2 Chi-square goodness-of-fit test statistic

a Statistical significance level

© Marc G. Haddad

1. INTRODUCTION

The development of complex products requires widespread knowledge interactions between a

significant number of individuals and teams designing numerous interrelated component parts

(Eppinger 2002). Increasing product complexity typically leads to a further increase in the types

and sources of knowledge that need to be tapped during development, and a common strategy for

managing design complexity is to outsource component parts of the product to external suppliers

(Baldwin and Clark 1997). As a result, the knowledge required for development becomes

increasingly distributed across multiple boundaries spanning large-scale organizational networks,

thus requiring the subsequent integration of this knowledge in order to accomplish the

development task. The process of integrating knowledge to that end involves, in the first place,

the transfer of knowledge in the form of codified information and varied expertise, know-how

and skills from different sources with varied organizational affiliations (typically including the

customer, partners and/or suppliers, as well as other programs and functions in the prime

organization). However, since knowledge transferred is not necessarily absorbed, integration

also involves sharing the transferred knowledge at the recipient site.

It is also well established that "no matter how good the systems engineering process, it can only

succeed by the application of the skills and experience of individuals and teams, and successful

interactions between multidisciplinary organizations" (Moir and Seabridge 2006). This means

that the highest value-adding activity in product development comes during the actual use of the

knowledge acquired from multiple sources and disciplines in the course of problem solving. In

large-scale development of complex products, problem-solving occurs mostly at the level of the

integrated product teams (IPT's) responsible for different parts of the product and engaged at

different levels of the product design hierarchy (Browning 1996). Therefore, knowledge

integration, as defined in this thesis, consists of transferring knowledge in the form of individual

expertise and codified information from multiple teams across the organizational network,

combining it with existing knowledge through a process of knowledge sharing at the recipient

site, and applying the newly created knowledge to solve a specific problem. It is thus a highly

contextual process, and the mechanisms employed vary considerably depending on the nature of

the problem, the characteristics of the product system in question, and the relationships of the

C Marc G. Haddad

stakeholders involved, among other factors. This thesis will identify the main characteristics of

the knowledge integration process in complex product development environments in terms of the

most important channels, strategies, practices, and mechanisms for transferring, sharing and

applying knowledge in different problem solving situations.

1.1 Problem Statement

The nature of complex product development is such that no single team or organizational entity

has all the knowledge resources needed to tackle the entire development task on its own. It is

frequently the case that complex problem solving requires the collaboration of multiple

stakeholders with separate individual interests and sometimes having conflicting goals. The

main question of interest in this research is therefore about how large-scale organizations are

able to collaboratively integrate their knowledge resources in order to develop highly complex

products, and to what extent are common collaborative arrangements effective in this context.

1.2 Motivation

The need for integrating diverse knowledge from multiple sources across large-scale

organizational boundaries is a real world problem for organizations engaged in the development

of complex systems, as already outlined in the introduction of this thesis. Furthermore, the

knowledge integration phenomenon is currently poorly understood both in the literature and in

practice, especially in terms of the lack of empirical evidence about how organizations can better

integrate knowledge in order to solve complex problems more efficiently and effectively (De

Boer, Van Den Bosch et al. 1999; Hansen, Nohria et al. 1999). This has direct consequences on

the time and cost of developing complex products since some of the major sources of cost and

schedule overruns in complex product development are the time and resources employed to

troubleshoot unforeseen technical problems at various stages of the development process.

Therefore, this constitutes the primary motivation for this research which aims to provide an

improved understanding of the knowledge integration phenomenon, as well as to provide

recommendations for how organizations can better integrate their knowledge resources and

sustain their competitive advantage.

C Marc G. Haddad

The second main motivation in this research is the need for a deeper and more holistic

exploration of the knowledge integration phenomenon in different problem solving contexts, and

specifically in how the use of different knowledge integration conduits and devices can benefit

the expensive and difficult troubleshooting of major technical problems. Troubleshooting in

engineering environments is accomplished by applying the organization's problem-solving

capabilities in order to diagnose and solve problems (Fujimoto 1999), with problem solving

becoming increasingly complicated in line with the growing difficulty of the problems

encountered. In complex product development, problem difficulty is a function of the complex

interdependencies at the level of the product design itself, as well as at the level of the

stakeholder relationships between the numerous teams and organizations involved in the

problem-solving effort (Braha and Bar-Yam 2007), which makes it imperative for the developing

organization to streamline its problem solving process in order to accomplish complex tasks

efficiently and effectively. Organizations employ several routine and non-routine conduits and

devices to that end, all of which involve the integration of knowledge from different sources

inside and outside the organization (Grant 1996a). This makes the integration of knowledge a

key enabler of problem solving and a major factor in the bottom line of any complex product

development project. Therefore, the second motivation for this research is the lack of a holistic

examination and analysis of the relationships between the knowledge integration process and the

troubleshooting environment and the need to determine how knowledge can be integrated more

efficiently and effectively in different troubleshooting contexts.

This investigation is especially relevant for large-scale product development where knowledge

resources are typically spread thin over multiple programs, as well as being often poorly

allocated relative to the needs of each program or project to begin with, which amplifies

troubleshooting events into a continuous, chaotic and wasteful phenomenon known as

"firefighting" (Repenning 2001). As a result, large-scale organizations engaged in complex

product development have a vested interest in evolving their technical problem-solving

capabilities through more efficient and effective integration of their engineering knowledge

resources, thus reducing the cost and time to develop complex systems (Takeishi 2002).

Therefore, this research carries direct benefits to large-scale organizations involved in complex

C Marc G. Haddad

product development in terms of providing new and practical insights for how to better leverage

their dispersed knowledge resources and enhance their competitive position in the market.

A final motivation of this research is in the need to address the theoretical gaps in the literature

on knowledge integration, namely the lack of clear and precise definitions of the most essential

elements and processes that form the basis of the integration phenomenon. The body of

literature on knowledge integration being an emerging and relatively nascent thrust in the

knowledge view of organizational science, it is rife with high-level, vague and often conflicting

definitions and interpretations, which presents an opportunity for theoretical contributions in

terms of improved definitions at both the conceptual and operational levels. This not only

contributes to the field of knowledge integration itself, but also carries implications for related

theory such as organizational and inter-organizational learning where the focus is on how

organizations can share and absorb new knowledge across internal and external boundaries in

ways that do not compromise their competitive advantage. An improved understanding of the

principles and strategies for integrating knowledge will therefore provide new insights for

learning across organizational boundaries since knowledge integration is by definition based on

mutual learning through collaboration during problem solving. Figure 1 situates this work in the

overall study of organizations and product development, with knowledge being at the core of all

organizational processes, and the integration of knowledge being enabled by (but not restricted

to) information technology and having implications for organizational and product evolution.

F .-I_ýli/E

Adapted from: Nightingale and Rhodes, 2006

Figure 1: Situating the Research

C Marc G. Haddad

Orgniz

aKo:I

Inomato

1.3 Research Objectives

I begin this work on the topics of knowledge integration and complex problem solving with an

expressive quote from the television sitcom "Frasier", where TV psychiatrist Frasier Crane helps

people with their problems through his radio show, and where the words to one of the jingles in

the show say: "If you've got a problem, if you're feeling low, looking for some answers, things

you need to know, all you've got to do is ask, all you've got to do is ask" - "Frasier", Season 7,

"They 're playing our song". Even as I had heard this jingle several times in the past, I only

came to appreciate the importance of the simple and elegant message within as I engaged in this

work, where it became apparent that half of the battle to solving any problem, no matter how

simple or difficult, is in knowing where to get the right knowledge, and how to get it.

The primary objective in this thesis is to identify the most commonly used channels, strategies,

practices and mechanisms for integrating knowledge across team and organizational boundaries

in a complex product development context, focusing on military avionics development as a

research lens as it offers a rich context for examining a wide variety of complex problems and

policy challenges facing the knowledge integration process.. The primary outcome from this

research is therefore in the development and validation of a conceptual framework describing the

knowledge integration process in military avionics development, with generalizable conclusions

for similar technology-based complex engineering environments in other industries.

The second main objective of this research is to empirically validate existing theory about

knowledge integration in different complex product development environments by performing a

comprehensive analysis of how specific elements of the integration process are used in different

problem solving contexts with varying levels of complexity. Specifically, the research will

frame the knowledge integration process for different types of development problems and

different product architectures, as well as different levels of problem novelty and technology

maturity. The outcome from this part of the investigation will provide a better understanding of

the knowledge integration phenomenon and allow for practical recommendations for how

C Marc G. Haddad

organizations can better integrate their knowledge resources in specific problem solving

environments.

The third objective of this research is to provide general heuristics for knowledge integration in

terms of rules of thumb for how organizations can better enable the knowledge integration

process under different problem solving conditions with varying degrees of system and

organizational complexity. Secondary objectives in this research are 1) bolstering the theoretical

foundations for the emerging field of knowledge integration with conceptual and operational

definitions currently absent or poorly defined in the existing literature, and; 2) identifying the

most important enablers and barriers most commonly encountered in complex development

environments, and providing recommendations in terms of best practices for organizational

integration and complex problem solving.

In summary, and compared with previous studies which only focused on the transfer or sharing

part of knowledge integration, such as the investigation of the frequency of inter-team

communication in complex product development (Sosa, Eppinger et al. 2000b), the main

contribution from this research is in a) providing a more complete framing of the knowledge

integration phenomenon (including the transfer, sharing and application of knowledge in

complex problem solving), and b) in framing knowledge integration under different

troubleshooting contexts and offering recommendations for improvement.

1.4 Research Questions

Following from the discussion in the previous section on the primary objectives in this research,

the main research question can be articulated as follows:

How do large-scale organizations integrate diverse knowledge from multiple sources across

internal and external boundaries in order to solve complex problems efficiently and effectively

during the product development?

Four secondary questions frame the investigation of this research, as follows:

C Marc G. Haddad

1. What are the types and sources of engineering knowledge in the development of complex

systems?

2. What are the channels, strategies, practices and mechanisms for integrating knowledge in

this context?

3. How is knowledge integration informed by characteristics of the problem and the

organizational context at hand?

4. What are the technology, management and policy issues in this context?

In the process of addressing these questions, a theoretical framework for knowledge integration

will be developed in this thesis and validated empirically in the field.

1.5 Thesis Outline

This thesis is organized along the same sequence of steps followed in the course of developing

and validating the conceptual framework for knowledge integration, as detailed below. In

addition to the main chapters, four appendices are also provided that detail the research protocol

adopted in this work and summarize major steps and outcomes from the data analysis.

Chapter 2 is a review of the three main bodies of literature applicable in this work, namely the

literature on knowledge integration and problem solving, complex product development and

organizational design. The chapter summarizes and connects together the main insights of most

relevance for this research. In addition, conceptual and operational definitions for knowledge

integration are developed in this chapter and grounded in existing theory.

A preliminary knowledge integration framework developed based on existing insights is then

proposed in Chapter 3, along with typologies for knowledge types, channels and integrative

© Marc G. Haddad

mechanisms which will serve to guide the field inquiry into the knowledge integration

phenomenon.

Chapter 4 gives an overview of military avionics systems as the research lens in this work. A

description of the different systems of interest, their main roles and functions, and the evolution

of system complexity and architecture as the main characteristics of interest in this research are

also given.

Chapter 5 provides an overview of the research cases investigated in the field and the research

methods and procedures used to collect the data, namely the grounded theory method for

interview data collection and analysis, and a questionnaire instrument for collecting frequency

data about different knowledge integration characteristics in specific problem solving situations.

Chapter 6 deals with data analysis for both qualitative and quantitative data, and offers a series of

refinements for the originally proposed knowledge integration framework based on the data

analysis outcomes.

Finally, Chapter 7 presents major conclusions, implications and recommendations from this

research, and summarizes the main theoretical and practical contributions as well as potential

future directions for expanding on this work.

© Marc G. Haddad

2. LITERATURE REVIEW

The academic void that this research aims to address is in the absence of a theoretical framework

for how large-scale enterprises integrate their knowledge resources within and across

organizational boundaries in order to solve technical problems in the development of complex

product systems. This puts the investigation in this work at the intersection of the main bodies of

literature on knowledge management, organization theory and complex product design and

development, namely:

a. Knowledge Integration theory, specifically the literature addressing the types and

characteristics of knowledge in organizations (Nonaka 1994; Von Hippel 1994) and the

integration channels, mechanisms and strategies employed for integrating knowledge in

organizations and large-scale networks (Grant 1996b; Okhuysen and Eisenhardt 2002).

The concept of knowledge integration is the basis for the emerging knowledge-based

view of the firm (Kogut and Zander 1992; Grant 1996a; Nickerson and Zenger 2004)

which concerns itself with the efficient appropriation of knowledge for production, and

while the theory behind it remains relatively undeveloped, it draws on and parallels

significant previous work in such areas as knowledge transfer (Aoshima 2002; Carlile

2004), knowledge sharing (Dyer and Nobeoka 2000; Hansen 2002), organizational

learning (Senge 1994; Argote 1999) and boundary spanning (Star 1989; Carlile 2002).

b. Problem Solving theory, specifically the literature addressing how individuals and teams

search for and acquire knowledge from across the organization in order to solve technical

problems in complex product development (Clark and Fujimoto 1991; Hansen 2002;

Cross and Sproull 2004). This literature provides useful insights for understanding the

key characteristics of problems and problem solving approaches that are typical in this

context (Jonassen 2000; Postrel 2002), as well as for determining how problem solving is

enabled by different knowledge integration channels, mechanisms and strategies in

different problem situations (Daft and Lengel 1986; Eisenhardt and Tabrizi 1995;

Nickerson and Zenger 2004).

C Marc G. Haddad

c. The literature on Organization Design, specifically the areas addressing the influence of

organizational and team structure on problem solving (Robertson and Langlois 1995;

Dosi, Hobday et al. 2000) and on information sharing and transfer (Browning 1996;

Christensen, Verlinden et al. 1999). This literature provides insights into which

knowledge integration strategies/practices, channels and mechanisms are appropriate in

different organizational contexts.

d. The literature on Complex Product Design and Development, specifically those

contributions highlighting the knowledge interactions and actors involved in the system

design and integration processes, and the influence of key product attributes such as

system architecture, complexity and technology maturity on coordinating interactions at

the team and organizational levels (Henderson and Clark 1990; Sako 2003). Inferences

from this literature are used for establishing a link between the product development and

the knowledge integration processes (Sanchez and Mahoney 1996; Hoopes and Postrel

1999; Sosa and Eppinger 2002).

The area where this research is expected to make a contribution can be visualized in Figure 2

below:

n ornnznifinn rf einn I ~nruZrln
Complex Produc

Literature
>n

Thesis Contribution:
Framework for

iKnowledge Integration In
Complex Systems Development
...........

Problem-Solving &
Systems Engineering

Literature

Figure 2: Thesis Contribution Area

(Marc G. Haddad

Following is a review and summary of the major insights from previous work in the three areas

introduced above.

2.1 Insights from the Literature on Knowledge Integration

All contemporary perspectives in organization theory seem to converge on the relatively recent

realization that knowledge is the most strategic resource of the firm (Nonaka 1994; Grant and

Baden-Fuller 1995; Conner and Prahalad 1996), that it is central to all production activities

(Prahalad and Hamel 1990), and essential for creating and sustaining competitive advantage

(March 1991; Nonaka and Takeuchi 1995; Prusak 1996). This is because knowledge (comprised

of information, know-how, technology and skill) has become the differentiator between firms,

especially in the context of developing high-technology complex products and services where

rapid technological evolution and product/process innovation can make or break even the most

established of firms (Utterback 1996; Grant 1996a).

Several of these emerging perspectives have been concerned with developing a new knowledge-

based theory of the firm (Demsetz 1988; Kogut and Zander 1992; Foss 1993; Spender 1996;

Grant 1996a), with many of those contributions reflecting an evolution of the earlier resource-

based view of the firm where knowledge now replaces physical assets such as capital and

infrastructure to become the most valuable and useful resource in the organization (Conner and

Prahalad 1996). The knowledge-based view further advocates that the organization's primary

role is to leverage its knowledge resources efficiently and effectively for production and

competitive advantage (Prusak 1996; Nonaka and Teece 2001). This is in contrast with previous

thinking from Frederick Taylor to Herbert Simon that placed emphasis solely on the information

part of knowledge, such as that captured in rules, procedures and work practices and where the

organization was mainly seen as an information-processing entity concerned with efficiency in

coordinating and managing information in order to increase output, independently of the actors

involved and of the larger environment in which the organization exists (Simon 1973). The

knowledge-based view instead recognizes that knowledge is information supplemented with

context and experience, in other words knowledge that is most important for organizations is not

C Marc G. Haddad

just the data or scientific formulas or principles that can be expressed in words and numbers and

which can be readily found in reports and manuals, but it is also the interpreted and enacted form

of this information held by experienced and specialized members of the organization (Nonaka

and Takeuchi 1995). The organization's primary concern then becomes one of integrating

(sometimes the term "combining" is used) all of its dispersed knowledge resources in order to

apply them in production, and as a means of creating new knowledge out of different and novel

combinations of existing knowledge (Grant 1996a). It is precisely this process by which

organizations integrate knowledge that is the concern of this thesis, where the focus is on

understanding the "how-to" of knowledge integration in a particular organizational context. But

before addressing what constitutes knowledge integration, the following section will start by

providing an overview of what is meant by the term "knowledge" in the organizational context,

and how the term is used in this thesis in particular.

2.1.1 Defining "Knowledge" in Knowledge Integration

Much has been written in economics and organization theory about the related concepts of

knowledge and information, starting with the pioneering views of the economist Alfred Marshall

who was the first to advocate that "knowledge is the most powerful engine ofproduction", and

who advanced a positivist view of knowledge as an objective and fixed asset to be efficiently

utilized by the organization. Later works by Friedrich Von Hayek and Michael Polanyi defined

the powerful concept of tacit (or implicit) knowledge held by individuals, also known as

subjective knowledge, and that is evolved through personal experience (Polanyi 1966), with the

organization being a repository of this knowledge and its structure a means for maximizing

knowledge utilization. These early views of knowledge (i.e. the objective and subjective views)

gave two important but very different perspectives with little convergence between them, and in

fact it can be argued that the two are diametrically opposed since the subjective view of

knowledge resonates more with the anti-positivist philosophy. However, the positivist view of

knowledge remained dominant in the literature through much of the early period of the

information age, where knowledge was seen as a tangible asset belonging to the organization

instead of the individual (Penrose 1955), and which was paralleled in practice with a consistent

focus on maximizing the efficiency of knowledge exploitation by the organization. The

C Marc G. Haddad

objective view of knowledge was also later reinforced by Herbert Simon's framing of the

organization and its members as information processors, a concept rooted in his earlier principle

of "bounded rationality" describing the cognitive limitation on the ability of individuals to

process information (Simon 1973). What this meant for the organization was that the design of

authority and decision-making structures had to minimize information overload on the

individual; as a result, and in order to make up for this human limitation, organizations had to

increase their collective capacity for processing information through machines and infrastructure

(Simon 1973; Galbraith 1974). The Simonian principle was later put into wide practice with the

modem revolution in information technology when organizations turned their attention almost

exclusively to the implementation of information systems for moving and managing codified

information quickly and cheaply. But the overemphasis on information processing in

organizations over the past few decades came at the expense of developing and retaining the

more dynamic and valuable tacit knowledge of individuals, and it wasn't until recent success

stories from the Japanese tradition in knowledge management (as demonstrated by the success of

the Japanese manufacturing industry) that attention in professional practice turned again to the

tacit dimension of knowledge (Womack, Jones et al. 1991; Nonaka and Takeuchi 1995; Womack

and Jones 1996).

The ensuing reaction against the information-centric view of knowledge generated a host of

perspectives still common today that completely separate knowledge from information and data.

In this reactionary view, the use of the term "knowledge" is short'for describing personal tacit

knowledge exclusively, namely to the exclusion of objective information and data. The practical

driver behind this differentiation was the recent realization of the significant value of individual

tacit knowledge in production, something that was previously ignored by organizations in favor

of superior information processing capabilities. The theoretical underpinning of this view is the

reasoning that knowledge is exclusive to the individuals who create it and develop it out of their

own personal experiences, making it a very personal asset (Nonaka 1994). Knowledge is thus

considered synonymous with the subjective beliefs and values of each individual (or group of

individuals), and as such cannot be confused or lumped with objective facts and observations. In

that sense, knowledge and personal knowledge become one and the same, while objective

C Marc G. Haddad

information and data are seen as separate from personal knowledge and held separately in books

and organizational repositories.

While the above appears to be a largely semantic differentiation, it is nonetheless important to

note it here for the purposes of this work since it bears direct consequence on what constitutes

knowledge in the organization, and therefore what ultimately constitutes knowledge integration

which is the central concern of this thesis. Specifically, the limited focus on tacit knowledge

under the previous definition downplays the importance of information and data in production,

and ignores their role in various knowledge processes in the organization. This not only

contradicts reality in everyday practice, but is also incompatible with widely accepted theory

about knowledge creation and learning in organizations where knowledge is considered both

tacit and explicit (Nonaka and Takeuchi 1995). In this modem view, both subjective beliefs and

objective information are seen as essential components of knowledge' which complement each

other in a closed-loop cycle of knowledge creation, such that explicit knowledge is the result of

articulating tacit knowledge and codifying it into generic information, whereas tacit knowledge

is evolved by internalizing information to learn and develop new skills. Similarly in recent

perspectives on knowledge integration, knowledge is described as inclusive of information,

technology, know-how and skills (Grant 1996a). Here information refers to the codified part of

knowledge that is already captured in documents or electronic format; know-how refers to the

tacit or subjective knowledge of individuals that is developed through experience and which can

be embodied or embedded in technologies, products and tools; and skill refers to the innate

personal knowledge of individuals evolved through practice and learning-by-doing. This last

definition does not separate information from knowledge, but it does not lump or confuse the two

concepts together either.

Given the overview of the theory presented above, the practical question for this research as

posed at the outset in section § 2.1 remains: What is knowledge in knowledge integration? The

historical debate clearly suggests that the inclusive knowledge definition is more useful from the

1 (Machlup, 1978) defines information as a constituent part of knowledge while making a distinction between the
two concepts - information is described as a flow of messages which might add to, restructure or change knowledge
that is anchored on the commitment and beliefs of its holders. (Nonaka, 1994) elaborates on this definition to
describe the knowledge creation process as the interplay between tacit knowledge and explicit information.

C Marc G. Haddad

perspective of knowledge integration as it does not exclude the objective part of knowledge from

the integration process, while at the same time keeping a distinction with the subjective form of

knowledge. Therefore, there is more value for this work in adopting the more inclusive view

since it leads to a more comprehensive framework of the knowledge integration process. This is

in contrast to the exclusivist view which would lead to the exclusion of information and data

from the investigation.

Specifically, in this thesis I use the term knowledge to refer to both the objective (raw data and

information) held by the organization, and the subjective (know-how and skills) held by

individuals, and I adopt the established view that different types of knowledge are not created

equal in that there is a knowledge hierarchy where the subjective knowledge of individuals is the

most valuable for competitive advantage. This hierarchy is illustrated in the "knowledge

pyramid" shown in Figure 3 below.

Coni
4

Subjective

Objective

Figure 3: The Knowledge Pyramid

As the above figure illustrates, the hierarchy in the composition of knowledge is based on

subjective context, with personal knowledge (or tacit knowledge) being the most contextual and

specialized, while impersonal knowledge (or explicit knowledge) is generic and more abstract.

Each level of the pyramid builds on the previous level through added context, with raw data

C Marc G. Haddad

(such as the output of a testing process) as the least contextual form of knowledge, followed by

information which is made up of raw data that has been processed and put into some context 2

(such as charts and tables that establish relationships between the data), yielding structured or

unstructured observations and facts; know-how is then information supplemented with analysis

and interpretation or deduction (and can be embodied in physical technologies or products); and

finally skill is know-how supplemented with further experience and innate abilities. The process

of contextualizing generic data into highly specialized skill is illustrated in Figure 4.

Apply

Analyze

Process

Acquire

Figure 4: The Build-up of Knowledge

The above figure shows that while knowledge includes information and data, they do not by

themselves constitute knowledge in its modem definition. It also shows that individual

knowledge takes the most processing and is therefore hardest to build, thus it provides the

organization having access to it with competitive advantage. Furthermore, individual knowledge

is indeed a higher level of knowledge as shown in Figure 4 since it is the type of knowledge that

requires the cognitive processing of individuals. However, it is important to note that in an

2 Note that explicit knowledge is not only created from the bottom up by adding context to raw data and information

as defined here, but also from the top down by abstracting and capturing tacit know-how and personal skills, such as

the explicit knowledge found in science or mathematics books which has been generalized to be true in any context.

In both cases, explicit and objective knowledge are considered synonymous since they are both abstract and generic.

C Marc G. Haddad

organizational context, all types of knowledge have their usefulness in solving problems and

accomplishing tasks, and are valued differently in different situations.

In summary, this section has introduced the two main types of knowledge that are important for

production in organizations, the first is the subjective knowledge of individuals (also referred to

as tacit, implicit, or personal knowledge) which takes the form of individual know-how and

skills, and the second is objective knowledge (also referred to as explicit, codified or impersonal

knowledge) made up of data and information and which is captured in written or electronic

format. This thesis is concerned with both subjective and objective types of knowledge, and

specifically with how they are integrated in a large-scale complex product development context.

The concept of knowledge integration will be defined in the following section. Subsequent

sections will further address the specifics of knowledge and knowledge integration in the context

of complex product development. That is, this section has only addressed the question: "What is

knowledge?" to clarify what is meant by the term knowledge in its most general sense; further

discussion in § 2.1.6 on component and architectural knowledge will address the question:

"Knowledge about what?" to specify what types of knowledge are of interest in this thesis within

the specific context of complex product development.

2.1.2 An Operational Definition of Knowledge Integration

As already discussed in the previous two sections, the knowledge-based view in the literature

advances the argument that knowledge most relevant for production is created and held by

individuals in the course of performing tasks as well as during socialization and reflection

(Nonaka and Takeuchi 1995). This means that the organization's knowledge resources are

distributed and dispersed across the organization, especially in large-scale multi-program

enterprise networks where much of the production knowledge resides in the supplier base,

outside of traditional firm boundaries (Baldwin and Clark 1997). Therefore organizational

performance in the knowledge era is no longer dependent on coordinating tasks and managing

information only, but rather on the ability of the focal firm to continuously integrate its dispersed

"pockets" of specialized knowledge efficiently and effectively (i.e. in novel and sustainable

ways) in order to carry out its production activities and maintain competitive advantage (Kogut

C Marc G. Haddad

and Zander 1992; Purvis, Sambamurthy et al. 2001) However despite the wide consensus in the

literature on the prominence and centrality of knowledge in production activities and the role of

the organization as a knowledge integrator, there is still very little theory on what constitutes

knowledge integration (Brown and Duguid 2001), and even less on how this integration is

accomplished in practice in terms of the actual organizational channels and mechanisms for

integrating knowledge (De Boer, Van Den Bosch et al. 1999; Takeishi 2002). Indeed the

concept of knowledge integration remains fairly conceptual, meaning that it is still at a fairly

high-level of aggregation and lacking a sufficiently detailed common operational definition.

Thus a prerequisite to researching the mechanics of knowledge integration is to start with a

definition that is more specific and better scoped than what is provided in the current literature.

A starting point for a conceptual-operational definition is the one proposed by (Grant 1996a) in

which knowledge integration is "a process for coordinating the specialized knowledge of

individuals". While this definition clarifies what is involved in knowledge integration (e.g. a

coordination process involving the tacit knowledge of individuals), it remains tautological from

an operational perspective, in the sense that it describes integration as coordination, which is an

equally open-ended concept by Grant's own disclaimer that "organization theory lacks a

rigorous ... well developed and widely agreed theory of coordination", or as Herbert Simon

describes it in more extreme terms: "... 'coordination' is what we say when we don't know what

we are talking about" 3. Grant goes on to define integration in terms of broad categories of

mechanisms for coordinating knowledge between individuals depending on the interdependency

of the task they need to accomplish between them, which can be summarized as 1)

communication systems, documents and routine procedures for coordinating explicit

information, and 2) group problem-solving for coordinating the personal know-how and

experience of individuals. Grant's definition of integration is thus very much in line with

contemporary views of organizational coordination as "managing dependencies between

activities" using "processes of information transfer and group decision making" (Malone and

Crowston 1991; Malone and Crowston 1994), so much so in fact that it makes it even harder to

distinguish between what constitutes integration versus coordination.

3 Even in more recent attempts at developing a theory of coordination, the authors (Malone and Crowston 1991;
Malone and Crowston 1994) acknowledge the difficulty inherent in defining the concept of organizational
coordination in operational terms, and provide a long list of diverse definitions commonly used in the literature.

© Marc G. Haddad

In addition, the difficulty with Grant's approach is that it makes the operational part of

integration (in other words the mechanisms of knowledge integration) as the basis for defining

the concept itself rather than the other way around, where a clearly defined concept is the basis

for how to operationalize it. In fairness to Grant, who is widely considered as the father of this

concept and one of the pioneers of the knowledge-based view of the firm, his approach did draw

clear boundaries as to what knowledge integration is not. However, the lack of clarity at the

inception and early definition of the concept left the door open for many speculative and equally

open-ended or even conflicting definitions that followed. It is thus that many authors have come

to define knowledge integration as a collection of many related and unrelated activities from

knowledge creation to acquisition, transfer, storage, utilization and even maintenance of

knowledge, and sometimes all at once - see for example (Yang 2005). At the other extreme,

some definitions are minimalist to the point of being at an even higher level than the starting

definition, where the concept of integration is simply reformulated as "absorbing" and

"blending" - see for example (Balaji and Ahuja 2005). In between these two extremes are a host

of definitions that confuse integration with coordination, communication, cooperation, and/or

collaboration, among others. However this variety in defining the concept of knowledge

integration is not all due to the lack of a clear foundational definition; it is in fact indicative of

another difficulty inherent in the concept of integration itself, namely that it is indeed a multi-

faceted process involving activities which are overlapping and often cannot be clearly separated4 .

But when considering the dispersed nature of knowledge in the organization, especially in large-

scale organizational networks where knowledge is distributed across vast boundaries, knowledge

integration becomes first and foremost synonymous with acquiring and assembling knowledge

from diverse sources in the course of practice, first acquiring knowledge to where it is needed

through established relationships between source and recipient, and then assembling (or

combining) it with the receiver's current knowledge so that the resultant knowledge can be used

to accomplish a task. Integration is therefore accomplished when the organization is able to

perform a task that it could not complete with existing knowledge alone. In this sense, the

4 Merriam Webster dictionary defines integration as the process of"uniting with something else" or "incorporating
into a larger unit".

C Marc G. Haddad

resultant (integrated) knowledge is greater than the mere combination of acquired and existing

knowledge since new (additional) knowledge may be created in the combination process, as well

as in the process of putting the combined knowledge to practical use. Therefore, integration by

this definition is distinct from and superior to acquisition and combination alone despite any

colloquial similarity in terms; the latter are in fact subsets of integration and clearly not

equivalent to the complete process of integration. Thus, staying true to Grant's original intent

for what constitutes knowledge integration, I offer the following conceptual definition:

The highlighted terms above embody the key ideas in the concept of knowledge integration as

already posited in the existing literature. And while the term "bringing knowledge to bear" is

largely conceptual, it can in fact be made operational in a number of ways that do not leave room

for conflicting interpretations since it can be mapped to distinct organizational processes, namely

the acquisition of new knowledge from diverse sources through established relationships

between source and recipient, its combination with existing knowledge at the recipient site and

the utilization of the resultant knowledge in the course of practice. In organizational terms,

acquiring knowledge translates to a process of transfer between source and recipient, combining

knowledge translates to a process of sharing with different members or groups at the recipient

site, and using the resultant knowledge in practice translates to a process of applying it to

accomplish a task, which is typically in the course ofproblem-solving. In other words, the

knowledge integration process consists of sub-processes that involve the transfer, sharing and

application of knowledge in order to solve problems. I note here that a common claim in the

literature is that knowledge transferred and/or shared is not necessarily appropriated or absorbed

by the receiver, often due to the absence of a common knowledge base or due to syntactic or

semantic differences (Cohen and Levinthal 1990; Carlile 2002). It follows that knowledge

appropriation is an important aspect of the knowledge integration process, and it can be argued in

principle that the integration process cannot be fully described without taking the appropriation

part into consideration. However, as noted previously in this section, the appropriation or

C Marc G. Haddad

Conceptual Definition for Knowledge Integration:

Knowledge integration is bringing diverse knowledge from multiple sources to bear on a

complex problem or task.

absorption concept is very difficult to operationalize explicitly, such that it is impossible to talk

about channels or mechanisms for knowledge absorption for example. Instead, the literature on

organizational boundaries (sometimes also referred to as knowledge boundaries) incorporates the

underlying factors affecting knowledge absorption, namely the differences in syntax and

semantics noted above, into different types of boundaries that knowledge must be integrated

across (Star 1989; Carlile 2004). As such, I include the concept of organizational boundaries as

one of the main dimensions in my definition of knowledge integration, and I assume that

knowledge which has been successfully transferred across boundaries and successfully applied to

solve problems has been necessarily absorbed to some degree already (section § 2.1.9 addresses

in more detail the underlying factors related to knowledge absorption). Expanding on the

conceptual definition offered above, I propose the following operational definition:

This definition builds on the original concept proposed in (Grant 1996a) while bounding the

process of integration to clear and unambiguous sub-processes used in practice. An example of

tacit knowledge integration by this definition is when multiple individuals are transferred from

different organizations to form a taskforce where they share and apply knowledge together in

order to accomplish a complex task. Similarly, an example of explicit knowledge integration is

when previous solution information, such as a solution template, is transferred from a database

and customized to solve a complex problem. Integration is therefore accomplished only when

knowledge is transferred, shared and applied. As a result, integration must be inclusive of all

three sub-processes and cannot be considered equivalent to knowledge transfer alone or

knowledge sharing by itself for example. However, in some cases it is not necessary to carry out

one or more sub-processes in order to achieve integration, such as for example when the

knowledge required is already on site (e.g. resident on the team), and thus does not need to be

transferred across boundaries.

C Marc G. Haddad

Operational Definition for Knowledge Integration:

Knowledge integration is the process of transferring knowledge, both tacit and explicit,

across organizational boundaries, sharing it with individuals and teams at the recipient site,

and applying the resultant knowledge to solve problems.

The definition is scoped to include only those sub-processes which are most relevant to the

concept of integration (encompassing the "where", "what" and "how" of knowledge integration)

and that are readily observable in practice (in contrast to such abstract concepts as absorbing or

blending), which makes it an operational definition for the purposes of this research. It is

important to note here that while this definition makes the concept of knowledge integration

operational, it does not define the concept itself in terms of any operational specifics as is the

case in the definition proposed by Grant. In other words, the actual mechanisms for transferring,

sharing and applying knowledge do not form the basis for defining what integration means, this

is why they do not figure in the definition proposed here. Instead, the concept is defined

independently of any of the means for "how-to" operationalize it.

Also, by this definition, integration is not identical to processes of coordination, cooperation,

collaboration or communication as advanced in other definitions of knowledge integration, nor is

it contradictory or exclusive of these processes (e.g. sharing or applying knowledge can be

accomplished by individuals collaborating on a task, just like transferring knowledge may be

accomplished by communication systems or individuals coordinating their information

resources). In that sense, knowledge integration by this definition is inclusive of all of these

activities without being confused with or limited to one or more of them. It is also in line with

related or very similar concepts to that of integration and which are commonly adopted in the

literature, such as the foundational concept of "knowledge combination" described as a process

of "acquiring and using knowledge...in practice" (Brown and Duguid 1991; Kogut and Zander

1996), as well as the concept of organizational learning by exploration (of new knowledge) and

exploitation (of existing knowledge) (March 1991).

In addition, the proposed definition is consistent with the widely established view that the value

of knowledge is fully realized when it is interacted in a closed-loop cycle of socialization,

combination, internalization and externalization known as the SECI framework for knowledge

creation (Nonaka and Takeuchi 1995) since the first two (socialization and combination) are

processes where knowledge is transferred and shared, while the latter (internalization and

externalization) are processes by which individuals apply knowledge and learn-by-doing.

Consistency between the two concepts (i.e. integration and creation) is important since new

© Marc G. Haddad

knowledge is created out of the integration process and therefore the two concepts are not

entirely distinct or orthogonal. Finally, this definition is complete and purposeful in terms of

highlighting the role of the knowledge integration process as an enabler of problem solving

(Carlile 2002; Nickerson and Zenger 2004), and specifically in a team environment as originally

proposed in (Grant 1996a).

Figure 5 below situates the concept of knowledge integration (as defined above) in the overall

literature on knowledge.

Literature Domains

Knowledge Creation Knowledge Transfer Knowledge Utilization

r ------- 1
Organizational

Learning
--- ---- .

r'--------1
I Knowledge

Management
L-------

Adapted from Choo & Bontis, 2002

Figure 5: Knowledge Integration in the Literature

As Figure 5 illustrates, knowledge integration in the existing literature concerns itself mostly

with the process of transferring / sharing knowledge across organizational boundaries, while also

being connected to the utilization (or application) part of the overall literature on knowledge, and

to a lesser extent with the literature on knowledge creation (since new knowledge is created out

of the integration process). The operational definition for knowledge integration provided in this

© Marc G. Haddad

Knowledge Integration

Knowledge-based theories

I Information Processing i
I --

1--~--~'---------
I Knowledge across boundaries I
I - - - -- I

section is in line with the general principles advanced in these bodies of literature in terms of the

fundamentals for "how" knowledge is created, transferred and utilized in an organizational

context.

2.1.3 The Gap in the Literature on Knowledge Integration

With an operational definition of knowledge integration in hand as specified in the previous

section, I propose to address in this thesis the academic void about how knowledge is integrated

in organizations, specifically the strategies/practices 5, channels and mechanisms 6 by which

knowledge is transferred, shared and applied in large-scale organizational networks in order to

solve problems in the development of complex products. As already highlighted by several

authors, there is a gap in the literature on framing the mechanics of the knowledge integration

process in practice. According to (De Boer, Van Den Bosch et al. 1999), while knowledge

integration has been explored in some detail as a concept, there is a lack of insights about what

firms actually do to integrate their knowledge: "...the use of the term combination of(Kogut and

Zander 1992) runs parallel to the term integration used by (Grant 1996a), and the term

configuration used by (Henderson and Clark 1990). What is neglected in mostpublications,

however, is a specification of the different combination or integration mechanisms afirm has at

its disposal... " Similarly, (Hansen 2002) argues that the knowledge transfer literature "does not

shed much light on the integrative mechanisms that would allow one business unit to obtain

knowledge from another. "

As discussed in the previous section, there are some first-order insights in the literature on how

knowledge is integrated in organizations, such as about the use of systems, documents and

procedures as mechanisms for integrating explicit knowledge, versus group problem solving for

integrating the skills and know-how of individuals (Grant 1996a). However, these insights

remain very general and there is currently no research on the mechanics of knowledge

integration in specific contexts, such as determining the exact integration mechanisms that are

s The terms "strategies" and "practices" are used interchangeably in this thesis to refer to broad action plans set by
an organization with a primary or ultimate objective of integrating knowledge (e.g. a strategy of knowledge reuse or
a practice of sharing lessons learned).
6 The term "mechanism" is used to refer to the specific means by which knowledge is integrated under a particular
strategy/practice (e.g. a database of lessons learned).

C Marc G. Haddad

most frequently used in a particular organizational context, or which group structure is most

efficient and effective in a particular problem solving context. The current literature does not

address the mechanics of knowledge integration in any great detail either, such as determining

the specific channels along which certain mechanisms are most typically used, or which specific

types of systems, documents and procedures are used to integrate knowledge along a particular

channel.

The absence of insights about the mechanics of knowledge integration is especially relevant for

research in complex product development where the organizational context typically consists of

large-scale networks of highly dispersed knowledge "pockets", and where the development

process requires the integration of very diverse knowledge resources. In such situations,

knowledge interactions can involve multiple parties and can be affected by several

environmental factors, from the structure of the developing organization to the characteristics of

the product under development, among others, with different product characteristics and

organizational forms requiring different types of channels, mechanisms, strategies and practices

for integrating the required knowledge to accomplish the development task. (Takeishi 2002)

makes this case in his discussion of knowledge integration and management across prime-

supplier boundaries when he says "...evidence on organizational mechanisms for effective

knowledge management remains somewhat anecdotal... We need to build more empirical, wide-

ranging studies ofproducts with different architectures. "

Based on the evidence above about the lack of insights on the mechanics of the knowledge

integration process, the remainder of this chapter will be focused on exploring the existing

literature with an eye for the "how-to" of knowledge search, transfer, sharing and application

during problem solving, especially in a large-scale complex development context. I begin by

reviewing a sample of seminal studies which have already explored different characteristics and

factors affecting knowledge integration, as shown in Table 1 below. This table presents an

overview of the most cited and most recent literature relevant to the operational aspects of

knowledge integration, illustrating the major insights from various perspectives on the topic.

© Marc G. Haddad

Table 1: Overview of the Literature on Knowledge Integration

Reference Focus Method Relevant Conclusions/Results
Ancona & External team interactions with the Conceptual & Vertical negotiation and horizontal task coordination as well as
Caldwell, 1992 environment Hypothesis-test scouting for technical knowledge increase team performance

Aoshima, 2002 Knowledge transfer across product Hypothesis-test Transfer system knowledge by rotating engineers; transfer
generations component knowledge by documents and information systems

Carlile, 2004 Knowledge integration across syntactic, Conceptual & IT systems, liaison individuals and negotiators or modelers to
semantic and pragmatic boundaries Empirical transfer, translate and transform knowledge respectively

De Boer et.al, Knowledge integration as a function of Conceptual & Integrating design and architectural knowledge relies on the firm's
1999 organizational forms and capabilities Case-study socialization, coordination and information systems capabilities

Dyer & Knowledge integration through collective Conceptual & Network-wide communities, people rotation, dedicated resources
Nobeoka, 2000 learning routines across organizations Empirical and free assistance to members increase network learning

Edmondson & Knowledge integration to bridge gaps across Conceptual & IPT members compensate for knowledge gaps by drawing on
Sole, 2002 geographically dispersed IPT's Case-study broader and deeper expertise and skills in communities of practice

Grant, 1996 (a) Knowledge integration as the basis for the Conceptual Efficient knowledge integration by using multiple informal and
knowledge-based theory of the firm formal mechanisms, tacit and explicit, flexibly and simultaneously

Grant, 1996 (b) Knowledge integration as the means for Conceptual Tacit knowledge is integrated by routine tasks and activities,
evolving organizational capability explicit knowledge by codified directives, procedures, technology

Hansen, 2002 Knowledge integration across team Conceptual & Direct inter-team connections are beneficial for transferring tacit
boundaries in an organizational network Hypothesis-test knowledge, but inefficient for transferring codified knowledge

Hoopes & Product development performance as a Conceptual & Increasing product complexity requires increased knowledge
Postrel, 1999 function of intra-firm knowledge integration Case-study sharing across boundaries and early specs development

Nonaka & Creating new knowledge through a cycle of Conceptual Knowledge must spiral up from individuals to groups and across
Takeuchi, 1995 articulating, sharing, combining, absorbing organizational boundaries in order to realize its value

Okhuysen & Formal interventions for improving group Hypothesis-test Questioning others enables knowledge integration in groups,
Eisenhardt, 2002 flexibility and knowledge integration while information sharing internally has little to no impact

Szulanski, 1996 Impediments to knowledge transfer inside Conceptual & Knowledge ambiguity, lack of trust and arm's length relationships
the organization Empirical impede the transfer of knowledge inside the organization

© Marc G. Haddad

The preceding overview of the literature in Table 1 above is meant to highlight the main themes

and dimensions of relevance to the "how-to" of knowledge-integration, and which will be

enumerated and elaborated on with specific insights in the following subsections.

2.1.4 The Tacit / Explicit Dimension

As already introduced in § 2.1.1, one of the most useful and commonly discussed themes in the

literature on knowledge in organizations is the distinction between tacit and explicit knowledge

(Nonaka and Takeuchi 1995; Spender 1996; Grant 1996a; Hansen, Nohria et al. 1999). In

categorizing knowledge based on its many different types, the tacit and explicit characterizations

are the two foremost dimensions by which every other kind of knowledge can be further

described, from design knowledge to business knowledge and others. (Polanyi 1966) is widely

considered to be the authoritative source on the concept of tacit knowledge which he defines as

personal knowledge acquired through experience and which is inseparable from an individual's

aptitude, beliefs and commitment. In that sense tacit knowing is like riding a bicycle, it is

knowledge acquired through experience and becomes an innate skill that we cannot easily

describe to others except through personal demonstration. This is why Polanyi argues that tacit

knowledge is difficult to transfer to others, something he explains with a famous quote when he

says of people: "we know more than we can tell" (Polanyi, 1966: p.4). In contrast, explicit

knowledge is the part of knowledge that is readily articulated and has been or can be captured in

written or electronic format (Nonaka and Takeuchi 1995; Spender 1996), such as low-level

information in the form of raw data, or situated information in the form of scientific principles.

To illustrate the fine distinction between tacit and explicit knowledge in practice, consider the

recent real-life troubleshooting event in July of 2005 where NASA, a very large-scale

organization with massive information resources especially in terms of documented rules and

procedures, was unable to troubleshoot a fuel sensor malfunction until the retired engineer who

designed part of the system 30 years earlier was brought out of retirement to help diagnose the

problem 7. This is because the knowledge that individuals accrue through long years of

experience and specialization, as well as their innate skills at specific tasks, are often difficult to

7 http://edition.cnn.com/2005/TECH/space/07/19/space.shuttle/index.html - accessed May 15, 2007

C Marc G. Haddad

capture and pass on as codified information. This example shows that tacit knowledge is

different from and more valuable than explicit knowledge, without the two being completely

independent of each other. To further illustrate this distinction with a more common example,

consider the difference between the information found in a cookbook (i.e. the steps in a recipe)

and the cooking knowledge of the chef (i.e. the skills and accumulated know-how of the cook).

Following a recipe or knowing many recipes does not necessarily make one a great chef; instead

it is the innate skills developed over time and the experience from deductions and interpretations

through analysis, trial-and-error and learning-by-doing that distinguish a great chef who can

create great tasting food from an ordinary cook who can only create ordinary tasting food.

Similarly, the distinction between a junior engineer and a senior engineer is not only measured in

terms of the amount of information each one retains (indeed a junior engineer may have

memorized more information from books and manuals than a senior engineer). However it is the

experience of the latter in analyzing and interpreting facts and deducing insights from

information that separates his or her skill level from that of a junior engineer (Vincenti 1990).

There is wide agreement in the literature as well as in practice that tacit knowledge is more

valuable for organizations than explicit knowledge, since the latter can be easily obtained from

books and databases, whereas tacit knowledge is held by individuals who take it with them when

they leave the organization (Nonaka and Takeuchi 1995; Grant 1996b). The value of tacit

knowledge becomes even more relevant in high technology environments where explicit

knowledge becomes obsolete very quickly (Prusak 1996; Davenport and Prusak 1998). Tacit

knowledge is also considered as the real source of competitive advantage since it is difficult to

imitate (Nonaka and Takeuchi 1995; Prusak 1996; Spender 1996), whereas knowledge that has

been codified can be readily absorbed by others (Takeuchi and Nonaka 2004). It is however

argued that both tacit and explicit knowledge are interdependent and inseparable (Brown and

Duguid 2001), and that they are complementary in terms of their usefulness for production, so

that the presence of both is necessary for competitive advantage as they are the two essential

components in the process of creating new knowledge (Nonaka and Takeuchi 1995). More

simply put, an organization without experienced and highly skilled employees would not be able

to compete, while an organization without procedure manuals or computer software would not be

able to produce.

© Marc G. Haddad

When it comes to transferability of knowledge, there are different views in the literature on how

much of tacit knowledge is transferable, where most authors argue that at least a part of an

individual's tacit knowledge can be transferred to others through observation (such as watching a

an artist draw) or learning-by-doing (as in attempting to draw under the artist's supervision),

while a minority argue that tacit knowledge is personal skill that is acquired with little help from

others and that cannot be taught (Gourlay 2006). In contrast there is wide consensus on the fact

that explicit knowledge is easily transferable through documents and information systems

(Hansen, Nohria et al. 1999), making it also easy to imitate by competitors.

For the purposes of this research, I adopt the more generally accepted notion that tacit knowledge

may be integrated through personal interaction such as face-to-face communication and group

interaction, whereas explicit knowledge can be readily integrated through documents and

information systems (Grant 1996b). This classification makes up the first dimension in the

"how-to" of knowledge integration.

2.1.5 The Formal / Informal Dimension

Knowledge is interacted within and between organizations through formal and informal

instruments (i.e. the channels and mechanisms by which knowledge is flowed). Formalized

instruments are those instituted by the organization for the purposes of transferring, sharing and

applying knowledge, while informal channels are those created and maintained by individual

members of the organization (Davenport and Prusak 1998). Both types of instruments are

considered of equal importance from the perspective of knowledge integration, where informal

channels and mechanisms serve to complement the formalized ones, and as such they both are

necessary components of the knowledge integration process (Grant 1996a).

Examples of formalized channels for transferring and sharing knowledge are the coordination

links embedded in organizational hierarchies where by virtue of one entity reporting to another,

knowledge is formally and routinely flowed between them (Grant 1996a). Formalized channels

for transfer and sharing as well as for applying knowledge are also embedded in the

C Marc G. Haddad

infrastructure of the organization, such as the numerous facilities and systems typically provided

for carrying out tasks and activities, from conference rooms to information systems. (Galbraith

1974) identified liaison devices, task forces, and permanent committees as some of the key

formal mechanisms for integrating knowledge across multiple teams in an organization. Other

examples of formal mechanisms instituted along formal channels are routine or regular meetings,

official directives, databases, communities of practice, among countless others. Examples of

informal channels are the personal networks and relationships between individuals that are either

created and/or maintained by those individuals with little or no formalization by the organization.

The mechanisms employed along informal channels are also informal in nature, with some of the

more common examples including online communities, after-hours socializing, or even what is

known as the "grapevine" in reference to indirect communication channels inside the

organization (Johnson, Donohue et al. 1994). Both formal and informal channels can be intra- as

well as inter-organizational. However due to the competitive nature of inter-firm relationships,

formalized channels are more dominant, such as formalized prime-supplier communication

channels through contracts, site visits, and shared databases. Both formal and informal channels

have advantages and disadvantages which vary depending on the organizational context and the

circumstances governing the knowledge integration process. A good summary of the typical

strengths and drawbacks of formal versus informal instruments is given by (Davenport and

Prusak 1998): "...the main advantage of informal networks is that they are self-updating and

adaptive since they consist of people continuously interacting with each other...In contrast, more

formal systems such as electronic repositories become stale as soon as they are established." The

above insights are reframed and summarized in Table 2 below:

Table 2: Formal versus Informal Knowledge Integration

Integration Dominant
Knowledge Integration Characteristics

Channels Mechanisms

Prime-Supplier Formal Shared systems, site visits, contracts, boundary objects

Intra-firm Formal Information systems, teams, meetings, liaison devices

Intra-firm Informal Personal networks, online communities of practice

C Marc G. Haddad

Finally, it is important to note that formal instruments are by definition a means for the

organization to formalize knowledge interactions between parties with pre-defined relationships,

which reduces ambiguity in the knowledge integration and problem solving processes. As such,

formal channels and mechanisms are most efficient when dealing with problems that are highly

ambiguous. On the other hand, informal knowledge interactions between friends/trusted

colleagues provide a high element of trust for knowledge integration where both parties consider

each other as equals and have no apprehension about openly communicating their knowledge.

Thus, problems where mediation is necessary can benefit from informal interactions.

2.1.6 The Component / Architectural Dimension

Perhaps the second most commonly discussed dimension (after the tacit/explicit theme) in the

modem literature on organizational knowledge is the one pertaining to product development

knowledge, namely the distinction between component (or component-specific) knowledge and

architectural knowledge (Henderson and Clark 1990; Sanchez and Mahoney 1996; Baldwin and

Clark 1997; De Boer, Van Den Bosch et al. 1999; Aoshima 2002; Takeishi 2002). Recalling that

a complex product is a design hierarchy comprising several subsystem modules where each is

formed by different component technologies (Ulrich 1995), it follows that there are different

layers of knowledge corresponding to the product's design structure, including knowledge about

component parts, subsystem modules and the overall architecture of the system. Component

knowledge, which is also referred to as subsystem knowledge or design knowledge, is then

defined as the knowledge an organization or an individual possesses about the product's core

design concepts and how they are implemented in particular parts of the system, such as a

component part or a subsystem module (Henderson and Clark 1990). In other words, component

knowledge is the knowledge required to design and develop one of the "black boxes" in the

system, and includes scientific and engineering knowledge (or discipline-specific knowledge)

related to the design characteristics and functionality of the box. Architectural knowledge, also

known as system or layout knowledge is defined as the knowledge about how the different

components or black boxes of a system are integrated together into a coherent whole. More

precisely, it is the knowledge about how interdependent components interface together in order

C Marc G. Haddad

to deliver the required functional performance for the system (Ulrich 1995). Examples of

component knowledge of interest in this thesis are knowledge about subsystem requirements,

specifications and standards, and knowledge about component materials, functional and

structural design, and core technology. Examples of architectural knowledge of interest in this

thesis are knowledge about system requirements, specifications and standards, and knowledge

about structural and functional coordination between components8 .

The component/architectural distinction is important for knowledge integration since different

types of knowledge are more efficiently integrated through different types of channels and

mechanisms, as already discussed in § 2.1.4 on the tacit/explicit dimension above. In this case,

since component knowledge consists of scientific and engineering knowledge that is readily

captured in explicit form, it can be easily transferred, shared and applied through documents and

information systems. In contrast, architectural knowledge is considered to be difficult to learn

and imitate since it is embedded in the tacit knowledge of the organization (Henderson and Clark

1990). In a recent empirical study, (Aoshima 2002) shows that architectural knowledge is best

integrated within an organization by rotating experienced systems engineers from old projects to

new ones. In the same study, Aoshima demonstrates that component engineers refer to

documents and reports more frequently than system integrators, which validates the view that

component design knowledge is more readily integrated through explicit mechanisms, while

architectural knowledge integration relies on people interactions.

In complex systems development, suppliers are typically tasked with design and development of

parts of the system (i.e. different subsystems that are part of the overall system), while the prime

contractor is tasked with architecting the overall system and integrating the various subsystems

at the end (Fine and Whitney 1996; Wissmann and Yassine 2005). It is thus considered that

most component knowledge is resident in the supplier base, while most architectural knowledge

is retained by the prime organization. From this perspective, there is an emphasis both in theory

and in practice on the establishment and utilization of explicit knowledge integration channels

and mechanisms across prime-supplier boundaries, while tacit integration channels and

8 Note that these different types of knowledge constitute the "know-what" of knowledge integration in the context of
product development and that are of concern in this research specifically, and therefore this knowledge typology
provides an answer to the question of "knowledge about what?" as posed in § 2.1.1

C Marc G. Haddad

mechanisms are more emphasized internally to the one organization (see § 2.3.2 for a further

explanation of the influence of product architecture on the nature of knowledge interactions

between prime and supplier organizations). This practice is reinforced by the imperative for

prime organizations to protect their architectural knowledge as the most important source of their

competitive advantage, as well as the need for module suppliers to make the most of their

modular innovations by introducing them at the right time and for maximum value (Robertson

and Langlois 1995). However, in the context of complex systems development, the increasing

demands on component suppliers for greater capability and functionality of components and

subsystems they provide, as well as the increasing interdependence between different modules in

the overall system designed and assembled by the prime, make it such that suppliers need further

visibility into the overall product architecture, while the system integrators need further

knowledge of the internal workings of the various components and subsystem modules. This is

most evident at the integration stages of complex systems where different supplier-provided

components and subsystem modules are assembled together in the overall system, and where

troubleshooting of problems necessitates intense knowledge interactions between prime and

supplier organizations that go beyond the exchange of explicit component knowledge. In fact,

current research findings from the automotive industry show that for complex designs involving

new technologies, systems engineers need a high level of component-specific knowledge from

the supplier (Takeishi 2002).

I conclude that for complex product development, the integration of component and architectural

knowledge cannot be clearly delineated along internal/external organizational boundaries as is

typical in the development of relatively simple products. It is therefore imperative to establish

both tacit and explicit channels and mechanisms for integrating component and architectural

knowledge within and across organizational boundaries, regardless of the role of the

organizations involved in the development process.

2.1.7 The Vertical / Horizontal Dimension

(Demsetz 1988) and (Grant 1996a) define organizational boundaries in terms of knowledge

dependencies between different stages of production along two dimensions, namely the

C Marc G. Haddad

horizontal (across different specialties or different projects in the same organization) and vertical

(across different organizations or different hierarchies in the same organization). They argue that

vertically linked stages of production A and B will be integrated within the same firm if

production at stage B requires access to knowledge utilized in stage A, as is the case in the

development of tightly interconnected products which are more efficiently developed in-house

(efficiency here is equivalent to minimizing high coordination costs across organizational

boundaries (Christensen, Verlinden et al. 1999)). In this case, vertical knowledge integration

would be internal to the firm, such as between engineering and manufacturing, or between

subsystem level and system level teams inside the same program. Otherwise if stage B output

can be accomplished independently of stage A, then production can take place in separate firms,

as is the case in the development of modular systems where some parts of the system are

efficiently outsourced to suppliers as separate modules (Baldwin and Clark 1997). In this case,

vertical knowledge integration would be along a channel linking prime and supplier

organizations.

Similarly, it is argued that horizontal integration will take place within a single firm in cases of

knowledge interdependence between two parallel stages of production, as is the case in multi-

product firms (Nobeoka and Cusumano 1994). In this case, horizontal knowledge integration

would be between different programs within the same organization. In related lines of research,

scholars have also demonstrated the importance of having horizontal linkages between different

subunits within the same organization in order to have effective coordination and open

knowledge sharing internally. This research has shown that a subunit's information processing

capacity is enhanced by horizontal inter-unit integration mechanisms (Galbraith 1974; Hansen,

Nohria et al. 1999; Gupta and Govindarajan 2000). However, the current literature is silent on

horizontal integration inside a single function or program, such as would be the case between

different system teams or between multiple subsystem teams belonging to the same program.

This is because of a common assumption in the current literature that integration takes place

across traditional organizational boundaries such as those separating the firm and its environment

or market (Santos and Eisenhardt 2005), or those separating different organizational entities

within the same firm (Clark and Fujimoto 1991), as in integration across different functions (for

example, between engineering and manufacturing), across different programs or projects (for

C Marc G. Haddad

example, integration between different generations of the same product or between independent

product lines (Nobeoka 1993)), across different vertical layers in the organizational hierarchy

(for example, between management and production), or altogether different and independent

organizations (for example, between prime and supplier (Takeishi 2001)). As such, the concept

of integration as framed in the literature does not explicitly address the horizontal boundaries

between subunits or teams within the same entity and at the same level in the hierarchy, such as

system-level or subsystem-level teams belonging to the same program. This is due to the

continuing dominance of the static view in the literature which frames the firm in terms of its

conventional divisions, thus limiting the extent of horizontal integration to one between

traditional or economically separate entities (Foss 1996a). But this does not reflect the reality of

knowledge integration in complex product development where large system and subsystem

teams often constitute separate autonomous entities even within the same program or function

(Browning 1997). In this context, the knowledge integration picture would not be complete

without taking into account the horizontal channels linking different teams within the same

program or function.

An example of inter-team horizontal knowledge integration is typically seen in the development

of hybrid "modular-integral" systems where functional interdependencies between subsystem

modules are complex enough that they cannot be fully specified and easily assembled without

extensive horizontal interactions between the different subsystem teams. In such cases, which

are common in the development of highly complex and customized products such as military

aerospace systems (Moir and Seabridge 2006), different teams develop different subsystem

modules separately, but are forced to interact together extensively during system integration in

order to troubleshoot emergent problems due to the complex interdependencies between the

different subsystems. Thus, most of the knowledge integrated at that stage is along the

horizontal channels inside the same program at the subsystem team level.

To further complete the characterization of knowledge integration along the vertical and

horizontal dimensions, I note the related concept of lateral linkages which is not tackled in the

literature on knowledge integration, or which is used synonymously with horizontal

© Marc G. Haddad

relationships 9 - for example in (Galbraith 1974). Similarly, (Gupta and Govindarajan 2000) use

"lateral" linkages in the same vein as horizontal relationships where they define lateral

socialization mechanisms as those between "peer" nodes or units, such as horizontal personnel

transfers inside the same organization. The closest attempt at discussing lateral linkages for

integrating knowledge separately from horizontal relationships is found in (De Boer, Van Den

Bosch et al. 1999), who define lateral knowledge integration as coordination and communication

channels that cut across lines of authority, with mechanisms such as liaison devices between

individuals or groups. By this definition, lateral integration channels can be considered as those

crossing intra-firm boundaries to connect different entities at various levels of the hierarchy, with

the purpose of bridging gaps in tacit knowledge and expertise. Building on these insights, I

define lateral linkages as specifically those channels linking programs and functions, where the

latter supply new knowledge to programs through mechanisms such as people rotation and

liaison devices as suggested in the literature. In a product development context, functional

personnel are domain specialists with deep expertise and up-to-date knowledge, which makes

lateral linkages under this definition more likely to be used for integrating new tacit knowledge

held by individual experts. Lateral linkages are therefore most useful in the development of

complex and high technology products due to the increasing breadth and depth of disciplinary

knowledge required to develop such products as well as the need for more up-to-date knowledge

in these new technology environments (Allen 2000).

With a more complete picture of the vertical, horizontal and lateral dimensions for knowledge

integration, we can conclude that knowledge integration in complex product development takes

place simultaneously along all three types of channels, but with varying emphasis based on the

level of knowledge dependence between the different tasks being performed, which is reliant on

the level of dependence between the different parts of the product under development. Thus, in

order to determine the paths and mechanisms for knowledge integration in a particular product

development context, it is important to look at the characteristics of the product under

development and those of the problems encountered during development as surrogate measures

9 Merriam Webster defines "lateral" as directed toward, or coming from the side, while "horizontal" is defined as
directed toward individuals or entities of similar status on the same level. It is common to see the two concepts
used interchangeably in organization research - see for example (Tushman and Nadler, 1978) and (Hansen, 2002).
I classify lateral linkages (such as the links between programs and functions) separately from horizontal links (as
those between two programs or two teams in the same program) and independently of hierarchical (vertical) order.

© Marc G. Haddad

of the knowledge dependence between different production stages and tasks. The relationship

between the knowledge integration process and the characteristics of problems and products will

be reviewed in detail under § 2.2 and § 2.3 respectively.

2.1.8 The Firm / Network Dimension

The knowledge-based view of the firm (Kogut and Zander 1992; Grant 1996a) argues that firms

are more efficient than markets at integrating tacit and explicit knowledge due to their collective

coordination and communication mechanisms (i.e. the infrastructure) and a unifying

organizational culture (e.g. shared values, goals and vision) that fosters collaboration. It then

naturally follows that a network of several firms with a shared purpose would have more

knowledge and more integrating mechanisms at its disposal than a single firm and hence would

be superior at integrating knowledge than a single firm. Such a network would be different from

a collection of traditional buyer-supplier relationships which are typically vertical, one way and

at arm's length. Instead, an inter-organizational network is a collection of "peers" where

relationships are many-to-many instead of one-to-many, and where network flows can involve

technology and know-how exchanges, joint product development activities, cooperative research,

and collaborative marketing arrangements, among others (Grant and Baden-Fuller 1995).

However, there are many barriers that prevent networks from openly integrating their knowledge

resources for the collective good of all members, most important of which are the proprietary

barriers designed to protect each firm's knowledge from being imitated by outsiders. In a study

of Toyota's high-performing network, (Dyer and Nobeoka 2000) identified three major

dilemmas facing knowledge sharing in a network setting as: 1) proprietary barriers, 2) free-rider

problems and 3) network infrastructure issues. The authors outlined four main strategies,

practices and mechanisms that the Toyota Group uses to overcome these dilemmas, namely: 1) a

network level association for sharing information through regular meetings, mutual training and

socializing events; 2) a coordinating unit responsible for knowledge acquisition, storage and

diffusion through free on-site assistance to network members, 3) sub-network level forums for

specialized knowledge sharing in small groups of members, and 4) inter-firm employee transfers.

The combined strategies and mechanisms establish a versatile infrastructure of multi-lateral

C Marc G. Haddad

relationships between all members, providing each one with superior benefits from participating

in the network, thus incentivizing the members to overcome their silo mentality maintained by

each one's proprietary issues. These strategies and mechanisms also foster norms of reciprocity

between members where being helped with a problem is contingent on one's commitment to

helping others.

At first glance, one is tempted to believe that the Toyota model is based mostly on fostering

"good intentions" between members, as perhaps best illustrated by the motto of the Four

Musketeers "all for one and one for all". However, underlying this collaborative environment is

a carrot-and-stick approach by Toyota where financial and other penalties are enforced against

members who do not abide by the rules and norms of the network. This indicates that a strong

shared identity and purpose among network members is not as easily implemented as in the

single firm. As such, a network of organizations cannot be considered a true peer-to-peer

arrangement like the open sharing "P2P" networks linking users of modem computers, rather

there is always a need for leadership by a prime organization to mediate, facilitate and oversee

the network to some degree, depending on internal and external factors such as network

architecture and market forces for example (Gomes-Casseres 1994) (see § 2.2.4 in this thesis for

a review of the characteristics of problem solving networks and § 2.3.5 for a review of the

knowledge integration properties of different network structures).

Inter-organizational networks are increasingly common in product development due to the

increasing demands for quality and capability in even the simplest of products, which translates

to an increasing need for a wide variety of discipline-specific knowledge along with the need for

deep specialization in multiple knowledge domains. As a result, organizations are less and less

able to find all the knowledge they need within their own walls, and are faced with growing

reliance on outside suppliers to provide the specialized knowledge required for the design and

development of different parts of their product (Prencipe 2000). This is especially true in the

development of complex systems where the required technical knowledge and expertise are more

and more dispersed across large-scale networks of multi-tiered suppliers. This means that

knowledge integration in complex product development is no longer confined to the walls of a

single firm or to bilateral channels between prime and supplier, but can also encompass entire

© Marc G. Haddad

networks composed of multiple organizations at different levels or tiers in the network. It then

follows that the framing of knowledge integration in a complex product development context

cannot be firm-centric only, and needs to account for the different strategies, practices and

mechanisms that are useful in a network context.

Finally, it is important to note that while there are tangible benefits from network participation

such as increasing performance in terms of increased quality, productivity and reduced inventory

as has been shown in previous research (Dyer and Nobeoka 2000), there are nonetheless

disadvantages inherent in network arrangements, such as knowledge dependence by smaller

members on the lead or central firm in the network (Gomes-Casseres 1994), or rippling problems

from one or more parts of the network which end up affecting other member firms directly or

indirectly (e.g. if a new member upsets the balance of internal competition with an existing

member, the benefits from network participation would decline not only for the two affected

members but possibly for the entire network due to the decline in performance by two of its

members).

The main insight from the firm / network distinction in the literature is that while the single firm

is generally most efficient at integrating tacit and explicit knowledge within its walls, it is

nonetheless not as effective at knowledge integration as a network of multiple organizations tied

together through a strong shared identity, norms and rules.

2.1.9 The Direct / Indirect Dimension

(Hansen 2002) characterizes knowledge integration channels as either direct or indirect, where

direct channels are those that provide immediate access to knowledge without going through

intermediate connections, whereas indirect channels are those that go through intermediaries,

such as boundary spanners or gatekeepers, in order to access knowledge from another source.

The difference between direct and indirect channels is in the relative degree of their usefulness in

the knowledge integration process, both in terms of efficiency (speed and cost of integration) and

effectiveness (ease of absorption and relevance of the integrated knowledge to the problem).

C Marc G. Haddad

Based on the concept of absorptive capacity advanced by (Cohen and Levinthal 1990), it is

argued that direct channels between product development teams are most efficient for

transferring tacit knowledge which is difficult to articulate and therefore more difficult to absorb

than explicit knowledge. In such cases, effective mechanisms are individual face-to-face

interactions or team meetings where knowledge about new technologies or product-specific

technical know-how are quickly and more easily articulated and transferred from the source to

the recipient. Indirect channels in such cases are only effective for identifying potential

knowledge sources, but they are considered ineffective for integrating tacit knowledge due to the

potential of distortion by intermediaries as they interpret the knowledge between source and

recipient. (Hansen 2002) demonstrates that 1) the more direct channels a product development

team has for integrating tacit knowledge, the more efficient they will be at accomplishing their

task, and 2) the less intermediate connections an indirect channel has to go through, the more

efficient the team will be in acquiring knowledge to accomplish their task. It is important to note

here that the direct/indirect distinction pertains only to tacit knowledge integration, since

codified knowledge can be readily integrated through conduits in the organization's

infrastructure such as information systems and documents (as mentioned previously in § 2.1.2

and § 2.1.4).

Another perspective in the literature on the direct / indirect dimension is briefly discussed by (De

Boer, Van Den Bosch et al. 1999) where knowledge integration is characterized as a process that

can be directly or indirectly accomplished. Direct knowledge integration is defined as pre-

designed integration where the expected outcome is pre-determined, such as integration using

systems, manuals and policies specifically designed by the organization to accomplish a certain

level of explicit knowledge integration. In that sense, direct is synonymous with directed

integration. Indirect integration is defined as a guided (as opposed to directed) process where the

outcome of integration is not pre-determined, and which involves autonomous agents, such as in

the formal training and education of personnel or the establishment of formal liaison devices.

In summary, I conclude that tacit knowledge integration is most efficiently accomplished by

establishing several direct channels between product developments teams, supplemented by a

social network of indirect channels with short paths lengths (i.e. few intermediaries). Similarly,

© Marc G. Haddad

explicit knowledge integration is best accomplished through directed channels and mechanisms

pre-established by the organization, supplemented by formal training of personnel.

2.1.10 The Syntactic / Semantic / Pragmatic Dimension

Since knowledge used in production is information supplemented with context and experience

(Nonaka and Takeuchi 1995; Grant 1996a), it is by definition embedded in its context, such as

technical know-how embedded in a particular practice (as manifested in communities of practice

(Brown and Duguid 1991)), or knowledge that is technology-specific or product-specific

(Henderson and Clark 1990). This means there are contextual boundaries separating different

knowledge domains, which adds a new dimension to the knowledge integration process in that it

necessitates the use of special types of mechanisms to interpret and transform knowledge before

it can be transferred across different knowledge boundaries. These mechanisms are known as

"boundary objects" and "liaison devices" and serve to establish a shared context across

boundaries (Star 1989; Carlile 2002; Carlile 2004).

There are three types of knowledge boundaries in product development, the syntactic (pertaining

to differences in syntax or language), the semantic (relating to differences in interpretations) and

the pragmatic (involving differences in functional specializations and interests) (Carlile 2002;

Carlile 2004). There are four categories of boundary objects that map to the three different types

of knowledge boundaries: 1) database repositories that provide a shared syntax for transferring

knowledge across syntactic boundaries, 2) standardized forms and methods that provide a shared

format for translating knowledge across semantic boundaries, 3) models (such as drawings,

prototypes and computer simulations) for negotiating and transforming knowledge dependencies

across pragmatic boundaries, and 4) maps (such as scheduling charts, process maps and

workflow diagrams) for representing and clarifying knowledge dependencies across pragmatic

boundaries (Star 1989; Carlile 2002). The third and fourth categories of boundary objects are

considered to be of similar nature and purpose and are often combined together (Carlile 2002).

In addition, while most boundary objects are distinct in terms of their nature and purpose, they

are nonetheless complementary in terms of their usefulness for knowledge integration in that

using one mechanism can serve to support the effectiveness of using another (e.g. using models

C Marc G. Haddad

and maps can enhance the content of shared repositories, and vice-versa). Furthermore, each

object can be useful across more than the one type of boundary it is mapped against. For

example, all boundary objects are considered useful in mediating shared syntax, even if not as

effectively as repositories are (Carlile 2002).

The main insights from this literature are that differences in knowledge contexts constitute

different types of knowledge boundaries that require particular types of mechanisms for

mediating knowledge across them. As such, it is important for organizations to have a portfolio

of boundary objects at their disposal in order to efficiently and effectively integrate knowledge in

different environments. This is particularly important in the large-scale development of complex

systems where the knowledge that is embodied in these systems is increasingly diverse (from

different disciplines) and specialized (from different practice domains), and where more

organizations with different lingo, interpretations and interests are involved in the development

process (Carlile and Rebentisch 2003).

2.1.11 The "Sticky" / "Leaky" Dimension

Knowledge in organizations is said to have a "sticky" characteristic (Von Hippel 1994; Szulanski

1996), in that it is difficult to integrate (costly to transfer, share and use) between source and

recipient. This is due to the fact that knowledge most relevant for production is mostly tacit (as

discussed in § 2.1.2), and that differences in syntax, interpretation or interests may pose a barrier

to efficient and effective integration (Cohen and Levinthal 1990; Carlile 2002). But it is also

argued that knowledge has a "leaky" or "mobile" characteristic (Hoopes and Postrel 1999),

which is the opposite of "sticky" in that it's easy to lose proprietary knowledge across porous

external boundaries with competitors. (Brown and Duguid 2001) explain this dichotomy by

noting that stickiness is triggered by the internal division of labor inside large-scale

organizations, where internal boundaries make it hard to transfer knowledge between different

communities of practice (e.g. between engineering and manufacturing), whereas leakiness is

triggered by the unifying effect of the external network that the organization is part of, since

networks by definition unify different organizations with a core of common practices.

C Marc G. Haddad

(Von Hippel 1994) outlines five different strategies for integrating sticky knowledge, as follows:

1) moving the required knowledge to where the problem or task is located - described by Von

Hippel as "visiting the plant"; 2) moving the problem or task to where the required knowledge is

located - described as "relocating the plant"; 3) iterating between multiple knowledge sites if the

required knowledge is located at more than one site - described as "plant-to-lab and lab-to-plant

trips"; 4) partitioning the problem or task into sub-problems or sub-tasks that each draw on only

one locus of sticky knowledge - described as the "Firm X - Firm Y partition"; and, 5) reducing

the stickiness of the required knowledge, described as "tacit-to-explicit knowledge

conversion...using expert systems and...computer databases".

Expanding Von Hippel's illustration of the five knowledge integration strategies into actual

mechanisms as per the main objective of this research, it can be inferred that the implementation

of each of the above strategies in a complex product development context would require the

following types of integration mechanisms, respectively: 1) site visits, co-location, liaison

devices, boundary objects, taskforces, team meetings, people transfers and dispatching of subject

matter experts to move knowledge to the problem locus; 2) co-location, prototypes and

simulation (both of which can also be considered boundary objects) and off-site (laboratory)

testing to move the problem to the knowledge site; 3) shared databases and integrated design

tools to reduce the stickiness of knowledge; 4) same mechanisms as in option 2 to iterate

between knowledge sites; and 5) same mechanisms as in option 1 to partition the problem, but

used across intra- and inter-firm boundaries. In a large-scale complex problem solving context,

the required knowledge is likely to be located at more than one site, therefore strategies 2) and 3)

are less efficient and/or effective due to the cost and difficulty of moving the problem to multiple

knowledge sites and iterating between them to solve the problem.

Other important mechanisms for overcoming knowledge stickiness are those that facilitate the

mobility or leakiness of knowledge, meaning those mechanisms that are used to integrate

knowledge across external boundaries (including prime-supplier, program-program or program-

function boundaries), namely networks of practice (or communities of communities of practice)

and the social networks of individuals, both of which serve to establish a common knowledge

C Marc G. Haddad

base between people regardless of their location within the same or different organizations

(Brown and Duguid 2001). These insights can be reframed as in Table 3 below:

Table 3: Knowledge Integration over Insulated and Porous Boundaries

Knowledge Boundary
Knowledge Integration Characteristics

Characteristics Characteristics

External porous Communities of practice, networks of practice, social
Leaky

(e.g. program-function) networking

Internal insulated Job rotation, moving experts, shared or integrated systems,
Sticky

(e.g. program-program) liaison devices, boundary objects, team meetings

External insulated
Sticky (e.g. prime-supplier) Site visits, co-location, taskforces, shared systems

(e.g. prime-supplier)

The usefulness of the sticky / leaky distinction in this context is in pointing to the

counterintuitive role of organizational culture in segregating knowledge inside the one

organization, while unifying it across different organizations. This is in contrast to the common

wisdom which suggests that culture ties all the members of an organization together through a

shared vision and beliefs regardless of their practice, whereas cultural differences across

organizations separate even those individuals who share the same practice. However, from the

perspective of integrating knowledge, when considering that a technician and a systems engineer

in the same organization have little shared knowledge in common, whereas systems engineers in

different organizations have a lot of knowledge in common, it becomes more apparent that

organizations cannot be considered as single communities of practice tied by the organization's

culture, they are in fact a collection of many and often distinct communities of practice with

different knowledge contexts and different sub-cultures (i.e. the organization from this

perspective is a community of communities (Brown and Duguid 1991)). In that sense, the

knowledge integration process should not only be concerned with bridging differences related to

the nature of knowledge itself (such as differences in syntax between differently specialized

teams), but also with bridging the internal compartmentalization of practice inside the same

organization, such as between different programs in a single firm, or between teams at different

levels in the same program (e.g. a subsystem level team versus a system-level team).

C Marc G. Haddad

The main conclusion from this literature for the purposes of this research is that knowledge can

be sticky even within the smaller confines of a single program or firm; therefore it is important to

recognize that knowledge should be integrated across both internal and external boundaries, and

that external boundaries are porous both ways, such that a protectionist policy against leaking

knowledge to the larger external network of practice is counterproductive as it will inhibit the

reverse integration of knowledge from the network to the firm across those same boundaries.

Instead, instituting a strong identity and shared purpose at the level of the network of practice

that the organization is embedded in can leverage the leakiness of knowledge and enhance its

integration.

2.1.12 Summary of Insights on Knowledge Integration

In this section I reviewed the main characteristics of knowledge in organizations and their

influence on the knowledge integration process, specifically in a large-scale complex product

development context. The previous sections highlighted the major insights and issues discussed

in the knowledge integration literature and that will be accounted for in this research. Following

is a summary of the main knowledge integration channels, mechanisms, strategies and practices

that were outlined in the previous subsections, presented in Tables 4 and 5 below.

Table 4: Knowledge Integration by Knowledge and Organizational Characteristics

Knowledge Org. Boundary Knowledge Integration Characteristics*

Characteristics Characteristics (* Only the primary channels and mechanisms are shown)

Tacit -- Face-to-face communication, group interaction

Explicit Documents, information systems

Component Prime-supplier Documents, information systems

Architectural Intra-prime People transfer (inter-project rotations)

Sticky Internal, External Site visits, co-location, liaison devices, boundary objects

Leaky External Networks of practice, individual social networks

C Marc G. Haddad

Table 5: Knowledge Integration by Organizational Characteristics

Org. Boundary Knowledge Integration Characteristics*

Characteristics (* Only the primary channels and mechanisms are shown)

Syntactic Database repositories

Semantic Standardized forms

Pragmatic Models/prototypes, drawings, simulations, maps

Vertical Integration between subsystem-system teams, prime-supplier

Horizontal Intra-program, program-program, peer-peer integration

Lateral Program-function integration

Formal Teams and taskforces, liaison devices, meetings, information

systems, boundary objects, mediators

Informal Personal networks, online communities of practice

Direct Team or individual meetings face-to-face

Indirect Social or organizational networks

Firm Organizational culture, infrastructure

Network Network identity, facilitator groups, rules

C Marc G. Haddad

2.2 Insights from the Literature on Problem Solving in Complex Product Development

Knowledge is to problem solving as science is to engineering. In fact, the terms can be used

interchangeably (and they often are). This is because the vast majority of productive human

activities such as engineering and manufacturing can simply be described as problem solving,

and all problem solving requires knowledge in the form of scientific and/or non-technical

information, know-how and skills10 . Knowledge is therefore the basis of problem solving, and

its integration is what enables organizations to solve complex problems where multiple sources

and types of knowledge are needed. This argument is supported in the knowledge-based view of

the firm where the central proposition is that organizations exist because they are more efficient

than markets at integrating specialized knowledge in order accomplish tasks and solve problems

(Demsetz 1988; Grant 1996a; Nickerson and Zenger 2004). It naturally follows then that the two

processes, knowledge integration and problem solving, are inextricably tied together such that

the former enables the latter (i.e. solving problems is done by finding, acquiring and applying the

necessary knowledge) and the latter is the reason and the vehicle for doing the former (meaning

knowledge is integrated in order to solve problems and in the course of solving problems).

Therefore, I argue that problem solving is the thread through which the investigation of the

knowledge integration process can best be accomplished. As a result, and while the process of

organizational problem solving itself is not the main focus in this thesis, it is nonetheless

important to understand the primary characteristics of problem solving in order to determine how

they affect the choice of strategies, practices, channels and mechanisms for integrating

knowledge in different problem situations. For example, several factors influence the level of

difficulty of the problem solving task, including the difficulty of the problem itself, as well as the

difficulty of coordination and communication with the parties involved in the problem solving

process, among others. It is thus imperative to understand both the characteristics of common

problems and the environment in which the problem solving process takes place. These will be

explored in detail in the following sub-sections, starting with an overview of the related literature

provided in Table 6 below.

10 For example, one reason a problem is considered as such is because there is uncertainty regarding the action to
take. Problem solving thus begins with a search for information that reduces uncertainty regarding what should be
done and how, and ends with applying new information, know-how and skills in actually solving the problem.

C Marc G. Haddad

Table 6: Overview of the Literature on Problem Solving in Complex Product Development

Reference Focus Method Relevant Conclusions/Results
Braha & Bar- Characteristics of complex problem-solving Modeling Problem solving networks in complex product development are
Yam, 2004 in large-scale engineering networks sparse (few connections) and highly clustered (short connections),

with more information flowing out of a node than into it

Clark & Integrated (joint) problem solving as enabler Conceptual & Integration through face-to-face communication (cross-functional
Fujimoto, 1991 of product and development performance Empirical and cross-firm), mutual trust/commitment, shared responsibility
Cross & Sproull, Source-recipient relationships for Hypothesis-test Vertical channels for problem solutions (know-what, know-how),
2004 transforming information into actionable referrals (other people, databases), validation, and legitimation.

problem solving knowledge Horizontal channels for problem reformulation

Dyer & Chu, The role of trust in building collaborative Hypothesis-test A lack of trust may cause suppliers to suppress design information
2003 relationships and joint problem solving useful for problem solving

Daft & Lengel, Media richness for problem solving under Conceptual High ambiguity problems require rich media e.g. group meetings,
1986 uncertainty and ambiguity high uncertainty problems require IT coordination, data collection

Eisenhardt and The effect of technology maturity on product Hypothesis-test An experiential, iterative problem-solving strategy is required in
Tabrizi 1995 development efficiency and strategy new or rapidly changing technology environments, while a formal

structured approach is appropriate in mature environments

Mumford, 1998 The basic elements of the problem solving Conceptual Three fundamental skills for complex problem solving: knowledge
process for problems of high complexity (know-what), experience (know-how) and group communication

Nickerson & The relationship between governance choice Conceptual Decomposable problems require low knowledge transfer and
Zenger, 2004 and problem-solving approach/efficiency directional solution search, non-decomposable = high & heuristic

Postrel, 2002 The substitutability of specialist and trans- Conceptual & An efficient problem solving team needs both design and
specialist knowledge Modeling integration knowledge, but only in a zero-sum amount

Takeishi, 2002 Knowledge partitioning and integration Conceptual & Integrated problem solving and frequent communication with the
mechanisms across organizational Empirical supplier improve design quality. For new designs, systems
boundaries engineers need a high level of component-specific knowledge

Von Hippel, The locus of problem solving as a function Conceptual & Knowledge used in problem solving is tacit and "sticky" (difficult
1994 of knowledge "stickiness" Case-study to transfer), as a result the problem solving process moves (often

iteratively) to where the required knowledge is located

C Marc G. Haddad

The preceding overview in Table 6 above provides an outline of the main themes and insights

from the literature on problem solving as they relate to the process of integrating knowledge in

complex product development. The main themes from this literature can be summarized as

follows:

1) Different types of problems require different channels and mechanisms for integrating

knowledge in order to solve the problem

2) Different problem solving contexts/environments require different channels and

mechanisms for integrating knowledge

3) The knowledge integration process becomes more complex with increasing problem

complexity

4) In complex product development, problem solving is most efficiently and effectively

carried out by Integrated Product Teams (IPT's)

5) In large-scale organizational contexts, joint (or integrated) problem solving networks

spanning team and firm boundaries increase task and product performance

The main themes outlined above will be elaborated on in the following subsections.

2.2.1 Knowledge Integration for Different Problem Types

Problems are generally viewed as challenges to be overcome or avoided, or perplexities to be

figured out, or even difficulties to be endured. A problem is often described in terms of its most

salient attributes such as how severe the problem is or how new it is. In common terms,

problems are said to be hard or easy, big or small, new or old, interesting or trivial, clear or

ambiguous, complicated or simple, among other general appellations. Problems are also often

defined in terms of their causes (e.g. technical or social), their consequences (e.g. serious or

minor) or even their locus (e.g. internal or external). In practice, a problem exists when there is a

discrepancy or gap between required and actual results, along with uncertainty on how to close

the gap (Nickols 1994). In the existing literature on problem solving, problems have been

formally characterized as well-structured versus ill-structured (Simon 1973), well-defined versus

ill-defined (Jonassen 2000), decomposable versus non-decomposable and nearly decomposable

(Nickerson and Zenger 2004), routine versus non-routine (Mayer and Wittrock 1996), and

C Marc G. Haddad

complex versus simple (Simon 1962). In the organizational literature, problems are also

considered synonymous with tasks (Daft and Lengel 1986) to be accomplished under conditions

of uncertainty (meaning the absence of knowledge and information) or equivocality/ambiguity

(meaning the presence of conflicting knowledge and interpretation). It can be inferred that ill-

structured problems are synonymous with uncertainty since more information is needed to arrive

at a solution, whereas ill-defined problems are equivalent to ambiguousness due to the presence

of conflicting information. A summary of the formal characterizations in the literature is

presented in Table 7 below:

Table 7: Problem Characterization in the Literature on Problem-Solving

Problem Type Problem Characteristics

a) Decomposable a) Can be divided into independent sub-problems without tradeoffs

b) Nearly-decomposable b) Can be divided into inter-dependent sub-problems with tradeoffs

c) Non-decomposable c) Cannot be divided into independent sub-problems

d) Simple d) Unidimensional or consisting of a few independent dimensions/aspects

e) Complicated e) Consisting of multiple dimensions/aspects that are not inter-related

f) Complex f) Consisting of multiple dimensions/aspects that are inter-related

g) Routine g) Can benefit from previous solutions

h) Non-routine h) Cannot benefit from previous solutions or requiring new combinations of

previous solutions

i) Well-structured i) Having specific initial conditions, goals and operators

j) Ill-structured j) Having some unspecified aspects

k) Well-defined k) Having a single, guaranteed solution

1) Ill-defined 1) Having multiple, non-guaranteed solutions

The usefulness of these formal characterizations is that they provide a starting point for

describing a problem in generic and generalizable terms outside of specific contexts or

disciplinary domains". However, it is difficult to fully characterize a problem in terms of only

one of its attributes. Thus, for example, a "well-defined" problem doesn't necessarily mean the

" Problems are typically characterized in specific and contextual terms that are not generalizable, for example health
problems are typically defined according to the part of the human body that they affect (e.g. muscular problems,
heart problems, chest pain, back pain...), often having to use specific terminology (i.e. medical jargon) to describe
causes and symptoms of the problem. It is therefore difficult to make use of the medical terminology in order to
characterize non-medical problems, such as legal type problems for example.

C Marc G. Haddad

problem is simple or small; indeed it can be big or small, complicated or simple, old or new, and

so on. This is why in order to completely characterize a problem it is necessary to address its

multiple attributes including its scale, scope, novelty, structure, among others. It is also

important to note that problem attributes are not all orthogonal to (or independent from) each

other. For example, since problem complexity is defined in terms of the number of dimensions

of the problem as well as their interrelatedness, it may be possible to measure problem

complexity through surrogate attributes such as the scale and structure of the problem for

instance. This strategy will be used to construct a measure of problem complexity for the

purposes of this research, as will be outlined in Chapter 5 on "Methods for Data Collection".

But regardless of how a problem is characterized, what is most commonly associated with

problems is action, meaning action in tackling the problem, and the associated knowledge

required to act on the problem12. Problems can be fully described from the perspective of the

knowledge required to tackle them, thus for example a problem described as "tough" in

colloquial terms can be defined as requiring new knowledge or multiple sources of

interdependent knowledge, and a problem described as "decomposable" in formal terms can be

defined as requiring distinct and independent knowledge sets. Naturally, different types of

problems require different types of knowledge to act on them, and when problems involve

multiple interrelated issues (i.e. when the problem is complex), different combinations of

knowledge may be required to tackle all aspects of the problem. Complex problems thus often

require the combination or integration of multiple types of knowledge, which makes these

problems the most common trigger of knowledge integration from multiple sources. This means

that the investigation of the process of knowledge integration through the lens of problem

solving necessarily involves a focus on complex problems.

In the product development context, complex problems are frequently encountered in the

development of complex products due to the scale and interdependence of the various elements

and component technologies that make up the product, thus these problems are by default the

primary concern in this thesis since the focus in this work is on complex product development.

Furthermore, this thesis is specifically concerned with development in a highly customized high-

12 Merriam Webster defines "problem" as a question to be solved, and "question" as a test of knowledge.

C Marc G. Haddad

technology environment where new unproven technologies (or new combinations of existing

technologies) are often used for the first time, which gives rises to new problems unseen before.

As such, non-routine problems are typical in this environment and will be at the center of the

investigation in this work. Finally, since complex problems by definition involve multiple

dimensions or variables that are "interrelated in non-trivial ways" 13, they are non-linear in nature

such that they cannot be easily decomposed and tackled in a linear fashion; in other words

addressing different aspects of the problem one at a time and independently of each other will

not necessarily solve the entire problem due to the interdependence between them, and can give

rise to unpredictable or undesirable results against single-point solutions. As such, non-

decomposable problems make up the bulk of the problems being investigated in this thesis.

Table 8 below presents a conceptualization of the different types of problems of concern in this

thesis from the perspective of knowledge and knowledge integration:

Table 8: Knowledge Integration by Problem Type

Problem Type

Decomposable

Nearly-decomposable

Non-decomposable

No. of Knowledge Knowledge

Sources Interdependence

Low Low

Primary Knowledge

Integration Type

Explicit

Tacit and Explicit

Tacit

Simpe Low Low I--

Complicated

Complex

Routme I Low Low

Non-routine

Well-structured I Low Low Explicit

Ill-structured
l1T~ll .,~ _ ,

Tacit

Well-defined ww ww

ExplicitIll-defined Tacit

13 This definition builds on the principles of complexity theory in systems where a complex system is defined as one
"made up of a large number of parts that interact in a non-simple way" (Simon 1962), as well as the principles of
complexity theory in organizational design where large organizations are seen as complex due to the number and
interdependence of tasks and stakeholders (Galbraith 1974).

C Marc G. Haddad

Explicit

Tacit

Explicit

Tacit

Table 8 shows that problems where knowledge interdependence is high require mostly tacit

knowledge integration whereas explicit knowledge integration is dominant for problems where

knowledge interdependence is low 14 . This is based on insights from the existing literature (as

summarized previously in Table 6) which state that decomposable problems require "low and

directional" transfer of knowledge (Nickerson and Zenger 2004) as can be afforded efficiently in

the exchange of explicit information between pre-determined parties. For example, in product

development a purely decomposable problem maps to a perfectly modular product where the

design problem for the entire product can be efficiently divided up into sub-problems (or design

modules) and outsourced to suppliers, such that knowledge interactions become largely governed

by bilateral exchanges of information between prime and supplier (thus the low number of

contributing knowledge sources involved) in the form of requirements and specification

information. This means that there is little need for the exchange of tacit knowledge to solve the

complete problem, in fact the only knowledge that would need to be exchanged in this case is in

the form of explicit information specifying the connection of each sub-problem to the whole

(Baldwin and Clark 1997). It is important to note however that this is only true in the case of

purely decomposable problems (as would be encountered in the development of a perfectly

modular system), which is rarely the case in practice.

In reality, systems are not perfectly modular or integral but rather a hybrid combination of both

strategies (Sanchez and Mahoney 1996). For example, while a desktop PC is typically a modular

product in the sense that most components are standardized (such as the hard drive or the video

card) and may be substituted without requiring a redesign of other components, it is nonetheless

not a perfectly modular system since all components must function properly for the entire system

to work. This means that there is some knowledge interdependence between different aspects of

the design problem, however weak or simple they may be in this case, and so while the design of

the desktop PC is a decomposable problem in theory, it is not a perfectly decomposable problem

in practice. This is especially true and relevant in complex product design where modularity

serves merely as a strategy to manage the complex knowledge interdependencies of the design

without being able to completely eliminate these interdependencies.

14 Note that this does not mean that only tacit knowledge is used in solving problems with high knowledge
interdependence or that only explicit knowledge is used in solving problems with low knowledge interdependence,
just that one type of knowledge is usually more dominant than the other.

© Marc G. Haddad

In terms of knowledge integration, the development of a perfectly modular design can be mostly

carried out using explicit knowledge interactions between the system integrator and the

component developers in the form of design requirements, specifications and standards.

However, in complex product development where modular architectures are not easily and

completely decomposable, it is expected that knowledge integration cannot be restricted to

explicit knowledge interactions only. In fact, since the modularization of complex product

architectures must be done ex-ante without full knowledge or visibility into all aspects of the

design, it is expected that extensive tacit knowledge interactions would be required to

troubleshoot problems with incorrectly specified interfaces, requirements and standards.

In contrast, insights from previous research suggest that non-decomposable problems require

"high and heuristic" transfer of knowledge (Nickerson and Zenger 2004) due to the

interrelatedness of multiple aspects of such problems. In this case, numerous interdependent

knowledge sets are needed in order to tackle the different aspects of the problem, and as such no

single actor (or database) can possess all the knowledge required to solve the problem. In

product development, a purely non-decomposable problem maps to a perfectly integral product

where the design problem cannot be efficiently divided up into independent sub-problems. As

such, there is no explicit information defining the relationships between different aspects of the

problem as is possible with decomposable problems. This means that the knowledge required to

tackle the entire problem is mostly tacit and distributed among multiple actors. The process of

integrating knowledge in this case is highly iterative and often proceeds randomly until all the

required knowledge is found, combined and applied to solve the problem. Knowledge

integration in this case is more efficiently carried out internally to a single organization as it is

more difficult to coordinate tacit knowledge across external boundaries, as already discussed in

section § 2.1.7. However, the knowledge variety and diversity required to tackle non-

decomposable problems typically forces the integration of knowledge from outside the

boundaries of the one organization, making the knowledge integration process in the case of non-

decomposable problems even more difficult and more involved. As noted above for

decomposable problems, it is equally rare to encounter problems that are purely non-

decomposable even in complex product development since products are rarely purely integral.

C Marc G. Haddad

For example, while a notebook computer is considered an integral product in the sense that most

components are fused together in order to increase performance (e.g. the video card is integrated

with the motherboard to reduce weight, space, energy consumption...), and cannot be substituted

without requiring a redesign of the entire system, it is still possible to design most of its

components independently of each other (such as the display and the keyboard for example).

This means that while the design of the notebook computer is a non-decomposable problem in

theory, it is not a completely non-decomposable problem in practice.

In terms of knowledge integration, the development of a perfectly integral design requires tacit

knowledge interactions to coordinate the interdependent design choices for different components

since a change in one component design can affect other component designs in unpredictable

ways. This phenomenon is known in complexity theory as emergent behavior and is

characteristic of complex systems (Crawley, de Weck et al. 2004). Non-decomposable problems

tend to be the most complex types of problems for the same reason that makes them non-

decomposable (i.e. due to having multiple aspects that are interrelated in non-trivial ways, as

explained previously in this section). This is why knowledge integration is identical for complex

and non-decomposable problems in terms of the number and type of knowledge sources and

iterations involved, as shown in Table 8.

In complex product development, most common are the nearly-decomposable problems which

can be divided up into sub-problems that are not fully independent of each other, but where

interdependence of knowledge sets across sub-problems is manageable with some tradeoffs.

This is the case in hybrid modular-integral systems (i.e. systems that are not perfectly modular or

perfectly integral) where design interdependence is managed by dividing up the system into

modules which are developed independently by suppliers while still being tightly interdependent

on each other's functionality, such that the final product assembled by the prime is a highly

integrated design. In terms of knowledge integration, the development of hybrid modular-

integral systems typically includes both the explicit knowledge interactions for dealing with

decomposable problems and the tacit knowledge interactions for dealing with non-decomposable

problems, to varying degrees. This is evident in the common division of labor between prime

and supplier where module design is carried out independently by module suppliers and where

C Marc G. Haddad 76

knowledge interactions tend to be restricted mostly to information coordination at "arm's length"

(Clark and Fujimoto 1991), while final assembly is carried out by the system integrator and

involves extensive tacit knowledge interactions among different teams responsible for the

various modules making up the product.

And much like nearly-decomposable problems are somewhere between decomposable and non-

decomposable, complicated problems are somewhere between simple and complex. However,

complicated problems are not similar to nearly-decomposable problems in most cases. This

distinction is illustrated in Table 8 by the fact that complicated problems involve multiple

knowledge sources but weak knowledge interdependencies between different aspects of the

problem, while the reverse is true for nearly-decomposable problems. Only in cases where

interdependencies between different knowledge sets are trivial can a nearly-decomposable

problem be considered as merely a complicated problem, as would be the case in the design of

very loosely-coupled systems. In product development, the more loosely-coupled a system is,

the more it is possible to develop its parts independently of each other and the more explicit the

knowledge interactions can be during development (Sanchez and Mahoney 1996).

The knowledge integration process is also influenced by the structure of the problem, as shown

in Table 8 for well-defined/well-structured versus ill-defined/ill-structured problems. The

existing literature suggests that for problems that are ill-defined or ill-structured due to

ambiguous knowledge about the problem (i.e. conflicting information and interpretations), a high

level of tacit knowledge interactions are required (e.g. through group meetings) to resolve the

ambiguity before tackling the problem. In cases of uncertainty (i.e. missing information),

explicit information must also be collected and shared in order to tackle the problem (Daft and

Lengel 1986). In contrast, well-defined and well-structured problems can be tackled with known

procedures that are already captured and codified. These problems are most common in

academic contexts such as the constrained problems that students encounter at the end of a book

chapter and which require the application of explicit knowledge in the form of known concepts,

rules and principles in order to solve the problem (Jonassen 2000). Simple problems are the

most basic form of well-structured and well-defined problems and there is little need for

integrating different types of knowledge whether tacit or explicit to tackle these types of

C Marc G. Haddad

problems. This does not mean that simple problems are always easily solved, just that they don't

require a combination of multiple sets of knowledge to be solved (Simon 1976). However, the

particular knowledge or skill required to tackle a simple problem may not be resident in the

organization, or these problems may be overlooked (e.g. given low priority) long enough to end

up having big consequences. Such organizational factors that affect problem solving (regardless

of the difficulty or structure of the problem) will be discussed in the following section § 2.2.2 on

complex problem solving. Note that ill-defined and ill-structured problems are more common in

practice than well-defined and well-structured problems which are more common in academic

contexts (Jonassen 2000), much like complicated and complex problems are most frequently

encountered in complex product development while simple problems are most frequently

encountered in routinized development.

Finally, for routine problems, where previous solutions for similar forms of the problem already

exist, there is little need for knowledge interactions beyond the access of explicit information

from previous learning about the problem. Knowledge integration in this case consists mainly of

aggregating explicit information for how to solve the problem and requires little tacit knowledge

integration. Non-routine problems on the other hand are problems that have not been

encountered previously. In complex product development, non-routine problems can be as

common as routine problems as they typically result from emergent behavior that was

unforeseen in the initial design, or as a result of implementing new unproven technologies or

even new combinations of existing technologies in complex products. As a result, non-routine

problems are typically complex problems that require the integration of tacit knowledge from

multiple sources in order to deal with the interdependencies of the different aspects of the

problem. Note that in multi-project organizations where there is poor resource planning in terms

of allocating knowledge resources between projects, the frequency and complexity of non-

routine problems increases dramatically and their occurrence can become a continuous self-

reinforcing phenomenon known as "firefighting" (Repenning 2001).

In summary, this section provided an overview of the most generic and generalizable

characterizations of problems as well as the relationship between different problem types and

knowledge integration. The main insight from the related literature is that the more complex the

C Marc G. Haddad

problem, the higher the number of contributing knowledge sources and the more tacit the

knowledge that is involved in the integration process. In this work on complex product

development, the focus is on non-routine complex problems ranging from the decomposable

(most common in highly modular product development where the design problem can be

decomposed into relatively independent sub-problems) to the non-decomposable (most common

in the development of highly integral products where the design problem cannot be efficiently

decomposed into independent sub-problems).

2.2.2 Knowledge Integration for Complex Problem Solving

Complex problem solving is most strongly associated with human thinking (Newell and Simon

1972), in fact the "complex" label in problem solving is commonly used in the literature on

artificial intelligence (AI) to describe human reasoning and information processing, building on

insights from such disciplines as cognitive science and human psychology with the purpose of

endowing machines with capabilities similar to human intelligence. However, despite significant

advances in computer science and robotics, automation of problem solving is still typically

limited to simple and repeatable tasks since it is difficult to automate for complex tasks where

unpredictable (or emergent) behavior is possible, as is typical of problems encountered in the

design and development of complex products for example. The individual is therefore at the

heart of complex problem solving, and it has been widely established that the more complex the

problem the more the individual's experience becomes important in solving it (Jonassen 2000).

As pointed to in the previous section § 2.2.1, problem complexity increases the scale of the

problem solving process due to the high number of knowledge sources involved, as well as the

difficulty of the search and reasoning tasks in a context of high knowledge interdependence.

Therefore, complex problem solving typically involves more individuals with greater experience

than routine problem solving. The most common example of complex problem solving in

practice is in the design and development of complex products. What makes the problem solving

process complex is the ambiguity of the problem statement (e.g. ambiguous customer

requirements), the lack of a pre-determined solution path, the need to integrate multiple

knowledge domains, limited or delayed feedback from the world (e.g. constrained prime-supplier

relationships) and the "satisficing" nature of design solutions (i.e. answers that tend to be neither

© Marc G. Haddad

right nor wrong, only better or worse, which makes it harder to reach conclusive solutions)

(Simon 1973; Jonassen 2000).

In order to further frame the characteristics of complex problem solving as they relate to the

process of integrating knowledge, it is important to first define the main stages of the problem

solving process in an organizational context, namely to define how organizations go about

solving complex problems in practice. While there is no formal definition in the literature for

what constitutes organizational problem solving, it is broadly assumed that the process is

synonymous with group problem solving and therefore involves typical tasks and activities that

individuals carry out when tackling problems in a collective format. From the standpoint of

human cognition, problem solving consists of search and reasoning to a) represent the problem

and b) find a "satisficing" solution (Simon 1983). Expanding this definition and scaling it to the

organizational context, I define organizational problem solving as a process of:

This definition is inclusive of the most typical stages of problem solving in an organizational

context and is based on the most commonly performed tasks by individuals in the course of

practice (Clark and Fujimoto 1991; Fujimoto 1999). I note here that in complex problem

solving, the above steps are not followed sequentially or one at a time15. In fact, since problem

solving is a cognitive process and since complex problem solving occurs in groups, it is more

typical to see the steps of the process being carried out in random order and in parallel much like

15 Complex problem solving tends to be an iterative process of trial and error due to the interdependencies between
different aspects of a complex problem (Simon, 1962), and where solution development often goes through a
refinement process until a better performing solution is reached.

C Marc G. Haddad

1) Identifying and defining the problem in terms of its consequences or possible causes

2) Diagnosing the root cause of the problem (or alternatively defining a desired solved state)

3) Searching for and formulating a solution (or alternatively a workaround from the current

state to a pre-defined solved state)

4) Building organizational consensus around the solution or workaround (in terms of its

feasibility, efficiency and effectiveness) and;

5) Applying and verifying the solution in practice

collective brainstorming, often having to revisit the same step or having to work back to a

previous step depending on information available about the problem as well as the knowledge

available to tackle the problem. Therefore from the standpoint of knowledge integration,

organizational problem solving by the above definition involves several knowledge processes

which are carried out simultaneously (depending on knowledge availability) where individuals

search for and access existing knowledge (both internally and from outside sources) about the

problem and its possible solutions, brainstorm new knowledge if needed (e.g. to redefine the

problem or to develop a new solution), and combine new and existing knowledge when required

(e.g. for complex non-routine problems which cannot be solved entirely with existing

knowledge). Other knowledge processes are employed when applying the solution and verifying

it in practice such as testing and feedback for example. This implies that problem solving is

enabled by the integration of knowledge about the problem and about the possible ways for

solving the problem, as well as about the performance of the chosen solution. Thus, it can be

argued that problem solving success is dependent on the efficiency and effectiveness of

integrating knowledge at all stages of the problem solving process as defined above, and by the

same token that the process of integrating knowledge is carried out differently in different

problem solving contexts. For example, the current literature suggests that an experiential,

iterative problem-solving strategy is required in new or rapidly changing technology

environments, while a more formal structured approach is appropriate in mature environments

(Eisenhardt and Tabrizi 1995). It has also been shown that problem-solving routines can get

entrenched in an organization's culture and thus hinder its ability at creating and integrating new

architectural knowledge (Henderson and Clark 1990).

As already mentioned earlier in this section, problem solving can be routine or non-routine, the

latter being associated with complex problems and often referred to as "troubleshooting".

Troubleshooting non-routine problems is an iterative process due to the interdependencies

inherent in complex problems, while a structured problem solving approach is typical for routine

problems since these have already been tackled or solved previously. It is often possible to

troubleshoot a complex non-routine problem by reducing it to a routine problem that has been

previously solved, thus allowing the use of similar steps from earlier solutions to solve the new

problem (Simon 1962). However, in highly complex and large-scale development settings such

C Marc G. Haddad

as high technology manufacturing firms, the frequency and scale of non-routine problems can

turn the troubleshooting process into a continuous phenomenon synonymous with extinguishing

recurring fires, which means non-routine problems are dominant in complex development

settings. This continuous "firefighting" phenomenon is not only due to the high level of

technical complexity of the problems encountered in this context, but also due to organizational

complexities in terms of the number of stakeholders involved in problem solving and the

interdependencies in stakeholder relationships (e.g. partner organizations on one development

program who are competitors on another development program), all of which hinder the

efficiency and effectiveness of knowledge integration and problem solving in this settingl6

(Brown and Duguid 1991) argue that in the context of complex troubleshooting, knowledge does

not come from what is taught in the classroom, but rather from informal story-swapping among

technicians and users during practice. This means that knowledge most relevant for complex

non-routine problem solving is the tacit knowledge and skills that practitioners develop with

experience, whereas for routine problems the knowledge required for problem solving is more

explicit since it has already been captured in previous solutions of similar problems.

Furthermore, the current literature on knowledge integration suggests that individuals use

different channels and mechanisms to integrate knowledge in routine versus non-routine problem

solving situations as well as for different stages of problem solving (Daft and Lengel 1986; Cross

and Sproull 2004). For routine problems, the required explicit knowledge in previous solutions

or insights is most efficiently integrated using technologies such as expertise locators and

databases that allow the systematic tracking down of previous knowledge or expertise directly

relevant to the new problem; for complex non-routine problems where previous solutions are not

directly applicable and where relevant knowledge is not known a-priori, the knowledge

integration process involves a less orderly search for "help" from experienced individuals, which

is best accomplished through the social network of the knowledge seeker. This network search

enables the seeker to find and access a wide variety of sources for tacit knowledge outside their

immediate circle and to actively engage these sources in the problem solving process. In these

cases, qualitative and quantitative research have shown that individuals use horizontal channels

16 In addition, the poor planning and allocation of knowledge resources adds fuel to the firefighting phenomenon
especially in large-scale multi-program organizations where resource coordination involves tradeoffs between
different programs (Repenning 2001).

C Marc G. Haddad

during problem formulation and problem diagnosis since peers are more likely to become

engaged in the early stages of problem solving than superiors higher up in the hierarchy, while

vertical channels prove more useful for developing and validating solutions since senior experts

and managers possess the deepest expertise and widest set of skills needed to provide actual

solutions for complex problems (Cross and Sproull 2004).

In conclusion, this section has established that complex problem solving is an iterative process

enabled by the integration of tacit knowledge through the social networks of individuals, with

horizontal channels being most useful for problem diagnosis while vertical channels serve to

develop and validate solutions.

2.2.3 Knowledge Integration in Problem-Solving Teams

According to (Mumford 1998), there are three fundamental skills for complex problem solving:

knowledge (know-what), experience (know-how) and group communication. In this context,
collaborative processes inside and across groups are considered key to problem solving because

no one person embodies the breadth and depth of the knowledge necessary to comprehend

complex problems, and because codified knowledge is seldom sufficient to deal with actual

problems in practice. Complex problem solving is therefore typically carried out in a team

environment as the most common vehicle for integrating the knowledge of multiple individuals

around common tasks or problems. Teams are thus said to be the locus of complex problem

solving in organizations1 , with heterogeneous teams being the most common form of group

problem solving in this context due to the knowledge diversity they possess in terms of varied

skills, experience and tacit knowledge (Walz, Elam et al. 1993).

Teams are typically formed around common tasks, such as subsystem design teams or system

integration teams in product development, or around recurring types of problems such as quality

teams in manufacturing. Even when teams are formed around products, projects, customers,

geographic regions, functions or processes, the underlying basis for any team's formation is the

17 (Nonaka 1994, p. 23) suggests that teams provide a "field in which individual perspectives are articulated, and
conflicts are resolved", which can be interpreted to mean that teams are the locus of problem solving (i.e. conflict
resolution) through the integration of diverse tacit knowledge (i.e. the articulation of individual perspectives)

C Marc G. Haddad

ability to solve common problems in the most efficient and effective manner. This translates to

the team having the ability to routinely integrate knowledge related to the most common

problems it encounters, at the lowest cost in time and money. However, for complex problems it

is typically necessary for teams to search for new knowledge sources in order to tackle the

problem, which forces the team to go into a non-routine problem solving mode. In such cases,

there is often a need to form special teams on a temporary or short-term basis to help or take the

place of the regular team in order to solve a specific problem, such as the case of taskforces

charged with troubleshooting non-routine and/or particularly difficult problems (Galbraith 1974).

In large-scale complex product development where complex problems are the norm rather than

the exception, the complexity of the problem solving process is managed by forming teams at

various levels of the organization (such as project or platform teams, product teams, component

teams, etc...) to work on different parts or levels of the problem, thus creating a hierarchy of

teams that mirrors the product architecture or the structure of tasks to be accomplished. The

internal structuring of the teams themselves also affects their ability to search for and acquire

new knowledge for problem solving, where team structuring involves decisions concerning

leadership, membership, meeting frequency, and authority level in the organizational hierarchy

(see § 2.3.6 for a detailed discussion of the effects of team structure on knowledge integration

and problem solving). Problem solving teams typically meet daily or periodically to review and

solve all problems within their mandate and capabilities, with the bigger problems typically

referred upward in the hierarchy (i.e. through vertical channels). It is hypothesized that the

greater the complexity of the problem or the uncertainty of the task that a team is tasked with, the

greater will be the number of levels at which the team will operate, the more frequent will be its

meetings and the greater its authority (Galbraith 1974).

More specifically and from the standpoint of knowledge integration, the channels and

mechanisms utilized to integrate knowledge across team boundaries vary depending on the

problem solving approach. In complex product development, team problem solving can be

categorized along two main types of strategies: 1) Localized problem solving and 2) Joint (or

integrated) problem solving. The former is internal to a program or organization and typically

involves one or only a few teams, while the latter is across several teams (e.g. different problem

C Marc G. Haddad

solving tasks are carried out concurrently by more than one team) and transcends organizational

boundaries (Clark and Fujimoto 1991; Fujimoto 1999). The current literature on complex

product development suggests that the most important enablers of integrated problem solving are

face-to-face communication (both cross-functional and cross-firm), mutual trust, mutual

commitment and shared responsibility (Clark and Fujimoto 1991). Hybrid organizational

structures such as the matrix form represent a complete commitment to joint problem solving and

shared responsibility 18 while the pure forms (such as the project or functional structures) lend

themselves to more localized problem solving internally to the project or function respectively

(Dosi, Hobday et al. 2000). However, since joint problem solving transcends organizational

boundaries, the structure of the entire network is often a more important enabler of joint problem

solving than the internal structure of the organization, as will be discussed in more detail in the

following section § 2.2.4 on problem solving networks.

Joint problem solving is typically the more likely approach for dealing with complex problems

since the number of knowledge sources involved increases with increasing problem complexity,

thus the scale of the knowledge integration process expands beyond the localized setting. This

also means that increasing product complexity necessitates more integrated problem solving

since complex problems are more likely to occur in complex product development as outlined

previously in § 2.2.1 on problem characteristics. However, the architecture of a complex product

is another important driver of problem solving strategy and it is well established in the product

development literature that complex problems encountered in the development of modular

architectures are typically decomposable enough that they can be solved independently by

different specialists under the supervision of a system architect as team leader (Ulrich 1995).

Thus in a purely or highly modular case, problem solving would be localized and the integration

of knowledge would be mostly internal to the team or along vertical channels between

counterparts at different levels of organizational hierarchy (such as a subsystem and system

team) or in different organizations (such as prime and supplier organizations). Conversely, the

current literature suggests that integral architectures require joint problem solving by multi-

disciplinary teams under the oversight of an experienced (or "heavyweight") system integrator

18 Other hybrid organizational forms that emphasize lateral relations to varying degrees all utilize joint decision
making and shared responsibility but not to the degree that a pure matrix organization does (Galbraith, 1974)

© Marc G. Haddad

(Ulrich 1995), such that the integration of knowledge would require horizontal interactions

between several teams within the same organization. These insights are summarized in Table 9

below:

Table 9: Problem Solving Teams in Complex Product Development

Problem and Product Problem Solving, Knowledge Integration and Team

Characteristics Characteristics

High complexity Joint problem solving by large multi-disciplinary teams through direct

communication, enabled by mutual trust and commitment

Modular system Localized problem solving inside product team, between subsystem and

system teams or between prime and supplier

Integral system Joint problem solving between multi-disciplinary teams in the same

organization

It is important to note here that this does not mean that modular product development cannot

benefit from integrated problem solving, or that problem solving for integral products cannot be

localized. In fact, research findings from the automotive industry show that for complex

modular designs involving new technologies, integrated problem solving between the prime

contractor's systems engineers (who are responsible for system integration) and supplier

component engineers (who are responsible for component design) is required in order to solve

unexplored engineering problems, and that frequent communication between prime and supplier

improves design quality (Takeishi 2002). Similarly, it is suggested that problem solving in the

development of purely or highly integral products is more efficiently conducted internally to the

one organization since it is more difficult to coordinate tacit knowledge across external

organizational boundaries (Christensen, Verlinden et al. 1999).

In reality, problem solving in complex product development requires a mixed approach between

localized and joint problem solving since complex products are rarely purely modular or integral,

and because a single firm or team is unlikely to have all the knowledge required to tackle highly

complex problems (as discussed in more detail in § 2.2.1 and § 2.3.1). This means that the

knowledge integration process in this context is likely to involve a combination of internal and

external as well as horizontal and vertical channels but to varying degrees, depending on the

C Marc G. Haddad

degree of complexity and modularization of the product under development. Similarly, the

mechanisms of knowledge integration in this context are likely to be a mix of explicit and tacit

mechanisms of varying types depending on factors related to the problem (e.g. technology

novelty) and to the organizational environment (e.g. number of stakeholders), where the latter

further dictates the structural characteristics of the problem solving team itself and its access to

particular mechanisms for knowledge integration. As such, the literature suggests that an

efficient problem solving team in a product development context needs both design and

integration knowledge, though only in relative amounts as a system integration team only needs

enough design knowledge to avoid architecting a system that is not producible, while a design

team only needs enough system integration knowledge to avoid producing designs that present

integration problems (Postrel 2002).

Finally, for both localized and joint problem solving strategies, it is increasingly common for

third party experts to move from their normal workplace to the actual site of problem solving

(such as joining a product team for example) in cases when problem complexity, ambiguity or

uncertainty are high. This is because geographic proximity is a strong enabler of efficient and

effective knowledge exchange as demonstrated by (Allen 1977), making "co-location" of project

team members from different functions or organizations a frequent necessity. In complex

problem solving where tacit knowledge integration between multiple locations is required, it is

more efficient to partition the problem into sub-problems assigned to separate teams where each

team has all the knowledge and expertise needed to solve their particular sub-problem, since it is

typically inefficient for the problem solving team to iterate between multiple knowledge sites

(Von Hippel 1994). This is most commonly observed in the development of complex products

which are typically partitioned into subsystems or modules that are developed independently

between prime and supplier organizations.

However, in cases of high complexity where final integration of the partitioned system is not

trivial and typically gives rise to complex system integration problems, it is not uncommon to

move knowledge from multiple locations to the locus of problem solving. For example, if a

prime contractor faces system integration problems involving a subsystem designed by one of its

suppliers, it is more efficient to co-locate a few supplier experts at the prime facility (i.e. with the

C Marc G. Haddad

prime's system integration team) in order to integrate their design knowledge about their

particular subsystem into the troubleshooting process. Conversely, if the problem is diagnosed

to be rooted in the procured subsystem, it would become more efficient for the prime's product

team to do "site-visits" to the supplier facility where all the design knowledge about the

subsystem is located, since knowledge used in complex problem solving is mostly tacit and

sticky (i.e. difficult to transfer independently of its holders), as already discussed in § 2.1.11. In

reality, since complex troubleshooting is an experiential iterative process as explained above,

individuals from both the prime and supplier organizations often have to shift repeatedly

between different settings before they can reach an understanding of the underlying problem and

develop possible solutions. In that sense knowledge is integrated by moving key actors from

different teams across spatial barriers within and across organizations to diagnose various aspects

of a problem and to develop creative solutions. In extreme cases, taskforces are used as a form

of special teams grouping experts from multiple organizations and co-located nearest to the site

of the problem.

To sum up, complex problem solving in organizations is most commonly performed in a team

environment and jointly with other teams at various levels of the hierarchy as well as teams in

other organizations. Depending on the characteristics of the problem and the location of

knowledge resources, a team will integrate the knowledge it needs for problem solving by

moving members from or to the team on a temporary or permanent basis.

2.2.4 Knowledge Integration in Problem-Solving Networks

As already discussed in the previous sections, organizational problem solving is a collaborative

(team) process which requires access to multiple and diverse knowledge resources that are

mostly experience-based (i.e. involving the tacit knowledge of individuals) (Almeida, Song et al.

2002). The number of individuals and teams involved in problem solving increases with

increasing problem complexity, stretching from a small problem solving team of a few engineers

from the same organization to a problem solving network (or networks) of thousands of technical

and non-technical people from multiple organizations. In large-scale complex product

development, the product is typically partitioned into smaller modules which are outsourced

C Marc G. Haddad

externally in order to manage design complexity, thus creating a network of interconnected tasks

that are handled by separate teams or individuals distributed across different partner and supplier

organizations. This has the effect of decomposing the overall design problem into sub-problems

and sub-tasks which require access to fewer knowledge sources, while at the same time

increasing the number of knowledge resources for problem solving that each member firm can

draw on from the larger network. However, previous research in this context has shown that the

resulting problem solving networks are sparse (e.g. there are few connections between members

of the network) and highly clustered (the connections are short), with more information flowing

out of a node than into it (Braha and Bar-Yam 2007). The sparseness of the network can be

attributed to many factors including the cost of establishing a connection with other nodes in the

network or the limited capacity of each node for processing information due to bounded

rationality (Simon 1973). Clustering means that problem solving in large-scale networks is

distributed in nature mirroring the structure of the decomposed product, where each outsourced

module leads to the formation of a small problem solving network near the supplier of that

module. It is thus that joint or integrated problem solving between small clusters becomes

increasingly necessary for coordinating the distributed problem solving activities of individuals

and teams involved in the development of complex products (Clark and Fujimoto 1991). The

channels for knowledge integration in this context are therefore not limited to inter-team

connections only but also encompass links between clusters of teams or individuals.

Along similar lines, it is also the case that problem-solving complexity is not only driven by the

difficulty of the problem itself but also by the environment in which the problem is tackled, such

as the number of parties involved in the process and the relationships between them. For

example, it maybe more difficult to solve a relatively simple problem if it involves stakeholders

who are outside the boundaries of the team or the firm than to solve a more complicated or

complex problem where all the knowledge required is resident on the problem solving team. For

example, in a product development context, a major source of integration problems is due to

module suppliers failing to communicate hidden design information to the integrator (Baldwin

and Clark 1997), and it has been shown that it is in fact the lack of trust in the network that can

cause suppliers to suppress design information useful for problem solving (Dyer and Chu 2003).

C Marc G. Haddad

This situation often requires the use of mediators in order to integrate knowledge between

network members with poor ties.

Furthermore, and as already explained in § 2.1.8 on knowledge networks, there are

disadvantages inherent in organizational network arrangements such as knowledge dependence

by smaller members on the lead or central firm in the network (Gomes-Casseres 1994). This is

especially true in complex product development networks where the lead firm is the system

integrator which has the most authority and deepest problem solving expertise (Brusoni and

Prencipe 2001). This means that members of the network often have to rely on the lead firm for

help in solving "tough" problems, which increases the complexity of the problem solving process

due to the increase in the number of parties involved. Reliance on the lead firm also diminishes

learning opportunities of the other members of the network. Along the same lines, member firms

very frequently have to go through the lead firm in order to acquire knowledge from other

members, which reduces the integrity of the problem solving process due to the distortion in

knowledge integration across indirect channels.

Combining the existing insights above, the main conclusion for knowledge integration from this

literature is that complex product development is typically carried out in large problem solving

networks made up of smaller clusters, and which can be represented by numerous short

connections inside each cluster with fewer arm's length connections between clusters.

Furthermore, effective integration of knowledge along inter-cluster channels is contingent on

relationships of trust which connect different clusters through direct connections without having

to go through a "middle-man".

2.2.5 Summary of Insights on Problem Solving

In this section I reviewed the main characteristics of problems and complex problem solving in

organizations and their influence on the knowledge integration process, specifically in a large-

scale complex product development context. The previous subsections highlighted the major

insights and issues discussed in the problem solving literature and that will be accounted for in

C Marc G. Haddad

this research. Table 10 below presents a summary of the main characteristics of knowledge

integration that were outlined in the previous subsections.

Table 10: Knowledge Integration by Problem and Problem Solving Characteristics

Problem Problem Solving Primary Knowledge Integration Characteristics

Characteristics Characteristics Where What How

Decomposable Localized, Routine Inter-organizational Explicit Boundary objects

Nearly- Localized and Intra- and Inter- Tacit and Team meetings; Site visits;

decomposable Joint, Non-Routine organizational Explicit Liaison; Boundary objects

Non- Joint, Non-Routine Intra-organizational Tacit Team meetings; Liaison

decomposable devices

Simple Localized, Routine N/A

Complicated Joint, Routine Intra-team Explicit Documents, Info Systems

Complex Joint, Non-Routine Intra- and Inter- Tacit Team meetings, Taskforces,

organizational clusters Liaison devices, Co-location

Routine Localized, Routine Intra-team Explicit Documents, Info systems

Non-routine Joint, Non-Routine Intra- and Inter- Tacit Team meetings, Taskforces,

organizational Liaison devices, Co-location

Well-structured / Localized, Routine Intra-team Explicit Documents, Info Systems

Well-defined

Ill-structured / Joint, Non-Routine Intra- and Inter- Tacit Team meetings, Taskforces,

Ill-defined organizational Liaison devices, Co-location

C Marc G. Haddad

2.3 Insights from the Literature on Organization Design and Complex PD Literature

In the previous two sections I reviewed the literature on knowledge integration and problem

solving in order to determine the primary channels, mechanisms, strategies and practices by

which knowledge is integrated in organizations, and how this process is influenced by

differences in the types of knowledge being integrated and the types of problems being tackled.

The literature reviewed above was mostly generic (i.e. not specific to any particular

organizational context) and the intent was on providing insights related to knowledge integration

that can be generalizable to most any setting, with some attempts at relating the investigation to

the specific context of interest in this research, namely that of complex product development in

large-scale organizations. In this section I explicitly review the complex product development

literature from the perspective of knowledge integration in order to draw insights about how

knowledge is integrated in this particular context, and how the product characteristics and the

organizational environment affect the process of integrating knowledge.

Similar to all other organizational processes, knowledge integration is influenced by the

characteristics of its organizational setting, such as the structure of the teams, organizations and

even the organizational networks in which it is carried out. And since the focus of this research

is on complex product development, I will also investigate how knowledge integration is

influenced by the characteristics of the product, such as product complexity, architecture and the

underlying technology imbedded in it. Therefore, the purpose of the following sub-sections is to

highlight these main factors of influence on the mechanics of knowledge integration in order to

account for them in the field investigation (e.g. by designing the research instruments to collect

data about these factors). This will serve to frame the knowledge integration process under

different problem, product and organizational characteristics.

I begin by reviewing some of the more seminal studies which have already explored the most

relevant factors affecting knowledge integration in complex product development, as shown in

Table 11 below.

C Marc G. Haddad

Table 11: Overview of the Literature on Organization Design and Complex PD Literature

Reference Focus Method Relevant Conclusions/Results
Argyres, 1999 Coordination through information systems as Case-study In large-scale complex systems development, unstructured tacit

a means of reducing design complexity design knowledge is efficiently codified and integrated across
boundaries through standardized/common design tools

Almeida et.al, Multi-national forms vs. alliances in cross- Hypothesis-test Successful design teams have the dual ability to make use of
2002 border knowledge building computerized design tools and libraries to integrate explicit info,

and communication for the tacit know-how of seasoned engineers

Baldwin & Modularity as a design strategy for dealing Conceptual & A major source of integration problems is due to module suppliers
Clark, 1997 with increasing system complexity Case-study failing to communicate hidden design information to the integrator

Browning, 1999 Integration of design teams (IPT's) in Conceptual Mediation, information sharing through IT and meetings, co-
complex systems development location and interface documents as IPT integration mechanisms

Christensen et.al, System architecture as a driver of Conceptual & Modularity in products leads to modularity in organizations where
1999 organizational and industry structure Case-study prime-supplier relations are arm's length, teams more autonomous

Dosi et.al, 2000 Co-evolution of organizational forms and Heuristics Program-oriented organizational forms with strong external
complex problem solving behaviors communication channels best enable complex problem solving

Eppinger et.al, Misalignment of organization and product Conceptual & Teams designing integral systems communicate more effectively
2004 architectures in product development Empirical across subsystem boundaries than modular system teams

Fine & Whitney, The influence of core competence and Conceptual & A key skill in complex systems engineering is the flow-down of
1996 product architecture on outsourcing Case-study clear, complete and stable requirements to competent suppliers

Henderson & The impact of architectural innovation on the Conceptual A change in system architecture requires new knowledge about
Clark, 1990 firm's existing knowledge and problem system interactions and new problem solving strategies,

solving capabilities information filters and communication channels

Sanchez & Modularity in product and organization as an Conceptual & Modular systems require more external coordination of interface
Mahoney, 1996 enabler of knowledge management Case-study information with suppliers, integral systems require more internal

cross-team coordination of both design and interface knowledge

Ulrich, 1995 The influence of system architecture on the Conceptual Troubleshooting modular systems involves debugging module
management of the development process interfacing problems, troubleshooting integral systems involves

tuning multiple parts of the system due to part interdependence

© Marc G. Haddad

The preceding overview in Table 11 above provides an outline of the main themes and insights

from the literature on complex product design and organization design as they relate to the

knowledge integration process. The main themes will be elaborated on in the following

subsections.

2.3.1 The Link of Knowledge Integration to Product Complexity

A complex system is defined as one made up of a large number of parts and/or technologies that

interact in a non-simple way. In such systems, given the properties of the parts and the laws of

their interaction, it is not a trivial matter to infer the properties of the whole (Simon 1962). This

means that most problems encountered in the design and development of complex systems are

themselves complex, and it is the central task of design engineers and systems engineers to figure

out how to simplify and solve these problems. This typically involves the integration of multiple

knowledge domains from several knowledge sources (Carlile and Rebentisch 2003). As already

outlined in § 2.2.1, dealing with complexity requires extensive tacit knowledge interactions

between experienced specialists, and in product development these interactions are centered on

the coordination of interdependent design choices for different parts of the overall product design

since a change in the design of one part can affect other parts in unpredictable ways.

Complexity in systems increases with the increasing number of parts (meaning subsystems,

components and elementary parts), increasing part variety (i.e. systems with identical

components are less complex than systems of comparable size whose components are all

different) and increasing part interdependence (Simon 1976). In high technology settings,

system complexity is also a factor of design and technological novelty, with new unproven

components or technologies being more difficult to integrate into a product system than mature

components or technologies that are well understood in terms of their functionality and their

interactions with other parts of the system (Novak and Eppinger 2001). However, building on

the same interpretations used to classify problems in § 2.2.1, in this thesis I consider a system to

be complex only when there is a high degree of interdependence between its constituent parts

regardless of any other attribute such as scale, variety or novelty (the impact of technology

novelty on system complexity and knowledge integration will be discussed separately in § 2.3.7).

C Marc G. Haddad

Otherwise the system is considered to be simple or complicated depending on the scale, variety

and novelty of its constituent parts19. In other words, the presence of a high degree of

interdependence is a prerequisite for complexity, which increases with the increasing magnitude

of its other characteristics such as scale, novelty and variety. It has been argued in the literature

that complex systems are more efficiently developed in-house since the costs of coordinating

knowledge across external organizational boundaries are higher than internally within a single

firm (Christensen, Verlinden et al. 1999; Novak and Eppinger 2001). However, this view

implicitly assumes that all the knowledge required to develop a complex system is available in-

house or that it can be developed/acquired for less than the cost of coordinating knowledge with

an external source. In cases of high system complexity, this assumption becomes too simplified

in that it does not take into account the largely experiential nature of the knowledge required to

tackle complex problems (as already outlined in § 2.2.1 and § 2.2.2 on complex problem

solving), which means that the depth of experience required in this case can only be developed

over a long period of time, thus making it inefficient for a single firm to develop it all in-house.

A similar argument can be made about the breadth of knowledge needed to develop complex

systems in terms of the large number and wide variety of knowledge contributions from multiple

specialty areas, making it unlikely for one firm to possess or acquire all the different types of

knowledge required for developing the entire system (Carlile and Rebentisch 2003).

An alternative view in the literature argues that in highly complex product development settings,

system complexity takes the form of hierarchy (Simon 1962) meaning a complex system is one

that can be partitioned into interrelated subsystems which are themselves made up of major

interacting components, and the most common strategy for managing complexity in this case is

to outsource some or all of these major constituent elements to external partners or suppliers at

multiple levels or tiers who are then responsible for the entire design and development process of

their assigned subsystems or components (Baldwin and Clark 1997; Langlois 2002). This

reduces the complexity of product design but drives an increase in organizational complexity

(i.e. the number and variety of stakeholders involved in the development effort and the

interrelatedness of stakeholder relationships), thus increasing the need for knowledge integration

19 A system is complicated when the number, variety and/or novelty of its constituent parts and technologies are
high, whereas a simple system is one where all three characteristics are low. The behavior of a complicated system
is predictable (no interdependence) whereas a complex system can (and typically does) exhibit emergent behavior.

© Marc G. Haddad

across organizational boundaries. From this perspective, increasing system complexity is

positively correlated with outsourcing20 (as opposed to the "in-house" view in the literature

where increasing complexity is seen as negatively correlated with outsourcing). Therefore and

by implication, an increase in system complexity also increases the scale and scope of the

knowledge integration process to involve individuals and teams across organizational

boundaries.

(Crawley, de Weck et al. 2004) provide an illustration of knowledge integration in the design of

complex products made up of multiple parts which are interconnected at multiple levels. They

argue that complexity makes the design problem harder to solve since it takes a long time for an

engineer to learn all the visible and hidden interactions between the different parts of the system.

They add that only the most senior engineers (which they estimate at about 10% of all technical

employees in most organizations) are likely to have the knowledge required for the design of the

overall system. It follows that tacit experiential knowledge is most relevant to the process of

integrating knowledge in complex product development. However, since outsourcing major

parts of a complex system inevitably involves the exchange of information about requirements

and specifications, and since the latter are likely to change frequently during the development

process due to the complexity of the design, it is typical for the knowledge integration process in

this context to involve extensive interactions of both tacit and explicit knowledge within and

between prime and supplier organizations.

(Brusoni, Prencipe et al. 2001) have further shown that product complexity increases the need for

knowledge overlap between assemblers and suppliers at various stages of design and integration.

This means that increasing system complexity typically requires an increase in the transfer of

system knowledge from prime to supplier, as well as the transfer of design knowledge from

suppliers to the prime in order to better specify subsystem interactions and ensure modules can

be integrated successfully into the overall system.

20 Note that the outsourcing in question here is different and separate from the common outsourcing of minor parts
to lower tier suppliers which is typically decided based on efficiency considerations (i.e. the cost of make versus
buy) rather than for complexity reasons, as the design of these smaller parts is typically well understood and
standardized. This makes it possible to outsource their development while minimizing the likelihood of integration
problems.

C Marc G. Haddad

In summary, a product is said to be more or less complex based on the interdependence of its

constituent parts and technologies along with their number, variety and novelty, with high

product complexity driving an increase in the scale and scope of the knowledge integration

process especially in terms of tacit knowledge interactions across organizational boundaries.

Increasing complexity also has the effect of reducing the delineation between the competencies

of the developing firms, thus driving the need for prime organizations to exchange more system

knowledge with their suppliers and for suppliers to transfer more design knowledge with the

system integrators.

2.3.2 The Link of Knowledge Integration to Product Architecture

A product or system architecture is the translation of the intended functionalities of the product

into a physical layout (Ulrich 1995; Whitney 2004). The architecture of a system is defined

early on in the design process by the system architect and his or her team through a highly

dynamic and iterative string of interactions with: 1) the customer - in order to define the

customer's needs and formulate the requirements that the product must fulfill, 2) the systems

engineers - in order to translate the customer's requirements into functions that the product must

accomplish, and 3) the suppliers - in order to allocate functions to physical components that will

carry them out (Rechtin 1991; Maier 1996). The first step involves brainstorming meetings to

translate, understand and formalize the customer's requirements, as well as negotiate

compromises for feasibility when necessary. The output from this stage is successive drafts

documenting customer needs and product requirements, until a final set of complete and

consistent requirements is reached. The second step involves defining the different functions

that the system needs to perform in order to meet the requirements, along with the possible

technologies required to execute the design. The output from this stage is a series of conceptual

designs in the form of drawings, models and/or feasibility reports displaying possible

alternatives. The last step is a structuring of the system by mapping functions to physical

components and assigning the design and development of each component to a supplier. The

output from this stage is the system architecture charts documenting the layout of physical

components and specifying the interfaces between them as well as performance specifications

© Marc G. Haddad

and standards documents for the parts and for the whole21 . The architecture and the interface

specifications and standards are known as the "visible design rules" (Baldwin and Clark 1997).

The steps and outputs described above show that the process of architecting complex products is

highly dynamic and iterative and involves a deluge of technical and non-technical knowledge

interactions of a multi-disciplinary nature among several stakeholders (Eppinger 2002). It

includes explicit knowledge integration through such mechanisms as documents and models as

well as tacit knowledge integration through mediation and group meetings. But more

importantly, the characteristics of the knowledge integration process have been shown in

previous findings to be related to the type of architecture of the product being developed. At one

extreme, when the product is partitioned into separate "chunks" or subsystem modules that can

be designed independently by different suppliers, the architecture of the product is said to be

"loosely coupled" and referred to as a "modular architecture", which requires extensive external

knowledge interactions between prime and suppliers. At the same time, a modular architecture

allows the system architect to "black box" the design and provide suppliers with only those

design rules that are required to develop their particular subsystem, and to hide information from

them about the rest of the system (Parnas 1972; Sanchez and Mahoney 1996; Baldwin and Clark

2000). This helps the prime organization (i.e. the system architect and integrator organization) to

protect its architectural knowledge about the system from being diffused to suppliers and

competitors (Baldwin and Clark 1997; Langlois 2002). By the same token, detailed design

knowledge for each module developed by the module suppliers becomes hidden from the prime

organization as suppliers seek to protect their design expertise and increase their competitive

leverage in the market, therefore segregating design and integration knowledge across integrator-

developer (i.e. prime-supplier) boundaries.

On the other hand and at the opposite end of the architecture spectrum, when the different parts

of the product are closely interdependent and cannot be designed separately, the system

architecture is said to be "tightly coupled" and referred to as an "integral architecture", which

21 Distilled from "The Art and Science of Systems Architecting" (1998) - a course presentation by Dr. Mark Maier
(The Aerospace Corporation). The tasks and outputs described here are only a high-level abstraction of the actual
systems architecting process which involves more steps and produces more outputs at each step such as analyses of
cost, risk, safety, and reliability.

© Marc G. Haddad

requires close coordination between different specialists in order to design and develop the entire

system as one integrated whole. Such close coordination is most effectively achieved through

extensive knowledge interactions within and between multi-disciplinary teams and is therefore

most efficiently accomplished "in-house" (i.e. within a single firm) (Ulrich 1995; Christensen,

Verlinden et al. 1999) (see also § 2.1.6 and § 2.2.1). However, for products where the level of

design complexity is high enough that no single firm has all the knowledge and physical

resources needed to develop the entire system, the development cannot be entirely completed in-

house (as already discussed in § 2.3.1 above) and the product is typically partitioned into "large

chunks" or subsystem modules which are outsourced to suppliers and subsequently integrated at

the end by the prime. The benefit of this strategy is that it allows the use of modularization to

reduce and manage design complexity but without compromising heavily on the performance

and customization achieved in a highly integrated system. This is because integration is

achieved inside each subsystem module, whereas overall system interdependencies are reduced

through modularization at the level of subsystem-to-subsystem interactions. This architecture is

thus closer to a "hybrid" modular-integral form and therefore requires a combination of external

knowledge interactions with suppliers during the design phase and internal knowledge

interactions between subsystem teams during the system integration phase.

The characteristics of the knowledge integration process are thus different for different product

architectures, such that modular system development typically requires more external interaction

of explicit information with suppliers about design requirements, interface specifications and

standards at the subsystem level, while integral systems require extensive interactions internally

across teams for both design and integration knowledge at the system level (Sanchez and

Mahoney 1996). Furthermore, the mechanisms for integrating knowledge are different in

different architecture regimes. In the integral case, the team leader is typically an experienced

system integrator with a high level of authority for coordinating the numerous knowledge

interactions between teams through such collaborative mechanisms as team meetings and

common design tools for the entire duration of the design process, whereas in the modular case

the team leader is usually an experienced system architect with the responsibility of partitioning

the system and ensuring early and full specification of the visible design rules between different

subsystems in advance of outsourcing them to suppliers (Ulrich 1995; Baldwin and Clark 1997),

C Marc G. Haddad

with subsequent knowledge interactions being centered around coordinating these design

specifications through documents and information systems. These insights are summarized in

Table 12 below:

Table 12: Product Architectures in Complex Product Development

Architecture Type Knowledge Integration Characteristics

Modular External between prime and suppliers

Integral Intra-firm (intra- and inter-IPT)

Hybrid Intra-firm during system integration

External during design phase

It has also been shown that changes in the architecture of a system require the development of

new knowledge (referred to as architectural knowledge about system interactions - see § 2.1.6)

as well as new problem solving strategies, information filters and communication channels

(Henderson and Clark 1990). In the same vein, (Bozdogan, Deyst et al. 1998) have investigated

architectural innovation in new product development through early supplier integration, showing

empirically how tapping tacit supplier-based knowledge can yield significant benefits in terms of

cost, schedule and quality performance in developing new products. Additionally, several

empirical studies have shown that teams working on interrelated subsystems (i.e. within an

overall system architecture that is integral) communicate more effectively with each other than

teams working on loosely coupled subsystems (i.e. within an overall system architecture that is

modular) (Sosa, Eppinger et al. 2000a; Sosa, Eppinger et al. 2000b; Sosa, Eppinger et al. 2004).

The main implication of these insights for the purposes of this research is that problem solving is

more localized and knowledge integration is more difficult in modular system development

(namely due to information hiding and lack of communication) than it is for integral systems,

which reinforces earlier insights about the need for integrated problem solving and frequent

communication in order to improve design quality in complex modular products (Takeishi 2002)

as outlined previously in § 2.2.3.

© Marc G. Haddad
100

C Marc G. Haddad 100

To summarize, the main insights for knowledge integration from the literature on system

architecting and architectures are two-fold: first, the channels and mechanisms utilized to

integrate design and system knowledge vary in type and frequency of use depending on the

architecture of the product. Second, and due to the iterative nature of the system architecting

process regardless of product architecture, the exchange of information about requirements,

specifications and standards makes up the bulk of tacit and explicit knowledge interactions at

multiple levels in order to formalize customer needs and flow down requirements, either through

documents, information systems and prototypes or through group meetings and mediation.

2.3.3 The Link of Knowledge Integration to Product Platforms

A product platform (also known as a family of products) is a collection of physical and

knowledge assets that are shared by a set of products, where physical assets range from product

parts to production lines, and where knowledge assets include people and processes (Robertson

and Ulrich 1998). Commonality within a platform is therefore a deliberate strategy whereby an

initial product is "spun off' into other similar or more differentiated products by modifying or

customizing an initial product design, and by using a common set of physical and knowledge

resources in the development process. Knowledge integration within a product platform is thus

designed into the development process and is typically accomplished through a "platform team",

which is a multi-disciplinary group of engineers and functional specialists in charge of design

and development for the entire platform of products, supported by top management in the

platform planning stages (Sanderson and Uzumeri 1995).

In an extension of the single platform concept, one of the foremost principles of Lean product

development is to consider all of the firm's products as part of a portfolio of platforms where

knowledge, technologies and other resources must be shared to varying degrees in order to

maximize the return on any initial investment (Cusumano and Nobeoka 1998). This means that

knowledge integration is not limited internally to the single platform but must be extended across

other platforms as much and as frequently as possible, depending on the level of design

commonality across these platforms. Knowledge integration across platforms of products is

especially relevant in complex product development where some degree of commonality

C Marc G. Haddad 101

between different designs, or at least between parts of the designs of different products, is almost

inevitable due to the numerous components and technologies involved. This makes knowledge

sharing across programs a key enabler of an efficient and effective development process.

In a large-scale development context, finding the required knowledge and transferring and

sharing it is not trivial or straightforward, which makes the process of integrating knowledge a

challenging but essential ingredient in multi-project organizations such as manufacturing firms in

the automotive and aerospace industries. In a thesis on multi-project management in the

automotive industry, (Nobeoka 1993) showed that when different projects share a technology or

design between them, there is a need for inter-project coordination between project managers as

well as inter-project cooperation between design engineers, both directly (engineer-to-engineer)

and indirectly (mediated by the functional manager overseeing both products). This means that

when different platforms share a high degree of design or technology commonality, it is

important to integrate knowledge between them at different levels and both directly (platform-to-

platform) and indirectly (through the organization's functional department). In the same study

however, it was shown that increasing product complexity makes it very difficult to coordinate

and cooperate across projects due to the difficulty in managing design interdependencies in these

cases. Nobeoka cited people transfers, joint activities, integrators (or boundary spanners) and a

systematization of the informal networks of engineers as the most effective strategies and

mechanisms for inter-project coordination and communication. These insights are summarized

in Table 13 below:

Table 13: Platform Dependencies in Complex Product Development

Dependency Type Inter-Project Knowledge Integration Characteristics

High design commonality, Direct (between project managers, between design engineers)

low complexity Indirect (mediated by functional managers)

High design commonality, Direct and indirect plus liaison devices

high complexity (integrators, personnel transfer, joint activities, formal networking)

To sum up, the most important insight from this literature is that in the context of multi-program

organizations, intra-organizational knowledge integration should account for channels across

© Marc G. Haddad
102

© Marc G. Haddad 102

programs/projects especially in cases of component commonality or design and technology

interdependence between programs. In such cases, both direct program-to-program channels and

indirect channels (going through the functional organization) should be accounted for, and

should be supplemented with additional liaison devices depending on design complexity.

2.3.4 The Link of Knowledge Integration to Organizational Structure

The relationship between the structure of the organization and the structure of its knowledge

integration process has not been explicitly addressed in the literature. However much of the link

between these two concepts has been covered in the insights about organizational forms and their

influence on communication (Hedlund 1994; Grant 1996b), coordination (Sanchez and Mahoney

1996; Grant 1996a) and knowledge management (De Boer, Van Den Bosch et al. 1999) inside

the single firm. It is commonly argued in the literature on organization design that different

organizational forms (e.g. matrix, functional, project and hybrid combinations) enable

information communication, task coordination as well as the transfer and sharing of knowledge

to different levels of efficiency and effectiveness (Galbraith 1974; Allen 1977; Grant 1996b; De

Boer, Van Den Bosch et al. 1999). This is because different forms provide different types of

infrastructure by which knowledge can be integrated, both in terms of information systems and

facilities and hierarchical arrangements. In the emerging knowledge-based view of the firm, the

organizational form is seen as a vehicle for providing a set of "higher level organizing

principles" and a rich social context to support the integration of knowledge (Kogut and Zander

1992; Almeida, Song et al. 2002). Each form presents advantages and disadvantages for

knowledge integration, for example the project-based form brings all the functional disciplines

on board the project (e.g. in cross-functional teams) thus facilitating knowledge integration

across different specialties; however it disconnects each deployed specialist from his or her

knowledge base outside the project. In contrast, the functional form keeps specialists connected

with their knowledge base, but at the cost of weak knowledge integration across different

knowledge domains and with the project teams (Allen 1997).

Hybrid organizational forms and what are known as innovative forms (such as the N-form

(Hedlund 1994) and the Hypertext form (Nonaka 1994)) are designed to balance the advantages

C Marc G. Haddad 103

and disadvantages of the pure structures, but they also present difficulties of their own. This is

why knowledge integration processes are often tailored to overcome the disadvantages of any

particular organizational structure through additional capabilities such as shared information

repositories, multi-project meetings, and liaison devices, to name a few. These insights are

summarized in Table 14 below:

Table 14: Organizational Forms for Complex Product Development

Organizational Form Knowledge Integration and Problem Solving Characteristics

Functional form Strong cross-program but poor cross-functional knowledge flow

(dispersed knowledge structure) Integrated problem solving across programs

Project form Strong intra-program but poor cross-program knowledge flow

(silo'ed knowledge structure) Integrated problem solving across functional disciplines

Hybrid and Matrix forms Use of boundary objects to overcome weak links (liaison devices,

shared information repositories, cross-boundary communication)

In addition, and building on the discussion in § 2.3.2 about the influence of product architecture

on the knowledge integration process, it has been well established in recent perspectives on

organization design that there is a positive correlation between product architecture and the

structuring of organizations (as well as entire industry structures) in what has come to be known

as the co-evolutionary view of product and organizational architectures, and which has attracted

much attention recently both in the literature and in practice (Christensen, Verlinden et al. 1999;

Brusoni and Prencipe 2001; Galvin and Morkel 2001; Sako 2003; Sosa, Eppinger et al. 2004).

The central argument in this body of work is that the architecture of the product influences the

structure of the organization developing it, or as it is more commonly stated that "organizations

design products and products design organizations" (Sanchez and Mahoney 1996), such that

modularization in the product architecture leads to de-coupling of tasks and relationships in the

hierarchy of the developing organizations. This is because modularization of an artifact is

equivalent to the decentralization of the development process whereby problem solving is

distributed to more autonomous teams in different organizations (Christensen, Verlinden et al.

1999) (leading to more localized problem solving as discussed in sections § 2.2.2 and § 2.3.2),

and as a result the knowledge required to produce different modules is dispersed across team and

organizational boundaries. Therefore, the organizational structure governing the relationship

C Marc G. Haddad 104

between developing teams and organizations becomes loosely coupled, thus mirroring the

modularity of the product architecture. This raises the need for more intensive knowledge

integration across organizational boundaries (i.e. between the prime assembler and module

suppliers).

Conversely, the development of integral architectures is more efficiently accomplished within a

single firm since it is easier and less costly to coordinate task interdependencies internally rather

than externally across the boundaries separating different organizations (this again assumes that

the product complexity is low enough that all the skills required for the complete development

effort are resident in-house as already discussed in § 2.3.1 above), and as a result integral product

architectures create an inward pull on the vertical channels in the organization's structure

through extensive reliance on internal horizontal knowledge interactions (Christensen, Verlinden

et al. 1999; Wissmann and Yassine 2005). This increases the intensity of knowledge integration

across internal boundaries inside the single firm at the expense of external knowledge

integration, especially for tacit knowledge interactions between specialists across functional

disciplines. Horizontal knowledge integration in this case is most effectively accomplished

through integrated multi-disciplinary teams having the broad skills necessary to tackle integral

designs (Ulrich 1995). Furthermore, explicit knowledge integration is also made more efficient

in this case since tightened hierarchies (i.e. organizational structures which are tightly integrated

along vertical dimensions) are designed to maximize task coordination and minimize the need

for extensive information communication (Sanchez and Mahoney 1996; Grant 1996b). The

relationship between product architecture, organizational structure and knowledge integration is

illustrated in Figure 6.

© Marc G. Haddad 105
C Marc G. Haddad 105

Adapted from T. Piepenbrock, MIT Thesis. 2004

Figure 6: Product Architecture, Organizational Structure and Knowledge Integration

Comparing the two extreme cases above in the context of product development, it can be inferred

that the main advantage of modular organizational structures where relationships are loosely

coupled is in the well established (or formalized) and direct external channels with suppliers for

the integration of explicit design knowledge (e.g. subsystem requirements and specifications

information) since explicit knowledge integration does not require face-to-face interactions and

can be accomplished efficiently through systems capabilities such as electronic systems and

documents exchange (De Boer, Van Den Bosch et al. 1999). On the other hand, the main

advantage of integral structures is in enabling close coordination of tacit knowledge about the

design and architecture of the product such as individual know-how and experience in systems

design, architecting and integration. This is done through well-established trust and commitment

internally to the one organization and by informal channels and social networks that are not

impeded by competitive barriers as is typically the case between different organizations.

It should be noted however that in reality organizations rarely adopt pure forms at one extreme or

the other, just like actual products are rarely purely modular or integral (see § 2.2.1 and § 2.3.2).

106© Marc G. Haddad

In fact, it has been shown that the structure of organizations (and of entire industries even)

oscillate periodically between the two extreme forms due to different technology and market

forces (Fine 2000), and thus there is no single structure that dominates or endures indefinitely.

Thus it is more common for organizations to adopt structures that are somewhere in between the

two extremes and which are balanced in such a way as to overcome the disadvantages of any

particular form, such as project-based organizations supplemented with close connections

between projects and functions, as is most common in organizations developing complex

systems (Dosi, Hobday et al. 2000).

Therefore, the main conclusion from this literature is that there is no single or universal type of

organizational structure that most enables knowledge integration with maximum efficiency or

effectiveness. Rather, for any given organizational structure there are fundamental channels and

mechanisms that should be established to facilitate the efficient and effective integration of

different types of knowledge across internal and external boundaries. The frequency of use of

particular channels and mechanisms is then dictated by the product architecture at hand, among

other factors such as the characteristics of the problem and the organizational environment.

2.3.5 The Link of Knowledge Integration to Network Structure

An extension of the relationship between the organizational form of the single firm and the

knowledge integration process as discussed in the previous section is the connection with the

structure of the larger organizational network (Grant and Baden-Fuller 1995; Sanchez and

Mahoney 1996). Since this thesis is concerned with product development in a large-scale

context, the influence of network characteristics on knowledge integration must also be

considered. The knowledge integration and problem solving characteristics of complex product

development networks have already been discussed in § 2.1.8 and § 2.2.4 respectively, with the

main insights related to the structure of such networks being that they are "loosely coupled",

such that clusters of suppliers are organized around a focal firm (the prime organization) and

connected by channels that are both direct (peer-to-peer) and indirect (mediated by the focal

firm). The main advantage of this structure is that it allows the focal firm to manage the design

complexity of its products by outsourcing the design and production of some parts or

C Marc G. Haddad 107

components across the network, while at the same time "hiding information" by keeping

members in the network at enough distance to protect its knowledge of the overall system which

is where its core competence lies, thus protecting its competitive advantage (Sanchez and

Mahoney 1996; Baldwin and Clark 1997). However, this comes at the price of impeding

knowledge integration across organizational boundaries due to the sparseness of connections

between clusters. The reason for the emergence of this particular structure (i.e. loosely-coupled

network) in complex product development is due to the strategy most widely adopted for dealing

with complexity (namely the dominant modularization strategy for designing and developing

complex products), which makes it more efficient for the prime organization to outsource

production of different components and subsystems to the rest of the network (Prencipe 1997).

However, this picture is not static and recent literature has not provided any evidence of the

emergence of a singularly unique or dominant network structure, particularly in rapidly changing

technology environments, where recent research has revealed that changes in the product's

underlying technology can lead to the emergence of different organizational arrangements as the

focal firm tries to adapt by adjusting the structure of the overall network. More specifically,

(Brusoni, Prencipe et al. 2001) identified three types of network structures based on the rate of

technological change, namely: 1) tightly coupled, 2) loosely coupled, and 3) decoupled. Tightly

coupled networks are needed to deal with fast changing technologies in highly integrated product

architecture regimes, as they afford the focal firm the ability to quickly integrate changing

technological knowledge with suppliers and to provide robust "total" solutions under conditions

of high product complexity and high technological uncertainty. At the opposite end of the

spectrum, decoupled networks are needed in stable technological regimes where the product

architecture is highly modular as they allow the lead firm to efficiently integrate explicit

knowledge about well defined standards and specifications. However, one of the drawbacks of

decoupled networks is in the increased potential for "arm's length" relationships between prime

and supplier organizations in the network as knowledge interactions become limited to flowing

down design rules, thus making the vertical integration of tacit knowledge (when required) more

difficult and prone to disconnects. In between these two extremes are the loosely coupled

structures which afford the focal firm the ability to adapt to the transitional types of technology-

architecture regimes (specifically, the stable-integral and unstable-modular regimes), allowing

© Marc G. Haddad 108

the integration of tacit and explicit knowledge efficiently and effectively while protecting its own

core competence (see § 2.3.7 for further discussion of the influence of technology maturity on

knowledge integration). These insights are summarized in Table 15 below.

Table 15: Network Types for Complex Product Development

Network Type Knowledge Integration and Problem Solving Characteristics

Tightly coupled Prime can quickly/easily integrate new tacit and explicit knowledge from suppliers

Integrated problem solving with suppliers (total solutions)

Loosely coupled Prime can quickly/easily integrate old tacit and explicit knowledge from suppliers

Cooperative problem solving with suppliers (protective of core competency)

Decoupled Prime can quickly/easily integrate old explicit knowledge only

Arm's length problem solving with suppliers (compartmentalized solutions)

To further characterize the types of channels and mechanisms by which knowledge is integrated

under these different network arrangements, I draw on the structural attributes of each one as

described in the literature. In the case of tightly coupled structures, (Brusoni and Prencipe 2001)

describe tight coupling in terms of close, long-term relationships with suppliers for exchanging

specialized knowledge, and (Sanchez and Mahoney 1996) classify those interactions as

"intensive" and "hierarchical", which means that knowledge integration in this arrangement is

mostly tacit (involving the specialized knowledge of individuals) and through vertical channels.

Conversely, in the case of decoupled structures, coordination is said to be achieved through

market mechanisms for exchanging knowledge about well defined standards and specifications.

This means that explicit knowledge dominates the interactions in decoupled networks with the

most efficient mechanisms in this context being information systems and technologies such as

standardized/common design tools and databases (Argyres 1999). In loosely coupled structures,

(Brusoni, Prencipe et al. 2001) propose that coordination is achieved through hierarchy and close

cooperation in problem solving, while (Sanchez and Mahoney 1996) argue that coordinating the

loosely coupled activities of component developers can be simply achieved through "information

structures". Of course, since loosely coupled structures are appropriate in two diametrically

opposed technology-architecture regimes as discussed above (i.e. the stable-integral and

unstable-modular regimes), the choice of mechanisms for knowledge integration will depend on

© Marc G. Haddad 109
© Marc G. Haddad 109

which context the network is operating in. The previous insights are reformulated in Table 16

below.

Table 16: Network Types for Complex Product Development

Network Type Knowledge Integration and Organizational Structure Characteristics

Tightly coupled Tacit knowledge integration through vertical channels is dominant

Tight long-term relationships with suppliers

Loosely coupled Tacit knowledge integration through vertical channels is useful

Explicit knowledge integration through information systems is dominant

Flexible (close-to-loose) relationships with suppliers

Decoupled Explicit knowledge integration through information systems is dominant

"Arm's length" relationships with suppliers

In conclusion, there are three types of network structures in complex product development with

the most common being the "loosely coupled" structure, where both tacit and explicit knowledge

integration channels and mechanisms are necessary to varying degrees, depending on the rate of

technological change and the architecture of the product under development. These networks

require flexibility in the relationship between network members and the focal firm.

2.3.6 The Link of Knowledge Integration to Team Structure

A fundamental activity of teams is the integration of individual knowledge into collective

knowledge in order to accomplish a task (Okhuysen and Eisenhardt 2002). Teams like

organizations can have different structures (e.g. project teams, functional teams, matrix teams

and hybrid teams), with each team structure having advantages and disadvantages for solving

problems and accomplishing tasks, as well as varying levels of performance in different contexts.

This is because the team's structure is a key determinant of its ability to integrate knowledge

internally and externally with the environment. Some of the key determinants of team structure

are team composition, size, leadership and level in the hierarchy (i.e. the level of authority in the

organizational hierarchy at which the team operates) (Galbraith 1974; Brown and Eisenhardt

1995).

© Marc G. Haddad
110

C Marc G. Haddad 110

Team composition is an important aspect of team structure since it affects the team's ability at

integrating knowledge both internally and externally. For example, it has been shown in

previous research that successful design teams are composed of individuals who have the dual

ability of using computerized design tools and libraries to integrate explicit information

efficiently, as well as the right communication skills and social networks for effectively

integrating the tacit know-how of seasoned engineers from outside of the team's boundaries

(Almeida, Song et al. 2002). Team composition is especially critical in complex problem

solving since it is a key enabler for integrating diverse sources of specialized knowledge as is

required in dealing with complex problems (see § 2.2.1 and § 2.2.2). Specifically, in the

development of complex products, the Integrated Product Team (IPT) has been the most

commonly used team structure for over a decade (Browning 1996), due for the most part to the

diverse team composition it provides. The cross-functional and multi-disciplinary composition

of IPT's brings together multiple technical and functional knowledge domains for the entire

lifecycle of the product, from concept design to testing and sometimes even sustainment (Sheard

and Margolis 1995). This allows different specialists to tackle different aspects of complexity in

the development task and to follow it through the entire development process (Ancona and

Caldwell 1992; Browning 1996).

In large-scale development contexts, an IPT typically includes a variety of core specialists from

the project or program developing the product, often supported directly on the team by domain

experts from different functions in the prime organization, and sometimes even involving

customer and supplier representatives, either as full-time team members or temporarily for

specific phases of the development process. This cross-boundary composition of IPT's enhances

the team's knowledge resources as well as its integration ability through enhanced coordination

leverage and a larger organizational network to draw on. In such cases, an IPT's knowledge

integration capability is largely dependent on the common language or knowledge base22

established among its members. A common knowledge-base allows the members of a multi-

disciplinary team to integrate their specialized knowledge internally by combining the different

22 A common language or knowledge base that is shared by all team members is the basis for each member to be
able to understand and assess the domain-specific knowledge of others (Carlile 2004), such as for example having
common knowledge about "lifecycle design requirements" which addresses lifecycle design needs from the different
perspectives of all engineering disciplines represented on the team.

C Marc G. Haddad 111

types of knowledge they each possess, and in the process potentially creating new knowledge in

the form of novel solutions or approaches 23 (Nonaka and Takeuchi 1995). In the absence of a

common knowledge base, a team becomes a collection of disparate specialists with its members

likely to be pulled in different directions and/or having to go through numerous iterations before

reaching consensus on formulating and solving problems (Sheard and Margolis 1995).

Therefore, a product team composed of diverse specialists with a common knowledge base

between them and with the widest representation of the organizations involved in the

development effort will be more efficient and effective at integrating knowledge both internally

and from external sources.

Team leadership is arguably the most important determinant of team structure and has a direct

influence on knowledge integration both internally and externally. As has been already shown in

the discussion on problem solving teams in § 2.2.3, complex problems encountered in the

development of modular systems are typically decomposable enough that they can be solved

independently by different specialists under the supervision of a system architect as team leader,

(Ulrich 1995) and the integration of knowledge would be mostly internal to the team or along

vertical channels between teams at different levels of organizational or network hierarchy (e.g.

prime and supplier organizations or subsystem and system IPT's in the same organization).

Conversely, the development of integral systems requires joint problem solving by multi-

disciplinary teams under the leadership of an experienced (or "heavyweight") system integrator,

and the integration of knowledge requires extensive horizontal interactions between teams within

the same organization. In addition, team leadership has a significant effect on the composition of

the team since the team leader typically selects the individual members of the team, such that if

the team is composed of individuals who are incompatible with each other in terms of their work

styles, their interpersonal relationships or otherwise, the team is likely to be inefficient and/or

ineffective at integrating knowledge due to conflict or broken communication links.

The team leader also plays a significant role in mediating conflicts internally and facilitating

access to needed resources externally. This is why when team problem solving hits a "glitch",

23 This process is often referred to as "learning-by-doing" and typically involves several iterations of trial and error
as knowledge is shared, combined and applied to solve problems (Walz, Elam et al. 1993).

© Marc G. Haddad 112

team leaders are typically called upon to put the problem solving back on track. Thus, the type

of technical skills of the team leader as well as his or her leadership skills both affect the ability

of the team at integrating knowledge resources internally and from external sources. It is

important to note here that since the team leader acts as a funnel for knowledge flow into the

team, team leaders must therefore be empowered by the organization to access and acquire

knowledge from outside their local (program) boundaries in order for the team to effectively

integrate knowledge from external sources that are not in their immediate vicinity.

Similarly, team size is an important aspect of team structure since it affects the ability of the

team at integrating knowledge internally. The most common team size for IPT's in complex

product development is typically 10-15 individuals (Browning 1997). If the size of the team is

too small (less than 5 members) or too large (greater than 15 members), the team will likely be

inefficient at integrating the knowledge required to accomplish its task within time and budget

constraints (Browning 1997). This is because smaller IPT's may not have all the resident

knowledge required in a complex development setting. Conversely, and while team size can

sometimes be in excess of 30 members especially in large scale development contexts as is

common in the aerospace industry, such teams are considered too large for members to work

together efficiently and effectively. Group dynamics dictate that such teams eventually break up

into smaller groups focused on specific tasks within their focus of expertise.

It should be noted here that even when team composition and size are close to optimal, it is often

difficult for team members to embody all the knowledge required for a particular project,

especially for large-scale complex development efforts, so the team will more often than not be

forced to acquire additional knowledge from outside its own boundaries in order to solve

complex problems. The sources of this knowledge can be relevant documentation, formal

training sessions, or group meetings with other teams, among others (Walz, Elam et al. 1993; De

Boer, Van Den Bosch et al. 1999).

Finally, the level in the organizational hierarchy at which an IPT is designed to operate dictates

the types of channels and mechanisms that are available to its members for integrating

knowledge internally and from outside of the team's boundaries (Galbraith 1974). In product

© Marc G. Haddad
113
113C Marc G. Haddad

development, IPT's are structured to mirror the Work Breakdown Structure (WBS) of the

development process, with different IPT's assigned to develop different parts of the product.

These IPT's are known as subsystem IPT's, while the IPT responsible for the entire product is

known as a system IPT (Browning 1996; Browning 1997). IPT's at all levels integrate

knowledge between them through the exchange of design and interface documents, through

intra- and inter-IPT meetings, co-location of individuals from different organizations or from

different levels in the same organization, and common IT tools and databases (Browning 1997).

However, system IPT's typically have a higher level of authority than subsystem IPT's in terms

of determining and approving the problem solving approach, while the latter are more engaged in

the actual steps and details of the problem solving process.

The key determinants and critical characteristics of team structure in large-scale complex product

development are summarized in the matrix below:

Table 17: Key Determinants of Team Structure in Complex Product Development

Key Determinant Critical Characteristics

IPT format (multi-disciplinary, cross-organizational)
Team composition

Team member skills (communication, social networking, concurrent engineering)

Team leader skills (professional networking, mediation, system architecting,
Team leadership

system integration)

5 < size < 20
Team size

Problem solving team meetings (10-15 members)

System-level IPT (oversight, approval of problem solving approach)Team authority level
Subsystem level IPT (implementation of problem solving steps)

To sum up, the primary vehicle for integrating knowledge in a complex problem solving context

is the multi-disciplinary team, with IPT's being the most typical form used in complex product

development. IPT's operate at various levels of the organizational hierarchy, and the structure

connecting different teams mirrors that of the product architecture, which makes knowledge

integration between teams a multi-level process. The ability of an IPT at integrating knowledge

depends on the team's internal structure, with team leadership being arguably one of the most

© Marc G. Haddad 114
C Marc G. Haddad 114

critical aspects for both internal and external knowledge integration, as these depend on both the

technical and leadership skills of the team leader.

2.3.7 The Link of Knowledge Integration to Technology Maturity

It has long been established in both the knowledge management and product development

literatures that technological innovation has a direct effect on communication and coordination

as well as on the structure of teams and organizations involved in the development effort.

Earlier Work by (Allen 1997) demonstrated that the need for communication and coordination

diminishes with increasing technological maturity as existing knowledge becomes stable enough

that there is less need for engineers to stay connected with knowledge sources outside their team

or project. As such, problem solving and knowledge integration in mature technology

environments are typically localized and internal to the project team, whereas in novel or rapidly

changing technology environments there is an increasing need to integrate knowledge across

team and functional boundaries (Allen 2000).

Similarly, (Hansen, Nohria et al. 1999) argue that mature product development involving well-

understood technologies and tasks can benefit from knowledge codification and reuse, whereas

product innovation is best supported by tacit knowledge sharing among individuals since

codified information becomes obsolete with rapidly changing technologies. All of these existing

findings can be easily related and visualized in the following 2x2 matrix shown in Table 18:

Table 18: Effects of Technology Maturity on Complex Product Development

New Technology Environment Mature Technology Environment

Distributed problem solving Localized problem solving

Inter-team and program-to-function Intra-team and intra-program

knowledge integration knowledge integration

In complex product development, increasing technology novelty adds to the complexity of

technical problems such as coupling problems resulting from incidental (or undesirable)

C Marc G. Haddad 115

interactions between subsystem or component elements of a complex product, making it more

difficult to anticipate such problems and catalyzing the formation of ad-hoc problem solving

teams with experience in system integration, or even formal troubleshooting teams for

particularly complex coupling problems (Eppinger and Gulati 1996). In a large-scale

development context, technology novelty drives an increase in tacit knowledge interactions

across prime-supplier boundaries, specifically to coordinate the integration of the supplier's

subsystem module into the overall system (Brusoni, Prencipe et al. 2001). In contrast, when the

product's core technology matures the relationship between prime and suppliers becomes more

loosely coupled or at "arm's length", with interactions limited to explicit knowledge about

subsystem requirements, specifications and standards. (De Boer, Van Den Bosch et al. 1999)

further demonstrated that firms operating in a mature technological environment require systems

capabilities (i.e. an information technology infrastructure) in order to integrate existing

technological knowledge internally, while emerging technologies require the integration of new

knowledge across organizational boundaries through group coordination which they define as

participation in group problem solving, supplemented by liaison devices and lateral job rotation

internally. Combining the preceding insights, the above matrix can be further refined as follows

in Table 19:

Table 19: Effects of Technology Maturity on Complex Product Development

New Technology Environment Mature Technology Environment

Integrated problem solving with supplier Arm's length problem solving with supplier

Tacit knowledge integration using group Explicit knowledge integration using IT

coordination, liaison devices and job rotation infrastructure

In summary, the use of new and unproven technologies (or new combinations of existing

technologies) increases the need for tacit knowledge integration vertically through tightly

integrated group problem solving and troubleshooting with suppliers, and horizontally through

job rotation and liaison devices between programs and functions. In contrast, the use of mature

technologies can be efficiently supported by the integration of codified knowledge through an IT

infrastructure.

© Marc G. Haddad 116
C Marc G. Haddad 116

2.3.8 Summary of Insights on Organization Design and Complex PD

In this section I have reviewed the main issues related to the organizational and product

characteristics of influence on the knowledge integration process. These are summarized in

Table 20 below:

Table 20: Knowledge Integration by Product and Organizational Characteristics

Product Organizational Primary Knowledge Integration Characteristics

Characteristics Characteristics Where What How

Low Complexity -- Intra-firm Explicit (few internal Documents; Information

sources) systems

High Complexity -- Intra- and Inter- Tacit (many internal and Team meetings; Site visits;

firm external sources) Liaison; Social network

Modular Loosely Coupled Inter-firm Explicit (subsystem-level Documents; Information

Architecture Structure specs, std's, reqts) systems; Prototypes

Integral Tightly Coupled Intra-firm (intra- Tacit (system-level Intra-team meetings;

Architecture Structure team) design/integ. knowledge) Mediation

New Technology -- Intra-network, Tacit Group coordination;

Prog.-function Liaison devices; Job

rotation

Mature Loosely Coupled Inter-firm Explicit Documents; Information

Technology Structures (prime-supplier) systems

New Product -- Intra-program, Tacit Intra-team meetings;

Design prog.-function Personnel transfer

Platform Product -- Program-prog., Tacit and Explicit Inter-team meetings;

Design Prog.-function Liaison Boundary objects

Tightly Coupled Intra- and Inter- Tacit (system-level Face-to-face meetings;

Structures firm design/integ. knowledge) Social network

Loosely Coupled Intra-network Explicit (subsystem-level Documents, Information

Structures design knowledge) systems

© Marc G. Haddad 117
© Marc G. Haddad 117

2.4 Summary of Literature Review

This chapter provided an overview of the literature on knowledge integration, problem solving,

and organization design and complex systems development as they relate to the actual process of

integrating knowledge in a large-scale complex product development context. Most notably,

definitions for knowledge integration at the conceptual and operational levels were proposed in

§ 2.1.6. Summaries of the main insights related to knowledge integration from each of the main

bodies of literature were presented in § 2.1.12, § 2.2.5 and § 2.3.8 respectively. The major

themes related to the mechanics of knowledge integration which were commonly found across

the literature are consolidated in Table 21 below. These insights form the basis for proposing the

preliminary framework for knowledge integration in the context of large-scale complex systems

development as presented in Chapter 3 of this thesis.

Table 21: Common Themes for Knowledge Integration

Knowledge Problem Knowledge Integration Mechanisms

Integration Solving

Channels Context

Documents, information systems, liaison devices, boundary
Routine

Intra-firm objects, communities of practice

Personal communication, group interaction, people transfer,
Non-routine

personal networking, team meetings, special taskforces

Routine Documents, information systems, networks of practice

Inter-firm
Non-routine Group interaction, site visits, co-location, mediators, team

Non-routineetings, special taskforces
meetings, special taskforces

© Marc G. Haddad 118
C Marc G. Haddad 118

3. CONCEPTUAL FRAMEWORK

Building on the existing insights in the literature as reviewed in Chapter 2 of this thesis, a

preliminary framework is proposed conceptualizing the main dimensions for knowledge

integration and problem solving in large-scale complex product development environments. The

proposed framework will serve as a "going-in" proposition for the field research that can guide

the data collection process in terms of the choice of interview subjects and research questions, as

detailed in Chapter 5 on the methods used in the field research. The framework will then be

updated and refined further as the data are collected and analyzed, which is shown in detail in

Chapter 6 on data analysis. The steps for developing the preliminary framework are presented in

the following sections.

3.1 Basic Dimensions of Knowledge Integration

The main insights distilled from the literature for framing the knowledge integration process

have already been summarized at the end of each section of the literature review in the previous

chapter. In order to develop a framework for knowledge integration in a complex product

development context, it is necessary to tie these insights together into a typology of basic

elements or dimensions for the knowledge integration process, characterizing the types and

sources of knowledge and the strategies, practices, channels, boundaries and mechanisms for

integration. The main dimensions for knowledge integration are visualized in Figure 7 below.

dl I f,g

c e

I

II

Figure 7: Main Dimensions for the Knowledge Integration Framework

© Marc G. Haddad
119

C Marc G. Haddad 119

Where:

[a] and [b] are counterparts involved in the knowledge integration process

[c] is the type of knowledge integrated

[d] is the type of organizational boundary being crossed

[e] is the direction of knowledge integration

[f] and [g] are the types of channels and corresponding strategies/practices/mechanisms

employed to integrate knowledge along each channel

Note that the visual representation proposed above is fundamentally similar to a social network

diagram composed of nodes tied by paths and separated by barriers24. This is because the focus

in this research is on the actual process of integration as defined in the previous chapter, namely

focusing on the transfer, sharing and application of knowledge between multiple sources and

recipients across organizational boundaries, which makes network mapping a useful approach for

visualizing the main knowledge interactions across the organizational network.

Using existing insights in the literature to characterize the above dimensions, a typology of basic

"building blocks" for knowledge integration in complex product development can be proposed,

as detailed in the following sections.

3.1.1 Typology of Knowledge in Complex Product Development

Developing a typology of knowledge serves two purposes of primary importance in this research,

the first is to scope the research to include only those knowledge interactions which are related to

complex problem solving during the product development process, in line with the original

objective in this research; and the second is to actually identify and describe the main types and

sources of knowledge that are most relevant in this context. First, and in order to scope the

research so that it becomes operational, the investigation into the knowledge integration process

will be focused on knowledge interactions occurring during the design phase of the product

24 It is well established that "organizations can be viewed as social groupings" (Weick, 1969) and that "the social
network perspective is an example of a theoretical framework...guiding data collection as well as data analysis...to
capture significant organizational processes at different levels of analysis" (Tichy et. al, 1979).

C Marc G. Haddad 120

development process, and specifically the focus will be on the integration of engineering

knowledge during problem solving involving subsystem design and system integration type

problems. This is because most technical problem solving occurs during the design phase of

development (Moir and Seabridge 2004) where many teams are engaged in solving technical

problems, as shown in Figure 8 below 25. This was confirmed by interviewees in the field who

stated that "the system design and development phase (SDD) is where you get the most

interactions between the best and brightest engineers and with the most experienced experts".

Secondly, the focus on technical problems occurring in these specific phases of development

ensures comparability between similar problems of significant complexity, which is essential for

framing the knowledge integration process in its complex setting. As one interviewee put it "the

type of problems you encounter depends on the development phase you're in".

No. of stakeholders
involved in

problem solving

I
K

Concept Definition Design Build Test Sustain

Adapted from Seabridge & Moir, 2004

Figure 8: Research Focus on Design Phase of Product Development Process

It follows that knowledge of most relevance in this research is product-related knowledge about

the technical aspects of the design and about the embedded technologies in the product, as well

as the associated technical processes employed in the design phase of product development.

Based on the insights in the literature as reviewed in the previous chapter (specifically in § 2.1.6

and § 2.3.2), a typology of such knowledge would consist mainly of component knowledge

(meaning the engineering knowledge about the design of a particular subsystem and its

25 Note that in many complex development projects, the different phases of development are not clearly delineated
and some phases are frequently merged together due to schedule or budget pressures; as a result, the investigation of
knowledge integration may include insights from the build and/or testing phases of development.

k I

L

I

N\ý-"
I

C Marc G. Haddad 121

individual components) and architectural knowledge (or system integration knowledge about the

interfacing of different components and subsystems), as well as process knowledge (or

knowledge related to technical processes used in product development, such as materials

engineering processes or software integration processes) (Henderson and Clark 1990). The

sources of these types of knowledge in complex product development are therefore the prime

(system integrator) and supplier (component developer) organizations, as previously discussed in

§ 2.3. The sources of system-level knowledge are assumed to be the program engineers in

system and subsystem teams, as well as functional and support engineers and experts in

functional groups. The sources of component knowledge are assumed to be the component

engineers and experts in functional groups and the supplier engineers. It can therefore be

concluded that the boundaries being negotiated in the process of integrating knowledge are team

boundaries at different levels within the same program as well as across programs and functions,

in addition to organizational boundaries between prime and supplier. Note that in order to keep

the field research manageable, only the main participants in technical problem solving are

included in the framework, thus excluding other sources of knowledge such as research and

development teams, program management and the customer. A typology of the main channels

for knowledge integration in large-scale complex product development can thus be proposed in

Table 22 below:

Table 22: Typology of Knowledge Integration Types and Sources

Channel Knowledge Types and Sources

Intra-program (system-to-subsystem teams) System integration knowledge from system

Channel #1 architects, engineering leads and experts

Intra-program (subsystem-to-subsystem teams) System integration and subsystem engineering

Channel #2 knowledge from systems engineers

Program-to-program Subsystem engineering knowledge from program

Channel #3 engineers

Program-to-function System integration, subsystem engineering and

Channel #4 process knowledge from functional and support

engineers

Prime-to-supplier Subsystem engineering knowledge from supplier

Channel #5 engineers

© Marc G. Haddad 122

This typology frames the relevant types and sources of knowledge at different levels of

integration (namely the subsystem and system levels, the prime and supplier levels, and the

program and function levels) and along horizontal, vertical and lateral dimensions, which is in

line with insights from the literature about the channels for knowledge integration in complex

product development settings (see § 2.1.7 for a detailed discussion of the dimensions for

knowledge integration). A typology of mechanisms for knowledge integration, constituting the

remaining elements necessary for framing the process is discussed in the following section.

3.1.2 Typology of Integration Mechanisms in Large-Scale Product Development

Technical knowledge is interacted through tacit and explicit mechanisms, such as personal

communication and group interaction for integrating expertise, know-how and skills, and

documents and databases for integrating data and information, respectively. In addition, a

fundamental assumption from the product development literature is that engineering knowledge

at the component level can be effectively codified into explicit forms, such as documented

specifications or standards, while system-level knowledge is more difficult to codify and is

largely in the form of tacit expertise and experience held by individuals, such as expertise in

systems engineering and system integration (Cusumano and Nobeoka 1998; Aoshima 2002).

While this does not mean that subsystem-level knowledge is entirely codified (indeed design and

engineering expertise with a particular subsystem is evolved by the supplier over several product

generations and is closely protected from competitors) or that architectural knowledge cannot be

captured in explicit form (for example, in system architecture drawings and charts or system-

level specifications and standards), it is nonetheless expected that interactions at the component

or subsystem level are dominated by explicit knowledge integration mechanisms while

interactions at the system level are dominated by tacit knowledge integration mechanisms.

Based on existing insights in the knowledge integration and product development literature as

reviewed in Chapter 2 of this thesis, and building on the classification in the previous section of

the main types and sources of engineering knowledge in complex product development, a

typology of the main integration mechanisms in this context is proposed in Table 23 below:

C Marc G. Haddad 123

Table 23: Typology of Knowledge Integration Mechanisms

Channel Knowledge Types Integration Mechanisms

1. Intra-program Information about system requirements System architecture drawings and system

(system-to- requirements documents and databases

subsystem teams) System integration expertise Team meetings; personal communication

2. Intra-program Information about subsystem Subsystem design drawings and interface

(subsystem-to- requirements control documents and databases

subsystem teams) System integration expertise Team meetings; personal communication

3. Program-to- Subsystem engineering knowledge Subsystem design documents and

program databases; communities of practice

4. Function-to- Information about system and System subsystem design documents and

program subsystem specifications and standards databases; process documents and tools

System integration and subsystem Team meetings; liaison devices

engineering expertise

5. Prime-to- Subsystem requirements, Subsystem design drawings; subsystem

supplier specifications and standards requirements documents and databases;

boundary objects

Subsystem engineering expertise Team meetings; liaison devices; networks

of practice

The proposed typology consists of the most dominant mechanisms used to integrate knowledge

during product development across the five main channels, as specified previously. The

mechanisms and practices shown above map to typical product development tasks which include

determining customer needs (i.e. customer requirements), converting those needs to engineering

and process specifications and ultimately to a final product (Fine and Whitney 1996).

3.2 Towards a Framework for Knowledge Integration

Having specified the main types and sources of knowledge and the corresponding integration

C Marc G. Haddad 124

channels and mechanisms, a simple framework is proposed to visualize the main knowledge

interactions in a complex product development context, as shown in Figure 9 below:

Figure 9: Proposed Framework for Knowledge Integration

The framework above depicts the main counterparts involved in the knowledge integration

process in a large-scale organizational network and the major channels for integrating knowledge

from the perspective of the subsystem IPT in "Program A", which is considered as the locus of

problem solving in complex product development (i.e. where the problem solving process starts

and where the majority of problem solving occurs). This node is shown at the center of the

framework since it is the main beneficiary in the knowledge integration process. The proposed

structure constitutes a multi-level framework for knowledge integration where vertical channels

map to the main levels of the product's design hierarchy (i.e. from component and subsystem

level to the overall system level).

The subsystem IPT is therefore the unit of analysis in this framework since it is a major source of

knowledge as well as the main recipient and target in the integration process. The links between

the nodes in the depicted structure are a high-level abstraction of the main integration channels

© Marc G. Haddad
125
125C Marc G. Haddad

within and across organizational boundaries. The arrows in the figure illustrate the main

direction of knowledge integration along each channel. These channels are meant to be

representative but not exhaustive of the major knowledge interactions in a large-scale complex

product development context, so that those channels which are not considered as critical for

technical problem solving by subsystem IPT's are omitted for clarity and simplicity in the

analysis. For example, a supplier-to-supplier channel is not considered in this framework since it

is generally external to the problem solving process by the subsystem IPT. Similarly, a channel

linking subsystem level teams to the customer is omitted since the customer is either directly

represented on the subsystem IPT itself or the relationship with the customer is indirectly

mediated by higher level teams or leads in the prime organization hierarchy.

Along those lines, there was no inclusion of channels linking the subsystem IPT to other program

sources of knowledge such as the program management or the chief engineer groups, as these are

considered synonymous with the system-level team for simplicity. Finally, channels to other

corporate sources of knowledge such as research and development teams are also omitted since

these groups are not frequently involved in problem solving. These simplifications are in the

same spirit as the original strategy of bounding the research in order to keep it manageable.

However, the framework remains comprehensive enough in terms of accounting for the parties

involved in knowledge integration and problem solving alongside the subsystem IPT. Also, note

that the adopted structure is typical of project-based organizations which are most common in

complex systems development (Dosi, Hobday et al. 2000), therefore confirming that the main

channels for knowledge integration in this context are accounted for. The proposed framework

will serve as a "going-in" proposition in order to guide the field research into the actual

knowledge integration channels, strategies/practices and mechanisms most frequently used in

large-scale complex product development environments.

© Marc G. Haddad
126

C Marc G. Haddad 126

4. RESEARCH LENS

In order to bound the research problem and to ensure that the field investigation can be

practically and efficiently accomplished, this research will focus on one particular type of

complex engineering systems, namely military avionics (i.e. aviation electronics) systems, as a

research lens into complex systems development. Specifically, the focus of the research will be

on major "Mission Systems" commonly used in military aircraft and which closely interact

together in order to deliver mission capability to the pilot. These are principally the Multi-

Function (MF) Multimode Radar, the Electronic Warfare Suite (EW), the Communication

Navigation Identification (CNI) system, and the Mission Computer (MC). Figure 10 illustrates

how these systems are typically and approximately distributed on modem fighter aircraft and the

types of functions they perform.

CNI & EW
additional shared or
dedicated apertures

CIP ,.' "
CNI

GPS, ILS, IFF
voice/data

signal/data pi

MF Radar
antenna &

signal process

Figure 10: Typical Mission Systems, Apertures and their Functions

The generic framework for knowledge integration proposed in the previous chapter can thus be

reframed for the context of avionics development, as shown in Figure 11 below:

127C Marc G. Haddad

Prime

Program B
(Integral Avionics)

Radar IPT
3

Program A
(Modular Avionics)

Avionics Suite IPT

4

Electronic
Radar IPT Warfare IPT

- -

Functions

Avionics &
Support Systems

Air Vehicle
Sciences

Engineering

k I

5

Radar Supplier

Figure 11: Knowledge Integration in Military Avionics Development

As the above figure shows, knowledge integration in this context would be along horizontal

channels between different programs, different mission subsystem IPT's in the same program

such as the Radar and EW IPT's depicted above, and along vertical channels to the suppliers of

those subsystems as well as to other subsystems in the total avionics suite. The lateral channel

illustrates the interaction with some of the avionics-centric functional groups. Note that for

simplicity, channels to non-avionics aircraft systems such as mechanical and airframe systems

are not shown in the framework but will be investigated in this research. The main reasons for

choosing military avionics for this investigation are discussed in the following section.

4.1 Why Military Avionics

The rationale for choosing military avionics as a lens for the inquiry in this research is threefold:

first, avionics systems are some of the most complex equipment currently flying on military

aircraft, in terms of the number and variety of component parts in their makeup as well as the

128C Marc G. Haddad

r : ·

, . L 1 N

interdependence between those components, both internally to each avionics subsystem and

externally with other subsystems (Moir and Seabridge 2006). These components include

electronic sensors, processors, data buses, software, power sources, mechanical actuators, digital

controls, audio equipment and video displays, among others (Loewy 1999). As such, avionics

systems make for a rich research context from the perspective of knowledge integration since the

development of these systems is rife with complex problem solving activity in large-scale

organizational settings, especially in terms of dealing with major technical problems having

important strategic implications for competitive advantage, such as system integration problems,

supply network integration issues, and technology and system architecture choices.

Secondly, avionics systems are highly knowledge intensive as they incorporate some of the most

cutting edge technologies in the military aerospace and commercial industries, from micro-

processing and fiber-optic networking to digital communication and flight control technologies,

among many others (Spitzer 2001). In addition, most avionics technologies are rapidly evolving

with a majority of component technologies having very short technology refresh rates on the

order of 2 to 3 years (Committee on Aging Avionics in Military Aircraft 2001), which makes

avionics systems prone to major redesigns and thus a primary target for technical knowledge

integration during the development process. This offers the opportunity to frame the knowledge

integration phenomenon under different technology maturity levels as well as for a variety of

system architecture regimes which have emerged as a result of this fast clockspeed evolution (see

§ 4.2.1 for an overview of avionics technology and architecture evolution)

Finally, the choice of the defense context for this research offers a fertile ground for the

investigation of knowledge integration, first in terms of the numerous restrictions over the

exchange of classified information across organizational boundaries, such as the policy barriers

against knowledge sharing with foreign suppliers (namely the International Traffic in Arms

Regulations (ITAR)), and second, due to the largely traditional mentality in military

development where open knowledge sharing is not widely adopted. Furthermore, military

avionics systems are highly customized and there is no established tradition for commonality and

knowledge sharing across platforms in this context. These and other challenges in the

development of military systems offer the potential for significant insights about effective

C Marc G. Haddad 129

enablers and workarounds for the integration of knowledge across impermeable organizational

boundaries. The following section will provide an overview of the evolution of military avionics

systems and a summary of the corresponding technical and organizational issues of relevance for

this research.

4.2 Avionics Overview

The primary role of military avionics systems is to provide mission capability to the pilot, from

target identification and weapons aiming in air superiority missions to intelligence gathering and

precision bombing in surveillance and ground attack missions, among others. The ever-

increasing need for superior mission capability has led to continuous evolution and growth in

avionics system capabilities, as well as in the cost of avionics development and lifecycle

maintenance. However, the evolution of military avionics systems over the past two decades

reflects the changing imperatives in the defense aerospace industry, where affordability in the

post-cold war era became the primary system requirement due to shrinking defense budgets.

And with avionics systems now making up on average an almost 30 to 40 % of the total

development cost in new military aircraft (Joint Advanced Strike Technology Program 1994),

and over 30% of the US Department of Defense's (DOD) depot maintenance costs (Committee

on Aging Avionics in Military Aircraft 2001), it is easy to see how affordability and system

capability in avionics can be enhanced through the efficient and effective integration of new and

existing knowledge, including engineering and process knowledge about technologies and

system architecture choices, and design and system integration knowledge.

Like other complex products, avionics development starts with customer requirements about the

critical functions to be fulfilled by the avionics system, as well as about performance targets and

constraints, costs, and schedule information. These requirements are structured and formalized

before being flowed down to subsystem level IPT's and suppliers in charge of developing

different avionics subsystems. During the development process, the developing IPT's also

interact with functional groups and other programs to integrate engineering knowledge about

various aspects of the design and integration of their particular subsystem. Building on the

typology of knowledge and knowledge integration channels proposed in § 3.1.1, the following

C Marc G. Haddad 130

Table 24 gives an overview of the main engineering skills required and the types of knowledge

interacted in military avionics development (Spitzer 1987; Moir and Seabridge 2001):

Table 24: Typology of Knowledge Integration Types and Sources

Channel Knowledge Types and Sources

Intra-program (system-to-subsystem teams) Functional and performance requirements, interface

Channel #1 specifications and standards and other system

integration knowledge at aircraft system level

Intra-program (subsystem-to-subsystem teams) Interconnect technologies, specifications and

Channel #2 standards, sensor fusion, resource management and

other avionics subsystem integration knowledge

Program-to-program Avionics design knowledge (signal processing,
Channel #3 packaging, signatures, apertures)

Program-to-function Avionics technologies (microcircuit, RF components,

Channel #4 artificial intelligence) and avionics design and

integration knowledge

Prime-to-supplier Functional and performance requirements, interface

Channel #5 specifications and standards, microcircuit technology

(memory, processors) and other avionics subsystem

design knowledge

The research will use the typology above to investigate the frequency of integrating particular

types of knowledge along the corresponding channels and the types of strategies and

mechanisms used in the integration process. Furthermore, another of the main objectives in this

research is to determine the influence of different system characteristics on the process of

integrating knowledge, with one of those main characteristics being the type of architecture for

the system under development. The following section will provide an overview of the evolution

of avionics systems and the dominant system architecture regimes in modem avionics.

4.2.1 Evolution of Avionics Architectures

Figure 12 shows a typical system architecture for modem military avionics suites:

C Marc G. Haddad 131

Mission
Sensors Subsystems

Figure 12: Typical System Architecture for Advanced Military Avionics

During the cold war, the defense sector was still leading the commercial world in avionics

technology development, and avionics systems architectures (i.e. the physical, functional and

logical configuration of avionics systems) followed a highly integrated design as an effective

means of delivering custom performance requirements at any cost. However, in the post cold-

war era, a shift towards more modular architectures began to develop, driven by the imperative

for affordable systems and the opportunity to leverage the vastly increased performance and

reduced cost of computer processing and memory modules from the commercial world. Since

then, cyclic trends of back-and-forth integration and modularization have ensued, leading to the

emergence of different system architecture regimes across aircraft generations. This makes

avionics development especially interesting from the perspective of knowledge integration as

these systems offer a wide variety of system architectures, which are briefly reviewed here.

The first generation of avionics systems consisted of separate and independent systems each

dedicated to perform a single function, and each hard-wired to its own dedicated sensor, analog

processor and display, leading to numerous bulky systems and forcing the aircrew to be the

integrators of the information output (Quaranta 2000; Filmer 2003). The advent of the digital

© Marc G. Haddad
1320 Marc G. Haddad 132

computer and its ability to process information from multiple sensors led to the second

generation of avionics architectures known as federated avionics (due to the single processor

feature for many separate and dedicated functions). Federated avionics are otherwise integrated

parallel processing systems with mission computers controlling the different functions through

parallel bus-structured interconnects (Filmer 2003; Hicks 2004). This architecture allowed more

data and signal processing over its predecessor, with the information from different functions all

presented to one display, one function at a time. It also provided significant weight savings due

to reduced wiring interconnects between systems. However, the utilization of unique resources

by each system led to higher initial as well as lifecycle costs; still, most military aircraft flying

today are equipped with federated avionics architectures, with a large number of them

undergoing modernization programs. Notable among these programs is the USAF Modular

Avionics System Architecture (MASA) program started in the late 1980's, which sought to

expand the use of modularity in the modernization of federated avionics. One of the more

significant findings of this program was that modular architectures would enhance the reliability

of avionics systems through increased redundancy and fault tolerance, which would boost the

overall operational availability of the aircraft as well as reduce lifecycle maintenance costs

(Brock and Schor 1990).

Also in the late 1980's, the PAVE PILLAR project was initiated with the aim of standardizing

avionics architectures, starting with the Lockheed Martin F/A-22 Raptor for the USAF. The

outcome was a third generation of architectures known as integrated avionics, which reflected a

paradigm shift in architecture design from a loose interconnection of highly specialized "black

boxes" to having a system of general-purpose computers known as common integrated

processors (CIP) sharing many tasks and large amounts of data. Integration of previously

separate functions and sharing of resources (e.g. memory sharing) delivered increased situational

awareness to the pilot through improved sensor data fusion and provided significant cost and

weight savings over federated architectures due to fewer required physical devices. However,

the added architectural and functional complexity (i.e. the tight coupling of functions) led to

significant cost growth and schedule delays during design and development. In addition, the

interdependencies between hardware and software later led to increased costs of modernization,

since any changes in one domain forces upgrading in the other at the same time. And despite the

133C Marc G. Haddad

initial intent of the PAVE PILLAR project in creating an open flexible architecture, integrated

avionics were essentially closed (i.e. proprietary) architectures with limited potential for growth

(Morgan 1995; Quaranta 2000; Moir and Seabridge 2006).

The PAVE PACE project adopted lessons learned from PAVE PILLAR and was the basis for the

fourth generation of avionics systems known as advanced integrated avionics or more commonly

as integrated modular avionics (IMA), initially proposed for the F-35 Joint Strike Fighter (JSF) -

now known as the F-35 Lightning II - a multi-role aircraft with several variations for different

military customers. This latest generation of avionics is characterized by an open system

architecture (OSA) with extensive use of commercial-off-the-shelf (COTS) hardware and

software, and an increased focus on modularity at the overall system level. The key objectives of

the OSA approach are to enable sharing of the same computer resources through processor and

software commonality, and to decouple the software from the underlying bus and hardware

architectures. This is accomplished by utilizing well defined commercial interface standards and

using modular design concepts. This will lead to an architecture that is more flexible (by

decoupling the processor module from software code), fault tolerant (through redundancy of

component modules), scalable (easily upgradeable with improved components), interoperable

and reusable (across platforms), which makes it easier and more cost-effective to maintain

(Fabian and Rayl 1998; Filmer 2003). Figure 13 below illustrates the evolution of avionics

system architectures over time.

C Marc G. Haddad 134

M~T +
Independent Avionics

(40's -50')
Federated Avionics

(00's - 70'.)

Comm"n tmerat
p.C-om

Integrated Avionics
(80's - 90's)

IO*U-
1u-=4"

Integrated Modular Avionics
(Post 2000)

Source: JAST, Avionics Architecture Definition, 1994

Figure 13: Avionics Systems Architecture Evolution

A more simple visualization of the different generations of avionics systems is shown in Figure

14 below, based on the most relevant characteristics that differentiate integrated from non-

integrated systems, namely the connections between different systems (or subsystems) and their

corresponding resources.

© Marc G. Haddad 135

+

P-
m

n

C Marc G. Haddad 135

Y Ir~J
LII~Y

ms

I

m=

n

I

I

e s System 1

Resources i System 2

Independent Avionics
(no connections between systems or resources)

Integrated Avionics
(resource sharing through co-location)

Federated Avionics
(no connections between resources)

Integrated Modular Avionics
(resource sharing without co-location)

Figure 14: Main Characteristics of Avionics Systems Architectures

Following is an overview of the main functions and characteristics of the major mission avionics

systems of interest in this research.

4.2.2 Overview of the Multi-Function Radar System

The basic principles of radar (which stands for Radio Aid to Detection and Ranging) are to

transmit radio frequencies (RF), either continuously or in pulses, in order to detect the presence

of other objects and to measure the distance to those objects using the time it takes for

transmitted waves to be reflected back to the radar receiver. Airborne radar is thus used to detect

the presence and range of other aircraft, and fighter aircraft are typically fitted with multimode

radars capable of operating in different modes, such as air-to-air search, tracking, track-while-

scan (TWS) and ground mapping modes (Moir and Seabridge 2006). Advanced military aircraft

are equipped with highly sophisticated radar systems, such as the active electronically steered

array (AESA) radar shown in Figure 15 which is capable of performing a number of

© Marc G. Haddad 136
© Marc G. Haddad 136

sophisticated functions simultaneously, such as synthetic aperture (SA) terrain mapping for air-

to-ground surveillance, targeting and jamming functions.

Source www.northropgrumman.com, zuut

Figure 15: Multi-Function AESA Radar System

The AESA radar is based on new phase array technology consisting of thousands of

transmit/receive (T/R) elements embedded in the radar antenna which are able to radiate multiple

beams over a wide range of frequencies and phases, with each beam being electronically steered

in any direction to cover more terrain at higher scan rates than conventional radars (Quaranta

2002). This technology increases the stealth capability of modem radars making them less prone

to detection. However, this and other advanced operational capabilities translate to increased

complexity and interdependence with other mission systems such as the EW and the CNI

subsystems. As a result, a new trend in advanced radar development has seen a shift to more

standalone systems with their own dedicated resources (i.e. more modularized from the rest of

the avionics suite) in order to manage development complexity (Quaranta 2000).

4.2.3 Overview of the Electronic Warfare (EW) System

Electronic warfare (EW) systems serve to gather information and evade detection as well as to

jam enemy radars and guided weapons. Modem airborne EW systems are equipped with

1370 Marc G. Haddad

multiple sensors and receivers to cover emitting systems on the ground and in the air. Advanced

EW systems consist of signals intelligence (SIGINT) equipment for collecting electronic

intelligence (ELINT) and communications intelligence (COMINT), electronic counter measures

(ECM) equipment for jamming, electronic counter-counter measures for countering enemy ECM

and ESM systems, and electronic support measures (ESM) for threat warning, target acquisition

and weapons guidance, such as the radar warning receiver (RWR), missile warning system

(MWS) and chaff and flare dispensers, among others (Moir and Seabridge 2006). As such,

modern EW systems are made up of several subsystems which closely interact together, making

for highly integrated system architectures. Figure 16 below shows typical EW modules and their

functions in a missile engagement.

Source www.baesystems.com, 2008

Figure 16: Simplified Overview of EW Subsystems on Fighter Aircraft

As the figure shows, when electromagnetic transmissions are detected by the EW system, it

processes them to isolate each signal and identify it relative to a database of threats in order to

determine if the source is a friendly or hostile transmitter, before taking further action such as

C Marc G. Haddad 138

automatic jamming and decoying of enemy aircraft (Chaltiel, Gourion et al. 1998). EW systems

also interact with other mission systems such as radar and navigation systems in order to locate

the source of transmission relative to the aircraft. In some avionics architectures, EW and CNI

systems share the same antennas which can lead to design dependencies between the two

systems.

4.2.4 Overview of the Communication, Navigation and Identification (CNI) System

The communications, navigation and identification (CNI) system provides the aircraft with the

ability to communicate by voice or data, to navigate to a target or waypoint, and to identify and

classify targets before aerial engagement, respectively. The CNI system is made up of several

equipment and sensors, including ultrahigh frequency (UHF) and very high frequency (VHF)

communications, satellite communications (SATCOM), tactical air navigation (TACAN), traffic

collision and avoidance system (TCAS), global positioning system (GPS), instrument landing

system (ILS), and identification friend or foe (IFF). These equipment are typically separate but

highly integrated modules and which interact together considerably in order to deliver superior

functionality through data fusion, which makes the overall architecture of modem CNI systems

closer to integrated modular architectures (IMA) (Wolfe, Campbell et al. 1996). Figure 17

below shows a modem CNI system for fighter aircraft.

Source DoD 1998

Figure 17: Advanced CNI System for Modern Fighter Aircraft

(D Marc G.]Haddad 139

4.2.5 Overview of the Mission Computer (MC) System

The mission computer (MC) is the 'brain' of the entire avionics system. This system is

responsible for data and signal processing from sensors and avionics missions subsystems,

including the radar, EW and CNI. As such, the modern military mission computer is tightly

integrated with other parts of the avionics suite (e.g. its components are physically distributed

throughout the avionics system), while being a standalone system at the same time in terms of

having its own resources such as power, cooling and memory to increase reliability. However,

the internal architecture of the mission computer is highly integrated, with modem computers

containing dozens of microprocessors for greatly enhanced capability. The system architecture

trend for modem mission computers is therefore closest to the integrated modular regime (Imbesi

and Kaplow 1992). The most advanced mission computers in development and operation today

are the common integrated processor (CIP) for the F-22 Raptor, the integrated core processor for

the F-35 Lightning II, and the modular mission computer for the F-16 Block 60 avionics

upgrade. Figure 18 shows the architecture trend for military mission computer systems:

Sensor A Signal Data Display N
Processor Processor

PsorrN Sisor Data
I YJ I r Processor 7 Dispay N

a. Existing (F-15, F-16, B-1)

SensorA F Common Common Displays

Signal Data
SensorN Processor Processor Controls

b. Pave Pillar

Integrated Integrated Integrated
Sensors Processor Station

c. Pave Pace

Source Robinson and Trujillo 1992

Figure 18: Mission Computer Architectures for Modern Fighter Aircraft

C Marc G. Haddad 140

The choice of these specific subsystems which are common elements in the mission systems

suites of all modem fighter aircraft makes it possible to have a more representative sample of

major technical problems of interest and which are comparable for the purposes of this research,

as discussed in the following Chapter 5 on methods for field research.

© Marc G. Haddad
141

C Marc G. Haddad 141

5. METHODS

This chapter is a review of the research procedures and methods employed to collect and analyze

the data in both the interview part and the questionnaire survey part of the research. The

following Figure 19 situates the field research in the overall thesis roadmap.

I---------------- ---------------------------

I®

I,..'

(I I)
I I III

VaIIUd•at

I
I

CIil DaeaArr

L -----------------------------------

Figure 19: Research Roadmap

First, an overview of the research cases is provided in terms of the number of participating

organizations and programs and the relationships between them during the avionics development

process, as detailed in the following section.

5.1 Overview of the Research Cases

The field research was conducted with three military aircraft programs (herein referred to as

Program "A", Program "B" and Program "C" 26) common to three major defense contractors in

the US defense aerospace industry (referred to as the Prime, Supplier #1 and Supplier #2). The

26 In order to protect individual and company confidentiality, individuals, programs and organizations participating
in this research will not be identified by name or any other identifying characteristics anywhere in this thesis. In
addition, no information deemed to be proprietary or classified is used anywhere in this thesis (see Appendix "D")

O

III

II

O

I

O
i
I

I

142C Marc G. Haddad

supplier organizations are both major partners with the prime on the same three aircraft

programs, whereby each supplier is tasked with developing the same avionics systems (or

subsystems) across two or more programs. This selection strategy affords a "triangulation" of

the collected data which ensures its cross-corroboration in accordance with commonly accepted

practices for enhancing research quality (Robson 2002). This approach was also to ensure that

substantial and substantive insights (i.e. rich in terms of quantity and quality, respectively) could

be collected about knowledge integration across external organizational boundaries between the

prime and its major partners, with the chosen suppliers being characterized as the prime's "most

proactive partners" in the avionics development process (according to several interviewees in the

prime organization). Figure 20 illustrates the relationships between the three organizations

across all three programs. For simplicity, only one connection is shown from each program to

each supplier organization; however the same multi-program structure is adopted at the suppliers

as it is show in the prime organization.

Prime ,

I Programs A, B& C
I I

Figure 20: Overview of Research Cases and Interrelationships

The selection of the chosen programs was based on the variety of the total avionics architecture

they provide, such that the total avionics suite in program "A" is considered to be an overall

modular architecture, while program "B" is considered to have an overall integrated total system

architecture and program "C" an overall integrated-modular architecture. Note that this does not

© Marc G. Haddad

! d

143

mean that all subsystems in a particular avionics suite follow the overall system architecture (e.g.

this does not mean that all mission subsystem in program "A" are modular), only that the

majority of subsystems tend to follow the overall trend in each avionics suite (e.g. there is more

modularization between different subsystems in program "A", and more integration between the

same subsystems in program "B", as a general trend). Table 25 below gives an overview of the

relationships between the three organizations in terms of their individual and collective

responsibilities in the development of the avionics mission systems of interest in this research for

each of the chosen programs:

Table 25: Avionics Development Responsibilities of the Participating Organizations

Organizations / Programs Program A Program B Program C

Prime MC, CN127 MC, CNI MC

Supplier #1 Radar, EW Radar Radar

Supplier #2 -- EW EW, CNI

The field research included two phases of data collection, a first phase which consisted of

multiple rounds of exploratory and semi-structured interviews with individuals and teams across

all three organizations, and a second phase where a structured questionnaire was administered to

the same or different individuals than those who were previously interviewed. The vast majority

of interviews were conducted on-site, with a few others through teleconference and over

videoconference. All research was conducted in person and no data was collected online or by

mail or email. An overview of the different stages of the field research is shown in Table 26.

Table 26: Avionics Development Responsibilities of the Participating Organizations

Participating Interviews Questionnaire Total Rounds of
Organizations Research

Prime 3 site visits 1 site visit 4 site visits
(3 days each) (4 days)

Supplier #1 2 site visits 1 site visit 3 site visits
(1 day each) (1 day)

Supplier #2 2 teleconferences 2 teleconferences 4 teleconference
rounds

27 The abbreviations "MC", "CNI" and "EW" are used to denote the "Mission Computer" system, the
"Communication Navigation and Identification" system and the "Electronic Warfare" system, respectively.

© Marc G. Haddad 144

In total, four rounds of on-site research were conducted with the prime organization including

two videoconferences and four teleconference calls with other offsite locations. Also, three

rounds of on-site research were conducted with supplier #1 and four rounds of teleconference

calls were conducted with supplier #2. A total of 63 interviews were carried out with 50

individuals spanning multiple teams and divisions across all three organizations and covering all

three programs, for a total of 61 hours of interviews. Of the 63 interviews, 20 were follow-ups

with the same individuals, which served to explore earlier insights in a more in-depth way. The

average experience of all interview subjects in avionics development is over 20 years. The

distribution of interviews among the three programs and functional groups is shown in Figure 21

below:

Interviews by Program

Program A Program B Program C Func

Programs

Figure 21: Interview Subjects by Organization (Total Interviewees = 50)

More interviews were conducted with program "C" than the other two programs and the

functional groups since program "C" is still in the design phase while the other two programs

have gone into production, and therefore more up-to-date insights could be collected about

engineering interactions from program "C" than from the other two programs which are at more

C Marc G. Haddad 145

mature phases of development (note however that the design and build phases in programs "B"

and "C" are merged together and therefore there is still significant design activity currently going

on at these two programs). Note also that more interviews were conducted with subjects from

the prime than from the two supplier organizations in each of the programs surveyed. This was

partly due to limited access to the supplier organizations, but was also driven by the larger scale

of resources invested by the prime relative to its suppliers in each program. Therefore, despite

the uneven distribution of interviews between the three organizations, the sample of interview

subjects is in fact representative of the level of involvement of each organization in the overall

integration of knowledge during development. Note also that the research method adopted for

the collection and analysis of the interview data (namely the grounded theory method as detailed

in § 5.2 below) does not require a random sample of interview subjects but is based instead on

purposive sampling (known as theoretical sampling in grounded theory), the aim of which is to

select those subjects who are closest to the phenomenon and who can provide the richest

information that can help the researcher formulate theory (Robson 2002). However, in order to

have conservative interpretations of the data, the potential for bias in the results was still

accounted for in the analysis, for example as shown in § 6.2.2

In addition to the interviews, a total of 49 unique problem solving cases (53 in total) were

collected using the structured questionnaire instrument in the last phase of the research, with

71.4% of all cases covering all four avionics systems of interest in this research, while the

remaining 28.6% cover several other non-avionics aircraft systems for comparison and

verification. Four of the 53 cases were repeat examples given by different subjects and which

served to validate as well as add further detail to what was previously reported. The following

sections will explore in detail the research methods and practices used to collect and analyze the

interview and questionnaire data.

5.2 Research Methods

The majority of research on knowledge integration has been largely conceptual and based on

case study investigations, as summarized in Table 1 of Chapter 2 (literature review) under the

column labeled "methods". This is a key indication that interviews are a rich method for

© Marc G. Haddad 146

collecting data in this area, since research into organizational knowledge and problem solving

activities is in essence a study of social phenomena which are best captured through individual

and group perspectives. It follows that in order to mine the richness of the insights collected

through case interviews in a meaningful way, it is necessary to use systematic and rigorous

procedures and methods for organizing and classifying the data into similar groups and

conceptualizing relationships between them. One such method is the "grounded theory"

approach which is based on the systematic development and refinement of categories and

concepts from the collected data in order to build theory, such that the final outcome is a theory

that is 'grounded' in the data, as the name of the method itself suggests (Glaser and Strauss 1967;

Strauss and Corbin 1990). This means that grounded theory is a largely inductive method since

conceptualization is done "from the ground up", and since theory is allowed to "emerge" from

observation (instead of forcibly fitting higher conceptual notions and ideas down to the data),

making it an especially powerful method for studying social phenomena which are not yet well

understood, or which are very subjective (i.e. unique to each person or group) or very contextual

(i.e. specific to their environment) 28 .

In practical terms, the grounded theory approach allows the researcher to go into the field with

little or no existing insights, and yet still be able to develop a new and complete theory that

frames the phenomenon entirely from observations. This "clean slate" approach has the benefit

of foregoing any preconceived biases when the phenomenon is not yet well defined or when it is

highly subjective and contextual. However, this does not mean that grounded theory building is

not useful for exploring phenomena which have some well defined aspects to them (as in

researching a complex phenomenon where some aspects are more or less understood than

others). By the same token, this also means that a grounded theory investigation of a complex

phenomenon can be guided by, and benefit from, previous insights in the existing literature.

Indeed, deduction and verification of basic established principles, while not as emphasized as the

inductive part of grounded theory, can nonetheless play an important role in the overall

28 For example, the grounded theory approach has been especially useful (and thus widely used) in psychological
and nursing studies, such as to explain individual behaviors or social processes in dealing with medical issues (Polit
and Beck, 2004)

© Marc G. Haddad 147

analytical process 29 (Strauss 1987). Such is the case in this research where knowledge

integration and problem solving are complex processes which have relatively objective and

properly defined aspects to them (in that they are, to a certain extent, already formalized in their

organizational context), and therefore drawing on and validating previous theory is necessary to

further explore the different aspects of these complex phenomena. Note however that this

research started with open unstructured interview questions in order to avoid interjecting

previous biases from existing theory into the field observations. In addition, no a-priori codes

were used in the subsequent coding of the collected data.

In summary and based on the aforementioned reasons, the grounded theory method was deemed

most appropriate for capturing the complexity of the phenomenon at hand and was adopted in

this research to first guide the interview process (see § 5.3.1 for an overview of field data

collection) and to concurrently perform the analysis on the collected interview data (see § 6.1 for

the qualitative data analysis). It is worth noting here that while the term "case studies" is

sometimes used in this thesis when describing the separate rounds of field research with different

organizations and programs, it is only intended to highlight the fact that multiple grounded

theory studies were conducted, so that each study is a separate "case" on its own. This practice

is a hallmark of flexible designs overall and is typically done for generalizability purposes

(Robson 2002), therefore it is not restricted to the case study approach. This means that for each

of the separate cases in this research, the data were collected and analyzed in accordance with the

guidelines of the grounded theory method, as summarized in § 5.3.1.

Beyond the field interviews which were used to explore and explain the complexities of the

knowledge integration phenomenon itself, a structured questionnaire was also used in the final

round of research in order to further frame the dynamics of knowledge integration in its complex

setting. The questionnaire allowed the collection of categorical and rank-ordered data which

were later used in a separate quantitative analysis to compare the frequencies of outcomes for

knowledge integration under different problem solving conditions (i.e. using a comparative

29 It is noteworthy to point out however that there are two fundamentally opposed views for how to apply the
grounded theory method in practice, mirroring differences between the original authors of the method, Glaser and
Strauss, where the former advocates the "clean slate" purely-inductive approach whereas the latter adopts a more
structured method that is inclusive of deduction and verification techniques. In this thesis, I adopt the latter
approach and I draw on insights from the literature to refine the proposed framework for knowledge integration.

C Marc G. Haddad 148

analysis of frequency distributions, which is a similar process to hypothesis-testing but without

positing hypotheses in advance). The constructs used to collect the questionnaire data are

explained in § 5.3.2.

The use of a mixed method approach in this thesis was necessary to capture the dynamic changes

in the process of integrating knowledge under non-routine troubleshooting in crisis mode (known

as firefighting), as opposed to routine problem solving conditions where the process of

knowledge integration is more stable and systematic and therefore less dynamic (refer to

Chapters 2 and 6 for a more in-depth discussion of the routine/non-routine dimensions for

knowledge integration and problem solving). This additional investigation (beyond the interview

part of the research) was considered worthwhile in this thesis since firefighting is a common

occurrence in complex product development, and as such the corresponding non-routine mode of

knowledge integration is a key aspect of the overall process. It this therefore expected that

collecting additional data about the integration of knowledge in non-routine problem solving

situations will lead to a more dynamic framework for the overall phenomenon.

In conclusion, the strategy used in this thesis to build theory about knowledge integration is

based on combining two types of data collection and analyses, first the grounded theory

approach in collecting and analyzing the interview data, and second the comparative analysis

approach using frequency distributions and statistical measures to analyze the data collected with

the structured questionnaire instrument. Theory development in this thesis is therefore an

iterative refinement process of the proposed conceptual framework using both types of data and

analyses, as shown in the next chapter on data analysis. But first, an overview of the data

collection procedures used in the field research is provided in the following sections.

5.3 Methods for Field Data Collection

As already outlined in Table 26 above, the interview part of the research consisted of multiple

site visits to the field in order to collect data and continuously refine the insights derived from

the analysis after every round of research. The interview process ended when no new categories

of insights were being generated from further research, which is known as category saturation in

C Marc G. Haddad 149

grounded theory. An overview of the process for collecting the interview data is given in § 5.3.1

below. Once the interview process was completed, a final return visit to the field was done to

administer the structured questionnaire using insights from the analysis of the interviews, along

with a construct for collecting new data about the frequency of knowledge integration under

different problem solving conditions. The process of collecting the questionnaire data is

reviewed in § 5.3.2.

5.3.1 Data Collection through Interviews

The strategies and procedures for selecting interview questions and respondents was guided by

the general principles of grounded theory research and in accordance with sanctioned practices

for qualitative data collection (Strauss and Corbin 1990; Robson 2002). The interview process

started out as unstructured and exploratory, with interview questions being continually refined

and focused based on earlier observations, such that the questions became much more structured

and specific in later rounds of research. This is in line with the constant comparative approach

to data collection and analysis which is the cornerstone of grounded theory. Similarly, interview

subjects were selected before and during the interviewing process with the help of facilitators

from the host organizations, where the facilitators helped to identify future interview candidates

who best matched emerging needs for further research as identified by the researcher. As a

result, questions were increasingly targeted at the right audience as the interview process

progressed, which is in accordance with theoretical sampling techniques in grounded theory

research. These procedures ensured that the data collection and analyses were done nearly

simultaneously, meaning the choice of interview questions and subjects were adjusted and

refined in light of emerging findings.

In the first exploratory phase of the interview process, interviews were conducted with personnel

from program engineering, program management, functional engineering and material in both

the prime and supplier organizations. In addition, where possible, interviews included

individuals responsible for knowledge management or familiar with the major initiatives for

knowledge transfer and sharing in their respective organizations. The interviews at this stage

amounted for the most part to an open dialogue about the "big picture" of knowledge integration

C Marc G. Haddad 150

within each organization and with external partners and suppliers, with some directed questions

intended to focus the discussion around the most frequently used channels, strategies, practices

and mechanisms for exchanging knowledge, as well as the most commonly encountered barriers

impeding knowledge flow and the kinds of enablers that the organization had in place to

overcome those barriers. As the interview process progressed, the exploratory interview

questions were revised to focus on the most important aspects of the knowledge integration

phenomenon, and to collect more data about the mechanics of knowledge integration. This was

done by revisiting the same individuals to explore previous insights in more detail, or by

selecting new subjects who can provide new insights from different organizational perspectives.

Refer to Appendix A. 1 for sample exploratory questions and Appendix A.2 for sample focused

questions used in the different phases of the interview process.

5.3.2 Data Collection through the Questionnaire Instrument

In order to fully capture the dynamics of knowledge integration in a complex setting such as that

of complex avionics development being researched in this thesis, it is necessary to account for

complexity factors that most affect the choice of strategies/practices and channels/mechanisms

for integrating knowledge under non-routine conditions. Based on established insights and

deductions from the literature as presented in Chapter 2 of this thesis, the factors of most

influence on the process of integrating knowledge in large-scale complex product development

environments are the type of architecture for the product under development, the degree of

newness of the underlying technology (or core technology) embedded in the product, and the

type and novelty of the problem for which knowledge is being integrated in support of the

problem solving effort. An aggregation of those main factors can then be considered as an

estimate measure of the overall complexity of the problem solving situation. Therefore, it is

necessary to collect measurable data about these contextual factors in order to determine their

individual and collective effects on the process of integrating knowledge in complex product

development.

Note that there are other complexity factors of influence over the knowledge integration process

under non-routine conditions beyond the product-centric and problem-specific factors mentioned

C Marc G. Haddad 151

above, notably those aspects related to the organizational environment (such as the number of

stakeholders involved in the problem solving effort and the types of boundaries crossed during

problem solving) which also affect the choice of strategies and mechanisms for integrating

knowledge. However, organizational factors are implicitly accounted for in the proposed

framework for knowledge integration (i.e. the stakeholders involved in problem solving are also

involved in the knowledge integration effort) therefore it is not necessary to collect

organizational-specific data in the questionnaire. As such, the appropriate complexity measures

needed for framing the knowledge integration process under non-routine conditions can be

limited to the product- and problem-specific measures mentioned above.

From a data collection perspective, while it is possible to ask respondents directly for their

evaluation of the actual type and novelty of the problem or to even deduce these measures

indirectly from their description of the problem, it is much more tenuous to rely on their

recollection and evaluation of product-specific complexity factors. This is because respondents

to the questionnaire are asked to describe problems they are closely involved in, and therefore it

can be assumed they have intimate knowledge about problem-specific details and that their

recollection of those details will be sufficiently reliable. However, this may not be the case for

system-specific details since their knowledge of such details might not be as intimate (e.g. the

knowledge of a system integrator about the internal workings of the subsystem affected by the

problem is much more limited than the supplier's knowledge of that subsystem). It is also more

reasonable to expect that the recollection of system-specific details might be more limited or

even restricted due to common proprietary or classified technology reasons. For example, it is

ideally most desirable to collect accurate information about the internal characteristics of a

product in order to measure its complexity level, such as collecting data about the architecture of

the system where complexity is measured as the "total number of interconnections between

different parts of the system" (Moses 2002), or as the ratio of the "total number of components"

over the "total number of functions" delivered by the system (Ulrich 1995). By these measures,

the level of system complexity is a function of the degree of interdependence or coupling

between its constituent parts30. Alternatively, and since all of aforementioned measures require

30 The number of interconnections (or interfaces) in a product is an indication of the degree of modularization (or
conversely the degree of integration) in the product's architecture, with higher interconnections indicating a more

152C Marc G. Haddad

detailed knowledge about the layout of the system which was not be available or possible to

collect in this research, a third type of complexity measure that was considered is a combination

of "the number of parts in the system" and "the degree of modification of the system design

relative to a previous design", where a new design is more complicated than a modification and

where a major modification is more complicated than a minor modification (Takeishi 2002).

Taken separately, each measure is an evaluation of system complicatedness as opposed to system

complexity (as already explained in § 2.3.1), but combined together, they can indicate the

relative complexity of the system where the problem is rooted.

It is arguably easier to collect the appropriate data for these last two measures, however, due to

the highly classified nature of military avionics and the deep proprietary knowledge involved, it

was not possible to collect any of the previous types of data in the field or to obtain publicly

available information from the literature with enough specificity and detail to allow the use of

the measures discussed above. Instead, a surrogate measure of system complexity was

constructed for the purposes of the questionnaire, based on problem-specific information that the

questionnaire was already designed to collect such as "the total number of systems affected by

the problem", including avionics and non-avionics systems (measured on a scale of 1 to 5),
combined with the degree of maturity (or newness) of the core technology of the affected system

or systems (measured with the categorical variables "High" and "Low") and the degree of

problem novelty (measured with the categorical variables "New" and "Old"), where an old

problem is one which has been previously solved or to which the solution steps are largely

known (e.g. where the root cause of the problem has already been identified, or where the

solution steps are known for the most part)

Aggregated together, these measures indicate the degree of problem complexity which can be

used to differentiate between different troubleshooting conditions and therefore to evaluate the

corresponding differences in the use of knowledge integration channels and mechanisms. The

above measures were collected either directly from the respondents or indirectly by deducing the

information from the descriptions of the problem and the problem solving approach. To ensure

integrated architecture. Similarly, the number of system components delivering the same function is an indication of
the degree of coupling between these components, with a high number of components tied to the same function
indicating a tightly coupled layout.

© Marc G. Haddad 153
C Marc G. Haddad 153

reliability of the responses, the population for the questionnaire respondents was limited to IPT

leads and engineers who were directly involved in solving major problems in the development of

the four mission avionics systems of interest. To further ensure comparability among the

collected data, only technical problems related to subsystem engineering and system integration

issues were considered. This is in line with the initial focusing of the research on the "System

Design Phase" of the development process where these types of problems are most common.

The questionnaire used to collect the above data is shown in Appendix A.3. Figure 22 below

illustrates the full sample of 49 problem cases, shown by the program and the corresponding

organizations where the data was collected from.

Problem Cases by Program

Program A
Modular Avionics

Program B
Integral Avionics

Programs

Program C
Integrated-Modular Avionics

Figure 22: Overview of Problem Cases Collected by Program and Organization

Note that there are more problem cases provided by the prime organization than by the suppliers.

However this is not considered to be a source of bias in the analysis since avionics IPT's, which

are the main locus of problem solving in all problem cases, include representatives from the

supplier organizations, thereby ensuring that problem solving perspectives are not skewed in

favor of the prime organization.

© Marc G. Haddad
154
154C Marc G. Haddad

6. DATA ANALYSIS

This chapter is divided into two parts: the first part is a qualitative analysis of the exploratory and

semi-structured interview data collected across all three case studies and which serves to identify

the main characteristics of the knowledge integration process in a large-scale complex product

development context, with the purpose of refining the original framework for knowledge

integration proposed in Chapter 3 of this thesis; the second part is a quantitative analysis of the

survey data obtained through the structured questionnaire administered across all three case

studies and which serves to further frame the characteristics of knowledge integration in different

complex problem solving contexts.

6.1 Qualitative Analysis of the Interview Data

The qualitative case study analysis in this section is based on the grounded theory method

introduced in Chapter 5 of this thesis. The data used in this analysis include the exploratory and

semi-structured interview data collected across all three case studies, but does not include the

structured questionnaire data collected in the final round of interviews and used for the

quantitative part of the analysis presented in § 6.1.2 below31 . The qualitative analysis was done

using a series of procedures for data reduction, visualization and interpretation (Miles and

Huberman 1994; Robson 2002), as follows: 1) an initial manual categorization of the interviews

in order to organize and classify the 'raw data' along major categories and subcategories of

channels, mechanisms, strategies and practices for knowledge integration in a large-scale

complex product development context; 2) a computer-assisted coding of the thematic data along

dimensional properties for each identified category using the specialized software tool

"MAXQDA 2007"32 and in accordance with guidelines for grounded theory coding (Strauss and

31 Specifically, the data used in the qualitative analysis include the interview responses from the first three site visits
to the prime organization (Company A) and the first two rounds of interviews conducted with the supplier
organizations (i.e. the first two site visits to Company B and the first two series of teleconference calls with
Company C). In addition, general insights have been extracted from the last round of interviews where the
structured questionnaire was administered at all three organizations; however the questionnaire data was not used in
the qualitative analysis since these data are specific to particular problem solving contexts.
32 The software tool "MAXQDA 2007" (which stands for Maximum Qualitative Data Analysis Version 2007
Release 060607) is described as "a state-of-the-art instrument for professional text analysis...one of the pioneers in
the field (the first version was released in 1988)...a global leader for computer assisted qualitative data analysis"
(reference: http://www.maxqda.com accessed September 14, 2007)

C Marc G. Haddad 155

Corbin 1990); and, 3) interpretive and matrix analyses of the coded and categorized data to

visualize and identify patterns and relationships within and across categories and subcategories

(see (Robson 2002) Chapter 14 for a detailed discussion of the interpretive/grounded theory and

matrix approaches for qualitative data analysis). Insights from existing theory about knowledge

integration as reviewed in Chapter 2 of this thesis were used to guide the coding process and the

overall analysis of the data. The intermediate and final results of the qualitative analysis are

presented and discussed separately in the following subsections.

6.1.1 Main Characteristics of Knowledge Integration

As already outlined in § 5.3.1 on the methods used for collecting data through interviews, the

qualitative data in this research were collected over several rounds of field interviews and a

preliminary analysis was done after each round in order to a) classify and interpret the newly

collected data, b) refine previous interpretations and c) adjust interview questions for subsequent

rounds in light of emerging findings. Once all the data collection was completed, a full

qualitative analysis was performed again from scratch on the complete set of data from all three

case studies. The steps of this analysis are described in this section.

First, an initial reduction of the interview data was done manually by going through the original

interview transcripts from each case study and identifying and labeling "critical instances" of

channels, mechanisms and strategies/practices for knowledge integration, where a critical

instance is the result of repeated or emphasized information from multiple interviews within and

across case studies 33. This was followed by a second step of classifying related instances

together in groups of channels, mechanisms and strategies/practices to form the main

characteristics of knowledge integration. Per the guidelines of the grounded theory method, data

reduction and classification was conducted nearly simultaneously with the collection of the data

in each case study, and then again at the end on the complete set of data collected from all case

studies. This ensures the relevance of the final classifications and adds to the validity of

outcomes and interpretations later in the analysis (Robson 2002). In total, this process allowed

33 Recall that the primary motivation of this research as outlined in § 1.2 of this thesis is to frame the 'mechanics' of
knowledge integration in terms of its channels, mechanisms and strategies/practices (as defined in § 2.1.3).

C Marc G. Haddad 156

the identification of 8 unique channels, 67 strategies and practices (40 of which are unique while

the remaining 27 are repeated strategies/practices over multiple channels) and 114 mechanisms

(79 of which are unique). In addition, there were also 56 types of barrier situations across all

eight channels (44 of which are unique) and 29 enabling conditions (22 of which are unique) that

were also identified in the initial data reduction and classification phase34 . The barriers and

enablers can be considered as "blockers" and "un-lockers" of knowledge integration channels

and serve to provide context for the analysis. For reference, all of the above mentioned

knowledge integration characteristics are presented in Tables 41 to 48 of Appendix B.

In order to make inferences from the classified data, a matrix analysis was performed to visualize

and identify patterns and relationships within and across groups. The data were first summarized

to find the most dominant characteristics of knowledge integration, which were then divided by

knowledge integration modes (specifically the routine and non-routine modes) and phases of

integration (namely the knowledge transfer, sharing and application stages). This approach was

guided by the main insights obtained from the literature as summarized in § 2.4, which

predicated a differentiation in the process of integrating knowledge under routine versus non-

routine conditions (i.e. during routine product development work versus non-routine

troubleshooting events) 35. This is based on the fact that large-scale organizations integrate

knowledge using both routine and non-routine strategies, practices, channels and mechanisms in

order to support both routine and non-routine problem solving. This approach to the analysis is

in line with the central argument advanced in this research that problem solving is the thread

through which the framing of the knowledge integration process can best be accomplished, and

as such any proposed framework for knowledge integration must account for different problem

solving contexts. Using the above dimensions, the dominant characteristics for knowledge

integration are presented below in Tables 27 and 28 for routine and non-routine cases,

respectively.

34 Note that the labeling and classification of the data as discussed here is different from "conceptual labeling" and
"conceptual categorizing" in grounded theory development, which are discussed separately in § 6.1.2. This is
because the labels and groups developed in the initial data reduction phase are mostly straight summaries and
consolidations of the raw data, and as such there was no further conceptualization of the data at this stage.
35 As posited in the literature, in a crisis there is a switch from routines to group problem-solving, with consensus
decision-making and brainstorming being the most useful for unusual, complex tasks (Grant 1996a).

C Marc G. Haddad 157

Table 27: Routine Knowledge Integration in Large-scale Complex Product Development

Integration phase Channel Strategies / Practices / Mechanisms

Knowledge transfer Intra-program Individual and program training, concurrent work tools,

program templates, libraries, databases

Program-program Common suppliers, shared databases, design transfer,

process transfer, technology transfer

Function-program Boundary spanners, specialized training, job rotation, process

standardization

Prime-supplier Shared databases, design transfer, process transfer,

technology transfer

Knowledge sharing Intra-program Lessons learned share sessions, conferences, personal and

group communication

Program-program Communities of practice, multi-program share sessions,

personal communication

Function-program Process improvement, personal and group communication

Prime-supplier Conferences, process improvement, tight partnerships,

supplier management, personal and group communication

Knowledge application Intra-program Design and program reviews (gold team reviews), intra-IPT

problem solving and status update meetings

Program-program Non-advocate design reviews, participating in gold teams

Function-program Independent design reviews, participating in gold teams

Prime-supplier Design reviews, early supplier integration, co-location

As the above table illustrates, routine knowledge integration involves a higher number and

variety of strategies, practices and mechanisms for transferring and sharing knowledge, while

those for applying knowledge are more limited in scale and scope. This is because the

integration of knowledge in this case serves to support routine work where efficient access to

existing knowledge resources is what is usually required to carry out normal tasks. To further

analyze the main characteristics of routine knowledge integration, a down-selection to the most

commonly cited strategies/practices and mechanisms for integrating knowledge in routine

problem solving contexts was performed, and the resultant categories are depicted visually in the

following figure 23 below:

© Marc G. Haddad 158

Program A with
Program B

* Shared lessons learned
databases

* Multi-program share
sessions

* Communities of practice

* Non-advocate reviewsI

InSlie Program A

* General training

- Information systems, data
libraries and tools

* Share sessions

* Gold team reviews
0/

Program A with
Program A with

Functions

* Specialized training

* Job rotation

* Standard processes
and procedures

SIndAnAndent reviews

- Group communication

Program A with Supplier

* Integrated tools and shared
databases

* Cross-program transfer of
designs and technologies

SCo-location

Figure 23: Routine Knowledge Integration in Large-scale Complex Product Development

(Relationships Shown Relative to Program A)

A key takeaway from the previous figure is in the apparent emphasis on the sharing of lessons

learned from past problem solving events across multiple channels and through a variety of

mechanisms (e.g. share sessions, shared lessons learned databases). This is due to the fact that

this strategy allows the transfer of rich knowledge content that is necessary for dealing with

complexity, which makes it a notable aspect of knowledge integration in complex product

development.

It is also clear from the interview data tabulated above that there are other dominant strategies

and mechanisms for routine integration which are common across multiple channels, and which

Key takeaway:

Sharing lessons learned from previous problem solving events is an important strategy for

dealing with complexity in product development

" " "' " mBm• • UI V U I mV

/ •-- -- ! J -- iml .

© Marc G. Haddad 159

can be summarized as: 1) training, 2) databases, 3) design reviews and 4) the transfer of people

and information across various boundaries. These are in addition to personal and group

communication mechanisms which are the cornerstone of knowledge integration along all

organizational channels, with emails and staff meetings constituting the majority of those

interactions in the routine context. It can, therefore, be concluded that a significant number of

mechanisms and practices in the routine case are designed to integrate explicit knowledge in the

most efficient way. However, it should be noted that there were several drawbacks associated

with this efficiency approach that were frequently cited by interviewees, and the main takeaway

from these relates to the use of information repositories such as databases and data libraries,

which serve the efficiency purpose in the integration process at the expense of effectiveness in

the final outcome. Specifically, databases were unanimously reported as being difficult to search

(due to information overflow) and rarely trusted (due to information obsolescence and lack of

validation). As a result, these resources are rarely used,36 as widely reported by the vast majority

of interviewees, and there is a common perception among engineers that the information stored

in databases is mostly "written by technical people who have nothing better to do and just want

to make a point". This explains why cross-program knowledge integration (i.e. between program

A and program B) was frequently described as the proverbial "weakest link" by a majority of

interviewees, as this channel is dominated by ineffective databases, which is also compounded

by the low attendance of multi-program share sessions, especially by senior engineers who are

focused on their own internal program goals. As one interviewee put it bluntly, "the biggest

barrier to knowledge integration (in complex development) is in the program-to-program

interface", since programs tend to be internally focused and are frequently described as "silos"

and "fishbowls".

36 In a knowledge management survey conducted by Supplier C of their product development and engineering
personnel, a majority of respondents reported "rarely" using data libraries, and almost 70% of respondents reported
great difficulty in locating appropriate lessons learned through information systems.

Key takeaway:

The program-to-program channel is the "weakest link" for integrating knowledge due to the

dominance of explicit knowledge integration mechanisms which are ineffective

160© Marc G. Haddad

However, this does not mean that all interactions involving codified knowledge are perceived in

the same way, in fact most interviewees agreed that accessing and using previous solutions, for

example those captured in the form of standard methods, checklists and templates in program

data libraries is a frequently used strategy for integrating knowledge during routine development

work, which makes this type of knowledge greatly valued since it consistently affords significant

savings in time and effort that would otherwise have been spent rediscovering the same

solutions. In general, it can be concluded from the foregoing analysis that the dominant types of

mechanisms and strategies employed in the routine integration of knowledge consist for the most

part of periodic activities and long term strategies geared towards efficiency of integration,

which is reflective of the relatively stable problem solving environment. This is in contrast to

the non-routine problem solving context where knowledge integration requires rapid

mobilization capabilities, as shown in Table 28 below.

Table 28: Non-Routine Knowledge Integration in Large Complex Product Development

Integration process Channel Strategies / Practices / Mechanisms

Knowledge transfer Intra-program --

Program-program Moving subject matter experts, tech fellows and gurus

Function-program Deploying boundary spanners, moving subject matter experts

and tech fellows

Prime-supplier Moving subject matter experts, site visits

Knowledge sharing Intra-program Asking gurus

Program-program Asking counterparts

Function-program Asking graybeards

Prime-supplier --

Knowledge application Intra-program Taskforces, tiger teams, red team reviews, working with

wizards, subject matter experts and tech fellows, inter-IPT

problem solving meetings

Program-program Participation in taskforces, tiger teams, red teams

Function-program Participation in taskforces, tiger teams, red teams

Prime-supplier Participation in taskforces, tiger teams, red teams

© Marc G. Haddad
161

C Marc G. Haddad 161

Compared with the routine problem solving context, there is a greater emphasis in the non-

routine case on the use of special strategies, practices and mechanisms for applying knowledge

rather than for transferring and sharing it. This is because knowledge integration in this case

serves to support unusual problem solving situations requiring live troubleshooting and group

collaboration rather than mere access to knowledge. Figure 24 below illustrates the main

categories tabulated above.

, Program A wtrn
Program B

* Drafting SME's, tech
fellows, gurus

* Consulting with IPT
counterparts

* Drafting into special
Wd

K.-
Inside Program A

* Consulting with gurus

* Working with SME's, tech
fellows, wizards

* Participating in special
teams (red team reviews,
tiger teams, taskforces

I'--

Program A with
Functions

* Moving SME's and tech
fellows

* Consulting graybeards

* Forming special teams

*Deploying boundary
spanners

Program A with Supplier

* Moving SME's

* Participating in special teams
* Site visits

Figure 24: Non-Routine Knowledge Integration in Large-scale Complex Product

Development (Relationships Shown Relative to Program A)

A close examination of the interview data depicted here shows that non-routine knowledge

integration is dominated by 1) deployment of experts across boundaries, 2) consultations with

experts in other programs and functions, and 3) formation of special teams (meaning temporary

teams grouping experts from different organizational levels and affiliations and tasked with

diagnosing and/or solving a specific problem). It is thus clear that the dominant types of

knowledge integration mechanisms and strategies employed under non-routine conditions consist

for the most part of short term activities and special interventions, indicating the need for quick

response and flexible organizational capabilities. It is also evident from the previous table that

© Marc G. Haddad
162

...

reams

162C Marc G. Haddad

tacit knowledge interactions (within special teams and with outside experts) dominate the

integration process in the non-routine case.

Another notable insight from the previous figure is that functional groups play a major role in

deploying experts and forming special problem solving teams in non-routine problem solving

situations. This is in contrast to the role of functional groups in routine work where functions are

mostly involved in the integration of codified knowledge to-and-from programs in the form of

standardized methods and processes, while the tacit knowledge integrated along this link in

routine situations (e.g. job rotation and training of individuals) was, for the most part, not

directly related to specific problem solving needs. The main channel for integrating tacit

knowledge in the routine case is the prime-supplier link where specialized knowledge and new

information and technologies are transferred, shared and applied in routine problem solving

situations.

Finally, it is important to note that the main purpose of the previous data tabulation is to illustrate

the findings from the field research, and is not intended to provide an exhaustive or complete

listing of all possible strategies or mechanisms that may be useful for integrating knowledge in a

large-scale complex product development context, but rather only those strategies and

mechanisms that were discovered and emphasized in the course of the field research. I also note

that while the focus of this thesis is on knowledge integration for technical problem solving, the

data summarized in these tables include findings about the integration of non-engineering

knowledge (such as non-technical process knowledge), as well as about the integration of

knowledge outside the context of problem solving (such as process improvement). These

findings, which are outside the scope of the thesis, are included for completeness and reference

only but are left out of subsequent steps in the qualitative analysis.

© Marc G. Haddad 163

Key takeaway:

Major non-routine problems in complex development require extensive tacit knowledge

integration through mobilization of experts and forming special multi-disciplinary teams

C Marc G. Haddad 163

Integrating the findings above, the knowledge integration process can be described at a high-

level of abstraction for all problem solving cases (both routine and non-routine) as follows:

Prime

Program A with
Program B

* New technology
knowledge and

proven engineering
know-how and skills

L Low explicit
interactions

Inside Program A

* General scientific
knowledge and

specialized engineering
know-how and skills

* High tacit and explicit
interactions

M*

Program A wirn
Functions

* New scientific and
technology knowledge

and specialized
engineering know-how

and skills
High explicit

interactions, low tacit
interactionsý

4

Figure 25: Preliminary Empirical Framework for Knowledge Integration in Large-scale

Complex Development (Relationships Shown Relative to Program A)

The figure above shows that functional groups are the source of new knowledge in terms of

expertise and new information related to scientific disciplines and technologies (e.g. new

scientific knowledge about radio wave frequency compression) as well as specialized know-how

and skills about the design and development of complex systems (e.g. new engineering

knowledge about radar array design). On the other hand, cross-programs interactions are useful

for integrating proven know-how and skills in subsystem design and integration, while suppliers

are the main source of technological innovation and deep expertise in the latest design and

development concepts for subsystem modules. Therefore, and per the preliminary findings from

this stage of the research as illustrated in the above framework, I conclude that new technology

knowledge and design expertise are integrated mostly across vertical and horizontal channels,

N

Program A with Supplier

New technology knowledge and
specialized engineering know-how

and skills
High tacit and explicit

interactions

164© Marc G. Haddad

i

while new scientific knowledge and proven analytical skills are integrated along lateral channels

internally to the single firm. In addition, the framework shows that technological innovation can

be integrated across multiple channels, however as already shown in Figure 23 above the

primary source for new technologies are the suppliers common across programs and who act as a

'funnel' for indirect knowledge flow between programs.

6.1.2 Concept Development and Theory Building

The matrix analysis in the previous section served to refine the proposed conceptual framework

in Chapter 3 of this thesis. However to further build and expand on existing theory requires a

conceptualization of the data in order to discover new concepts and relationships related to the

phenomenon of knowledge integration. Since this part of the analysis relies on purely qualitative

interview data, the rigorous procedures of the grounded theory method were used to develop

concepts out of the classified data (Glaser and Strauss 1967; Strauss and Corbin 1990; Robson

2002). This procedure is known as "open coding" in the methods literature and consists of

identifying and naming actual phenomena using higher-order conceptual labels, and then

categorizing similar concepts together (Strauss and Corbin 1990; Pandit 1996). This requires a

constant comparison between different phenomena and a continual refinement of the conceptual

labels as well as constant updating of the identified categories. Note that this step is described

separately from the previous data reduction steps for clarity only; however, it was not conducted

entirely separately or sequentially after the first steps of organizing and classifying the data, but

instead concepts were developed in conjunction with the reduction of the data after every round

of interviews, and continually refined/updated where appropriate.

The results of the conceptualization procedure are presented in Tables 29 through 33 below. The

developed concepts are listed in the first column of each table, with each concept being derived

from abstracting a number of strategies/practices and mechanisms listed alongside it on the same

row. The rows thus reflect the connection between a particular strategy for integrating

knowledge (listed in the second column) and the corresponding mechanism(s) for implementing

it (shown in the third column).

© Marc G. Haddad 165
C Marc G. Haddad 165

Table 29: Intra-Program Knowledge Integration (Along Channels #1 and #2 in Conceptual Framework)

Conceptual Labels Strategies / Practices Mechanisms

Advice sharing by experts Calling on program experts Asking the "gurus" (gurus are very knowledgeable senior staff with long
experience but who are not directly involved in problem solving)

Advice sharing by social Informal apprenticeship Buddy system (social pairing for sharing general - not technical -
networking experiences between senior and junior staff)

Advice sharing by special review Routine team reviews Gold teams (special teams of experts for doing routine design and zone
teams reviews to identify problems in design and at interfaces, such as at

preliminary and critical design reviews)

Non-routine team reviews Red teams (special teams of experts to review major problems and
provide non-binding suggestions for problem solving)

Assistance by experts Joint problem solving with Working with the "wizards" (wizards are experts with long experience in
program experts a disciplinary subject, for example radar signatures, they work with

product teams to fix problems in the lab)

Working with the "subject matter experts" (SME's have deep expertise
with a particular system, such as the radar system; they are deployed on
programs and involved in direct problem solving with product engineers)

Working with the "tech fellows" (tech fellows have deep knowledge in 1
of the 3 major areas, namely hardware, software and systems engineering,
they work on programs with product teams and serve only to troubleshoot
tough problems)

Assistance by group Joint problem solving by routine Brainstorming meetings (investigate/solve problems with other teams)
collaboration team meetings Root-cause analysis meetings (informal communication among different

functions/disciplines to troubleshoot major problems)

Assistance by special action Joint problem solving by non- Tiger teams (special teams of experts to diagnose/solve major problems)
teams routine team meetings Taskforces (large multi-disciplinary and broad membership teams to

tackle critical system-level issues)

Information transfer by boundary Integrated concurrent engineering Prototypes, mockups, models, simulations, demos to visualize the entire
objects design and locate potential problems

© Marc G. Haddad
166
166C Marc G. Haddad

Table 29 - Continued: Intra-Program Knowledge Integration

Conceptual Labels Strategies / Practices Mechanisms

Information transfer by boundary Integrated concurrent engineering Integrated work tools (for concurrent modeling, drafting, design,
objects workflow management)

Information transfer and sharing Routine knowledge capture and Program data libraries (electronic repositories for programmatic
by IT infrastructure reuse information, software code)

Program templates/checklists

Lessons learned databases (electronic repositories of past knowledge)

Routine formal communication Work documents flow (e.g. memos, manuals, reports, logs, test data,
requirements/specification documents)

Emails, netmeetings, phone calls, teleconferences, videoconferences

Information sharing by group Routine team meetings Status meetings (formal/semi-formal presentations to update other staff
communication with new information)

Regular conferences Monthly knowledge symposium

Formal sharing of lessons learned "Share sessions" (face-to-face or teleconference meetings for exchanging
information based on past experience, for example stories of previous
problem solving events)

Informal sharing of lessons learned Brown bag sessions (ad-hoc share sessions over lunch to hear about other
people's problems)

Information sharing by personal Routine informal communication Walk-and-talk (oral communication of information, experience and
communication lessons learned with peers)

Information sharing by training Formal program training Familiarization process (familiarizes new hires with program operations,
acronyms)

Information, know-how and Formal individual training Mentoring (periodic sharing of technical expertise between senior and
skills sharing by training junior engineers)

Information, know-how and Formal team structuring Integrated product team structure (IPT structure co-locates multiple
skills sharing by group disciplines, integrates different individual and organizational expertise)
communication

© Marc G. Haddad 167

Table 30: Program-to-Program Knowledge Integration (along Channel #3 in Conceptual Framework)

Conceptual Labels Strategies / Practices Mechanisms

Advice sharing by personal Informal non-routine individual Talking to colleagues (call-up of counterparts in other programs)
communication communication

Advice sharing by special review Routine team reviews Non-advocate design reviews by one program for another (staff from one
teams program participate in gold team reviews of another program)

Non-routine team reviews Mixed program participation in special review teams (staff from other
programs assigned to gold teams, red teams)

Assistance by moving experts Joint problem solving with Loan out subject matter experts, tech fellows and gurus to another
program experts program (short and long-term assignments)

Assistance by special action Joint problem solving by non- Mixed program participation in special action teams (staff from other
teams routine team meetings programs assigned to tiger teams, taskforces)

Information transfer by Indirect design, technology and Using common suppliers with other programs
commonality process transfer Prototyping new system designs, architectures and technologies by older

programs for future ones

Information transfer and sharing Shared information systems Shared repositories (shared data libraries, shared intranets)

by IT infrastructure Common repositories (multi-program lessons learned database)

Information sharing by experts Formal sharing of lessons learned Gurus from one program share lessons with another program

Information sharing by group Routine team meetings Mixed-program meetings (personnel from one program routinely attend
communication status meetings in another program)

Formal sharing of lessons learned Multi-program share sessions

Chief engineers periodic meetings to share problems, lessons

Program managers/chief engineers/team leads from older programs
convene to share lessons at start of new program

White papers to notify other programs of problems with potential effect
on them (e.g. problem in common subsystem)

© Marc G. Haddad
168
168© Marc G. Haddad

Table 30 - Continued: Program-to-Program Knowledge Integration

Conceptual Labels Strategies / Practices Mechanisms

Information transfer by boundary Direct design, technology and Transferring new technologies, engineering and manufacturing
objects process transfer discoveries and materials between programs

Transferring new design and architectural concepts between programs

Transferring processes and procedures

Information, know-how and Professional affinity groups Communities of practice (integrate common expertise across programs)
skills sharing by professional
networking Working groups (integrate common specialties and subspecialties, such

as the avionics working group)

Focus groups (grouping by common interest, e.g. systems engineering
focus group)

© Marc G. Haddad 169

Table 31: Function-to-Program Knowledge Integration (along Channel #4 in Conceptual Framework)

Conceptual Labels Strategies / Practices Mechanisms

Advice sharing by experts Calling on function experts Asking the "graybeards" (graybeards are not deployed to programs, they
are retired executives and senior staff with long experience, they do big-
picture reviews and evaluations of best solution path)

Advice sharing by special review Routine team reviews Independent design reviews / walkthroughs (several gold team reviews
teams per year to help solve problems and capture new knowledge)

Information audits (e.g. audits of technical standards by graybeards,
audits of processes and procedures)

Program reviews (e.g. periodic reviews of system design issues,
capability reviews to capture "concept-of-operations", team
accountability reviews to elevate problems to higher level)

Non-routine team reviews Functions form and participate in special review teams (red teams) to
review major problems (functional groups are responsible for
picking/negotiating the membership of these teams)

Assistance and information Supporting cross-boundary Deploying "liaison engineers" (liaison engineers serve as conduits
sharing by boundary spanners communication and joint problem between different groups)

solving Deploying "material integrators" (integrators serve as conduits between
functions and programs)

Assistance by moving experts Joint problem solving with Functional groups loan out "tech fellows" to programs for specific
function experts problem solving events

Assistance by deploying Joint problem solving with People deployment, long-term assignments (functions deploy people to
personnel function personnel programs, decide who works on what program or team by forecasting

program skill needs and hiring/matching right skills to needs)

People deployment, short-term assignments (e.g. function engineers help
programs directly with problem solving, e.g. helping to assess stability
issues, helping with root cause analysis)

Assistance by special action Joint problem solving by non- Functions form and participate in special action teams (tiger teams,
teams routine team meetings taskforces) to tackle major problems (functional groups are responsible

for picking/negotiating the membership of these teams)

170C Marc G. Haddad

Table 31 - Continued: Function-to-Program Knowledge Integration

Conceptual Labels Strategies / Practices Mechanisms

Information sharing by boundary Supporting integrated concurrent Functional groups deploy integrated work tools (e.g. integrated
objects engineering management tool, common product design and management systems)

Information sharing by Supporting commonality across Commonality initiatives (e.g. initiatives for common designs and
commonality programs architectures across programs)

Information sharing by IT Supporting cross-program Functional groups deploy shared-access information systems (e.g.
infrastructure communication intranets, shared databases, expertise locator systems)

Functional groups share generic information across programs (e.g.
material group shares all supplier information with all programs)

Information sharing by Supporting standardization across Functional groups standardize processes and procedures across programs
standardization programs (e.g. standard software development process, design templates)

Sharing lessons learned Functional groups capture and disseminate lessons learned across
programs (e.g. checklists for typical problems)

Routine knowledge capture and Functional groups develop and disseminate technical manuals and
dissemination documentation across programs (e.g. software development manual,

systems engineering guide)

Information sharing by training Formal function training Technical courses (e.g. system design courses taught across programs)

On-boarding (e.g. training and familiarization for new hires with tools,
processes, acronyms)

Information, know-how and Career development Job rotation (personnel moved around functions and programs to gain
skills sharing by training broad skills, e.g. through the leadership development program)

Information transfer by Supporting process improvement Continuous improvement (dedicated office for transfer of Lean principles
organizational coordination to programs)

Initiatives to reduce information overflow by summarizing knowledge

Functional groups capture and share best practices

Functional groups integrate dispersed competencies and skills (from
handshake process to close coordination)

© Marc G. Haddad 171

Table 32: Prime-to-Supplier 37 Knowledge Integration (along Channel #5 in Conceptual Framework)

Conceptual Labels Strategies / Practices Mechanisms

Advice sharing by group Routine team meetings Joint product assessment teams (knowledge sharing node with suppliers,
communication a forum grouping prime and supplier experts to share ideas)

Assistance by moving personnel Joint problem solving with Supplier co-location (personnel deployment for long term collaboration
supplier personnel on-site, e.g. at RFP stage to help define requirements based on supplier

capabilities, or at design stage to give/get help with problem solving)

Assistance by moving experts Joint problem solving with supplier Site visits (short term collaboration on-site to troubleshoot problems)
experts Assignment (short-term) of experts (prime sends out engineers/experts to

supplier to improve design process, help prevent future problems)

Assistance by special action Joint problem solving by non- Mixed prime-supplier participation in special action teams (red teams,
teams routine team meetings and reviews tiger teams, taskforces)

Assistance by group Joint problem solving by routine Decision boards (technical decision board grouping prime and supplier
collaboration team meetings and reviews experts, decide and approve problem solving approach)

Working groups (strategic supplier group for working out supplier
problems across programs, coming up with common solutions)

Information sharing by boundary Shared information systems Shared repositories (requirements management database, common
objects problem reporting system, risk database, product data management

system)

Integrated concurrent engineering Concurrent design and management tools (e.g. integrated computer aided

engineering tools, common risk management tool)

Information transfer by boundary Direct design, technology and Outsourcing and in-sourcing new technological knowledge (e.g. transfer
objects process transfer of new materials discoveries from prime to supplier; supplier reveals

proprietary design knowledge to prime during problem solving)

Information sharing by Single sourcing Using the same supplier across programs (fosters open sharing across
commonality programs, increases supplier cooperation and information coordination)

37 The label "prime-to-supplier" is not meant to indicate a unidirectional flow of knowledge from prime to supplier; in fact knowledge integration between prime
and supplier is bi-directional.

172© Marc G. Haddad

Table 32 - Continued: Prime-to-Supplier Knowledge Integration

Conceptual Labels Strategies / Practices Mechanisms

Information sharing by Indirect design, technology and Design or module commonality across programs (transferring designs or
commonality process transfer buyer furnished equipment from supplier to multiple programs,

requirements commonality across programs)

Information sharing by IT Routine formal communication Emails, phone calls, net-meetings, memos, contracts, technical
infrastructure agreements, teleconference and videoconference calls for status updates

Work documents flow (requirements does, interface control docs,
drawings, failure reports, engineering change requests/orders, design
evaluation/change requests, system architecture charts, test docs)

Information sharing by group Routine team meetings Technical meetings at prime's location to share information about system
communication level problems

Technical interchange meetings at supplier location to share information
about lower-level issues

Regular conferences Annual supplier conferences, monthly symposiums (for sharing
information about problems, progress)

Formal sharing of lessons learned Special communication forums (strategic supplier advisory group for
sharing lessons learned)

Information sharing by personal Informal routine individual Ad-hoc sharing of lessons learned in meetings, discussions and reviews
communication communication

Information transfer by network Process improvement Transfer of best practices to/from supplier
cooperation

Information transfer by network Supplier management Carrot-and-stick management (leveraging large size of contracts and
coordination future program opportunities to push for open sharing by suppliers)

Information, know-how and Early supplier integration Supplier integrated product development (turning to suppliers for
skills sharing by network innovation early on in the concept development phase, bringing in
collaboration potential suppliers early into the design process)

© Marc G. Haddad
173
173C Marc G. Haddad

Table 32 - Continued: Prime-to-Supplier Knowledge Integration

Conceptual Labels Strategies / Practices Mechanisms

Information, know-how and Tight partnerships Broker supplier marriages (combine complimentary skills for greater
skills sharing by network benefit of program)
integration Mergers with suppliers/competitors (integrates new competencies/skills,

improves coordination)

Long term agreements with suppliers (fosters trust, learning, open
sharing)

Toyota model of vendor village (e.g. developing a common
understanding of products, capabilities)

© Marc G. Haddad
174

C Marc G. Haddad 174

Table 33: Knowledge Integration along Other Channels (Not Included in Conceptual Framework)

Channels Conceptual Labels Strategies / Practices Mechanisms

Corporate-to- Information sharing by Independent research and Transfer of new prime and supplier research discoveries to
Program boundary objects development (IRAD) programs

Information sharing by Organizational structuring Program-oriented organizational structure to integrate across
organizational coordination functional disciplines

Function-oriented organizational structure to integrate
across programs

Information sharing by Process improvement Program management council (forum for capturing/sharing
strategic integration strategic/higher-order best practices and lessons learned)

Information sharing by Routine team reviews Monthly program reviews by front office (actions to share
group communication lessons learned from the top)

Customer-to- Information sharing by Customer and supplier Program and product team leadership mediate between
Prime mediation management customer and supplier

Information sharing by Routine team meetings Communication by function groups to transfer feedback
group communication to/from customer

Assistance by group Non-routine team meetings Requirements brainstorming meetings with customer
collaboration

Assistance by special Non-routine team reviews Independent review team by customer to make technical
review teams recommendations

Assistance by special Joint problem solving by non- Taskforce participation by customer experts
action teams routine team meetings

Industry-to-Prime Assistance by special Joint problem solving by non- Taskforce participation by academia, industry
action teams routine team meetings consultants/experts

Information sharing by Direct design, technology and Systems engineering monitor/roadmap/transfer industry
boundary objects process transfer innovations (e.g. commercial off-the-shelf systems (COTS),

commercial standards)

© Marc G. Haddad
175

C Marc G. Haddad 175

Table 33 - Continued: Knowledge Integration along Other Channels

Channels Conceptual Labels Strategies / Practices Mechanisms

Supplier-to- Information sharing by Direct design, technology and Transfer of design information, buyer furnished equipment
Supplier boundary objects process transfer (BFE)

Information sharing by Routine team meetings Meetings, teleconferences
group communication Supplier working groups (e.g. interface contractor working

group to communicate interface specification information
between suppliers)

Assistance by mediation Joint problem solving with Prime mediated/facilitated collaboration between suppliers
boundary spanners to solve common problems

© Marc G. Haddad
176
176C Marc G. Haddad

From the concept labeling step presented in the tables above it is possible to extract the following

conceptual categories and their corresponding subcategories for knowledge integration, as well

as the relationships between the two, as mapped in Table 34 below:

Table 34: Conceptual Categories and Subcategories for Knowledge Integration

Categories

Advice sharing

(suggestions for
problem solving,
typically not binding)

Assistance

(direct involvement in
problem solving)

Information transfer and
sharing

(explicit knowledge for
problem solving)

Know-how and skills
sharing

(tacit knowledge for
problem solving)

Relationship of Subcategory to Category

N

Subcategories

Special review teams

Social networking

Experts

Special action teams

Group collaboration

Boundary spanners

Personal
communication

Group communication

Boundary objects

IT infrastructure

Commonality and
Standardization

Organizational
coordination

Network coordination

Training

Professional networking

© Marc G. Haddad
177

J

C Marc G. Haddad 177

Per the guidelines of the grounded theory method, the four conceptual categories listed in the

leftmost column of Table 34 are a "higher-order, more abstract" aggregation of concepts

identified in open coding that are similar or related to each other, while the subcategories listed

in the rightmost column of the table are an aggregation of similar or related "action/interaction

strategies" corresponding to each category (Strauss and Corbin 1990). As such, the

subcategories themselves are an abstraction of the actual strategies and mechanisms by which a

concept is made operational, and are therefore listed across from the corresponding concept in

the previous table. The arrows in the table indicate a "one-to-many" relationship between some

subcategories and two or more of the four main conceptual categories. This means that the

strategies or mechanisms that constitute the subcategory in question correspond to more than one

concept of knowledge integration. For example, mechanisms in the form of experts, such as

"tech fellows", integrate knowledge most frequently through giving advice (e.g. making

technical suggestions during problem solving), however they also share information across

programs in the form of lessons learned and they provide assistance to product teams through

direct involvement in the troubleshooting of problems. Therefore, the subcategory labeled

"Experts" which is classified under the category "Advice sharing" is also linked with two arrows

to the categories labeled "Assistance" and "Information transfer and sharing".

A first examination of the conceptual categories developed in the open coding step shows that

the underlying concepts, which are derived directly from the field observations, are in close

agreement with the theoretical definition for knowledge integration as proposed in § 2.1.2 of this

thesis; that is, the conceptual categories derived from the data embody the transfer and sharing

stages of the knowledge integration process through the transfer and sharing of advice,

information, know-how and skills, as well as the application of knowledge through direct

assistance. This means that the conceptualization of the knowledge integration process using the

data from the field research coincides with the earlier conceptualization using insights from

existing theory, thus adding to the reliability of the research design (Robson 2002).

The primary outcome of the open coding procedure of the grounded theory method is in the

ability to visualize the data at a higher level of abstraction and therefore to better understand the

most important aspects and drivers of the phenomenon under investigation. This is illustrated in

C Marc G. Haddad 178

Figures 26 and 27 below for routine and non-routine problem solving, respectively, and which

reformulate the 'laundry list' of disconnected strategies/practices/mechanisms listed in Tables 27

and 28 above, into a coherent set of concepts for knowledge integration with each concept

having its corresponding categories of strategies/practices and the mechanisms through which

they are implemented. For example, the conceptual label in Figure 26 about "info sharing by

group communication" refers to the concept of "information sharing" through the category of

strategies/practices and mechanisms related to the use of group communication.

Routine Knowledge Integration

Info transfer by Info sharing by
supplier group

integration communication
10% 19%

Info transfer by
commonality &

standardization
17%

Advice sharing
by review teams

7%

Figure 26: Knowledge Integration in Routine Problem Solving Contexts

As the circled label in the above figure shows, knowledge integration in routine problem solving

contexts is dominated by information transfer through IT tools and systems, which empirically

validates existing theory (Grant 1996a). Note that for the purposes of enhancing the graph's

visibility, some conceptual labels have been folded together such as merging "commonality" and

"standardization" together and including "boundary objects" with "IT infrastructure" under "IT

© Marc G. Haddad
179

14%ntw nRllU
14%

C Marc G. Haddad 179

tools and systems". Figure 27 shows the main concepts for knowledge integration in non-routine

problem solving contexts:

Non-Routine Knowledge Integration

Assistance by
boundary

Assistance by
experts

intervention
11%

I

spanners
7%

rZ

Advice sharing
by experts

consultation
11%

J
Advice sharing

by special review
teams

11%

4ssistance by
Assistance by

moving experts
19%

Assistance by
special action

teams
19%

group
collaboration

22%

Figure 27: Knowledge Integration in Non-Routine Problem Solving Contexts

The circled label in the above figure empirically validates existing insights about the dominance

of group problem solving for integrating knowledge in non-routine problem solving contexts

(Grant 1996a).

Another outcome of the coding procedure is the discovery of important properties (Strauss and

Corbin 1990) pertaining to the developed categories and subcategories and which further

characterize the knowledge integration process by adding precision to the developed concepts.

For example, some knowledge integration strategies may share a common property of being

"routine" even though they are distinct strategies and cannot be grouped together under the same

conceptual category, such as "standardization" versus "job rotation". Conversely, similar

180© Marc G. Haddad

strategies may exhibit different properties that should be accounted for in theory development,

such as "direct" versus "indirect" transfer of technologies (e.g. directly between programs versus

indirectly through a common supplier). Properties thus add further context to the derived

concepts and conceptual categories and therefore aid in the development and refinement of the

theoretical framework. Properties are also grounded in the data since they are either explicitly

mentioned by interviewees (for example when a respondent describes a meeting as "formal") or

they are directly inferred from the data (for example when deducing that "walk and talk" is an

informal mechanism). These properties emerged in the process of labeling concepts during open

coding, as can be seen in Tables 29 through 33 in this section (specifically in the second column

of each table under "strategies/practices").

The main properties of interest are: direct and indirect, formal and informal, tacit and explicit,

component and architectural, vertical and horizontal, routine and non-routine 38. These were

determined in part based on their frequency of occurrence relative to other possible properties

(for example the property "formal" was explicitly cited 24 times in the interviews whereas "long-

term" was cited only once, as shown in Table 48 of Appendix B - this served as general

guidance for which properties and concepts to take note of in open coding the interview data).

Note that these derived properties are also in close agreement with the most notable attributes

synthesized from the literature in Table 4 of § 2.1.12, meaning that some of the same properties

prescribed in the literature were re-discovered in the coding of the field observations.

Figures 28 and 29 below illustrate the results of coding the interview data using the properties

derived from both the literature and the field research for routine and non-routine knowledge

integration, respectively. The software tool MAXQDA 2007 for qualitative data analysis was

used to assist in the coding of the data in order to manage the scale and complexity of

relationships. The results presented in the figures below are based on the coding of a total of

1,349 text segments from all interviews across all three case studies for the routine case, and 264

text segments for the non-routine case (for a total of 1,613 codes). The horizontal axis lists the

three different case studies including the prime and two supplier organizations, with the case

38 Note that the routine/non-routine dimension is already accounted for in the framing of knowledge integration
along two separate modes, and therefore does not need to be considered again in the analysis of major properties.

C Marc G. Haddad

study involving the prime organization being divided into four separate columns to account for

each of the four separate rounds of interviews. This was done in order to reflect the changes in

the collected data after every refinement of the interview questions 39. The vertical axis lists the

main properties discovered during the coding process. The dots in each figure are a graphical

representation of the number of times a particular property was cited in the interviews in a

particular case study or round of interviews. A larger size dot means the property in question

was more frequently cited.

39 In contrast, the supplier data which were also collected over three separate rounds of interviews at each supplier
organization, were aggregated in the last two columns of Figures 24 and 25 since the field research with the supplier
organizations was conducted after the end of the last data collection with the prime organization, and as such there
was little to no further refinement of the interview questions at that stage of the research.

C Marc G. Haddad 182

Cod System -- -

E.] Irntra-Program
. Cj Component Knowledge
®r. Architectural Knowledge
..... I Subsystem IPT - Subsystem IPT
(-l Subsystem - System IPT
C iFormW Mechanism
(!C Informa Mechanism
(7• Tack Knowledge
I. Explicit Knowledge

1(- Function -Program
SExplicit Knowledge
STackt Knowledge

.... Informal Mechanism

..L Forma Mechanism
ý .. Program -Program

Expli E cit Knowledge
fLI Tacit Knowledge
... Architectural Knowledge
I-O Component Knowledge
! Informal Mechanism
-. Formnal Mechanism

SIndrect (Mediated) Channel
J.. Direct Channel
.. System IPT - System IPT
.. Subsystem IPT - Subsystem IPT

H -Prkne - Supplier
.. Expict Knowledge
. Tacit Knowledge
... Architectural Knowledge

C omponent Knowledge
(Informal Mechanism

CFormal Mechanism
(Indirect (Mediated) Channel

Direct Channel

Prmestevi jPrkne site visit 2 Pri ssisteec ns

Figure 28: Frequency of Codes for Knowledge Integration Properties in Routine Problem Solving

C~) Marc (i. Hadclad 183
C Marc

G. Haddad 183

Code System Prime ste visit Prime t vist 2 Preste vist3 Prime ste vi4 Supper ste visits Sper 2 telecons
8 (Intra-Programn

(Intra-IPT
(3Subsystem IPT - Subsystem IPT * * • ,
(3 Subsystem - System IPT * .
(F Formal Mechanism

Informal Mechanism
Tact Knowledge . . .
Explcit Knowledge . . .

El[-qi Function- Program
SExplict Knowledge

" Tacit Knowledge .
S Informal Mechanism *

ForWmal Mechanism *

E••4 Program - Program
Explicit Knowledge 4

-(Tac•t Knowledge * , * .,
. I nformal Mechanism * 4 ,

F•Pormal Mechanism *
L Indirect (Mediated) Channel
. Direct hanne . .

S..3® Prime - Suppler
Explicit Knowledge

(Tact Knowledge + *
(-I3 Informal Mechanism *
I...8 Formal Mechanism *
.... ndirect (Mediated) Channel .

F Direct Channel * *

Figure 29: Frequency of Codes for Knowledge Integration Properties in Non-Routine Problem Solving

© Marc G. Haddad 184
184C Marc G. Haddad

Note that the first column labeled "Prime site visit 1" represents the first exploratory round of

interviews when the interview questions were unstructured and general in nature, so that the

resulting insights were mostly related to the "big picture" of knowledge integration and did not

touch upon any specific problem solving situations. As such, there were more insights related to

routine knowledge integration from that first round than all the subsequent rounds of field

research, as reflected in the higher frequency of codes shown in the first of the two figures above

(Figure 28). In contrast, the fourth column labeled "Prime site visit 4" represents the last round

of interviews with the prime organization during which the structured questionnaire was

administered in order to collect data about knowledge integration for specific problem solving

events (see § 5.1 for a detailed explanation of the different stages of the field research), therefore

the insights from this part of the case study are mostly related to the non-routine integration of

knowledge during troubleshooting events. This is reflected by a higher frequency of codes

appearing in that column in the non-routine case as shown in the second of the two figures above

(Figure 29).

The coding results show that formal strategies, practices and mechanisms dominate the

integration of knowledge in general in both the routine and non-routine cases, and especially

along the channel linking programs to functions. This is because in project-oriented structures,

functions are tasked by design with the formalization of knowledge processes across different

programs, such as the standardization of processes in routine work and the deployment of experts

in non-routine problem solving. At first glance this would seem to contradict the assertions of

many interviewees about the wide-spread use of informal mechanisms, such as in the following

direct quotes: "informal exchanges based on personal social networks are the most prevalent

form", and "knowledge sharing is mostly informal in walk and talk with colleagues". However,

one of the reasons for the discrepancy between the overall data and some specific responses is

that informal mechanisms tend to be forgotten by the majority of interviewees since, as one

respondent put it, "informal interactions usually precede formal exchanges and serve mostly to

establish interest and trust between parties", and therefore they are not always reported in the

interviews. In addition, informal mechanisms are typically viewed as ineffective in traditional

organizational contexts where following systematic processes is the norm, and as a result they

are relatively ignored in the interview responses compared to formal mechanisms. This is

C Marc G. Haddad 185

evident in the frequent mention of the "lack of formalization" as a negative aspect and a barrier

to knowledge integration, as shown in 5 of the 56 barriers listed in Table 47 of Appendix B.

Examining the frequency of occurrence of knowledge-specific properties, it is clear that explicit

knowledge is dominant in routine interactions across all channels, and especially across

programs, whereas tacit knowledge interactions become the most prominent during non-routine

problem solving, especially across the function-to-program channel. This is in line with insights

from the literature that confronting conditions of uncertainty and equivocality, such as those

encountered in live troubleshooting, requires richer media (e.g. face-to-face interactions), while

routine well-understood tasks can be efficiently accomplished by information systems (Daft and

Lengel 1986). There was, however, an exception to the general trend highlighted above in that

even in non-routine problem solving, the integration of explicit knowledge was found to be

significant along the prime-supplier channel. This can be attributed to the highly formalized

nature of interactions between different organizations where everything has to be written down

to make it official, but it is also due in large part to the "arm's length" nature of relationships

between prime and supplier organizations in this context, as demonstrated by the large number of

restrictions and barriers listed in Table 47 of Appendix B. This has the effect of hindering

integrated problem solving across organizational boundaries, which is of primary importance in

complex product development (Takeishi 2001; Fujimoto 2002). Examining the type of

engineering knowledge being integrated (i.e. component versus architectural knowledge) did not

provide further insights about the integration process.

Another critical property for knowledge integration is whether the relationship between parties is

direct or indirect. As previously mentioned in the literature, direct channels are essential for the

integration of tacit knowledge whereas indirect channels are useful for locating new knowledge.

The results of the coding process show that external interactions between prime and supplier are

direct in nature while the internal interactions across programs are overwhelmingly indirect.

This is because the relationship between programs is mostly mediated by the functional

organization. Combining these results with the preceding insights about the dominance of

explicit knowledge interactions across programs, it is apparent that mediation by functional

groups is not sufficient enough to promote the flow of tacit knowledge across program

C Marc G. Haddad 186

boundaries. And since tacit knowledge is critical in non-routine problem solving situations, the

lack of tacit knowledge flow amounts to a hindrance against the effective management of design

interdependencies across boundaries and therefore impedes cross-platform commonality, which

is key for efficiency in large-scale complex product development as shown in previous research

(Cusumano and Nobeoka 1998). This realization was confirmed by straight quotes from some

interviewees that cross-program knowledge integration through the functional organization is

inefficient as "a lot of money has been spent, but it is not true integration", especially that there

is also a multi-directional pull on functions to serve the needs of multiple programs equally.

Finally, coding the interview data for directional properties where vertical integration is

represented by subsystem-to-system IPT interactions and horizontal integration is represented by

subsystem-to-subsystem IPT interactions within the same program, there was little evidence of

any patterns in the data along either dimension, spare one notable indication of an increase in

interactions along the horizontal dimension under non-routine conditions. The reasons for this

are not clear from the interview data but will be investigated further in the analysis of the

questionnaire data for the non-routine problem solving context in § 6.2.

6.1.3 Refined Conceptual Framework for Knowledge Integration

Given the previous analysis of the results of the open coding procedure as discussed in § 6.1.2,

and in order to expand on the knowledge integration framework proposed earlier, it is necessary

to finally connect the dots between the different conceptual categories by relating them through

their subcategories and their corresponding properties. This procedure is known as "axial

coding" in the grounded theory literature (Strauss and Corbin 1990; Robson 2002). The

dominant concepts related to routine problem solving conditions that emerge from this procedure

are shown in Table 35:

Table 35: Knowledge Integration Concepts for Routine Problem Solving

Inta-program Program-Program Function-Program Prime-Supplier

Informal advice sharing Formal advice sharing

Direct assistance Indirect assistance Direct assistance

Formal information transfer and sharing

© Marc G. Haddad 187

Similarly, for non-routine problem solving conditions, the dominant concepts that emerge from

the axial coding procedure are shown in Table 36:

Table 36: Knowledge Integration Concepts for Non-Routine Problem Solving

Inta-program Program-Program Function-Program Prime-Supplier

Formal advice sharing -- Formal advice sharing --

Direct Assistance

The outcome of the interview analysis is a first-order refinement of the conceptual framework

proposed in Chapter 3 of this thesis for both routine and non-routine problem solving, as shown

in Figure 30 below:

Figure 30: Refined Knowledge Integration Framework

© Marc G. Haddad
188
188C Marc G. Haddad

The above framework presents a comprehensive picture of the knowledge integration process in

large-scale complex product development. However, the picture remains static in that there is no

visualization of the dynamics of knowledge integration under different non-routine conditions.

In other words, since non-routine problem solving drives the use of different channels, strategies

and mechanisms for integrating knowledge, the static framework by itself cannot completely

describe the integration process and a more dynamic picture of knowledge integration is needed

to accurately describe the phenomenon in its complex setting. It is thus necessary to investigate

the non-routine problem solving context in more detail in order to answer the questions:

* What channels and mechanisms are used in different problem solving contexts; and,

* Which ones are used most frequently?

Answering these questions requires a more structured investigation than can be accomplished

using interviews, and therefore a structured questionnaire instrument was administered across all

case studies in order to collect categorical data about the use of knowledge integration channels

and mechanisms for a wide variety of major problem solving events, as will be explored in detail

in § 6.2 below.

6.2 Quantitative Analysis of the Questionnaire Data

The problem solving and knowledge integration data collected with the structured questionnaire

instrument are presented in Tables 49 to 51 of Appendix C. There are a total of 49 problem

solving cases collected with the structured questionnaire administered across all case studies in

the final round of interviews and focusing on four major avionics systems, namely the

Communication Navigation Identification (CNI) system, the Electronic Warfare (EW) system,

the Mission Computer (MC) and the Multi-Function Radar. In addition, and as part of the 49

cases, there are a number of problems involving aircraft systems outside the avionics suite,

including several mechanical, structural, electronic and display systems. The analysis in this

section uses the different system and problem characteristics identified in the cases to frame the

dynamics of knowledge integration under different problem solving conditions.

© Marc G. Haddad
189

C Marc G. Haddad 189

6.2.1 The Influence of Product Architecture on Knowledge Integration

The type of architecture for the system in which the problem originated was collected by asking

respondents to choose between the two opposite forms: integral or modular. The reported choice

was then validated where possible against publicly available sources in the literature for the

system in question. Another check was done by estimating the degree ofmodularity40 of each

system based on the average spread of problems attributed to that particular system. This

estimation was based on the assumption that problems occurring in integrated systems ripple

across several other systems due to the tight coupling between them, whereas problems occurring

in modular systems tend to be more self-contained or affect only a few other systems due to the

loose coupling between them. This assumption builds on existing insights in the literature about

the properties of loosely coupled versus tightly coupled architectures, and was further validated

by several practitioners in the final round of field interviews.

As an example, there are 6 problem cases attributed to the EW system, where 2 problems

remained internal to the system itself, 1 problem affected 1 other system, and 3 problems rippled

across 5 other systems each 41 . On average, the spread of EW problems to other systems is equal

to the average number of all affected systems (i.e. the average of 1+1+2+5+5 = 3.17 affected

systems on average), which when normalized from the measured "1-to-5" scale to a "0-to-1"

scale where 0 is a purely integral architecture and 1 is purely modular, gives a degree of

modularity of 0.46. This number is less than 0.5 and therefore the EW system architecture is

considered to be integral. This calculation corroborates the responses provided by EW system

experts in the field and is supported by the manufacturer's information and other literature about

the subject EW systems for the aircraft programs surveyed. The same calculation was done to

verify the system architectures of all other avionics and non-avionics systems in all 49 problem

cases.

40 Note that there are already several methods for measuring the degree of modularity of a complex system (Ulrich
1995, Sosa, Eppinger, et al. 2003, H6iltt, Suh et al. 2005), however they all require deep knowledge of the internal
workings of the system (e.g. the number of system components and functions, the functional interactions between
components), which was not available in this research due to classified and proprietary restrictions.
41 Recall from § 5.2 that a score of 1 to 5 was used to measure the spillover of a problem in one system into other
systems, so that a maximum score of 5 was used even if a problem affected more than 5 other systems. This was
done to manage the difficulty of obtaining actual numbers of affected systems for far-reaching problems.

C Marc G. Haddad 190

By the above classification and as shown in Table 49 of Appendix C, there are 26 problem cases

pertaining to systems with an integral architecture (namely the Mission Computer system, the

EW suite and the Electronic Display systems for all three aircraft case studies, as well as the CNI

system and 3 other non-avionics systems in case study "C" only). The remaining 23 problem

cases originated in systems with a modular architecture (namely the Radar system and 9 other

non-avionics systems in all three case studies, as well the CNI system in case studies "A" and

"B" only) 42. The corresponding knowledge integration data are plotted in Figures 31 and 32 for

integral and modular cases, respectively. The figures illustrate the frequency of use for each of

the 5 knowledge integration channels, as framed in the initial theoretical framework proposed in

Chapter 3 of this thesis, in each of the two system architecture regimes (e.g. channel #2 circled

below is used in 84.6% of all problem solving cases pertaining to integrated systems only).

Knowledge Integration by Channel for Integral Systems

100%

75%

8 50%

25%

0%
Program -
Function

Figure 31: Knowledge Integration for Problem Solving in Integrated Architectures

42 For the purpose of the following analysis, recall that troubleshooting modular systems involves debugging module
interfacing problems, whereas troubleshooting integral systems involves tuning multiple parts of the system due to
part interdependence (Ulrich, 1995).

C Marc G. Haddad

57.7%

Prime - Supplier

65.4%

191

As illustrated for the integral architecture case, the most frequently used channel for integrating

knowledge in non-routine problem solving involving integrated systems is the intra-program

channel between different subsystem IPT's, while the least used channel in this case is the

program-to-program channel. First, the high frequency of intra-program interactions between

subsystem IPT's is because of the tightly coupled nature of integral systems where a problem in

one subsystem affects other parts of the system, such that the subsystem where the problem

manifests itself may not be where the source of the problem is located or "rooted". In other

words, integration creates ambiguity in problem solving which necessitates frequent back-and-

forth knowledge interactions between the concerned IPT's in order to diagnose the problem and

develop a solution 43. Along those lines, an important observation from this research is that

iterative problem solving between subsystem IPT's can in many cases turn to "finger-pointing"

or "throwing-over-the-wall" type of interactions between IPT's, which when combined with each

team's self-sufficient nature can lead to problem solving in isolation. What this means is that

focusing on the frequency of interactions exclusively can be a misleading indication of close

collaboration when the reality is completely opposite. This is because the effectiveness of the

knowledge integration process also depends on the richness of interactions, not just their

frequency. This is why it is also important to evaluate the actual mechanisms for accomplishing

knowledge integration along each channel, and this research has found that 68% of all

mechanisms used along the subsystem-to-subsystem IPT channel in integrated architectures are

information systems for the exchange of explicit knowledge alone (e.g. common problem

reporting system, integrated tools). These impersonal interactions are therefore one possible

explanation for the non-collaborative behavior between IPT's, and it was also found in this

research that the over-reliance on information systems in this context is a potential source for

requirements creep since as one interviewee put it, anyone can file a common problem report

(CPR) through these systems without having to go through rich discussions to assert whether the

observed anomaly is real or a "false positive". Therefore there is a clear indication from this

research that root-cause analysis in integrated system architectures can benefit from tacit

knowledge interactions to supplement the over-reliance on information systems in this process.

43 This process is known as "root-cause analysis" or "failure analysis" in which various methods and tools are
employed to locate the 'culprit' part of the system and to develop the appropriate solution. In complex integrated
systems, root-cause analysis is a very systematic and systemic process which requires the involvement of multiple
teams responsible for different parts of the system.

C Marc G. Haddad 192

Second, and in terms of knowledge flow between programs, the primary reason for the low

frequency of interactions along the program-to-program channel is that integration and

customization in systems go hand in hand, with both strategies being a means to increase

performance and both having a self-reinforcing relationship, and as such the more highly

integrated the system, the more customized it is and the less knowledge commonality there is

with other systems of the same type in other programs. This reduces the usefulness of cross-

program interactions as reflected in the figure above. This is in contrast to modular systems

which have significant commonality between them, as discussed for Figure 32 below.

Knowledge Integration by Channel for Modular Systems

100%

75%

50%

25%

0%

43.5%

34.8%

Subsystem IPT - Subsystem IPT -
System IPT Subsystem IPT

30.4%

Program -
Program

Channels

Figure 32: Knowledge Integration for Problem Solving in Integrated Architectures

© Marc G. Haddad

Key takeaway:

In highly integrated systems, rich tacit knowledge integration between IPT's responsible for

different subsystems is critical for efficient and effective root-cause analysis

- -- I

193

In the modular case illustrated here, the most used channel for integrating knowledge is across

the prime-supplier boundary, while the least used channel is across the program-to-program

interface. One obvious explanation for the high frequency of prime-supplier interactions is that

in complex product development, subsystem modules are typically designed and developed by

external suppliers who retain most of the knowledge about the internal workings of their own

modules. Therefore problem solving in a modular architecture has to go through the supplier of

the module where the problem is rooted or where the problem manifests itself. This would

appear to validate the common assumption that system integrators in the prime organization do

not have the necessary design knowledge to troubleshoot problems with the supplier's box.

However, this explanation alone does not constitute the full story, since subsystem design

problems account for only 24.5 % of all 49 problem cases collected, while integration-type

problems account for 57.1 % of all problem cases. As such, a majority of problems should not in

theory require frequent supplier involvement, since it is commonly accepted that system

integration knowledge is closely held by the prime system integrator only and not by the

suppliers of the affected modules. The contradiction between observation and accepted theory

opens the door for alternative explanations such as the fact that modular architectures are used by

the prime organization to "hide" its architectural knowledge from its supplier (Sanchez and

Mahoney 1996; Baldwin and Clark 1997), thus eventually leading to system integration

problems and forcing both prime and supplier to exchange knowledge during problem solving.

This argument is well supported in the field interviews where the prime-supplier relationship was

often characterized as being at "arm's length" instead of a close partnership, for example in the

following quote: "We need to move beyond the 'Purchase Order' mentality and treat our

suppliers as partners instead of vendors". And in fact, this research has found that 69% of all

mechanisms used along the prime-supplier channel in problem solving under modular

architectures were for the integration of explicit knowledge (e.g. requirements and specifications

changes and interface control documents, engineering change documents). This empirically

confirms existing insights about the nature of prime-supplier interactions being mostly a distant

and formal buyer-vendor relationship. However, before accepting these observations as a full

explanation for the multi-faceted relationship between prime and supplier organizations, it is

necessary to further explore the knowledge integration process along this channel for different

© Marc G. Haddad 194

problem solving contexts (specifically for design versus integration problems). This will be

addressed in § 6.2.2.

When examining the low knowledge integration activity along the program-to-program channel,

it appears at first that the outcome is contrary to expectations, since modular systems typically

have a high degree of commonality with similar systems in other programs and can therefore

benefit from integrating knowledge about commonly encountered problems across programs.

However, as explained already in the qualitative analysis under § 6.1.1, the program-to-program

interface was found to be walled-off by a host of barriers ranging from classified and proprietary

restrictions to short-sighted strategies of local program optimization and close guarding of

knowledge assets. This is compounded by the fact that project structures which are common in

complex product development end up isolating programs from each other so that cross-program

interactions are only on a need basis. Furthermore, and as already pointed out in § 6.1.1, it was

found that some of the most common mechanisms for integrating knowledge across programs

are shared databases and common repositories, which suffer from several shortcomings such as

information overflow and obsolescence, and are therefore rarely used and ineffective for major

problem solving. However, it should be pointed out that compared with the integral case, there

is a significant increase (by almost two-folds) in the use of the program-to-program channel in

the modular case. This constitutes an indication of frustrated attempts at integrating knowledge

from other programs for major problem solving in modular architectures.

A detailed comparison between the integral and the modular cases will be made to determine if

the differences in the use of knowledge integration channels and mechanisms between the two

cases are significant or due to random error. The comparison is first illustrated in Figure 33

below:

Key takeaways:

1) The high frequency of knowledge interactions between prime and supplier organizations

in modular architecture regimes is not restricted to design problems

2) Problem solving in modular systems can benefit from richer tacit knowledge interactions

between prime and supplier organizations

C Marc G. Haddad 195

Knowledge Integration by Channel for Integral and Modular Cases

100%

75%

8 50%e-

LI.

25%

0%

Figure 33: Knowledge Integration in Different Architecture Regimes

Starting with a visual comparison, it is clear that there is little difference (less than 10 %) in the

frequency of integration along channel 1 (subsystem IPT-to-system IPT), and channel 4

(program-to-function), so by this simple "eyeball test" it is possible to say that knowledge

integration along these two channels is not sensitive to changes in the system architecture (i.e.

the use of these two channels for integrating knowledge in order to solve a problem in a

particular subsystem is invariant with respect to the type of architecture of that subsystem).

However, for channel 2 (subsystem IPT-subsystem IPT), channel 3 (program-to-program) and

channel 5 (prime-to-supplier), there are apparent differences (greater than 10 %) in the frequency

of knowledge integration along each channel between the integral and modular cases. In order to

determine whether this difference is statistically significant, a chi-square test of independence

was performed on the data and a value of X2 = 7.23 was calculated, as shown in Appendix D.

1 Integral Architecture I Modular Architecture

196C Marc G. Haddad

This result is statistically significant at the 95 % confidence level 44, and therefore we can accept

the alternative hypothesis (Ha) that there is a relationship between system architecture and

knowledge integration in complex product development. These outcomes can be depicted in the

original framework by emphasizing the channels which are most frequently used in different

architecture regimes, as shown in Figure 34 below for integrated architectures where the

subsystem-to-subsystem IPT channel is most frequently employed:

Figure 34: Knowledge Integration in Integrated Architectures

(Channel 2 Most Frequently Used)

The implication of this finding for problem solving is that integrated architectures make the

problem solving process more iterative and therefore more difficult (note that the problems

themselves may not be more difficult because of integration, but the problem solving process

becomes increasingly vague and requires more knowledge interactions to resolve the ambiguity).

Similarly, Figure 35 below frames the knowledge integration process for modular architectures

where the program-to-program and prime-to-supplier channels are most frequently employed:

44 The calculated chi-square value is greater than the alpha significance level a = 5.99 corresponding to p (0.05) for
2 degrees of freedom in the chi-square distribution table; in other words the probability of mistakenly accepting the
alternative hypothesis is very small and we can reject the null hypothesis (Ho) that differences in the frequency of
knowledge integration along channels 2, 3 and 5 for different system architectures are due to random chance alone.

197© Marc G. Haddad

Figure 35: Knowledge Integration in Modular Architectures

(Channels 3 and 5 Most Frequently Used)

The implication of this finding for problem solving is that problem solving in modular

architectures relies mostly on prime-supplier knowledge integration, and can potentially benefit

in a substantial way from breaking down barriers across programs.

It is also important to note that despite the marked difference in the frequency of prime-supplier

interactions for modular versus integrated systems, there is nonetheless a high degree of

interactions (over 65 %) in both cases, which for the integral case runs counter to common

wisdom (recall the argument outlined in § 2.3.1 of the literature review chapter about the higher

efficiency of coordinating knowledge internally to the single firm than across external

boundaries when dealing with tightly coupled products (Christensen, Verlinden et al. 1999)).

However, as already argued in this thesis the high degree of complexity of the systems in

Key takeaway:

Despite the barriers against effective knowledge integration between programs, the

knowledge interactions along the program-to-program channel are markedly higher for

problem solving in modular architectures than for integral systems

198C Marc G. Haddad

question makes it impossible for one firm to have all the knowledge required to develop the

entire system, thus necessitating frequent interactions with external partners even for integrated

systems. In addition, however much a complex system is modularized there will always be a

high degree of coupling between the assembled modules in the overall system, which means that

problems in one module can lead to integration problems in the entire system, and ultimately to

frequent joint problem solving with module suppliers. In the case of military avionics, the ever

increasing demand for cutting-edge performance and added capability translates to increasing

customization and integration of the avionics suite and the individual systems themselves, which

leads to a corresponding increase in overall system complexity. A widely adopted strategy for

dealing with complexity in this context is to federate large "chunks" of each system while

maintaining a high degree of integration between the different chunks45 in order to maintain a

high degree of performance. This means that there is frequent supplier involvement in

troubleshooting for the vast majority of avionics systems, regardless of the degree of integration

of each system, as manifested in the data. These frequent prime-supplier interactions as

observed in the integral case support previous research findings suggesting that teams with

experience in the development of highly integrated systems are better able to communicate

technical information across external organizational boundaries (Sosa, Eppinger et al. 2003).

Note that a high degree of prime-supplier knowledge integration in the development of complex

integrated systems is not necessarily applicable for developing systems which do not exhibit a

high level of complexity. In the low complexity case, the degree of knowledge integration with

suppliers would be high for modular architectures only.

45 This architecture is colloquially known as "Fedegrated", which is a mix between federated and integrated
architectures.

Key takeaway:

There is a high level of involvement by suppliers in troubleshooting problems with the prime

organization regardless of the architecture of the system experiencing the problem. This is

due to the increasing degree of complexity in high-technology systems and is an indication of

migrating system integration knowledge to the supplier base.

© Marc G. Haddad 199

It also follows from the above that in complex systems development, supplier involvement in

problem solving is not only limited to design problems alone as typically believed. The

following section will explore knowledge integration for different types of problems.

6.2.2 The Influence of Problem Type on Knowledge Integration

The 49 problem solving cases collected through the questionnaire and relating to the system

design and development phases (SDD) of product development can be classified along six

different categories of problem types, which are: 1) hardware design, 2) software design, 3)

system design (for either hardware or software systems), 4) hardware integration (known as

packaging problems in avionics), 5) software integration (such as sensor fusion problems), and

6) system integration problems (involving both hardware and software). Some problems are also

a mix of either hardware design and hardware integration issues, or software design and software

integration issues. For simplicity of the analysis, the problem cases collected in this research are

classified along two main categories: design problems and integration problems46. Design

problems are generally due to anomalies in the subsystem engineering phase of the design

process, while integration problems, which typically account for the majority of major problems

in complex product development, are generally due to interface incompatibilities (i.e.

mismatched interface specifications, bad requirements and different standards). This was

confirmed in the field research through several direct quotes from interviewees, for example:

"most problems are related to interfaces", and "modules work fine on their own most of the time

until they are plugged into the larger assembly". However, it is also the case that some

integration problems are rooted in bad design decisions at the subsystem level which spillover

across interfaces into other parts of the system, especially in tightly coupled complex

architectures such as the avionics systems considered in this research.

Figure 36 shows the differences in the frequency of knowledge integration for design versus

integration problems. Note that the graph does not distinguish between different system

46 Note that there are other common problems in the SDD phases of development such as manufacturing problems,
process and procedures issues and failures relating to testing and manufacturing equipment, or even errors in
flowing incorrect data and documents. However, the most complex problems at these stages of development are
typically design and integration problems.

C Marc G. Haddad 200

architectures, only between different types of problems regardless of the architecture of the

system experiencing the problem.

Knowledge Integration by Channel for Design versus Integration Problems

100.0%

75.0%

50.0%

25.0%

0.0%
Subsystem PT - Program- Program
Subsystem PT

3 Integration Problems m Design Problems

Figure 36: Knowledge Integration for Different Problem Types

As expected, knowledge integration along the prime-supplier channel is very high for subsystem

design problems. This could be due to the common reason that design knowledge needed for

problem solving is found in the supplier base since suppliers are tasked with the design and

development of subsystems in complex product development, as already pointed out in the

previous section. However, it could also be the case that suppliers are the source of design

problems and that knowledge integration along this channel is due to the prime organization

having to help its suppliers with problem solving. Examining the questionnaire data about the

different solution approaches to design problems as described by respondents, it is possible to

determine where problems originated from and in which direction knowledge flowed to solve the

© Marc G. Haddad 201

problem. Hence, from the problem solving narratives, the supplier was determined to be the

source of knowledge for problem solving in 58.8 % of all design problems. This result is not

conclusive since it is relatively close to an even outcome47; however, it is a first indication that

the main reason behind the high frequency of knowledge integration along channel #5 is for

supplier assistance in solving design problems. In fact, most design problems (87.8%) are

estimated to originate at the prime organization. This is also despite the potential for bias by the

respondents, the majority of them being affiliated with the prime, as there is greater likelihood

for individuals to avoid reporting problems originating at their own organization.

Furthermore, when examining the interview data from the earlier rounds of the field research for

routine problem solving, it is clear from several quotes provided by interviewees that the source

of most problems encountered in day-to-day product development are the "requirements

changes" which typically originate upstream (i.e. from the prime organization and the customer)

and flow down to affect the suppliers. These changes are typically due to poorly articulated

requirements by the prime organization early in the development phase, or due to changing

customer needs over time, or even to the poor flow-down of the correct requirements and

specifications by the prime to the suppliers. This is evident from direct quotes by interviewees

that "the real source of most problems is the poor articulation of high-level customer

requirements" and that "subsystem-level requirements need to be flowed down better". This

reality does not seem to be reflected in the non-routine problem solving data above since

suppliers are deemed to be responsible for a high 41.2 % of major problems (i.e. 100% - 58.8%).

However, since this statistic is for major non-routine problems as surveyed in the 49 problem

cases in this research, it is therefore not reflective of the day-to-day reality of product

development where routine changes in requirements and specifications upstream account for the

majority of problems, and we can conclude that suppliers are not the source of most problems in

general. It also follows that while routine problems due to minor requirements changes may be

deceptively seen as "small" compared with major engineering changes, their impact can be quite

disruptive to the development process due to their repetitive nature and the tediousness of the

47 Note that the determination of which organization is responsible for developing the solution is a conservative
estimate based on the final solution outcome, so that for example if the solution involved a change of requirements
by the prime organization, then the prime is credited with the solution, which ignores the potential role of the
supplier in problem solving. This is because the data collected through the questionnaire does not allow for
estimating the relative role of each organization in developing the solution.

C Marc G. Haddad 202

corresponding problem solving process. This is confirmed by several quotes from the

interviewees in both the prime and supplier organizations where they assert that "it's the little

issues that eat your lunch" and "it's the small things that drag you down, not the big problems".

It is therefore more plausible to assume that most design problems (big and small combined)

originate in the prime organization, and that overall, the design knowledge for problem solving is

largely found in the supplier base.

Examining the figure above for system integration problems, the frequent knowledge interactions

along the prime-supplier channel for system integration problems seem to contradict

expectations, since system integration knowledge is typically held by the prime system

integrator. And despite the fact that these interactions are less frequent than those for design

problems as would be expected (i.e. the prime-supplier channel is used 26 % less for integrating

knowledge about integration problems than for design problems), they are nonetheless

significant enough (almost 65% of the time) that they still warrant further investigation. The

most probable explanation can again be obtained from examining the questionnaire data related

to the description of problems and the corresponding solution approach. In this case, the prime

organization was found to be the source of solutions to integration problems 63.2 % of the time.

This is in line with expectations that the prime system integrator holds most of the architectural

knowledge; however supplier contributions to problem solving for integration problems remain

high (at 100% - 63.2% = 36.8 % of solutions come from suppliers). This means that suppliers

are involved in problem solving with the prime regardless of the types of problems encountered

(or in other words, not just for subsystem design problems as commonly believed). This

confirms the conclusion reached in the previous section that in dealing with increasing

complexity through the outsourcing of larger chunks of the overall system, knowledge from the

supplier base is increasingly needed for solving problems. Note that several integration

problems were found to be caused by design problems rippling across other parts of the system,

as expected in the case of tightly coupled complex avionics systems.

For system integration problems, it is clear that most troubleshooting happens between different

IPT's responsible for the different subsystems, which is in line with the preceding findings for

problem solving in integrated architectures. It is also noteworthy that this same channel is hardly

C Marc G. Haddad 203

used when dealing with design problems since it exhibits the lowest frequency of knowledge

interactions in this case. This suggests that design problems tend to remain more localized (or

internal to one subsystem) and thus do not involve other subsystems, whereas integration

problems, which are by definition problems that involve two or more subsystems, require

extensive knowledge interactions with other subsystem IPT's. It is also intuitive that integration

problems do not require as much knowledge flow across programs as design problems do, which

is exhibited in the collected data and illustrated in the figure above. This is because integration

problems are more likely to be unique to the interfaces of the subsystems involved (i.e. interface-

specific) and therefore similar problems are less likely to be commonly experienced with

systems having different architectures in other programs.

Finally, it is noteworthy that knowledge integration along the subsystem-to-system IPT channel

is much higher for design problems while the reverse is true for the program-to-function

interface. To explain the first part of this empirical result, recall the previous findings from the

preceding interview analysis where functional groups were found to be the source of deep

engineering expertise and skills as well as scientific knowledge as shown in Figure 25, which

makes them an ideal source of troubleshooting knowledge, especially in terms of root-cause

analysis know-how and skills necessary for tackling complex system integration problems. In

fact, this research found clear empirical evidence of extensive assistance (87% of all knowledge

integration mechanisms employed along the program-to-supplier channel) in this context.

Conversely, the main reason for the extensive involvement of system-level IPT's in solving

design problems with the suppliers are found in the problem solving narratives from the

questionnaire where there is evidence of an increasing need for mediation and oversight by

system IPT leaders, chief engineers and higher program authority in order to resolve deadlocked

problems with the supplier (such as entrenched problems with the supplier's process).

Specifically, this involvement was due to the need for mediation by the chief engineer to resolve

technical issues which had spilled over into disagreements and mistrust between prime and

supplier, or even between customer and supplier, and it was found that 44% of all mechanisms

employed along this channel are for sharing advice by higher program authority with suppliers,

notably in deadlocked problem situations.

© Marc G. Haddad 204
C Marc G. Haddad 204

Key takeaways:

1) Functional groups are a key source of expertise, know-how and skills for system

integration problems in complex product development

2) Advice sharing by higher program authority with suppliers is a critical mechanism for

mediating the resolution of design problems where the prime system integrator is

increasingly at the mercy of suppliers for design knowledge

Figures 37 and 38 below frame the knowledge integration process for design and integration

problems, respectively:

Figure 37: Knowledge Integration for Design Problems

(Channel 5 Most Frequently Used, Followed by Channels 1 and 3)

In contrast to the knowledge integration picture for design problems depicted above, system

integration problems require frequent use of the program-to-function channel since most

problem-solving is done by the prime organization, as opposed to design problems tackled

mostly by the suppliers and where the prime's functional groups are not called upon for help as

frequently. This is depicted in Figure 38 below. Note that the knowledge integration process

with functions will be explored further in the following sections addressing the influence of

205C Marc G. Haddad

problem novelty and technology maturity on the frequency of knowledge interactions. Also, and

as already explained in the previous section, knowledge interactions across programs for system

integration problems are more limited than for design problems, due to the fact that these types

of problems are unique to each system architecture, and therefore there is little commonality

between integration problems across programs. Furthermore, while the data show that

knowledge integration along channel #1 (with the overall system IPT) is high for integration

problems, insights from the interviews have revealed that this channel is used only when

problems ripple across a large number of other systems or when problem solving triggers red

flags with respect to budget and schedule.

Figure 38: Knowledge Integration for System Integration Problem Solving

(Channel 2 Most Frequently Used, Followed by Channels 4 and 5)

Having captured the dynamics of knowledge integration for different system architectures and

different problem types, the following two sections will address the influence of problem

complexity on knowledge integration through variations in problem novelty and technology

maturity. This is important because, as already discussed in chapter 5 of this thesis, the other

contributors to problem complexity beyond the degree of coupling between parts of the system

(i.e. aside from how integrated the architecture of the system is) are the novelty of the problem

itself and the newness of the technology embedded in the system.

206C Marc G. Haddad

6.2.3 The Influence of Problem Novelty on Knowledge Integration

Similar to the analysis given in the preceding two sections, the problem cases were differentiated

by problem novelty, where a high novelty (or new) problem is defined in this thesis as one which

has not been encountered before and for which the solution steps are unknown, whereas a low

novelty (or old) problem is one which has been previously solved or to which the solution

approach is largely known. This typology runs parallel to the routine versus non-routine

dimensions used to describe the two main problem solving and knowledge integration modes

previously in this chapter, with low novelty problems being addressed through routine problem

solving processes, while new problems trigger the use of non-routine strategies, practices and

mechanisms for integrating knowledge. Figure 39 below illustrates the differences in the use of

knowledge integration channels for both high and low novelty problems.

Knowledge Integration for High and Low Problem Novelty

100.0%

75.0%

50.0% -

25.0% -

0.0% -

64.3%

46.4% 47.6%

Subsystem IPT - SubsystemlPT -
System IPT Subsystem IPT

U High Novelty n Low Novelty

Figure 39: Knowledge Integration by Problem Novelty

© Marc G. Haddad
207
207

t

-

t-

I I

C Marc G. Haddad

The above data shows that overall there is an increase in knowledge interactions across most

channels for high versus low novelty problems. This is intuitive since there is a greater need for

outside help to solve new problems where the solution is unknown than for problems to which

the solution steps are largely known. However the main insight from this comparison is that

there is much greater recourse for functional groups in dealing with new problems (87% of all

mechanisms are for direct assistance from functions for tackling new problems where the

solution is largely unknown) since the functions typically have seasoned problem solvers with

long experience and deep expertise with both scientific and engineering knowledge, as already

explained in the previous section. This outcome, which is based on the questionnaire data,

confirms the previous conclusions reached in the qualitative analysis based on the field

interviews conducted separately, specifically that programs reach out to functions for new

technical knowledge as well as for help with root-cause analysis and big pictures reviews.

However, this makes the relationship with the functional organization a "last recourse" type of

interaction, as described by several interviewees: "you go to the functions when you don't know

how to solve the problem" and "support from engineering functions is only needed for major

problems, this need goes away with experience".

Finally, a perplexing outcome from the data above is the equally high frequency of knowledge

interactions for low novelty problems along all other channels besides the program-to-function

link. From the questionnaire data and the supporting interviews, the main reason for these high

interactions is that in complex development there are is an inordinate amount of information

exchange across all channels even in routine problem solving (e.g. 78% of all mechanisms along

the prime-supplier channel in low-novelty problem situations are information-based, such as

engineering change documents). The types of knowledge and the corresponding mechanisms

employed across different channels will be explored in further detail in § 6.2.5

6.2.4 The Influence of Technology Maturity on Knowledge Integration

Another contributor to complexity in problem solving is technology newness, or the degree of

maturity of the core technologies embedded in the system. This is because there is a much

higher incidence of major problems resulting from untested technologies than from mature

C Marc G. Haddad 208

technologies, as already demonstrated in the product development and innovation literature. For

the purposes of this research, only the dominant core technology embedded in the system for

each problem case is considered, and this pacing technology is classified as either new or old

(mature). Figure 40 below illustrates the differences in the use of knowledge integration

channels for both new and mature technology problems.

Knowledge Integration by Channel for New and Mature Technology Problems

1 UU.U/o

75.0%

LO= 50.0%U-

25.0%

0.0%

Figure 40: Knowledge Integration by Technology Newness

As already discovered in previous research (Takeishi 2002), knowledge integration between

prime and supplier organizations is higher for new technology problems since untested

technologies embedded in the supplied subsystems require extensive knowledge interactions to

solve emergent problems. Similarly, there is higher system-level IPT involvement to fix new

technology problems which tend to have a rippling effect on the rest of the system due to

emergent behaviors from unpredictable interactions between the new technology and different

parts of the system. In addition, system IPT leads and chief engineers are typically more

m New Technology o Mature Technology

209C Marc G. Haddad

involved in solving new technology problems as these problems are considered high-risk and

expensive to fix and they usually lead to budget and schedule overruns, thus necessitating higher

level involvement. As one respondent from the prime organization put it, "the prime wants to

have a say in how the supplier solves the problem since complete solutions are more costly

upfront". The frequent use of the subsystem-to-subsystem IPT channel for solving mature

technology problems would seem to be counterintuitive at first since mature technologies are

well understood, however from the problem solving descriptions in the questionnaire it is clear

that this is largely due to extensive exchange of information in support of problem solving (e.g.

along the prime-supplier channel, this research found that 75% of all mechanisms are

information based, while only 10% are for advice sharing and 15% for direct assistance with

mature technology problems).

In conclusion, while the figure above shows a high frequency of interactions for dealing with

new as well as mature technology problems across most channels, the richness of interactions for

troubleshooting new technology problems is much higher than that for solving problems

involving mature technologies.

6.2.5 Dynamic Conceptual Framework for Knowledge Integration

As a prelude to the final refinement of the proposed conceptual framework for knowledge

integration, it is necessary to combine the insights about the use of different channels for

different problem solving contexts with the data about the use of different strategies, practices

and mechanisms for integrating knowledge along those channels. The following Table 37

summarizes the most dominant mechanisms collected in the questionnaire for all 49 problem

solving cases, which are listed by highest, second and third highest use per channel.

© Marc G. Haddad 210

Key takeaways:

Advice and assistance from higher-level program authority, functional groups and suppliers

are critical for dealing with emergent behaviors resulting from the incorporation of new

technologies

© Marc G. Haddad 210

Table 37: Observed Knowledge Integration Strategies, Practices and Mechanisms

Mechanisms On On On Channel On Channel On Channel
Channel #1 Channel #2 #3 #4 #5

Information Mechanisms

Requirements, specs, Highest Highest Highest
change documents
Problem reports, test 3r Highest 3r Highest
data

Advice Mechanisms

Assistance Mechanisms

Wizards, tech 3rd Highest Highest Highest
fellows, SME's
Co-location, site 2nd Highest
visits
Troubleshooting 2 nd Highest 3rd Highest
meetings, reviews
Tiger team, taskforce 2nd Highest 2 d Highest

Interpreting the data in the table above, it is clear that in non-routine problem solving the

knowledge interactions with other programs (along channel #3) and functions (along channel #4)

are mostly for direct assistance, namely by calling on experts for their expertise in similar

problem solving events, and by forming multi-disciplinary special action teams. In contrast,

knowledge interactions across all other channels are dominated by information flow, due to the

iterative nature of non-routine problem solving (e.g. during root-cause analysis, a host of

problem reports and test data are generated and exchanged between all parties involved in

problem solving); however, the frequency of use of advice and assistance mechanisms was close

behind the integration of information, with mediation by IPT leads, system architects and chief

engineers being the primary strategy employed along the subsystem-to-system IPT channel

(channel #1), while troubleshooting meetings were most frequently used to diagnose and solve

problems with other subsystem IPT's. Last but not least, the prime-supplier channel was used

most frequently to move the locus of problem solving to the source of the problem, or

Chief engineer,
system IPT leac
Gurus, graybeai
red teams I

C Marc G. Haddad 211

alternatively to where the knowledge required for the solution was most concentrated, depending

on the problem. These conclusions are illustrated in Figure 41 below:

Figure 41: Dynamic Framework for Knowledge Integration in Complex Problem Solving

Combining the insights from the previous steps of the quantitative analysis with the data about

the most frequently used strategies and mechanisms, a final refinement of the knowledge

integration framework is proposed and shown in Figure 42 below:

© Marc G. Haddad
212
212C Marc G. Haddad

Program B

The
Advisors:
Lessons-
learned
consultants

i. J 3

Program A

System IPT

The Mediators:
Problem moderators and system overseers

Subsystem IPT Subsystem IPT

The Integrators: The Diagnosers:
13

\ vi~r IAI~L Yle '.ers I rrot~~em iucaiurs I

4

Functions

The
Firefighters:
Discipline-
specific experts
and problem
solving veterans

5
Supplier

The Developers:
Subsystem experts

Figure 42: Final Framework for Knowledge Integration in Large Scale Complex Problem

Solving Environments

© Marc G. Haddad
213

L

~-~----~

213C Marc G. Haddad

7. CONCLUSIONS

This chapter presents the main findings from the research on the process of integrating

knowledge in large-scale complex product development environments. In addition to the

framework developed in this thesis and presented in Chapter 6, some important heuristics for

knowledge integration are presented here based on the analysis findings in the previous chapter.

7.1 Major Findings

In line with the initial motivation of this research as posited in § 1.2, the principal contribution

from this work is in describing the knowledge integration process in large scale complex product

development environments. This is equivalent to answering the question: how is knowledge

integrated under different problem solving conditions? The answer to this question, which was

illustrated in the framework for knowledge integration developed in Chapter 6 of this thesis, can

be summarized as follows: first, in routine problem solving situations where the solution

approach to the problem at hand is largely known, this research has shown that knowledge

integration can be efficiently and effectively accomplished through mostly explicit and formal

integrative mechanisms, especially through sharing lessons learned which were found to be

critical for dealing with complexity in this context. In such routine conditions, the approach to

solving the problem follows systematic and programmatic steps where the lines of

communication are tight, using mechanisms such as formal share sessions, design reviews and

information systems.

Second, in non-routine problem solving situations where the "aha" state of problem solving is

not obviously discovered, problem solving is highly iterative until the root cause of the problem

is identified (which is typically accomplished by duplicating the observed failure through

numerous trial-and-error attempts), and the main finding from this research is that in addition to

explicit knowledge, the integration of tacit know-how and expertise is critical for dealing with

the emergent behaviors commonly encountered in this context. In these non-routine conditions,

the approach to solving the problem involves a lot of speculation in trying to identify the

problem root cause, which requires broad lines of communication to exchange informal advice

C Marc G. Haddad 214

and suggestions. In many cases, this leads to direct assistance from outside experts in the

troubleshooting process, therefore increasing the exchange and application of tacit knowledge

during problem solving. That is not to say however that explicit knowledge is not important in

non-routine situations, indeed it was found in this research that testing is extensively employed

to reduce speculation with real data, thus leading to the frequent exchange of explicit information

along internal and external channels. By the same token, tacit knowledge is also essential in

routine problem solving and some of the most common mechanisms discovered in this research

are communities of practice, boundary spanners and frequent design reviews.

However, a main conclusion from this research remains that different problem solving conditions

require the use of different channels, strategies, practices and mechanisms for knowledge

integration, with some of these being dominant in particular situations. Furthermore, this

research has shown that different characteristics of the product under development force the

prioritizing and/or use of particular knowledge integration channels and mechanisms. These

findings constitute an original contribution to existing theory in as much as they demonstrate

how the engineering artifact drives the organizational system through the knowledge integration

process. Along those lines, and building on the main findings from the analysis in the previous

chapter, the following heuristics for knowledge integration are proposed in Table 38 below:

Table 38: Heuristics for Knowledge Integration by Product Architecture and Technology

Newness

New
Technology

Old
Technology

Problem solving with suppliers is
critical

Direct involvement of functions and
other programs is very useful

(Advice, assistance on ch. #4, 5)

Testing with suppliers is sufficient

(Information on ch. #5)

Problem solving with other
subsystem teams is critical

Direct involvement of functions and
suppliers is very useful

(Assistance on ch. #4, 5)

Testing with other subsystem teams
is sufficient

(Information on ch. #2)

Modular Integral
Architecture Architecture

C Marc G. Haddad 215

As these general heuristics show, the integration of knowledge for problems involving mature

technologies is generally limited to the exchange of information along a few channels, while new

technology problems typically require extensive knowledge interactions across multiple channels

using informal advice and direct assistance in the process. However, the direction and extent of

knowledge integration in either technology regime also depends on the type of problem being

tackled (e.g. whether it is a subsystem design problem requiring design knowledge from the

supplier base, or a system integration problem requiring architectural knowledge from sources in

the prime organization), and also on the novelty of the problem itself. Heuristics for problem

solving involving different types of problems with different levels of problem novelty are

proposed in Table 39 below:

Table 39: Heuristics for Problem Solving by Problem Type and Novelty

High
Problem
Novelty

Low
Problem
Novelty

Design Integration
Problems Problems

Using a simple metric to measure problem complexity as a combined factor of problem novelty,

problem spread 48 and technology newness (where a highly complex problem is equivalent to a

new problem affecting multiple subsystems and involving untested technologies, whereas low

48 Problem spread is a measure for whether the problem is localized or distributed across several subsystems, which
is an indication of total system complexity since a high number of affected subsystems indicates a high degree of
coupling and therefore a high level of total system complexity

Localized or distributed across many Distributed across many subsystems
subsystems

Typical fix: requirements and specs
Typical fix: requirements changes, changes, hardware and software

hardware or software redesign: need redesign: need information sharing and
direct assistance from suppliers, formal advice from suppliers, direct

informal advice and direct assistance assistance from functions, concurrent
from other programs and functions inter-IPT problem solving

Localized in one subsystem Distributed across few subsystems

Typical fix: requirements changes and Typical fix: interface specifications
hardware redesign: need intra-IPT changes and software redesign: need

problem solving inter-IPT information transfer

C Marc G. Haddad 216

problem complexity is equivalent to a localized problem to which the solution steps are largely

known and which involves mature technologies), the following heuristics can be proposed in

Table 40 below:

Table 40: Heuristics for Knowledge Integration and Problem Solving by System

Architecture and Problem Complexity

Hard to solve problems
(innovative solutions needed)

* "Rich" mechanisms with suppliers are
critical

* Need formalized processes for advice
sharing with other programs

* Need process checks for triggering
help/mediation

Easily solved problems

Quickly solved problems are quickly
forgotten - need to capture knowledge
from "easy solutions" in information

systems

Hard to diagnose and solve problems
(iterative trial-and-error needed,
solutions at multiple fix points)

* Rapid mobilization capabilities for
assistance are critical

* Need dedicated functional resources
reduce reliance on suppliers

Easily diagnosed problems

Over-reliance on IT systems leads to
"false-positives" - need to supplement

with tacit knowledge interactions
between subsystem IPT's

Modular
Architecture

Integral
Architecture

The most notable rules of thumb from the table above are for the high problem complexity cases

shown in Table 40 above, where process checks for triggering help with localized problems

early-on are the key to avoiding problem solving in isolation, which is typical behavior by the

naturally self-sufficient IPT's, and which leads to point fixes instead of systemic solutions.

Similarly, having dedicated functional resources is critical for effective assistance with tough

distributed problems involving multiple subsystems, especially that these problems take

extensive iterations to diagnose and locate their root-cause, which typically leaves little time and

resources for developing long-term solutions rather than cheaper short-term fixes.

C Marc G. Haddad

High
Problem

Complexity

Low
Problem

Complexity

217

To further expand on the main conclusions and heuristics above, and since a central aspect of the

knowledge integration process is the gathering of knowledge distributed across organizational

boundaries (as per the original definition for knowledge integration proposed in § 2.1.2), it is

appropriate to interpret the main new findings from this research in terms of the permeability (or

lack thereof) of some of those boundaries as conceptualized in the knowledge integration

framework developed in this research. The expanded conclusions are discussed in detail in the

following sections.

7.1.1 Impermeable Cross-Program Boundaries

To start with, and based on the analysis in the previous chapter, it is amply evident that a major

impediment against the efficient and effective integration of knowledge in large-scale

organizations lies in the impermeability of cross-program boundaries due to a host of barriers

such as proprietary and classified restrictions (see Table 47 in Appendix B for a list of program-

to-program barriers), but especially due to a mentality of local program optimization as opposed

to collaborative arrangements leading to global benefits for the entire organization, much less for

the overall organizational network. This finding is in line with insights from the knowledge

transfer literature about the "stickiness" of knowledge internally to the organization as opposed

to knowledge "leakiness" across external boundaries (Von Hippel 1994), however the findings

from the current research add a new layer of specificity to existing insights by singling out the

cross-program interface as the 'weakest link' for knowledge integration, and more specifically

for the integration of problem solving know-how, skills and expertise across programs. And

while a few enablers (indeed, very few) were identified that counter the inward focus of

programs on their own goals (see Table 46 in Appendix B for a list of program-to-program

enablers), such as incentivizing program managers to focus on corporate performance beyond

their own program, the reality remains that the strategies employed to promote direct knowledge

flow across programs lack the 'teeth' (in terms of appropriate mechanisms) for achieving this

goal in practice. For example, it was found that cross-program knowledge integration through

information systems is insufficient and inadequate in major problem solving situations, with

costly state-of-the-art systems such as multi-program lessons learned databases being rarely used

in non-routine problem solving due to the difficulty of mining their contents, in addition to issues

© Marc G. Haddad 218

of information obsolescence and lack of verification of these contents. They are therefore rarely

useful in practice and costly to setup and maintain. Similarly, while process standardization is in

principle a sound strategy for integrating process knowledge between programs, it was found that

'blind' standardization (e.g. the propagation of standards without the accompanying lessons

learned during the development of those standards) was a 'knot' for problem solving since it can

propagate potential problems across multiple programs. It can thus be concluded that explicit-

based mechanisms alone, such as information systems and standards, are not sufficient for

making impermeable boundaries more porous, and it follows that these must be supplemented

with mechanisms for integrating tacit learning and know-how between individuals.

But when it comes to the integration of such tacit knowledge across those same boundaries, a

main finding from this research is that the channels and mechanisms used for that purpose are

mostly indirect and mediated by the functional organization, such as with functional groups

moving experts and personnel to where they identify a greater need for them, which is inefficient

and in some cases ineffective relative to the use of direct channels between programs (Cohen and

Levinthal 1990), as already discussed in § 2.1.9. This was confirmed by field observations

where several interviewees pointed to numerous shortcomings from having the functional groups

decide which personnel to move and when to move them out of the program. It was also

observed however that there are some effective strategies commonly employed by the functional

organization which can compensate for these shortcomings, such as in conducting formal design

reviews at critical milestones, or in overseeing non-advocate reviews by one program of another

where tacit knowledge is efficiently and systematically transferred directly between programs.

Functions are also neutral mediators in the formation of special problem solving teams from a

pool of program and functions experts for dealing with major troubleshooting events. These

strategies allow programs to overcome some of the barriers mentioned above which prevent the

integration of learning and expertise between them; however, a common view persists that these

strategies do not constitute 'true integration' compared with direct relationships (i.e. the outcome

is suboptimal compared with direct knowledge integration), and that going through the functions

is costly to the organization as a whole in terms of the financial and human resources expended

for that purpose, and to the programs in terms of the time and effort spent in the process.

© Marc G. Haddad
219

0 Marc G. Haddad 219

7.1.2 Indirect Relationships between Programs and Functions

A related finding on knowledge integration across internal firm boundaries is the 'last recourse'

relationship with functional groups when it comes to asking them for problem solving support in

major problem situations. This was attributed to 'engineering pride' in problem-solving and the

fact that engineers want to tackle challenging problems themselves rather than asking for help

when they encounter difficulties. However, a recurring symptom resulting from this cultural

barrier is that in major problem solving situations, soliciting help from the functions typically

comes too late in the process such that impacts to schedule and budget are unavoidable at that

point. It follows that the subsequent integration of knowledge for problem solving under rushed

conditions is itself suboptimal, both in terms of the outcome (e.g. limited learning) and the

efficiency of the process itself (such as being forced to use less efficient mechanisms in rushed

circumstances). It is tempting here to blame the entire firefighting phenomenon on the

engineering culture (which was sometimes observed in this research), however according to

previous research it is instead the susceptibility for poor resource planning in large scale complex

product development environments, especially in terms of thinly spread problem solving

resources (typically distributed across parallel projects) and the panicked reallocation of those

resources in major problem situations, which are the main contributors to continuous firefighting

in this context (Repenning 2001). This is why a commonly expressed desire among interviewees

was for better resource planning and process metrics from the functional organization in order to

"prevent the cart from going into the ditch in the first place, not just get it out", and a common

realization was that "identifying symptoms (before the problem occurs) is more important than

using lessons learned (after the fact)", especially in parallel development and concurrent

engineering contexts which are most prone to firefighting. Along those lines, this research

identified some positive policies by the functional organization addressing the firefighting

phenomenon, for example in encouraging and developing those innovations which reduce the

likelihood of problems occurring down the road, and rewarding individuals who develop

workarounds that help to extinguish existing 'fires'. It was found however that while both of

these policies are helpful in dealing with firefighting, the reactive policy of rewarding firefighters

has the potential of encouraging counterproductive behavior by individuals seeking reward and

recognition who proceed to create their own fires in order to extinguish them later. This leads to

C Marc G. Haddad 220

a self-reinforcing feedback loop of arson-and-firefighting which defeats the original purpose of

extinguishing existing fires. I thereby conclude that the better policy is the proactive approach

which ultimately leads to more robust and controlled problem solving processes overall.

7.1.3 Arm's Length Relationships between Prime and Supplier

In terms of the permeability of external boundaries, it is expected that the "leakiness" of

knowledge across prime-supplier boundaries would naturally promote its flow between separate

organizations. However, it has been shown in previous research that knowledge integration

across organizational boundaries is susceptible to issues of transparency (or the willingness to

share knowledge) and receptivity (or the ability to absorb knowledge) (Larsson, Bengtsson et al.

1998), and that inter-organizational learning faces fundamental dilemmas such as the need for

each firm to protect its own core competency, and the tendency of some firms to engage in

opportunistic learning (Dyer and Nobeoka 2000). These and other barriers discovered in this

research (see Table 47 in Appendix B for a list of prime-supplier barriers) hinder the effective

integration of knowledge across external boundaries. In particular, this research has shown that

prime-supplier boundaries are not effectively negotiated in large-scale networks, due in large

part to the higher number and severity of the barriers encountered at this scale, such as for

example the increasing likelihood for restrictive government regulations, thus necessitating more

'workarounds' and mitigation strategies to counter them (see § 7.3 for recommendations).

For example, in the case of military avionics, the high complexity of the systems under

development leads to a growing need for large-scale networks in order to accomplish the

development task, which in turn increases the likelihood of involving foreign suppliers in the

development process. One such example is the ITAR regulatory restriction on the export of

weapons technology to foreign entities which severely restricts the integration of knowledge with

foreign suppliers. In addition, the influence wielded by the bigger firms in large-scale networks

makes for uneven relationships with smaller suppliers, forcing the latter to be more protective of

their interests and less trusting of the other members of the network. This confirms earlier

insights that the effective integration of knowledge in large-scale networks is contingent on

relationships of trust between different organizations and organizational clusters (see § 2.2.4).

C Marc G. Haddad 221

As stated by one of the interviewees, the lack of trust "typically leads to resistance against the

use of effective (knowledge integration) mechanisms"

A clear manifestation in this research of the arm's length relationship between prime and

supplier is in the dominance of explicit knowledge integration along this channel, especially

involving constantly changing requirements and specifications (as shown in Table 39), which is

due to poor supplier integration in the development process, particularly at the early stages of the

requirements definition phase. This was confirmed by respondents who stressed "the need for

close supplier membership to arrive at well-defined, concise and complete requirements".

However, not all explicit knowledge integration along this channel is about the exchange of

requirements-related information, and it was found in this research that much of the cross-

program integration of design knowledge and new technological knowledge happens through

common suppliers as the intermediaries. It is therefore apparent that routine knowledge

integration across programs is more efficient and effective at the supplier level than at the prime

organization level, meaning it is less costly than knowledge integration through the functional

groups and more beneficial for the programs in terms of acquiring new design knowledge than

mere process standardization emphasized by the functions. This however does not come without

risks to the prime organization of becoming 'hostage' to key suppliers responsible for common

subsystem modules across multiple programs, and it is evident from the analysis of the data in

this research that prime organizations are already highly dependent on their suppliers for most

new design and technological knowledge during problem solving. Along the same lines, this

research has shown that major suppliers are increasingly acquiring architectural knowledge from

the prime during problem solving, giving them the potential to develop their own competency in

system integration, and to threaten the prime's competitive position (Henderson and Clark 1990).

In summary, this section has summarized the new contributions from this research in terms of

major insights about the knowledge integration process in large-scale complex product

development. The conclusions presented here are in line with the initial research motivation of

providing in-depth insights about the process of integrating knowledge in large-scale complex

problem solving environments. Some of the main implications for problem solving and

organizational integration discovered in this research are also presented in the following sections.

C Marc G. Haddad 222

7.2 Research Implications

As already demonstrated in the data analysis chapter of this thesis, the processes of knowledge

integration and problem solving are closely intertwined, with both influencing and being affected

by the organizational context. In the course of this research, several macro-level implications

emerged that inform the problem solving process in complex product development and the

structuring of the organizational environment, as discussed below.

7.2.1 Implications for Complex Problem Solving

It is well established in the literature as reviewed in § 2.2 of this thesis that different aspects of

complexity, whether related to the actual problem at hand, the engineering artifact or the

organizational context, drive the problem solving process; however, there are very few insights

about the actual implications of complexity on problem solving in practice.

For example, examining the heuristics in Table 40 above, it is clear that for highly complex

problems, there is a need for new tacit knowledge and expertise from multiple sources inside and

outside the developing program, such as experts and special action teams, which translates to a

need for 'mobilizing the troops' to help with problem solving as early in the process as possible;

however when dealing with integrated architectures in particular, problem diagnosis becomes a

highly iterative process involving repeated trial and error attempts at locating the root cause of

the problem due to coupling between different parts of the system, which increases the time and

effort needed to address the problem at hand and thus compromises problem solving efficiency

and effectiveness. This is compounded in large-scale organizational environments where

typically large geographic distances separate the developing teams. As one interviewee put it

"you can't solve any problem without flying everywhere to talk to everyone because of tight

integration". Therefore, a major implication for complex problem solving from this research is

that integrated architectures make the developing teams lose rapid troubleshooting capability,

thus increasing the likelihood of firefighting which is already prevalent in complex product

development environments, and as a result necessitating the use of more costly mechanisms for

C Marc G. Haddad 223

integrating knowledge such as frequent site visits, or even co-location of geographically

separated teams.

A related implication for complex problem solving involving highly integrated systems is in the

conclusion that some of the knowledge integration mechanisms employed in this context are

conducive to counterproductive outcomes, especially those which are designed to integrate

explicit knowledge across boundaries. For example, a commonly used mechanism for

integrating knowledge about problems across team boundaries is a common problem reporting

system allowing engineers to report anomalies observed during the system integration phase,

which become visible to other teams responsible for interrelated parts of the product under

development. But since problem solving is highly iterative in integrated systems, this type of

mechanism can lead to 'finger-pointing' and 'throwing-over-the-wall' behaviors between teams

involved in locating the root cause of the problem, as these impersonal systems lack the richness

of tacit knowledge mechanisms such as face-to-face meetings which encourage dialogue and

collaborative conflict resolution. In addition, the lack of oversight and the inability to have 'live'

process checks over the use of such impersonal systems creates the potential for reporting 'false

positives' as engineers mistakenly report what they think is an anomaly but which in reality is

not. This in turn translates to injecting unnecessary requirements changes into the development

process, thereby leading to a wasteful self-reinforcing behavior known as "requirements creep".

As a result, the need for augmenting explicit-based mechanisms with richer individual

interactions becomes increasingly critical when dealing with highly integrated architectures.

Conversely, when dealing with complex problems in modular architectures, it is well established

that the process of problem solving is typically easier than for problems encountered in

integrated architectures since the former are typically localized in one module or a few

interdependent modules, which makes these problems easier to diagnose (note however that this

does not mean that problems in modular architectures are less complex or less difficult to find a

solution for than problems in integral architectures, just that the problem solving process is

typically less iterative since the problem root cause is easier to find). However, it was

discovered in this research that problem solving in modular architectures requires extensive

knowledge integration across external boundaries, namely along the prime-supplier boundary

© Marc G. Haddad 224

and across program boundaries, both of which are difficult to navigate as already explained in

the previous section. This makes localized problems especially hard to solve, which is contrary

to accepted wisdom as detailed in the argument above. However, this finding supports

conclusions from previous research that teams specialized in modular systems development are

less effective at interacting across organizational boundaries than teams experienced with

integrated systems (Sosa, Eppinger et al. 2004).

Another implication from this research related to complex problem solving is in the finding that

quickly solved problems are often quickly forgotten, which means that knowledge is captured

only after 'painful' problem solving events (i.e. where significant time and effort are expended in

problem solving) but not for solutions which are less painfully developed. However, the value of

captured knowledge does not necessarily correlate with the magnitude of the problem solving

event, and it can indeed be the case that solutions which were easily developed in some

circumstances may not be as easy to rediscover from scratch in a different context or by different

individuals, which means it is just as important to capture knowledge about easily-developed

solutions as about 'big' problem solutions. In fact, the lack of knowledge capture for minor

problem solving events may help to explain a recurring complaint observed in this research about

the inadequacy of information systems, such as shared databases, in terms of their usefulness for

complex problem solving due to usually poor knowledge content as reported by interviewees.

However, when considering the learning-and-forgetting symptom for what are mistakenly

considered as 'minor' or 'small' problems, it becomes apparent that information systems are

sometimes blamed for failures elsewhere, namely in the lack of capturing solutions after short

problem solving events. In other words, this finding makes it equally plausible to believe that

when a knowledge search tool fails to return any useful results, it does not necessarily mean that

this is due to shortcomings in the tool's capability at properly mining the data, but that it could

simply be due to the lack of available information caused by failures in knowledge capture

elsewhere.

Finally and along similar lines, it was frequently repeated in the interviews that problem solving

with suppliers is "highly collaborative and informal at the early stages of problem diagnosis, but

becomes more formalized as you get closer to the solution". The implication from this is that

© Marc G. Haddad 225

once the problem root cause is identified, the most valuable outcome of the knowledge

integration process in terms of knowledge about the solution is held closely by both parties, and

that the visible collaboration on the surface can be a deceptive indication of open knowledge

sharing. While this may be a good strategy for each party to protect its core knowledge and still

be able to collaborate with one another in problem solving, it is nonetheless a short-sighted

strategy at the level of the organizational network, since it compromises network learning and

encourages opportunistic behavior by individual network members. A more productive strategy

in this case would be for the focal firm (or prime organization) to act as a knowledge sharing

catalyst and a central node for knowledge transfer in order to increase the knowledge of the

overall network instead of individual network members. This aspect of knowledge integration

will be explored further in the following section on organizational integration.

7.2.2 Implications for Organizational Integration

The discussion in § 7.1.1 focused on the permeability of organizational boundaries and those

strategies and mechanisms discovered in this research that promote knowledge flow across

internal and external boundaries. However, it is important to recall here that the objective of

knowledge integration is not to increase knowledgt flow at any cost, such as in a "zero-sum

game" where the gain in knowledge on one side of the boundary is a net loss on the other side,

and a main insight from this research is that the overall effectiveness of the knowledge

integration process is significantly dependent on the choice of appropriate mechanisms for the

problem solving context at hand. As such, there are no "one-size-fits-all" types of mechanisms

for integrating knowledge, and any mechanism can become counterproductive in the wrong

context. This was evident in the interviews where some of the most commonly cited

mechanisms (i.e. the 'best in class' in use at the organizations surveyed) for integrating

knowledge under routine problem solving conditions, namely job rotation and moving experts

around, were also said to be the means for "knowledge stealing" and "cherry picking" by one

program from another, specifically in instances when the contributing program could not afford

to lose its experienced talent, such as in non-routine firefighting situations or at critical phases of

product development. This means that mechanisms which are appropriate for integrating

knowledge in routine problem solving conditions may not be appropriate in non-routine

C Marc G. Haddad 226

conditions. In addition, and from the larger organizational perspective, only those mechanisms

that promote mutually beneficial knowledge interactions for the individual parts can lead to an

effective knowledge integration outcome for the whole. Yet as pointed to above, there is no

'magic bullet' when it comes to the choice of specific means for knowledge integration; instead

these choices should be based on a portfolio approach, where a series of complementary

strategies and mechanisms are made available by the organization in order to deal with different

problem solving contexts. From the perspective of organizational integration, previous research

has shown that bridging differences between interdependent parts of an organization requires a

combination of formal and informal structures using both tacit and explicit knowledge

integration mechanisms (Daft and Lengel 1986). Therefore it can be concluded that in large-

scale complex product development environments where integration of separate but

interdependent entities is critical for efficiency and effectiveness in problem solving,

organizations are best served to have dynamic portfolios of integrative mechanisms which can be

adapted to different problem solving contexts. At the macro (strategic) level, this gives the

organization 'strategic flexibility' in terms of allowing it to face uncertainty from external

markets more effectively (Sanchez 1997). At the micro (operational) level, this affords the

organization the ability to bridge discontinuities internally. For example, to compensate for the

knowledge drain from older programs, an organization with a diverse portfolio of integrative

mechanisms can enable advice sharing between old and new programs through both formal and

informal mechanisms such as explicit-based expertise locator systems and tacit-based social

networking mechanisms. This helps to control the need of new programs for senior experts and

thus limits the severity of the exodus of expertise from older programs.

In parallel to implications relating to complex problem solving in integrated architecture regimes

as discussed in the previous section, this research has found that when dealing with modular

architectures, there is a tendency for subsystem teams to work in isolation from each other due to

the self-sufficient nature of the IPT structure, therefore leading to multiple point solutions instead

of a single complete system-level fix. This means that the solutions developed are often

'satisficing' instead of being optimal, and more so when recluse IPT's are late in asking for

outside advice and assistance, thereby limiting the time available to external experts for tackling

the problem at its root and developing a complete solution. This in turn feeds the firefighting

C Marc G. Haddad 227

phenomenon as more resources have to be diverted to deal with the problem at the last minute

than would have been needed at an earlier stage of problem solving. The implication of this for

organizational integration is that project-based organizational structures, which are commonly

employed in complex product development and where autonomous IPT's are at the center of

problem solving, have the potential of reinforcing the isolation of developing teams to the point

of losing focus on system-level issues, thus making it necessary to have redundant and expensive

boundary spanning mechanisms such as taskforces, liaison individuals and full-time integrators.

Finally, as discussed in the previous section, just like individual organizations have to

continuously develop and protect their core competency in order to sustain competitive

advantage, so do organizational networks, with the difference that the challenge in the latter is a

bigger one of evolving collective learning capabilities through mutually beneficial relationships.

In previous research, the relationships between firms have been explored, including the vertical

relationships between the focal firm and its suppliers and the horizontal relationships between

suppliers in the same network (Dyer and Nobeoka 2000; Takeishi 2002), and it was found that

networks which are effective at knowledge sharing are those with strong multi-lateral ties for

transferring both tacit and explicit knowledge, as illustrated in Figure 43 below:

Adapted from Dyer and Nobeoka, 2000

Figure 43: Strong Ties in Knowledge Sharing Networks

However, organizational networks have not been further dissected down to the program level to

recognize the discontinuities in smaller clusters in the network (where a cluster is made up of a

major program and its suppliers), as shown in Figure 44 below:

C Marc G. Haddad 228

Figure 44: Weak Ties (Dotted Lines) in Knowledge Sharing Networks

As already discussed in previous sections, this research has shown that horizontal integration

channels across programs within the prime organization are walled off by a host of barriers and

the integrative mechanisms used along those channels were found to be limited and generally

inadequate for supporting complex problem solving efforts. In addition, collaboration along

prime-supplier boundaries is for the most part not conducive to network learning, especially in

terms of supporting commonality across programs (recall from § 6.1.2 that indirect relationships

between programs mediated by functional groups were found to be inadequate for the flow of

tacit knowledge and a hindrance to cross-program commonality). Therefore, while on the

surface the organizational network appears to have strong ties with few structural holes, the

reality at the level of network clusters is different, with multi-level ties going across clusters

(illustrated with dotted lines in Figure 44 above) being the weaker links. It follows that in order

to effectively foster network learning it is necessary to further expand the scope of knowledge

integration to include inter-cluster ties, which requires a paradigm shift from protecting

individual core competencies for each cluster to collectively evolving network-level

competencies for the whole. For example, it was discussed in the previous section that prime and

supplier organizations protect their individual core competencies by formalizing their

collaboration during problem solving the closer they get to the solution (e.g. through contractual

agreements). A paradigm shift would require closer integration throughout the problem solving

process and a formalization of the outcome instead of the process itself, so that knowledge about

the developed solutions can ultimately be disseminated to other network members. Here the

© Marc G. Haddad
229

C Marc G. Haddad 229

focal firm is best positioned to act as a catalyst for combining expertise from multiple members

and sharing them across the network, while at the same time fostering trust and shared

commitment and controlling for opportunistic learning by individual members.

7.3 General Recommendations

This section provides a summary of recommendations distilled from the analysis and the

previous discussion which are generalizable across organizational and industry contexts, as

follows:

* Break down the walls: as already discussed in detail in the previous sections, a major barrier

against efficient and effective knowledge integration for complex problem solving is the

impermeable program-to-program interface. It is therefore necessary for large-scale

organizations involved in complex product development to break down their program silos

through a rich portfolio of complementary mechanisms for integrating both tacit and explicit

knowledge, in order to always have the necessary mechanisms for different problem solving

conditions (e.g. databases are inadequate for integrating tacit design knowledge across

programs, need tacit knowledge mechanisms such as formal access to other program experts)

* Extend prime-supplier collaboration: this research found that prime-supplier collaboration in

problem solving is limited to the early stages of problem solving, as discussed above.

However, as widely established in existing theory and as widely observed in practice,

protectionist policies against knowledge leakiness across external boundaries are ineffective

and counterproductive as they hinder organizational and inter-organizational learning. It is

therefore necessary for the focal firm (or prime organization) to act as a knowledge sharing

catalyst and a central node for knowledge transfer in order to increase the knowledge of the

overall network instead of individual network members.

* Share lessons learned formally and informally: common wisdom dictates that the more you

ask the more you shall receive (and the less you have to keep wondering), therefore sharing

lessons learned and giving advice are critical for problem solving, and it has been shown in

C Marc G. Haddad 230

this research that sharing lessons form previous major troubleshooting events is a critical

strategy for dealing with complexity. Multiple strategies for sharing lessons learned should

be devised for supporting both routine and non-routine problem solving, with the caveat that

while the former can be easily and effectively supported through efficient devices ranging

from informal 'brown bag' lunches to formal dedicated repositories, the latter (requiring

mostly advice sharing and assistance) is more difficult to address. In fact, non-routine

problem solving is often 'left to its own devices', and some of the afforded mechanisms, such

as advice sharing, can even carry negative connotations 49. However, when considering that

advice sharing can often be a prelude to further engagement in problem solving, it becomes

clear that this powerful mechanism is not only useful for integrating valuable experience but

also for establishing interest and trust between parties, both of which are essential for

collaborative problem solving. Therefore, enabling formal and informal advice sharing is

critical for sharing lessons learned and dealing with complexity in problem solving.

* Establish formal knowledge search capabilities: it is said that it's not (only) what you know

that counts, it's (also) who you know, and while having the right mechanisms for integrating

expert knowledge is critical in complex problem solving, knowing who to ask is even more

important. Knowledge search mechanisms are thus a necessary prerequisite for effective

knowledge integration, and it was found in this research that a major barrier against advice

sharing is being able to find out who the right expert is in the first place. This requires more

than just informal social networking mechanisms as was commonly observed in this

research, but also formal search mechanisms provided by the organization, such as expertise

locator systems, since most junior engineers who require the most advice lack the rich social

networks needed to get to the right senior experts.

* Maintain a common knowledge base: yesterday's knowledge doesn't always solve today's

problems, and making program boundaries more porous for the flow of knowledge is not

useful without having parallel strategies to ensure a common knowledge base; in other

words, it is not useful to have access to irrelevant or obsolete knowledge in other programs,

49 For example, advice sharing in certain contexts can be considered as a diluted form of knowledge integration
where the advice giving party does not want to provide much help or get deeply involved in problem solving.

C Marc G. Haddad 231

this is why it is important to have parallel strategies for knowledge commonality across

programs as a precondition for meaningful integration, such as the prototyping of future

designs by older programs for the benefit of newer programs, or the building-in of design

flexibility (e.g. upgradeability and backward compatibility) to ensure knowledge adaptability

for different problem solving contexts.

* Break the vicious circle of ignorance: there is no bliss in being a novice in the midst of a

complex engineering environment, and one of the fundamental failures of the job rotation

mechanism as commonly implemented in large-scale organizations is that it does not afford

novice engineers the opportunity to tackle the newest/hardest problems since the objective

from this mechanism is to provide breadth over depth of knowledge. As a result, junior

engineers fail to acquire a deep expertise with particular types of problems, especially that a

typical job rotation lasts for a short 2-3 year tenure. This means that the engineer's eventual

repertoire of personal lessons learned will be limited and not reflective of the number of

years of work experience they will have accumulated. It also means that their general

problem solving skills (regardless of the field of expertise) will be relatively underdeveloped.

It is thus necessary to compensate for these shortcomings by 1) allowing junior engineers to

participate in special action teams for major problem solving events alongside seasoned

experts in order to develop their general troubleshooting skills, and 2) exposing junior

engineers to different subspecialties within the same field (e.g. different subspecialties in

avionics such as microwave signals, detection, infrared) instead of only across different

disciplines (e.g. avionics, structures, propulsion) in order to deepen their specific expertise.

This can be efficiently accomplished through job rotations across different subsystem teams

for the same system instead of different teams/divisions for distinct systems. These

suggested enhancements to the job rotation mechanism can provide junior engineers with

deeper expertise in particular fields as well as better problem solving skills in general.

* Fix problems at the foundation: with the tendency of IPT's in complex product development

to focus on point problems instead of system-level issues, there is a potential for problems to

become recurring or embedded in the system, thereby requiring a fix at the literal 'root' cause

of the problem, which is typically the structural foundation of the IPT organization itself.

C Marc G. Haddad 232

One obvious and traditional option is to entirely move away from IPT's to functionally

organized teams, which carries with it its own set of disadvantages as discussed in § 2.3.4.

This option was frequently cited as the most desirable by interviewees as it affords the

integration of similar expertise across programs and helps in avoiding isolated problem

solving. However, from the analysis of the data in Chapter 6 of this thesis, it is evident that

much of problem solving in complex development can equally benefit from a more efficient

change in the structure of the developing teams rather than that of the whole organization.

One conclusion is that enhancing IPT composition with experts from other interdependent

subsystem teams would preempt a lot of problems at the early stages of the design, without

requiring more drastic and costly changes to the entire organizational structure. This could

be done by adding one representative from other subsystem teams with which there are tight

interdependence, thus providing an extra expert set of eyes over design decisions affecting

other interrelated subsystems in a tightly coupled architecture.

* Get the right answer at the right time: the key to problem solving is to call for the right help

at the right time, and it was shown in this research that delays in asking for help turns small

issues into bigger problems and feeds the firefighting phenomenon. The critical parts of this

equation are therefore in 1) knowing who to ask for help (addressed in the second

recommendation in this section) and 2) knowing when you actually need help. As the data

analysis in the previous chapter showed, the vertical channel between subsystem IPT's and

higher level program authority is critical for negotiation and mediation in problem solving,

and so it naturally follows that this should be the first stop for advice on who and when to

call for help. This was confirmed in the interviews where the reach of the "boss's network"

was said to be a significant factor affecting the ability and timeliness of getting assistance.

* Support knowledge integration by formal incentives and measures: while knowledge is

priceless, time is money and thus has a price, which makes it difficult for busy senior experts

to share their valuable knowledge. In the course of this research and during a conference

presentation, the author was asked how best to gain the attention of senior engineers who

typically don't have time to spare for sharing lessons learned in formal sessions. My initial

answer was that informal advice sharing was less time-consuming and just as effective of a

© Marc G. Haddad 233

mechanism as formal share sessions and that it is underutilized in most organizations.

However, as pointed to in the first recommendation above, the choice should not be an

'either-or' decision, and both formal and informal advice sharing should be enabled by the

organization especially in complex environments where this research has shown that expert

advice is critical for dealing with complexity. This can be supported by financial incentives

and performance measures to encourage senior engineers to take some time out in order to

share knowledge both within and across programs. The additional recommendation offered

here is that functional groups are ideally positioned at the intersection of most knowledge

flows and therefore have the unique opportunity to help identify and motivate senior experts

to share advice both formally and informally, and there was no evidence in the data from this

research of any incentives, direct or indirect, for senior staff to dedicate time for sharing

advice or mentoring new hires. The mediation of functional groups in this case is less

intrusive than that of moving experts which can cause the undesirable consequence of

draining valuable knowledge from where it is needed, as previously discussed.

Discredit existential myths: a fundamental dilemma facing knowledge integration across

boundaries is how to avoid a zero-sum outcome, especially between separate organizational

entities having distinct interests such as prime and supplier organizations, and it is already

well established in previous research that there are many palpable and mutual benefits to be

had from open knowledge transfer and sharing which add value for both parties, such as

savings in time and cost during development. However, this research has further shown that

knowledge integration in particular is inherently beneficial for both parties since

opportunistic behavior is minimized during the stage of applying knowledge in collaborative

problem solving. In other words, the potential for one party taking over the other's

knowledge is unlikely to happen through knowledge integration since the interim learning is

cumulative for both sides, meaning the prime is acquiring more design knowledge just as the

supplier is acquiring more system integration knowledge, with potential benefits at the single

organizational and collective network levels, namely through added system and subsystem

capabilities. One such capability is the added flexibility in the supplier's subsystem design

and the prime's system architecture, as illustrated in Figure 45 below (using an analogy from

a common problem of having the correct adapter for plugging into different electric sockets).

© Marc G. Haddad
234
234O Marc G. Haddad

System

Subsystem

I
I
I
I
I

_I

Perfect Design Knowledge Perfect Integration Knowledge

Figure 45: The Knowledge Integration Dichotomy

The left hand side of the figure shows that the more design knowledge the prime acquires,

the more flexibility it can incorporate into the overall system to accommodate future design

options. Conversely, the right hand side of the figure shows that the more system integration

knowledge the supplier acquires, the more flexible its design will be since it will satisfy most

any system configuration. It can therefore be argued that the production function for

knowledge integration is such that prime and supplier knowledge are not perfectly

substitutable and its global optimum is where the prime gives the supplier problems it can

solve more easily, and the supplier gives the prime more complete solutions. Mutual benefit

to some degree is therefore assured from a knowledge integration perspective, which is not

necessarily the case when looking at knowledge transfer alone without the collaborative part

of knowledge application during problem solving. As a result, organizations should discredit

the myths about collaborative problem solving being a pitfall for losing knowledge to

competitors and compromising competitive advantage.

7.4 Future Work

A deliberate strategy in this research was to explore the knowledge integration phenomenon in

one of the most complex environments in terms of engineering complexity of the products

(avionics) and the corresponding problems encountered. The choice of the defense context was

also deliberate in order to investigate the knowledge integration and problem solving processes

at the largest organizational network scale, and in order to explore the most challenging barriers

© Marc G. Haddad
235

-- - - ----- r--------- 7
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I

I
I
I
I

I
I
I
I
I

I
I
I
I
I
I

I
I
I
I
I

I
I
I
I
II

I
I
I
I
I

L ---------- L --- - - -

235C Marc G. Haddad

facing the integration of knowledge in any context. The investigation was further designed to be

a comprehensive and in-depth analysis of different channels linking a variety of stakeholders at

multiple levels, and it is therefore expected that the results from this research would be

encompassing of other less complex, smaller-scale and more open-sharing contexts such as those

encountered commonly in the commercial industry. However, a limitation of this research

remains that it is only focused on the military aerospace industry, and therefore the first

opportunity for future work is to extend the research into other large-scale complex engineering

contexts in other industries in order to validate and build on the current insights in this thesis.

Another opportunity for future research is in framing the critical mechanisms for integrating

specific types of knowledge and their impact on the problem solving process. The focus in this

thesis was on the integration part (or the "how-to" part) of knowledge integration, in terms of

describing the key integrative channels, strategies, practices and mechanisms for transferring,

sharing and applying generic types of knowledge (e.g. tacit and explicit knowledge, design and

integration knowledge) in different problem solving environments. However, an opportunity for

future work remains, which is to explore in greater depth the knowledge part of knowledge

integration (or the "know-what" part) so as to answer the questions: what mechanisms are critical

for integrating a specific type of knowledge and what is their impact on problem solving

efficiency and effectiveness? This would directly complement the current research by

determining which types of mechanisms are appropriate for integrating specific types of

knowledge. For example, in the case of complex avionics development, a specific type of

required design knowledge might be about sensors technology, and an IPT responsible for radar

development would be expected to have sufficient competence in this particular type of

knowledge in order to solve radar design problems. The importance of this future work would

then be in determining which types of mechanisms are critical for integrating specific types of

knowledge an IPT needs in order to deal with specific types of problems. For example, if a radar

subsystem IPT registers a 2 out of 5 level of expertise in radar signatures where this type of

knowledge is critical for avoiding accuracy problems, and where this type of knowledge is

mostly resident in the supplier base, it might be determined that an effective mechanism to

overcome this shortcoming is to co-locate experts in radar signatures from the supplier during the

integration phase of development. This investigation can be done at multiple levels of the

C Marc G. Haddad 236

avionics suite for a particular subsystem, such as the component level, the mission subsystems

level, and the air vehicle systems level, leading to a multi-scale conceptual scaffold describing

knowledge integration in terms of both the "know-what" and the "how-to" parts of the process.

A more generalizable opportunity for future work from this research is in extending the current

framework for knowledge integration from one describing individual strategies and mechanisms

to a framing of dynamic organizational capabilities where each dynamic capability is a collection

of complementary strategies and mechanisms appropriate for a particular context. The concept

of organizational capability is an important yet largely undeveloped notion in the literature, and

its value is in the strategic benefits it provides since dynamic capabilities are what differentiate

organizations strategically and are intended to support the firm in sustaining its competitive

advantage (Kogut and Zander 1995; Teece, Pisano et al. 1997; Zollo and Winter 2002). The

main challenge in this future work would then be in tying specific capabilities to actual strategic-

level benefits beyond savings in cost and schedule at the operational level.

Finally, a practical opportunity for future work is in applying some of the main findings from

this research through the actual development of an information system for integrating problem

solving experience and know-how in large-scale organizational environments. One example

would be in the development of a software expert locator system which can track people's

expertise in problem solving and allows searching for experts according to the specific problem

solving knowledge they have accumulated, instead of by their academic or professional training

or the types of positions they have held, all of which might not be as indicative of the person's

competence in dealing with particular types of problems. Such a system would not only be more

effective at identifying the right experts for the right problem than current state-of-the-art, but it

would also be more dynamic and less costly to maintain than typical static systems in use at most

organizations. This is because it would be possible to keep the system updated automatically as

people engage in problem solving activities, and to have accurate and meaningful descriptions of

their problem solving expertise, instead of having to rely on vague position titles and outdated

skills based on previous training and education.

© Marc G. Haddad
237

O Marc G. Haddad 237

REFERENCES

Allen, T. (1997). Architecture and Communication Among Product Development Engineers,
MIT Sloan School of Management.

Allen, T. J. (1977). Managing the Flow of Technology: Technology Transfer and the
Dissemination of Technological Information Within the R&D Organization, MIT Press.

Allen, T. J. (1997). "Managing Organizational Interfaces." FOOD AND DRUG LAW
JOURNAL 52: 173-178.

Allen, T. J. (2000). Organizational Structure for Product Development. MIT Sloan School of
Management.

Almeida, P., J. Song, et al. (2002). "Are Firms Superior to Alliances and Markets? An Empirical
Test of Cross-Border Knowledge Building." Organization Science 13(2): 147-161.

Ancona, D. G. and D. F. Caldwell (1992). "Bridging the boundary: External activity and
performance in organizational teams." Administrative Science Quarterly 37(4): 605-633.

Aoshima, Y. (2002). "Transfer of System Knowledge Across Generations in New Product
Development: Empirical Observations from Japanese Automobile Development." Industrial
Relations 41(4): 605-628.

Argote, L. (1999). Organizational learning : creating, retaining, and transferring knowledge.
Boston, Kluwer Academic.

Argyres, N. S. (1999). "The impact of information technology on coordination: Evidence from
the B-2 'Stealth'bomber." Organization Science 10(2): 162-180.

Balaji, S. and M. K. Ahuja (2005). Critical Team-Level Success Factors of Offshore Outsourced
Projects: A Knowledge Integration Perspective. HICSS '05. Proceedings of the 38th Annual
Hawaii International Conference on System Sciences. Hawaii, IEEE Computer Society.

Baldwin, C. Y. and K. B. Clark (1997). "Managing in an Age of Modularity." Harvard Business
Review.

Baldwin, C. Y. and K. B. Clark (2000). Design Rules: Volume 1. The Power of Modularity, MIT
Press.

Bozdogan, K., J. Deyst, et al. (1998). "Architectural Innovation in Product Development through
Early Supplier Integration." R&D Management 28(3): 163-173.

Braha, D. and Y. Bar-Yam (2007). "The Topology of Large-Scale Engineering Problem-Solving
Networks." Physical Review E 69(1).

C Marc G. Haddad 238

Brock and Schor (1990). Modular Avionics System Architecture (MASA) - the Impact of Fault
Tolerance. IEEE Digitial Avionics Systems Conference.

Brown, J. S. and P. Duguid (1991). "Organizational learning and communities of practice:
Toward a unified view of working, learning and innovation." Organization Science 2(1, Special
Issue: Organizational Learning: Papers in Honor of (and by) James G. March): 40-57..

Brown, J. S. and P. Duguid (2001). "Knowledge and Organization: A Social-Practice
Perspective." Organization Science 12(2): 198-213.

Brown, S. L. and K. M. Eisenhardt (1995). "Product Development: Past Research, Present
Findings, and Future Directions." The Academy of Management Review 20(2): 343-378.

Browning, T. R. (1996). Systematic IPT Integration in Lean Development Programs.
Engineering Systems Division. Cambridge, MIT.

Browning, T. R. (1997). Exploring Integrative Mechanisms with a View Towards Design for
Integration. Fourth ISPE International Conference on Concurrent Engineering: Research and
Applications.

Brusoni, S. and A. Prencipe (2001). "Managing Knowledge in Loosely Coupled Networks:
Exploring the Links between Product and Knowledge Dynamics." Journal of Management
Studies 38(7): 1019-1035.

Brusoni, S. and A. Prencipe (2001). "Unpacking the Black Box of Modularity: Technologies,
Products and Organizations." Industrial and Corporate Change 10(1): 179-205.

Brusoni, S., A. Prencipe, et al. (2001). "Knowledge Specialization, Organizational Coupling, and
the Boundaries of the Firm: Why Do Firms Know More Than They Make?" Administrative
Science Quarterly 46(4): 597-621.

Carlile, P. R. (2002). "A Pragmatic View of Knowledge and Boundaries: Boundary Objects in
New Product Development." Organization Science 13(4): 442-455.

Carlile, P. R. (2004). "Transferring, Translating, and Transforming: An Integrative Framework
for Managing Knowledge Across Boundaries." Organization Science 15(5): 555-568.

Carlile, P. R. and E. S. Rebentisch (2003). "Into the Black Box: The Knowledge Transformation
Cycle." Management Science 49(9): 1180-1195.

Chaltiel, P. Y., J. P. Gourion, et al. (1998). "Future Concepts for Airborne Electronic Warfare:"
Fully Digital" Jamming And Missile Warning." MILITARY TECHNOLOGY 22: 41-47.

Christensen, C., M. Verlinden, et al. (1999). Product Modularity, Vertical Disintegration and the
Diffusion of Competence, Harvard Business School: 99-124.

© Marc G. Haddad 239

Clark, K. B. and T. Fujimoto (1991). Product Development Performance: Strategy, Organization
and Management in the World Auto Industry. Boston, Massachusetts, Harvard Business School
Press.

Cohen, W. M. and D. A. Levinthal (1990). "Absorptive Capacity: A New Perspective on
Learning and Innovation." Administrative Science Quarterly 35(1, Special Issue: Technology,
Organizations, and Innovation): 128-152. .

Committee on Aging Avionics in Military Aircraft (2001). Aging Avionics in Military Aircraft,
NATIONAL ACADEMY PRESS.

Conner, K. R. and C. K. Prahalad (1996). "A Resource-Based Theory of the Firm: Knowledge
versus Opportunism." Organization Science 7(5): 477-501.

Crawley, E., O. de Weck, et al. (2004). "The Influence of Architecture in Engineering Systems."
Engineering Systems Symposium.

Cross, R. and L. Sproull (2004). "More Than an Answer: Information Relationships for
Actionable Knowledge." Organization Science 15(4): 446-462.

Cusumano, M. and K. Nobeoka (1998). Thinking beyond lean : how multi-project management
is transforming product development at Toyota and other companies. New York, Free Press.

Daft, R. L. and R. H. Lengel (1986). "Organizational Information Requirements, Media Richness
and Structural Design." Management Science 32(5): 554-571.

Davenport, T. and L. Prusak (1998). Working Knowledge: How Organizations Manage What
They Know, Harvard Business School Press.

De Boer, M., F. A. J. Van Den Bosch, et al. (1999). "Managing Organizational Knowledge
Integration in the Emerging Multimedia Complex." Journal of Management Studies 36(3): 379-
398.

Demsetz, H. (1988). "The Theory of the Firm Revisited." Journal of Law, Economics, &
Organization 4(1): 141-161.

Dosi, G., M. Hobday, et al. (2000). Problem-Solving Behaviors, Organisational Forms and the
Complexity of Tasks. Laboratory of Economics and Management Working Paper Series. Pisa,
Italy, Sant'Anna School of Advanced Studies.

Dyer, J. H. and W. Chu (2003). "The Role of Trustworthiness in Reducing Transaction Costs and
Improving Performance: Empirical Evidence from the United States, Japan, and Korea."
Organization Science 14(1): 57-68.

© Marc G. Haddad 240
C Marc G. Haddad 240

Dyer, J. H. and K. Nobeoka (2000). "Creating and Managing a High-Performance Knowledge-
Sharing Network: The Toyota Case." Strategic Management Journal 21(3): 345-367.

Eisenhardt, K. M. and B. N. Tabrizi (1995). "Accelerating Adaptive Processes: Product
Innovation in the Global Computer Industry." Administrative Science Quarterly 40(1): 84-110.

Eppinger, S. and R. Gulati (1996). The Coupling of Product Architecture and Organizational
Structure Decisions, MIT Sloan School of Management Working Paper.

Eppinger, S. D. (2002). Patterns of Product Development Interactions. Working Paper ESD-WP-
2003-01.05-ESD Internal Symposium, Massachusetts Institute of Technology - Engineering
Systems Division: 8.

Fabian and Rayl (1998). "Advanced Avionics System Architecture." AIAA/IEEE/SAE 2.

Filmer, B. (2003). "Open Systems Avionics Architectures Considerations." IEEE AES Systems
Magazine(September 2003).

Fine, C. H. (2000). "Clockspeed-Based Strategies for Supply Chain Design." Production and
Operations Management 9(3).

Fine, C. H. and D. E. Whitney (1996). "Is the make-buy decision process a core competence?"
Paper submitted to MIT IMVP Sponsors' Meeting, at Sao Paulo, Brazil.

Foss, N. J. (1993). "Theories of the firm: contractual and competence perspectives." Journal of
Evolutionary Economics 3(2): 18.

Foss, N. J. (1996a). "Knowledge-Based Approaches to the Theory of the Firm: Some Critical
Comments " Organization Science 7(5): 470-476

Fujimoto, T. (1999). The Evolution of a Manufacturing System at Toyota. New York, Oxford
University Press.

Fujimoto, T. (2002). Architecture, Capability and Competitiveness of Firms and Industries,
University of Tokyo.

Galbraith, J. R. (1974). Organizational Design: An Information Processing View, M. Wiener.

Galvin, P. and A. Morkel (2001). "The Effect of Product Modularity on Industry Structure: The
Case of the World Bicycle Industry." Industry and Innovation 8(1): 31-47.

Glaser, B. G. and A. L. Strauss (1967). The discovery of grounded theory, strategies for
qualitative research Chicago, Aldine Pub. Co.

Gomes-Casseres, B. (1994). "Group versus group: How alliance networks compete." Harvard
Business Review 72(4): 62-74.

C Marc G. Haddad 241

Gourlay, S. (2006). "Towards conceptual clarity for 'tacit knowledge': a review of empirical
studies." Knowledge Management Research & Practice 4: 60-69.

Grant, R. M. (1996a). "Toward a Knowledge-Based Theory of the Firm." Strategic Management
Journal 17(Winter Special Issue): 109-122.

Grant, R. M. (1996b). "Prospering in Dynamically Competitive Environments: Organizational
Capability as Knowledge Integration." Organization Science 7(4): 375-387.

Grant, R. M. and C. Baden-Fuller (1995). "A knowledge-based theory of inter-firm
collaboration." Academy of Management Best Paper Proceedings: 17-21.

Gupta, A. K. and V. Govindarajan (2000). "Knowledge flows within multinational corporations."
Strategic Management Journal 21(4): 473-496.

Hansen, M. T. (2002). "Knowledge Networks: Explaining Effective Knowledge Sharing in
Multiunit Companies." Organization Science 13(3): 232-248.

Hansen, M. T., N. Nohria, et al. (1999). "What's your Strategy for Managing Knowledge."
Harvard Business Review: 106-116.

Hedlund, G. (1994). "A Model of Knowledge Management and the N-Form Corporation."
Strategic Management Journal 15: 73-90.

Henderson, R. and K. Clark (1990). "Architectural Innovation: The Reconfiguration Of Existing
Product Technologies and the Failure of Established Firms." Administrative Science Quarterly
35(1): 9-30.

Hicks, B. (2004). Transforming Avionics Architectures to Support Network Centric Warfare.
Digital Avionics Systems Conference.

Hoopes, D. G. and S. Postrel (1999). "Shared Knowledge, "Glitches," and Product Development
Performance." Strategic Management Journal 20(9): 837-865.

Imbesi, D. J. and W. K. Kaplow (1992). "The Pave Pace Integrated Core Processor." Aerospace
and Electronics Conference, 1992. NAECON 1992., Proceedings of the IEEE 1992 National:
806-814.

Johnson, J. D., W. A. Donohue, et al. (1994). "Differences Between Formal and Informal
Communication Channels." Journal of Business Communication 31: 111-122.

Joint Advanced Strike Technology Program (1994). Avionics Architecture Definition, Version
1.0.

© Marc G. Haddad 242
C Marc G. Haddad 242

Jonassen, D. H. (2000). "Toward a Design Theory of Problem Solving." Educational Technology
Research and Development 48(4): 63-85.

Kogut, B. and U. Zander (1992). "Knowledge of the Firm, Combinative Capabilities, and the
Replication of Technology." Organization Science 3 Focused Issue: Management of
Technology(3): 383-397.

Kogut, B. and U. Zander (1995). "Knowledge and the speed of the transfer and imitation of
organizational capabilities: an empirical test." Organization Science 6(1): 76-92.

Kogut, B. and U. Zander (1996). "What Firms Do? Coordination, Identity, and Learning."
Organization Science 7(5): 502-518.

Langlois, R. N. (2002). "Modularity in Technology and Organization." Journal of Economic
Behavior & Organization 49: 19-37.

Larsson, R., L. Bengtsson, et al. (1998). "The interorganizational learning dilemma: Collective
knowledge development in strategic alliances." Organization Science 9(3): 285-305.

Loewy, R. (1999). Avionics: A "New" Senior Partner in Aeronautics. 37th AIAA Aerospace
Sciences Meeting and Exhibit, Reno, Nevada.

Maier, M. W. (1996). "Systems architecting: an emergent discipline?" Aerospace Applications
Conference, 1996. Proceedings., 1996 IEEE 3.

Malone, T. W. and K. Crowston (1991). "Toward an interdisciplinary theory of coordination."

Malone, T. W. and K. Crowston (1994). "The interdisciplinary study of coordination." ACM
Computing Surveys (CSUR) 26(1): 87-119.

March, J. G. (1991). "Exploration and Exploitation in Organizational Learning." Organization
Science 2(1, Special Issue: Organizational Learning: Papers in Honor of (and by) James G.
March): 71-87.

Mayer, R. E. and M. C. Wittrock (1996). "Problem-solving transfer." Handbook of educational
psychology: 47-62.

Miles, M. B. and A. M. Huberman (1994). Qualitative Data Analysis: An Expanded Sourcebook,
Sage Publications.

Moir, I. and A. Seabridge (2001). Aircraft Systems: Mechanical, Electrical, and Avionics
Subsystems Integration. Reston, VA, Professional Engineering Pub.

Moir, I. and A. Seabridge (2004). Design and Development of Aircraft Systems: An
Introduction. Reston, VA, Professional Engienering Pub.

© Marc G. Haddad
2430 Marc G. Haddad 243

Moir, I. and A. Seabridge (2006). Military Avionics Systems. Chichester, England John Wiley &
Sons.

Morgan, D. R. (1995). Military avionics twenty years in the future. AIAA / IEEE Digital
Avionics Systems Conference.

Moses, J. (2002). Complexity and Flexibility, MIT.

Mumford, E. (1998). Problems, Knowledge, Solutions: Solving Complex Problems. International
Conference on Information Systems. Helsinki, Finland, Association for Information Systems.

Newell, A. and H. A. Simon (1972). Human problem solving, Prentice-Hall.

Nickerson, J. A. and T. R. Zenger (2004). "A Knowledge-Based Theory of the Firm - The
Problem-Solving Perspective." Organization Science 15(6): 15.

Nickols, F. (1994). "Reengineering the Problem Solving Process." Performance Improvement
Quarterly 7(4).

Nobeoka, K. (1993). Multi-project management: strategy and organization in automobile product
development, Massachusetts Institute of Technology, Sloan School of Management.

Nobeoka, K. and M. Cusumano (1994). Multi-Project Strategy and Market-Share Growth: The
Benefits of Rapid Design Transfer in New Product Development, IMVP Working Papers.
Cambridge, MA: The MIT Press.

Nonaka, I. (1994). "A Dynamic Theory of Organizational Knowledge Creation." Organization
Science 5(1): 14-37.

Nonaka, I. and H. Takeuchi (1995). The knowledge-creating company : how Japanese companies
create the dynamics of innovation. New York, Oxford University Press.

Nonaka, I. and D. Teece (2001). Managing industrial knowledge : creation, transfer and
utilization. London ; Thousand Oaks, Calif., SAGE.

Novak, S. and S. D. Eppinger (2001). "Sourcing by Design: Product Complexity and the Supply
Chain." Management Science 47(1): 189-204.

Okhuysen, G. A. and K. M. Eisenhardt (2002). "Integrating Knowledge in Groups: How Formal
Interventions Enable Flexibility." Organization Science 13(4): 370-386.

Pandit, N. R. (1996). "The Creation of Theory: A Recent Application of the Grounded Theory
Method." The Qualitative Report 2(4): 1-15.

Parnas, D. (1972). "On the Criteria for Decomposing Systems into Modules." Communications
of the ACM 15(12): 1053-1058.

C Marc G. Haddad 244

Penrose, E. (1955). "Limits to the Growth and Size of Firms." The American Economic Review
45(2): 531-543.

Polanyi, M. (1966). The Tacit Dimension, Routledge & Kegan Paul Ltd.

Postrel, S. (2002). "Islands of Shared Knowledge: Specialization and Mutual Understanding in
Problem-Solving Teams." Organization Science 13(3): 303-320.

Prahalad, C. K. and G. Hamel (1990). "The Core Competence of the Corporation." Harvard
Business Review 68(3): 79-91.

Prencipe, A. (1997). "Technological competencies and product's evolutionary dynamics a case
study from the aero-engine industry." Research Policy 25(8): 1261-1276.

Prencipe, A. (2000). "Breadth and depth of technological capabilities in CoPS: the case of the
aircraft engine control system." Research Policy 29(7): 895-911.

Prusak, L. (1996). "The Knowledge Advantage." Strategy & Leadership 24(2): 6-8.

Purvis, R. L., V. Sambamurthy, et al. (2001). "The Assimilation of Knowledge Platforms in
Organizations: An Empirical Investigation." Organization Science 12(2): 117- 135.

Quaranta, P. (2000). "The evolution of Avionic System Architectures." Military
Technology(Oct. 2000): pp. 86-89.

Quaranta, P. (2002). "Modern Sensors Packages for Combat Aircraft." Military Technology 2:
92-93.

Rechtin, E. (1991). Systems Architecting: Creating and Building Complex Systems, Prentice
Hall.

Repenning, N. (2001). "Understanding fire fighting in new product development." The Journal of
Product Innovation Management. 18(5).

Robertson, D. and K. Ulrich (1998). "Planning for product platforms." Sloan Management
Review 39(4): 19-31.

Robertson, P. L. and R. N. Langlois (1995). "Innovation, networks, and vertical integration."
Research Policy 24: 543-562.

Robson, C. (2002). Real World Research-Second edition, Blackwell Publishers Ltd., Oxford,
UK.

© Marc G. Haddad 245
C Marc G. Haddad 245

Sako, M. (2003). Modularity and Outsourcing: The Nature of Co-Evolution of Product
Architecture and Organisation Architecture in the Global Automotive Industry. Eleventh
GERPISA International Colloquium. Paris, France.

Sanchez, R. (1997). "Preparing for an Uncertain Future: Managing Organizations for Strategic
Flexibility." International Studies of Management & Organization 27(2).

Sanchez, R. and J. T. Mahoney (1996). "Modularity, flexibility and knowledge management in
product and organization design." Strategic Management Journal 17(Winter special issue): 63-
76.

Sanderson, S. and M. Uzumeri (1995). "Managing product families: The case of the Sony
Walkman." Research Policy 24(5): 761-782.

Santos, F. M. and K. M. Eisenhardt (2005). "Organizational Boundaries and Theories of
Organization." Organization Science 16(5): 491-508.

Senge, P. (1994). The Fifth Discipline: The Art and Practice of the Learning Organization,
Currency.

Sheard, S. A. and E. M. Margolis (1995). Team Structures for Systems Engineering in an IPT
Environment. Proceedings of the Fifth Annual International Symposium of INCOSE. St. Louis.

Simon, H. (1983). "Search and reasoning in problem solving." Artificial Intelligence 21(1): 7-29.

Simon, H. A. (1962). "The Architecture of Complexity." Proceedings of the American
Philosophical Society 106(6): 467-482.

Simon, H. A. (1973). "Applying Information Technology to Organization Design." Public
Administration Review 33(3): 268-278.

Simon, H. A. (1973). "The Structure of Ill Structured Problems." Artificial Intelligence 4(3):
181-201.

Simon, H. A. (1976). "How Complex are Complex Systems?" PSA: Proceedings of the Biennial
Meeting of the Philosophy of Science Association 1976: 507-522.

Sosa, M. E. and S. D. Eppinger (2002). "Factors That Influence Technical Communication in
Distributed Product Development: An Empirical Study in the Telecommunications Industry."
IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT 49(1): 45-58.

Sosa, M. E., S. D. Eppinger, et al. (2000a). Designing Modular and Integrative Systems. ASME
2000 International Design Engineering Technical Conferences and Computers and Information
in Engineering Conference, Baltimore, Maryland, ASME.

© Marc G. Haddad 246
© Marc G. Haddad 246

Sosa, M. E., S. D. Eppinger, et al. (2000b). Understanding the Effects of Product Architecture on
Technical Communication in Product Develoment Organizations, Massachusetts Institute of
Technology, Sloan School of Management.

Sosa, M. E., S. D. Eppinger, et al. (2003). "Identifying Modular and Integrative Systems and
Their Impact on Design Team Interactions." Journal of Mechanical Design 125: 240.

Sosa, M. E., S. D. Eppinger, et al. (2004). "The Misalignment of Product Architecture and
Organizational Structure in Complex Product Development." Management Science 50(12):
1674-1689.

Spender, J.-C. (1996). "Making Knowledge the Basis of a Dynamic Theory of the Firm."
Strategic Management Journal 17(Special Issue: Knowledge and the Firm. (Winter, 1996)): 45-
62.

Spender, J. C. (1996). "Competitive advantage from tacit knowledge? Unpacking the concept
and its strategic implications." Organizational Learning and Competitive Advantage: 56-73.

Spitzer, C. (1987). Digital avionics systems. Englewood Cliffs, N.J., Prentice-Hall.

Spitzer, C. R. (2001). The Avionics Handbook, CRC Press.

Star, S. L. (1989). The structure of ill-structured solutions: Boundary objects and heterogeneous
distributed problem solving. Menlo Park, CA., M. Huhns and L. Gasser, eds.

Strauss, A. and J. Corbin (1990). Basics of qualitative research : grounded theory procedures and
techniques. Newbury Park, California, Sage Publications.

Strauss, A. L. (1987). Qualitative Analysis for Social Scientists, Cambridge University Press.

Szulanski, G. (1996). "Exploring internal stickiness: Impediments to the transfer of best practice
within the firm." Strategic Management Journal 17(Winter 1996): 27-44.

Takeishi, A. (2001). "Bridging inter- and intra-firm boundaries: management of supplier
involvement in automobile product development." Strategic Management Journal 22(5): 403-
437.

Takeishi, A. (2002). "Knowledge Partitioning in the Interfirm Division of Labor: The Case of
Automotive Product Development." Organization Science 13(3): 321-338.

Takeuchi, H. and I. Nonaka (2004). Hitotsubashi on knowledge management, John Wiley &
Sons (Asia) Singapore.

Teece, D., G. Pisano, et al. (1997). "Dynamic Capabilities and Strategic Management." Strategic
Management Journal (1986-1998). 18(7): 509-533.

C Marc G. Haddad 247

Ulrich, K. (1995). "The role of product architecture in the manufacturing firm." Research Policy
24: 419-441.

Utterback, J. (1996). Mastering the Dynamics of Innovation. Boston, MA, Harvard Business
School Press.

Vincenti, W. G. (1990). What Engineers Know and how They Know it: Analytical Studies from
Aeronautical History, Johns Hopkins University Press.

Von Hippel, E. (1994). ""Sticky Information" and the Locus of Problem Solving: Implications
for Innovation." Management Science 40(4): 429-439.

Walz, D. B., J. J. Elam, et al. (1993). "Inside a software design team: A look at knowledge
acquisition, sharing, and integration activities." Communications of the ACM 36(10): 63-74.

Whitney, D. E. (2004). Mechanical Assemblies: Their Design, Manufacture, and Role in Product
Development, Oxford University Press.

Wissmann, L. A. and A. A. Yassine (2005). Product Architecture and the Firm, PD-Lab Working
Paper, 2004,(1).

Wolfe, C. A., M. E. Campbell, et al. (1996). "Integrated CNI avionics using F-22 modular
products." Aerospace and Electronics Conference, 1996. NAECON 1996., Proceedings of the
IEEE 1996 National 1.

Womack, J. and D. Jones (1996). "Lean Thinking: Banish Waste and Create Wealth in Your
Organisation." Rawson Associates, New York.

Womack, J. P., D. T. Jones, et al. (1991). The Machine that Changed the World: How Japan's
Secret Weapon in the Global Auto Wars Will Revolutionize Western Industry, HarperPerennial.

Yang, J. (2005). "Knowledge integration and innovation: Securing new product advantage in
high technology industry." Journal of High Technology Management Research 16(1): 121-35.

Zollo, M. and S. G. Winter (2002). "Deliberate Learning and the Evolution of Dynamic
Capabilities." Organization Science 13(3): 339.

© Marc G. Haddad 2480 Marc G. Haddad 248

APPENDIX A: FIELD INSTRUMENTS

This appendix provides an overview of the exploratory and semi-structured interview questions

used in the first three rounds of field research in each case study, and a template of the structured

questionnaire administered in the fourth (final) round of the research.

A.1 Sample Exploratory Interview Questions:

(1) What is your background and relationship to the case study? State your program

affiliation and any association you have with other aircraft programs than your own.

(2) What are your organization's most recent (or major) knowledge transfer and knowledge

sharing initiatives?

(3) What are the knowledge transfer and sharing mechanisms most emphasized in your

organization?

(4) What are the main advantages and disadvantages of your organization's structural

arrangement for knowledge transfer and sharing with other programs and functions?

(5) Is the supporting infrastructure (IT, communities of practice, integrated teams, etc.)

effective in transferring knowledge necessary for problem solving? If not, what are the

barriers impeding the efficient transfer of knowledge through the infrastructure?

(6) Describe formal strategies, practices or mechanisms established in your program or at the

enterprise-level that enable the transfer and/or sharing of engineering knowledge (about

system architectures, technologies, processes, etc...) with other programs and functions.

(7) Describe informal strategies, practices or mechanisms used for the same purpose as in

question (4) above.

© Marc G. Haddad
249

C Marc G. Haddad 249

(8) Are there clearly established and communicated goals for knowledge transfer and/or

sharing in your program? If so, what are the main objectives? If not, what are the

impediments?

(9) Do the established knowledge transfer and sharing practices effectively support problem

solving? If yes, what are the most effective practices? If not, what are the impediments?

(10) Are there incentives in place to foster knowledge transfer and sharing between the prime

organization and major suppliers? If so, can you provide examples?

(11) Are "lessons learned" effectively shared in your organization? If so, what are the most

effective mechanisms for sharing lessons learned? If not, what are the main barriers

impeding the sharing of lessons learned?

(12) When and how are key suppliers integrated into the design and development process? Are

key suppliers represented on the integrated product teams in the individual programs?

Does the involvement of suppliers involve special contractual arrangements, such as

proprietary restrictions?

A.2 Sample Focused Interview Questions:

(13) How many years of experience do you have with the company, with your current program

or division, and with your current IPT? What is your current position and role in

developing the subject avionics system?

(14) How is the responsibility for developing your subsystem divided up across team, program,

functional and organizational boundaries? What are the most common types of teams in

your organization (e.g. functional, cross-functional, product teams)?

(15) What other organizational groups/entities do you consult most frequently to solve major

technical problems, both formally and informally?

C Marc G. Haddad 250

(16) What type(s) of major technical problems do you encounter most frequently with the

development of your particular subsystem?

(17) Describe areas/instances of team commonality (e.g. integrated teams) with other aircraft

programs.

(18) Describe areas/instances of rivalry (e.g. constructive or negative competition) between

your program and other aircraft programs in the enterprise, as well as their causes and

drawbacks on the problem solving process.

(19) What mechanisms are used to exchange engineering knowledge about subsystem designs

and technologies (e.g. specifications, standards) across programs, across engineering

functions, across generations of components, and with suppliers?

(20) What mechanisms are used to exchange relational knowledge about system architectures

(e.g. system integration rules) across programs, across engineering functions, across

generations of systems, and with suppliers?

(21) What is the role of subsystem engineers, if any, in supporting system integration efforts?

What is the role of system integrators, if any, in supporting subsystem design efforts?

(2:2) Name the most effective knowledge transfer or sharing practice (within or across programs

or with suppliers) that supports design commonality for multiple platforms?

(23) Draw a network map identifying links and points-of-contact (POC's) for sharing program

knowledge with other aircraft programs and other parts of the enterprise.

(24) Can you identify gaps in the network map impeding effective transfer and sharing of

program knowledge across program boundaries?

C Marc G. Haddad 251

A3: Structured Questionnaire

PROBLEM DESCRIPTION: Describe a major technical problem you encountered with your subsystem

PROBLEM CATEGORY: Please indicate the problem type (or root cause)

MISSION CRITICAL / SAFETY CRITICAL:
SYSTEM DESIGN / SYSTEM INTEGRATION, H/W and/or S/W :
OTHER:

PROBLEM CHARACTERISTICS: Please describe the technical characteristics of the problem

SCALE (Few Subsystems Affected / Many Subsystems Affected):
SCOPE (Internal / External involving Prime or Other Suppliers):
SEVERITY (Single-System Disruption / Multi-System Disruption):
NOVELTY (New Problem or Technology / Old Problem or Mature Technology):

PROBLEM SOLVING APPROACH: Describe how the problem was identified and/or solved

xxx description of problem solving process here xxx

Indicate with an (X) below which knowledge exchange mode was used most frequently:

Exchanged Information (e.g. transfer of system requirements / specs...): X
Exchanged Advice (e.g. Red Team suggestions): X
Exchanged Assistance (e.g. Tiger Team direct involvement): X

KNOWLEDGE INTEGRATION: Refer to the figure and indicate which channels and mechanisms were
used to exchange information, advice and assistance in problem solving

CHANNEL(S): CIRCLE 1,2, 3,4, 5

MECHANISM(S): Functions
Requirements, specifications
Brainstorming meetings .Sy.stem IPT. Engineering
Special action teams (tiger team, taskforce)
Special review teams (red/gold team...)
Lessons learned sessions • ,,,,- ,, ,. m .aShared databases ..Shared databases Subsystem Subsystem Subsystem
Design reviews IPT . IPT
Experts (SME, Graybeard...)
Co-location, Site visits" · = ""Liaison devices (Liaison engineer...) ::................
Other:

Supplier

© Marc G. Haddad 252
C Marc G. Haddad 252

APPENDIX B: SUMMARY TABLES FROM INTERVIEW DATA REDUCTION

For quick reference, the tables in this appendix provide a summarized alphabetical listing of the

most emphasized characteristics of the knowledge integration process (referred to as "critical

instances" in § 6.1.1) as identified in the reduction of the interview data from all case studies.

Table 41: Intra-Program Knowledge Integration

Strategies / Practices

1. Apprenticeship
2. Calling on program
experts
3. Communication
4. Conferences
5. Integrated concurrent
engineering
6. Joint problem solving
with program experts
7. Joint problem solving by
special teams
8. Knowledge capture and
reuse
9. Periodic reviews
10. Problem solving in IPT
11. Sharing lessons learned
12. Status updates
13. Team structuring
14. Training (general) by
program

Channels

© Marc G. Haddad
253

Mechanisms

1. Boundary objects (prototypes, models, simulations)
2. Brainstorming meetings (team problem solving)
3. Brown bag sessions (informal ad-hoc share sessions)
4. Buddy system (social networking)
5. Design and zone reviews (systems readiness review SRR,
preliminary design review PDR, critical design review CDR)
6. Work documents (memos, manuals, reports, contracts)
7. Information tools (emails, teleconference calls, netmeetings)
8. "Gurus" (senior experts, not involved in problem solving)
9. "Wizards" (experts in root-cause analysis, lab testing)
10. "Subject matter experts"(experts in a particular system)
11. "Tech fellows (discipline specific experts)
12. Integrated work tools (for concurrent modeling, drafting,
design, workflow management)
13. IPT structure to co-locate multiple disciplines
14. Lessons learned databases
15. Program data libraries (electronic repositories for
programmatic information, software code)
16. Program familiarization
17. Program templates/checklists
18. Share sessions (face-to-face or teleconference meetings)
19. Special action teams (tiger teams, taskforces)
20. Special review teams (gold teams, red teams)
21. Mentoring (technical apprenticeship)
22. Monthly knowledge symposium
23. Status meetings (presentations for updates)
24. Troubleshooting reviews (root-cause analysis sessions)
25. Walk-and-talk (chatting with peers to ask questions)
26. Work documents (manuals, reports, logs, test data, system
architecture charts, requirements/specification documents)

1. Intra -
Program

© Marc G. Haddad 253

Table 42: Program-to-Program Knowledge Integration

Strategies / PracticesChannels

1. Communication

2. Design, technology and
process commonality

3. Joint problem solving
with other program experts

4. Joint problem solving by
special teams
5. Periodic reviews

6. Professional affinity
groups

7. Sharing information
resources

8. Sharing lessons learned

9. Status updates

© Marc G. Haddad
254

2. Program -
Program

254

Mechanisms

1. Call-up of counterparts/colleagues in other programs
2. Chief engineers periodic meetings

3. Common suppliers across programs

4. Communities of practice

5. Focus groups (systems engineering focus group)
6. Gurus from one program share lessons with another program
7. Loan out subject matter experts, tech fellows and gurus to
another program

8. Mixed-program meetings

9. Multi-program lessons learned database

10. Multi-program share sessions

11. Non-advocate design reviews by one program for another

12. Participation in special action teams (tiger teams,
taskforces)

13. Participation in special review teams (gold teams, red
teams)

14. Program managers/chief engineers/team leads from older
programs convene to share lessons at start of new program

15. Prototyping new system designs, architectures and
technologies by older programs for future ones
16. Shared repositories (common databases, shared data
libraries, intranets)
17. Sharing new design and architectural concepts
18. Sharing new technologies, engineering and manufacturing
discoveries and materials

19. Sharing processes and procedures
20. White papers
21. Working groups (avionics working group)

C Marc G. Haddad

Table 43: Function-to-Program Knowledge Integration

Strategies / PracticesChannels

3. Function -
Program

© Marc G. Haddad
255

1. Calling on function
experts
2. Career and skills
development
3. Joint problem solving
with function experts

4. Joint problem solving
with function engineers

5. Joint problem solving by
special teams

6. Knowledge capture and
dissemination

7. Periodic reviews

8. Sharing lessons learned

9. Supporting cross-
boundary communication
and joint problem solving

10. Supporting integrated
concurrent engineering

11. Supporting cross-
program commonality

12. Supporting cross-
program communication
13. Supporting cross-
program standardization

14. Supporting process
improvement
15. Training (specialized)
by function

255

Mechanisms

1. Capture and dissemination of lessons learned across
programs (checklists for typical problems)
2. Capture and sharing of best practices across programs
3. Commonality initiatives (common designs, architectures)
4. Continuous improvement (dedicated office for transfer of
information about process improvements between programs).
5. Developing and dissemination of technical documentation
(software development manual, systems engineering guide)
6. Deploying integrated work tools (integrated management
tools, common product design and management systems)
7. Deploying integrated information systems (expertise locator
systems, intranets, shared databases)

8. Forming and participating in special action teams (tiger
teams, taskforces)

9. Forming and participating in special review teams (gold
teams, red teams)

10. "Graybeards" (senior experts not deployed to programs)
11. Independent design reviews / walkthroughs
12. Information audits (of standards, processes, procedures)
13. Initiatives for summarizing information
14. Integrating dispersed competencies and skills (from
handshake process to close coordination)
15. Job rotation (personnel moved around functions and
programs to gain broad skills)
16. Liaison engineers (spanning group boundaries)
17. Loaning out experts (tech fellows) to programs

18. Long-term assignments (hire and deploy staff to programs)
19. Material integrators (spanning organizational boundaries)
20. On-boarding (training and familiarization for new hires
with tools, processes, acronyms)
21. Short-term assignments (deploying function personnel to
help programs with problem solving)
22. Program reviews (capability reviews, team accountability
reviews)
23. Sharing generic info across programs (supplier info)
24. Standardization of processes, procedures across programs
(standard software development process, design templates)
25. Technical courses (design courses taught across programs)

C Marc G. Haddad

Table 44: Prime-to-Supplier Knowledge Integration

Channels

4. Prime -
Supplier

© Marc G. Haddad
256

Strategies / Practices

1. Communication

2. Conferences

3. Design, technology and
process transfer

4. Early supplier integration

5. Joint problem solving
with supplier experts

6. Joint problem solving by
team reviews

7. Joint problem solving by
special teams

8. Problem solving
meetings

9. Process improvement
10. Sharing information
resources

11. Sharing lessons learned
12. Single sourcing

13. Supplier management
14. Status updates

15. Tight partnerships

Mechanisms

1. Ad-hoc sharing of lessons learned in meetings, discussions
and reviews

2. Annual supplier conventions, monthly symposiums

3. Brokering supplier marriages

4. Buyer Furnished Equipment (BFE)

5. Carrot-and-stick management strategy

6. Co-location (long-term) of prime and supplier personnel

7. Concurrent design/management tools (integrated computer
aided engineering tools, common risk management tool)

8. Decision boards (technical decision board grouping prime
and supplier experts)

9. Design or module commonality across programs

10. Electronic and paper communication (emails, net-meetings,
memos, contracts, technical agreements, teleconference calls)
11. Joint product assessment teams (forum grouping prime and
supplier experts to share ideas)

12. Long term agreements with suppliers
13. Mergers with suppliers/competitors
14. Mixed prime-supplier participation in special action teams
(red teams, tiger teams, taskforces)

15. Rotation of prime or supplier experts (short-term)
16. Site visits (short-term) by prime or supplier personnel
17. Shared databases (requirements management database,
common problem reporting system, risk database, product data
management system)
18. Special communication forums (strategic supplier advisory
group for sharing lessons learned)

19. Strategic supplier working groups (for working out supplier
problems across programs)
20. Supplier integrated product development
21. Technical meetings at prime's location
22. Technical interchange meetings at supplier location

23. Toyota model of vendor village
24. Transfer of best practices to/from supplier
25. Using the same supplier across programs
26. Work documents flow (requirements documents, interface
control documents, drawings, failure reports, engineering
change requests/orders, design evaluation/change requests,
system architecture charts, testing documents)

© Marc G. Haddad 256

Table 45: Knowledge Integration along Other Channels

Channels Strategies / Practices Mechanisms

5. Corporate - 1. Independent research and 1. R&D transfer to programs
Program development (IRAD) 2. Program-oriented organizational structure to integrate across

2. Organizational functional disciplines
structuring 3. Function-oriented organizational structure to integrate across
3. Periodic reviews programs
4. Process improvement 4. Program management council

5. Monthly program reviews by front office to share lessons
learned

6. Customer - 5. Customer and supplier 6. Program and product team leadership mediate between
Prime management customer and supplier

6. Periodic reviews 7. Communication to transfer feedback to/from customer
7. Problem solving with 8. Requirements brainstorming meetings with customer
customer 9. Independent reviews by customer
8. Status updates 10. Taskforce participation by customer experts
9. Joint problem solving by
special teams

7. Industry - 10. Joint problem solving 11. Taskforce participation by academia, industry
Prime by special teams consultants/experts

11. Design, technology and 12. Systems engineers monitor/roadmap/transfer industry
process transfer innovations

8. Supplier - 12. Design, technology and 13. Meetings, teleconferences, communication for updates
Supplier process transfer 14. Supplier working groups (interface contractor working

13. Status updates group)
14. Joint problem solving 15. Prime mediated/facilitated problem solving between
by boundary spanners suppliers

16. Transfer of design information, buyer furnished equipment

© Marc G. Haddad
257

C Marc G. Haddad 257

Table 46: Enabling Conditions for Knowledge Integration

Channels Enabler Instances

1. Intra - 1. Good working environment (open sharing inside program)
Program 2. Retaining core competencies in-house (experience helps with problem solving)

3. Codifying the learning of retiring senior engineers so it's repeatable
4. Social networks between peers (open communication among peers)

5. Financial Incentives (awards to recognize problem solving, firefighting and innovation)
6. Maturity of program, teams, infrastructure (stable environment, well established relations)

7. Maturity of individuals (experience of senior versus junior engineers)

8. Shared identity (one program as one team)

2. Program - 9. Financial incentives (corporate performance incentives instead of program performance)
Program 10. Social networks (informal people relationships to overcome confidentiality barriers)

11. Shared fate (organizational culture as the glue between programs)
12. Mobilization capability (can rally troops for major problems, overcome program
firewalls)

3. Function - 13. Use of metrics (for training, tool use)
Program 14. Financial resources (large training budget)

15. Checks and balances (as process owners functions follow up on action items)

16. Feedback and verification (death by reviews, scorecards)
17. Financial Incentives (award for best technical paper)

18. Trust relationship between functions and programs (function is neutral negotiator)

4. Prime - 19. Easy access for suppliers to prime's knowledge resources
Supplier 20. Deep visibility for suppliers into prime's knowledge resources

21. Liberal knowledge sharing policy for processes, programmatic information (operating
concepts) and administrative (non-technical) information
22. Open sharing mentality (knowledge sharing considered more critical than proprietary
protection)
23. Financial Incentives (reward suppliers for team performance so suppliers help each other)
24. Shared goals (no competition for work)

5. Corporate - 25. Succession planning for retiring leaders
Program 26. Leadership support for giving engineering more free time/breaks to form social networks

6. Customer - 27. Shared goals (customer willing to forego specs in favor of performance-based solutions)
Prime

7. Industry - 28. Industry standardization (same industry standards pulling prime and supplier together)
Prime

8. Supplier - 29. Shared goals (no competition for work)
Supplier

© Marc G. Haddad
258

C Marc G. Haddad 258

Table 47: Barriers to Knowledge Integration

Channels Barrier Instances

1. Intra - 1. Brain drain (from program and organization)
Program 2. Classified information (technical information, engineering and manufacturing discoveries)

3. Firefighting culture (schedule pressure so no time to get information, no follow-through on
expert suggestions, concurrent multiple developments drain knowledge resources)
4. Hierarchy barriers (reluctance to "air dirty laundry" about problems when middle
management in meetings, and "one man's agenda" by managers makes it difficult to share
knowledge about other problems)

5. Knowledge divide (disconnect between old knowledge of boss/gurus and new knowledge
of junior personnel - knowledge of today different than yesterday's, cultural disconnects
between old and young adds to knowledge gap between generations)
6. Lack of formal incentives (informal personal initiatives to share knowledge when possible)
7. Personal barriers (personality differences/incompatibilities)
8. Poor planning (concurrent engineering by accident not by planning)
9. Pride in problem solving (reluctance of engineers to seek help)
10. Team structure limitations (tendency of IPT's to work in isolation, rivalry with other
program IPT's due to their self-sufficiency)

2. Program - 11. Classified information restrictions (can't share technical knowledge outside program)
Program 12. Custom customer needs (different customer requirements are a barrier to commonality,

can't share architecture and complete design)
13. Custom program needs (program processes/procedures cannot always be standardized
because of different needs/contexts, tribal knowledge)
14. Development dependence risks (common development creates added risk of reliance on
the outside that programs don't want to assume)
15. Firefighting culture (small attendance at multi-program share sessions since senior
engineers don't have time to share knowledge, junior engineers don't have time to attend)
16. Lack of formal process (burden falls on programs to share/acquire knowledge across
boundaries)
17. Knowledge stealing (new programs cherry pick from old programs,
stealing/robbing/draining limited knowledge resources instead of knowledge sharing)
18. Limited shared resources (competition between programs for the same supplier expert's
time)
19. Organizational structure limitations (tendency of program-based structure to disconnect
programs from outside knowledge in other programs in favor of internal integration across
functional disciplines, project groups become divided)
20. Proprietary restrictions (can't share proprietary partner knowledge if partner on one
program is a competitor on another program)
21. Silo mentality (fishbowl effect, internal focus on program goals, program concerns are
often short-sighted and inward)

© Marc G. Haddad
259

C Marc G. Haddad 259

Table 47 - Continued: Barriers to Knowledge Integration

Channels

3. Function -
Program

4. Prime -
Supplier

Barrier Instances

22. Custom program needs (program resistance against standardization and commonality due
to preference for customized tools/templates in place)

23. Databases not efficient (databases not always up-to-date, information is often missing,
irrelevant, obsolete, vague, not trusted, difficult to search due to information overflow)

24. Informal problem solving processes (no structured approach to learning, you don't
always get invited to the right meeting

25. Lack of formal process (knowledge sharing not well planned, mostly by circumstance not
by design, you have to ask others for help but no formal way of identifying who the experts
are, informal capture and sharing of lessons learned, no institutionalized "post-mortems")

26. Lack of defined authority (no authority to enforce common tools/processes on programs)
27. Lack of good framework (no business or technology model to determine what knowledge
to standardize, or which technology areas should be common across programs, which
knowledge to share with whom, how to move the right person for the right need and best fit)
28. Limited financial resources (limited training budgets)

29. Limited human resources (not enough subject matter experts on system architectures,
only one person to oversee knowledge management in the entire organization)
30. Mediation limitations (costly for functions to bridge divide between programs, not true
integration, some tension on function trying to serve all programs)
31. Organizational distance (programs seek help from function only as a last resort,
functional groups not always party to program design work and reviews, programs often
unaware of all the resources available to them from functional groups)
32. Organizational structure limitations (tendency of functional structure to keep specialists
connected with their knowledge base, but at the cost of weak knowledge integration across
different domains)

33. Tool limitations (e.g. tools too complex, too numerous, deployed late or with bugs; new
tools have limited use due to incompatibility with legacy tools, and standardized tools are so
generic that they're not useful; most tools not flexible enough for complex problem solving)
34. Training limitations (e.g. ineffective formal training, repetitive and too general instead of
sharpening skills and learning from past problems; formal mentoring is spotty due to forced
pairings that don't work very well)

35. Arm's length relationship (purchase order mentality, contractor-sub relationship, suppliers
forgotten about in coordination process, supplier not notified of design changes)
36. Bureaucratic restrictions (restricted access to facilities, delays from indirect/mediated
knowledge sharing)
37. Classified information (no foreign sharing of technical information; clearance delays)
38. Concurrent engineering limitations (concurrent tools don't always reflect the latest
changes, system interdependencies hidden, supplier doesn't know impact of his subsystem
problem on overall system, hinders accurate sharing of problem information)
39. Conservative mentality (when in doubt err conservatively and don't share)
40. Contractual restrictions (fixed priced contracts makes suppliers risk averse and unwilling
to share immature innovations since potential problems mean they have to swallow the cost;
disorganized sharing in contractual letters and direct correspondence between engineers)

© Marc G. Haddad 260
C Marc G. Haddad 260

Table 47 - Continued: Barriers to Knowledge Integration

Channels Barrier Instances

4. Prime - 41. Cultural barriers (organizational rivalry, "not invented here" syndrome, belief that
Supplier internal decisions/tools are the best ones, program biases for or against supplier X,

international cultural/language barriers, time zone differences make communication harder)
42. Firefighting culture (multiple parallel developments at prime and supplier, no
coordination, a source of requirements not matching)
43. Information variability (variability depending on prime-supplier relationship;
performance requirements not as detailed as military specifications, variability depending on
experience of prime engineer writing requirements and supplier engineer interpreting them)
44. Lack of formal process (tendency in prime to do business informally, lots of information
conveyed by people walking to other people's desks, informal decisions not flowed down,
undermines formal sharing in regular meetings and teleconference calls)
45. Limited financial resources (need a lot of money to build and maintain supplier network,
costly to switch suppliers which reduces innovation)
46. Network limitations (tensions on team members having different organizational loyalties,
e.g. supplier representative works on prime IPT but reports to supplier, difficult to bring in
new suppliers into the network since it can break established relationships)
47. Political restrictions (some forced selection of suppliers for political considerations even
if not highest value for knowledge sharing, such as international partnering)
48. Proprietary information (no sharing of engineering and manufacturing discoveries,
financial and cost information, patented knowledge)
49. Tool limitations (intranets do not include suppliers, sharing databases with supplier
limited to administrative information)

50. Trust issues (supplier doesn't reciprocate open sharing, late notification to prime of
strategic issues due to competition, lack of trust by prime and desire to control suppliers so
relationship still based on specifications instead of flowing down customer requirements)

5. Corporate - 51. Limited learning opportunities (one plane every 15 years, limited and slow learning; few
Program new aircraft programs, no new talent development)

52. Poor knowledge coordination (excessive focus on training and hiring to fulfill needs, but
poor planning and matching, job rotation does not take people dynamics in consideration)

6. Customer - 53. Indirect channels (have to go through customer to get clearance, causes delays and limits
Prime sharing; need customer approval to change a spec, takes a long time, barrier to problem

solving efficiency)

7. Industry - 54. Limited knowledge resources (lifecycle knowledge is getting scarce across the industry)
Prime 55. Obsolescence issues (outdated information in industry communities of practice)

8. Supplier - 56. Communication barriers (can't talk to other subsystem IPT's across companies)
Supplier

© Marc G. Haddad
261

C Marc G. Haddad 261

Table 48: Most Frequently Cited Concepts and Properties in the Interview Data

Concepts / Properties Frequency (No. of Times Cited) % of Total
Requirements 123 0.3

Architecture 121 0.29

Lessons 85 0.21

Component 41 0.1

Reviews 39 0.1

Communication 35 0.09

Experience 35 0.09

Meetings 34 0.08

Training 34 0.08

Commonality 31 0.08

Testing 30 0.07

Program-to-program 28 0.07

Formal 24 0.06

Informal 24 0.06

Proprietary 23 0.06

Contract 21 0.05

Database 21 0.05

Intra-program 20 0.05

Expertise 19 0.05

Prime-to-supplier 18 0.04

Assistance 15 0.04

Coordination 15 0.04

Troubleshooting 13 0.03

Co-location 13 0.03

Experts 12 0.03

Advice 12 0.03

Mentoring 11 0.03

Collaboration 11 0.03

Function-to-program 11 0.03

Concurrent 10 0.02

Long-term (for comparison with above) 1 0

© Marc G. Iladdad
262

C Marc G. Haddad 262

APPENDIX C: SUMMARY TABLES FROM QUESTIONNAIRE DATA REDUCTION

The tables in this appendix provide a summary of the problem solving and knowledge integration

data collected with the structured questionnaire in the final round of interviews across all three

case studies.

Table 49: Problem and System Data

No. Problem Affected System Tech. Problem Problem

Type System Architecture Maturity Novelty Severity

1 S/W integration Mission Computer Integral Old Low Mission

2 H/W integration Bomb Rack Modular Old High Safety

3 H/W design MF Radar Modular Old Low Mission

4 System design Radar Altimeter Modular New High Safety

5 Sensor fusion Mission Computer Integral Old High Mission

6 Sensor fusion Electronic Warfare Integral Old High Mission

7 H/W design Electronic Warfare Integral Old Low Mission

8 S/W integration FLIR System Modular New High Mission

9 System integration Autopilot Modular Old High Mission

10 H/W design and Display Integral New Low Low
integration

11 H/W design and Fwd Radar Modular New High Mission
integration

12 S/W design GPS Guidance Modular Old Low Mission

13 System integration Display Integral New Low Mission

14 H/W design and AIFF Modular New High Mission
integration

15 H/W design MF Radar Modular New Low Mission

16 System integration Mission Computer Integral New Low Mission

17 H/W design R/F Cabling Modular New Low Low

18 Sensor fusion Brake Sensor Modular Old High Safety

19 H/W design Navigation Modular New High Mission

20 S/W design Communication Modular New Low Mission

21 System integration Mission Computer Integral New High Mission

22 System integration MF Radar Modular New Low Mission

C Marc G. Haddad 263

Table 49 - Continued: Problem and System Data

No. Problem System System Tech. Problem Problem

Type Architecture Maturity Novelty Severity

23 System integration Mission Computer Integral New Low Mission

24 System integration Mission Computer Integral Old Low Mission

25 System integration MF Radar Modular New High Mission

26 H/W design Canopy Modular New Low Safety

27 H/W design Electronic Warfare Integral New Low Mission

28 S/W integration Mission Computer Integral New High Mission

29 S/W integration Mission Computer Integral New High Mission

30 H/W integration MF Radar Integral New High Mission

31 S/W integration Indicator Modular Old High Mission
Instrument

32 System integration Display Modular New High Mission

33 S/W integration Network Integral Old Low Low

34 Sensor fusion Navigation Integral Old High Mission

35 H/W design Mission Computer Integral Old Low Mission

36 S/W integration Electronic Warfare Integral New High Mission

37 S/W design Electronic Warfare Integral New High Mission

38 H/W design Flight Actuators Integral New High Safety

39 H/W integration Flight Controls Integral New High Safety

40 System integration Mission Computer Integral Old High Safety

41 System design Communication Integral New Low Mission

42 S/W design Data Module Modular New High Mission

43 Sensor fusion Navigation Integral New Low Mission

44 H/W integration MF Radar Modular New Low Mission

45 H/W design Circuit Board Modular New High Low

46 System integration Electronic Warfare Integral New High Mission

47 H/W design Memory Device Modular Old High Low

48 System integration Navigation Integral Old High Mission

49 H/W design Mission Computer Integral New Low Mission

© Marc G. Haddad
264

© Marc G. Haddad 264

Table 50: Problem Solving and Knowledge Integration Data

No. Problem Spread Internal External Information Advice Assistance

(Other Affected Boundaries Boundaries Exchanged Exchanged Exchanged

Systems) Crossed Crossed

1 4 1 1 x x

2 5 2 2 x x

3 5 2 1 x x

4 1 0 3 x x x

5 4 1 1 x x x

6 5 1 1 x x

7 5 2 1 x x

8 2 1 2 x x

9 2 2 0 x x

10 3 2 1 x x x

11 2 2 2 x x x

12 1 0 1 x

13 3 1 1 x x

14 2 1 2 x x

15 1 1 1 x x

16 2 0 2 x x x

17 1 0 1 x x

18 3 1 1 x x

19 1 0 3 x x x

20 1 0 1 x x

21 3 2 3 x x x

22 5 2 1 x x

23 5 1 2 x x

24 1 0 2 x x x

25 1 0 3 x x

26 1 1 1 x x x

27 1 0 2 x x x

28 2 1 1 x x

© Marc G. Haddad
265
265C Marc G. Haddad

Table 50: Problem Solving and Knowledge Integration Data

No. Problem Spread Internal External Information Advice Assistance

(Other Affected Boundaries Boundaries Exchanged Exchanged Exchanged

Systems) Crossed Crossed

29 2 1 2 x x

30 2 1 1 x x x

31 1 0 3 x x x

32 2 1 2 x x

33 5 1 1 x x

34 2 1 2 x x

35 1 2 1 x x

36 2 2 2 x x

37 1 1 2 x x x

38 5 2 2 x x

39 5 2 1 x x

40 5 2 1 x x

41 5 2 1 x x

42 1 1 1 x x x

43 2 2 0 x x x

44 2 0 1 x x

45 1 0 2 x x x

46 5 2 2 x x x

47 1 0 3 x x x

48 3 1 1 x x

49 5 2 2 x x x

C Mare G. Haddad 266

Table 51: Knowledge Integration Data

No. Mechanisms on Mechanisms on Mechanisms on Mechanisms on Mechanisms on

Channel #1 Channel #2 Channel #3 Channel #4 Channel #5

1 Problem reports, Test data
telecons

2 Chief engineer, Integrated design Graybeards, Site visits,
requirements, tools, engineering design review requirements,
specifications change does, specifications,

simulation engineering
change does

3 Lessons learned Integrated design Status meetings,
database, tools, engineering requirements,
requirements, change does, specification, test
specifications, status meetings data, engineering
wizards change does

4 Share sessions, Tech fellows, Site visits, tiger
tiger team, tiger team team, engineering
subject matter change docs,
experts requirements,

specifications
5 Problem reports, Tiger team

s/w change docs,
troubleshooting
meetings

6 Problem reports, Tech fellows
s/w change docs,
troubleshooting
meetings

7 Gurus, troubleshooting Requirements,
requirements, meetings specifications,
specifications engineering

change docs,
telecons

8 System IPT lead, Tiger team, Test data, tiger
lessons learned Subject matter team
database, wizards experts, tech

fellows
9 Tech fellow, Subject matter

troubleshooting experts,
meetings, troubleshooting
requirements, meetings,
specifications simulation

10 Guru Interface control Status meetings,
docs, simulation site visits,

engineering
change docs

© Marc G. Haddad 267

Table 51 - Continued: Knowledge Integration Data

No. Mechanisms on Mechanisms on Mechanisms on Mechanisms on Mechanisms on

Channel #1 Channel #2 Channel #3 Channel #4 Channel #5

11 System IPT lead Interface control Design review Requirements,
does specifications,

telecons, site
visits, engineering
change does

12 Test data, s/w
change does

13 Problem reports, Interface control
interface control docs, test data,
docs, s/w change engineering
docs, simulation, change does
wizards

14 Chief engineer Subject matter Co-location,
experts requirements,

specifications,
engineering
change docs, tech
fellows, subject
matter experts

15 Chief engineer, Requirements,
graybeard, status specifications,
meetings, engineering
requirements, change does, Co-
specifications location

16 Tiger team Site visits, test
data, tiger team,
telecons,
engineering
change docs,

17 Design reviews,
material
integrator, liaison
engineer

18 Troubleshooting Tech fellows
meeting, interface
control does,
problem reports

19 Share sessions, Taskforce Taskforce, site
taskforce visits, test data

20 Test data, site
visits, problem
reports, s/w
change does
simulation

© Marc G. Haddad
268

0 Marc G. Haddad 268

Table 51 - Continued: Knowledge Integration Data

No. Mechanisms on Mechanisms on Mechanisms on Mechanisms on Mechanisms on

Channel #1 Channel #2 Channel #3 Channel #4 Channel #5

21 Chief engineer Taskforce, s/w Taskforce Taskforce Taskforce, test
change docs, data
troubleshooting
meetings,
problem reports,

22 Subject matter Troubleshooting Test data,
expert meetings, engineering

interface control change does
docs, problem
reports

23 Problem reports, Design review Subject matter
troubleshooting experts, interface
meetings, wizards control docs, test

data, engineering
change does, site
visits

24 Subject matter Subject matter
experts, tiger experts, tiger
team team, lessons

learned does
25 Subject matter Tiger team, Test data, tiger

experts, tiger subject matter team,
team experts, tech requirements,

fellow specifications
26 Chief engineer, Requirements,

requirements, specifications,
specifications engineering

change docs,
status meetings,
problem reports

27 Design review, Requirements,
subject matter specifications,
expert status meetings,

site visits,
engineering
change does

28 Troubleshooting Requirements,
meetings, specifications,
problem reports, engineering
interface control change does,
does, databases status meetings,

site visits
29 Problem reports, Red team Engineering

troubleshooting change does
meetings

269© Marc G. Haddad

Table 51 - Continued: Knowledge Integration Data

No. Mechanisms on Mechanisms on Mechanisms on Mechanisms on Mechanisms on

Channel #1 Channel #2 Channel #3 Channel #4 Channel #5

30 Requirements, Subject matter
specifications, experts
troubleshooting
meetings,
engineering
change docs

31 Lessons learned Tech fellows, red Interface control
docs, red team team docs

32 Problem reports, Tech fellows, Interface control
interface control subject matter does
does experts

33 Interface control Design review,
does, databases, graybeards
integrated design
tools

34 Interface control Tech fellows Telecons
does, s/w problem
reports

35 Wizards Interface control Subject matter
docs, s/w problem experts
reports

36 Wizards, tiger Tiger team, Tiger team Tiger team,
team, interface control requirements,
requirements, docs, s/w problem specifications,
specifications reports, s/w test data

change docs
37 System architect, Tiger teams, tech Site visits, co-

requirements, fellows location
specifications

38 Tiger team, Tiger team, Tiger team Tiger team, site
requirements, problem reports, visits,
specifications troubleshooting requirements,

meetings specifications,
engineering
change does

39 Tiger team, Tiger team, Tiger team
requirements, interface control
specifications docs, problem

reports,
troubleshooting
meetings

40 System architect, Tiger team, Tiger team,
requirements, interface control engineering
specifications does, integrated change does

design tools

C Marc G. Haddad 270

Table 51 - Continued: Knowledge Integration Data

No. Mechanisms on Mechanisms on Mechanisms on Mechanisms on Mechanisms on

Channel #1 Channel #2 Channel #3 Channel #4 Channel #5

41 System IPT leads, Interface control Requirements,
Requirements, does, integrated specifications,
specifications, design tools, engineering
design review engineering change does

change does
42 Chief engineer, Requirements,

System architect specifications,
site visits,
engineering
change docs

43 Liaison engineer Interface control
docs, problem
reports, s/w
change docs,
troubleshooting
meetings

44 Requirements,
specifications
troubleshooting
meetings,
engineering
change does

45 Design review Requirements,
specs, site visits,
engineering
change does

46 Chief engineer, Interface control Subject matter Requirements,
Lessons learned does, problem experts specifications,
docs, subject reports, site visits, subject
matter experts troubleshooting matter experts

meetings, subject engineering
matter experts change does

47 Share sessions, Subject matter Requirements,
design reviews experts, tiger specifications,

team engineering
change does, tiger
team

48 Problem reports, Requirements,
troubleshooting specifications,
meetings, s/w engineering
change does change does

49 IPT leads, Interface docs, Subject matter Requirements,
decision board problem reports, experts specifications,
review troubleshooting engineering

meetings change does

C Marc G. Haddad 271

APPENDIX D: STATISTICAL CALCULATIONS

This appendix illustrates the statistical calculation of the chi-square statistic for testing whether

the use of a particular knowledge integration channel is sensitive to differences in system

architectures or if the observed differences are random. The following shows a smaller

calculation which excludes channels #1 and #4 since they are used as a "last recourse" for

knowledge integration and therefore are independent from the other three channels shown here.

Observed Values: Each number in the table below represents the observed instances when a

particular channel was used to integrate knowledge during problem solving in a particular

architecture regime

horizontal count 1 1 1 3
vertical System Ch. Ch. Ch.
count Architecture #2 #3 #5 Totals

1 Integral 22 4 17 43
1 Modular 8 8 19 35
2 Totals 30 12 36 78

Expected Values: Calculated values of expected frequencies Eij per the guidelines of the chi-

square test, where Eij = (ith row total) x (jth column total) / (grand total)

Ejl Ej2 Ej3
Eli 16.54 6.62 19.85
E2i 13.46 5.38 16.15

Chi-Square Calculations: Calculated chi-square values X2ij = (Oij - Eij)2 / Eij

where O = observed value, E = expected value

0 E 10-El (O-E)A2 (O-E)A2/E
22.00 16.54 5.46 29.83 1.80
4.00 6.62 2.62 6.84 1.03
17.00 19.85 2.85 8.10 0.41
8.00 13.46 5.46 29.83 2.22
8.00 5.38 2.62 6.84 1.27
19.00 16.15 2.85 8.10 0.50

© Marc G. Haddad 272
© Marc G. Haddad 272

Chi-Square Statistic and Degrees of Freedom (DF): Calculated chi-square X2 = sum of all 2ij

where degrees of freedom DF = (horizontal count - 1) * (vertical count - 1)

X2 (chi-square value): 7.23
Degrees of Freedom (DF): 2

Chi-Square Distribution Table: Values obtained from the chi-square curve for given DF and

alpha levels of significance where alpha = 0.05 correlates with 95% significance level

DF 0.1 0.05 0.025 0.01 0.005
1 2.71 3.84 5.02 6.63 7.88
2 4.61 5.99 7.38 9.21 10.60
3 6.25 7.81 9.35 11.34 12.84
4 7.78 9.49 11.14 13.28 14.86
5 9.24 11.07 12.83 15.09 16.75
6 10.64 12.59 14.45 16.81 18.55
7 12.02 14.07 16.01 18.48 20.28
8 13.36 15.51 17.53 20.09 21.95
9 14.68 16.92 19.02 21.67 23.59
10 15.99 18.31 20.48 23.21 25.19

X2 = 7.23 > p (0.05) = 5.99 means the observed values and expected values are far apart,

therefore it is possible to reject the null hypothesis Ho: there is no relationship between system

architecture and knowledge integration (i.e. integral and modular differences are normal error)

and to accept the alternative hypothesis H1: there is a relationship between system architecture

and knowledge integration (i.e. differences between integral and modular are not coincidence)

Note: The Yates correction factor was not used despite one observed value = 4 < 5 (Yates

correction overcompensates and is too conservative)

© Marc G. Haddad 273
273© Marc G. Haddad

APPENDIX E: RESEARCH PROTOCOL

All data collection was conducted in accordance with the rules and procedures mandated by the

Massachusetts Institute of Technology (MIT) Committee on the Use of Humans as Experimental

Subjects (COUHES, http://web.mit.edu/committees/couhes). Non-disclosure agreements were

signed by the author with the participating organizations and additional provisions were taken to

ensure confidentiality and proprietary protection under the provisions of the research agreement

between the Lean Aerospace Initiative (LAI) and its consortium members. The rights and

responsibilities of interview subjects were detailed in a research guide prepared by the author and

disseminated in advance, as shown below.

RESEARCH GUIDE FOR RESPONDENTS - THESIS ON KNOWLEDGE

INTEGRATION IN LARGE-SCALE DEVELOPMENT OF COMPLEX SYSTEMS

1. Introduction

Thank you for your interest in participating in this research project conducted by Marc Haddad,

PhD candidate in Engineering Systems and research assistant at the Lean Aerospace Initiative

(LAI) at the Massachusetts Institute of Technology (MIT). LAI is a consortium of government,

industry, organized labor, and academia in the aerospace industry interested in researching,

developing, implementing, and accelerating enterprise transformation based on lean principles

and practices. MIT's role in this partnership is to provide objective and systematic research

leading to implementation in practice.

You were selected as a possible participant in this research project because of your professional

affiliation and current position in the aerospace industry. You should read the information

below, and ask questions about anything you do not understand, before deciding whether or not

to participate. This research guide provides an overview of the research project and the types of

interview questions to be asked of research participants. The guide also covers issues of

confidentiality with respect to all data collected from participating organizations.

© Marc G. Haddad 274
C Marc G. Haddad 274

2. Research Objectives

This research project is part of an MIT doctoral thesis on knowledge integration in complex

systems development, with a focus on military avionics as the research lens. The objective is to

develop a conceptual framework for how knowledge is transferred, shared and applied in solving

major technical problems during the design and build phases of product development. It is

motivated by the vested interest that organizations have in evolving their problem-solving

capabilities through leveraging their knowledge resources efficiently and effectively. The main

value-proposition of this research is in identifying the mechanisms and practices by which

engineering knowledge is integrated across team, program, functional and organizational

boundaries in solving major technical problems in a large-scale complex development

environment. The research seeks to address the following types of questions:

* Knowledge-sharing practices: What are specific channels, strategies and mechanisms

employed by your organization to transfer and share engineering knowledge (e.g.

communication and coordination channels and mechanisms) during the design and build

phases of product development?

* Problem-solving practices: What are specific channels, strategies/practices and mechanisms

employed by your organization to apply engineering knowledge (e.g. cooperation and

collaboration channels and mechanisms) in solving major technical problems during the

design and build phases of product development?

* Policy barriers and enablers: What are the main policies impeding or enabling knowledge

transfer/sharing and problem-solving within your organization, as well as with other

partners/suppliers?

3. Potential Benefits

The research is expected to provide the following outcomes: 1) a doctoral thesis with an original

contribution to the field of engineering systems in terms of a framework and heuristics for

C Marc G. Haddad 275

knowledge integration in large-scale complex systems development, 2) a conference paper

providing a high-level summary of key findings for communication to LAI consortium members,

3) presentation of key findings at Lean Aerospace Initiative meetings, workshops and

conferences, and 4) publication of one or more papers in scholarly journals. These research

products will be made available through the LAI website (http://lean.mit.edu)

4. Research Questions

Participants will be asked a series of questions about knowledge integration strategies and

mechanisms used in their organization in a series of 1 to 1.5 hour interviews. Interview

questions will be focused on the types of practices used to exchange knowledge within the

participating organization and with other partner/supplier organizations in the development of

complex military avionics systems. Questions will be generic in nature and will not require any

classified, sensitive, confidential or proprietary information. The main types of questions are:

a) General questions: Participants will be asked to provide a brief overview of their educational

background and professional experience, particularly as these pertain to their current role in

solving technical problems related to the development of a particular mission subsystem.

b) Knowledge transfer/sharing questions: Participants will be asked about the knowledge

transfer and sharing channels, strategies/practices and tools/mechanisms they use most

frequently to exchange knowledge, and will be asked to evaluate their effectiveness in helping

them conduct technical problem solving during development.

A survey-like questionnaire will be administered separately to collect data about specific

practices used to solve major technical problems in the development of complex avionics

systems. The data will be coded to strip any personal identifiers. These questions relate to:

c) Problem-solving questions: Participants will be asked to illustrate specific problem-solving

situations with their particular avionics subsystem and how they exchanged and applied

knowledge to diagnose and solve the problem. The questionnaire is designed to collect data

C Marc G. Haddad 276

about problem description, the characteristics of the avionics subsystem(s) affected by the

problem and the core technologies involved, the problem solving approach (or approaches)

taken, the stakeholders involved and the channels and mechanisms used to exchange and apply

knowledge during problem solving.

Note: see Appendices A. 1 and A.2 for samples of actual questions used in the interview process

and Appendix A.3 for the questionnaire form used in the problem solving survey.

5. Research Participants

The participants of most interest for this research are: 1) program managers, chief engineers and

material managers who are familiar with the "big picture" and major issues related to knowledge

transfer/sharing and problem solving in your organization, 2) knowledge management experts in

your company or program/division, and 3) IPT leads and engineers directly involved in solving

design and integration problems in the development of major mission subsystems (Radar, EW,

CNI, Mission Computer) in the aircraft programs under current development.

In the past, case studies at LAI stakeholder member organizations have been greatly facilitated

by the appointment of a single individual to serve as the main point-of-contact or interface

between the host organization and the MIT research team. Therefore, it is requested that the host

organization for the subject case study identify a particular person to serve as the main point of

contact for the prospective case study, with responsibility for logistics and coordination in the

course of the case study.

6. Protection of Data Confidentiality

The confidentiality of all data provided to MIT Lean Aerospace Initiative (LAI) researchers that

are otherwise not available publicly (e.g., business-sensitive plans, practices, processes or

technologies) shall be strictly protected in conformance with the data confidentiality and

proprietary information provisions of the MIT LAI Consortium Agreement with all industry

© Marc G. Haddad
277

0 Marc G. Haddad 277

sponsors. The same strict proprietary data protection provisions shall be extended to all

responding organizations that are not sponsoring members of the Lean Aerospace Initiative.

A nondisclosure agreement between the MIT LAI researchers and an individual organization will

be signed should that organization consider such a nondisclosure agreement a necessary

condition for its response to this structured case study interview. No information that is provided

by an individual or organization, even if it is not considered proprietary or confidential by the

individual or organization providing such information, shall be presented or published in a way

that would permit the identification of any individual respondent and, moreover, the identify of

no specific organization or any of its programs (products) will be identified by name without that

organization's prior written permission.

Data will be stored securely at LAI until research is complete, at which time any identifying data

will be destroyed. Reported data will be non-attributable. All LAI material is held behind a two

lock system. To protect against inadvertent release of information both LAI Research Assistants

and Research Staff who are part of this study are provided orientations at the beginning of the

academic year and an LAI Orientation Manual addresses these considerations.

7. Rights of Research Subjects

You are not waiving any legal claims, rights or remedies because of your participation in this

research study. If you feel you have been treated unfairly, or you have questions regarding your

rights as a research subject, you may contact the Chairman of the Committee on the Use of

Humans as Experimental Subjects, MIT, Room E23-230, 77 Massachusetts Ave, Cambridge,

MA 02139, phone (617) 253-4909.

8. Informed Consent Form

We would like to emphasize that participation in this research is completely voluntary. You are

free to refuse to answer any question you are either uncomfortable with or uncertain about. You

are also free to withdraw your participation at any time. We understand that you may have

© Marc G. Haddad 278

concerns about confidentiality. Several measures will be taken to ensure that your responses will

remain confidential. Data will be accessed and processed only by MIT Lean Aerospace

Initiative researchers directly engaged in the case study research project. All analysis of the data

will be represented in the form of aggregated statistics or interpretations. Excerpts from

interviews with specific individuals may be included in the aggregated analysis or research

results, but under no circumstances will there be any attribution to your name, your

company/program/division name or any identifying characteristics that can be traced to you.

Specific practices, processes or technologies that may be considered proprietary or business

sensitive will be accorded similar protection of data confidentiality. We understand that the

success of any research depends upon the quality of the information on which it is based, and we

take seriously our responsibility to ensure that any information you entrust to us will be

protected.

Please sign this form to show that you have read and had the opportunity to clarify the contents

of this document.

Signature: Date:

Do you agree to have excerpts from your interview reported in the form of a quotation (without

attribution to you by name)?

O Yes O No

Please print legibly (or attach a current business card):

Name:

Position:

Organization:

Phone/Fax:

E-mail:

© Marc G. Haddad
279

C Marc G. Haddad 279

