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Abstract of Report on

ERRORS IIT AITGLE RADAR SYSTE1mS CAUSED BY COMPLEX TARGETS

by James B. Angell

Submitted for the degree of Doctor of Science in the
Department of Electrical Engineering on October 3, 1951

Direction-indicating radar systems that are used for determining the

position of a target very precisely are subject to errors from a number of

sources, any of which tends to decrease the accuracy of the indications. One

of the principal causes of these errors when the target is close to the radar

is the complex nature of the radar reflections from the target. In most cases

the target does not have a simple configuration, such as an infinitesimal

point or a sphere; as a result, the ap-parent center of reflection, which is

the apparent target location as determined by a radar system with zero time of

response, wanders about in the vicinity of the target, and can even pass out-

side the physical limits of the target. This wander of the apparent center

of the target is quite apart from those errors produced in any of the various

sequential-lobe-comparison systems by amplitude fluctuations; it is present

with all types of radar systems.

Various analytical approaches, based on different sets of approxirm-

tions, indicate that the wander of the apparent target center affects single-

lobe, lobe-comparison, and phase-comparison systems to roughly the same

extent. When a target is sufficiently far from a radar to span only a

negligibly small portion of a lobe-width of the antenna. pattern, the system,

regardless of its type, indicates the target direction as the normal to the

phase front at the antenna. At shorter ranges, the magnitudes of the errors

with lobe-comparison systems and phase-cormparison systems are somewhat dif-

ferent, although, for systems with the same receiving-antenna aperture, there

is little to favor one type of system over the other. When other conditions

are held fixed, the magnitude of wander almost always decreases, though not

necessarily linearly, as the aperture size is increased. With a phase-

comparison system, care must be taken in the design of the measurement sections

to insure adequate bandwidth to prevent the system from going blind, due to
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wander, when the target approaches close to the radar.

One of the analyses shows that no relation necessarily exists between

the amplitude of the radar return and the wander of the apparent target center.

This fact is demonstrated by proving that Maxwell's equations are satisfied

by a two-dimensional field with any scattering pattern and a circular wave-

front. Consequently, no conclusive data on wander can be obtained from

records of amplitude fluctuations.

To obtain experimental data on wander and amplitude fluctuations, a

series of tests were made with an X-band phase-compnarison system and a variety

of aircraft targets in flight. Voltage spectra of the wander data show that

with large targets, frequency conronents above 40 cps can exist. However,

for reasonably long sections of data, the upper half-voltage points of the

spectra never occurred at frequencies above 20 cps. The zero-frequency

ordinates of the wander spectra varied between 2.5 and 8 feet/Icps, with an

average value of about 4.5 feet/Jcps (the total rms wander in a 1-c-ps band).

It was observed that the apparent center of reflection of a target consisting

of two aircraft flying in close formation sometimes moves rapidly over

distances greater than the aircraft separation. At other times, the mean of

its position tends to lock on first one, then the other, target in a random

manner, with the apparent center continuously oscillating about the average

position.
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ERRORS IN ANGILE RADAR. SYSTEMS CAUSED BY COMPLEX TARGETS

1. INTRODUCTION

One of the principal functions of many types of radar systems currently

being designed or in use is the accurate determination of the position of a

specific target. The main applications of such systems are in the fields of

gunfire control and guided missiles, where accuracies of the order of magni-

tude of a few yards are required.

The position of a target is determined by a radar set through the

measurement of two quantities, the range and the direction to the target.

The method used in determining range is considerably different from that used

for finding direction. An active pulse-radar set is able to measure range by

noting the time required for a pulse of radio-frequency energy to reach a

target and return. The measurement of time, even the short intervals in-

volved in radar ranging, is a very exact science, with the result that range

can be determined with good precision.

The direction of a target is found with some radar systems by orienting

an antenna with a narrow beam pattern so as to obtain maximum received signal

from the target. A considerably more accurate direction indication is

lobtained by other systems in which the antenna has a pattern with two narrow,

4independent lobes, which are generated by essentially separate feeds and

Pimed in slightly different directions, for each measurement plane. With such

system, the antenna is oriented in the direction which gives equal signals

pn the two feeds for each measurement plane. In a third class of systems,

'he difference in phase of the signals received by adjacent, similar antennas

is used as the basis for direction indication.
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In many applications, it is desired that a radar set furnish the angular

information with greater accuracy than that of the range data. A good example

is the case of a homing missile flying a constant-true-bearing collision

course towards its target. The basic information needed by the computer from

the radar is the time rate-of-change of the angle between the line-of-sight

1
from missile to target and the missile axis; the accuracy requirements for

any range data that might be needed by the computer are less severe than those

for the angular information. There are a number of sources of error which

are encountered in radar direction-finding, with the result that angular

measurements, in terms of feet at the target, are apt to be less precise than

range measurements. From these two facts it is evident that a good under-

standing of the various sources of angular errors is needed in designing

radar systems with optimum performance as direction indicators.

.1 SOURCES OF ANGUIAR ERRORS

Significant errors in.'irection-indicating radar systems can be pro-

duced by any one or more of four main sources.2 These are:

1 - Thermal (Johnson) noise

2 - Tracking-servo noise, such as backlash, time lag, or dead spaces

3 - Amplitude modulation of the echo by the target

4 - Fluctuations in the direction of the normal to the phase-front

of the reflected signal from a target.

The effects of thermal noise are well known. Its statistical properties

have been thoroughly explored, and the errors it produces have been computed.

The effects of thermal noise are important near maximum §ystem range, where

e echo from the target is weak.
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The various types of servo noise give rise to angular errors whose

magnitudes are independent of target range. They are a direct result of

inadequacies of system design, and can probably be kept within any desired

limits through sufficient care in design. Their properties can be studied

with any particular system by means of an appropriate laboratory test setup.

Amplitude fluctuations of the return from a target may cause serious

errors in certain types of direction-indicating systems. A system, such as a

conical-scan radar, which makes sequential measurements of the signals received

from a target by antennas pointed in different directions, is susceptible to

errors from this source. Monopulse, or simultaneous-lobing, radars virtually

eliminate errors from this source.

The errors produced by fluctuations in the normal to the phase front of

of the reflected signal appear to some extent in all systems and at any range.

The magnitude and statistical properties of these errors are comparable in any

type of system using a given transmitter frequency. These errors have been

listed by various investigators studying them under the titles of angular

scintillation, glint, variation in apparent angle of arrival, wander of

apparent center of reflection, and possibly others. The concepts implied by

the name 'wander of apparent center' seem to fit the actual phenomena most

accurately, so that this phrase will be used subsequently in referring to

errors from this cause.

Another possible source of errors, which might become serious in

1irection-indicating radar systems at very great target ranges, is inhomo-

Jeneity in the propagation medium between the radar and its target. Any

Ponuniformity could cause a refraction of the signal to or from the target,

•pnd displace the apparent target from its true position. Studies made of the

~L~ira~g~i~
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effects of such inhomogeneity on radio direction-finders indicate that the

effects are unimportant for ranges that are generally used by fire-control

and guided-missile radars.

This report is devoted primarily to the study of the wander of the

apparent center of reflection of a radar aircraft target. The apparent cen-

ter of reflection, which is the point to which an instantaneous radar tracker

would point, moves about in a more or less random manner in the vicinity of

the actual target. It does not necessarily remain within the physical limits

of the target, but can occasionally pass well outside these limits. The speed

of movement of the apparent center can be high; for aircraft targets, fre-

quency components of the motion as high as 100 cps. or more are possible.

When the angular deviations caused by wander are small compared with a lobe-

width of the radar-antenna pattern, so that all operation is within the

linear portion of the characteristic of the radar error-detector, the

average magnitude of the deviations for a given target is inversely propor-

tional to range. In other. words, the average magnitude of the deviations,

when referred to a linear dimension at the target, is aprroximately constant,

regardless of range. As a result, the wander problem is most important at

short range. It is of particular importance in the field of radar homing

missiles, which require accurate information on target position in the final

portion of their flight.

1.2 SUMM4ARY OF PREVIOUS STUDIES

The first studies of errors in electromagnetic direction-indicators

were performed in connection with low-frequency radio direction-finders. Most

of the errors in these low-frequency systems are such that they must be

handled empirically. However, as early as 1923, an attempt at a mathematical

F r .' h- -CCCI
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explanation of serious errors sometimes observed was made by Heiligtag.3' 4

He explained the phenomenon now known as the Heiligtag effect by hypothesizing

that when two waves of comparable amplitude from the same source arrive at

the receiver from slightly different directions, one of them may be split into

two components, one parallel to and one perpendicular to the other wave. When

the parallel component and the other wave are of the same magnitude and oppo-

site phase, they cancel, and only the perpendicular component remains.*

Great increases in the effort put into the study of the nature of

radar-target echoes have accompanied the rapid growth of radar techniques

since 1940. One of the first of the characteristics of echoes to be inves-

tigated in detail was the amplitude of the return signal. The Radiation

Laboratory Series presents examples of the range of amplitude fluctuations

that might be expected from aircraft targets. Polar plots are included of

the measured S-band return power reflected from various airplanes on the

ground, plotted as a function of the azimuth viewing angle. 5A  For a 3-26

aircraft, the power received often changed as much as 15 db. for a change of

only 1/3 degree in aspect angle.5B  There are also shown polar plots of the

fractional modulation of the return signal caused by rotation of the propel-

lors of the aircraft. Other studies have been concerned with the time

dependence of the amplitude of echoes from aircraft in flight. Project Sambo

at the Radiation Laboratory was concerned with the identification of aircraft

by noting the principal frequency components in the modulation of the echo

return.6' 7 'The amplitudes of successive pulses of radar target return have

*Such an argument is valid only when the receiving antenna is of practically

zero wavelengths dimensions, because it is not justifiable in general to

split a wave into two components travelling at right angles.
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8, 9been recorded photographically in various tests.8'  The effects on tracking

of a conical-scan radar produced by amplitude fluctuations have been computed

by a number of writers.
2' 10, ll

Experimental studies of the actual tracking performance of complete

radar systems in actual use have been made for many systems.12' 13, 14

Most such studies have been made with a bore-sighted motion-picture camera on

the antenna mount. The analysis of such data gives the nature of the radar

jitter as filtered by the tracking-servo system. The problem of tracking

over water, where the presence of a fairly definite image can be very detri-

mental to performance, has also been investigated.15 There exists a report

on the theoretical and actual behavior of a conical-scan radar while tracking

two aircraft in close formation. TMhe error-detector output is treated

analytically as the algebraic sum of the outputs due to each aircraft

individually. It is shown that this treatment gives a fair indication of the

rms. value of an actual output. The results of both the experimental and the

analytical studies show the radar pointing indecisively at or between the

targets until their angular separation is sufficiently great that the radar

can resolve them.

Although the study of wander has received considerable attention within

the past six years, the results obtained have been by no means exhaustive.

The general mathematical background for an analytical solution was established

by Orout and Bothwell,16 and some simple examples of the application of their

method are shown in their report. In another report, Stibitz has determined

the position of the apparent target center of a two-point target at long range

with a linear lobe-comparison system.17 Delano has performed an admirable

statistical derivation of the wander of the apparent center of a target with
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an infinite number of point reflectors, as determined at long range by a

linear lobe-comparison radar.11

The experimental determination of wander associated with aircraft tar-

gets has been reported by few investigators up to the present. Some data on

the output of the error detector of a conical-scan c-w radar optically aimed

at the target are available in which sufficiently short ranges were used

18
that the errors due to amplitude modulation were relatively small. These

data were filtered by a 0.1 second low-pass filter, so that the actual

rms. wander cannot be evaluated. Meade has recorded and spectrum-analyzed

the output of the error detector of a simultaneous-lobing radar. In this

setup, the output which might result from tracking inaccuracy was removed

by subtracting from the output the voltage from a second error detector

operating on a beacon signal from the target. The results of this program

promise to be extremely pertinent, although at present only a small amount

of data has been published.2

The problem of reducing the errors produced in radar tracking systems

by target echo fluctuations has been attacked in many ways. One method

involves the use of improved methods for the detection of angular errors.

An example of this method is the development of simultaneous lobing systems,

a class of monopulse systems, in which the amplitudes of the signals received

by two overlapping lobes of an antenna system are measured simultaneously,

rather than sequentially.21, 22 Such systems eliminate the errors resulting

from pure amplitude modulation of the target echo return. Another illus-

tration is the use of a multiple-antenna phase-comparison system.
23' 24

For example, a three-antenna system can be used to obtain correct data on

the angle-of-arrival of two waves from different points, although it would be

-701rt
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inadequate for three waves. Such a system probably has its greatest use in

multiple-target problems or in tracking low-flying targets over smooth

surfaces, and is useless for reducing wander from a single target.

Another technique of error reduction is based on the use of a frequency

filter in the output of the error detector of any type of system. In this

method, the frequency characteristics of the filter, which may be the servo

system of a tracker, are specified in accordance with some criterion for

system performance, such as minimum mean-squared error or maximum hit

probability.10B, 19, 20 In order to determine the filter characteristics, it

is necessary to know the statistical properties of the error-detector output

caused by target-echo fluctuations and of the motion of the tracked target.

1.3 SCOPE OF THE RESFARCH PROGRAM

The research reported in this paper can be divided into three principal

categories. In the first place, experimental data was taken to determine the

nature of wander of the apparent radar center of actual aircraft targets in

flight. Very little information of this sort has been available up to the

present, and the demand for it is constantly growing. Of great interest are

the rms. values and the frequency spectra of the wander of various types of

aircraft, particularly the low-frequency ordinates of the spectral density

curves. These data are required by those who are interested in optimizing

the performance of radar tracking systems by specifying the filtering char-

acteristic of the servo system.

Secondly, an analytical evaluation was made of the effects of wander

on a phase-comparison system of radar direction-finding. Cursory examination

of the problem indicates that the response of such a system to wander cannot

necessarily be predicted from the response of a more conventional system. The

4i®rVNINOW
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use of this type of system in obtaining the experimental data, plus its use

in the Meteor guided missile and other recent applications, have accentuated

the need for such an evaluation.

Finally, a comparison is presented of the errors produced by wander in

various types of radar direction-indicating systems, namely, single-lobe

(searchlight), lobe-comparison, and phase-comparison systems. For the most

part, the comparison is focussed on the inherent capabilities and limitations

of the several methods of angular measurement, and not on particular system

designs.

The analytical program is presented in Chapter 2. The analyses furnish

a means for obtaining some idea as to the order of magnitude and properties of

wander. They form the most important basis for comparing the effects of

wander on the various systems. In addition, they indicate very clearly the

quantity which should be measured to obtain the desired information on

wander, thus providing the necessary justification for the methods actually

used in obtaining data. The details of the more involved analyses are

omitted from the chapter on analytical studies, and are presented in

Appendices A through E at the end of the report.

The experimental program will be described in Chapter 3. The spectra

of wander obtained with an X-band system and various aircraft constitute

the most sigmificant information in this chapter. A general description of

the radar systems used for obtaining the data is included, although the

details of actual circuitry and operation are left to Appendices F, G, and H.

Is~ki~s~s~E·1



2. THE AVNALYSIS OF WANDER

Various analytical approaches can be made to the problem of determining

the nature of the random wandering of the apparent center of reflection of a

radar target. Because of the complexity of the processes in which any of the

various approaches becomes involved, none of them can be conveniently carried

through to exhaustive completion. Nevertheless, each of the approaches covers

some aspects of the problem which the others do not, so that it is worth while

to examine them all. Furthermore, by the time they all have been covered, a

fairly thorough treatment of most of the aspects of wander has been made.

Before proceeding with the analyses, a qualitative discussion of the phenome-

non of wander will be presented.

Precise Description of Wander The apparent radar center of a target

is defined as that point in the vicinity of a target to which an ideal radar

tracking system would point. An ideal system is defined as a linear system

perfect aiming, instantaneous response to angular changes, freedom from

thermal noise, and complete insensitivity to amplitude modulation of the

target echo. Expressed in another way, if the target were perfectly rigid

and stationary, the apparent center is the point to which a radar system

would point on the average. As the target moves, either as a unit or by

slight changes in shape, the apparent center moves about. The mean value of

the positions of the apparent center is most probably near the actual center

of the target. It is the motion of the apparent radar center, relative to

this mean value or to the geometrical center (it makes little difference

which is considered), that is called wander.

The warder is a direct result of the complex shapes which are possessed
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by almost all actual targets. There is no wander at all with simple target

shapes, such as a point reflector or an ideal spherical reflector,

Wander inherently affects all types of tracking systems, though not to

exactly the same extent in all cases. At very long ranges, when actual

antenna patterns can be replaced by linear approximations, the wander associ-

ated with a given target is the same, regardless of the type of system used.

At shorter ranges, in those cases when antenna-pattern nonlinearities cannot

be ignored, slight differences arise which may favor one system more than

another.

At this point it is desirable to note the difference between wander and

the output of the error detector of a linear system. The wander indicated by

any system is almost independent of the type of system, while the error-de-

tector outputs of various systems under identical conditions may be vastly

different. This is well illustrated by some of the results of the two-point

target analyses.

There are two different models of targets which can be used in explain-

ing and analyzing wander, and unfortunately they do not lead to the same

results. Either of the models represents a possible physical situation,

though one is generally more feasible. The first model is constructed by

replacing the actual target by a point source (probably amplitude modulated)

which 'wanders' (from whence the term wander) about the target in the same

fashion as the apparent center of the actual target. Such a model is suitable

for representing specular reflection, or glint, off first one, then another,

(and so on) predominant area of a target. This kind of model can never

justifiably show the apparent center off the physical target.

The second, and usually more realistic, model can be explained if one
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considers the target to be made up of two or more small reflecting areas

distributed over the target, each having a relatively broad scattering pattern.*

The target can then be replaced, with some restraint on the magnitude of its

rotations, by a number of point sources or reflectors, each fixed in position

and giving a signal of constant amplitude. In this case, the wander results

from interference of the various signals at the receiving antenna. With this

model the apparent center can pass well outside the physical boundary of the

target.

Other differences in the type of wander associated with either model

will become apparent later on. For example, let there be constructed two

models, one of each type, such that both give the same wander at very long

range. At relatively short range, when the receiving antenna system spans

a significant fraction of a lobe width of the target scattering pattern, the

two models may give substantially different wander, both in magnitude and in

spectral density. Such differences make caution necessary in interpreting

the results derived from the assumption of either model.

Analytical Ayproaches There are four methods by which the analysis

will be attacked. In each of the approaches, the angle-determining element

will be considered to be the receiving antenna system; the target illumina-

tion is to be obtained by an external, independent means, and is to be the

same for all systems. Such an assumption is made partly for mathematical

convenience, and partly because it represents the actual situation in many

homing-missile and gunfire radar systems. In cases where the same antenna

*A report by Stibitz17 contains a very plausible qualitative discussion of

the basis for assuming a multi-point target model, and of reasons for its

greater realism.

0.1 WN
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system is used for transmitting and receiving, effective beamwidths are

smaller and the magnitudes of wander frequently less than in one-way systems.

Nevertheless, at very long ranges, the average magnitudes of wander for both

the two-way and the one-way systems are approximately the same for any given

target.

It is assumed that the desired quantity to be measured by any system is

the position of the target, and not some other function of position, such as

the angular rate-of-change of the line-of-sight to the target. This is the

quantity which lobe-comparison systems are able to determine most conveniently.

Phase-comparison systems are somewhat better suited to measure the angular

rate-of-change rather than position. However, if the ambiguities which can

arise with the latter systems are not important, or are resolved by determining

the initial conditions, the phase-comparison systems can be considered as

position indicators, as is done in Appendix B.

The four analytical approaches are introduced here in the order in

which they will be presented.

a. Comparisons based on Signal Distribution at Receiver. The forms of

amplitude and phase distributions of the signal reflected from a

target are assumed over the aperture of a radar receiving-antenna

system. The expressions for indicated direction can then be estab-

lished for various systems. The expressions for various systems are

compared for simple forms of the distributions, which correspond to

long and intermediate target ranges. The results are useful in

showing the similarity of the various systems. At short ranges,

evaluation of the expressions becomes hopelessly complicated.

b. Wander with a To-point Taret. From the assumption of a two-point

rt!i ·L~'~~;?t ~ ~*"
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target with a definite, fixed ratio of signal strengths of the two

points, the wander can be computed for various systems. The solu-

tions, obtained graphically, indicate the magnitude and form of

wander which can be expected at different ranges. A comparison of

the various systems is possible in to very short ranges. The outputs

of the error detectors of phase-comparison and lobe-comparison systems

are also studied.

c. Phase-detector Outout with a Malti-point Target. The target consists

of an infinite number of point reflectors distributed at random over

a target. The expressions for the output of the phase-detector of a

phase-comparison radar are then derived for systems with amplitude

limiting and without amplitude limiting. The long-range results for

the system with limiting show some of the properties of the wander

associated with such a target.

d. Amplitude-phase Relations from Maxwell's Equations. A particular

solution of Maxwell's equations shows that there is no necessary

relation between the amplitude scattering pattern of a reflector

and the shape of the phase-front of the reflected energy. It can

be inferred that no definite information on wander can be obtained

by measuring the amplitude of signal echoes from a target. However,

the maximum possible phase-front distortion that can accompany a

given amplitude pattern is derived.

2.1 SYSTEM COMPARISON TROM SIGIAL DISTRIBUTIIO AT RECEIVM

A comparison of three types of radar direction-indicating receivers

will be presented in this section. The phase-comparison system indicates the

direction to the apparent center of a target by orienting in such a way that

TITfo,
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the phase difference of the signals received by two adjacent antennas is zero.

The single-lobe system, sometimes referred to as a searchlight system, orients

that lobe in the direction for maximum amplitude of received signal. The

lobe-comparison system, which is assumed to have two overlapping lobes

generated in the same aperture by separate feeds, equalizes the magnitudes

of the signals in the two lobes for its direction indication. It is assumed

that each of the latter two systems have a uniform aperture, which produces

the well-known (1/H)sin H lobe pattern.

The two antennas of the phase-comparison system are physically relatively

small, so that they can be considered as omnidirectional. The phase and

amplitude of the resultant signal received by either antenna are then equal to

the phase and amplitude of the incident wave at the center of that antenna.

The expression for the signal received by the uniform aperture of the

single-lobe system can be readily determined with the aid of Fig. 2-1. The

uniform aperture is defined as one which transmits, with the' same phase delay,

to the antenna feed all the signal incident upon any infinitesimal portion of

the aperture. As shown in Fig. 2-1, the direction of propagation is along

the negative y-axis, the angle between the antenna axis and the y-axis is B,

and the aperture dimension in this two-dimensional problem is d. The re-

ceived signal S is then given by

-d cos x
S b AeJS = A(x) e JC ( x ) + -K- sin 0] dx, 2-1

where A(x) and O(x) are the distributions of amplitude and phase of the

incident wave. In most applications, the lobe pattern is quite narrow, with

the result that the maximum values of b that are of interest are small. No

significant errors are introduced in these cases by writing
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I:

PHASE
FRONT

SIGNAL DISTRIBUTION AT UNIFORM APERTURE OF
RECEIVING ANTENNA

Fig. 2-1

A(x)) eje(Axx, 2-2
_1d 'd

the second equality serving to define G(x).

The signals in the two lobes of a lobe-comparison system are given by

( d 2rr(B ± q) (d
Sa,b =  A(x) ej[O(x) + X x] dx A(x) eJ[Ga,b(x)] dx, 2-3

d 3xd

where 0q is the angle between the antenna axis and the axis of either lobe,

or the squint angle. This expression applies equally well to either simul-

taneous-lobing or sequential-lobing radar systems. For a conical-scan system,

r7 __..ýia~
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it gives the received signals corresponding to both extreme positions of the

lobe axis in a plane.

2.11 Direction Indication of Single-lobe System

When a single-lobe antenna is pointed in the direction for which the

received signal has its maximum amplitude, the derivative of amplitude with

respect to angle is zero. Therefore, if AS is the magnitude of S,

dAS -- 0 2-4dB

is the necessary condition for determining apparent direction. Of course,

this condition could also indicate a minimum, but a study of the second

derivative or of a plot of magnitude vs. angle will insure correct inter-

pretation.

It is shown in Appendix A that this condition is fulfilled when

A(x) a-S x] sin [G(x) - S] dx = 0 2-5

3d

where OS, defined in Eq. 2-1, is itself a function of A. An equivalent

expression, containing no such undetermined constant, is also derived in the

appendix. It is

d id
x A(x) A(y) sin [G(y) - G(x)] dx dy =0, 2-6

d d

where y is a dummy variable for x. To obtain any explicit data on B, contained

in G, from either of these expressions is no trivial task when A and a are

of order higher than the first.

2.12 Direction Indication of Lobe-comparison System

A lobe-comparison system is oriented in the direction of the apparent

center of a target when 0 is such that

711~E~1B~~
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ASa = ASb , 2-7

where Sa and Sb are given in Eq. 2-3. If Sa and Sb are each separated into

their real and imaginary components, Sa = R[Sa + jI[S.] and Sb = R[Sb] + JISb],

the condition given by Eq. 2-7 is also given by

R2Cs ] + I2Csa = R2CSb] + 12[CSb ] . 2-8
It is shown in Appendix A that these relations are satisfied when

A(x) sin[G(x) - + sin[ x + d O = 0 2-9

dsa - sb ds
As Pq approaches zero, 2-q becomes merely d , and this equality

degenerates into that given by Eq. 2-5. The equivalent double-integral

expression containing no undetermined constants such as AS and OSb is

id (d
A(x) sin[- x] A(y) cos[•- - y] sin[G(y) - G(x)] dx dy = 0.

d Id 2-10

It can be seen that this equality is the same as the one in Eq. 2-6 for small

values of q. Therefore, the wander with a lobe-comparison system having a

small squint angle is the same as with a single-lobe system. However, for

values of 0q which give a crossover point of the lobes near their half-power

points, and which are more realistic in practice, it is difficult to compare

the wander in the two systems from cursory examination of these equations.

2.13 Equivalence of Lobe-amplitude- and Simultaneous-lobe- Comparison Systems

At this point it is desirable to demonstrate that, insofar as wander is

concerned, two somewhat different types of lobe-comparison systems are

equivalent. The first of these systems employs lobe-amplitude comparison,

and orients for equal signal amplitudes in the two lobes. In the second system,

the two antenna feeds associated with the separate lobes are fed into opposite
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21
arms of a r-f magic-tee hybrid junction. The outputs P and M of the sum

and difference arms of the magic tee are amplified and applied to a phase

detector. The direction to the apparent target center is indicated when the

output of the phase detector is zero. The age of the first system operates

on the average of the amplitudes of the two lobe signals. The agc of the

second system tends to keep the magnitude of P constant.

Assume that the error detector of the lobe-amplitude-comparison system

has a linear characteristic. Its out-out is then

A -ASb (R2[] + I2ESa]) - (R2 LS] + I2 Sb] )
5a 2 1 1 2-11aAS + Asb] (R2Sa] + 2[Sa])2 + (R2 Sb] + 12ESb])D

The phase detector in the second system, which is typical of present-

day simultaneous-lobe comparers, is such that it measured the component of

P in phase with M. Thus its output is proportional to the cosine of the

phase difference.* If we let M be defined as the component of M in phase

with P, the output of the phase detector can be written as

SM P= REM] R[P] + I M] I[P]
Ap Ap2  R 2C[] + 12CP]

R2[Sa] + I2[Sa] - (R2[Sb] + 12[Sb) AS2 -ASb2
.= 2-12

R2 a] + I2[Sa] + R2[Sb] + I2[Sb] AS2 + Sb2-12

It is obvious that Eq. 2-12 goes to zero when and only when EQ. 2-11

goes to zero. In fact, if the linear error detector of the former system

were replaced by a square-law one, the two expressions for error-detector

*The phase detector in a phase-comparison system such as the one used in the

experimental part of this research has an output which is approximately

proportional to the sine of the phase difference. This characteristic is

obtained by phase-shifting one signal through 90 degrees.
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output would be the same, aside from the unimportant factor of 2. Therefore,

it has been demonstrated that the two systems are equivalent.

2.14 Direction Indication of Phase-comparison Systems

In a two-dimensional case, a phase-comparison system determines the

direction of the apparent center of a target by measuring the phase differ-

ence of the signals received by two adjacent antennas.* When the perpen-

dicular bisector of the line joining the antennas is aimed at the apparent

center, the phase difference is zero. It should be pointed out that this

condition of zero phase difference is not wholly sufficient; ambiguities

exist because there are many directions which give zero phase difference

when the antennas are spaced many wavelengths apart. However, for the study

of wander, these ambiguities can be ignored. In practice, they can be

eliminated in various ways, or they may not be important, as in the case of

angular rate measurement.

There are four somewhat different types of phase-comparison systems

under consideration, but they indicate the same apparent center. The four

systems are described in Appendix B. Their equivalence is shown on the

diagrams in the appendix; in each case, the phase of a signal or a shaft

rotation with respect to a reference is equal to the phase difference of the

received signals.

Let the antenna spacing be d, the dimension of the aperture in

Fig. 2-1. No loss of generality is involved; this assumption merely provides

a convenient normalizing factor and a basis for comparing the various

*Two pairs of antennas, arranged so that the lines joining the antennas of each

pair are not parallel, are needed for three-dimensional direction indication.



systems. Using the notation introduced in Eq. 2-2, the condition for correct

antenna-system orientation can be written

G(x = 4d) - G(x = -1d) = 0, * 9 2-13

using 0 if A(x) has the same sign at +2d and --9d, or _n+ if the signs of A(x)

are opposite at x = +2d and x = -'-d.

2.15 Comparison of Systems with Target at Long Range

As the distance between target and radar system is increased, the

largest fraction of a lobe of the target scattering pattern that is spanned

by the radar aperture is correspondingly decreased. At very long range,

this fraction approaches zero, with the result that the signal strength is

constant across the aperture. Simultaneously, the higher order terms in

the expression for A(x) diminish, until eventually the expression can be

written

O(x) = uo + uix. 2-14

It will be assumed that, at long range,

A(x) = vo , (x) = Ux, 2-15

where uo has been dropped because it is an irrevelant constant dependent on

an arbitrary starting time of observation.

With these simplifying assumptions, G(x) is given by

G(x) = ix + x = (ul + ) X . 2-16

The G's are the only terms in Eq's. 2-6 and 2-10 that contain $. Therefore,

the value of 0 for any ul can be found from the value of 0 for ul = 0 from

the relation

ulhB= ( 1 =0) - u 2-17

It is well known that BU= 0 = 0, because that is the case of an infinite

. I - VOl~~~ CIr` I r
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plane wave. Eq. 2-17 then shows that both the single-lobe and the lobe-

comparison systems indicate direction in this case by orienting normal to the

phase front, as does the phase-comparison system.

Two important conclusions can be drawn from these relations. First,

the observed wander of the apparent center of reflection of a target at

long range is independent of the type of radar system. Second, any system

tends to orient its axis normal to the phase-front of the received signal,

not parallel to the direction of propagation.

2.16 Comparison of Systems with Intermediate Target-ranges

At somewhat shorter ranges than those considered in Sec. 2.15, the

amplitude distribution across the aperture can no longer be considered

constant. The intermediate-range problem will be defined by assuming

() = ul , A(x) = v0 + v1x . 2-18

As Sec. 2.15 might suggest, the quantity of interest to be studied here is

the angular deviation from the normal to the phase-front that is produced

by the amplitude distribution.

A graphical solution to this problem is given in Appendix A. The results

of interest are shown in Fig. 2-2. The independent variable, xnull , is the

point where A(x) = 0. When -dd < xnull < +2d, the zero-point is within the

aperture. The quantity H used in defining the ordinates of these plots is

the angular error normalized in terms of the lobe-width; the node-to-node

beamwidth of the uniform aperture is 2rr radians, in terms of H. It is

assumed that A(x) can have negative values, so that no 180-degree phase

discontinuities are encountered. The plots show that the apparent direction

is normal to the phase front for any system whenever the zero-point is outside

the aperture. If a uniform motion of the zero-point across the aperture is

I1d~~
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assumed, it is apparent that the average error away from the normal to the

phase-front is somewhat greater for the phase-comparison system than for the

others.

The curves in Fig. 2-2 do not indicate the sign of the errors produced

by the amplitude distribution. In the appendix it is shown that either sign

of error is equally probably, and that the choice of either sign by any of

the systems is a random one.

2.2 ANALYSIS Q? A TlO-POINT TARGET

A particular two-point target was selected as a basis for the computa-

tions of this section. Such a target is sufficiently simple that explicit

answers can be obtained graphically even for very short target ranges, where

the receiving antenna aperture spans as much as a lobe-width of the target's

scattering pattern.

Physically a two-point target is a highly justifiable configuration.

Targets such as two aircraft in close formation or a single aircraft with a

small body and two large nacelles, for example the Navy F7F, closely resemble

the two-point target. In addition, many aircraft appear as essentially two-

point reflectors when viewed from broadside, as some of the experimental work

of this research illustrates. Apparently there are two predominant echoing

areas, one the tail surface and one near the wing root, of a conventional

aircraft when viewed from broadside.

A single value of 0.8 was chosen for the ratio of signal strengths of

the two points. This value was chosen as a compromise between practical

interest and accuracy of plotting. The larger the ratio, the greater are

the spikes of wander, and the greater the difficulty in plotting and inte-

grating the curves of wander.

g
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2.21 Wander of the Apparent Center of a !io-point Target

The position of the apparent center of a two-point target is shown as

a function of the phase difference between the two points in Fig's. 2-3, 2-4,

and 2-5 for the single-lobe, lobe-comparison, and phase-comparison systems

respectively. The abscissa of these plots is the phase difference of the

signals from the two points measured in each case at the center of the antenna

system. The ordinate, w/s, is the coordinate of the apparent center measured

from the stronger point source in a direction normal to the line-of-sight

and normalized in terms of the point spacing s. The parameter of these

sdcurves, , where R is the range from radar to target, is an indication of

the physical size of the antenna aperture in terms of the lobe-width of the

sd
target's scattering pattern. In fact, when = 1, the antenna aperture

spans exactly one complete lobe of the scattering pattern.

It should be noted that s is measured normal to the line-of-sight.

Furthermore, it has been implicitly assumed in the computation of these curves

that changes in the angle of the line-of-sight as it follows the apparent

center introduce only negligible second-order effects. This assumption is

equivalent to stating that s/1 is very much greater than unity. Such an

assumption is reasonable in the light of present-day radar practices.

A few points brought out by these curves are worthy of special mention.

First, the large spikes of wander that occur at long range for all systems

are substantially larger than the target, and are always off the target on

the side of the stronger point. Secondly, the magnitude of the wander

decreases very definitely with decreasing range. Finally, if the assumption

is made that p changes uniformly with time, it is seen that the bandwidth

of the spectrum of the wander does not increase with decreasing range.
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A summary of these three families of curves is contained in Fig. 2-6,

which shows the average magnitude and the rms of the wander measured by the

three systems away from the position of the stronger point of the target.

These data were obtained by graphical integration, with respect to p, of the

curves of Fig's. 2-3, 2-4, and 2-5 and the squares of the curves.

The methods used in computing the curves of wander versus p are described

in Appendix 0.

2.22 Error-detector Output with a T2o-point Target

The previous section illustrates the performance of the various types

of radar systems when they are associated with an essentially instantaneous

tracker, so that they can accurately follow the apparent center. It is also

of interest to kn(ow the effects of wander when the radar remains stationary,

which might correspond to the case with a tracker of infinite time-constant.

With such a tracker, the radar would eventually orient in such a direction

that the average error-detector output is zero. Unfortunately, it is a

difficult task to find the position of the apparent center which corresponds

to zero average output, except for the phase-comparison system with limiting.

In the latter case, the position corresponds to that of the stronger point.

For the other systems, this problem cannot be readily solved. However, a

very similar problem which can be easily solved is the one in which the radar

is oriented in the direction of the stronger point of the target. In this

section there are presented curves showing the error-detector outputs of

various phase-comparison and lobe-amplitude-comparison systems for a two-

point target with the radar aimed at the stronger point. It is assumed that

the lobes of the lobe-comparison system cross at their half-power (one way)

points. The computations necessary for obtaining the curves are described



Sec. 2.22 30

in Appendix 0.

The outputs of linear error detectors of lobe-comparison radars with

fast-acting agc and with slow-acting age are shown by the curves of Fig's. 2-?7

and 2-8 respectively. The fast agc is defined as one which is able to

eliminate changes in the instantaneous mean of the amplitudes of the two

lobe signals which are caused by changes in I. The slow age merely holds

constant the average for all u of this instantaneous mean. The nonuniform
ad

spacing of the curves corresponding to different values of the parameter s

seems to reflect on the computational accuracy. However, many checks were

made which indicate that the curves are approximately correct; apparently,

the nonuniformities result from the manner in which the nonlinear lobe

patterns enter the computations.

The outputs of the phase detectors of various phase-comparison radars

are shown in Fig's. 2-9 and 2-10. In the case of the system with limiting,

it was assumed that the output of the phase detector is proportional to the

sine of the phase difference of the signals. For systems without limiting,

it can be seen that the nature of the output depends on the type of phase

detector that is employed. Twin-diode phase detectors, which are exemplified

by the one used in the data-recording radar system described in Appendix F,

have a peculiar unsymmetrical performance when the two signal inputs are

unequal. This phenomenon is a result of nonlinearities in the process of

taking the magnitudes of vector summations. It was assumed in all the

computations for systems with no limiting that slow-acting age circuits

held constant the average signal level in each signal channel.

These families of curves are summarized in Fig. 2-11, which shows the

average magnitude and rms of the error-detector outputs for the different
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systems. This figure was obtained in the same manner as was Fig. 2-6.

The results of this section were obtained for a set of conditions which,

although possible, are for most cases somewhat artificial. Nevertheless,

some important conclusions can be drawn from the results. In the first place,

it can be seen that the spectral bandwidths of the outputs (assuming p

increases uniformly with time) do not change significantly with range.

Secondly, one can get an estimate of the magnitude of the noise produced

by wander that is fed from the error detector into whatever control system

might follow.

2.23 Oomparison of Systems with a TI~o-p]oint Target

It is now possible to form another comparison of the various types of

direction-indicating systems similar to the one made in Sec. 2.16. On the

basis of Fig's. 2-6 and 2-11 it can be said that the performance of the

lobe-comparison systems is essentially the same as that of the phase-compari-

son systems at long range. By the time that the target is close enough so

that the radar antenna aperture includes an appreciable portion of a lobe

of the target's scattering pattern, the errors with the lobe-comparison

systems are somewhat greater than those with the phase-comparison systems.

There are also larger errors in systems with limiting (or fast age) at long

range than in systems without limiting; however, this difference quickly

disappears with decreasing range.

It is interesting to consider qualitatively the behavior of the curves

sd
of Fig's. 2-6 and 2-11 for values of s greater than 1. First it should be

noted that the curves for the phase-comparison systems go to zero when

sd 1, or any integer, because the phase difference of the signals produced

in the two antennas by either point is the same. Therefore the resultant

II_ - '" M• .....
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signals in the two antennas have the same magnitude, and the phase difference

is the same as is produced by either point. The maximum possible phase-

detector output or angular wander does not depend on range, but only on the

ratio of the strengths of the two point sources. Thus it can be said that the

maximum possible wander is inversely proportional to range, when measured in

terms of a linear dimension at the target. From these two ideas, it can be

hypothesized that the shape of the curves for the phase-comparison systems

sd
with greater than 1 is something resembling a plot of (1/x)sin x.

For the lobe-comparison system, the actual strength of the signal

received from the weaker point of the target would decrease with decreasing

range, because that point is passing farther and farther from the main lobe

of the antenna (presumably the system would invariably track closer to the

stronger point). Thus the size of the angular errors themselves would

decrease with decreasing range. As a result, the curves for the amplitude-

sd I2 . At very short ranges
comparison systems fall off with increasing as . At very short ranges,

then, the errors in the lobe-comparison systems would be less than those in

the phase-comparison systems.

2.3 PH&AS-DETECTOR OUTPUT VITH A MULTI-POINT TARGET

Now that the analysis of the two-point target has been completed, it is

appropriate to consider a target that is made up of an infinite number of

point sources distributed at random within its boundary. These two extreme

cases serve to bracket the problem of reflections from multi-point targets.

It is not possible to obtain an exact solution for the various systems

with an infinite-point target. Nevertheless, an ap-proximate solution for the

output of a phase detector of a phase-comparison radar system can be attained.

At long range, the phase-detector output of a phase-comparison system with
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limiting is exactly proportional to the wander of the apparent target center.

Secondly, it was the output of a phase detector that was recorded for the

experimental study of wander to be described, and it is desirable to know the

size of discrepancies caused in some of these data by insufficiently great

target range.

2.31 Probability Densit of Phase-detector Output

The probability density function of the output of the phase detector of

a phase-comparison system both with and without limiting is determined in

the analysis to be described here. The phase detector of the system with

limiting is such that its output is proportional to the sine of the phase

difference of the resultant signals at the two antennas. In the system

without limiting, the phase-detector output is assumed to be proportional to

the product of the sine of the phase difference and the amplitude of one of

the signals. This characteristic is typical of a twin-diode phase detector

when one of the inputs is shifted by 90 degrees and is always substantially

smaller than the other.

Let the signal in one of the antennas be given by

S1 = an eJ~ AleJl , 2-19
n-1

where an and pn are the amplitude and phase, respectively, of the signal from

point n on the target and N is a large integer approaching infinity. The

signal in the other antenna can then be expressed

S2 = A2 eJO2 = ane J(h + kzn) = aneJn ejkzn
n=l n nl

N N

n= eJl + n (e k zn - 1)ane J an
n=l n=1

AS + D 2-20
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where

2-21k 4 XR

and zn is the distance of the point n measured normal to the line-of-sight

from the radar to the center of the target, as shown in Fig. 2-12. Because

Dnthtrr

RENT
.R OF
-CTION

R (NOT TO SCALE)

V V RECEIVER
d

MULTI- POINT TARGET

WITH PHASE COMPARISON SYSTEM

SI

VECTOR DIAGRAM
OF

RECEIVED SIGNALS

Fig. 2-12 Fig. 2-13

it has been assumed that the distribution of points on the target is random,

there is no relation between the position coordinate zn and the amplitude an

or the phase 1ýn of any point n. As a result, the coefficient of any term in

~rrrlC-~lb~l' aaa~aa~l,

| II
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the summation for D is uncorrelated with the equivalent coefficient in the

summation for S1 , and D and S1 are statistically independent.

In the system with limiting, the output of the phase detector is

sin(02 - 0p ) .  It can be seen from Fig. 2-13 that

component of S2 out of phase with S1sin(O2 - 1) A=

- sinA2

- Vm , 2-22

where Dp is defined as the component of D out of phase with S1. It will be

assumed that in the system without limiting a slow-acting agc is included, with

the result that sin ,d is multiplied by A2/(k2). Thus,

- V4 2-23
A2 n

is the output of the phase detector when no limiting is employed.

Both D and S2 are made up of a very large number of independent com-

ponents, none of which, it will be assumed, makes up a significant portion of

the resultant. Therefore, both these quantities are normally distributed in

two dimensions. The statistical independence of D and S1 has been demon-

strated, with the result that Dp has a Gaussian distribution function

-3 2/(2,,)
p ()p = ) e p p dnc . 2-24

'2nDp2

The amplitude A2 of S2 is the magnitude of a normal two-dimensional distri-

bution, and has a standard Rayleigh distribution

p(A2) dA2 2 - e A22 . 2-25

The magnitude of all practically significant values of Dp can be made

~UUEEa~
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arbitrarily small compared with any significant values of A2 by choosing a

sufficiently large target range, because Il is inversely proportional to range

at long range. At those ranges where Dp is always considerably smaller than

A2 , the two quantities are statistically independent. The problem of finding

the probability density of the phase-detector output then becomes the problem

of finding the probability density of the quotient of two random variables

whose individual probabilities are known. The solution to this problem is

obtained in Appendix D, using a method outlined by Uspensky.25 The resulting

expression for the probability density function of the phase-detector output

in the system with limiting is

2 dVm
p (V) dVm 2-26p(Vm)  - 2(Vm2 + Q2)3/2

where

2 4  eJkzn . 112 2 2-27

At the long ranges considered in the last paragraph, the operation of the

phase detector is restricted to the linear portion of its characteristic.

With this restriction, the phase-detector output is completely proportional to

the actual phase difference existing at the antennas, and therefore to the

wander of the apparent target center. Also, at long range the value of k

is small, with the result that Q2 is very nearly equal to (kzn) 2 = k= z If

these two facts are incorporated into Eq. 2-26, the resulting expression for

the probability density function of the wander at long range is

dn 2dz
p(-) dz -= 328*

2(z 2 + n )

This result agrees with one derived by Delanol l on the basis of a lobe

amplitude-comparison system.
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In this expression, the normalization of the phase-detector output in terms

of a linear displacement at the target is explained when it is realized

that the output due to a unit displacement of a single-point target is k.

The above results are no longer valid when the range is sufficiently

short that D may become appreciable compared with A2 . If D and A2 were

still independent in such a case, it is obvious that there would be a finite

probability of Dp > A2 .  q. 2-22 and Fig. 2-13 show that this inequality

is impossible. In order to resolve this dilemma let it be assumed that

V = 1 whenever the probability given in Eq. 2-26 calls for a value greater
m

than unity.* Thus,

Q2 dVmp(Vm) dVm = 2(V2 m (- 1< Vm< +1)
2(Vm2 + 2)3/2 m

2-29oo 2 a2
P(Vm = -1) = P(Vm = +1) = 2(Vm2 + Q2 3/2

The values of the rms and average magnitude of the phase-detector output

computed from EQ's. 2-29 are always at least as great as the actual output.

This is true because the type of nonlinear system characteristic implied by

these equations is always equal to or greater than a sinusoidal system

characteristic.

The phase-detector output of the system without limiting, given in

*The validity of this assumption would be highly questionable were it not

for the fact that at very short ranges, where the assumption introduces the

greatest errors, there is good agreement between the results based on this

assumption and those based on a different assumption which is valid at very

short ranges, as described in the next section.
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Eq. 2-23, has a probability density function of the same form as that of

Dp, namely,

p(Vn) dV = e 2-30

where

4 420
n -2 DA I A-1

2.32 Average Magnitude and RMS of Output

The values of the rms and the average magnitude of the output of the

phase detector can be computed from the equations of the preceding section.

For the system with limiting, the average magnitude, determined on the basis

of Eq's. 2-29, is given by

Q Vm dVm q 2 dVm

2 ml 2 3 /2 1-32V = (Vm2 + q 2)3/2 (V

and the mean squared value of the output is given by

22 0 o 2-- Q2 . Vm dVm + dVm  2-33

(V 2 + Q2)3/2 (Vm2 + 2)/

The mean squared value of the output of the phase detector of the system

without limiting is given by Eq. 2-31. The average magnitude of this output is

JIV = Vn (Vn) dVn (2) (Vn 2-34

As an example let us examine the values of these quantities for a

target consisting of sources uniformly distributed in one dimension for a

length L. It is shown in Appendix D that

02 2(1 - B~skL) -35

0~At
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for such a target. The values of the rms and average magnitude of the phase-

detector output that are obtained when this expression for Q2 is used in

Eq's. 2-31 through 2-34 are plotted in Fig. 2-14. In these plots the outputs

have been referred to a linear displacement at the target and normalized with

respect to the length of the target by dividing all their values by kL.

The assumption made in connection with Eq's. 2-29 introduces a certain

amount of error in the curves for the system with limiting. This error becomes

more severe as the range decreases, because the probability P(Vm = + 1) is an

inverse function of range. However, a different approximation can be made

which is valid at very short ranges, when the target spans appreciably more

than one lobe of the .interference pattern of the receiving antennas. For

these short ranges, it is assumed that any value of 0d is equally probable;

this assumption is justifiable since any values of Od may be adequately

represented by values in the interval from -w to +wr. In such a case the rms

of the phase-detector output is just 1/1 , and the average magnitude is

0.636 = 2/n. The curves obtained by dividing these figures by kL are shown

in Fig. 2-14 as the short-range approximations. The closeness of the curves

drawn on the bases of the different assumptions indicates that the errors

Ld
introduced by Eq's. 2-29, which are greatest for large values of ka , are

never very large.

There are a few details associated with Fig. 2-14 that are worthy of

special mention. First there is the advantage which is apparently gained

for long target ranges in not amplitude limiting prior to phase-detection.

Obviously, this advantage is lost when the target comes in close. Further-

more, there are other phenomena, such as the one discussed in Sec. 2.52,

which arise in a system without limiting that may make it desirable to

lL. T
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limit (or use a fast-acting age) even at long ranges. In other words, it

should not be concluded from Fig. 2-14 that it is undesirable to limit at

long range.

The second point to be considered is that the curve of rms out-put with

limiting tends to infinity with increasing range. The physical reason that

it goes to infinity is that Vm is inversely proportional to A2 (Eq. 2-22),

which has a Rayleigh distribution. In practice, it is doubtful that the

occasional large outputs which give rise to this tendency could be measured,

for a number of reasons. First, receiver thermal noise, whose effect is

proportional to at least the first power of the range, reduces the ability of

the radar to measure true angular wander at long range. Secondly, the

sensitivity of the radar system in terms of feet at the target is inversely

proportional to range. In the third place, these large outputs are always

accompanied by weak signals, and the larger the output, the weaker the signal.

On the basis of these three reasons and the design features representative

of current radar practices, it has been determined that a value d = 0.02

is a very conservative lower limit for the region in which wander could be

ex-perimentally determined. Thus it is highly improbably that wander with a

rms value greater than 0.5L Would ever be observed for a uniformly distributed

target.

Finally, it should be mentioned that the output of the error detector

of a lobe-comparison system should have properties similar to those of the

output of a phase detector in a phase-comparison system for targets at

moderately long ranges and beyond. For angular errors that are small com-

pared with the lobewidths of the systems, the error-detector characteristics

of both systems are very similar, with the result that the outputs under
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identical conditions must be nearly the same. Probably a conservative lower

limit to the ranges of good equivalence would be given by a value of in the

vicinity of 0.2.

2.4 RE~IATIOiNS BE'VTEEN SIGNAL AMPLITUDE AN0D WANDER

Any fundamental relationships which must necessarily exist between the

amplitude of a signal from a target and the wander of its apparent center

can be determined through appropriate use of ;Maxwell's equations. The

completely general solutions to the equations are undoubtedly too vague to be

practicable. However, a two-dimensional study of the electromagnetic field

radiated by a rigid source can answer some of the questions regarding these

relationships.

If a definite relationship could be established between signal amplitude

and wander, the problems of the experimental determination of wander would be

greatly simplified. It would then be possible to compute the various proper-

ties of wander, of which the measurement is difficult, knowing the properties

of the amplitude of the signal, which can be recorded with relative ease.

Unfortunately, no such definite relationship exists, because there is a

solution to the equations which gives a very general expression for the

amplitude without any wander whatever. However, the maximum possible wander

which can accompany a given amplitude distribution can be determined.

The analyses presented here demonstrate the existence of the solution

with no wander and show the relationship which exists between a given ampli-

tude scattering pattern and the maximum wander associated with it. As a

basis for the analyses it is assumed that the patterns of the amplitude and

relative phase of -the signal reflected by the target are fixed relative to

the target. As the target rotates, so do the amplitude and phase patterns.
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The spectrum of the amplitude and wander measured by a radar receiver are

then calculable from the amplitude and phase patterns when the target has a

uniform rate of rotation with respect to the receiver. Such an assumption

implies that the illuminating source has a fixed position relative to the

target, and that the target is a perfectly rigid body. Although the assump-

tion is obviously unjustifiable, the nature of the conclusions is such that

their applicability is not seriously restricted.

2.41 The Field at a Fixed Distance from a Target

In the two-dimensional problem considered in this analysis the electro-

magnetic field reflected from (or radiated by) the target can be expressed

most conveniently in circularly cylindrical coordinates. At distances from

the target which are large compared with the target and the wavelength the

field can be represented by linear combinations of the elementary wave functions

*nhk = ejn Hn (1)[(k2 - h 2 )2 R] eajhz - , 2-36

where R, 9, and z are the orthogonal coordinates and Hn( 1 ) indicates a

26
Hankel function of the first kind and order n. In this two-dimensional

analysis, the field is invariant in the z-direction.

It is shown in Appendix E that the signal received by a linearly

polarized antenna at a fixed R_ is given by

S = aneJne AS e jA S = S(G) . 2-37
n--N

This summation is essentially a Fourier series representation of the signal

on a circle, with the target as its center, as a function of angular meas-

urement along the circle. The limit N is in practice dependent on the size

of the target measured in wavelengths.

The bounded sum can also be represented by a product of 2N factors.

~ti~·~2~c:!3f;·~~:'~W ~ -w~
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If we define

aN 2N
S(w) -- (w + wn) 2-38

where

w re , wn rn e j  2-39

we obtain, for r = 1,

s(e) - eJN (eJe + wn) 2-40

It is demonstrated in Appendix E that Eq's. 2-37 and 2-40 are equivalent.

The positions of the wn Is, which may be considered to be the zeros of S(-w),

in the complex w-plane are the significant quantities determining the behavior

of S(G) in Eq. 2-40.

The arnplitude and phase of S(e) can be separated by taking the natural

logarithm of Eq. 2-40. The resulting expressions are

2N
ln A = I + In [l + r n2 + 2rn cos(- n) 2-41

n=1

2nN1 2N 1 sin(G - On)
S = GaN  M + n +  tan r n + cos(G - n 2

2.42 Image Points in the w-glane

The image point of any wn in the complex w-plane is defined as that

point with the same angle Gn and with a radius equal to the reciprocal of

the radius r n of the point wn. In other words, wI and w2 are said to be

1
the image points of each other if G1 0= 2 and rl =- 1

Very simple relationships exist between the amplitude functions and

between the phase functions of wn's located at image points. If w2 is the

image point of wl, the amplitude functions associated with each are the same

except for a constant factor, which can be absorbed in Ta~I. To demonstrate
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this similarity, substitute r2 = 1/r1 and e2 = (1 into the final term of

Eq. 2-41, giving
S1 + 2

ln [1 + r22 + 2r2 cos(8- e2)] = In [1 + + os ( - )]
r12

= In [1 + r1
2 + 2rl cos(G - 91)] + ln[r- . 2-43

The sum of the phase functions associated with each of a pair of image points

is 9, apart from a constant phase factor which can be absorbed in 
8 aN. This

relation is based on the fact that trigonometric manipulation yields the

identity

1 sin(G - 01) 1 sin(9 - 01)

rl1 + cos(O - 1)1 t /rl + cos(G - 91) = ' 1 '

Now let it be assumed that each wn within the unit circle in the w-plane

is paired with a first-order pole, L , at the origin of the w-plane. The

phase introduced along the circle r = 1 by the pole is just -0. The phase

function of the wn and the pole is therefore just the negative of the phase

function of the image of wn, while the amplitude function of the wn and the

pole is equal to that of the image of wn'

It has just been shown that any zero of S(-w) can be moved to its

image point without affecting the amplitude of S(e), but with a very real

change in the phase of S(8). If the 2N zeros are for the most part in

different positions in the w-plane, as is most generally the case, there are

approximately 2NM different phase patterns associated with a given amplitude

pattern. N is generally considerably greater than the maximum target

dimension measured in wavelengths, with the result that there is, in prac-

tice, an extremely large number of phase patterns which can accompany a

given amplitude-scatter ing pattern.
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2.43 Minimum Phase for a Given Amplitude Pattern

It is now possible to find a distribution of w 's in the w-olane which

results in a phase function OS(Q) = 0, with one exception, for all 9 with any

given amplitude function A S(9). The one exception occurs when AS = 0, in

which case a 180-degree phase discontinuity in OS(G) is possible. If, on

the other hand, we permit AS to assume negative values, the 180-degree

discontinuity is avoided, and the result has no restrictions.

Consider first the amplitude function associated with a pair of zeros,

w1 and its image w2 . According to Eq's. 2-41 and 2-43,

In As = InlaNI + ½ in [r~ + In [1 + r12 + 2rl cos(9 - 21) , 2-45

which gives for the amplitude function

AS = 2aN [E(rl + 1/rl) + cos(9 - 91)]

2N 1b + cos(9 - 91) 2-46

If S(w) is made up only of such factors as these, occurring in image pairs,

the resulting amplitude function can be written

N
A = ~2 b _ + cos(Q - 9 )]S N n

= + Bn cos(n9 - G'n) . 2-47

The latter expression for AS is a general Fourier series expansion in terms

of 9, which can adequately represent any two-dimensional amplitude scattering

pattern encountered in practice.

The phase function associated with the N image pairs which determine

EQ. 2-47 is

N
S = N + n n , 2-48
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as can be seen from EQ's 2-42 and 2-44. If an Nth order pole is added at

the origin of the w-plane, it adds -NI to the expression for the phase func-

tion, without affecting the amplitude pattern. The resulting phase function

is simply a constant, which is completely irrelevant in the determination of

wander.

The existence of an arbitrary amplitude pattern with no phase-front

distortion has been demonstrated. It is not possible to say from the analyses

presented here that the converse is true, namely, that an arbitrary phase

pattern can exist with a constant amplitude pattern. However, the former

relation is the one of interest in this research, for it shows that nothing

definite can be said about the nature of wander from the measurement of the

amnlitude of the radar return from a target.

The probability density distribution of AS is, in the case of highly

cotmplex targets, closely approximated by the Rayleigh distribution, as given

in Eq. 2-25. If such is the case, the probability p(AS=O) = 0, and the

180-degree phase discontinuities mentioned above are no longer possible.

Then the wander of the apparent center becomes identically zero for the

Wn distribution just considered.

2.44 Maximum Wtander with a Given Amplitude Pattern

The greatest possible phase pattern that might accompany a given

amplitude scattering pattern can be found explicitly with the aid of the

conclusions reached in Sec. 2.42. If it is assumed that all the wn's lie

outside the unit circle of the w-plane, and that the pole at w = 0 is removed,

S(w) and in [S(w)] are analytical on and within the unit circle. The relation-

ship between the amplitude and phase can then be found using a method of

Wiener for determining the real and imaginary parts of a periodic function.
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With the above assumptions, in [S(w)] can be expanded in a Maclaurin series

for r = 1; thus,

2NT

n=1

k k  . 2- 49

k
On the unit circle, w can be written

k jkGw = e = cos kG + j sin kQ . 2-50

If the constants in the summation of Eq. 2-49 are split into their real and

imaginary components, ck R[ck] + jI[ck], the real and imaginary parts of

in [S(w)] can be written

OD
In AS = (R[ck] cos kG - I[ck] sin kG) 2-51

s (R[ck] sin k + I[ck] os k) 2- 52

The angular pointing error produced in a radar system by S given in

1 des
EQ. 2-52 is, according to the results of Sec. 2.1, proportional to R d

The wander of the apparent center of the signal source is then directly

dS

proportional to - , which is given by
dG

d =  k (R[ck] cos kG - I[ck] sin kG) . 2-53

doIf is constant, the relationship between the spectrum of wander, given in
dt

Eq. 2-53, and the spectrum of in AS , given in Eq. 2-51, is very apparent.

It remains to be shown that the wander given by Eq. 2-53 is the maximum

that can accompany any given amplitude function, as expressed in Eq. 2-51.

To demonstrate this condition, it is necessary to prove merely that the

total wander is reduced whenever any wn is moved to its image point within
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the unit circle and a pole is added at the origin of the w-plane.

The phase function associated with any wn, according to Eq. 2-42 is

O1 sin(O - On)= tan rn , • 2-54
S t rn + cos(9 - On)'

The derivative with respect to 9 of this function,

dOS 1 + r n cos(9 -
5n

)

-- = 2-55de I + rn 2 + 2rn cos(9- n)

always has its peak value when 9 = n + i. When rn is substantially different

from unity, this peak value is small and broad, and the resulting wander is

not ever great. On the other hand, when wn is close to the unit circle, the
d@s

peak of C is very large and sharp. As a result, the significant wander

produced by such a wn is great over a small range of 9; for the remaining

values of G the wander is substantially less important.

In all cases of practical importance the distribution of the w 's in the

w-plane is more or less uniform with respect to G. Consequently, it is

necessary to investigate the influence on wander of any wn only in the

vicinity of the peak it produces. When all rn's are greater than unity,

all the peaks of wander are of the same sign, and all the peaks in a small

range of 0 tend to add together. If a wn is brought inside the unit circle

(and a pole added at the origin), the effect on OS, and therefore on O ,

is a change in sign , according to the conclusions of Sec. 2.42. The net

result of moving a wn to its image point inside the unit circle is thus

shown to be a significant decrease in total wander in the vicinity of

9 =n + ir, without any great change in wander for other values of 9.

2.5 FURTHER STUDIES OF WANDER WITH PHASE-OOMiPARISON SYSTEMS

The presence of wander gives rise to some phenomena which are peculiar
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to phase-comparison systems. These events must be studied before such systems

can be designed to give the optimum performance of which they are capable.

The first problem to be considered is that of bandwidth requirements in the

measurement section of a phase-comparison system which is designed to operate

with very short target ranges. Secondly, brief consideration is given to

the possibility of deemphasizing the large values of wander which are

accompanied by deep fades in signal amplitude through the use of partial

limiting.

2.51 Bandwidth Requirements with Targets at Short Range

WThen a target approaches close to a phase-comparison radar system,

the possibility exists that the radar system may not be able to furnish any

angular information on the position of that target. Such a condition is

brought about by the presence of wander of the apparent center of the target.

It may become serious when the physical angle subtended at the radar receiving

antennas by the wander approaches or exceeds the angular width of a lobe of

the interference pattern of the antennas.

To illustrate the manner in which wander can cause this blindness in

phase-connparison systems, let it be assumed that the magnitude of the phase

difference produced by the wander is inversely proportional to range. This

assumption implies that the wander is constant in terms of feet at the target

regardless of range; the wander caused by specular reflection from various

target areas in succession is a good example of such wander. Furthermore,

assume that the plot of wander as a function of time has a triangular

waveshape, so that the wander is always uniformly increasing or decreasing

with respect to time. Whenever the peak-to-peak phase difference caused by

such wander is an integral multiple of 2n, the output of any phase-detector
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with a symmetrical characteristic has an average value of zero, regardless

of the average phase difference. If a low-pass filter were to eliminate all

but the average component of the phase-detector output, the output would be

zero for all target positions. This example is an extreme case; in practice,

a system would seldom go completely blind, but instead would seem to have a

decreasing measurement sensitivity with decreasing range.

It is possible to avoid any chance of this blindness by means of

proper system design. It can be seen from the diagrams of the various

phase-comparison systems in Appendix B that the phase of the output is eaual

to the phase difference of the two inputs for every system, when no filtering

exists in the frequency band of the information. The average value of the

phase of the output must then equal the average phase-difference of the

inputs. Thus the criterion for avoiding blindness in a phase-comparison

system is the maintenance of adequate bandwidths in the measurement section,

through the final nonlinear circuitry from which the angular information is

obtained.

The bandwidths needed at various points in the measurement section of

a system free from blindness may be substantially greater than the bandwidth

of the wander. A short discussion will be given here indicating the increase

in spectrum width that may exist at different points of a system. For mathe-

matical convenience, a sinusoidal wander at a frequency w /27 will be assumed,

giving a phase difference at the antennas of

0 = 0 sin ut . 2-56

The signal out of the phase detectors in a single-sideband-modulator

system (or in the nulling-servo system if the servo is blocked) is roughly

sin(O) = sin(Oo sin wt) 2-57
cos cos
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Such a waveform (essentially a phase-modulated signal with a carrier frequency

of zero) has a bandwidth approximately given by

1W = ( + 1) ar/2n cps., 2-58

where 00 is given in radians. The balanced mixers in the single-sideband-

modulator system double this bandwidth. The bandwidth is preserved through

the adder, for it can be readily ascertained that the bandwidth of the signal

cos(wrt - 0) = cos(wrt - sin art) 2-59

is again approximately

BW = 2(0o + 1) uj/2n . 2-60

The outputs of the interferometer system and the Doppler-difference

system have the same form as Eq. 2-59, with the result that the bandwidths

in these systems are comparable with those given above. In the nulling-servo

system, it is necessary that the servomechanism be capable of following

variations only up to the highest frequency present in the wander. Then the

phase detector will always be operating on a linear portion of its character-

istic.

The bandwidths determined by substituting in Eq's. 2-58 and 2-60 the

maximum values of 0o and w. encountered in actual cases may be as high as

a few hundred cps. For example, if a 30-foot peak value of wander at 30 cps

were measured with a X-band system with an 18-inch antenna spacing, the

bandwidth determined by Eq. 2-60 would be 220 cps for the target at 1000 feet.

However, in all probability the bandwidths so computed are appreciably

larger than those which would be required in practice, for a number of

reasons. In the first place, the energy in the wander is usually spread out

over the entire spectrum up to the maximum frequency, and is concentrated

principally about zero frequency. The sinusoidal wander assumed in the
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calculations is a bit unreal in that it concentrates all the evergy at one

frequency. Another difference between sinusoidal wander and the more random

wander encountered in practice is that the probability density distribution

of the former has maxima at the peak values of wander instead of at the

mean value, as does the latter.

Secondly, the bandwidth computations were based on the assumption of

wander with a constant magnitude measured in terms of feet at the target,

regardless of range. This assumption implies that the wander results from

true motion of the actual center of reflection. Considerably less bandwidth

may be required if the wander is caused by interference between the signals

from two or more stationary points, as is more probably the case. Consider,

for instance, the two-point target analyzed in Sec. 2.2. The phase-detector

outputs plotted in Fig. 2-9 do not show any significant increases in band-

width as the range decreases. If the long-range wander in this plot were

produced by true motion of a reflecting area, there would be a remarkable

increase in bandwidth for values of j. near 180 degrees. It can be concluded,

therefore, that the computations based on a constant magnitude of wander at

the target give larger values of signal bandwidth within a system than will

probably exist in practice.

Finally, it is not necessary in all cases that the signal which would

exist at any point in an idealized system be completely reproduced at the

corresponding point in an actual system, in order that the average value of

phase difference be measurable. As an illustration of this fact, consider

a nulling-servo system in which the servo bandwidth is inadequate to follow

completely the changes in phase difference at the antennas. Even though

a phase lag may develop in the phase-shifter output due to servo sluggishness,
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as long as the lag is less than about 60 degrees, the phase-detector operation

continues to be essentially linear. Whenever the operation is linear, there

is no chance of the system going blind.

2.52 Reduction of Large Errors with Partial Amplitude Limiting

The difference in phase of the signals received from a target by the

two antennas of a phase-comparison system may occasionally deviate from its

average value by an extraordinary amount. The wander associated with such

a deviation can indicate that the apparent center of reflection is far outside

the physical boundary of the target. An example of this condition is shown

in Fig. 2-5 of Sec. 2.21 on the wander of the apparent center of a two-point

target. The existence of large deviations in the position of the apparent

center of a multi-point target is also possible, as is evident from inspection

of Eq. 2-29.

These large errors in apparent position are almost invariably accompa-

nied by a substantial reduction in the received-signal strength. In the case

of the two-point target, the wander peaks occur when the signals from the

two points are out of phase at the receiver, giving a resultant signal only

0.2 as large as the signal from the stronger point. The large errors

indicated by Eq. 2-28 are for the most part due to the presence of A2 in

the denominator of Eq. 2-22, as can be realized from a study of the probabil-

ity distribution functions of D and A2 , given in Eq's. 2-24 and 2-25.

The output of the error-detector in a phase-comparison system has an

undesired component due to wander. The rms value of this component is

increased greatly by the occasional large output which accompanies a spike

of wander, provided complete amplitude limiting precedes the error detector.

However, if incomplete limiting is used, then all readings of phase difference
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taken during deep signal fades are multiplied by the strength of the signal,

while those taken with normal signal strength are unaffected. In this manner

the deleterious effects of the large excursions of the apparent center are

substantially reduced.

The nature of the large errors is such that it would be very possible

to employ partial limiting in an idealized system. The probability of the

presence of these errors in any practical situation is small, because the

probability distribution of the magnitude of the received signal is generally

something approaching a Rayleigh distribution. For such a distribution, the

probability that the instantaneous signal amplitude is less than half the

rms value of the amplitude is only 0.22. Furthermore, since the target is

constantly in motion, even when these errors arise, they wrill last for only

a short time. Therefore, it is possible to reduce the influence of these

errors on the output through the use of partial limiting (or no limiting

at all) in conjunction with a slow-acting automatic gain control.

It is probably undesirable to use no amplitude limiting in a phase-

comparison system. In the first place, the gain of the radar system to true

angular errors changes with variations in the error-detector sensitivity,

which is proportional to signal amplitude. Changes in the radar-system gain

would affect the sensitivity and stability of any overall system of which

the radar was a part.

Secondly, the undesired noise in the error-detector output can actually

be increased when limiting is removed if the radar axis is not pointed

directly at the target. The desired output, which is proportional to aiming

error, from a system without limiting is multiplied by the instantaneous

magnitude of the received signal. A study is made in Appendix D of the
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error-detector output of a system without limiting for the multi-point

target, considered as in Sec. 2.3, at long range. It is shown that the

mean squared value of the jitter in the output, in terms of a linear coordi-

nate at the target is given by

(Z - zo) 2 = 0.272 zo2 + 0.637 n 2-61

where zo is defined as the distance of the center of the target away from

the axis of the antenna system of the radar. The probability density distri-

bution of the output is determined in the appendix, and is plotted for

various values of zo/(zn') 4 in Fig. 2-15. It can be seen from this plot

and from Eq. 2-61 that the dispersion of the output about its correct value

increases considerably with increasing zo for a system without limiting.

If the system had perfect amplitude limiting, the dispersion of the output

would be independent of z0 for all operating conditions within the linear

range of the phase-detector characteristic.

The use of partial limiting, with the knee of the limiter characteristic

corresponding to an input of perhaps 0.3 to 0.5 of the average value of the

input, is a possible means for minimizing the jitter in the error-detector

output. Probably the chief difficulty involved in the use of partial

limiting is a practical one. The design and construction of limiters with

no change in phase shift in the operating region near the knee of their

characteristics is a very exacting task, particularly if the limiters are

intended for pulsed i-f signals.

If the problems of building limiters for partial limiting prove over-

whelming, it is probably preferable to use complete limiting rather than no

limiting. The occasional large errors which exist with limiting are trouble-

some only at long ranges, because at short ranges system nonlinearities
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severely limit the magnitude of errors that can take place. In many appli-

cations, the excess noise introduced by amplitude fluctuations in systems

without limiting will be greater than that caused by the occasional large

peaks of wander.

ý07·
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3. THE EXPERIMENTAL DETERMINATION OF 'ANDIER

An experimental program was conducted for the purpose of acquiring

data on the nature of target-echo fluctuations from a variety of aircraft

in flight. The principal value of the program lies in the spectra of wander

of the apparent radar center which were obtained from data records made

during a number of flight tests. Received-signal amplitudes were also

recorded during the tests, and their spectra are presented along with the

wander spectra.

A phase-comparison system with amplitude limiting was used to measure the

wander as a function of time. The changes in average phase-difference due to

target maneuvers were removed, with the result that the phase-detector output

was due to wander and thermal noise alone. With such a system, the output

of the phase detector is directly proportional to the wander, provided that

the target range is sufficiently great to insure that the phase differences

due to the wander are always within the limits of linear phase-detector

operation. The output of the phase detector was recorded to obtain the

desired wander data. It is shown in Sec. 2.15 of the previous chapter that

the wander thus measured would likewise be obtained from lobe-comparison

systems with targets at long range.

\wro separate series of flight tests for recording wander data were

conducted. The first series was held at the Naval Aviation Ordnance Test

Station, Chincoteague, Virginia, during the summer of 1949, using many of

the major radar components from the Meteor S-band 1iodel-II pulse seeker.27

1n:a shortcomings were later found in the results of these tests, particularly

in the phase records. The second set of tests was made during the winter of
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1950-1951 from the roof of the Research Laboratory of Electronics at M. I. T.,

using X-band pulse equipment. These tests were considerably more successful

than the S-band tests, and provided an appreciable quantity of satisfactory

data on wander.

Because of the greater significance of the results of the X-band tests,

these tests will be described first and in greater detail. The S-band tests

are considered next; while the results are not accurate, nevertheless some

interesting comparisons can be made between echo fluctuations at S-band and

X-band frequencies.

3.1 X-BAI~D WA'ADER TESTS

Records of phase difference between the echo-signals received by two

adjacent antennas, and of the amplitude of one of the signals, were made and

analyzed in this experimental investigation. The two X-band antennas, which

had roughly a 40-degree beanwidth between half-power points, were rigidly

mounted with a spacing of 5 feet. The line joining the antennas was

approximately normal to the average direction to the targets as they flew

over various prescribed courses. This antenna spacing gave a system sensi-

tivity of 300 degrees electrical phase difference per degree of rotation of

the line-of-sight, or 1.6 degrees phase difference for a 1-foot lateral

displacement of the apparent target center at 2 miles range. Such a value

of system sensitivity was chosen as a compromise between the need for a large

region of linearity with targets at close range and the desirability of

overcoming the effects of thermal noise at longer ranges.

3.11 Eqiuiwment for Obtaining Data

A block diagram of the pulse-radar system with which the data were

measured is shown in Fig. 3-1, and a photograph of the receiving and measuring
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sections is shown in Fig. 3-2. The transmitter, located atop a tower

adjacent to the receiving equipment, produced 1-microsecond pulses of r-f

energy with a peak power of 40 kw and at a repetition frequency of 900 pps.

The transmitting antenna consisted of a 30-inch paraboloid with a horizon-

tally polarized feed. The antenna was aimed manually at the target with the

aid of a boresighted ring sight attached to it. The maximum range of the

system with a medium sized target was about 6 miles.

The axes of the fixed receiving antennas were tilted at an angle of

22 degrees above the horizon, in order that good signals could be received

from targets at long range while ground reflections were appreciably attenu-

ated. The large changes in the difference of phases of the received signals

which result from changes in target position were removed with a manually-

driven continuous phase-shifter. A meter with a 0.2 second time constant was

used in the output of the phase detector to provide the necessary error

indication for the operator of the phase shifter. A large inertia wheel was

connected to the shaft of the phase-shifter, with the result that the highest

frequency at which the phase-shifter shaft could be oscillated. was about

0.3 cps. As a consequence of the presence of the inertia wheel, the highest

frequency component in any extraneous errors that might be introduced in the

phase-shifter tracking was 0.3 cps.

The range gate, which had a duration of 1.3 microseconds, was kept on

the target by manual tracking. The operator of the gate-tracking unit had

a range-scope display with marks every mile as a gate-position indicator.

During the tests, the target range was frequently read off the R-scope and

recorded. A dual potentiometer was used as the control for the range-gate

position. One section was required in the range-gate circuit; the other
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section was used to obtain the product of range and phase difference.

The time constant of the closed-loop response of the automatic gain

control was about 0.3 second. It was necessary to maintain a long time-

constant in order to avoid detrimental effects of phase-shift change with

gain change in the i-f amplifiers. As long as such phase-shift changes were

slow, they could be removed with the manually driven phase-shifter.

The phase-difference and amplitude data were recorded on magnetic tape

moving at 7.5 inches per second, using separate frequency modulators and

Magnecorder tape recorders. The frequency modulators had a maximum deviation

of 70 percent of the center frequency of 4 kcps, which made it unnecessary tQ

incorporate any wow compensation. The overall signal bandwidth of the record-

playback equipment was greater than 100 cps, which was the half-power band-

width of the measurement outputs of the radar system. The cutoff character-

istics of the recorders and the measurement circuits were quite sharp, with

the result that played-back data requires no amplitude compensation for

frequency components below 80 cps.

Schematic diagrams and more thorough descriptions of .the various circuits

used in the radar and recording equipment are presented in Appendices F and H.

3.12 Description of Recorded Data

The two types of data normally recorded in these tests were obtained

from the phase measuring unit of the radar system. The output of the pulse

phase detector was stretched, amplified, and then multiplied by range in the

tracking control of the range-gate generator. WThen a strong echo was being

received, the voltage thus obtained was proportional to the wander of the

apparent target center. The signal-amplitude record was obtained directly

from an amplitude detector with an output proportional to one of the inputs
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to the phase measuring unit. Slow amplitude fluctuations were removed by

the age prior to the amplitude detector, so that only those fluctuations

above 0.5 cps were recorded.

A calibration was obtained for the wander records from a fixed land

target at a range of 1.28 miles. The transmitting antenna and range gate

were set on the target, and the manual phase-shifter spun through a number

of complete revolutions. The phase-detector output, which was simply a

reproduction of the voltage vs. phase characteristic, was then recorded.

From a knowledge of the target range, antenna spacing, phase-detector charac-

teristic, and peak phase-detector output, the desired calibration can be

computed for any data taken with the recorder gain set at the value used in

recording the calibration. As an example of the calibration procedure,

assume that the system has a 5-foot antenna spacing with a transmitter

frequency of 9375 mcps. The system sensitivity is then 2.53 degrees of

electrical phase change per foot of lateral displacement of the target at

1.28 miles. If the phase-detector characteristic were linear from -90 to +90

degrees, the peak-to-peak output would correspond to 180/2.53 = 71 feet.

From a plot of the characteristic, the difference between the actual peak-

to-peak value and that of a triangular characteristic can be determined;

in Fig. 3-3, the actual characteristic has a 22-percent smaller value. Thus

the peak-to-peak voltage of this calibration record corresponds to 55 feet.

Three types of courses were flown during the tests by the various

targets at an elevation of 1500 feet and a usual speed of 160 mph. A radial

course along the perpendicular bisector of the line joining the antennas

provided fixed head-on and tail-on views. A straight crossing course flown

parallel to the line joining the antennas at a range of 2 miles gave a slomly
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changing broadside view of the targets. The circular course, which had a

radius of 1.5 miles centered 3.5 miles from the radar along the perpendicular

bisector, was to provide a continuously changing aspect of a maneuvering

target. However, the only usable data from this course for most of the

targets were obtained from the near- and far-broadside portions. Nevertheless,

these data are very useful for comparing the spectra from maneuvering and non-

maneuvering targets. Relatively long minimum ranges in the courses with

broadside aspects were selected in preference to smaller ranges (with which

lower system sensitivity could be used) in order to provide as much usable

data from each run as possible.

The above-mentioned courses were used with six different types of

aircraft. In addition, some special tests were made. Circularly polarized

receiving antennas were used in one test in place of the linearly polarized

ones normally used. The limiters of the phase measuring unit were bypassed

in another test. Finally, data were obtained from two targets flying in close

parallel formation on the radial and crossing courses. Table 3-1 is a summary

of the types of aircraft for which data on fluctuations in amplitude and on

wander were obtained.

Samples of typical data recorded during these tests are shown in Fig. 3-3.

These pen-recorder copies were made from the magnetic tape originals recorded

during the tests. Several points concerning these data are worthy of special

mention. First, it should be noted that the magnitude of the wander is

substantially greater for the broadside target aspect than for the head-on

aspect. With the 3-29 broadside, the wander occasionally exceeded the

linear portion of the phase-detector characteristic, which corresponds to

90 feet (peak-to-peak) at 2 miles. As might be predicted, the ratio of

MA
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Single Propellor

Two Propellors

Four. Propellors

Jet Propelled

Multiple Target

- AT-6 (Navy SNJ) - Additional data with circularly

polarized receiving antennas

- 3-26 (Navy JD) - Additional data with no limiting

- Simultaneous recording of ampli-

tude and phase

- AT-11 (Navy SNB)
- 0-46

- 3-29

- F-84

- TBM - tfo aircraft in close formation

Table 3-1- Targets Used in Flight Tests

magnitudes of head-on wander to broadside wander was less for the AT-11 than

for the 3-29. (The spacing between nacelles of the 34-foot long AT-11 is

12 feet, whereas the B-29 outboard nacelles are separated by 62 feet and the

length of the B-29 is 96 feet.) The gradual shift in one direction of the

AT-11 broadside data is not significant; it is caused by inadequate tracking

of the phase shifter in the radar receiver. Finally, the radical changes

from time to time in the spectral character of the wander from the broadside

3-29 should be noted. The changes can probably be attributed to yawing of

the target; they were noted for other aircraft, particularly the 0-46, and

seemed to be most pronounced on windy days.

3.13 Method of Data Analysis

An elaborate procedure was used to reduce the data recorded during the

flight tests. The data were first edited and copied, in order to obtain

complete sections of good data for the various viewing aspects of the dif-

ferent targets. Then the data were analyzed with an electronic spectrum
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analyzer, which produced the desired frequency spectra.

The spectrum analyzer is essentially a narrow-band amplifier whose

center frequency is in effect swept over the frequency band of the data to

be analyzed. A block diagram of the analyzer is shown in Fig. 3-4. The

analyzer has a resolution of 10 cps and, as operated in these tests, a sweep

bandwidth of 140 cps. The center frequency was swept uniformly over the

140-cps band at a rate of 5.6 cps per minute. IWith such a slow sweep rate,

the center frequency remained at essentially the same frequency for a com-

plete playing of most sections of data that were analyzed. The low-pass

filter on the output of the amplitude detector following the narrow-band

amplifier selected the average value of the voltage density at any frequency.

The average value was then displayed as the vertical deflection of the

oscillograph spot. A schematic diagram and description of special circuits

used in the analyzer are presented in Appendix G.

The first step in the data editing procedure was to select, after

examination of both the amplitude and wander records, those sections of

data with acceptable signal return and phase-shifter tracking. Copies were

then made of all such sections. The copies were then usually cut into two

or more shorter sections corresponding to different intervals of range,

target aspect, or signal strength. The two ends of each of these subsections

were spliced together, and the closed loop thus formed was used as a continu-

ous source of data for the analyzer. Spectra were made with the loops played

back at twice the recording speed; the resulting spectra had a bandwidth of

70 cps with a resolution of 5 cps.

After a study was made of all the spectra obtained in this manner, all

the acceptable data for each kind of run with a given target was assembled
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and spliced together. The composite records thus formed were made into loops

and played back at twice normal speed into the spectrum analyzer. Copies

were then made of the composite recorde onto magnetic tape moving at 1.5

inches per second, using a carrier frequency of 400 cps. Then the copies were

likewise formed into loops, played back at 15 inches per second, and analyzed.

From these analyses, average spectra with 5-cps and l-cps resolutions were

obtained for the various aspects of the different targets. Fig. 3-5 is a

photograph of the spectrum analyzer and playback equipment as operated with

a continuous loop of tape. On the left are the tape recorder and the con-

tinuous-tape storing reel. The analyzer and power supply are on the right.

The unit directly under the clock is the wide-band FM modulator and demodu-

lator.

The spectrum analyzer was calibrated for the wander analyses with the

aid of the calibration records described in the second paragraph of Sec. 3.12.

An example will be used to describe the method. Assume that it is desired

to set the analyzer so that a 3 ft/Vcps spectral density gives a 1-inch

deflection, with the data sped up by a factor of 2. It was determined from

measurements that the effective noise bandwidth of the narrow-band amplifier

is 10.75 cps. For the data supplied at twice normal speed, this is a noise

bandwidth of 5.38 cps. Therefore, it can be said that a sinusoid with a

rms value corresponding to 3 xI5.38 = 6.95 feet would give the same

deflection as a flat spectral density of 3 ft/Icps. An adjustable source of

sinusoidal voltage can be set at this value by comparison with the signal

obtained from the calibration record played back at twice the recording

speed. A similar method can be used for the analyses with a data speedup of

10; however, it should be remembered that the calibration record should be

'M777E"ImT-T
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processed in the same manner as the data to be analyzed, because the level

of the output of the playback equipment varies with changes in tape speed.

Details of the copying and editing procedure are presented in Appendix H,

along with a description of the recording, playback, and copying equipment..

3.14 S-ectra of Data on Single Targets

In this section are presented the spectra obtained from the data on

wander and amplitude fluctuations measured with the various targets. The

spectra are usually shown in pairs. The upper of each pair is the wander

spectrum and the lower is the spectrum of the corresponding record of ampli-

tude fluctuations. The horizontal scales of both types of spectra are linear

with respect to frequency, the calibration being either 4 or 20 cps per large

division, as is specified for each pair.

The vertical scales of the wander spectra are calibrated in feet/l-ps.

The value read off one of these curves at any frequency is the rms value of

all the frequency components of wander within a 1-cps bandwidth centered at

that frequency. In other words, if a given piece of data were passed through

a filter with a 1-cps bandwidth, the rms value of the output of the filter

would be the ordinate of the spectrum of the data at the center frequency

of the filter. The ordinates of any of these spectra are larger by a factor

of ~2 than the ordinates of the voltage spectrum computed by taking the

square root of the Fourier transform of the autocorrelation function of the

same original data. This difference arises from the fact that a Fourier

transform of an autocorrelation function extends over all frequencies from

-0o to +oo, whereas the spectra obtained here extend only over positive

frequencies. The mean squared value of any data equals the integral of the

Fourier transform of the autocorrelation of the data from -co to +co, or the



Sec. 3.14 77

integral of the square of the spectrum as presented here from 0 to +co.

The vertical scales of the amplitude spectra are in relative voltage

density; there is no absolute calibration for these records.

Spectra obtained by analyzing the composite of all the data for each

of a number of different aspects of B-29, AT-11, C-46, B-26, and AT-6 targets

are shown in Fig's. 3-6 through 3-10, respectively. The average length of

data from which these spectra were taken was approximately 2 minutes. The

fine structure in many of the broad-band low-resolution spectra is not signif-

icant; it is present because the time-constant of the analyzer was not

sufficiently great to take the average over the entire length of the long

records from which these spectra were made.

Similar spectra for the data from head-on and tail-on aspects of a

jet-propelled F-84B aircraft are shown in Fig. 3-11. The total length of data

for these spectra was considerably smaller than that for most of the previous

spectra, because the target flew the prescribed courses at 300 mpoh in this

case, instead of the usual 160 mph. For the same reason, the phase-shifter

tracking was inadequate on the circular and crossing courses, with the result

that no broadside data was successfully recorded from this target.

The spectra of data obtained from successive runs of a given target over

the same course are not identical, though they are usually quite similar.

This phenomenon is illustrated by the broad-band spectra presented in Fig. 3-12,

which were made of data taken on separate runs of a 3-26 on the radial course

and of an AT-11 on the crossing course.

That the spectrum of short sections of wander data can change consider-

ably during a run is obvious from the reproduction of the B-29 broadside data

shown in Fig. 3-3. The broad-band spectra shown in Fig. 3-13 indicate the
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changes which can be expected in such a case. These spectra were made from

successive 3-second sections of a record of B-29 broadside data. Changes

of comparable magnitude could be expected from the broadside aspects of many

other types of aircraft. On the other hand, data obtained with head-on and

tail-on aspects apparently do not have such violent changes in spectral

character.

A complex reflection body, such as an aircraft target, can introduce

appreciable depolarization in the reflection of a linearly polarized incident

wave. A study of the importance of such depolarization was made by recording

data with an AT-6 target on the radial and crossing courses after the linearly

polarized receiving antennas had been replaced with circularly polarized ones.

Spectra of the composite data recorded with the circularly polarized antennas

are shown in Fig. 3-14. With the exception of the absolute calibration of the

wander spectra of the broadside aspect, the corresponding spectra in Fig's.

3-10 and 3-14 are practically the same. It was found during the flight test

in which all the data on the AT-6 was recorded that equally good error signals

for the operator of the phase shifter were obtained with both types of

antennas. On the basis of these tests it can be said that no serious system

limitations result from the use of circularly polarized receiving antennas

in place of linearly polarized ones when the transmitted signal is linearly

polarized.

The limiters of the phase measuring unit were bypassed during one

flight test with a B-26 aircraft. This test was held for the purpose of

investigating the possible reduction of the large wander errors which are

accompanied by deep fades in signal strength, as considered in Sec. 2.52.

The spectra of the data recorded during these tests are shown in Fig. 3-15.
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From a comparison of these spectra with the corresponding ones in Fig. 3-9,

it can be seen that there is somewhat less wander without limiting than with

the system in normal operation. This reduction in wander is to be expected,

because the occasional large peaks are eliminated. However, it was noted

during the flight test that the indication of the tracking meter on the

output of the phase detector was erratic, and that it was very difficult for

the operator of the phase shifter to obtain a steady, consistent error signal.

It was surmised from these observations that it is probably inadvisable to

operate a system completely without limiting, as was also concluded in Sec. 2.52.

It is to be expected that the spectrum of the phase-detector output

due to wander varies when the target range becomes so short that the wander

exceeds the linear portion of the system characteristic. The spectra shown

in Fig. 3-16, which were made from data recorded with the B-29 target on

head-on and tail-on runs, illustrate the sort of spectrum changes that can be

expected. It can be seen that the spectrum bandwidth becomes broader and that

the zero-frequency ordinate decreases with decreasing range, as might be

predicted from the analysis presented in Sec. 2.51.

3.15 1•altiple-target Data

Two single-engine TBM aircraft flying in close formation over the

radial and crossing courses served as the target in one flight test. The

two aircraft flew in such f6rmations that the line between them was always

roughly normal to the line-of-sight from the radar. In order to reduce the

possibility of non-linear system operation, the system sensitivity was

reduced by decreasing the spacing of the receiving antennas from 5 feet to

20 inches. Pen-recorder copies of typical wander data recorded during this

test are shown in Fig. 3-17. Spectra of the composite of all the amplitude
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and wander records for various aspects are presented in Fig. 3-18. As might

be expected, the ordinates of the wander spectra for the two airplanes are

considerably greater than those for single targets. Normally the centers of

the targets were about 60 feet apart for all the runs.

A number of interesting features can be observed in the records of

wander shown in Fig. 3-17. The first is the behavior of the predominant

frequency, which at any time is the difference in Doppler frequencies of the

two reflected signals. As the airplanes perform slight maneuvers relative

to one another, the difference frequency varies, occasionally going to zero,

as in the first part of the tail-on record.

The capture of the average phase, and consequently of the apparent

radar center, by the stronger of the two signals can be seen in both records,

particularly in the detail of the broadside data. As the signals change in

relative amplitude, the average position of the apparent center jumps from

one target to the other; in the meantime fluctuations in the position take

place at the Doppler-difference frequency. It can also be seen, particularly

in the latter portion of the tailon data, that the interference between the

two signals tends to repel the apparent center off target on the side away

from the weaker point during times when the signals are out of phase, as

indicated by the periodic spikes of wander. This effect is not as apparent

in the detail of the broadside data, because the Doppler-difference frequency

was so high that the system was unable to reproduce the spikes faithfully.

The fact that the spikes of wander all have the same sign at the

beginning of the tail-on record is not significant, because at this point

the two aircraft were so close to the radar that the wander exceeded the

linear portion of the radar-system characteristic. This section is included
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mainly to illustrate the zero-frequency beat between the signals.

3.16 Discussion of Spectra

Probably the most important quantities which can be determined from the

frequency spectra presented in the preceding two sections are the zero-fre-

quency ordinates of the wander spectra. These figures can be determined from

the narrow-band high-resolution spectra with greater accuracy than from the

wide-band spectra. For the single targets, the values of the low-frequency

density of wander lie between the extremes of 2.5 and 8 ft/lcps, with an

average value of approximately 4.5 feet (rms) in a 1-cps bandwidth.

The bandwidths of the spectra and the rms values of wander can also be

evaluated from the spectra. Except for periodic wander components at pro-

pellor blade frequencies, the highest frequency components were obtained from

the broadside aspect of the B-29 target. For this case, the wander spectrum

extends out to 50 cps and has a quarter-power point at about 25 cps. On the

average, the frequency of the quarter-power point is in the vicinity of

10 cps. The rms value of any wander spectrum can be computed by taking the

square-root of the integral with respect to frequency of the square of the

spectrum. This was done for Figts. 3-6 through 3-11 and 3-18, using the

detail spectra for frequencies below 10 cps and the broadband spectra above

10 cps. The results are listed in Table 3-2.

The presence of a predominant frequency component in many of the spectra

of both amplitude and wander with the AT-11 broadside has a very interesting

connotation; such an effect is just what would be expected from a target with

two principal reflecting areas. This component is evident at 16 cps in the

broadside-turning data in Fig. 3-7, and at lower frequencies in at least

three of the AT-11 spectra in Fig. 3-12. In the circular course, from which
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BroadsideTarget oadsid Broadside Head-on Tail-on
Turning

B-29 23 ft 13 ft 8 ft 15 ft

AT-11 10 8.4 6.9 6.1

0-46 9.2 9.5 8.0 11

B-26 12 9.0 9.0

AT-6 7.0 6.8 6.6 8.1

r-84 7.7 8.5

Two-TBM 47 23 29

Table 3-2 - REM Wander of Apparent Radar Center

the broadside-turning data were obtained, the rate-of-change of viewing

aspect was about 2.9 degrees per second. With a transmitted frequency of

9375 mcps, the spacing of two points which would be necessary to give the

observed 16-cps beat is 17 feet. The frequency is lower in the spectra in

Fig. 3-12 because the relative turning rate of the aircraft is smaller than

in the circular course. The reason for the differences among the latter

spectra is probably the variable yawing rate of the target.

It should be mentioned that on the runs along the crossing course,

from which the broadside data were obtained, the targets presented a slowly

changing aspect to the radar, since they flew on a straight course. As a

result, the broadside wander spectra are somewhat broader, and their zero-

frequency ordinates lower, than those that would be obtained from truly

constant broadside views of the targets.

A set of curves from which a comparison can be made of the results of

various wander studies was prepared by Dr. R. 0. Seamans, Jr. as part of a

separate research project28 and is presented in Fig. 3-19. The ordinates

% s
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of this plot show the power spectral densities at zero frequency of the

angular deviations caused by target-echo fluctuations and thermal noise.

At short ranges the curves have a negative slope of 6 decibels per octave,

because at these ranges the principal source of jitter is wander, which is

constant in terms of feet at the target. At long ranges, the curves have a

positive slope of 12 decibels per octave, due to the effects of threshold

noise. The values of the power spectral density were computed for the

different tracking systems from the standard deviation of the measured

tracking errors and from the frequency response of the tracker. These values

are determined on the basis of the Fourier transform of the autocorrelation

function, and are therefore half the square of the figures read off spectra

such as those presented in Sec. 3.14.

Errors in the wander spectra may have been produced by any one or more

of a number of sources. Probably the most serious errors arose from insuf-

ficient accuracy in the manual tracking of the phase shifter. Tracking

inaccuracies occasionally caused large low-frequency errors, which, as

mentioned in Sec. 3.11, were almost always of a frequency below 0.3 cps.

Any data sections in which these errors were appreciable were removed by

editing before the data were analyzed. In obtaining the detail spectra, a

single-section high-pass R-C filter was used to reject data below 0.3 cps.

The combined effects of the high-pass filter and the tracking errors are

insignificantly small above 1 cps in the high-resolution spectra of wander.

Another effect of inadequate phase-shifter tracking was a reduction in

the size of the region of linear system operation. With correct tracking,

the response characteristic of the phase detector was symmetrical and almost

triangular. When a tracking error existed, the limiting size of wander

~I1AIICA~l*urrrs~ar
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fluctuations that could be measured in the direction of the error was

correspondingly reduced. Consequently, the measured wander would be smaller

than it should be, because the spikes of wander would be missing. All sections

of data in which the tracking obviously caused non-linearities were removed

during the editing process, although it is almost certain that many sections

with slight non-linearities were not noticed and eliminated.

Other errors were caused in some of the records when the wander exceeded

the linear portion of the phase-detector characteristic. The spacing of the

receiving antennas was such that the linear region corresponded to 90 feet

peak-to-peak displacement at 2 miles range. Although the resulting system

sensitivity was nearly optimum for the smaller targets, it was obviously

too great for the B-29 on the crossing course. Therefore, the wander spectra

for the B-29 presented in Fig. 3-6 may indicate lower spectral densities

than actually exist; however, the spectra in Fig. 3-16, showing phase-detector

outputs for different ranges, suggest that measurements made at 2-miles range

are not far from correct.

There are many other possible sources of errors which may have been

present to a small extent. First is the cos 0 factor, where P is the angle

between the line-of-sight and the center line of the antenna system. All

the wander measurements are affected by this factor; however, the largest

values of 0 for which measurements were made was about 20 degrees, for which

the factor is 0.94. On the average, the errors in wander measurement produced

by this cause were substantially less than 2 percent.

Because the receiving antennas had a broad beamwidth, appreciable

angular errors could have been produced by reflections of the target-echo

return off nearby objects, particularly the ground. However, in the direction
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in which the antennas were aimed was a building, about 250 feet distant,

with a flat roof at almost exactly the level of the antennas. This building

served as a shield for ground reflections until the elevation angle of the

target was so high that the ground reflections could no longer give trouble.

Finally, there were two possible sources of differential phase shift

in the radar receiver. The limiters in the phase measuring unit had phase

delays which changed with changes in the signal levels at the inputs.

Although the limiters were adjusted to have a differential phase shift of

less than 2 degrees when both inputs varied together within a range of

26 decibels, phase differences as great as 15 degrees could arise when the

signals varied independently. Similarly, differential phase shifts could

arise in the i-f amplifiers due to Miller effect when the agc voltages

varied independently, even though the amplifiers were aligned to have very

small differential phase shifts when their gains were equal. Fortunately,

both these sources of error are serious only at short ranges, where the

phase differences due to wander are very great, because at long ranges both

received signals are always nearly equal. The errors due to Miller effect

were restricted to very low frequencies by the low-pass filter in the

age circuits.

3.2 S-BAND TESTS

During the flight-test part of the S-band experimental program simul-

taneous recordings were made of the amplitudes and of the difference in

phases of the signals received from various radar targets by two adjacent

antennas. For these tests the antennas were mounted five feet apart on a

movable platform which was continuously aimed in the direction of the

geometrical center of the target by means of optical tracking. Some of the
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data thus obtained were analyzed using the xpectrum analyzer described in

Sec. 3.13 and Appendix G.

3.21 Data Recording Setup

The equipment used for recording data during the flight tests was

basically the same as that used for the X-band tests, except that manual

aiming of the receiving antenna system was used in place of manual tracking

of a continuous phase shifter to remove the large phase changes resulting

from changes in target position, A block diagram of the equipment is shown

in Fig. 3-20.

The transmitter was a Navy type SP-1M conical scan radar, which had a

peak power output of 700 kilowatts with a pulse repetition frequency of

600 pps and a 1-microsecond pulse duration. The transmitting antenna, which

had a 3.6-degree beamwidth in both planes, was fed by a nutated linearly

polarized feed; hence the polarization of the transmitted signal did not

change during the scan cycle. The scanning frequency was 24 cps.

The i-f amplifiers and age circuits were the same as those used in the

X-band tests. The range-gate generator was similar to the one described in

Appendix F, the chief differences being that a 2.0-microsecond gate was used

in these tests and that no means was provided for multiplying the phase-detec-

tor output by range. The signal gating was accomplished in the i-f amplifiers,

instead of in a separate gating circuit, as was done in the X-band tests.

The same phase measuring unit was employed in both series of tests;

however, in these tests, the pulse stretcher was triggered by an amplitude

detector operating on the output of one of the limiters. This method of

triggering made the system more susceptible to ground clutter than did the

method of triggering with the range gate, as used in the X-band tests.
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Because of this greater sensitivity to ground clutter, it was necessary to

reduce the average signal levels at the inputs to the limiters to one fourth

their optimum values.

The maximum range of the measurement radar was about 5 miles on a

medium sized aircraft. Because the targets were flown at an elevation of

1500 feet and the transmitting antenna could not be elevated to angles greater

than 30 degrees, almost no data were obtained for target ranges of less than

a mile.

A single three-channel recording system was used during these tests.*

Three carriers, with average frequencies of 3, 7, and 11 kcps were frequency

modulated with a maximum deviation of about 4 percent by the three quantities

to be recorded. The three carriers were then combined and recorded, along

with a fourth unmodulated reference carrier of 15 lcps, on magnetic tape

moving at 15 inches per second. The transcriber consisted of three similar

electronic circuits from which were obtained three voltages, each of which was

proportional to the ratio of the frequencies of one of the modulated carriers

and the reference.

The radar receiving equipment and the recorder were mounted on a

platform truck which was wheeled into the field adjacent to the SP-1M radar

site during the flight tests. Electrical power was obtained from two

gasoline-driven generators.

3.22 Spectra of S-band Data

Data were recorded for various types of Navy airplanes, including

*The three-channel recording and playback equipment was developed by Mr.

C. R. Hurtig of the Research laboratory of Electronics at M. I. T.

Sec. 3. 21 102
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single-, twin-, and four-engine as well as the FH-1 jet aircraft. The same

three kinds of courses were flown by the targets in these tests as in the

X-band tests.

The data were edited and analyzed by a procedure similar to the one

described in Sec. 3.13 for the X-band tests. First, pen-recorder copies were

made of all the data. From these copies it was possible to determine those

sections of data which would be usable. Two magnetic-tape copies were then

made of the data onto tapes moving at 15 and 1.5 inches per second, using

the wide-deviation FM equipment described in Appendix H for making the copies.

Both these copies were then cut into the desired sections, according to the

usability of the data and the target aspect represented by the data. The

various sections of the copies were then spliced into loops, played back at

15 inches per second, and analyzed with the same spectrum analyzer that was

used for reducing the X-band data.

The method of operating the analyzer in obtaining the spectra of the

S-band data was somewhat different and less efficient than the method that

was worked out for the X-band data. In the former method, the bandwidth of

the output of the amplitude detector was made comparable with that of the

tuned amplifier. The sweep rate was made as fast as possible, limited only

by the transient response of the tuned amplifier and the amplitude detector.

With a random input to the analyzer, no two sweeps gave the same pattern.

The average, or, more exactly, the most probable, pattern was obtained by

photographing 700 sweeps of the analyzer using a very slow camera, stopped

down so far that no individual sweep showed up. It was determined empiri-

cally that 700 sweeps (requiring 1 hour) was about the minimum number that

gave good averaging with a data input approximating a stationary time series.
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In Fig's. 3-21 and 3-22 are shown voltage spectra of data taken with

a four-engine PB4Y-2 and with a single-engine F6F aircraft. The data for

the PB4Y-2 were taken with the target on a circular course. The first four

sets of spectra were obtained for various aspects presented to the radar by

the target. The fifth set represents the average spectra for this type of

flight and was obtained by splicing together all the usable data from the run.

The F6F data were obtained from various portions of the radial and the

circular courses.

Several features of the spectra are worthy of special note. First is

the appearance of propellor modulation in the spectra for head-on aspects.

For the F6F, very pronounced propellor modulation and its second harmonic are

evident in the amplitude spectra at 48 and 96 cps. It seems that propellor

modulation can be substantially more severe at S-band than at X-band. The

presence of substantial energy at 24 cps in some spectra is caused by lobing

of the transmitting radar (incidentally at half the propellor blade frequency

of the F6F). Secondly, it can be seen that the widths of the spectra for the

broadside aspects are greater than for other aspects. This phenomenon can

be explained by the fact that both the target reflecting area and the turning

rate of the target relative to the radar are maximum when the target is at

the broadside-near point of the circular course.

It is a significant fact that the widths of the spectra are different

in the cases of a turning and a non-maneuvering target. For the tail-on

aspect of the F6F target, the half-voltage point of the amplitude spectrum

from the circular course occurs at 18 cps, whereas it is at a very low fre-

quency (less than 5 cps) in the corresponding spectrum from the radial course.

In the fourth place, from the phase records of the F6F radial flight, it is
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easy to see how the thermal noise adds an essentially flat spectrum to that

of the phase jitter caused by the target and imperfections in the equipment.

Finally, the peculiar appearance of many of the detail spectra of the PB4Y-2

data is a result of the short sections of data from which the spectra were

made. For the shortest sections the speed-up data are far from stationary,

since the period of the data is only 0.8 second.

Most of the phase spectra, particularly the detail ones, exhibit very

large low-frequency components of jitter. These components were caused not

only by fluctuations in the target echo, but also by inaccuracies in the

tracking of the receiving antenna platform and by drift in the i-f amplifiers,

as considered in the succeeding section. In fact, for much of the data, the

latter causes predominate. When, after part of the data had been analyzed,

the seriousness of these low-frequency errors was realized, the process of

data reduction was halted in favor of expediting the X-band tests for obtain-

ing more satisfactory data.

3.23 Discussion of S-band Data

While most of the amplitude data recorded during these tests can be

relied upon as representative, very little of the phase data can be considered

to be free from extraneous errors. A study of the pen-recorder copies of the

data indicated that perhaps the only moderately reliable phase data was

obtained from the broadside-near portion of the circular course with the

P34Y-2 target. The value of most of the phase records was diminished by a

number of sources which existed in the equipment and the operating procedure.

The most serious errors in the phase records resulted from the manual-

tracking technique employed in removing the average phase difference due to

target motion. Although care was taken in aiming the antenna system to keep

i R
·'
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the tracking smooth, very low frequency errors of considerable magnitude arose

due to tracking inaccuracies. As a result of these errors, most of the wide-

band spectra of the phase jitter are unreliable below 20 cps. (The speed-ups

gave detailed spectra which are probably valid down to 2 cps.) Other low-

frequency phase errors may have been introduced by slowly changing gains in

the i-f amplifiers.

Additional errors in the phase records results from the limiters in the

phase measuring unit. It was found that the difference in phase shifts through

the limiters varied somewhat with input level to the limiters. Extreme care

had been taken in the design of the limiters to avoid such differential phase

shifts, and tests prior to field measurements indicated satisfactory perform-

ance. However, laboratory tests on the phase measuring unit after the comple-

tion of the flight tests indicated that differential phase changes as great

as 8 degrees might have accompanied a change of 20 decibels in input level.

It was thought that this effect might be responsible for the similarity

between the spectra of corresponding amplitude and phase records from some

of the flights. However, many samples of data taken with a single-engine

aircraft flying head-on have substantial propellor modulation in the amplitude

records with no sign of it in the phase records, indicating that the cross

modulation of the phase signal by amplitude variations was not serious.

Another deficiency of the amplitude limiters was an indirect result of

the presence of short-range ground clutter. As mentioned in Sec. 3.21, it

was necessary to decrease the dynamic range of amplitudes over which the

limiters would function by reducing the signal levels at the inputs to the

limiters to one fourth their optimum values. As a result, phase measurements

were not accurate during signal fades greater than 10 decibels, and partial
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modulation of phase readings by the signal amplitude may have resulted

occasionally. With the limiters in this condition, it would be rare that

large spikes of phase difference, such as those arising with a two-point

target (see Sec. 2.21), would be observed in the recorded data.

Although it was not in itself a source of error, the limitation on the

minimum range obtainable in the field setup, mentioned in Sec. 3.21, did

restrict the quality of the phase data that was obtained. At a 1-mile range,

the system sensitivity was only 1.1 degrees of phase difference per foot

lateral displacement of the apparent target center. As a result, for some

of the records, the phase jitter due to target echo fluctuations was smaller

than the jitter due to thermal noise and system errors.

Another deficiency in the phase records was the lack of an absolute

calibration of the magnitude of the phase jitter at the time of recording.

Even though the data were not multiplied by target range to make them constant

in terms of feet at the target, the wander could have been determined through

a knowledge of magnitude of the phase jitter and from the notes that were made

on target range as a function of time. Only a rough approximation to an

absolute calibration could be made from the antenna swings (which ran the

phase detector through its characteristic) which were used to mark the

beginning and end of each run.
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4. CONOLUSIONS

The most important results of this study of errors in angle radar

systems are summarized in the six conclusions presented in this chapter.

A_. The phenomenon of wander of an apparent target center can be attrib-

uted to either of two causes. The more easily understood cause exists when

the reflected signal at any time comes from one principal area of the target

and when that area moves about on the target as a function of time. Usually,

however, the wander is produced by interference between signals of comparable

magnitude reflected simultaneously from two or more distinct areas of the

target. When the wander originates in the former manner, the apparent center

always remains within the physical boundary of the target. If the wander is

brought about by changing phases of interfering signals, the apparent center

of reflection can pass well outside the limits of the target.

B. The position of the apparent center of a target with but a single

predominant reflecting area is the same regardless of the type of direction-

indicating system in use and is independent of range, because any system will

point to that area as the center of reflection. However, when the wander is

produced by interference, this statement is true only for target ranges that

are great enough to insure completely linear system operation, that is, for

ranges at which the wander spans at most a very small portion of a lobe of the

pattern of the receiving-antenna system. For shorter ranges, different

magnitudes of wander may be measured by phase-comparison and lobe-comparison

systems, although the differences are generally small. For a given system

and a given target, the average magnitude of wander due to interference

decreases appreciably when the target approaches the radar at short range.

Similarly, for a given target at a particular intermediate or short range,
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the magnitude of wander decreases with decreasing antenna lobe-width, and

consequently with increasing receiving-antenna aperture.

0. The zero-frequency ordinate of a spectrum of wander measured with a

given radar system depends on the type of target, its turning rate relative

to the radar, and the target aspect presented to the radar. In general,

larger targets give greater ordinates, and the greater the turning rate, the

smaller the ordinate. For the X-band system used in this research, the values

of low-frequency densities of wander measured with single-aircraft targets on

typical courses varied between 2.5 and 8 feet in a 1 -cps bandwidth, with an

average of about 4.5 feet/•lps. The bandwidths of the wander spectra measured

with this system were generally less than 10 cps, although in some cases

frequency components higher than 40 cps were observed.

D. The wander of the apparent radar center of two targets flying in

close formation is considerably greater than that of either target. It was

observed experimentally that at times the position of the apparent center

ruay vary rapidly over distances greater than the separation of the targets.

At other times, the apparent center may tend to lock on one, then the other,

target in a random manner, all the time oscillating to some extent at the

Doppler-difference frequency of the signals reflected from the two targets.

Spectra of the wander of two single-engine aircraft in close formation were

measured with zero-frequency ordinates as great as 15 ft/•pcs, and with

bandwidths to the half-voltage point as large as 20 cps.

E. Very large deviations of the position of the apparent radar center

occasionally take place when wander is caused by interference among a

multiplicity of signals from fixed points on a target. In practice, these

large deviations, which may be substantially greater than the maximum
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dimension of the target, are almost invariably accompanied by deep fades in

the amplitude of the received signal and are of short duration. Consequently,

the large error signals which these deviations might produce in the error-

detector output of a direction-indicating radar system can be suppressed

through the use of a slow-acting automatic gain control, and in the case of

a phase-comparison system, through the use of partial limiting. However,

other results of partial limiting, which are definitely detrimental to system

performance, make its application of questionable value.

F. Care must be taken in the design of phase-comparison systems in

order to avoid the possibility of the system going blind when the target

range is so short that the receiving antennas span an appreciable fraction

of a lobe of the scattering pattern of the target. At such ranges, the

possibility exists that the average of the output of a phase detector is

zero, regardless of the target position. However, such blindness can be

completely avoided if the measurement section of the radar has an adequately

wide bandwidth. Band&idths as great as, and possibly much wider than, that

of the wander spectrum are needed in many cases in order to insure linear

system operation.
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5. REOOM:ENDATIONS FOR FURTHER RESEARCH

The foregoing treatment of various phenomena associated with wander of

the apparent center of reflection of radar targets is by no means exhaustive,

and many aspects of the problem merit further investigation. Although the

nature of the subject of wander is such that completely explicit and compre-

hensive solutions cannot be given, nevertheless many specific, feasible

questions can be formulated. In particular, some of the effects of wander

associated with phase-comparison systems, which at present are quite obscure,

can undoubtedly be understood if they are studied in an appropriate manner.

This chapter is devoted to a discussion of some of the more important

unsolved problems of wander and possible methods for treating them.

5.1 BAMNDWHIDTH REQUIRMNTS OF PHASE-00CTARISON SYSTEMS

It was demonstrated in Sec, 2.51 that a phase-comparison system with

too narrow a bandwidth in the measurement circuits can go blind when a target

approaches the radar. It was also shown that if this bandwidth is greater

than (0o + 1)fw, where 0o is the maximum phase difference in radians and

f, is the highest frequency associated with the wander, the possibility of

such blindness is avoided. In practice, however, it may be very difficult to

obtain this bandwidth. In addition, this requirement of wide bandwidth may

be in direct contradiction to the requirements for optimum performance at

ranges where the signal strength is close to that of thermal noise. There-

fore, it would be desirable to determine how much relaxation of bandwidth

requirements could be made before serious deterioration of short-range system

performance would be encountered.

There are a number of reasons for suspecting that the bandwidth require-

ment repeated above is substantially greater than would be needed in practice.
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For one thing, this requirement was established on the basis of true motion

of a single area of reflection. When the wander is produced by interference,

the situation is not nearly as severe. The curves of phase-detector output

with a two-point target given in Sec. 2.22 show that there is essentially no

increase in bandwidth as range is decreased. In the second place, the

sinusoidal wander assumed in computing the requirement is unduly pessimistic,

because it represents a function for which the largest excursions have the

greatest probability.

Thirdly, it is not necessary to have complete reproduction of all the

rapid wander fluctuations in order to obtain a good measurement of the

average position of the apparent radar center. For example, with the nulling-

servo system, the servo can lag the input phase difference by as much as

60 degrees or more without introducing appreciable non-linearity into the

phase-detector operation. Finally, it is possible that for phase-rate

measurement, such as can be obtained with a single-sideband-modulator system

followed by a frequency discriminator, less bandwidth is needed than that

required for a positional phase-comparison system.

There are a number of ways in which this problem could be approached.

It would be possible to conduct a series of flight tests using different

bandwidths in the measurement section of a phase-comparison system. Such an

approach is costly, empirical, and apt to be inconclusive, because of the

multitude of extraneous factors which are bound to enter; flight tests have

their greatest value in confirming more rigorously determined results.

An analysis based on a continuous, random distribution of points over

a target, such as that assumed in Sec. 2.31, could yield some very definite

information on bandwidth requirements. A time-varying wander could be

Sec. 5.1 114
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introduced by assuming a uniform, slow rotation of the target about its

center. If the target is then given a uniform angular velocity with respect

to the radar, the necessary conditions are set up for studying the effects

of wander on the ability of an idealized phase-comparison system to measure

the motion of a target.

Some attempts were made during the course of this research to perform

such an analysis as that just described. It was found that the analysis soon

gets involved in substantial amounts of mathematical statistics. It is felt

that considerably greater success with reasonable effort would be obtained in

an experimental study using a simulated target. An adequate simulation for

many targets could be obtained with a reasonable amount of apparatus in the

following manner.

Construct five or six similar oscillators with different frequencies

adjustable over the same band of approximately 30 cps. (The center frequency

of the band should probably be about 10 kcps, in order to maintain adequate

stability of the frequency differences.) These frequencies are set to

correspond to the Doppler frequencies (referred to a different center fre-

quency) from 5 or 6 points on a rigid, uniformly rotating target. The

statistics of the vector sum of 5 or 6 random components are very similar to

those of the sum of many components, so that little would be gained by using

more than 6 oscillators. The outputs of the oscillators, which may be of

different amplitudes, are added directly to form one signal input to the

radar. The other input is formed by passing the 5 or 6 outputs through

separate, adjustable phase delays, and adding the delayed signals. The delays

are set to be proportional to the Doppler frequencies of the corresponding

signals, because phase difference and Doppler frequency are both linearly
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related to the position of the source on the target. Decreasing range is

simulated by increasing in proportional amounts all the various phase delays.

Either signal input can then be put through a continuous phase shifter driven

at a constant rate, in order to reproduce the effects of a constant angular

rate-of-change of the line-of-sight.

The performance of the system under test would be indicated by its abil-

ity to measure the constant phase-rate introduced by the continuous phase

shifter.

5.2 OPTIMUM LIMITING LEVEL

The large excursions in the position of an apparent target center which

occur occasionally as a result of interference between signals from two or

more areas of a target are generally accompanied by deep fades in the strength

of the received signal. Consequently, it is possible to suppress the detri-

mental effects on the error-detector output caused by these large spikes of

wander by allowing the output level from the error detector to be dependent

on signal level. However, it was indicated in Sec. 2.52 that the rms noise

out of an error detector can actually be larger without limiting than with

limiting at times when system aiming errors exist, suggesting that it is

desirable to use some form of limiting.

Partial limiting can be used to deemphasize the largest errors, which

are accompanied by the weakest signals. With partial limiting, all signals

with amplitudes greater than a certain level are limited, while those below

that level are passed linearly. This limiting level is governed by the ratio

of the input voltage to the limiter which corresponds to the knee of the

limiter characteristic to the average input voltage. It is necessary to

determine the most acceptable limiting level, for which the noise output
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from the error detector due to target echo fluctuations is a minimum. The

target simulator described in the preceding section could be used very readily

in such a determination.

An analytical study, even though approximate, should be made in order

to determine the influence of partial limiting on the performance of phase-

rate measuring systems. It is very difficult to predict this influence on

the basis of phase measuring system performance, because of the manner in

which partial limiting affects both the rms value and the spectrum bandwidth

of an error-detector output.

5.3 PROPERTIES OF WANDER IN WIDE-BAfD SYSTEMS

It is known that a phase-comparison system with a wide bandwidth in

the measurement section is linear in the sense that the phase of the output

with respect to the reference signal is equal to the phase difference of the

input signals. However, the average magnitude of the phase of the output is

not always inversely proportional to the range of a particular target. If

the wander results from interference of many signals from a target, the

magnitude of wander usually decreases with decreasing range, as is suggested

by the curves of Sec. 2.21 for a two-point target. On the other hand, when

the wander is caused by glint, or true motion of a single reflecting area,

the average magnitude of the phase of the output is exactly proportional to

target range.

A knowledge of the manner in which wander decreases with decreasing

range is highly desirable in determining system bandwidths, as considered in

Sec. 5.1, apart from its academic interest. An extension of the analysis

used in Sec. 2.3 for computing the phase-detector output with a multi-point

target could supply the desired information. However, the mathematics thus
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involved might well be unfeasible, so that an experimental approach would

prove more fruitful. To this end, the target simulator described in Sec. 5.1

would be very useful, particularly when used in conjunction with a nulling-

servo phase-comparison system. It would merely be necessary to feed the

simulator outputs into the system inputs and note the bahavior of the servo

output (with adequate bandwidth throughout the system).

An experimental flight-test setup could also be instrumented for

studying wander with phase-comparison systems. It would be necessary to use

equipment for measuring phase (not the sine of the phase difference), for

which the nulling-servo system with wide band•idth is well suited. An

abnormally large receiving-antennas spacing should be employed, in order to

guarantee that short-range conditions can be obtained, that is, to insure

that the receiving antennas span at least a substantial portion of a lobe-

width of the target's scattering pattern.

5.4 WAIFDER WITH LOBE-CO•1PARISON SYSTEMS A~D TRGETS AT SHORT RkANGE

The wander of an apparent target center as measured with a lobe-compari-

son system usually decreases as the target approaches the radar, as is

illustrated by the results for a two-point target presented in Sec. 2.21.

These results show that the manner in which the wander changes with range is

not the same as with a phase-comparison system. Therefore, a separate study

is required of the magnitudes and spectra of wander and of the error-detector

output with a lobe-comparison system as functions of target range.

It is believed that the present need for this investigation is probably

less intense than the need for additional study of wander with phase-compari-

son systems. For one thing, lobe-comparison systems do not go completely

blind at short ranges, as can the phase-comparison systems. Secondly, in
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many applications, smaller antenna apertures are used in lobe-comparison

systems than in equivalent phase-comparison systems, with the result that

short-range conditions are encountered at greater actual target ranges with

the latter systems.

Any study of wander at short ranges with lobe-comparison systems that

would be appreciably more general than that of Sec. 2.21 should be based on

an experimental procedure. The non-linearities encountered with short target

ranges cause the mathematics associated with even a uniform aperture to become

hopelessly complicated.

5.5 DOPPLER FREQUEICIES IN TARGET ECHOES

The Doppler frequency of the signal reflected from a target towards the

radar receiver is an indication of the rate of change of the apparent range

to the target. The position of the apparent center of a target can fluctuate

in range in much the same manner as it does in angle. These range fluctuations

cause the Doppler signal to spread out over a band of frequencies. In fact,

the frequency components in the spectrum of the Doppler signal must extend

over at least as great a bandwidth as that of the wander measured with a

phase-comparison system, because the phase differences associated with wander

are produced by the differences between two nearly equal Doppler signals.

The bandwidths of Doppler spectra from radar targets are of interest

in the design of Doppler radar systems, such as the c-wi phase-comparison

system described in Appendix B. These bandwidths can be determined experi-

mentally with a relatively small amount of equipment. For a laboratory setup,

the target simulator described in Sec. 5.1 could be employed. It would merely

be necessary to amplitude-limit either output from the simulator and feed the

result to a spectrum analyzer. With a c-w transmitter and receiver, tests
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could be made on actual targets by studying the beat between the rebeived

signal and spillover from the transmitter. Just such data from aircraft

targets in flight was recorded in conjunction with this research program

using X-band equipment consisting of a transmitter and receiver plus an

amplitude detector. However, the data was recorded on nagnetic tape, and

the wow of the recorder had a spectrum comparable with that of the data.

As a result, no conclusions were drawn from those data.

5.6 PROBAMILITY DEiTSITY DISTRIBUTION OF 'IANDER

The probability distribution of the position of the apparent center

of reflection of a target is necessary information in determining the

performance of non-linear radar systems. For systems that are completely

linear, the spectrum or autocorrelation function of the wander is all that is

required, aside from the system transfer function, in computing the output;

however, in practice, the first probability function, or even the first

joint probability, may be desired.

If the wander is caused by interference among the signals from a very

large number of points on a target, the distribution function of the wander

when the target is at very long range has the form given in Eq. 2-28 in

Sec. 2.31. Actual distribution functions may be considerably different from

this, because targets are not always at very long range and may appear to

have a very small number of principal reflecting areas. Experimentally

determined data, such as that obtained with the X-band system in this

research, can be analyzed either manually, from copies such as those shown

in Fig. 3-3, or electronically, using apparatus developed especially for the

purpose.
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APPENDIX A

POINTING ERRORS DERIVED FROM SIGNAL DISTRIBUTION AT RECEIVER

The analyses used in obtaining the results described in Sec. 2.1, on a

comparison of radar systems based on the distribution of the reflected signal

at the receiver, are presented in this appendix. In these analyses it is

assumed that the expression for the resultant signal received by a uniform

aperture is
S =At x) eJE¢(I ) + Prro ej X] Wx ax
S = A(x) e + dx A(x) ejG(x) dx , 2-2

2ld d

and that the expressions for the dignals received by the two lobes of a

lobe-comparison system are

Sa b = A(x) ejC0(x) + dx
a,b )Jd

A= A(x) eJ[Ga,b(x)] dX. -3

A-1 Direction Indication of Single-lobe System

The condition by which a single-lobe system determines the direction of

an apparent target center is given by

dAd. 0 . 2-4
dp

If OS is the phase of S, as defined in Eq. 2-1, the magnitude of S, AS, can

be found by integrating the projection onto S of the integrand of Eq. 2-2,

giving 1d

AS 4  A(x) cos[o(x) + 2 x'- S] d6  . A-1

The derivative of this expression with respect to B yields the final result
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ddA
d A(x) (dOs 2 x) sinC (x) + x S] dx = 0 2-5

A relation containing a double integral but no undetermined quantity

such as fS can also be derived to satisfy Eq. 2-4. First let S be split

into its real and imaginary components

1d

S = A(x) ejG(x) dx

2d

= A()x cos[G(x)] dx + J A(x) sin[G(x)] dx
d &

=R ES] + j I[S] . A-2

It is evident that

A 2 = R2[s] + I2IS] , A-3

and that Eq. 2-4 is satisfied when

RC Rrss =0 A-4S1 d + I[s] =0. -4

T1e derivatives of RCS] and I[S] are

2d

d
ds - 2 x A(x) cos[G(x)] dr A-6

Substituting from Eq's. A-2, A-5, and A-6 into Eq. A-4 gives the relation

- A(y) cos[G(y)] dy x A(x) sin[G(x)] dx

d( 1 Ad
d 'd

+ A(y) sin[G(y)] dy x A(x) cos[G(x)] dx

I4. d



Sec. A-1 123

=x A(x) A(y) (sin[G(y)] cos[G(x)] - cos[G(y)] sin[G(x)] ) dx dy

= x A(x) A(y) sin[G(y) - G(x)] dx dy 0 . 2-6

A-2 Direction Indication of Lobe-comparison System

',When a-lobe-comparison system is pointed in the direction of an apparent

target center, the amplitudes of the signals received from the targets by

two lobes a and b are equal. That is,

ASa - A Sb 0 . 2-7

The quantities AS and A can be found in terms of 0Sa and Ab, the phases of

Sa and Sb respectively, by the same method used in obtaining 
Eq. A-1, which

gives d-d

A Sab= A(x) cos[ (x) + x - sa dx. A-7

When Eq's. A-7 are substituted into Eq. 2-7, the result is

2n(S + Sa)A(x) cos[ (x) + X x - Sa, d
d

2rr(8 - Ba) _ 0¾]
A(x) cos[E(x) + (x S ax

(&d OSa + OSb OSa - OSb
= -2 A(x) sin[(x) + 22 sin[-E + 2 ] d

_1d

= 0 A-8

EQ. 2-9 of Sec. 2.12 can be obtained from this expression by multiplying the

latter by -

A double-integral expression equivalent Io Eq. 2-9 and containing no
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undetermined constants can be obtained in a manner similar to that by which

Eq. 2-6 was derived. Eq. 2-7 is satisfied by the condition

R2[Sa•+ +12[S- (R2[Sb + 2[Sb]) = 0o. 2-8

The real and imaginary components of Sa and Sb , which can be obtained from

Eq's. 2-3, have forms very similar to those of the components of S, given in

Eq. A-2. One can write
1d -Id

R2[Sa]  12[Sa] = A(x) A(y) cos[Ga(x)] cos[Ga(y)] dx dy

( d dd

+ A(x) A(y) sin[Ga(x)] sin[Ga(y)] dx dy

and f Id d5.d (d2
- A(x) A(y) cos[Ga(y) - Ga(x)] dx dy , A-9

dd

and d(Ad

2 C 2[Sb] ) A(x) A(y) cos[Gb(y) - G d(x)] dx dy . A-10

The result obtained by substituting Eqts. A-9 and A-10 into Eq. 2-8 is

i=di -2 A(x) A(y) sin ![G(y) + Gb(y) - Ga(x) - Gb(x)]

2d d x sin )[Ga(y) - Gb(y) - Ga(x) + Gb(x)] dx dy

2d a a
S( -2 A(x) A(y) sin[G(y) - G(x)] sin[-, (y - x)] dx dy

1d -d
d .d 2nray 2,TTC ax

-= ed A(x) A(y) sin[G(y) - G(x)] sin[ cos[ ] dx dy

2d &

+ 2 A(x) A(y) sin[G(y) - G(x)] cosC- -] l sin[-- --] dx dy

d -d
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S4 2A(x) sin[-$ ] A(y) cos[ - g sin(G(y) - G(x)] dx dy

= 0 , A-11

of which the final equality is the same as Eq. 2-10.

A-3 Direction Indication with First-order Aperture Illumination

The following material is a graphical computation of the apparent

direction of a signal source which produces first-order illumination of the

antenna aperture of various types of radar direction-indicating receiving

systems. The first-order illumination implies that the expressions for the

signal from the source are

(x) = ulx , A(x) = vo v1X , 2-18

where x is a linear coordinate along the aperture, measured from the center

of the aperture.

The resultant signal received by a uniform aperture with illumination

given by Eq. 2-18 is, according to Eq. 2-2,

S = d(v 0 + VX) ej ( l +  dx . A-12

Obviously, it is sufficient to solve Eq. A-12 with ul = 0, because solutions

fulk
for other values of u1 can be obtained by merely increasing P by 2-

U, .. .

I or =l V "d
S = + v cos[

d0

x cos[ dx

+ j V0 sin[S] dx + J v x sin[-] dx

sinH 1 v a2 (sin H cos 1
S H H2 H
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sin H Vld sin H cos H
=vd + 2 - -)] A-130 H 2vo 0 2 H

M nd
where H -=

The magnitude of S, As is found from the relation

As = (R2[s] + I[s]) . A-14
vld

Plots of A as a function of H, for various values of the parameter 2v-

are shown in Fig. A-1. These plots were normalized on the basis of constant

total power incident upon the aperture. The total incident power is

proportional to

2 2 2 2d3
A (x) dx = (v 1) d d + 1 2

2 0 v1  X 2 v0] d 1

= 2 (1 + [ ) . A-15
S3 0

The normalization of each curve was achieved by setting

v d = (1 + 1 [ ] -) 2 A-16
o 2vo. 2

The direction in which a single-lobe (searchlight radar would indicate

the apparent position of the source corresponds to the value of H for which

A is maximum. For 0 < 5-< 3 , this value is zero, indicating that the
AS 0

radar points normal to the phase front. For other values of the parameter,

the values of H corresponding to the maxima of AS were read off the plots.

It should be noted that because the plots were symmetrical about H = 0,

either positive or negative values of H could be used. The abscissas of the

maxima for non-negative H were the basis for the curves of Fig. 2-2 for the

single-lobe system.

The error-detector output of a lobe-comparison system which measures

the difference in magnitude of the two received signals can be determined

126Sec. A-3
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from Fig. A-1. Each of the curves of Fig. A-2 was plotted by reading the

difference of the ordinates of the corresponding curve in Fig. A-1 for

abscissas separated by 160 degrees (of H). Therefore, these curves are for

a lobe-comparison system with a normalized squint angle of 80 degrees,

which gives a crossover at the 0.707 points of the lobes, as can be seen

vld
from the curve of Fig. A-1 for 2v = 0.

2v0

The curves of Fig. A-2 all go through the origin, with the result that

there is never an error signal when the antenna is pointed normal to the

phase front. However, for those curves which have a negative slope when

H = 0, this is an unstable point, and the antenna would eventually swing to

the direction corresponding to a zero-point with a positive slope. Again,

it should be noted that either positive or negative values of H are equally

possible. The curves in Fig. 2-2 for the lobe-comparison system were drawn

from the positive values of H corresponding to the zero-crossings with

positive slope in Fig. A-2.

For the phase-comparison system, the computation of direction is

considerably more straightforward. According to Eq. 2-13, when A(x) has

the same sign at both antennas, the system indicates the true normal to the

phase front. When A(x) changes sign between the antennas, which is equivalent

to saying that j3vldj > Ivo , the antenna must turn away from the normal to

the phase front by an amount sufficient to introduce a phase change of t 17.

This reorientation corresponds to an angular error of P = *, or H = n.

'
a

Sec. A-3 129
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APPE1NDIX B

DESCRIPTIONS OF VARIOUS PHASE-COOMEARISON SYSTEMS

In this appendix are presented brief descriptions of four different

types of phase-comparison systems which have been used in similar applica-

tions. Expressions for the signals existing at various points of the systems

are shown on the block diagrams. It can be seen that the outputs of all the

systems are equivalent, as mentioned in Sec. 2.14, provided that the band-

widths of the signals are not restricted anywhere in the systems.

B-1 Nulling Servo System

Fig. B-1 is a block diagram of the receiving section of a phase-compari-

son radar system which uses a servo driving a phase shifter in such a manner

as to keep constant the output of a phase detector. The system employs

separate r-f and i-f sections with a common local oscillator for the two

antennas. A phase shifter is inserted (either directly or indirectly) in the

circuits associated with one antenna, and is driven by a motor which is

controlled from the output of the phase detector on the i-f amplifier outputs.

The phase-difference at the phase detector is thus held fixed, and the

angular rotation of the phase shifter is proportional to the phase difference

of the received signals.

An entirely electronic system with essentially the same block diagram

is currently under development in the guidance group of Project Meteor at

M. I. T. This system uses electronic equivalents of the phase shifter and

its mechanical drive. Substantially wider bandwidths can be obtained, if

needed, with the electronic system.

B-2 Sinle-sideband-modulator System

The single-sideband-modulator system employs two r-f and i-f sections,
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BLOCK DIAGRAM OF SYSTEM WITH NULLING SERVO

Fig. B-I

A SIN(Wt+ 0)

BLOCK DIAGRAM OF SYSTEM WITH SINGLE-SIDEBAND MODULATOR

Fig. B-2
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which can be the same as those for the nulling servo system except that no

phase shifter is needed. Two phase detectors are used, as shown in the block

diagram in Fig. B-2, to form part of a single-sideband modulator. The

expressions shown on the diagram indicate the signals available at different

points. The output, as shown on the diagram, consists of a signal whose

amplitude is proportional to that of the received signals and whose phase

relative to a fixed reference equals the phase difference of the received

signals.

B-3 Interferometer System*

The interferometer system, shown in block form in Fig. B-3, differs

from the previous two systems in that only a single i-f section is required.

One of the received signals is shifted in phase at a constant known rate in

the r-f section. The two signals are then added and amplified. The detected

envelope of the sum is a waveform of which the principal component is a sine

wave with an amplitude proportional to that of the received signals, and

with a phase relative to a fixed reference frequency equal to the phase

difference of the received signals. This system is unique among those

considered in this report in that the output also contains components

produced by amplitude modulation of the received signal, when the amplitude

modulation contains frequencies near that of the principal component of the

envelope.

B-4 Doppler-difference System

This system differs from the three other systems that were described

in that it uses continuous-wave signals, whereas the others employ pulsed

4Developed by the Defense Research Laboratory of the University of Texas.

-~·U~;re :- a
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Fig. B-3
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signals. In the Doppler-difference system, the echo return received by

two antennas beats with spillover from the transmitter. Envelope detection

of the outputs of the two i-f amplifiers gives signals with amplitudes

proportional to the strength of the radar echoes at each antenna. The

detector outputs may be considered to be of eq2ual frequency (the Doppler

frequency due to target motion) with varying phase difference, the phase

difference being a function of the angular position of the target.

Fig. B-4 shows a block diagram of the system. As in the interferometer

and single-sideband-modulator systems, the output is a sine wave with

its amplitude proportional to the amplitude of the echo and with a phase,

relative to a fixed reference frequency, eaqual to the phase difference of

the received signals.
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APPENDIX C

ANALYSIS OF A TWO-POIET TARGET

The computations described in this appendix are based on the assumption

of a two-point target, in which the two points are omnidirectional sources

with relative signal strengths of 1.0 and 0.8. The separation of the two

points is s, with the line joining the points normal to the line-of-sight

from the radar. The aperture of the receiving antenna system is called d,

which is the spacing of the antennas of the phase-comparison system or the

size of the antenna of the single-lobe or lobe-comparison systems. It is

assumed that the axis of the antenna system remains approximately parallel

to the line-of-sight at all times, a condition requiring that d/% is much

greater than unity. It is furthermore postulated that R, the range from

the radar to the target, is much greater than both d and s_.

0-1 Position of Apparent Target Center

Phase-comparison Radar - When the axis of the radar receiver is aimed

directly at the stronger point of the target, the phase difference of the

received signals is exactly proportional to the lateral displacement of the

apparent center of reflection measured away from the position of the stronger

ooint. Therefore, the position of the apparent center can be determined by

calculating the phase difference of the received signals with the two

antennas equidistant from the stronger point.

Let the antenna system be aimed at the stronger point, and let the phase

of the signal received from that point be zero. Then, in accordance with

Eq's. 2-19 and 2-20 of Sec. 2.31, the two resultant received signals can be

written

S I Alejl = 1 + 0.8 ej l , C-1



Sec. 0-1 136

2rTd
S = A 2eJ2 = 1+ 0.8 ej p + R . 0-2

The difference in phase of the signals from the two points at the midpoint

between the antennas is

+ + 2TTd s) + + s -3

The phase difference of the signals received by the two antennas from the

weaker point is

sd

where the quantity - is equal to the fraction of a lobewidth of the scat-

tering pattern of the target that is spanned by the receiving antenna system.

The quantity to be determined is 01 -2. This determination can be

made conveniently with the aid of a table of the functions

1tani A sin 1 -5
1 + A cos p,1

sd

2 = tan 1  1 R sd] , 0-6
1 + A cos(p l + 2rr-•)

where A is the ratio of the strength of the weaker point source to that of

sd
the stronger source. For any values of the parameter sd and the independent

variable p,, l can be found from Eq. 0-3 and 01 2 read from the tables.

The data for the curves of Fig. 2-5 were found in this manner for 10-degree

sd 1 1 1 2 5
increments of i and for values of 1 equal to 6' 3, 2' 3' and -.

In order to normalize the wander of the apparent target center in terms

of the spacing of the two points of the target it is necessary to divide

01 - 02 by an appropriate quantity. The phase difference introduced by the

displacement s of the radar center of a target is just Ap. Therefore,

dividing - 02 by *A (both quantities in either radians or degrees) gives

the desired normalization.

When R = o , both 1 -2 and 4A are zero, so that a different method

aa~8~sr ~r~a~----~dr-~a~- ---- IL



Sec. C-I 137

must be used for computing the position of the apparent target center. As R

approaches infinity, the ratio of 1 2 to 4, becomes, in the limit,

just d, which can be evaluated from Eq.. C-5, giving

_d A 2 + A cos 0-7

S1 + A2 + 2L cos

sd
The plot of this equation is the curve for = 0 in Fig. 2-5 of Sec. 2.21.

According to Sec. 2.15, this curve is also applicable in the cases of

lobe-comparison and single-lobe systems.

Single-lobe Radar - The position of the apparent radar center of a

two-point target, as determined by a single-lobe radar, can be computed by

means of a graphical analysis. Although this method is straightforward, it is

considerably more laborious than the computations for the phase-comparison

radar. In brief, the method used here is to plot the strength of the received

signal for any target configuration as a function of antenna orientation, and

to read off the plot the direction of the antenna axis for maximum signal

strength.

According to Eq. 2-2 of Sec. 2-1, the expression for the signal

received from the twro-point target by a uniform aperture is

'de x 1½de 2n '' -(s/R)] x

S = xt+ 0.8 ej3 i deCx

sin H eJ11  sin(H - H) d 0-8

H + H H

=[K + 8e K2] X d,
where

H n 0-9s RX
and p is measured i ith respect to the line-of-sight to the stronger point,
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positive 0 being in the direction towarrds the weaker point. The relative

magnitude of the received signal is

AS • 2  22 + 2K cos , -10

which can be conveniently evaluated with adequate accuracy for this purpose

using a sheet of polar-coordinate graph paper and a nair of dividers.

For any given Hs and p., the value of H for which A is maximum can be

found by plotting Eq. 0-10 for a number of different values of H in the

vicinity of that for the maximum and reading off the plot the value of H at

the maximum. In order to normalize the results in terms of the target

dimension, it is necessary to divide the values of H corresponding to the

maxima of AS by Hs , since Hs is the standardized angle subtended by the target.

The curves of Fig. 2-3 for six values of between 1/6 and 1 were

plotted by using the above method for 10-degree increments of the independent

variable p.

Lobe-comoarison Radar - The method used for computing the position of

the apparent target center measured with a lobe-comparison radar is similar

to the method used for the single-lobe system. For given target conditions,

the strengths of the signals received by the two lobes are plotted as func-

tions of antenna orientation, and the direction for which the two strengths

are equal is read off the plot.

The signals received by the two lobes are, according to Eq's. 2-3 and 0-8,

given by

sin(H + ) esin(H + .- Hs)

sin(H- HI) sin(H -- -H 8)
Sb = [ + e x 0.8 xd. H-12q- -~1B
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The magnitudes of Sa and Sb can be evaluated with the aid of a table of the

function H and a Ivector-magnitude computer' consisting of a sheet of

polar graph paper and a pair of dividers. For any given p and Hs , the value

of H for which plots of the magnitudes of Sa and Sb as functions of H inter-

sect is the standardized direction of the apparent center of the target. This

standardized direction can be normalized in terms of the target dimension by

dividing by Hs , as in the case of the single-lobe radar.
sd

Each of the six curves of Fig. 2-4 for values of between 1/6 and 1

were plotted for 10-degree increments of p. using this method of computation

with an assumed value of Hq = 80 degrees, as in Appendix A. For each point on

any of the curves, it was usually found necessary to make six evaluations of

the magnitude of Sa or Sb in order to get the desired accuracy in the result.

0-2 Error-detector Output with Radar Pointing at Stronger Point

The output of the error-detector of a phase-comparison or a lobe-

comparison system which is aimed at the stronger point of the two-point

target can be determined using methods similar to those described in Sec. C-1.

In this section, the methods used for computing the error-detector outputs of

a variety of phase-comparison and lobe-comparison systems are described.

Phase-comoarison Radar with Limiting - The output of the phase-detector

of a system in which both received signals are amplitude limited prior to

phase detection is very- nearly eaual to sin(01  02). The values of 1 - 2
sd

for various values of p and sc were determined in Sec. 0-1. It is merelyRX
necessary to find the sine ofthese angles to find the phase-detector output.

The output can then be normalized in terms of the target dimension by dividing

the output by Ap (expressed in radians).

sd 1 1 1 2 5and
The curves of Fig. 2-9 for 2 3and were comuted in thisTs 7 7 Y' 3 6
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sd
manner. The curve for = 0 is the same as the corresponding curve for

the plot of the position of the apparent target center.

Phase-comparison Radar without Limiting - When the outputs of the two

i-f amplifiers of a phase-comparison radar system are fed directly into the

phase detector without being amplitude limited, the nature of the phase-

detector output depends to a certain extent on the type of phase detector

in use. Three different types of phase-detector configurations will be

considered in these analyses.

Almost all phase-detector circuits are such that when both signal

inputs have fixed amplitudes, the output is roughly equal to the cosine of

the phase difference of the inputs. If one input is shifted by n, the output

is then nearly a sinusoidal function of the phase difference. It will be

assumed that such a phase shift of one input is used in each of the systems

considered here.

A system employing a twin-diode phase detector and unequal gains in

the i-f amplifiers will be considered first. Such a phase detector may be

constructed using any of a variety of circuits, but the principle of operation

is essentially the same for all of them; the output of the phase detector is

equal to the difference in the magnitudes of the vector sum and the vector

difference of the two inputs to the phase-detector. A typical circuit for

such a phase-detector was used in the phase measuring unit with which the

experimental data of this research were obtained, and is described in

Appendix F, Sec. F-11.*

*In actual operation, this phase detector was used with equal gains in the

i-f amplifier, which does not affect its circuit in any way.

U~EIEEE
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According to the above description, the phase-detector output is

Vn 1= + g S2 eJ1 S- S g 2 e , 0-13

where & is the ratio of gains of the i-f amplifiers. For the actual cornuta-

tion, it was assumed that g = 0.3. When the values of S1 and S2 , given in

Eatq's. 0-1 and 0-2, are substituted in Eq. 0-13, the result is

V = 1 + 0.3 ej  + 0.8 ejl1 + 0.24 ej  +  l 4 + 1 &P
vn

1 o0.3 e + 0.8 e3 'l - 0.24 ej 1 + 1 . C-14

The necessary vector additions in evaluating Eq. 0-14 for 6A = r, j n, r,

4 5
OT, and TT, and 10-degree increments of p were performed graphically as

indicated in Fig. 0-1. The magnitudes of the two vector sums were read off

with the aid of a pair of dividers and subtracted to give the desired results.

It can be noted in the results, which are plotted in the upper part of

Fig. 2-10, that the output for any positive ji is usually different from the

output for -ýL, except when s= 0. This phenomenon is brought about by the

unsymmetrical manner in which p affects the vector suns shown in Fig. 0-1.

The data obtained by the above method were normalized in terms of the

target dimension in accordance with the following reasoning. At very long

range, the two received signals have the same magnitude, and the phase

difference between them is very small. That is,

S2  l e J do 0-15

If now.an ideal target is assumed which consists of a single source at a

distance s from the axis of the receiving-antenna system, the phase-detector

output due to that target, from Eq. 0-13 is

sd 0-16
vn = 2g L= 4ag , 0-16

since the slow-acting agc, which it is assumed that the radar possesses,

will eventually adjust the magnitudes of the received signals to unity. With
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a two-point target, with signals from the two points having levels of 1.0

and 0.8, the average magnitude of the received signal in either channel,

taken over all p, is 1.168, as can be determined from Eq. 0-37 in the

treatment of the lobe-comparison error detector. Therefore, the slow-acting

age will tend to divide all the results computed above by this figure of

1.168. As a result, it is necessary to divide all the figures of phase-

sd
detector output by the quantity .rng x 1.168 x to reduce them to terms

of target dimensions.

The phase-detector output with R = co is merely

Vn = 2g d x AS1 C-17

The expression for the normalized output is
d 1 - 1S= x _ x_.A -x 18d A Sl = dpi 1.168 x AS1  C-l8

According to a discussion in Sec. 0-1, is the expression for the wander
dp,

of the apparent center of the target at infinite range, such as is plotted in

sd
Fig. 2-5. The plot of phase-detector output for O0 can be found from

Fig. 2-5 by multiplying the ordinates of the corresponding curve by the

1
factor 1.168 x A1.168 Sl

The second type of phase-comparison system to be considered is one

using a twin-diode phase detector and equal gains in the i-f amplifiers. The

output of the phase detector of this system is also given by Eq. 0-13, with

g = 1. When the values of S1 and S2 from Eq's. 0-1 and 0-2 are substituted

into this equation, the resulting expression for the output is

vn = 1 + eiJ + 0.8 ed1 [1 + eId) + ]I

- I- + 0.8 eo 1 [l - jl j( + Ap)]I 0-19

The magnitudes of the vector summations contained in Eq. 0-19 were evaluated

143
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in the same manner as was Eq. 0-14, using the graphical technique with

appropriate circles drawn on polar graph paper.

The data were normalized in terms of the target dimension by dividing

sd
them by the factor 4q x 1.168 x a , as described above.

Sd
The normalized curve for = 0 is the same as that computed for the

system with unequal gains in the i-f amplifiers.

The third type of phase-comparison system is one using a pentode

phase detector, for wh.ich there is no basic difference whether the gains of

the i-f amplifiers are equal or not. In this system, the two received

signals are applied (at an intermediate frequency) to two grids of a pentode,

which serves essentially as a mixer. The -pentode plate current is given by

ib= b[1 + mlAS1cos(wrt + 01 )][1 + m2AS2coS(rt + 2)

= Ibl + mlAS+cos(wrt + 1) + m2A2cos(wt + 02)

+ 1 mm 2ASl Scos(2w1et + 1 2

+ -mpm2S, 1 AS2cos( 1 - 02) , 0-20

where the last term is the desired quantity. If the other terms are removed

by means of appropriate filtering and balancing, and one of the inputs is

shifted in phase by -in, the output of the pentode phase detector can be written

V = AS1AS sin(1 -• 2 ) . C-21

The phase-detector output due to an ideal, single-point target a

sd
distance s away from the axis of the receiving-antenna system is sin (2n j ),

which for very large R is equal to Ap. The phase-detector output with the

two-point target is

V 1 1 -A 0-22
Vn (1.168)2 ASlAs sin(2 1 _2)-
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since, as described previously, the sloar-acting age tends to divide both

signals by the long-time average of the amplitudes. When this output is

normalized in terms of the target dimension the resulting expression is

1 sin(l -16 2 )

(1.168)2 S1 S2  "

The values of (1/6b) sin(O1 - 02) were computed in determining the error-

detector output of the phase-comparison radar with limiting. The magnitudes

of the two amplitudes can be determined for any i and Au by means of the

law of cosines, as explained in conjunction with BE. 0-10.

sd
The curve for the normalized output with = 0 was computed by

multiplying the results of Eq. 0-18 by AS1/1.168.

The curves for the outputs of the latter two types of phase detectors

are shown in the bottom two sets of Fig. 2-10.

Lobe-comparison Radar - The output of the error detector of a lobe-

comparison system with a fast-acting age is different from that of a

corresponding system with a slow-acting age. The difference between the

results with fast or slow agc corresponds very closely to the difference between

the results with phase-comparison systems having limiting or no limiting. It

is assumed tha•t the fast-acting age is ccapable of eliminating any amplitude

fluctuations caused by changes in p., thereby holding constant the instantane-

ous mean of the amplitudes of the signals in the two lobes.* The slow-acting

age merely holds constant the long-time average, taksen over all possible

values of p, of the mean value of the two amplitudes. Therefore, with

*The highest frequency to which the age can respond must necessarily be lower

than the scan frequency of a sequential lobing system.
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a fast-acting agc, the error-detector output is

ASa - ASb C-24
AS, + ASb

and with a slow ago,

2 ASa - ASb 0-25

ASa + ASb

With the radar antenna aimed at the stronger point of the two-point

target, the expressions for the signals in the two lobes are, according to

Eq's. 0-11 and C-12,

S = i q + ell x 0.8 sin(- 1 Hs x d , 0-26

sin sin(H4  Hs)]
Sb = - + e x 0.8 H +H x d. , 0-27
b I q Hq "+ s

since H = 0. The constant factor d is subsequently dropped from these

expressions, with no loss of generality.

The error-detector output can be normalized in terms of the target

dimension by first computing the output due to an ideal, single-point target

at a distance s from the axis of the antenna system. For either slow- or

fast-acting agc, the expression for this quantity is

sin(H - H s) sin(H + H)

Output = 2 Hq + Hs 0-28
sin(H0 - Hs) sin(k + Is)

Hq- H H +Hs

At very long range, Hs is very much less than unity, ,ý:ith the result that

sin(H - Hs )  sin H - Hcos ][ +  ]

q - Hs H H

sin Hq Hssin Hscos q + s 2os -29
IHq iq2 IRq iiq2!
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and

sin(Hq + H,) sin Hq Hssin Hq cos . 2cos I0-
+ , 0-30

0+ Is k H2  Hq

The substitution of Eq's. 0-29 and 0-30 into Eq. 0-28 gives

Output = 2 Hs Esin ---- = 2HS - Hq- 0-31
L 2 sin Hq =-

Hs2cosHE
where it has been assumed that -q can be neglected in comparison with

Hk2

sin Eq

cq . If Hq = 80 degrees, as in Appendix A, Eq. C-31 becomes

Output = 1.081 Hs . 0-32

The error-detector output due to the two-point target becomes, after

normalization in terms .of the target dimension,

1 ASa - ASb
Z = 0.540 H C-330.540 Hs ASa + ASb

for the system with a fast-acting agc, or, for the system with a slow agc,

1 ASa - ASbZ = x . C-34
0.540 Hs  ASa + ASb

The curves of Fig. 2-7 were plotted for the system with the fast-acting

age and a squint angle of H: = 80 degrees. Points on the curves were computed

for 10-degree increments of p. The curves for HI = 300, 600, 900, 1200, 1500,

and 1800 were determined by finding the values of ASa and ASb, which can be

obtained from Eq's. 0-26 and 0-27 by the method used for evaluating Eq's. 0-l1

and 0-12, and substituting them into Eq. 0-33. For Hs = 0, the curve is the

same as the corresponding curve for the wander of the apparent radar center,

shown in Fig. 2-4, because at long range the system is completely linear in

that error-detector output is proportional to wander.

i



Sec. C-2 148

For the system with the slow-acting agc, it is necessary to compute the

average, taken over all p, of the mean value of the signal amplitudes received

by the two lobes. The average of the mean is equal to the mean value of the

average amplitude of each of the two signals taken over all p.

The exoression for either received signal, given in Ea's. 0-26 and 0-27,

can be abbreviated, as in Eq. 0-8, giving the form

sin + x s sin(Hs - + P)
S~a . + x 0.8 q - Hs ] = k + e K2 , 0-35

where K1 and K2 can be found from a table of According to Eq. -10,

the magnitude of S is

=2 1 22 2  I

AS 2 2KK2Cos = [1 + + 2 0--36

The average value of AS, taken over all p, is

2K1,  2 2  K2  2 i

R (l + ) 4 1 sin2()]

= (K1 + K) (K 2  sin ( p)] d(-p) . 0-37
S+1 K2+ K 2 )2

The final form of this equation is a complete elliptical integral, values of

which can be found in mathematical tables. 30

For any given values of H0 and Hs , the quantities ASa and ASb can be

computed from Eq. 0-37, and then be added to find the denominator of Eq. 0-34.

After this is done, the curves of Fig. 2-8 can be computed in the same way

as the curves of Fig. 2-7 were found, with the exception of the curve for

Hs = 0. The latter curve is the same as the corresponding curve for the



Sec. 0-2 149

the phase-comparison radar with the twin-diode phase detector (without

limiting), because in each case the output is proportional to the product

of the wander of the apparent target center and the ratio of the instantaneous

to the average signal strength.

'A
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APPENDIX D

PHASE-DTE40CTOR OUTPUT ~ .WITH A ULTI-POINT TARGET

In this appendix there are presented the mathematical analyses which

were used in computing some properties of the output of the phase detector

of a phase-comparison system caused by a nmlti-point target. It is assumed

that the target is made up of a very large number of isotropic sources,

distributed at random within the finite dimensions of the target in such a

way that the amplitude and phase of any source is independent of its position.

The amplitudes of the sources are such that no one source contributes an

appreciable part of a total received signal. The maximum dimension of the

target is assumed to be very small compared with the range from the target

to the radar.

D-1 Phase-detector Out-out with Limiting

If the signal received by one antenna of a phase-comparison system is

expressed as

S1 = ;Ae a n =A 1A  , 2-19

the signal received by the other antenna is

S2 = Ae 2 = anei(in + kn)

= aeJ n + (e j k z n  1) aneJn
n= n= -

SS + D , 2-20

where

k " 2-21

and Zn is the distance of the point n from the axis of the antenna system of

the radar. As explained in Sec. 2.31, D and SI are statistically independent.
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When amplitude limiting is employed prior to phase detection, the

phase-detector output is

Vm = sin( 2  
) =  2-22

where Dp is the component of D that is 90 degrTees out of phase with Sl.

According to Sec. 2.31, the probability density functions for Dp and A2 are

p(~p) dD 1 e p 2  , 2-24

2A2  -A2
2 / (2)

p(A2 ) dA2 - A e dA2 . 2-25
A22

The mean-squared values of Dp and A2 can be determined from Eq. 2-20. Because

each of these quantities is made up of N1 independent components, the mean-

sauared values are

7-7 12 = =N (an2 1e j kzn - 112) = ½N(an2 ) 2eJkzn_ i2 , D-I

A2 2 = N (a2) . D-2

For extremely long ranges, Dp and A2 are statistically independent,

because A2 is practically equal to AI , which is independent of Dp. For these

cases, the probability density of Vm can be computed exactly. The value of

P(Vm) dVm can be found by differentiating the total probability P(Vmt) of

finding the phase-detector output between 0 and Vmt. The total probability

can be computed by summing the infinitesimal probabilities of all possible

I lying between 0 and Vmt.25 That is,A2
mVt (C o

P(Vt) p() dVm p(D P P(A2) dA2] dD• D-3
0 A2=ýD/VMt

The integration of p(Dp) need only extend between the limits 0 and co , and

not from -co to +co , because A2 is always positive.
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The integral of p(A2) can be evaluated directly from Eq. 2-25, giving

P(A2) dA2 A - eA2 =Dp/Vmt 2 pVmt

,2 1(A2 2A2 dA2 = e - 2/(Vmt A2 ) D-4

Substituting Eq's. 2-24 and D-4 into Eq. D-3 gives

-Cw~ww +1 2D 2
P(Vm 1 e 2P2

12[ 1
2DP

2= 1 v + 22
Vmt A2

1 ý 1 2

vm A22 p D-5

1

2 AVt 2,

D-6

Eq. D-6 can be further reduced by substituting the mean-squared values of

aDp nd A2 from Eq's. D-1 and D-2, with the result that

= jkzn [1 + ]

Vm? Vmt
D-7

Differentiating this expression with respect to the variable V, gives

12-) Q, 2
_ Vm•m3

+l + _V;
2(_. 2 d 3~ 22(VM2 + q2, ý3T

2-26

The quantity Vm can be standardized in terms of a linear coordinate at the

target. The output due to a displacement Z of an ideal, single-point target

at very long range is, according to Eq's. 2-20 and 2-22,

Output = k x Z .

Therefore, the phase-detector output, expressed in terms of a linear

coordinate at the target, has a probability density

p(Z) dZ (Q/k)2 dZ
2[Z2 + (Q/k)312 ]

D-8

D-9
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D-2 Average MLgnitude and RIS of Output

The average values of the magnitude and the squuare of the phase-detector

output with amplitude limiting can be computed from the probability function

of the output. For any range, this function is approximated by

Q2 dVm

P(Vm) dVm = 2 2 3/2 (-L < vm< +1)
2(Vm2 + Q2)3/2

2-29
Q• 2 dVm

P(V = -1) = P(Vm = +1) ( + /M m 2(V 2 +.q2)372
Silice this function is symmetrical about Vm = 0, the average magnitude of

the output can be written

Q5 v dV, _ _ dV_
m q 2 v m dVm  2dVm 2-32

(Vm 2 + q2)3/2 + (Vm 2 + q2)3/2 '

and the mean-squared value

$Vm2 + Q2)3/2 K (V 2+ 2 m 2-33

According to EQ. D-8, the average magnitude of the output can be

nromalized in terms of a linear coordinate at the target by dividing the

value computed in Eq. 2-32 by k. When the indicated integrations are per-

formed, and the division made, the resulting expression is

Iz =I [1 + Q - (1 + )"] . D-10

The corresponding ex•oression for the mean-squared value of the output,

which must contain a normalizing factor of 1/k2 , is

2 1_ 1_ + Q2 In(1 + [l + ) ( + 2) D-11
- k2 Q

For a system without amplitude limiting, the probability density
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function of the phase-detector output is
1 -Vn2/(2 V)

2 np(V dV 1 nve /(2V) 2-30

where
2

= . 2=-31n n
The mean squared value of Vn can be normalized in terms of a linear coordinate

at the target by dividing Eq. 2-31 by k 2 , giving

Z= --- D-12
nk 2

From Eq's. 2-34 and D-8, the normalized value of the average magnitude of

the wander is found to be

IZH D-13

D-3 Results for a Uniformly Distributed Target

The values of the average magnitude and root-mean-square of the phase-

detector output can now be computed for a target consisting of a large number

of sources uniformly distributed in one dimension over a distance L. As can

be seen from inspection of Eq's. D-10 through D-13, it is only necessary to

compute the value of Q as a function of range and substitute it in the

equations.

Because the uniformly distributed target is symmetrical about its

center, the center will be chosen as the reference from which the position

Zn of each source n is measured. This choice implies that the axis of the

receiving antenna system is pointed at the center of the target. The problem

of finding Q then becomes the problem of finding the mean squared magnitude

of ejk zn - 1 for zn uniformly distributed from - L to + L. The solution

to this problem is

- 'P~'n~~CV""~EC~R""'.a~
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Q2 e n 2-27

;L L
11n 2 n = (cos(kzn) - 12 + sin2 [kzn]) dzn

= - 2 [1 - cos(kzn)]d(kzn)

sin(gkL)
2[l - 2 i k= 2-35

The plots of Fig. 2-14 were made from data obtained by substituting Q from

Eq. 2-35 into Eq's. D-10 through D-13. Standardization of the results in

terms of the length of the target was obtained by dividing the values of the

average magnitude and rms of the output by L.

D-4 Phase-detector Output with Errors in Aiming

The above results for phase-detector output due to multi-point targets

do not apply in all cases when the radar antenna system is not aimed directly

at the center of the target. In the following analyses, some of the proper-

ties of the output of a phase detector are computed for a target off the axis

of the antenna system. It is assumed that the target is at very long range,

so that the phase-detector operation is restricted to its linear region.

Consequently, the results also apply to the output of the error detector of

a lobe-comparison system.

If the signal received by one antenna is

S1  aneJn , 2-19

the signal received by the other antenna is

S2 = eae(n + k[zo + = ejkZo IaneJ(Pn + kzn)

= (S 1 + D) ej k z o ,D-14
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where zo is the distance from the center of the target to the axis of the

radar antenna system and zn is the distance from the point n to the line

through the center and parallel to the radar axis.

Because it has been postulated than the range is very great, k is very

much less than unity, and all terms containing noowers of k higher than the

first can be neglected. Therefore, Eq. D-14 can be written

2 = (S1 + D)(1 + jkz0 ) = S1 + jkzoS1 + . D-15

The term jkzoD can be dropped because D itself is made up only of terms

containing k to the first and higher powers.

For a system with amplitude limiting, the output of the phase detector is

component of S2 out of phase with S1l
V 2-22m A2 = A

where A2 equals A1 by virtue of the long target range. Substituting Eq. D-15

into Eq. 2-22 gives

V kzoA1 + k + D-16m A1  0 A,

This equation shows that the phase-detector output twith amplitude limiting is

the linear sum of the output due to wander and the output due to the aiming

error.

For a system without amplitude limiting, this highly desirable linear

superposition no longer exists. With such a system, the phase-detector output

is given by

component of S2 out of phase with S1 2-23n
A = A1

_ kzoA1 + ,

A,

0 - 1 2I A, A, U M M SM
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Because Al and Dp are statistically independent, the mean-squared value of Vn

is equal to the sum of the mean-squared values of V1 and V2 .

The -probability density distribution of V1 has the same form as that of

Al , since the two quantities are proportional. Thus,

2V1 -v12/(v1 2)
Pl(V1) dV1  - - e dV1 , D-18

where

2 (ko 2 D-19VI2= (kz)2 -i "

The probability density distribution of V2 is exactly the same as that of

Vn given in Eq. 2-30, namely,

p2 (V2 ) dV2  1 e 2  (2 7 2 ) D-20

where
2 2

2 - 2 n2 D-21

The mean value of A, can be computed from its probability density

distribution, giving

4 2f12 -A, e2 A12  _ 2

2i (A-7)3/2 A2
- A x') = (/)e ( d . D22

When this result is substituted into EQ. D-19, the exoression for the

mean-squared value of V1 becomes

-T 4 k 2  2 D-23

The mean-squared value of Vn , which is the sum of Eq's. D-21 and D-22,

can be normalized in terms of a linear coordinate at the target by dividing

by k2 , giving
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Z7 z 2o + 2 a = (z - zo2 + ., D-

The desired normalized output is zo. The mean-squared value of the jitter

in the out-out is therefore

4 2 2

(Z- = (- 1)2 + - n2 = 0.272 z 2 + 0.637 n2 . -0 T )z0 +-zn 0 n

The probability density distribution of Z can be computed by a method

analogous to that used in obtaining Eq. D-3. The probability that Vn has a

definite value is the sumn of all possible joint probabilities giving

V1 + V2 = n, which can be written
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D-25

since V1 is never negative. In this expression the differential dVn has

been omitted for convenience. If Eq's. D-18 and D-20 are substituted into

Eq. D-25, the result is

p(V)1 -v1 2/( )
Sv12 V 2

e -1 1 + 02 1V

-(n -
e 1 )2/(2 ,)2V2

o 1 -L 2 Vn2/(2V••

e 
n

0o V12 V2C
4 1

vZ12

If a new variable X is chosen such that

V= 20 + X + X ,
1Eq. . D- 201 3becomes

EQ. fl-26 becomes

where

dV1

D-26

1

2V2

D-28

·..:·

p(Vn) P 1(V) P2(Vn - V1) l ,

4 n D-27
V2
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00 +( c2o - cx2) f +( 3 clx )
p(Vn ) = o  e dX + 0Co0 e dX

C3 3

0C2 0_1 e C X2
= oe0203 X 1 e-; 2c  + 0o03 e o  e- dX

S2C1

0 1 04 2 3 11

.2 2- 1 + (Zrr)2 04 e ' dX1] D-29where
04 C203 20 - • = a• -/( "

Z2  Zo2  ----
- - x x [(z 0 2 )/(z n2 ) + i]- D-30

2A X 2

a • =2C1 D-31

The final integral of Eq. D-29 is evaluated in mathematical tables.31

If V in Eq. D-29 is normalized in terms of a linear coordinate at then

target, the resulting probability density distribution for the phase-detector

output without limiting is

S o042 (4 Xl 2

p(Z) dZ = C5[1 + (2nr) 04 e e - 1  dX ] dZ D-32

-•0o (2)g
where

•h kOo= 2 - 2 ) 1 x C 2 1 -Vn2/2(V2 )
5 = k[l + (12 )/2(V22- I x 2 e5 2•_V22

= [ + 2/(zn-)-1 x (zn ) x e Z2/4( D-33

The distributions for various values of the parameter o2/( ) are plotted

in Fig. 2.-15. As is to be expectcd, for small values of the parameter, the

distribution is similar to a Gaussian curve, while for large values, the

shape of the distribution approaches that of a Rayleigh distribution.

tý 7
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APPENDIX E

GEMERAL EXPRESSIONS FOR THE SIGMTL SCATT=RED BY A TARGET

Derivations are presented in this appendix of the general expressions,

used in Sec. 2.4 on "Relations Between Signal Amplitude and Wander", for the

distribution of the electromagnetic signal reflected from a target. The

exoressions are obtained only for the two-dimensional case, which is suf-

fuciently general for the intended purpose.

E-1 Fourier Series Reoresentation of the Signal,

It is desired to find the expression for the field along a circle

whose center is at the center of the target and whose radius is very large

compared with the target and with the wavelength. The solutions to Isxwell's

field equations in circularly cylindrical coordinates can be readily adapted

to this two-dimensional problem. On such a circle, the total field can be

represented by linear combinations of elementary wave functions

nh = e j n Hn(1)(k2 - h2) R] ejh - jwt , 2-36

where R, G, and z are the orthogonal cylindrical coordinates and Hn) indi-

cates a Hankel function of the first kind and order n. 2 6  Since the oroblem

here involves only two dimensions R and 9, the field does not depend on z,

so that h = 0. In the same reference it is shown that, for h = 0,

Er = nbn E= -jPw bn  . =E an . E-1
n=-oo n=-co n=-oo

1When R is very large, Er becomes negligibly small and

= jkn

Therefore the. received signal is proportional to the sum of the elementary

wave functions.
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When R is very much greater than n,

H (1)[kR] = ~ j  4 E-2
~- 

-

A pattern with a term ejnG can only be generated by a physically realizable

source whose maximum dimension is of the order of magnitude of nk or greater.

For a target of finite size, then, n is bounded, and the signal for large

R can be written

jn 2 - jk 4 -j t 2
S = 0 ene [--Q e eR  e .0-3n= e e- -

For a given very large R, the signal at some time t such that

e jI e e = I + jO

is given by

•n w 1 _jnr e.n

s(e) = CO Cn - e e-jn
n= -N

Sane 2 ,-37

E-2 M1ultiple Product Eauivalent of Fourier Series

Let the function S(w) of the complex variable v be defined by

a 21N
S(w) i ! w" + wn· 2-38

N n=l

where

w. re , wn rnein 2-39

On the unit circle in the w-plane, r = 1, and

S(w) = S(9) =- e + w n )

If the multiple product in Eq. 2-40 is expanded, the resulting expression

for S(Q) is
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S(9) - e Le + (wl + W2 + + Wn)e

j(2X1-2)G+ (w1w2 + 1V 3 + 2 3 + - - + -2N)e

+ ()ej j (2 N- 3 )0 ++ ( ---- wm )]

+ (w1 2Y- -2N)

= a •eJC1  + (wl + - - - )ej ( - 1 )  
1 + - - - )ej (N- 2 )

+ - - - - + ( - 'T + - - -) + - - - -

+ (wlW 2- -- 2N)e1JT ] . E-4

The variable 9 enters into the second set of terms in Eq. E-4 in

exactly the same may as it does into Eq. 2-37. There are 21,1 undetermined

constants an in Eq. 2-37. In Eq. 2-40 there are 211 constants wn and one

multiplier aN, which is the same as aN in Edq. 2-37. The coefficients of

corresponding terms in Eq's. 2-37 and E-4 can be equated,' giving 21 inde-

pendent simultaneous equations, which are adequate for finding the 21N

constants w . Therefore, it has been demonstrated that Eq's. 2-37 and 2-40

are equivalent.

~e~i3k~
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APPEI~IX F

RADAR EQUIPIMET FOR RECORDINTG IATA

The equipment used in obtaining experimental data on wander of the

apparent radar center of aircraft targets and on the amplitude fluctuations

of the radar echo is described in this appendix.

Block diagrams of the overall X-band and S-band systems are shown in

Fig's. 3-1 and 3-20, respectively. In the following sections, schematic

diagrams of the various component blocks of the systems are presented, along

with descriptions of special features and design techniques associated with

many of-the units.

F-1 I-F Amplifier

The i-f amplifiers were the same units that were used in the flight

27
tests of the Meteor Model-II pulse .seeker. The input stage of these ampli-

fiers is a 33 mcps cascode circuit with a noise figure of about 1.6 decibels.

The following stages of amplification are grouped into three staggered

doubles, giving an overall half-power bandwidth of 2.0 mcps. The center

frequency is changed from 33 mcps to 12 mcps at the middle of the second

double, by mixing with a 21 mcps signal. A schematic diagram of the amplifier

is shown in Fig. F-1.

For the X-band wander tests, the two measurement i-f amplifiers were

carefully aligned to have the minimum possible difference in their phase-

delay characteristics. The alignment was made with the amplifier gains at

about 10 decibels less than maximum, which was the most probable gain setting

as anticipated for the tests. First, one of the amplifiers was aligned to

have the desired frequency response. Then the same input, obtained from a

wobbulated signal generator, was applied to both amplifiers. Identical
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amplitude detectors were used in the outputs of both amplifiers. The differ-

ence between the outputs of the detectors was used as an indication for

aligning the second amplifier. It was found that the amplitude-frequency

characteristics could be balanced within one percent over the entire pass-band.

Since both the amplifiers were minimum-phase networks, the difference in phase

delay through them could be computed from a knowledge of the difference between

the amplitude-frequency characteristics and either characteristic. For these

amnlifiers, the maximum difference in phase delay was about 0.8 degree for a

one percent difference in the pass-bands. Over the entire range of gain

settings expected in the tests, the amplitude unbalance rarely exceeded

2 percent, indicating a maximum phase differential of less than 2 degrees.

F-2 Gater and Amplitude Detector

A balanced gating circuit employing a ring of four 1T34 germanium diodes

was used to render the system insensitive except during the time of the

return of the desired echo. It was necessary to use a balanced circuit in

order to avoid undesirable transients in tuned circuits following the gater.

A pulse amplitude detector was included in the unit, following the gating

circuit, in order to furnish a video pulse for the agc amplifier. Fig. F-2

is a schematic diagram of the gater and the amplitude detector.

The bandwidth of the gating circuit and the following buffer amplifier

was kept greater than 6 mcps, so that spurious differential phase shifts

would be tolerably small. Residual differential phase shifts were compensated

by appropriate adjustment of the limiters of the phase measuring unit.

The attenuation through the gating circuit during the "off" time between

pulses is more than 50 decibels greater than that during pulses.

U-;I
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F-3 Automatic Gain Control

The agc unit consists of a video pulse amplifier and pulse amplitude

detector, followed by a low-pass filter with a 4-second time constant and

an output buffer stage. A schematic of the unit is shown in Fig. F-3.

F-4 Automatic Freauency Control

The automatic frequency control provides a direct voltage to the repel-

ler of the klystron which is the local oscillator in the receiver, in order to

keep the frequency of the klystron just 33 mcps away from the frequency of

the transmitter. The afc unit consists of a 33-mcps i-f amplifier and

frequency discriminator, which is followred by a direct-coupled amplifier

which drives the repeller. A schematic of the unit is shown in Fig. F-4.

F-5 Manuallv Tracked Range-gate Generator

The range-gate generator for producing the pulses to operate the gater

was manually adjusted to provide the proper delay in the range gate. The gen-

erator was triggered by a video pulse which was obtained directly from the

transmitter over coaxial cable. The output of the generator was a 1.3-micro-

second pulse having a flat top. The pulse could be delayed with respect to

the trigger by any time between 0 and 70 microseconds, corresponding to

target ranges between 0 and 6 miles. A schematic diagram of the unit is

shown in Fig. F-5.

The adjustable time delay in the unit was achieved by comparing a

manually controlled direct voltage with the saw-tooth voltage output from a

phantastron. The phantastron was triggered by the input from the transmitter.

A small voltage change at the output of the comparison diode occurred at the

time when the direct voltage and the saw-tooth were equal. This change was

used to fire the blocking oscillator which generated the range gate.

Sec. F?-3 167
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Because the phantastron output was a linear sawtooth, the magnitude of

the manually controlled direct voltage was a linear function of target range.

Therefore, it was possible to use a dual linear pootentiometer in the manual

control in order to multiply the output voltage from the phase measuring unit

by range. An additional rheostat was needed in order to make the zero posi-

tion of the dual potentiometer coincide with zero time delay.

F-6 Pregater

The pregater was used to generate a second range gate for removing

from the inmutts to the gater the strong signals due to nearby ground clutter.

The second range gate, which was applied to the suppressor grids of the pentodes

in the next-to-last stage of the i-f amplifiers, had a duration of 90 micro-

seconds (8 miles) and an adjustable starting time. The circuit for obtaining

the variable starting time was the same as the circuit for producing the delay

in the range-gate generator. In operation the delay in the pregater was set

at 7 microseconds, so that all echoes from targets within 0.6 miles were

excluded. The schematic of the pregater is shown in Fig. F-6.

F-7 21-Mcos Oscillator

A crystal-controlled oscillator was used as the source of 21-mcps sig-

nals for the variable phase-shifter and the mixers in the i-f amplifiers.

Three separate cathode follow-ers are used as buffers for the three identical

outputs. It was necessary to use separate buffers in order to obtain suf-

ficient signal strength (0.5 volt) at the 21-mcps inputs of the i-f amplifiers,

which had an impedance of 90 ohms. The schematic of the oscillator is shown

in the lowrer part of Fig. F-7.

F-8 Mile Marker

The mile marker is a circuit for generating 1-microsecond pulses every

171Sec. E-5
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10.74 microseconds for a 100-microsecond interval following each firing of

the r-f transmitter. These pulses were used. to provide pips corresponding to

1-mile intervals on the range scope. A schematic diagram of the unit is

shown in Fig. F-8.

The first tvrin triode of the mile marker is a one-shot multivibrator

which produces a single 100-microsecond pulse that is started by the input

trigger. The input trigger is the same video pulse from the transmitter that

is used to trigger the range-gate generator. The first section of the second

twiin triode is an amplifier for the 100-microsecond pulse, which is applied

writh negative polarity to the grid of the second section. This triode has a

dissipationless L-C tank with a resonant frequency of 93.1 kcps connected in

its cathode circuit. During the pulse, the tank is unloaded, because the

triode is cut off. The infinite Q, of the tank is obtained by means of a

Q-multi-olier using half of the third twin triode. In the final stages, the

sinusoidal tank voltage is amplified, souared, and differentiated, in order

to obtain the desired output poulses. A switch in the output circuit is

incorporated to furnish either positive or negative markers.

F-9 Video Adder

A video adding circuit was used to combine the three inputs to the

vertical amplifier of the TS-34 range scope. The inputs were. the range gate,

the mile-marking pulses, and the output of the i-f amplitude detector. The

amplitude detector was included in the adding circuit, of which a schematic

diagram is shown in the upper part of Fig. F-7.

F-10 12-IMcps Limiter and Amnlitude Detector of Phase Measuring Unit

Amnlitude limiters were needed in the ichase measuring unit to remove

the fluctuations in the amplitudes of the 1-microsecond pulses from the i-f
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amplifiers, prior to phase detection. It was required that the difference in

the phase delays through the two limiters be very small. H~rever, it was

not sufficient that the two limiters have the same phase-delay vs. input-

amplitude characteristic, because the signal levels into the limiters were

not necessarily equal. Each limiter had to be such that only very small

variations in phase delay accompanied changes in input level over a voltage

range of 20 to 1 (26 decibels). An amplitude detector was included with each

limiter for the purpose of furnishing a direct voltage proportional to the

pulsed signal amplitude at the input to the limiter. A schematic of the

limiter and amplitude detector is shown in Fig. F-9.

Biased diodes were chosen as the basic elements in the limiters, because

of the restrictions imposed by the nature of the pulsed signals. Since the

duty cycle of the input was of the order of .001, the circuit could not be

designed around any principle of charge retention, such as in grid limiting

with class-O tube operation. Furthermore, bandwidths greater than 2 mcps were

desired, because the pulses had a duration of only one microsecond. In the

final design of the limiters, the pentode amplifiers were operated class A-1.

Bias voltages for the diodes were obtained from the cathode circuits of the

pentodes. The capacitance at the junction of each pair of diodes was kept at

a minimum by means of isolating resistors and careful wiring layout; these

precautions were necessary because the bandwidth of the circuit at this point

had to be sufficiently great to permit the generation of a 12-mcps square wave.

A 36-mcps trap was needed to eliminate the third harmonic generated by

the diodes. The amount of third harmonic that the diodes generate is a func-

tion of the signal level at the input to the limiter. W'ithout the trap, the

third harmonic was shifted in nhase relative to the fundamental by the tuned

circuit at the grid of the following tube. Consequently the zero-crossings
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of the resultant wave at the grid could be shifted by varying the input

level to the limiter, unless the third harmonic was eliminated.

Tvro stages of limiting were needed in each channel in order to obtain

performance over the desired range of signal levels of 26 decibels.

Tests on the complete limiters showed that with careful adjustment the

maximum differential phase delay could be kept in. the neighborhood of 1 to 2

degrees when both inputs were equal and varied over the range from 0.1 to 2.0

volts rms. The change in phase delay through each limiter was higher, about

10 degrees maximum. This change was not thought to be serious, because under

those conditions when the signals in the two channels are appreciably different,

the phase differences associated with wander can be as great as 90 degrees

or more.

Vdhen overall tests were made on the combination of the gater and the

limiters, it was found that the maximum differential phase delay in the two

channels could be kept under 3 degrees when both inputs were equal.

F-11 12-Mcps Pulse Phase Detector of Phase Mieasuringp Unit

The phase detector of the 12-mcps phase measuring unit was built

around a 604 triode phase splitter and a pair of 1N34 germanium diodes. The

output of the phase detector was a pulse whose height was approximately equal

to the cosine of the phase difference of the inputs. A circuit diagram of the

phase detector is contained in the lower left part of the schematic in Fig. F-10.

The functions of phase detection and pulse stretching were kept separate

in the phase measuring unit in order to insure that adequate bandwidth was

maintained in the phase measurements without introducing distortion due to

diagonal clipping in the diode circuits.

A capacitance of 59 Wff was added to the input which connects directly
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to the two diodes, in order to equalize the bandwidths of the two inputs, and

eliminate phase errors due to drift in the intermediate frequency. The input

to the diodes has a much lower impedance than the input to the 6C04, which

draws no grid current.

The levels of the two inputs to the phase detector were adjusted to

give a characteristic of output vs. phase difference that was as near to a

triangular waveform as could be obtained.

F-12 Pulse Stretcher and D-C Amolifier of Phase Measuring Unit

The function of this part of the phase measuring unit was to convert

the video pulses from the phase detector into the direct voltage required by

the recording equipment. The schematic diagram of the stretcher and a.mlifier

is presented in the upper and right-hand portions of Fig. F-10.

The pulse stretcher, which was built around a 6J6 twin triode and a

6AL5 twin diode, operates in the following manner. At the same time that the

desired pulse, of voltage V , comes out of the phase detector, a fixed armpli-

tude pulse of similar duration, and of masgnitude Vb , is produced in the output

of the 6J6 amplifier. The latter pulse, which is called a bias pulse, causes

both halves of the 6AL5 to conduct. During the pulse, the two capacitors on

the output side of the 6AL5 are charged to voltages equal to Vd + IVb and

Vd -V, respectively. Between pulses, one capacitor discharges into the

other through the two 3.9 megohm resistors, so that the average of the two

capacitor voltages remains constant at Vd , unless one of the diodes conducts.

This possibility can be prevented if the bias pulse amplitude is made con-

siderably larger than the maximum pulse from the phase detector. In order to

prevent distortion when the amplitude of the desired pulse is varying at a

high frequency (say 50 cps), it is necessary to insure that both diodes
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conduct during every pulse. Satisfactory operation in this respect can also

be guaranteed by keeping the pulse out of the 6J6 amplifier considerably

larger than the pulse from the phase detector.

Two different methods were used for obtaining the bias pulse. In the

S-band tests the pulse was obtained from an amplitude detector on one of the

limiter outputs. It was found that with this method the pulse stretcher

was occasionally triggered by ground clutter which occasionally appeared at

the limiter outputs despite the range gater. In the second method, used in

the X-band tests, the bias pulse was derived from the'range gate directly,

thereby eliminating any possibility of triggering on ground clutter. The

range gate was passed through a 0.6-microsecond delay line, in order to

compensate for the delay of the signal in the limiters and the associated

tuned circuits.

The direct-coupled amplifier consisted of an input cathode follower,

a triode amplifier, and an output cathode followter, with considerable

negative feedback around the last two stages. Stable power supplies of

+150, -7.5 and -150 vdc were required by the amplifier. The overall voltage

gain of the amplifier was 5.

Sec. F-12 181
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APPEENDIX G

SPECTRUME A-,kLYZ;R

A swept-frequency spectrum analyzer was designed and constructed for

reducing the data on wander and amplitude fluctuations recorded during the

flight tests. Theanalyzer was adjusted to process data in a frequency

bandwidth of 140 cps with a resolution of 10 cps. A block diagram of the

analyzer is presented in Fig. 3-4 of Sec. 3.13. A schematic diagram of the

entire analyzer is shown in Fig. G-l, which was laid out in roughly the same

manner as the block diagram.

G-1 Soecial Circuits

Some of the circuitry used in the spectrum analyzer is rather unique in

its design or characteristics. The more significant of these special circuits

are described here.

The balanced mixer at the input to the analyzer was designed to have

good balance stability over periods of an hour or more. The mixer includes

a twin diode 6AL5 (V-3) and half a twin triode 12AU7 (V-4). The triode

serves as a phase splitter for the carrier frequency of 20 kCps. The diodes

are arranged in series between the two outputs of the phase splitter in such a

manner that they both conduct simultaneously over half of each cycle of the

carrier. During the conduction period, both diodes tend to connect (through

10 kilohm resistors) the low-frequency signal input to ground, thus serving

as a chopper for the inpiut signal. The low frequencies are then filtered

from the chopped signal, leaving the desired sidebands with suppressed carrier.

WTith the 6AL5 shock mounted, it was found that the drift in balance was

generally less than 80 decibels below the signal from either output of the

phase splitter over a period of one hour or more. In other words, in the
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period of an hour, the maximum unbalance corresponded to an input of about

0.2 millivolts. It is suspected that the chief reason for this good stability

is the presence of the l0-kilohm resistors in series with both diodes, their

purpose being to mask variations in the forrward impedance of the diodes.

The feedback stabilizers around the direct-coupled Dumont 304H Oscil-

lograph were used to reduce the slow drift in the centering of the oscillo-

graph pattern. The stabilizers provided equal attenuations between each

deflecting plate of either pair and the corresponding input, while simul-

taneously inverting the signal from the appropriate plate. W'ith the stabil-

izers in use, and with the oscillograph run off a regulated power line, the

drift in the centering was less than 0.05 inches per hour.

The 5-second s:weep circuit was designed to provide a linear, periodic

sweep voltage with a period which could be varied between 1 and 15 seconds.

A 4.-pf paper capacitor was charged through an adjustable resistance from the

output of a cathode-coupled amplifier. The input of the amplifier was con-

nected directly to the capacitor. The gain of the amplifier was adjusted to

be exactly unity, with the result that the voltage across, and therefore the

current through, the charging resistor was always constant. From the cathode

of the cathode-coupled amrilifier was taken the sweep output, and also a

voltage which fired a single-shot multivibrator when the output reached a

certain level. The multivibrator output was used to trigger a thyratron,

which discharged the capacitor and caused the cycle to repeat. The maximum

change in slope of the output waveform was less than two percent when the

circuit was correctly adjusted.

G-2 Operational Procedure

A brief description of the methods of operating the analyzer is pre-
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sented here. Different methods were used for processing the S-band and the

X-band data; for most applications, the latter method is highly preferable.

In the former method, the analyzer was swept as fast as possible. The

sweep rate was limited only by the bandwidth of the narrow-band tuned ampli-

fier. The optimum sweep rate was determined empirically by first noting the

peak value of the spectrum of a sinusoidal input with the analyzer swept very

slowly,.and then increasing the sweep speed until the peak of the spectrum

dropped about two percent. After the sweep rate was adjusted, the horizontal

sweep length was set. iText the frequency scale of the sweep was set, using

the internal calibration signal with the II'1PUT SEL switch set on CAL. This

calibration signal is a half-wave rectified 60-cps wave, containing components

at frequencies of 0, 60, and 120 cps. The tuning capacitor on the swept

oscillator and the SWEJP AF control, which regulates the sweep voltage

applied to the reactance tube, were adjusted to place the three calibrating

frequencies at the desired abscissas on the oscillograph face.

The next step in the adjustment, after the sweep controls were set,

was to balance the mixer. First the BUFFER S1WITCH was set either to connect

or eliminate the buffer; in all the data reductions of this research program,

the buffer was used. When the buffer is used, the gain control, a 50-kilohm

potentiometer across the output of the switch, is set to the minimum gain

consistent with the input to be analyzed, in order to minimize the effects of

drift in the buffer. Then, with the I1.PUT SEL switch set to BAL, the

resistive and caoacitive balance controls were adjusted to minimize the

vertical deflection of the oscillograph trace at zero frequency. Next the

vertical position of the pattern was set to the desired point. The vertical

gain control, in the cathode of the first triode section of V-8, ýwas set so

AAA", 11", i7~vvr u ru
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that the maximum signal which could be passed through the narrow-band. ampli-

fier without distortion gave a 2-inch deflection of the trace.

Finally, it was necessary to set the 1-megohm potentiometer controlling

the level of the signal into the buffer. This adjustment was performed with

the desired input signal a-plied to the DIRECT II~PUT jack and with the

I"IUT SEL switch on DIR. The setting was considered correct when the spot

on the oscillograph screen occasionally (perhaps once in five sweeps) went off

scale in the vertical direction. After this control was set, the analyzer was

ready for operation.

In the preferred method of operation, which was used for the X-band data,

the analyzer was mswept across the desired range of frequencies only once, a

process requiring about 20 minutes. The first step in setting up the analyzer

for this type of operation was to set the horizontal sweep length, after which

the SWEEP AF control was adjusted, using the calibrating signal, to give the

desired frequency scale. Then the SWE? SEL1ECTOR switch was turned to its

middle position, which connected the motor-driven sweep generator. The motor-

driven potentiometer was turned manually until the oscillograph spot was at

the point corresponding to zero frequency (or approximately 0.1 inches away,

to compensate for the lag in the 15-second filter). The frequency vernier on

the swept oscillator was adjusted to bring the zero-frequency peak of the

spectrum to the abscissa where the spot was located. Next the IINUT SEL

switch was set to BAL, and the mixer balanced using the two controls for the

purpose, after which the vertical positioning of the pattern was set.

With the desired data supplied to the analyzer, the sweep potentiometer

was manually set at the frequency of maximum spectral density in the data.

Then the STEEP SELECTOR was. turned. tobits third position, which connected
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a 15-second filter in the vertical amplifier of the analyzer. The 1-megohm

input potentiometer was adjusted so that the maximum steady-state deflection

of the spot was approximately one inch for the amplitude spectra, or for the

wander spectra, so that the desired calibration in ft/lcps was obtained.

Finally, the sweep potentiometer was set to the starting position, the motor

started, and the spectrum photographed.

r:-: 1



188

APPENDIX H

DATA RECORDIIG AI'D EDITIING

The equipment and techniques employed in recording and editing the

X-band data on wander and amplitude fluctuations will be described in this

appendix. The method of editing the S-band data was fundamentally' the same,

although it was considerably more elaborate and less practicable. Only the

recording equipment for the X-band data will be described, because it is felt

that in view of its far greater compactness, dependability, and ease of

operation, this equipment is much more useful in practice than the multi-

channel equipment used for the S-band data.

H-1 Recordina and Playback Equipment*

The original records of the flight-test data were made on magnetic tape

using wide-band frequency modulators. Separate modulating circuits were

required for the trander data and for the amplitude data. A schematic diagram

of either of the modulators is shown in the upper part of Fig. H-1. The

frequency-modulating unit consists simply of a capacitance-coupled amplifier

with a lower half-power frequency of about 0.1 cps and a symmetrical, plate-

coupled multivibrator. The grid resistors of the mu.ltivibrator are returned

to the output of the amnplifier. The average voltage out of the amplifier can

be adjusted to set the center frequency of the carrier to a nominal value of

4 kcps. The peak deviation of the instantaneous carrier frequency was

+ 70 percent of the center frequency. The attenuated output of the multi-

vibrator was recorded onto magnetic tape moving at 7.5 inches per second,

*Credit is due Ir. P. E. Green, of the Research Laboratory of Electronics,

for the basic design of the wide-band frequency modulator and demodulator.
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using a separate Magnecorder tape recorder for each type of data.

The frequency demodulator is essential an electronic frequency meter

based on the principle of cycle counting. A schematic of the demodulator is

presented in the lower part of Fig. H-1. After the input to the demodulator

is amplified in the first stage, it is amplitude limited in the second stage,

which is in principle a positive-feedback amplifier with infinite cain. The

square-wave output from the limiter is differentiated and used to trigger a

one-shot multivibrator, which produces one 40-microsecond pulse for each

cycle of the input to the demodulator. The base of the multivibrator output

waveform is clamped at ground potential by a diode. A lao-pass filter is

used to extract the average value of the clamped waveform, which is directly

proportional to the number of pulses per unit time, and therefore to the

frequency of the in-out to the demodulator.

The overall bandwidth of the signal channel from the input of the

modulator to the output of the demodulator is slightly greater than 100 cps.

The maximum-signal-to-noise ratio of the entire channel is greater than

50 decibels.

The only adjustment in the modulator is the center-frequency control,

which never required resetting during the flight tests. In the demodulator,

there are two adjustments, namely, the limiter control and the pulse width

control. The former control was found to require attention once during the

6-month period of data reductions, the latter control needed no attention.

A switch was included in the modulator for lowering the average carrier

frequency by a factor of 10. The lower frequency was used when the data was

copied onto tape moving at 1.5 inches per second.
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H-2 Editing Procedure

It was necessary to edit the data recorded during the flight tests

in order to eliminate those sections which were not considered satisfactory.

The two chief reasons for rejecting data were weak signal strength (the

recorders were left on during a run even though the target may have been

temporarily lost) and poor phase-shifter tracking.

The first step in selecting the data to be analyzed was to examine all

the data visually. To this end, a cathode-ray oscillograph with a long-

persistence (P-7) screen was used with a slot (1 inch per second) horizontal

sweep speed. First the amplitude records were examined, and all regions with

good signal strength noted. (The maximum system gain imas not great enough to

bring thermal noise up to the level of normal signal strength, so that it was

easy to note when a target had been acquired.) Then the phase records were

inspected, and all intervals with good tracking of the phase shifter noted.

It was also possible to determine from the phase records when ground clutter

was troublesome, because ground clutter 7roduced a much different type of

phase jitter from that of an aircraft. From these notes and the notes made

during the flight test of target range and aspect, the sections of data that

were to be analyzed.were determined.

The next step was to make copies, on magnetic tape, of all the accepted

data. Two iignecorder tape recorders were used in the copying process, along

with the frequency demodnlator. The output of the playback machine was fed

into the demodulator. The input for the recording Magnecorder was obtained

from the output of the limiter in the demodulator. In this way amplitude

fluctuations in the carrier from the original records were eliminated, without

substantially increasing the random noise in the records. Copies were also
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made of the calibrations at the ends of each phase record. After the copying

was completed, the copies were cut into the desired sections. Each section

was sipliced into a loop, to serve as a continuous source of data for the

analyzer, and analyzed. The copies were played back at twice normal speed for

these analyses, thus producing spectra with a 5-cps resolution over a 70-cps

frequency band.

After all the individual sections of data had been analyzed, all the

accepted data for a given target aspect with each aircraft were spliced

together. The composite tapes were analyzed in the same manner as the

individual sections. The spectra thus obtained are the broadband ones shown

in Fig's. 3-6 through 3-11, 3-14, 3-15, and 3-18. 1When this process was

completed, slow,.-speed copies were made of the composite records and the

calibration tapes onto tape moving at 1.5 inches per second. For this

purpose, the composite records were played back into the demodulator, and the

demodulator output was filtered by a low-pass filter with a 20-cps half-power

frequency. The filtered output was used as the source of signal for the

frequency modulator, operated now with a 400-cps center frequency. The slow-

speed copies were played back at 15 inches per second into the frequency

demodulator and analyzed. The spectra thus obtained, having a 1-cps resolution

over a bandwidth of 14 cps, are the detail spectra shown in the figures

mentioned above.

i-r
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APPENDIX J

BIOGRAPHICAL NOTE

James B. Angell was born on December 25, 1924 in Staten Island, iNew

York. He was graduated from grade school and the Tottenville High School

on Staten Island, after which he attended Drake Business College in Perth

Amboy, New Jersey for six months. He started at the Massachusetts Institute

of Technology in September 1941, and received the degrees of Bachelor of

Science and 1,Lster of Science from the Cooperative Course in Electrical

Engineering in February 1946. During this period, he worked for four months

each at the General Radio Company, WTestern Electric Company and Bell

Telephone Laboratories.

On Narch 1, 1946 Angell joined the staff of the Research Laboratory of

Electronics as a Research Assistant in Electrical Engineering, a position

which he has held to the present time. During this period he was associated

with the guidance group of Project Meteor, and was engaged principally in

system analysis and the design of radar circuit components.

Angell is a member of Eta iappa 2Nu, Tau Beta Pi, and Sigma Xi, an

associate member of the American Institute of Electrical Engineers and the

Institute of Radio Engineers, and a colleague in the American Guild of

Organists.
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