ESTIMATION OF SEA SURFACE WAVE SPECTRA

USING ACOUSTIC TOMOGRAPHY
by
James Henry Miller

B.S. Electrical Engineering, Worcester Polytechnic Institute, 1979
M.S. Electrical Engineering, Stanford University, 1981

submitted in partial fulfillment of
the requirements for the degree of

DOCTOR OF SCIENCE
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
and the
WOODS HOLE OCEANOGRAPHIC INSTITUTION
August, 1987

(©James Henry Miller 1987
The autlor hereby grants to MIT permission to reproduce and
distribute copies of this thesis in whole or in part.

Signature of Author —
Department of Ocean Engxneerlng, MIT and the
MIT-WHOI Joint Program 1§_¢chanograph1c Engineering

Certified by ___.
N, James F. I.{ynch\
Thesis Supervisor—"

Accepted by ,
Dr. George V. Frisk J

Chairman, Joint Committee for Oceanographic Engineering,

Massachusetts Institute of Technology—Woods Hole Oceanographic Institution

WL e G S INSTIUTE
oIy RN aGY

APR 15 1988

LIBRARIES
Archives



ESTIMATION OF SEA SURFACE WAVE SPECTRA
USING ACOUSTIC TOMOGRAPHY
by
James Henry Miller

Submitted in partial fulfillment of the requirements for the degree of
Doctor of Science at the Massachusetts Institute of Technology
and the Woods Hole Oceanographic Institution
August 3, 1987

Abstract

This thesis develops a new technique for estimating quasi-homogeneous and
quasi-stationary sea surface wave frequency-direction spectra using acoustic tomog-
raphy. The analysis of acoustic (mode and ray) phase and travel time perturbations
due to a rough sea surface is presented. Two canonical waveguides (ideal shallow
water and linear squared index of refraction) are used as examples for the mode
perturbation. The analysis is used to explain high mode coherence measured in
the FRAM IV experiment. The forward problem of computing the acoustic phase
and travel time perturbation spectra given the surface wave spectrum is solved to
first order. An application of the technique to ray phase data taken during the
MIZEX ‘84 experiment is shown. The inverse problems for the homogeneous and
quasi-homogeneous frequency-direction spectrum are introduced. The theory is ap-
plied to synthetic data which simulate a fetch-dependent sea. The estimates made
agree well with the “actual” (synthetic data) spectrum. The effect of noise in the
travel time estimates is studied. The sensitivity of the technique to the number
of rays used in the inversion is investigated and the resolution and variance of the
inverse method are addressed.
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Chapter 1

Introduction

1.1 Background

Ocean acoustic tomography is fast becoming an established tool for remotely
sensing the ocean interior(1,2,3]. The basis of tomography is the measurement of
acoustic signal travel time perturbations due to the sound speed variations that are
caused by oceanographic phenomena along the various acoustic paths[4]. Linear
inverse techniques are applied to the measurements to estimate these sound speed
variations. Acoustic tomography has been successfully employed to study a variety
of ocean features such as mesoscale eddies(5,6], currents(7], internal waves(8], and

barotropic motions(9).

Until recently, using acoustic tomography to remotely sense the ocean surface
has been an unexplored possibility. This thesis introduces a technique that estimates
the quasi-stationary and quasi-homogeneous sea surface wave frequency-direction
spectrum from the spectra of acoustic travel time or phase fluctuations measured
at a number of receivers or transceivers. For acoustic transmissions which interact

with the sea surface, information on the surface height is included in the signal
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along with the information on the other internal ocean features.! The time scale
of the wind-generated sea surface gravity waves (on the order of 10 sec) is much
shorter than that of most other oceanographic processes (the fastest of which are
internal waves whose time scale is on the order of many minutes). Therefore, a
spectrum of the fluctuations naturally separates the surface wave effects from the
other oceanographic processes.

The motion of the sea surface is a function of space and time. This surface
presents the appearance of a series of irregular moving crests and troughs that
gradually grow and decay with time. If we neglect spray, air bubbles in the water,
and breaking waves, this surface is then a single-valued function of x, y, and t, which
we will denote as £(z,y,t). The water at and below &(z,y,t) is set into motion by
wind. The water motion extracts energy from wind and stores it in the form of
kinetic and potential energy. This energy is in turn dissipated by the turbulence
below the surface and by wave breaking above. However, the dissipative effects are
weaker than the generative effects of the wind. A considerable portion of the wave
energy can continue for a number of hours and travel hundreds of kilometers away
from the area with strong wind to areas of relative calm.[10]

To a good approximation, the sea surface is Gaussian, locally homogeneous, and
short term stationary [11,12,13,14,15]. The Gaussian assumption implies that the
amplitudes of various spectral (sinusoidal) components are independent. Given a
large number of independent wave components, the Gaussian property follows from
the Central Limit Theorem[16]. The Gaussian property allows us to describe the
sea surface with only the second moment, with all higher moments being derivable
from the second. This second moment is called the time-space covariance function

and the various spectra are Fourier transforms over the different space and time

1Of course, this technique is not applicable to acoustic signals which have no interaction with the
sea surface, e.g. acoustic rays or modes trapped in the deep sound channel.
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variables.[17] The locally homogeneous assumption implies the changing sea state
has decorrelation space scales much larger than a surface wavelength. The short
term stationary assumption implies that the sea state has decorrelation time scales
much longer than a wave period.

Sea surface waves are usually characterized by various spectral descriptors,
among which are the frequency spectrum, the spectrum of the time series of sea sur-
face height measured at one spot, the wavenumber spectrum, the two dimensional
spatial spectrum of sea height measured at one time, the wove number-frequency
spectrum, the three dimensional spectrum of sea height at all time and space, and
various spectra in between. Of interest to this thesis is one particular spectrum:
the frequency-direction spectrum, a two dimensional spectrum which sorts the wave
energy by temporal frequency and by the direction the waves are travelling(18].

Prior to the early 1950’s, there were few reliable and consistent methods for
observing the sea surface wave field. Since then, many techniques have been de-
veloped to measure the various spectra. The measurement techniques for the one-
dimensional frequncy spectrum can be broken down into two categories: those which
directly measure sea surface elevation and those which are based on other properties
of the wave field as described in a review of the study of wind waves by Barnett
and Kenyon in 1975(17].

In the direct methods, a common technique that is used is to insert a rigid wave
staff into the water and measure an electrical property of the staff that is influ-
enced by the amount of the staff immersed in the water. All three basic electrical
properties (resistance, capacitance, and inductance) have been utilized but the most
successfull has been capacitance wave staffs[19]. The wave staff method is restricted
primarily to the laboratory and relatively shallow water because it requires a fixed
platform from which to operate.

A second class of devices measure some other property of the wave field be-
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sides height and deduce the height spectrum. Of these, the two most common
are pressure tranducers and accelerometers. Pressure tranducers consist of a wire
attached to a rigid diaphragm. Changes in pressure due to wave motion act on
the diaphragm, changing the tension on the wire[20]. The pressure fluctuations
are then transformed into sea height estimates through linear wave theory. Again,
this method is restricted to shallow water. Accelerometers, configured in a buoy,
measure the vertical acceleration in the wave field . The sea height is related to
the acceleration by linear theory. These buoys, sometimes referred to as wave rider
buoys, can be deployed in any depth water and have been widely used.

The measurement of two dimensional spectra has advanced in the past few years.
In 1960, Cote, et al. obtained the first two dimensional spectrum of the sea surface
using aerial photogrammetry(21]. Since, then a number of techniques have been
developed which can be broken down into four categories: pitch-roll buoys, wave
staff arrays, acoustic backscatter methods, and aircraft- and satellite-based radar.

The pitch-roll buoy and the related cloverleaf buoy measure vertical acceleration,
pitch, roll, and heading[22,12,23,24]. From these, directional spectra estimates can
be obtained, however, the resolution is limited by the fact that only the first few
Fourier coefficients of the angular distribution of spectral energy can be determined.
Much success has been achieved in measuring two dimensional spectra with wave
staff arrays. The work was pioneered by Barber in the early 1950’s(25] and was
extended by Munk in the early 1960’s[26]. An array of wave staffs measure the
sea surface elevation at a number of locations to give estimates of the time-space
covariance function. The Fourier transform of this covariance function yields an es-
timate of the two dimensional spectrum. This technique has been used successfully
by Donelan and his co-workers to measure directional spectra in Lake Ontario[27].
However, as previously mentioned, this technique is restricted to shallow waters

like Lake Ontario because of the need for a fixed platform. Acoustic backscatter
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techniques rely on the transmission of an acoustic pulse underwater and the reflec-
tion of that pulse from the underside of the sea surface wave field. The measured
Doppler shifts can be used to infer the velocity field near the surface and hence the
directional spectrum.(28,29,30| Hill and Farmer [28] have developed a buoy which
samples the backscattered acoustic Doppler shifts in azimuth and estimates the lo-
cal frequency-direction spectrum. These methods have been used successfully but

are restricted to measuring the spectrum in one location.

Labianca [31] has developed a technique for estimating the frequency-direction
spectrum using a “full wave” inversion method. Labianca proposes measuring the
forward-scattered field from a continuous wave (CW) source at a number of re-
ceivers in a circular array around the source. The spectrum of scattered waves have
sidebands introduced by the interaction with the moving sea surface. The acoustic
spectra are then inverted using linear inverse techniques. The Labianca technique is,
in some respects, similiar to the method we introduce in this thesis. Both are based
on acoustic forward scattering by the sea surface and both use a similiar inversion
technique. However, there are important differences. 1) Labianca’s technique is
restricted to relatively short ranges and a single interaction with the surface, while
our technique, as we will show, is useful at much longer ranges and assumes many
acoustic interactions with the sea surface. 2) His technique assumes, correctly for
his short ranges, that the sea surface is homogeneous while we are able to invert
for the inhomogeneous spectra. 3) The Labianca technique depends on frequency
effects of the sea surface waves on the acoustic transmissions while we use the phase
and travel time effects.

There are a number of methods by which directional wave spectra may be ob-
tained using microwave radar techniques. First, there are those techniques which
directly image the surface elevation and take a two-dimensional tranform later.

These direct imaging methods are Real Aperture Radar (RAR), Surface Contour
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Radar (SCR), and Synthetic Aperture Radar (SAR)[32]. RAR’s map the power
backscattered from the ocean surface to fixed side-looking antennas with fine res-
olution in angle. Range resolution is obtained using very short pulses. The re-
lationship between power received and wave height must be known to map the
surface. This relationship is not well known at present. Also, RAR is not usable
from satellites because of the need for fine angular resolution. SCR uses a narrow,
downward-looking microwave beam scanned perpendicularly to the direction of air-
craft travel. Horizontal resolution is obtained by a small illuminated footprint while
range resolution is obtained by short pulses. SCR has been very successfully used
to measure sea spectra from aircraft(33]. It is also not usable on satellites because
of the need for a small footprint. SAR maps the ocean surface to fine resolution
with a fixed, side-looking antenna that simulates a large antenna by continuously
scanning while it travels above the ocean surface[34]. Range resolution is obtained
with short pulses while azimuthal resolution relies on mapping Doppler shifts into
positions on the sea surface. For a moving ocean surface, azimuthal resolution is a
complicated function of the surface wave velocities and scattering intensity. How-
ever, SAR’s from aircraft and satellites have produced spectra that agree with other

methods(35,36,34].

A microwave measurement that images in range while it integrates in azimuth
is the Remote Ocean- Wave Spectrometer (ROWS). The technique performs a one
dimensional transform in the direction the airplane is traveling. ROWS has been
developed using both frequency modulation (FM) and amplitude modulation (AM).
The FM technique involves illuminating areas of the ocean surface that are small
in range extent but large in azimuth and measuring the mean Doppler shift from
the surface using the FM part of the coherent return. The large azimuthal extent
averages out waves not traveling in the look direction, thus producing directional

discrimination. Linear wave theory is used to map the measured velocities into wave
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spectral densities. This technique has been used from aircraft but theoretically
can be used from satellites{32]. All of the radar based methods have an inherent
180 deg ambiguity, i.e. they cannot differentiate between waves traveling in opposite
directions. We show in this thesis that our technique suffers the same 180 deg
ambiguity. Of course, all the radar based methods need a platform such as an
aircraft or satellite to operate from and this can limit the time spent over any one
area of the ocean.

With all of the above described techniques, one might ask why bother developing
a new method to study surface waves. First, the capabilities of acoustic tomogra-
phy are now enhanced. Tomography experiments which transmit acoustic signals
at fast enough rates (greater than .25 Hz) can now study surface waves besides the
other oceanographic phenomena. Second, tomographic experiments can last many
weeks and cover hundreds of kilometers of ocean, depending on battery limitations,
number of transceivers, etc. This enables the continuous study of waves in a large
area of the ocean for that time. Third, tomography can resolve spatial changes
in spectra in the covered area. For instance, tomography can estimate surface
wave specira in areas which are fetch-dependent. Fourth, we can integrate other
wave spectra measuring systerms (such as buoys or satellites) into the tomographic
inversion producing a better overall estimate. Fifth, and most important we feel, to-
mography enables the simultaneous measurement of surface wave spectra and other
oceanographic features such as currents and internal waves. Surface wave/current
interactions and surface wave/internal wave interactions(37,38] are being studied

and we hope that tomography might be able to assist in those investigations.
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1.2 Thesis Overview

This thesis is divided into five chapters. Chapter 2 describes the effect of the
rough sea surface on acoustic modes and rays. Modes and rays are the standard
descriptors of acoustic propagation in the ocean. Fluctuations in the local height
of the ocean cause fluctuations in the arrival times and phase of modes and rays.
The relationship between sea height and travel time fluctuation is developed. Be-
sides this shifting (or “wandering”) in time, the shape of the acoustic pulse can be
distorted (or “spread”). Coupled mode theory is used to assess the accuracy of the

wander-only or adiabatic approximation, upon which our inversion scheme depends.

Chapter 3 first gives an overviaw of surface wave spectral theory. There, the
spectrum of the acoustic travel time and phase fluctuations is shown to be related
to the frequency-direction spectrum of the sea surface when the wave spectrum is
homogeneous. Chapters 2 and 3 together solve the forward problem. In fact, in
the homogeneous case described in Chapter 3, the frequency-directional spectrum
is shown to be an algebraic transformation of the measured acoustic phase and
travel time spectra. We show that, like radar-basud methods, this technique also
suffers from a 180 deg ambiguity problem. The theory developed in this chapter
is applied to data measured on two days in the 1984 Marginal Ice Zone Experi-
ment (MIZEX ‘84) in the Greenland Sea off Spitzbergen. Frequency spectra were

estimated that are related to wind force data measured on the two days.

Chapter 4 addresses the tomographic inverse problem for the frequency-direction
spectrum when the spectrum is spatially inhomogeneous. We solve the inverse prob-
lem using a variant of the damped least-squares technique. This technique involves
the physically justified assumption of smoothness constraints on the frequency-
direction spectrum spatially and in direction. It is shown that only one inverse

operation need be carried out in these two dimensions, and the resulting general-
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ized inverse operator applied at each frequency of interest. The effectiveness of this
technique is investigated using synthetic surface wave spectra based on a model
by Donelan(27]. The synthetic acoustic spectra are measured at a number of to-
mographic tranceivers and then the generalized inverse operator is applied to the
measured acoustic spectra to estimate the spatially dependent frequency-direction
spectrum. Results are described for both modes and rays. The effect of noisy
measurements is quantified. The results using noisy data are shown to agree with
theoretical variance estimates from inverse theory. Resolution issues associated with
the inverse operator are also discussed. Finally, Chapter 5 summarizes the findings
of this thesis.

This thesis is multi-disciplinary and, as such, deals with different quantities
which are traditionally represented in the literature by the same variables. An
example is radial frequency of acoustic waves and radial frequency of surface waves,
usually represented by w. To prevent confusion, we have redefined a number of
variables in this thesis, e.g. w remains acoustic frequency while we have chosen {1
to represent surface wave frequency. A List of Symbols is provided on page 14 that

might be useful to the reader.
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Chapter 2

Acoustic Scattering by a Rough Sea Surface

This thesis is concerned with tomographic inversion of the travel times or phases
of acoustic signals for sea surface wave spectra. Hence, we will mainly concentrate
on rough surface effects on signal travel times and phases. To a lesser degree, the
effects on amplitude will be also touched upon, but only in the context of predicting
signal-to-noise ratios and pulse spreading effects which might degrade the time or
phase measurement.

In this chapter, we will describe the effect of the rough sea surface on acoustic
normal modes (Section 2.1) and rays (Section 2.2), which are standard descriptors
of the acoustic field in the ocean.

Normal modes constitute a “full wave” solution to the wave equation in the
ocean waveguide. Fluctuations in the local height of the ocean waveguide cause
fluctuations in the arrival times and phases of the normal modes which have a
turning point at the surface. If the slopes of the surface waves are small, the
coupling between modes can be taken to be negligible. Conditions for the validity
of this approximation (called the adiabatic approximation [39]) are presented. The
adiabatic approximation implies that, at the receiver, the mode arrival only shifts
(or “wanders”) in time bu! that the shape of the arriving pulse is not distorted

(or “spread”) by energy coupled from other modes. Our inversions for sea surface
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spert-a deperd on the acd’~bhatic »nproximation where arrival time fluctuations are
uncontaminated by pulse distortion effects.

Rays are the paths of acoustic energy obtained when the frequency of the trans-
mitted sound is assumed infinite[40]. We also relate the fluctuations in ray arrival
times and phases to the sea surface roughness. We assume the ray pulse wanders,
but is undistorted by scattering with the surface in regions where the adiabatic
mode approximation holds valid.

Finally, in Section 2.3, we summarize the results of this chapter that we need to

use in Chapters 3 and 4.

2.1 Normal Modes

Here, we concentrate on rough surface effects on the propagation of acoustic
normal modes. We start with a overview of mode theory in a horizontally stratified
ocean in Section 2.1.1, followed by the generalization to a range dependent ocean
in Section 2.1.2. We concentrate on the phase and travel time variations due to the
rough surface in Section 2.1.3 where we assume the adiabatic and WKB approxima-
tions. The variations are dependent on the background waveguide characteristics
such as depth, sound speed profile, etc. We use two canonical examples, an ideal
waveguide and an n’-linear profile, for iliustration of the rough surface effects in
Section 2.1.4. The analysis is used to explain the high mode coherence measured in
the FRAM IV experiment in Section 2.1.5

Coupled mode effects are addressed in Section 2.1.6 where we give a solution for
coupled mode pressure based on a single scattering approximation. Bragg scattering
is discussed in Section 2.1.7 that involves the matching of the surface wavelength and
and mode cycle distance. The validity of the adiabatic approximation is discussed.

Also, in Section 2.1.9, the validity of the WKB approximation is quantified.
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Figure 2.1: Horizontally stratified waveguide.

2.1.1 Normal Modes in a Stratified Ocean

The general horizontally stratified problem in underwater acoustics is the one
illustrated in Fig. 2.1. The ocean waveguide is of a constant depth H with a sound
speed c(z) and density p(z), constant in range but not in depth. The top boundary
is a pressure release surface, i.e. p(r,z = 0) = 0. The bottom is also a horizontally
stratified medium. The source is located at z = 2y and r = 0 with an acoustic
power of II. Our goal is to find the pressure field due to this source at all z and r.

We describe the acoustic pressure as a sum of normal modes. It is convenient
to introduce a particle displacement potential ¥, in terms of which the pressure is

given by
0%y
= —p—F. 2.1
P=—pp3 (2.1)

The three-dimensional wave equation (see [41] for derivation) for the displacement
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potential is
1 8%y
c? 9t

For a harmonic source e™"*, p = w?py, and the wave equation becomes the Helmholtz

Vi = (2.2)

equation
2 w?
Vi + v =0. (2.3)
c
For sources on the z axis, the field is symmetrical about the z axis and the wave
equation in cylindrical coordinates becomes
o 10y 0%  w?
ﬁ+;5’-_'+5}7+c—2¢—0. (2.4)
To solve Eq. (2.4), we assume a separable solution ¥ ~ U(r)Z(z). Equation (2.4)

then becomes
U"(r) + 2U'(r) + Z2"(z) w?
U(r) Z(z) c?
where the prime denotes differentiation with respect to the variable in the paren-

=0 (2.5)

theses. The separated equations become
U'(r) + w +&*U(r) =0 (2.6)
Z"(z)+4*2(z) =0 (2.7)
where we define the wavenumber as

k=2 (2.8)

K4t = K, (29)

Equation (2.6) is Bessel’s equation of the zeroth order. Its solution is the cylin-
drical Bessel function of zeroth order Jy(kr). For the far field, where «r > 1, we

can expand the Bessel function taking only the outgoing wave, so that

1 .
U(r) o ———¢'(sr=7/4), 2.10
(r) me ( )
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The amplitude of U(r) and therefore 1 decrease as r1/2 and the phase dependence
is the same for ail depths at a constant range.
If the harmonic source is located at a depth 2, , we can write the pressure in

the waveguide as a product of the Zp, Un, and e™*“[41]

p(r,z,t) = e+ ) ; \/‘%Zm(zo)zm(z)e‘“"" (2.11)
where
2
dm = il psc,I1 (2.12)
= [T, 72
Um = /(; PsZn(2) dz (2.13)

where ¢, and p, is the sound speed and density at the source depth, and p is
the density at the receiver. Equation (2.11) is valid for any horizontally stratified
waveguide without attenuation. However, the evaluation of the eigenvalues is, in
general, not analytic except for a few cases such as the hard bottom, constant sound

speed wavguide or the n’-linear waveguide; both will be discussed further on.

2.1.2 Normal Modes in a Range Dependent Ocean

When the ocean is not horizontally stratified, the Helmholtz equation (Eq. (2.3))
is no longer separable, and we have to turn to coupled mode theory to solve for
the pressure field. Coupled normal mode theory for a range dependent ocean was
developed independently by Pierce[42] in 1965 and Milder([43] in 1969. An excellent
account of coupled mode theory can be found in a PhD thesis by Rutherford(39).

Rewriting Eq. (2.3) for a range dependent waveguide,
Vi(r, z) + k*(r,2) ¥(r,2) = 0 (2.14)

with the appropriate boundary conditions. The range dependence can occur in two

different ways. The sound speed, and therefore the wavenumber, can be a function
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of range. But even with otherwise stratified sound speed profiles, the boundary
conditions on % may be a function of range as it is with a rough sea surface. The
boundary and wavenumber conditions on ¥ might also involve the range-dependence
of density(39], but we will not discuss density variations further.

Pierce[42) postulated a solution to Eq. (2.14) that was partially separated. i.e.
#(r,2) =3 Un(r)Zn(zr) (2.15)

where now the depth functions Z, are range-dependent as well as depth-dependent.
Equation (2.7) then becomes

8% Zn(2;1)

g+ [k (r2) — k(1) Za(zir) = 0. (2.16)

The boundary conditions which the Z, must satisfy are that pZ, and the normal
component of particle velocity, V Z,, be continuous across a boundary. For a rough

boundary defined by z = £(r), V_ is given by

1 a .0
. d9€(r)
= e

The first step in solving this coupled mode problem is to substitute the trial

solution Eq. (2.15) into the Helmholtz equation (Eq. (2.14)) which gives

- 2
+ UnZn + Un (a Z + k*(r, z)Z,,)] =0

dz2
(2.18)

- o UnZn | UnZa
Y \UnZp +2Up 2y + —— +

n r r

where the dot denotes differentiation with respect to r. The depth functions Z,(z; r)

form an orthonormal set at each range r such that

/ooo 0Zn(2;7)Zm(2;7) d2 = bp m. (2.19)

34



If Eq. (2.18) is multiplied by pZn(2;r) and integrated over depth, we get

Fn(r) + }t’f,,.(r) + R ()Un(r) = = 3 [A,,.,,U,. + Bon (UT + 20,.)] (2.20)

n¥m

where the coupling coefficients A, and Bn, are given by

Amn(r) = / p(2) Zm(z; r)Z(2;7) dz (2.21)
0
Bmn(r) = /;oo p(2) Zm (25 7) Zn(2;7) da. (2.22)
Often, a more convenient “reduced” differential equation is obtained by the substi-
tution of
F(r)
Um(r) 7 (223)
into Eq. (2.20). The reduced radial wave equation then becomes
P+ (nm(r) + 4—1—2) Fn(r) = = 3= (AmnFa + 2Bmnk3). (2.24)

n#Zm
The 4—,1,,- term can be neglected except within a few wavelengths of the source.
The adiabatic approximation consists of setting Amn and By to zero in Eq. (2.24),
i.e.

Fo(r) + k2,(r) Fa(r) = 0. (2.25)

The difference between the range-dependent Eq. (2.25) and the range-independent
Eq. (2.6) is that the horizontal wavenumber «,, is now a function of position. The
spatial phase term from Eq. (2.11), k7, must be modified to account for the range
dependence. A standard approximation to make here is to assume that the spa-
tial phase has the form [F kn(r') dr'. This approximation is known as the WKB
(Wentzel-Kramers-Brillouin) approximation, and is valid when the variation in the
properties of the medium per wavelength is small(40].

In the depth equation boundary conditions, dropping ¢ terms in Eq. (2.18) gives

7]
~ — .26
Vi o (2.26)
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making the depth equation (2.16) as easy to solve as the range independent case
except we have to solve it at all ranges of interest to get the horizontal wavenumber
Kn(r); moreover, we need the eigenfunction Z,(z;r) at source and receiver. The
range-varying hcrizontal wavenumber also appears inside the square root portion
of Eq. (2.11). This amplitude change is much less important than the phase change
and an average or background value for the wavenumber (denoted by &,) can be
used there. From here on in, the time dependence, the 7/4 phase shift, and the
normalization term ¢, will be taken as implicit, so that the acoustic pressure be-

comes

p(r,2) = Z 1 Zn(20;0) Zn(z; r)e‘fo’ Kn(r')dr! (2.27)

n VEnT

In this form, one sees explicitly that the modal eigenvalues are a function of range,
and it is through the x,(r'), as well as through the mode functions Z, at the source
and receiver, that one introduces the effects of roughness. For a particular realiza-
tion of a rough surface, which we will consider throughout this thesis to be “frozen”
during the time of transmission of a single pulse, the adiabatic approximation to

the pressure field can be expressed as

p(riz) =} #Z,.(zo; 0)Zn(2, r)eRnrti g enlr)art (2.28)

where we have broken x,(r') into the sum of an average, range independent back-
ground component K,, and a range dependent wavenumber fluctation component,
€.(r'). The amplitude, phase, and group velocity fluctations of the pressure due
to boundary roughness can be determined in this adiabatic context by specifying
a surface height distribution function and then taking the appropriate moments of

Eq. (2.28).
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2.1.3 Phase and Travel Time Variations

The data used in acoustic tomography are the travel time variations of an acous-
tic arrival. In this thesis, we are concerned with using acoustic tomography to de-
duce information on the ocean surface height distribution In this section, we show
the connection between the surf-.ce height depth variations and modal phase and

travel time variations.

Phase The phase of an acoustic normal mode, under the WKB approximation,
from Eq. (2.28), is
On = RnR + /0 ® elr) dr (2.29)
We define
R
Apn -E/O €n(r) dr (2.30)

as the phase variation. The range dependence of the eigenvalue is assumed to be
constant in time for the time-of-flight of the mode, i.e. we assume the “frozen”
approximation. The implications of the frozen approximation are discussed later in
Section 3.6. Fig. 2.2 illustrates an adiabatic mode adapting to the change in sea
surface height.

The covariance of the phase variation at times ¢, and ¢, corresponding to two

aiferent transmissions is given by
IT°%(t1,t5) =< Apa(t1)Apn(ts) > (2.31)

where (f) denotes the expected value of f.

We can write the eigenvalue variation as a power series in the sea surface height
én(r1,th) = z cin& (r1,t1) (2.32)
J

where the coefficients c;, are dependent on the background waveguide sound speed

profile. The ¢;, are explicitly calculated for j = 1,2 in Section 2.1.4. Convergence
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Figure 2.2: Adiabatic mode adapting to changes in sea surface height.

issues for this series will not be discussed except to note that ¢jné > ¢;n &’ for j > 2

is necessary to be able to write

Apn(t1) =~ cl,./ €(r1,t1) dry. (2.33)

Note that we also have assumed that the background waveguide is range indepen-
dent. If the background waveguide is range dependent and the adiabatic approxi-
mation still holds, the problem is more complicated but solvable. For example, the
¢1n become ¢1,(r,) and must remain within the integral in Eq. (2.33). If the back-
ground waveguide is very range dependent, mode coupling can make the problem
very difficult. Using Eq. (2.33) in Eq. (2.31), the phase variation covariance to first

order becomes

R R
!’?Ode(tl,tz) — c%n < /; £(rl,tl) drl A 6(1"2,t2) drz >, (2.34)

If the sea surface statistics are stationary in time and homogeneous in space, Eq.
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(2.34) can be written as

R rR
mode 2
"n (t) - cln/; /; Z(f, t) drl er (2.35)

where now t = t; — t3, r = ry — rp, and Z(r,t) is the space-time covariance of the
sea surface. The variance of the surface displacement is 0§ = Z(0,0). Since Z(r,t)

is dependent only on the difference of r; and r;, the double integral in Eq. (2.35)

can be rewritten as [16]
+R
opese(t) = ci, [ (R~ |r)Z(r,¢) dr. (2.36)

We can approximate Eq. (2.36) at t = 0 to get an estimate of the rms “wander” of

the phase variation, i.e.

Oap, == C1n0¢\/2R¢ (2.37)

where ¢ is the correlation length of the zero mean sea surface height. If we write

the phase variation to second order, we get
Aon= [ ® (Can€ + can€?) dr. (2.38)
Taking the expected value of Equation(2.38) and assuming u zero mean surface,
(Apn) = Reano:. (2.39)

Therefore, to second order in surface height, phase variation is not zero-mean but
has a bias given by Eq. (2.39). Figure 2.3 illustrates the effects of wander and bias
schematically. These are similiar to the effects described by Flatte(8] due to internal

waves.

Travel Time We now examine the mode travel time fluctuations due to the rough
surface. The travel time 7, of a normal mode at frequency wp is given by stationary

phase arguments as

%[(p,,(r, W) = wip)]ey = 0 (2.40)
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Figure 2.3: Travel time wander and bias due to surface waves.

or
9pn
= 2=, (2.41)
If we now include a fluctuation component in the phase, as discussed before, we
obtain
%) R Qe,,
AT,, = %Atpn = /(; % dr (2.42)

where %5: = Asfl is the group slowness (inverse of the group velocity) variation.

Similiar to the modal phase, the travel time variation can be written as a variation
in the surface height £, i.e.

R 2
ATa(ty) = /o diné(rs, 1) dr + O( 7 (2.43)

where H is the characteristic waveguide depth and dy, = d¢;,/3w (which is derived
for two canonical waveguides in Section 2.1.4). We can write the relationship be-
tween the travel time covariance and the space-time covariance function of the sea
surface as

v (1) =< A7, (t1)ATa(%2) > (2.44)

40



or, following the arguments used for the phase,
4 . [tR
vpte(t) = di, [ (R [ Z(r,t) ar (2.45)

As above, we can approximate Eq. (2.45) at t = O to get an estimate of the rms

“wander” of the travel time variation, i.e.
OAr, = dlnﬂev 2R6 (2.46)

where § is the correlation length of the zero mean sea surface. If we write the travel

time variation to second order, we get

R
At = [ (din€ + d1n?) dr. (2.47)

Taking the expected value of Eq. (2.47) and assuming a zero mean surface displace-

ment, we get the “bias” of the travel time variations

(AT,) = Rdyno}. (2.48)

2.1.4 Canonical Waveguide Fluctuation Parameters

This section describes the phase and travel time fluctuations due to a rough sur-
face for two canonical waveguides: the ideal hard bottom shallow water waveguide
and an n?-linear waveguide which emulates the upward refracting conditions found

in the Arctic.

Ideal Hard Bottom Shallow Water Waveguide The ideal waveguide we will
consider here is the so called “hard-bottom” waveguide [40] shown in Fig. 2.4 in
which the compressional wave speed and density in the bottom halfspace go to

infinity. The water column is isovelocity, and the waveguide is range independent
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Figure 2.4: Ideal hard bottom shallow water waveguide

except for the air-water interface roughness. For the background waveguide (no

surface roughness effects included), the vertical mode functions Z,(z) are given by
Zn(2) = ansindpz (2.49)

where the vertical wavenumber 7, and the horizontal wavenumber k,, are given by
fw = 22T (2.50)

and

2
1=y(%) -% (251)
where Hp is the depth of the water column. The normalization factor a, can
be found by substituting Eq. (2.49) into the orthonormality condition given by

Eq. (2.19) which gives a, = ,/p%o. To include the effects of surface roughness, we
add a variation £(r;) to the water depth Hj in Eqg. (2.51) to obtain

_ (w2 (n - _;_)271-2
K.,.(Tl) = \l K:) - m (2.52)
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If we assume that Hy > £(r) for all ry, then we can expand the (Hy + £(ry))~?

term and the square root to get

=2 ~2 ~4 2
A€ 30 . n 3
1 - = e .5
T e, (2&3‘ + zrc;) (Ho> + ] (2.53)

The variation in the horizontal wavenumber,

Kn = Kn

€n(r1) = Kn(r1) — Rn (2.54)

which from Eq. (2.53) gives
_Tal ¢ 3 A € \2 -
€n = 7 [Ho (2 + %ﬁ) (Ho) + . (2.55)

We saw that to second order, €, = c1.& + ¢2n£? so that for the ideal shallow water

waveguide
e = 0 (2.56)
and
2 =2
Vo ( I o
- s _ 57
Cm = TR HE \2+27c3.) (2:57)

The relative importance of the wander and bias of the phase variation can be as-
sessed by looking at the ratio of the first two terms in the series expansion for the

eigenvalue variation

2 3 2
c2né — (3 i (2.58)
clnf 2 2&,2‘ Ho

The ratio in Eq. (2.58) tells us that there are two ways for the bias to become

important. First, for any mode, a large changes in the surface height can increase
the bias. Second, for any mode with a large vertical wavenumber, (i.e. with v, > &,)
very small changes in the surface height can have a drastic impact on the bias. It
will ve shown later that the coupling also becomes very important for modes with
large 4, or when the changes in the surface height become large, so the adiabatic

approximation is not adequate to describe the propagation. But when the adiabatic

43



approximation does hold, the bias is much less than the wander for reasonable
acoustic ranges.
The group slowness variation is to second order As¥" = djn,¢ + dg,&%. For the

shallow water waveguide

9c1n 5942
dip = = - 2.
T Bw Hok? (2:59)
and
T orzHZV T RZ '
where 3" = 77 is the unperturbed group slowness for this waveguide. We can

calculate a ratio of bias to wander terms for group slowness in the same manner as

we did for the phase, i.e.

dznéz
dlnE

3 2\ ¢
=3 (1 + rcg) T (2.61)

Similiar comments can be made about the importance of the travel time bias as for
the phase.

At this point, it would be useful to consider two examples. The rms wander and
bias of the phase and travel time can be calculated for simpie example waveguides
using Eqgs. (2.37), (2.39), (2.46) and (2.48). For a frequency of 220 Hz, surface
correlation length of 100 m, rms surface height of 1 m and sound speed of 1500 m/s,
Tables 2.1 and 2.3 lists the wander and bias estimates of the phase and travel time
for 5 modes. Table 2.1 pertains to a 30 m waveguide and range of 5 km, while
Table 2.3 is for a waveguide depth of 180 m and a range of 50 km. Tables 2.2 and
2.4 list the equivalent ray angles ,, and number of equivalent ray surface bounces
M for the modes[44]. The equivalent ray angles and the number of surface bounces
are higher for higher modes. Thus the wander and bias are expected to increase
with higher mode number because of the increased 2% as the results in Tables 2.1 to

2.4 show. Also, modes in the 180 m waveguide are affected less than the modes in
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n | oap, (rad) | (Ap,) (rad) | oar, (ms) | (At,) (ms)
1 10 -.02 .07 .02
2 91 -.23 .68 17
3 2.6 -.67 2.0 .55
4 5.3 -1.4 4.6 1.4
5 9.4 -2.6 9.2 3.1

Table 2.1: Shallow water waveguide wander and bias, depth of 30 m, range of 5 km.

I'n |0y, (deg) | M
1 3 5
2 10 14
3 17 25
4 23 36
5 31 50

Table 2.2: Shallow water waveguide equivalent ray angle and number of bounces,
depth of 30 m, range of 5 km.

the 30 m waveguide. Another interesting result from the Tables is the fact that the
phase and travel time bias are indeed much less than the wander. In addition, the
travel time bias is positive, i.e. the arrival times are longer than we would expect
from a smooth surface. The magnitude of the phase wander in Tables 2.1 and 2.3
indicate that only modes 1 and 2 for the 30 m waveguide and modes numbers less
than about 17 for the 180 m waveguide could be coherently averaged[4] for SNR
gain (as is commonly done in tomography). Coherent averaging needs rms wander

much less than 90 deg and only the modes mentioned meet that condition.

n?-Linear (Arctic) Waveguide Here we follow Brekovskikh [40}, who derives
analytic expressions for the mode eigenvectors and eigenvalues for an “n?-linear”

wavegunide. If we note that, to first approximation, the Arctic can be modeled as
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0 [ Gaps (ad) | (Apn) (ad) | 0ar (m5) | (Ara) (ms)
1 .001 -.0002 .001 .0001

5 12 -.02 .09 .01

9 43 -.06 .32 .04

13 .93 -.13 72 .10

17 1.7 -.23 1.3 .20

Table 2.3: Shallow water waveguide wander and bias, depth of 180 m, range of
50 km.

n |0, (deg) | M
1 5 1
5 5 12
9 9 23
13 14 34
17 18 46

Table 2.4: Shallow water waveguide equivalent ray angles and number of bounces,
depth of 180 m, range of 50 km.
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isothermal (0° C) and isohaline (352%), then the sound speed is linear with depth z,
c(2) = co + bz, (2.62)

where ¢y = 1449.2 m/s and b = 0.016 m/s/m is the sound speed gradient. For the
“n%-linear” waveguide, we write

Co

C(Z) = ﬁ (2.63)
which, for az < 1, can be approximated by
c(z) = eco(1 + %az +..). (2.64)

To match the approximate psuedolinear profile in Eq. (2.64) and the linear profile
in Eq. (2.62), we set a = -;‘% = 2.21x107%m~1. Due to the smallness of a, the
expression of Eq. (2.63) can approximate the linear Arctic model for thousands of
meters of depth.

Turning to the modal solution of the wave equation, we first write the vertical

Helmholtz equation,

d*Z(z)
dz?

+ [k3(1 — az) — £2]Z(2) =0 (2.65)

where kg = :’—o and k, is the horizontal wavenumber. By introducing the change of

variables
1
H =
Y ax?
wo = H*(x} - xg)
z
w = wo+ 71
where X is the characteristic waveguide thickness, Eq. (2.65) reduces to the Airy
equation
d*Z(w)
Tl wZ(w). (2.66)

47



The Airy functions Ai(w) and Bi(w) are solutions to Eq. (2.66). Retaining only the
Ai(w) solution for which Ai(w) — 0 as w — oo, and imposing a pressure release
boundary condition Ai(wg) = O at the surface, we obtain the normal modes by

finding the zeroes of the Airy function Ai at z =0, i.e.
wo=—-y, n=123... (2.67)

where y, = 2.338, y; = 4.088, etc[45]. The modal eigenvalue is then

2 2_Yn

K = Ko = 13- (2.68)

To include the effects of boundary roughness, we require that the pressure release

boundary condition be met not at w = wq, but rather at w = wy — -§-, i.e.

Zo(wo — §-) 0. (2.69)

This requirement leads to the modified eigenvalue equation

Kn = \/ng - % + fg (2.70)
= \'} Kz + % (2.71)

where &, is, as before, the undisturbed waveguide eigenvalue. For -§ < 1 (generally
a good assumption), we can do our usual expansion of the root and solve for the

eigenvalue variation up to second order

axgé(ri,t1)  a*kg€%(ri,t)

e(ri,t1) = 25 8x3 (2.72)
For this case, )
Cin = g:_:—: | (2.73)
and ) 4
C2n = —';,_:f (2.74)



are the first power and second power coefficients of £ used in this thesis. As we did
for the ideal shallow water waveguide, we can compute the relative importance of

the bias and wander terms with the ratio
c2n€2
clne

The larger the surface height, the larger the bias compared to the wander. However,

- n;xs' (2.75)

the effect of higher mode number on the ratio is harder to interpret. Since we are
using the n?-linear waveguide to approximate the Arctic for modes with turning
points removed from the bottom, the effect of the surface height change is much
less dependent on mode number for these modes. The mode just moves up and
down in the waveguiue as the surface moves up and down.

The group slowness variation is, to second order

de
As = — 2.76
o= (2.76)
<97 2,,3¢22 3w3Ir
= “:’_f [1 i ] _owl [ - "’f’"] (2.77)
c3kn 2K, 2¢5%3 4R,
where |2
gr = L (2.78)
€0y /1— ;g%;
is the unperturbed group slowness. The coefficients of £ and &2 are
aw w3
din = [1 _ S ] 2.79
R T 2R (2.79)
and
a’ws 3wsdr
dgn = — [ _ WS ] (2.80)
2¢5K;, 4K,

From Eqs. (2.79) and (2.80), the scattered arrivals are seen to be retarded in arrival
time compared to modes traveling under a smooth sea surface. For this waveguide,

the ratio of the bias and wander terms is

d2n E 2
d1n£

~t (2.81)

PTRVE
K2 X
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which is the same as the ratio for the phase. The wander is dominant over bias for

realistic frequencies, surface heights, and sound speed profiles.

Again, it is useful to consider two examples here. The rms wander and bias
of the phase and travel time can be calculated for the example waveguides using
Egs. (2.37), (2.39), (2.46) and (2.48). For a frequency of 220 Hz, surface correlation
length of 100 m, rms surface height of 1 m, and range of 50 km, Tables 2.5 and 2.7 list
the wander and bias estimates of the phase and travel time for 5 modes. Table 2.5
pertains to a waveguide with sound speed gradient b = .1 and ¢o = 1440 m/s, while
Table 2.7 is for a waveguide with purely adiabatic sound speed gradient b6 = .016
and co = 1449.2 m/s. These values correspond to the gradients in the waveguide
measured during the FRAM IV Experiment as shown in Fig. 2.5. Modes trapped
in the upper part of the duct see a gradient b = .1 while modes that turn in the
lower region mostly see the adiabatic gradient b = .016. Tables 2.6 and 2.8 list
the equivalent ray angle at the surface 0,0 and number of equivalent ray surface
bounces M. Tables 2.5 to 2.8 t:or the n?-linear waveguide give strikingly different
results than Tables 2.1 to 2.4 for the shallow water waveguide. The phase and
travel time bias and wander are pretty much independent of mode number for the
n?-linear waveguide. The equivalent ray angles increase with mode number for this
waveguide, but the number of bounces decrease by about the same factor as the
angles increase. Hence, the independence of the fluctuations with mode number.
Another way of stating the above is that the phase of the modes are very highly
correlated, as will be shown in Section 2.1.5. The other feature that is evident from
the tables is the much lower magnitude of the wander and bias compared with the
ideal shallow water waveguide. As we mentioned above, the bottom turning points
of all modes are in the water. The effect of moving the surface up or down just
moves the mode up or down in the waveguide, giving a very small change in the

local eigenvalue as evidenced in the tables. A rough sea surface affects modes the
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N | Oap, (rad) | (Ap,) (mrad) | oar, (ms) | (A7r,) (us)
1 21 -1.2 .15 -.08
2 21 -1.2 .15 -.08
3 21 -1.2 15 -.08
4| 21 -1.2 15 -.08
5 21 -1.2 .15 -.08

Table 2.5: Arctic waveguide wander and bias, b = .1 and ¢o = 1440 m/s.

N | Omo (deg) | M
1 4.6 22
2 6.1 16
3 7.1 14
4 7.9 13
5 8.1 12

Table 2.6: Arctic waveguide equivalent surface ray angles and number of bounces,
b=.1 and ¢o = 1440 m/s.

most when the modes are trapped by the large sound speed discontinuity at the

bottom. Modes that turn in the water are less affected by the sea surface.

2.1.5 Cross-Coherence of Modes in the Arctic

In his Ph.D. thesis, Polcari[46] computed the cross-coherence matrix of the
acoustic normal modes measured in the FRAM IV experiment in the central Arc-
tic. In this section, we would like to show a straightforward application of our
theoretical Arctic waveguide results from Section 2.1.4 to explain the high cross-
coherence results Polcari found for the modes in this strongly surface scattering

Arctic waveguide.
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0 [ oags (r2d) | (Apn) (4rad) | Oam (ms) | (Ar) (43)
1 .033 -3 .02 -.02
11 .034 -3 .02 -.02
21 .034 -3 .02 -.02
31 .034 -3 .02 -.02
41 .034 -3 .02 -.02

Table 2.7: Arctic waveguide wander and bias, b = .016 and c¢q = 1449.2 m/s.

n | Omo (deg) | M
1 2.5 6
11 6.1 3
21 7.5 2
31 8.6 2
41 9.5 2

Table 2.8: Arctic waveguide equivalent surface ray angles and number of bounces,
h=.016 and co = 1449.2 m/s.
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The elements of the cross-coherence matrix are defined as

A Aj
T = 0 (2.82)
(l4i){1451%)
where the 1** normal mode is represented as A; = |A;|e"¥". Assuming that only the

phase ©; of the mode is random, Eq. (2.82) becomes
T = (ePimed), (2.83)

The assumption that only the phase of a mode is random can be justified by
looking at Eq. (2.28). Note that a variation in a waveguide will affect three parts
of that equation. First, and least important, is the \/k,7 term in the denominator.
The eigenvalue fluctuations that are caused by a rough sea surface are generally less
than 1 %, giving a variation in this term, and hence, the amplitude, of less than
.1 %. The second effect of the rough surface is in the eigenfunctions Z,, evaluated
at the source and receiver. For a mode away from cutoff and mode nulls away from
source/receiver depths the variation in eigenfunction amplitude is also small for
reasonable surface wave heights and ocean depths. The third effect is in the spatial
phase term. Since the variation in phase depends on the integral of the eigenvalue
variation, even small variations in the surface height can have dramatic effects on
the phase.

We now assume as before that p; = @; — Ap; where Ayp; is the small random

variation due to the rough surface. For Ap; < 1, we obtain that
1 2y _ 1 2
[Tl = 1= 5(A@}) = 5(A)) + (Bpilp;) (2.84)

where we have assumed that (Ap;) = 0.
In Section (2.1.4), we described the scattering in a waveguide with a n’-linear

sound speed profile characteristic of the Arctic. For this type of waveguide, Eq. (2.84)
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Figure 2.5: FRAM IV sound speed profile and bi-linear approximation

becomes

a*w?o?R
2 f § —:ode ;r;ode _ (..phz _phz)] (2.85)

[Tl =1+
where ¢ is the correlation length of the surface roughness[47] and

gmode — ____ 70 (2.86)

TV i

is the unperturbed phase velocity of the i** mode. Eq. (2.85) thus becomes

*0i R¢(vi + v;)
8X? '

Tl =1 = (2.87)

The FRAM IV sound speed profile is shown in Fig. (2.5) along with a bilinear
approximation. Modes trapped entirely in the upper duct see a linear sound speed
profile with gradient of 0.1 s™! giving a = 1.4x10™* in Eq. (2.87). Polcari computed
T:; at frequencies from 15 — 30 Hz for a transmission range of 300 km finding typical

values for the cross-coherence of low modes of .99. Assuming a frequency of 30 Hz,
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0¢ = 2 m and ¢ = 40 m for the ice roughness and correlation distance, we obtain

from our formalism

| Tuz| ~ .99987 (2.88)

in very good agreement with Polcari’s data analysis. This result implies that the
modes turning at the surface wander together as the rough surface changes in time.
We note that the theory employed above assumes a pressure-release rough surface,
whereas the data was taken under a ice-covered surface — however, this is not

expected to significantly change the cross-coherence results calculated here.

There is another implication of the above result: even if modes are not resolvable,
(as is often the case at tomographic frequencies in the Arctic) we should be able
to see a mode group wander due to the rough surface. The phase perturbations
on adjacent modes are very nearly the same, so that the whole arrival pattern is
rotated in phase and shifted in time. Using unresolved mode groups might enhance
the viability of the proposed technique for estimating sea surface wave spectra with

modes.

2.1.6 Coupied Mode Effects

If the acoustic waveguide boundaries are range dependent to a great enough
degree, the coupling coefficients Ay and Bp, given in Egs. (2.21) and (2.22) may
not be small. Since A, is proportional to the second derivative of the roughness
and Bpn., the first derivative, By, is assumed to be much greater than A,,,. We
thus drop A, from here on in this thesis. Most of this sec*’»n is taken from a

paper by Lynch, Miller, Chiu, and Frisk{47|.

We now assume that the modal pressure field is made up of two parts: an
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adiabatic part and a coupled part, i.e.

adtab + L pcoupl (289)

m#n

where padmb

is given by Eq. (2.25) and our goal in this section is to determine p¢2uF*
due to a rough sea surface.

To include coupling effects, we begin by considering two Green’s functions, G
and G°. The Green’s function G is taken to be the exact solution to Eq. (2.3), i.e.
including mode coupling effects. The Green’s function G°, on the other hand, is
taken to be the adiabatic mode solution in our paper. (Of course, one can make

any choice for G°. The choice of the adiabatic G° is attractive for physical reasons.)

Mathematically, we can write this in quantum mechanical notation as{48]
G°(2)=(2—- H°)! (2.90)
G(E)=(z- )™ (2.91)

where Z is a complex energy (wavenumber squared), He is the Hamiltonian for the

adiabatic “background” problem, and
H=H+V (2.92)

is the Hamiltonian in our “exact” problem. It is obvious from Eq. (2.92) that V will
be the mode coupling potential (due to the rough surface) for our modal problem.
The equation relating G and G° is well known, and is called the resolvent equa-

tion or Lippmann-Schwinger equation for G (2). It is
G(z) = G°(3) + G°(2)VG(2). (2.93)
A common tactic is to solve Eq. (2.93) iteratively, i.e. replace G(3) on the right

hand side of Eq. (2.93) by the full expression on the right hand side. Doing so, one

obtains the infinite series result
G(z) = G°(2) + G°(B)VG°(2) + G°(B)VG° (3)VG(3) + -~ (2.94)
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This result is called the Born or multiple scattering series. It is an exact series
expansion solution to Eq. (2.3) in powers of the coupling potential V', but can only
be expected to converge rapidly when V is in some sense “weak”.
To obtain the coupling potential V', we again look at the coupled radial equa-
tions, which in reduced form are
Fo(r) + K2(r)Fa(r) = = 3. 2BpmFn(r) (2.95)
m#n
It is obvious from the form of Eq. (2.95) that, if we had F,, instead of F,, on the
right hand side, then B, would be the coupling potential V for the Lippmann-
Schwinger equation. In order to get this form, one can replace F,, by its adiabatic

form and take the radial derivative. One obtains, using the WXB solution, that

Bk = B 2 |10 (2.96)
nmim — nmar m . .

Using th= (generally very good) approximatien that 2«2 (r) > 5"—(';,_(51, we write that
B Fon = Brmikm(r) Fin () (2.97)

which leads us to make the identification for the Lippman-Schwinger potential
Vam — BamiKm. (2.98)

The coupling coefficient By, for rough surface scattering has been obtained
in a convenient form by McDaniel[49,50], and for our z = O surface, we can just

paraphrase her results. For the air-water interface at z = 0, one obtains

de¢ 2 [azmaz,,}
z=0

Bon = gria =z |5z 02

(2.99)

In Eq. (2.99), %5 is the local slope of the z = 0 boundary at a given range r, and
Zm and Z, are the values of the mode functions at z = 0 (which are non-zero due

to boundary scattering).
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We assume that the sound speed over a small depth near z = 0 is isovelocity so

that we may write the vertical mode functions near z = 0 as[51]

Zn(2) = ansiny,z (2.100)

and therefore
02| _ a (2.101
9z » = anYn . )

Using the previous results, we can write an explicit form for the single forward

scattering term of the series for the z = 0 scattering surface. It is

R . (R "y a1
p:oupl(z, R) - Zn(za :) Z [/(; e'f" Kn(r'')dr P ﬁ‘
r

VEML min dr
2 e
(’cz _1 [cz _) am'Yme' -[0 1 Km (' )df drlJ Zm(zo, 0) . (2.102)
n m

The integrals in Eq. (2.102) are fairly easy to interpret physically. As shown
in Fig. 2.6, one starts out in mode m, propagates adiabatically to the scattering
surface, and then couples to mode n, after which adiabatic propagation to the
receiver in mode n occurs. This process is integrated over the entire scattering

surface.

If we also make the approximation that the verticzl and horizontal wavenumbers
in the Eq. (2.102) integrals can be replaced by their background wavenumbers, i.e.

kn(r) = £n and Yu(r) - Yn, Eq. (2.102) becomes

P (2, R) =

Zn(z, R) Z Zifcmanqnam’ymeinnﬂ

V'CRR m#n ('C?I K’?ﬂ)
B km—ra)r @€(T1)
i(Km—%n)ry
[/; e “ar dry| Zpn(2,,0). (2.103)
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Figure 2.6: Schematic of coupled mode scattering

2.1.7 Coupled Mode Bragg Scattering

The single scattered coupling integral in square brackets in Eq. (2.103), which

we denoted by I, can be written as

. R .
Inm = =R / 4é(r1) e~ (rn—rm)rrgy | (2.104)
0o dry

Equation (2.104) can be interpreted as a Fourier transform (between range 0 and
range R) of £(s;) evaluated at the spatial difference frequency (k,—&m,). As we shall
see by examining the case of a sinusoidal rough surface, if the surface contributes
a wavenumber to the scattered field which is just equal to the difference between
modal wavenumbers, the coupled scattering is resonant, an effect commonly called
“Bragg Scattering.” [48].

Let us assume first that the surface height is
€(r1) = & sin(Kry) (2.105)
where K = 2w /)’ is the spatial wavenumber of the sinusoidal rough surface: Sub-
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stituting this into Eq. (2.104) and performing the integrations, one obtains

ILim = §_0122K {sinc [—K,,, — K'2m — KR] e"(‘ il )R

+sinc [MF_KR] ittt 'K)R}, (2.106)
Denoting the mode cycle distance for modes m,n by
2
Apm = |——— (2.107)
Kn — Km

we see that the amplitude of I in Eq. (2.106) is greatest when A,, = A° which
is the Bragg scattering condition for the rough surface. When this condition is
met, I has an amplitude of approximately K{,R/2, i.e. the scattered pressure
integral increases in direct proportion to range. Away from resonance, the R in the
denominator of the sinc(z) term comes into play giving
Inm = é&)-sin [(ﬁ'i';"';K) R] , (2.108)

i.e. the range dependence is sinusoidal and always lower in amplitude than at reso-
nance.

We can calculate the arrival time of the Bragg scattered coupled energy with
a stationary phase analysis of the phase of I given in Eq. (2.106). For a resonant
interaction, i.e. K, — k;m = £ K, the phase of I is just ﬁﬂ%ﬂtR. The stationary phase
method of computing arrival time involves a derivative of phase with respeci to
w. Therefore, the Bragg scattered energy arrives midway between the transmitted
mode and the received mode arrival times.

We look at this for an ideal hard bottom waveguide example. The example
waveguide is 180 m deep with 50 Hz source and receiver located 50 km apart,
both at the bottom. There are 12 propagating modes at this frequency in this

waveguide. The eigenvalues for this waveguide are listed in Table 2.9. In Fig. 2.7,
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MODE NUMBER | EIGENVALUE
1 0.209258
2 0.207797
3 0.204844
4 0.200333
5 0.194156
6 0.186146
7 0.176053
8 0.163494
9 0.147839

10 0.127958
11 0.101394
12 0.059827

Table 2.9: Mode eigenvalues for 180 m ideal waveguide at 50 Hz.

the coupled pressure magnitudes are plotted for a .424 m amplitude surface wave
with wavenumber K = k; — k5. The wavelength of the surface wave that resonates
with modes 1 and 5 is about 416 m, i.e. A, 35, the mode cycle distance for modes 1
and 5. The pressure amplitude values have been normalized with respect to p3e.
Note in Fig. 2.7 that the coupled pressure given by Eq. (2.103) shows the greatest
coupling into mode 1 from mode 5, where the eigenvalue difference meets the Bragg
condition. Also note the amplitude of the coupled pressure is on the order of the
mode 1 adiabatic pressure amplitude, calling into question the convergence of the

Born series for this case. However, as we show later, a realistic sea surface spectrum
scatters much less than the monochromatic sea.

We list the coupled pressures for all 12 modes for the waveguide described above
in Tables 2.10 through 2.13. The mode 1-5 resonance is evident in Table 2.10. The
arrival times are referenced to the arrival of the adiabatic mode 1. The arrival time
of the Bragg scattered coupled modes (1,5) is midway between the arrival time of the

two modes, as we calculated above. In addition, modes 8 and 9 are almost resonant
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Figure 2.7: Coupled mode pressure amplitude into mode 1 for resonant Bragg
scattering, for a .424 m amplitude surface wave with wavenumber equal £y —x5. The
pressure values have been normalized with respect to pi%**. The ideal waveguide
is 180 m deep with 50 Hz source and receiver located 50 km apart, both at the
bottom. There are 12 propagating modes at this frequency in this waveguide.
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with the surface wave as seen in Table 2.12 because Agg = 401 m, nearly the surface
wavelength of 416 m. The arrival times of the (8,9) pair are almost midway between
mode: 8 and 9. For the off resonant arrivals, the arrival time interpretations are
more difficult. Moreover, the slightly negative arrival times of (2,1) and (3,1) are,
most likely, numerical artifacts of the stationary phase calculation on very low

amplitude coupled arrivals.
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I|J | MAGNITUDE | PHASE (deg) | TIME (sec)
1|1 1.000 7.7 0.000000E+00
1(2 0.6569E-03 -19.1 0.332548
1{3 0.4398E-03 149.6 0.834960
1[4 0.5778E-03 -40.4 1.19780
115 0.1496 135.7 1.29735
16 0.4368E-03 135.9 1.22842
17 0.2115E-03 -43.0 1.07142
1|8 0.1372E-03 137.1 0.892193
119 0.9811E-04 -44.4 0.727745
1110 0.7140E-04 131.9 0.592124
1|11 0.4913E-04 -54.4 0.481649
1}12 0.2551E-04 113.9 0.389068
2|1 0.6638E-03 -50.3 -.980118E-01
2|2 1.004 -147.2 0.234536
213 0.1748E-02 110.2 0.836540
214 0.1602E-02 -82.9 1.35511
2(5 0.7566E-02 91.1 1.52817
2|6 0.1647E-02 90.8 1.48281
2|7 0.6960E-03 -88.0 1.32822
2|8 0.4349E-03 92.3 1.14409
219 0.3060E-03 -89.1 0.976247
2|10 0.2206E-03 87.3 0.835844
2111 0.1509E-03 -99.0 0.720829
2112 0.7806E-04 69.4 1.14194
311 0.4540E-03 -38.4 -.116120
312 0.1786E-02 136.2 0.116835
3|3 1.011 33.5 0.718840
3|4 0.3082E-02 -75.0 1.57026
315 0.4635E-02 93.5 1.97194
3|6 0.5229E-02 91.2 1.99872
3|7 0.1448E-02 -87.6 1.86019
3|8 0.8194E-03 93.0 1.66812
3|9 0.5529E-03 -88.1 1.48720
3|10 0.3905E-03 88.6 1.33894
3|11 0.2640E-03 -97.5 1.21576
3|12 0.1355E-03 71.0 1.11609

Table 2.10: Coupled pressure magnitude, phase and arrival time for modes 1-3.
Waveguide is 180 m deep with a 50 Hz source and receiver located 50 km apart at
the bottom. Surface wave is .424 m a.mp61itude with wavenumber equal to k; — «s.



I[J | MAGNITUDE | PHASE (deg) | TIME (sec)
4|1 | 0.6168E-03 1711 0.288437
42 | 0.1692E-02 6.5 0.365668
4]3 | 0.3186E-02 179.3 -4999.37
44 1.022 70.8 1.48624
4|5 | 0.4940E-02 -42.3 2.51305
46 | 0.3344E-01 128.9 2.78208
4|7 | 0.3181E-02 129.1 2.69828
4|8 | 0.1422E-02 -49.8 2.50117
419 | 0.8858E-03 129.7 2.29965
4|10| 0.6025E-03 -53.2 2.13135
4|11| 0.3989E-03 120.9 2.00185
4|12| 0.2021E-03 -70.4 1.88894
501 0.1673 -44.3 1.29767
5(2 | 0.8378E-02 135.3 1.30138
5|3 | 0.5023E-02 -46.4 1.34192
5/4 | 0.5178E-02 126.6 1.56821
505 1.038 13.6 2.59502
5|6 | 0.8052E-02 -103.2 3.75160
5(7 | 0.1394E-01 -108.7 3.88006
5|8 | 0.2669E-02 72.6 3.70654
5(9 | 0.1406E-02 -107.0 3.47967
5|10| 0.8946E-03 70.7 3.28531
5|11 | 0.5723E-03 -114.8 3.13273
5|12| 0.2842E-03 54.2 3.01115
6|1 | 0.5207E-03 48.7 2.91386
6|2 | 0.1943E-02 -131.1 2.89400
6|3 | 0.6036E-02 49.1 2.86239
6|4 | 0.3734E-01 48.7 2.84644
6|5 | 0.8577E-02 -136.3 2.98569
6|6 1.060 106.9 4.14227
6|7 | 0.1399E-01 -12.6 5.37901
6|8 | 0.7383E-02 -15.0 5.37768
6|9 | 0.2419E-02 166.4 5.13494
6|10 | 0.1350E-02 -14.8 4.90071
6|11 | 0.8149E-03 160.3 4.71537
6|12 | 0.3921E-03 -30.3 4.574T1

Table 2.11: Coupled pressure magnitude, phase and arrival time for modes 4-6.
Waveguide is 180 m deep with a 50 Hz source and receiver located 50 km apart at
the bottom. Surface wave is .44 m ampelistude with wavenumber equal to x; — xs.



I{J | MAGNITUDE | PHASE (deg) | TIME (sec)
7|1 0.2741E-0G3 115.3 5.22080
712 G.8924E-03 -64.6 5.19854
713 0.1818E-02 115.7 5.15088
714 0.3861E-02 -63.7 5.08019
715 0.1614E-01 116.9 5.00718
7(6 0.1521E-01 114.0 5.05548
|7 1.090 -5.4 6.29222
7|8 0.3411E-01 -126.7 7.57678
719 0.5471E-02 -126.6 7.44195
7|10 0.2198E-02 53.9 7.15529
7111 0.1192E-02 -129.8 6.92267
7112 0.5451E-03 40.2 6.75378
811 0.1987E-03 -46.1 8.44634
812 0.6232E-03 133.9 8.42898
813 0.1149E-02 -46.2 8.38925
814 0.1929E-02 133.8 8.32360
815 0.3454E-02 -45.7 8.22701
86 0.8969E-02 135.2 8.10313
8|7 0.3812E-01 134.6 8.05398
8|8 1.131 13.3 9.23853
819 0.1727 71.1 10.6353
8|10 0.4442E-02 -107.3 10.3729
8|11 0.1876E-02 71.1 10.0603
8112 0.7836E-03 -117.8 9.83403
911 0.1652E-03 -72.7 13.1325
912 0.5098E-03 107.1 13.1185
913 0.9019E-03 -73.3 13.0918
914 0.1397E-02 106.2 13.0468
915 0.2116E-02 -74.2 12.9756
9|6 0.3418E-02 105.7 12.8675
917 0.7110E-02 -73.6 12.7105
9|8 0.2008 107.3 12.5634
919 1.190 165.2 13.8602
9110 0.2631E-01 -137.0 15.1291
9|11 0.3524E-02 44.5 14.7429
9|12 0.1210E-02 -142.1 14.4185

Table 2.12: Coupled pressure magnitude, phase and arrival time for modes 7-9.
Waveguide is 180 m deep with a 50 Hz source and receiver located 50 km apart at
the bottom. Surface wave is .424 m a.mpelg:ude with wavenumber equal to x; — k5.



The actual ocean surface is much more complicated than a single sinusoidal
wave propagating in one direction. A realistic sea surface is made up of a sum
of many different frequency sinusoidal waves travelling in different directions, each
with a random phase. This sum is called the frequency-direction spectrum F(Q, )
where (1 is the radian frequency of the wave and « is the direction the wave is
travelling. The wavenumber of the surface wave K is related to the frequency 2 by
the appropriate dispersion relation. Here, we assume deep water waves with (12 =
gK. The frequency-direction spectrum is discussed in greater detail in Chapter 3.

Here, as another example, we show the effect of coupling on a more complicated

surface made up of four sinusoids or

§(r1) = i & sin(Kiry + ¢) (2.109)

i=1
where ¢; are random phases and we will assume that all £ = .15 so that the rms

roughness of the sea surface remains that for the previous example. Now, we assume

that

K = ki — ks4i (2.110)

We list the coupled pressures for all 12 modes for the waveguide under the more
complicated sea in Tables 2.14 through 2.17. The mode 1-5, 2-6, and 3-7 resonances
are evident in Table 2.14. The mode 4-8 resonance is shown in Table 2.15. Because
the sea surface energy (variance) is now spread between four waves, the coupling
amplitude is generally lower as we note for the 1-5 resonance in Table 2.14. All the
resonant pairs, (1-5), 2-6), (3-7), and (4-8), have high coupled energy and arrive at
times about halfway between the sender and reciever mode arrival times. However,
the coupling amplitude at higher mode numbers is greater than that at lower mode
number. The effect is caused by the higher vertical eigenvalues at higher mode

number in Eq. 2.103. A more physical interpretation of this is that the equivalent
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T |J | MAGNITUDE | PHASE (deg) | TIME (sec)
10|1 | 0.1493E-03 35.8 20.6051
10 |2 | 0.4564E-03 -144.5 20.5959
10 |3 | 0.7910E-03 34.9 20.5771
10|4 | 0.1180E-02 -146.0 20.5521
10|5 | 0.1672E-02 32.9 20.5070
10 |6 | 0.2368E-02 -148.3 20.4388
10 |7 | 0.3547E-02 30.7 20.3342
108 | 0.6416E-02 -149.4 20.1628
10|9 | 0.3267E-01 32.2 19.9284
10 | 10 1.279 90.0 21.1972
10 | 11| 0.1302E-01 148.6 22.3749
10 | 12| 0.2180E-02 -33.2 21.8726
11|1 | 0.1457E-03 83.4 35.0091
11|2 | 0.4426E-03 -96.9 35.0044
11{3 | 0.7580E-03 82.3 34.9938
114 | 0.1108E-02 -98.8 34.9751
1|5 | 0.1516E-02 79.7 34.9530
116 | 0.2027E-02 -102.2 34.9176
117 | 0.2727E-02 75.7 34.8603
11|8 | 0.3840E-02 -106.5 34.7689
119 | 0.6204E-02 71.9 34.6081
11|10| 0.1845E-01 -107.3 34.3131
11|11 1.437 -48.7 35.4907
1112 | 0.6215E-02 10.8 36.4366
12|1 | 0.1669E-03 9.0 82.9406
12 |2 | 0.5053E-03 170.6 82.4223
123 | 0.8585E-03 -10.3 82.9324
12 |4 | 0.1238E-02 168.4 82.9270
12|5 | 0.1661E-02 -13.4 82.9136
126 | 0.2152E-02 164.3 82.8973
12 |7 | 0.2752E-02 -18.4 82.8681
128 | 0.3540E-02 158.3 82.8342
12|9 | 0.4701E-02 -25.6 82.7713
12 10| 0.6819E-02 150.4 82.6544
12 |11| 0.1371E-01 -32.4 82.3838
12 | 12 1.870 27.2 83.3297

Table 2.13: Coupled pressure magnitude, phase and arrival time for modes 10-12.
Waveguide is 180 m deep with a 50 Hz source and receiver located 50 km apart at
the bottom. Surface wave is .424 m a.mpelistude with wavenumber equal to £, — «s.



rays for these higher modes are bouncing off the rough surface more often per uait

range, and therefore, the coupling into other modes is higher.
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I[J [ MAGNITUDE | PHASE (deg) | TIME (sec)
11 1.000 T 0.000000E+00
1|2 | 0.4170E-03 172.3 0.481027E-01
1|3 | 0.2387E-03 1.9 0.117424
1|4 | 0.2007E-03 -154.3 0.647988E-01
1|5 | 0.5264E-01 112.7 1.30291
1|6 | 0.1197E-02 -12.6 1.96671
1|7 | 0.7353E-03 -167.7 3.26363
1|8 | 0.7704E-04 ~140.1 6.31447
1/9 | 0.1468E-04 66.0 10.5392
1|10| 0.5777E-05 -95.4 12.6828
1{11| 0.2772E-05 95.7 12.6077
1|12| 0.1103E-05 -79.0 11.0153
2|1 | 0.4214E-03 118.3 0.186433
2|2 1.004 -147.2 0.234536
203 | 0.1047E-02 -48.3 0.321410
2|4 | 0.6578E-03 150.7 0.346191
2|5 | 0.2094E-02 45.7 0.978093
2|6 0.1744 116.8 2.19323
2|7 | 0.2284E-02 144.0 3.30643
2|8 | 0.3054E-03 172.2 6.13228
2|9 | 0.4938E-04 19.1 10.4594
2|10| 0.1841E-04 -141.3 12.8353
2 (11| 0.8627E-05 50.5 12.8781
2|12 0.3396E-05 -124.0 11.2454
31 | 0.2465E-03 109.4 0.601415
32 | 0.1070E-02 -65.4 0.631965
3|3 1.011 33.5 0.718840
34 | 0.1657E-02 138.1 0.838206
3|5 | 0.1328E-02 1.4 0.744470
3/6 | 0.5788E-02 103.2 2.58104
3|7 0.3802 -43.5 3.51100
38 | 0.1111E-02 166.5 5.75284
3/9 | 0.1052E-03 15.6 10.2817
3[10| 0.3476E-04 -142.7 13.1819
3(11| 0.1555E-04 50.3 13.4457
3|12| 0.5979E-05 -123.4 11.9344

Table 2.14: Coupled pressure magnitude, phase and arrival time for modes 1-3.
Waveguide is 180 m deep with a 50 Hz source and receiver located 50 km apart at
the bottom. Surface has four sinusoidal ,?gmponents.



1[J | MAGNITUDE | PHASE (deg) | TIME (sec)
41 | 0.2142E-03 57.2 1.42144
412 0.6949E-03 132.9 1.37459
4|3 | 0.1713E-02 -33.9 1.36687
404 1.022 70.8 1.48624
4|5 | 0.2304E-02 -177.8 1.61374
4|6 | 09923E-02 92.2 2.45061
4|7 0.4678E-02 -15.5 3.39743
4|8 0.5928 -166.2 5.41437
4|9 | 0.2335E-03 -134.4 9.84208
4110 0.6026E-04 70.8 13.5888
4|11 | 0.2470E-04 -93.9 14.2813
4)12| 09121E-05 93.6 12.8461
51 | 0.5890E-01 -21.4 1.29211
512 0.2319E-02 -179.2 1.85146
513 0.1440E-02 48.5 2.56939
54 | 0.2415E-02 -97.8 2.46752
515 1.038 13.6 2.59502
56 | 0.3088E-02 135.3 2.69027
57 | 0.1201E-01 -100.8 4.41831
5|8 | 0.1002E-01 -58.1 5.53758
509 | 0.7207E-03 -23.0 9.10100
5(10| 0.1093E-03 -172.4 13.9640
5(11| 0.3831E-04 26.5 15.4455
5|12 0.1325E-04 -144.1 14.2423
6|1 | 0.1427E-02 -162.8 2.17556
6|2 0.2057 -157.1 2.18358
6|3 | 0.6682E-02 37.1 2.28007
6|4 | 0.1108E-01 85.5 3.17791
6|5 | 0.3280E-02 -14.8 4.04703
6|6 1.060 106.9 4.14227
6|7 | 0.4280E-02 -115.0 4.17085
6|8 | 0.3070E-01 -165.3 6.11176
6|9 | 0.1204E-01 -126.7 8.40761
6 |10| 0.2400E-03 90.6 13.9814
6|11| 0.6186E-04 -64.2 16.9298
6|12 0.1919E-04 128.3 16.1195

Table 2.15: Coupled pressure magnitude, phase and arrival time for modes 4-6.
Waveguide is 180 m deep with a 50 Hz source and receiver located 50 km apart at
the bottom. Surface has four sinusoidal _c,clunponents.



I[J | MAGNITUDE | PHASE (deg) | TIME (sec)
7[1 | 0.9528E-03 -120.0 3.02860
712 0.2929E-02 63.4 3.22032
713 0.4772 71.6 3.50006
7|4 | 0.5678E-02 80.9 4.38104
7|5 | 0.1391E-01 109.0 4.46893
716 0.4653E-02 -143.5 6.26364
717 1.090 -5.4 6.29222
7|8 | 0.8817E-02 167.6 6.50116
7|9 | 0.2910E-01 -84.1 9.05431
7110 0.8979E-03 141.4 13.3362
7111 0.1121E-03 -34 18.5965
7012 0.2864E-04 -165.5 18.6037
8|1 | 0.1116E-03 -128.8 3.02406
8|2 | 0.4376E-03 54.0 3.44079
8|3 | 0.1558E-02 -119.7 4.30454
8|4 0.8040 -100.7 5.41040
8|5 0.1297E-01 85.0 6.39597
8|6 | 0.3729E-01 -74.5 7.36904
8|7 | 0.9852E-02 -159.6 9.03960
8|8 1.131 13.3 9.33853
819 0.7076E-01 56.6 10.8237
8110 0.3278E-01 133.4 13.0127
8|11| 0.2725E-03 -177.6 20.0029
8|12 0.4605E-04 30.2 22.0719
9|1 0.2473E-04 176.9 3.32098
9|2 | 0.8229E-04 -1.1 3.63531
9|3 | 0.1716E-03 -176.9 4.29732
9|4 | 0.3683E-03 10.4 5.5034C
915 0.1085E-02 -158.2 7.35423
916 C.1701E-01 38.8 9.59486
9|7 | 0.3782E-01 -116.1 11.0981
918 0.8229E-01 121.9 12.3751
919 1.190 165.2 13.8602
910 0.5186E-01 -118.8 15.7719
9111 0.1775E-02 128.8 20.4023
9112 0.8697E-04 -4.2 26.7099

Table 2.16: Coupled pressure magnitude, phase and arrival time for modes 7-9.
Waveguide is 180 m deep with a 50 Hz source and receiver located 50 km apart at
the bottom. Surface wave has four sinusg{_)%dal components.



2.1.8 Coupling Strength

To roughly estimate the importance of coupling (or, in other words, the con-
vergence properties of the Born series for the Bragg scattering by the surface), we
compute the ratio of amplitudes of typical coupled pressure terms to the adiabatic

pressure

lpcoupl (Z, R) |

Spm = [pediab(z, B)| am'Yman'Vnnz foK (2.111)

Zm (zo,O).
Z,,(Zo, 0) -

Of course, this ignores any phase interference effect but the order of magnitude of

the ratio is indicative of the coupling strengths. Since K = k, — k,, at the Bragg

condition, and a, ~ /2/(pH), the ratio becomes

Ipcoupl (Z, R)l _ 2% Em

Sn =
™ |padiat(z, R)| pH Kkp+Km

(R (2.112)

m(zo,O)’

The series converges best for low mode numbers and deep waveguides as we would
expect. Also, as range R increases, the coupling increases giving a range limit to the
adiabatic approximation. One also sees that modes which start with little adiabatic
energy, e.g. with a null of the mode near the source depth, aie very susceptable to

coupling from other modes.

We can calculate S,,, for our example wavguide from the previous section, with
a depth of 180 m, 50 Hz source with a receiver located 50 km. The ratios depend
on the deoth of the source and reciever. We assume source and receiver depths
are the same. The sea surface amplitude is §; = .424 m. The results are shown
in Table 2.18 for the S;,» terms, and agree qualitatively well with the explicitly

calculated results from the previous section.
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I |J | MAGNITUDE | PHASE (deg) | TIME (sec)
101 0.1208E-04 -96.8 8.51440
10| 2 0.3809E-04 84.2 8.59645
10| 3 0.7040E-04 -93.8 8.73416
10 | 4 0.1180E-03 89.9 9.09472
10 |5 0.2043E-03 -84.0 9.828%2
10| 6 0.4210E-03 106.2 11.3581
10 | 7 0.1449E-02 -56.8 14.1533
10 | 8 0.4734E-01 -30.1 17.5231
10 (9 0.6440E-01 14.0 19.2856
10| 10 1.279 90.0 21.1972
10 | 11 0.1612E-02 31.6 1.89469
10 | 12 0.2490E-03 86.0 32.8346
111 0.8220E-05 -66.7 22.8830
112 0.2531E-04 113.6 22.8472
11 |3 0.4466E-04 -65.5 22.7638
11 | 4 0.6859E-04 116.0 22.6956
11 (5 0.1015E-03 -61.6 22.6403
11 |6 0.1539E-03 122.4 22.7032
1117 0.2566E-03 -50.7 23.1865
11| 8 0.5579E-03 142.2 24.8264
1119 0.3125E-02 -12.4 28.9487
11 |10 0.2286E-02 9.7 54.7933
11 | 11 1.437 -48.7 35.4907
11 | 12 0.7874E-02 84.8 40.5937
1211 0.7215E-05 -176.1 72.3144
121 2 0.2198E-04 4.0 72.3188
12 13 0.3788E-04 -175.9 72.1141
12 | 4 0.5589E-04 4.4 71.9698
12 | 5 0.7749E-04 -175.2 71.6824
1216 0.1053E-03 5.7 71.3525
12 | 7 0.1446E-03 -172.7 71.0182
12 | 8 0.2081E-03 10.3 70.5963
1219 0.3378E-03 -163.5 70.4800
12| 10 0.7789E-03 31.2 71.6923
12 | 11 0.1737E-01 -106.3 78.2268
12 | 12 1.870 27.2 83.3297

Table 2.17: Coupled pressure magnitude, phase and arrival time for modes 10-12.
Waveguide is 180 m deep with a 50 Hz source and receiver located 50 km apart at
the bottom. Surface has four sinusoidal 57:2mponents.



Sln

0.026814
0.044369
0.061417
0.077702
0.092895
0.106553
0.118021
0.126252
0.129330
1% | 0.122955
12 | 0.091733

B © oo us wB

Tabl!e 2.18: Coupling strengths into mode 1 for 180 m waveguide, frequency of
50 Hz, and range of 50 km.

2.1.9 WKB Approximation Breakdown

An error in the WKB approximation can limit the accuracy of our method. We

can write the phase of a mode with coupling as

om(R) = pQ(R) + 03)(R) (2.113)
where
R
©0) — (') dr' 2.114
O = [* km(r") dr (2.114)

is the zeroth order perturbation to the phase, what we described as the WKB
approximation. There is no first order perturbation. The second order phase per-

turbation due to coupling is given by[52,53]

(r1)sm(r1)
@ = 2/ > "’:‘C, _"C"z dry (2.115)
n#Em
and using the same assumptions as above, Eq. (2.115) becomes

2 4202

(2) = / (_) m’ym n'ynK‘m (2 116)
7 — . .
m ory n#zm (r2, —K2)3
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For the WKB approximation to be valid, p{?) <« 7. We make the approximation
that

R(9e)\* .
/0 (a—rl) drl_.Roé (2.117)

where o; is the rms slope of the sea surface. Thus we get that

2 o2 p242
(2) o 2Re? § ImTmnTnkm
©m = 2Rc; > ’("nz"‘_"n;‘)s . (2.118)

Evaluating the above expression for the ideal hard-bottom waveguide shown in
Fig. 2.4 for depths greater than 30 m, for a frequency of 220 Hz, and at a range
less than 500 km, ©{*) < 1072 for all modes. Therefore, the WKB mode phase
approximation is valid for our application. This result is not surprising because

this error is second-order in the ratio of sea surface height to depth.

2.2 Rays

In Section 2.2.1, we review the equations for ray acoustics for a three dimen-
sionally varying ocean. We review the derivation for the eaikonal equation, which
governs the path geometry of the rays. We also review the transport equation which
determines ray amplitude. These are the standard textbook derivations which may
be safely ignored by the reader familiar with them. Next, in Section 2.2.2, we look
at the perturbations to the ray travel time and phase fluctuations due to a rough
sea surface. The phase and travel time covariances are derived as functions of the

sea surface covariance, as we did for the modes.
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2.2.1 Eikonal and Transport Equations

Ray theory[54] also begins with the Helmholtz Eq. (2.3), which we rewrite here

for sound pressure p(7) at location 7 as
Vip+k*(Fp=0 (2.119)

where
w

ko = w/co, co being the sound speed at some reference point and n(7) is the index

of refraction. We represent the sound pressure as
p(7) = A(F) e (2.121)

where A is the amplitude of the wave, koW is the phase of the ray, and W is referred
to as the etkonal. Substitution of Eq. (2.121) into the Helmholtz Eq. (2.119) yields

V2A +1ko(2VA - VW + AV*W) + k3 A[n® — (VW)?] = 0. (2.122)

The equations for ray theory are obtained from Eq. (2.122) when ko — oo (the
sound wavelength A = 27 /ko — 0). Neglecting the first term in Eq. (2.122) and then
equating the real and imaginary parts separately to zero, we obtain two equations:

the eskonal equation

(VW)? = n? (2.123)
and the transport equation
2VA-VW + AV*W =0. (2.124)

The eikonal equation (2.123) defines the geometry of the rays, i.e. the lines orthog-
onal to the wave fronts, with W = const. The transport equation determines the

amplitude.
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We will be mainly interested in the eikonal equation, from which we get the
phase and travel time of eigenrays. Eigenrays are defined as those ray paths starting
from the source that intersect the receiver location[40]. The travel time of the m*"
eigenray is given by

ray _

1
T = smnds (2.125)

where S,, defines the m*" eigenray path. The phase of the m*" eigenray is given by

ol =wr¥ = ko/ nds (2.126)

These quantities can be computed using numerical ray trace programs(55].

2.2.2 Scattering of Rays from a Rough Surface

As shown in Fig. 2.8, a ray impinging on a rough surface will have two major
differences from a ray impinging on a flat surface: 1) the ray will have an phase
shift due to the surface elevation change, and 2) its direction will change according
to the law of reflection. We can write the n‘* ray’s phase variation due to a surface

displacement £(ry,t,) as

Apn(t1) = (2kosindn) D &(rnk,t1) (2.127)

where 0, is the ray’s angle of incidence, kq is the acoustic wavenumber at the surface,
and we again assume a “frozen” surface during the time-of-flight of the ray. The

covariance of the phase variation in Eq. (2.127) is

91 (t) = (2kosinb,) ZZ Z(Tim,t) (2.128)

where Now ripm = ro — ram = (I — m)Ar, t =, —t2, Z(r,t) is again the space-time

covariance function of the sea surface, and Ar is the ray skip distance. Since the
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Figure 2.8: Ray reflected from rough surface

double sum in Eq. (2.128) depends only on the difference between [ and m, we can
rewrite Eq. (2.128) as

9™ (t) = (2kosind,)? f (M = |m|)Z (rm,t) (2.129)

m=-M

where r,, = mAr.
The travel time and phase of a ray were shown above to be related by p = wr
so the ray travel time fluctuation spectra can be written in an analogous manner

to the phase, i.e.

+M
v (t) = (2¢5'sin8,)? Y. (M — |m|)Z(rm,t) (2.130)

m= -M

where ¢ is the sound speed at the sea surface.

2.3 Summary of Scattering Results

For both modes and rays, we have related the covariance of the measured arrival

phase and travel time to the covariance of the sea surface. The equations below
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summarize our findings.

Mode Phase Covariance
4 +R
apote(t) = ci, [ (R~ |r)Z(r,¢) dr (2.131)

Mode Travel Time Covariance

vpee(t) =y [ (R~ 1) Z(r0) ar (2.132)
Ray Phase Covariance
I (t) = (2kosin b,)? %‘ (M —Im|)Z(rm,t) (2.133)
m=-M
Ray Travel Time Covariance
v (t) = (2¢5'sind,)? %{ (M —|m|)Z (rm,t) (2.134)
m=-M

Our ultimate goal is to determine the spectra of the sea surface from the mea-
sured acoustic phase or travel time spectra. Before we are able to reach that goal,
we review, in Chapter 3, the statistical and spectral description of a two dimen-
sional random surface. One then takes a Fourier transform of the covariances shown

above to reach the goal of predicting surface wave frequency-directional spectra.

80



Chapter 3

Surface Wave Spectra - The Forward Problem

In Chapter 2, we showed that we could determine the acoustic phase or travel
time covariance given the sea surface covariance. In this chapter, the frequency-
direction spectrum is shown to be related to the cross spectrum of the surface
waves, i.e. the time Fourier transform of the sea surface covariance. Therefore, we
can relate the spectra of our measurement to the sea surface spectra.

Our measurement is assumed to be the travel time or phase of an acoustic
arrival, either in a full wave formalism, i.e. modes, or in the geometrical optics
approximation, i.e. rays. The continuous sampling of the surface by the acoustic
mode and the discrete sampling of the surface by a ray have consequences in how
we solve for the sea surface frequency-direction spectrum. In the mode case, we
make an analogy to a continous antenna while for the rays, we make an analogy
to a discrete array of wave sensors. In either case, we will show we can solve for
the homogeneous (range-independent) and stationary (time-independent) spectrum
directly from the measured acoustic spectra.

In 1984, MIZEX ‘84 (the Marginal Ice Zone Experiment, 1984) was performed
in the Greenland Sea off Spitzbergen. One part of that experiment was the trans-
mission of acoustic signals from a tomographic source and measurement of these

signals at two different locations.[56] We apply the theory described here to signals
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measured at one of those locations.

In this chapter, Section 3.1 reviews the spectral description of the sea surface.
Section 3.2 discusses the frequency-direction spectrum. Section 3.3 deals with mode
phase and travel time spectra and their relation to the frequency-direction spectrum.
Section 3.4 addresses the ray phase and travel time spectra. Section 3.5 describes the
results of MIZEX ‘84 that deal with surface wave tomography. Finally, Section 3.6
quantifies the error incurred in the tomographic estimate of the frequency-direction

spectrum under the frozen approximation assumption.

3.1 Surface Wave Spectra Review

In this section, we review the the statistical and spectral description of sea sur-
face waves following Phillips [18]. We will denote the random sea surface displace-
ment away from the mean height by £(Z,¢), a function of horizontal displacement
T = (z,y) and time to.

The covariance of the zero-mean sea surface displacement field is
- +o0 p+co
Z@Rtet) = [ [ aaP(a,6)dade
-—00 -0Q
= (&(Z,0)€(Z + T to + 1)) (3.135)
where the points 1,2 are taken as (Z,1o),(Z + 7, ¢o + t) respectively and P (&, ;) is

the joint probability distribution. This probability distribution

P(&1, &) dé1dée (3.136)

represents the probability that the surface displacements at the points (Z1,*;) and
(Z3,t2) should jointly lie within assigned limits (&;, & +d&;) and “&2, §2+d&;). The

mean square surface displacement is

+00
Z(%,0;t,0) = /m E2P(&,) dé, = o} (3.137)
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If the wave field is homogeneous in space and stationary in time, the covariance is
independent of (Z, o).
The wave spectrum is the Fourier transform in the two spatial coordinates and

in time of the sea surface covariance Z(7,t), i.e.
X(R,0) = —— [ [ ] 260 &0 g (3.138)
k] (27[')3 )

where the integration is over the horizontal 7-plane and over all time t. The conju-
gate transform variables are spatial wavenumber vector K and temporal frequency
(1, respectively. Frequency and wavenumber are related by a dispersion relation

appropriate to infinitesimal linear gravity waves as (see [57] for a derivation)
0? = gKtanh KH (3.139)
where H is the depth of the ocean. If KH — oo, Eq. (3.139) reduces to
0? =g¢gK, (3.140)
the “deep water” approximation. When KH — 0, Eq. (3.139) becomes
0 =./gHK, (3.141)

which is the classic, nondispersive, long-wave approximation.

The inverse relation for Eq. (3.138) is
20 = [ [ [ X(&,@)e"®= 4 an. (3.142)
In particular, the mean square surface displacement is also given by

ot = / f / X (%, Q) dk dQ. (3.143)

Of much interest to this thesis is the cross-spectrum, which is the Fourier transform
in timre of the covariance between sea surface displacements at points separated in
space by 7

b(0) = o [ Z(F 0™ d (3.144)

" 21 o
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The two-sided frequency spectrum is a special case of the cross spectrum when

3 1 +oo iQt

$(0) = — / Z(0,t)e™™ dt. (3.145)
27 J-oo

Since the frequency spectrum in Equation (3.145) is even, we can define the tradi-

tional one-sided frequency spectrum as

8(0) = 20(Q) ifQ>0 (3.146)
0 otherwise '

The frequency spectrum, defined in Eq. (3.146), has been the object of study by
many researchers because it is simple to measurc: a point measurement in space
and a spectrum of the time series output of a pressure sensor, wave staff, or other

instruments fulfill this purpose.

3.2 The Frequency-Direction Spectrum

At this point, it is appropriate to review the frequency-direction spectrum
F(Q, a) which describes the directional and frequency distribution of wave energy.
Section 3.2.1 reviews the frequency-direction spectrum and its general properties.
In Section 3.2.2, a model is reviewed which has been proposed by Donelan et al.[27]
for the frequency-direction spectrum. This model is used later in this thesis to
generate synthetic frequency-direction spectra. This spectrum is used to produce
synthetic acoustic signal fluctuation spectra. The acoustic signal fluctuation spec-
tra are then tomographically “inverted” to reproduce the orignal underlying surface

wave spectra.
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3.2.1 Spectrum Features
The frequency-direction spectrum F(Q, @) is defined as
F(Q,a) =2 / " X(E,Q)K dK (3.147)
0

where K = (K cos a, K sin a}, Q1 is radial frequency, and « is direction. When we
assume the linear deep water dispersion relaticn from Eq. (3.140), the frequency-

direction spectrum is approximately
F(,a) 2 /0°° 5(K — 0%/g)X (K, Q) K dK. (3.148)

The frequency-direction spectrum, as the name implies, is a two-dimensional
“polar” spectrum. It can be interpreted as the distributions of a§ among waves
with different frequencies Q1 and directions a of propagation. The variance of the

sea surface is therefore related to the frequency-direction spectrum as
9 2x froo
o? = /0 /0 F(Q,a) dQ da. (3.149)

If we assume the deep-water dispersion relation from Eq. (3.140), we can write

the cross spectrum in terras of the frequency-direction spectrum as
&(F,0) = [0 2"F(n, ) (r/9)sina 4o (3.150)

where « is the angle measured (rom the perpendicular to 7 so that
K -7o= Krsina= —sina. (3.151)

We can also write the one-sided frequency spectrum ®(1) as a special case of

Egs. (3.150) and (3.146) with 7 =0, i.e.
2x
(1) =/ F(Q, @) da (3.152)
0

85



3.2.2 A Model Spectrum

In a paper by Donelan, Hamilton, and Hui[27], a useful frequency-direction
spectrum model for wind-generated surface waves was deduced from data obtained
using a wave staff array in Lake Ontario. The frequency spectrum portion of the
model was essentially a correction of the JONSWAP model[24], while a completely
new directional dependence was proposed based on the sech® function. The model
is given as

F(Q,a) = %‘I?(Q)ﬂsechz {Bla - a(Q)]) (3.153)
where & is the mean wave direction and

(
2.61(g0)*® 0.56 < 5 < 0.95
B = 2.28(%)'1'3 0.95 < g < 1.6 (3.154)

\ 1.24 otherwise

The frequency spectrum is given by

®(Q) = ngzﬂ‘sQge“%’”'eF (3.155)
P

where (1, is the frequency of the spectral peak. The equilibrium range or rear face
parameter 7 is given by
— U \0.55 U 5
n =0.006(%)°% 0.83<% <5 (5.156)
The peak enhancement factor g is given by

1.7 083< %<1 }
0= » (3.157)
1.7+610g%'l 1<%f<5
while the peak enhancement exponent I' is given by
_(p-0p)3

F=e % (3.158)
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The peak width parameter o is

o = 0.08[1 + 4(5—;’)3] (3.159)

c
where U, is the component of the average wind velocity 10 m above the mean surface
level in the mean direction of the waves at the peak of ®(Q), and ¢, is the phase
velocity of the waves at the peak of ().

The relationship between phase velocity ¢, and fetch is given by [27] as

U, -
— =11.6z7%% (3.160)
Cp

where the non-dimensional fetch is Z = zg/U2. Using the deep water dispersion
relation, we can solve for the peak frequency as a function of fetch z as

0, = 11.62502, (3.161)
U.

Although the above model seems complicated, it is easily generated on the com-
puter. Figure 3.1 shows a typical frequency-direction spectrum in a contour plot
format for a wind speed of 10 m/s and a fetch of 90 km. A realization of this
spectrum is shown in Fig. 3.2. Note that the waves are generally heading to the
right with the wind and that the correlation distance is much greater left-to-right

than top-to-bottom.

3.3 Mode Phase and Trave! Time Spectra

We derived the equations relating the covariances of mode phase and travel
time to the sea surface covariance in Section 2.1.3 . In Section 3.1, we reviewed
the properties of the se: surface covariance. In particular, we discussed the “cross-
spectrum”: the time Fourier transform of the sea surface space-time covariance. The

time Fourier transform of the 110de phase and travel time covariances is simply the
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Figure 3.1: Typical frequency-direction spectrum. See Fig. 4.7 for grey scale.
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Figure 3.2: A realization of a sea surface from a typical frequency-direction spec-
trum.
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power spectra of the measurements[58]. This section carries out the time Fourier
transform of the covariances, and using the properties of the cross-spectrum from
Section 3.1, derives equations relating measured phase and travel time power spectra
and sea surface frequency-direction spectra. Throughout this sectiocn we assume
a stationary and homogeneous frequency-direction spectrum for the sea surface.

Chapter 4 solves for the spatially dependent spectral problem.

Phase The time Fourier transform of the n** mode phase perturbation covariance

from Equation (2.36) is
+R -
ope() =cl, [ (R - Ir)é(r, ) dr (3.162)

where now ©M9¢(()) is the power spectrum of the nth mode phase perturbation

and &(r, 1) is the cross-spectrum of the sea surface as defined in Equation (3.144).

Here we assume agaixi that the surface wave: ~bey the deep water dispersion relation
? = gK so that using Equation (3.15C) in Equation (3.162) we get

V’Rsina

2x
omede()) = cfnRZ/O sinc? [ 59

] F(Q,q) da (3.163)

where sinc?(z) = ﬂ;-:—’- The mode phase spectrum ©T°4¢(Q1) can be interpreted as
the output of an antenna with a triangular taper (or a Bartlett window [59]). The
signal in this case is the frequency-direction spectrum F(Q, @). The main lobe of the
antenna pattern is sensitive to waves coming frcm the direction perpendicular to the
mode path, i.e. at the zeroes of the operand of the sinc’. Note that waves coming
from a =0 and a = 7 both give that same response. This left-right ambiguity is a
common feature of line antennae.

We can write the frequency-direction spectrum as

F(Q,a) = ®(Q)h(e; Q) (3.164)
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TYPICAL DIRECTIONAL OEPENDENCE
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Figure 3.3: Typical variation in directional dependence and kernel; R = 50 km,
N=.1Hz,a.=0,and g = 2.

where ®(Q) is defined in Eq. (3.146) and h(a; Q) is the directional dependence of
the spectrum with the property that [Z* h(a;Q)da = 1 for all Q. A reasonable
but simple model for h(a; ) for purely wind-driven seas (i.e. no swell from distant

storms) has been found to be [27]
h(o; Q) = gsechz[ﬂ(a - o)) (3.165)

where o, is the primary direction of the waves relative to the perpendicular to the
mode path. B is a weak function of frequency (2, approximately equai to 2, and
given exactly by Eq. (3.154).

Equation (3.163) can be simplified by noting the characteristics of the sinc?
kernel and the typical directional dependence in Eq. (3.165). The sinc’ term is
very small away from a = 0. The sech? term varying on a much slower scale
around o = 0. Figure 3.3 shows the variation in the two terms. The variation

in the directional dependence of the spectra is barely noticeable while the kernel’s

variation is confined to a very small region around a = 0. The consequence of this
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is that the frequency-direction spectra can be assumed constant within the integral

in Eq. (3.163) so we can write

2x
O™ () ~ 2 R*F(Q,0) /

2R si
0 Rsin a] doe.

.2
3.166
sinc [ 20 (3.166)

At this point, we note that n_:’g = KR > 1 for all reasonable wave frequencies
and acoustic transmission ranges so that we can approximate sin a by a. Equation

(3.166) now becomes

29 \? [ Q*Ra
em°d=n:2R2Fn,o( )/ ~2in? . 167
no%(Q) =~ ci, (Q,0) me) | o s 20 de (3.167)
The definite integral in Eq. (3.167) can be evaluated analytically as[60]
00 2 2
/-oo o ?sin® (02220‘) da = ﬂsz. (3.168)

Therefore, Eq. (3.167) becomes

2
oee(n) ~ T p( o), (3.169)

We now can solve directly for the frequency-direction spectrum at a direction per-

pendicular to the source/receiver heading. The left/right ambiguity is still present

in the problem but is suppressed for the moment.

Travel Time Taking the Fourier transform of the n'* mode travel time pertur-
bation covariance from Equation (2.45) we get

+R A
Tmede() = g2 / (R - |r)&(r, Q) dr. (3.170)
R

where T™°d¢ js the travel time fluctuation spectrum of mode n. We can write the
relationship between travel time spectra and surface wave spectra exactly like we
did for the phase, i.e.

_ 2md},Ryg

TTode() =~ —r— F(0,0). (3.171)
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3.4 Ray Perturbatisn Spectra

Upvard refracted rays sample the sea surface at discrete locations along the path
from source to receiver (as contrasted to the continuously sampling modes). Instead
of using a continuous antenna as an analogy, we use a discrete array analogy for

the ray phase and travel time perturbation.

Phase Taking the Fourier transform of Equation (2.129), we get

M
O™ () = (2kosin b,,)? ;M(M — |m|)®(rm, Q). (3.172)

With our usual assumption of the deep water dispersion relation 2? = g K and using

Equation (3.150), Equation (3.172) can be written

M 2x . ;
e;a)'(n) — (2]80 sin on)Z Z (IW _ Iml) / F(ﬂ, a)ei(QQ/Q)Arm sina j. (3.173)
m=-M 0

Using Equations (3.150) and (3.165) in Equation (3.173), and making the same

assumptions used to derive the mode phase perturbation spectrum in Eq. (3.169),

we get
(2kosin8,)*M2mg
o (Q) = AT Z": F(Q,a,) (3.174)
where a, = sin”![2Z2]. Equation (3.174) can be interpreted as an output of an

array of sensors, each located at every ray surface bounce location. The sum in the
equation is due to the grating lobes that arise due to the periodicity of the array
response. However the grating lobe locations in angle are dependent on frequency
1 and the exact position of the ray bounzes. In the frequency averaging done in
the spectrum estimation, only the central lobe is not averaged down, so that we
can use Equation (3.174) to solve for the sea surface spectrum in terms of the ray

phase perturbation spectrum

2kosin6,)*M2rg
Q2Ar

o (q) = | F(9,0). (3.175)

92



Also, ray bounce locations are seldom perfectly periodic in an actual experiment

due to bathymetry and other effects, eliminating the concern over grating lobes.

Travel Time The travel time perturbations spectra of the rays can also be used
to determine the frequency-direction spectra at the direction perpendicular to the

source/receiver heading.

2¢;'sin8,)*M2ng

T:;ay(ﬂ) = ( O02Ar

F(Q,0). (3.176)

3.5 MIZEX ‘84 Tomography Experiment

During the 1984 summer Marginal Ice Zone Experiment (MIZEX ’84), a 224 Hz
acoustic tomography source was deployed off Spitzbergen, Norway, in 1200 m of
water, sending out transmissions over the course of ten days (June 9-19, 1984). The
material in this section is primarily from a paper by Lynch, Spindel, Chiu, Miller,
and Birdsall[56].

The experiment was designed to 1) investigate the general characteristics of
acoustic propagation in the highly dynamic MIZ region, and 2) see if conditions were
favorable for conducting large scale MIZ or Greenland Sea tomography experiments.
During the data analysis, it was noticed that the phase spectrum (or equivalently the
travel time fluctuation spectra of surface interacting rays) exhibited a shape similiar
to that of the surface wave field. This suggested that surface wave tomography
might be possible, a previously unexplored possibility, and one which only could
have been seen in the rapidly sampled data set.

The source deployed in the experiment was a quarter-wavelength resonant tube
with a center frequency of 224 Hz and a bandwidth of approximately 12 Hz (which
gives a travel time resolution of 83 ms). It was moored at coordinates 78°59.3.V,

6°58.6F at 181 m depth in 1200 m of ocean. The mooring was tracked every 15
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min by three high frequency transponders moored near the bottm, so that any
movement of the source could be accounted for when analyzing the data. the signal
was a 63 digit phase encoded psuedorandom sequence which was repeated every
3.9375 seconds. This signal was designed to give large processing gain (~ 38 dB) to
an inherently low power system with bandwidth and peak power limitations, thus
making long distance tomography feasible[4]. During the experimental period, the
source was activated for a continuous two hour period, daily from 0000 GMT to
0200 GMT. In this thesis, we discuss two of the two hour transmissions, specifically
those beginning at 0000 on year day 168 and 169 corresponding to June 16 and
June 17, 1984.

The signals were recorded at two different locations, shown in Fig. 3.4. The
nearest sensor, deployed by the Naval Underwater Systems Center (NUSC), located
at 79°21.7N, 8°31.42F, was 52.93 km distant along an ice-free path. (We are obliged
to Dr. Fred DiNapoli for the data set.) The further sensor, deployed by MIT and
Woods Hole (WHOI) and located at 80.405°N, 8.58°E (at 0000Z, June 17), was
suspended at 60 m depth from the M/V Kuvitbjorn. We will restrict our discussions
to the signals received by the NUSC array.

Oceanographically, the MIZ region west of Spitzbergen, through which the to-
mography transmissions were sent, is dominated by the warm West Spitzbergen
current flowing northward([61]. This surface current heats the upper few hundred
meters of the water column, producing complicated sound speed profiles, such as
those measured at our source and receiver positions (Figs. 3.5 and 3.6). Beneath
about 600-800 m, the effects of hydrostatic pressure dominate the sound speed,
giving the usual deep ocean adiabatic gradient of 0.016 s*.

The experiment was conducted on the Nansen Bank of the Yermak Plateau,
where the bathymetry governing the propagation between the source and the two

receivers was moderately shallow[62|. Figure 3.7 shows the bathymetry and the
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Figure 3.4: Geometry for the MIZEX ‘24 tomography experiment
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Figure 3.5: Sound velocity profile at the WHOI tomography source.
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Figure 3.7: Range dependent ray trace between the WHOI source and the NUSC
receiver.

results of a ray trace program using sound speed profiles that were interpolated
between source and receiver. Between the source and the NUSC array, the slope is
more pronounced, going from 1200 to 180 m over 36 km. All rays received interacted

with the bottom and the sea surface 2 number of times.

The interaction of the rays with the sea surface had an effect on their phase
measured at the receiver. The phase for one of the rays is shown versus time from
0000 to 0200 GMT oun day 168 in Fig. 3.8. The time series in that figure has two
features worth noting. First, a slow sinusoidal-like variation with a period of about
90 min is evident. ‘This slow variation is believed to be an internal wave signature.
Second, on top of the slow variaticn, there is a very fast oscillation in the phase
of the ray arrival. The fast variations are believed to be due to surfa-e waves.
Fig. 3.9 shows the power spectrum of the phase fluctuations where the two features
have their spectral counterparts: internal wave induced energy at frequencies less

than .01 Hz and energy due to surface waves between .08 Hz and the experimental
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Figure 3.8: Phase of the prominent arrival at NUSC receiver on day 168 with mean
subtracted out.

Nyquist frequency of about .125 Hz. Figures 3.10 and 3.11 show the same data for
the 1:ext day. The energy located in the .08 to .125 Hz band is greatly diminished on
day 169 as compared to day 168. To show this is due to surface waves, we estimate
the sea state in the vicinity of the NUSC array from wind force measurements.
On day 168, four foot (peak to peak) waves were estimated 112 to force 3 and
4 winds from the south and west (open fetch). On day 169, tc.:e 2 winds were
from the north (about 100 km fetch) followed by force 1 winds from the south,
giving less than one foot seas. The location (8-12 sec period) of energy in the phase
fluctuation spectra along with the sea state measurements on the two days provides

a convincing argument that the fluctuations are due to surface waves.

Applying Eq. (3.175) to the measured ray phase perturbation spectrum on two
days (168 and 169) gives the results shown in Figure (3.12). Note that the day 169
spectrum is essentially flat, indicating a calm day whereas the day 168 spectrum

has appreciable ¢nergy. The latter spectrum also shows a double peak perhaps due
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Figure 3.9: Spectrum of the phase of prominent arrival at NUSC receiver on day 168.
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Figure 3.12: Surface wave spectra obtained for days 168 and 169 during MIZEX ‘84.
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to aliasing or to two low frequency wave trains coming from different directions.
Since we only have one source/receiver pair, we do not have much confidence in
the absolute vertical scale of Figure (3.12). However, the shape and location of the
spectral energy resembles the general shape of sea surface wave spectra measured

by other workers.[27,63]

3.6 The Frozen Approximation

The frozen approximation consists of assuming the sea surface is not moving for
the time of flight of the acoustic ray or mode. Here, we quantify the error incurred
in the tomographic estimate of the frequency-direction spectrum under the frozen
approximation assumption.

As we showed earlier in this chapter, the acoustic phase and travel time pertur-
bations are greatest for waves whose crests are parallel to our acoustic path for the
frozen surface. Mode n has a finite group velocity given by

Jw
mode fod
= — 3.17
Von 0K, ( : )

where w is the acoustic frequency and k, is the mode eigenvalue. The group velocity

of ray n can be represented by

vl = csind, (3.178)

where 8,, is the angle of incidence. If the surface is moving, the direction -of the
one surface wave (out of many in a direction spectrum), that the acoustic mode is
sensitive to, is that which satisfies

Up

mode
v n

sina = (3.179)

where v, is the phase velocity of the surface wave and again « is measured from the

perpendicular to the source/receiver heading. The frozen approximation consists of
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Figure 3.13: Frequency-dependent bearing error due to the frozen approximation.
For a 180 m ideal waveguide, 220 Hz acoustic source frequency, and modes 1, 25,
and 50 out of the total 53 propagating modes.

letting vy, — oo, which “freezes” the surface for the time of flight of the mode or
ray.

For a finite group velocity vy, the wave direction that perturbs the acoustic
phase and travel time the most is that whose wave crests just meet the acoustic
energy as it travels between source and receiver. That direction is slightly off the
perpendicular, and for deep water waves with dispersion ? = gK, Eq. (3.179) is
given by

Y

sina = (3.180)
(Qymode

Figure 3.13 shows this frequency-dependent bearing error for a 180 m ideal hard
bottom waveguide, 220 Hz acoustic source frequency. Modes 1, 25, and 50 out of
the total 53 propagating modes. Figure 3.13 tells us that for aimost all propagating
modes and wave frequencies above .1 Hz, the error is less than 1 deg. The frozen

approximation is thus seen to be very adequate for our analyses.
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Chapter 4

Wave Spectra Estimation with Tomography

A major objective of this thesis is the estimation of sea surface wave spectra
from acoustic tomography measurements. Chapter 2 described the effects of the
rough sea surface on the tomographic signal. Chapter 3 showed how to derive
the spectrum of the signal fluctuations from the frequency-direction spectrum of
the sea surface, i.e. the forward problem. In this chapter, we address the inverse
problem. Givei the fluctuations in the signals transmitted from a number of acous-
tic sources to a number of receivers, we solve for the quasi-homogeneous, quasi-
stationary frequency-direction spectrum of the sea surface waves that caused the
fluctuations. By quasi-homogeneous, we mean that the characteristic spatial scale
of the inhomogeniety is much greater than the longest wavelength of the surface
waves. The quasi-stationary assumption means that the spectra may evolve in time
on scales much longer than the longest wave period.

If the sea surface spectrum is homogeneous over the range of the transmission,
we showed in Section 3.3 that the sea surface frequency-direction spectrum is an
algebraic mapping of the mode phase or travel time pertubation spectrum measured;
the source-receiver pair measures the coraponents of the frequency-direction spectra
in the direction perpendicular to the path in the (x,y) plane. In this chapter, we

solve the inverse problem for the spatially-varying frequency-direction spectrum
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given the tomographic signal spectra. The inversion can be repeated over time to

retrieve time-evolving spectra.

Inversions are performed on both mode and ray travel time spectra, simulated
in noise-free and noisy computer experiments. For a finite acoustic signal-to-noise
ratio, error exists in the acoustic travel time estimates. The noise is assumed to be
white and uncorrelated between transmissions. One of the features of the algebraic
mapping from Section 3.3 was a multiplication of the measured phase spectrum
by the Q2. If the phase and travel time spectrum includes the white noise, this
noise is amplified at high frequencies. The severity of this depends on the acoustic
signal-to-noise ratio (SNR), and in the ray case, on the number of rays bounces as

will be shown.

The organization of this chapter is as follows. Section 4.1 describes the inversions
of mode travel time perturbation spectra. Section 4.2 deals with inversions of ray

data, and Section 4.3 shows selected resolution and variance results.

4.1 Inversion of Modes

This section deals with a number of different topics. Section 4.1.1 introduces
the mode inverse problem. Section 4.1.2 describes how we discretized the spatially
dependent frequency-direction spectra. The solution technique we use in this thesis
is described in Section 4.1.3. The tradeoff between resolution and variance to de-
termine the unknown Lagrange parameters is illustrated in Section 4.1.5. Sections
4.1.2, 4.1.3, and 4.1.5 are applicable to both mode and ray inversions. Section 4.1.6

shows the inversion results using a single mode between each transceiver.
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4.1.1 Posing the mode inverse problem

Here, we assume the surface wave frequency-direction spectrum is spatially de-
pendent. The algebraic relations (Egs. (3.169) and (3.171)) between the phase and
travel time spectra and the frequency-direction spectrum do not hold in this case.
For a tomographic source located at 7; and a receiver at 7;, Eq. (3.171) can be
generalized to

_ di2mg (i

T = 25 | F(Q,ai,7) dF + 2 (4.181)

where £ is an error term discussed below and we have left out the explicit dependence
on mode number n of d; and T§';°d°. We have assumed that the frequency-direction
spectrum, F(Q, o4;,7), is a slow function of range.

A consequence of assuming quasi-homogeneous spectra is that spectral compo-
nents are not independent as in the homogeneous case. (For a discussion of such
nonstationary random processes, see the text by Bendat and Piersol [58].) The
error term € is proportional to the spectral component dependence. However, if we
assume that the spatial scale of the spectrum is much greater than the longest wave-
length in the spectrum, the dependence is weak and we may neglect &. Of course, as
the spectrum approaches homogeniety at all ranges, the dependence disappears, i.e.
€ — 0 and Eq. (4.181) becomes identical to Eq. (3.171). One could write a similiar
relation to Eq. (4.181) based on Eq. (3.169) for the phase perturbation spectrum
which would be the same except for the replacement of d, by c;.

Note that all modes that turn at the sea surface have a similiar dependence on
the frequency-direction spectrum. The only difference between spectra of one mode
and another at this level of approximation is the coefficients ¢, for phase and d,,
for the travel time. This has important experimental ramifications for we could use
any one of the propagating modes. The choice could be based on SNR, resolution,

etc. However, for higher mode numbers, the approximation that the mode phase
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Figure 4.1: Geometry for discretizing the relation between travel time spectra and
surface wave frequency-direction spectra. See Eq. (4.182).

and sea surface height are linearly related starts to breakdown, i.e. when ¢;, ~ can.
Those modes would probably not be useful anyway because they would attenuated
due to their high vertical wavenumber. There is no reason why we could not use
multiple mode spectra in the inversion to improve noise tolerance. For simplicity,
however, we restrict ourselves in this thesis to inversion of a single mode spectrum

measured at each receiver from each source.

The first step to solving Eq. (4.181) is to discretize the integral, i.e.
d?2
T:'T;Ode(n) = lﬂ_:rg > F(Q, aiji 7i) Arise (4.182)
k

where Ar;;; is the distance the mode travels in the box whose center is at 7} at

angle a;;. These quantities are illustrated in Fig. 4.1.

We then form a vector f of the unknown frequency- direction spectra F that is

a function of box k with center located 7, and sector ! with center located at angle
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F(Q, &l’ Fl)
F(Q, &2,71)

F(Q,ér,71)
F(Q, &,,72)

F(Q, &p-1,7k)
F(Q,ar,7k)

We can form a vector t of the measured travel time fluctuation T[-;?°d° measured

at the jth receiver from the ith source.

Trlnlode(n)
'rt;'lzode(n)

Q) = E .
t(Q) — (4.184)

T7ree(Q) |

L

The t is a vector of length M. We assume that T° = T7°%, i.e. so that the vector
t only includes the independent pairs. For example, if we have 8 transceivers, we
have 7 4+ 6 + 5... + 1 = 28 different paths and therefore M would be 28.

We can now form the matrix equation

_ di2rg

t 0z

Gf +n, (4.185)

where t is the vector of length M made up of the travel time or phase perturbation

spectra measured from each source to each receiver.
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The vector f is the unknown vector of length N = L x K of the frequency-
direction spectrum at all discrete range boxes and angular sectors. Section 4.1.2
discusses the discretization of the frequency-direction spectrum. The matrix G
is the M x N kernel matrix that has all the geometrical information implicit in
Eq. (4.182) and, importantly, is independent of frequency (. The vector n is a noise
vector to be addressed below. For a realistic number of sources and receivers, and
for a realistic range-dependent discrete model of the frequency-direction spectrum,

the N is greater than M, i.e. the problem is underdetermined.

4.1.2 Model Discretization

We have discretized the frequency-direction spectrum into vectors. The dis-
cretization used is 9 range boxes, each 20x20 km, and 18 angular sectors, each 10
deg, giving 162 unknown values of our frequency-direction spcrctra model to be de-
termined at each frequencies .01 Hz apart between 0 Hz and .5 Hz. Because of the
left-right ambiguity described earlier, we will only invert for directions from 0 to
180 deg. Figure 4.2 illustrates the discretization used here. We have simulated a
tomographic array of 8 transceivers on a 25 km radius circle within the 9 boxes.
Figure 4.3 shows the locations of the 8 transceivers and all the acoustic mode paths
between them. The data vector t consists of the phase or travel time spectrum at
each frequency measured at each of the transceiver locations shown in Fig. 4.3. The
same generalized inverse is applied at each frequency.

Data was simulated using a frequency-direction spectra model described by
Donelan et al.[27] using a modified JONSWAP|(24] frequency spectrum and a sech?
directional dependence. The wind speed is taken to be 10 m/s at a height of 10 m
above the mean surface height. The wind direction is from 90 deg, i.e. off shore.

The shore is 40 km from and parallel to the top boxes as shown in Fig. 4.4.
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Figure 4.4: Tomographic array location.

The kernel matrix G can be interpreted in the following manner. The value
of the G matrix entry is the distance traveled by the mode in each box received
at the appropriate transciever. Figure 4.5 illustrates the G matrix in a manner
similiar to a beam pattern. The direction of each sector is perpendicular to the
path of the mode. The radius of the sector is proportional to the distance the mode
traveled in the box. The asymmetry of the pattern around 90 deg is due to the fact
that we discretized in direction with sectors 10 deg wide while the mode paths are
22.5 deg apart. The corner boxes have smaller sectors because the modes traveled

proportionally less distance in those boxes.

4.1.3 Solving the inverse problem

We form a quadratic functional that is sensitive to model estimation error and

model smoothness given by

L(f) = (Gf — t)TW(GF — t) + M fTS,f + A fTS,f (4.184)
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Figure 4.5: Graphical representation of the kernel G.

where W is a weighting matrix which allows us to use different types of rneasure-
ments with different levels of confidence. The matrices, S; and S,, are used to
smooth over direction and space, respectively. We describe them in more detail
below. The Lagrange multipliers, A; and A;, determine how much smoothing is
introduced in direction and space. Assuming here that they are known, we will
describe the procedure for determining them further on.

We now derive the vector f which minimizes L. First, we expand Eq. (4.184)

(following Liebelt[63]) as
L(f) = (fTGT — tT)W(GF — t) + METSyf + Xof T Sof (4.185)

L) = fTGTWGE — fTGTWt — tTWGE + tTWt + MFTS f + AfTSof  (4.186)

Because the third term in the preceding equation is a scalar, we can transpose this

term to obtain

L(f) = fTGTWGSE — 2fTGTWt + tTWt + A fTSif + Ao f7Sof (4.187)
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We next differentiate Eq. (4.189) with respect to the components of f yielding

dL
i 2GTWGSE — 2GTWT + 2,8, f + 2X;S,f. (4.190)
Setting the expression above to zero and solving for f we get
QZ
f=——(GTWG + \;S; + A:S:) 'GTWt. (4.191)
2ndig

The solution given in Eq. (4.191) is analogous to the weighted damped least squares
solution [65,66,67,68].

We have chosen to break our unknown frequency-direction spectrum model
F(7,Q, @) into a discrete vector f. Since frequency Q is only a multiplicative factor
in the kernel G, we need only compute one generalized inverse operator G;! from
Eq. (4.191) i.e.

a_
g 2ndig

(GTWG + )\;S; + 1:S;)!GTW. (14.192)

We thus perform one NxN inverse operation for all frequencies desired.

4.1.4 Smoothing Matrices

Smoothing matrices were introduced into Eq. (4.192) to stabilize the estimate of
the unknown spatially dependent frequency-direction spectrum vector f. If the ma-
trices were absent, there are an infinite number of solutions, i.e. no unique sclution
exists for our underdetermined problem.

The smoothing matrix is S; = DTD,; where D; is a matrix which contains the
finite difference representation of sorme norm of our solution. To minimize the second
derivative of f over direction «, which gives Dy; « ~2 and D;; « 1 wherever i and
j represent neighboring directions in f. So then the finite difference representation

of our second derivative is

d*f|  _ flao — Aa) —2f(a) + f(ao + Ac) 7
=i = 3 . (4.193)

Qo
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where A« is the finite difference.

Besides the smoothing done in direction for interpolation, we also must smooth
in (x,y) space or, in other words, over boxes. To do this, we introduce a new
smoothing matrix S; = C;'! where C; is the correlation matrix for the unknown
vector f over the spatial variables (x,y). The values for the correlation matrix
entries reflect the fact that physically adjacent boxes should not have very different
frequency-direction spectra. For our inversions, we assumed that adjacent boxes
had a correlation of .9 between adjacent boxes parallel to shore, and .7 between
adjacent boxes perpendicular to the shore. All other boxes had proportionally less
correlation based upon distance apart and relation to shore. These correlation

values were derived as follows. We calulated a covariance matrix
C; = E[(f — E(f))(f - E(f))T] (4.194)

The unknowns in the model were the wind speed and direction. The wind speed was
assumed to have a Rayleigh distribution with a mean of 10 m/s. The wind direction
was assumed to evenly distributed between 0 and 180 degrees. The correlations were
then calculated, giving the results stated above. Moreover, moderate variations in

the values of the correlations had very little effect on the inversions.

4.1.5 Resolution and Variance Tradeoff

We choose the Lagrange parameters A; and A; used in the generalized inverse in
Eq. (4.192) based on the tradeoff between resolution and variance of our unknown
frequency-direction vector f.

The covariance matrix of f characterizes the degree of error amplification in the

inversion process and is given by
[covf] = G;'G;'T (4.195)
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for uncorrelated data [69]. The size of the covariance is often computed as the sum
of the diagonal terms of the matrix as

N
size([covf]) = ) _[covf]y (4.196)

=1
The resolution matrix characterizes whether the components in f can be inde-

pendently resolved, and is given by
R =G;'G. (4.197)

The ideal case is that each component of f would be resolved perfecily, i.e. when
G, = G in which case the resolution matrix would be the identity matrix. A
measure of the goodness of the resolution spread is
N N
spread(R) = >_ > [Ri; — ;)% (4.198)
i=1j=1
The resolution spread and size of the covariance matrix can be plotted as a func-
tion of one of the Lagrange multipliers as shown in Fig. 4.6. Varying A; corresponds
to moving up and down the curve giving a whole set of solutions. At one extreme,
the solution has large variance and the system has high resolution. At the other
extreme, the opposite occurs. There is a range of good choices for A;, in which the
resolution is adequate while the variance is tolerable. For our case, there is another
Lagrange multiplier A; we must vary, so the tradeoff curve is actually a tradeoff
surface in (A;,A;) space, but the analysis is the same. For each of the different
inversions performed, the parameters were varied until acceptable resolution and
variance were obtained
Because the inversions were performed on synthetic data, we have the true
frequency-direction spectra model. We are able to compute the total mean squared
error between the estimate and the true model. Once acceptable resolution and

variance were obtained, variations in A; and A; of an order of magnitude either
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Figure 4.6: Tradeoff curve between resolution and variance.

way in each parameter increased the total squared error by about 20 % in both the
noise-free and noisy-ray cases. Therefore, the inverse solution is basically robust
to the exact choice of the parameters. Resolution and variance results for specific

inversions are presented in Section 4.3.

4.1.6 Mode Inversion Results: No Noise Case

A spatially varying frequency-direction spectrum is difficult to present. There-
fore, we present results of the inversions in three different formats for both modes
and rays. Each format brings out different aspects of the inversions. The formats

are:
1. Contour plots with gray level proportional to the spectral amplitude.
2. Graphs of the spectra versus frequency at a constant direction of 90 deg.

3. Graphs of the spectra versus direction at a constant frequency of 0.2 Hz.
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Figure 4.7: Contour plot grey level key.

In this section, we present the results of the inversion of mode travel time per-
turbation spectra derived from the frequency-direction spectra. That is, we have
perfect forward data with no noise. Figure 4.7 shows the grey scale used in all the
contour plots in this thesis. Figures 4.8, 4.9, and 4.10 show the results of inversion

in the grey level contour plot format. The units of the spectra are m?sec/rad?.

Each of the figures present the results for one column of boxes. The rightmost
contour plots labelled “ORIGINAL MODEL” show the model (evaluated at the
center of each box) used to produce the simulated forward data. The features of
the model are evident in ihe figures. Most of the energy is concentrated in between
60 and 120 deg in direction. The wind is blowing offshore (down the page) with
increasing fetch as one goes down the page. The model shows the fetch dependence
in amplitude of the spectra, with the furthest fr.tch spectra rising more than 25 %
above the top boxes. Also, the peak frequency goes from 0.25 Hz in the top boxes
to near 0.20 Hz in the bottom boxes. Because the shore is parallel to the top boxes,

there is no change in the model spectra along the rows of boxes, hence the high
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Figure 4.8: Contour plot of inversions of modes with no noise for the fre-
quency-directional spectra in boxes 1, 4, and 7. See Fig. 4.7 for grey level key.
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Figure 4.8: Contour plot of inversions of modes with no noise for the fre-
quency-directional spectra in boxes 1, 4, and 7. See Fig. 4.7 for grey level key.
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Figure 4.9: Contour plot of inversions of modes with no noise for the fre-
quency-directional spectra in boxes 2, 5, and 8. See Fig. 4.7 for grey level key.
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Figure 4.10: Contour plot of inversions of modes with no noise for the fre-
quency-directional spectra in boxes 3, 6, and 9. See Fig. 4.7 for grey level key.
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correlation between shore parallel boxes.

The leftmost contour plots labelled “TOMOGRAPHIC ESTIMATE” in each
of the figures show the results of the inversion. The inverted spectra follow the
energy of the spectra in direction very well. The location of the peak frequency
is tracked between boxes. The amplitudes of the inverted spectra also agree fairly
closely with those of the model. The center column of boxes 2, 5, and 8 match the
best as shown in Fig. 4.9. We used a smoothing matrix S; to help in reducing the
underdeterminedness of the inversion. This smoothing matrix is least helpful on
the corner boxes because the path lengths of the acoustic modes are least in those

boxes, and hence, the amplitude of the entries in the kernal matrix G.

The inversion results can also be presented in a more standard y versus x format.
Figure 4.11 shows the inversion-model comparison for the same three columns of
boxes as we did for the contour plots. The spectra are plotted versus frequency
for a constant direction of 90 deg. The smooth line is the original model used
to generate the synthetic data. The dots show the estimated spectra from the
inversions. The inversions were repeated every 0.01 Hz. The results show that the
inversions are very accurate in regions away from the peak frequency, while they
are moderately accurate at the peak frequency. The difference may be due to the
smoothing matrix S, which correlates adjoining boxes and prevents abrupt changes

in the spectra between boxes.

We also plot the spectra versus direction at a constant frequency of 0.2 Hz as
shown in Fig. 4.12. This type of presentation shows how well the inversions follow
the growth of the spectra with fetch. The cerner problem is also evident in these

plots. The inverted result follows the orignal model in direction very well.
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Figure 4.11: Inversion of modes with no noise versus frequency at direction of 90
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curve.
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Figure 4.13: Ocean waveguide for inversions.
4.2 Inversion of Rays

" A ray samples the surface at only discrete points along the path between source
and receiver. While we had to discretize the integral relating mode travel time
spectra and surface wave spectra, the ray travel time is inherently discrete. For all
inversions, we will assume an ocean waveguide as shown in Fig. 4.13. The waveguide
depth is 400 m. For convenience in calculations, both the source and receiver are
positioned at the bottom of the waveguide. The range between source and receiver
depends on the source-receiver pair of interest from Fig. 4.3. In the mode inversions,
we only had to use one mode per source-receiver pair because the mode sampled the
sea surface continuously. However, now we must use a number of rays per source-
receiver pair for the inversion to succeed. For most of the inversions with rays, we
use six rays per source-receiver pair ranging from rays with 10 surface bounces to
15 surface bounces. This gives us 6 rays multiplied by 28 source-reciever pairs for a

total of 168 pieces of data. Remembering that we are estimating 162 unknowns, we
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might assume that we are now overdetermined. But that is not the case. The rays
are not completely independent, leaving us with a still underdetermined inversion in
(x,y) space. For comparison, we also performed an inversion on three rays with 13
to 15 surface bounces, giving a total of 84 pieces of data. We studied the sensitivity
of the technique to the number of ray bounces by performing an inversion using
nine rays with 1 to 9 surface bounces.

In Section 4.2.1, the ray inverse problem is posed in a similiar manner to the
mode case. Section 4.2.2 presents inversion resuits with noise-free data from six
rays. Section 4.2.3 deals with inversions of six rays with the realistic SNR’s that
are obtained in tomography experiments. Section 4.2.4 shows the results when the
SNR’s are 10 dB less than Section 4.2.3. The effect of only using three rays in the
inversion is demonstrated in Section 4.2.6. The inversion results using nine rays

with 1 to 9 surface bounces is described in Section 4.2.7.

4.2.1 Posing the Ray Inverse Problem

hen the surface wave frequency-direction spectrum is spatially inhomogenous,

we can generalize Eq. (3.175) in a similar manner to the mode case by

2ksin8,)*2rg
QZAr

f: F(Q, aijy ). (4.199)

m=1

o (n) = ¢

nij
We discretize the frequency-direction spectra F' into a vector exactly like Eq. (4.183).
However we now have a much longer data vector t made up of the phase perturbation
for each source-receiver pair and fer ray bounce numbers 10 though 15 for the six
ray inversions, 13 through 15 for the three ray inversions, and bounce numbers 1
through 9 for the nine ray inversions. The generalized inverse is found in the exact

manner as the mode inverse, i.e.
92
f —_

T ~1 T
~ 2m(2ksin 0,,)2g(G WG + 181 + A;82) 7 G" Wit. (4.200)
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4.2.2 Six Ray Inversion Results: No Noise Case

In this section, we present the results of inversions of ray trave! time perturbation
spectra synthetically derived from the frequency-direction spectra. That is, we have
perfect forward data with no noise. We used six rays between each source and
receiver with number of bounces between 10 and 15. Figures 4.14, 4.15, and 4.16
show the results of inversion in the grey level contour plot format. The units of
the spectra are again m?sec/rad?. The results obtained using six rays are almost
indistinguishable from the mode inversions. As the number of rays used in the
inversion increases, the quality of results approach that using one mode. As we
have described, the mode continuously samples the sea surface while rays sample
discretely. For these results, we increased the number of rays in the inversion until
they approached that of the modes. The results using three rays per source/receiver
pair (bounces 13-15) are shown in Section 4.2.6.

The ray inversion results can also be presented in the standard y versus x format.
Figure 4.17 shows the inversion-model comparison for the same three columns of
boxes as we Jid for the contour plots. The spectra are plotted versus frequency for a
constant direction of 90 deg. The smooth line is the original model used to generate
the synthetic data. The dots show the estimated spectra from the inversions. The
inversions were repeated every 0.01 Hz. These plots show that there is very little
difference between the six ray inversions and the mode inversions. We also plot the

spectra versus direction at a constant frequency of 0.2 Hz as shown in Fig. 4.18.

4.2.3 Six Ray Inversion Results: Noisy Data

Spectral noise is defined here as the power spectrum of the error in the travel
time or phase estimates incurred when we have a finite acoustic SNR. Given the

SNR. we can compute the standard deviation of the travel time and phase estimates
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Figure 4.14: Contour plot of inversions of six rays (bounces 10-15) with no noise
for the frequency-directional spectra in boxes 1, 4, and 7. See Fig. 4.7 for grey level

key.
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1
ey (4.201)
_ _ f
Op =27 fo, = —Af\/m (4.202)

where f and A f are the center frequency and bandwidth of the acoustic signal. We
model the spectrum of these errors as white so essentially a constant in frequency
is added onto the phase or travel time spectra.

We now calculate the SNR. The transmission loss of a ray (for our case of

bottom-mounted tranceivers) due to spreading is given by Tindle and Bold [70] as

1
TL, = (4.203)
R\1+ (3l

where R is the range between source and receiver, H is the height of the waveguide,
and n is the number of ray bounces. The loss due to the surface scattering is given

by [40]

P2
TL2 = (1 - 7)" (4.204)

where P = 2kosin 9, is the Rayieigh parameter, 8, is the incidence angle of the n‘?
ray and o is the standard deviation of the surface height. For example, for P = .2,

n=15, H=400 m, and R = 5C km, we get
TL = TL; + TL, = —48.4dB (4.205)

The source level SL assumed here is 185 dB, which is typical of tomographic
sources[4]. We will assume an acoustic noise loss of -81 dB and attenuation due
to other sources such as volume effects, bottom effects, etc. of -5 dB. The atten-
uation loss used here is very rough, but for the ranges discussed in this thesis (10
- 100 km), -5 dB is probably ballpark for totally internally reflected rays. The

resulting calculation becomes
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SL 185 dB
TL -48
Atten | -5
Noise | -81
SNR | 50 dB

For a transmitting frequency of 220 Hz and bandwidth of 12 Hz typical of Webb
Research Corp. organ pipe sources (4], the phase variance can be calculated using

Eq. (4.202) to be 11 deg®.

For each ray in our simulation, a different SNR is calculated and the appropriate
white noise is added to the phase spectrum due to the surface waves. Note that
Eq. (4.200) contains a multiplication by Q12. Because of this factor, any flat phase
spectrum (like white noise) will be affected at higher frequencies much more than
low frequencies. The phase estimation error will be transformed into a steadily
increasing noise floor in the surface wave frequency-direction spectrum. Using the
values assumed above, we performed an inversion on this “noisy” data. The results
are shown in Figs. 4.19, 4.20, and 4.21 in the contour plot format, in Fig. 4.22
as plots versus frequency, and in Fig. 4.23 as plots versus direction. Comparing
these plots to their no noise counterparts, we can see small differences at high
frequencies as we expected. Note that this is just where we may be limited by the
Nyquist criteria anyway. We cannot send signals too often due to the multipath
arrival structure spread. But noise can also limit surface wave tomography at high
frequencies, making this the most difficult part of the spectrum for our technique

to work in.
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Figure 4.19: Contour plot of inversions of six rays (bounces 10-15) with noise for
the frequency-directional spectra in boxes 1, 4, and 7. See Fig. 4.7 for grey level

key.
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4.2.4 Six Ray Inversion Results: Very Noisy Data

The sensitivity of the inversions to more noisy data was assessed by using an
acoustic noise level of -91 dB instead of -81 dB. The results are shown in Figs. 4.24,
4.25, and 4.26 in the contour plot format, in 4.27 in the plots versus frequency,
and in 4.28 in the plots versus direction. Comparing these plots to their no noise
and lesser noise counterparts, we can see dramatic differences at high frequencies.
The directional dependence of the noise level in the contour plots is directly due
to longer ranges the rays have to travel in some directions, thus losing SNR due to

spreading, scattering losses, etc.

4.2.5 Integration with Directional Wave Buoy

Due to the generality of the inversion process, the integration of tomography
with other oceanographic measuring systems such as satellite and temperature sen-
sors for eddy-scale tomography is fairly straightforward [6,71,5|. We can also aug-
ment surface wave tomography with a more traditional wave measurement device
such as a directional wave rider buoy. This is done as follows. The unknown
frequency-direction vector f given by Eq. (4.183) remains the same. We have to
modify the other matrices as follows. The measurement vector t now becomes

ttomography

t= (4.206)

twavebuoy

The matrix W must also be augmented to normalize the errors between the two
sensor systems. For an example, we assume that a directional wave buoy is located
at coordinates (10 km, 10 km) in the map given in Fig. 4.4. The kernel matrix must
be augmented to include a measurement of f in box 1. Note that the inversion is

now frequency-dependent however, and so must be performed at every frequency
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Figure 4.24: Contour plot of inversions of six rays (bounces 10-15) with 10 dB more
noise for the frequency-directional spectra in boxes 1, 4, and 7. See Fig. 4.7 for grey
level key.
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Figure 4.25: Contour plot of inversions of six rays (bounces 10-15) with 10 dB more
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level key.
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Figure 4.26: Contour plot of inversions of six (bounces 10-15) rays with 10 dB more
noise for the frequency-directional spectra in boxes 3, 6, and 9. See Fig. 4.7 for grey
level key.
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desired. This may multiply computations by a factor of 25 or so, a large but not
impossible increase.

Figures 4.29 and 4.30 show the results of an integrated measurement using modes
and the directional wave buoy. All measurements were noise free. As expected, in
box 1, where the buoy is located, the inversion results are improved over those in
Figs. 4.11 and 4.12. The results in box 1 are just about perfect but the results in the
adjoining boxes are also improved. The least improved box is number 9 diagonally
opposite box 1 with the buoy. The correlation between these boxes is the least and

the results reflect that fact.

4.2.6 Three Ray Inversion: Noisy Data

For comparison, we also performed an inversion on three rays with i3 to 15
surface bounces. The rays were the same used in Section 4.2.3, with error introduced
by the typical SNR used in tomography experiments. The results are shown in
Figs. 4.31 and 4.32. As compared with the six ray inversions in Figs. 4.22 and 4.23,
the three ray inversion results are poorer in estimating the spectrum near the peak
frequencies. The poor results are due to the less dense sampling of the sea surface

by the three rays as compared to the six rays.

4.2.7 Nine Ray Inversion: Noisy Data

We also performed an inversion on nine rays with 1 to 9 surface bounces, with
error introduced by the same SNR as described in in Section 4.2.3. The results
are shown in Figs. 4.33 and 4.34. As compared with the six ray inversions in
Figs. 4.22 and 4.23, the nine ray inversion results are poorer in estimating the spec-
trum near the peak frequencies. But also note the performance at higher frequencies

in Fig. 4.33. The noise effect is more prominent, even though we are using more
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rays than in Section 4.2.3. The cause of this effect is the fact that the rays with
bounces between 1 and 9 have lower rms travel time perturbation because of the
fewer bounces. With the same spectral noise level and lower signal level, the noise

is amplified as compared to the case where we use rays with bounces between 10

and 15.

4.3 Resolution and Variance

We have plotted the variance as a function of box and direction in Fig. 4.35 for
the matrices used in the 6 ray inversions. Note the large variances at directions
above 90 deg in boxes 1 and 9. The errors depicted in Figs. 4.24 and 4.26 are large
where the variance is large in Fig. 4.35, as we would expect. The lack of angular
dependence of the variance in box 5 in Fig. 4.35 can be easily seen in Fig. 4.25.

In Section 4.2.5, we added a directional wave buoy in box 1 that measured
the frequency-direction spectrum with no noise. The variance for that integrated
measurement is shown in Fig. 4.36. We see that, in box 1, the variance has gone to
zero. In the adjacent boxes, the variance is lowered compared to the acoustics-only
case of Fig. 4.35. In the boxes furthest away from box 1, the improvement in the
solution variance is the least as we would have expected.

Figure 4.37 shows the resolution that we can obtain in box 2 at 90 deg and
leakage into the other boxes. Because of the smoothing introduced to enable the
inversion to work, we tend to smooth through boxes 1 and 3 to the extent shown in
the plots. We do better across the other boxes that are perpendicular to the shore.
This is because the correlations between boxes parallel to the shore (e.g. boxes 1,
2, and 3) are higher than those perpendicular to the shore (e.g. boxes 1, 4, and 7).
Figure 4.38 show a similiar plot for the normalized resolution we obtain in box 5 at

90 deg. The high smoothing between boxes 4, 5, and 6 is evident in the high side
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by the smooth curve.
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lobes in boxes 4 and 6. Our inversion (with the current correlation structure) will
not admit solutions that change drastically across the shore-parallel boxes.

In direction, we smoothed with a method similiar to a cubic spline. We did this
because we had no data on the spectrum in between the directions perpendicular
to the acoustic mode path as we illustrated in Fig. 4.1. The cost we pay for this, as
Figs. 4.37 and 4.38 show, by not being able to resolve features in the spectrum that
are less than 20 deg wide. Thus, any compact swell spectrum could slip in between
the sensing directions and we would miss it all together. We could have predicted
this without a calculation by noting that the acoustic paths are 22.5 deg apart, and

spectral features less than this might slip between the sensitive directions.
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Figure 4.37: Normalized resolution of the frequency-direction spectrum in box 2 at
90 deg.
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Figure 4.38: Normalized resolution of the frequency-direction spectrum in box 5 at

90 deg.
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Chapter 5

Conclusions

5.1 Summary

This thesis has developed a new method for estimating quasi-homogeneous,
quasi-stationary surface wave frequency-direction spectra using acoustic tomogra-
phy. The basis of the method is the tomographic inversion of travel time fluctuation
spectra of acoustic signals transmitted from a number of sources and measured at

a number of receivers.

We showed in Chapter 2 how the phases and travel times of acoustic modes and
rays are affected by the height of the sea surface. Acoustic mode eigenvalues can
be expressed as a linear function of sea height. Since mode phase, under the WKB
approximation, is the integral of the eigenvalue, we showed that the mode phase
and travel time are functions of the integral of sea surface height between source
and receiver. We showed that the spreading of an acoustic pulse was due to mode
coupling and quantified the effect. Adiabatic mode theory and the WKB approxi-
mation were shown to generally be adequate for representing the effects of the rough
sea on the modes for realistic frequencies, waveguides, and ranges used in tomog-

raphy. Acoustic ray phase and travel time fluctuations were related to the summed
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sea heights at the ray bounce locations. We derived the relationship between the
sea surface time-space covariance and the covariance of the phase and travel time
fluctuations for both modes and rays measured at a number of transceivers.

In Chapter 3, we showed that examiring the temporal Fourier transform of
the sea surface covariance led to the idea that both ray and mode phase/travel
time spectra were dependent on the waves which traveled perpendicular to the
source/receiver heading, with a 180 degree ambiguity. We showed the application
of the theory to data measured in the MIZEX ‘84 Preliminary Tomography Exper-
iment in the Greenland Sea. In that experiment, only one source and one receiver
were deployed so that we could not resolve directional spectra. But the shape of
the frequency spectrum and the daily dependence on wind speed strongly suggested
that the method is valid.

In Chapter 4, we showed how to estimate the quasi-homogeneous frequency
spectrum from the tomographic data. We used a variant of the damped least squares
inverse techinque in which the damping by Lagrange multipliers determine the
where the solution lies on the resolution/variance tradeoff diagram. The multipliers
were varied until reasonable results were obtained. Because we used a known model
to generate synthetic data, we were able to calculate the total squared error of our
estimate. Variations of the Lagrange multipliers by an order of magnitude one way
or the other did not significantly change the total error of the estimate.

We solved a synthetic inverse problem for a fetch-dependent spectrum as a
function of location, direction, and frequency. Our inverse technique for the spectra
needed only one inverse operation (of size equal to number of directions times
number of spatial boxes) independent of frequency and then applied the generalized
inverse to the acoustic spectra to estimate the frequency-direction spectra at any
frequency desired. The effects of error in the travel time estimation are shown to

degrade the frequency-direction spectra estimate at high surface wave frequencies.
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A theoretical variance estimate from linear systems theory is shown to explain these
errors. The resolution of the generalized inverse was investigated and used to explain

the leakage of energy between spatial boxes.

5.2 Comparison with Other Methods

Surface wave tomography has the potential to equal or better the surface wave
frequency-direction measurement systems used currently. We have shown that sur-
face wave tomography suffers from a 180 degree ambiguity like some radar meth-
ods which also integrate along one spatial dimension, in particular the FM ROWS
system.[32] Other radar methods which image the surface directly, such as the Sur-
face Contour Radar (SCR), can eliminate the 180 degree ambiguity.[33] There is
a possibility of resolving the ambiguity in surface wave tomography by using the
Doppler information of the waves in the direction parallel to the acoustic path, but
this is as yet unexplored.

The resolution, in direction, of surface wave tomography depends on the the
ratio of acoustic path length and surface wavelength, with typical resolution less
than 1 degree. To compare, the SCR has resolution on the order of 10 degrees.
However, to sample in direction every 12.5 degrees, we showed that surface wave
tomography needed 8 transceivers. The resolution of the pitch and roll buoys is
usually not adequate for measuring the angular spread of the spectra.[72] Wave
staff arrays have demonstrated directional resolution of 15 degrees.[27]

The spatial resolution of surface wave tomography described in this thesis was
20 km. However, this number could be reduced to 6 km by changing the spatial box
geometry from 3 20 x 20 km boxes to 10 6 km strips. The SCR has demonstrated a
spatial resolution of 5 km.[33] The frequency resolution of surface wave tomography

is determined by the resolution of the spectral estimation method applied to the
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travel time fluctuations.
One limitation of surface wave tomography is its dependence on a linear disper-

sion relation. It cannot directly measure the wavenumber-frequency spectrum like

wave staff arrays can.

5.3 Original Contributions

This thesis fulfills one of the requirements for a doctorate from the MIT/WHOI
Joint Program in Oceanographic Engineering. As such, it documents an original
contribution to the field. However, it is sometimes difficult to separate the original
contributions of a thesis between student and advisor. My advisor, Dr. James F. Lynch,
contributed some original material to this thesis and in the those sections where I
was the original contributor, he was the inspiration and guide. Here, I want to list
those sections which are my own original contributions, whiclki were my advisor’s,
and which are tutorial in nature. Chapter 1 is introductory and historical material.

In Chapter 2, Sections 2.1.1 on range independent normal mode theory, 2.1.2
on range dependent mode theory, and 2.2.1 on ray eikonal and transport equations,
are tutorial in nature. Section 2.1.6 on mode coupling effects is contributed by
Dr. Lynch. Section 2.1.3 on phase and travel time perturbations due to 2 rough sea
surface was essentially a joint effort between Dr. Lynch and myself. Sections 2.1.4
on scattering in canonical waveguides, 2.1.5 on the interpretation of Polcari’s mode
coherence in the Arctic, 2.1.7 on coupled mode Bragg scattering, 2.1.9 on the ap-
plication of Desaubies WKB approximation breakdown to mode coupling by the
surface, and 2.2.2 on the ray phase and travel time covariance due to a rough sur-
face, are my own original contributions.

In Chapter 3, Sections 3.1 was a review of surface wave spectra. 2.2 on the

frequency-direction spectrum, Sections 3.3 on mode phase and travel time spectra,

161




3.4 on ray phase and travel time spectra, and 3.6 on the effects of the frozen approx-
imation, are my own original contributions. Section 3.5 is taken predominately from
a paper to be published by Lynch, et al.[56] of which I was a co-author. Chapter 4

is mainly my own contribution except for that material explicitly referenced.

5.4 Significance of the Thesis

The most significant result of this thesis is the development of a new experi-
mental technique to study sea surface waves, i.e. surface wave tomography. If such
an experiment is appropriately designed, estimates of quasi-homogeneous, quasi-
stationary surface wave frequency-directional spectra can be made in addition to
the other oceanographic measurements. We feel that an important contribution
can be made to the understanding of surface wave/ internal wave interactions by

an acoustic tomography experiment using the results of this thesis.

Another significant result is the analysis of mode travel time and phase fluctu-
ations due to surface waves over an acoustic waveguide. In particular, the series
expansion of the mode eigenvalue in terms of surface height is quite useful in mod-
elling the effect of sea surface height changes on modal propagation. The first term
in the series was shown to represent a linear dependence of surface height and eigen-
value, the basis for surface wave tomography using modes. The second term in the
series was shown to be a bias term, i.e., the expected value of the arrival time of
the modes was different than that for the mode traveling under a smooth surface.

This may be a significant effect in shallow water.

While this thesis developed no new linear inverse theory, the frequency-independent
generalized inverse would seem to be unique and useful. Also, the effect of travel

time estimation error being magnified at high surface wave frequencies is interesting.
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5.5 Future Directions

The natural extension of this thesis is to verify and implement surface ‘vave
tomography with an experiment. The simultaneous measurement of surface wave
frequency-direction spectra and internal wave directional spectra might contribute
to the understanding of the interaction between them. We plan to locate this ex-
periment in the relatively shallow continental shelf region. There, internal waves
may have significant directionality, as opposed to the isotropic internal waves in
the decper ocean. This directionality, or equivalenily, high correlation between
sound speed perturbations measured far apart, would have similiar effects on the
acoustic travel times as we have described in this thesis. The acoustic travel time
spectra would be most sensitive to internal waves travelling perpendicular to the
source/receiver heading, yielding estimates of the internal wave directional spec-
trum. The shallow depths would enable the acoustic equipment to be moored fixed
at the ocean bottom, eliminating the need for position estimation transponders,

and may enable less expensive pressure casings to be used.
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