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Chapter 1

General Introduction



One of the first things physics students learn in college is to solve for the motion of

two particles interacting via a central force. Soon after that we learn that problems

involving three body interactions are in general much more complicated. It then

seems that the understanding of worldly objects (which involve 1023 particles) would

be totally intractable. This is certainly true if by understanding we mean obtaining

knowledge for the exact motion of each constituent particle. But this is hardly ever

the case - even if we are given the information for each of the particles, we would not

know what to do with it. Instead, with a large number of particles, we are usually

interested in a small number of "gross" properties of the system. These could be

pressure, temperature and density for a gas. It is the role of statistical physics to link

the details of microscopic constituents to the observable macroscopic properties.

It turns out that many interesting macroscopic properties are not too sensitive

to the microscopic details. For example the phenomena of melting and vaporization

are qualitatively similar for all materials. And at some special points, say the crit-

ical point of a liquid-vapor system, a vast range of materials exhibit quantitatively

identical behaviors. These behaviors are quite often in the form of scaling laws and

are summarized by a few scaling exponents[(ll2]. Discovery of the existence of such

universal behaviors has led to the development of a new branch of statistical physics

(critical phenomena)[3] which thrives on characterizing classes of systems by their

scaling behaviors (e.g. exponents). These classifications are based on a few fun-

damental microscopic properties such as the connectivity of the system and certain

__



underlying symmetries.

Thanks to the advances made in the study of critical phenomena in the past two

decades[3], we have by now a fairly good understanding of the equilibrium properties

of interacting particles for a wide range of condensed matter systems. The focus of

fundamental study has since shifted to more complex systems such as interacting lines

and surfaces[4], non-equilibrium/stochastic processes (growth, aggregation)[5], and

disordered/frustrated systems (spin glasses, neural networks)[6]. The works presented

in this thesis are a collection of endeavors towards some understanding of the universal

macroscopic properties of examples of these more complex systems.

In Chapter 2, I explore a simple theoretical model for a polymerized membrane[7].

I first perform a straightforward but tedious calculation through which I introduce

the concept of E-expansions and obtain the scaling properties of the membrane's equi-

librium conformation. Also explicitly demonstrated is the idea of universality: how

macroscopic observables become independent of microscopic parameters. These cal-

culations are followed by the presentation of a renormalization-group (RG) method

which enables us to short-cut the tedious calculation. However, because these cal-

culations are perturbative in nature, the exact conformation of the membrane in

3-dimensional space is not obtained using this theory.

Recent large-scale numerical simulations[8] indicate that the membranes may be

macroscopically flat at any finite temperature, in contradiction with some earlier

theoretical findings. To resolve the actual membrane conformation, I resort to exper-

..... I III



imental methods. In Chapter 3, I first survey various methods one can use to fabri-

cate/synthesize membranes. The most promising material is thin foils of a graphite

derivative known as Graphite Oxide (GO). I describe in detail the method of synthesis

of GO. Then I report static light-scattering experiments on a GO suspension. Prelim-

inary results indicate quite strongly that the membranes are indeed crumpled. More

thorough studies involving the characteriwation of membrane dynamics is currently

underway.

The dynamics of non-equilibrium fluctuations of interfaces is examined in chapters

4 and 5. First I consider the evolution of patterns on surfaces of expanding gels[47].

It tunrs out that a model Hamiltonian can be constructed to mimic the process.

From the Hamiltonian, dynamics of evolution can be quite straightforwardly derived.

Results obtained are in qualitative agreement with experimental observations.

Next I consider the growth of a surface resulting from random deposition[10].

Here, no Hamiltonian can be constructed. However, a good deal can be learned by

examining the presence/absence of various symmetries[11] - the relevant equation

of motion can be guessed based on such symmetry principles. I present the general

method of treating nonlinear, stochastic equations, borrowing and extending the RG

method sketched in Chapter 2. The method is applied to growth in the presence of

spatially and temporally correlated noise. A translational invariance of the growing

surface gives rise to scale-invariance of the surface morphology. Due to additional

simplifications, scaling laws in 1+1 dimension can be obtained exactly (even in the



presence of long-range spatially correlated noise). In higher dimensions, an exact

exponent identity can be established. These predictions have been verified by recent

large scale computer simulations.

Scale-invariant structures occur quite often in nature. Spatial organizations of

mountain ranges, river networks are described by fractal geometry[12]. On the other

hand, self-similar temporal patterns are also abundant, as reflected by the ubiquity

of "noise" with 1/f-like power-spectra[13]. These phenomena are much like what

happens in the vicinity of a second order phase-transition in conventional critical

phenomena, except that in nature the criticality is achieved not by external tuning of

some parameter (e.g., pressure or temperature). Rather, the systems spontaneously

find a way to the critical state, i.e., they are self-organized. Some key features of

Self-Organized-Criticality (SOC) are thought to be dissipation and transport in an

open and extended enviroment. Recently, a toy sandpile model has been proposed

to demonstrate these points[14]. In Chapter 6, I first present and analyze the results

of numerical simulations of a "running" one-dimensional sandpile. Three different

scaling regions consisting of (i) independent avalanches at small time scales, (ii) in-

teracting avalanches at intermediate time scales, and (iii) system-wide discharges

(great events) at large time scales have been observed. The behaviors at small scale

are known mostly through numerical work and have been addressed by other authors.

Interesting broad-band noise spectra occur in the intermediate scale and is studied

by the method of continuum field theory. Existence of correlated great events in

_ __ _·.·_ ______· ____~_



the long-time region is attributed to the threshold nature of the dynamics, and the

scaling properties are also characterized. The results reported here are not percu-

liar to 1-d systems as similar behaviors are obtained in simulations of 2-d automata.

These results also agree qualitatively with observed sand flow from recent experi-

ments, dispelling the notion that the "sandpile model" does not describe the flow of

real sand.

Finally, I apply the formalism described in Chapter 4 to the sandpile model by

considering the fluctuation of a sandpile surface in the intermediate hydrodynamic

region. Again, by recognizing the presence/absence of various symmetries, combined

with conservation laws of local dynamics, a simple equation of motion is constructed.

Scale-invariance is established as a consequence of the conservation law. I describe the

extension of traditional dynamical RG to anisotropic systems such as the sandpile,

and show how scaling exponents for its surface can be calculated. I then establish the

connections between these exponents and the exponents 0 of the 1/1f noise-spectra

for various transport quantities. A discussion of various universality classes of SOC

is given at the end.

In order not to break the continuity of the main text, I would like to acknowledge

in the following paragraph some of the many helps I have received during the course

of this work:

The calculations described in Chapter 2 resulted from collaborations with B. Du-
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Chapter 3 are done with E. Kokufuta (Tsukuba University, Japan) and T. Tanaka.
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guidiance into the world of graphite. I would like to thank M. Frongillo of the MIT
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analysis. I am grateful to S. Gorti and Y. Li for trouble-shooting the equipment

problems, and to M. Kardar for many helpful discussions. The study of pattern evo-
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(17]. I appreciate many encouragements and comments from S. Gorti, E. Sato and
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Chapter

The Theory of Self-Avoiding

Tethered Membranes



2.1 Introduction

One of the major challenges in theoretical physics today is to understand the proper-

ties and behaviors of surface and membranes[4]. There are considerable interests and

applications of this new branch of physics in fields ranging from cell membrane inter-

actions in biology[20] to world-sheet dynamics in string theory[21]. Progress in studies

of these surfaces has been limited, however, due to enormous mathematical complexi-

ties. To gain more insight and knowledge, we investigate the macroscopic properties of

membranes in thermodynamic equilibrium. As is often the case in statistical physics,

membranes can be categorized by a number of "universality classes"[4]. For instance,

cell membranes (lipid bilayers) belong to the class of liquid membranes, while poly-

merized membranes belong to the class of solid (or tethered) membranes[22]. In this

chapter, we will discuss some theoretical aspects of the macroscopic conformation of

polymerized membranes; and in Chapter 3, we will present results of experimental

studies on thin graphite oxide films, a realization of ploymerized membranes.

2.1.1 The Model

A simple theoretical model for interacting polymerized membranes is the Self-Avoiding

Tethered Membrane (SATM)[7][22][23][24]. As depicited in Figure 2.1, this model

consists of point-particles connected together in a regular 2-dimensional lattice of

fixed length. Under thermal excitations, these particles execute random motion as

long as they respect their fixed connectivity and the constraint that they don't pass



Figure 2.1: A tethered membrane of linear size L.

through each other. The latter constraint is called "self-avoidance".

To formulate a theory for SATM, let us take a step back and ask whl

connectivity is 1-dimensional? In this case the resulting object has a linear s

(chain) and is a simple model for self-avoiding polymers. Let us further take a

self-avoidance constraint, then the configuration of this "polymer chain" becoi

of an ideal random walk[25]. For a chain of n units each with length A0 , en

in d-dimensional space, the probability P(r) that the last unit is at a positior

from the first unit (end-to-end distance) is given by the binomial distributioi

ever, for n > 10, it can be well approximated by a Gaussian, P(rF) exp(-

We next join N such segments together, forming a long chain. Using iF(x) tc



the position of the last unit of xth segment, then

d N
P{f(x)} exp 2hA°E -[r-X + 1)/- i(X)

2n '0 =1

In the absence of interactions, the free energy is F = -TS, where the total entropy

for this system is S = k log(fDiF(x)P{r'(x)}). Thus the partition function is

( d N)
Z = exp(-F/kT) = ] D9(x) exp d --X Zr-(x + 1) - r(x)].

O z2nAO=1

From the form of the partition function, we can identify an effective Hamiltonian

d N

37-/= [r-(X + 1)- _ (qX)]2.

We are always interested in the macroscopic properties of the system, for which

N > 1. In this limit, we can coarse-grain and express N in the continuum form

OW = K d ( ,2 (2.1)

where K = dn/A is the effective linear elasticity of the chain, A = nAo is the "in-

ternal" length of the unit segment, and L = NA is the "internal" size of the chain.

For a polymer, L is proportional to the molecular weight. Eqn. (2.1) is the Hamil-

tonian describing a free polymer chain. The entropic origin of the effective elastic

energy is clear from the derivation. It is important to observe that the parameters



K, A, and L depend on the definition of the microscopic parameters n, Ao. Any

universal observables calculated/measured should not depend on the values of these

parameters.

In the polymer case, self-avoidance can be incorporated by ruling out configura-

tions which have two different units occupying the same position in space. Mathe-

matically, this can be achieved by making the following modification to (2.1)

S= d +- f dx dZ'6d[f(x) - F(x')]. (2.2)2 dz 2 '. -_'l>A

Eqn. (2.2) is the well-known Edwards Hamiltonian[26] which is very successful in

describing self-avoiding polymers in a good solvent. Here v is a parameter which

characterizes the strength of the excluded-volume interaction. The microscopic cutoff

ix - Xz' > A is needed so that the interaction term does not become divergent.

Back to the Self-Avoiding Membrane problem at hand, it is very tempting to

generalize Eqn. (2.2) to 2-dimensional internal connectivity. If we use a position

vector iF(x) E Ed to denote the location of particle x, then the generalized Edwards

Hamiltonian is simply

= K d'[Vx)] + dx d2x'd [(x) - F(x')], (2.3)
2 2 Jx-xl>a

where A and L are again the microscopic and macroscopic cutoff lengths, and K

and v are respectively the elasticity coefficient and the excluded-volume interaction



parameter as in the ploymer case.

The linear elasticity term has the same entropic origin, and has been

by Kantor through Monte Carlo simulations[27]. In a hard-sphere-and-strin

in which the microscopic interaction potential for nearest neighbor particle

membrane has the form

S0 for Ao < r < A1

I0o otherwise,

the distribution of the end-to-end distance for a n x n parallelagram is ag

approximated by a Gaussian for n > 16. It is assumed that the form of th

energy will be valid for any short-ranged central force interaction between

neighbor particles of the membrane.

2.1.2 Scaling Properties

One of the most important macroscopic observables for polymers and memi

the radius of gyration Rg, in particular the dependence of Rg on molecular wi

alternatively, on the intrinsic linear dimension L of the system. Such depender

information on the macroscopic conformation of the membrane: If Rg, L'

the network is compressed (compact); if Rg , L then the network is stretcl

if R, lies in between the two limits the network is loosely folded, or crumpled

absence of self-avoidance (i.e. v = 0), it is easy to show from (2.2) and (2.3) th



L for ploymers (loosely folded) and R log L for membranes (extremely compact).

The theory becomes much more complicated when self-avoidance is included.

In the polymer case, it is established experimentally that Rg - LV where v is called

the radius-of-gyration exponent. The exponent v can also be calculated theoretically.

The simplest method is Flory's mean-field estimate[25]. A polymer chain of length L

and radius of gyration Rg has an average concentration (c) - L/R'. From (2.2) the

average elastic energy scales as (c) (Rg/L)2 , while the average repulsion energy scales

as (c) 2. Balancing of the two terms immediately leads to

3
S= d2' (2.4)

the celebrated Flory exponents for semi-dilute polymers in good solvent.

Of course the mean-field approximation made in Flory's estimate is not controlled.

A much more elaborate calculation is needed if we are to take into account the effect

of correlations. In the polymer case, the Edwards Hamiltonian in (2.2) can be mapped

to a 4-field theory through a Laplace-de-Gennes Transform[28]; and essentially all

the machinery developed for the ¢ 4-theory can be directly transferred to the polymer

problem[29]. It is found that above an upper critical dimension d, = 4, the polymer

behaves as if it is ideal (v = 0) with vo = 1/2. Below 4-dimensions self-avoidance

becomes increasingly more important, and the exponent v smoothly increases from

1/2. This allows a perturbative expansion of v in powers of c = 4 - d. The values of v

obtained from detailed calculations are in very good agreement with the Flory results



though the origin of such agreement is not understood. A more detailed discussion

of E-expansion results and the Flory exponent is given in section 2.3.

For self-avoiding membranes, we can also do a Flory-type estimate. Realizing

that the average concentration is (c) -. L2/R d for membranes, we balance the elastic

energy against the repulsive excluded-volume interaction and obtain

4
vF= for membranes. (2.5)

3+d

This suggests that the membranes are macroscopically "crumpled" in 3-dimension

since 2/3 < VF(d = 3) = 0.8 < 1. Systematic calculation using the membrane

theory (2.3) is much more difficult. Firstly, there is no known mapping to any field

theory; in fact, the membrane theory looks more like a "string-type" theory than

conventional field theories for point particles. Secondly, the corresponding upper

critical dimension for membranes is at dc = oo, making it difficult to carry out a

conventional e-expansion.

The second difficulty can be overcome by generalizing the connectivity of the

network to D-dimensions[7]. Since we know that the D = 1 case (polymer theory) is

well under control, there is hope that the solution to the membrane problem can be

obtained by analytically continuing D from 1 to 2. In the next section, we present a

perturbative analysis for this D-dimensional self-avoiding manifold[15]. Through the

analysis, we will discover that there emerges an upper critical dimension above which

the manifold is "free", with vo = (2 - D)/2, and below which v smoothly increases,



just as in the case of self-avoi--ing polymers.



2.2 Perturbative Analysis

In section 2.1 we showed that a simple model describing the polymerized membrane

is the self-avoiding tethered membane. The equilibrium properties can be calculated

within this theory by generalizing the Edwards Hamiltonian of (2.3) to D-dimensional

mnanifolds[7]:

= K [Vrlx) 2  dDx dDX id [F(x) - Fqx')], (2.6)

where x E ED is the internal coordinate label for the manifold, f(x) E Cd is the

position vector of x, and the parameters K, v, L, and A are as defined for (2.3). Of

course, the Hamiltonian for a real membrane contains additional terms such as (V2 ') 2

(bending energy), [Vr14- (anharmonic stretching energy), etc. But for a crumpled

membrane, i.e. r ' z" with v < 1, these terms are small in the thermodynamic limit

x --+ oo and are therefore not included in (2.6).

In this section, we will use (2.6) to compute several macroscopic observables. We

will first calculate the two-point correlation function R(xo - x') = ([rlx)o- f'(x)] )

from which the scaling properties of the radius of gyration (and hence the exponent

v) may be obtained. This will be followed by a calculation of the dimensionless

second virial coefficient g which characterizes the strength of the excluded-volume

interaction. The calculations themselves are rather tedious; interested readers can

find some details in sections 2.2.1 and 2.2.2. In the following, we will outline the



calculations and state the results.

The two-point correlation function R(xo - x') can be obtained from the charac-

teristic function

(exp {if'o ['(x)o --(x)0]})

which can be calculated perturbatively in powers of v using (2.6). In the absence of

self-avoidance, the two-point function is simply given by R2(x = xo - x') = 2dC(x),

where C(x) - IX 2 -D is the D-dimensional Coulomb potential. The effect of excluded

volume interaction is to "swell" the manifold, and the two-point function becomes

R2(x) = R (x) . X(x), (2.7)

where X is a swelling factor and has the form

X(x) = 1 + fl(x)v + f 2(x)v 2 + ...

from the perturbation expansion. The interaction parameter has a dimenison

v ~ K-d/2IX -2D+(2-D)d/ 2.

It is convienient to define a dimensionless interaction parameter i(x) e vKd/ 21XIe/ 2

with E - 4D - (2 - D)d. Since X is itself a dimensionless factor, its dependence on



v must be through the dimensionless parameter i(x), i.e.

X(x) = E A, [i(x)]",
n=O

where the coefficients An are now dimensionless (they can only depend on d and D

in the thermodynamic limit Ixl/A --+ oo). It turns out that in the limit E --+ 0, the

coefficients A have a simple structure, and the perturbation series may be summed:

X(x) = (1 + Bji(x))A' /B,

Inserting the above expression in Eqn. (2.7), we find the two-point correlation function

to have the simple scaling form

R2 (x) x2-D+

to O(e) in the limit x o o.

The dimensionless second virial-coefficient g is defined from the virial expansion

_ 1 / 2 . 2
H# = 1+ 2 d R'(L)) C], (2.8)

where C is the concentration of manifolds in solution, II is the osmotic pressure, and

R 2(L) is the physical size of the manifold (or the end-to-end distance) as calculated

from (2.7). The factor g is calculated from the two-manifold partition funciton. It



has a perturbative expansion much like the swelling factor X (they are both din

sionless). The perturbation series for g can also be summed, and in the limit of si

g(L) =)1 + B 1 (L)"

This expression again takes on a very simple form in the thermodynamic limit,

g -+ 1/B1 as L -+ oo.

Interpretation of the scaling forms and a discussion of the generalized E-expan:

is given in section 2.3. A more convienient way of obtaining the scaling proper

using the method of Renormalization-Group(RG) is described in section 2.4; we

demonstrate how the RG method works in light of the exact results (for E < 1

the perturbation analysis.

2.2.1 The Two-Point Correlation Function

The two-point correlation function can be obtained from the characteristic fund

which has the following series when expanded in powers of v from (2.6)

(expl{i.o [r(xo) - r-(x)]}) =

ex the sweing factor (they are both di)] Z.

Here, the integrturbation sperformed over all internal variables and, x',...in the lim, ,it of s

momenta erpretation of the; and (...)ing is the expectation value for the ideal Gaussized anil
momenta q-i,..., qf,; and" (..)0 is the expectation value for the ideal Gaussian manif



(i.e. with v = 0). The expansion for the partition function Z = f Di{x} exp{-07-"}

in the denominator is similar to the numerator, but with q'o = 0. One shows[7][23]

that -exp{i fm" [r(xm) - i(x')]}) = exp{- E qmAim}, wherethat 
where) 

=I 
I'm=0\ m=0/ 0 l,m=O

1
Am = - [C(x - x') + C(x' - xm) - C(x - xm) - C(x' - x')],

and C(x) = X[12-D/SD(2 - D) is the Coulomb potential in D-dimensions (SD is the

area of a unit sphere). AM• is the dipole interaction between pairs I and m, and

Ali = C(xI - x). After integrating over internal momenta, the nth term in (2.9)

becomes:

S= --(- ) ( ) d(l) -- d(n)A -/(x x , I x,,x'

x exp A (x- x')
Kh A,(xi, xth , x,, xA)m

where An is the determinant of an n x n matrix of elements Alm, while in Ao+)1 the

pair (xo, x') is also present. We have also used the notation d(m) = dDxmdDx ".

Expanding Eq. (2.9) in powers of qo yields

([F(xo) - F(xo)] 2) = 2dC(xo - xo)Z(0)(xo - xo, L)/Z(L). (2.10)

To rid ourselves of cumbersome numerical factors, we normalize the Coulomb po-

tential such that C(x) = Ix)2-D, and introduce an interaction parameter z = [(2 -



Figure 2.2: Diagrammatical representation of the nlth order term, S, in the per
tion expansion. The manifold has n "handles" at order n.

D)SDK/47r]d/2 v. The expansion for the partition function now reads Z = '=o(

with a similar expansion for Z(0 ) in terms of X(~0), where

,= d(1) ... d(n)Aid/•

X(o0) f d() ... d(n)A-1-d/2 Ao) /AO).n n , ,+1 1

(2.11)

(2.12)

The terms in the perturbation series are shown diagramatically in Figur

Each line connecting two internal points can be thought of as a "handle" c

manifold. Thus the order of a diagram may be classified by the number of ha

NOW--



We see that there is only one diagram at each order in the perturbation, which is

reminiscent of string models[21]. Although this appears as a simplification, various

combinatorial rules for assembling Feynman diagrams (such as one-line reducibility)

cannot be applied to reorganize this perturbation series. Recently, Duplantier[30]

proposed a method of direct resummation of leading order "divergent" terms in the

perturbation series for a "half-model" of excluded volume interactions between a flat

and a crumpled manifold. Here we sketch the outline of a similar direct resummation

for the full SATM problem.

Much information about the perturbation series can be gained by examining the

first term in the expansion of the partition function, i.e. X 1 = f d(l)y d(2-D)/2, where

y• = Jxi - x' I. Clearly, this integral has a leading analytical behavior proportional to

the manifold volume (L/A)D, where L and A are the macroscopic and microscopic

cutoff lengths as described earlier. Subleading terms proportional to lower powers of

L/A may also appear. As discussed in references [7] [23] and [24], there can be an

additional singular contribution which becomes divergent for E - 4D - d(2 - D) > 0.

Therefore X1 can be decomposed as Xre"gular)(L/A) - 2al(Le/2 - A'/ 2 )/E.i In fact such

decompositions occur for all terms in the perturbation series. By analogy to polymers

we expect the cutoff dependent terms in Z (as well as Z(O)) to re-exponentiate and

yield the extensive free energy of the manifold, i.e. Z = Z"re(L/A) x ZSin sg. This

factorization (which is the essence of dimensional regularization) is well established for

'Here at(D) is crucially dependent on the shape of the manifold[24][7]. But it will not be present
in the final expression for the two-point function as we will soon see.



1i

polymers[31]; its validity for manifolds, an assumption at this point, will b,

elsewhere. In Zsing., on which we focus henceforth, the leading diverg

nth-order graph is proportional to (Lne/ 2 - a"'/ne/2)/n". This can be used

a systematic resummation procedure, for Z and Zo, valid for E -+ 0.

dependence on different length scales we initially take xo - x'l I L (but

the boundary) and A -+ 0.

A careful inspection of A,, A(Oj+ indicates that singularities in Xs,

from either self-contraction of handles (Figure 2.3a) or fusion of two hand

2.3b). More complicated situations such as the one shown in Figure 2

only sub-leading divergences which contribute to corrections higher orde

first consider the case (b) of handle fusion: let x, - x, = u, x' - x' = u', a

u -- 0, u' -+ 0 are the smallest pairwise distances of the 2n internal pc

Then simple manipulations yield the crucial factorization A = [C(u) +

to leading order for 0 < D < 2, where An- 1 is the reduced n - 1 x n - 1 d

after pair (1) has been dropped from A,. Integrating in X, or Xno) in the

|u'I y, where y is the next smallest pairwise distance, gives to leadin

f dDu doU' [C(u)+ C(u')]-d/2 = 2a2y -/2

where

Sg F2 [D/(2 - D)]

polymers[31]; its validity for manifolds, an assumption at this point, will b,

elsewere.In Z sing', on which we focus henceforth, the leading diverg

nth-order graph is proportional to (L; '• /2 - A"'/2)/d•. This can be used

depedene o difernt engh sale weinitially take Ix0- xbl h· L (but

A careful inspection of An, n(0)~ indicates that singularities in Xn~

from either self-contraction of handles (Figure 2.3a) or fusion of two hand

2.b.More complicated situations such as the one shown in Figure 2

only sub-leading divergences which contribute to corrections higher orde

first consider the case (b) of handle fusion: let xl - xr = u, x 1 - xl = u', a:

u -- 0, u' -- 0 are the smallest pairwise distances of the 2n internal po

to leading order for 0 < D < 2, where A,,_1 is the reduced n - 1 x n - 1 d

after pair (1) has been dropped from An. Integrating in X,, or X(,°) in the

Iu'I y, where y is the next smallest pairwise distance, gives to leadin;

as=2- D r(d/2)



Figure 2.3: Leading divergences come from (a) self-contraction of a handle, and (b)
fusion of two handles; a configuration such as (c) contributes to sub-leading diver-
gences.

(a)

f
_~-------~,

$ 41

(b)
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Hence in X, (and X(,)), the fusion sector (b) (1 -+ 1) gives a contribution

Xn(b 2a) ... e/2A-d/ 2 , (2.14)

with integrals now performed over n - 1 pairs. The case (a) of self-contraction of a

handle (Figure 2.3a) is more complicated. Here xli - x'l = yx is the smallest of all

pairwise distances. In this sector of the integration space, one expands determinants

A,, A(o) with respect to the first row Ali , i.e.

A-d/2 = A 1d/2 A1-d/2 1 _d Av1i1/  ,-l 11 12 E AnlA,-1 + "

where Al = yf-D, and where All is the cofactor ((-1)i+' x codeterminant) of element

All in A,. A similar expansion holds for A(). Note that A/l contains always a factor

Aim, m 2 2. Then we need the basic integration formulae in the sector yl • y

d(1)A/' = -22a, /' d(1) /I AIlm 2a0 /
f l -- d)Y (l +d-/2 y /'im,

the latter implying

d( AAiitAl 2ao /2d(1) A - y/A,_1.

The integral ao is easily evaluated[7][23][24] to be

ao = S2(2 - D)/2D. (2.15)

26
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The other integral al(D) is manifold-shape dependent in this sector due to the center

of mass integration in d(1) near the boundary. It can also be calculated given the

manifold shape; but we will not need the form of al because it will not affect the

two-point correlation function as we will soon show. We therefore have in sector (a)

the recursion

(= -2 a - (n - 1)a ... y/2 A -d/2 (2.16)

and a similar one for Xn(0 ) with al in (2.16) simply replaced by al + ao. We now

take care of the combinatorics of fusions (2.14) and self-contractions of the handles

(2.16). At level n there are 2 x n(n - 1)/2 ways of fusing two out of n handles, which

multiplies (2.14). There are independently n choices for self-contracting any of the

handles, multiplying (2.16). Hence we find X,n = n X,. (a) + n(n - 1) Xn (b). Iterating

the recursions (2.14) and (2.16) gives

= (-2L/2 /e)n [a, - (p - 1)a], (2.17)
p=

1

where a =ao(d/2) + a2. Note that an overall factor of 1/n! in X, comes from nested

integrations over successive pairwise distances y[30]. X~o) is also given by (2.17) with

al replaced by al + ao. Now Z, and Z (O) are exactly summable as

S 1+ z /2 al/a (0) = 1 a -zL/2 (a +)/a
Z _ (1 ± zL ) ,-1 + .zL (2.18)

The other integral al(D) is manifold-shape dependent in this sector due to the center

of mass integration in d(l) near the boundary. It can also be calculated given the

manifold shape; but we will not need the form of al because it will not affect the

two-point correlation function as we will soon show. We therefore have in sector (a)

the recursion

-2 ~'(-li·· d]J. y./lAn-l-d/2 (2.16)

~I~·)- , 2

and a sir~r~ilar one for ~n(o) with al in (2.16) simply replaced by al + ao. We now

take care of the combinatorics of fusions (2.14) and self-contractions of the handles

(2.16). At level n there are 2 x ~(n - 1)/2 ways of fusing two out of n handles, which

multiplies (2.14). There are independently n choices for self-contracting any of the

handles, multiplying (2.16). Hence we find IY, = n ~YI~I1, f n(n - 1) ~nJ(b)' Iterating

the recursions (2.14) and (2.16) gives

x,=(2LLi2/f)nI~[al- (P-l)a], (2.17)
P 1

where a ao(d/2) + aa; Note that an overall factor of l/n! in X, comes from nested

integrations over successive pairwise distances ;y[30]. ~ n(o) is also given by (2.17) with

al replaced by al + ao. Now Z, and Z(O) are exactly summable as

a alla a

(2.18)

·=( 1+ -z··13 Z(O) 1+ -z··/~) (al+aO)/a

The two-point swelling factor (2.10) is



X = Z()/Z 1+ azLe/2 G/a (2.19)

Notice that the boundary dependent term al which dominates Z, has dropped out

of the swelling factor X.2 For e > 0, we get the asymptotic behavior for the end-

to-end distance R 2(L) = ([rfL) - i(0)]2) ~ L2v with v = -D + 12, and ao and a2

given by (2.15) and (2.13) respectively; these results are in agreement with previous

calculations[7] [23][24]. But they put previous calculations on a more rigorous footing

as will be shown in section 2.4. An interpretative discussion of this E-expansion is

given in section 2.3.

We have thus established scaling forms in (2.18), (2.19) as functions of the overall

size L, subject to the validity of dimensional regularization. We can also directly de-

rive the scaling form for the two point distance in Eq. (2.10), without this assumption,

for A < yo = jxo - x' I << L. The singularities in X,0O)(yo, L) can be traced to re-

gions where various pairwise distances are small (fusions or annihilations of handles).

The presence of an intermediate external distance yo breaks up such integrations into

intervals where the separations are smaller, or larger than yo. In particular, we can

divide the overall integration to segments with m distances less than yo, and write

X(o)(yo, L) -n! y ( o)Xn_,(L). (2.20)
x( m=o m!(n - m)!

20n physical grounds, we do not expect the external shape of a manifold to affect the two-point
function which characterizes the internal correlations of the manifold.



The coefficients Y$,)(y 0) correspond to the singularities obtained with an upper cutoff

of yo rather than L. They can thus be calculated from XO)(L), by replacing L with yo,

and setting al = 0. The latter is required since all the singularities proportional to a,

come from integrations over the whole manifold and as such contribute to Xn-_,(L).

In fact Eq. (2.20) is analogous to decomposition by the cluster expansion. The full

partition function Z now simply factors out of Z(O) = E,(-z/2)"X(o,)(yo, L)/n!, and

we obtain

X0) b 2dJx - x012-D + iX0 ao/a
([(xo) - F(x) 2d2xo a 0 j e/2

SD( 2 - D) 0

which depends on Ixo - x'I only. This result yields right away the radius of gyration

Rg:

R(L) = d D dxd Dx ([(xo) - fX, ) 2 L2v

2.2.2 The Second Virial Coefficient

In this section we calculate the physical interaction constant. One place the excluded-

volume interaction of the tethered membrane manifests itself is in the second virial

coefficient. For a dilute solution of N membranes (manifolds), the osmotic pressure

is given by

II= + B 2  , (2.21)V V2



where the second virial coefficient B 2 can be calculated from the grand partition

function Z = _N e"NZN/N! Since PIHV = log Z and (N) = (O/Ot) log Z, we have

B2 = - 1 - . (2.22)2 Z2

Here Z is the one-manifold partition function encountered in section 2.2.1, and Z 2 is

the two-manifold partition function:

Z2 = fD r'Db exp f- dDX[(••) (rTrb)

- dDxdDX Ad- rX) (-FX.)]v i=a,b j=a,b L dDxd Ix\ i)

Again we expand (2.22) in powers of v. After performing the multiple gaussian

integrals over the variables F, the perturbation series for B 2 takes on the following

form:

Ba(= -(-Z -- (-z)m+1 !v!m + m+ Z. (2.23)

The diagrammatic representation of X,,v,m is shown in Figure 2.4. Each term in

the sum represents IL handles on manifold a, v handles on manifold b, and m + 1

"inter-manifold" handles, with

XP,v,m+l = d(x)d(y)d(s) [A,(x)Al,(y)D•"'(x, y, s)]-d/2
dM



?MA z 0 '.

Figure 2.4: The diagrammatic representation of a term X,,,,m involved in perturba-
tion expansion of the two-manifold partition function Z 2. Each handle represents a
pair-wise excluded volume interaction. There are it handles for manifold a, v handles
for manifold b, and m + 1 intra-manifold handles shown in this diagram.



The integrations are performed over all internal points d(x) = dxldx't ... dx,dx' ,

d(y) =- dydy' ... dydy', and d(s) = ds 1ds ... dsmds',, . A, is the n x n matrix

describing the n-handle intra-manifold interactions introduced in section 2.2.1, and

D , '" is the determinant of a m x m matrix whose elements are themselves determinant

of matrices involving the interactions of the inter-manifold handles with each of the

intra-manifold handles.

Needless to say, the calculation of the above expression is even more tedious

than the one for the two-point function in section 2.2.1. However, the principle in

both calculations is the same: We again identify the leading order divergences of

(2.23) as originating from (i) self-contraction of intra-manifold handles, (ii) fusion of

intra-manifold handle pairs, and (iii) fusion of inter-manifold handle pairs. Again to

leading order in e, only three integrals a0o, a, and a2 are involved, and the boundary

dependent al terms do not enter the final expression for B2. (The contributions of

the al term to Z 2 and Z 1 cancel as in the case of the two-point function.)

After going through the combinotorics similar to section 2.2.1, we can sum the

series (2.23):

Z LL2D [la -ZL/2 -ao /a
B 2 =

This expression can be further simplified when expressed in terms of the physical size

(ene-to-end distance) R2(L) = 2dC(L)X(L) where the swelling factor X is given by

Eqn. (2.19):

1 zLe/ 2  R2 (L ) d/2 (2.24)
2 1 + SzLe/2 d



Comparing Eqs. (2.21) and (2.24) with the definition of the dimensionless second

virial coefficient g given by Eqn. (2.8), we immediately read off

zL,/2g(L) = 1zLe/2'
1 + zL/ 2



2.3 Interpretation of the Generalized E-Expansion

In section 2.2, we calculated the two-point correlation function R 2 (x) and the di-

mensionless second-virial coefficient g of the D-dimensional manifold by directly

summing the perturbation series in powers of the effective interaction parameter

z = v[SD(2 - D)K/4 7r]d/2 , where SD is the area of a D-dimensional unit sphere,

and K and v are the parameters in the Hamiltonian (2.6). The results to first-order

in

e(d, D) = 4D - d(2 - D) (2.25)

are restated below

2d a ao/a
R 2 (L) = L2-D [1 +a -z L/ 2  , (2.26)

SD(2 - D)K

z L'/2
g(L) = 1 L/2' (2.27)1 + zL/2'

where L is the intrinsic linear-size of the manifold, ao and a = (d/2)ao + a2 are

integration constants given in Eqs. (2.13) and (2.15).

In the thermodynamic limit of L -4 oo, we see that the second virial coefficient

g is zero for e < 0. But it goes to a fixed value of g* = e(d, D)/a(d, D) > 0 for

E > 0. The function E(d, D) = 0 thus forms a line of "critical dimensions" in the

(d, D) plane (see Figure 2.5). As far as macroscopic behavior is concerned, the

excluded-volume interaction is irrelevant to the right of the critical line (E < 0); there

the manifold behaves as if it is free. But to the left of the line where E > 0, the
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Figure 2.5: The line of critical dimension E(d, D) = 4D - d(2 - D) = 0 in the (d, D)
plane. The upper critical dimension for polymers (D = 1) is 4-dimension, but is
infinite for membranes because the critical line only approaches D = 2 asymtotically
as d -- oo. The manifold is "free" (i.e. Gaussian) in the region E < 0; but for E > 0,
self-avoidance is relevant.
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excluded-volume interaction becomes relevant as manifested by a finite and positive

second virial coefficient in this region. 3

In the thermodynamic limit, we also have R , L". The radius-of-gyration expo-

nent v takes on the ideal value (for free manifold) of vo = (2 - D)/2 for E < 0. But

in physically relevant cases where e > 0, the manifold swells, with

2- D 1 ao(d, D)
v(d, D) = + 2 a(dD e(d, D). (2.28)

As claimed in section 2.1, the values of v and g* are universal in that they do not

depend on the values of microscopic parameters such as K, v, L, and A.

If our interest lies only in the numerical values of the exponent v for membranes,

then we can simply use the Flory exponent (2.5) which agrees quite well with the most

recent experimental result (see Chapter 3). However, the Flory expression cannot be

extended to study other universal quantities; nor can it be used to calculate scaling

functions, determine relevances of other interactions, etc., which can be studied sys-

tematically using the e-expansion. In this section, we use the exponent v as a case

study to explore the e-expansion properties of all universal quantities. We then use

the Flory exponent as a guide against which we check results of the e-expansion.

It is important to recognize that, as in all renormalizable theories, an expression

3The expression (2.25) for the critical dimension can be understood by the following intuitive
argument[7]: a manifold of exponent v has a fractal dimension of DI = D/v (see Chapter 3).
Two D1-dimensional objects do not intersect in general if the embedding spatial dimension is d >
2D1 . Using the exponent for free membranes vo = (2 - D)/2, we immediately see that there is no
intersection for d > d, = 4D/(2 - D). Hence self-avoidance is irrelevant until d < d,.



such as the correlation funciton (2.26) is merely a re-organization of the perturbal

series. The small parameter c, which emerged naturally from perturbative calc,

tions, is nothing more than a mathematical convenience which is exploited to orgai

the expansion. Normally e is a linear function of the spatial dimension d only,

instance, e = 4 - d in the theory of polymers. Expansion in powers of e is there

conceptually very simple. In the present case, however, we find that by generali;

the manifold dimension to D, we are left with an E which is a non-linear function

and D. Since a universal quantity such as the exponent v is an arbitrary function

and D, it usually cannot be written in terms of e(d, D) alone. If we still want to I

advantage of the expansion parameter e, we need to make a transformation of N

ables from d, D to e = e(d, D), 5 = 5(d, D), such that v(d, D) = ib(e(d, D), 6(d, J

The subscript 6 is a reminder that the function i will depend on the form of 6(d

used. In this way, v can be written as a double expansion in E and 5.

While the form of e(d, D) is given by (2.25), we have at our disposal an infi

number of invertible transformations 6(d, D), all of which will lead to the same vw

of the exponent v(d, D). This freedom in choosing 6(d, D) was a cause of cone

in previous studies[7], and the e-expansion was thought to be ambiguous at leas

first order since different forms of 6(d, D) would lead to different values of v at C

We will show in the followings that it is exactly this freedom that provides us wi.

guide to resolve the apparent ambiguities.

We would like to choose a transformation 5(d, D) that is either physically me
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Figure 2.6: The lines E(d, D) = 0 and 6(d, D) = 0 in the (d, D) plane.The path of the
traditional e-expansion is marked by the arrow.

ingful or mathematically convienient. One very simple choice is to have the point of

interest, say (a, b), be on the line 6(d, D) = 0. In this case '6(e, 6) becomes a single

power series in e. We limit our discussion to 6(d, D)'s such that 6 = 0 are straight

lines in the (d, D) plane. (We will soon see that a straight line is all we need for O(E)

calculations.) Suppose the straight line 6(d, D) = 0 intersects the curve e(d, D) = 0

at (d*, D*) as shown in Figure 2.6, then the transformation b(d, D) is completely

specified by the point (d*, D*) for a given (d, b), i.e.,

6(d, D) = D(d* - d) - d(D* - b) + D*d - bd*, (2.29)

with 4D* = d*(2 - D*). The point (d*, D*) is called the expansion point. Since d* (or

D*) serves as a parameter in b(d, D), we write v(d, b) = Pd.(E(dD),46(d,D) = 0).

3



Note that the case d* = 4D/(2 - b) (or D* = D, see dashed line in Figure 2.6)

corresponds to the traditional e-expansion.

Eqs. (2.25) and (2.29) can then be inverted, with

D*(D* - b)
D(e, 6 = 0) = D* + E + O( 2 ), (2.30)

(D*)2(d* - d) + 2(D*d - d*D)

and a similar expression for d: d(e, ( = 0) = d*(1 + O(e)). Substituting these ex-

pressions for d and D into (2.28) and keeping everything to O(E), we can compute

the value of the exponent v(d, b) = .d.(E, 6 = 0) as a function of the parameter d*.

The results for (d, b) = (3,2), (3,1), and (2,1) are plotted in Figures 2.7 (a)-(c).

As is clear from these figures, v is not a monotonically decreasing function of d*, in

contradiction to a finding in reference[7). There, D(e, 6) = D was inadvertantly used

(instead of Eq. (2.30)) in evaluating v. Due to the nonlinear form of E(d, D), it is easy

to see that in general D(e, 6) # b to O(e), except in the special cases when d* = d

or d* = 4D/(2 - b).

There is now an apparent ambiguity in the values of v due to the dependency

on d*. To find the "optimal" v to O(e), we recall that v(d, b) is independent of the

choice of 6(d, D). Therefore 8v(d, b)Iad* = 0. It follows that

Voptimal = iV where d* = 0.

We see that ambiguity in v may be removed to a large degree by choosing the ex-
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tremum value of da.. This is readily applied to higher orders in E and more compli-

cated curves 8(d, D) = 0. In the latter case, if the curve is specified by n parameters

pi, ... , pn, there will be n conditions, ai9/i9pi = 0 to fix every parameter. However to

O(E), the dependence of F on pi's comes only from its dependence on D(e, 6) in (2.28).

Suppose D = D* + fl(d*,pi)E + 0(E 2), then 0i,/8pi = 0 implies that 8D/p;i = 0, or

fi(d*,pi) = f(d*). Hence, the straight line (2.29) is the only family of curves needed

to be searched for the optimized value of v to O(E).

Applying our optimization scheme to the exponent values plotted in Figures 2.7,

we find the O(E) estimate for tethered membranes in 3-dimensions to be v(d = 3, D =

2) = 0.556; the optimal expansion point (the maximum in Figure 2.7(a)) is at d

4.3. The exponents for membranes in higher embedding spatial dimensions are also

obtained by this method. Their values are listed in Table 2.1. The corresponding

exponent values as calculated from the Flory expression (2.4) and (2.5) are also listed

for ease of comparison.

For polymers in 3- and 2- dimensions (Figures 2.7(b),(c)), two extrema are present.

We choose the maximum values since the exponent values are under-estimated in both

cases4 ; these results are again listed in Table 2.1. Since d # 4, we discover that the

traditional e = 4 - d expansion for polymers is not the "optimal" expansion; our

4This choice seems to be rather arbitrary; however, there is another justification: Of the two
extrema, the maximum is close to d while the minimum is close to 4D/(2 - b) in both cases. Using

(2.25) and (2.30), we see that d(e, 6 = 0) = j, and D(e, 6 = 0) = D* + eD*/2d* = b when d* = d.
There is no term higher than O(e) generated from expansion of d(e, 6) and D(e, 6) in (2.28). So
we expect the extremum close to d (maximum in both cases) to be closer to the exact value of the
exponent.



(3,2) 4.3 0.556 0.800 0.83+0.03 ...
(4,2) 5.3 0.517 0.667 ......
(5,2) 6.2 0.484 0.571 ......
(6,2) 6.9 0.454 0.500 ......
(7,2) 7.7 0.426 0.444 ......
(8,2) 8.4 0.401 0.400 ......

(d --+ 00,2) d 4/d 4/j ......
(3,1) 3.2 0.567 0.600 0.591 0.562

(2,1) 2.2 0.650 0.750 0.750 0.625

Table 2.1: Values of the exponent v obtained from (a) the optimization method

described in text to O(e) (d is the optimal expansion point), (b)the Flory expression

(2.4) and (2.5), (c) best estimates: [The exponent value for polymers in 2-dimension
is exact (conformal field theory) and that in 3-dimension is from higher order e-

expansion. The value for membrane in 3-dimension is taken from the experimental

results described in Chapter 3.] and (d) the traditional e-expansion for polymers to

scheme is thus an improvement over the traditional method.

There is clearly a trend in Table 2.1: Estimates of the exponent values for man-

ifolds in high dimensional embedding space (d >» )) are in good agreement with

the Flory result (which is in turn in good agreement with best estimates); but it

starts to deviate from the Flory results as embedding spatial dimension d is reduced.

Unfortunately the physically relevant situation of membranes in 3-dimensions is the

worst case. It should be noted that this trend is not related to the value of E. For

2-dimensional membranes, we have e = 8 in any d, yet O(c) estimate of v is very

sensitive to d. In fact, it is easy to see (at d* = d) that v of (2.28) and vF of (2.5)

have the same limit 4/d for membranes embedded in very high dimensional space,

i.e., for 00- oo. (With a little algebra, we can show that vopt also goes to the limit

i
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4/d.)

For manifolds embedded in low dimensional space, can the situation be improved if

we are able to compute and include terms higher order in E? To answer this question,

we go to the extreme situation where d ; D. On physical ground we expect the

manifold to be "stretched", i.e., v = 1, for d = D. Therefore if we do a double

expansion in e(d, D) and 6(d, D) = d - D, we expect to have v(e, 8) be independent

of E at small 6. In particular, we must have v(E, 6 = 0) = 1 for all e.5

In the vicinity of E - 0 and 6 a 0, we have to the lowest order: D = 6 + e/2 and

d = 26 + e/2. The integrals (2.15) and (2.13) are in this limit[16] ao = S~,/ and

a 2 = 2S2/6, yielding

2- D E ao
v -- +

2 4 a2 + ao

= 1 2 + O(2S, 62).28

The above expression clearly shows that v # 1 at 6 = 0 for any non-zero e, under-

estimating the exact result v = 1. The dependence of v(e, 6 = 0) on e will persist

even if higher-order c terms are included (except for isolated values of e). We thus

have to conclude that the Hamiltonian (2.6), from which we obtained the correlation

function (2.26) and the above expression for v, does not fully describe the self-avoiding

manifold in the region 6 ; 0 and small c. A moment of reflection suggests that as the
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For manifolds embedded in low dimensional space, can the situation be improved if

we are able to compute and include terms higher order in E? To answer this question,

we go to the extreme situation where d ~1 ~. On physical ground we expect the

manifold to be "stretched", i.e., v i, for d D. Therefore if we do a double

expansion in E(d, ~) and 6(d, D) = d - D, we expect to have v(~, 5) be independent

of E at small 5. In particular, we must have v(~·, 6 = 0) = 1 for all ~.5

Zn the vicinity of ~ ~ 6 and 6 ~ O, we have to the lowest order: D = 6 + E/2 and

d 26 + c/2. The integrals (2.15) and (2.13) are in this limit[le] ao ,C~/S and
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The above expression clearly shows that y Z 1 at 6 = 6 for any non-~ero ~, under-

estimating the exact result v i. The dependence of v(e, 6 O) on e will persist

even if higher-order ~ terms are included (except for isolated values of ~). We thus

have to conclude that the Hamiltonian (2.6), from which we obtained the correlation

function (2.26) and the above expression for v, does not fully describe the self-avoiding

manifold in the region 6 x 6 and small ~. A moment of reflection suggests that as the

"The limit of small e and small 5 is similar to the limit d, D --, O. The latter case has also been
considered by R.C. Ball (private communication), who obtained a result different rrom ours.
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Figure 2.8: A possible phase diagram with the indicated lower critical dimensions. It
is not known whether the physical case for the membranes (d = 3, D = 2) belongs to
the "stretched" phase.

dimension of the embedding space approaches that of the manifold dimension, the

manifold is "squeezed" and n-body excluded volume interactions of the form

n! dDX1 . . ddDX6d [(X1) - f(X2)] .. [i(Xn-) - F(X)

become increasingly important. These terms might be needed in (2.6) as b -4 0

(at least for small e). They will tend to "stretch" the network and increase v. This

problem is however not believed to be present for polymers. (Iligher-order E-expansion

of the polymer theory seems to indicate that v 1 1 for d -+ 1.) It is possbile that

v > 1 when higher order e terms are included for D > 1. If this is the case, then the

lower critical dimension for the theory (2.6) can be dt > D for D > 1, suggesting a

line of lower critical dimension as shown in Figure 2.8. The Hamiltonian in (2.6)

1 -
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will not be valid for d < di as its construction is based on an expansion in powers of

Vr' which is small only if v < 1.

v = 1 signals that the network is "stretched" (or flat for membranes). Since the

lower critical dimension cannot be accessed through the perturbative studies, it leaves

open the possibility that membranes in 3-dimensions may not be crumpled if the line

of lower critical dimension passes to the right of the point (D = 2, d = 3) (see Figure

2.8). Recent numerical simulations[8] seem to indicate that the membranes are flat in

3-dimensions. But we shall see in Chapter 3 that light-scattering experiments on real

membranes strongly suggest that the membranes are crumpled, with v = 0.83 ± 0.03,

close to the Flory estimate.



2.4 The Renormalization- Group Formalism

The expressions for R(L) and g(L) calculated in section 2.2 are in fact quite simple

and are govened by only two integration constants (a and ao) in the macroscopic

limit. We now describe the method of renormalization-group (RG) analysis which

allows us to extract the universal numbers (the radius-of-gyration exponet v and the

fixed value of the dimensionles second-virial coefficient g*) with much less work.

Eqn. (2.26) can be rewritten as

2D
R 2(L) = 2D L2 - D  (2.31)

SD(2 - D)KR

where

KR(L) = K 1 + zL/2ao/a (2.32)

is identified as the renormalized elasticity coefficient due to the excluded-volume in-

teraction. Similarly, we have

g(L) = zRLe/ 2, (2.33)

where

zR = z 1 + azL/2 . (2.34)

In the thermodynamic limit (L oo), R(L) - LV and g(L) -4 g* = constant. If we

define

'R = K RL 2 -D+ 2, (2.35)



and

R = zRLe/ 2, (2.36)

then according to (2.31) and (2.33), kR and iR should be dimensionless in the limit

L -+ oo00. Using (2.32) and (2.34), we obtain the scaling properties of AR and iR by

applying the rescaling operator L(O/OL):

L R K= R (L) (2v + D - 2) - (L) , (2.37)

L-jR = ER(L) [ z R(L)]. (2.38)

Eqs. (2.37) and (2.38) are called the renormalization-group flow equations, or the

recursion relations. Since KR(L) and iR are dimensionless in the L -+ 00 limit, then

L(aKR/OL) = 0 and L(OR/IL) = 0 as L -+ oo (the infra-red limit). The exponent

v and the universal second virial coefficient g can be solved at the "infra-red fixed

point" of the recursion relations.

But of course these recursion relations are equivalent to the direct solutions (2.26)

and (2.27) since the former are obtained from simple manipulations of the solution.

Major simplification occurs when we make the following observation: From the leading

order terms in the expansions (2.32) and (2.34),

KR(L)• K-KazL/2

zR(L) z- K z2L/2,

f



we find that the application of the scaling operator yields

L IfK = KL2v+D- 2 [(2v + D - 2) - zLe/2], (2.39)

L 9 = zLe/2  -_zLe/] . (2.40)

These equations appear to be very similar to the flow equations (2.37) and (2.38),

except that the parameters K and z apearing on the right-hand side of Eqs. (2.39)

and (2.40) are not the renormalized ones. Thus for this problem, it suffices just to

calculate the first-order correction to the linear elasticity and interaction parameters.

The recursion relations obtained from the first-order perturbation result are equiva-

lent to the full solution (for e < 1) if we simply replace the parameters K and z by

KR and zR. The first estimate of the exponent v for the manifold was done this way

by Kardar and Nelson[7]. The fact that the full solution can be obtained from simple

manipulations of the first-order results (without going through the messy combina-

torics as was done in section 2) seems to be miraculous. But this actually works for

a wide range of systems.

The insistence on distinguishing between the variables K, z and their renormalized

conterparts KR and zR seems pedantic so far; and in practice the first-order recursion

relations have been traditionally calculated without explicitly using the renormalized

variables. However, this is an accidental simplification because KR = K and zR = z

only to first order in e. If one wants to extend the RG calculations to higher orders

in e, it becomes absolutely essential to use the renormalized variables in the recursion
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relations. Since this point has not always been appreciated, we will demonstrate its

importance by doing a second-order calculation in a symbolic form.

Let us suppose that we have calculated the excluded-volume corrections to the

two-point function R2 (L) and the interaction parameter v to second-order in v and

second-order in E with the results

X(L) = 1 + zLE/2 + (zL'/) (2.41)

vR = v 1 1+ zLE/2 + L . (2.42)

Eqn. (2.41) also implies

KR K 1 - zL / + -2 zL (2.43)

since KR = K -X-'(L). Operating the L9/OL on (2.42) and (2.43) gives

L ° KR = K - zLe/ + , (2.44)aL 1 2 E j

L v = v zL' /2 + (zL•/2 ."  (2.45)

The recursion relations for the dimensionless renormalized parameters R = VR[SD(2-

D)KR/47 ]d/ 2L'/2 andR R= KRL2v+ D - 2 are:

L = kR R (2v + z+D- 2) 1 (L• L R)]



S 1 ( a +d 1 (
at 2 v L KL 2 K L

Using (2.42) through (2.45), the above become

LAR =h +D-2)-R--+ 2
- -RC21 - 2a2

La a r 1 -12 2 2 dL-Li = + -z -z - 1 1 i2 - _ - - z2 (2.47)L 2 2 2 2 2 2 '(2.47)

where we defined i = zLE/ 2 to be the bare dimensionless interaction parameter.

At this point, one may naively expect that the exponent and fixed point can be

solved by setting the left-hand sides of Eqs. (2.46) and (2.47) to zero, as was done

before. However this procedure will not lead to any solution as we will soon see. The

correct procedure is instead to express the right-hand sides of the recursion relations

also in terms of the renormalized variable iR. From (2.42) and (2.43), we have

R = = 1 + 1- a + O(d2)

which can be inverted to give

S= - 1R +1 dal --1 +O(( ;R)2).

We can now substitue i('R) into the recursion relations (2.46) and (2.47). Let a,, =

a$) + ea(2) and f, = +e1)+ ((2) be the results of perturbative calculation to nt h order



in z and first sub-leading order in e, then the recursion relations are

L 8aLR /R (2v + D - 2) l)- - 2)RLK 2 2

(d ,)l)a(2) 1 (C (1)ý3(2) + (2 )Q(1))+ a (2)1 iR)2

(d () t(1))2 1( (R)2

- - 1 2 2- • 1)O + ( R) , (2.48)

and,

- -1- + 2 . (2.49)- [d (d - a1)a(2) + 20(l )03(2) _ d (a(1)0(2) + a (2P0(1) + d( a2) 3(2))] (ýR)2
- [ (d ) (1)2 _ 11)1p31) + (d (2) _0(2))] ( R2 (2.49)

The infra-red fixed point of flow equations (2.48) and (2.49) can now be used

to evaluate the fixed value i* = iR(L -+ oo) and v. The first-order result is z* =

E/(Ial') - 3(1)) which is what was found before.6 Using the first-order result in (2.49),

we find however that there is an additional contribution to z* at order E, coming from

the term (iR) 2/e. Such a term will of course nullify the order E result and rander

the entire e-expansion scheme useless. It is only when a theory is summable to forms

like (2.26) and (2.27) that the coefficients of the (pR)2/E terms vanish.7 Without the

6In terms of the original integrals (2.15) and (2.13), a'l) = ao and 3(1) = -a 2 , so z* = E/a,
where a = (d/2)ao + a2 as before.

'Expanding (2.26) we see that a' 1) = ao(ao - a) = a2(1 - d/2) - aoa 2. So the coefficient of the



problematic (pR)2 /e terms, the recursion relations (2.48) and (2.49) can then be solved

systematically in powers of E. The exponent v and the fixed value z* are computed

to second-order in E once the sub-leading integrals are calculated. Note that such

cancellations would not have occurred had we used the bare interaction parameter I

in (2.46) and (2.47). This is the reason why the renormalized expression iR must be

used in the recursion relations.

Theories which sum to forms such as (2.26) and (2.27) can be described by RG

flow equations and are called "renormalizable" theories. The renormalizability of the

self-avoiding polymer theory as well as many other field theories have been proven to

arbitrary order in E. For the self-avoiding manifolds, there exist no general proof of

the renormalizability other than this work. Sections 2.2.1 and 2.2.2 serve as a proof

of the renormalizability of this theory to first order in e. In analogy with field theory,

this is sometime called one-loop renormalizability. s

In chapters 5 and 6, we will extend the renormalization-group method described

here to non-equilibrium and anisotropic systems. A detailed account of using the RG

procedure can be found in these chapters.

(iR)2/e term in (2.48) vanishes. Similary by expanding (2.27), we obtain P3() = (,31))2 so that the

corresponding coefficient of (2.49) also vanishes.
8 For surfaces, a more appropriate name is "one-handle" renormalizability.
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2.5 Conclusion

In this chapter, we presented calculations for self-avoiding membranes in the frame

work of the generalized Edwards model. The radius-of-gyration exponent v and the

dimensionless second virial coefficient g are calculated to first order in e from a direct

summation of the perturbation series. RG formalism is then introduced to short-

cut the summation procedure. We demonstrated a systematic way of constructing

recursion relations to higher orders in e. We also presented a scheme to interpret

the generalized e-expansion encountered. This scheme resolves ambiguities and gives

"optimal" numerical results to a given order in e. The O(e) estimate of v for polymers

is an improvement over the traditional e = 4 - d expansion. The estimates obtained

for membranes are good in high dimensional embedding spaces; but become less good

as the embedding spatial dimension is reduced. However, the actual conformation of

membranes in 3D is not resolved in the e-expansion scheme because e = 8.

The field of self-avoiding membranes is still very young with many studies left to

be done. Among them, a direct calculation of the partition function (which would

validate the dimensional regularization method used) seems to be within reach. For

the theory to be of any practical use (e.g., in evaluating exponents), we need to extend

the RG calculations to higher orders in e.9 But before that, we first need to understand

9The need to understand higher order behavior goes beyond mere "utility". The sub-leading
integrals an ) and /~ 2) in the recursion relations (2.48) and (2.49) are boundary dependent. On the
otherhand, we do not expect the exponent v to be boundary dependent as it only describes the
internal density correlations of the membranes. Hence we expect cancellation of all of the boundary
dependent terms. In the polymer case, the boundary dependent terms can be calculated explicitly,
and one then shows their cancellation. However explicit calculation of the boundary dependent sub-



the contribution of sub-leading divergences to the contact exponents (see reference

[24]). Knowledge of the subleading divergences is also needed for understanding the

leading order scaling behavior of a manifold at its 0-point. Finally, it would be

interesting to investigate the possibility of applying the optimization scheme for the

generalized E-expansion to other problems that are presently treated by the traditional

approach.

leading integrals is much more difficult to do for the membranes. One must understand the general
structure of the sub-leading terms in order to calculate the exponent v to higher orders.



Chapter 3

Experimental Studies of the

Graphite Oxide Membranes



3.1 Introduction

In Chapter 2 we learned that the conformation of a 2-dimensional tethered membrane

may be described by the radius of gyration exponent v. In the crumpled state, the

radius of gyration of a membrane Rg scales with its intrinsic linear size L (square

root of membrane's weight) as Rg - L, with v < 1. The Flory estimate of the

radius-of-gyration exponent is vF = 4/5. Renormalization Group calculations have

been carried out via a generalized E-expansion to first order in E, with the result

v1 = 0.556 + O(E2 ). However, e = 8 in this case makes the RG result not very

meaningful. In fact the first-order estimate is not even in the physical region since

the most compact folding of a 2-dimensional membrane in 3-dimensions leads to an

exponent of v = 2/3 > vl. As pointed out in section 2.3, there exists a line of lower

critical dimensions dr. Membranes embedded in spatial dimensions d < dl have v = 1

and are no longer crumpled. (They become stretched, or flat.)

Unfortunately, the value of di is not known analytically (other than an obvious

lower bound of di > 2). If di > 3, then the membranes can only be flat. Instead

if di < 3, then we can expect to have crumpled membranes with 2/3 < v < 1.

Even then, recent studies predict[32] that at sufficiently low temperature, where the

bending energies are important, the membranes can undergo a phase transition from

the crumpled phase to the flat phase.

Recently, there have been a number of large scale numerical studies of this problem[8] [33].

The results of these studies seem to indicate that the membranes are anisotropic as
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Figure 3.1: A "flat" membrane found by Molecular Dynamics simulation. (Repro-
duced from reference [33].)

shown in Figure 3.1. The effective width (w) of the membrane scales with the linear

size L as w , LC where the roughness exponent is determined to be C % 0.65. How-

ever, this does not conclusively answer the question "can the membranes be crumpled

in 3-d" because at least three different scenarios can produce the observed flat phase:

(a) the membranes are always flat (i.e. dt > 3), (b) the membranes are below the

crumpling transition temperature, and (c) the membranes are crumpled, but the sim-

ulations performed are not at length scales large compared to the intrinsic persistence

length and are therefore limited by finite size effects. A definitive answer is not possi-

ble at this stage unless crumpled membranes are directly observed. It is therefore the

A



purpose of this experiment to look for possible phases of real membranes in solution.

In an experiment, the finite-size effect can be overcome by synthesizing very thin

membranes, and the possible crumpling transition may be investigated by varying

solvent composition and temperature. Light scattering methods can then be used to

probe the conformations of the membranes as well as their dynamics. Our results

indicate that the membranes indeed have a crumpled isotropic phase; the radius-of-

gyration exponent found is v = 0.83+0.03 in agreement with the Flory exponent. We

are currently investigating the dynamical aspects of fluctuating membranes in order

to address the question of membrane equilibration.

-41



3.2 Sample Preparation

3.2.1 Survey of Different Approaches

It is not difficult to obtain quasi-two-dimensional membranes. A normal piece of

paper easily has an aspect ratio of 1:5000; and this ratio can be indefinitely enlarged

by going to bigger and thinner paper. However, it is also true that a large object

takes a long time to get to equilibrium. From an experimental point of view, we are

limited to a relaxation time of at most a few tenths of seconds. This translates to

a membrane size of not more than 10Im. If we still want to keep an aspect ratio

of approximately 1000, we find that a membrane thickness of < 100A is needed.

Fabricating 10lOm x 10m x 100A objects is no longer an easy task!

There are a variety of possible fabrication methods. One approach is based on

making a thin layer of polymer solution which can later be cross-linked. In one

of our earlier trials, we spin-coated thin layers of poly-acrylamide (PAM) solution

and a UV sensitive cross-linker DAS on silicon wafers pre-coated with silicon dioxide

(SiO2). After drying, the wafer is exposed to UV light which initiates cross-linking of

PAM by DAS. The exposed wafer is then immersed in a solution of hydrofluoric acid

(HF) which diffuses through the cross-linked membrane, etches away the underlying

SiO2 layer, thereby setting free the membranes. By inserting metal masks during

the UV exposure, we can produce membranes of controlled size and shape. These

,I



-I

membranes are good for visualization, but they are too thick' (,- 1000A when dried)

for quantitative characterization. A similar approach based on suspension of PAM

solution between liquid crystal films has been investigated by Nelson and Meyer[34].

A different approach is to take from nature something that is already close to a

tethered membrane. One candidate being recently looked at is the anchoring protein

of a red blood cell membrane known as spectrin[35]. Spectrin is constructed by tying

together linear protein segments. The internal connectivity of spectrin looks just like

the tethered membrane shown in Figure 2.1. It has a linear dimension of , 10tm,

but it also has an intrinsic curvature as it is after all a closed shell. The intrinsic

curvature at 10tm length scale makes it difficult to characterize a possible flat phase.

However, it does have the advantage of approximate mono-dispersity; it also has a

low mass-fraction which is believed to encourage crumpling. These factors make the

spectrin molecule a worthwhile system to study, though the intrinsic curvature may

place it in a different universality class.

Our present approach also takes advantage of existing quasi-2-dimensional struc-

tures: Graphatized carbon consists of two-dimensional covalently bonded carbon films

loosely stacked together by van der Waals forces. By selectively severing the verti-

cal inter-layer bonds using oxidation reaction, we can break graphite into individual

layers. The product is called graphite oxide (GO). Upon suitable solvent conditions,

1The thickness of the membrane is limited by wetting properties between the polymer solution
and the SiO 2 substrate. It is conceivable that better polymer/substrate selection can decrease the
film thickness somewhat, but it is not expected to be much below individual polymer size (- 500A)
as sufficient polymer density is needed for cross-linking.



the GO layers may be separated. Free GO films can form a stable suspension in an

alkaline solution. The conformation of GO in suspension can consequently be probed.

3.2.2 Synthesis of Graphite Oxide

Graphite Oxide (GO), also known as graphitic acid, has been known for over a

century[36]. There exists a number of ways of synthesizing GO; all involve treat-

ing graphite with strong oxidizing agents such as potassium chlorate[37] or potassium

permanganate[38]. Although the reaction is itself simple, great care must be taken in

controlling the rate of reaction (and observing temperature limitations). Otherwise,

explosion may result as the reaction is very close to the synthesis of "gun-powder".

The synthesis method used for this experiment is based on reference [38], though the

optimal reaction condition is found by trial and error as is usual in any chemical

reaction. Here we will describe the key features of the reaction.

100 mg of powder graphite is obtained from Union Carbide as a starting material.

It is stirred into 5 ml of concentrated sulphuric acid (H 2 S0 4 ) resulting in a very

viscous solution. 50 mg of sodium nitrate (NaNO3) is added to the graphite-acid

mixture. The mixture is placed in a large test tube kept in an ice bath. A glass

stirrer, inserted from the top of the test tube, provides uniform mixing of the solution.

Also inserted into the test tube are a thermometer and a plastic tube for the injection

of water needed later. The set-up is sketched in Figure 3.2. It is important to note

that the steadiness of the stirrer and careful control of temperature are crucial for the



safety of the reaction.

To start the reaction, 300 mg of potassium permanganate (KMn0 4) is slowly

added to the graphite-acid mixture which is being stirred constantly. The temperature

of the solution is kept under 200C during the addition. Afterwards, the water bath is

changed to 35 0C, and the solution is maintained for 30 minutes under steady stirring.

The reactant solution becomes very thick and brown/grey in color at the end of 30

minutes.

To dilute the reactant mixture, 5 ml of water is very slowly injected into the test

tube through the plastic tube. This causes violent effervescence (and can lead to

explosion if water addition is too fast). The temperature of the solution must be kept

under 100'C, and stirring must be kept steady for safety. After 15 minutes, another

10 ml of warm water is added to dilute the solution further. Enough 3% hydrogen

peroxide (H 2 0 2 ) is then added to reduce the residual oxidizing agent and stop the

oxidation reaction. The solution turns bright yellow in color at this point.

The suspension is filtered while warm to remove side-products of the reaction.

After washing and filtering three times (with warm water), the product is treated

with resinous anion and cation exchanger three times each (overnight each time) to

remove salt impurities such as Na+, K +, Cl- etc. Finally the purified product is

collected by lyophyzation (freeze-drying in liquid-nitrogen bath).

The graphite oxide product obtained is brownish yellow in color. Its chemical

properties have been investigated in reference [39]. GO consists of layers of carbon
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Figure 3.2: Set-up for the oxidation reaction of powder-graphite.



Figure 3.3: A proposed structure for graphite oxide. The filled/open circles represent
carbon and oxygen atoms respectively. (Reproduced from reference [39].

network loosely attached via association with oxygen. On average, one oxygen atom

is added for every two carbon atoms. Figure 3.3 is a proposed structure of GO

reproduced from reference [39].

3.2.3 Suspension of Graphite Oxide

Graphite oxide does not suspend well in pure water; but the solubility is much im-

proved in alkaline solution. We tested GO solubility in NaOH solution with pH value

ranging from 7 to 14 and found that maximum solubility is obtained at pH = 11 - 12.

The dependence of solubility on ionic strength (pH) of the solution is a consequence

of the carboxylic acid (COOH) group in GO. (The acid group of course comes from

the oxidation of graphite.) Solvent with a high [OH-] (high pH) causes dissociation



of the acid

RCOOH + OH- T RCOO- + H 2 0, (3.1)

and therefore increases the solubility of GO. However, addition of OH- is accompa-

nied by equal addition of the cation (Na + in this case). At very high pH values, the

competing reaction

RCOO- + Na+ 
T RCOONa

dominates. As a result, we obtain GO-salt precipitate, and the solubility is decreased.

It so happens that a window of reasonable solubility exists (pH = 11 - 12) for

GO using NaOH solution. It is possible that with an organic base R'+OH-, the

competing reaction

RCOO- + R'+ 1 RCOOR'

will be much less likely to take place. In such cases, the solubility of GO can be

further enhanced.

For the experiment reported here, we use NaOH solution. 1 mg of purified GO

is dispersed in 10 ml (0.01N) NaOH solution. The suspension is vigorously agi-

tated (by manual shaking or by ultrasonicator). It is left standing for several days.

Afterwards the suspension is centrifuged for 20 minutes, and the precipitate is dis-

carded. The remaining suspension contains 0.1% to 1% (weight percent) of GO.2

The suspension is homogeneous in appearance and brown in color. Inspection in op-

2The exact percentage of GO in suspension depends on the length of time left in the alkaline
solution, the pH value of solution used, and the quality of GO, etc.
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tical microscope reveals micron-sized particles executing Brownian walks as well as

tumbling and spinning. For typical concentrations, interparticle distance is < 10x

the particle size. Particle-particle adhesion has not been observed over observations

lasting 30 minutes. Macroscopically, the suspension has been stable for roughly half

a year, i.e., no precipitation has been observed for the GO suspension.

The physical structure of GO particles can first be examined by electron-microscopy.

A drop of GO suspension is left on a sample holder made of thin (200A) carbon or

silicon film. The suspension is dried in air and the remaining GO particles are ex-

amined using a transmission electron microscope (TEM). A typical picture is shown

in Figure 3.4. We see slightly wrinkled, irregularly shaped thin films. The typi-

cal thickness of these films is estimated to be between 50A and 100A by comparing

the transmitted electron intensity with the background intensity (200A carbon film).

The connectivity of the GO thin films are probed by diffracting electrons. Figure 3.5

shows a resulting diffraction pattern. The inter-particle spacing is estimated to be

close to that of the graphitized carbon (~- 2.5A). Also, the 6-fold orientational order

of the starting graphite is maintained in GO to some extent.

But of course, TEM can only give us information on the "dry" state of the films.

We next describe the use of light scattering methods to probe the conformations of

these films in suspension.
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Figure 3.4: A TEM picture of "dried" graphite oxide films.
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Figure 3.5: An Electron diffraction pattern of the GO thin films.

3.3 Light-Scattering of Graphite Oxide Membranes

3.3.1 Light-Scattering Theory

Homodyne light-scattering is the tool we used to study the conformation of the GO

membranes. As the light-scattering method used here is quite standard, we will only

briefly review some salient features of the theory; the details can be found in reference

[40].

Figure 3.6 illustrates a typical situation: An incident beam of light with field

ji = Eiei(k'.-n.t)i impinges upon a scattering medium of dielectric constant E(f, t).

We start with the familiar solution to Maxwell's Equation

(ik"R , x 3 -( t)-,i, ei4 "

47rReo r



IRI >> 17

Figure 3.6: Scattered Field Geometry: The incident field consists of plane w
polarized in the +i direction. The scattered field is detected in the direction 0
point R that is much farther from the origin than the dimensions of the scatt<
volume V.
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Figure 3.7: Scattered wave vector • = k, - ki.

where V is the scattering volume, and we have assumed that the medium is isotropic

(the dielectric constant is in general a tensor), and that fluctuations in the medium

are small, i.e. E(r, t) = Eo + 8c(r, t), with S& < E0.

Introducing the scattered-wave vector k'= •, - k•, (see Figure 3.7), we can write

the scattered field amplitude as

EOk2ei(kiR-0t)
E,(R,t) = d'Fs(F, t)e ' ' , (3.2)

47r Reo v

that is, the scattered field is the spatial Fourier transform of the fluctuations in the

medium probed.

Experimentally what is observed is the scattered light intensity I, = E'E,. Typ-



ically, IRI is kept fixed and the scattering angle 0(/R) is varied, and

I, = I,(j, t) = E (j, t)E, (, t). (

In static light scattering, the time dependence is averaged out, i.e. I,(q-

SfoiT dtI,(j, t). Using (3.2) we have

i,(q) = IoI df3d3i4E(r)j&(re i"1 ,

where 6Eb4 is the time averaged spatial correlation of the fluctuations in the scatter

medium. We make a reasonable assumption that the fluctuations are due to dewn

fluctuations, i.e, c cc 6p(F', t). We also assume ergodicity of the system studied. T

1,(q) = IoS(q), with

S(q =f Jd3F( p(r-Sp()) (

being the static structure factor, and (...) indicating the ensemble average of den:

correlations which can be computed in equilibrium for a given Hamiltonian.

us see what this quantity is for membranes described by the generalized Edwa

Hamiltonian (2.6).

The density Sp(f) is obtained by counting the number of particles in a volume



F_-

about '. In the continuum limit, this is simply

op(r)= J d'xbx[f- r(x),
n

where F'(x) is the position vector of the nth membrane with internal labe

(3.5), the structure factor (3.4) becomes

S(q) = Z d'x (ýei[f;s(x)-lo)]
n

The integrand is called the characteristic function and can be calculated

Hamiltonian as in section 2.2. In the present case, the membrane sus

sufficiently dilute that the inter-membrane contribution in (3.6) can be

For a single membrane (of linear size L) that scales as Rg, L" we must h

Kei4'[fn(x)-ro)]) = F (qfxlf),

where F(y) is a dimensionless function. Inserting the above expression int(

get

S(q) = q-2/"1G(qL),

with G(() being a cutoff function due to the finite size of each membrane.

The amplitude of the scattered wave vector q'gives the length scale bei

(~ q-1). For q-1 < L", we are probing at a length scale much smaller
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Figure 3.8: The generic behavior of the static structure factor S(q).

membrane size. Since the internal density correlations are not expected to depend on

the membrane size, we have S(q) , q-2/v in this region. In the region q- 1 > R, = L"

however, we are probing at a length scale large compared to the membrane size.

The membranes appear as point scatterers to the incident beam, and we expect the

scattered field to be spherically symmetric, i.e., S(q) = 1. Hence, the scattered

intensity S(q) is expected to have the generic form sketched in Figure 3.8. In

general, for a fractal object of fractal dimension Df, the q-dependent part of the

scattered intensity is S(ql) - q-D1. In this way, the static structure (or equilibrium

conformation) can be probed by determining the large-q dependence of S(q-.

We can check the above argument against the structure factor of simple known

I · · \



objects. For a sphere of radius R, we have

3
S(q) = (qR)3 [sin(qR) - qR cos(qR)] . (3.8)

It is easy to see from the above expression that S(q- 1 - oc) -- 1 and S(q - 1

0) ~- q-3. Hence we conclude that the "fractal dimension" for a solid sphere is 3 as

expected.

The scaling behavior above assumes isotropic scatterers. In our study, the mem-

branes encountered may be flat (and therefore anisotropic), as found in some simulations[8][33].

However the qualitative arguments leading to (3.7) also apply to the anisotropic phase,

as the arguments are based solely on dimensional analysis. In a light scattering ex-

periment, the measured scattered intensity is a spherical average of the anisotropic

strucuture factor. For a simple geometry such as a rod of length L, the spherically

averaged form factor can again be straight-forwardly calculated,3 with

2 qLdzSin z 2 2 2

S(q) = ~ Ldz -sin ,qL o z qL qL

giving D1 = 1 for q-1 < L.

The membane of Figure 3.1 is complicated by the presence of a second length

scale, w ', LC. However it is not difficult to see that at a length scale q-1 > L,

the membrane still looks like a point object and S(q) - 1. At intermediate scales

3 From here on S(q) represents the spherically averaged structure factor.
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Figure 3.9: The expected q-dependence of the structure factor for the flat membrane
shown in Figure 3.1. There is an additional length scale due to the effective width of
the membrane.

w < q-1 < L, the object is essentially a 2-dimensional disc, so that S(q) - q- 2 in

this region; and at q-1 < w, some effective fractal dimension will be seen. A detailed

calculation[33] shows that S(q - ' - 0) _' q-2/C; for C ( 0.65 found in simulations,

the exponent is "- 3.1. The expected q-dependence of the structure factor for a flat

membrane is depicted in Figure 3.9. Note that Figures 3.8 and 3.9 are sufficiently

different that an accurate measurment of S(q) can resolve the crumpled phase from

the flat phases of the membranes, as well as determining the scaling exponents.

The dynamical relaxation of the membranes can also be probed by examining

the temporal fluctuations of I,(q, t). The auto-correlation function of the scattered

4f~ 1-

163(1)



intensity is by (3.3)

G( ) ,( t)I,(qt + r)

= ( E(, 0)j 2 Es,(, r)~),

where we have again used the assumption of ergodicity.

Here the scattered field E, is the superposition of contributions from individual

scatterers E(), i.e. E, = EC, 1 E(n), with N > 1 being the total number of scatterers

in the scattering volume. Again for a dilute solution of scatterers, the fluctuations of

different scatterers are uncorrelated. Hence the scattered field E, is a sum of uncorre-

lated random variables; it is described by a Gaussian distribution in the limit of large

N (central-limit theorem). Ignoring the fluctuations in N, the scattered intensity

auto-correlation is easily simplified using properties of the Gaussian distribution:

(7, ~ ) = (E*(4, O)E,(', 0))' + (E:(j, O)E,(j, ))2 ,

or in terms of density fluctuations,

G( I,() = + i-(L [ d3•r(p(F,rlp p(6,,0)) e]2

It is convienient to separate the motion of a complex object into its center-of-mass

motion and internal motion. Using (3.5) for Sp, with F(x, t) = Rcm(t) + bF(x, t), the



auto-correlation function becomes:

) (+ [ eiF(A.mtACmO)) f 2irew q,

where

S(, w) = dd2x dre-ic" eiisisalXt)-br-Too)]

is the dynamic structure factor for an individual scatterer. The center-of-mass simply

executes a Brownian motion, i.e.

(eiE'( m(t )-m(o))) e -Dq 2r

The diffusion constant D is related to the frictional coefficient f (arising from the

center-of-mass motion with respect to the solvent) by the Einstein relation D = kT/f.

For a macroscopically spherical object, Stoke's law gives f = 67rr7RH where 7 is the

solvent viscosity and RH is the hydrodynamic radius of the object. This gives an

independent way of probing the sizes of the scatterers.

Finally we mention that in a real experimental situation, the size L of the mem-

branes being probed is not uniform. They are instead polydispersed, according to a

distribution D(L) which depends on the way the membrane suspension is prepared.

Polydispersity will change the behavior of the observed correlation function G(', r).

Fortunately, the observed correlation function is simply a weighted sum of correlation

__



functions of mono-dispersed samples, 4 i.e.

G(q',r) = f dLD(L)OL( ), (3.9)

where

OL(q,r) = If(, L) + Ife - 2D(L)q2"  . i d-iw-SLq(,) 2 (3.10)

In the next section, we will see that by appropriately manipulating the distribution

1D(L), we can recover the desired structure factor GL(q, r).

3.3.2 Light-Scattering Set-Ups

The light-scattering set-up used for this experiment is quite standard. Here we provide

a brief account of the key components; a detailed decription of the apparatus can be

found in reference [41].

The GO suspension is filtered and collected in a cylindrical optical-grade quartz

cell, which is firmly placed in a cell holder. An incident beam of laser light is brought

to a focus within the sample by a lens. Scattered light is selected by two apertures

which limit the scattering angle and volume, and is detected by a photo-multiplier

tube (PMT). The apertures and PMT are mounted on a rotating arm whose position

specifies the angle 0 of collected scattered-light. A sketch of the experimental layout

and the relevant dimensions for the collection optics are shown in Figure 3.10 and

4This is a consequence of uncorrelated scatterers which is only true in a dilute suspension.
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Figure 3.10: Light-scattering set-up. (Reproduced from reference [41].)

3.11.

The scattering volume (V) is a disc of diameter 0 (diameter of focused laser

beam, 0 - 0.1mm) and of length b. This length is selected by the diameter d of

the pinhole P2 and the scattering angle 0. For the set-up shown in Figure 3.11,

b = (si/so)d/ sin 0. Using the dimensions in Figure 3.11, we get a scattering volume

of V = 07r(b/2)2 _ (100ltm) 3 / sin 8. Given the mean membrane separation of a few

microns for a typical concentration, this scattering volume contains a minimum of

, 104 particles (at 0 = 900). Typical resolution of the scattering angle 0 is controlled

by the diameter D of pinhole P1. With maximum D = 1.5rmm, the uncertainty in

scattering angle is about 0.50.
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Figure 3.11: Schematics of collection optics. (Reproduced from reference [41].)
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0 (deg) q- 1 (A) 0 (deg) q- 1 (A)

5 7057 40 900
10 3532 50 728
15 2358 60 616
20 1773 70 537
25 1422 80 479
30 1189 90 435

Table 3.1: A list of length scales probed (q- 1) for various scattering angles 0.

A Spectra-Physics model 164 Argon-ion laser is used to generate the incident

beam. Typical power used is 100 - 150mW. (Too high a power would heat the

sample and initiate convection within the cell). The green line at A = 5145A was

chosen for the experiment. The length scales probed at different scattering angle

0 is given by the inverse of the scattered wave vector q = (47rn/A)sin(9/2), where

n = 1.33 is the refractive index of the scattering medium (water). Table 3.1 gives a

list of the magnitudes of inverse scattering vector q-1 for a series of scattering angles

at this wavelength. We see that the length scales being probed are roughly from 500A

to 5000H.

The scattered light collected is converted to electric pulses by a photomultiplier

tube. The photomultiplier housing contains an integrated pre-amplifier and discrim-

inator. The discriminator output is buffered to provide replicas of the signal for the

digital correlator and a count-rate meter. The meter is then read by a computer once

every second. Typically, count rate ranges from - 100Hz near 900 to - 100ktHz at

low scattering angles. For static light-scattering, scattered light intensity is collected

for a duration of several minutes at each scattering angle. A typical run from 0 = 100



to 0 = 900 at 50 intervals takes - 30 minutes.

For dynamic light scattering, the measured scattered light intensity is fed into a

digital correlator (Brookhaven Instrument BI2030, with 136 channels). The correlator

has built in routines to analyze the correlation functions. The decay time (r) of the

auto-correlation function R(t) is extracted from the second cumulant of the correlation

function.

We are currently making an improved set-up to expedite the data collection pro-

cess and to automatize the analysis of q-dependence of the entire auto-correlation

function Gq(r).



3.3.3 Experiments and Results

To calibrate the experimental set-ups, we first do li8

of known geometry. Poly-styrene (PS) latex spheres I

are chosen for this purpose. Samples of 0.1% solution

prepared. They are carefully filtered through filters o

within the solution and then injected into the cylindri

intensities are accumulated for scattering angles ran

(3 minute accumulation for measurment at each an

are normalized by the 0-dependent scattering volum

resulting structure factor is plotted against q = (47rn

the size of the PS shpere is very small, the structu

over the range of q probed. Using (3.8), we expect

- 30% (at 900). The flat behavior is verified as show

fluctuations in the scattered-intensities are encounter(

light-scattering measurment at such low angles is qu

(i.e. large particles) tend to increase the observed sce

Extreme care in filtering the sample solutions and wa

to get good data down to a scattering angle of 100.

We next repeat the above light-scattering experir

pension. When we plot the result on a log-log scale

structure factor is not quite a straight line (i.e. a po
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Figure 3.13: Structure factor for a poly-dispersed GO suspension.

objects. This result is attributed to the poly-dispersity of the GO in suspension:

Since the membranes in the suspension have a range of sizes, the actual observed

structure factor is averaged over the distribution of membrane sizes as in Eq. (3.9);

it may have an arbitrary q-dependence depending on the distribution function D(L).

To make this effect more clear, we consider a simple system consisting of two

particle sizes R1 and R 2 with scattering strength5 cl and c2 respectively. If the

structure factor for each species is Si(q) = 1/[1 +(qRi)D], then the effective (observed)

structure factor is S(q) = ci/[1 + (qRi)D] + c2/[1 + (qR2)D]. Figure 3.14 gives the

q-dependence of Sl(q), S2(q) and the weighted sum S(q) for D = 3, R 1 = 10 x R 2 ,

5The scattering strength is a function of the concentration of the particles as well as their sizes.
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Figure 3.14: The structure factors for a simple system composed of two different
sphere sizes: * represent the structure factor of the large particles (Si(q), with R1 =
10), and V represents that of the small particles (S 2(q), with R 2 = 1). The effective
structure factor of the two-component system is indicated by A.

and cl = 20000 x c2. It is clear that the small particles (V do not contribute at low

angles (small q) but they shift the structure factor at high q, producing an effective

S(q) (A) that is not describable by a simple power law.

Of course, this problem is simply solved if we can pre-select the membrane sizes.

Size selection of GO membranes can in principle be done by processes such as gel-

electrophoresis, but the selection of solvent is very tricky in this case due to possible

aggregation of the membranes. The next point to note is that, for the purpose of

static light-scattering, we actually do not need a completely mono-dispersed sample.
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As long as we are probing at a length scale smaller than the smallest membrane

size, we are only probing the internal density correlations of the membrane; and the

result in this limit will be insensitive to the membrane size. Since the length scale

of our probe is at most - 5000A (see Table 3.1) it appears that we can recover the

"true" structure factor if we only remove all particles under 5000A in size from the

suspension.

Removing small particles from a sample is a much easier job than selecting a mono-

dispersed sample, but it is still a nontrivial task. The problematic gel-electrophoresis

method is still needed if one is to do this properly. A different approach is to remove

directly the contribution to scattered light intensity by small particles. We can first

measure the structure factor S(q) for a sample containing all membrane sizes, then

remove the large membranes from the sample (this is easily done by filtration) and

obtain S 2(q) for the remaining small membranes. Taking the difference between S(q)

and S2(q) yields the desired structure factor for the large membranes. This process

is illustrated in Figure 3.15.

We have used the above method in our experiment. Two samples are prepared

from the same GO suspension. One sample is filtered by a syringe filter with 0.5 Jtm

pore size to obtain small particle's contribution to S(q). The other sample is filtered

by a 5,im syringe filter to remove dirt in the sample. The structure factors obtained

from the two samples are shown in Figure 3.16 by / and V. The solid * depicts the

difference of these two sets of data. It represents the contribution to the scattered light
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intensity from the membranes ranging from 0.51tm to 51/m in sizes.6 Since the

of the probe is under 0 .5 ptm, the structure factor obtained for these large men

reflects the internal density correlations of the membranes. The data is nicel2

to a straight line on a log-log scale for the probe interval of 500A - 5000A, ind

that membranes are self-similar over this range of length scales. The fractal din

of the membranes may be obtained from the slope of the straight line (see Eq.

yielding Df = 2.4 + 0.1.

Since Df < 3, we know that the membranes are not compact. Also, th

(solid * in Figure 3.16) is clearly incompatible with the structure factor for

membrane, shown in Figure 3.9. Though the break-point of the S(q) curve in

3.9 would be smeared for a poly-dispersed sample, the structure factor shou

show a tendency to level down at low q if the membranes were flat. Such tender

never been observed for membranes in good suspension. Hence we conclude tl

conformation of the probed membrane is not flat, nor compact, but loosely cru

From the measured fractal dimensions, we estimate the radius of gyration ex

to be v = 2/D 1 - 0.83 ± 0.03, which is rather close to the Flory estimate of 4

section 2.1).

We have also measured the structure factors for GO membranes dispei

water. As mentioned previously, the concentration of GO suspended in H20 is

lower than that in an alkaline solution. Nevertheless, if we repeat the light-sca

'This is the actual sizes, i.e. the radius of gyration Rg, not the intrinsic size L.
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Figure 3.17: The structure factor of GO suspended in water.

experiment for the GO membranes suspended in water, we obtain the structure factor

shown in Figure 3.17. There is clearly a q-3 dependence at large q, and there

is a downward bend of the structure factor at lower q values. The origin of this

form of S(q) is unclear: one scenario is that the membranes never got separated in

H20. Another possibility is that the water is such a poor solvent that the membrane

collapsed, i.e. became compact. A third possibility is that the membrane in water

is below its crumpling transition point and therefore flat.7 Obviously, more careful

experimentation is needed to elucidate the nature of this phase.

We have also started to examine the dynamical behavior of the crumpled mem-

7Recall that in the region q-' > w in Figure 3.9, S(q) - q- 2 /( . q-3-1 for ( x 0.65, making it
indistinguishable from the compact phase.
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Figure 3.18: The q-dependence of the relaxation time of the scattered-intensity auto-
correlation.

branes. As is expected from Eqs. (3.9) and (3.10), the auto-correlation function will

be dominated by the Brownian motion of the center-of-mass. This is indeed seen

experimentally. Figure 3.18 shows the q-dependence of the decay-time r of the auto-

correlation function for the poly-dispersed GO suspension. Here 7 is obtained from

the second-cumlulant of the correlation function. We obtain r(q) = [2Dffq2]-1 where

De ff 10-8cm 2/sec is the size-averaged diffusion constant. From Dff we obtain a

mean membrane-size of 0.25pr.m in radius (where the small-sized membrane are much

more heavily weighted (see Eqs. (3.9) and (3.10)). We are currently working to obtain

the internal-motion part of the auto-correlation function.
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3.4 Discussion

In this chapter, we have reported the synthesis of the graphite oxide membranes, and

the measurement of the membranes conformations using light scattering methods.

The membranes are found to be "crumpled" when suspended in an alkaline solution.

The radius-of-gyration exponent obtained is v = 0.83 ± 0.03 in agreement with the

Flory estimate for the membranes. However, we add a cautionary note that this result

does not completely answer the original question which addresses the conformation

of the membranes in a "good" solvent: Intra-membrane attractions can also give rise

to a crumpled state. If the quality of solvent is not good enough, then van der Waal

attraction will overwhelm the short-distance repulsion effects. In such situations, the

solution will phase-separate into a condensed phase (precipitate of the membrane

particles) and a dilute phase which consists of mostly solvent with a few collapsed

membranes. The structure of the collapsed phase is compact for polymers (i.e. R -

LI/3 ). But the nature of the collapsed phase of membranes is not clear. It is thought to

be difficult to obtain the compact phase for 2-d sheets. If we manually crumple pieces

of paper (press until they cannot get any smaller), we obtain R - L0 8 1[42]. In fact, one

needs to fold a piece of paper in a very specific way to obtain a compact structure[43].

However, recent Molecular Dynamics simulations indicate that the membranes indeed

settle down to a compact phase (v = 2/3) in the presence of (short-ranged) attractive

potentials; though the relaxation time for this phase is somewhat long.

Does the suspensin of GO used in our experiment correspond to the membranes



in a "good" solvent? Are the membranes well equilibrated over the duration of the

measurments? The answer to the first question is positive as up to a few percent

of the membranes may be suspended in alkaline solutions (pH = 11 '- 12), and ag-

gregations have not been observed for over half of a year. The second question can

only be answered with information on the internal motions of the membranes using

dynamic light-scattering. Such information is very difficult to extract; and attempts

are currently underway. The study reported here represents just the beginning of a

systematic investigation of the rich phases and structures of the polymerized mem-

branes.



Chapter 4

Interface Dynamics
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In Chapters 2 and 3, we described some equilibrium properties of the membranes. In

the next three chapters, we proceed to investigate problems associated with dynam-

ics. However, we will not pursue the dynamics of membranes as they are needlessly

complicated by the presence of non-local hydrodynamic and self-avoidance interac-

tions. Instead we will examine several dynamical processes that involve only simple

local interactions; they are examplified by the non-equilibrium fluctuation of inter-

faces. It has been recognized that complex physical and biological patterns can evolve

from simple underlying dynamics. Linear instabilities, interaction of different modes

through non-linearities are some of the ingredients in the formulation of complex pat-

terns. Through the exploration of interface dynamics in these chapters, we hope to

bring to light some unique features of non-equilibrium dynamics; and along the way,

present some theoretical tools useful in such studies.

We first investigate the dynamics of pattern evolution on the surface of a swelling

gel. Here we can construct a model Hamiltonian from which the dynamics are rather

easily derived. Next, we consider the growth of a surface in a deposition process for

which no Hamiltonian exists. We resort to using symmetry principles to construct

simple dynamical equations. We then analyze these equations using the method of

dynamical renormalization-group (DRG).



4.1 Evolution of Surface Patterns on Swelling Gels

As a first example in the studies of dynamics, let us consider the formation and

evolution of surface patterns on swelling gels[44]. This is a problem whose statics has

already been understood, first on a heuristic basis by Tanaka et al[9], and later through

detailed elasticity calculations by Onuki[45], and Sekimoto and Kawasaki[46]. In this

study we will address the dynamics of pattern evolution after a brief description of

the phenomenon.

4.1.1 The Phenomenon

The phenomena of phase transition and pattern formation of polymer gels are de-

scribed in great detail in reference [47]. Here we summarize some key observations.

A polymer gel consists of cross-linked polymer network immersed in liquids. If the

liquid is a good solvent for the polymer, then the polymers are expanded due to en-

tropy (described by the Self-Avoiding Manifold Theory of Chapter 2), causing the gel

network to swell. However, if the liquid is a poor solvent, then it is energetically more

favorable for the polymer to be surrounded by other polymers. In such a case, liquid

is expelled from gel, and the network is collapsed. By changing the composition of

the solvent[48] (or by changing the temperature[49], pH[50] etc) one can force the gel

network to go from the collapsed phase to the swollen phase (swelling) or from swollen

to the collapsed phase (shrinking). The volume phase transition of polymer gel can

be either continuous or discontinuous much like the liquid-gas transition. Figure 4.1
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Figure 4.1: Equilibrium swelling ratio (V/I/o) of ionizable poly-acrylamide gels plotted
against the solvent composition (% of acetone). The different curves are for gels with
different degrees of ionization. (Reproduced from Reference [51].)

gives a typical phase-diagram. The nature of this phase transition has been investi-

gated in great detail for a variety of gels but is not the subject of this study. For the

purpose of the pattern formation study, we restrict ourselves near a first order tran-

sition point. As shown in Figure 4.1, a slight change in acetone concentration near a

discontinuous transition (the dashed lines) can result in as much as a thousand-fold

increase in gel volume. Similar swelling can be initiated from a small change in the

ambient temperature.

However due to very large friction arising from the relative motion between poly-

mer network and the liquid it is immersed in, the expansion process is heavily damped

and is found to be diffusive in nature[52]. When we monitor the gel network durring

the swelling process, we find that swelling is initiated by the relaxation of outer layers



of the gels. In Figure 4.2, we look at the cross-section of a cylindrical poly-acrylamide

gel at various stages of expansion. The polymer is marked by a flourescent dye so

that the intensity of light observed at each position gives a measure of local poly-

mer density. Clearly we see that the outer layer swells first (low intensity), with the

swollen region gradually moving towards the inner core of the network. At any given

moment, the transition from the swollen to collapsed region is rather abrupt. A closer

examination of the cross-sectional view of the swollen region reveals intricate patterns

on the surface of the swollen network. These patterns are initially very fine, but they

coalesce and become coarser as swelling proceeds. Experimentally, the typical sizes of

the patterns are found to scale with the thickness of the swollen layer. Finer details

of the patterns can be observed in later stages of swelling - the patterns consist of

smoooth arcs (buckles) that come together to form cusps into the gel. These cusps

are not due to gel breaking, nor are they the unswollen portion of the gel.' They

are like folding lines resulting from bending of homogeneous swollen gels. Figure 4.3

shows the top view of patterns formed on the surface of a swelling spherical gel. The

planar organization of protruding buckles is randomly packed.

One final important observation is that the patterns are formed only when swelling

is extensive (say at least a factor of 2 in linear expansion). If the swelling is small,

the surface of the gel remains smooth throughout the entire process.

'When the surface is sliced off in a thin layer, the patterns disappear instantly, and the layer is
found to be homogeneous. If the cusps are due to local shrinking of gels they will take a long time
to disappear due to the slow diffusion process involved.



Figure 4.2: Cross-section of a cylindrical gel at (a) an early and (b) later stage of the
expansion process. The bright cores seen in the middle of the gel are the unswollen
portion of the network.
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Figure 4.3: Top view of patterns of a swelling spherical gel. (Reproduced from refer-
ence [9].)

4.1.2 The Model and Hamiltonian

We introduce a very simple model[17J, a network of springs expanding against friciton

in 1+1 dimensions, for the gel and construct a Hamiltonian for this model. We

show that the equation of motion derived from this Hamiltonian can account for all

key observed phenomena concerning the patterns. After making some reasonable

assumptions regarding the strains and the taming of instablilities by interactions, we

can actually follow the evolution of patterns on a computer. The basic results in 1+1

dimensions are: a swollen layer of thickness 1(t) (measured from the surface of the

gel) growing diffusively with time; for large enough expansion, a band of unstable

modes develop for transverse fluctuations over a range of wavelengths proportional to

1(t); formation of cusps as a result of instabilities and lateral motion of the particles;

and the hierarchy of cusp evolution. Simple extension of the model can also account
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for patterns in 2+1 dimensions.

We model a rectangular slab of gel in 1 + 1 dimensions by a square lattice of

beads connected by harmonic springs of spring constant K and equilibrium length

a. In this model, the beads are caricatures of cross-links of polymer units, and the

springs are used to mimick the entropy-generated elasticity of the polymer network.

The equilibrium spring length a is related to the end-to-end distance of the polymer

connecting two cross-links. To incorporate the viscous motion of polymer units with

respect to the solvent, we let the beads in our model to move against a frictional force

with friction coefficient f.

Swelling implies an increase in the equilibrium spring length a. If the average

number of monomers between two cross-links is N, then in the collapsed phase, a -

N1 / 3 , while in the swollen phase, a , N 1 /2; if the gel is ionic, electrostatic repulsion

makes a c N. In an experiment this change can be brought about by a very small

change in temperature or solvent composition as described in the previous section, and

the equilibration time following this change is very short (order of seconds) compared

to the relaxation time of the network (minutes to hours depending on size). In our

model, we initiate swelling by changing the equilibrium spring constant a from 1 to

E abruply at t = 0. The linear expansion coefficient E can be as large as a factor of

10 for ionic gels.

Let x = (xo, x1 ) be the internal label of a bead in the spring network. The actual

position of this bead is specified by the vector i*(x, t) = ro(x, t)Eo + r1 (x, t)f' as shown
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Figure 4.4: A slab of gel of thickness lo expands uniaxially in the 'o direction; F(x, t)
is the position vector of gel element x.

in Figure 4.4. (o0 and E1 are unit vectors.) The total potential energy stored in the

springs during swelling is given in the continuum limit by

K = d{(I 9orl -E)2 + (I -E)}, (4.1)

where I ," I= (Oir o)2 + (O1 r) 2 is the spring length in the i direction.

For a uniaxially expanding slab, the bottom surface (zo = 0) is fixed and hence

undeformed (i.e., F(xo = O,x l,t) = x1zi); while the top surface (xo = lo) is free and

does not support any normal or shear forces. The latter condition implies[53]2

2The absence of normal stress implies (1 - o) • (8oro - E) + o(airt - E) = 0, where o is the
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doro(xo = lo, x 1, t) = E, (4.2)

•or1(x0 = 10lox, t) + (0ro(xo = lo, x1, t) = 0. (4.3)

As will be shown below, this zero-stress condition for the free surface provides the

necessary short-wavelength stability and accounts for cusp formation. The effect of

this condition is heuristically included by Tanaka et al[9] in the form of a bending

energy, and is anticipated by Sekimoto & Kawasaki[46] from stability considerations.

The remaining boundary conditions, necessary to specify the problem completely,

are that the network starts off in a compact form, i.e., '(x,t < 0) = xof'o + wxi ,

and periodic boundary conditions parallel to the slab of width L, i.e., F(zo, 0, t) =

F(xo, L, t), (and similar constraints on ;~F) are chosen for convenience.

4.1.3 Dynamics

In a highly viscous medium, inertial effects and kinetic energy terms can be ignored.

The elastic forces are then balanced against the frictional forces, and the full motion

of the beads is governed by the coupled differential equations

- f ari 6 {ro , r17 o, jiro , .--}.-f9t, = 2 -• {,0,TO, ..
rPoisson ratio. However for ou

Poisson ratio. However for our model (4.1), o, = 0; and (4.2) is used instead.
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Figure 4.5: Solution o~
linear segments; E -1(
the gel.

Figure 4.5: Solution of the diffusion equation at time t, and its approximation by two
linear segments; E 1 l(t) is the thickness of the layer as measured from the surface of
the gel.

These equations admit a uniformly expanding solution ro(x, t) = r(zo, t), and r1 (x, t) =

Sx. The expansion factor rj(zo, t) satisfies a simple diffusion equation Otrg = (K/f)9r8,r

and its behavior subject to the boundary conditions specified before is depicted in

Figure 4.5.

Qualitatively, the solution consists of a swollen layer of thickness E 1(t) on top

of an unswollen inner core, much like the cross-sectional view of the cylindrical gel

in Figure 4.2. Since the transition region (between swollen and collapsed parts) is

rather sharp, we approximate the solution rg by two linear segments: a swollen layer

of thickness E. - (t) on top, and an undeformed gel at the bottom, i.e.,

r(xo0, t) = o0 + (E - 1)[zo - (lo - 1(t))] for to > 10o - (t),
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and

r(xzo,t) = xo for xo < 10 - 1(t).

The thickness of the swollen layer grows diffusively since 1(t) ' l'7 , with D K/f.

The full set of coupled differential equations are too complicated to be studied

analytically or numerically, and approximations must be made. We assume that

any fluctuations on the surface layer are affinely followed by the layers below, but

with reduced amplitude. We further assume that these fluctuations only exist in the

swollen region, i.e., their amplitude goes to zero as xo -- lo - 1(t). The simplest form

of F(x, t) subject to these restrictions is

ro(xo, x1,t) = ro(xo,t)+(ro(xo,t) - xo)h(x 1,t), (4.4)

r1(xo, x, t) = xx + (r;(xo,t) - zo)w(xl,t). (4.5)

This is a mean-field type approximation as fluctuations in different vertical layers are

coordinated. Note that we explicitly allow fluctuations in the lateral (' 1 ) direction;

this is a key difference between this theory and reference [9], and it leads to an account

of the formation of cusps as will shortly become apparent.

Using the linear approximate form for r* and applying boundary condition (4.2)

and (4.3), we obtain a relation between h and w,

w(zx, t) = -l(t)9 1 h(x•, t).. (4.6)
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Using Eqs. (4.4), (4.5), and (4.6) we can express R as

i.e.,

7 L =-f d2 x

+ [(0or + h Ooro - h) 2 + (Oor*0

After averaging over the xo variable, the above Hamiltoj

h

-{h(xz)} = (E - 1)2 f dzx h2 E a(lh)2

+ h(9lh)2 + o
+ E

It is worth re-emphasizing that Eqs. (4.4), (4.5), and (4

and the restricted form is not exactly preserved under th

8tri. However, we believe that the form itself is reasonal

h(xil,t) can now be obtained by varying (4.7) with respe

h, we get

12(t)th ,t )
D

-h - E (t)O h -3
+ 12(t)(0lh)2 + 2:

E

valid for 12(t) > 1.
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Figure 4.6: Linear stability of Eqn. (4.8) for E = 1, E = E= = 4.464, and E =

The shaded region is the band of unstable modes for E = 10.

The linear stability of (4.8) is plotted for several values of the expansion fa

E in Figure 4.6. When the expansion factor is small, Eqn. (4.8) is stable an'

patterns appear. But for E larger than Ec = 1 + 2V3- e 4.464, there is a ban

unstable modes for 3 - (E - 1)(lk)2 + (1k)4 < 0. The instability comes from

linear stretching elasticity (-& 1h2 term) and is a manifestation of gel's tendent

expand. The stability in the short-wavelength limit is provided by the O1'h

which is a consequence of the condition of a free top surface (4.3), and resen

the bending energy that was heuristically included in reference [9]. It is also

that the unstable wavelengths (and hence the dominant wavelengths of the obse
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Figure 4.7: The evolution of surface profile h(xl, t). The effect of nonlinearity is
marked by the arrows: Near the top of the buckles, the nonlinear term in (4.7)
retards the growth rate, while it enhances the growth rate near the troughs.

patterns) scale with the swollen layer thickness as A*(t) - I(t) v'- t.

Nonlinearities obtained from the variation of K7{h} are then partly responsible for

preventing the exponential growth of these instabilities. As can be seen from (4.7)

and (4.8), one effect of the nonlinearity is to reduce the coefficient of the linearly

unstable stretching energy term for h > 0 (the convex part of h). The instability at

the top of the buckles are thus tamed. However, the instability at trough (concave

part of h) cannot be controlled by the non-linear term as illustrated in Figure 4.7.

To understand what is happening near the troughs, we observe that h(xl, t) is not the

actual surface profile, which must also include the transverse motions of the surface

described by w in Eq (4.5), and required by the stress-free condition of the top surface.

The actual loci of surface points is the curve h(ý) obtained with xt = 10 in Eqs. (4.4),
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Figure 4.8: Cusps are formed when beads from the surfaces of neighboring ar
into each other.

(4.5), and (4.6):

h(zl,t) = 10o + (E - 1)(t)[1 + h(xl,t)],

V((,t ) = x 1 - (E - 1)12(t)1 h(z1, t).

We examine the tangents at the surface,

AO ah O8xl (E - 1)l(t)8jh(xz,t)
8O z x 8O 1 - (E - 1)12(t)2h '

and note that the curve h(() develops singularities as the curvature 82h appr<

1/(E - 1)12(t). This singularity occurs when the horizontal components of neil

ing beads coincide, i.e. the surface becomes folded, and signals cusp format

illustrated in Figure 4.8.

Once this happens, further evolution according to the original equations
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have the beads go past each other, which is clearly unphysical. In fact the folded

regions of the cusp are no longer part of the free surface, and evolve under a different

dynamical rule. When a bead falls within the folded region, it is free to expand

vertically, i.e., 8Oro(xo = lo, li) - E, for X1 E folded regions. Since such motion

is much faster than the vertical motion of neighboring beads outside of the folded

region, then as soon as a bead gets caught in the folded region, it is pushed out

by the vertical expansion. It is therefore believed that the cusp regions are "barely

folded".

We are now ready to follow the evolution of patterns on a computer. We numeri-

cally evolve the non-linear equation of motion (4.8) for all beads outside of the folded

region. Then we make sure that if a region does become folded, it is only "barely

folded". This is implemented numerically by evolving the beads in the folded region

in such a way that the curvature O,2h does not increase further. Figure 4.9 (solid

lines) depicts the result of such a simulation.

The necessity of the gel surface to fold was first suggested by Onuki[45]. He

assumed that in equilibrium there is a finite width over which the surface particles are

in contact (i.e., folded), and calculated the final shape of buckling with this width as

an unknown parameter. The equilibrium shape of the buckle can also be calculated

in the present approach by minimizing (4.7) with appropriate boundary conditions.

Our "barely folded" assumption corresponds to setting this width to be very small

during the pattern evolution.
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Figure 4.9: The nonlinear equation of motion (4.8) for h.(xi, t) is solved numerically
(for E = 10) at various stages of the evolution: The dashed lines, h(xl, t), are profiles
obtained when no horizontal displacement is allowed; the solid lines, h(t, t), are the
surface profiles when the horizontal motion is included.
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Figure 4.10: (a) and (b) are the two mechanisms for the merging of cusps, as found
from computer simulations.

This completes the description for following the patterns on the gel surface. Our

model is completely specified by two parameters D and E which are simply related

to the elastic moduli, viscosity, and the osmotic pressure of the gel. The resulting

patterns in Figure 4.9 (corresponding to E =10) reproduce various features such

as scaling forms and cusps obtained in the experiments. The origin of the cusps is

the following: mechanical instabilities of the swollen layer of the gel lead to height

flucutations on the surface. The height fluctuations are accompanied by transverse

expansions of the surface particles which brings them in contact. At this point the

particles are no longer part of the free surface and fold in cusps. Further evolution of

cusps shows that these singularities can be removed by two mechanisms as indicated

in Figure 4.10. Either a cusp is pushed out by neighboring regions (Figure 4.10a), or

two neighboring cusps merge to form a single one (Figure 4.10b). The equilibrium



profiles obtained are in qualitative agreement with observations. Both mechanisms

for cusp annihilation have also been observed in experiments.

A real gel is actually highly cross-linked in random; a more realistic model would

have (weaker) springs connecting the diagonals of the square lattice, thus requiring

two independent elastic moduli as is expected by symmetry considerations alone.

The addition complicates boundary condition (4.2), and the uniformly expanding

solution will have an Eef which is a function of E and the ratio of the two elastic

constants. The new Hamiltonian also results in changes in the coefficients of the Oah

and Oj4h terms in (4.8), but should not change the characteristic behaviours of the

solution. The reason is that in 1+1 dimensions, upon reducing the problem to that

of a free string, the additional shear energy can only add to the string's stretching

and bending energies which are already present in (4.1); only one elastic constant is

needed to describe a string.

Finally, we can extend our model to 2+1 dimensions by generalizing the Hamilto-

nian in (4.1) to include an additional transverse direction '2. However in this case, the

diagonal springs do become necessary, because when we try to reduce the 3-d problem

down to that of a membrane, two elastic constants are now needed to describe its dy-

namics, even though the diagonal springs in planes perpendicular to the surface still

add nothing new. Despite this difference, we believe that the characteristics of the

cross-section profiles found in 1+1 dimensions are preserved; and indeed a simulation

of the 2-dimensional version of the linear part of the growth equation (4.8) resulted
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Figure 4.11: Two-dimensional patterns generated using a generalization of the
tion of motion (4.8), starting from a random initial condition. The lines in the
are the folding lines.

equa-
figure

in formation of randomly packed buckles as shown in Figure 4.11, reminescent of the

surface patterns seen on the spherical gels (Figure 4.3).
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4.2 Stochastic Dynamics of Interfaces

In the previous section we saw that for processes governed by an underlying Hamil-

tonian (or processes that can be mimicked by a Hamiltonian), the dynamics can

be rather straightforwardly derived by a variation of that Hamiltonian. However,

systems in nature are often quite more complicated; Hamiltonians are not always

available, or are sometimes difficult to construct. In particular, dynamics away from

equilibrium usually need not be described by a Hamiltonian. As in the static case,

we can make some quantitative characterization of the dynamics if we look at the
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collective, macroscopic behavior. For dynamics, this is the limit of long time and

large distances, also known as the hydrodynamic limit.

We will first present a way of constructing equations of motion based on symmetry

considerations, and demonstrate the important role of stochasticity. This will be

followed by an analysis of the linear stochastic diffusion equation, through which we

introduce the important scaling ideas for dynamical processes.

4.2.1 Symmetry in Dynamics

Our construction of equations of motion is similar in spirit to Landau's construction

of field theory for equilibrium systems[54]. The basic principle is that the equation

of motion for a system is the simplest one consistent with various symmetries the

system posseses. This principle, along with our interest in the macroscopic properties

of systems in question, usually gives quite a good guide in obtaining the relevant
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Our construction of equations of motion is similar in spirit to Landau's construction

of field theory for equilibrium systems[54]. The basic principle is that the equation

of motion for a system is the simplest one consistent with various symmetries the

system posseses. This principle, along with our interest. in the macroscopic properties

of systems in question, usually gives quite a good guide in obtaining the relevant
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Figure 4.12: A "free" surface described by a scalar height fucntion h( ., t) where , is
vector in a d-dimensional substrate.

equation of motion. Several examples should make this clear.

Let us first examine the simplest interface system. Consider an interface separat-

ing a liquid and gas mixture, or a domain wall separating the up and down phase of

an Ising ferromnagnet. Upon coarse-graining, the surface is represented by a scalar

height function3 h(£, t) as shown in Figure 4.12. For generality, we consider the sub-

strate to be d-dimensional, i.e., & 6 Ed, so that the surface is embedded in in d + 1

30f course this is not always possible. What is described here cannot be applied to surfaces
whose overhangs cannot be ignored, such as the crumpled membranes of Chapter 2.
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dimensions. The equation of motion for the interface has the form

Oh
-- = F(h(£, t),£,t).

Again, the inertial term i 2h/at2 has been ignored since we are interested in the long-

time (hydrodynamic) properties of dissipative systems. We assume that the surface

normal is pre-selected (by boundary conditions, lattice orientation, etc) and list the

symmetries present for such a surface:

1. translational symmetry along surface normal: certainly the physics of this prob-

lem does not depend on where we define h(£, t) = 0. So the equation of motion

must be constructed from Vh, V2 h, etc.

2. translational symmetry parallel to the surface: rules out explicit XF dependence

in F.

3. time translational invariance: rules out explicit t dependence in F.

4. O(d) rotational symmetry about the surface normal: cannot have vectors such

as Vh, Vh(Vh)2, (V2h) present in F.

5. up-down symmetry in h: The parity invariance condition requires F to be odd

in h, this rules out terms such as (Vh)2, (V 2 h) 2 , etc.

There are of course many other symmetries for the free surface, but we will not try to

enumerate them all. Just from the symmetries listed above, we see that the equation
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of motion is already quite restricted:

Ah
t = a(V 2 h) + a2(V h)( h)2 + a3(V 4 h) + higher order terms.

Of the three terms written above, the (V 4 h) term is small compared to (V 2h) term

in the hydrodynamic limit and is ignored. For reasonably smooth surfaces whose

overhangs are not important, (Vh)2 <K 1 in the hydrodynamic limit, and the a2 term

is also small. (This will be made more quantitative in section 4.2.2.) We are then left

with the leading order term

Oh
t = v(V 2h), (4.10)

where v can be interpreted as the surface tension for this interface. The diffusion

equation (4.10) is the equation of motion describing the free surface. In the above

derivation, we have looked for the simplest possible form of the equation of motion.

We do not consider the possibility of nonanalytic terms such as JVhj which would

certainly make things more complicated.

To appreciate the effect of various symmetries, it is useful to study situations in

which some of these symmetries are absent. Suppose we introduce gravity into the

liquid-gas interface problem. Then the liquid phase will tend to settle down to the

bottom of the box, and translational symmetry along the surface normal is broken:

Given the amount of liquid (fixed by chemical potential etc) and the size of the box,

the interface is fixed at a preferred height. Lack of translational symmetry allows us
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t

to construct an equation of motion with the field h itself, giving

Oh h
- - + v(V 2 h). (4.11)
at r

The additional term -h/7 introduces a time scale, and associated with it a length

scale (this is the length scale beyond which interface dose not fluctuate).4

The dynamics of (4.10) and (4.11) can also be derived from a Hamiltonian. For

example, the interface under gravity is described by a Hamiltonian

= J ddx [1h2 + v(V'h)]

4The term -h/r is like the energy "gap" in solid-state physics, or the "mass" term in field theory.
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where the first term is the potential energy cost of a column of height h. The dynamics

is then derived by the variation of h. For non-conservative dynamics,

Oh 7-
at 6h

as in the previous section for gels, giving (4.11). However, if the dynamics is conser-

vative, i.e.,

a Jd ddzh,(, t) = 0,
at

vative, i.e.,

dtd /~,h(gt)=a,

vative, i.e.,

dtd /rP.h(gt) 0,

4The term -h/7 is like the energy "gap" in solid-state: physics, or the "mass" term in field theory.



then the correct prescription is instead

2Oh v2 6
at bh

and the mass term in (4.11) is removed. Although we will be restricting our attentions

to non-conservative dynamics in what follows, we will return to conservative dynamics

in Chapter 6.

We next examine the phenomena of growth. We consider particles raining straight

down from the top of a box, piling up at the bottom, causing the interface to move up.

If the deposition rate per area is F, then the mean height (h) increases as (h) = Ft.

But what are the fluctuations about (h)?

To construct the equation of motion for a growing interface, we realize that out of

the five symmetries listed, the only one broken is the up-down reflection symmetry,

as we have picked a growth direction. Since parity no longer needs to be respected,

terms even in h are now allowed in the equation of motion. Including the leading

order term, we get

ah A
h v(Vh) + (Vh)2 + F. (4.12)

Note that the mass term is again not allowed in the above equation due to a transla-

tional symmetry along the surface normal. To see how the non-linear term in (4.12)

originates, consider growth by addition of discrete spherical particles of diameter d

to a surface as shown in Figure 4.13. It is clear that the growth direction is always
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Figure 4.13: Growth by addition of spherical particles. It can be seen that growth
occurs always normal to the interface so that the local tangent vector is parallel
transproted.

locally normal to the surface. Consequently, as Figure 4.13 demonstrates, the change

in height (6h) in a time 6t is given by Sh = FSt/ cos 0 = F6t[1 + (Vh)2 ]1/ 2 . The local

slope Vh therefore appears in the growth equation in a nonlinear and non-symmetric

form. Also it is clear that the parameter A in (4.12) has to be proportional to the

l l 1 *I ° l 1" " I " 1 * 11 -

average growtn velocity r; i.e., tne nonlinearity is dynamicauy generated.

Eqn. (4.12) is a very interesting equation[10] whose properties will be explored in

detail in the next chapter. Here we mention that the nonlinear term (Vh)2 cannot be

generated from variations of any Hamiltonian that satisfies translational symmetry

in h and is therefore unique to non-equilibrium processes.

The growth problem is made more complicated if the particles added have ten-

dency to form layers. The layering order, say with period a in the growth direction,
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destroys the infinitesimal translational invariance in h. What remains is the symn-

metry h -+ h + na, n = integer. A simple equation consistent with this symmetry

is

Oh A= 21r
--= v(V"h) + (h) - y sin h + F. (4.13)at 2 a

This equation gives a more realistic description of deposition processes such as molecular-

beam epitaxy, and therefore may have some technological importance. However, the

analysis of (4.13) is rather involved and will not be presented here[55].

Instead of breaking the up-down symmetry, we can also consider systems in which

one of the in-plane directions is singled out, say by applying a field parallel to the

surface as shown in Figure 4.14. The presence of a driving force introduces a

transport direction T, allowing term such as Vh to remain in the equation of motion.

If translational and up-down symmetries in h are not broken, then a simple equation

of motion is

Oh = v(V 2h) + v2 . Vh + gT Vh( h)2 , (4.14)
Ot

al

oi

st

tr

analysis of (4.13) is rather involved and will not be presented here[55].

Instead of breaking the up-down symnietry, we can also consider systems in which

one of the in-plane directions is singled out, say by applying a field parallel to the

surface as shown in Figure 4.14. The presence of a driving force introduces a,

transport direction i~, allowing terln such as Vh to remain in the equation of motion.

analysis of (4.13) is rather involved and will not be presented here[55].

Instead of breaking the up-down symnietry, we can also consider systems in which

one of the in-plane directions is singled out, say by applying a field parallel to the

surface as shown in Figure 4.14. The presence of a driving force introduces a,

transport direction i~, allowing terln such as Vh to remain in the equation of motion.

If translational and up-down symmetries in h are not broken, then a simple equation

of niotion is

dh

= v(a2h) + v~ · Vh $ gT · Vk~gh)2, (4.14)dt



where the linear streaming term can be transformed away by going to f

coordinate system -'. i = - t - vt. Alternatively, the driving force can be

to the field in such a way that a flip of the interface (h -- -h) causes a rE

the transport direction. The simplest equation associated with such dynam:

= V(V2h) + gT'. Vh(V 2h).
at

Transport phenomena will be discussed in detail in Chapter 6.

4.2.2 Stochasticity in Dynamics

Another important ingredient in determining the qualitative behavior of non-e

dynamics is stochasticity. Quite often, dynamics we encounter is stochastic ii

Stochasticity can come from thermal fluctuations, random driving forces,

in the environment, or it can be a manifestation of chaotic microscopic d(

freedom. Stochasticity may or may not change the dynamics generated fron

terministic equation of motion. In the gel case considered in section 4.1, ad

a small amount of randomness during growth is not expected to qualitativell
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where the linearmatio ad evolution. This is due to the presence of a "ma

in the equation of motion (4.8). However, we shall soon see that the introdt

randomness does change the qualitative picture of the deposited surface.

The deterministic growth equation (4.12) can be turned into a diffusion (

uponthe t ransformation W = exp [e(h - Ft). The equation is thereb



Figure 4.15: Successive layers of an interface relaxing to a flat configuratioi
deterministic growth mechanism described by Eqn. (4.12). The relaxation occi
paraboloid segments joined together at cusps.

analytically[ 10 ]

h(£,t) = Ft + -log (4rt)d/ exp 4vt + ho() .
A -oo (4xvt)d/2 4At "2

where ho(x') = h(£, t = 0) is a random initial condition. The inside integi

be evaluated by the saddle point method for small surface tensions, i.e. v

After maximizing the integrand and taking a logarithm, the solution is for

be composed of paraboloid segments h, = A, - (X - (s) 2/2At joined toget

discontinuities in (Vh). For a finite v the discontinuity is somewhat smoothe

A typical one dimensional growth pattern is sketched in Figure 4.15. These p;

are reminiscent of patterns on surface of swelling gels in Figure 4.9: In fa

underlying physics is similar: In both processes the surface has a tendency tb
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normal to itself; such normal growth usually leads to cusp formation. Similar patterns

are commonly encountered in nature in geological stratifications, and succesive layers

of snow-drifts, etc.

However, when we include stochastic fluctuation into the driving force (random

deposition), the picture obtained (Figure 4.16a) is qualitatively different[56]. Instead

of smooth paraboli, we obtain a rough "landscape" that has a rich structure. Further-

more, if the noise in the deposition process is strongly correlated spatially, we obtain

yet different patterns as seen in Figure 4.16b. These examples clearly demonstrate

the relevance of stochasticity in determining surface patterns in this growth problem.

To see how the effect of stochasticity can be followed analytically and systematically,

we first analyze the stochastic version of the free surface equation (4.10).

Stochasticity maymay be included in the dynamics by adding a noise term 7((£, t) to

Eqn. (4.10). The noise has zero mean, and is uncorrelated in the simplest case. The

stochastic equation therefore reads

Ah = i(V 'h) + F t),

77('t) = 0, (4.16)

(y(£, t)7(iF, t')) = 2Dbd(5- ,')b(t - t).

This is the well-known model Edwards and Wilkinson used to describe the stochastic

dynamics of a free surface[57]. The parameter D is the magnitude of noise auto-

(17(~, t)77(a~, t')) = 2DSd(rc' - ~')6(t - t').(17(~, t)77(a~, t')) = 2DSd(rc - ~')6(t - t').

This is the well-known model Edwards and Wilkinson used to descrihe the stochastic

dynamics of a free surface[57]. The parameter D is the magnitude of noise auto-



(ax)

Cb)

Figure 4.16: Growth profiles obtained from "ballistic
produced from reference [56].) (a) depostion is rand(
correlated.
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correlation; it is a measure of the strength of noise.

Eqn. (4.16) is a linear equation and is readily solved in Fourier space:

h(kj,w) = k2 (w)

with (77(, w)) = 0 and

(r(,w)(',w')) = 2Dbd(k + P)6(w + w').

In stochastic processes, it is oftern more meaningful to study the correlation functions

averaged over randomness. In this case, the average correlation function is

(h( ,. w)h((7', w'w)) ))
2k4 + w2

Using the form of noise-correlation, and inverse transforming back to real-space, we

obtain

(h(£'t)h(i't')) = -D '-dG ( - t ' . (4.17)
v I(L - P12 )

The scaling function G(y) has the property G(y -+ 0) -+ constant, and G(y --+ o) -

y(2-d)/2; its detailed form is otherwise not important for our discussions.

We will find in Chapter 6 that the effect of including nonlinear interactions is

to modify the parameters D and v to DR = D(1 + all - V'1')b" and vR = v(1 +

a2 X- ~I'")2 where e = de - d, d, being the upper-critical dimension for the nonlinear
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L

Figure 4.17: The scaling of the width w of an interface with its length L is described
by the roughness exponent X.

interaction, similar to what was encountered in Chapter 2. Substituting DR and vR

for D and v in (4.17), we see that in the limit 5l- X'| - oo, the form of the correlation

T.. 4:, : A 1, 4. I :tL I t 11,,,1 1,1., C,,,, c r t T I,,function is preserved, but with altered values of exponents. In general

(h(5, t)h(,t')) = D I -£_1|G (4.18)

The exponent X in (4.18) is called the roughness exponent. It describes the rough-

ness or wandering of the interface. As shown in Figure 4.17 typical width w of the

interface scales with its length L as w - Lx. If x < 0, then the width goes to zero

asymtotically, and the interface is "flat" in the hydrodynamic limit (L --* co). If

1 > X > 0, then the interface is "rough", but Vh - w/L , Lx - 1 is small, and

expansion in powers of (Vh) is still valid. However, for X > 1, the interface wanders

off too much and becomes "fractal"-like. Overhangs are no longer ignorable and the

description of the interface based on a scalar height function breaks down in this limit.

For the free surface, comparison of (4.17) and (4.18) gives X = (2 - d)/2. We see that

i I ) X ) V, snen ane In~errace Is -- rougn~~, uu~ vn. ~ tOIL ~ L" is SnlBIl, 8naI ) X ) V, snen ane In~errace Is -- rougn~~, uu~ vn. ~ tOIL ~ L" is SnlBIl, 8na

expansion in powers of (Vh) is still valid. However, for X· > 1, the interface wanders

off too nluch and becomes "fractal"-like. Overhangs are no longer ignorable and the

description of the interface based on a scalar height function breaks down in this limit.

For the free surface, comparison of (4.1r) and (4.18) gives X = (2 - d)/2. We see that



the interface is macroscopically smooth above 2 + 1 dimension and becomes rough

below that. But X < 1 for all d > 0, justifying the procedures of coarse-graining and

ignoring overhangs carried out in the section 4.2.1.

From the scaling form (4.18), we can also obtain information in the dynamics

of surface fluctuation from the dynamic exponent z. z = 2 corresponds to ideal

diffusion and z = 1 is simple streaming or ballistic motion. We shall find in the

next two chapters that anomolous diffusion (1 < z < 2) can be generated with the

inclusion of nonlinear interactions.

Before closing this section, let us investigate the effect of a correlated noise. Cor-

relation in noise can arise if the noise is itself the result of removing "faster" degrees

of freedom. If i(£, t) is related to uncorrelated (white) noise R(£, t) throughit 0
r(,t) = dt' ddIK(G - ,t -t')R(, -t'),

then a long range power law decay of the kernel K results in algebraic correlations in

71. For example if asymptotically K(Z, t) ~ 1/(j a t j 1-e), then

(77( Xt)7(j',t')) X _ X, 1 • • -•J t -t' 20 - ,  (4.19)

and in Fourier space as (k, w) - 0,

(,1(k, w)?(f', w')) = 2Dk-2p•-2eSd( + k')b(w + w'). (4.20)
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If we use the above noise spectrum for the free surface, the noise averaged height-

height correlation function becomes

(h(, t)h(',t')) = G - t' d+2+4 for 0 < -. (4.21)
v a:- •'(2  2

Clearly, the effect of spatial-temporal correlation is to increase the roughness of the

surface. In fact a 2 + 1-dimensional surface becomes too "ragged" to be described by

a height function for X = p + 208 > 1.

The restriction 0 < 1/2 in (4.21) is necessary for the inverse Fourier Transform

to make sense. For 8 > 1/2, there is too much power contained in the w -+ 0 limit;

and the long-time correlation in noise eventually "destroys" the smoothness of the

surface. The behavior for 0 > 1/2 is very interesting to study in its own right, but it

will not be pursued here. When we study temporal correlation in the next chapter,

we will restrict ourselves to the range 0 < 1/2.
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Stochastic Growth of Interfaces
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5.1 Introduction

We showed in the last chapter that the simplest equation describing the hydrodyi

behavior of non-equilibrium surface growth resulting from deposition is Eqn. (

We go to the moving frame h - h + Ft and consider the fluctuations of the into

in the presence of stochasticity. The relevant equation of motion is[10]

9h Av = Vh +  (Vh)2 + 77(),t),
at 2

where v is the surface tension, A is the coefficient of

nonlinearity and is proportional to the deposition rate

ity term mimicking the random deposition process. The

i.e., (7;(£,t)) = 0, and may or may not be correlated (see

the dynamically gene

F. 77(, t) is a stoch

noise term has zero r

section 4.2.2)

(r/(/•,W)r/(/, W')) = 2D(k7, w)kd-l( + •')b(w + u;').

The general form of the noise spectrum is

D(k,w) = Dk-2pw-29,

as in (4.20). The noise is uncorrelated if 0 = p = 0. The correlation becomes s

if p and 0 increase as discussed at the end of section 4.2.2.

Before delving into a detailed analysis of Eqn. (5.1) we would like to poin

133

(5.1)

(5.2)

(5.3)



that this equation in disguise actually shows up in a great variety of problems in

physics. In fluid mechanics, one of the simplest archetypes of nonlinear evolution is

the Burgers' equation for a vorticity-free, compressible fluid[58]. In the presence of a

random stirring force f(£F, t), the velocity field of the Burgers' equation evolves as

-+ A. V = VV2-7+ fi(, t), (5.4)

where v is the viscosity of the fluid and A is a coefficient introduced for conve-

nience. Forster, Nelson and Stephen[59] studied the above equation with several

forms of stochastic noises f, by dynamical renormalization group (DRG) techniques

and demonstrated that it exhibits non-trivial scaling behavior below two-dimensions.

For a vorticity free fluid, we can of course write the velocity field as i - -Vh, and

(5.4) can be obtained by applying V to both sides of Eqn. (5.1). The random stirring

force is identified in this way as f = -V•. It is the difference in noise spectrum that

makes the analysis in this section different from that of FNS.

Another variant of Eqn. (5.1) is obtained by the nonlinear transformation W =

exp(gh). W satisfies

Sva V2W + IVW,

which is a diffusion equation with random sources and sinks. It is in general related

to directed polymers in random media[60], and in the special case of two dimensions

describes roughening of an interface by impurities[61].
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Two other related problems are worth mentioning. One is the density fluctuations

h in a driven diffusive system which satisfy[62]

a = DV2h - -. 7h2.
at

The nonlinear term expresses the fact that the velocity at which a density fluctuation

travels depends on its magnitude[62]. Although this is not identical to Burgers'

equation, it is equivalent to it in one dimension. This eqaution will be discussed in

great detail in Chapter 6. Finally the Sivashinski equation[63] applied to the evolution

of flame fronts takes the form

_ - v'V 2 h + (V h)2 _ Vt4hat 2

This is a deterministic equation with a band of linearly unstable modes at short

wavelengths. It is believed[63] that the chaotic behavior generated by these modes

can be described by a stochastic noise acting on the long wavelength modes, so that

the long time, large distance behavior of this equation is identical to Eqn. (5.1).

We now return to the stochastic growth process. Eqn (5.1) with uncorrelated noise

has been studied by Kardar, Parisi and Zhang (KPZ) using the method of dynamical

renormalization group (DRG) and E-expansions[10]. In section 5.2, we will introduce

the perturbative calculation, illustrate the DRG method, and recapitulate the KPZ

results; then we will show the emergence of a strong coupling fixed point and the
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failure of the conventional E-expansions. As a remedy we propose an expansion a

a lower critical dimension d = 0. In section 5.3 we discuss the effect of inclu

spatial correlations in the noise spectrum, and in section 5.4 we include tempo

correlated noise.
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5.2 The KPZ Equation and Dynamical RG

We start

alize the

following

by doing a naive dimensional analysis of Eqs. (5.1) and (5.2). We gener-

renormalization-group procedure of section 2.4 to dynamics by making the

scaling hypothesis:

(h(5,t)h(1,O)) = x 2 xG(t/IFz). (5.5)

If (5.5) is to hold, then in the hydrodynamic limit, a change of scale X -- bF, accom-

panied by t --+ bzt and h -+ bxh turns Eqn. (5.1) into

8h A
bx- z  = vbX 2V 2h + Ab2X-2(Vh) 2 + bp-d/ 2+(20-1 / 2)zl,

at 2

where Eqs. (5.2) and (5.3) have been used to determine the scaling of the noise yj.

Thus under this transformation the parameters change to

V-+ bZ-2 V

D --+ b2 p-d-2x+(20 +l)zD,

A - bx+z-2A

The exponents of b are the naive dimensions for the respective parameters. To get the

general picture of what is going on, let us examine the simplest case of uncorrelated

noise (9 = p = 0). In the absence of the nonlinear term, (i.e. A = 0), the equation is
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made scale invariant upon the choice of

Z = Zo 2,

(2-d)
X=X0 22

The nonlinearity added to this scale invariant equation has a dimension yo = zo +

Xo - 2 = (2 - d)/2. For d > d, = 2 a small nonlinearity scales to zero and is irrelevant,

while for d < d, the nonlinearity is relevant and grows under rescaling. Nontrivial

exponents are expected for d < d, in the presence of nonlinearities.
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Let us now go to Fourier space

h(x t) r JI h(kw)e

whereupon Eqn. (5.1) becomes

h(k, w) = Go(k, w)7(,2w) - -Go((,2u;) qdq"* (k- q)h( -,p)h( i- w,w -it),

(5.6)

with a bare propagator

Go(, w) = (5.7)

Eqn. (5.6) is a convenient starting point for a perturbative calculation of h(k, w) in

powers of A as indicated diagrammatically in Figure 5.1. The graphic expansion is

quite standard[59] with - indicating the propagator G0 , and x depicting the noise

h(kw)= Go(~~o)rl(kw)- \G"lb.,~JJ4 ddq Q' (Ic - q~h(q~/l.)h(le - q~o - lL),

2 2x (2n)d

Q' (Ic - Q3h(q~ ~)h(lc - Q, W
h(Ew) Go(bw)n(kw)--Goiiw~J/di( ddp

2 2x (2n)d

(5.6)

with a bare propagator

1

Go(~,o) (5.7)
Yk2 - iW

Eqn. (5.6) is a convenient starting point for a perturbative calculation of h.(~, w) in

powers of X as indicated diagrammatically in Figure 5.1. The graphic expansion is

quite standard[Fj9] with -- + indicating the propagator Go, and x depicting the noisequite standard[Fj9] with -- + indicating the propagator Go, and x depicting the noise
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x

h(q, I)
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Go (k, () < k-q, o-p)

q* (k-q) T (k-q, o-4

(q,o))

Figure 5.1: Diagrammatic representation of the nonlinear integral equation (5.6
the perturbation series that results from it.

1q(Ic,w). The averaging over stochastic noise is performed using Eqn. (5.2), ai

renormalized response function GR(Q ,w) (defined by h(Ic,w) - GR(k,w)yr(k,

given perturbatively in Figure 5.2a. The lowest order (one-loop) correction is

-A G2 2 f dpi dd q r-GR(,W) = Go(k, w) + 4 2 Go(,) 2r (2r)d q

Go(I - qw - jt)Go(', jt)Go(-,. -1 )2D(j, 1 ) + O(A4),

where the combinatorial factor of four represents possible noise contractions lead

Figure 5.2a. Calculating the integrals is reasonably complicated and not partic

instructive. Details of the calculations can be found in reference [18]. After perfc

the frequency integrals and letting w --+ 0, we obtain in the case of uncorrelated

139



(D(k,w) = Do)

GR(k, O) = Go(,O) - ( 2D Go(k2,w) ( d) k dd -2, (5.8)

where k -+ 0 is used as the lower cutoff of the q-integral, and only terms of the order k2

have been kept. Since Go(k, 0) = 1/(vk ), this allows us to determine a renormalized

surface tension vR(k) from GR(k, 0) = 1/(vR(k)k 2 ). From the above integral, the first

order correction of surface tension from nonlinearity takes the form

vR(k)=v 1+Kd A D 2- • (5.9)

where Ka = Sd/(2r)d, and Sd is the surface area of a unit d-dimensional sphere. We

are now ready to apply the RG procedure of section 2.4. Let a be a microscopic

length (e.g., lattice constant), we can define a dimensionless renormalized surface

tension ,R(b) - (ba)z-2vR(k - 1 = ba), and a dimensionless interaction parameter

io(b) = Kd(ba)2-d 2Do/v3. The recursion relation for IR(b) is found by applying the

rescaling operator b(O/Ob)

Ob = v(ba)z- 2 z - 2 + uo(b) 2d]

where the first order result (5.9) is used. Assuming the renormalizability of the KPZ

equation, we may replace v by vR and tio(b) by i.(b) - Khd(ba) 2-d[(AR) 2D1/(vR)3 ]
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(see section 2.4). Expressing in terms of 1 = log b, we obtain

dB= z - 2+
dl

_,2 - d]
0 4d

to one loop order.

A renormalized spectral function DR(k,w) can be defined from

(h*(lw)h(,w)) = 2G R(l, w)GR(-l_, -w)DR( k, w).

This quantity is calculated perturbatively by the series shown in Figure 5.2b.

first correction term gives

2DR(k, w) 2D(k,w) + 2(2
dy ddq 1 .

2-r (2r) d

Go(q,1t)Go(-¢ , -y)Go(k - j, w - 1t)Go(-k + q, -w + p)

2D(, 1 p)2D(k - ,- 1 ) + O(A4 ).

In the case of uncorrelated noise, the above integral easily simplifies to

DR(k) = Do [1 + A2Do 1
+ v 4

(5.1

ddq -2]
(2r)d q
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in the limit k --+ 0, yielding the recursion relation

dD [ i.R
dlo D z - d - 2( + 4 (5.12)

where D0R = Do (ael)z-d-2x is the dimensionless noise parameter.

The third parameter to consider is the nonlinearity coefficient A which has con-

tributions coming from the graphs in Figure 5.2c. The integrations give a null result

for the uncorrelated noise. This is a consequence of a Galilean invariance that is

preserved under renormalization. (See the appendix for a discussion.) In fact AR = A

to all loop orders. Non-renormalization of A immediately gives us a third recursion

relation for the dimensionless parameter AR = AR(ael)x+z-2

= A [ + z - 2], (5.13)
dl

which is exact to all loop orders.

Eqs. (5.10), (5.12) and (5.13) are the recursion relations (also known as the RG

flow equations) for the parameters of the KPZ equation in the presence of uncorrelated

noise, calculated to the one-loop order. If the scaling hypothesis (5.5) is to hold, then

the parameters [R, DR, and ,R are dimensionless (in the hydrodynamic limit), and

d RR dDR dAR

dl -- dl-- dl
1--+oo 1-+oo 1 o
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Figure 5.2: After averaging over the noise, the perturbation series of (5.6) can be reor-
ganized to describe (a) a renormalized propagator, (b) a renormalized noise spectrum,
and (c) and a renormalized vertex function (or interaction constant).
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Figure 5.3: Flow diagram of the KPZ equation to first order in E. The dashed lime
indicates the position of the fixed point u* to order e.

The hydrodynamic properties of the system can then be solved at the infra-red fixed

point fi* = fR(1 -* oo) of the flow equations. Combining the three recursion relations,

we obtain the RG flow equation for the effective coupling constant 5fl.

d 4 [ (2 - d) + . (5.14)dl [ 2d

The flow (upon rescaling) is shown in Figure 5.3 for various dimensions. Note

that the non-trivial fixed point fii = 2d(2 - d)/(3 - 2d) is unstable above the upper

critical dimension d, = 2. This is a signal for a phase transition in d > 2: small non-

linearity (driving force) is irrelevant, but larger ones flow to strong coupling. Below
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d = 2, no fixed point is found to O(e = 2 - d); and iio always flows to a strong

coupling point, and we see that conventional e-expansion fails to give us a controlled

expansion. Consequently, the exponents X and z cannot be calculated in the normal

way. Nevertheless through the KPZ analysis we obtain the predictions of a phase

transition for d > 2, and an exponent identity X + z = 2 which should be obeyed for

all d.

The exponents X and z can actually be obtained exactly in the special dimensions

d = 0 and d = 1. For d = 0 we look at the height fluctuation of a single column.

Formally we have from (5.5)

(h(x, t)h(O, 0)) = tx/'f(t/xz ) , tx/ z.

Since the addition of particles to the column is random (uncorrelated noise) this

process is just a random walk (i.e. h(t) = ft y(t')dt'), giving immediately X/z = 1/2.

This result, coupled with the exponent identity X + z = 2 yields X = 2/3 and z = 4/3

as d - 0.

Special simplifications also happen in d=1. From (5.10), (5.12) and (5.13) we see

that the flow equations for FI and 6R are the same to one loop order in d = 1. In

fact, due to a fluctuation-dissipation theorem that holds in d = 1 only[59], vR and

DR are required to scale the same way to any loop-order. From this requirement we
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deduce

d- )= ( ) ?[2-d-2x] for d= 1

giving the exact result x = 1/2 in d = 1. The exponent identity then gives the

dynamic exponent z = 3/2. Note that in this case the exact exponents are obtained

even though we do not even have a perturbative knowledge of the fixed point it.

The prediction of exponents X = 1/2, z = 3/2 in d = 1 has since been confirmed

by numerous numerical studies[64][65][66][67]. More recently, large scale simulations

have been performed in 2 + 1 and 3 + 1 dimensions. For d = 2, exponent values of

x = 0.4, z = 1.6 are found[68] [69] [70][75], and in 3 + 1 dimension references [71]-[75]

find a phase transition between the ideal flat phase (x = 0, z = 2) and a rough phase

described by X = 0.34 and z = 1.67. Clearly the exponents found are all consistent

with the identity X + z = 2, and the phase transition for d > 2 is seen as predicted by

the theory. Based on the known values of exponents in d = 1, 2, 3, Kim and Kosterlitz

(KK) conjecture that X = 2/(3 + d) for all d[68]. An alternative conjecture by Wulff

and Kertesz (WK) is X = 1/(1 + d)[67], which however does not give the correct

exponent at d = 0. Present simulation results are in favor of the KK conjecture,

though the results are not precise enough to rule out the WK conjecture.

Before moving onwards to the case of correlated noise, we make one interesting

observation: Let us expand the flow equation (5.14) in the vicinity of d = 0. The

motivation is that the nonlinear interaction which comes in the form of (Vh)2 must

vanish at d = 0 as d is the number of components of h. Around d = 0, we obtain a
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Figure 5.4: A possible RG flow diagram obtained by combining the small d-expansion
and the e-expansion.

stable non-trivial fixed point ·i- = 2d/3, and exponents x = 2/3-2d/9, z = 4/3+2d/9

to first order in d. We have here the possibility of a controlled expansion in powers

of d. The expressions for exponents agree with the required X/z = 1/2 at d = 0,

and in fact match the leading terms of the Kim-Kosterlitz conjecture X = 2/(3 + d).

This suggests a possible phase diagram sketched in Figure 5.4 in which we see that

the "strong coupling" fixed point, not accesible through the conventional e = 2 - d

expansion can now be reached via an expansion around the lower critical dimension

d = 0. The first-order result has the "strong coupling" fixed point running into

the unstable fixed point at d = 2.4. It is not known whether the merger of the two
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fixed points survives when higher order terms are included. If it does, then we can

expect the disappearance of "strong coupling" at higher dimensions. Of course, at

this point the expansion about d = 0 is only a possible (but tempting) scenario. To

say anything more definitive we must analyze the perturbation series in the spirit of

section 2.2. In particular we need to learn to calculate higher order loop diagrams

in the limit d -- oo. It should be remarked however, that the small d-expansion is

not anymore ad-hoc then the e-expansion since the validity of the latter has not been

proven for non-equilibrium systems either.
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5.3 Spatial Correlations

We now consider the behavior of Eqs. (5.1) and (5.2) with the noise spectrum

by

D(k,w) = Do + Dk -2 P.

As discussed in the appendix, the nonlinearity coefficient A is not renormalizet

in the presence of spatial correlations due to Galilean invariance. Hence we stil

the exponent identity and

diR = R + - 2].
dl

The renormalization of surface tension is calculated just as before but with D

given by (5.15), with the result

A2 Do 2 - d kd- 2  A2D 2 - d + 2p kd- 2- 2p

v 3  4d 2 - d v3 4d 2 - d + 2p

Defining the dimensionless coupling constants fo = Kdd(ael) 2-d 2 Do/v 3
, fip = Ii,

and replacing iio, t,, v by their renormalized counterparts as explained befoi

get the recursion relation for fR(1) = vR(k = ae') (ael)z - 2

dR 2 - d 2 - d+ 2p
S z_ 22++ + urdl 4d 0 4d P

The renormalization for D(k,w) is more complicated. Diagrams of the fo

Figure 5.2b do not give rise to k-2P behavior as k - 0 for any D(k); such dia
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only renormalize Do. DP is in fact not renormalized in the hydrodynamic limit. The

recursion relations we obtain after evaluating (5.11) using (5.15) are

dDR
= D- [z - 2X - d + 2p], (5.18)

d • [Z - 2- - d] + 4 (i + iiDf) . (5.19)
dl 4 P

where f)R = DR (aeI)2P- d- 2 x+z is again a dimensionless variable. Note in (5.19) that

white noise DoR will be generated by Dp even if it is not initially present.

The flow equations (5.16)-(5.19) seem very complicated; but they can be solved

exactly if the white noise limit values of X, and z, are known exactly. In d = 1 with

z, = 3 / 2 , Xw = 1/2, (5.18) becomes

= D [- + 2p]
dl 2

Hence, D, is irrelevant for p < 1/4 and the exponents are those with white noise

present only. However for p > 1/4 (5.18) requires that z - d - 2X + 2p = 0 to

have !)R' fixed. This coupled with the identity X + z = 2 immediately allows us to

solve for the exponents exactly: X(p) = 1 + 2p/3 and z(p) = 5 - 2p/3 for p > 1/4

in d = 1. The behavior of the exponents as a function of p is plotted in Figure

5.5. Recently, the predicted exponent values x,(p) and z(p) have also been tested

and confirmed through numerical simulations of Meakin and Jullien[56]. In fact the

interfaces shown in Figure 4.16a and Figure 4.16b are results of such simulations with
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Figure 5.5: (a) Dynamic exponent z and (b) roughening exponent X as a functiol
the exponent p for decay of spatial correlations in d = 1.
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p = 0 and p = 1 respectively. It is clear that the surface growth under correlated noise

(Figure 4.16b) is much rougher than the one with uncorrelated noise; the dependence

is given by )(p) in Figure 5.5b.

Finally, we repeat the above exercise with Xw = 2/3 - 2d/9 and z, = 4/3 + 2d/9,

the results of the small d-expansion. In such a case, 1D, is irrelevant for p < p, = d/6.

Beyond that, x(p, d) = 2 - d - 2 p/3 and z(p, d) = 4 + d - 2p/3. The result that p, - 0

as d - 0 contradicts a recent conjecture of Zhang[76] (based on replica arguments)

that Pc = 1/4 for all dimensions d. A number of other consequences of the small

d-expansion remain to be worked out.
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5.4 Temporal Correlations

We next turn our attention to the case of noise with temporal correlations, i.e.,

D(k, w) = Do + Dew-29 (5.20)

the interface and effect further growth via the long range Coulomb interaction.

In normal (equilibrium) field theories (and also in the case of spatial correlation

encountered in the last section), it is often the leading order term (in k, w -- 0) that

determines the scaling behaviors in the hydrodynamic regime. We will see in this

section that the subleading terms (e.g. the Do term in (5.20)) can also influence the

scaling behavior. In fact, the entire fixed function D*(w) must be determined in order

to obtain the scaling properties of the surface in the presence of temporal correlations.

Also, in the extreme limit of 0 = 1/2, Eqn. (4.19) tells us that the noise becomes

permanently correlated, i.e., (7l(x, t)(zx', t')) , d(X - z'), an example of quenched

randomness which appears in a wide variety of localization problems. Systems with

quenched disorder are difficult to study, here we show that they can be accessed as

the limit of temporally correlated stochastic noise.
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Temporal correlations can arise in a number of situations: One possibility is relatively

immobile impurities in the path of the interface that get trapped and impede further

growth. Another possible case is when there are charged ions that become part of

the interface and effect further growth via the long range ~oulomb interaction.

In normal (equilibrium) field theories land also in the case of spatial correlation

encountered in the last section), it is often the leading order term tin Icw t O) that

determines the scaling behaviors in the hydrodynamic regime. We will see in this

section that the subleading terms (e.g. the Do term in (.5.20)) can also influence the

scaling behavior. In fact, the entire fixed function D'(w) must be determined in order

to obtain the scaling properties of the surface in the presence of temporal correlations.

Also, in the extreme limit of a 1/2, Eqn. (4.19) tells us that the noise becomes

permanently correlated, i.e., (77(2, t)~(2', t')) ·v dd(z - z'), an example of quenched

randomness which appears in a wide variety of localization problems. Systems with

quenched disorder are difficult to study, here we show that they can be accessed as

the limit of temporally correlated stochastic noise.



Using (5.20) for D(k, w), we obtain the recursion relations:

d 4d 4d (+ )s2]-d
dl z - 2+ -- d +  oi -- (1 + 20) sec(r0) (5.21)

dldd = + z - 2 - 0s (1 + 20) sec(7r) , (5.22)

dl (5.23)dl - [z(1 + 20) - 2X - d], (5.23)
d0gR  1 R)2 1 + -RfR

d - [z -2 - d] + -(i i i (1 + 20) sec(7r)

1+-(if )2 (1 +40) sec(2rO0), (5.24)

valid for 0 < 1/4. Note that in the absence of temporal correlations, i.e. 0 = 0, the

correction term to the vertex in Eq. (5.22) vanishes as required by Galilean invariance.

As in the case of spatially correlated noise, ·ii does not get renormalized because

diagrams such as Figure 5.2b do not generate a w- 20 term in w --+ 0 limit. Using

z, = 3/2 and Xw = 1/2 for d = 1 in (5.23), we find that iie is irrelevant for 0 < 0, =

1/6. Hence we recover the white noise behavior for weakly correlated temporal noise,

just like the case with weakly correlated spatial noise. Using X, = 2/3 - 2d/9 and

z, = 4/3+2d/9 from the small d-expansion, we get 8, = d/8. For 0 > 0,, the behavior

of the system is dominated by the temporally correlated noise, and Eqn. (5.23) gives

the exponent identity z(1 + 20) - 2X - d = 0 at the fixed point of RG flow. However

temporal correlation destroys the Galilean invariance (see the appendix) and we no

longer have x + z = 2 as evidenced in the recursion relation (5.22) for fii # 0. Some

work is then required to extract the exponents z(O) and x(O) out of the recursion
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relations. Eqs. (5.21)-(5.24) can be solved systematically for small d. However,

to see the generic structure of the solution and to gain some insight into the role

of temporal correlations, we shall study the one-loop recursion relation evaluated at

d = 1 in some detail.

After eliminating z and X with the fixed point conditions dAR/dl = 0 and dR /dl =

0, we have

dl (1+40) 4 U - uO sec('O)(1 + 20) ]
dl 4

di,0R  1 1 + 80 1 1 + 40d - 1 (fiiR)2i -fiR sec(r0)(1 + 20) -4 2 + (R')2 sec(2" 14
dl 2 4 2 e 4 2 4

A stable fixed point in the physical region (i.e. ii-R > 0, fit > 0) is found for

0 < 0 < 1/4 ; the resulting exponents z(0) and x( 0 ) are plotted. As shown in

Figure 5.6, the exponents increase for a range of 0 > 0,(d = 1) = 1/6; but then they

turn around and nose-dives as 0 --+ 1/4. Beyond 0 = 1/4, no stable point in the

physical region is found in (ii0, fi) space.

The behavior close to 0 = 1/4 is very suspicious, as physically there should be

nothing special at 0 = 1/4. The source of such peculiarity is the infrared divergence

of the integral (5.11) as 0 -- 1/4. In fact, the renormalized noise spectrum DR(w) has

a component w1-48 which becomes "non-ignorable" as 0 - 1/4 . The renormalized

spectrum is of the form DR(w) = Do + Djw -2 0• + D 2 
-202 where 02 = 201 - 1/2.

However with this new form, even more components are generated from the contrac-

tions D1 D 2 and D2 D2 . By simple power counting, the contraction between Diw -29
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Figure 5.6: (a) Dynamical exponet z and (b) roughening exponent xi as a function of
the exponent 0 for the decay of temporal correlations in d=l. The solution diverges
as 9 -0 1/4.

156

z (e)

SI II

~

lr

r

rr

0 0.1 0.2 0.3
(a )

0,65

~ 0.55
X

0.45

Figure 5.6: (a) Dyn

the exponent 8 for

as 8 -, 1/4.

3

as a function of
olution diverges

0 0.1

Figur 5.6 (a) arnaical exponet z and
theexpnen 8 orthe decay of temporal

0.2 0.3

roitghening exponent /Xs untono
~relations in d=1. The soui dvre



and Djw-2"j terms is

D-(w)Di(w) = A(i, j)DiDjwl-2e'-2e0 + B(i, j)DiDj, (5.25)

where A(i,j) and B(i,j) are integration constants. We can denote the new power

generated in the same form, wo- 26'+, with Oi+j = Oi + Oj - 1/2. If the most divergent

part of D(w - 0) is characterized by w- 20, then terms generated by RG are U-2 9,

with On = nO n- , and the fixed function is of the form DR(w) = DoR + z D•Iw-2".

The number of divergent terms, M(O) in the sum is the largest n for which On > 0,

i.e.,

M(O) = Int ( 120 (5.26)

As 0 increases from 0 to 1/2, a new divergent term is added to the renormalized noise

spectrum whenever 0,(0*) = 0, where the special values 0*'s are

n-1 1 2 3 4

2n '4'6'8' 10

So the unphysical behavior obtained close to 0 = 1/4 is a reflection of the emergence

of the next divergent term in the fixed function D R().

Obviously, the RG flow space must be expanded for an improved treatment. The

relevant integral for the noise contraction (5.11) has been computed in reference [18];
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the coefficients A(i,j) and B(i,j) in (5.25) are found to be

A .) 4 sin(rOi) sin(ir0j) F(1 - 209)F(1 - 20j)
A(i,j) = 7r sin(Kir9+j) r(1 - 20j+j)

B(i,j) = (1 + 20i + 20j) sec ir(O + Oj)

for Oi+j $ 0. The two terms conspire to give log(w) when Oi+j = 0.

Incorporating these results, we try a fixed function of the form

Nmax (W/Wo)-20" - (1 + 20n) sec(7rOn)
Do(w) = Do + Z 7rD, - 20.)sin(7r0. )

n=1 - 2) sn(

with On = nO - (n - 1)/2 and the value of the cutoff, Nm,,a will be discussed later.

(Note that this form has the desired logarithms built in when On = 0.) The recursion

relations become

2 - d _
-4d

1
+z-2-d

SNma
Rrp (2+20,

Nmar

i,j= 1(i+J•--n)

jR\2 Nmax

i(Z - 2X - d) + 4 + 4z0 (1
n=1

Nmax

+2 [z(1 + 20) - 2x - d] E f(n - 1)(1 + 20,)F(290)
n=1
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= {z

= 1 {

d•R

dl

d4R

dl

diig'

dl

= i [z(1 + 20) - 2x - d]

= R u[z(1 +20) - 2X - d] +

20,)F(20,)



Nmax (
+ j iii F(20i)F(290) (1?"j=1

20j) ,+ 20i + 20j) - (1 + 20i)(1 +cos(r(0; + 0j))

where the identity r(z)f(1-z)) r/ sin() is used, and i [(R)2 /(R)3]Kd(ael)2-d+2zO

as before.

The condition dfit/dl = 0 implies 2 X + d = z(1 + 20) for 0 > 8c. So

d iiRn
dI

i+j=n

= fi•z(20, - 20)+

-= tiz(20 - 1)(n - 1)+n2 Sii+=n -
i+j=n

By setting diiR/dl = 0, it is easy to verify that

R = [z(1 - 20)] -n + (U• •) .

Hence we can describe the fixed function DR(w) by two parameters, DoR and DR, as:IILLC CLal CJLV CCLCILCUI~I~CV L \VJUYCV C~L~I L~C 0 aO~ ,S

Nmax

n=1

(W/Wo)-2 °" - (1 + 20•) sec(ir0)]

T(1 - 20,) sin(tsO.)

X(D R)"
[z(1 - 280)] - 1

The exponents X and z are calculated from

2-d
z = 2 - it,

4d
2 -d

S 4d 0

1+

(5.27)

(5.28)
Nmax

E l*F(2 + 209),
n=1

with
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: (=,*;)n
n = [z(1 - 20)]n-1' and 20, = 1 - n(1 - 20),

where the fixed points fit and ii* are found from the flow equations:

= uie [z(1 + 20) - 2X - d],

(ii)2 
max

u•o(z - 2X - d) + () + 4zO ii(1 + 2- 0)F(20n)
n=1

Nmax

+2 [z(1 + 20) - 2X - d] E fitR(n - 1)(1 + 20n)r(20n)
n=1

Nmax ( i 2 0 ) cos(0j)+ ii fýT(20T)o(20j) (( + 20i + 20) ; ))i= j cos(ir(Oi + Oj))

(5.30)

(5.31)

-(1 + 20i)(1 + 20j) .

The terms that seem to diverge as 0, -+ 0 in the last equation cancel each other; and

Eqs. (5.27) - (5.31) can be solved numerically in the range 0 < 0 < 1/2 once Nmax

is defined, and the resulting exponents z(O) and X(O) for various Nmax are shown in

Figure 5.7a and Figure 5.7b. We observe that in the region with M(O) divergent

terms as given by Eq. 5.26, at least M(O) terms are necessary to find fixed points

and exponents at all; beyond that the convergence of the series is rather fast.

The calculation becomes increasingly difficult to carry out as 0 -+ 1/2 because

M(O) - (1 - 20) - 1 - oo. However the results obtained for d = 1 have x exceeding 1

at 0 = 0.46; so the theory is not valid for 0 close to 1/2, since 7 > 1 would invalidate

the Vh expansion as explained in Chapter 4.

As mentioned at the begining of this section, 0 = 1/2 corresponds to the interesting

limit of quenched impurities. It so happens that x exceeds 1 before 0 reaches 1/2 for
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Figure 5.7: Same exponents as in Figure 5.6, but including more and more powers
8,, generated by renormalization of the noise spectrum DR(w). The exponents are
found to converge rapily upon including more powers.
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the case of d = 1. In higher dimension (d > 2), X will be significantly reduced, and

the analysis sketched in this section may provide a controlled way of accessing the

quenched randomness limit.

A very important lesson we learned by going through this tedious exercise is that

the sub-leading terms in D(k,w), which are normally not relevant in determining

the asymtotic scaling behaviors in the hydrodynamic limit, must nevertheless be

treated systematically. A priori, one does not know whether the subleading terms

(in the hydrodynamic limit) may contribute to the leading scaling behavior. In the

spatial correlation case, such terms make no difference, because they do not enter the

equations determining the exponents; there they only change the position of the fixed

points. Similarly, such subleading terms do not affect the leading scaling behavior

in simple field theories such as the 04-theory. However, we see that they do make

a difference in the case of strong temporal correlations. Here the knowledge of the

entire fixed function D*(w) is needed in order for the RG procedure to be consistent.

This makes the calculations (recursion relations) much more complicated, though the

principle is simple as before. Two straight forward predictions are (1) breaking of the

Galilean invariance (X + z = 2) and (2) the exponent identity z(1 + 20) - 2 X = d. It

would be interesting to test these numerically.
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Appendix: Galilean Invariance

The Burgers' equation (5.4) has a Galilean invariance associated with looking at

the fluid in a moving frame. Hence the transformation[59]

v( , t) -t igo + il'(F - igot, t),

is an exact symmetry of the equation (with A = 1). For the KPZ equation (5.1), this

symmetry corresponds to the infinitesimal reparametrization

(5.32)

which describes the tilting of

O(E) satisfies the equation

the interface by a small angle E. The tilted surface to

Oh' A
t---'= ,V'"h' + A(V'h')2 + (' + A', t').at, 2

Clearly the deterministic equation is invariant under this transformation, while the

stochastic equation is subject to a noise y'(i', t') = 7 (£' + A6', t'). Let us examine

the correlations in the noise 7':

(77 '(Ftl)7l'(X(2 , t 2)) = (77( ' + A• 1, ,t1 l)7(2 - A6 2 , t 2 ))

SF(Fl - Xf2 + Aetl - t 2),tl - t 2 ). (5.33)
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Here F measures the noise correlations, in the original equation. In the absence

of temporal correlations F(5, t) = 6(t)F(£) and from Eqn. (5.33), we observe that

the correlations fo 

e.

F'(£, t) =F(£ + AZ, t) = (t)F(£+~ $ X) = (t)F( ).

This invariance is no longer true if F(£c, t) is not proportional to b(t). Therefore the

stochastic equations is invariant under Galilean transformations, only if the: noise has

no temporal correlations.

Note that the parameter A appears both as the coeffiecient of the nonlinearity

in Eqn. (5.25); and as an inherent factor relating to £ and t reparamnetrizations in

Equ. (5.32). Hence any renormalization of the KPZ equation that preserves Galilean

;niva~Rriac muslt. leave the coefficient X uncha~nged. Due to the abshencet of correc~tions;

Eqn. (5.13) is exact, leading to the exponent identity

X+z =2

in the absence of temporal correlations.
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6.1 Introduction

The interface profiles obtained from growth (Figure 4.16) are reminiscent of land-

scapes seen in nature. In fact, the world we live in is full of complex spatial structures

such as mnitainf ranges, river networks, rcoastlin-esn ra c Jrlod[2l BecauseP thes
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such as mountain ranges, river networks, coastlines, and clouds[12]. Because these

objects do not lend themselves readily to "clean" geometrical descriptions, they have

eluded the pursuit of analytically minded scientists for centuries. On the other hand,

low frequency noise (known as 1/f noise) appears in resistance fluctuations[13][77],

sand flow in hourglasses[78], and even in traffic and stock market movements[79]. The

ubiquity of such broad-band noise have also puzzled the scientific community for a

long time.

During the past 10-20 years, we learned to characterize the geometrical aspects

of fuzzy and ragged natural landscapes using the concept of fractals, largely through

the work of Mandelbrot[12]. There has since been an explosion of "fractal"-motivated

studies. Literally speaking, eveywhere we look, we find fractals:[5] the structures of

colloidal aggregates, patterns of fracture/dielectric breakdown, porosity of soil, and

branching of roots, to name a few. Fractal concepts have since been extended to de-

scribe a wide variety of other systems in physics: Chaotic dynamics in meteorology[80],

star-flicker in astronomy[81], hadron-production in particle physics[82], etc.

It should be noted however, that the studies of fractals have been done mostly at

the level of characterization: Results of experiments and simulations on these systems

are plotted on a log-log scale. If a straight line is obtained, then the slope is related to
( ~' "~"""~"`~ ~~~ ~""~""'~"~ ~" ~"`~` ~'~'~"'~

are plotted on a log-log scale. If a straight line is obtained, then the slope is related to



some fractal dimension of the system. The answers to general questions of how fractal

structures arise and what various fractal dimensions should be, have been lacking. In

this chapter, we attempt a systematic investigation of such questions by studying a

specific model.

It is well known that many functional dependences look like straight lines when

variables are plotted on a log-log scale. The lone, obvious class of exceptions being

the exponential functions, or functions with an unambiguous scale. So fractal systems

are those that lack natural scales; and the question "why such an abundance of fractal

systems?" is to first approximation, "why so many systems behave as if they do not

have natural time and/or length scales?"

Systems wthout natural scales are also known as scale-invariant or self-similar.

The analytical tools for dealing with simple scale-invariant systems have been de-

veloped from the studies of critical phenomena, and have already been extensively

used in the previous chapters. However, in conventional critical phenomena, scale-

invariance/self-similarities are only exhibited at a few isolated points (critical points)

in the parameter space of the system under study[1]. In contrast systems in nature

can exhibit self-similarity without any tuning of parameters. For this reason, this

type of phenomena has been given the name "Self-Organized Critical Phenomena"

(SOC)[14].

Previous experience strongly suggests that whenever there is an invariance law,

there is usually some general principle behind it. For example, in classical mechanics,
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the invariance of the total momentum of a closed system is attributed to the transla-

tional symmetry in space. Here, we naturally suspect that scale invariances seen in

SOC systems also come from certain underlying principles.

Of course, SOC is not an exotic or mystical class of phenomena, though specific

SOC models may possess one or more unique features. To take the most trivial case,

the stochastic dynamics of a free surface described in section 4.2 is scale-invariant

both in space and time (i.e. it is critical); furthermore, criticality for the free surface

is obtained without tuning of any parameters, therefore this system may be called

SOC.

For a less trivial example of SOC, let us reconsider the growth process described

A- - i f .1jAI'I . f .1L± 1 ! . ±
in Cnapter O. As is eviaent iromn rig. 4.1io, ne surfaces grown exnIIiL selu-SiiIflariLy

without tuning of any parameters. Analytically, the growth process is described by

the KPZ equation[10],

ah A- = vV'h + 2(Vh)2 + 1(', t),

which is explicitly scale invariant as manifested by the absence of a -h/r term. As

carefully explained in the derivation of the KPZ equation in Chapter 4, the -h/r

term is excluded from the equation of motion because it is incompatible with the

translational symmetry, h -- h + constant, present in the process. We therefore

identify the translational symmetry of the surface along the growth direction as the

priciple responsible for the scale-invariance of the height profile. Once criticality of the
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theory is established, we can calculate the scaling exponents (X, z) for the dynamical

field as shown in Chapter 5. With the knowledge of the basic exponents x and z, we

can proceed to calculate other interesting scaling properties. For example, if we are

interested in the spatial organization, we can "flood" the 2+1 dimensional landscape

with water and look for the fractal dimension of resulting islands; there we find the

fractal dimension of the coastlines (of the islands) to be D1 = 2 - X[12]. Using the

result of small d-expansion for X, we get an estimte of D1 = 1.78 in d = 2. Results of

latest simulations (X=0. 4) would give a coastline dimension of 1.6.

The growth problem is especially suitable for the visualization of spatial, frac-

tal structures, but it is not a natural system to study if one is interested in 1/f

noise.1 Since these low frequency fluctuations often make their appearance in trans-

port processes, we hope to gain insight by studying such phenomena. In section 6.2,

we investigate dissipative transport and avalanches using a sandpile automaton. We

show that the behavior of the automaton is qualitatively similar to that of the real

sand[83], and point out that the scaling regime relevant to 1/f noise is the hydrody-

namic region. In section 6.3, we analyze the transport properties in this region using

the method of dynamical renormalization group.

'By 1/f noise, we mean noise with any power-spectra S(f) - 1/f 0 where 0 < 0 < 2.
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6.2 The Sandpile Model

An interesting model of dissipative transport is the sandpile automata recently

proposed by Bak, Tang, and Wiesenfeld (BTW)[14]. The study reported here was

inspired by the BTW model. We start with a brief description of the model and

present simulation results for a 1D system. Analysis of the automaton model and

its outputs reveals various scaling regions : there is a short time region in which

temporal fluctuations are dominated by single avalanche events. At a longer time

scale, we observe interactions among the avalanches. At yet longer time scales, these

interactions are wiped out by system-size discharges (great events). However, due

to a memory effect attributed to the threshold nature of the model, even the great

events are non-trivially correlated (they are anti-correlated). It is only on time scales

exceeding the "memory capacity" of the system that the activities finally become

uncorrelated.

The single avalanche region is related to a directed percolation problem, and has

been studied by a number of authors[84][85] [86]. Interaction among avalanches pro-

vides rich, temporal structures, and leads to 1/f-type noise. There are similarities to

aftershocks in earthquakes, and shock waves in fluid mechanics. The behavior in this

region is treated in detail in section 6.3. We show that scaling in the hydrodynamic

region is a consequence of conservation laws in the transport dynamics. The existence

of a great event region is an unique feature of highly dissipative systems (such as the

sandpile automaton) with many metastable states. Similar great events have been
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observed in recent studies of models of earthquakes[87] and charge-density waves[88].

These events are found to be temporally anti-correlated due to the threshold nature

of the dynamics. We will provide a simple scaling description from which we can un-

derstand the underlying mechanism of their generation. Similar behaviors are found

in preliminary simulations of 2D automata. We show that the generic behavior found

in simulation is similar to those found in experiments of real sand[83], thus dispelling

the notion that the sandpile automata do not describe real sand.

6.2.1 The Automaton

Recent interest in the phenomena of SOC springs from a series of very intereseting

numerical studies on a sandpile cellular automaton invented by BTW[14]. The model

leads to some very important issues in dissipative transport in open environments,

and is very much worthy of investigation. In the following, we describe the results of

simulations of two generalized versions of the BTW sandpile with open boundaries.

The discussion is mostly limited to the 1D case, though the argument is general and

valid in higher dimensions.

We consider a sandpile defined on a 1-dimensional lattice of length L. Associated

with each lattice site n is a variable H(n, t) representing the height of the local sand

column, (see Figure 6.1). H(n,t) is an integer in the discrete model of section

6.2.2, but is a real variable for the continuum model of section 6.2.3. Following the

generalization of the BTW rule to 1D by Kadanoff et al[89] we adop the following
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Figure 6.1: A 1 + 1-dimensional sandpile automaton.

evolution rule:

H(n,t + 1) = H(n,t)- Nf

H(n+l,t + l) = H(n+l,t)+Nf (6.1)

iff H(n, t)- H(n + 1,t) > 6H,.

As reported in reference [89], the scaling behaviour of the system is independent

of the values of Nf and WH, as long as Nf > 2 and 6He 2 2Nf. In our study, we use

Nf = 2, SH_ = 8 without loss of generality. The boundary at n = 0 is kept closed,

while the boundary at n = L is open, i.e. H(0) = H(1), and H(L + 1) = 0.

The transport process is initiated by depositing sand grains into the system at

a rate Jin. The activity of the system is monitored by recording the output current

J(t) (the number of sand grains leaving the system) and the instantaneous energy
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dissipation rate E(t) (the total number of transport activities at each time step). But

before describing our simulation result in detail, we first briefly summarize known

results. BTW and a number of other authors[89][90][91][92][93][94] have studied the

sandpile model in the limit of zero deposition rate, i.e. Jin -- 0+ . In this limit,

the response to a single addition of a sand grain can be characterized by identifying

the size (s = f E(t)dt) and duration (T) of the "avalanche" resulting from a single

addition. In steady-state, these authors observed the signatures of criticality: power

law scaling of the distribution function, i.e.

D(T)= T-"F(T/L'), (6.2)

D(s) = s'-'G(s/LDf). (6.3)

Finite-size scaling then yields the dynamical exponent o, and the "fractal dimension"

of avalanches Df. In fact, the distribution functions may well be more complicated

(i.e. multifractal) as indicated in reference [89]. But these simple scaling laws work

well for s < L. (The multifractal aspect will be discussed later.)

Tang and Bak (TB)[90] suggested that the scaling behaviour observed can be

thought of as critical phenomena with the average output current (Jot) being an

order parameter. The sandpile model adjusts itself (self-organizes) to a critical slope

at which (Jot) -+ 0+. TB also pointed out that if (Jin) (and therefore (Jot)) is finite,

then the avalanche clusters will overlap (much like a percolating system beyond the

percolation threshold), resulting in a length scale J " J-"vl and associated with it
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a time scale - 0. TB claimed that the existence of such scales would then destroy

scale-invariance and criticality.

One of the major criticisms of the BTW study is their limitation to the special

limit Jir -- 0+: Indeed, by the definition of steady-state (Jout) = (Jin), the order-

parameter (J,,t) is indirectly tuned by (Ji,). If the existence of criticality does depend

so sensatively on a very small input rate (driving force), then it becomes very puzzling

to confront many systems in nature (e.g. water flow in rivers[80] and electron flow

in resistors[77]) that do exhibit 1/f noise in the presence of obvious driving forces.

It is the purpose of our numerical study to demonstrate the fact that critical scaling

is not destroyed by a finite driving force; rather, we show that interesting temporal

fluctuations such as 1/f noise only appear in the presence of a finite external driving

force Ji,.

Let us first quantify how small Ji1 must be for avalanche clusters not to overlap

each other: An avalanche in the one-dimensional model can be represented as a par-

allelogram in space-time as shown in Figure 6.2. The width at each time crossection

(t) is the number of active sites E(t) (flame front, or instantaneous energy dissipa-

tion). The length is the avalanche duration (T), and the total shaded area is the

total size of the avalanche cluster s. Two clusters can be distinguished as long as

their active zone sites never overlap. If the probability of initiating an avalanche is

p per site, then clusters do not overlap if § - p < 1, where s is the average size of

clusters. For a system of size L, § = LD!(3-,) from the distribution function (6.3). It
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Figure 6.2: One-dimensional avalanche processes represented in space-time diagram.
The two avalanches initiated at points A and B are considered independent because
they do not overlap in space-time. The two initiated at points C and D however are
overlapped.

is found in reference [89] that r 1 2 and D1 I 1 for the 1D sandpile, giving , ~ L

and the overlap limit

p < L - 1. (6.4)

In the following, we report studies below and above the limit (6.4). In section 6.2.2,

we describe a "discrete" model in which sand grains are deposited with probability

p = Jin/L per site, and the total input current Jin is fixed for different system sizes.

(We are forced to using a system-size dependent local input rate because the sandpile

model (6.1) has a limited maximum output capacity of Nf grains per time step for

any system sizes.) By changing the magnitude of the driving force Jin, we can probe

both below and above the avalanche-overlap limit (6.4). It is shown that interesting

temporal fluctuations (i.e. 1/f noise) appear only for driving forces exceeding the
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limit (6.4).

The discrete model is somewhat artificial due to the dependence of the local

deposition rate on the system size L. To circumvent this problem, we introduce a

modified "continuum" model in setion 6.2.3. We find qualitatively similar behaviors

for the continuum and the discrete model. The continuum model does not have the

extra L dependence and lends itself better to the anaylyic treatment of section 6.3.

6.2.2 The Discrete Model

In this model, discrete "sand grains" are randomly deposited to the system. Time

is defined by an external clock. At each time step, there is a small probability p of

depositing a particle to each site, i.e. H(n, t + 1) = H(n, t) + 1 with probability p.

As a result, there is an average deposition rate Jin = p - L for a system of size L.

Due to the output limitation of the discrete model, we fix the input rate at Jin < N1

independent of system size.

We let the system evolve for a long time until the steady-state is reached, i.e.

(Jin) = (Jout). In steady-state, we record the time series for the output current J(t)

and the instantaneous energy dissipation E(t) as previously defined. We then take

the power spectra S(w) for the output series, where

Sx(w) = J dtaJ dre-'"X(t)X(t + r), X e J, E.

If the avalanches do not overlap, then according to BTW, the resulting time series
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of output current J(t) and energy dissipation E(t) should be equivalent to the random

superposition of single avalanches according to the respective distribution functions

Dj(T) and DE(T). In particular, the power spectrum of the time series is predicted

to have the form S(w) -, w-F(wL') where the exponents 3 can be related to the

exponents of the distribution functions and F(x) is a cut-off function due to finite

size. Thus, 1/f-type noise may arise (if 0 < # < 2) as a consequence of random

superposition of individual avalanches that are power-law distributed. However there

should be no correlation beyond a time scale set by the longest avalanche, i.e. S(w) =

constant for w < L'.

This is indeed the case when we directly analyze the output time series for systems

subject to very small driving forces: Figure 6.3 shows the resulting power-spectra for

a system of 100 lattice sites with Jin = 0.002, i.e. an average of two (Nf) sand

grains deposited to the system every 1000 time steps. From the form of the power

spectra, we obtain the exponents OE - 4 and f#j . 2. Clearly, the power-spectra do

not exhibit 1/f-type broad-band noise. The lack of 1/f-noise in the sandpile model

has been noticed recently by several groups[95][96]. This finding amounts to another

major short-coming of the sandpile model since the model was originally invented to

study the 1/f noise in transport.

As many transport systems in nature do have non-negligible driving forces, we

next investigate the robustness of the scaling behaviors found above by exciting the

avalanches more frequently. According to TB, all that will happen at higher driving
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forces is that the cutoffs to the scaling regions in Figure 6.3 will move to higher

frequencies (or shorter times); so that in the large input rate limit, the scaling region

will be drastically reduced and one loses criticality in the macroscopic limit. However,

when we repeat the simulation at higher input rate (Jin = 0.02 and Jin = 0.2), we

obtain the interesting series of power-spectra shown in Figure 6.4. While the cutoff

times do get reduced due to more frequent avalanche overlaps at higher input rate,

new scaling regions with S(w) - w- 1 seem to emerge at a time scale beyond the

cutoff.

We have performed a systematic study of the behavior of the sandpile in the

overlapping avalanche limit. Using Jir = 0.2, the resulting power-spectra for systems

of sizes ranging from 25 to 800 are shown in Figure 6.5. The power spectra exhibit

a variety of different behaviors depending on the time scale. They are qualitatively

divided into three non-trivial regions as sketched in Figure 6.6. We now describe each

region in detail.

(I) Single Avalanche Region:

In this region, the observation time is of the order of the avalanche duration.

Power spectra can be described by the scaling form, SE(w,L) = w-I F(wL ' ' ) and

Sj(w,L) = w- OL-0.5 F(wLO') where /E 1 4, 0/3 j 2, and o' 1 0.5.2 Note that

2The exponent o' associated with the finite size scaling of the power-spectra should not be
interpreted as the dynamic exponent oa because the cutoff time (TA of Figure 6.6) is due to the
overlap of avalanches, which in turn depends on the input rate Jin. We expect TA to have different
L dependences for input rates of different L dependences. The dynamic exponent a can be easily
obtained from the finite-size scaling of the power-spectra in the non-overlapping limit. This however
has not been pursued here since our interest lies within the overlapping avalanche limit.
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Figure 6.4: Power spectra of (a) the energy dissipation and (b) the output current for
a one dimensional sandpile (L = 100) with deposition rates p = 2 x 10- 3 , 2 x 10- 4,

and 2 x 10-' per site. Notice that a new scaling region with S(w) - w- 1 emerges as
we increase the input rate.
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Figure 6.5: Power spectra of the one dimensional
dissipation E(t), and (b) the output current J(t).
is scaled by L"o.

sandpile (6.1) for (a) the energy
Note that the vertical axis of (b)
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Figure 6.6: Qualitative behavior of power spectra shown in Figure 6.5.
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Sj decreases with the system size L. (Note that the vertical axis of Figure 6.5(b)

is scaled by L0.s.) To understand the scaling region, we first directly examine the

time series. Figure 6.7 shows sections of the typical time series of the instantaneous

energy dissipation E(t) at the time scale of region (I) for L = 25 and L = 800

systems. We recognize the activities shown to be the superposition of individual

avalanche processes. The smoothness of the time series is a direct result of the

addition of random signals; this is reflected in the large value of the exponent 3 E.

It can also be seen from Figure 6.4 that the scaling behaviors in the high frequency

region are the same above and below the overlapping avalanche limit. We are therefore

convinced that region (I) does correspond to the random superposition of independent

avalanches. As already mentioned, the largeness of the exponents ( 3 E _ 4 and 3j _ 2)

indicates the lack of 1/f noise in this region. The frequency dependences of the power

spectra are in priciple attainable from an analysis of distribution functions as have

been done by previous studies[95][96].

The upper cut-off time TA for region (I) is not very long even in the non-overlapping

case; it has an upper bound of the maximum life time of one avalanche, i.e. TA < L7,

where the dynamic exponent r is typically less than unity for a decelerating process.

To put it in perspective of a real avalanche process such as an earthquake, TA can

be only of the order of seconds to minutes (if we take our system to be a 100-mile

segment of the San Andreas fault between Santa Cruz and Berkeley in California).

While the way energy is released during one quake is certainly worthy of study, for

183



10 sandpile (discrete model) L=25

500 550 600 650 700
time

10 sandpile (discrete model) L=800

2

0

CA)

350

300

.250

C.
rC

200

150

(b)

Figure 6.7: Time series for instantaneous energy
sandpile with (a) L = 25, and (b) L = 800.
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(II) Interacting Avalanche Region

We now come to a major result of this numerical study. Far from being uncorre-

lated as implied by BTW, we find 1/f noise when looking at time scales beyond the

maximum duration of individual avalanches. In this region, the power spectra can be

fitted to a power-law of the form Sx(w) = w-Ox. The exponents are determined to be

OE 1.0, and 40 _ 1.0 (using the results of L = 400,800 systems in Figure 6.5). The

cut-off time TB for region (II) (see Figure 6.6) is expected to be related to the system
4 E~"10 n J~10(sn h eut fL=40 0 ytm nFgr .) h

size L through another dynamical exponent, z.3 This exponent cannot be determined

adequately from the existing data, but can be obtained from the analytical treatment

of section 6.3.

A more intuitive feel for this region is obtained by examining the time series coarse-

grained to the relevant scale. In Figure 6.8, we illustrate a time-series taken from the
L = 800 system. It is clear that these time-series are characteristically different

from that of Figure 6.7, as the fluctuations here are more erratic (less smooth), but

not random-a signature of 1/f noise. Since the time scale of these fluctuations are

long compared to the maximum lifetime of single avalanches, we conclude that the

correlation in this part of the spectrum must arise out of interactions among the

3Note that z is the dynamic exponent for the interacting avalanches, different from o which is
the dynamic exponent for a single avalanche.
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Figure 6.8: Time series for instantaneous energy dissipation E(t) of the one dimen-

sional sandpile with L = 800. At this time resolution, correlation among avalanches

can be seen.

avalanches. In this way, this region is reminiscient of aftershocks in earthquakes

and shock waves in hydrodynamics. The hydrodynamic region gives the asymptotic

behaviour of the model in the long-time limit, and is the relevant region for studies

of 1/f noise. It is natural to resort to means of continuum field theory for a possible

description of the behaviours here. A detailed analysis of this region will be the

subject of section 6.3. It will be shown that the existenc of power-law scaling in

the hydrodynamic region is a consequence of the conservative dynamics present in

the model. Again, we put these time scales in perspective by making analogies with

earthquakes: aftershocks and correlation of quakes along a faultline can exist at time

scales ranging from minutes to hundreds of years.

(III) Great Events Region

When we look at even longer time scales, we encounter avalanches whose active
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zones are of the order of the system size. These great events sweep through the entire

system and effectively reset the slope of the sandpile. They can be thought of as

system-wide discharge processes.

The origin of great events has been studied by Carlson and Langer in a different

(but possibly related) model[87], and has been alluded to in reference (89]. It can be

traced back to a conservation law which we illustrate in the context of this model.

For a sandpile of size L, the average input rate is fixed (i.e. (Jin) - 1) while the

scaling of output current can be determined from Figure 6.5 to be Jout ~ L-0 .25

The sandpile is therefore accumulating particles at a constant rate. This process

becomes unignorable when the number of particles accumulated reaches the order L2

(at which point the macroscopic slope of the sandpile is changed). Thus beyond a

time scale of Tc - L2 (see Figure 6.6), a system-wide discharge process is bound to

take place. 4 It is important to recognize that the accumulation of particles is possible

in the sandpile model due to the threshold nature of the dynamics which provides a

multitude of metastable states. Other systems exhibiting great events (e.g. in simple

models of earthquakes[87] and charge-density waves[88]) all share the feature of meta-

stability. These behaviors should be contrasted with more conventional viscous fluid

flows which do not exhibit the discharge activities observed here.

The effect of large scale discharges can also be detected if one only looks at the

avalanche distribution function D(s). Because the large s part of the distribution is

4Since TB - LZ, there may be an uncorrelated interval between TB and Tc for z < 2. See Figure
6.6.
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now subject to a different process and weighted more, we do not expect D(s) to obey

simple, homogeneous scaling of the form (6.3). As it turns out, the large avalanche

end of the distribution is also scale invariant. Furthermore, the small and large size

ends of the distribution D(s) must be related. It is found numerically in [89] that

the entire distribution function fits well to a multi-fractal scaling form, though the

implication of multi-scaling is not understood.

Let us return to the power sepectrum shown in Figure 6.5. It can be seen from the

low frequency behaviour of the small systems that temporal fluctuations in the great

events region is not trivial. The power spectra can be described by Sx(w) ~- o' x

where O'E ; VY'J • 1. The positive exponent indicates the existence of anti-correlation.

We find such anti-correlations persisting for a long time. For instance, anti-correlation

is present for the L = 25 system up to a time T - 104 . A simple treatment of

the scaling behavior of this region will be given in section 6.2.3 in the context of a

continuum model.

Although the description of various scaling regions given above are based on results

of the 1D sandpile, its generality goes beyond 1D systems. We have also performed

the generalization of (6.1) to a 2-dimensional lattice shown in Figure 6.9, with the

power spectra of energy dissipation shown in Figure 6.10. We see that the qualitative

behavior is the same as those described for the 1-D system (Figure 6.5). The scaling

exponents in region I and III are determined to be /3E 1 2.8 and 'V'E - 1.3, though

we do not have enough computing power to go to large enough system sizes to see
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Figure 6.9: A checker-board 2-dimensional lattice. A sandpile is defined on this lattice
by an interger height function H(mn, n, t). Due to the anisotropic nature of the 2D
sandpile (see section 6.3), we need to look at narrow strips of lattices such as the one
shown here.

the scaling in the intermediate hydrodynamic region.

The above findings can also be related to recent experiments on real sandpiles.

The spectrum shown in Figure 6.10 is qualitatively very similar to the one obtained

from recent experiments[83], reproduced here in Figure 6.11. As in Figure 6.10,

the power spectrum from experiments has a high frequency part S(w) -, w-3 which

is related to the fluctuation of individual avalanche events. Also, there is an anti-

correlating low-frequency part S(w) , wl.s which the authors have identified with the

changing angle of inclination. (As we will see in the analysis of the great events region

in section 6.2.3, the anti-correlation in the automaton is also related to the changing

angle of inclination.) The correspondence between experiment and simulation seem to

be very good indeed; but the authors of reference [83] prematurely concluded that the

189



1000

LLI
) 100

C

*- 10
°-,o

0 01
L
C-)CO

CL

0 001
C-

20 sandpile

103 10-2 10- 1 100

frequency

Figure 6.10: Power spectrum for the energy dissipation E(t) of several two-
dimensional lattices. The qualitative behavior observed here is similar to that of
the one-dimensional lattice shown in Figure 6.5.
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Figure 6.11: Power spectrum for the time series of "total activity" of a 2-dimensional
sandpile in a rotating cylinder. Reproduced from reference [83].
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sandpile model does not describe real sand based on the lack of 1/f-type fluctuations

in their sandpile. With the analysis in this section, we now understand that 1/f noise

should occur in the intermediate frequency range, which never really had a chance to

develop in the experiments performed (judging from Figure 6.11). It is possible that

interesting temporal structure could be detected as one goes to experiments of larger

scales and with larger driving forces.

6.2.3 The Continuum Model

The discrete sandpile investigated in section 6.2.3 suffers a defect in that the local

deposition rate p depends on the overall size of the system L. As mentioned previously,

we were forced to using such an L dependent deposition rate due to the limited

output capacity of the model (6.1). However, this choice of deposition rate makes the

problem somewhat artificial. Moreover, the L dependent deposition rate needlessly

complicates the finite-size scaling properties of the power-spectra and the cutoff time

TA To cireclmvpnt thep diff;utiei _ we introrc11et . l mnldif;ed version of the sandnileT.. A n r"rr, m fhq i w t r ev o esd
model. This new model will actually make a better connection with the field theory

description to be presented in section 6.3.

We again consider a 1-D sandpile of L sites as described by (6.1). But now we

generalize the height variable H(n, t) to a real number, and we modify the way the

system is driven. Instead of depositing integer particles with probability p = Jin/L,

we move the net input to the left edge, i.e. H(1, t + 1) = H(1, t) + in where Ji = 0.2
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as before. We mimic the effect of random deposition by associating a random walker

of step size P to each lattice site, i.e. H(n, t+1) = H(n, t)+ P x r(t), where r(t) = ±1

with equal probability. Lumping of input to the left end is done to circumvent the

limited-output deficiency of the sandpile model, and the introduction of the random

walker can be thought of as a result of coarse-graining of random input. This model

can also be thought of as a model for traffic along a busy highway, where cars are

constantly fed in from one end, with some cars leaving or entering the highway along

the way.

Why might we expect this model to bear any resemblance to the discrete model

discussed in section 6.2.2? The reason is two-fold: We learned from simulations

that the scaling properties are independent of the parameter Nf. We can imagine a

discrete system with Nf being a very large integer; then the local fluctuation is only

1/Nf per time step. This can be thought of as a continuous random walker after

coarse-graining. Also, scaling properties are insensitive to the average input as long

as it is small compared to the maximum output Nf. As is true in the discrete model,

what gives rise to interesting dynamics is the fluctuation in input, not the dc-input

itself.

The advantage of the continuum model is that the fluctuation in input can be

tuned independently of its dc value. For a random walker of step size P, it takes

a time of 1/P2 to accumulate to a height increment of one grain, at which point it

can initiate or stop an avalanche. Hence the probability (per site) of generating an
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avalanche is p ' P2 for the continuum model. Since P is now indepedent of system

size L, we see that the non-overlapping condition (6.4) cannot be satisfied in the

thermodynamic limit (L -+ oo) for any finite P. As mentioned earlier, the overlap

of avalanches corresponds to a percolating network above the percolation threshold.

One can define a L-independent correlation length for the sandpile in the spirit of

percolation theory. However, this scale as we will see shortly, is the lower cutoff for

the hydrodynamic region, as was the case for the discrete model. The important

scaling properties of the sandpile in the hydrodynamic region are not changed.

The continuum model is simulated on a computer, and the resulting power spectra

are found to be independent of the input parameter Jin as long as Jin < 1. They are

shown in Figure 6.12 for Jin = 0.2 for system sizes ranging from 32 to 1024. The

power spectra in Figure 6.12 are qualitatively similar to those of the discrete model

in Figure 6.5. The most obvious difference between these two sets of power spectra

lies in their different L dependence. This is expected as the key modification in

the continuum model is precisely the L dependence of the depostion rate p. The

spectra for the continuum model reveal a system-size-independent high-frequency

cutoff (TA of Figure 6.6) for L > 256. As explained in section 6.1, avalanches of size

s overlap when s p > 1. Since p ~- P2 is L independent in the continuum model, the

upper cutoff size (and similarly the upper cutoff duartion TA) of the non-interacting

avalanches should be L independent as observed. To check this intepretation, we have

also directly varied the noise level P for a fixed system size (L = 64). As seen in
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Figure 6.12: Power spectra of the one dimensional sandpile (continuum model) for
(a) the energy dissipation E(t), and (b) the output current J(t).
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Figure 6.13: Power spectrum for energy dissipation of the continuum version of a one
dimensional sandpile. Three different noise levels are shown for a L = 64 system.

Figure 6.13, the onset time (TA) for the hydrodynamic region becomes shorter as we

increase P. For w w TjI we again enter the region of overlapping avalanches. There,

individual avalanches are stopped or extended due to interference from neighboring

avalanches.

Various scaling exponents describing the frequency dependences of the power spec-

tra are listed in Table 6.1, along with those of the discrete model for ease of compar-

ison. Evidently the exponents for the two models are rather close in region I (single

avalanche region) and region II (hydrodynamic region). More significant differences

are found for region III (great event region), though the statistics in region III is not
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Table 6.1: The scaling exponents in various regions for the discrete and the continuum
model. The exponents are defined in Figure 6.6.

very good for the discrete model. 5

If we follow the great event region of the continuum model, we see that it domi-

nates the power-spectra of the small systems. In fact, if we run the same simulation

(continuum model) for a one-lattice system, we obtain over two decades of anti-

correlation in the power spectrum (see Figure 6.14). Anti-correlation is present

in the one-lattice system up to a time of T - 10 4 . Where might such a long-term

correlation (memory effect) come from?

To understand the origin of the anti-correlated region, let us examine the one-

lattice system more closely. If we ignore stochasticity, there will simply be an output

pulse of 2 grains every 10 time steps for Jin = 0.2 and N1 = 2. The inclusion of a small

6If we compare region III in Figure 6.5 and Figure 6.12, we find the former has barely one decade
while the latter has almost two decades. This difference can again be attributed to the different L
dependences of the input rate p for the two models.
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Figure 6.14: The output power spectrum of a one-lattice system with Jin = 0.2 and
P = 0.01.
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noise r(t) in the input can shift the output series: Suppose the height of the one-lattice

system is e = 0+ right after an output pulse, then we expect another output pulse

in 10 time steps; however if the magnitude of the accumulated noise within this time

period is -6 where 6 > E, then the height of the system will be slightly smaller than

Nf = 2 after 10 time steps, and therefore there will not be an output pulse until the

1 1 th step. Similarly, if the height of an output pulse is 1-e, and the accumulated noise

is 6 > E, then the output pulse will be advanced by one time step. The modulation

of the output sequence by a small noise is illustrated in Figure 6.15. The output is

delayed or advanced by one time step if the accumulated noise (a random walker for

simple white noise) is on different sides of the origin between two output pulses. A

simple, coarse graining procedure transforms the actual output profile J(t) to J(t) as

shown in Figure 6.15b. The function J(t) more clearly represents the relation between

the output sequence and zero-crossings of the random walker: J(t) = +1 for upward

crossings, and J(t) = -1 for downward crossing. It is apparent from Figure 6.15

that the output sequence for this simple one-lattice model is anti-correlated: Every

positive pulse is followed by a negative pulse. We can quantify this anti-correlation by

calculating the correlation function (J(O)j(t)). Without loss of generality, we assume

that J(0) = +1. The correlation function may be calculated by noting that the time

series J(t) can be written as J(t) = dJ'(t)/dt (see Figure 6.15) where

J'(t) =+1 if j r(t')dt' > 0
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Figure 6.15: The output sequence J(t) of the one-lattice system due to a random noise
shown below. The coarse-grained output series is obtained from J(t) = ET= J(t +
i)/r - Jn, where r = 10 is the average number of time steps between two output
pulses and Jin = 0.2. J(t) can also be thought of as the time derivative of the function
J'(t) shown at the bottom.
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J'(t) = 0 if jr(t')dt'< 0

and r(0) = 0,r'(0) > 0 by the choice of j(0). So (J(O)J(t)) = (J'(t)

(J'(t)) is simply the probability of a random walker's return to the origin

long time (r = 10), which is well known (~ 1/vI). Thus the correlation f

is (J(O)J(t)) t-3 / 2, yielding a power spectrum of S(w) , w1/ 2 in agreeme

Figure 6.14.

But of course the anti-correlating region cannot persist forever (after all, we

with an uncorrelated noise). After a sufficiently long time T,, the random

would have wandered to a value of +1. At a time scale greater than T,, the

behaves as if it has an input which is 0 or 2 with equal probability. And J,,

becomes uncorrelated. The upper cut-off time can easily be estimated: the c

traveled in time t for the random walk released at the origin is PFv. Sett:

distance to unity yields T, -, P-2.

We now relate this one-site problem to a large system (continuum model'

L in the great events region. During each great event, the number of sand

discharged is of the order L 2 as required by conservation law described in

6.2.2. Since this is a non-negligible portion of the total number of sand grain

system, passage of great events must change the macroscopic slope of the s;

For simplicity, if we assume a discharge of fixed size to occur when the slope

sandpile reaches a threshold 8max, then at an observation time greater than
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Figure 6.6), the sandpile simply executes the oscillation between a gradual building

up to m,,x, followed by sudden discharges, similar to the behavior of the single-site

system.

To complete our analysis, we estimate the upper cutoff time (TD of Figure 6.6)

for the anti-correlating great event region. In the simple one-site model, T , P-2'

where P is the size of the noise for the lattice site. Extending this argument to the

L-site continuum model, the effective noise amplitude for the system is V/P. Since

each great event discharges a volume - L2 , correlation exists until (vYP)V/' ~- L' ,

yielding an upper cutof time TD - P-2 L3 . The P dependence has been verified

in simulations, but we do not have enough computing capacity to determine the L

dependence quantitatively.

Finally we observe that the mechanism for the generation of great events de-

scribed above appears to be very similar to what was observed in a recent sandpile

experiment[83]. There the slope of the sandpile was also found to oscillate between

two angles. An elaborate mechanism has been proposed[97] to explain the observed

bistable discharge behavior of the sandpile. In light of the present analysis, we see that

this behavior is contained within the simple threshold rule of the sandpile automaton.

Our result suggests that the occurrence of great events should be common to a wide

variety of driven systems that possess metastable states. Uncorrelated noise coupled

to a reasonably sharp threshold function may produce long-time anti-correlations in

theses systems.
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6.3 Field Theory of Dissipative Transport

6.3.1 The Driven Diffusion Equation

We will consider the continuum sandpile model of section 6.2.3 and investigate its

behavior in the interacting avalanche region (II). To study this region we first coarse-

grain the system both in space and time to remove the lower-cutoffs and obtain

a coarse-grained landscape H(£, t). The coarse-grained unit cell length l0 and unit

time to must be large compared to the length scale at which deceleration of individual

avalanches takes place. For the continuum model, the cutoff of the single avalanche

region is L-independent. (For the discrete sandpile model, we would have o10 to >

TA " L 1/2.) Since discharge pocesses do not occur until a time scale t > Tc - L2 , the

slope of the coarse-grained sandpile may be considered stationary. Furthermore, we

assume the landscape of the sandpile to be flat on average, i.e. the average slope is

uniform. (The assumption of uniformity and stationarity of the slope will be checked

later for self-consistency of the theory). We may now consider the avalanche dynamics

from the point of view of fluctuations of the sandpile surface.

We define a dynamical field h(£, t) which is the difference between the coarse-

grained landscape fi(, t) and the flat average profile Ho(x) = A0(L - x), as shown

in Figure 6.16. Let us closely examine the presence/absence of various symmetries

from which we construct the equation of motion for h. The component of gravity

parallel to the surface picks out a direction of transport T. Let &1 = (T F)T and
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Figure 6.16: The height function h(X, t) is defined as a deviation from the flat steady-
state sand profile. Gravity drives sand along the transport direction T.
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Figure 6.17: The joint inversion symmetry h - -h and -ll -x 1 : +h (filled block)
moves down the slope while -h (void, shaded block) moves uphill.

£± = X - xll, then (1) the system has rotational invariance in £± and translational

invariance in F1J, i11; but (2) it lacks reflection symmetry in xlt and in h because of the

presence of a preferred direction T. However, with respect to the average flat surface,

"bumps" will move downhill while "voids" will move uphill as illustrated in Figure

6.17. We therefore have (3) the joint inversion symmetry h -+ -h and xl -- ll.

(4) The system lacks translational symmetry in h because of the presence of gravity.

(h measures the deviation from the average slope which is fixed once the input rate

and the box size are specified). We also take note of (5) an important conservation

law that the relaxation dynamics during an avalanche does not change the number

of particles, execpt (6) for the particles added randomly from outside.

We now construct the equation of motion based solely on factors (1) to (6) listed

above. From the conservative nature of the transport dynamics (5), the equation of
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motion is required to take on the form

ah
t + V Ij(h) = 7(

with the stochasticity 77 being the only sink/soun

to be a transport current J(h). The current can i

translational symmetry in h. by (4). We use the

the form of j(h). Since the current is a vector, it r

the only vectors in the problem. In general, the c

5(h) -aVh - a 2V(h2 ) ..... bV(Vh) 2

Alht + A2h2t + ... + A,(h) + +z

We are interested in the large-distance (k -+ 0

limit, the term a2 can be neglected compared to

spatial derivative. Similarly, the terms bn and c,

and wn respectively, and the v, and wn are ther

terms. As to the remaining terms AnhnT, we expe

if the surface is flat as initially assumed. ( The s

will be checked when the scaling behavior of h is c
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h terms are also ignored, and we have

(•h) = -aVh + AlhT + A2h 2 , (6.6)

to leading order. Of course the al and A2 terms are also small compared to the

A• term, except that the A1 term is forbidden by the joint inversion symmetry (3).

In fact, even without (3), the A1 term corresponds to a simple streaming motion

and can be transformed away by going to a moving frame xll = xil - Alt. Of the two

remaining terms, A2 - A/2 is the driving force proportional to the slope of the average

flat surface; this term originates from local transport dynamics such as the nonlinear

friction or the threshold dynamics. The Vh term is the linear current present in

any diffusive process; al can be interpreted as the surface tension for the sandpile.

However, for the anisotropic problem (2) at hand, the surface tension is in general

a tensor v, with components vII and vi in directions parallel and perpendicular to

transport T respectively. We thus arrive at

1 = -vVh - llhT+ -h 2 T, (6.7)

and the equation of motion (6.5) becomes

8th(',t) = v•,llh + ±VIrh -2 A 1(h2) + 1(i, t). (6.8)_LV-Lh - ~2 llh1(68
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Before we present a detailed analysis of (6.8), we emphasize that the most important

feature of this equation is that it has no mass term (-h/r) which would destroy

criticality. In Chapter 5, we saw that translational symmetry along the surface normal

can remove the mass term and "produce" criticality. Here translational symmetry is

explicitly absent by (4). It is the conservative nature (5) of the deterministic part of

the dynamics that rules out the mass term in the equation of motion (6.8).

Equation (6.8) is describes driven-diffusion and has been studied[98] in the con-

text of a conservative noise (7(, t)77(0,0)) = 2DV 2 62(),)6(t). In the present case,

the addition of sand particles from the outside destroys the local conservation rule.

Although in steady-state the balance of drainage from the boundaries and the flux of

the added particles implies (77((Z, t)) = 0, the random-walkers associated to each site

give a leading moment of noise

('(£, t)7q(X' , t')) = 2Dsd( - •)s(t- t'), (6.9)

in the hydrodynamic limit. Here D is a measure of the strength of the noise; it is

related to the step size P of the random-walkers by D P p2. Note that for the

discrete model, D would be system size dependent due to the size dependences of the

local depostion rate p and the coarse-grained unit cell size 10 and to. This ultimately

results in the different L dependences of the power spectra between the discrete and

the continuum model (see Figure 6.5 and Figure 6.12).
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6.3.2 Dynamical Renormalization Group Analysis

To study the scaling of fluctuations in the hydrodynamic region, we do a dynamical

renormalization group calculation. We calculate the two-point correlation function

(h(`,t)h(F',t')) - C (X- ~',t - t'). In the absence of nonlinearity, (6.8) is simply a

diffusion equation (with anisotropy). Its solution is

C( ,t)= DX2-dG (it i X (6.10)ill A F a I I

Nonlinearity can be included perturbatively, the net effect is the modification (i.e.,

renormalization) of the parameters D, vll, v±. In general we have

DR = D [1 + a,(Axl) ± a2(Axj;) 2 +...] , (6.11)

with similar expansions for v1 and vji. Here x" is the length dimension of the non-

linearity A. For renormalizable theories, series such as (6.11) can be summed to yield

scaling forms, i.e.

DR = D(1 + aj(Axl))P'

V11 = vj(1+a 2(AX')Y32

vj( = V(1+ a 3(AX' ))Y 3.
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Inserting the above into (6.10), we find that in the hydrodynamic limit the correlation

function has the simple form

C(, t) = x, F - (6.12)

where the exponents X, z and C are the rougheness, dynamic and anisotropy exponents

respectively. In the absence of nonlinearity, we have the free exponent values Xo = (2-

d)/2, zo = 2, and •0 = 1 by comparing (6.10) and (6.12). Finding the exponents in the

presence of nonlinearities requires in general the knowledge of the entire perturbation

series such as (6.11). The method of renormalization group short cuts this process.

We make a hypothesis that C(£, t) scales as (6.12).6 We then perform the series of

operations outlined at the end of Chapter 2 to obtain the exponents X, z, and (.

(i) Naive dimensions:

A change of scale Xfl -4 bxzl is accompanied by t -+ bzt, V£ - bKi< and h - bxh..

After this rescaling, Eqn. (6.8) transforms to

9h A
bx-z• t = av1bX-2'8h + v±bx-2C2 h- -b 2x-1 1llh 2  b- /2-(d-1)(/2-1/27

t11 2

where Eqn. (6.9) has been used to determine the scaling of 71. Thus we identify the

6This is in essence the hypothesis of the summability of (6.11), and is otherwise known as the
renormalizability hypothesis.
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naive scaling for these parameters:

Vii bz-2Vll,

VI - bz-2(CV,

A -- bX+z-1,

D - Dz- 2x-C(d- 1)- 1
(6.13)

(ii) Perturbative Calculation

We next calculate the correction to the parameters due to nonlinearity. Here we

will carry out the calculation to the leading order. We go to Fourier space, where

h(:, t) = [ d d ddk h(, )e('•t).
J 27r (2rd ,w)ed

Eqn. (6.8) becomes

S-*)A dd q di-
h(e,w) = Go( ,w),7(k,w)--Go(, 7w)(ikll )  h(f ,)h(k-, w-p). (6.14)

2 (2r)2 27r

Here

1
Go( , ) = 1) f + w

is the bare propagator, and the Fourier transformed noise spectrum is

(r(,w) , ')) = 2Dbd(k + ')(w + w').
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Figure 6.18: Diagrammatic representation of

and the perturbation series that results from
the nonlinear integral equation (6.14) ,
it.

Eqn. (6.14) is a convenient starting point for a perturbative calculation of h.(,kw)

in powers of A as indicated diagrammatically in Figure 6.18. The graphic expansion

is quite standard[59] with -- indicating the propagator Go, and x depicting the

noise 7(/k,w). The averaging over stochastic noise is performed using Eqn. (6.15),

and the renormalized response function G(k, w) [defined by h(k, w) GR(, w)(k,w)]

is given perturbatively in Figure 6.19a. The lowest order (one loop) correction is

GR(,w) = Go(k,w) + 4 2 2DGo(k,w) 2J (2r)d iki ddq

k (4k (A4),
Go - q, - Go +q,-• + Go - -  +O(A),2 2 2 2 2
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where the combinatorial factor of four represents possible noise contractions leading

to Figure 6.19a.

Clearly, the correction to the propagator above is porportional to kll. For sym-

metry reasons odd powers of k1l and kI cannot survive after performing the spherical

average f dd q. The leading k dependences are therefore of the form kW, k IC, k k of

which only the kl2 term is kept, since we are interested in the hydrodynamical limit

of kI -+ 0. After performing the integrals (see the Appendix), we have to O(k 2 ),

37+37 k-e
Go(k, 0) = Go(k, O) + G k(, 0) - -ul kI , (6.16)

where E = 4 - d and we have defined an effective coupling constant

A2D 2Sd-1
U 3/2V 3/2 (27 )d

The propagator can now be written as

1
kRQ,0) I Vk2 + Vk - iw'

with the effective surface tension

Vld = 3li [1 + ILI + O(u2)] (6.17)

and vi = v±. Note that there is no correction to vi- to leading order because the
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nonlineatiy is proportional to kll. In fact vl_ is not renormalized to any order of the

perturbation expansion because the correction propagator is always proportional to

kll as shown in Figure 6.19a.

A renormalized noise spectrum DR(k,w) can be defined from

(h*(k,w)h(, w)) = 2GR(k,w)GR(-fk, -w)DR(fk,w). (6.18)

Again, because the vertex is proportional to k1 , the leading order graph (Figure 6.19b)

is of order k which can be neglected in the hydrodynamical limit and the coefficient

D is not renormalized to all orders in the perturbation series, i.e. DR = D.

The last parameter to consider is the nonlinearity parameter A which has a contri-

bution from the graphs in Figure 6.19c. A one-loop calculation gives a null result. In

fact this is also true to all orders of the perturbation series. The nonrenormalizability

of A is due to a Galilean invariance in the equation of motion. (See Appendix to

Chapter 5 for a detailed discussion.) Eqn. (6.8) is invariant under an infinitesimal

reparameterization x1l -* xil - SAt, t -, t if h ---+ h + 6. Note that the parameter A

appears both as the coefficient of the nonlinearity in Eqn. (6.8) and as an invari-

ant factor relating to xll and t reparametrizations. Hence any renormalization of the

driven-diffusion equation that preserves Galilean invariance must leave the coefficient

A unchanged, i.e. AR = A to all orders.

(iii) Recursion Relations

Let us find the rescaling behavior of the surface tension vll. Define an observation
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length scale k1= b.ao where ao is

renormalized surface tension is

a microscopic cutoff length, then the dimensionless

(b) V1 (bao) '-2 = v11(bao), -z
I/II 11

We apply the rescaling operator and obtain

vi(bao)z- 2 [z 3r (- 2 + -u.32

We assume the renormalizability of the theory (see section 2.4) and replace ut l by v•.

Then v11(bao)z - 2 = • (b), and

(AR)2DR 2Sd_1 ( -d ftR
u(bao) (~R)3/2(VR)3/2 (21r)d -)

(since we already have AR = A, DR = D, vj = v±). Expressing in terms of 1 = log b,

we arrive at the recursion relation

d
= R z -2+ +32 (6.19)

and similarly

d

dlR
d

dl

(6.20)

(6.21)
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SR[X + z - 1],

1 +
37r (bao)E
32--32 E + O(u2)] .

bao) ]ab-5- , (b)



ddlR = DR[z - 2X -(d - 1) - 1]. (6.22)
dl

(iv) RG Flows, Fixed Points and Exponents:

In the hydrodynamic limit (b --+ oo, or 1 -+ oo), we expect the scaling behavior

to be described by (6.10). If this expectation is true, then the parameters f , etc.

should be dimensionless in the hydrodynamic limit. This necessarily implies i1u! = 0

as 1 --+ co for instance. The exponents may then be solved at the infra-red fixed point

(1 -+ •o) of the flow equations (6.19) through (6.22).

Since (6.20), (6.21), and (6.22) are exact as explained, we immediately obtain

from them the exponents exactly,

1-d 6 3

7 -d' 7-d' 7-d (6.23)

Using the value of the exponents (6.23) and the recursion relation (6.19), we may

obtain the flow equation for the effective interaction parameter

d = R [(4 - d) - 97ri .R (6.24)
dl 64

Above the upper critical dimension of de = 4, the nonlinearity is irrelevent, and we

recover the ideal scaling zo = 2, Xo = (2 - d)/2, Io = 1. Below d = 4, there is a

stable fixed point at fi* - R( - + 00) = (64/9rx)E to first order in E = 4 - d. At the

fixed point fi*, the scaling behavior of the surface is described by the set of exponents

217



found in (6.23).

It is important to realize that though the fixed point it* is known only pertur-

batively to O(E), the scaling exponents (6.23) are exact. The exactness of these

exponents is a result of the non-renormalizability conditions on vi, A and D which

remove anomalous dimensions to all loop orders. This point can probably be best rep-

resented by direct examination of the correlation function C(X', t). We have already

shown the parameters D, A, v± are not changed by the inclusion of nonlinearity. The

form of vli can be obtained from integration of the flow equation. From (6.24) we

obtain the renormalized coupling constant:

tR(aX ) = L , with zxl = aoel

1 + 9w rae64 e11

to leading order in e. The renormalized surface tension can now be obtained by

integrating (6.19), giving

(XI) = VRXz-2 9-2 u ) )1/3

Inserting vR (x1) and DR = D, AR = A, vR = v1 into (6.10) we obtain the renormal-

ized correlation function

1 + 97 zU-X) -1/-dG -- 1t + 9, +1. X, ) 1/3 1 F

CR( , t) = 2r-d 9 1/6

(6.25)
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Comparing the above with (6.12), we can immediately read off the exponents (6.23)

in the hydrodynamic limit xjl --+ o. It is now apparent how the exponents will not

be affected by higher-order loop corrections because they only change the coefficient

in front of x", (i.e. the fixed point position) but not the exponent 1/3. It is also worth

noting that the diagrams which contribute to order k k2 in the propagator GR(k,w)

and to kl( in the noise spectrum DR(k, w) also amount to a correction to the coefficient

of xrf. They do not modify the leading scaling behaviors (6.23).

Finally we point out that the roughening exponent X as given by (6.23) is negative

for d > 1. Since the width of the interface (see section 4.2 for a detail discussion) is

characterized by w - L', then X < 0 implies that the surface is asymptotically flat

for d > 1. Also the exponent z < 2 for all dimensions. This gives an upper cutoff time

Ts B L z that is small compared to the onset of sandpile's discharge region. (Tc - L 2,

see Figure 6.6). Hence the slope does not change appreciably in the hydrodynamic

region (II). These results provide a self-consistent check of the "flat and stationary

surface" assumption made at the outset of the analysis. The assumption is no longer

valid below 1 + 1 dimensions.

6.3.3 Spatial and Temporal Fluctuations

The exponents y, z, and C are the fundamental scaling dimensions of the system; other

quantities can in principle be calculated from them. In particular, we are interested in

the spatial and temporal correlations of observables such as the transport current and
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the energy dissipation. Although the spatial part of the fluctuations is easily defined

in a formal sense, it is not easily visualizable. As mentioned in the beginning of this

chapter, fractal structures are more easily seen in the growth model of chapter 5,

while temporal fluctuations can be naturally probed in transport systems such as the

one studied in this chapter. In the following, we show how the spatial and temporal

fluctuations can be related to the fundamental dynamical field h.

(i) Spatial Structures

To probe the spatial structure of our fluctuating surface, we need to calculate the

response of the surface to an infinitesimal perturbation. This response function can

be defined in the following way. We start with some initial height configuration ho(F)

and deposit particles randomly as described by y(;X, t) and obtain a series of height

profiles h(£, t). This is followed by another run starting from the same configuration

ho0 (), and depositing particles with the same randomness q(', t) except for a small

difference tb(£, t). The surface profile obtained the second time is h'(£, t) and is

different from the first by an amount Sh( , t) = h(, t) - h'(F, t). The response

function is then R(', i', t, t') = Sh(5, t) -by-'(~', t'). Mathematically, we can obtain

this response function by substituting h + bh for h and y + by for yj in Eqn. (6.8), and

a(bh) = -v +(Sh) h) - A (h -bh) - (h)2
at ~ 11a1 (h 1 22Vl (&h)+by
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To linear order, the response function is represented by the following shorthand

R(, t) = - v11a2 - VI• V + +8h + -AhMI . (6.26)

In Fourier space the linear response function is the free propagator Ro(k, c) =

1/[-iw + vulk2 + avk2]. With the nonlinearity 911h x -  = z-. Since z < 2

as found in the previous section, the Ollh term in (6.26) dominates 8j in the hydro-

dynamic limit. The large distance scaling properties are therefore governed by the

response

R(k,w) = -f

For a point perturbation 6y(Z, t) = 6(t)6d(5), the response is

h(XF, t) = t-d/zf ) (6.27)

Not surprisingly, we see that the influence of the perturbation spreads as t 1/ 2 per-

pendicular to the driving direction and as t 1O  > t1/ 2 in the downhill direction. In

2 + 1 dimensions, 1/z = 5/6 and the effect of anisotropy is quite dominating. From

(6.27), we can also calculate other useful quantities such as the size distribution of the

sites influenced, and the fractal dimension of the influenced region, etc. However, the

relation of these quantities to the fundamental dynamical field h are model dependent

and will not be pursued here.

(ii) Temporal Fluctuations
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A direct comparison with simulation results of the previous section can be made by

computing the power-spectra for the output current J(t) and the energy dissipation

E(t). The output current measured in section 6.2 is the local current j(;, t) at

the boundary xll = L1I, and for a general d + 1 dimensional system it is J(t) =

f dd-'21 j(kl,4, Q1, t). Using (6.6) for j and noting that in d < 4 scaling is dominated

by the h2 part of the current, we obtain

(J(t)J(O))c = Jdd-lx1dd- 1 l(h 2(, 2 :5( , ))c

L d- 1[4+(d-1)(]/z

where we used (h2(a, t)h2(6 ,0))c ~ (h(£, t)h(O,O0))2. The Fourier transform of the

correlation function yields the power spctrum Sj(w) w o-O with 0j = 1/z.

A similar calculation can be carried out for the energy dissipation E(t). Here

we start from the total "potential energy" of the system U(t) = x f ddx [-I(, t)

where IH(£, t) = Ho(x') + h(£, t) is the time-dependent coarse-grained landscape of

the sandpile. The energy dissipated is simply the loss of potential energy, i.e.

dU d
E(t) = dd _dd . Oh

(only the leading order term in h(£, t) is kept). Using the equation of motion (6.8),
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Table 6.2: Numerical vaules for some of the exponents defined in the text.

and by partial integration we obtain

E(t) = Jd'i. J(,t) = J ddx ( ).

We see that the total energy dissipated at each time is just the sum of local transport

activities, precisely the quantity monitored in the simulation. The energy correlation

function can again be calculated using the basic correlation function (hh), giving

(E(t)E(O))c = d"zdd''(h2(, t )h2(, 0))c

S L dtI4x+(d-1)C+1]/z.

Fourier transform of the above then gives us the energy dissipation power spectrum

SE(w) , Ldw-4B, with PE = 2/z. The numerical values of various exponents are

listed in Table 6.2.

Comparing the exponent values for d = 1 to the simulation result of section 6.2,

we see that while the L dependences of the power spectra is the same as those derived

above, the frequency dependences of the observed spectra (0j ; 0.8 and OE 0 1.0
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d >4 3 2 1

z 2 1.50 1.20 1

x (2 - d)/2 -0.50 -0.20 0
C 1 0.75 0.60 ...

OJ 0.5 0.67 0.83 1

•E 1 1.33 1.67 2



for the continuum model) do not agree with the above results. This discrepency is

attributed to the over-simplification of the noise-spectrum (6.9). The coarse grained

unit cell of the sandpile has a length 10 which is system size independent. View this

unit cell as an isolated system: According to the analysis of section 6.2, there is a time

scale Tc . l2 above which this unit cell is in the discharge mode, effectively generating

a temporally anti-correlated noise. A large system in the interaction region is then

actually subject to an anti-correlated noise with spectrum

(77( , L),q( , _L)) , bd( -_ -')W1•/

in one dimension.' We therefore expect the scaling behaviour for the continuum

model to be modified.

In the case of correlated noise, we can no longer evaluate the exponents exactly

because Galilean invariance is no longer valid (see chapter 5). Nevertheless, let us

ignore the contribution of vertex renormalization in the spirit of Flory. We simply

balance the exponents using naive dimensional counting, and find that the result

qj = 1/z and -E = 2/z is not altered, but with z = 6/5 in 1-D. This gives Sj(w)u

w-0 . 83, SE(w) - Lw'- 16 7, which is an improvement in the right direction. Systemmatic

calculation including the renormalization of A can be carried out using the method

described in chapter 5.

'This situation does not happen to the discrete model because lo - L1/2 . The anti-correlating
part is not seen until a time scale Tc > 12 - L. But that is already the upper cutoff for the driven
diffusion equation since z = 1 for the 1-D sandpile.
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6.3.4 Universality Classes and Other Models

As stated in section 6.3.1, the analytical model described in this section applies to

transport processes that (a) are locally conservative, (b) have an unique transport

direction, (c) have non-conservative uncorrelated noise throughout the system, and

(d) have an uniform and stationary gradient set up by the material transported (e.g.

flat average surfaces). Given the above conditions, the large distance, long time scal-

ing behaviour found in section 6.3.2 is universal, i.e., the "hydrodynamic" properties

should not depend on the microscopic details of the system. However, alterations in

any of the above conditions can lead to different scaling behaviours; indeed it can

even destroy criticality.

Of the four conditions listed above, (d) is by far the most model dependent one in

that its existence is based on simulation results. We have constructed a self-consistent

theory based on this assumption. We will focus our discussion on conditions (a)-(c)

assuming that (d) is somehow given by the process. In other words, we will only look

at processes that exhibit (d).

(i) Role of Consevation Laws:

Consevation laws are generally satisfied by most transport systems and can lead

to criticality as seen in section 6.3.2 . However, it is worth pointing out that conser-

vation laws are not necessary for the occurence of SOC. As we have seen in chapter

5, a translational symmetry in the dynamic field (h) can also bring the system to

criticality. There can be still other mechanisms. Also, conservation laws themselves
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are not sufficient to guarantee the existence of criticality. With a conserved transport

quantity (h), we will have an equation of motion

± +  - (h) = 9(`, t), (6.28)
Ot

in which the criticality breaking term h/r is excluded. But there are still other

mechanisms preventing criticality.

One such possibility is pointed out by Grinstein, Lee and Sachdev[99]; it can easily

be appreciated in the following simple example. Consider an ideal diffusion equation

Oh S= VV2h + q( t),

which does not have any time or length scales. If the noise is conservative, i.e.,

(y(5,,t)77(0',0)) = 2DV26d(£)6(t), then the solution is (h('£,t)h(O,O)) = t-d/2e-x 2/vt

Although the correlation function has a long time tail t - d/2, the equal time spatial

correlation function is delta correlated, i.e. (h(£, O)h(O0, 0)) = 6 d(£). There is no long-

range spatial correlation and hence no criticality. For a given theory, it is important

to check whether the correlation function is long-ranged. It is however believed that

the nonlinearity will enhance spatial correlation and that the above scenario is not a

problem in low dimensions where nonlinearities are relevant.

Barring a few problematic cases, conservation laws seem to give rise to criticality

in a wide variety of situations. Next, we point out a number of possible universality
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classes for critical systems with conservative dynamics.

(ii) Role of Stochasticity and Randomness

We first restrict ourselves to anisotropic transport processes and explore the effect

of the noise term. As derived in section 6.3.2, the simplest nontrivial equation of

motion is

Oh A
= V 2h -h (h2 ) +, (£,t). (6.29)Ot 2

If the noise is conservative, i.e.

(q(X, t)71(6, 0)) = 2DV2 d(F)6(t), (6.30)

then a change in scale x -4 bx ( accompanied by t --+ bzt, h -+ bxh) leads to transfor-

mation of the parameters

V -- bZ-2v, D -* bZ-2x-d-2D, A -- bx+z-lA.

In the absence of nonlinearity ( i.e., A = 0), the equation is made scale-invariant

upon the choice of zo = 2 and Xo = -d/2. A nonlinearity added to this scale invariant

equation has a dimension yo = X0 + zo - 1 - 1 - d/2. For d > 2, a small nonlinearity

is irrelevant, while for d < 2, the nonlinearity is relevant and grows under rescaling.

The upper critical dimension for the problem with conservative noise is d, = 2.

This is actually the problem of forced particle diffusion studied by Schmittmann and

Janssen[98]. The exponents found are similiar to those in (6.23) but with d replaced
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by d - 2.

There is another class of driven transport systems where the input is not from the

"top" of the box, but from the end opposite to the open (exit) end. One example is

the transport of vortices through a pieces of type II superconductor[100J. There have

also been some recent simulation of such processes[101]. In the simplest scenario,

such a process may be described by (6.29), with the noise term

(77( F t)7(i', t')) = 2D6(x 1)(l )6d-l(_ - )6(t-

where the delta functions 6(xjj)6(x(() force the noise to be at the input edge. We again

do the naive scaling analysis and find the parameters to transform as

v -- bz-2v, D - bz - 2x - d - 1D, A -+ bx+z - l A.

The free exponents (for A = 0) are in this case zo = 2, X0o = 1 - d/2, giving the

nonlinearity a dimension yo = Xo + z0 - 1 = (3 - d)/2, and hence an upper critical

dimension d, = 3. This agrees with the upper critical dimension of a similar problem

found by Dhar et al.

Another recurring situation is that the medium through which a transport process

takes place has quenched randomness. Such a scenario may be described by a "noise"

of the form

(77(',t)77(i7,t')) = 2D d( - •'),
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which is explicitly time independent. Similiar scaling analysis yields yo = (6 - d)/2

giving an upper critical dimension d, = 6 for this process. In general, for spatially

and temporally correlated noise of the form

(77 X, t)?,(0 0)) _ I X oj -dltj2O 1

the upper critical dimension for the nonlinearity in Eqn. (6.29) is de = 4 + 2p + 40.

(iii) Effect of Isotropy

Transport systems do not always have to be driven in one specific direction. As

an example, we can consider the traffic problem in a big city: We assume that the

total number of cars on the road is on average constant, but there are random local

sources and sinks (i.e. parking lots) so the equation of motion is again Eqn. (6.28)

where h is now the density of cars and 7 describes the randomness. What is the form

of j if the cars in our system are simply wandering aimlessly? Since this problem is

now isotropic, the current operator j can only be constructed from combinations of

and h's. Leading terms are j = -v +h + (A/2)V(h2). The first term represents

random wanderings of cars (diffusive term). The second term mimicks a cooperative

crowding effect. If we write the current above as

then it becomes apparent that the second term slows down the wandering of cars if
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local car density becomes high, i.e., it is more difficult for cars in traffic jams to get

out. Inserting the current operator into the conservation law (6.28), we obtain the

following equation of motion

Oh A
- vVh - V 2(h 2 ) + qJ(£, t). (6.31)

1t 2

This is yet another version of the nonlinear diffusion equation. It looks somewhat

like the KPZ equation (5.1) but is in fact quite different because it does not have

the symmetry h -- h + constant. Naive dimensional analysis gives an upper critical

dimension of 2 above which small nonlinearity is irrelevant. If we transform equation

(6.31) into Fourier space, we find that the vertex of the nonlinear term is proportional

ot k2 . Following the analysis of section 6.3.2, we immediately see that the loop

correction to the noise spectrum is of O(k 4 ). Therefore for non-conservative noise 77

the noise spectrum (7(£, t)77(0',0)) = 2DSd(F)6b(t) is not changed to any loop order.

The nonrenormalization of D immediately gives us an exponent identity z - 2 X = d.

However, the parameters v and A do get renormalized; they can be calculated in the

usual way (as described in section 6.3.2).

Of course, equation (6.31) can be coupled to different types of noise spectra giving

rise to different universality classes. We will not try to repeat the enumeration as it

is very similiar to the one already presented for the anisotropic case.
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6.4 Conclusion

In this chapter, we studied the sandpile problem as a model for dissipative transport,

both numerically and analytically. We found a number of scaling regions for the

sandpile automaton, much like what was found in experiments on real sand. The

hydrodynamic region can be studied using the methods of continuum field theory,

and the anomolous scaling properties of the long-time tail can be obtained using

dynamic renormalization-group. We demonstrated that the hydrodynamic region is

the interesting region which exhibits broad band, 1/f type, noise spectrum, and the

scaling behavior in this region is not cut-off by applying an external driving force as

previously believed. These results are illustrated both by numerical simulations, and

by deriving the relevant equations of motion using symmetry and conservation laws.

Other new and interesting features of the sandpile automaton are the non-trivial

short-time and long-time scaling regions. We have analyzed the long-time region and

demonstrated the origin of the great events and their anti-correlation. The power-

spectrum for the anti-correlating output current is derived for the one-dimensional

system. We expect such long-term memory effects to be present in other processes

which have threshold dynamics and metastability; these may include charge-density

waves, earth-quakes, and neural activities. What remains to be understood are the

relations (if any) among the various scaling regions, the interpretation of multi-

fractality, and the role of the boundary conditions in determining the macroscopic

scaling properties.
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Appendix: Propagator Renormalization

The first order correction to G R(k,w) is Gg(k,w)E(k,w) where E is calculated

from the diagram in Figure 6.19a.

(,) ( 2dq dD ik,, i (-q,)E(k-, w) 4 0) 2D2 (21r)d 27r  V11 qjj ) 2 + VL q_ )2 _ i2,,2(•d-•,,) + 2 2 - _ 2
1

The w -+ 0 and ki -- 0 limits can be taken right away. After integration over the

internal frequency it, we have to leading order in k

A 2 D ddq k 2 - 2kjjq 11(k) 4 (2) (v1llq + v qI) (qq1  + 2Vq- + vjlkjjq1)
v/jkl, (A2D)' ( 1 • -"2 d_ 1 0 d-5 f d-2 +

v3 I dq, q)-q jY-Y [d + y2-2 + 2(1 + yZ]-3
4 V (r

Note that the above integral is infrared divergent for d < 4. This apparent di-

vergence signals the relevance of nonlinearity below 4 dimensions; it is this type of

divergences the renormalization procedure is designed to handle. For now we give the

diverging integral an infrared cutoff, k1l -+ 0. It will be made clear in the text that it

is only necessary to evaluate the expression for E(kll) to leading order in e = 4 - d,
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giving the result

v lk , I ' 2
( 

11 1

which leads to (6.16).
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Chapter 7

Conclusions and Future Outlooks
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In this thesis, I have presented a number of studies of current topics in statistical

mechanics and non-equilibrium dynamics, in the context of surfaces and membranes.

Some of these studies are refinements of existing knowledge, while others are adven-

tures into the unknown. These works have generated a certain amount of interest

and are worthy of further pursuit. In the following, I will give an overall summary

of the status of each project and my own view of future developments in these and

related fields.

In the theoretical investigation of the macroscopic conformations of the self-

avoiding tethered membranes in d-dimensional embedding space, I demonstrated,

through direct summations of the perturbation series, the emergence of the anomoulous

scaling of the two-point correlation function and a finite second virial-coefficient, in

a generalized e-expansion scheme. I presented the Renormalization-Group (RG) for-

malism which can be used to short-cut the direct summation procedure. By deriving

the RG recursion relations to second-order in e, I explicitly showed how the results of

the direct summations (also known as the one-loop renormalizability) are required to

validate the e-expansion. The calculations of the RG fixed points and the exponent

values to higher orders in E are traditionally done by performing a series of formal,

field theoretical manipulations[102]. The RG procedure outlined in this work rep-

resents an alternative way of doing the systematic calculations but using the more

intuitive recursion relations.

I have also presented an interpretation of the generalized E-expansion, and illus-
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trated how universal quantities such as the fixed points and the exponent values may

be extracted to order E. However, the E-expansion does not have any power in pre-

dicting the macroscopic membrane conformations because the expansion parameter

E is 8 for membranes in 3-dimensions. The E-expansion was also carried out near the

"stretched-membrane" limit and revealed that the lower-critical dimension for the

existence of membrane's "crumpled" phase may not be the lower bound d = 2 pre-

viously thought. This finding allows the possibility that membranes in 3-dimension

may be always "flat" as suggested by recent simulations(8][331.

Among the unfinished businesses in this study are (a) a proof of the "dimensional

regularization" procedure which can be achieved by a direct summation of the full

partition function, and (b) a demonstration that the e-expansion may be carried out

to higher orders. The former subject can probably be done without too much difficulty

and will be discussed in a forth coming article. The latter is much more formidable as

it is marred by algebraic complexities of various multi-handle diagrams required by the

RG procedure. Here one faces the reality that the RG procedure is at the present time

still very primitive and inefficient. (It involves the calculations of many redundant

terms which eventually cancel each other.) In conventional field theories and polymer

theories, one can cope with the inefficiencies and the redundancies because all of the

calculations involved are in principle simple, and one has a systematic way of doing

them (the Feynman integral tricks). In the membrane case, the difficulties lie within

the calculations of the redundant terms; they are the boundary dependent terms. I
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believe that the minimal calculations needed for the final answers to physical questions

(such as the scaling properties of the radius of gyration) are still simple. However, a

better understanding of RG is needed to identify the relevant contributions. With a

better understanding of RG, we can also pursue the behavior of the membrane at its

0-point, as well as calculating the dynamical behaviors of a suspension of membranes.

The light scattering study of GO suspension reported in this thesis is the first

direct experimental study of the tethered membranes. Measurments of the static

structure factor indicate that the conformation of membranes in good suspension is

crumpled rather than flat, in contradiction with recent simulation results[8][33]. The

experimental results yield a fractal dimension of 2.4 and a radius-of-gyration exponent

of 0.83 for the GO membranes; these values are close to that of Flory's mean-field

estimate. A number of future experiments are being planned: By adjusting the pH

values of the GO suspension, one can probe the 0-point transition of the membranes.

A possible crumpling transition can be searched by varying the ambient temperatures

and the solvent qualities. Also the light scattering set-ups are being modified to allow

a detailed study of dynamical properties of the membranes. Through the proposed

theoretical and experimental studies, one can obtain more "practical" knowledge of

the graphite membranes, which can lead to further theoretical inquiries as well as

novel technological applications.

The study of pattern formation on swelling gels is a good example of a problem

where the macroscopic patterns are directly derived from a reasonable microscopic

237



model. In this study, we see explicitly the diffusive growth of the gel network, the

amplification of modes through linear instabilities, and the taming of instabilities

by nonlinearities and cusp formations. The complete growth process including non-

linearities are followed on a computer, and the patterns obtained are in qualitative

agreements with all observed phenomena. By including a density-dependent frictional

coefficient, one may be able to extend this model to describe the patterns obtained

from the reverse (shrinking) process.

The ideas of obtaining Langevin equations from considerations of symmetries and

conservation laws, and then using them to describe non-equilibrium dynamics, have

proven successful as reported in the study of surface growth[10][18]. Scale-invariant

surface morphology observed in the growth problem is guaranteed by a translational

symmetry. Critical exponents can then be obtained in principle through Dynamical

Renormalizaton-Group (DRG) calculations. The DRG method gives the exact ex-

ponents for the 1 + 1 dimensional surface growth problem, even in the presence of

strong spatially-correlated noises. The problem involving temporally correlated noise

is much more difficult to treat. In the study, I showed that the full noise spectrum was

needed in a self-consistent RG treatment. I also showed that the RG procedure failed

to yield a systematic e-expansion (about the upper critical dimension d, = 2) for the

growth of a general d-dimensional surface. I proposed an alternative expansion about

a lower critical dimension di = 0. The first-order result of various scaling exponents

in the small d-expansion scheme matched the exact result at d = 0 as well as the
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leading terms of the Kim-Kosterlitz exponent conjecture[68] which had been found

to be consistent with results of all recent large scale numerical simulations. However,

a stronger theoretical basis needs to be established for the small d-expansion.

One interesting area of investigation associated with the growth problem is the

limit of very strongly correlated temporal noise, i.e. noise with a power-spectrum

(r(k, w)r(k', w')) = 2D6d(k + k')lw +w'1-28, where 08 1/2. Traditional R.G methods

are not enough to tame the infra-red divergences in this problem because it involves

two independent diverging scales, the system size L and the duration of the process T.

Extensions of the existing RG formalisms are needed to treat this problem properly.

The existence of two independent length scales is intimately related to the occurrence

of multi-fractal scaling[103] which has been observed in a number of growth related

problems[5]. New RG formalism may therefore shed some light into the nature of

multi-fractal scaling which has been mysterious since its discovery. Numerical simu-

lations with noise in the 0 > 1/2 limit can provide evidences for or against any direct

connections between the large 0 limit and the appearance of multi-fractal scaling.

A topic of more fundamental importance is the origin of the correlated noise. It

is numerically known[63] that deterministic nonlinear equations such as the Sivashin-

ski flame-front propagation equation can generate an effective stochasticity just by

starting from a random initial condition. An analytical understanding of this process

can lend insight into the origin of stochasticity.

Finally, I investigated the phenomena of dissipative transport and avalanches by
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studying in detail variations of a simple "sandpile" automaton invented by Bak,

Tang and Wiesenfeld[14]. Numerical simulations were first carried out using a 1-

dimensional "running" sandpile. Various scaling regimes consisting of random super-

position of single avalanches at small time scales, interacting avalanches at interme-

diate time scales, and system-wide great events at large times scales were identified

and scaling exponents estimated. Qualitatively similar behaviors were observed in

preliminary simulations of 2-dimensional systems as well as in recent experiments of

real sand[83].

To understand the long-time behavior of the model transport system, I focused

the study on the intermediate and large time-scale regions. First of all, I found that

1/f-type broad-band noises in the transport current only appeared in the presence of

a finite driving force, contrary to the general belief which was based on an erraneous

argument by Tang and Bak[90]. Interesting broad-band noise occurs in the interme-

diate scaling region which is studied using the methods of continuum field theories.

Scale invariance observed in this region is shown to be a consequence of a conservation

law (in the number of sand grains transported). Symmetry principles are then used

to construct the simplest equation of motion. The scaling exponents in this region

can be obtained exactly using the method of dynamical RG as in the surface growth

problem.

The great events observed in the long-time limit is an unique feature of driven

transport systems that possess a large number of metastable states. In the case
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of the sandpile automaton, metastabilities are provided by the threshold nature of

the dynamics. Other systems (such as simple models of earthquakes[87] and charge-

density-waves[88]) sharing the propeties of metastability and threshold dynamics also

exhibit great events in the long-time region. The great events of the sandpile model

are found to be anti-correlated. I provided a simple analysis of a one-site system, and

demonstrated the underlying mechanism of anti-correlation. It is believed that the

anti-correlation of the great events is also a consequence of threshold dynamics and

can occur in a wide variety of systems.

A number of questions concerning the sandpile problem remain to be resolved.

Among them, an important question is the role of the boundary condition in deter-

mining the scaling behaviors. Also, the connections among various scaling regions

need to be understood, as this is related to the multifractal scaling observed in the

distribution functions of the 1-dimensional sandpiles[89]. From the sandpile model,

one can proceed to study more complicated transport problems by allowing additional

fields to move on top of the sandpile. For example, if we randomly deposit "water"

to the sandpile and allow the water to flow on the landscape, then we have a simple

system of river network. By introducing nonlinear couplings between the sand and

the water flows, we can have the landscape channeling the flow of water and water

flow re-shaping the structure of the landscape.

The subject matter studied in this thesis, conformations of membranes, surface

patterns of gels, surface morphology of deposits, and flow patterns of sandpiles, are
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all properties of "down-to-the-earth" objects we frequently encounter in nature. The

choice of these topics reflects my preference to stay close to the everyday life. I believe

that much meaningful physics can be learned from the most ordinary of objects if

we will only pay attention to them. I also believe that nature will reveal her secrets

to those who keep in close touch with her. The work reported in this thesis is the

beginning of a "romantic" journey in appreciating the beauty of nature.
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